WorldWideScience

Sample records for heat shield testing

  1. BWR spent fuel storage cask performance test. Volume 2. Pre- and post-test decay heat, heat transfer, and shielding analyses

    International Nuclear Information System (INIS)

    Wiles, L.E.; Lombardo, N.J.; Heeb, C.M.; Jenquin, U.P.; Michener, T.E.; Wheeler, C.L.; Creer, J.M.; McCann, R.A.

    1986-06-01

    This report describes the decay heat, heat transfer, and shielding analyses conducted in support of performance testing of a Ridhihalgh, Eggers and Associates REA 2033 boiling water reactor (BWR) spent fuel storage cask. The cask testing program was conducted for the US Department of Energy (DOE) Commercial Spent Fuel Management Program by the Pacific Northwest Laboratory (PNL) and by General Electric at the latters' Morris Operation (GE-MO) as reported in Volume I. The analyses effort consisted of performing pretest calculations to (1) select spent fuel for the test; (2) symmetrically load the spent fuel assemblies in the cask to ensure lateral symmetry of decay heat generation rates; (3) optimally locate temperature and dose rate instrumentation in the cask and spent fuel assemblies; and (4) evaluate the ORIGEN2 (decay heat), HYDRA and COBRA-SFS (heat transfer), and QAD and DOT (shielding) computer codes. The emphasis of this second volume is on the comparison of code predictions to experimental test data in support of the code evaluation process. Code evaluations were accomplished by comparing pretest (actually pre-look, since some predictions were not completed until testing was in progress) predictions with experimental cask testing data reported in Volume I. No attempt was made in this study to compare the two heat transfer codes because results of other evaluations have not been completed, and a comparison based on one data set may lead to erroneous conclusions

  2. Heat transfer pipe shielding device for heat exchanger

    International Nuclear Information System (INIS)

    Hanawa, Jun.

    1991-01-01

    The front face and the rear face of a frame that surrounds the circumference of the water chamber body of a multi-tube heat exchanger are covered by a rotational shielding plate. A slit is radially formed to the shielding plate for the insertion of a probe or cleaner to the heat transfer pipe and a deflector is disposed on the side opposite to the slit. The end of the heat transfer pipe to be inspected is exposed to the outer side by way of the slit by the rotation of the shielding plate, and the probe or cleaner is inserted in the heat transfer pipe to conduct an eddy current injury monitoring test or cleaning. The inside of the water chamber and the heat transfer pipe is exhausted by a ventilation nozzle disposed to the frame. Accordingly, a shielding effect upon inspection and cleaning can be obtained and, in addition, inspection and exhaustion at the cleaning position can be conducted easily. Since the operation for attachment and detachment is easy, the effect of reducing radiation dose per unit can be obtained by the shortening of the operation time. (N.H.)

  3. Thermophysical Properties of Heat Resistant Shielding Material

    International Nuclear Information System (INIS)

    Porter, W.D.

    2004-01-01

    This project was aimed at determining thermal conductivity, specific heat and thermal expansion of a heat resistant shielding material for neutron absorption applications. These data are critical in predicting the structural integrity of the shielding under thermal cycling and mechanical load. The measurements of thermal conductivity and specific heat were conducted in air at five different temperatures (-31 F, 73.4 F, 140 F, 212 F and 302 F). The transient plane source (TPS) method was used in the tests. Thermal expansion tests were conducted using push rod dilatometry over the continuous range from -40 F (-40 C) to 302 F (150 C)

  4. Heating profiles on ICRF antenna Faraday shields

    International Nuclear Information System (INIS)

    Taylor, D.J.; Baity, F.W.; Hahs, C.L. Riemer, B.W.; Ryan, D.M.; Williamson, D.E.

    1992-01-01

    Poor definition of the heating profiles that occur during normal operation of Faraday shields for ion cyclotron resonant frequency (ICRF) antennas has complicated the mechanical design of ICRF system components. This paper reports that at Oak Ridge National Laboratory (ORNL), Faraday shield analysis is being used in defining rf heating profiles. In recent numerical analyses of proposed hardware for the Burning Plasma Experiment (BPX) and DIII-D, rf magnetic fields at Faraday shield surfaces were calculated, providing realistic predictions of the induced skin currents flowing on the shield elements and the resulting dissipated power profile. Detailed measurements on mock-ups of the Faraday shields for DIII-D and the Tokamak Fusion Test Reactor (TFTR) confirmed the predicted magnetic field distributions. A conceptual design for an uncooled Faraday shield for the BPX ion cyclotron resonance heating (ICRH) antenna, which should withstand the proposed long-pulse operation, has been completed. The analytical effort is described in detail, with emphasis on the design work for the BPX ICRH antenna conceptual design and for the replacement Faraday shield for the DIII-D FWCD antenna. Results of analyses are shown, and configuration issues involved in component modeling are discussed

  5. Orion Heat Shield Manufacturing Producibility Improvements for the EM-1 Flight Test Program

    Science.gov (United States)

    Koenig, William J.; Stewart, Michael; Harris, Richard F.

    2018-01-01

    This paper describes how the ORION program is incorporating improvements in the heat shield design and manufacturing processes reducing programmatic risk and ensuring crew safety in support of NASA's Exploration missions. The approach for the EFT-1 heat shield utilized a low risk Apollo heritage design and manufacturing process using an Avcoat TPS ablator with a honeycomb substrate to provide a one piece heat shield to meet the mission re-entry heating environments. The EM-1 mission will have additional flight systems installed to fly to the moon and return to Earth. Heat shield design and producibility improvements have been incorporated in the EM-1 vehicle to meet deep space mission requirements. The design continues to use the Avcoat material, but in a block configuration to enable improvements in consistant and repeatable application processes using tile bonding experience developed on the Space Shuttle Transportation System Program.

  6. Castor-1C spent fuel storage cask decay heat, heat transfer, and shielding analyses

    International Nuclear Information System (INIS)

    Rector, D.R.; McCann, R.A.; Jenquin, U.P.; Heeb, C.M.; Creer, J.M.; Wheeler, C.L.

    1986-12-01

    This report documents the decay heat, heat transfer, and shielding analyses of the Gesellschaft fuer Nuklear Services (GNS) CASTOR-1C cask used in a spent fuel storage demonstration performed at Preussen Elektra's Wurgassen nuclear power plant. The demonstration was performed between March 1982 and January 1984, and resulted in cask and fuel temperature data and cask exterior surface gamma-ray and neutron radiation dose rate measurements. The purpose of the analyses reported here was to evaluate decay heat, heat transfer, and shielding computer codes. The analyses consisted of (1) performing pre-look predictions (predictions performed before the analysts were provided the test data), (2) comparing ORIGEN2 (decay heat), COBRA-SFS and HYDRA (heat transfer), and QAD and DOT (shielding) results to data, and (3) performing post-test analyses if appropriate. Even though two heat transfer codes were used to predict CASTOR-1C cask test data, no attempt was made to compare the two codes. The codes are being evaluated with other test data (single-assembly data and other cask data), and to compare the codes based on one set of data may be premature and lead to erroneous conclusions

  7. Highly heat removing radiation shielding material

    International Nuclear Information System (INIS)

    Asano, Norio; Hozumi, Masahiro.

    1990-01-01

    Organic materials, inorganic materials or metals having excellent radiation shielding performance are impregnated into expanded metal materials, such as Al, Cu or Mg, having high heat conductivity. Further, the porosity of the expanded metals and combination of the expanded metals and the materials to be impregnated are changed depending on the purpose. Further, a plurality of shielding materials are impregnated into the expanded metal of the same kind, to constitute shielding materials. In such shielding materials, impregnated materials provide shielding performance against radiation rays such as neutrons and gamma rays, the expanded metals provide heat removing performance respectively and they act as shielding materials having heat removing performance as a whole. Accordingly, problems of non-informity and discontinuity in the prior art can be dissolved be provide materials having flexibility in view of fabrication work. (T.M.)

  8. Thermal testing of solid neutron shielding materials

    International Nuclear Information System (INIS)

    Boonstra, R.H.

    1993-01-01

    In May-June 1989 the first series of full-scale thermal tests was performed on three shielding materials: Bisco Products NS-4-FR, and Reactor Experiments RX-201 and RX-207. The tests are described in Thermal Testing of Solid Neutron Shielding Materials, GA-A19897, R.H. Boonstra, General Atomics (1990), and demonstrated the acceptability of these materials in a thermal accident. Subsequent design changes to the cask rendered these materials unattractive in terms of weight or adequate service temperature margin. For the second test series a material specification was developed for a polypropylene based neutron shield with a softening point of at least 280degF. Table 1 lists the neutron shield materials tested. The Envirotech and Bisco materials are not polypropylene, but were tested as potential backup materials in the event that a satisfactory polypropylene could not be found. The Bisco modified NS-4 and Reactor Experiments HMPP are both acceptable materials from a thermal accident standpoint for use in the shipping cask. Tests of the Kobe PP-R01 and Envirotech HDPE were stopped for safety reasons, due to inability to deal with the heavy smoke, before completion of the 30-minute heating phase. However these materials may prove satisfactory if they could undergo the complete heating. (J.P.N.)

  9. Mars Exploration Rover Heat Shield Recontact Analysis

    Science.gov (United States)

    Raiszadeh, Behzad; Desai, Prasun N.; Michelltree, Robert

    2011-01-01

    The twin Mars Exploration Rover missions landed successfully on Mars surface in January of 2004. Both missions used a parachute system to slow the rover s descent rate from supersonic to subsonic speeds. Shortly after parachute deployment, the heat shield, which protected the rover during the hypersonic entry phase of the mission, was jettisoned using push-off springs. Mission designers were concerned about the heat shield recontacting the lander after separation, so a separation analysis was conducted to quantify risks. This analysis was used to choose a proper heat shield ballast mass to ensure successful separation with low probability of recontact. This paper presents the details of such an analysis, its assumptions, and the results. During both landings, the radar was able to lock on to the heat shield, measuring its distance, as it descended away from the lander. This data is presented and is used to validate the heat shield separation/recontact analysis.

  10. Compression Pad Cavity Heating Augmentation on Orion Heat Shield

    Science.gov (United States)

    Hollis, Brian R.

    2011-01-01

    An experimental study has been conducted to assess the effects of compression pad cavities on the aeroheating environment of the Project Orion Crew Exploration Vehicle heat shield. Testing was conducted in Mach 6 and 10 perfect-gas wind tunnels to obtain heating measurements in and around the compression pads cavities using global phosphor thermography. Data were obtained over a wide range of Reynolds numbers that produced laminar, transitional, and turbulent flow within and downstream of the cavities. The effects of cavity dimensions on boundary-layer transition and heating augmentation levels were studied. Correlations were developed for transition onset and for the average cavity-heating augmentation.

  11. Thermal testing of solid neutron shielding materials

    International Nuclear Information System (INIS)

    Boonstra, R.H.

    1990-03-01

    The GA-4 and GA-9 spent fuel shipping casks employ a solid neutron shielding material. During a hypothetical thermal accident, any combustion of the neutron shield must not compromise the ability of the cask to contain the radioactive contents. A two-phase thermal testing program was carried out to assist in selecting satisfactory shielding materials. In the first phase, small-scale screening tests were performed on nine candidate materials using ASTM procedures. From these initial results, three of the nine candidates were chosen for inclusion in the second phase of testing, These materials were Bisco Products NS-4-FR, Reactor Experiments 201-1, and Reactor Experiments 207. In the second phase, each selected material was fabricated into a test article which simulated a full-scale of neutron shield from the cask. The test article was heated in an environmental prescribed by NRC regulations. Results of this second testing phase showed that all three materials are thermally acceptable

  12. Thermal testing of solid neutron shielding materials

    International Nuclear Information System (INIS)

    Boonstra, R.N.

    1990-01-01

    The GA-4 and GA-9 spent fuel shipping casks employ a solid neutron shielding material. During a hypothetical thermal accident, any combustion of the neutron shield must not compromise the ability of the cask to contain the radioactive contents. A two-phase thermal testing program was carried out to assist in selecting satisfactory shielding materials. In the first phase, small-scale screening tests were performed on nine candidate materials using ASTM procedures. From these initial results, three of the nine candidates were chosen for inclusion in the second phase of testing. These materials were Bisco Products NS-4-FR, Reactor Experiments 201-1, and Reactor Experiments 207. In the second phase, each selected material was fabricated into a test article which simulated a full-scale section of neutron shield from the cask. The test article was heated in an environment prescribed by NRC regulations. Results of this second testing phase show that all three materials are thermally acceptable

  13. Core test reactor shield cooling system analysis

    International Nuclear Information System (INIS)

    Larson, E.M.; Elliott, R.D.

    1971-01-01

    System requirements for cooling the shield within the vacuum vessel for the core test reactor are analyzed. The total heat to be removed by the coolant system is less than 22,700 Btu/hr, with an additional 4600 Btu/hr to be removed by the 2-inch thick steel plate below the shield. The maximum temperature of the concrete in the shield can be kept below 200 0 F if the shield plug walls are kept below 160 0 F. The walls of the two ''donut'' shaped shield segments, which are cooled by the water from the shield and vessel cooling system, should operate below 95 0 F. The walls of the center plug, which are cooled with nitrogen, should operate below 100 0 F. (U.S.)

  14. Heating profiles on ICRF antenna Faraday shields

    International Nuclear Information System (INIS)

    Taylor, D.J.; Baity, F.W.; Hahs, C.L.; Riemer, B.W.; Ryan, P.M.; Williamson, D.E.

    1991-01-01

    A conceptual design for an uncooled Faraday shield for the BPX ion cyclotron resonance heating (ICRH) antenna, which should withstand the proposed long-pulse operation, has been completed. A high-heat-flux, uncooled Faraday shield has also been designed for the fast-wave current drive (FWCD) antenna on D3-D. For both components, the improved understanding of the heating profiles made it possible to design for heat fluxes that would otherwise have been too close to mechanically established limits. The analytical effort is described in detail, with emphasis on the design work for the BPX ICRH antenna conceptual design and for the replacement Faraday shield for the D3-D FWCD antenna. Results of analyses are shown, and configuration issues involved in component modeling are discussed. 3 refs., 6 figs., 2 tabs

  15. Regolith Derived Heat Shield for Planetary Body Entry and Descent System with In Situ Fabrication

    Science.gov (United States)

    Hogue, Michael D.; Meuller, Robert P.; Sibille, Laurent; Hintze, Paul E.; Rasky, Daniel J.

    2012-01-01

    . Platinum, titanium, helium 3, and other metals, elements and minerals are all high-value commodities in limited supply on Earth, and it may be profitable to mine these substances throughout the Solar System and return them to Earth, if an economical method can be found. To date, several private corporations have been launched to pursue these goals. Because the heat shield is the last element to be used in an Earth-return mission, a high penalty is paid in the propellant mass required to carry the heat shield to the destination and back. If the heat shield could be manufactured in space, and then outfitted on the spacecraft prior to the reentry at Earth, then significant propellant and mass savings could be achieved during launch and space operations. Preliminary mission architecture scenarios are described, which explain the potential benefits that may be derived from using an in-situ fabricated regolith heat shield. In order to prove that this is a feasible technology concept, this project successfully fabricated heat shield materials from mineral simulant materials of lunar and Martian regolith by two methods: 1) Sintering and 2) Binding the simulant with a "room-temperature vulcanizing" (RTV) silicone formulated to withstand high temperatures. Initially a third type of fabrication was planned using the hot waste stream from regolith ISRU processes. This fabrication method was discarded since the resulting samples would be too dense and brittle for heat shields. High temperature flame tests at KSC and subsequent arc jet tests at Ames Research Center (ARC) have proved promising. These coupon tests show favorable materials properties and have the potential to be a new way of fabricating heat shields for space entry into planetary atmospheres.

  16. Fabrication and testing of small scale mock-ups of ITER shielding blanket

    International Nuclear Information System (INIS)

    Hatano, Toshihisa; Sato, Satoshi; Suzuki, Satoshi; Yokoyama, Kenji; Furuya, Kazuyuki; Kuroda, Toshimasa; Enoeda, Mikio; Takatsu, Hideyuki; Ohara, Yoshihiro

    1998-12-01

    Small scale mock-ups of the primary first wall, the baffle first wall, the shield block and a partial model for the edge of the primary first wall module were designed and fabricated incorporating most of the key design features of the ITER shielding blanket. All mock-ups featured the DSCu heat sink, the built-in SS coolant tubes within the heat sink and the SS shield block. CFC tiles was used as the protection armor for the baffle first wall mock-up. The small scale shield block mock-up, integrated with the first wall, was designed to have a poloidal curvature specified in the ITER design. Fabrication routes of mock-ups were decided based on the single step solid HIP of DSCu/DSCu, DSCu/SS and SS/SS reflecting the results of previous joining techniques development and testing. For attaching the CFC tiles onto DSCu heat sink in the fabrication of the baffle first wall mock-up, a two-step brazing was tried. All mock-ups and the partial model were successfully fabricated with a satisfactory dimensional accuracy. The small scale primary first wall mock-up was thermo-mechanically tested under high heat fluxes of 5-7 MW/m 2 for 2500 cycles in total. Satisfactory heat removal performance and integrity of the mock-up against cyclic high heat flux loads were confirmed by measurement during the tests and destructive examination after the tests. Similar high heat flux tests were also performed with the small scale baffle first wall mock-up under 5-10 MW/m 2 for 4500 cycles in total resulting in sufficient heat removal capability and integrity confirmed by measurements during the tests. (author)

  17. BWR spent fuel storage cask performance test. Volume 1. Cask handling experience and decay heat, heat transfer, and shielding data

    International Nuclear Information System (INIS)

    McKinnon, M.A.; Doman, J.W.; Tanner, J.E.; Guenther, R.J.; Creer, J.M.; King, C.E.

    1986-02-01

    This report documents a heat transfer and shielding performance test conducted on a Ridihalgh, Eggers and Associates REA 2023 boiling water reactor (BWR) spent fuel storage cask. The testing effort consisted of three parts: pretest preparations, performance testing, and post-test activities. Pretest preparations included conducting cask handling dry runs and characterizing BWR spent fuel assemblies from Nebraska Public Power District's Cooper Nuclear Station. The performance test matrix included 14 runs consisting of two loadings, two cask orientations, and three backfill environments. Post-test activities included calorimetry and axial radiation scans of selected fuel assemblies, in-basin sipping of each assembly, crud collection, video and photographic scans, and decontamination of the cask interior and exterior

  18. Fabrication and testing of small scale mock-ups of ITER shielding blanket

    Energy Technology Data Exchange (ETDEWEB)

    Hatano, Toshihisa; Sato, Satoshi; Suzuki, Satoshi; Yokoyama, Kenji; Furuya, Kazuyuki; Kuroda, Toshimasa; Enoeda, Mikio; Takatsu, Hideyuki; Ohara, Yoshihiro [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    1998-12-01

    Small scale mock-ups of the primary first wall, the baffle first wall, the shield block and a partial model for the edge of the primary first wall module were designed and fabricated incorporating most of the key design features of the ITER shielding blanket. All mock-ups featured the DSCu heat sink, the built-in SS coolant tubes within the heat sink and the SS shield block. CFC tiles was used as the protection armor for the baffle first wall mock-up. The small scale shield block mock-up, integrated with the first wall, was designed to have a poloidal curvature specified in the ITER design. Fabrication routes of mock-ups were decided based on the single step solid HIP of DSCu/DSCu, DSCu/SS and SS/SS reflecting the results of previous joining techniques development and testing. For attaching the CFC tiles onto DSCu heat sink in the fabrication of the baffle first wall mock-up, a two-step brazing was tried. All mock-ups and the partial model were successfully fabricated with a satisfactory dimensional accuracy. The small scale primary first wall mock-up was thermo-mechanically tested under high heat fluxes of 5-7 MW/m{sup 2} for 2500 cycles in total. Satisfactory heat removal performance and integrity of the mock-up against cyclic high heat flux loads were confirmed by measurement during the tests and destructive examination after the tests. Similar high heat flux tests were also performed with the small scale baffle first wall mock-up under 5-10 MW/m{sup 2} for 4500 cycles in total resulting in sufficient heat removal capability and integrity confirmed by measurements during the tests. (author)

  19. Multifunctional Hot Structure Heat Shield

    Data.gov (United States)

    National Aeronautics and Space Administration — This project is performing preliminary development of a Multifunctional Hot Structure (HOST) heat shield for planetary entry. Results of this development will...

  20. Evaluation of Heat Shields from RTS Wright Industries Magnesium and Uranium Beds

    CERN Document Server

    Korinko, P S

    2002-01-01

    Heat shields from a factory test of the furnaces that will be used to heat the magnesium and uranium beds for the tritium extraction facility (TEF) were examined to determine the cause of discoloration. The samples were examined using visual, optical microscopy, electron microscopy, x-ray spectroscopy, and Auger electron spectroscopy.

  1. Heating Augmentation Due to Compression Pad Cavities on the Project Orion CEV Heat Shield

    Science.gov (United States)

    Hollis, Brian R.

    2009-01-01

    An experimental study has been conducted to assess the effects of compression pad cavities on the aeroheating environment of the Project Orion CEV heat-shield. Testing was conducted in Mach 6 and Mach 10 perfect-gas wind tunnels to obtain heating measurements in and around the compression pads cavities using global phosphor thermography. Data were obtained over a wide range of Reynolds numbers that produced laminar, transitional, and turbulent flow within and downstream of the cavities. The effects of cavity dimensions on boundary-layer transition and heating augmentation levels were studied. Correlations were developed for transition onset and for the average cavity-heating augmentation.

  2. Evaluation of alternative methods of simulating asymmetric bulk heating in fusion reactor blanket/shield components

    International Nuclear Information System (INIS)

    Deis, G.A.; Longhurst, G.R.; Miller, L.G.; Wadkins, R.P.; Wessol, D.E.

    1981-10-01

    As a part of Phase O, Test Program Element-II of the Office of Fusion Energy First Wall/Blanket/Shield Engineering Test Program, a study was conducted by EG and G Idaho, Inc., to identify, characterize, and recommend alternative approaches for simulating fusion bulk heating in blanket/shield components. This is the report on that effort. Since the usefulness of any simulation approach depends upon the particular experiment considered, classes of problem types (thermal-hydraulic, thermomechanical, etc.) and material types (structure, solid breeder, etc.) are developed. The evaluation of the various simulation approaches is performed for the various significant combinations of problem class and material class. The simulation approaches considered are discrete-source heating, direct resistance, electromagnetic induction, microwave heating, and nuclear heating. From the evaluations performed for each experiment type, discrete - source heating emerges as a good approach for bulk heating simulation in thermal - hydraulics experiments, and nuclear heating appears to be a good approach in experiments addressing thermomechanics and combined thermal-hydraulic/thermomechanics

  3. Heat shield manifold system for a midframe case of a gas turbine engine

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, Clinton A.; Eng, Jesse; Schopf, Cheryl A.

    2017-07-25

    A heat shield manifold system for an inner casing between a compressor and turbine assembly is disclosed. The heat shield manifold system protects the outer case from high temperature compressor discharge air, thereby enabling the outer case extending between a compressor and a turbine assembly to be formed from less expensive materials than otherwise would be required. In addition, the heat shield manifold system may be configured such that compressor bleed air is passed from the compressor into the heat shield manifold system without passing through a conventional flange to flange joint that is susceptible to leakage.

  4. Experimental assessment on the thermal effects of the neutron shielding and heat-transfer fin of dual purpose casks on open pool fire

    International Nuclear Information System (INIS)

    Bang, Kyoung-Sik; Yu, Seung-Hwan; Lee, Ju-Chan; Seo, Ki-Seog; Choi, Woo-Seok

    2016-01-01

    Highlights: • An open pool fire test was performed to estimate not only the combustion effect of the neutron shielding but also the effect of the heat transfer fin of the dual purpose cask. • The heat transfer to the inside of the dual purpose cask was reduced, when the neutron shielding burns. • The surface temperatures are lower in the present of the heat transfer fins. • If inflammable material is used as the components of the cask, evaluating thermal integrity using the thermal test would be desirable. - Abstract: Dual purpose casks are used for storage and transport of spent nuclear fuel assemblies. They must therefore satisfy the requirements prescribed in the Korea Nuclear Safety Security Commission Act 2014-50, the IAEA Safety Standard Series No. SSR-6, and US 10 CFR Part 71. These regulatory guidelines classify the dual purpose cask as a Type B package and state that a Type B package must be able to withstand a temperature of 800 °C for a period of 30 min. NS-4-FR is used as neutron shielding of the dual purpose cask. Heat transfer fins are embedded to enhance heat transfer from the cask body to the outer-shell because the thermal conductivity of NS-4-FR is not good. However, accurately simulating not only the combustion effect of the neutron shielding but also the effect of the heat transfer fin in the thermal analysis is not easy. Therefore, an open pool fire test was conducted using a one-sixth slice of a real cask to estimate these effects at a temperature of 800 °C for a period of 30 min. The temperature at the central portion of the neutron shielding was lower when the neutron shielding in contact with the outer cask burned because the neutron shielding absorbed the surrounding latent heat as the neutron shielding burned. Therefore, the heat transfer to the inside of the dual purpose cask was reduced. The surface temperature was lower when a heat transfer fin was installed because the high heat generated by the flame was transferred to the

  5. Experimental assessment on the thermal effects of the neutron shielding and heat-transfer fin of dual purpose casks on open pool fire

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Kyoung-Sik, E-mail: nksbang@kaeri.re.kr; Yu, Seung-Hwan; Lee, Ju-Chan; Seo, Ki-Seog; Choi, Woo-Seok

    2016-08-01

    Highlights: • An open pool fire test was performed to estimate not only the combustion effect of the neutron shielding but also the effect of the heat transfer fin of the dual purpose cask. • The heat transfer to the inside of the dual purpose cask was reduced, when the neutron shielding burns. • The surface temperatures are lower in the present of the heat transfer fins. • If inflammable material is used as the components of the cask, evaluating thermal integrity using the thermal test would be desirable. - Abstract: Dual purpose casks are used for storage and transport of spent nuclear fuel assemblies. They must therefore satisfy the requirements prescribed in the Korea Nuclear Safety Security Commission Act 2014-50, the IAEA Safety Standard Series No. SSR-6, and US 10 CFR Part 71. These regulatory guidelines classify the dual purpose cask as a Type B package and state that a Type B package must be able to withstand a temperature of 800 °C for a period of 30 min. NS-4-FR is used as neutron shielding of the dual purpose cask. Heat transfer fins are embedded to enhance heat transfer from the cask body to the outer-shell because the thermal conductivity of NS-4-FR is not good. However, accurately simulating not only the combustion effect of the neutron shielding but also the effect of the heat transfer fin in the thermal analysis is not easy. Therefore, an open pool fire test was conducted using a one-sixth slice of a real cask to estimate these effects at a temperature of 800 °C for a period of 30 min. The temperature at the central portion of the neutron shielding was lower when the neutron shielding in contact with the outer cask burned because the neutron shielding absorbed the surrounding latent heat as the neutron shielding burned. Therefore, the heat transfer to the inside of the dual purpose cask was reduced. The surface temperature was lower when a heat transfer fin was installed because the high heat generated by the flame was transferred to the

  6. Innovative technologies for Faraday shield cooling

    International Nuclear Information System (INIS)

    Rosenfeld, J.H.; Lindemuth, J.E.; North, M.T.; Goulding, R.H.

    1995-01-01

    Alternative advanced technologies are being evaluated for use in cooling the Faraday shields used for protection of ion cyclotron range of frequencies (ICR) antennae in Tokamaks. Two approaches currently under evaluation include heat pipe cooling and gas cooling. A Monel/water heat pipe cooled Faraday shield has been successfully demonstrated. Heat pipe cooling offers the advantage of reducing the amount of water discharged into the Tokamak in the event of a tube weld failure. The device was recently tested on an antenna at Oak Ridge National Laboratory. The heat pipe design uses inclined water heat pipes with warm water condensers located outside of the plasma chamber. This approach can passively remove absorbed heat fluxes in excess of 200 W/cm 2 ;. Helium-cooled Faraday shields are also being evaluated. This approach offers the advantage of no liquid discharge into the Tokamak in the event of a tube failure. Innovative internal cooling structures based on porous metal cooling are being used to develop a helium-cooled Faraday shield structure. This approach can dissipate the high heat fluxes typical of Faraday shield applications while minimizing the required helium blower power. Preliminary analysis shows that nominal helium flow and pressure drop can sufficiently cool a Faraday shield in typical applications. Plans are in progress to fabricate and test prototype hardware based on this approach

  7. Heat-shield for Extreme Entry Environment Technology (HEEET) Development Status

    Science.gov (United States)

    Venkatapathy, Ethiraj; Ellerby, Don; Gage, Peter

    2016-01-01

    The Heat shield for Extreme Entry Environment Technology (HEEET) Project is a NASA STMD and SMD co-funded effort. The goal is to develop and mission infuse a new ablative Thermal Protection System that can withstand extreme entry. It is targeted to support NASA's high priority missions, as defined in the latest decadal survey, to destinations such as Venus and Saturn in-situ robotic science missions. Entry into these planetary atmospheres results in extreme heating. The entry peak heat-flux and associated pressure are estimated to be between one and two orders of magnitude higher than those experienced by Mars Science Laboratory or Lunar return missions. In the recent New Frontiers community announcement NASA has indicated that it is considering providing an increase to the PI managed mission cost (PIMMC) for investigations utilizing the Heat Shield for Extreme Entry Environment Technology (HEEET) and in addition, NASA is considering limiting the risk assessment to only their accommodation on the spacecraft and the mission environment. The HEEET ablative TPS utilizes 3D weaving technology to manufacture a dual layer material architecture. The 3-D weaving allows for flat panels to be woven. The dual layer consists of a top layer designed to withstand the extreme external environment while the inner or insulating layer by design, is designed to achieve low thermal conductivity, and it keeps the heat from conducting towards the structure underneath. Both arc jet testing combined with material properties have been used to develop thermal response models that allows for comparison of performance with heritage carbon phenolic. A 50% mass efficiency is achieved by the dual layer construct compared to carbon phenolic for a broad range of missions both to Saturn and Venus. The 3-D woven flat preforms are molded to achieve the shape as they are compliant and then resin infusion with curing forms a rigid panels. These panels are then bonded on to the aeroshell structure. Gaps

  8. Temperature distribution due to the heat generation in nuclear reactor shielding

    International Nuclear Information System (INIS)

    Torres, L.M.R.

    1985-01-01

    A study is performed for calculating nuclear heating due to the interaction of neutrons and gamma-rays with matter. Modifications were implemented in the ANISN and DOT 3.5 codes, that solve the transport equation using the discrete ordinate method, in one two-dimensions respectively, to include nuclear heating calculations in these codes. In order to determine the temperature distribution, using the finite difference method, a numerical model was developed for solving the heat conduction equation in one-dimension, in plane, cylindrical and spherical geometries, and in two-dimensions, X-Y and R-Z geometries. Based on these models, computer programs were developed for calculating the temperature distribution. Tests and applications of the implemented modifications were performed in problems of nuclear heating and temperature distribution due to radiation energy deposition in fission and fusion reactor shields. (Author) [pt

  9. Antithermal shield for rockets with heat evacuation by infrared radiation reflection

    Directory of Open Access Journals (Sweden)

    Ioan RUSU

    2010-12-01

    Full Text Available At high speed, the friction between the air mass and the rocket surface causes a localheating of over 1000 Celsius degrees. For the heat protection of the rocket, on its outside surfacethermal shields are installed.Studying the Coanda effect, the fluid flow on solids surface, respectively, the author Ioan Rusuhas discovered by simply researches that the Coanda effect could be /extended also to the fluid flowon discontinuous solids, namely, on solids provided with orifices. This phenomenon was named by theauthor, the expanded Coanda effect. Starting with this discovery, the author has invented a thermalshield, registered at The State Office for inventions and Trademarks OSIM, deposit F 2010 0153This thermal shield:- is built as a covering rocket sheet with many orifices installed with a minimum space fromthe rocket body- takes over the heat fluid generated by the frontal part of the rocket and avoids the directcontact between the heat fluid and the rocket body- ensures the evacuation of the infrared radiation, generated by the heat fluid flowing overthe shield because of the extended Coanda effect by reflection from the rocket bodysurface.

  10. Test program element II blanket and shield thermal-hydraulic and thermomechanical testing, experimental facility survey

    Energy Technology Data Exchange (ETDEWEB)

    Ware, A.G.; Longhurst, G.R.

    1981-12-01

    This report presents results of a survey conducted by EG and G Idaho to determine facilities available to conduct thermal-hydraulic and thermomechanical testing for the Department of Energy Office of Fusion Energy First Wall/Blanket/Shield Engineering Test Program. In response to EG and G queries, twelve organizations (in addition to EG and G and General Atomic) expressed interest in providing experimental facilities. A variety of methods of supplying heat is available.

  11. Test program element II blanket and shield thermal-hydraulic and thermomechanical testing, experimental facility survey

    International Nuclear Information System (INIS)

    Ware, A.G.; Longhurst, G.R.

    1981-12-01

    This report presents results of a survey conducted by EG and G Idaho to determine facilities available to conduct thermal-hydraulic and thermomechanical testing for the Department of Energy Office of Fusion Energy First Wall/Blanket/Shield Engineering Test Program. In response to EG and G queries, twelve organizations (in addition to EG and G and General Atomic) expressed interest in providing experimental facilities. A variety of methods of supplying heat is available

  12. Thermal testing of solid neutron shielding materials

    International Nuclear Information System (INIS)

    Boonstra, R.H.

    1992-09-01

    Two legal-weight truck casks the GA-4 and GA-9, will carry four PWR and nine BWR spent fuel assemblies, respectively. Each cask has a solid neutron shielding material separating the steel body and the outer steel skin. In the thermal accident specified by NRC regulations in 10CFR Part 71, the cask is subjected to an 800 degree C environment for 30 minutes. The neutron shield need not perform any shielding function during or after the thermal accident, but its behavior must not compromise the ability of the cask to contain the radioactive contents. In May-June 1989 the first series of full-scale thermal tests was performed on three shielding materials: Bisco Products NS-4-FR, and Reactor Experiments RX-201 and RX-207. The tests are described in Thermal Testing of Solid Neutron Shielding Materials, GA-AL 9897, R. H. Boonstra, General Atomics (1990), and demonstrated the acceptability of these materials in a thermal accident. Subsequent design changes to the cask rendered these materials unattractive in terms of weight or adequate service temperature margin. For the second test series, a material specification was developed for a polypropylene based neutron shield with a softening point of at least 280 degree F. The neutron shield materials tested were boronated (0.8--4.5%) polymers (polypropylene, HDPE, NS-4). The Envirotech and Bisco materials are not polypropylene, but were tested as potential backup materials in the event that a satisfactory polypropylene could not be found

  13. Manufacture and testing of the CTB&SBB thermal shield for the ITER magnet feeder system

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Kun; Liu, Chen; Song, Yuntao; Feng, Hansheng; Ding, Kaizhong, E-mail: kzding@ipp.ac.cn; Wang, Tanbin; Ji, Hui

    2015-10-15

    The system of International Thermonuclear Experimental Reactor (ITER) feeders is responsible for the power, helium cooling, and instrumentation of the magnets of the coil terminal box and S-bend box (CTB&SBB) thermal shield outside the cryostat. An 80-K rectangular Al thermal shield is hung inside the CTB&SBB to reduce the thermal radiation heat loads of 4.5-K helium. The American Society of Interventional Pain Physicians (ASIPP) will supply all the 31 sets of feeders for ITER. A manufactured prototype of CTB&SBB thermal shield is first quality-tested before the commencement of the series production. First, a detailed configuration of the rectangular Al thermal shield is presented in this article. The paper also presents more information on the manufacturing process of the thermal shield, especially the welding process, the procedure for ensuring good weld quality, and the use of a specially designed tool to ensure <5-mm deformation on such a 7.3-m-long thermal shield during welding. In addition, the cold test and results, including the cooling process with 13-bar and 17.5-g/s 80-K He gas, and the temperature distribution on different panels of the thermal shield are presented. The whole process of manufacture and testing lays a good foundation for the series production of the thermal shield.

  14. Heat leak testing of a superconducting RHIC dipole magnet at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    DeLalio, J.T.; Brown, D.P.; Sondericker, J.H.

    1993-01-01

    Brookhaven National Laboratory is currently performing heat load tests on a superconducting dipole magnet. The magnet is a prototype of the 360, 8 cm bore, arc dipole magnets that will be used in the Relativistic Heavy Ion Collider (RMC). An accurate measurement of the heat load is needed to eliminate cumulative errors when determining the REUC cryogenic system load requirements. The test setup consists of a dipole positioned between two quadrupoles in a common vacuum tank and heat shield. Piping and instrumentation are arranged to facilitate measurement of the heat load on the primary 4.6 K magnet load and the secondary 55 K heat shield load. Initial results suggest that the primary heat load is well below design allowances. The secondary load was found to be higher than estimated, but remained close to the budgeted amount. Overall, the dipole performed to specifications

  15. Shielding benchmark test

    International Nuclear Information System (INIS)

    Kawai, Masayoshi

    1984-01-01

    Iron data in JENDL-2 have been tested by analyzing shielding benchmark experiments for neutron transmission through iron block performed at KFK using CF-252 neutron source and at ORNL using collimated neutron beam from reactor. The analyses are made by a shielding analysis code system RADHEAT-V4 developed at JAERI. The calculated results are compared with the measured data. As for the KFK experiments, the C/E values are about 1.1. For the ORNL experiments, the calculated values agree with the measured data within an accuracy of 33% for the off-center geometry. The d-t neutron transmission measurements through carbon sphere made at LLNL are also analyzed preliminarily by using the revised JENDL data for fusion neutronics calculation. (author)

  16. Development of neutron shielding material for cask

    International Nuclear Information System (INIS)

    Najima, K.; Ohta, H.; Ishihara, N.; Matsuoka, T.; Kuri, S.; Ohsono, K.; Hode, S.

    2001-01-01

    Since 1980's Mitsubishi Heavy Industries, Ltd (MHI) has established transport and storage cask design 'MSF series' which makes higher payload and reliability for long term storage. MSF series transport and storage cask uses new-developed neutron shielding material. This neutron shielding material has been developed for improving durability under high condition for long term. Since epoxy resin contains a lot of hydrogen and is comparatively resistant to heat, many casks employ epoxy base neutron shielding material. However, if the epoxy base neutron shielding material is used under high temperature condition for a long time, the material deteriorates and the moisture contained in it is released. The loss of moisture is in the range of several percents under more than 150 C. For this reason, our purpose was to develop a high durability epoxy base neutron shielding material which has the same self-fire-extinction property, high hydrogen content and so on as conventional. According to the long-time heating test, the weight loss of this new neutron shielding material after 5000 hours heating has been lower than 0.04% at 150 C and 0.35% at 170 C. A thermal test was also performed: a specimen of neutron shielding material covered with stainless steel was inserted in a furnace under condition of 800 C temperature for 30 minutes then was left to cool down in ambient conditions. The external view of the test piece shows that only a thin layer was carbonized

  17. Magnetic shielding tests for MFTF-B neutral beamlines

    International Nuclear Information System (INIS)

    Kerns, J.; Fabyan, J.; Wood, R.; Koger, P.

    1983-01-01

    A test program to determine the effectiveness of various magnetic shielding designs for MFTF-B beamlines was established at Lawrence Livermore National Laboratory (LLNL). The proposed one-tenth-scale shielding-design models were tested in a uniform field produced by a Helmholtz coil pair. A similar technique was used for the MFTF source-injector assemblies, and the model test results were confirmed during the Technology Demonstration in 1982. The results of these tests on shielding designs for MFTF-B had an impact on the beamline design for MFTF-B. The iron-core magnet and finger assembly originally proposed were replaced by a simple, air-core, race-track-coil, bending magnet. Only the source injector needs to be magnetically shielded from the fields of approximately 400 gauss

  18. SP-100 GES/NAT radiation shielding systems design and development testing

    International Nuclear Information System (INIS)

    Disney, R.K.; Kulikowski, H.D.; McGinnis, C.A.; Reese, J.C.; Thomas, K.; Wiltshire, F.

    1991-01-01

    Advanced Energy Systems (AES) of Westinghouse Electric Corporation is under subcontract to the General Electric Company to supply nuclear radiation shielding components for the SP-100 Ground Engineering System (GES) Nuclear Assembly Test to be conducted at Westinghouse Hanford Company at Richland, Washington. The radiation shielding components are integral to the Nuclear Assembly Test (NAT) assembly and include prototypic and non-prototypic radiation shielding components which provide prototypic test conditions for the SP-100 reactor subsystem and reactor control subsystem components during the GES/NAT operations. W-AES is designing three radiation shield components for the NAT assembly; a prototypic Generic Flight System (GFS) shield, the Lower Internal Facility Shield (LIFS), and the Upper Internal Facility Shield (UIFS). This paper describes the design approach and development testing to support the design, fabrication, and assembly of these three shield components for use within the vacuum vessel of the GES/NAT. The GES/NAT shields must be designed to operate in a high vacuum which simulates space operations. The GFS shield and LIFS must provide prototypic radiation/thermal environments and mechanical interfaces for reactor system components. The NAT shields, in combination with the test facility shielding, must provide adequate radiation attenuation for overall test operations. Special design considerations account for the ground test facility effects on the prototypic GFS shield. Validation of the GFS shield design and performance will be based on detailed Monte Carlo analyses and developmental testing of design features. Full scale prototype testing of the shield subsystems is not planned

  19. Pulse-echo ultrasonic inspection system for in-situ nondestructive inspection of Space Shuttle RCC heat shields.

    Energy Technology Data Exchange (ETDEWEB)

    Roach, Dennis Patrick; Walkington, Phillip D.; Rackow, Kirk A.

    2005-06-01

    The reinforced carbon-carbon (RCC) heat shield components on the Space Shuttle's wings must withstand harsh atmospheric reentry environments where the wing leading edge can reach temperatures of 3,000 F. Potential damage includes impact damage, micro cracks, oxidation in the silicon carbide-to-carbon-carbon layers, and interlaminar disbonds. Since accumulated damage in the thick, carbon-carbon and silicon-carbide layers of the heat shields can lead to catastrophic failure of the Shuttle's heat protection system, it was essential for NASA to institute an accurate health monitoring program. NASA's goal was to obtain turnkey inspection systems that could certify the integrity of the Shuttle heat shields prior to each mission. Because of the possibility of damaging the heat shields during removal, the NDI devices must be deployed without removing the leading edge panels from the wing. Recently, NASA selected a multi-method approach for inspecting the wing leading edge which includes eddy current, thermography, and ultrasonics. The complementary superposition of these three inspection techniques produces a rigorous Orbiter certification process that can reliably detect the array of flaws expected in the Shuttle's heat shields. Sandia Labs produced an in-situ ultrasonic inspection method while NASA Langley developed the eddy current and thermographic techniques. An extensive validation process, including blind inspections monitored by NASA officials, demonstrated the ability of these inspection systems to meet the accuracy, sensitivity, and reliability requirements. This report presents the ultrasonic NDI development process and the final hardware configuration. The work included the use of flight hardware and scrap heat shield panels to discover and overcome the obstacles associated with damage detection in the RCC material. Optimum combinations of custom ultrasonic probes and data analyses were merged with the inspection procedures needed to

  20. Shielding plugs

    International Nuclear Information System (INIS)

    Makishima, Kenji.

    1986-01-01

    Purpose: In shielding plugs of an LMFBR type reactor, to restrain natural convection of heat in an annular space between a thermal shield layer and a shield shell, to prevent the lowering of heat-insulation performance, and to alleviate a thermal stress in a reactor container and the shield shell. Constitution: A ring-like leaf spring split in the direction of height is disposed in an annular space between a thermal shield layer and a shield shell. In consequence, the space is partitioned in the direction of height and, therefore, if axial temperature conditions and space width are the same and the space is low, the natural convection is hard to occur. Thus the rise of upper surface temperature of the shielding plugs can prevent the lowering of the heat insulation performance which will result in the increment of shielding plug cooling capacity, thereby improving reliability. In the meantime, since there is mounted an earthquake-resisting support, the thermal shield layer will move for a slight gap in case of an earthquake, being supported by the earthquake-resisting support, and the movement of the thermal shield layer is restricted, thereby maintaining integrity without increasing the stroke of the ring-like spring. (Kawakami, Y.)

  1. Effects of polarization-charge shielding in microwave heating

    Energy Technology Data Exchange (ETDEWEB)

    Lin, M. S.; Lin, S. M.; Chiang, W. Y.; Barnett, L. R.; Chu, K. R., E-mail: krchu@yahoo.com.tw [Department of Physics, National Taiwan University, Taipei 106, Taiwan (China)

    2015-08-15

    Heating of dielectric objects by radio frequency (RF) and microwaves has long been a method widely employed in scientific research and industrial applications. However, RF and microwave heating are often susceptible to an excessive temperature spread due to uneven energy deposition. The current study elucidates an important physical reason for this difficulty and proposes an effective remedy. Non-spherical samples are placed in an anechoic chamber, where it is irradiated by a traveling microwave wave with 99% intensity uniformity. Polarization charges induced on the samples tend to partially cancel the incident electric field and hence reduce the heating rate. The polarization-charge shielded heating rate is shown to be highly dependent on the sample's shape and its orientation relative to the wave electric field. For samples with a relatively high permittivity, the resultant uneven heating can become a major cause for the excessive temperature spread. It is also demonstrated that a circularly polarized wave, with its rapidly rotating electric field, can effectively even out the heating rate and hence the temperature spread.

  2. Bremsstrahlung converter debris shields: test and analysis

    International Nuclear Information System (INIS)

    Reedy, E.D. Jr.; Perry, F.C.

    1983-10-01

    Electron beam accelerators are commonly used to create bremsstrahlung x-rays for effects testing. Typically, the incident electron beam strikes a sandwich of three materials: (1) a conversion foil, (2) an electron scavenger, and (3) a debris shield. Several laboratories, including Sandia National Laboratories, are developing bremsstrahlung x-ray sources with much larger test areas (approx. 200 to 500 cm 2 ) than ever used before. Accordingly, the debris shield will be much larger than before and subject to loads which could cause shield failure. To prepare for this eventuality, a series of tests were run on the Naval Surface Weapons Center's Casino electron beam accelerator (approx. 1 MeV electrons, 100 ns FWHM pulse, 45 kJ beam energy). The primary goal of these tests was to measure the stress pulse which loads a debris shield. These measurements were made with carbon gages mounted on the back of the converter sandwich. At an electron beam fluence of about 1 kJ/cm 2 , the measured peak compressive stress was typically in the 1 to 2 kbar range. Measured peak compressive stress scaled in a roughly linear manner with fluence level as the fluence level was increased to 10 kJ/cm 2 . The duration of the compressive pulse was on the order of microseconds. In addition to the stress wave measurements, a limited number of tests were made to investigate the type of damage generated in several potential shield materials

  3. Thermal stress evaluation of the Viking RTG heat shield

    International Nuclear Information System (INIS)

    Stadter, J.T.; Weiss, R.O.

    1976-03-01

    Thermal stress analyses of the Viking RTG heat shield are presented. The primary purpose of the analyses was to determine the effects of the end cap and the finite length of the heat shield on the peak tensile stress in the barrel wall. The SAAS III computer code was used to calculate the thermal stresses; axisymmetric and plane section analyses were performed for a variety of temperature distributions. The study consisted of three parts. In the first phase, the influence of the end cap on the barrel wall stresses was examined by parametrically varying the modulus of elasticity of the contact zone between the end cap and the barrel. The second phase was concerned with stresses occurring as a result of an orbital decay reentry trajectory, and the effects of the magnitude and shape of the axial temperature gradient. The final part of the study was concerned with the circumferentially nonuniform temperature distribution which develops during a side-on stable reentry. The last part includes a comparison of stresses generated for a hexagonal cross section with those generated for a circular cross section

  4. Wake Shield Target Protection

    International Nuclear Information System (INIS)

    Valmianski, Emanuil I.; Petzoldt, Ronald W.; Alexander, Neil B.

    2003-01-01

    The heat flux from both gas convection and chamber radiation on a direct drive target must be limited to avoid target damage from excessive D-T temperature increase. One of the possibilities of protecting the target is a wake shield flying in front of the target. A shield will also reduce drag force on the target, thereby facilitating target tracking and position prediction. A Direct Simulation Monte Carlo (DSMC) code was used to calculate convection heat loads as boundary conditions input into ANSYS thermal calculations. These were used for studying the quality of target protection depending on various shapes of shields, target-shield distance, and protective properties of the shield moving relative to the target. The results show that the shield can reduce the convective heat flux by a factor of 2 to 5 depending on pressure, temperature, and velocity. The protective effect of a shield moving relative to the target is greater than the protective properties of a fixed shield. However, the protective effect of a shield moving under the drag force is not sufficient for bringing the heat load on the target down to the necessary limit. Some other ways of diminishing heat flux using a protective shield are discussed

  5. Shielding modefication and safety review on Mutsu

    International Nuclear Information System (INIS)

    Osanai, Masao

    1978-01-01

    The Japan Atomic Energy Commission requests strongly to repair the shielding and make general safety inspection on Mutsu after an accident of radiation leakage from the reactor. The content and procedure of this repair of shielding and general safety inspection are outlined. The neutron leakage location in the reactor proper, technical shielding investigation, conceptual design of relating shielding repair, the mock up test of the shielding on the neutron streaming, the final conceptual design of repair, the relating research and development experiment and the detailed basic design of repair are explained, comparing the original design and the modified one. The modified design depends on the experimental results of neutron streaming test between the reactor vessel and the primary shield. As for the general safety inspection, the functional test of control rod driving mechanism and other main components, the flaw detection for heat transfer tubes of the steam generator and primary cooling pipings are carried out in hardwares, and the integrity analysis of fuel assemblies, stress corrosion cracking of fuel claddings and primary cooling pipings, the natural circulation analysis of primary cooling system, and integrity check of the heat transfer tubes of steam generator are carried out in softwares. The burst test and the strength test after high temperature oxidation for fuel claddings made of stainless steel were carried out. (Nakai, Y.)

  6. Development of a pencil-type single shield graphite quasi-adiabatic calorimeter and comparison of its performance with a double-shield graphite calorimeter for the measurement of nuclear heat deposition rate in a fusion environment

    International Nuclear Information System (INIS)

    Joneja, O.P.; Rosselet, M.; Ligou, J.; Gardel, P.

    1995-01-01

    Recently, heat deposition rate measurements were reported that used a quasi-adiabatic double-shield graphite calorimeter. It was found that for a better understanding of nuclear heating due to incident radiation, having a calorimeter that could be conveniently moved axially and radially inside large material blocks would be advisable. Here, a simpler design, based on three elements, i.e., core, jacket, and shield is conceived. The fabrication and testing details are presented, and the performance of the current calorimeter is compared with a double-shield calorimeter under similar conditions. Such a system is found to be extremely sensitive and can be employed successfully at the LOTUS facility for future nuclear heat deposition rate measurements in large blocks of materials. The current design paves the way for the convenient testing of a large amount of kerma factor data required for constructing future fusion machines. The same configuration with minor changes can be extended to most of the fusion materials of interest. The core of the new calorimeter measures 11 mm in diameter and height and has overall dimensions of 24 mm in diameter and 180 mm in height. The response of the calorimeter is measured by placing it in front of the Haefely neutron generator. 12 refs., 16 figs., 9 tabs

  7. PEP radiation shielding tests in SLAC A Beam

    International Nuclear Information System (INIS)

    Ash, W.; DeStaebler, H.; Harris, J.; Jenkins, T.; Murray, J.

    1977-09-01

    Radiation shielding tests designed to simulate possible conditions in and around the PEP experimental halls were conducted. The SLAC A Beam was targeted in the block tunnel at a point about midway between End Station A and Beam Dump East. At that site it was relatively easy to rearrange the concrete block structure to simulate the various shielding configurations under consideration for PEP. Extensive surveys of neutron and ionizing radiation were made. Complete results of the shielding tests are given

  8. Space Shuttle Orbiter AFT heat shield seal

    Science.gov (United States)

    Walkover, L. J.

    1979-01-01

    The evolution of the orbiter aft heat shield seal (AHSS) design, which involved advancing mechanical seal technology in severe thermal environment is discussed. The baseline design, various improvements for engine access, and technical problem solution are presented. It is a structure and mechanism at the three main propulsion system (MPS) engine interfaces to the aft compartment structure. Access to each MPS engine requires disassembly and removal of the AHSS. Each AHSS accommodates the engine movement, is exposed to an extremely high temperature environment, and is part of the venting control of the aft compartment.

  9. Method of measurement on materials shielding effectiveness test in time domain

    International Nuclear Information System (INIS)

    Liu Shunkun; Han Jun; Chen Xiangyue

    2009-01-01

    Windows method is a measurement of slot coupling effect in nature when it is used to measure material's shielding effectiveness. The error of measurement will become serious when it is used to measure material's shielding effectiveness in low frequency band. It is difficult to measure material's shielding effectiveness of electromagnetic pulse with Windows method. Device under test method (DUT method) was presented in this paper to overcome the limitations of Windows method in material's shielding effectiveness test. The method can be used to measure any material's shielding Effectiveness effectively through the design and the test of the DUT.The method was used to measure shielding effectiveness of special cement .Compared with theoretical analysis,the measurement result prove the DUT method to be very efficient in material's shielding effectiveness test. (authors)

  10. Thermal design of top shield for PFBR

    International Nuclear Information System (INIS)

    Gajapathy, R.; Jalaludeen, S.; Selvaraj, A.; Bhoje, S.B.

    1988-01-01

    India's Liquid Metal Cooled Fast Breeder Reactor programme started with the construction of loop type 13MW(e) Fast Breeder Test Reactor (FBTR) which attained criticality in October 1985. With the experience of FBTR, the design work on pool type 500 MW(e) Prototype Fast Breeder Reactor (PFBR) which will be a forerunner for future commercial fast breeder reactors, has been started. The Top Shield forms the cover for the main vessel which contains the primary circuit. Argon cover gas separates the Top Shield from the free level of hot sodium pool (803K). The Top Shield which is of box type construction consists of control plug, two rotatable plugs and roof slab, assembled together, which provide biological shielding, thermal shielding and leak tight containment at the top of the main vessel. Heat is transferred from the sodium pool to the Top Shield through argon cover gas and through components supported by it and dipped in the sodium pool. The Top Shield should be maintained at the desired operating temperature by incorporating a cooling system inside it. Insulation may be provided below the bottom plate to reduce the heat load to the cooling system, if required. The thermal design of Top Shield consists of estimation of heat transfer to the Top Shield, selection of operating temperature, assessment of insulation requirement, design of cooling system and evaluation of transient temperature changes

  11. Superconductor shields test chamber from ambient magnetic fields

    Science.gov (United States)

    Hildebrandt, A. F.

    1965-01-01

    Shielding a test chamber for magnetic components enables it to maintain a constant, low magnetic field. The chamber is shielded from ambient magnetic fields by a lead foil cylinder maintained in a superconducting state by liquid helium.

  12. Dynamic Open-Rotor Composite Shield Impact Test Report

    Science.gov (United States)

    Seng, Silvia; Frankenberger, Charles; Ruggeri, Charles R.; Revilock, Duane M.; Pereira, J. Michael; Carney, Kelly S.; Emmerling, William C.

    2015-01-01

    The Federal Aviation Administration (FAA) is working with the European Aviation Safety Agency to determine the certification base for proposed new engines that would not have a containment structure on large commercial aircraft. Equivalent safety to the current fleet is desired by the regulators, which means that loss of a single fan blade will not cause hazard to the aircraft. NASA Glenn and Naval Air Warfare Center (NAWC) China Lake collaborated with the FAA Aircraft Catastrophic Failure Prevention Program to design and test a shield that would protect the aircraft passengers and critical systems from a released blade that could impact the fuselage. This report documents the live-fire test from a full-scale rig at NAWC China Lake. NASA provided manpower and photogrammetry expertise to document the impact and damage to the shields. The test was successful: the blade was stopped from penetrating the shield, which validates the design analysis method and the parameters used in the analysis. Additional work is required to implement the shielding into the aircraft.

  13. Gamma-ray shielding design and performance test of WASTEF

    International Nuclear Information System (INIS)

    Matsumoto, Seiichiro; Aoyama, Saburo; Tashiro, Shingo; Nagai, Shiro

    1984-06-01

    The Waste Safety Testing Facility (WASTEF) was planned in 1978 to test the safety performance of HLW vitrified forms under the simulated conditions of long term storage and disposal, and completed in August 1981. The designed feature of the facility is to treat the vitrified forms contain actual high-level wastes of 5 x 10 4 Ci in maximum with 5 units of concrete shilded hot cells (3 units : Bate-Gamma cells, 2 units : Alpha-Gamma cells) and one units of Alpha-Gamma lead shielded cell, and to store radioactivity of 10 6 Ci in maximum. The safety performance of this facility is fundamentally maintained with confinement of radioactivity and shielding of the radiation. This report describes the method of gamma-ray shielding design, evaluation of the shielding test performed by using sealded gamma-ray sources(Co-60). (author)

  14. Pre-evaluation of fusion shielding benchmark experiment

    International Nuclear Information System (INIS)

    Hayashi, K.; Handa, H.; Konno, C.

    1994-01-01

    Shielding benchmark experiment is very useful to test the design code and nuclear data for fusion devices. There are many types of benchmark experiments that should be done in fusion shielding problems, but time and budget are limited. Therefore it will be important to select and determine the effective experimental configurations by precalculation before the experiment. The authors did three types of pre-evaluation to determine the experimental assembly configurations of shielding benchmark experiments planned in FNS, JAERI. (1) Void Effect Experiment - The purpose of this experiment is to measure the local increase of dose and nuclear heating behind small void(s) in shield material. Dimension of the voids and its arrangements were decided as follows. Dose and nuclear heating were calculated both for with and without void(s). Minimum size of the void was determined so that the ratio of these two results may be larger than error of the measurement system. (2) Auxiliary Shield Experiment - The purpose of this experiment is to measure shielding properties of B 4 C, Pb, W, and dose around superconducting magnet (SCM). Thickness of B 4 C, Pb, W and their arrangement including multilayer configuration were determined. (3) SCM Nuclear Heating Experiment - The purpose of this experiment is to measure nuclear heating and dose distribution in SCM material. Because it is difficult to use liquid helium as a part of SCM mock up material, material composition of SCM mock up are surveyed to have similar nuclear heating property of real SCM composition

  15. Test results from a helium gas-cooled porous metal heat exchanger

    International Nuclear Information System (INIS)

    North, M.T.; Rosenfeld, J.H.; Youchison, D.L.

    1996-01-01

    A helium-cooled porous metal heat exchanger was built and tested, which successfully absorbed heat fluxes exceeding all previously tested gas-cooled designs. Helium-cooled plasma-facing components are being evaluated for fusion applications. Helium is a favorable coolant for fusion devices because it is not a plasma contaminant, it is not easily activated, and it is easily removed from the device in the event of a leak. The main drawback of gas coolants is their relatively poor thermal transport properties. This limitation can be removed through use of a highly efficient heat exchanger design. A low flow resistance porous metal heat exchanger design was developed, based on the requirements for the Faraday shield for the International Thermonuclear Experimental Reactor (ITER) device. High heat flux tests were conducted on two representative test articles at the Plasma Materials Test Facility (PMTF) at Sandia National Laboratories. Absorbed heat fluxes as high as 40 MW/m 2 were successfully removed during these tests without failure of the devices. Commercial applications for electronics cooling and other high heat flux applications are being identified

  16. The clinical testing of male gonad shields. Technical report

    International Nuclear Information System (INIS)

    Church, W.W.; Burnett, B.M.

    1975-11-01

    Two types of male gonad shields, designed for use with support garments, were tested in a number of hospitals and clinics throughout the United States. The clinical evaluation consisted of: (1) measuring dose reduction with thermoluminescent dosimeters; and (2) determining acceptability of the shields for routine use in x-ray facilities, through the use of survey forms completed by patients, technologists, and facilities. The shields proved to provide a basis for a very satisfactory male gonad shield program

  17. The clinical testing of male gonad shields. Technical report

    Energy Technology Data Exchange (ETDEWEB)

    Church, W.W.; Burnett, B.M.

    1975-11-01

    Two types of male gonad shields, designed for use with support garments, were tested in a number of hospitals and clinics throughout the United States. The clinical evaluation consisted of: (1) measuring dose reduction with thermoluminescent dosimeters; and (2) determining acceptability of the shields for routine use in x-ray facilities, through the use of survey forms completed by patients, technologists, and facilities. The shields proved to provide a basis for a very satisfactory male gonad shield program. (GRA)

  18. Testing of the PELSHIE shielding code using Benchmark problems and other special shielding models

    International Nuclear Information System (INIS)

    Language, A.E.; Sartori, D.E.; De Beer, G.P.

    1981-08-01

    The PELSHIE shielding code for gamma rays from point and extended sources was written in 1971 and a revised version was published in October 1979. At Pelindaba the program is used extensively due to its flexibility and ease of use for a wide range of problems. The testing of PELSHIE results with the results of a range of models and so-called Benchmark problems is desirable to determine possible weaknesses in PELSHIE. Benchmark problems, experimental data, and shielding models, some of which were resolved by the discrete-ordinates method with the ANISN and DOT 3.5 codes, were used for the efficiency test. The description of the models followed the pattern of a classical shielding problem. After the intercomparison with six different models, the usefulness of the PELSHIE code was quantitatively determined [af

  19. Radiative Heating in MSL Entry: Comparison of Flight Heating Discrepancy to Ground Test and Predictive Models

    Science.gov (United States)

    Cruden, Brett A.; Brandis, Aaron M.; White, Todd R.; Mahzari, Milad; Bose, Deepak

    2014-01-01

    During the recent entry of the Mars Science Laboratory (MSL), the heat shield was equipped with thermocouple stacks to measure in-depth heating of the thermal protection system (TPS). When only convective heating was considered, the derived heat flux from gauges in the stagnation region was found to be underpredicted by as much as 17 W/sq cm, which is significant compared to the peak heating of 32 W/sq cm. In order to quantify the contribution of radiative heating phenomena to the discrepancy, ground tests and predictive simulations that replicated the MSL entry trajectory were performed. An analysis is carried through to assess the quality of the radiation model and the impact to stagnation line heating. The impact is shown to be significant, but does not fully explain the heating discrepancy.

  20. Seismic proof test of shielding block walls

    International Nuclear Information System (INIS)

    Ohte, Yukio; Watanabe, Takahide; Watanabe, Hiroyuki; Maruyama, Kazuhide

    1989-01-01

    Most of the shielding block walls used for building nuclear facilities are built by dry process. When a nuclear facility is designed, seismic waves specific at each site are set as input seismic motions and they are adopted in the design. Therefore, it is necessary to assure safety of the shielding block walls for earthquake by performing anti-seismic experiments under the conditions at each site. In order to establish the normal form that can be applied to various seismic conditions in various areas, Shimizu Corp. made an actual-size test samples for the shielding block wall and confirmed the safety for earthquake and validity of normalization. (author)

  1. Development of high-performance shielding material by heat curing method

    Energy Technology Data Exchange (ETDEWEB)

    Miura, Toshimasa; Hirao, Yoshihiro; Hayashi, Takayuki; Okuno, Koichi; Sato, Osamu [National Maritime Research Institute, Ibaraki (Japan)

    2002-07-01

    A high-performance shielding material is developed by a heat curing method. It is mainly made of a thermosetting resin, lead powder, and a boron compound. To make the resin, a single functional monomer stearyl methacrylate (SMA) is used. To get good dispersion of lead and the boron compound in the resin, the viscosity of the SMA is increased by adding a small amount of a peroxide into the liquid monomer and heating up to the temperature of 100 .deg. C. Next, a peroxide, lead powder, a boron compound, a three functional monomer, and a curing accelerator are mixed into the viscous SMA. The mixture is cured in an atmosphere of nitrogen after removing bubbles using a vacuum pump. Measured properties of the cured material are as follows. The curing rate of SMA is 97 %. The density is kept 2.35 g/cm{sub 3} in the range from room temperature to 150 .deg. C. The weight-change measured by a thermogravimetry is 0.16 % in the range from room temperature to 200 .deg. C. Details of fragments in the gas released from the material is analyzed by a gas chromatography and a mass spectrometry. The hydrogen content of the material is 6.04x10 {sub 22} /cm{sub 3} . The shielding effect is calculated for a fission source by an Sn code ANISN. The shielding effect of the curing material is excellent. For example, concrete shield of a certain thickness can be replaced by the material having a thickness less than a half of concrete. Several samples of the material are irradiated at an irradiation equipment of the research reactor JRR-4 installed at Japan Atomic Energy Research Institute. At the 14{sub th} day after irradiating with the thermal neutron fluence of 6.6x10{sub 15} /cm{sub 2} , the radioactivity is less than one tenth of 75 Bq/g above which materials are regulated as the radioactive substance in Japan.

  2. Hydramite II screening tests of potential bremsstrahlung converter debris shield materials

    International Nuclear Information System (INIS)

    Reedy, E.D. Jr.; Hedemann, M.A.; Stark, M.A.

    1986-03-01

    Results of a brief test series aimed at screening a number of potential bremsstrahlung converter debris shield materials are reported. These tests were run on Sandia National Laboratories' Hydramite II accelerator using a diode configuration which produces a pinched electron beam. The materials tested include: (1) laminated Kevlar 49/polyester and E-glass/polyester composites, (2) a low density laminated Kevlar 49 composite, and (3) two types of through-the-thickness reinforced Kevlar 49 composites. As expected, tests using laminated Kevlar 49/polyester shields showed that shield permanent set (i.e., permanent deflection) increased with increasing tantalum conversion foil thickness and decreased with increasing shield thickness. The through-the-thickness reinforced composites developed localized, but severe, back surface damage. The laminated composites displayed little back surface damage, although extensive internal matrix cracking and ply delaminations were generated. Roughly the same degree of permanent set was produced in shields made from the low density Kevlar 49 composite and the Kevlar 49/polyester. The E-glass reinforced shields exhibited relatively low levels of permanent set

  3. COMPUTATIONAL FLUID DYNAMICS INVESTIGATION ON THE USE OF HEAT SHIELDS FOR THERMAL MANAGEMENT IN A CAR UNDERHOOD

    Directory of Open Access Journals (Sweden)

    S.Y. Lam

    2012-12-01

    Full Text Available Temperature variations inside a car underhood are largely controlled by the heat originating from the engine block and the exhaust manifold. Excessive temperatures in the underhood can lead to the faster deterioration of engine components and may affect the thermal comfort level inside the passenger cabin. This paper presents computational fluid dynamics investigations to assess the performance of a heat shield in lowering the peak temperature of the engine components and firewall in the underhood region of a typical passenger car. The simulation used the finite volume method with the standard k-ε turbulence model and an isothermal model for the heat transfer calculations. The results show that the heat shield managed to reduce the peak temperature of the engine components and firewall by insulating the intense heat from the engine block and exhaust and regulating the airflow inside the underhood region.

  4. Shielding tests for a new ship for the transport of spent nuclear fuels

    International Nuclear Information System (INIS)

    Ito, D.; Kitano, T.; Akiyama, H.; Ueki, K.; Sanui, T.

    1998-01-01

    a new ship for the transport of spent nuclear fuels which uses serpentine concrete as its major shielding material has been constructed. The shielding calculations are based on DOT3.5 code (CCC-276) and the DLC23). Experiments with Cf-252 and Co-60 sources were carried out to confirm the validity of this method of calculating the shielding effectiveness of serpentine concrete. In these experiments, neutron and gamma-ray dose equivalent rates were measured in various arrangements to simulate the shielding structures of the ship, the calculations for each arrangement were performed by this shielding calculation method. For both neutron and gamma-rays, the calculation results agreed with the experiments very well, confirming that this calculation method used in the ship's shielding design is valid. Two kinds of on-board gamma-ray shielding tests were performed to confirm the ship's actual shielding effectiveness. In one kind of test, gamma-ray dose equivalent rates were measured for each shielding wall using Co-60 sources. In the other kind of test, gamma-ray dose equivalent rates in the ship's accommodation area were measured when a strong Co-60 source was placed in a loaded shipping cask's position. In both gamma-ray shielding tests all measured dose equivalent rates were less than the calculated values, confirming that the ship's actual shielding is sufficient to meet safety requirements. (authors)

  5. Secondary gamma-ray data for shielding calculation

    International Nuclear Information System (INIS)

    Miyasaka, Sunichi

    1979-01-01

    In deep penetration transport calculations, the integral design parameters is determined mainly by secondary particles which are produced by interactions of the primary radiation with materials. The shield thickness and the biological dose rate at a given point of a bulk shield are determined from the contribution from secondary gamma rays. The heat generation and the radiation damage in the structural and shield materials depend strongly on the secondary gamma rays. In this paper, the status of the secondary gamma ray data and its further problems are described from the viewpoint of shield design. The secondary gamma-ray data in ENDF/B-IV and POPOP4 are also discussed based on the test calculations made for several shield assemblies. (author)

  6. Heating facility for blanket and performance test

    Energy Technology Data Exchange (ETDEWEB)

    Furuya, Kazuyuki; Kuroda, Toshimasa; Enoeda, Mikio; Sato, Satoshi; Hatano, Toshihisa; Takatsu, Hideyuki; Ohara, Yoshihiro [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Hara, Shigemitsu

    1999-03-01

    A design and a fabrication of heating test facility for a mock-up of the blanket module to be installed in International Thermonuclear Experimental Reactor (ITER) have been conducted to evaluate/demonstrate its heat removal performance and structural soundness under cyclic heat loads. To simulate surface heat flux to the blanket module, infrared heating method is adopted so as to heat large surface area uniformly. The infrared heater is used in vacuum environment (10{sup -4} Torr{approx}), and the lamps are cooled by air flowing through an annulus between the lamp and a cover tube made of quartz glass. Elastomer O rings (available to be used up to {approx}300degC) and used for vacuum seal at outer surface of the cover tube. To prevent excessive heating of the O ring, the end part of the cover tube is specially designed including the tube shape, flow path of air and gold coating on the surface of the cover tube to protect the O ring against thermal radiation from glowing tungsten filament. To examine the performance of the facility, steady state and cyclic operation of the infrared heater were conducted using a small-scaled shielding blanket mock-up as a test specimen. The important results are as follows: (1) Heat flux at the surface of the small-scaled mock-up measured by a calorimeter was {approx}0.2 MW/m{sup 2}. (2) A comparison of thermal analysis results and measured temperature responses showed that the small-scaled mock-up had good heat removal performance. (3) Steady state operation and cyclic operation with step response between the rated and zero powers of the infrared heater were successfully performed, and it was confirmed that this heating facility was well-prepared and available for the thermal cyclic test of a blanket module. (author)

  7. Evaporation and vapor shielding of CFC targets exposed to plasma heat fluxes relevant to ITER ELMs

    International Nuclear Information System (INIS)

    Safronov, V.M.; Arkhipov, N.I.; Landman, I.S.; Pestchanyi, S.E.; Toporkov, D.A.; Zhitlukhin, A.M.

    2009-01-01

    Carbon fibre composite NB31 was tested at plasma gun facility MK-200UG by plasma heat fluxes relevant to Edge Localised Modes in ITER. The paper reports the results obtained on the evaporation threshold of carbon fibre composite, the velocity of carbon vapor motion along and across the magnetic field lines, and the parameters of carbon plasma such as temperature, density and ionization state. First experimental results on investigation of the vapor shield onset conditions are presented also. The obtained experimental data are compared with the results of numerical modeling.

  8. Developmental testing of partially volatile neutron shields for high-performance shipping casks

    International Nuclear Information System (INIS)

    Pope, R.B.; Allen, G.C.; Rack, H.J.; Joseph, B.J.; Dupree, S.A.

    1980-01-01

    Results of the phase one tests have demonstrated that the neutron-shielding concept described in this paper is a viable design option for spent fuel shipping casks. The tests have shown that the Boro-silicone 236 shield is superior to the other shield materials considered. Repeated TGA, aging and fire tests demonstrated the reliability of the data. A second phase of the test program is now being pursued where the Boro-silicone 236 is injected into all-steel slab sections, and cured in place. 5 tables

  9. Measuring space radiation shielding effectiveness

    Directory of Open Access Journals (Sweden)

    Bahadori Amir

    2017-01-01

    Full Text Available Passive radiation shielding is one strategy to mitigate the problem of space radiation exposure. While space vehicles are constructed largely of aluminum, polyethylene has been demonstrated to have superior shielding characteristics for both galactic cosmic rays and solar particle events due to the high hydrogen content. A method to calculate the shielding effectiveness of a material relative to reference material from Bragg peak measurements performed using energetic heavy charged particles is described. Using accelerated alpha particles at the National Aeronautics and Space Administration Space Radiation Laboratory at Brookhaven National Laboratory, the method is applied to sample tiles from the Heat Melt Compactor, which were created by melting material from a simulated astronaut waste stream, consisting of materials such as trash and unconsumed food. The shielding effectiveness calculated from measurements of the Heat Melt Compactor sample tiles is about 10% less than the shielding effectiveness of polyethylene. Shielding material produced from the astronaut waste stream in the form of Heat Melt Compactor tiles is therefore found to be an attractive solution for protection against space radiation.

  10. Measuring space radiation shielding effectiveness

    Science.gov (United States)

    Bahadori, Amir; Semones, Edward; Ewert, Michael; Broyan, James; Walker, Steven

    2017-09-01

    Passive radiation shielding is one strategy to mitigate the problem of space radiation exposure. While space vehicles are constructed largely of aluminum, polyethylene has been demonstrated to have superior shielding characteristics for both galactic cosmic rays and solar particle events due to the high hydrogen content. A method to calculate the shielding effectiveness of a material relative to reference material from Bragg peak measurements performed using energetic heavy charged particles is described. Using accelerated alpha particles at the National Aeronautics and Space Administration Space Radiation Laboratory at Brookhaven National Laboratory, the method is applied to sample tiles from the Heat Melt Compactor, which were created by melting material from a simulated astronaut waste stream, consisting of materials such as trash and unconsumed food. The shielding effectiveness calculated from measurements of the Heat Melt Compactor sample tiles is about 10% less than the shielding effectiveness of polyethylene. Shielding material produced from the astronaut waste stream in the form of Heat Melt Compactor tiles is therefore found to be an attractive solution for protection against space radiation.

  11. Final Test Report: Hexavalent Chrome Free Coatings for Electronics Electromagnetic Interference (EMI) Shielding Effectiveness (SE)

    Science.gov (United States)

    Kessel, Kurt R.

    2016-01-01

    The test results for Salt Spray Resistance, Static Heat and Humidity and Marine Environment can be found in Sections 3.1.3.3, 3.1.4.3 and 3.1.5.3 respectively. In summary, both the Metalast TCP and SurTec 650 Type 2 conversion coatings perform very similar to the incumbent Type 1 conversion coating against both 6061 and 5052 aluminum under all three test conditions. Significant prior work was performed to select the aluminum and conversion coating included within this test cycle; Reference - NASA GSDO Program Hexavalent Chrome Alternatives Final Pretreatments Test Report Task Order: NNH12AA45D September 01, 2013. As illustrated in the data, the 6061 aluminum panels SLIGHTLY out-performed the 5052 aluminum panels. Individual shielding effectiveness graphs for each panel are included within Appendix C and D. One other notable effect found during review of the data is that the Test Panels exposed to B117 Salt Fog reduced in shielding effectiveness significantly more than the Marine Environment Test Panels. The shielding effectiveness of the Marine Test Panels was approximately 20dB higher than the Test Panels that underwent B117 Salt Fog Exposure. The intent of this evaluation was not to maximize shielding effectiveness values. The same Parker Chomerics Cho-Seal 6503 gasket material was used for all panels with aluminum and conversion coating variants. A typical EMI gasket design for corrosive environments would be done quite differently. The intent was to execute a test that would provide the best possible evaluation of different aluminum materials and conversion coatings in corrosive environments. The test program achieved this intent. The fact that the two aluminums and two Type II conversion coatings performed similar to the incumbent Type 1 conversion coating is a positive outcome. It was desired to have an outcome that further differentiation the performance of two aluminum types and two conversion coating types but this could not be extracted by the test

  12. Test and performance of a BGO Compton-suppression shield for GAMMASPHERE

    International Nuclear Information System (INIS)

    Carpenter, M.P.; Khoo, T.L.; Ahmad, I.

    1994-01-01

    Bismuth germanate (BGO) compton-suppression shields have been constructed to surround the Ge detectors of the GAMMASPHERE array. A shield consists of six hexagonal tapered BGO elements, each coupled to two 1-inch x 1-inch photomultiplier tubes. In addition, a cylindrical BGO detector is placed behind the Ge detector to intercept the forward scattered gamma rays. One hundred ten such shields are planned for the GAMMASPHERE array. Procedures for measuring the performance of these shields have been developed. Large (70 %) Ge detectors when used with these shields give a peak-to-total ratio of better tan 0.60. To date more than 85 shield have been tested and approved for use in GAMMASPHERE

  13. Materials development for ITER shielding and test blanket in China

    Energy Technology Data Exchange (ETDEWEB)

    Chen, J.M., E-mail: Chenjm@swip.ac.cn [Southwestern Institute of Physics, P.O. Box 432, Chengdu 610041 (China); Wu, J.H.; Liu, X.; Wang, P.H. [Southwestern Institute of Physics, P.O. Box 432, Chengdu 610041 (China); Wang, Z.H.; Li, Z.N. [Ningxia Orient Non-ferrous Metals Group Co. Ltd., P.O. Box 105, Shizuishan (China); Wang, X.S.; Zhang, P.C. [China Academy of Engineering Physics, P.O. Box 919-71, Mianyang 621900 (China); Zhang, N.M.; Fu, H.Y.; Liu, D.H. [Southwestern Institute of Physics, P.O. Box 432, Chengdu 610041 (China)

    2011-10-01

    China is a member of the ITER program and is developing her own materials for its shielding and test blanket modules. The materials include vacuum-hot-pressing (VHP) Be, CuCrZr alloy, 316L(N) and China low activation ferritic/martensitic (CLF-1) steels. Joining technologies including Be/Cu hot isostatic pressing (HIP) and electron beam (EB) weldability of 316L(N) were investigated. Chinese VHP-Be showed good properties, with BeO content and ductility that satisfy the ITER requirements. Be/Cu mock-ups were fabricated for Be qualification tests at simulated ITER vertical displacement event (VDE) and heat flux cycling conditions. Fine microstructure and good mechanical strength of the CuCrZr alloy were achieved by a pre-forging treatment, while the weldability of 316L(N) by EB was demonstrated for welding depths varying from 5 to 80 mm. Fine microstructure, high strength, and good ductility were achieved in CLF-1 steel by an optimized normalizing, tempering and aging procedure.

  14. First Wall, Blanket, Shield Engineering Technology Program

    International Nuclear Information System (INIS)

    Nygren, R.E.

    1982-01-01

    The First Wall/Blanket/Shield Engineering Technology Program sponsored by the Office of Fusion Energy of DOE has the overall objective of providing engineering data that will define performance parameters for nuclear systems in advanced fusion reactors. The program comprises testing and the development of computational tools in four areas: (1) thermomechanical and thermal-hydraulic performance of first-wall component facsimiles with emphasis on surface heat loads; (2) thermomechanical and thermal-hydraulic performance of blanket and shield component facsimiles with emphasis on bulk heating; (3) electromagnetic effects in first wall, blanket, and shield component facsimiles with emphasis on transient field penetration and eddy-current effects; (4) assembly, maintenance and repair with emphasis on remote-handling techniques. This paper will focus on elements 2 and 4 above and, in keeping with the conference participation from both fusion and fission programs, will emphasize potential interfaces between fusion technology and experience in the fission industry

  15. Gravity Scaling of a Power Reactor Water Shield

    International Nuclear Information System (INIS)

    Reid, Robert S.; Pearson, J. Boise

    2008-01-01

    Water based reactor shielding is being considered as an affordable option for potential use on initial lunar surface reactor power systems. Heat dissipation in the shield from nuclear sources must be rejected by an auxillary thermal hydraulic cooling system. The mechanism for transferring heat through the shield is natural convection between the core surface and an array of thermosyphon radiator elements. Natural convection in a 100 kWt lunar surface reactor shield design has been previously evaluated at lower power levels (Pearson, 2006). The current baseline assumes that 5.5 kW are dissipated in the water shield, the preponderance on the core surface, but with some volumetric heating in the naturally circulating water as well. This power is rejected by a radiator located above the shield with a surface temperature of 370 K. A similarity analysis on a water-based reactor shield is presented examining the effect of gravity on free convection between a radiation shield inner vessel and a radiation shield outer vessel boundaries. Two approaches established similarity: 1) direct scaling of Rayleigh number equates gravity-surface heat flux products, 2) temperature difference between the wall and thermal boundary layer held constant on Earth and the Moon. Nussult number for natural convection (laminar and turbulent) is assumed of form Nu = CRa n . These combined results estimate similarity conditions under Earth and Lunar gravities. The influence of reduced gravity on the performance of thermosyphon heat pipes is also examined

  16. EBT-P gamma-ray-shielding analysis

    International Nuclear Information System (INIS)

    Gohar, Y.

    1983-01-01

    First, a one-dimensional scoping study was performed for the gamma-ray shield of the ELMO Bumpy Torus proof-of-principle device to define appropriate shielding material and determine the required shielding thickness. The dose-equivalent results are analyzed as a function of the radiation-shield thickness for different shielding options. A sensitivity analysis for the pessimistic case is given. The recommended shielding option based on the performance and cost is discussed. Next, a three-dimensional scoping study for the coil shield was performed for four different shielding options to define the heat load for each component and check the compliance with the design criterion of 10 watts maximum heat load per coil from the gamma-ray sources. Also, a detailed biological-dose survey was performed which included: (a) the dose equivalent inside and outside the building, (b) the dose equivalent from the two mazes of the building, and (c) the skyshine contribution to the dose equivalent

  17. Safety verification of radiation shielding and heat transfer for a model for dry

    International Nuclear Information System (INIS)

    Yu, Haiyan; Tang, Xiaobin; Wang, Peng; Chen, Feida; Chai, Hao; Chen, Da

    2015-01-01

    Highlights: • New type of dry spent fuel storage was designed. • MC method and FEM were used to verify the reliability of new storage. • Radiation shield and heat transfer both meet IAEA standards: 2 mSv/h, 0.1 mSv/h and 190 °C, 85 °C. • Provided possibilities for future implementation of this type of dry storage. - Abstract: The goal of this research is to develop a type of dry spent fuel storage called CHN-24 container, which could contain an equivalent load of 45 GWD/MTU of spent fuel after 10 years cooling. Basically, radiation shielding performance and safe removal of decay heat, which play important roles in the safety performance, were checked and validated using the Monte Carlo method and finite element analysis to establish the radiation dose rate calculation model and three-dimensional heat transfer model for the CHN-24 container. The dose rates at the surface of the container and at a distance of 1 m from the surface were 0.42 mSv/h and 0.06 mSv/h, respectively. These conform to the International Atomic Energy Agency (IAEA) radioactive material transportation safety standards 2 mSv/h and 0.1 mSv/h. The results shows that the CHN-24 container maintains its structural and material integrity under the condition of normal thermal steady-state heat transfer as well as in case of extreme fire as evinced by transient-state analysis. The temperature inside and on the surface of the container were 150.91 °C and 80 °C under normal storage conditions, which indicated that the design also conform to IAEA heat transfer safety standards of 190 °C and 85 °C

  18. Thermal, epithermal and thermalized neutron attenuation properties of ilmenite-serpentine heat resistant concrete shield

    International Nuclear Information System (INIS)

    Kany, A.M.I.; El-Gohary, M.I.; Kamal, S.M.

    1994-01-01

    Experimental measurements were carried out to study the attenuation properties of low-energy neutrons transmitted through unheated and preheated barriers of heavy-weight, highly hydrated and heat-resistant concrete shields. The concrete shields under investigation have been prepared from naturally occurring ilmenite and serpentine Egyptian ores. A collimated beam obtained from an Am-Be source was used as a source of neutrons, while the measurements of total thermal, epithermal, and thermalized neutron fluxes were performed using a BF-3 detector, multichannel analyzer and Cd filter. Results show that the ilmenite-serpentine concrete proved to be a better thermal, epithermal and thermalized neutron attenuator than the ordinary concrete especially at a high temperature of concrete exposure. (Author)

  19. New possibility of magnetic ripple shielding for specific heat measurements in hybrid magnets

    NARCIS (Netherlands)

    Tarnawski, Z.; Meulen, der, H. van; Franse, J.J.M.; Kadowaki, K.; Veenhuizen, P.A.; Klaasse, J.

    1988-01-01

    A test of the new high Tc superconducting materials for magnetic ripple shielding has been carried out. It was found that magnetic ripples of 0.0009 T (peak-to-peak) in the frequency range below 20 kHz can be completely shielded in high static fields by a 2 mm thick Y-Ba-Cu-O screen.

  20. Shielding requirements for particle bed propulsion systems

    Science.gov (United States)

    Gruneisen, S. J.

    1991-06-01

    Nuclear Thermal Propulsion systems present unique challenges in reliability and safety. Due to the radiation incident upon all components of the propulsion system, shielding must be used to keep nuclear heating in the materials within limits; in addition, electronic control systems must be protected. This report analyzes the nuclear heating due to the radiation and the shielding required to meet the established criteria while also minimizing the shield mass. Heating rates were determined in a 2000 MWt Particle Bed Reactor (PBR) system for all materials in the interstage region, between the reactor vessel and the propellant tank, with special emphasis on meeting the silicon dose criteria. Using a Lithium Hydride/Tungsten shield, the optimum shield design was found to be: 50 cm LiH/2 cm W on the axial reflector in the reactor vessel and 50 cm LiH/2 cm W in a collar extension of the inside shield outside of the pressure vessel. Within these parameters, the radiation doses in all of the components in the interstage and lower tank regions would be within acceptable limits for mission requirements.

  1. Shielding designs and tests of a new exclusive ship for transporting spent nuclear fuels

    International Nuclear Information System (INIS)

    Ono, M.; Ito, D.; Kitano, T.; Ueki, K.; Akiyama, H.; Obara, I.; Sanui, T.

    2000-01-01

    The Rokuei-Maru, a ship built specially for the transport of spent nuclear fuels in casks, was launched April in 1996. She is the first ship to comply with special Japanese regulations, KAISA 520, based on the INF code. DOT3.5 and MCNP-4A were used for the evaluation of dose equivalent rates of her shielding structures. On-board gamma-ray shielding tests were executed to confirm the effectiveness of the ship's shielding performance. The tests confirmed that effective shielding has been achieved and the dose equivalent rate in the accommodation and other inhabited spaces is sufficiently lower than the regulated limitations. This was achieved by employing the appropriate calculation methods and shielding materials. (author)

  2. Initial progress in the first wall, blanket, and shield Engineering Test Program for magnetically confined fusion-power reactors

    International Nuclear Information System (INIS)

    Herman, H.; Baker, C.C.; Maroni, V.A.

    1981-10-01

    The first wall/blanket/shield (FW/B/S) Engineering Test Program (ETP) progressed from the planning stage into implementation during July, 1981. The program, generic in nature, comprises four Test Program Elements (TPE's), the emphasis of which is on defining the performance parameters for the Fusion Engineering Device (FED) and the major fusion device to follow FED. These elements are: (1) nonnuclear thermal-hydraulic and thermomechanical testing of first wall and component facsimiles with emphasis on surface heat loads and heat transient (i.e., plasma disruption) effects; (2) nonnuclear and nuclear testing of FW/B/S components and assemblies with emphasis on bulk (nuclear) heating effects, integrated FW/B/S hydraulics and mechanics, blanket coolant system transients, and nuclear benchmarks; (3) FW/B/S electromagnetic and eddy current effects testing, including pulsed field penetration, torque and force restraint, electromagnetic materials, liquid metal MHD effects and the like; and (4) FW/B/S Assembly, Maintenance and Repair (AMR) studies focusing on generic AMR criteria, with the objective of preparing an AMR designers guidebook; also, development of rapid remote assembly/disassembly joint system technology, leak detection and remote handling methods

  3. Helium leak testing of superconducting magnets, thermal shields and cryogenic lines of SST -1

    International Nuclear Information System (INIS)

    Thankey, P.L.; Joshi, K.S.; Semwal, P.; Pathan, F.S.; Raval, D.C.; Khan, Z.; Patel, R.J.; Pathak, H.A.

    2005-01-01

    Tokamak SST - 1 is under commissioning at Institute for Plasma Research. It comprises of a toroidal doughnut shaped plasma chamber, surrounded by liquid helium cooled superconducting magnets, housed in a cryostat chamber. The cryostat has two cooling circuits, (1) liquid nitrogen cooling circuit operating at 80 K to minimize the radiation heat load on the magnets, and (2) liquid helium cooling circuit to cool magnets and cold mass support structure to 4.5 K. In this paper we describe (a) the leak testing of copper - SS joints, brazing joints, interconnecting joints of the superconducting magnets, and (b) the leak testing of the liquid nitrogen cooling circuit, comprising of the main supply header, the thermal shields, interconnecting pipes, main return header and electrical isolators. All these tests were carried out using both vacuum and sniffer methods. (author)

  4. Thermal Analysis of a SHIELD Electromigration Test Structure

    Energy Technology Data Exchange (ETDEWEB)

    Benson, David A.; Bowman, Duane J.; Mitchell, Robert T.

    1999-05-01

    The steady state and transient thermal behavior of an electromigration test structure was analyzed. The test structure was a Sandia SHIELD (Self-stressing HIgh fregquency rELiability Device) electromigration test device manufactured by an outside vendor. This device has a high frequency oscillator circuit, a buffer circuit to isolate and drive the metal line to the tested (DUT), the DUT to be electromigrated itself, a metal resistance thermometry monitor, and a heater elment to temperature accelerate the electromigration effect.

  5. Joule loss on a Faraday shield of JT-60 ICRF test antenna

    International Nuclear Information System (INIS)

    Fujii, Tsuneyuki; Saigusa, Mikio; Ikeda, Yoshitaka; Kimura, Haruyuki; Hirashima, Teruhisa; Uehara, Munenori.

    1988-01-01

    Joule loss on a Faraday shield of JT-60 ICRF test antenna with a conductive casing is investigated at the frequency range of 120 MHz. The magnetic field radiated from the antenna is measured by three-dimensionally scanning an rf probe both inside and outside the antenna casing. The magnetic field perpendicular to the Faraday shield, B x , is found to be the largest component near the Faraday shield. It consequently gives the major part of the joule loss on the Faraday shield. The temperature distribution of the Faraday shield due to joule loss is measured directly with a thermocamera. It is confirmed that the area of the high temperature rise is consistent with the peak positions of the B x field. Faraday shield resistance which is estimated from power measurements agrees with the theoretical value. (author)

  6. Development of heat resistant concrete and its application to concrete casks. Improvement of neutron shielding performance of concrete in high temperature environment

    International Nuclear Information System (INIS)

    Owaki, Eiji; Hata, Akihito; Sugihara, Yutaka; Shimojo, Jun; Taniuchi, Hiroaki; Mantani, Kenichi

    2003-01-01

    Heat resistant concrete with hydrogen, which is able to shield neutron at more than 100degC, was developed. Using this new type concrete, a safety concrete cask having the same concept of metal casks was designed and produced. The new type cask omitted the inhalation and exhaust vent of the conventional type concrete casks. The new concrete consists of Portland cement added calcium hydroxide, iron powder and iron fiber. It showed 2.17 g/cm 3 density, 10.8 mass% water content, 1.4 W/(m·K) thermal conductivity at 150degC. Increasing of heat resistance made possible to produce the perfect sealing type structure, which had high shielding performance of radiation no consideration for streaming of radiation. Moreover, a monitor of sealing can be set. General view of concrete casks, outer view of 1/3 scaled model, cask storage system in the world, properties of new developed heat resistant concrete, results of shielding calculation are contained. (S.Y.)

  7. Neutron shieldings

    International Nuclear Information System (INIS)

    Tarutani, Kohei

    1979-01-01

    Purpose: To decrease the stresses resulted by the core bendings to the base of an entrance nozzle. Constitution: Three types of round shielding rods of different diameter are arranged in a hexagonal tube. The hexagonal tube is provided with several spacer pads receiving the loads from the core constrain mechanism at its outer circumference, a handling head for a fuel exchanger at its top and an entrance nozzle for self-holding the neutron shieldings and flowing heat-removing coolants at its bottom. The diameters for R 1 , R 2 and R 3 for the round shielding rods are designed as: 0.1 R 1 2 1 and 0.2 R 1 2 1 . Since a plurality of shielding rods of small diameter are provided, soft structure are obtained and a plurality of coolant paths are formed. (Furukawa, Y.)

  8. Analysis and Testing of a Composite Fuselage Shield for Open Rotor Engine Blade-Out Protection

    Science.gov (United States)

    Pereira, J. Michael; Emmerling, William; Seng, Silvia; Frankenberger, Charles; Ruggeri, Charles R.; Revilock, Duane M.; Carney, Kelly S.

    2016-01-01

    The Federal Aviation Administration is working with the European Aviation Safety Agency to determine the certification base for proposed new engines that would not have a containment structure on large commercial aircraft. Equivalent safety to the current fleet is desired by the regulators, which means that loss of a single fan blade will not cause hazard to the Aircraft. The NASA Glenn Research Center and The Naval Air Warfare Center (NAWC), China Lake, collaborated with the FAA Aircraft Catastrophic Failure Prevention Program to design and test lightweight composite shields for protection of the aircraft passengers and critical systems from a released blade that could impact the fuselage. LS-DYNA® was used to predict the thickness of the composite shield required to prevent blade penetration. In the test, two composite blades were pyrotechnically released from a running engine, each impacting a composite shield with a different thickness. The thinner shield was penetrated by the blade and the thicker shield prevented penetration. This was consistent with pre-test LS-DYNA predictions. This paper documents the analysis conducted to predict the required thickness of a composite shield, the live fire test from the full scale rig at NAWC China Lake and describes the damage to the shields as well as instrumentation results.

  9. High performance inboard shield design for the compact TIBER-II test reactor: Appendix A-2

    International Nuclear Information System (INIS)

    El-Guebaly, L.A.; Sviatoslavsky, I.N.

    1987-01-01

    The compactness of the TIBER-II reactor has placed a premium on the design of a high performance inboard shield to protect the inner legs of the toroidal field (TF) coils. The available space for shield is constrained to 48 cm and the use of tungsten is mandatory to protect the magnet against the 1.53 MW/m 2 neutron wall loading. The primary requirement for the shield is to limit the fast neutron fluence to 10 19 n/cm 2 . In an optimization study, the performance of various candidate materials for protecting the magnet was examined. The optimum shield consists of a 40 cm thick W layer, followed by an 8 cm thick H 2 O/LiNO 3 layer. The mechanical design of the shield calls for tungsten blocks within SS stiffened panels. All the coolant channels are vertical with more of them in the front where there is a high heat load. The coolant pressure is 0.2 MPa and the maximum structural surface temperature is 0 C. The effects of the detailed mechanical design of the shield and the assembly gaps between the shield sectors on the damage in the magnet were analyzed and peaking factors of ∼2 were found at the hot spots. 2 refs., 6 figs., 2 tabs

  10. Design experience: CRBRP radiation shielding

    International Nuclear Information System (INIS)

    Disney, R.K.; Chan, T.C.; Gallo, F.G.; Hedgecock, L.R.; McGinnis, C.A.; Wrights, G.N.

    1978-11-01

    The Clinch River Breeder Reactor Plant (CRBRP) is being designed as a fast breeder demonstration project in the U.S. Liquid Metal Fast Breeder Reactor (LMFBR) program. Radiation shielding design of the facility consists of a comprehensive design approach to assure compliance with design and government regulatory requirements. Studies conducted during the CRBRP design process involved the aspects of radiation shielding dealing with protection of components, systems, and personnel from radiation exposure. Achievement of feasible designs, while considering the mechanical, structural, nuclear, and thermal performance of the component or system, has required judicious trade-offs in radiation shielding performance. Specific design problems which have been addressed are in-vessel radial shielding to protect permanent core support structures, flux monitor system shielding to isolate flux monitoring systems for extraneous background sources, reactor vessel support shielding to allow personnel access to the closure head during full power operation, and primary heat transport system pipe chaseway shielding to limit intermediate heat transport system sodium system coolant activation. The shielding design solutions to these problems defined a need for prototypic or benchmark experiments to provide assurance of the predicted shielding performance of selected design solutions and the verification of design methodology. Design activities of CRBRP plant components an systems, which have the potential for radiation exposure of plant personnel during operation or maintenance, are controlled by a design review process related to radiation shielding. The program implements design objectives, design requirements, and cost/benefit guidelines to assure that radiation exposures will be ''as low as reasonably achievable''

  11. Long term testing of materials for tube shielding, stage 2; Laangtidsprovning av tubskyddsmaterial, etapp 2

    Energy Technology Data Exchange (ETDEWEB)

    Norling, Rikard; Hjoernhede, Anders; Mattsson, Mattias

    2012-02-15

    Circulating Fluidized Bed (CFB) boilers are commonly used for combustion of biomass and are used to some extent for Waste-to-Energy (WtE) plants as well. The superheaters of the latter are for obvious reasons more prone to suffer from high temperature corrosion caused by the corrosive species in the fuel, mainly chlorides. Frequently the final (hottest) superheater is positioned in the loop seal, where the circulating bed material is returned to the furnace after being separated from the flue gas by a cyclone. The environment in the loop seal is relatively free of chlorides, since these primarily follow the flue gas into the convection pass. Hence, higher steam temperature can be allowed without excessive damage to the final superheater. On the other hand the superheaters, which are located in the convection pass, are more exposed to the corrosive species of the flue gas. Further, they are eroded by particles entrained in the gas flow. Particles and condensing gaseous species are to a large extent deposited on the superheaters, which limits the heat transfer and promotes corrosion. The deposits are regularly removed e.g. by soot blowers. The pressurized steam from soot blowers causes additional erosion damage to that caused by entrained particles. It shall be noted that the actual damage is caused by a combined mechanism of erosion and corrosion denoted erosion-corrosion, which usually results in dramatically accelerated wear. To avoid excessive erosion damage on the superheater tubes the first tube row of each bundle is protected by tube shielding. In its simplest form the shields are made from a steel sheet that has been bent into a semi-circular half-cylinder shell. These shields are attached onto the wind-side of the tubes by hangers. A typical material for tube shielding is the austenitic high temperature resistant stainless steel 253MA. Life of tube shielding depends on numerous factors such as boiler design, superheater location, fuel and operating

  12. Investigation the effect of outdoor air infiltration on the heat-shielding characteristics the outer walls of high-rise buildings

    Science.gov (United States)

    Vytchikov, Yu. S.; Kostuganov, A. B.; Saparev, M. E.; Belyakov, I. G.

    2018-03-01

    The presented article considers the influence of infiltrated outdoor air on the heat-shielding characteristics of the exterior walls of modern residential and public buildings. A review of the sources devoted to this problem confirmed its relevance at the present time, especially for high-rise buildings. The authors of the article analyzed the effect of longitudinal and transverse air infiltration on the heat-shielding characteristics of the outer wall of a 25-story building that was built in Samara. The results showed a significant reduction of the reduced resistance to the heat transfer of the outer wall when air is infiltrated through it. There are the results of full-scale examination of external walls to confirm the calculated data. Based on the results of the study carried out by the authors of the article, general recommendations on the internal finishing of the outer walls of high-rise buildings are given.

  13. EXPERIMENTAL EVALUATION OF THE THERMAL PERFORMANCE OF A WATER SHIELD FOR A SURFACE POWER REACTOR

    International Nuclear Information System (INIS)

    Reid, Robert S.; Pearson, J. Bosie; Stewart, Eric T.

    2007-01-01

    Water based reactor shielding is being investigated for use on initial lunar surface power systems. A water shield may lower overall cost (as compared to development cost for other materials) and simplify operations in the setup and handling. The thermal hydraulic performance of the shield is of significant interest. The mechanism for transferring heat through the shield is natural convection. Natural convection in a 100 kWt lunar surface reactor shield design is evaluated with 2 kW power input to the water in the Water Shield Testbed (WST) at the NASA Marshall Space Flight Center. The experimental data from the WST is used to validate a CFD model. Performance of the water shield on the lunar surface is then predicted with a CFD model anchored to test data. The experiment had a maximum water temperature of 75 C. The CFD model with 1/6-g predicts a maximum water temperature of 88 C with the same heat load and external boundary conditions. This difference in maximum temperature does not greatly affect the structural design of the shield, and demonstrates that it may be possible to use water for a lunar reactor shield.

  14. Experimental Evaluation of the Thermal Performance of a Water Shield for a Surface Power Reactor

    International Nuclear Information System (INIS)

    Pearson, J. Boise; Stewart, Eric T.; Reid, Robert S.

    2007-01-01

    Water based reactor shielding is being investigated for use on initial lunar surface power systems. A water shield may lower overall cost (as compared to development cost for other materials) and simplify operations in the setup and handling. The thermal hydraulic performance of the shield is of significant interest. The mechanism for transferring heat through the shield is natural convection. Natural convection in a 100 kWt lunar surface reactor shield design is evaluated with 2 kW power input to the water in the Water Shield Testbed (WST) at the NASA Marshall Space Flight Center. The experimental data from the WST is used to validate a CFD model. Performance of the water shield on the lunar surface is then predicted with a CFD model anchored to test data. The experiment had a maximum water temperature of 75 deg. C. The CFD model with 1/6-g predicts a maximum water temperature of 88 deg. C with the same heat load and external boundary conditions. This difference in maximum temperature does not greatly affect the structural design of the shield, and demonstrates that it may be possible to use water for a lunar reactor shield

  15. EXPERIMENTAL EVALUATION OF THE THERMAL PERFORMANCE OF A WATER SHIELD FOR A SURFACE POWER REACTOR

    Energy Technology Data Exchange (ETDEWEB)

    REID, ROBERT S. [Los Alamos National Laboratory; PEARSON, J. BOSIE [Los Alamos National Laboratory; STEWART, ERIC T. [Los Alamos National Laboratory

    2007-01-16

    Water based reactor shielding is being investigated for use on initial lunar surface power systems. A water shield may lower overall cost (as compared to development cost for other materials) and simplify operations in the setup and handling. The thermal hydraulic performance of the shield is of significant interest. The mechanism for transferring heat through the shield is natural convection. Natural convection in a 100 kWt lunar surface reactor shield design is evaluated with 2 kW power input to the water in the Water Shield Testbed (WST) at the NASA Marshall Space Flight Center. The experimental data from the WST is used to validate a CFD model. Performance of the water shield on the lunar surface is then predicted with a CFD model anchored to test data. The experiment had a maximum water temperature of 75 C. The CFD model with 1/6-g predicts a maximum water temperature of 88 C with the same heat load and external boundary conditions. This difference in maximum temperature does not greatly affect the structural design of the shield, and demonstrates that it may be possible to use water for a lunar reactor shield.

  16. Shielding benchmark tests of JENDL-3

    International Nuclear Information System (INIS)

    Kawai, Masayoshi; Hasegawa, Akira; Ueki, Kohtaro; Yamano, Naoki; Sasaki, Kenji; Matsumoto, Yoshihiro; Takemura, Morio; Ohtani, Nobuo; Sakurai, Kiyoshi.

    1994-03-01

    The integral test of neutron cross sections for major shielding materials in JENDL-3 has been performed by analyzing various shielding benchmark experiments. For the fission-like neutron source problem, the following experiments are analyzed: (1) ORNL Broomstick experiments for oxygen, iron and sodium, (2) ASPIS deep penetration experiments for iron, (3) ORNL neutron transmission experiments for iron, stainless steel, sodium and graphite, (4) KfK leakage spectrum measurements from iron spheres, (5) RPI angular neutron spectrum measurements in a graphite block. For D-T neutron source problem, the following two experiments are analyzed: (6) LLNL leakage spectrum measurements from spheres of iron and graphite, and (7) JAERI-FNS angular neutron spectrum measurements on beryllium and graphite slabs. Analyses have been performed using the radiation transport codes: ANISN(1D Sn), DIAC(1D Sn), DOT3.5(2D Sn) and MCNP(3D point Monte Carlo). The group cross sections for Sn transport calculations are generated with the code systems PROF-GROUCH-G/B and RADHEAT-V4. The point-wise cross sections for MCNP are produced with NJOY. For comparison, the analyses with JENDL-2 and ENDF/B-IV have been also carried out. The calculations using JENDL-3 show overall agreement with the experimental data as well as those with ENDF/B-IV. Particularly, JENDL-3 gives better results than JENDL-2 and ENDF/B-IV for sodium. It has been concluded that JENDL-3 is very applicable for fission and fusion reactor shielding analyses. (author)

  17. Radiation shielding calculations for the vista spacecraft

    International Nuclear Information System (INIS)

    Sahin, Suemer; Sahin, Haci Mehmet; Acir, Adem

    2005-01-01

    The VISTA spacecraft design concept has been proposed for manned or heavy cargo deep space missions beyond earth orbit with inertial fusion energy propulsion. Rocket propulsion is provided by fusion power deposited in the inertial confined fuel pellet debris and with the help of a magnetic nozzle. The calculations for the radiation shielding have been revised under the fact that the highest jet efficiency of the vehicle could be attained only if the propelling plasma would have a narrow temperature distribution. The shield mass could be reduced from 600 tons in the original design to 62 tons. Natural and enriched lithium were the principle shielding materials. The allowable nuclear heating in the superconducting magnet coils (up to 5 mW/cm 3 ) is taken as the crucial criterion for dimensioning the radiation shielding structure of the spacecraft. The space craft mass is 6000 tons. Total peak nuclear power density in the coils is calculated as ∼5.0 mW/cm 3 for a fusion power output of 17 500 MW. The peak neutron heating density is ∼2.0 mW/cm 3 , and the peak γ-ray heating density is ∼3.0 mW/cm 3 (on different points) using natural lithium in the shielding. However, the volume averaged heat generation in the coils is much lower, namely 0.21, 0.71 and 0.92 mW/cm 3 for the neutron, γ-ray and total nuclear heating, respectively. The coil heating will be slightly lower if highly enriched 6 Li (90%) is used instead of natural lithium. Peak values are then calculated as 2.05, 2.15 and 4.2 mW/cm 3 for the neutron, γ-ray and total nuclear heating, respectively. The corresponding volume averaged heat generation in the coils became 0.19, 0.58 and 0.77 mW/cm 3

  18. Estimation of temperature distribution in a reactor shield

    International Nuclear Information System (INIS)

    Agarwal, R.A.; Goverdhan, P.; Gupta, S.K.

    1989-01-01

    Shielding is provided in a nuclear reactor to absorb the radiations emanating from the core. The energy of these radiations appear in the form of heat. Concrete which is commonly used as a shielding material in nuclear power plants must be able to withstand the temperatures and temperature gradients appearing in the shield due to this heat. High temperatures lead to dehydration of the concrete and in turn reduce the shielding effectiveness of the material. Adequate cooling needs to be provided in these shields in order to limit the maximum temperature. This paper describes a method to estimate steady state and transient temperature distribution in reactor shields. The results due to loss of coolant in the coolant tubes have been studied and presented in the paper. (author). 5 figs

  19. X-Ray Micro-Tomography Applied to Nasa's Materials Research: Heat Shields, Parachutes and Asteroids

    Science.gov (United States)

    Panerai, Francesco; Borner, Arnaud; Ferguson, Joseph C.; Mansour, Nagi N.; Stern, Eric C.; Barnard, Harold S.; Macdowell, Alastair A.; Parkinson, Dilworth Y.

    2017-01-01

    X-ray micro-tomography is used to support the research on materials carried out at NASA Ames Research Center. The technique is applied to a variety of applications, including the ability to characterize heat shield materials for planetary entry, to study the Earth- impacting asteroids, and to improve broadcloths of spacecraft parachutes. From micro-tomography images, relevant morphological and transport properties are determined and validated against experimental data.

  20. Heat Transfer in Metal Foam Heat Exchangers at High Temperature

    Science.gov (United States)

    Hafeez, Pakeeza

    Heat transfer though open-cell metal foam is experimentally studied for heat exchanger and heat shield applications at high temperatures (˜750°C). Nickel foam sheets with pore densities of 10 and 40 pores per linear inch (PPI), have been used to make the heat exchangers and heat shields by using thermal spray coating to deposit an Inconel skin on a foam core. Heat transfer measurements were performed on a test rig capable of generating hot gas up to 1000°C. The heat exchangers were tested by exposing their outer surface to combustion gases at a temperature of 550°C and 750°C while being cooled by air flowing through them at room temperature at velocities up to 5 m/s. The temperature rise of the air, the surface temperature of the heat exchangers and the air temperature inside the heat exchanger were measured. The volumetric heat transfer coefficient and Nusselt number were calculated for different velocities. The heat transfer performance of the 40PPI sample brazed with the foil is found to be the most efficient. Pressure drop measurements were also performed for 10 and 40PPI metal foam. Thermographic measurements were done on 40PPI foam heat exchangers using a high temperature infrared camera. A high power electric heater was used to produce hot air at 300°C that passed over the foam heat exchanger while the cooling air was blown through it. Heat shields were made by depositing porous skins on metal foam and it was observed that a small amount of coolant leaking through the pores notably reduces the heat transfer from the hot gases. An analytical model was developed based assuming local thermal non-equilibrium that accounts for the temperature difference between solid and fluid phase. The experimental results are found to be in good agreement with the predicted values of the model.

  1. Peripheral dose to the testes: the design and clinical use of a practical and effective gonadal shield

    International Nuclear Information System (INIS)

    Fraass, B.A.; Kinsella, T.J.; Harrington, F.S.; Galtstein, E.

    1985-01-01

    A simple and practical gonadal shield has been developed for use near megavoltage radiation fields. The lead shield encloses only the testes, allowing its use with nearly any radiation field that does not include the testes. The dose to the testes with and without the shield has been measured extensively both in phantoms and on patients. The gonadal shield allows a 3 to 10-fold reduction in dose to the testes depending primarily on the distance from the field edge to the gonads. When the shield is used, the gonadal dose is always less than 1% of the patient's prescription dose. Based on our patient studies of testicular injury following conventionally-fractionated irradiation, a dose of less than 50 cGy should preserve normal testicular function

  2. Model-based analysis of nonstationary thermal mode in premises with an insolation passive heating system with a three-layer translucent shield

    International Nuclear Information System (INIS)

    Avezova, N.R.; Avezov, R.R.; Rashidov, Y.K. et al.

    2014-01-01

    The results of the model-based study of nonstationary thermal mode in premises with an insolation passive heating system with a three-layer translucent shield are presented. The article is aimed at determining daily variations in the air temperature of the heated premise on typical heating season days and analyzing the optimization of the thermal capacity of the short-term (daily) thermal battery of the heating system on this basis. (author)

  3. Problems of the power plant shield optimization

    International Nuclear Information System (INIS)

    Abagyan, A.A.; Dubinin, A.A.; Zhuravlev, V.I.; Kurachenko, Yu.A.; Petrov, Eh.E.

    1981-01-01

    General approaches to the solution of problems on the nuclear power plant radiation shield optimization are considered. The requirements to the shield parameters are formulated in a form of restrictions on a number of functionals, determined by the solution of γ quantum and neutron transport equations or dimensional and weight characteristics of shield components. Functional determined by weight-dimensional parameters (shield cost, mass and thickness) and functionals, determined by radiation fields (equivalent dose rate, produced by neutrons and γ quanta, activation functional, radiation functional, heat flux, integral heat flux in a particular part of the shield volume, total energy flux through a particular shield surface are considered. The following methods of numerical solution of simplified optimization problems are discussed: semiempirical methods using radiation transport physical leaks, numerical solution of approximate transport equations, numerical solution of transport equations for the simplest configurations making possible to decrease essentially a number of variables in the problem. The conclusion is drawn that the attained level of investigations on the problem of nuclear power plant shield optimization gives the possibility to pass on at present to the solution of problems with a more detailed account of the real shield operating conditions (shield temperature field account, its strength and other characteristics) [ru

  4. Water and Regolith Shielding for Surface Reactor Missions

    Science.gov (United States)

    Poston, David I.; Ade, Brian J.; Sadasivan, Pratap; Leichliter, Katrina J.; Dixon, David D.

    2006-01-01

    This paper investigates potential shielding options for surface power fission reactors. The majority of work is focused on a lunar shield that uses a combination of water in stainless-steel cans and lunar regolith. The major advantage of a water-based shield is that development, testing, and deployment should be relatively inexpensive. This shielding approach is used for three surface reactor concepts: (1) a moderated spectrum, NaK cooled, Hastalloy/UZrH reactor, (2) a fast-spectrum, NaK-cooled, SS/UO2 reactor, and (3) a fast-spectrum, K-heat-pipe-cooled, SS/UO2 reactor. For this study, each of these reactors is coupled to a 25-kWt Stirling power system, designed for 5 year life. The shields are designed to limit the dose both to the Stirling alternators and potential astronauts on the surface. The general configuration used is to bury the reactor, but several other options exist as well. Dose calculations are presented as a function of distance from reactor, depth of buried hole, water boron concentration (if any), and regolith repacked density.

  5. Water and Regolith Shielding for Surface Reactor Missions

    International Nuclear Information System (INIS)

    Poston, David I.; Sadasivan, Pratap; Dixon, David D.; Ade, Brian J.; Leichliter, Katrina J.

    2006-01-01

    This paper investigates potential shielding options for surface power fission reactors. The majority of work is focused on a lunar shield that uses a combination of water in stainless-steel cans and lunar regolith. The major advantage of a water-based shield is that development, testing, and deployment should be relatively inexpensive. This shielding approach is used for three surface reactor concepts: (1) a moderated spectrum, NaK cooled, Hastalloy/UZrH reactor, (2) a fast-spectrum, NaK-cooled, SS/UO2 reactor, and (3) a fast-spectrum, K-heat-pipe-cooled, SS/UO2 reactor. For this study, each of these reactors is coupled to a 25-kWt Stirling power system, designed for 5 year life. The shields are designed to limit the dose both to the Stirling alternators and potential astronauts on the surface. The general configuration used is to bury the reactor, but several other options exist as well. Dose calculations are presented as a function of distance from reactor, depth of buried hole, water boron concentration (if any), and regolith repacked density

  6. Peripheral dose to the testes: the design and clinical use of a practical and effective gonadal shield.

    Science.gov (United States)

    Fraass, B A; Kinsella, T J; Harrington, F S; Glatstein, E

    1985-03-01

    A simple and practical gonadal shield has been developed for use near megavoltage radiation fields. The lead shield encloses only the testes, allowing its use with nearly any radiation field that does not include the testes. The dose to the testes with and without the shield has been measured extensively both in phantoms and on patients. The gonadal shield allows a 3 to 10-fold reduction in dose to the testes depending primarily on the distance from the field edge to the gonads. When the shield is used, the gonadal dose is always less than 1% of the patient's prescription dose. Based on our patient studies of testicular injury following conventionally-fractionated irradiation, a dose of less than 50 cGy (1% of a typical 5000 cGy treatment regimen) should preserve normal testicular function.

  7. High heat flux testing of ITER ICH&CD antenna beryllium faraday screen bars mock-ups

    International Nuclear Information System (INIS)

    Courtois, X.; Meunier, L.; Kuznetsov, V.; Beaumont, B.; Lamalle, P.; Conchon, D.; Languille, P.

    2016-01-01

    Highlights: • ITER ICH&CD antenna beryllium faraday screen bars mock-ups were manufactured. • The mock-ups are submitted to high heat loads to test their heat exhaust capabilities. • The mock-ups withstand without damage the design limit load. • Lifetime is gradually reduced when the heat load is augmented beyond the design limit. • Thermal and mechanical behavior are reproducible, and coherent with the calculation. - Abstract: The Faraday Screen (FS) is the plasma facing component of ITER ion cyclotron heating antennas shielding. The requirement for the high heat exhaust, and the limitation of the temperatures to minimize strain and thus offer sufficient resistance to fatigue, imply the need for high conductivity materials and a high cooling flow rate. The FS bars are constructed by a hipping process involving beryllium tiles, a pure copper layer, a copper chrome zirconium alloy for the cooling channel and a stainless steel backing strip. Two FS bars small scale mock-ups were manufactured and tested under high heat flux. They endured 15,000 heating cycles without degradation under nominal heat flux, and revealed growing flaws when the heat flux was progressively augmented beyond. In this case, the ultrasonic test confirms a strong delamination of the Be tiles.

  8. Experimental Studies of the Aerothermal Characteristics of the Project Orion CEV heat Shield in High Speed Transitional and Turbulent Flows

    Science.gov (United States)

    Wadhams, T.P.; MacLean, M.; Holden, M.S.; Cassady, A.M.

    2009-01-01

    An experimental program has been completed by CUBRC exploring laminar, transitional, and turbulent flows over a 7.0% scale model of the Project ORION CEV geometry. This program was executed primarily to answer questions concerning the increase in heat transfer on the windward, or "hot shoulder" of the CEV heat shield from laminar to turbulent flow. To answer these questions CUBRC constructed and instrumented a 14.0 inch diameter Project ORION CEV model and ran a range of Reynolds numbers based on diameter from 1.0 to over 40 million at a Mach number of 8.0. These Reynolds numbers were selected to cover laminar to turbulent heating data on the "hot shoulder". Data obtained during these runs will be used to guide design decisions as they apply to heat shield thickness and extent. Several experiments at higher enthalpies were achieved to obtain data for code validation with real gas effects and transition. CUBRC also performed computation studies of these experiments to aid in the data reduction process and study turbulence modeling.

  9. Neutron shielding material

    International Nuclear Information System (INIS)

    Suzuki, Shigenori; Iimori, Hiroshi; Kobori, Junzo.

    1980-01-01

    Purpose: To provide a neutron shielding material which incorporates preferable shielding capacity, heat resistance, fire resistance and workability by employing a mixture of thermosetting resin, polyethylene and aluminium hydroxide in special range ratio and curing it. Constitution: A mixture containing 20 to 60% by weight of thermosetting resin having preferable heat resistance, 10 to 40% by weight of polyethylene powder having high hydrogen atom density and 1000 to 60000 of molecular weight, and 15 to 55% by weight of Al(OH) 3 for imparting fire resistance and self-fire extinguishing property thereto is cured. At this time approx. 0.5 to 5% of curing catalyst of the thermosetting resin is contained in 100 parts by weight of the mixture. (Sekiya, K.)

  10. Cooling Performance of TBM-shield Designed for Manufacturability

    International Nuclear Information System (INIS)

    Park, Seong Dae; Lee, Dong Won; Kim, Dong Jun; Yoon, Jae Sung; Ahn, Mu Young

    2016-01-01

    Helium cooled ceramic reflector (HCCR) test blanket module (TBM) is composed of four sub-modules and a common back manifold (BM). The associated shield is a water-cooled 316L(N)-IG block with internal cooling channels. The purpose of the TBM-shield is to make the condition with the allowable neutron flux and dose rate level. The radially continuous layers of water and structure were configured. The main purpose of the shield is to reduce the neutron flux by absorbing the neutron in the structure. The water could act as the moderator and cool down the structure which is heated due to the reaction with the neutrons. The moderated neutrons are easily absorbed by the structure. It could meet the criteria for the minimum neutron flux by increasing the thickness of structure. The formation of inside cooling channel in the TBM-shield should be considered while maintaining the allowable temperature range. In this work, a manufacturing process including the formation of inside cooling channel was presented. Current design and thermal analysis results for the TBM-shield were presented. The geometry of the shield blocks was considerably changed. The coolant channel was exposed to the outer surface of the TBM-shield. The overall manufacturing process is simplified compared with the previous process of CD model

  11. Cooling Performance of TBM-shield Designed for Manufacturability

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seong Dae; Lee, Dong Won; Kim, Dong Jun; Yoon, Jae Sung [KAERI, Daejeon (Korea, Republic of); Ahn, Mu Young [NFRI, Daejeon (Korea, Republic of)

    2016-05-15

    Helium cooled ceramic reflector (HCCR) test blanket module (TBM) is composed of four sub-modules and a common back manifold (BM). The associated shield is a water-cooled 316L(N)-IG block with internal cooling channels. The purpose of the TBM-shield is to make the condition with the allowable neutron flux and dose rate level. The radially continuous layers of water and structure were configured. The main purpose of the shield is to reduce the neutron flux by absorbing the neutron in the structure. The water could act as the moderator and cool down the structure which is heated due to the reaction with the neutrons. The moderated neutrons are easily absorbed by the structure. It could meet the criteria for the minimum neutron flux by increasing the thickness of structure. The formation of inside cooling channel in the TBM-shield should be considered while maintaining the allowable temperature range. In this work, a manufacturing process including the formation of inside cooling channel was presented. Current design and thermal analysis results for the TBM-shield were presented. The geometry of the shield blocks was considerably changed. The coolant channel was exposed to the outer surface of the TBM-shield. The overall manufacturing process is simplified compared with the previous process of CD model.

  12. Neutron shielding material

    International Nuclear Information System (INIS)

    Nodaka, M.; Iida, T.; Taniuchi, H.; Yosimura, K.; Nagahama, H.

    1993-01-01

    From among the neutron shielding materials of the 'kobesh' series developed by Kobe Steel, Ltd. for transport and storage packagings, silicon rubber base type material has been tested for several items with a view to practical application and official authorization, and in order to determine its adaptability to actual vessels. Silicon rubber base type 'kobesh SR-T01' is a material in which, from among the silicone rubber based neutron shielding materials, the hydrogen content is highest and the boron content is most optimized. Its neutron shielding capability has been already described in the previous report (Taniuchi, 1986). The following tests were carried out to determine suitability for practical application; 1) Long-term thermal stability test 2) Pouring test on an actual-scale model 3) Fire test The experimental results showed that the silicone rubber based neutron shielding material has good neutron shielding capability and high long-term fire resistance, and that it can be applied to the advanced transport packaging. (author)

  13. Use of a radio frequency shield during 1.5 and 3.0 Tesla magnetic resonance imaging: experimental evaluation.

    Science.gov (United States)

    Favazza, Christopher P; King, Deirdre M; Edmonson, Heidi A; Felmlee, Joel P; Rossman, Phillip J; Hangiandreou, Nicholas J; Watson, Robert E; Gorny, Krzysztof R

    2014-01-01

    Radiofrequency (RF) shields have been recently developed for the purpose of shielding portions of the patient's body during magnetic resonance imaging (MRI) examinations. We present an experimental evaluation of a commercially available RF shield in the MRI environment. All tests were performed on 1.5 T and 3.0 T clinical MRI scanners. The tests were repeated with and without the RF shield present in the bore, for comparison. Effects of the shield, placed within the scanner bore, on the RF fields generated by the scanner were measured directly using tuned pick-up coils. Attenuation, by as much as 35 dB, of RF field power was found inside the RF shield. These results were supported by temperature measurements of metallic leads placed inside the shield, in which no measurable RF heating was found. In addition, there was a small, simultaneous detectable increase (∼1 dB) of RF power just outside the edges of the shield. For these particular scanners, the autocalibrated RF power levels were reduced for scan locations prescribed just outside the edges of the shield, which corresponded with estimations based on the pick-up coil measurements. Additionally, no significant heating during MRI scanning was observed on the shield surface. The impact of the RF shield on the RF fields inside the magnet bore is likely to be dependent on the particular model of the RF shield or the MRI scanner. These results suggest that the RF shield could be a valuable tool for clinical MRI practices.

  14. Revised neutral gas shielding model for pellet ablation - combined neutral and plasma shielding

    International Nuclear Information System (INIS)

    Houlberg, W.A.; Schuresko, D.D.; Attenberger, S.E.

    1986-01-01

    The ablation and penetration of pellets in early ORMAK and ISX-A experiments were reliably predicted by the neutral gas shielding model of Milora and Foster. These experiments demonstrated that the principle components of the model - a self-generated shield which reduces the heat flux at the plasma surface - were correct. In more recent experiments with higher temperature plasmas, this model consistently predicts greater penetration than observed in the experiments. Upgarding known limitations of the original model brings the predicted and observed penetration values into agreement. These improvements include: (1) treating the incident electrons as having distribution in energy rather than being monoenergetic; (2) including the shielding effects of cold, dense plasma extending along the magnetic field outside the neutral shield; and (3) modifying the finite plasma, self-limiting incident heat flux so that it represents a collisionless plasma limit rather than a collisional limit. Comparisons are made between the models for a selection of ISX-B Alcator-C, and TFTR shots. The net effect of the changes in the model is an increase in pellet ablation rates and decrease in penetration for current and future experiments

  15. Efficient hydrogen production using heat in neutron shield of fusion reactor

    International Nuclear Information System (INIS)

    Okano, Kunihiko; Asaoka, Yoshiyuki; Hiwatari, Ryouji; Yoshida, Tomoaki

    2001-01-01

    In future perspective of energy supply, a hydrogen energy cycle is expected to play an important role as a CO 2 free fuel for mobile or co-generation systems. Fusion power plants should offer advantages, compatibilities and/or synergistic effects with or in such future energy systems. In this paper, a comprehensive power station, in which a fusion plant is integrated with a hydrogen production plant, is proposed. A tenuous heat source in the outboard shield, which is unsuitable to produce high-pressure and high-temperature steam for efficient electric power generation, is used for the hydrogen production. This integrated system provides some synergistic effects and it would be advantageous over any independent use of each plant. (author)

  16. Materials tests and analyses of Faraday shield tubes for ICRF [ion cyclotron resonant frequency] antennas

    International Nuclear Information System (INIS)

    King, J.F.; Baity, F.W.; Hoffman, D.J.; Walls, J.C.; Taylor, D.J.

    1988-01-01

    The ion cyclotron resonant frequency (ICRF) antennas for heating fusion plasmas require careful analysis of the materials selected for the design and the successful fabrication of high integrity braze bonds. Graphite tiles are brazed to Inconel 625 Faraday shield tubes to protect the antenna from the plasma. The bond between the graphite and Inconel tube is difficult to achieve due to the different coefficients of thermal expansion. A 2-D stress analysis showed the graphite could be bonded to Inconel with a Ag-Cu-Ti braze alloy without cracking the graphite. Brazing procedures and nondestructive examination methods have been developed for these joints. This paper presents the results of our joining development and proof testing. 2 refs., 3 figs

  17. Design and Testing of Improved Spacesuit Shielding Components

    International Nuclear Information System (INIS)

    Ware, J.; Ferl, J.; Wilson, J.W.; Clowdsley, M.S.; DeAngelis, G.; Tweed, J.; Zeitlin, C.J.

    2002-01-01

    In prior studies of the current Shuttle Spacesuit (SSA), where basic fabric lay-ups were tested for shielding capabilities, it was found that the fabric portions of the suit give far less protection than previously estimated due to porosity and non-uniformity of fabric and LCVG components. In addition, overall material transmission properties were less than optimum. A number of alternate approaches are being tested to provide more uniform coverage and to use more efficient materials. We will discuss in this paper, recent testing of new material lay-ups/configurations for possible use in future spacesuit designs

  18. Comparison of the CATHENA model of Gentilly-2 end shield cooling system predictions to station data

    Energy Technology Data Exchange (ETDEWEB)

    Zagre, G.; Sabourin, G. [Candu Energy Inc., Montreal, Quebec (Canada); Chapados, S. [Hydro-Quebec, Montreal, Quebec (Canada)

    2012-07-01

    As part of the Gentilly-2 Refurbishment Project, Hydro-Quebec has elected to perform the End Shield Cooling Safety Analysis. A CATHENA model of Gentilly-2 End Shield Cooling System was developed for this purpose. This model includes new elements compared to other CANDU6 End Shield Cooling models such as a detailed heat exchanger and control logic model. In order to test the model robustness and accuracy, the model predictions were compared with plant measurements.This paper summarizes this comparison between the model predictions and the station measurements. It is shown that the CATHENA model is flexible and accurate enough to predict station measurements for critical parameters, and the detailed heat exchanger model allows reproducing station transients. (author)

  19. Tests of a thermal acoustic shield with a supersonic jet

    Science.gov (United States)

    Pickup, N.; Mangiarotty, R. A.; Okeefe, J. V.

    1981-10-01

    Fuel economy is a key element in the design of a future supersonic transport (SST). Variable cycle engines are being developed to provide the most economic combination of characteristics for a range of cruise speeds extending from subsonic speeds for overland flights to the supersonic cruise speeds. For one of these engines, the VCE-702, some form of noise suppression is needed for takeoff/sideline thrusts. The considered investigation is primarily concerned with scale model static tests of one particular concept for achieving that reduction, the thermal acoustic shield (TAS), which could also benefit other candidate SST engines. Other noise suppression devices being considered for SST application are the coannular nozzle, an internally ventilated nozzle, and mechanical suppressors. A test description is provided, taking into account the model configurations, the instrumentation, the test jet conditions, and aspects of screech noise control. Attention is given to shield thickness effects, a spectrum analysis, suppression and performance loss, and installed performance.

  20. EMI Shielding Performance For Varies Frequency by Metal Plating on Mold Compound

    Directory of Open Access Journals (Sweden)

    Min Fee Tai

    2017-07-01

    Full Text Available Conformal metalization on mold compound offers new possibility for IC package design to improve features such as rigidization of the flexible core, heat sink capability, 3D-circuit patterning and the electromagnetic interference (EMI shielding. With the unique processes, the fabrication technology had enabled to achieve the high reliable performance and had passed the electrical test. Following research after the reliability concern, this paper further study the shielding effectiveness of varying coating thickness with respect to laboratory simulated EMI condition, using radio frequency from 10MHz to 5.8 GHz. Different metal namely pure nickel, nickel-phosphorous and pure plated copper are studied for their effectiveness of EMI sheilding. Our first result showed over 35-40dB of shielding effectiveness is achievable on high frequency 868-5800MHz. Nevertheless on low frequency of 10MHz, the shielding effectiveness achievement is below than 25dB. To overcome the shielding need for lower frequency, we further expanded our test by choosing ferromagentic material Nicke/Ironl-alloy in combination with thick copper plating. With this new metal combination, EMI shielding effectiveness for lower frequency is improved to 40dB.

  1. ANALISIS KESELAMATAN TERMOHIDROLIK BULK SHIELDING REAKTOR KARTINI

    Directory of Open Access Journals (Sweden)

    Azizul Khakim

    2015-10-01

    Full Text Available ABSTRAK ANALISIS KESELAMATAN TERMOHIDROLIK BULK SHIELDING REAKTOR KARTINI. Bulk shielding merupakan fasilitas yang terintegrasi dengan reaktor Kartini yang berfungsi sebagai penyimpanan sementara bahan bakar bekas. Fasilitas ini merupakan fasilitas yang termasuk dalam struktur, sistem dan komponen (SSK yang penting bagi keselamatan. Salah satu fungsi keselamatan dari sistem penanganan dan penyimpanan bahan bakar adalah mencegah kecelakaan kekritisan yang tak terkendali dan membatasi naiknya temperatur bahan bakar. Analisis keselamatan paling kurang harus mencakup analisis keselamatan dari sisi neutronik dan termo hidrolik Bulk shielding. Analisis termo hidrolik ditujukan untuk memastikan perpindahan panas dan proses pendinginan bahan bakar bekas berjalan baik dan tidak terjadi akumulasi panas yang mengancam integritas bahan bakar. Code tervalidasi PARET/ANL digunakan untuk analisis pendinginan dengan mode konveksi alam. Hasil perhitungan menunjukkan bahwa mode pendinginan konvekasi alam cukup memadai dalam mendinginkan panas sisa tanpa mengakibatkan kenaikan temperatur bahan bakar yang signifikan. Kata kunci: Bulk shielding, bahan bakar bekas, konveksi alam, PARET.   ABSTRACT THERMAL HYDRAULIC SAFETY ANALYSIS OF BULK SHIELDING KARTINI REACTOR. Bulk shielding is an integrated facility to Kartini reactor which is used for temporary spent fuels storage. The facility is one of the structures, systems and components (SSCs important to safety. Among the safety functions of fuel handling and storage are to prevent any uncontrolable criticality accidents and to limit the fuel temperature increase. Safety analyses should, at least, cover neutronic and thermal hydraulic calculations of the bulk shielding. Thermal hydraulic analyses were intended to ensure that heat removal and the process of the spent fuels cooling takes place adequately and no heat accumulation that challenges the fuel integrity. Validated code, PARET/ANL was used for analysing the

  2. MMW [multimegawatt] shielding design and analysis

    International Nuclear Information System (INIS)

    Olson, A.P.

    1988-01-01

    Reactor shielding for multimegawatt (MMW) space power must satisfy a mass constraint as well as performance specifications for neutron fluence and gamma dose. A minimum mass shield is helpful in attaining the launch mass goal for the entire vehicle, because the shield comprises about 1% to 2% of the total vehicle mass. In addition, the shield internal heating must produce tolerable temperatures. The analysis of shield performance for neutrons and gamma rays is emphasized. Topics addressed include cross section preparation for multigroup 2D S/sub n/-transport analyses, and the results of parametric design studies on shadow shield performance and mass versus key shield design variables such as cone angle, number, placement, and thickness of layers of tungsten, and shield top radius. Finally, adjoint methods are applied to the shield in order to spatially map its relative contribution to dose reduction, and to provide insight into further design optimization. 7 refs., 2 figs., 3 tabs

  3. Tests of shielding effectiveness of Kevlar and Nextel onboard the International Space Station and the Foton-M3 capsule.

    Science.gov (United States)

    Pugliese, M; Bengin, V; Casolino, M; Roca, V; Zanini, A; Durante, M

    2010-08-01

    Radiation assessment and protection in space is the first step in planning future missions to the Moon and Mars, where mission and number of space travelers will increase and the protection of the geomagnetic shielding against the cosmic radiation will be absent. In this framework, the shielding effectiveness of two flexible materials, Kevlar and Nextel, were tested, which are largely used in the construction of spacecrafts. Accelerator-based tests clearly demonstrated that Kevlar is an excellent shield for heavy ions, close to polyethylene, whereas Nextel shows poor shielding characteristics. Measurements on flight performed onboard of the International Space Station and of the Foton-M3 capsule have been carried out with special attention to the neutron component; shielded and unshielded detectors (thermoluminescence dosemeters, bubble detectors) were exposed to a real radiation environment to test the shielding properties of the materials under study. The results indicate no significant effects of shielding, suggesting that thin shields in low-Earth Orbit have little effect on absorbed dose.

  4. Simulation of divertor targets shielding during transients in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Pestchanyi, Sergey, E-mail: serguei.pestchanyi@kit.edu [KIT, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen (Germany); Pitts, Richard; Lehnen, Michael [ITER Organization,Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France)

    2016-11-01

    Highlights: • We simulated plasma shielding effect during disruption in ITER using the TOKES code. • It has been found that vaporization is unavoidable under action of ITER transients, but plasma shielding drastically reduces the divertor target damage: the melt pool and the vaporization region widths reduced 10–15 times. • A simplified 1D model describing the melt pool depth and the shielded heat flux to the divertor targets have been developed. • The results of the TOKES simulations have been compared with the analytic model when the model is valid. - Abstract: Direct extrapolation of the disruptive heat flux on ITER conditions predicts severe melting and vaporization of the divertor targets causing their intolerable damage. However, tungsten vaporized from the target at initial stage of the disruption can create plasma shield in front of the target, which effectively protects the target surface from the rest of the heat flux. Estimation of this shielding efficiency has been performed using the TOKES code. The shielding effect under ITER conditions is found to be very strong: the maximal depth of the melt layer reduced 4 times, the melt layer width—more than 10 times and vaporization region shrinks 10–15 times due to shielding for unmitigated disruption of 350 MJ discharge. The simulation results show complex, 2D plasma dynamics of the shield under ITER conditions. However, a simplified analytic model, valid for rough estimation of the maximum value for the shielded flux to the target and for the melt depth at the target surface has been developed.

  5. Use of a radio frequency shield during 1.5 and 3.0 Tesla magnetic resonance imaging: experimental evaluation

    Directory of Open Access Journals (Sweden)

    Favazza CP

    2014-10-01

    Full Text Available Christopher P Favazza, Deirdre M King, Heidi A Edmonson, Joel P Felmlee, Phillip J Rossman, Nicholas J Hangiandreou, Robert E Watson, Krzysztof R Gorny Department of Radiology, Mayo Clinic, Rochester, MN, USA Abstract: Radiofrequency (RF shields have been recently developed for the purpose of shielding portions of the patient's body during magnetic resonance imaging (MRI examinations. We present an experimental evaluation of a commercially available RF shield in the MRI environment. All tests were performed on 1.5 T and 3.0 T clinical MRI scanners. The tests were repeated with and without the RF shield present in the bore, for comparison. Effects of the shield, placed within the scanner bore, on the RF fields generated by the scanner were measured directly using tuned pick-up coils. Attenuation, by as much as 35 dB, of RF field power was found inside the RF shield. These results were supported by temperature measurements of metallic leads placed inside the shield, in which no measurable RF heating was found. In addition, there was a small, simultaneous detectable increase (~1 dB of RF power just outside the edges of the shield. For these particular scanners, the autocalibrated RF power levels were reduced for scan locations prescribed just outside the edges of the shield, which corresponded with estimations based on the pick-up coil measurements. Additionally, no significant heating during MRI scanning was observed on the shield surface. The impact of the RF shield on the RF fields inside the magnet bore is likely to be dependent on the particular model of the RF shield or the MRI scanner. These results suggest that the RF shield could be a valuable tool for clinical MRI practices. Keywords: radiofrequency shield, magnetic resonance imaging, radiofrequency attenuation

  6. Astronaut Ronald Sega with Wake Shield Facility on test stand at JSC

    Science.gov (United States)

    1991-01-01

    The Wake Shield Facility is displayed on a test stand at JSC. Astronaut Ronald M. Sega, mission specialist for STS-60, is seen with the facility during a break in testing in the acoustic and vibration facility at JSC.

  7. Radiation Shielding Materials and Containers Incorporating Same

    Energy Technology Data Exchange (ETDEWEB)

    Mirsky, Steven M.; Krill, Stephen J.; and Murray, Alexander P.

    2005-11-01

    An improved radiation shielding material and storage systems for radioactive materials incorporating the same. The PYRolytic Uranium Compound (''PYRUC'') shielding material is preferably formed by heat and/or pressure treatment of a precursor material comprising microspheres of a uranium compound, such as uranium dioxide or uranium carbide, and a suitable binder. The PYRUC shielding material provides improved radiation shielding, thermal characteristic, cost and ease of use in comparison with other shielding materials. The shielding material can be used to form containment systems, container vessels, shielding structures, and containment storage areas, all of which can be used to house radioactive waste. The preferred shielding system is in the form of a container for storage, transportation, and disposal of radioactive waste. In addition, improved methods for preparing uranium dioxide and uranium carbide microspheres for use in the radiation shielding materials are also provided.

  8. The ParaShield Entry Vehicle Concept: Basic Theory and Flight Test Development

    OpenAIRE

    Akin, David

    1990-01-01

    With the emergence of microsatellite launch vehicle technology and the development of interest in space commercialization, there is a renewed need for entry vehicle technology to return mass from low earth orbit. This paper documents the ParaShield concept of the Space Systems Laboratory, which is an ultra-low ballistic coefficient (ULβ) entry vehicle. Trajectory simulations show that as the ballistic coefficient is lowered into the range of 100-150 Pa (2-3lb/ft2) the total heat load and peak...

  9. BUGLE-93 (ENDF/B-VI) cross-section library data testing using shielding benchmarks

    International Nuclear Information System (INIS)

    Hunter, H.T.; Slater, C.O.; White, J.E.

    1994-01-01

    Several integral shielding benchmarks were selected to perform data testing for new multigroup cross-section libraries compiled from the ENDF/B-VI data for light water reactor (LWR) shielding and dosimetry. The new multigroup libraries, BUGLE-93 and VITAMIN-B6, were studied to establish their reliability and response to the benchmark measurements by use of radiation transport codes, ANISN and DORT. Also, direct comparisons of BUGLE-93 and VITAMIN-B6 to BUGLE-80 (ENDF/B-IV) and VITAMIN-E (ENDF/B-V) were performed. Some benchmarks involved the nuclides used in LWR shielding and dosimetry applications, and some were sensitive specific nuclear data, i.e. iron due to its dominant use in nuclear reactor systems and complex set of cross-section resonances. Five shielding benchmarks (four experimental and one calculational) are described and results are presented

  10. Pre-installation empirical testing of room shielding for high dose rate remote afterloaders

    International Nuclear Information System (INIS)

    Klein, E.E.; Grigsby, P.W.; Williamson, J.F.; Meigooni, A.S.

    1993-01-01

    PURPOSE: Many facilities are acquiring high dose rate remote afterloading units. It is economical that these units be placed in existing shielded teletherapy rooms. Scatter-radiation barriers marginally protect uncontrolled areas from a high dose rate source especially in a room that houses a non-dynamic Cobalt-60 unit. In addition the exact thickness and material composition of the barriers are unknown and therefore, a calculation technique may give misleading results. Also, it would be impossible to evaluate an entire wall barrier by taking isolated core samples in order to assist in the calculations. A quick and inexpensive measurement of dose equivalent using a rented high activity 192Ir source evaluates the barriers and locates shielding deficiencies. METHODS AND MATERIALS: We performed transmission calculations for primary and scattered radiation based on National Council on Radiation Protection and Measurements Reports 49 and 51, respectively. We then rented a high activity 21.7 Ci (8.03 x 10(11) Bq) Ir-192 source to assess our existing teletherapy room shielding for adequacy and voids. This source was placed at the proposed location for clinical high dose rate treatment and measurements were performed. RESULTS: No deficiencies were found in controlled areas surrounding the room, but large differences were found between the calculated and measured values. Our survey located a region in the uncontrolled area above the room requiring augmented shielding which was not predicted by the calculations. A canopy shield was designed to potentially augment the shielding in the ceiling direction. CONCLUSION: Pre-installation testing by measurement is an invaluable method for locating shielding deficiencies and avoiding unnecessary enhancement of shielding particularly when there is lack of information of the inherent shielding

  11. ICRF antenna Faraday shield plasma sheath model

    International Nuclear Information System (INIS)

    Whealton, J.H.; Ryan, P.M.; Raridon, R.J.

    1990-01-01

    A two-dimensional nonlinear formulation that explicitly considers the plasma edge near a Faraday shield in a self-consistent manner is used in the modeling of the ion motion for a Faraday shield concept and model suggested by Perkins. Two models are considered that may provide significant insight into the generation of impurities for ion cyclotron resonance heating (ICRH) antennas. In one of these models a significant sheath periodically forms next to the Faraday screen, with ion acoustic waves heating the ions in the plasma. (orig.)

  12. Phase 2 testing of ENDF/B-VI shielding data

    International Nuclear Information System (INIS)

    Ingersoll, D.T.; Wright, R.Q.; Slater, C.O.

    1992-01-01

    Version 6 of the US Evaluated Nuclear Data File (ENDF/B-VI) was released in early 1990 and is currently undergoing phase 2 testing. In Phase 2 testing, the evaluated data are approximately processed and used in an integral manner to predict the solution of previously specified benchmark experiments. Results are presented for the initial testing of several light elements and structural materials which are important for shielding applications. These initial tests indicate that the relatively subtle changes made to the iron data and the major modernization of the boron-11 data in Version 6 both represent significant and positive advancements in the quality of the evaluated data files

  13. Bulk-shield design for the Fusion Materials Irradiation Test facility

    International Nuclear Information System (INIS)

    Carter, L.L.; Mann, F.M.; Morford, R.J.; Johnson, D.L.; Huang, S.T.

    1982-07-01

    The accelerator-based Fusion Materials Irradiation Test (FMIT) facility will provide a high-fluence, fusion-like radiation environment for the testing of materials. While the neutron spectrum produced in the forward direction by the 35 MeV deuterons incident upon a flowing lithium target is characterized by a broad peak around 14 MeV, a high energy tail extends up to about 50 MeV. Some shield design considerations are reviewed

  14. 3-D analysis on arbitrarily-shaped ICRF antennas and Faraday shields

    International Nuclear Information System (INIS)

    Chen, G.L.; Whealton, J.H.; Baity, F.W.; Hoffman, D.J.; Owens, T.L.

    1986-01-01

    Cavity antennas with Faraday shields are proposed to couple ion cyclotron radio frequency power for heating fusion plasmas. This application requires small, high-power, low-frequency antennas. The results are presented of a theoretical study of the ICRF antennas being developed for this purpose at the Radio Frequency Test Facility (RFTF). The objectives of this work are to optimize experimental designs and to confirm test results

  15. SU-E-T-243: Design of a Novel Testing Port for Radiation Protection and Shielding Measurements

    International Nuclear Information System (INIS)

    Tanny, S; Parsai, E; Harrell, D; Noller, J; Chopra, M

    2015-01-01

    Purpose: The majority of radiation shielding research utilizes Monte Carlo simulation because of the difficulty in eliminating secondary radiations from measurements. We have designed a test port into a primary barrier of our newest vault to allow for shielding measurements while ensuring adequate protection to the public and staff during normal machine operation. This port allows for measurement of attenuation values of shielding materials, differential dose albedos, and radiation scatter fractions. Methods: The vault design utilized the maze as part of a compound primary barrier. The test port is contained within the maze and is centered along isocenter. The inner 30 cm has a 20×20 cm 2 opening, while the remaining length has a 30×30 cm 2 opening. The block that contains the port has a density of 200 pcf to minimize internal scatter. The 30×30 cm 2 opening is occupied by removable 215 pcf concrete blocks. The innermost and outermost blocks activate an interlock wired into the beam-enable loop. This disallows beam-on in treatment mode if the interlock isn’t closed. The interlock can be overridden in service mode, or by-passed via an override switch in case of circuit failure. Results: The test port was installed in August. The beam is disabled when the interlock is tripped. Measurements taken when the primary beam is not incident on the port are indistinguishable from background. Ambient dose levels surrounding the vault with the designed shielding blocks in place are all within allowable limits for occupational workers. Conclusions: We have designed and installed a unique testing port for radiation protection and shielding measurements. This port is appropriately interlocked and designed to mitigate any risks of incidental exposure to staff or members of the public. The test port design allows measurements with “good geometry” and efficient removal of contaminating sources of radiation present in many shielding measurements. Daniel Harrell and Jim Noller

  16. Material shielding of power frequency magnetic fields: Research and testing results from the EPRI Power Delivery Center-Lenox. Final report

    International Nuclear Information System (INIS)

    Anderson, C.B.

    1998-06-01

    Extensive investigations of a variety of material shielding methods have been performed at the EPRI Power Delivery Center--Lenox, Massachusetts. This work is part of a larger shielding investigation being done for EPRI by Electric Research and Management, Inc. (ERM) as part of the Magnetic Field Management Target in the EPRI Environment Group. Part of this work, involving cylinders of material, is to be included in a shielding handbook being prepared by ERM. Material shielding tests, not included in the handbook, as well as additional material shielding research, including testing, analyses, and computer simulations performed at the EPRI Power Delivery Center--Lenox are documented here. One of the major complications of using materials to shield magnetic fields is the mathematical complexity of the phenomenon involved. The result is that analytical solutions exist only for a very small number of simple geometries such as spheres, infinitely long cylinders, and infinite sheets. In practice, the materials typically come in the form of sheets. At present, there are no analytical methods for directly determining the shielding effectiveness of finite sheets of material, however, EPRI is sponsoring work in this area. There are some methods based on conformal mapping which can provide a solution for simple two-dimensional sheets. While such methods are useful in gaining insight into the mechanisms of shielding, they are not realistic enough to provide accurate shielding estimates. Empirical techniques are still required to determine the shielding effectiveness of material sheets. The material shielding tests and computer simulations are described in the report. The results of these tests and simulations have been used to develop a number of material shielding design rules for use in practical applications

  17. Early test facilities and analytic methods for radiation shielding: Proceedings

    International Nuclear Information System (INIS)

    Ingersoll, D.T.; Ingersoll, J.K.

    1992-11-01

    This report represents a compilation of eight papers presented at the 1992 American Nuclear Society/European Nuclear Society International Meeting. The meeting is of special significance since it commemorates the fiftieth anniversary of the first controlled nuclear chain reaction. The papers contained in this report were presented in a special session organized by the Radiation Protection and Shielding Division in keeping with the historical theme of the meeting. The paper titles are good indicators of their content and are: (1) The origin of radiation shielding research: The Oak Ridge experience, (2) Shielding research at the hanford site, (3) Aircraft shielding experiments at General Dynamics Fort Worth, 1950-1962, (4) Where have the neutrons gone?, a history of the tower shielding facility, (5) History and evolution of buildup factors, (6) Early shielding research at Bettis atomic power laboratory, (7) UK reactor shielding: then and now, (8) A very personal view of the development of radiation shielding theory

  18. Effects of drop testing on scale model shipping containers shielded with depleted uranium

    International Nuclear Information System (INIS)

    Butler, T.A.

    1980-02-01

    Three scale model shipping containers shielded with depleted uranium were dropped onto an essentially unyielding surface from various heights to determine their margins to failure. This report presents the results of a thorough posttest examination of the models to check for basic structural integrity, shielding integrity, and deformations. Because of unexpected behavior exhibited by the depleted uranium shielding, several tests were performed to further characterize its mechanical properties. Based on results of the investigations, recommendations are made for improved container design and for applying the results to full-scale containers. Even though the specimens incorporated specific design features, the results of this study are generally applicable to any container design using depleted uranium

  19. Shielding Gas and Heat Input Effects on the Mechanical and Metallurgical Characterization of Gas Metal Arc Welding of Super Martensitic Stainless Steel (12Cr5Ni2Mo) Joints

    Science.gov (United States)

    Prabakaran, T.; Prabhakar, M.; Sathiya, P.

    This paper deals with the effects of shielding gas mixtures (100% CO2, 100% Ar and 80 % Ar + 20% CO2) and heat input (3.00, 3.65 and 4.33kJ/mm) on the mechanical and metallurgical characteristics of AISI 410S (American Iron and Steel Institute) super martensitic stainless steel (SMSS) by gas metal arc welding (GMAW) process. AISI 410S SMSS with 1.2mm diameter of a 410 filler wire was used in this study. A detailed microstructural analysis of the weld region as well as the mechanical properties (impact, microhardness and tensile tests at room temperature and 800∘C) was carried out. The tensile and impact fracture surfaces were further analyzed through scanning electron microscope (SEM). 100% Ar shielded welds have a higher amount of δ ferrite content and due to this fact the tensile strength of the joints is superior to the other two shielded welds.

  20. Material and electromagnetic properties of Faraday shields for ion cyclotron heating antennas

    International Nuclear Information System (INIS)

    Hoffman, D.J.; Baity, F.W.; Becraft, W.R.; Caughman, J.B.O.; Tsai, C.C.

    1985-01-01

    The Faraday shields for ion cyclotron antennas must transmit magnetic waves and absorb little RF power. To investigate these properties, we have constructed 27 Faraday shields in many configurations, including chevrons, tubes, straps, concentric rings, various layered shields, conventionally leafed straps, and replicas of the Faraday shields for ASDEX, the Joint European Torus (JET), TEXTOR, and Alcator-C. We have measured the magnetic flux and observed loading at various operating resistances by using dielectric sheets or magnetic-coupled loads. Each Faraday shield effects a net change in the characteristic inductance of the antenna, resulting in a reduction of wave coupling. However, the load experienced by the antenna is not always reduced because the Faraday shield itself acts as a load. We differentiate between these effects experimentally. The net result of the study is that the Faraday shields now in use cost up to a factor of 50% of coupling. This, of course, reduces the power handling capability by 50% as well. However, configurations exist that are easily cooled and result in a reduction of less than 5% in loading

  1. Material and electromagnetic properties of Faraday shields for ion cyclotron heating antennas

    International Nuclear Information System (INIS)

    Hoffman, D.J.; Becraft, W.R.; Baity, F.W.; Caughman, J.B.O.; Tsai, C.C.

    1985-01-01

    The Faraday shields for ion cyclotron antennas must transmit magnetic waves and adsorb little rf power. To investigate these properties, we have constructed 27 Faraday shields in many configurations, including chevrons, tubes, straps, concentric rings, various layered shields, conventionally leafed straps, and replicas of the Faraday shields for ASDEX, the Joint European Torus (JET), TEXTOR, and Alcator-C. We have measured the magnetic flux and observed loading at various operating resistances by using dielectric sheets or magnetic-coupled loads. Each Faraday shield effects a net change in the characteristic inductance of the antenna, resulting in a reduction of wave coupling. However, the load experienced by the antenna is not always reduced because the Faraday shield itself acts as a load. We differentiate between these effects experimentally. The net result of the study is that the Faraday shields now in use cost up to a factor of 50% of coupling. This, of course, reduces the power handling capability by 50% as well. However, configurations exist that are easily cooled and result in a reduction of less than 5% in loading

  2. Shielding modification design of the N.S. Mutsu

    International Nuclear Information System (INIS)

    Yamaji, A.; Miyakoshi, J.; Kageyama, T.; Futamura, Y.

    1983-01-01

    Shielding modification design of the N.S. Mutsu was performed for reducing the radiation doses outside the primary and the secondary shields by providing shields for neutrons streaming through the air gap between the pressure vessel and the primary shield. This was accomplished by replacing parts of the shields and adding new shields in the upper and lower sections of both primary and secondary shields, and also replacing the thermal insulator in the gap. The shielding design calculations were made using one- and two-dimensional discrete ordinates codes and also a point kernel code. Special attention was paid to the calculations of, (1) the neutrons streaming through the gap between the pressure vessel and the primary shield, (2) the radiations transmitted through the radial shield of the core in the primary shield, (3) the radiations transmitted through the upper and lower sections of the secondary shield, and (4) the dose rate equivalent in the accommodation area. Their calculational accuracies were estimated by analyzing various experiments. To support the modification, a variety of experiments and tests were carried out, which were material tests, cooling test of the primary shield, mechanical strength test of the double bottom, trial fabrication tests of new shields, performance degradation test of heavy concrete and duct streaming experiment in the secondary shield. (author)

  3. Shielding performances analysis for the IFMIF test facility based on high-fidelity Monte Carlo neutronic calculations

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, Keitaro, E-mail: kondo.keitaro@jaea.go.jp; Arbeiter, Frederik; Fischer, Ulrich; Lu, Lei; Qiu, Yuefeng; Tian, Kuo

    2015-10-15

    Highlights: • A detailed geometry model with pipe penetrations and gaps was prepared for the IFMIF test cell. • The neutron streaming effect due to gaps and pipes with shielding plugs was investigated. • The present analysis revealed that the streaming effect can be mitigated by some counter measures. • Occupational workers can access to the room above the test cell during operation. - Abstract: The IFMIF Test Cell (TC) design was developed and optimized in the EVEDA phase, and finally the reference TC design was proposed. The present study is devoted to further investigations of open issues on the reference TC design. In order to examine the neutron streaming effect caused by pipe penetrations and gaps around removable shielding plugs, a new geometry model for neutronic analyses has been prepared directly from engineering CAD data by utilizing the McCad conversion software. All removable shielding plugs are separately described in the model and a detailed description of pipes was incorporated into the model. The calculation result suggests that the streaming effect is mitigated if the pipe penetration is designed appropriately, while the gaps around the shielding plugs above the TC have large impact on the radiation dose in the access cell. The concept of the reference TC design has been basically validated from the neutronics point of view, although the streaming effect should be compensated by the shielding capability of the test cell cover plate so that occupational workers can access to the access cell during operation.

  4. Shielding performances analysis for the IFMIF test facility based on high-fidelity Monte Carlo neutronic calculations

    International Nuclear Information System (INIS)

    Kondo, Keitaro; Arbeiter, Frederik; Fischer, Ulrich; Lu, Lei; Qiu, Yuefeng; Tian, Kuo

    2015-01-01

    Highlights: • A detailed geometry model with pipe penetrations and gaps was prepared for the IFMIF test cell. • The neutron streaming effect due to gaps and pipes with shielding plugs was investigated. • The present analysis revealed that the streaming effect can be mitigated by some counter measures. • Occupational workers can access to the room above the test cell during operation. - Abstract: The IFMIF Test Cell (TC) design was developed and optimized in the EVEDA phase, and finally the reference TC design was proposed. The present study is devoted to further investigations of open issues on the reference TC design. In order to examine the neutron streaming effect caused by pipe penetrations and gaps around removable shielding plugs, a new geometry model for neutronic analyses has been prepared directly from engineering CAD data by utilizing the McCad conversion software. All removable shielding plugs are separately described in the model and a detailed description of pipes was incorporated into the model. The calculation result suggests that the streaming effect is mitigated if the pipe penetration is designed appropriately, while the gaps around the shielding plugs above the TC have large impact on the radiation dose in the access cell. The concept of the reference TC design has been basically validated from the neutronics point of view, although the streaming effect should be compensated by the shielding capability of the test cell cover plate so that occupational workers can access to the access cell during operation.

  5. Rotating shield ceiling for the compact ignition tokamak test cell

    International Nuclear Information System (INIS)

    Commander, J.C.

    1986-01-01

    For the next phase of the United States fusion program, a compact, high-field, toroidal ignition machine with liquid nitrogen cooled copper coils, designated the Compact Ignition Tokamak (CIT), is proposed. The CIT machine will be housed in a test cell with design features developed during preconceptual design. Configured as a right cylinder, the selected test cell design features: a test cell and basement with thick concrete shielding walls, and floor; leak tight tritium seals; and operational characteristics well suited to the circular CIT machine configuration and radially oriented ancillary equipment and systems

  6. Gonadal Shielding in Radiography: A Best Practice?

    Science.gov (United States)

    Fauber, Terri L

    2016-11-01

    To investigate radiation dose to phantom testes with and without shielding. A male anthropomorphic pelvis phantom was imaged with thermoluminescent dosimeters (TLDs) placed in the right and left detector holes corresponding to the testes. Ten exposures were made of the pelvis with and without shielding. The exposed TLDs were packaged securely and mailed to the University of Wisconsin Calibration Laboratory for reading and analysis. A t test was calculated for the 2 exposure groups (no shield and shielded) and found to be significant, F = 8.306, P shield was used during pelvic imaging. Using a flat contact shield during imaging of the adult male pelvis significantly reduces radiation dose to the testes. Regardless of the contradictions in the literature on gonadal shielding, the routine practice of shielding adult male gonads during radiographic imaging of the pelvis is a best practice. © 2016 American Society of Radiologic Technologists.

  7. Investigation of water content in primary upper shield of high temperature engineering test reactor (HTTR)

    International Nuclear Information System (INIS)

    Sumita, Junya; Sawa, Kazuhiro; Mogi, Haruyoshi; Itahashi, Shuuji; Kitami, Toshiyuki; Akutu, Youichi; Fuchita, Yasuhiro; Kawaguchi, Toru; Moriya, Masahiro

    1999-09-01

    A primary upper shield of the High Temperature Engineering Test Reactor (HTTR) is composed of concrete (grout) which is packed into iron frames. The main function of the primary upper shield is to attenuate neutron and gamma ray from the core, that leads to satisfy dose equivalent rate limit of operating floor and stand-pipe room. Water content in the concrete is one of the most important things because it strongly affects neutron-shielding ability. Then, we carried out out-of-pile experiments to investigate relationship between temperature and water content in the concrete. Based on the experimental results, a hydrolysis-diffusion model was developed to investigate water release behavior from the concrete. The model showed that water content used for shielding design in the primary upper shield of the HTTR will be maintained if temperature during operating life is under 110degC. (author)

  8. Thermal Protection Test Bed Pathfinder Development Project

    Science.gov (United States)

    Snapp, Cooper

    2015-01-01

    In order to increase thermal protection capabilities for future reentry vehicles, a method to obtain relevant test data is required. Although arc jet testing can be used to obtain some data on materials, the best method to obtain these data is to actually expose them to an atmospheric reentry. The overprediction of the Orion EFT-1 flight data is an example of how the ground test to flight traceability is not fully understood. The RED-Data small reentry capsule developed by Terminal Velocity Aerospace is critical to understanding this traceability. In order to begin to utilize this technology, ES3 needs to be ready to build and integrate heat shields onto the RED-Data vehicle. Using a heritage Shuttle tile material for the heat shield will both allow valuable insight into the environment that the RED-Data vehicle can provide and give ES3 the knowledge and capability to build and integrate future heat shields for this vehicle.

  9. Shutdown dose rate analysis of European test blanket modules shields in ITER Equatorial Port #16

    Energy Technology Data Exchange (ETDEWEB)

    Juárez, Rafael, E-mail: rjuarez@ind.uned.es [Departamento de Ingeniería Energética, ETSII-UNED, Calle Juan del Rosal 12, Madrid 28040 (Spain); Sauvan, Patrick; Perez, Lucia [Departamento de Ingeniería Energética, ETSII-UNED, Calle Juan del Rosal 12, Madrid 28040 (Spain); Panayotov, Dobromir; Vallory, Joelle; Zmitko, Milan; Poitevin, Yves [Fusion for Energy (F4E), Torres Diagonal Litoral B3, Josep Pla 2, Barcelona 08019 (Spain); Sanz, Javier [Departamento de Ingeniería Energética, ETSII-UNED, Calle Juan del Rosal 12, Madrid 28040 (Spain)

    2016-11-01

    Highlights: • Nuclear analysis for European TBMs and shields, in ITER Equatorial Port #16, has been conducted in support of the ‘Concept Design Review’ from ITER. • The objective of the work is the characterization of the Shutdown Dose Rates at Equatorial Port #16 interspace. • The role played by the TBM and TBM shields, the equatorial port gaps and the vacuum vessel permeation, in terms of neutron flux transmission is assessed. • The role played by the TBM, TBM shields, Port Plug Frame, Pipe Forest and the machine in terms of activation is also investigated. - Abstract: ‘Fusion for Energy’ (F4E) is designing, developing, and implementing the European Helium-Cooled Lead-Lithium (HCLL) and Helium-Cooled Pebble-Bed (HCPB) Test Blanket Systems (TBSs) for ITER (Nuclear Facility INB-174). An essential element of the Conceptual Design Review (CDR) of these TBSs is the demonstration of capability of Test Blanket Modules (TBM) and their shields to fulfil their function and comply with the design requirements. One of the TBM shields highly relevant design aspects is the project target for shutdown dose rates (SDDR) in the interspace. We investigated two functions of the TBMs and TBM shields—the neutron flux attenuation along the shields, and the reduction of the activation of the components contributing to SDDR. It is shown that TBMs and TBM shields reduce significantly the neutron flux in the port plug (PP). In terms of neutron flux attenuation, the TBM shield provides sufficient neutron flux reduction, being responsible for 5 × 10{sup 6} n/cm{sup 2} s at port interspace, while the EPP gaps and BSM gaps are responsible for 5 × 10{sup 7} n/cm{sup 2} s each. When considering closed upper, lower and lateral neighbour equatorial ports (thus, excluding the cross-talk between ports), a SDDR of 121 μSv/h averaged near the port closure flange was obtained, out of which, only 4 μSv/h are due to the activation of TBMs and TBM shields. Maximum SDDR in the range

  10. Shielding design for testing room of large container scanner

    International Nuclear Information System (INIS)

    Liu Yisi; Miao Qitian; Zhou Liye

    1997-01-01

    Testing facility for large container scanner is a most advanced anti-smuggle tool. The X-ray scanning principle is adopted in this system. The X-ray was collimated a ted as a fan-shape beam. The accelerator only supplies the ray beam when the container is scanned. The irradiation time is less than one minute per test. The X-ray burst irradiation and highly collimated a ted scanning beam of this system is different from the common industrial irradiation accelerator. The shielding design of the 1:1 large container scanner introduced has better collimation level because of tri-collimation. The irradiation dose is less than 150 μGy per test, which is obviously lower than importations

  11. Shielding wall for thermonuclear device

    International Nuclear Information System (INIS)

    Uchida, Takaho.

    1989-01-01

    This invention concerns shielding walls opposing to plasmas of a thermonuclear device and it is an object thereof to conduct reactor operation with no troubles even if a portion of shielding wall tiles should be damaged. That is, the shielding wall tiles are constituted as a dual layer structure in which the lower base tiles are connected by means of bolts to first walls. Further, the upper surface tiles are bolt-connected to the layer base tiles. In this structure, the plasma thermal loads are directly received by the surface layer tiles and heat is conducted by means of conduction and radiation to the underlying base tiles and the first walls. Even upon occurrence of destruction accidents to the surface layer tiles caused by incident heat or electromagnetic force upon elimination of plasmas, since the underlying base tiles remain as they are, the first walls constituted with stainless steels, etc. are not directly exposed to the plasmas. Accordingly, the integrity of the first walls having cooling channels can be maintained and sputtering intrusion of atoms of high atom number into the plasmas can be prevented. (I.S.)

  12. Radiation shielding

    International Nuclear Information System (INIS)

    Yue, D.D.

    1979-01-01

    Details are given of a cylindrical electric penetration assembly for carrying instrumentation leads, used in monitoring the performance of a nuclear reactor, through the containment wall of the reactor. Effective yet economical shielding protection against both fast neutron and high-energy gamma radiation is provided. Adequate spacing within the assembly allows excessive heat to be efficiently dissipated and means of monitoring all potential radiation and gas leakage paths are provided. (UK)

  13. Radiation shielding lead shield

    International Nuclear Information System (INIS)

    Dei, Shoichi.

    1991-01-01

    The present invention concerns lead shields for radiation shielding. Shield boxes are disposed so as to surround a pipeline through which radioactive liquids, mists or like other objects are passed. Flanges are formed to each of the end edges of the shield boxes and the shield boxes are connected to each other by the flanges. Upon installation, empty shield boxes not charged with lead particles and iron plate shields are secured at first at the periphery of the pipeline. Then, lead particles are charged into the shield boxes. This attains a state as if lead plate corresponding to the depth of the box is disposed. Accordingly, operations for installation, dismantling and restoration can be conducted in an empty state with reduced weight to facilitate the operations. (I.S.)

  14. Layer-splitting technique for testing the recursive scheme for multilayer shields gamma ray buildup factors

    International Nuclear Information System (INIS)

    Alkhatib, Sari F.; Park, Chang Je; Jeong, Hae Yong; Lee, Yongdeok

    2016-01-01

    Highlights: • A simple formalism is suggested for the recursive approach and then it is used to produce buildup factors for certain multilayer shields. • The newly layer-splitting technique is implemented on the studied cases for testing the suggested formalism performance. • The buildup factors are generated using cubic polynomial fitting functions that are produced based on previous well-acknowledge data. - Abstract: This study illustrates the implementation of the newly suggested layer-splitting testing technique. This technique is introduced in order to be implemented in examining suggested formalisms for the recursive scheme (or iterative scheme). The recursive scheme is a concept used in treating and producing the gamma ray buildup factors in the case of multilayer shields. The layer-splitting technique simply enforces the scheme to treat a single layer of one material as two separated layers with similar characteristics. Thus it subjects the scheme to an abnormal definition of the multilayer shield that will test its performance in treating the successive layers. Thus, it will act as a method of verification for the approximations and assumptions taken in consideration. A simple formalism was suggested for the recursive scheme then the splitting technique was implemented on it. The results of implementing both the suggested formalism and the splitting technique are then illustrated and discussed. Throughout this study, cubic polynomial fitting functions were used to generate the data of buildup factors for the basic single-media that constitute the multilayer shields understudy. This study is limited to the cases of multiple shields consisting of repeated consecutive thin layers of lead–water and iron–water shields for 1 MeV gamma rays. The produced results of the buildup factor values through the implementation of the suggested formalism showed good consistency with the Monte Carlo simulation results of Lin and Jiang work. In the implementation of

  15. Heat flow and heat generation in greenstone belts

    Science.gov (United States)

    Drury, M. J.

    1986-01-01

    Heat flow has been measured in Precambrian shields in both greenstone belts and crystalline terrains. Values are generally low, reflecting the great age and tectonic stability of the shields; they range typically between 30 and 50 mW/sq m, although extreme values of 18 and 79 mW/sq m have been reported. For large areas of the Earth's surface that are assumed to have been subjected to a common thermotectonic event, plots of heat flow against heat generation appear to be linear, although there may be considerable scatter in the data. The relationship is expressed as: Q = Q sub o + D A sub o in which Q is the observed heat flow, A sub o is the measured heat generation at the surface, Q sub o is the reduced heat flow from the lower crust and mantle, and D, which has the dimension of length, represents a scale depth for the distribution of radiogenic elements. Most authors have not used data from greenstone belts in attempting to define the relationship within shields, considering them unrepresentative and preferring to use data from relatively homogeneous crystalline rocks. A discussion follows.

  16. Jet Noise Shielding Provided by a Hybrid Wing Body Aircraft

    Science.gov (United States)

    Doty, Michael J.; Brooks, Thomas F.; Burley, Casey L.; Bahr, Christopher J.; Pope, Dennis S.

    2014-01-01

    One approach toward achieving NASA's aggressive N+2 noise goal of 42 EPNdB cumulative margin below Stage 4 is through the use of novel vehicle configurations like the Hybrid Wing Body (HWB). Jet noise measurements from an HWB acoustic test in NASA Langley's 14- by 22-Foot Subsonic Tunnel are described. Two dual-stream, heated Compact Jet Engine Simulator (CJES) units are mounted underneath the inverted HWB model on a traversable support to permit measurement of varying levels of shielding provided by the fuselage. Both an axisymmetric and low noise chevron nozzle set are investigated in the context of shielding. The unshielded chevron nozzle set shows 1 to 2 dB of source noise reduction (relative to the unshielded axisymmetric nozzle set) with some penalties at higher frequencies. Shielding of the axisymmetric nozzles shows up to 6.5 dB of reduction at high frequency. The combination of shielding and low noise chevrons shows benefits beyond the expected additive benefits of the two, up to 10 dB, due to the effective migration of the jet source peak noise location upstream for increased shielding effectiveness. Jet noise source maps from phased array results processed with the Deconvolution Approach for the Mapping of Acoustic Sources (DAMAS) algorithm reinforce these observations.

  17. Needle-Bonded Electromagnetic Shielding Thermally Insulating Nonwoven Composite Boards: Property Evaluations

    Directory of Open Access Journals (Sweden)

    Jia-Horng Lin

    2016-10-01

    Full Text Available Complicated environmental problems inevitably arise when technology advances. One major environmental problem is the presence of electromagnetic radiation. Long-term exposure to electromagnetic radiation can damage people’s health in many ways. Therefore, this study proposes producing composite boards with electromagnetic shielding effectiveness and thermal insulation by utilizing the structures and properties of materials. Different combinations of flame-retardant polyester fiber (FR fiber, recycled far-infrared polyester fiber (FI fiber, and 4D low-melting-point fibers (LM fiber were made into flame-retardant and thermally insulating matrices. The matrices and carbon fiber (CF woven fabric in a sandwich-structure were needle-punched in order to be tightly compact, and then circularly heat dried in order to have a heat set and reinforced structure. The test results indicate that Polyester (PET/CF composite boards are mechanically strong and have thermal insulation and electromagnetic shielding effectiveness at a frequency between 0.6 MHz and 3 GHz.

  18. Study of temperature effect on the physical properties of ilmenite-serpentine heat resistant concrete radiation shields

    International Nuclear Information System (INIS)

    Kany, A.M.I.; EL-Fouly, M.M.; EL-Gohary, M.I.; Makatious, A.S.; Kamal, S.M.

    1990-01-01

    A series of experimental studies have been carried out to determine the change in unit weigh, compressive strength, water content and neutron macroscopic cross section of a new type of concrete shields made from egyptian ilmenite and serpentine ores when heated for long period at temperatures up to 600 degree C. Results show that the unit weight of the cure concrete has a value of 2.98 Ton/M 3 and decreases with increasing temperature, while the compressive strength reaches a maximum value of 19 Ton/M 2 at 100 degree C. The differential thermal analysis (D.T.A.) of this concrete shows three endothermic peaks at 100 degree C, 48 degree C and 740 degree C. Also, the thermogravimetry analysis (T.G.A.) shows that the cure concrete retains about 11% water content of the total sample weigh and still retains 4.5% of its initial value when heated for long period at 600 degree C. Results also show that the neutron macroscopic cross section (for neutrons of energies < 1 MeV) of the ilmenite-serpentine heat resistant concrete decreases to 18.6% of its initial value after heating to 600 degree C

  19. Shielding effectiveness of superconductive particles in plastics

    International Nuclear Information System (INIS)

    Pienkowski, T.; Kincaid, J.; Lanagan, M.T.; Poeppel, R.B.; Dusek, J.T.; Shi, D.; Goretta, K.C.

    1988-09-01

    The ability to cool superconductors with liquid nitrogen instead of liquid helium has opened the door to a wide range of research. The well known Meissner effect, which states superconductors are perfectly diamagnetic, suggests shielding applications. One of the drawbacks to the new ceramic superconductors is the brittleness of the finished material. Because of this drawback, any application which required flexibility (e.g., wire and cable) would be impractical. Therefore, this paper presents the results of a preliminary investigation into the shielding effectiveness of YBa 2 Cu 3 O/sub 7-x/ both as a composite and as a monolithic material. Shielding effectiveness was measured using two separate test methods. One tested the magnetic (near field) shielding, and the other tested the electromagnetic (far field) shielding. No shielding was seen in the near field measurements on the composite samples, and only one heavily loaded sample showed some shielding in the far field. The monolithic samples showed a large amount of magnetic shielding. 5 refs., 5 figs

  20. Grimsel Test Site: heat test, final report

    International Nuclear Information System (INIS)

    Schneefuss, J.; Glaess, F.; Gommlich, G.; Schmidt, M.

    1989-05-01

    The Swiss concept for the storage of radioactive waste consists in placing it in compact, dense rock formations. An experiment 'Heat Test' carried out by the 'Gesellschaft fuer Strahlen- und Umweltforschung' in Nagra's Grimsel rock laboratory simulated the heat production of stored radioactive waste. The aim was to evaluate processes for the demonstration of the suitability of a final repository for heat-producing radioactive waste in cristalline rock, to investigate the thermic, mechanic and hydraulic reactions to an artificial heat source, and to develop corresponding calculating models. The duration of the tests was about 3 years. In this report the measured thermic, mechanic and hydraulic reactions are documented and discussed in detail. A simple, rotation symmetrical FEM-model was used for the preparatory and experiment-accompanying modelling of the thermomechanical conditions in the heat test. The test showed that suitable measuring methods for the surveillance of the geomechanics of a final repository are available and that the reactions of the crystalline host rock to the heat source remain locally limited and can be modelled with relatively small effort. 29 refs., 33 figs., 10 tabs

  1. Design, fabrication, and properties of a continuous carbon-fiber reinforced Sm_2O_3/polyimide gamma ray/neutron shielding material

    International Nuclear Information System (INIS)

    Wang, Peng; Tang, Xiaobin; Chai, Hao; Chen, Da; Qiu, Yunlong

    2015-01-01

    Highlights: • Sm_2O_3 is used for neutron absorber instead of B_4C, and Sm_2O_3 has a good photon-shielding effect. • Carbon-fiber cloth and polyimide were used to enhance shielding materials’ mechanical behavior and thermal behavior. • Both Monte Carlo method and shielding test were used to evaluate shielding performance of the novel shielding material. - Abstract: The design and fabrication of shielding materials with good heat-resistance and mechanical properties is a major problem in the radiation shielding field. In this paper, based on gamma ray and neutron shielding theory, a continuous carbon-fiber reinforced Sm_2O_3/polyimide gamma ray/neutron shielding material was fabricated by hot-pressing method. The material's application behavior was subsequently evaluated using neutron shielding, photon shielding, mechanical tensile, and thermogravimetric analysis–differential scanning calorimetry tests. The results show that the tensile strength of the novel shielding material exceeds 200 MPa, which makes it of similar strength to aluminum alloy. The material does not undergo crosslinking and decomposition reactions at 300 °C and it can be used in such environments for long periods of time. The continuous carbon-fiber reinforced Sm_2O_3/polyimide material has a good shielding performance with respect to gamma rays and neutrons. The material thus has good prospects for use in fusion reactor system and nuclear waste disposal applications.

  2. Shielding modification and safety review on the nuclear ship 'Mutsu'

    International Nuclear Information System (INIS)

    Osanai, Masao

    1978-01-01

    The Japan Atomic Energy Commission (JAEC) called on the Japan Nuclear Ship Development Agency (JNSDA) for shielding modification and safety review on the nuclear ship ''Mutsu'', and JNSDA has conducted the research and development (R and D) to meet the request of JAEC for the above two items. Concerning the shield modification, the following matters are described: the study on the cause of radiation leakage which was concluded to the fast neutron streaming, the conceptual design for this modification, the mock up experiment for shielding utilizing JRR-4, the basic design following on the conceptual design, including the detailed drawings of the modified construction and the shielding analysis using RADHEAT-V3 code, and the relating experiments such as the heat transfer test of the primary shielding structure and the test of strength in stranding. As for the safety review, the survey of the troubles and the technical problems having been experienced in the light water reactor plants of land use, for example, fuel integrity, stress corrosion cracking and the leakage of steam generator tubes, the revision of the design so as to adapt to current safety standards and regulations, for example, in-service inspection, the setting of additional leak detectors in the primary cooling system, the modification of emergeney filters, etc., and the review of the design and construction corresponding to recent R and D works, such as re-evaluation of the core design, cooling capability of natural circulation, thermal stress analysis of main pipings, and the evaluation of ECCS performance are presented . (Nakai, Y.)

  3. Radiation safety aspects during nondestructive testing of reactor shielding components by gamma radiometry

    International Nuclear Information System (INIS)

    Viswanathan, S.; Jose, M.T.; Venkatraman, B.

    2016-01-01

    In nuclear facilities, effective shielding of radioactive components and structures are essential to ensure radiation protection to operating personnel. The shield structures are made of lead, steel and concrete with varying thickness of up to 1200 mm. It needs to be verified for shielding integrity, presence of voids, blowholes and defects to avoid exposure to workers and to public at large. Radiometry using gamma source serves as excellent tool for non-destructive examination of such structures and components. Gamma sources of high activity up to 50 Curies (gamma camera type) depending on the thickness of component have to be used. During the testing exposure to the operating personnel needs to be minimized, this requires certain safety procedures to be followed. This paper focuses the methodology to be adapted by means of selection of source, effective training of personnel, compliance with safety requirements and maintenance of source devices

  4. Primary shield displacement and bowing

    International Nuclear Information System (INIS)

    Scott, K.V.

    1978-01-01

    The reactor primary shield is constructed of high density concrete and surrounds the reactor core. The inlet, outlet and side primary shields were constructed in-place using 2.54 cm (1 in) thick steel plates as the forms. The plates remained as an integral part of the shields. The elongation of the pressure tubes due to thermal expansion and pressurization is not moving through the inlet nozzle hardware as designed but is accommodated by outward displacement and bowing of the inlet and outlet shields. Excessive distortion of the shields may result in gas seal failures, intolerable helium gas leaks, increased argon-41 emissions, and shield cooling tube failures. The shield surveillance and testing results are presented

  5. Transient shielded liquid hydrogen containers

    International Nuclear Information System (INIS)

    Varghese, A.P.; Herring, R.H.

    1990-01-01

    The storage of hydrogen in the liquid phase has been limited in duration due to the thermal performance constraints of conventional Liquid Hydrogen containers available. Conventional Liquid Hydrogen containers lose hydrogen because of their relatively high heat leak and variations in usage pattern of hydrogen due to shutdowns. Local regulations also discourage venting of hydrogen. Long term storage of Liquid Hydrogen without product loss was usually accomplished using Liquid Nitrogen sacrificial shields. This paper reports on a new low heat leak container developed and patented that will extend the storage time of liquid hydrogen by five hundred percent. The principle of operation of the Transient Shields which makes the extraordinary performance of this container feasible is described in this paper. Also covered are the impact of this new container on present applications of hydrogen and the new opportunities afforded to Liquid hydrogen in the world hydrogen market

  6. Development of a bellows assembly with RF-shield for KEKB II: abrasion and pumping down tests

    International Nuclear Information System (INIS)

    Suetsugu, Yusuke; Kanazawa, Ken-ichi; Kawahara, Masaharu; Harada, Yosuke; Kaneko, Motosada

    1997-01-01

    A bellows assembly with RF-shield as been designed and developed for the KEK B-factory (KEKB). The RF-shield is a usual finger-type but has special spring-fingers to press contact-fingers (shield-fingers) surely onto inner tube (beam tube). In a chain of design studies an abrasion test of the contact-fingers was performed in vacuum. A quantity of generated metal particles was estimated and expected to have little harm on the beam lifetime if the inner tube is coated with silver. The gas desorption rate and the residual gas components of the bellows assembly were also measured as a final bench test. The gas desorption rate of 1 - 1.5x10 -10 Pa·l/s/cm 2 was obtained after a bake at 150degC for 24 hours. (author)

  7. An assessment of the lifetime of Faraday shield elements

    International Nuclear Information System (INIS)

    Caughman, J.B.O. II; Ruzic, D.N.; Hoffman, D.J.; Langley, R.A.; Lewis, M.B.; Ryan, P.M.

    1990-01-01

    The interaction of plasma with rf fields from an ion cyclotron range of frequencies (ICRF) antenna has been studied to estimate the amount of Faraday shield erosion expected in normal ICRF heating operation. Plasma parameters and ion energies have been measured in the near field of an antenna and used in a model to estimate the erosion rate of the Faraday shield surface. Experiments were conducted on the RF Test Facility, a magnetic mirror device at Oak Ridge National Laboratory, using a single-strap resonant loop antenna with a two-tier Faraday shield. The outer tier, facing the plasma, was layered with graphite tiles. The antenna was operated at currents and voltages within 50% of those expected in tokamaks. The time-varying floating potential was measured with a capacitively coupled probe, and the time-averaged floating potential, electron temperature, and electron density were measured with a Langmuir probe. Ion energies were measured with a gridded energy analyser located below the antenna, and samples of silicon were placed on the Faraday shield surface to estimate the incident ion energy. The capacitive probe measurements show that the rf floating potential follows the magnetic field pattern of the antenna, indicating that the electromagnetic fields are responsible for the potential formation. Plasma parameters and ion energies have been correlated with the antenna current and used in a computational model of the plasma sheath to predict the amount of erosion expected from the Faraday shield elements exposed to plasma. Predictions of light ion sputtering of candidate Faraday shield materials are presented

  8. Nuclear Rocket Test Facility Decommissioning Including Controlled Explosive Demolition of a Neutron-Activated Shield Wall

    International Nuclear Information System (INIS)

    Michael Kruzic

    2007-01-01

    Located in Area 25 of the Nevada Test Site, the Test Cell A Facility was used in the 1960s for the testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program. The facility was decontaminated and decommissioned (D and D) in 2005 using the Streamlined Approach For Environmental Restoration (SAFER) process, under the Federal Facilities Agreement and Consent Order (FFACO). Utilities and process piping were verified void of contents, hazardous materials were removed, concrete with removable contamination decontaminated, large sections mechanically demolished, and the remaining five-foot, five-inch thick radiologically-activated reinforced concrete shield wall demolished using open-air controlled explosive demolition (CED). CED of the shield wall was closely monitored and resulted in no radiological exposure or atmospheric release

  9. I2S-LWR Activation Analysis of Heat Exchangers Using Hybrid Shielding Methodology with SCALE6.1

    International Nuclear Information System (INIS)

    Matijevic, M.; Pevec, D.; Jecmenica, R.

    2016-01-01

    The Integral Inherently Safe Light Water Reactor (I2S-LWR) concept developed by Georgia Tech is a novel PWR reactor delivering electric power of 1000 MWe while implementing inherent safety features typical for Generation III+ small modular reactors. The main safety feature is based on integral primary circuit configuration, bringing together compact design of the reactor core with 121 fuel assembly (FA), control rod drive mechanism (CRDM), 8 primary heat exchangers (PHE), 4 passive decay heat removal systems (DHRS), 8 pumps, and other integral components. A high power density core based on silicide fuel is selected to achieve a high thermal power which is extracted with PHEs placed in the annual region between the barrel and the vessel. The complex and integrated design of I2S-LWR leads to activation of integral components, mainly made from stainless steel, so accurate and precise Monte Carlo (MC) simulations are needed to quantify potential dose rates to personnel during routine maintenance operation. This shielding problem is therefore very challenging one, posing a non-trivial neutron flux solution in a phase space. This paper presents the performance of the hybrid shielding methodologies CADIS/FW-CADIS implemented in the MAVRIC sequence of the SCALE6.1 code package. The main objective was to develop a detailed MC shielding model of the I2S-LWR reactor along with effective variance reduction (VR) parameters and to calculate neutron fluence rates inside PHEs. Such results are then utilized to find neutron activation rate distribution via 60Co generation inside of a stack of microchannel heat exchangers (MCHX), which will be periodically withdrawn for the maintenance. 59Co impurities are the main cause of (n,gamma) radiative gamma dose to personnel via neutron activation since 60Co has half-life of 5.27 years and is emitting high energy gamma rays (1.17 MeV and 1.33 MeV). The developed MC model was successfully used to find converged fluxes inside all 8 stacks of

  10. Investigation of effect of post weld heat treatment conditions on residual stress for ITER blanket shield blocks

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Hun-Chea, E-mail: hcjung@nfri.re.kr [ITER Korea, National Fusion Research Institute, Daejeon (Korea, Republic of); Kim, Sa-Woong [ITER Korea, National Fusion Research Institute, Daejeon (Korea, Republic of); Lee, Yun-Hee [Division of Convergence Technology, Korea Research Institute of Standard and Science (KRISS), Daejeon (Korea, Republic of); Baek, Seung-Wook [Division of Industrial Metrology, Korea Research Institute of Standard and Science (KRISS), Daejeon (Korea, Republic of); Ha, Min-Su; Shim, Hee-Jin [ITER Korea, National Fusion Research Institute, Daejeon (Korea, Republic of)

    2016-11-01

    Highlights: • PWHT for ITER blanket shield block should be performed for dimensional stability. • Investigation of the effect of PWHT conditions on properties was performed. • Instrumented indentation method for evaluation of properties was used. • Residual stress and hardness decreased with increasing PWHT temperature. • Optimization of PWHT conditions would be needed for satisfaction of requirement. - Abstract: The blanket shield block (SB) shall be required the tight tolerance because SB interfaces with many components, such as flexible support keypads, First Wall (FW) support contact surfaces, FW central bolt, electrical strap contact surfaces and attachment inserts for both FW and Vacuum Vessel (VV). In order to fulfil the tight tolerance requirement, stress relieving shall be performed for dimensional stability after cover welding operation. In this paper, effect of Post Weld Heat Treatment (PWHT) conditions, temperature and holding time, was investigated on the residual stress and hardness. The 316L Stainless Steel (SS) was prepared and welded by manual TIG welding by using filler material with 2.4 mm of diameter. Welded 316L SS plate was machined to prepare the specimen for PWHT. PWHT was implemented at 250, 300, 400 °C for 2 and 3 h (400 °C only) and residual stress after relaxation were determined. The evaluation of residual stress and hardness for each specimen was carried out by instrumented indentation technique. The residual stress and hardness were decreased with increasing the heat treatment temperature and holding time.

  11. MFTF-α + T shield design

    International Nuclear Information System (INIS)

    Gohar, Y.

    1985-01-01

    MFTF-α+T is a DT upgrade option of the Tandem Mirror Fusion Test Facility (MFTF-B) to study better plasma performance, and test tritium breeding blankets in an actual fusion reactor environment. The central cell insert, designated DT axicell, has a 2-MW/m 2 neutron wall loading at the first wall for blanket testing. This upgrade is completely shielded to protect the reactor components, the workers, and the general public from the radiation environment during operation and after shutdown. The shield design for this upgrade is the subject of this paper including the design criteria and the tradeoff studies to reduce the shield cost

  12. Modification of heating system on HeaTiNG-02 test section of beta test loop

    International Nuclear Information System (INIS)

    Sagino; Dedy Haryanto; Riswan Djambiar; Edy Sumarno

    2013-01-01

    Modifications have been carried out on the heating test section heating-02 on the integration strand Beta Test (UUB). The activities carried out to overcome the obstacles that arise in the test section when used. Constraint that often arises is the fall of the heating source super chantal when it reaches a certain temperature. To mitigate the super chantal is initially converted into a horizontal vertical position. Change from vertical to horizontal position on super chantal aims to stabilize the position of super chantal, so it needs to be modified in the heating system. Modification activities include manufacturing, installation and testing of super chantal and refractory stone as super chantal support. Manufacturing refractory stone formation and assembly into the heater in accordance with design modifications that have been done in electromechanical workshop obtained using some machine tools. Testing results of fabrication has been done by providing voltage 110 volts until it reaches operating temperature 400°C. Test results obtained super chantal stable position when it reaches operating temperature, and heater of heating-02 test section feasible to be used for experiments. (author)

  13. Thermal shielding device in LMFBR type reactors

    International Nuclear Information System (INIS)

    Nakamura, Hiroshi.

    1985-01-01

    Purpose: To improve the soundness and earthquake proofness of mounting structures to a reactor vessel in a thermal shielding device comprising a plurality of tightly closed casings evacuated or shield with heat insulation gases, by reducing the wall thickness and weight of the casing. Constitution: the thermal shielding body comprises tightly closed casings and compressing core materials for preventing the deformation of the casings. The tightly closed casing is in the shape of a hollow vessel, completely sealed in gastight manner, and evacuated or sealed with heat insulation gases at a low pressure of about less than 0.5 kg/cm 2 G, such that the inner pressure is lower than the outer pressure. Compressing core materials made of porous metals or porous ceramics are contained to the inside of the casing. In this way, the wall thickness of the tightly closed casing can be reduced significantly as compared with the conventional case, whereby the mounting work on the site to the reactor container on the field can remarkably be improved and high reliability can be maintained at the mounting portion. (Kamimura, M.)

  14. Evaporation and Vapor Shielding of CFC Targets Exposed to Plasma Heat Fluxes Relevant to ITER ELMs

    International Nuclear Information System (INIS)

    Safronov, V.; Arkhipov, N.I.; Toporkov, D.A.; Zhitlukhin, A.M.; Landman, I.

    2007-01-01

    Full text of publication follows: Carbon-fibre composite (CFC) is foreseen presently as armour material for the divertor target in ITER. During the transient processes such as instabilities of Edge Localized Modes (ELMs) the target as anticipated will be exposed to the plasma heat loads of a few MJ/m 2 on the time scale of a fraction of ms, which causes an intense evaporation at the target surface and contaminates tokamak plasma by evaporated carbon. The ITER transient loads are not achievable at existing tokamaks therefore for testing divertor armour materials other facilities, in particular plasma guns are employed. In the present work the CFC targets have been tested for ITER at the plasma gun facility MK- 200 UG in Troitsk by ELM relevant heat fluxes. The targets in the applied magnetic field up to 2 T were irradiated by hydrogen plasma streams of diameter 6 - 8 cm, impact ion energy 2 - 3 keV, pulse duration 0.05 ms and energy density varying in the range 0.05 - 1 MJ/m 2 . Primary attention has been focused on the measurement of evaporation threshold and investigation of carbon vapor properties. Fast infrared pyrometer, optical and VUV spectrometers, framing cameras and plasma calorimeters were applied as diagnostics. The paper reports the results obtained on the evaporation threshold of CFC, the evaporation rate of the carbon fibers oriented parallel and perpendicular to the exposed target surface, the velocity of carbon vapor motion along and across the magnetic field lines, and the parameters of carbon plasma such as temperature, density and ionization state measured up to the distance 15 cm at varying plasma load. First experimental results on investigation of the vapor shield onset conditions are presented also. (authors)

  15. Castor-V/21 PWR spent fuel storage cask performance test

    International Nuclear Information System (INIS)

    Creer, J.M.; Schoonen, D.H.

    1986-01-01

    Performance testing of a CASTOR-V/21 PWR spent fuel storage cask manufactured by Gesellschaft fur Nuklear Service (GNS) was performed as part of a cooperative program between Virginia Power and the US Department of Energy. The performance test consisted of obtaining cask handling experience and heat transfer, shielding, and limited fuel integrity data. Five heat transfer test runs were performed with 21 Surry reactor spent fuel assemblies generating approximately 28 kW. Test runs were performed vacuum, nitrogen, and helium backfill environments with the cask in both vertical and horizontal orientations. Cask exterior surface gamma and neutron dose rates were measured with the cask fully loaded. Gas samples were obtained at the beginning and end of each run with nitrogen or helium environments to verify fuel integrity. The heat transfer performance of the CASTOR-V/21 cask was exceptionally good. Peak clad temperatures with helium and nitrogen environments with the cask in a vertical orientation and with helium with the cask in a horizontal orientation were less than 380 0 C. Vertical vacuum and horizontal nitrogen test runs resulted in peak clad temperatures over 380 0 , but the temperatures were not excessively high ( 0 C). The shielding performance of the cask met the design goal of less than 200 mrem/hr. Cask surface dose rates of <75 mrem/hr can easily be established with minor gamma shielding design refinements if desired. Gas samples obtained during testing indicated no leaking fuel rods were present in the cask. It was concluded that the cask performed satisfactorily from heat transfer and shielding perspectives

  16. Thermal design of top shield

    International Nuclear Information System (INIS)

    Raghupathy, S.; Velusamy, K.; Parthasarathy, U.; Ghosh, D.; Selvaraj, P.; Chellapandi, P.; Chetal, S.C.

    2005-01-01

    insulation to achieve a temperature of 423 K at the MV-RS junction and an average heat flux of 200 W/m 2 to the reactor vault. The heat transfer through cover gas has been verified experimentally in a test rig. The heat transfer coefficient for jet cooling has also been verified experimentally. Experimental verification of the flow distribution within TS is planned. In this paper, the detailed thermal design and analysis carried out for top shield covering all the aspects indicated above is discussed. (authors)

  17. Comparison of heat-testing methodology.

    Science.gov (United States)

    Bierma, Mark M; McClanahan, Scott; Baisden, Michael K; Bowles, Walter R

    2012-08-01

    Patients with irreversible pulpitis occasionally present with a chief complaint of sensitivity to heat. To appropriately diagnose the offending tooth, a variety of techniques have been developed to reproduce this chief complaint. Such techniques cause temperature increases that are potentially damaging to the pulp. Newer electronic instruments control the temperature of a heat-testing tip that is placed directly against a tooth. The aim of this study was to determine which method produced the most consistent and safe temperature increase within the pulp. This consistency facilitates the clinician's ability to differentiate between a normal pulp and irreversible pulpitis. Four operators applied the following methods to each of 4 extracted maxillary premolars (for a total of 16 trials per method): heated gutta-percha, heated ball burnisher, hot water, and a System B unit or Elements unit with a heat-testing tip. Each test was performed for 60 seconds, and the temperatures were recorded via a thermocouple in the pulp chamber. Analysis of the data was performed by using the intraclass correlation coefficient. The least consistent warming was found with hot water. The heat-testing tip also demonstrated greater consistency between operators compared with the other methods. Hot water and the heated ball burnisher caused temperature increases high enough to damage pulp tissue. The Elements unit with a heat-testing tip provides the most consistent warming of the dental pulp. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  18. Transient heat pipe investigations for space power systems

    International Nuclear Information System (INIS)

    Merrigan, M.A.; Keddy, E.S.; Sena, J.T.

    1985-01-01

    A 4-meter long, high temperature, high power, molybdenum-lithium heat pipe has been fabricated and tested in transient and steady state operation at temperatures to 1500 K. Maximum power throughput during the tests was approximately 37 kW/cm 2 for the 1.4 cm diameter vapor space of the annular wick heat pipe. The evaporator flux density for the tests was 150.0 W/cm 2 over a length of 40 cm. Condenser length was approximately 3.0 m with radiant heat rejection from the condenser to a coaxial, water cooled radiation calorimeter. A variable radiation shield, controllable from the outside of the vacuum enclosure, was used to vary the load on the heat pipe during the tests. 1 ref., 9 figs

  19. Study on Load-displacement Test of Rubber Pads of Coal Mine Roadway Constructed by Shield

    Science.gov (United States)

    Yang, Yue; Chen, Xiaoguo; Yang, Liyun

    2017-12-01

    Shield method construction of coal mine roadway is the future trend of the development of deep coal mining. The main shaft supporting is the segment. There is rubber pads between segment and segment. The performance of compression deformation of rubber pad is essential for the overall stability of lining. Through load test, displacement of the rubber pad under load, the thrust force law of the rubber pad deformation, and provide a theoretical basis for the stability analysis of coal mine tunnel shield construction.

  20. Design heating test section HeaTiNG-02

    International Nuclear Information System (INIS)

    Riswan Djambiar; Sagino; Dedy Haryanto; Joko Prasetio Witoko

    2013-01-01

    HeaTiNG-02 is a component test loop BETA which serves as a heater in conducting experimental heat transfer processes in two-phase flow in narrow slit-shaped plate, considering this phenomenon is one of the conditions postulated accident scenarios a NPP type PWR. To produce heat for the heating component takes the AC power the source voltage can be set from 0 Volts to 220 Volts with no more than a maximum power of 25 KVA. To obtain the thermal conditions on HeaTiNG-02 heating wire dimensions need to be determined and the corresponding voltage so that it will an expected power. Determination of the dimensions of the heater wire through calculations using electricity formulations. Retrieved draft heater test BETA (UUB) HeaTiNG-02 use material super kanthal (FeCuAl) in diameter (Ø) = 2 mm and wire length 3770 mm. Voltage regulators with a maximum power of 25 kVA with a minimum voltage of 0 volts and a maximum of 220 volts. Heater is used as the base to form refractory stone trench. (author)

  1. Radiation Resistance Test of Wireless Sensor Node and the Radiation Shielding Calculation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Liqan; Sur, Bhaskar [Atomic Energy of Canada Limited, Ontario (Canada); Wang, Quan [University of Western Ontario, Ontario (Canada); Deng, Changjian [The University of Electronic Science and Technology, Chengdu (China); Chen, Dongyi; Jiang, Jin [Applied Physics Branch, Ontario (Korea, Republic of)

    2014-08-15

    A wireless sensor network (WSN) is being developed for nuclear power plants. Amongst others, ionizing radiation resistance is one essential requirement for WSN to be successful. This paper documents the work done in Chalk River Laboratories of Atomic Energy of Canada Limited (AECL) to test the resistance to neutron and gamma radiation of some WSN nodes. The recorded dose limit that the nodes can withstand before being damaged by the radiation is compared with the radiation environment inside a typical CANDU (CANada Deuterium Uranium) power plant reactor building. Shielding effects of polyethylene, cadmium and lead to neutron and gamma radiations are also analyzed using MCNP simulation. The shielding calculation can be a reference for the node case design when high dose rate or accidental condition (like Fukushima) is to be considered.

  2. Space Environmental Testing of the Electrodynamic Dust Shield Technology

    Science.gov (United States)

    Calle, Carlos I.; Mackey, P. J.; Hogue, M. D.; Johansen, M .R.; Yim, H.; Delaune, P. B.; Clements, J. S.

    2013-01-01

    NASA's exploration missions to Mars and the moon may be jeopardized by dust that will adhere to surfaces of (a) Optical systems, viewports and solar panels, (b) Thermal radiators, (c) Instrumentation, and (d) Spacesuits. We have developed an active dust mitigation technology, the Electrodynamic Dust Shield, a multilayer coating that can remove dust and also prevents its accumulation Extensive testing in simulated laboratory environments and on a reduced gravity flight shows that high dust removal performance can be achieved Long duration exposure to the space environment as part of the MISSE-X payload will validate the technology for lunar missions.

  3. Shield design for the Fusion Materials Irradiation Test facility

    International Nuclear Information System (INIS)

    Carter, L.L.; Mann, F.M.; Morford, R.J.; Wilcox, A.D.; Johnson, D.L.; Huang, S.T.

    1983-03-01

    The shield design for the Fusion Materials Irradiation Test facility is based upon one-, two- and three-dimensional transport calculations with experimental measurements utilized to refine the nuclear data including the neutron cross sections from 20 to 50 MeV and the gamma ray and neutron source terms. The high energy neutrons and deuterons produce activation products from the numerous reactions that are kinematically allowed. The analyses for both beam-on and beam-off (from the activation products) conditions have required extensive nuclear data libraries and the utilization of Monte Carlo, discrete ordinates, point kernel and auxiliary computer codes

  4. Normalizing effect on fatigue crack propagation at the heat-affected zone of AISI 4140 steel shielded metal arc weldings

    Directory of Open Access Journals (Sweden)

    B. Vargas-Arista

    2013-01-01

    Full Text Available The fractography and mechanical behaviour of fatigue crack propagation in the heat-affected zone (HAZ of AISI 4140 steel welded using the shielded metal arc process was analysed. Different austenitic grain size was obtained by normalizing performed at 1200 °C for 5 and 10 hours after welding. Three point bending fatigue tests on pre-cracked specimens along the HAZ revealed that coarse grains promoted an increase in fatigue crack growth rate, hence causing a reduction in both fracture toughness and critical crack length, and a transgranular brittle final fracture with an area fraction of dimple zones connecting cleavage facets. A fractographic analysis proved that as the normalizing time increased the crack length decreased. The increase in the river patterns on the fatigue crack propagation in zone II was also evidenced and final brittle fracture because of transgranular quasicleavage was observed. Larger grains induced a deterioration of the fatigue resistance of the HAZ.

  5. Pilot tests for dismantling by blasting of the biological shield of a shut down nuclear power station

    International Nuclear Information System (INIS)

    Freund, H.U.

    1995-01-01

    Following free-field tests on concrete blocks the feasibility of explosive dismantling of the biological shield of nuclear power stations has been succesfully tested at the former hotsteam reaction in Karlstein/Main Germany. For this purpose a model shield of scale 1:2 was embedded into the reactor structure at which bore-hole blasting tests employing up to about 15 kg of explosive were performed. An elaborate measurement system allowed to receive detailed information on the blast side-effects: Special emphasis was focussed on the quantitative registration of the dynamic blast loads; data for the transfer of the dismantling method to the removal of real ractor structures were obtained. (orig.) [de

  6. CASTOR-V/21 PWR spent fuel storage cask performance test

    International Nuclear Information System (INIS)

    Creer, J.M.; Schoonen, D.H.

    1986-01-01

    Performance testing of a CASTOR-V/21 PWR spent fuel storage cask manufactured by Gesellschaft fur Nuklear Service (GNS) was performed as part of a cooperative program between Virginia Power and the US Department of Energy. The performance test consisted of obtaining cask handling experience and heat transfer, shielding, and limited fuel integrity data. Five heat transfer test runs were performed with 21 Surry reactor spent fuel assemblies generating approximately 28 kW. Test runs were performed with vacuum, nitrogen, and helium backfills in both vertical and horizontal orientations. Cask exterior surface gamma and neutron dose rates were measured with the cask fully loaded. Gas samples were obtained at the beginning and end of each run with nitrogen or helium backfills to verify fuel integrity. The heat transfer performance of the CASTOR-V/21 cask was exceptionally good. Peak clad temperatures with helium and nitrogen backfills in a vertical orientation and with helium in a horizontal orientation were less than 380 0 C. Vertical vacuum and horizontal nitrogen runs resulted in peak clad temperatures over 380 0 , but the temperatures were not excessively high ( 0 C). The shielding performance of the cask met the design expectation of less than 200 mrem/h. Cask surface dose rates of <75 mrem/h can easily be established with minor gamma shielding design refinements if desired. Gas samples obtained during testing indicated no leaking fuel rods were present in the cask. It was concluded that the cask performed satisfactorily from heat transfer and shielding perspectives

  7. Methods for U.S. shielding calculations: applications to FFTF and CRBR designs

    International Nuclear Information System (INIS)

    Engle, W.W. Jr.; Mynatt, F.R.; Disney, R.K.

    1978-01-01

    The primary components of the U.S. reactor shielding methodology consist of: (1) computer code systems based on discrete ordinates or Monte Carlo radiation transport calculational methods; (2) a data base of neutron and gamma-ray interaction and gamma-ray-production cross sections used as input in the codes; (3) a capability for processing the cross sections into multigroup or point energy formats as required by the codes; (4) large-scale integral shielding experiments designed to test cross-section data or techniques utilized in the calculations; and (5) a ''sensitivity'' analysis capability that can identify the most important interactions in a transport calculation and assign uncertainties to the calculated result that are based on uncertainties in all of the input data. The required accuracy for the methodology is to within 5 to 10% for responses at locations near the core to within a factor of 2 for responses at distant locations. Under these criteria, the methodology has proved to be adequate for in-vessel LMFBR calculations of neutron transport through deep sodium and thick iron and stainless steel shields, of neutron streaming through lower axial coolant channels and primary pipe chaseways, and of the effects of fuel stored within the reactor vessel. For ex-vessel LMFBR problems, the methodology requires considerable improvement, the areas of concern including neutron streaming through heating and ventilation ducts, through the cavity surrounding the reactor vessel, and through gaps around rotating plugs in the reactor heat, as well as gamma-ray streaming through plant shield penetrations

  8. Radiation Attenuation and Stability of ClearView Radiation Shielding TM-A Transparent Liquid High Radiation Shield.

    Science.gov (United States)

    Bakshi, Jayeesh

    2018-04-01

    Radiation exposure is a limiting factor to work in sensitive environments seen in nuclear power and test reactors, medical isotope production facilities, spent fuel handling, etc. The established choice for high radiation shielding is lead (Pb), which is toxic, heavy, and abidance by RoHS. Concrete, leaded (Pb) bricks are used as construction materials in nuclear facilities, vaults, and hot cells for radioisotope production. Existing transparent shielding such as leaded glass provides minimal shielding attenuation in radiotherapy procedures, which in some cases is not sufficient. To make working in radioactive environments more practicable while resolving the lead (Pb) issue, a transparent, lightweight, liquid, and lead-free high radiation shield-ClearView Radiation Shielding-(Radium Incorporated, 463 Dinwiddie Ave, Waynesboro, VA). was developed. This paper presents the motivation for developing ClearView, characterization of certain aspects of its use and performance, and its specific attenuation testing. Gamma attenuation testing was done using a 1.11 × 10 Bq Co source and ANSI/HPS-N 13.11 standard. Transparency with increasing thickness, time stability of liquid state, measurements of physical properties, and performance in freezing temperatures are reported. This paper also presents a comparison of ClearView with existing radiation shields. Excerpts from LaSalle nuclear power plant are included, giving additional validation. Results demonstrated and strengthened the expected performance of ClearView as a radiation shield. Due to the proprietary nature of the work, some information is withheld.

  9. SHIELD verification and validation report

    International Nuclear Information System (INIS)

    Boman, C.

    1992-02-01

    This document outlines the verification and validation effort for the SHIELD, SHLDED, GEDIT, GENPRT, FIPROD, FPCALC, and PROCES modules of the SHIELD system code. Along with its predecessors, SHIELD has been in use at the Savannah River Site (SRS) for more than ten years. During this time the code has been extensively tested and a variety of validation documents have been issued. The primary function of this report is to specify the features and capabilities for which SHIELD is to be considered validated, and to reference the documents that establish the validation

  10. Nuclear shielding of openings in ITER Tokamak building

    Energy Technology Data Exchange (ETDEWEB)

    Dammann, A., E-mail: alexis.dammann@iter.org [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Arumugam, A.P.; Beaudoin, V.; Beltran, D.; Benchikhoune, M.; Berruyer, F.; Cortes, P.; Gandini, F. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Ghirelli, N. [ASSYSTEM E.O.S, ZAC Saint Martin, 23, rue Benjamin Franklin, 84120 Pertuis (France); Gray, A.; Hurzlmeier, H.; Le Page, M. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Lemée, A. [SOGETI High Tech, 180 Rue René Descartes, 13851 Aix en Provence (France); Lentini, G.; Loughlin, M.; Mita, Y.; Patisson, L.; Rigoni, G.; Rathi, D.; Song, I. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France)

    2013-10-15

    Highlights: ► Establishment of a methodology to design shielded opening in external wall of the Tokamak building. ► Analysis of the shielding requirement, case by case, depending on the localization and the context. ► Implementation of an integrated solution for shielded opening. -- Abstract: The external walls of the Tokamak building, made of thick concrete, provide the nuclear shielding for operators working in adjacent buildings and for the environment. There are a series of openings to these external walls, devoted to ducts or pipes for ventilation, waveguides and transmission lines for heating systems and diagnostics, cooling pipes, cable trays or busbars. The shielding properties of the wall shall be preserved by adequate design of the openings in order not to affect the radiological zoning in adjacent areas. For some of them, shielding properties of the wall are not affected because the size of the network is quite small or the source is far from the opening. But for most of the openings, specific features shall be considered. Even if the approach is the same and the ways to shield can be standardized, specific analysis is requested in any case because the constraints are different.

  11. Feasibility of a superconducting FED with 50 cm of magnet shielding

    International Nuclear Information System (INIS)

    Schultz, J.H.; Montgomery, D.B.

    1981-01-01

    The feasibility of the suggestion that the cost of a Fusion Energy Device (FED) could be substantially reduced by operating with a reduced duty factor and only 50 cm of magnet shielding is evaluated here. This report examines the effect of light shielding on insulation life, matrix- and superconductor properties, refrigerator cost and steady-state heat removal. With very careful design, it appears feasible to build a device with only 50 cm of shielding

  12. Influence of the Radiation Shield on the Temperature of Rails Rolled in the Reversing Mill

    Directory of Open Access Journals (Sweden)

    Gołdasz A.

    2015-04-01

    Full Text Available The paper presents a mathematical model of heat transfer during cooling of hot-rolled rails in the reversing mill. The influence of the radiation shield on the temperature of rolled rails has been analyzed. The heat transfer model for cooling a strip covered by the thermal shield has been presented. The two types of shields build of steel and aluminum sheets separated with insulating layer have been studded. Calculations have been performed with self developed software which utilizes the finite element method.

  13. Heavy density concrete for nuclear radiation shielding and power stations: [Part]2

    International Nuclear Information System (INIS)

    Singha Roy, P.K.

    1987-01-01

    This article is the second part of the paper entitled 'Heavy density concrete for nuclear radiation shielding and power stations'. In this part, some of the important properties of heavy density concrete are discussed. They include density, water retentivity, air content, permeability with special reference to concrete mixes used in India's nuclear power reactors. All these properties are affected to various extents by heating. Indian shield concrete is rarely subjected to temperatures above 60degC during its life, because of thermal shield protection. During placement, the maximum anticipated rise in temperature due to heat of hydration is restricted to around 45degC by chilling, if necessary to reduce shrinkage stresses and cracks. (M.G.B.)

  14. Component design challenges for the ground-based SP-100 nuclear assembly test

    International Nuclear Information System (INIS)

    Markley, R.A.; Disney, R.K.; Brown, G.B.

    1989-01-01

    The SP-100 ground engineering system (GES) program involves a ground test of the nuclear subsystems to demonstrate their design. The GES nuclear assembly test (NAT) will be performed in a simulated space environment within a vessel maintained at ultrahigh vacuum. The NAT employs a radiation shielding system that is comprised of both prototypical and nonprototypical shield subsystems to attenuate the reactor radiation leakage and also nonprototypical heat transport subsystems to remove the heat generated by the reactor. The reactor is cooled by liquid lithium, which will operate at temperatures prototypical of the flight system. In designing the components for these systems, a number of design challenges were encountered in meeting the operational requirements of the simulated space environment (and where necessary, prototypical requirements) while also accommodating the restrictions of a ground-based test facility with its limited available space. This paper presents a discussion of the design challenges associated with the radiation shield subsystem components and key components of the heat transport systems

  15. Optimization of thermal design for nitrogen shield of JET cryopump

    International Nuclear Information System (INIS)

    Baxi, C.B.; Obert, W.

    1991-11-01

    The reference design of JET cryopump nitrogen shield consists of an outer section made of copper chevrons fastened to two cooling tubes and an inner stainless steel section and backing plate with two cooling tubes. These tubes are fed in a parallel flow arrangement. The inlet flow is divided into two parallel paths so that both tubes on either section are always at the same temperature. This arrangement was selected due to concern about conduction between warm and cold parts of the shield during cooldown transients. If the heat loads are unequal, such a parallel flow arrangement can result in flow starvation in the path with higher heat load. This will cause large temperature differences and, ultimately, structural failure. Hence, an analysis was undertaken to investigate the conduction effects in the shield for other flow arrangements. 4 refs., 8 figs

  16. Optimization of the Mu2e Production Solenoid Heat and Radiation Shield

    Science.gov (United States)

    Pronskikh, V. S.; Coleman, R.; Glenzinski, D.; Kashikhin, V. V.; Mokhov, N. V.

    2014-03-01

    The Mu2e experiment at Fermilab is designed to study the conversion of a negative muon to electron in the field of a nucleus without emission of neutrinos. Observation of this process would provide unambiguous evidence for physics beyond the Standard Model, and can point to new physics beyond the reach of the LHC. The main parts of the Mu2e apparatus are its superconducting solenoids: Production Solenoid (PS), Transport Solenoid (TS), and Detector Solenoid (DS). Being in the vicinity of the beam, PS magnets are most subjected to the radiation damage. In order for the PS superconducting magnet to operate reliably, the peak neutron flux in the PS coils must be reduced by 3 orders of magnitude by means of sophisticatedly designed massive Heat and Radiation Shield (HRS), optimized for the performance and cost. An issue with radiation damage is related to large residual electrical resistivity degradation in the superconducting coils, especially its Al stabilizer. A detailed MARS15 analysis and optimization of the HRS has been carried out both to satisfy the Mu2e requirements to the radiation quantities (such as displacements per atom, peak temperature and power density in the coils, absorbed dose in the insulation, and dynamic heat load) and cost. Results of MARS15 simulations of these radiation quantities are reported and optimized HRS models are presented; it is shown that design levels satisfy all requirements.

  17. Development and testing of multigroup library with correction of self-shielding effects in fusion-fission hybrid reactor

    International Nuclear Information System (INIS)

    Zou Jun; He Zhaozhong; Zeng Qin; Qiu Yuefeng; Wang Minghuang

    2010-01-01

    A multigroup library HENDL2.1/SS (Hybrid Evaluated Nuclear Data Library/Self-Shielding) based on ENDF/B-VII.0 evaluate data has been generated using Bondarenko and flux calculator method for the correction of self-shielding effect of neutronics analyses. To validate the reliability of the multigroup library HENDL2.1/SS, transport calculations for fusion-fission hybrid system FDS-I were performed in this paper. It was verified that the calculations with the HENDL2.1/SS gave almost the same results with MCNP calculations and were better than calculations with the HENDL2.0/MG which is another multigroup library without self-shielding correction. The test results also showed that neglecting resonance self-shielding caused underestimation of the K eff , neutron fluxes and waste transmutation ratios in the multigroup calculations of FDS-I.

  18. Conceptual design for the thermal shield bridges and multilayer insulation in the interconnect region for the SSC

    International Nuclear Information System (INIS)

    Baritchi, D.; Nicol, T.; Boroski, W.

    1991-01-01

    The interconnect region serves as the connection area between magnets. In order to minimize radiant heat transfer in the interconnect area, the authors used shield bridges which span the 80K and 20K shield gap between adjacent magnets. A sliding joint between bridge sections on adjacent magnets accommodates contraction during cool-down. An investigation was done to determine which attachment schemes (riveted or bolted versus welded) are better for heat transfer. Each shield bridge is covered with the same multilayer insulation scheme used throughout the body of the magnet. These shield bridges also contain pressure reliefs for each shield in the event of an internal piping failure. The reliefs are located in the upper half of the shield section in order to prevent liquid spills from impinging directly onto the vacuum vessel wall

  19. An assessment of the lifetime of Faraday shield elements

    International Nuclear Information System (INIS)

    Caughman, J.B.O. II; Ruzic, D.N.; Hoffman, D.J.; Langley, R.A.; Lewis, M.B.; Ryan, P.M.

    1989-01-01

    The interaction of plasma with rf fields from an ion cyclotron range of frequencies (ICRF) antenna has been studied to estimate the amount of Faraday shield erosion expected in normal ICRF heating (ICRH) operation. Plasma parameters and ion energies have been measured in the near field of an antenna and used in a model to estimate the erosion rate of the Faraday shield surface. Experiments were conducted on the RF Test Facility (RFTF), a magnetic mirror device at Oak Ridge National Laboratory (ORNL), using a single-strap resonant loop antenna with a two-tier Faraday shield. The outer tier, facing the plasma, was layered with graphite tiles. The antenna was operated at currents and voltages (∼500 A, ∼20 kV at 25 kW) within 50% of those expected in tokamaks. The time varying floating potential was measured with a capacitively coupled probe, and the time-averaged floating potential, electron temperature, and electron density were measured with a Langmuir probe. Both probes were scanned in front of the antenna. Ion energies were measured with a gridded energy analyzer located below the antenna, and samples of silicon were placed on the Faraday shield surface to estimate the incident ion energy. The capacitive probe measurements show that the rf floating potential follows the magnetic field pattern of the antenna, indicating that the electromagnetic fields are responsible for the potential formation. Plasma parameters and ion energies have been correlated with the antenna current and used in s computational model of the plasma sheath to predict the amount of erosion expected from the Faraday shield elements exposed to plasma. Predictions of light ion sputtering of candidate Faraday shield materials are presented. 19 refs., 6 figs., 1 tab

  20. Design and preliminary test results at Mach 5 of an axisymmetric slotted sound shield. [for supersonic wind tunnels (noise reduction in wind tunnel nozzles)

    Science.gov (United States)

    Beckwith, I. E.; Spokowski, A. J.; Harvey, W. D.; Stainback, P. C.

    1975-01-01

    The basic theory and sound attenuation mechanisms, the design procedures, and preliminary experimental results are presented for a small axisymmetric sound shield for supersonic wind tunnels. The shield consists of an array of small diameter rods aligned nearly parallel to the entrance flow with small gaps between the rods for boundary layer suction. Results show that at the lowest test Reynolds number (based on rod diameter) of 52,000 the noise shield reduced the test section noise by about 60 percent ( or 8 db attenuation) but no attenuation was measured for the higher range of test reynolds numbers from 73,000 to 190,000. These results are below expectations based on data reported elsewhere on a flat sound shield model. The smaller attenuation from the present tests is attributed to insufficient suction at the gaps to prevent feedback of vacuum manifold noise into the shielded test flow and to insufficient suction to prevent transition of the rod boundary layers to turbulent flow at the higher Reynolds numbers. Schlieren photographs of the flow are shown.

  1. Demonstration test on manufacturing 200 l drum inner shielding material for recycling of reactor operating metal scrap

    International Nuclear Information System (INIS)

    Umemura, A.; Kimura, K.; Ueno, H.

    1993-01-01

    Low-level reactor wastes should be safely recycled considering those resource values, the reduction of waste disposal volume and environmental effects. The reasonable recycling system of reactor operating metal scrap has been studied and it was concluded that the 200 liter drum inner shielding material is a very promising product for recycling within the nuclear industry. The drum inner shielding material does not require high quality and so it is expected to be easily manufactured by melting and casting from roughly sorted scrap metals. This means that the economical scrap metal recycling system can be achieved by introducing it. Furthermore its use will ensure safety because of being contained in a drum. In order to realize this recycling system with the drum inner shielding material, the demonstration test program is being conducted. The construction of the test facility, which consists of a melting and refining furnace, a casting apparatus, a machining apparatus etc., was finishing in September, 1992

  2. Evaluation of the shielding integrity of end-shields in PHWR type NPPs

    International Nuclear Information System (INIS)

    Sah, B.M.L.; Ramamirtham, B.; Kutty, B.S.

    1996-01-01

    In the new plants (Narora Atomic Power Plants (NAPP) onwards) relatively higher radiation fields exist on the north and south fuelling machine (FM) vault walls of the E1 100m accessible area passages. These fields were first noticed at NAPS-1 and subsequently at NAPS-2 and KAPS-1. Such surveys done at RAPS have indicated that the fields on these walls would come out to be quite low (only 1-2 mR/h) from sources other than that arising from 41 Ar contamination. RAPS/MAPS experience pointed to adequacy of shielding of the FM vault walls and sufficient overall shielding thickness of the end-shields. Further, radiometry tests of end-shields carried out at Kaiga and RAPP 3 and 4 indicated fairly satisfactory and uniform filling of balls. Hence, incomplete filling of water column of the end-shields due to any venting problem was suspected to be one possible reason for the observed high fields in NAPS and Kakrapar Atomic Power Station (KAPS). Since the presence of high radiation fields, both neutron and gamma, is of long-term concern, a special study/measurement of radiation levels on reactor face during high power operation was undertaken. In order to compare the shielding integrity of the older (RAPS/MAPS solid plate type shielding) and newer (NAPS/KAPS steel ball-filled type) end shields, these experiments were done at MAPS-2 and NAPS-2. (author). 2 refs., 2 tabs

  3. Concrete shielding for nuclear ship 'Mutsu'

    International Nuclear Information System (INIS)

    Nagase, Tetsuo; Saito, Tetsuo

    1983-01-01

    The repair works of the shielding for the nuclear ship ''Mutsu'' were completed in August, 1982. For the primary shielding, serpentine concrete was adopted as it contains a large quantity of water required for neutron shielding, and in the secondary shielding at the upper part of the reactor containment vessel, the original shielding was abolished, and the heavy concrete (high water content, high density concrete) which is effective for neutron and gamma-ray shielding was newly adopted. In this report, the design and construction using these shielding concrete are outlined. In September, 1974, Mutsu caused radiation leak during the test, and the cause was found to be the fast neutrons streaming through a gap between the reactor pressure vessel and the primary shielding. The repair works were carried out in the Sasebo Shipyard. The outline of the repair works of the shielding is described. The design condition for the shielding, the design standard for the radiation dose outside and inside the ship, the method of shielding analysis and the performance required for shielding concrete are reported. The selection of materials, the method of construction and mixing ratio, the evaluation of the soundness and properties of concrete, and the works of placing the shielding concrete are outlined. (Kako, I.)

  4. Technical products for radiation shielding. Shield assembled from lead blocks for radiation protection. General technical requirements

    International Nuclear Information System (INIS)

    1981-01-01

    The object of this standard description is the general technological requirements of 50 and 100 mm thick radiation protection shields assembled from lead blocks. The standard contains the definitions, types, parameters and dimensions of shields, their technical and acceptance criteria with testing methods, tagging, packaging, transportation and storage requirements, producer's liability. Some illustrated assembling examples, preferred parameters and dosimetry methods for shield inspection are given. (R.P.)

  5. Thermal and flow considerations for the 80 K shield of the SSC magnet cryostats

    International Nuclear Information System (INIS)

    Abramovich, S.; Yuecel, A.; Demko, J.; Thirumaleshwar, M.

    1994-01-01

    The nominal temperatures in the SSC magnets range between 4.2 K in the superconducting coils and 300 K on the cryostat outer wall. To minimize the 4 K heat load, one thermal shield cooled by liquid and vapor nitrogen flows at 84 K, and another cooled by helium flow at 20 K are incorporated in the cryostat. Tubes attached to the shields serve as conduits for the cryogens. The liquid nitrogen tube in the cryostat is used for shield refrigeration and also for liquid distribution around the SSC rings. The second nitrogen line is used to return the vapor to the helium refrigerators for helium precooling. The nominal LN2 flow from a 4.3 km long cryogenic string (4 sections) to the surface is 64 g/s. The total liquid nitrogen consumption of approximately 5000 g/s will be supplied at one, two or more locations on the surface. The total heat load of the 80 K shield is estimated as 3.2 W/m: about 50% is composed of infrared radiation; the remaining 50% is by heat conduction through supports, vacuum barriers and other thermal connections between the shield and the 300 K outer wall. The required LN2 flow rate depends on the distribution and circulation schemes. The LN2 temperature will in turn vary depending on the flow rate and on the recooling method used. For example, with a massflow of 400 g/s of LN2 the temperature rises from 82 K to 86 K between two compact recoolers 1 km apart. This temperature is higher than desired. The temperature can be reduced by increasing the flow rate of the liquid or by using the continuous recooling scheme. This paper discusses some thermal problems caused by certain mechanical designs of the 80 K shield and the possible improvement by using continuous recooling. The authors present results of the 80 K shield temperature distribution analysis, the 20 K shield heat load augmentation resulting from the increased 80 K shield temperatures, the continuous nitrogen recooling scheme and some flow timing related analysis

  6. Integral data testing of JENDL-3.2 for fusion reactor and shielding applications

    International Nuclear Information System (INIS)

    Oyama, Yukio

    1995-01-01

    Integral data testing of JENDL-3.2 is being performed in the activities of two working groups of the Japanese Nuclear Data Committee. The continuous and group-wise libraries prepared from JENDL-3.2 are planned to be tested by the working groups. In this paper, the continuous library FSXLIB-J3R2 processed from JENDL-3.2 for MCNP was tested for fission and fusion neutrons using data of integral experiments and compared to the results of JENDL-3.1. The results of integral data testing of JENDL-3.2 for fusion and shielding application are reviewed. (author)

  7. Mechanical design of the TIBER breeding shield

    Energy Technology Data Exchange (ETDEWEB)

    Rathke, J.; Deutsch, L. (Grumman Corp., Bethpage, NY (USA). Space Systems Div.)

    1989-04-01

    TIBER features a segmented shield assembly that provides the nuclear shielding for the superconducting toroidal field coils. In addition to its primary function, the shield also provides tritium breeding through the use of water coolant that contains 16 wt% dissolved lithium nitrate. Because the TIBER reactor need not provide electrical power, the coolant is maintained at low pressure (0.2 MPa) and low temperature (75/sup 0/C). The shield is made in several segments to facilitate assembly and allow for replacement of high heat flux components (divertor blades). The segments are designated as inboard, outboard, upper, lower, and divertor modules. In total, there are 96 separate modules in the machine, consisting of six different types. The design features of the different modules vary primarily depending on the thickness of the shield in a given location. The very thick outboard shield has a breeding zone in the inboard portion of the module, with a shielding zone behind it. The breeding zone consists of a stainless steel casing filled with beryllium spheres. The shielding zone consists of the same casing filled with steel spheres. Both of these zones have lithiated water circulated throughout to provide cooling and breeding. In zones with minimal thickness, tungsten alloys are used to achieve the required shielding. These alloys are incoprorated in subassemblies utilizing stainless steel casings surrounding blocks of tungsten heavy metal alloy. These are infiltrated with lead on final assembly to form a thermally continuous panel. Several of these panels are then assembled into an outer stainless steel case to form an inboard module. These modules also use the lithiated coolant. The details of the design are presented and discussed. (orig.).

  8. Shielding of Sensitive Electronic Devices in Magnetic Nanoparticle Hyperthermia Using Arrays of Coils

    International Nuclear Information System (INIS)

    Spirou, S V; Tsialios, P; Loudos, G

    2015-01-01

    In Magnetic Nanoparticle Hyperthermia (MNH) an externally applied electromagnetic field transfers energy to the magnetic nanoparticles in the body, which in turn convert this energy into heat, thus locally heating the tissue they are located in. This external electromagnetic field is sufficiently strong so as to cause interference and affect sensitive electronic equipment. Standard shielding of magnetic fields involves Faraday cages or coating with high-permeability shielding alloys; however, these techniques cannot be used with optically sensitive devices, such as those employed in Optical Coherence Tomography or radionuclide imaging. In this work we present a method to achieve magnetic shielding using an array of coils. The magnetic field generated by a single coil was calculated using the COMSOL physics simulation toolkit. Software was written in C/C++ to import the single-coil data, and then calculate the positions, number of turns and currents in the shielding coils in order to minimize the magnetic field strength at the desired location. Simulations and calculations have shown that just two shielding coils can reduce the magnetic field by 2-3 orders of magnitude. (paper)

  9. Shielding of Sensitive Electronic Devices in Magnetic Nanoparticle Hyperthermia Using Arrays of Coils

    Science.gov (United States)

    Spirou, S. V.; Tsialios, P.; Loudos, G.

    2015-09-01

    In Magnetic Nanoparticle Hyperthermia (MNH) an externally applied electromagnetic field transfers energy to the magnetic nanoparticles in the body, which in turn convert this energy into heat, thus locally heating the tissue they are located in. This external electromagnetic field is sufficiently strong so as to cause interference and affect sensitive electronic equipment. Standard shielding of magnetic fields involves Faraday cages or coating with high-permeability shielding alloys; however, these techniques cannot be used with optically sensitive devices, such as those employed in Optical Coherence Tomography or radionuclide imaging. In this work we present a method to achieve magnetic shielding using an array of coils. The magnetic field generated by a single coil was calculated using the COMSOL physics simulation toolkit. Software was written in C/C++ to import the single-coil data, and then calculate the positions, number of turns and currents in the shielding coils in order to minimize the magnetic field strength at the desired location. Simulations and calculations have shown that just two shielding coils can reduce the magnetic field by 2-3 orders of magnitude.

  10. Shielding behavior of multi-transformation phase change materials (MTPCM) against nuclear radiations

    International Nuclear Information System (INIS)

    Kumar, Ravindra; Goplani, Deepak; Kumar, Rohitash; Das, Mrinal Kumar; Kumar, Pramod; Jodha, Ajay Singh; Misra, Manoj; Khatri, P.K.

    2008-01-01

    In nuclear hardened structures and AFV's, special shielding materials are being used to provide protection from radiations generated in nuclear blast. However, in blast an intense heat pulse is also generated along with radiation. Currently used shield does not take care of this heat pulse. Defence Laboratory, Jodhpur has developed multi transformation phase change materials (MTPCM) based cool panels for passive moderation of temperature in severe desert heat. The MTPCM contains light nuclei of hydrogen, carbon and oxygen, and thus can absorb good amount of neutrons. MTPCM can also absorb intense heat pulse along with heat generated by secondary fires during blast as its latent heat (160-170 J/g) without significant rise in temperature (melting point 36-38 deg. C). Thus MTPCM can provide protection against both radiation as well as heat pulse generated in a nuclear blast along with its designed regular function of passively moderating temperature below 40 deg C during severe desert summer. A study has been undertaken to explore multiple applications of MTPCM panel. Protection factor provided by standard MTPCM panels against neutron and gamma radiations (both initial and fall out) were measured and results compared with PF provided by special lining pad currently being used in AFV's and field structures for nuclear protection. It is observed that MTPCM provides good PF (2.17) against neutron which is better than currently used shield pads (PFP%1.8). Present paper discusses results of this study. (author)

  11. Generation and testing of the shielding data library EURLIB for fission and fusion technology

    International Nuclear Information System (INIS)

    Caglioti, E.; Hehn, G.; Herrnberger, V.; Mattes, M.; Nicks, R.; Penkuhn, H.

    1977-01-01

    For the common field of core physics and shielding, the CSEWG group structure of 239 fast neutron groups had been proposed, of which the 100 neutron groups of the EURLIB Library is a sub-set for shielding. This standard group Library EURLIB had been initiated by the NEA-specialist group on shielding benchmarks in 1974. The wide acceptance of the Library for interpretation of benchmarks in the NEA program represents an important step forward in the standardization of group data which is the basic requirement for a useful collaboration. On the other side the interpretation of a series of different benchmark experiments with the EURLIB Library provides the best check of the cross section data for neutron and gamma-rays showing the needs for further improvements. The paper describes the joint work of IKE, Stuttgart and EURATOM, Ispra in generating multigroup libraries for neutron and gamma-rays. Special effort has been devoted to improve the flux weighting for both types of radiation and proper treatment of thermal neutrons. The coupled multigroup Library of 100 neutron and 20 gamma groups is collapsed into few group structures for typical designs of LWR, LMFBR, gas cooled and thermonuclear reactors. The work for optimal few group representation is done in cooperation with EIR, Wurenlingen. The testing of the EURLIB Library is a common effort of several institutions participating in the NEA shielding benchmark program

  12. Upper shielding body in LMFBR type reactors

    International Nuclear Information System (INIS)

    Shoji, Koichi.

    1986-01-01

    Purpose: Preference is given to the strength and thermal insulation of a roof slab thereby ensuring axial size and improving the operationability upon inserting the control rod in the upper shielding body of LMFBR type reactors. Constitution: In an upper shielding body in which a large rotational plug is rotatably mounted to a circular hole formed at an eccentric position of a roof slab, while a small rotational plug is rotatably mounted to a circular hole disposed at an eccentric position of the large rotational plug and the reactor core upper mechanisms are supported on the small rotational plug, heat insulation layers are attached to the inside of the inner circumferential wall of the roof slab and the outer circumferential wall of the large rotational plug. By attaching the heat insulation layers, the heat conduction between the roof slab and the large rotational plug can be suppressed remarkably, by which occurrence of specific heat pass or local generation of large thermal stresses can be avoided even if difference is resulted to the temperature distribution between them. In this way, functions taking advantage of respective features of the roof slab and the small rotational plug can be obtained to achieve the purpose. (Kamimura, M.)

  13. An assessment of the lifetime of Faraday shield elements

    International Nuclear Information System (INIS)

    Caughman, J.B.O. II; Ruzic, D.N.; Hoffman, D.J.; Langley, R.A.; Lewis, M.B.; Ryan, P.M.

    1989-01-01

    The interaction of plasma with rf fields from an ion cyclotron range of frequencies (ICRF) antenna has been studied to estimate the amount of Faraday shield erosion expected in normal ICRF heating operation. Plasma parameters and ion energies have been measured in the near field of an antenna and used in a model to estimate the erosion rate of the Faraday shield surface. Experiments were conducted on the RF Test Facility, a magnetic mirror device at Oak Ridge National Laboratory, using a single-strap resonant loop antenna with a two-tier Faraday shield. The outer tier, facing the plasma, was layered with graphite tiles. The antenna was operated at currents and voltages within 50% of those expected in tokamaks. The time-varying floating potential was measured with a capacitively coupled probe, and the time-averaged floating potential, electron temperature, and electron density were measured with Langmuir probe. Both probes were scanned in front of the antenna. Ion energies were measured with a gridded energy analyzer located below the antenna, and samples of silicon were placed on the Faraday shield surface to estimate the incident ion energy. The capacitive probe measurement show that the rf floating potential follows the magnetic field pattern of the antenna, indicating that the electromagnetic fields are responsible for the potential formation. Electron temperatures increase with rf power and can reach values ≥60 eV for an rf power of ∼25 kW. Incident ion energies ≥300 eV have been measured for the same power level. Predictions of light ion sputtering of candidate Faraday shield materials are presented. 19 refs., 6 figs., 1 tab

  14. Liquid-Crystal Display (LCD) Screen Thermal Testing to Simulate Solar Gain

    Science.gov (United States)

    2015-12-01

    determined that shielding the screen from solar gains was the best way to avoid monitor failure. In order to accomplish this Hot Mirror glass from...side of the monitor in order to shield the monitor from the solar loading. 2.7 Test 7 – Bench Test with a 250 W Heat Lamp and Hot Mirror Glass , 1 Inch...method to shield the screen from solar loading. The Hot Mirror glass uses a glass substrate with a coating on 1 side that passes visible light, but

  15. Auxiliary Heat Exchanger Flow Distribution Test

    International Nuclear Information System (INIS)

    Kaufman, J.S.; Bressler, M.M.

    1983-01-01

    The Auxiliary Heat Exchanger Flow Distribution Test was the first part of a test program to develop a water-cooled (tube-side), compact heat exchanger for removing heat from the circulating gas in a high-temperature gas-cooled reactor (HTGR). Measurements of velocity and pressure were made with various shell side inlet and outlet configurations. A flow configuration was developed which provides acceptable velocity distribution throughout the heat exchanger without adding excessive pressure drop

  16. Performance and Facility Background Pressure Characterization Tests of NASAs 12.5-kW Hall Effect Rocket with Magnetic Shielding Thruster

    Science.gov (United States)

    Kamhawi, Hani; Huang, Wensheng; Haag, Thomas; Shastry, Rohit; Thomas, Robert; Yim, John; Herman, Daniel; Williams, George; Myers, James; Hofer, Richard; hide

    2015-01-01

    NASA's Space Technology Mission Directorate (STMD) Solar Electric Propulsion Technology Demonstration Mission (SEP/TDM) project is funding the development of a 12.5-kW Hall thruster system to support future NASA missions. The thruster designated Hall Effect Rocket with Magnetic Shielding (HERMeS) is a 12.5-kW Hall thruster with magnetic shielding incorporating a centrally mounted cathode. HERMeS was designed and modeled by a NASA GRC and JPL team and was fabricated and tested in vacuum facility 5 (VF5) at NASA GRC. Tests at NASA GRC were performed with the Technology Development Unit 1 (TDU1) thruster. TDU1's magnetic shielding topology was confirmed by measurement of anode potential and low electron temperature along the discharge chamber walls. Thermal characterization tests indicated that during full power thruster operation at peak magnetic field strength, the various thruster component temperatures were below prescribed maximum allowable limits. Performance characterization tests demonstrated the thruster's wide throttling range and found that the thruster can achieve a peak thruster efficiency of 63% at 12.5 kW 500 V and can attain a specific impulse of 3,000 s at 12.5 kW and a discharge voltage of 800 V. Facility background pressure variation tests revealed that the performance, operational characteristics, and magnetic shielding effectiveness of the TDU1 design were mostly insensitive to increases in background pressure.

  17. Erosion and migration of tungsten employed at the central column heat shield of ASDEX Upgrade

    International Nuclear Information System (INIS)

    Krieger, K.; Gong, X.; Balden, M.; Hildebrandt, D.; Maier, H.; Rohde, V.; Roth, J.; Schneider, W.

    2002-01-01

    In ASDEX Upgrade, tungsten was employed as plasma facing material at the central column heat shield in the plasma main chamber. The campaign averaged tungsten erosion flux was determined by measuring the difference of the W-layer thickness before and after the experimental campaign using ion beam analysis methods. The observed lateral variation and the total amount of eroded tungsten are attributed to erosion by impact of ions from the scrape-off layer plasma. Migration and redeposition of eroded tungsten were investigated by quantitative analysis of deposited tungsten on collector probes and wall samples. The obtained results, as well as the spectroscopically observed low tungsten plasma penetration probability, indicate that a major fraction of the eroded tungsten migrates predominantly through direct transport channels in the outer plasma scrape-off layer without entering the confined plasma

  18. Using the shield for thermal energy storage in pulsar

    International Nuclear Information System (INIS)

    Sager, G.T.; Sze, D.K.; Wong, C.P.C.; Bathke, C.G.; Blanchard, J.P.; Brimer, C.; Cheng, E.T.; El-Guebaly, L.A.; Hasan, M.Z.; Najmabadi, F.; Sharafat, S.; Sviatoslavski, I.N.; Waganer, L.

    1995-01-01

    The PULSAR pulsed tokamak power plant design utilizes the outboard shield for thermal energy storage to maintain full 1000MW(e) output during the dwell period of 200s. Thermal energy resulting from direct nuclear heating is accumulated in the shield during the 7200s fusion power production phase. The maximum shield temperature may be much higher than that for the blanket because radiation damage is significantly reduced. During the dwell period, thermal power discharged from the shield and coolant temperature are simultaneously regulated by controlling the coolant mass flow rate at the shield inlet. This is facilitated by throttled coolant bypass. Design concepts using helium and lithium coolant have been developed. Two-dimensional time-dependent thermal hydraulic calculations were performed to confirm performance capabilities required of the design concepts. The results indicate that the system design and performance can accommodate uncertainties in material limits or the length of the dwell period. (orig.)

  19. Structural design of shield-integrated thin-wall vacuum vessel and manufacturing qualification tests for International Thermonuclear Experimental Reactor (ITER)

    International Nuclear Information System (INIS)

    Shimizu, Katsusuke; Shibui, Masanao; Koizumi, Koichi; Kanamori, Naokazu; Nishio, Satoshi; Sasaki, Takashi; Tada, Eisuke

    1992-09-01

    Conceptual design of shield-integrated thin-wall vacuum vessel has been done for ITER (International Thermonuclear Experimental Reactor). The vacuum vessel concept is based on a thin-double-wall structure, which consists of inner and outer plates and rib stiffeners. Internal shielding structures, which provide neutron irradiation shielding to protect TF coils, are set up between the inner plate and the outer plate of the vessel to avoid complexity of machine systems such as supporting systems of blanket modules. The vacuum vessel is assembled/disassembled by remote handling, so that welding joints are chosen as on-site joint method from reliability of mechanical strength. From a view point of assembling TF coils, the vacuum vessel is separated at the side of port, and is divided into 32 segments similar to the ITER-CDA reference design. Separatrix sweeping coils are located in the vacuum vessel to reduce heat fluxes onto divertor plates. Here, the coil structure and attachment to the vacuum vessel have been investigated. A sectorized saddle-loop coil is available for assembling and disassembling the coil. To support electromagnetic loads on the coils, they are attached to the groove in the vacuum vessel by welding. Flexible multi-plate supporting structure (compression-type gravity support), which was designed during CDA, is optimized by investigating buckling and frequency response properties, and concept on manufacturing and fabrication of the gravity support are proposed. Partial model of the vacuum vessel is manufactured for trial, so that fundamental data on welding and fabrication are obtained. From mechanical property tests of weldment and partial models, mechanical intensity and behaviors of the weldment are obtained. Informations on FEM-modeling are obtained by comparing analysis results with experimental results. (author)

  20. Concrete shielding for nuclear ship 'Mutsu'

    International Nuclear Information System (INIS)

    Nagase, Tetsuo; Nakajima, Tadao; Okumura, Tadahiko; Saito, Tetsuo

    1983-01-01

    The nuclear ship ''Mutsu'' was constructed in 1970 as the fourth in the world. On September 1, 1974, during the power raising test in the Pacific Ocean, radiation leak was detected. As the result of investigation, it was found that the cause was the fast neutrons streaming through the gap between the reactor pressure vessel and the primary shield. In order to repair the shielding facility, the Japan Nuclear Ship Research Development Agency carried out research and development and shielding design. It was decided to adopt serpentine concrete for the primary shield, which is the excellent moderator of fast neutrons even at high temperature, and heavy concrete for the secondary shield, which is effective for shielding both gamma ray and neutron beam. The repair of shielding was carried out in the Sasebo Shipyard, and completed in August, 1982. The outline of the repair work is reported. The weight increase was about 300 t. The conditions of the shielding design, the method of shielding analysis, the performance required for the shielding concrete, the preliminary experiment on heavy concrete and the construction works of serpentine concrete and heavy concrete are described. (Kako, I.)

  1. Seismic analysis of the mirror fusion test facility shielding vault

    International Nuclear Information System (INIS)

    Gabrielsen, B.L.; Tsai, K.

    1981-04-01

    This report presents a seismic analysis of the vault in Building 431 at Lawrence Livermore National Laboratory which houses the mirror Fusion Test Facility. The shielding vault structure is approximately 120 ft long by 80 ft wide and is constructed of concrete blocks approximately 7 x 7 x 7 ft. The north and south walls are approximately 53 ft high and the east wall is approximately 29 ft high. These walls are supported on a monolithic concrete foundation that surrounds a 21-ft deep open pit. Since the 53-ft walls appeared to present the greatest seismic problem they were the first investigated

  2. Thermal fatigue cracks in gas turbine heat shield plates; Thermoermuedungsrisse in Hitzeschildplatten von Gasturbinen

    Energy Technology Data Exchange (ETDEWEB)

    Neidel, Andreas; Riesenbeck, Susanne [Siemens AG, Berlin (Germany). Gas Turbine Plant Berlin Labs.

    2012-07-01

    There are numerous possible designations for the damage mechanism described in this case study. As a consequence, the terminology is far from being consistent. In this context, the Anglo-Saxon language area has to be taken into consideration. On the one hand many failure analysis reports have to be written in English, on the other hand it is meanwhile expected to use English terms in reports written in German, the latter in an effort to standardize the internal nomenclature. Therefore, it is advisable for damage analysts to know technical terms in both languages, at least for the most important damage mechanisms occurring in their respective fields of activity. In the present case, individual ceramic coated metal heat shield plates have been replaced after several ten thousand operating hours and several hundred start-up and shut-down procedures, i.e. machine start-ups, due to cracks in the central locating hole.

  3. Studies of the ultrasonic testing scheme on bonding quality in shield blanket of ITER

    International Nuclear Information System (INIS)

    Shi Sichao; Shen Jingling; He Fengqi; Jin Wanping

    2007-01-01

    International Thermonuclear Experimental Reactor (ITER) is an international cooperative item. One of its components, the First Wall (FW) functioning as neutron shielding and cooling, is an important part. According to the component materials, structural features, testing requirements of the FW, and the ultrasonic propagation characteristics, it is suggested that Broad-band ultrasonic can be used to test the bonding quality of the FW. According to the case mentioned above, the Broad-band Ultrasonic Testing scheme was presented, and the ultrasonic testing feasibility was analyzed theoretically in this paper. (authors)

  4. X-ray shielding behaviour of kaolin derived mullite-barites ceramic

    Science.gov (United States)

    Ripin, A.; Mohamed, F.; Choo, T. F.; Yusof, M. R.; Hashim, S.; Ghoshal, S. K.

    2018-03-01

    Mullite-barite ceramic (MBC) is an emergent material for effective shielding of redundant ionizing radiation exposure. The composition dependent mechanical, thermal, and microstructure properties of MBC that makes MBC a high performing novel radiation shielding candidate remained unexplored. This paper examines the possibility of exploiting Malaysian kaolin (AKIM-35) and barite (BaSO4) derived ceramic (MBC) system for X-ray shielding operation. Using conventional pressing and sintering method six ceramic samples are prepared by mixing AKIM-35 with barite at varying contents (0, 10, 20, 30, 40 and 50 wt%). Synthesized pressed mixtures are calcined at 400 °C for 30 min and then sintered to 1300 °C for 120 min at a heating rate of 10 °C/min. Sintered samples are characterized via X-ray Diffraction (XRD), Field Emission Scanning Electron Microscope (FESEM), lead equivalent (LE), uniformity and dose reduction analyses. XRD pattern of prepared ceramics revealed the presence of monoclinic barium alumino-silicate (BAS) and orthorhombic mullite as major shielding phases together with other minor phase of barite and hexagonal quartz (SiO2) structures. Furthermore, FESEM images of ceramics (between 0 and 30 wt%) displayed the existence of compacted monoclinic plate of BAS and acicular mullite morphology (ceramics at 40 and 50 wt%). Radiation tests displayed the capacity of ceramics (at 0 and 10 wt%) to shield the X-ray radiation emanated at tube potential range of 50-120 kV. The highest radiation attenuation is ascertained at 70 kV where the dose is reduced remarkably between 99.11% and 97.42%. Ceramics at 0 and 10 wt% demonstrated the highest lead (Pb) equivalent thickness (LE) of 0.44 mm and 0.34 mm, respectively. It is established that such MBC may contribute towards the development of shielding material against ionizing radiation in diagnostic radiology (X-ray) dose range.

  5. Double-layer neutron shield design as neutron shielding application

    Science.gov (United States)

    Sariyer, Demet; Küçer, Rahmi

    2018-02-01

    The shield design in particle accelerators and other high energy facilities are mainly connected to the high-energy neutrons. The deep penetration of neutrons through massive shield has become a very serious problem. For shielding to be efficient, most of these neutrons should be confined to the shielding volume. If the interior space will become limited, the sufficient thickness of multilayer shield must be used. Concrete and iron are widely used as a multilayer shield material. Two layers shield material was selected to guarantee radiation safety outside of the shield against neutrons generated in the interaction of the different proton energies. One of them was one meter of concrete, the other was iron-contained material (FeB, Fe2B and stainless-steel) to be determined shield thicknesses. FLUKA Monte Carlo code was used for shield design geometry and required neutron dose distributions. The resulting two layered shields are shown better performance than single used concrete, thus the shield design could leave more space in the interior shielded areas.

  6. Shielding of the contralateral breast during tangential irradiation.

    Science.gov (United States)

    Goffman, Thomas E; Miller, Michael; Laronga, Christine; Oliver, Shelly; Wong, Ping

    2004-08-01

    The purpose of this study was to investigate both optimal and practical contralateral breast shielding during tangential irradiation in young patients. A shaped sheet of variable thickness of lead was tested on a phantom with rubber breasts, and an optimized shield was created. Testing on 18 consecutive patients 50 years or younger showed shielding consistently reduced contralateral breast dose to at least half, with small additional reduction after removal of the medial wedge. For younger patients in whom radiation exposure is of considerable concern, a simple shield of 2 mm lead thickness proved practical and effective.

  7. Radiation shielding in dental radiography

    International Nuclear Information System (INIS)

    Stenstroem, B.; Rehnmark-Larsson, S.; Julin, P.; Richter, S.

    1983-01-01

    The protective effect in the thyroid region from different types of radiation shieldings at intraoral radiography has been studied as well as the reduction of the absorbed dose to the sternal and the gonadal regions. The shieldings tested were five different types of leaded aprons, of which three had an attached leaded collar and the other two were used in combination with separate soft leaded collars. Furthermore one of the soft leaded collars and an unflexible horizontal leaded shield were tested separately. Two dental x-ray machines of 60 and 65 kVp with rectangular and circular tube collimators were used. The exposure time corresponded to speed group E film. The absorbed doses were measured with two ionization chambers. No significant difference in the protective effect in the thyroid gland could be found between the different types of radiation shieldings. There was a dose reduction by approximately a factor of 2 to the thyroid region down to 0.08 mGy per full survey using parallelling technique, and below 0.001 mGy per single bitewing exposure. The shieldings reduced the thyroid dose using bisecting-angle technique by a factor of 5 down to 0.15 mGy per full survey (20 exposures). In the sternal region the combinations of apron and collar reduced the absorbed dose from a full survey to below 2 μGy compared with 18 μGy (parallelling) and 31 μGy (biscting-angle) without any shielding. With the horizontal leaded shield a reduction by a factor of 6 was obtained but no significant sternal dose reduction could be detected from the soft collar alone. The gonadal dose could be reduced by a factor of 10 with the horizontal leaded shield, parallelling technique and circular collimator. Using leaded aprons the gonadal dose was approximately one per cent of the dose without any shielding, i.e. below 0.01 μGy per single intraoral exposure. (Authors)

  8. Dynamic Test Method Based on Strong Electromagnetic Pulse for Electromagnetic Shielding Materials with Field-Induced Insulator-Conductor Phase Transition

    Science.gov (United States)

    Wang, Yun; Zhao, Min; Wang, Qingguo

    2018-01-01

    In order to measure the pulse shielding performance of materials with the characteristic of field-induced insulator-conductor phase transition when materials are used for electromagnetic shielding, a dynamic test method was proposed based on a coaxial fixture. Experiment system was built by square pulse source, coaxial cable, coaxial fixture, attenuator, and oscilloscope and insulating components. S11 parameter of the test system was obtained, which suggested that the working frequency ranges from 300 KHz to 7.36 GHz. Insulating performance is good enough to avoid discharge between conductors when material samples is exposed in the strong electromagnetic pulse field up to 831 kV/m. This method is suitable for materials with annular shape, certain thickness and the characteristic of field-induced insulator-conductor phase transition to get their shielding performances of strong electromagnetic pulse.

  9. Hot Cell Window Shielding Analysis Using MCNP

    International Nuclear Information System (INIS)

    Pope, Chad L.; Scates, Wade W.; Taylor, J. Todd

    2009-01-01

    The Idaho National Laboratory Materials and Fuels Complex nuclear facilities are undergoing a documented safety analysis upgrade. In conjunction with the upgrade effort, shielding analysis of the Fuel Conditioning Facility (FCF) hot cell windows has been conducted. This paper describes the shielding analysis methodology. Each 4-ft thick window uses nine glass slabs, an oil film between the slabs, numerous steel plates, and packed lead wool. Operations in the hot cell center on used nuclear fuel (UNF) processing. Prior to the shielding analysis, shield testing with a gamma ray source was conducted, and the windows were found to be very effective gamma shields. Despite these results, because the glass contained significant amounts of lead and little neutron absorbing material, some doubt lingered regarding the effectiveness of the windows in neutron shielding situations, such as during an accidental criticality. MCNP was selected as an analysis tool because it could model complicated geometry, and it could track gamma and neutron radiation. A bounding criticality source was developed based on the composition of the UNF. Additionally, a bounding gamma source was developed based on the fission product content of the UNF. Modeling the windows required field inspections and detailed examination of drawings and material specifications. Consistent with the shield testing results, MCNP results demonstrated that the shielding was very effective with respect to gamma radiation, and in addition, the analysis demonstrated that the shielding was also very effective during an accidental criticality.

  10. A study of gamma shielding

    International Nuclear Information System (INIS)

    Roogtanakait, N.

    1981-01-01

    Gamma rays have high penetration power and its attenuation depends upon the thickness and the attenuation coefficient of the shield, so it is necessary to use the high density shield to attenuate the gamma rays. Heavy concrete is considered to be used for high radiation laboratory and the testing of the shielding ability and compressibility of various types of heavy concrete composed of baryte, hematite, ilmenite and galena is carried out. The results of this study show that baryte-ilmenite concrete is the most suitable for high radiation laboratory in Thailand

  11. Dynamic Response Testing in an Electrically Heated Reactor Test Facility

    Science.gov (United States)

    Bragg-Sitton, Shannon M.; Morton, T. J.

    2006-01-01

    Non-nuclear testing can be a valuable tool in development of a space nuclear power or propulsion system. In a non-nuclear test bed, electric heaters are used to simulate the heat from nuclear fuel. Standard testing allows one to fully assess thermal, heat transfer, and stress related attributes of a given system, but fails to demonstrate the dynamic response that would be present in an integrated, fueled reactor system. The integration of thermal hydraulic hardware tests with simulated neutronic response provides a bridge between electrically heated testing and full nuclear testing. By implementing a neutronic response model to simulate the dynamic response that would be expected in a fueled reactor system, one can better understand system integration issues, characterize integrated system response times and response characteristics, and assess potential design improvements at a relatively small fiscal investment. Initial system dynamic response testing was demonstrated on the integrated SAFE-100a heat pipe cooled, electrically heated reactor and heat exchanger hardware, utilizing a one-group solution to the point kinetics equations to simulate the expected neutronic response of the system (Bragg-Sitton, 2005). The current paper applies the same testing methodology to a direct drive gas cooled reactor system, demonstrating the applicability of the testing methodology to any reactor type and demonstrating the variation in system response characteristics in different reactor concepts. In each testing application, core power transients were controlled by a point kinetics model with reactivity feedback based on core average temperature; the neutron generation time and the temperature feedback coefficient are provided as model inputs. Although both system designs utilize a fast spectrum reactor, the method of cooling the reactor differs significantly, leading to a variable system response that can be demonstrated and assessed in a non-nuclear test facility.

  12. Laboratory tests on neutron shields for gamma-ray detectors in space

    CERN Document Server

    Hong, J; Hailey, C J

    2000-01-01

    Shields capable of suppressing neutron-induced background in new classes of gamma-ray detectors such as CdZnTe are becoming important for a variety of reasons. These include a high cross section for neutron interactions in new classes of detector materials as well as the inefficient vetoing of neutron-induced background in conventional active shields. We have previously demonstrated through Monte-Carlo simulations how our new approach, supershields, is superior to the monolithic, bi-atomic neutron shields which have been developed in the past. We report here on the first prototype models for supershields based on boron and hydrogen. We verify the performance of these supershields through laboratory experiments. These experimental results, as well as measurements of conventional monolithic neutron shields, are shown to be consistent with Monte-Carlo simulations. We discuss the implications of this experiment for designs of supershields in general and their application to future hard X-ray/gamma-ray experiments...

  13. Experimental study of carbon materials behavior under high temperature and VUV radiation: Application to Solar Probe+ heat shield

    International Nuclear Information System (INIS)

    Eck, J.; Sans, J.-L.; Balat-Pichelin, M.

    2011-01-01

    The aim of the Solar Probe Plus (SP+) mission is to understand how the solar corona is heated and how the solar wind is accelerated. To achieve these goals, in situ measurements are necessary and the spacecraft has to approach the Sun as close as 9.5 solar radii. This trajectory induces extreme environmental conditions such as high temperatures and intense Vacuum Ultraviolet radiation (VUV). To protect the measurement and communication instruments, a heat shield constituted of a carbon material is placed on the top of the probe. In this study, the physical and chemical behavior of carbon materials is experimentally investigated under high temperatures (1600-2100 K), high vacuum (10 -4 Pa) and VUV radiation in conditions near those at perihelion for SP+. Thanks to several in situ and ex situ characterizations, it was found that VUV radiation induced modification of outgassing and of mass loss rate together with alteration of microstructure and morphology.

  14. Bayesian analysis of heat pipe life test data for reliability demonstration testing

    International Nuclear Information System (INIS)

    Bartholomew, R.J.; Martz, H.F.

    1985-01-01

    The demonstration testing duration requirements to establish a quantitative measure of assurance of expected lifetime for heat pipes was determined. The heat pipes are candidate devices for transporting heat generated in a nuclear reactor core to thermoelectric converters for use as a space-based electric power plant. A Bayesian analysis technique is employed, utilizing a limited Delphi survey, and a geometric mean accelerated test criterion involving heat pipe power (P) and temperature (T). Resulting calculations indicate considerable test savings can be achieved by employing the method, but development testing to determine heat pipe failure mechanisms should not be circumvented

  15. Arc Heated Scramjet Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Arc Heated Scramjet Test Facility is an arc heated facility which simulates the true enthalpy of flight over the Mach number range of about 4.7 to 8 for free-jet...

  16. Shielding practice

    International Nuclear Information System (INIS)

    Sauermann, P.F.

    1985-08-01

    The basis of shielding practice against external irradiation is shown in a simple way. For most sources of radiation (point sources) occurring in shielding practice, the basic data are given, mainly in the form of tables, which are required to solve the shielding problems. The application of these data is explained and discussed using practical examples. Thickness of shielding panes of glove boxes for α and β radiation; shielding of sealed γ-radiography sources; shielding of a Co-60 radiation source, and of the manipulator panels for hot cells; damping factors for γ radiation and neutrons; shielding of fast and thermal neutrons, and of bremsstrahlung (X-ray tubes, Kr-85 pressure gas cylinders, 42 MeV betatrons, 20 MeV linacs); two-fold shielding (lead glass windows for hot cells, 14 MeV neutron generators); shielding against scattered radiation. (orig./HP) [de

  17. Light-refractory radiation shielding materials using diatomites and zeolites

    International Nuclear Information System (INIS)

    Murakami, Hideki

    2005-01-01

    It has been recently shown that diatomites and zeolites have some useful characteristics for radiation shielding materials. In this study, the availability of these materials for unexpected accidents in the nuclear sites is examined. The diatomites and zeolites, compared to existing shielding materials, have superior characteristics; low density and light weight, low in radiation-induced problem, high-heat resistance, remain unaltered by the addition of an acid except hydrofluoric acid, porous and large specific surface area, and also excellent water-absorbing property. These porous materials could also expand the shielding energy range applied and be used for fast- and thermal-neutrons, and γ ray. In addition, these materials are easy to store for long periods of time against emergency because of their natural rocks. From the examinations, it is cleared that diatomites and zeolites have excellent properties as radiation shielding materials for emergency use. (author)

  18. ANS shielding standards for light-water reactors

    International Nuclear Information System (INIS)

    Trubey, D.K.

    1982-01-01

    The purpose of the American Nuclear Society Standards Subcommittee, ANS-6, Radiation Protection and Shielding, is to develop standards for radiation protection and shield design, to provide shielding information to other standards-writing groups, and to develop standard reference shielding data and test problems. A total of seven published ANS-6 standards are now current. Additional projects of the subcommittee, now composed of nine working groups, include: standard reference data for multigroup cross sections, gamma-ray absorption coefficients and buildup factors, additional benchwork problems for shielding problems and energy spectrum unfolding, power plant zoning design for normal and accident conditions, process radiation monitors, and design for postaccident radiological conditions

  19. Radiation shielding device

    International Nuclear Information System (INIS)

    Nakagawa, Takahiro; Yamagami, Makoto.

    1996-01-01

    A fixed shielding member made of a radiation shielding material is constituted in perpendicular to an opening formed on radiation shielding walls. The fixed shielding member has one side opened and has other side, the upper portion and the lower portion disposed in close contact with the radiation shielding walls. Movable shielding members made of a radiation shielding material are each disposed openably on both side of the fixed shielding member. The movable shielding member has a shaft as a fulcrum on one side thereof for connecting it to the radiation shielding walls. The other side has a handle attached for opening/closing the movable shielding member. Upon access of an operator, when each one of the movable shielding members is opened/closed on every time, leakage of linear or scattered radiation can be prevented. Even when both of the movable shielding members are opened simultaneously, the fixed shielding member and the movable shielding members form labyrinth to prevent leakage of linear radioactivity. (I.N.)

  20. Modelling and Optimization of Four-Segment Shielding Coils of Current Transformers.

    Science.gov (United States)

    Gao, Yucheng; Zhao, Wei; Wang, Qing; Qu, Kaifeng; Li, He; Shao, Haiming; Huang, Songling

    2017-05-26

    Applying shielding coils is a practical way to protect current transformers (CTs) for large-capacity generators from the intensive magnetic interference produced by adjacent bus-bars. The aim of this study is to build a simple analytical model for the shielding coils, from which the optimization of the shielding coils can be calculated effectively. Based on an existing stray flux model, a new analytical model for the leakage flux of partial coils is presented, and finite element method-based simulations are carried out to develop empirical equations for the core-pickup factors of the models. Using the flux models, a model of the common four-segment shielding coils is derived. Furthermore, a theoretical analysis is carried out on the optimal performance of the four-segment shielding coils in a typical six-bus-bars scenario. It turns out that the "all parallel" shielding coils with a 45° starting position have the best shielding performance, whereas the "separated loop" shielding coils with a 0° starting position feature the lowest heating value. Physical experiments were performed, which verified all the models and the conclusions proposed in the paper. In addition, for shielding coils with other than the four-segment configuration, the analysis process will generally be the same.

  1. TORE-SUPRA: design of thermal radiation shield at 80 K

    International Nuclear Information System (INIS)

    Aymar, R.; Cordier, J.J.; Deschamps, P.; Gauthier, A.; Perin, J.P.

    1982-09-01

    The TORE-SUPRA superconducting toroidal magnet operating at liquid helium temperature, must be protected against thermal radiation from the vessels. For this purpose, stainless steel heat shields, cooled at 80 K, are positioned between coil casings at 4.5 K and the vessels, and constitute a double stiff toroid which completely surrounds the magnet. Mockups have been manufactured to study their design and operating problems. Calculations have also been made to analyse the mechanical behaviour of these shields

  2. Design of a liquid metals heat exchanger

    International Nuclear Information System (INIS)

    Roffiel C, L.

    1976-01-01

    The method that has been used in this design is that of the summation of the partial resistances to the heat transference, permitting to obtain the value of the total coefficient of heat transfer which will be equal to the reciprocal of the summation of all the resistances. The obtained exchanger is of tubes and rod type shield with the primary sodium flowing through the tubes and the secondary sodium flowing in counter-current through the shield. The shield has a nominal diameter of 6 inches and the bundle of tubes is formed by 31 tubes with a nominal diameter of 1/2 inch. The shield as well as the tubes are of stainless steel. The total heat transfer area is of 7.299 square meters, and the effective length of heat transfer is of 3.519 meters. After sizing the interchanger it was proceeded to simulate its functioning through a computer program in which the effective length of heat transfer was divided in 150 points in such a way that according to the integration of the distinct parameters along these points a comparison can finally be made between the design values and those of the simulation, which show a concordance. (author)

  3. Shielded regeneration heating element for a particulate filter

    Science.gov (United States)

    Gonze, Eugene V [Pinckney, MI; Ament, Frank [Troy, MI

    2011-01-04

    An exhaust system includes a particulate filter (PF) that is disposed downstream from an engine. The PF filters particulates within an exhaust from the engine. A heating element heats particulate matter in the PF. A catalyst substrate or a flow converter is disposed upstream from said heating element. The catalyst substrate oxidizes the exhaust prior to reception by the heating element. The flow converter converts turbulent exhaust flow to laminar exhaust flow prior to reception by the heating element.

  4. Topographic evidence for shield volcanism on Io

    International Nuclear Information System (INIS)

    Moore, J.M.; Mcewen, A.S.; Albin, E.F.; Greeley, R.

    1986-01-01

    Similarities between terrestrial shield volcanoes and a volcano on Io observed in Voyager I imagery of the satellite at 30 0 S, 246 0 W are delineated. A photoclinometry model was used to numerically estimate the slope based on the Minnaert photometric function. The slope values are accurate to within 10 deg on the sun-facing slope and 1 deg on the shadow side. As found with shield volcanoes, the feature has a central edifice, 40-50 km in diameter, and a broad, elliptical base, 77 x 90 km across. The summit of the Io volcano is 2.2-2.8 km above the surrounding plane and contains a caldera about 5 km in diameter. The similarity in shape between basaltic terrestrial shield volcanoes and the Io volcano indicates that the Io feature may also be composed of basalt. The composition could be sulfur if the heat flow was under 0.05 W/sq m, as it might have been in later stages of formation. 9 references

  5. Edge modelling of ICFR heated plasmas on PLT

    International Nuclear Information System (INIS)

    Lehrman, I.S.

    1990-01-01

    Theoretical models are presented to explain the edge plasma-antenna interaction that occurs during ICRF heating. The periodic structure of the Faraday shield is found to result in strong ponderomotive force in the vicinity of the antenna. A fluid model, which incorporates the ponderomotive force, predicts an increase in particle transport to the Faraday shield. Kinetic modelling shows that the strong antenna near-fields act to increase the energy of deuterons that strike the shield, thereby increasing the sputtering of shield material. In addition, kinetic modelling shows that E parallel induced between adjacent shield elements acts to heat edge electron that transit close to the antenna. The predictions of the models are shown to be consistent with measurements of enhanced transport on PLT. (author). 27 refs, 17 figs

  6. The optimum shielding for a power reactor using local components

    International Nuclear Information System (INIS)

    AlHajali, S.; Kharita, M. H.; Yousef, S.; Naoom, B.; Al-Nassar, M.

    2009-07-01

    Some local concrete mixtures have been picked out (selected) to be studied as shielding concrete for prospective nuclear power reactor in Syria. This research has interested in the attenuation of gamma radiation and neutron fluxes by these local concretes in the ordinary conditions. In addition to the heat effect on the shielding and physical properties of local concrete. Furthermore the neutron activation of the elements of the local concrete mixtures have been studied that for selection the low-activation materials (low dose rate and short half life radioisotopes). In this way biological shielding for nuclear reactor can be safe during operation of nuclear power reactor, in addition to be low radioactive waste after decommissioning the reactor. (author)

  7. Shielding repair of N.S. Mutsu and related safety features

    International Nuclear Information System (INIS)

    Kishimoto, K.; Miyakoshi, J.

    1978-01-01

    The abnormal radiation level observed on the upper deck of N.S. Mutsu was caused by neutrons streaming through an annular air gap between the reactor pressure vessel and the primary shield. In order to lower this level, a modification of shielding has been planned, for which a shielding mock-up experiment was carried. The foregoing modifications brought some change to the expected behavior of the reactor plant under ship accident situations, and studies were performed to verify plant safety, such as calculations to determine containment vessel integrity and decay heat removal after sinking, and calculations supported by experiment to ascertain the structural strength of the double bottom upon stranding of the ship

  8. Radiant heating tests of several liquid metal heat-pipe sandwich panels

    International Nuclear Information System (INIS)

    Camarda, C.J.; Basiulis, A.

    1983-08-01

    Integral heat pipe sandwich panels, which synergistically combine the thermal efficiency of heat pipes and the structural efficiency of honeycomb sandwich construction, were conceived as a means of alleviating thermal stress problems in the Langley Scramjet Engine. Test panels which utilized two different wickable honeycomb cores, facesheets with screen mesh sintered to the internal surfaces, and a liquid metal working fluid (either sodium or potassium) were tested by radiant heating at various heat load levels. The heat pipe panels reduced maximum temperature differences by 31 percent with sodium working fluid and 45 percent with potassium working fluid. Results indicate that a heat pipe sandwich panel is a potential, simple solution to the engine thermal stress problem. Other interesting applications of the concept include: cold plates for electronic component and circuit card cooling, radiators for large space platforms, low distortion large area structures (e.g., space antennas) and laser mirrors

  9. SU-F-I-71: Fetal Protection During Fluoroscopy: To Shield Or Not to Shield?

    International Nuclear Information System (INIS)

    Joshi, S; Vanderhoek, M

    2016-01-01

    Purpose: Lead aprons are routinely used to shield the fetus from radiation during fluoroscopically guided interventions (FGI) involving pregnant patients. When placed in the primary beam, lead aprons often reduce image quality and increase fluoroscopic radiation output, which can adversely affect fetal dose. The purpose of this work is to identify an effective and practical method to reduce fetal dose without affecting image quality. Methods: A pregnant patient equivalent abdominal phantom is set on the table along with an image quality test object (CIRS model 903) representing patient anatomy of interest. An ion chamber is positioned at the x-ray beam entrance to the phantom, which is used to estimate the relative fetal dose. For three protective methods, image quality and fetal dose measurements are compared to baseline (no protection):1. Lead apron shielding the entire abdomen; 2. Lead apron shielding part of the abdomen, including the fetus; 3. Narrow collimation such that fetus is excluded from the primary beam. Results: With lead shielding the entire abdomen, the dose is reduced by 80% relative to baseline along with a drastic deterioration of image quality. With lead shielding only the fetus, the dose is reduced by 65% along with complete preservation of image quality, since the image quality test object is not shielded. However, narrow collimation results in 90% dose reduction and a slight improvement of image quality relative to baseline. Conclusion: The use of narrow collimation to protect the fetus during FGI is a simple and highly effective method that simultaneously reduces fetal dose and maintains sufficient image quality. Lead aprons are not as effective at fetal dose reduction, and if placed improperly, they can severely degrade image quality. Future work aims to investigate a wider variety of fluoroscopy systems to confirm these results across many different system geometries.

  10. SU-F-I-71: Fetal Protection During Fluoroscopy: To Shield Or Not to Shield?

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, S; Vanderhoek, M [Henry Ford Health System, Detroit, MI (United States)

    2016-06-15

    Purpose: Lead aprons are routinely used to shield the fetus from radiation during fluoroscopically guided interventions (FGI) involving pregnant patients. When placed in the primary beam, lead aprons often reduce image quality and increase fluoroscopic radiation output, which can adversely affect fetal dose. The purpose of this work is to identify an effective and practical method to reduce fetal dose without affecting image quality. Methods: A pregnant patient equivalent abdominal phantom is set on the table along with an image quality test object (CIRS model 903) representing patient anatomy of interest. An ion chamber is positioned at the x-ray beam entrance to the phantom, which is used to estimate the relative fetal dose. For three protective methods, image quality and fetal dose measurements are compared to baseline (no protection):1. Lead apron shielding the entire abdomen; 2. Lead apron shielding part of the abdomen, including the fetus; 3. Narrow collimation such that fetus is excluded from the primary beam. Results: With lead shielding the entire abdomen, the dose is reduced by 80% relative to baseline along with a drastic deterioration of image quality. With lead shielding only the fetus, the dose is reduced by 65% along with complete preservation of image quality, since the image quality test object is not shielded. However, narrow collimation results in 90% dose reduction and a slight improvement of image quality relative to baseline. Conclusion: The use of narrow collimation to protect the fetus during FGI is a simple and highly effective method that simultaneously reduces fetal dose and maintains sufficient image quality. Lead aprons are not as effective at fetal dose reduction, and if placed improperly, they can severely degrade image quality. Future work aims to investigate a wider variety of fluoroscopy systems to confirm these results across many different system geometries.

  11. PWR upper/lower internals shield

    Energy Technology Data Exchange (ETDEWEB)

    Homyk, W.A. [Indian Point Station, Buchanan, NY (United States)

    1995-03-01

    During refueling of a nuclear power plant, the reactor upper internals must be removed from the reactor vessel to permit transfer of the fuel. The upper internals are stored in the flooded reactor cavity. Refueling personnel working in containment at a number of nuclear stations typically receive radiation exposure from a portion of the highly contaminated upper intervals package which extends above the normal water level of the refueling pool. This same issue exists with reactor lower internals withdrawn for inservice inspection activities. One solution to this problem is to provide adequate shielding of the unimmersed portion. The use of lead sheets or blankets for shielding of the protruding components would be time consuming and require more effort for installation since the shielding mass would need to be transported to a support structure over the refueling pool. A preferable approach is to use the existing shielding mass of the refueling pool water. A method of shielding was devised which would use a vacuum pump to draw refueling pool water into an inverted canister suspended over the upper internals to provide shielding from the normally exposed components. During the Spring 1993 refueling of Indian Point 2 (IP2), a prototype shield device was demonstrated. This shield consists of a cylindrical tank open at the bottom that is suspended over the refueling pool with I-beams. The lower lip of the tank is two feet below normal pool level. After installation, the air width of the natural shielding provided by the existing pool water. This paper describes the design, development, testing and demonstration of the prototype device.

  12. Niobium 1 percent zirconium/potassium and titanium/potassium life-test heat pipe design and testing

    Science.gov (United States)

    Sena, J. Tom; Merrigan, Michael A.

    Experimental lifetime performance studies currently in progress use Niobium 1 percent Zirconium (Nb-1Zr) and Titanium (Ti) heat pipes with potassium (K) as the working fluid. A heat pipe life test matrix was developed for testing the heat pipes. Because the corrosion rates in alkali metal heat pipes are affected by temperature and working fluid evaporation flux, the variable parameters of the experimental matrix are established as steady operating temperature and input heat flux density. Total impurity inventory is a factor in corrosion rate so impurity levels are being evaluated in the heat pipe materials before and after testing. Eight Nb-1Zr/K heat pipes were designed, fabricated, and tested. Two of the heat pipes have completed testing whereas the other six are currently in test. These are gravity assist heat pipes operating in a reflux mode. The heat pipes are tested by sets, one set of two and two sets of three heat pipes. Three Ti/K heat pipes are also in life test. These heat pipes are tested as a set in a horizontal position in a capillary pumped annular flow mode. Each of the heat pipes is encapsulated in a quartz vacuum container with a water calorimeter over the vacuum container for power throughput measurements. Thermocouples are attached to the heat pipes for measuring temperature. Heat input to the heat pipes is via an RF coil. The heat pipes are operating at between 800 and 900 K, with heat input fluxes of 13.8 to 30 W/sq cm. Of the Nb-1Zr/K heat pipes, two of the heat pipes have been in operation for 14,000 hours, three over 10,000 hours, and three over 7,000 hours. The Ti/K heat pipes have been in operation for 1,266 hours.

  13. Heat-pipe thermionic reactor concept

    DEFF Research Database (Denmark)

    Storm Pedersen, E.

    1967-01-01

    Main components are reactor core, heat pipe, thermionic converter, secondary cooling system, and waste heat radiator; thermal power generated in reactor core is transported by heat pipes to thermionic converters located outside reactor core behind radiation shield; thermionic emitters are in direct...

  14. Transmission test of the polyethylene shield against 40 and 65 MeV quasi monochrome neutron

    International Nuclear Information System (INIS)

    Nakao, Makoto; Nakamura, Takashi; Sakuya, Yoshimasa; Nauchi, Yasushi; Nakao, Noriaki; Tanaka, Susumu; Sakamoto, Yukio; Nakajima, Hiroshi; Nakane, Yoshihiro.

    1996-01-01

    Using 40 and 65 MeV quasi monochrome neutron of the AVF cyclotron installed at Takasaki Laboratory, Japan Atomic Energy Research Institute, the neutron energy spectra were measured after transmitting the polyethylene shield. Results of the shielding experiments using concrete and iron recognized as main shielding material were proposed previously. As data obtained in the experiments were useful for a bench-mark experiment to investigate for shielding calculation and sectional data set, a shielding calculation simulated with new experiment to compare with and investigate for the previous experimental data. As a result, it was found that calculation result of neutron flux transmitting through the polyethylene shield showed difference with increase of the shield thickness. And, reducing distance of the peak neutron was also found to be over-estimated in its calculation value, such as three and five times on 43 MeV at 120 and 180 cm thick, respectively. (G.K.)

  15. Anode and cathode geometry and shielding gas interdependence in GTAW

    International Nuclear Information System (INIS)

    Key, J.F.

    1979-01-01

    Parametric analyses and high-speed photography of the interdependence of electrode (cathode) tip geometry, shielding gas composition, and groove (anode) geometry indicate that spot-on-plate tests show that blunt cathode shapes have penetration effects similar to addition of a high ionization potential inert gas (such as helium) to the argon shielding gas. Electrode shape and shielding gas composition effects are not synergistic. The time required to develop a given penetration is a function of anode and cathode geometry and shielding gas composition, in addition to other essential welding variables. Spot-on-plate tests are a valid analysis of radical pulsed GTAW. Bead-on-plate tests are a valid analysis of mild pulsed or constant current GTAW

  16. High-heat-flux testing of helium-cooled heat exchangers for fusion applications

    International Nuclear Information System (INIS)

    Youchison, D.L.; Izenson, M.G.; Baxi, C.B.; Rosenfeld, J.H.

    1996-01-01

    High-heat-flux experiments on three types of helium-cooled divertor mock-ups were performed on the 30-kW electron beam test system and its associated helium flow loop at Sandia National Laboratories. A dispersion-strengthened copper alloy (DSCu) was used in the manufacture of all the mock-ups. The first heat exchanger provides for enhanced heat transfer at relatively low flow rates and much reduced pumping requirements. The Creare sample was tested to a maximum absorbed heat flux of 5.8 MW/m 2 . The second used low pressure drops and high mass flow rates to achieve good heat removal. The GA specimen was tested to a maximum absorbed heat flux of 9 MW/m 2 while maintaining a surface temperature below 400 degree C. A second experiment resulted in a maximum absorbed heat flux of 34 MW/m 2 and surface temperatures near 533 degree C. The third specimen was a DSCu, axial flow, helium-cooled divertor mock-up filled with a porous metal wick which effectively increases the available heat transfer area. Low mass flow and high pressure drop operation at 4.0 MPa were characteristic of this divertor module. It survived a maximum absorbed heat flux of 16 MW/m 2 and reached a surface temperature of 740 degree C. Thermacore also manufactured a follow-on, dual channel porous metal-type heat exchanger, which survived a maximum absorbed heat flux of 14 MW/m 2 and reached a maximum surface temperature of 690 degree C. 11refs., 20 figs., 3 tabs

  17. 2003 International High-Level Radioactive Waste Management Conference Breached Drip Shield Test and Validation of a TSPA Sub-Model

    International Nuclear Information System (INIS)

    Walton, Z.P.; Kam, J.T.

    2002-01-01

    The Engineered Barrier System (EBS) represents the system of human engineered barriers in the isolation of high-level radioactive waste in the proposed repository at Yucca Mountain. It is designed to complement and enhance the natural barriers to isolate and prevent the transport of radionuclides into the surrounding environment. The transport mechanism most frequently postulated for radionuclides is liquid water flux that has penetrated the EBS through corrosion breaches in the drip shield and waste packages (WP). A water flux-splitting model is used to predict flow through WP and drip shield breaches and is documented in the ''EBS Radionuclide Transport Abstraction''. A future revision of the ''EBS Radionuclide Transport Abstraction'' will be one component of the total system performance assessment--license application (TSPA-LA) for the Yucca Mountain repository. The flux-splitting model is conservative based on the following assumptions: (1) Drip impact occurs without a loss of water mass. (2) Dripping flux falls exactly at the crown of the drip shield as opposed to different locations on the curved surface, which will effect splashing and flow patterns. (3) The flux passing through a drip shield patch is proportional to the ratio of the length of the penetration in the axial direction to the total axial length of the drip shield. In this assumption all fluid that drips and flows from the drip shield crown toward a penetration will be collected if the axial locations of the source and patch coincide. (4) The potential for evaporation is ignored. Because of these conservatisms, the current version of the flux-splitting model is incapable of accounting for water that has been splashed from the impact location, the deviation of water paths (rivulets) from the axis of impact, and water loss due to evaporation. This paper will present the results of a series of breached drip shield tests used to collect empirical data for the initial validation and further

  18. Upgrade of the LHC magnet interconnections thermal shielding

    Energy Technology Data Exchange (ETDEWEB)

    Musso, Andrea; Barlow, Graeme; Bastard, Alain; Charrondiere, Maryline; Deferne, Guy; Dib, Gaëlle; Duret, Max; Guinchard, Michael; Prin, Hervé; Craen, Arnaud Vande; Villiger, Gilles [CERN European Organization for Nuclear Research, Meyrin 1211, Geneva 23, CH (Switzerland); Chrul, Anna [The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, ul.Radzikowskiego 152, 31-324 Krakow (Poland); Damianoglou, Dimitrios [NTUA National Technical University of Athens, Heeron Polytechniou 9, 15780 Zografou (Greece); Strychalski, Michał [Wroclaw University of Technology, Faculty of Mechanical and Power Engineering, Wyb. Wyspianskiego 27, Wroclaw, 50-370 (Poland); Wright, Loren [Lancaster University, Bailrigg, Lancaster, LA1 4YW (United Kingdom)

    2014-01-29

    The about 1700 interconnections (ICs) between the Large Hadron Collider (LHC) superconducting magnets include thermal shielding at 50-75 K, providing continuity to the thermal shielding of the magnet cryostats to reduce the overall radiation heat loads to the 1.9 K helium bath of the magnets. The IC shield, made of aluminum, is conduction-cooled via a welded bridge to the thermal shield of the adjacent magnets which is actively cooled. TIG welding of these bridges made in the LHC tunnel at installation of the magnets induced a considerable risk of fire hazard due to the proximity of the multi-layer insulation of the magnet shields. A fire incident occurred in one of the machine sectors during machine installation, but fortunately with limited consequences thanks to prompt intervention of the operators. LHC is now undergoing a 2 years technical stop during which all magnet's ICs will have to be opened to consolidate the magnet electrical connections. The IC thermal shields will therefore have to be removed and re-installed after the work is completed. In order to eliminate the risk of fire hazard when re-welding, it has been decided to review the design of the IC shields, by replacing the welded bridges with a mechanical clamping which also preserves its thermal function. An additional advantage of this new solution is the ease in dismantling for maintenance, and eliminating weld-grinding operations at removal needing radioprotection measures because of material activation after long-term operation of the LHC. This paper describes the new design of the IC shields and in particular the theoretical and experimental validation of its thermal performance. Furthermore a status report of the on-going upgrade work in the LHC is given.

  19. Upgrade of the LHC magnet interconnections thermal shielding

    Science.gov (United States)

    Musso, Andrea; Barlow, Graeme; Bastard, Alain; Charrondiere, Maryline; Chrul, Anna; Damianoglou, Dimitrios; Deferne, Guy; Dib, Gaëlle; Duret, Max; Guinchard, Michael; Prin, Hervé; Strychalski, Michał; Craen, Arnaud Vande; Villiger, Gilles; Wright, Loren

    2014-01-01

    The about 1700 interconnections (ICs) between the Large Hadron Collider (LHC) superconducting magnets include thermal shielding at 50-75 K, providing continuity to the thermal shielding of the magnet cryostats to reduce the overall radiation heat loads to the 1.9 K helium bath of the magnets. The IC shield, made of aluminum, is conduction-cooled via a welded bridge to the thermal shield of the adjacent magnets which is actively cooled. TIG welding of these bridges made in the LHC tunnel at installation of the magnets induced a considerable risk of fire hazard due to the proximity of the multi-layer insulation of the magnet shields. A fire incident occurred in one of the machine sectors during machine installation, but fortunately with limited consequences thanks to prompt intervention of the operators. LHC is now undergoing a 2 years technical stop during which all magnet's ICs will have to be opened to consolidate the magnet electrical connections. The IC thermal shields will therefore have to be removed and re-installed after the work is completed. In order to eliminate the risk of fire hazard when re-welding, it has been decided to review the design of the IC shields, by replacing the welded bridges with a mechanical clamping which also preserves its thermal function. An additional advantage of this new solution is the ease in dismantling for maintenance, and eliminating weld-grinding operations at removal needing radioprotection measures because of material activation after long-term operation of the LHC. This paper describes the new design of the IC shields and in particular the theoretical and experimental validation of its thermal performance. Furthermore a status report of the on-going upgrade work in the LHC is given.

  20. Test of thermal shields for early warning station detectors

    DEFF Research Database (Denmark)

    Petersen, Jesper

    1997-01-01

    The properties of thermal shields around NaI crystal scintillators for early warning stations have been checked in order to assure that external temperature variations cannot influence the stability of the measurements....

  1. Actively shielded low level gamma - spectrometric system

    International Nuclear Information System (INIS)

    Mrdja, D.; Bikit, I.; Forkapic, S.; Slivka, J.; Veskovic, M.

    2005-01-01

    The results of the adjusting and testing of the actively shielded low level gamma-spectrometry system are presented. The veto action of the shield reduces the background in the energy region of 50 keV to the 2800 keV for about 3 times. (author) [sr

  2. AP1000 shield building: a constructability challenge

    International Nuclear Information System (INIS)

    Di Giuseppe, Giovanni; Bonanno, Domenico

    2010-01-01

    The AP1000 Shield Building, an enhanced structure which surrounds the containment vessel, consists of standard Reinforced Concrete (RC) and composite Steel and Concrete (SC) construction. In the SC module the surface steel plates, (with attached shear studs and angles) filled with concrete, act as the steel reinforcement in concrete. This is a relatively new design technology that required the appropriate use of structural codes, supplemented with information from applicable tests on similar composite steel and concrete construction. Being a newer design concept, existing codes do not provide explicit guidance on SC construction so a review of literature and test data on composite structures similar to AP1000 shield building was done in order to confirm the technical basis for the design. The SC walls, air inlet structure and roof of the Shield Building will be constructed using modular construction practices and then transported to site and lifted into place. These modules, working also as permanent form-work, will be filled with high strength Self- Consolidating Concrete. (SCC) This paper provides a focused and integrated presentation of the enhanced shield building design methodology, testing, constructability and inspection. (authors)

  3. Thermography Used to Test Conductivity of Carbon Based Cloth

    Science.gov (United States)

    Craven, Paul

    2012-01-01

    Testing of the ability of carbon fiber to radiatively cool a heat source. The carbon fibers are attached to a heat source. The heat conducts into the fiber than along the fiber away from the heat source. The test are done in a vacuum chamber (10-5 Torr typical). The IR camera is viewing the fiber through a ZnSe window. A thermocouple (TC) in contact with the fiber is at the top right hand side of the area of interest and one is near the bottom. Thin shielding fins, seen edge on, are just above the top thermocouple.

  4. The construction of radiation shielding for baby ebm

    International Nuclear Information System (INIS)

    Mohd Rizal Md Chulan; Leo Kwee Wah; Lee Chee Huei; Muhamad Zahidee Taat; Fadzlie Nordin; Abu Bakar Mhd Ghazali; Mohd Yusof Ali; Mohd Rizal Mamat Ibrahim; Syed Nasaruddin Syed Idris; Mahmud Hamid; Mohd Khairi Mohd Said

    2005-01-01

    The construction of radiation shielding for electron beam machine, Baby EBM is necessary for prevention from x-ray (Bremstrahlung) that produced when electron bombarded the target material. The strength of produced x-ray is depending on electron energy and the atomic number of target material. In the construction process of radiation shielding, a few aspects need to be considered such as shielding material and its thickness to be used, mainframe for radiation shielding and the way fabrication to be done. In this project, the thickness of radiation shielding is calculated manually following the NCRP 51 guidelines whereas for frame design, shielding walls and fabrication is considered that the accelerator devices (accelerating tube, focusing device and neck) is vertically and the whole weight of Baby EBM. From the calculations, the thickness and the material for radiation shielding is to be used are 6mm lead. This radiation shielding has been tested (using the parameters that have been considered) to know the leak of radiation (at all surfaces) and direct radiation below 5 cm from the window. The value of high voltage that applied at accelerating tube is 80 kV and the voltage, current supply at electron gun is 3.0 V, 7.1 A respectively. The result of the testing found that dose rate under the window foil is more than 2000 mSv/hr and at all shielding surfaces are less than 0.5 mSv/hr, which is background reading and this is acceptable as compared to the theoretical calculation. The measurement was done using a survey meter typed Ludlum-model 3. (Author)

  5. Tank Applied Testing of Load-Bearing Multilayer Insulation (LB-MLI)

    Science.gov (United States)

    Johnson, Wesley L.; Valenzuela, Juan G.; Feller, Jerr; Plachta, Dave

    2014-01-01

    The development of long duration orbital cryogenic storage systems will require the reduction of heat loads into the storage tank. In the case of liquid hydrogen, complete elimination of the heat load at 20 K is currently impractical due to the limitations in lift available on flight cryocoolers. In order to reduce the heat load, without having to remove heat at 20 K, the concept of Reduced Boil-Off uses cooled shields within the insulation system at approximately 90 K. The development of Load-Bearing Multilayer Insulation (LB-MLI) allowed the 90 K shield with tubing and cryocooler attachments to be suspended within the MLI and still be structurally stable. Coupon testing both thermally and structurally were performed to verify that the LB-MLI should work at the tank applied level. Then tank applied thermal and structural (acoustic) testing was performed to demonstrate the functionality of the LB-MLI as a structural insulation system. The LB-MLI showed no degradation of thermal performance due to the acoustic testing and showed excellent thermal performance when integrated with a 90 K class cryocooler on a liquid hydrogen tank.

  6. SU-F-E-13: Design and Fabrication of Gynacological Brachytherapy Shielding & Non Shielding Applicators Using Indigenously Developed 3D Printing Machine

    International Nuclear Information System (INIS)

    Shanmugam, S

    2016-01-01

    Purpose: In this innovative work we have developed Gynecological Brachytherapy shielding & Non Shielding Applicators and compared with the commercially available applicators by using the indigenously developed 3D Printing machine. Methods: We have successfully indigenously developed the 3D printing machine. Which contain the 3 dimensional motion platform, Heater unit, base plate, ect… To fabricate the Gynecological Brachytherapy shielding & non shielding applicators the 3D design were developed in the computer as virtual design. This virtual design is made in a CAD computer file using a 3D modeling program. Separate programme for the shielding & non shielding applicators. We have also provided the extra catheter insert provision in the applicator for the multiple catheter. The DICOM file of the applicator were then converted to stereo Lithography file for the 3D printer. The shielding & Non Shielding Applicators were printed on a indigenously developed 3D printer material. The same dimensions were used to develop the applicators in the acrylic material also for the comparative study. A CT scan was performed to establish an infill-density calibration curve as well as characterize the quality of the print such as uniformity and the infill pattern. To commission the process, basic CT and dose properties of the printing materials were measured in photon beams and compared against water and soft tissue. Applicator were then scanned to confirm the placement of multiple catheter position. Finally dose distributions with rescanned CTs were compared with those computer-generated applicators. Results: The doses measured from the ion Chamber and X-Omat film test were within 2%. The shielded applicator reduce the rectal dose comparatively with the non shielded applicator. Conclusion: As of submission 3 unique cylinders have been designed, printed, and tested dosimetrically. A standardizable workflow for commissioning custom 3D printed applicators was codified and will be

  7. SU-F-E-13: Design and Fabrication of Gynacological Brachytherapy Shielding & Non Shielding Applicators Using Indigenously Developed 3D Printing Machine

    Energy Technology Data Exchange (ETDEWEB)

    Shanmugam, S

    2016-06-15

    Purpose: In this innovative work we have developed Gynecological Brachytherapy shielding & Non Shielding Applicators and compared with the commercially available applicators by using the indigenously developed 3D Printing machine. Methods: We have successfully indigenously developed the 3D printing machine. Which contain the 3 dimensional motion platform, Heater unit, base plate, ect… To fabricate the Gynecological Brachytherapy shielding & non shielding applicators the 3D design were developed in the computer as virtual design. This virtual design is made in a CAD computer file using a 3D modeling program. Separate programme for the shielding & non shielding applicators. We have also provided the extra catheter insert provision in the applicator for the multiple catheter. The DICOM file of the applicator were then converted to stereo Lithography file for the 3D printer. The shielding & Non Shielding Applicators were printed on a indigenously developed 3D printer material. The same dimensions were used to develop the applicators in the acrylic material also for the comparative study. A CT scan was performed to establish an infill-density calibration curve as well as characterize the quality of the print such as uniformity and the infill pattern. To commission the process, basic CT and dose properties of the printing materials were measured in photon beams and compared against water and soft tissue. Applicator were then scanned to confirm the placement of multiple catheter position. Finally dose distributions with rescanned CTs were compared with those computer-generated applicators. Results: The doses measured from the ion Chamber and X-Omat film test were within 2%. The shielded applicator reduce the rectal dose comparatively with the non shielded applicator. Conclusion: As of submission 3 unique cylinders have been designed, printed, and tested dosimetrically. A standardizable workflow for commissioning custom 3D printed applicators was codified and will be

  8. Intrinsically disordered proteins as molecular shields.

    Science.gov (United States)

    Chakrabortee, Sohini; Tripathi, Rashmi; Watson, Matthew; Schierle, Gabriele S Kaminski; Kurniawan, Davy P; Kaminski, Clemens F; Wise, Michael J; Tunnacliffe, Alan

    2012-01-01

    The broad family of LEA proteins are intrinsically disordered proteins (IDPs) with several potential roles in desiccation tolerance, or anhydrobiosis, one of which is to limit desiccation-induced aggregation of cellular proteins. We show here that this activity, termed molecular shield function, is distinct from that of a classical molecular chaperone, such as HSP70 - while HSP70 reduces aggregation of citrate synthase (CS) on heating, two LEA proteins, a nematode group 3 protein, AavLEA1, and a plant group 1 protein, Em, do not; conversely, the LEA proteins reduce CS aggregation on desiccation, while HSP70 lacks this ability. There are also differences in interaction with client proteins - HSP70 can be co-immunoprecipitated with a polyglutamine-containing client, consistent with tight complex formation, whereas the LEA proteins can not, although a loose interaction is observed by Förster resonance energy transfer. In a further exploration of molecular shield function, we demonstrate that synthetic polysaccharides, like LEA proteins, are able to reduce desiccation-induced aggregation of a water-soluble proteome, consistent with a steric interference model of anti-aggregation activity. If molecular shields operate by reducing intermolecular cohesion rates, they should not protect against intramolecular protein damage. This was tested using the monomeric red fluorescent protein, mCherry, which does not undergo aggregation on drying, but the absorbance and emission spectra of its intrinsic fluorophore are dramatically reduced, indicative of intramolecular conformational changes. As expected, these changes are not prevented by AavLEA1, except for a slight protection at high molar ratios, and an AavLEA1-mCherry fusion protein is damaged to the same extent as mCherry alone. A recent hypothesis proposed that proteomes from desiccation-tolerant species contain a higher degree of disorder than intolerant examples, and that this might provide greater intrinsic stability

  9. Flow and pressure profiles for the primary heat transport system of Rajasthan Atomic Power Station for the operation with few isolated reactor channels near the end shield cracks

    Energy Technology Data Exchange (ETDEWEB)

    Gaikwad, A J; Chaki, S K; Sehgal, R L; Venkat Raj, V [Reactor Safety Division, Bhabha Atomic Research Centre, Mumbai (India)

    1994-06-01

    The RAPS (Rajasthan Atomic Power Station) unit-1 is now operating at reduced power due to the removal of fifteen fuel channels for repair of south end shield cracks. The power level is restricted to 50% of the full power capacity as a precautionary measure. The relative difference that operation at 50% power and higher power would make to the end shield structure is being currently analysed with a view to operate this reactor at higher power levels. As a prerequisite, a detailed thermal hydraulic analysis is essential to assess the effect of reactor operation with isolated channels on the primary heat transport (PHT) system pressure, flow, temperature. The adequacy of the existing trip set points for the plant operation under this mode is also required to be assessed. In the present study, analysis of the PHT system has been carried out to determine the flow and pressure profiles for the RAPS heat transport system for operation of the reactor with isolated channels. (author). 5 refs., 1 fig., 1 tab.

  10. Shielding performance of the NET vacuum vessel

    International Nuclear Information System (INIS)

    Arkuszewski, J.J.; Jaeger, J.F.

    1988-01-01

    To corroborate 1-D deterministic shielding calculations on the Next European Torus (NET) vacuum vessel/shield and shielding blanket, 3-D Monte Carlo calculations have been done with the MCNP code. This should provide information on the poloidal and the toroidal variations. Plasma source simulation and the geometrical model are described, as are other assumptions. The calculations are based on the extended plasma power of 714 MW. The results reported here are the heat deposition in various parts of the device, on the one hand, and the neutron and photon currents at the outer boundary of the vacuum vessel, on the other hand. The latter are needed for the detailed design of the super-conducting magnetic coils. A reasonable statistics has been obtained on the outboard side of the torus, though this cannot be said for the inboard side. The inboard is, however, much more toroidally symmetric than the outboard, so that other methods could be applied such as 2-D deterministic calculations, for instance. (author) 4 refs., 44 figs., 42 tabs

  11. Residential gas-fired sorption heat pumps. Test and technology evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Naeslund, M.

    2008-12-15

    Heat pumps may be the next step in gas-fired residential space heating. Together with solar energy it is an option to combine natural gas and renewable energy. Heat pumps for residential space heating are likely to be based on the absorption or adsorption process, i.e. sorption heat pumps. Manufacturers claim that the efficiency could reach 140-160%. The annual efficiency will be lower but it is clear that gas-fired heat pumps can involve an efficiency and technology step equal to the transition from non-condensing gas boilers with atmospheric burners to condensing boilers. This report contains a review of the current sorption gas-fired heat pumps for residential space heating and also the visible development trends. A prototype heat pump has been laboratory tested. Field test results from Germany and the Netherlands are also used for a technology evaluation. The tested heat pump unit combines a small heat pump and a supplementary condensing gas boiler. Field tests show an average annual efficiency of 120% for this prototype design. The manufacturer abandoned the tested design during the project period and the current development concentrates on a heat pump design only comprising the heat pump, although larger. The heat pump development at three manufacturers in Germany indicates a commercial stage around 2010-2011. A fairly high electricity consumption compared to traditional condensing boilers was observed in the tested heat pump. Based on current prices for natural gas and electricity the cost savings were estimated to 12% and 27% for heat pumps with 120% and 150% annual efficiency respectively. There is currently no widespread performance testing procedure useful for annual efficiency calculations of gas-fired heat pumps. The situation seems to be clearer for electric compression heat pumps regarding proposed testing and calculation procedures. A German environmental label exists and gasfired sorption heat pumps are also slightly treated in the Eco-design work

  12. Radiation shielding for fission reactors

    Energy Technology Data Exchange (ETDEWEB)

    Oka, Yoshiaki [Tokyo Univ., Nuclear Engineering Research Laboratory, Tokyo (Japan)

    2000-03-01

    Radiation shielding aspects relating fission reactors have been reviewed. Domestic activities in the past five years have been mainly described concerning nuclear data, calculation methods, shielding and skyshine experiments, Advanced Boiling Water Reactor (ABWR), Advanced Pressurized Water Reactor (APWR), High Temperature Engineering Test Reactor (HTTR), Experimental and Prototype Fast Reactors (JOYO, MONJU), Demonstration FBR, core shroud replacement of BWR, and spent fuel transportation cask and vessel. These studies have valuable information in safety and cost reduction issues of fission reactor design for not only existing reactors but also new reactor concepts in the next century. It has been concluded that we should maintain existing shielding technologies and improve these data and methods for coming generations in the next millennium. (author)

  13. Development of highly effective neutron shields and neutron absorbing materials

    International Nuclear Information System (INIS)

    Tsuda, K.; Matsuda, F.; Taniuchi, H.; Yuhara, T.; Iida, T.

    1993-01-01

    A wide range of materials, including polymers and hydrogen-occluded alloys that might be usable as the neutron shielding material were examined. And a wide range of materials, including aluminum alloys that might be usable as the neutron-absorbing material were examined. After screening, the candidate material was determined on the basis of evaluation regarding its adaptabilities as a high-performance neutron-shielding and neutron-absorbing material. This candidate material was manufactured for trial, after which material properties tests, neutron-shielding tests and neutron-absorbing tests were carried out on it. The specifications of this material were thus determined. This research has resulted in materials of good performance; a neutron-shielding material based on ethylene propylene rubber and titanium hydride, and a neutron-absorbing material based on aluminum and titanium hydride. (author)

  14. Evaluation of the performance of peridotite aggregates for radiation shielding concrete

    International Nuclear Information System (INIS)

    Wang, Jinjun; Li, Guofeng; Meng, Dechuan

    2014-01-01

    Highlights: • Using peridotite rich in crystal water as aggregates of radiation-shielding concrete. • Performance of peridotite concrete is simulated and compared with ordinary concrete. • Performance of concrete samples is tested. • Neutron shielding performance can be significantly enhanced by peridotite aggregates. - Abstract: Peridotite is a kind of material that is rich in crystal water. In this paper, peridotite is used as fine and coarse aggregates for radiation shielding concrete. The transmission data of different concrete thickness and different energy neutron are calculated using Monte-Carlo method. The neutron shielding performance of the peridotite concrete samples are tested using 241 Am-Be neutron source. The results show that the peridotite is an excellent neutron shielding material

  15. Test of magnetic shielding cases for a 3'' phototube attached to a lead glass counter

    International Nuclear Information System (INIS)

    Ogawa, K.; Sumiyoshi, T.; Takasaki, F.

    1985-09-01

    Effect of a magnetic shielding for a phototube of 3'' diameter attached to a lead glass counter has been studied using permalloy shielding cases with two kinds of shapes. Both cases show sufficient shielding effect with magnetic field up to around 30 gauss. (author)

  16. Investigation on Shielding Failure of a Novel 400 kV Composite tower

    DEFF Research Database (Denmark)

    Wang, Qian; Jahangiri, Tohid; Bak, Claus Leth

    2018-01-01

    In this paper, the lightning shielding performance of a newly-designed 400 kV double-circuit composite tower is investigated. Based on a revised EGM method, traditional shielding failure regions, located at both sides of a traditional tower is no longer a big issue for the fully composite tower......, due to its unusual ‘Y’ configuration. Instead, a new unprotected region exists in the tower center. The maximum lightning current that can lead to shielding failure and the shielding failure rate (SFR) of the new tower are calculated. To verify results from the revised EGM method, a scale model test...... is conducted. Spatial shielding failure probability around the tower is calculated based on ratio of discharge paths recorded in the test. Moreover, based on test results, the maximum shielding failure lightning currents are obtained. Analysis and results derived from the revised EGM method and scale model...

  17. Shielding methods development in the United States

    International Nuclear Information System (INIS)

    Mynatt, F.R.

    1977-01-01

    A generalized shielding methodology has been developed in the U.S.A. that is adaptable to the shielding analyses of all reactor types. Thus far used primarily for liquid-metal fast breeder reactors, the methodology includes several component activities: (1) developing methods for calculating radiation transport through reactor-shield systems; (2) processing cross-section libraries; (3) performing design calculations for specific systems; (4) performing and analyzing pertinent integral experiments; (5) performing sensitivity studies on both the design calculations and the experimental analyses; and, finally, (6) calculating shield design parameters and their uncertainties. The criteria for the methodology are a 5 to 10 percent accuracy for responses at locations near the core and a factor of 2 accuracy for responses at distant locations. The methodology has been successfully adapted to most in-vessel and ex-vessel problems encountered in the shield analyses of the Fast Flux Test Facility and the Fast Flux Test Facility and the Clinch River Breeder Reactor; however, improved techniques are needed for calculating regions in which radiation streaming is dominant. Areas of the methodology in which significant progress has recently been made are those involving the development of cross-section libraries, sensitivity analysis methods, and transport codes

  18. Efficacy of corneal eye shields in protecting patients' eyes from laser irradiation.

    Science.gov (United States)

    Russell, S W; Dinehart, S M; Davis, I; Flock, S T

    1996-07-01

    The continuing development of new types and applications of lasers has appeared to surpass the development of specific eye protection for these lasers. There are a variety of eye shields on the market, but few are specifically designed for laser protection. Our purpose was to test a variety of eye shields by two parameters, light transmission and temperature rise, and to determine from these measurements the most protective shield for patients. We tested four plastic shields, one metal shield, and two sets of tanning goggles for temperature rise and light transmission when irradiated with a beam from a flashlamp-pumped, pulsed-dye laser. The temperature rise at the surface of the shield opposite the laser impacts was no more than 0.2 degree C in any case. White light was transmitted at significant levels through several of the shields, but yellow light transmittance was noted only through the green eye shield. Our measurements indicate that all except the green shield appeared safe from transmission of the 585-nm radiant energy. However, the optimal laser eye shield, in our opinion, would be a composite of several different shields' characteristics.

  19. Shielding considerations for advanced space nuclear reactor systems

    International Nuclear Information System (INIS)

    Angelo, J.P. Jr.; Buden, D.

    1982-01-01

    To meet the anticipated future space power needs, the Los Alamos National Laboratory is developing components for a compact, 100 kW/sub e/-class heat pipe nuclear reactor. The reactor uses uranium dioxide (UO 2 ) as its fuel, and is designed to operate around 1500 k. Heat pipes are used to remove thermal energy from the core without the use of pumps or compressors. The reactor heat pipes transfer mal energy to thermoelectric conversion elements that are advanced versions of the converters used on the enormously successful Voyager missions to the outer planets. Advanced versions of this heat pipe reactor could also be used to provide megawatt-level power plants. The paper reviews the status of this advanced heat pipe reactor and explores the radiation environments and shielding requirements for representative manned and unmanned applications

  20. Results of high heat flux tests and structural analysis of the new solid tungsten divertor tile for ASDEX Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Jaksic, Nikola, E-mail: nikola.jaksic@ipp.mpg.de; Greuner, Henri; Herrmann, Albrecht; Böswirth, Bernd; Vorbrugg, Stefan

    2015-10-15

    Highlights: • The main motivation for the HHF investigation of tungsten tiles was an untypical deformation of some specimens under thermal loading, observed during the previous tests in GLADIS test facility. • A nonlinear finite element (FE) model for simulations of the GLADIS tests has been built. • The unexpected plastic deformations are mainly caused by internal stresses due to the manufacturing process. The small discrepancies among the FEA investigated and measured plastic deformations are most likely caused, beside of the practical difficulties by measuring of low items, also by tile internal stresses. • The influences of the residual stresses caused by special production processes have to be taken into account by design of the structural part made of solid tungsten. - Abstract: Tungsten as plasma-facing material for fusion devices is currently the most favorable candidate. In general solid tungsten is used for shielding the plasma chamber interior against the high heat generated from the plasma. For the purposes of implementation at ASDEX Upgrade and as a contribution to ITER the thermal performance of tungsten tiles has been extensively tested in the high heat flux test facility GLADIS during the development phase and beyond. These tests have been performed on full scale tungsten tile prototypes including their clamping and cooling structure. Simulating the adiabatically thermal loading due to plasma operation in ASDEX Upgrade, the tungsten tiles have been subjected to a thermal load with central heat flux of 10–24 MW/m{sup 2} and absorbed energy between 370 and 680 kJ. This loading results in maximum surface temperatures between 1300 °C and 2800 °C. The tests in GLADIS have been accompanied by intensive numerical investigations using FEA methods. For this purpose a multiple nonlinear finite element model has been set up. This paper discusses the main results of the high heat flux final tests and their numerical simulation. Moreover, first

  1. Results of high heat flux tests and structural analysis of the new solid tungsten divertor tile for ASDEX Upgrade

    International Nuclear Information System (INIS)

    Jaksic, Nikola; Greuner, Henri; Herrmann, Albrecht; Böswirth, Bernd; Vorbrugg, Stefan

    2015-01-01

    Highlights: • The main motivation for the HHF investigation of tungsten tiles was an untypical deformation of some specimens under thermal loading, observed during the previous tests in GLADIS test facility. • A nonlinear finite element (FE) model for simulations of the GLADIS tests has been built. • The unexpected plastic deformations are mainly caused by internal stresses due to the manufacturing process. The small discrepancies among the FEA investigated and measured plastic deformations are most likely caused, beside of the practical difficulties by measuring of low items, also by tile internal stresses. • The influences of the residual stresses caused by special production processes have to be taken into account by design of the structural part made of solid tungsten. - Abstract: Tungsten as plasma-facing material for fusion devices is currently the most favorable candidate. In general solid tungsten is used for shielding the plasma chamber interior against the high heat generated from the plasma. For the purposes of implementation at ASDEX Upgrade and as a contribution to ITER the thermal performance of tungsten tiles has been extensively tested in the high heat flux test facility GLADIS during the development phase and beyond. These tests have been performed on full scale tungsten tile prototypes including their clamping and cooling structure. Simulating the adiabatically thermal loading due to plasma operation in ASDEX Upgrade, the tungsten tiles have been subjected to a thermal load with central heat flux of 10–24 MW/m"2 and absorbed energy between 370 and 680 kJ. This loading results in maximum surface temperatures between 1300 °C and 2800 °C. The tests in GLADIS have been accompanied by intensive numerical investigations using FEA methods. For this purpose a multiple nonlinear finite element model has been set up. This paper discusses the main results of the high heat flux final tests and their numerical simulation. Moreover, first results

  2. Measurements and Monte-Carlo simulations of the particle self-shielding effect of B4C grains in neutron shielding concrete

    Science.gov (United States)

    DiJulio, D. D.; Cooper-Jensen, C. P.; Llamas-Jansa, I.; Kazi, S.; Bentley, P. M.

    2018-06-01

    A combined measurement and Monte-Carlo simulation study was carried out in order to characterize the particle self-shielding effect of B4C grains in neutron shielding concrete. Several batches of a specialized neutron shielding concrete, with varying B4C grain sizes, were exposed to a 2 Å neutron beam at the R2D2 test beamline at the Institute for Energy Technology located in Kjeller, Norway. The direct and scattered neutrons were detected with a neutron detector placed behind the concrete blocks and the results were compared to Geant4 simulations. The particle self-shielding effect was included in the Geant4 simulations by calculating effective neutron cross-sections during the Monte-Carlo simulation process. It is shown that this method well reproduces the measured results. Our results show that shielding calculations for low-energy neutrons using such materials would lead to an underestimate of the shielding required for a certain design scenario if the particle self-shielding effect is not included in the calculations.

  3. Development of radiation shielding standards in the American Nuclear Society

    International Nuclear Information System (INIS)

    Trubey, D.K.

    1975-11-01

    The American Nuclear Society (ANS) is a standards-writing organization-member of the American National Standards Institute (ANSI). The ANS Standards Committee has a subcommittee denoted ANS-6, Shielding, whose charge is to establish standards in connection with radiation protection and shielding, to provide shielding information to other standards writing groups, and to prepare recommended sets of shielding data and test problems. This paper is a progress report of this subcommittee

  4. Thermal-hydraulic analysis and design improvement for coolant channel of ITER shield block

    International Nuclear Information System (INIS)

    Zhao Ling; Li Huaqi; Zheng Jiantao; Yi Jingwei; Kang Weishan; Chen Jiming

    2013-01-01

    As an important part for ITER, shield block is used to shield the neutron heat. The structure design of shield block, especially the inner coolant channel design will influence its cooling effect and safety significantly. In this study, the thermal-hydraulic analysis for shield block has been performed by the computational fluid dynamics software, some optimization suggestions have been proposed and thermal-hydraulic characteristics of the improved model has been analyzed again. The analysis results for improved model show that pressure drop through flow path near the inlet and outlet region of the shield block has been reduced, and the total pressure drop in cooling path has been reduced too; the uniformity of the mass flowrate distribution and the velocity distribution have been improved in main cooling branches; the local highest temperature of solid domain reduced considerably, which could avoid thermal stress becoming too large because of coolant effect unevenly. (authors)

  5. Tower Shielding Reactor II design and operation report. Vol. 3. Assembling and testing of the control mechanism assembly

    International Nuclear Information System (INIS)

    Ward, D.R.; Holland, L.B.

    1979-09-01

    The mechanisms that are operated to control the reactivity of the Tower Shielding Reactor II(TSR-II) are mounted on a Control Mechanism Housing (CMH) that is centered inside the reactor core. The information required to procure, fabricate, inspect, and assemble a CMH is contained in the ORNL engineering drawings listed in the appropriate sections. The components are fabricated and inspected from these drawings in accordance with a Quality Assurance Plan and a Manufacturing Plan. The material in this report describes the acceptance and performance tests of CMH subassemblies used ty the Tower Shielding Facility (TSF) staff but it can also be used by personnel fabricating the components. This information which was developed and used before the advent of the formalized QA Program and Manufacturing Plans evolved during the fabrication and testing of the first five CMHs

  6. Electromagnetic shielding

    International Nuclear Information System (INIS)

    Tzeng, Wen-Shian V.

    1991-01-01

    Electromagnetic interference (EMI) shielding materials are well known in the art in forms such as gaskets, caulking compounds, adhesives, coatings and the like for a variety of EMI shielding purposes. In the past, where high shielding performance is necessary, EMI shielding has tended to use silver particles or silver coated copper particles dispersed in a resin binder. More recently, aluminum core silver coated particles have been used to reduce costs while maintaining good electrical and physical properties. (author). 8 figs

  7. Heat transfer performance test of PDHRS heat exchangers of PGSFR using STELLA-1 facility

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jonggan, E-mail: hong@kaeri.re.kr; Yeom, Sujin; Eoh, Jae-Hyuk; Lee, Tae-Ho; Jeong, Ji-Young

    2017-03-15

    Highlights: • Heat transfer performance test of heat exchangers of PGSFR PDHRS is conducted using STELLA-1 facility. • Steady-state test results of DHX and AHX show good agreement with theoretical results of design codes. • Design codes for DHX and AHX are validated by STELLA-1 experimental results. • Heat transport capability of DHX and AHX is turned out to be satisfactory for reliable plant operation. - Abstract: The STELLA-1 facility was designed and constructed to carry out separate effect tests of the decay heat exchanger (DHX) and natural draft sodium-to-air heat exchanger (AHX), which are key components of the safety-grade decay heat removal system in PGSFR. The DHX is a sodium-to-sodium heat exchanger with a straight tube arrangement, and the AHX is a sodium-to-air heat exchanger with a helically coiled tube arrangement. The model heat exchangers in STELLA-1 have been designed to meet their own similitude conditions from the prototype ones, of which scale ratios were set to be unity in height (or length) and 1/2.5 in heat transfer rate. Consequently, the overall heat transfer coefficients and log-mean temperature differences of the prototypes have been preserved as well. The steady-state test results for each model heat exchanger obtained from STELLA-1 showed good agreement with the theoretical results of the computer design codes for thermal-sizing and a performance analysis of the DHX and AHX. In the DHX result comparison, the discrepancies in the heat transfer rate ranged from −4.4% to 2.0%, and in the AHX result comparison, they ranged from −11.1% to 12.6%. Therefore, the first step in thermal design codes validation for sodium heat exchangers, e.g., DHX and AHX, has been successfully completed with the experimental database obtained from STELLA-1. In addition, the heat transfer performance of the DHX and AHX was found to be satisfactory enough to secure a reliable decay heat removal performance.

  8. Radiation protection and shielding standards for the 1980s

    International Nuclear Information System (INIS)

    Trubey, D.K.

    1982-01-01

    The American Nuclear Society (ANS) is a standards-writing organization member of the American National Standards Institute (ANSI). The ANS Standards Committee has a subcommittee denoted ANS-6, Radiation Protection and Shielding, whose charge is to develop standards for radiation protection and shield design, to provide shielding information to other standards-writing groups, and to develop standard reference shielding data and test problems. This paper is a progress report of this subcommittee. Significant progress has been made since the last comprehensive report to the Society

  9. TIBER II/ETR [Engineering Test Reactor] nuclear shielding and optional tritium breeding system: An overview

    International Nuclear Information System (INIS)

    Lee, J.D.; Sawan, M.

    1987-01-01

    TIBER II, the Tokamak Ignition/Burn Experimental Reactor II, is a design concept developed as the US candidate for an International Engineering Test Reactor (ETR). An important objective of this design is to minimize cost by minimizing major radius while providing a wall loading greater than 1.0 MW/m2 and a total fluence greater than 3.0 MWY/m2 needed for blanket module testing. The shielding required for the superconducting TF coils is an important element in setting TIBER II's 3.0m major radius. 6 refs., 1 fig., 1 tab

  10. A new practical model of testes shield: the effectiveness during abdominopelvic computed tomography.

    Science.gov (United States)

    Sancaktutar, Ahmet Ali; Bozkurt, Yaşar; Önder, Hakan; Söylemez, Haluk; Atar, Murat; Penbegül, Necmettin; Ziypak, Tevfik; Tekbaş, Güven; Tepeler, Abdülkadir

    2012-01-01

    The goal of our prospective study was to measure the effect of a new standard model male gonad shield on the testicular radiation exposure during routine abdominopelvic computed tomography (CT). Two hundred male patients who underwent upper abdominal and pelvic CT examinations were included in our study. To prepare the testes shield (TS), 2 No. 8 fluoroscopy radiation-protection gloves made of bismuth (0.35 mm lead equivalent) were used. These gloves were invaginated into one another and their fingers were turned inside out. Scrotums of all patients were pushed into these lead-containing gloves. Upper abdominal CT (n = 6), pelvic CT (n = 9), and abdominopelvic scanning (n = 185) were performed. Immediately after the CT examinations and at postprocedural day 1, the scrotal examinations were repeated. None of the patients exhibited scrotal laceration, edema, eruption, erythema, tenderness, or pain. During the CT examinations, 22 patients (11%) felt unrest because of their exposed genital regions, without any adverse effect on the procedure. Dosimetric measurements of radioactivity inside the TS (dosimeter I) and outside it (dosimeter II) were 6.8 and 69.00 mSv, respectively. Accordingly, the TS we used in our study reduced the radiation exposure of the testes by 90.2% (10.1 times). We think that the use of this radioprotective TS during radiological diagnostic and therapeutic procedures is an appropriate approach from both a medical and legal perspective. Therefore, we recommend this userfriendly, practical, low-cost, and effective TS for all radiologic procedures.

  11. Radiation shielding design for the VISTA space craft

    Energy Technology Data Exchange (ETDEWEB)

    Pahyn, S.; Pahyn, H.M. [Gazi Univ., Teknik Eoitim Fakultesi, Ankara (Turkey)

    2001-07-01

    An innovative concept for the direct utilisation of fusion energy with laser ignited (D,T) capsules for propulsion is presented with the so called VISTA (Vehicle for Interplanetary Space Transport Applications) concept. VISTA's overall geometry is that of a 50 degrees-half-angle cone to avoid massive radioactive shielding. The 50 degrees-half-angle maximizes the jet efficiency, and is determined by selecting the optimum pellet firing position along the axis of the cone with respect to the plane of the magnet coil. The pellet firing position is in the vacuum. By a total fusion power production of 17 500 MW with a repetition rate of 5 Hz and 3 500 MJ per shot, the propulsion power in form of charged particles has been calculated as {approx} 7 000 MW, making {approx} 40 % of the total fusion power. About 60 % of the fusion energy is carried by the leaking neutrons out of the pellet. Most of them (96 %) escape into vacuum without striking the space ship. Only 4 % enter the frozen hydrogen exhaust cone (about 50 gr.). Total peak nuclear heat generation in the coils is calculated as 4.7 mW/cm{sup 3}. The peak neutron heating is 1.9 mW/cm{sup 3} and the peak {gamma}-ray heating density is 2.8 mW/cm{sup 3}. However, volume averaged nuclear heat generation in the coils is much lower. It is calculated as 0.18, 0.48 and 0.66 mW/cm{sup 3} for neutron, {gamma}-ray and total nuclear heating, respectively. Net shielding mass is found as 170 ton, making < 3 % of the vehicle mass. (authors)

  12. Radiation shielding design for the VISTA space craft

    International Nuclear Information System (INIS)

    Pahyn, S.; Pahyn, H.M.

    2001-01-01

    An innovative concept for the direct utilisation of fusion energy with laser ignited (D,T) capsules for propulsion is presented with the so called VISTA (Vehicle for Interplanetary Space Transport Applications) concept. VISTA's overall geometry is that of a 50 degrees-half-angle cone to avoid massive radioactive shielding. The 50 degrees-half-angle maximizes the jet efficiency, and is determined by selecting the optimum pellet firing position along the axis of the cone with respect to the plane of the magnet coil. The pellet firing position is in the vacuum. By a total fusion power production of 17 500 MW with a repetition rate of 5 Hz and 3 500 MJ per shot, the propulsion power in form of charged particles has been calculated as ∼ 7 000 MW, making ∼ 40 % of the total fusion power. About 60 % of the fusion energy is carried by the leaking neutrons out of the pellet. Most of them (96 %) escape into vacuum without striking the space ship. Only 4 % enter the frozen hydrogen exhaust cone (about 50 gr.). Total peak nuclear heat generation in the coils is calculated as 4.7 mW/cm 3 . The peak neutron heating is 1.9 mW/cm 3 and the peak γ-ray heating density is 2.8 mW/cm 3 . However, volume averaged nuclear heat generation in the coils is much lower. It is calculated as 0.18, 0.48 and 0.66 mW/cm 3 for neutron, γ-ray and total nuclear heating, respectively. Net shielding mass is found as 170 ton, making < 3 % of the vehicle mass. (authors)

  13. About the Scythian Shields

    Directory of Open Access Journals (Sweden)

    About the Scythian Shields

    2017-10-01

    Full Text Available Shields played major role in the armament system of the Scythians. Made from organic materials, they are poorly traced on the materials of archaeological excavations. Besides, scaly surface of shields was often perceived in practice as the remnants of the scaly armor. E. V. Chernenko was able to discern the difference between shields’ scaly plates and armor scales. The top edge of the scales was bent inwards, and shield plates had a wire fixation. These observations let significantly increase the number of shields, found in the burial complexes of the Scythians. The comparison of archaeological materials and the images of Scythian warriors allow distinguishing the main forms of Scythian shields. All shields are divided into fencing shields and cover shields. The fencing shields include round wooden shields, reinforced with bronze sheet, and round moon-shaped shields with a notch at the top, with a metal scaly surface. They came to the Scythians under the Greek influence and are known in the monuments of the 4th century BC. Oval shields with scaly surface (back cover shields were used by the Scythian cavalry. They protected the rider in case of frontal attack, and moved back in case of maneuver or closein fighting. Scythian battle tactics were based on rapid approaching the enemy and throwing spears and further rapid withdrawal. Spears stuck in the shields of enemies, forcing them to drop the shields, uncover, and in this stage of the battle the archers attacked the disorganized ranks of the enemy. That was followed by the stage of close fight. Oval form of a wooden shield with leather covering was used by the Scythian infantry and spearmen. Rectangular shields, including wooden shields and the shields pleached from rods, represented a special category. The top of such shield was made of wood, and a pleached pad on leather basis was attached to it. This shield could be a reliable protection from arrows, but it could not protect against javelins

  14. Performance testing of a hydrogen heat pipe

    International Nuclear Information System (INIS)

    Alario, J.; Kosson, R.

    1980-01-01

    Test results are presented for a reentrant groove heat pipe with hydrogen working fluid. The heat pipe became operational between 20 and 30 K after a cooldown from 77 K without any difficulty. Steady-state performance data taken over a 19 to 23 K temperature range indicated the following: (1) maximum heat transport capacity 5.4 W-m (2) static wicking height 1.42 cm and (3) overall heat pipe conductance 1.7 W/C. These data agreed remarkably well with extrapolations made from comparable ammonia test results. The maximum heat transport capacity is 9.5% larger than the extrapolated value, but the static wicking height is the same. The overall conductance is 29% of the ammonia value, which is close to the ratio of liquid thermal conductivities (24%). Also, recovery from a completely frozen condition was accomplished within 5 min by simply applying an evaporater heat load of 1.8 W

  15. Survivor shielding. Part C. Improvements in terrain shielding

    International Nuclear Information System (INIS)

    Egbert, Stephen D.; Kaul, Dean C.; Roberts, James A.; Kerr, George D.

    2005-01-01

    A number of atomic-bomb survivors were affected by shielding provided by terrain features. These terrain features can be a small hill, affecting one or two houses, or a high mountain that shields large neighborhoods. In the survivor dosimetry system, terrain shielding can be described by a transmission factor (TF), which is the ratio between the dose with and without the terrain present. The terrain TF typically ranges between 0.1 and 1.0. After DS86 was implemented at RERF, the terrain shielding categories were examined and found to either have a bias or an excessive uncertainty that could readily be removed. In 1989, an improvement in the terrain model was implemented at RERF in the revised DS86 code, but the documentation was not published. It is now presented in this section. The solution to the terrain shielding in front of a house is described in this section. The problem of terrain shielding of survivors behind Hijiyama mountain at Hiroshima and Konpirasan mountain at Nagasaki has also been recognized, and a solution to this problem has been included in DS02. (author)

  16. 7 CFR 1755.406 - Shield or armor ground resistance measurements.

    Science.gov (United States)

    2010-01-01

    ...) The insulation resistance test set should have an output voltage not to exceed 500 volts dc and may be... 7 Agriculture 11 2010-01-01 2010-01-01 false Shield or armor ground resistance measurements. 1755... MATERIALS, AND STANDARD CONTRACT FORMS § 1755.406 Shield or armor ground resistance measurements. (a) Shield...

  17. Experience with a servo-hydraulic mechanical testing machine installed in a new shielded active facility at Windscale Nuclear Power Development Laboratories

    International Nuclear Information System (INIS)

    Garlick, A.; Hindmarch, P.; Gravenor, J.G.; Rhodes, D.

    1982-03-01

    An Instron model 1273 servo-hydraulic machine has been installed within a lead-shielded cell at Windscale in order to provide a facility capable of performing a wide range of mechanical tests on nuclear reactor structural materials and fuel assembly components. This particular type of machine was chosen because it has design features associated with the load frame, location of the actuator and adjustment and clamping of the cross-head that are especially well suited to remote operation within a shielded cell. The design of the testing facility is described and the programmes of work that have been completed over the past 11/2 years of operation are reviewed. (author)

  18. Shielding Design and Radiation Shielding Evaluation for LSDS System Facility

    International Nuclear Information System (INIS)

    Kim, Younggook; Kim, Jeongdong; Lee, Yongdeok

    2015-01-01

    As the system characteristics, the target in the spectrometer emits approximately 1012 neutrons/s. To efficiently shield the neutron, the shielding door designs are proposed for the LSDS system through a comparison of the direct shield and maze designs. Hence, to guarantee the radiation safety for the facility, the door design is a compulsory course of the development of the LSDS system. To improve the shielding rates, 250x250 covering structure was added as a subsidiary around the spectrometer. In this study, the evaluations of the suggested shielding designs were conducted using MCNP code. The suggested door design and covering structures can shield the neutron efficiently, thus all evaluations of all conditions are satisfied within the public dose limits. From the Monte Carlo code simulation, Resin(Indoor type) and Tungsten(Outdoor type) were selected as the shielding door materials. From a comparative evaluation of the door thickness, In and Out door thickness was selected 50 cm

  19. Radiation shield analysis for a manned Mars rover

    International Nuclear Information System (INIS)

    Morley, N.J.; ElGenk, M.S.

    1991-01-01

    Radiation shielding for unmanned space missions has been extensively studied; however, designs of man-rated shields are minimal. Engle et al.'s analysis of a man-rated, multilayered shield composed of two and three cycles (a cycle consists of a tungsten and a lithium hydride layer) is the basis for the work reported in this paper. The authors present the results of a recent study of shield designs for a manned Mars rover powered by a 500-kW(thermal) nuclear reactor. A train-type rover vehicle was developed, which consists of four cars and is powered by an SP-100-type nuclear reactor heat source. The maximum permissible dose rate (MPD) from all sources is given by the National Council on Radiation Protection and Measurements as 500 mSv/yr (50 rem/yr) A 3-yr Mars mission (2-yr round trip and 1-yr stay) will deliver a 1-Sv natural radiation dose without a solar particle event, 450 mSv/yr in flight, and an additional 100 mSv on the planet surface. An anomalously large solar particle event could increase the natural radiation dose for unshielded astronauts on the Martian surface to 200 mSv. This limits the MPD to crew members from the nuclear reactor to 300 mSv

  20. Performance of the JT-60SA cryogenic system under pulsed heat loads during acceptance tests

    Science.gov (United States)

    Hoa, C.; Bonne, F.; Roussel, P.; Lamaison, V.; Girard, S.; Fejoz, P.; Goncalves, R.; Vallet, J. C.; Legrand, J.; Fabre, Y.; Pudys, V.; Wanner, M.; Cardella, A.; Di Pietro, E.; Kamiya, K.; Natsume, K.; Ohtsu, K.; Oishi, M.; Honda, A.; Kashiwa, Y.; Kizu, K.

    2017-12-01

    The JT-60SA cryogenic system a superconducting tokamak currently under assembly at Naka, Japan. After one year of commissioning, the acceptance tests were successfully completed in October 2016 in close collaboration with Air Liquide Advanced Technologies (ALaT), the French atomic and alternative energies commission (CEA), Fusion for Energy (F4E) and the Quantum Radiological Science and Technology (QST). The cryogenic system has several cryogenic users at various temperatures: the superconducting magnets at 4.4 K, the current leads at 50 K, the thermal shields at 80 K and the divertor cryo-pumps at 3.7 K. The cryogenic system has an equivalent refrigeration power of about 9.5 kW at 4.5 K, with peak loads caused by the nuclear heating, the eddy currents in the structures and the AC losses in the magnets during cyclic plasma operation. The main results of the acceptance tests will be reported, with emphasis on the management of the challenging pulsed load operation using a liquid helium volume of 7 m3 as a thermal damper.

  1. Electrostatic shielding of transformers

    Energy Technology Data Exchange (ETDEWEB)

    De Leon, Francisco

    2017-11-28

    Toroidal transformers are currently used only in low-voltage applications. There is no published experience for toroidal transformer design at distribution-level voltages. Toroidal transformers are provided with electrostatic shielding to make possible high voltage applications and withstand the impulse test.

  2. Structural Design and Thermal Analysis for Thermal Shields of the MICE Coupling Magnets

    International Nuclear Information System (INIS)

    Green, Michael A.; Pan, Heng; Liu, X.K.; Wang, Li; Wu, Hong; Chen, A.B.; Guo, X.L.

    2009-01-01

    A superconducting coupling magnet made from copper matrix NbTi conductors operating at 4 K will be used in the Muon Ionization Cooling Experiment (MICE) to produce up to 2.6 T on the magnet centerline to keep the muon beam within the thin RF cavity indows. The coupling magnet is to be cooled by two cryocoolers with a total cooling capacity of 3 W at 4.2 K. In order to keep a certain operating temperature margin, the most important is to reduce the heat leakage imposed on cold surfaces of coil cold mass assembly. An ntermediate temperature shield system placed between the coupling coil and warm vacuum chamber is adopted. The shield system consists of upper neck shield, main shields, flexible connections and eight supports, which is to be cooled by the first stage cold heads of two ryocoolers with cooling capacity of 55 W at 60 K each. The maximum temperature difference on the shields should be less than 20 K, so the thermal analyses for the shields with different thicknesses, materials, flexible connections for shields' cooling and structure design for heir supports were carried out. 1100 Al is finally adopted and the maximum temperature difference is around 15 K with 4 mm shield thickness. The paper is to present detailed analyses on the shield system design.

  3. Shielding benchmark problems

    International Nuclear Information System (INIS)

    Tanaka, Shun-ichi; Sasamoto, Nobuo; Oka, Yoshiaki; Kawai, Masayoshi; Nakazawa, Masaharu.

    1978-09-01

    Shielding benchmark problems were prepared by the Working Group of Assessment of Shielding Experiments in the Research Comittee on Shielding Design of the Atomic Energy Society of Japan, and compiled by the Shielding Laboratory of Japan Atomic Energy Research Institute. Twenty-one kinds of shielding benchmark problems are presented for evaluating the calculational algorithm and the accuracy of computer codes based on the discrete ordinates method and the Monte Carlo method and for evaluating the nuclear data used in the codes. (author)

  4. Current Status and Performance Tests of Korea Heat Load Test Facility KoHLT-EB

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sukkwon; Jin, Hyunggon; Shin, Kyuin; Choi, Boguen; Lee, Eohwak; Yoon, Jaesung; Lee, Dongwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Duckhoi; Cho, Seungyon [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    A commissioning test has been scheduled to establish the installation and preliminary performance experiments of the copper hypervapotron mockups. And a qualification test will be performed to evaluate the CuCrZr duct liner in the ITER neutral beam injection facility and the ITER first wall small-scale mockups of the semi-prototype, at up to 1.5 and 5 MW/m{sup 2} high heat flux. Also, this system will be used to test other PFCs for ITER and materials for tokamak reactors. Korean high heat flux test facility(KoHLT-EB; Korea Heat Load Test facility - Electron Beam) by using an electron beam system has been constructed in KAERI to perform the qualification test for ITER blanket FW semi-prototype mockups, hypervapotron cooling devices in fusion devices, and other ITER plasma facing components. The commissioning and performance tests with the supplier of e-gun system have been performed on November 2012. The high heat flux test for hypervapotron cooling device and calorimetry were performed to measure the surface heat flux, the temperature profile and cooling performance. Korean high heat flux test facility for the plasma facing components of nuclear fusion machines will be constructed to evaluate the performance of each component. This facility for the plasma facing materials will be equipped with an electron beam system with a 60 kV acceleration gun.

  5. Improving electrical equipment and control systems for shield integrated mining systems

    Energy Technology Data Exchange (ETDEWEB)

    Rabinovich, Z.M.; Starikov, B.Ya.; Kibrik, I.S.

    1984-06-01

    The design and operation are discussed for electrical equipment and control systems for the 1AShchM, the ANShch and the 2ANShch shield integrated face systems consisting of shield supports, coal plow and chain conveyor. The shield system is used for mining inclined and steep coal seams endangered by coal dust explosions, methane or rock bursts. Control and electrical system for 3 types of shield face mining systems is similar. It cuts energy supply when methane content at working faces exceeds the maximum permissible level, controls haulage rate and cutting rate of a coal plow, controls operation of shield supports (using the Sirena system), controls dust suppression system and its water consumption. The system is also equipped with communications equipment. Tests of the control and electrical system for the integrated shield system carried out in the im. Gagarin mine in the Ukraine are described. The VAUS III control system developed by Dongiprouglemash was tested.

  6. Open Rotor Noise Shielding by Blended-Wing-Body Aircraft

    Science.gov (United States)

    Guo, Yueping; Czech, Michael J.; Thomas, Russell H.

    2015-01-01

    This paper presents an analysis of open rotor noise shielding by Blended Wing Body (BWB) aircraft by using model scale test data acquired in the Boeing Low Speed Aeroacoustic Facility (LSAF) with a legacy F7/A7 rotor model and a simplified BWB platform. The objective of the analysis is the understanding of the shielding features of the BWB and the method of application of the shielding data for noise studies of BWB aircraft with open rotor propulsion. By studying the directivity patterns of individual tones, it is shown that though the tonal energy distribution and the spectral content of the wind tunnel test model, and thus its total noise, may differ from those of more advanced rotor designs, the individual tones follow directivity patterns that characterize far field radiations of modern open rotors, ensuring the validity of the use of this shielding data. Thus, open rotor tonal noise shielding should be categorized into front rotor tones, aft rotor tones and interaction tones, not only because of the different directivities of the three groups of tones, but also due to the differences in their source locations and coherence features, which make the respective shielding characteristics of the three groups of tones distinctly different from each other. To reveal the parametric trends of the BWB shielding effects, results are presented with variations in frequency, far field emission angle, rotor operational condition, engine installation geometry, and local airframe features. These results prepare the way for the development of parametric models for the shielding effects in prediction tools.

  7. Oscillatory vapour shielding of liquid metal walls in nuclear fusion devices.

    Science.gov (United States)

    van Eden, G G; Kvon, V; van de Sanden, M C M; Morgan, T W

    2017-08-04

    Providing an efficacious plasma facing surface between the extreme plasma heat exhaust and the structural materials of nuclear fusion devices is a major challenge on the road to electricity production by fusion power plants. The performance of solid plasma facing surfaces may become critically reduced over time due to progressing damage accumulation. Liquid metals, however, are now gaining interest in solving the challenge of extreme heat flux hitting the reactor walls. A key advantage of liquid metals is the use of vapour shielding to reduce the plasma exhaust. Here we demonstrate that this phenomenon is oscillatory by nature. The dynamics of a Sn vapour cloud are investigated by exposing liquid Sn targets to H and He plasmas at heat fluxes greater than 5 MW m -2 . The observations indicate the presence of a dynamic equilibrium between the plasma and liquid target ruled by recombinatory processes in the plasma, leading to an approximately stable surface temperature.Vapour shielding is one of the interesting mechanisms for reducing the heat load to plasma facing components in fusion reactors. Here the authors report on the observation of a dynamic equilibrium between the plasma and the divertor liquid Sn surface leading to an overall stable surface temperature.

  8. Electromagnetic shielding formulae

    International Nuclear Information System (INIS)

    Dahlberg, E.

    1979-02-01

    This addendum to an earlier collection of electromagnetic shielding formulae (TRITA-EPP-75-27) contains simple transfer matrices suitable for calculating the quasistatic shielding efficiency for multiple transverse-field and axial-field cylindrical and spherical shields, as well as for estimating leakage fields from long coaxial cables and the normal-incidence transmission of a plane wave through a multiple plane shield. The differences and similarities between these cases are illustrated by means of equivalent circuits and transmission line analogies. The addendum also includes a discussion of a possible heuristic improvement of some shielding formulae. (author)

  9. Structural analysis of the Passive Magnetic Shield for the ITER Heating Neutral Beam Injector system

    Energy Technology Data Exchange (ETDEWEB)

    Cabrera, Santiago, E-mail: santiago.cabrera@ciemat.es [CIEMAT Laboratorio Nacional de Fusión, Avda. Complutense 40, 28040 Madrid (Spain); Rincón, Esther; Ahedo, Begoña; Alonso, Javier; Barrera, Germán; Ramos, Francisco; Ríos, Luis [CIEMAT Laboratorio Nacional de Fusión, Avda. Complutense 40, 28040 Madrid (Spain); El-Ouazzani, Anass; García, Pablo [ITER Organization, Route de Vinon-sur-Verdon – CS 90 046, 13067 St Paul Lez Durance Cedex (France); Agarici, Gilbert [Fusion for Energy, Josep Pla 2, Torres Diagonal Litoral B3 – 07/08, 08019 Barcelona (Spain)

    2015-10-15

    The ITER Passive Magnetic Shield (PMS) main function is to protect the Neutral Beam Injector (NBI) from the external magnetic field coming from the tokamak, and to shield the NB cell from the radiation coming from all activated components. The shielding from the external magnetic field is performed in association with the Active Compensation Cooled Correction Coils (ACCC). The Bushing and Transmission Line (TL) PMS also provides structural support for HV bushing, allowing its maintenance and providing air sealing function between NBI cell and High Voltage deck room. The paper summarizes the structural analyses performed in order to evaluate the mechanical behaviour of the HNB PMS under operation combined with seismic event. The RCC-MR Code is used to validate the design, assuming creep is negligible, since the structure is expected to be at room temperature. P-type damage is assessed.

  10. Activities of the Shielding Subcommittee of the ENDF/B Cross Section Evaluation Working Group

    International Nuclear Information System (INIS)

    Roussin, R.W.

    1977-01-01

    The Shielding Subcommittee of the Cross Section Evaluation Working Group (CSEWG) was established in 1967 to help ensure that the content of the ENDF/B cross section library was adequate for treating shielding problems. Early work of the subcommittee concentrated on devising formats for gamma-ray interaction and production data, as well as providing programs for testing the clerical and physics consistency of the files. The Radiation Shielding Information Center (RSIC) collaborated directly with evaluators on behalf of the National Neutron Cross Section Center (NNCSC) to begin testing and adding data sets to be fed into the official ENDF/B libraries. These efforts, which were sponsored by AEC-DRDT (now ERDA-DRDD), were augmented greatly through the Defense Nuclear Agency program of establishing a working cross section library in ENDF format. The effort concentrated on evaluation and testing of materials of interest to DNA programs and providing these for inclusion in the ENDF/B library. Shielding data testing efforts, as a part of the CSEWG Data Testing Program, are now also an integral part of the Shielding Subcommittee effort. Procedures for writing and approving the shielding benchmarks were devised by Shielding Subcommittee members. Data testing benchmark experiments have been documented and analyzed, and the most recent results for ENDF/B-IV are as reported as part of ENDF-230, ''Benchmark Testing of ENDF/B-IV.''

  11. A robust helium-cooled shield/blanket design for ITER

    International Nuclear Information System (INIS)

    Wong, C.P.C.; Bourque, R.F.; Baxi, C.B.

    1993-11-01

    General Atomics Fusion and Reactor Groups have completed a helium-cooled, conceptual shield/blanket design for ITER. The configuration selected is a pressurized tubes design embedded in radially oriented plates. This plate can be made from ferritic steel or from V-alloy. Helium leakage to the plasma chamber is eliminated by conservative, redundant design and proper quality control and inspection programs. High helium pressure at 18 MPa is used to reduce pressure drop and enhance heat transfer. This high gas pressure is believed practical when confined in small diameter tubes. Ample industrial experience exists for safe high gas pressure operations. Inboard shield design is highlighted in this study since the allowable void fraction is more limited. Lithium is used as the thermal contacting medium and for tritium breeding, its safety concerns are minimized by a modular, low inventory design that requires no circulation of the liquid metal for the purpose of heat removal. This design is robust, conservative, reliable, and meets all design goals and requirements. It can also be built with present-day technology

  12. Qualification test for ITER HCCR-TBS mockups with high heat flux test facility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Suk-Kwon, E-mail: skkim93@kaeri.re.kr [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, Seong Dae; Jin, Hyung Gon; Lee, Eo Hwak; Yoon, Jae-Sung; Lee, Dong Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Cho, Seungyon [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2016-11-01

    Highlights: • The test mockups for ITER HCCR (Helium Cooled Ceramic Reflector) TBS (Test Blanket System) in Korea were designed and fabricated. • A thermo-hydraulic analysis was performed using a high heat flux test facility by using electron beam. • The plan for qualification tests was developed to evaluate the thermo-hydraulic efficiency in accordance with the requirements of the ITER Organization. - Abstract: The test mockups for ITER HCCR (Helium Cooled Ceramic Reflector) TBS (Test Blanket System) in Korea were designed and fabricated, and an integrity and thermo-hydraulic performance test should be completed under the same or similar operation conditions of ITER. The test plan for a thermo-hydraulic analysis was developed by using a high heat flux test facility, called the Korean heat load test facility by using electron beam (KoHLT-EB). This facility is utilized for a qualification test of the plasma facing component (PFC) for the ITER first wall and DEMO divertor, and for the thermo-hydraulic experiments. In this work, KoHLT-EB will be used for the plan of the performance qualification test of the ITER HCCR-TBS mockups. This qualification tests should be performed to evaluate the thermo-hydraulic efficiency in accordance with the requirements of the ITER Organization (IO), which describe the specifications and qualifications of the heat flux test facility and test procedure for ITER PFC.

  13. Sensitivity and uncertainty analysis of NET/ITER shielding blankets

    International Nuclear Information System (INIS)

    Hogenbirk, A.; Gruppelaar, H.; Verschuur, K.A.

    1990-09-01

    Results are presented of sensitivity and uncertainty calculations based upon the European fusion file (EFF-1). The effect of uncertainties in Fe, Cr and Ni cross sections on the nuclear heating in the coils of a NET/ITER shielding blanket has been studied. The analysis has been performed for the total cross section as well as partial cross sections. The correct expression for the sensitivity profile was used, including the gain term. The resulting uncertainty in the nuclear heating lies between 10 and 20 per cent. (author). 18 refs.; 2 figs.; 2 tabs

  14. Shielding member for thermonuclear device

    Energy Technology Data Exchange (ETDEWEB)

    Onozuka, Masanori

    1997-06-30

    In a thermonuclear device for shielding fast neutrons by shielding members disposed in a shielding vessel (vacuum vessel and structures such as a blanket disposed in the vacuum vessel), the shielding member comprises a large number of shielding wires formed fine and short so as to have elasticity. The shielding wires are sealed in a shielding vessel together with water, and when the width of the shielding vessel is changed, the shielding wires follow after the change of the width while elastically deforming in the shielding vessel, so that great stress and deformation are not formed thereby enabling to improve reliability. In addition, the length, the diameter and the shape of each of the shielding wires can be selected in accordance with the shielding space of the shielding vessel. Even if the shape of the shielding vessel is complicated, the shielding wires can be inserted easily. Accordingly, the filling rate of the shielding members can be changed easily. It can be produced more easily compared with a conventional spherical pebbles. It can be produced more easily than existent spherical shielding pebbles thereby enabling to reduce the production cost. (N.H.)

  15. Magnetic field shielding system in a tokamak experimental power reactor (EPR): concept and calculations

    International Nuclear Information System (INIS)

    Peng, Y.K.M.; Marcus, F.B.; Dory, R.A.; Moore, J.R.

    1975-01-01

    A poloidal magnetic field shielding system is proposed for a tokamak EPR. This coil system minimizes the pulsed poloidal field that intersects the TF (toroidal field) coils and hence reduces the risk of superconductor quenching and structural failure of the coils. Based on an idealized shielding model, we have determined the configurations for the OH (ohmic heating), the S-VF (shield-vertical field), and the T-VF (trimming-vertical field) coils in a typical tokamak EPR. It is found that the pulsed poloidal field strength is greatly reduced in the TF coil region. The overall requirement in stored plasma and vertical field energy is also substantially reduced when compared with conventional EPR designs. Use of this field shielding system is expected to enhance reliability of the superconducting TF coils in a tokamak EPR

  16. Theoretical analysis and experimental investigation on performance of the thermal shield of accelerator cryomodules by thermo-siphon cooling of liquid nitrogen

    Science.gov (United States)

    Datta, T. S.; Kar, S.; Kumar, M.; Choudhury, A.; Chacko, J.; Antony, J.; Babu, S.; Sahu, S. K.

    2015-12-01

    Five beam line cryomodules with total 27 superconducting Radio Frequency (RF) cavities are installed and commissioned at IUAC to enhance the energy of heavy ion from 15 UD Pelletron. To reduce the heat load at 4.2 K, liquid nitrogen (LN2) cooled intermediate thermal shield is used for all these cryomodules. For three linac cryomodules, concept of forced flow LN2 cooling is used and for superbuncher and rebuncher, thermo-siphon cooling is incorporated. It is noticed that the shield temperature of superbuncher varies from 90 K to 110 K with respect to liquid nitrogen level. The temperature difference can't be explained by using the basic concept of thermo-siphon with the heat load on up flow line. A simple thermo-siphon experimental set up is developed to simulate the thermal shield temperature profile. Mass flow rate of liquid nitrogen is measured with different heat load on up flow line for different liquid levels. It is noticed that small amount of heat load on down flow line have a significant effect on mass flow rate. The present paper will be investigating the data generated from the thermosiphon experimental set up and a theoretical analysis will be presented here to validate the measured temperature profile of the cryomodule shield.

  17. Performance of the JT-60 ICRF antenna with an open type Faraday shield

    International Nuclear Information System (INIS)

    Fujii, T.; Saigusa, M.; Kimura, H.; Moriyama, S.; Annoh, K.; Kawano, Y.; Kobayashi, N.; Kubo, H.; Nishitani, T.; Ogawa, Y.; Shinozaki, S.; Terakado, M.

    1992-01-01

    Performance of the JT-60 ICRF antenna in second and third harmonic heating schemes (f=120, 131 MHz) over past four years of operation is presented. The antenna is mainly composed of phased 2x2 loops, an open type Faraday shield and a metallic casing, forming a plug-in type. The antenna is operated for wide plasma parameters: anti n e =1-7x10 19 m -3 , I P =1-2.8 MA and B T =2.2-4.8 T. The open type Faraday shield shows no deterioration for impurity production and heating efficiency up to the maximum injected power of 3.1 MW (the power density of 16 MW/m 2 ) except the following particular condition. Only for (0, 0) phasing and less than 30 mm of the distance between the outermost magnetic surface and the antenna guard limiter, the radiation loss increases abruptly from ΔP rad /P IC ∝0.3 to ΔP rad /P IC ∝4 in carbon limiter discharges when the injected power exceeds a threshold value of ∝0.5 MW. Strong titanium impurity release from the Faraday shield is observed in coincidence with the increase in the radiation loss. This suggests that strong ion sputtering is induced on the Faraday shield by RF sheaths. (orig.)

  18. News from the Library: Facilitating access to a program for radiation shielding - the Library can help

    CERN Multimedia

    CERN Library

    2013-01-01

    MicroShield® is a comprehensive photon/gamma ray shielding and dose assessment programme. It is widely used for designing shields, estimating source strength from radiation measurements, minimising exposure to people, and teaching shielding principles.   Integrated tools allow the graphing of results, material and source file creation, source inference with decay (dose-to-Bq calculations accounting for decay and daughter buildup), the projection of exposure rate versus time as a result of decay, access to material and nuclide data, and decay heat calculations. The latest version is able to export results using Microsoft Office (formatted and colour-coded for readability). Sixteen geometries accommodate offset dose points and as many as ten standard shields plus source self-shielding and cylinder cladding are available. The library data (radionuclides, attenuation, build-up and dose conversion) reflect standard data from ICRP 38 and 107* as well as ANSI/ANS standards and RSICC publicat...

  19. Evaluation of ilmenite serpentine concrete and ordinary concrete as nuclear reactor shielding

    International Nuclear Information System (INIS)

    Abulfaraj, W.H.; Kamal, S.M.

    1994-01-01

    The present study involves adapting a formal decision methodology to the selection of alternative nuclear reactor concrete shielding. Multiattribute utility theory is selected to accommodate decision maker's preferences. Multiattribute utility theory (MAU) is here employed to evaluate two appropriate nuclear reactor shielding concretes in terms of effectiveness to determine the optimal choice in order to meet the radiation protection regulations. These concretes are Ordinary concrete (O.C.) and Illmenite Serpentile concrete (I.S.C.). These are normal weight concrete and heavy weight heat resistive concrete, respectively. The effectiveness objective of the nuclear reactor shielding is defined and structured into definite attributes and subattributes to evaluate the best alternative. Factors affecting the decision are dose received by reactor's workers, the material properties as well as cost of concrete shield. A computer program is employed to assist in performing utility analysis. Based upon data, the result shows the superiority of Ordinary concrete over Illmenite Serpentine concrete. (Author)

  20. Heat production in an Archean crustal profile and implications for heat flow and mobilization of heat-producing elements

    Science.gov (United States)

    Ashwal, L. D.; Morgan, P.; Kelley, S. A.; Percival, J. A.

    1987-01-01

    Concentrations of heat producing elements (Th, U, and K) in 58 samples representative of the main lithologies in a 100-km transect of the Superior Province of the Canadian Shield have been obtained. The relatively large variation in heat production found among the silicic plutonic rocks is shown to correlate with modal abundances of accessory minerals, and these variations are interpreted as premetamorphic. The present data suggest fundamental differences in crustal radioactivity distributions between granitic and more mafic terrains, and indicate that a previously determined apparently linear heat flow-heat production relationship for the Kapuskasing area does not relate to the distribution of heat production with depth.

  1. Analysis of a shield design for a DT neutron generator test facility.

    Science.gov (United States)

    Chichester, D L; Pierce, G D

    2007-10-01

    Independent numerical simulations have been performed using the MCNP5 and SCALE5 radiation transport codes to evaluate the effectiveness of a concrete facility designed to shield personnel from neutron radiation emitted from DT neutron generators. The analysis considered radiation source terms of 14.1 MeV monoenergetic neutrons located at three discrete locations within the two test vaults in the facility, calculating neutron and photon dose rates at 44 locations around the facility using both codes. In addition, dose rate contours were established throughout the facility using the MCNP5 mesh tally feature. Neutron dose rates calculated outside of the facility are predicted to be below 0.01 mrem/h at all locations when all neutron generator source terms are operating within the facility. Similarly, the neutron dose rate in one empty test vault when the adjacent test vault is being utilized is also less then 0.01 mrem/h. For most calculation locations outside the facility the photon dose rates were less then the neutron dose rates by a factor of 10 or more.

  2. Study and application of high-density concrete in radiation-shielding experiment

    International Nuclear Information System (INIS)

    Wu Chongming; Ding Dexin; Xiao Xuefu; Wang Shaolin; Lin Xingjun; Shen Yuanyuan

    2008-01-01

    According to the demand for research and construction project, a series of systematic experiments and studies on shielding γ-ray radiation concrete with the density of 4.60 t/m 3 were made in such aspects as mix ratio design, construction technology, uniformly shielding etc. Such issues as uniformity in the construction and compactness were solved. The ray test method for uniformly shielding concrete was presented and some technical steps for this high-density concrete used in the process of test design or construction were summed up. A series of tests and practical applications show that this technology of mix ratio design and construction is feasible. (authors)

  3. A contribution to shielding effectiveness analysis of shielded tents

    Directory of Open Access Journals (Sweden)

    Vranić Zoran M.

    2004-01-01

    Full Text Available An analysis of shielding effectiveness (SE of the shielded tents made of the metallised fabrics is given. First, two electromagnetic characteristic fundamental for coupling through electrically thin shield, the skin depth break frequency and the surface resistance or transfer impedance, is defined and analyzed. Then, the transfer function and the SE are analyzed regarding to the frequency range of interest to the Electromagnetic Compatibility (EMC Community.

  4. SPADA: a project to study the effectiveness of shielding materials in space

    International Nuclear Information System (INIS)

    Pugliese, M.; Casolino, M.; Cerciello, V.

    2008-01-01

    The SPADA (SPAce Dosimetry for Astronauts) project is a part of an extensive teamwork that aims to optimize shielding solutions against space radiation. Shielding is indeed all irreplaceable tool to reduce, exposure of crews of future Moon and Mars missions. We concentrated our studies on two flexible materials, Kevlar (R) and Nextel (R), because of their ability to protect space infrastructure from micro meteoroids measured radiation hardness of these shielding materials and compared to polyethylene, generally acknowledged as the most effective space radiation shield with practical applications in spacecraft. Both flight test (on the International Space Station and on the Russian FOTON M3 rocket), with passive dosimeters and accelerator-based experiments have been performed. Accelerator tests using high-energy Fe ions have demonstrated that Kevlar is almost as effective as polyethylene in shielding heavy ions, while Nextel is a poor shield against, high-charge and -energy particles. Preliminary results from spaceflight, however, show that for the radiation environment ill low-Earth orbit. dominated by trapped protons, thin shields of Kevlar and Nextel provide limited reduction.

  5. Space Launch System Base Heating Test: Experimental Operations & Results

    Science.gov (United States)

    Dufrene, Aaron; Mehta, Manish; MacLean, Matthew; Seaford, Mark; Holden, Michael

    2016-01-01

    NASA's Space Launch System (SLS) uses four clustered liquid rocket engines along with two solid rocket boosters. The interaction between all six rocket exhaust plumes will produce a complex and severe thermal environment in the base of the vehicle. This work focuses on a recent 2% scale, hot-fire SLS base heating test. These base heating tests are short-duration tests executed with chamber pressures near the full-scale values with gaseous hydrogen/oxygen engines and RSRMV analogous solid propellant motors. The LENS II shock tunnel/Ludwieg tube tunnel was used at or near flight duplicated conditions up to Mach 5. Model development was based on the Space Shuttle base heating tests with several improvements including doubling of the maximum chamber pressures and duplication of freestream conditions. Test methodology and conditions are presented, and base heating results from 76 runs are reported in non-dimensional form. Regions of high heating are identified and comparisons of various configuration and conditions are highlighted. Base pressure and radiometer results are also reported.

  6. Space Shielding Materials for Prometheus Application

    Energy Technology Data Exchange (ETDEWEB)

    R. Lewis

    2006-01-20

    At the time of Prometheus program restructuring, shield material and design screening efforts had progressed to the point where a down-selection from approximately eighty-eight materials to a set of five ''primary'' materials was in process. The primary materials were beryllium (Be), boron carbide (B{sub 4}C), tungsten (W), lithium hydride (LiH), and water (H{sub 2}O). The primary materials were judged to be sufficient to design a Prometheus shield--excluding structural and insulating materials, that had not been studied in detail. The foremost preconceptual shield concepts included: (1) a Be/B{sub 4}C/W/LiH shield; (2) a Be/B{sub 4}C/W shield; (3) and a Be/B{sub 4}C/H{sub 2}O shield. Since the shield design and materials studies were still preliminary, alternative materials (e.g., {sup nal}B or {sup 10}B metal) were still being screened, but at a low level of effort. Two competing low mass neutron shielding materials are included in the primary materials due to significant materials uncertainties in both. For LiH, irradiation-induced swelling was the key issue, whereas for H{sub 2}O, containment corrosion without active chemistry control was key, Although detailed design studies are required to accurately estimate the mass of shields based on either hydrogenous material, both are expected to be similar in mass, and lower mass than virtually any alternative. Unlike Be, W, and B{sub 4}C, which are not expected to have restrictive temperature limits, shield temperature limits and design accommodations are likely to be needed for either LiH or H{sub 2}O. The NRPCT focused efforts on understanding swelting of LiH, and observed, from approximately fifty prior irradiation tests, that either casting ar thorough out-gassing should reduce swelling. A potential contributor to LiH swelling appears to be LiOH contamination due to exposure to humid air, that can be eliminated by careful processing. To better understand LiH irradiation performance and

  7. Full-scale prototyping of the Hitachi dual-purpose metal cask and verification of its heat transfer characteristics

    International Nuclear Information System (INIS)

    Kumagai, N.; Ishida, N.; Ootsuka, M.; Kamoshida, M.; Hiranuma, T.; Doumori, S.; Hoshikawa, T.; Shimizu, M.; Kashiwakura, J.; Hayashi, M.

    2004-01-01

    Hitachi has been developing dual-purpose metal casks for transport and storage of spent nuclear fuels. The Hitachi cask, HDP69B can store 69 BWR fuel assemblies. The cask features are as follows. 1) The fuel basket is assembled mainly with plates of borated stainless steel. The plates are not welded, but cross-inserted into each other like the dividers in an egg carton. Since the borated stainless steel has relatively low heat conductivity, aluminum alloy plates are inserted along with some stainless steel plates to enhance heat removal ability. 2) Cured resin blocks are fitted into the inner shell of the cask for neutron shielding of the cask body. The resin blocks are surrounded by an aluminum casing which transfers heat of stored fuel from the inner shell to the outer shell of the cask. The block type shield structure eliminates the need for welding the heat transfer fins to the inner and outer shells. The weldless structures of the HDP69B lead to its enhanced manufacturability, but they complicate the heat transfer characteristics because there are gaps between such components as the aluminum casing and inner/outer shells. We carried out full-scale prototyping of the HDP69B and ran a heat transfer test using the prototype. The purposes of the heat transfer test were to check the heat removal ability of the HDP69B and to verify the safety analysis model for heat removal. Results of the heat transfer test and optimized analysis model for heat transfer characteristics of the HDP69B are the focus of this paper. The heat transfer test is summarized as follows. Sixty nine heaters simulating the shape and heat power of spent fuel assemblies were inserted into the fuel basket. After replacing the inner atmosphere with 0.1 MPa of helium, the heat transfer test was started. About 7 days were required to equilibrate the temperature distribution. The temperature at the center of the basket was 194 C. The results confirmed the HDP69B had sufficient heat removal ability. The

  8. Transparent fast neutron shielding material and shielding method

    International Nuclear Information System (INIS)

    Nashimoto, Tetsuji; Katase, Haruhisa.

    1993-01-01

    Polyisobutylene having a viscosity average molecular weight of 20,000 to 80,000 and a hydrogen atom density of greater than 7.0 x 10 22 /cm 3 is used as a fast neutron shielding material. The shielding material is excellent in the shielding performance against fast neutrons, and there is no worry of leakage even when holes should be formed to a vessel. Further, it is excellent in fabricability, relatively safe even upon occurrence of fire and, in addition, it is transparent to enable to observe contents easily. (T.M.)

  9. Electromagnetically shielded building

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, T; Nakamura, M; Yabana, Y; Ishikawa, T; Nagata, K

    1992-04-21

    This invention relates to a building having an electromagnetic shield structure well-suited for application to an information network system utilizing electromagnetic waves, and more particularly to an electromagnetically shielded building for enhancing the electromagnetic shielding performance of an external wall. 6 figs.

  10. Electromagnetically shielded building

    International Nuclear Information System (INIS)

    Takahashi, T.; Nakamura, M.; Yabana, Y.; Ishikawa, T.; Nagata, K.

    1992-01-01

    This invention relates to a building having an electromagnetic shield structure well-suited for application to an information network system utilizing electromagnetic waves, and more particularly to an electromagnetically shielded building for enhancing the electromagnetic shielding performance of an external wall. 6 figs

  11. Water Recovery with the Heat Melt Compactor in a Microgravity Environment

    Science.gov (United States)

    Golliher, Eric L.; Goo, Jonathan; Fisher, John

    2015-01-01

    The Heat Melt Compactor is a proposed utility that will compact astronaut trash, extract the water for eventual re-use, and form dry square tiles that can be used as additional ionizing radiation shields for future human deep space missions. The Heat Melt Compactor has been under development by a consortium of NASA centers. The downstream portion of the device is planned to recover a small amount of water while in a microgravity environment. Drop tower low gravity testing was performed to assess the effect of small particles on a capillary-based water/air separation device proposed for the water recovery portion of the Heat Melt Compactor.

  12. Radiation shielding concrete

    International Nuclear Information System (INIS)

    Kunishima, Shigeru.

    1990-01-01

    The radiation shielding concretes comprise water, cement, fine aggregates consisting of serpentines and blown mist slags, coarse aggregates consisting of serpentines and kneading materials. Since serpentines containing a relatively great amount of water of crystallization in rocks as coarse aggregates and fine aggregates, the hydrogen content in the radiation shielding concretes is increased and the neutron shielding effect is improved. In addition, since serpentines are added as the fine aggregates and blown mists slags of a great specific gravity are used, the specific gravity of the shielding concretes is increased to improve the γ-ray shielding effect. Further, by the use of the kneading material having a water reducing effect and fluidizing effect, and by the bearing effect of the spherical blown mist slags used as the fine aggregates, concrete fluidity can be increased. Accordingly, workability of the radiation shielding concretes can be improved. (T.M.)

  13. Monte Carlo based demonstration of sufficiently dimensioned shielding for a Co-60 testing facility

    International Nuclear Information System (INIS)

    Wind, Michael; Beck, Peter; Latocha, Marcin

    2015-01-01

    The electrical properties of electronic equipment can be changed in an ionized radiation field. The knowledge of these changes is necessary for applications in space, in air traffic and nuclear medicine. Experimental tests will be performed in Co-60 radiation fields in the irradiation facility (TEC facility) of the Seibersdorf Labor GmbH that is in construction. The contribution deals with a simulation that is aimed to calculate the local dose rate within and outside the building for demonstration of sufficient dimensioning of the shielding in compliance with the legal dose rate limits.

  14. Shielding augmentation of roll-on shield from NAPS to Kaiga-2

    International Nuclear Information System (INIS)

    Pradhan, A.S.; Kumar, A.N.

    2000-01-01

    Extensive radiation field surveys were conducted in NAPS and KAPS reactor buildings as a part of commissioning checks on radiation shielding. During such surveys, dose rate higher than the expected values were noticed in fuelling machine service areas. A movable shield, separating high field area fuelling machine vault and low field area fuelling machine service area, known as roll-on shield was identified as one of the causes of high field in fuelling machine service area along with weaker end-shield. This paper discusses systematic approach adopted in bringing down the dose rates in fuelling machine service area by augmentation of roll-on shield. (author)

  15. Study of shielding options for lower ports for mitigation of neutron environment and shutdown dose inside the ITER cryostat

    International Nuclear Information System (INIS)

    Pampin, Raul; Suarez, Alejandro; Arnould, Anne; Casal, Natalia; Juarez, Rafael; Martin, Alex; Moro, Fabio; Mota, Fernando; Polunovskiy, Eduard; Sabourin, Flavien

    2016-01-01

    Highlights: • Mitigation of the radiation environment inside the cryostat needed to reduce ITER coil heating and occupational exposure. • Cryopump and diagnostics lower ports are significant contributors, shielding options for both are explored. • Shielding performance studied in terms of neutron transmission and nuclear heating to coils for a range of options. • Benefits/constraints discussed together with other engineering parameters. - Abstract: Mitigation of the neutron environment inside the cryostat, and of the subsequent decay gamma dose field from activated materials, is necessary in order to reduce heating of coils and occupational exposure, thereby facilitating smooth operation and maintenance of ITER. Several lines of action are currently being explored to mitigate crucial contributions, such as the leakage through the lower ports. Results are presented here for the two types of lower ports in ITER: cryopump ports and remote-handling ports. Different shielding configurations and material options are investigated and compared in terms of neutron attenuation, coil heating and shutdown dose rate reduction, whilst also considering other engineering constraints such as weight or pumping power. Results enable informed decision-making of best compromise solutions for subsequent design and integration.

  16. Study of shielding options for lower ports for mitigation of neutron environment and shutdown dose inside the ITER cryostat

    Energy Technology Data Exchange (ETDEWEB)

    Pampin, Raul, E-mail: raul.pampin@f4e.europa.eu [Fusion For Energy, Josep Pla 2, Barcelona 08019 (Spain); Suarez, Alejandro; Arnould, Anne; Casal, Natalia [ITER Organization, Route de Vinon sur Verdon, 13067 Saint Paul lez Durance Cedex (France); Juarez, Rafael [UNED, Juan del Rosal 12, Madrid 28040 (Spain); Martin, Alex [ITER Organization, Route de Vinon sur Verdon, 13067 Saint Paul lez Durance Cedex (France); Moro, Fabio [ENEA, Via Enrico Fermi, Frascati, Rome (Italy); Mota, Fernando [CIEMAT, Avenida Complutense 40, Madrid 28040 (Spain); Polunovskiy, Eduard; Sabourin, Flavien [ITER Organization, Route de Vinon sur Verdon, 13067 Saint Paul lez Durance Cedex (France)

    2016-11-01

    Highlights: • Mitigation of the radiation environment inside the cryostat needed to reduce ITER coil heating and occupational exposure. • Cryopump and diagnostics lower ports are significant contributors, shielding options for both are explored. • Shielding performance studied in terms of neutron transmission and nuclear heating to coils for a range of options. • Benefits/constraints discussed together with other engineering parameters. - Abstract: Mitigation of the neutron environment inside the cryostat, and of the subsequent decay gamma dose field from activated materials, is necessary in order to reduce heating of coils and occupational exposure, thereby facilitating smooth operation and maintenance of ITER. Several lines of action are currently being explored to mitigate crucial contributions, such as the leakage through the lower ports. Results are presented here for the two types of lower ports in ITER: cryopump ports and remote-handling ports. Different shielding configurations and material options are investigated and compared in terms of neutron attenuation, coil heating and shutdown dose rate reduction, whilst also considering other engineering constraints such as weight or pumping power. Results enable informed decision-making of best compromise solutions for subsequent design and integration.

  17. ICRS1, Proceedings of the First Radiation Shielding Symposium, Cambridge, UK 1958

    International Nuclear Information System (INIS)

    Goebelbecker, Hans-Juergen

    2008-01-01

    Description: The papers of the European Atomic Energy Society Symposium VI-58 on radiation shielding (ICRS1) held at Caius College, Cambridge England from 26 to 29 August 1958 are collected here for the first time in electronic form. This symposium was organised in connection with the Second Atoms for Peace Conference held in Geneva Held in Geneva from 1 to 13 September 1958. The Topics discussed covered gamma rays and neutron radiation; the Methods discussed were analytical approaches, semi-empirical Methods, simple computer codes, Monte Carlo method. Little quality nuclear data for shielding calculations was available and the presentations would concentrate on removal cross-sections and build-up factors. Experimental techniques in support to estimate the effective shielding properties of materials were discussed such as general experimental shielding techniques and experiments on neutron attenuation in different materials and on concrete as shield. Foil detectors for spectra measurements and determination of dose rates were mainly used. The typical issues addressed were gamma-heating, gamma spectra, neutron induced gammas, fission products gamma spectra, skyshine radiation and neutron ducts - streaming. Most participants were researchers from the naval and aeronautics sector

  18. Shield wall evaluation of hot cell facility for advanced spent fuel conditioning process

    International Nuclear Information System (INIS)

    Cho, I. J.; Kuk, D. H.; Ko, J. H.; Jung, W. M.; Yoo, G. S.; Lee, E. P.; Park, S. W.

    2002-01-01

    The future hot cell is located in the Irradiated Material Experiment Facility (IMEF) at the Korea Atomic Energy Research Institute (KAERI). It is β-γ type hot cell that was constructed on the base floor in IMEF building for irradiated material testing. And this hot cell will be used for carrying out the Advanced spent fuel Conditioning Process (ACP). The radiation shielding capability of hot cell should be sufficient to meet the radiation dose requirements in the related regulations. Because the radioactive sources of ACP are expected to be higher than radioactive sources of IMEF design criteria, the future hot cell in current status is unsatisfactory to hot test of ACP. So the shielding analysis of the future hot cell is performed to evaluate shielding ability of concrete shield wall. The shielding analysis included (a) identification of ACP source term; (b) photon source spectrum; (c) shielding analysis by QADS and MCNP-4C; and (d) enhancement of concrete shield wall. In this research, dose rates are obtained according to ACP source, geometry and hot cell shield wall thickness. And the evaluation and reinforcement thickness of the shield wall about future hot cell are concluded

  19. Vasculature of the hive: heat dissipation in the honey bee ( Apis mellifera) hive

    Science.gov (United States)

    Bonoan, Rachael E.; Goldman, Rhyan R.; Wong, Peter Y.; Starks, Philip T.

    2014-06-01

    Eusocial insects are distinguished by their elaborate cooperative behavior and are sometimes defined as superorganisms. As a nest-bound superorganism, individuals work together to maintain favorable nest conditions. Residing in temperate environments, honey bees ( Apis mellifera) work especially hard to maintain brood comb temperature between 32 and 36 °C. Heat shielding is a social homeostatic mechanism employed to combat local heat stress. Workers press the ventral side of their bodies against heated surfaces, absorb heat, and thus protect developing brood. While the absorption of heat has been characterized, the dissipation of absorbed heat has not. Our study characterized both how effectively worker bees absorb heat during heat shielding, and where worker bees dissipate absorbed heat. Hives were experimentally heated for 15 min during which internal temperatures and heat shielder counts were taken. Once the heat source was removed, hives were photographed with a thermal imaging camera for 15 min. Thermal images allowed for spatial tracking of heat flow as cooling occurred. Data indicate that honey bee workers collectively minimize heat gain during heating and accelerate heat loss during cooling. Thermal images show that heated areas temporarily increase in size in all directions and then rapidly decrease to safe levels (<37 °C). As such, heat shielding is reminiscent of bioheat removal via the cardiovascular system of mammals.

  20. A novel comprehensive utilization of vanadium slag: As gamma ray shielding material

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Mengge [School of Metallurgy, Northeastern University, Shenyang 110004 (China); Liaoning Key Laboratory of Metallurgical Resources Recycling Science, Shenyang 110004 (China); Xue, Xiangxin, E-mail: xuexx@mail.neu.edu.cn [School of Metallurgy, Northeastern University, Shenyang 110004 (China); Liaoning Key Laboratory of Metallurgical Resources Recycling Science, Shenyang 110004 (China); Yang, He; Liu, Dong [School of Metallurgy, Northeastern University, Shenyang 110004 (China); Liaoning Key Laboratory of Metallurgical Resources Recycling Science, Shenyang 110004 (China); Wang, Chao [Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Li, Zhefu [Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China)

    2016-11-15

    Highlights: • A novel comprehensive utilization method for vanadium slag is proposed. • Shielding properties of vanadium slag are better than ordinary concrete. • HVL of vanadium slag is between Lead and concrete to shield {sup 60}Co gamma ray. • HVL of composite is higher than concrete when adding amount of vanadium slag is 900. • Composite can be used as injecting mortar for cracks developed in concrete shields. - Abstract: New exploration of vanadium slag as gamma ray shielding material was proposed, the shielding properties of vanadium slag was higher than concrete when the energy of photons was in 0.0001 MeV–100000 MeV. Vanadium slag/epoxy resin composites were prepared, shielding and material properties of materials were tested by {sup 60}Co gamma ray, simultaneous DSC-TGA, electronic universal testing machine and scanning electron microscopy, respectively. The results showed that the shielding properties of composite would be better with the increase of vanadium slag addition amount. The HVL (half value layer thickness) of vanadium slag was between Lead and concrete while composite was higher than concrete when the addition amount of vanadium slag was 900 used as material to shield {sup 60}Co gamma ray, also the resistance temperature of composite was about 215 °C and the bending strength was over 10 MPa. The composites could be used as injecting mortar for cracks developed in biological concrete shields, coating for the floor of the nuclear facilities, and shielding materials by itself.

  1. A study on the characteristics of modified and novolac type epoxy resin based neutron shielding material

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Soo Haeng; Hong, Sun Seok; Oh, Seung Chul; Do, Jae Bum [Korea Atomic Energy Research Institute, Taejon (Korea)

    1998-10-01

    Because the exposure to radiation in the nuclear facilities can be fatal to human, it is important to reduce the radiation dose level to a tolerable level. The purpose of this study is to develop highly effective neutron shielding materials for the shipping and storage cask of radioactive materials or in the nuclear/radiation facilities. In this study, we developed modified and novolac type epoxy resin based neutron shielding materials and their various material properties, including neutron shielding ability, prolonged time heat resistance, thermal and mechanical properties were evaluated experimently. (author). 31 refs., 27 figs., 16 tabs.

  2. Optimal beta-ray shielding thicknesses for different therapeutic radionuclides and shielding materials

    International Nuclear Information System (INIS)

    Cho, Yong In; Kim, Ja Mee; Kim, Jung Hoon

    2017-01-01

    To better understand the distribution of deposited energy of beta and gamma rays according to changes in shielding materials and thicknesses when radionuclides are used for therapeutic nuclear medicine, a simulation was conducted. The results showed that due to the physical characteristics of each therapeutic radionuclide, the thicknesses of shielding materials at which beta-ray shielding takes place varied. Additional analysis of the shielding of gamma ray was conducted for radionuclides that emit both beta and gamma rays simultaneously with results showing shielding effects proportional to the atomic number and density of the shielding materials. Also, analysis of bremsstrahlung emission after beta-ray interactions in the simulation revealed that the occurrence of bremsstrahlung was relatively lower than theoretically calculated and varied depending on different radionuclides. (authors)

  3. Loss of coolant analysis for the tower shielding reactor 2

    International Nuclear Information System (INIS)

    Radcliff, T.D.; Williams, P.T.

    1990-06-01

    The operational limits of the Tower Shielding Reactor-2 (TSR-2) have been revised to account for placing the reactor in a beam shield, which reduces convection cooling during a loss-of-coolant accident (LOCA). A detailed heat transfer analysis was performed to set operating time limits which preclude fuel damage during a LOCA. Since a LOCA is survivable, the pressure boundary need not be safety related, minimizing seismic and inspection requirements. Measurements of reactor component emittance for this analysis revealed that aluminum oxidized in water may have emittance much higher than accepted values, allowing higher operating limits than were originally expected. These limits could be increased further with analytical or hardware improvements. 5 refs., 7 figs

  4. ITER shielding blanket

    Energy Technology Data Exchange (ETDEWEB)

    Strebkov, Yu [ENTEK, Moscow (Russian Federation); Avsjannikov, A [ENTEK, Moscow (Russian Federation); Baryshev, M [NIAT, Moscow (Russian Federation); Blinov, Yu [ENTEK, Moscow (Russian Federation); Shatalov, G [KIAE, Moscow (Russian Federation); Vasiliev, N [KIAE, Moscow (Russian Federation); Vinnikov, A [ENTEK, Moscow (Russian Federation); Chernjagin, A [DYNAMICA, Moscow (Russian Federation)

    1995-03-01

    A reference non-breeding blanket is under development now for the ITER Basic Performance Phase for the purpose of high reliability during the first stage of ITER operation. More severe operation modes are expected in this stage with first wall (FW) local heat loads up to 100-300Wcm{sup -2}. Integration of a blanket design with protective and start limiters requires new solutions to achieve high reliability, and possible use of beryllium as a protective material leads to technologies. The rigid shielding blanket concept was developed in Russia to satisfy the above-mentioned requirements. The concept is based on a copper alloy FW, austenitic stainless steel blanket structure, water cooling. Beryllium protection is integrated in the FW design. Fabrication technology and assembly procedure are described in parallel with the equipment used. (orig.).

  5. Thulium-170 heat source

    Science.gov (United States)

    Walter, Carl E.; Van Konynenburg, Richard; VanSant, James H.

    1992-01-01

    An isotopic heat source is formed using stacks of thin individual layers of a refractory isotopic fuel, preferably thulium oxide, alternating with layers of a low atomic weight diluent, preferably graphite. The graphite serves several functions: to act as a moderator during neutron irradiation, to minimize bremsstrahlung radiation, and to facilitate heat transfer. The fuel stacks are inserted into a heat block, which is encased in a sealed, insulated and shielded structural container. Heat pipes are inserted in the heat block and contain a working fluid. The heat pipe working fluid transfers heat from the heat block to a heat exchanger for power conversion. Single phase gas pressure controls the flow of the working fluid for maximum heat exchange and to provide passive cooling.

  6. The shielding calculation for the CN guide shielding assembly in HANARO

    International Nuclear Information System (INIS)

    Kim, H. S.; Lee, B. C.; Lee, K. H.; Kim, H.

    2006-01-01

    The cold neutron research facility in HANARO is under construction. The area including neutron guides and rotary shutter in the reactor hall should be shielded by the guide shielding assembly which is constructed of heavy concrete blocks and structure. The guide shielding assembly is divided into 2 parts, A and B. Part A is about 6.4 meters apart from the reactor biological shield and it is constructed of heavy concrete blocks whose density is above 4.0g/cm 3 . And part B is a fixed heavy concrete structure whose density is above 3.5g/cm 3 . The rotary shutter is also made with heavy concrete whose density is above 4.0g/cm 3 and includes 5 neutron guides inside. It can block the neutron beam by rotating when CNS is not operating. The dose criterion outside the guide shielding assembly is established as 12.5 μSv/hr which is also applied to reactor shielding in HANARO

  7. Shielding synchrotron light sources: Advantages of circular shield walls tunnels

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, S.L. [Design and Accelerator Operations Consulting, 568 Wintergreen Ct Ridge, NY 11961 (United States); Ghosh, V.J.; Breitfeller, M. [NSLS-II, Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2016-08-11

    Third generation high brightness light sources are designed to have low emittance and high current beams, which contribute to higher beam loss rates that will be compensated by Top-Off injection. Shielding for these higher loss rates will be critical to protect the projected higher occupancy factors for the users. Top-Off injection requires a full energy injector, which will demand greater consideration of the potential abnormal beam miss-steering and localized losses that could occur. The high energy electron injection beam produce significantly higher neutron component dose to the experimental floor than lower energy injection and ramped operations. High energy neutrons produced in the forward direction from thin target beam losses are a major component of the dose rate outside the shield walls of the tunnel. The convention has been to provide thicker 90° ratchet walls to reduce this dose to the beam line users. We present an alternate circular shield wall design, which naturally and cost effectively increases the path length for this forward radiation in the shield wall and thereby substantially decreasing the dose rate for these beam losses. This shield wall design will greatly reduce the dose rate to the users working near the front end optical components but will challenge the beam line designers to effectively utilize the longer length of beam line penetration in the shield wall. Additional advantages of the circular shield wall tunnel are that it's simpler to construct, allows greater access to the insertion devices and the upstream in tunnel beam line components, as well as reducing the volume of concrete and therefore the cost of the shield wall.

  8. Heat flux to the helium cryogenic system elements in the case of incidental vacuum vessel ventilation with atmospheric air

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    The selection process for size in safety equipment for cold vessels or process pipes in cryogenic systems should take into consideration the incidental ventilation of the vacuum vessel with atmospheric air. In this case, a significant heat input toward the cold elements of the system can be expected. A number of experimental investigations have been done for the elements at liquid helium temperature which have been covered with 10 layers of MLI. The typical values of the heat flux were measured in a range of 3.7 to 5.0 kW/m2 of the element surface. The helium temperature parts are typically surrounded by thermal shields that are kept in a temperature range of 50-80K. On the external side, the thermal shields are covered with 30-40 layers of MLI while on the internal side, the shields are bare. The theoretical calculations of heat flux to the thermal shield, with respect to the possibility of air condensation and freezing on the bare side of the thermal shield, show that the heat flux to the thermal shield can...

  9. INTOR radiation shielding for personnel access

    International Nuclear Information System (INIS)

    Gohar, Y.; Abdou, M.

    1981-01-01

    The INTOR reactor shield system consists of the blanket, bulk shield, penetration shield, component shield, and biological shield. The bulk shield consists of two parts: (a) the inboard shield; and (b) the outboard shield. The distinction between the different components of the shield system is essential to satisfy the different design constraints and achieve various objectives

  10. The potential of high heat generating granites as EGS source to generate power and reduce CO2 emissions, western Arabian shield, Saudi Arabia

    Science.gov (United States)

    Chandrasekharam, D.; Lashin, A.; Al Arifi, N.; Al Bassam, A.; El Alfy, M.; Ranjith, P. G.; Varun, C.; Singh, H. K.

    2015-12-01

    Saudi Arabia's dependence on oil and gas to generate electricity and to desalinate sea water is widely perceived to be economically and politically unsustainable. A recent business as usual simulation concluded that the Kingdom would become an oil importer by 2038. There is an opportunity for the country to over come this problem by using its geothermal energy resources. The heat flow and heat generation values of the granites spread over a cumulative area of 161,467 sq. km and the regional stress regime over the western Saudi Arabian shield strongly suggest that this entire area is potential source of energy to support 1) electricity generation, 2) fresh water generation through desalination and 3) extensive agricultural activity for the next two decades. The country can adopt a policy to harness this vast untapped enhanced geothermal systems (EGS) to mitigate climate and fresh water related issues and increase the quantity of oil for export. The country has inherent expertise to develop this resource.

  11. Methodology for Life Testing of Refractory Metal / Sodium Heat Pipes

    International Nuclear Information System (INIS)

    Martin, James J.; Reid, Robert S.

    2006-01-01

    This work establishes an approach to generate carefully controlled data to find heat pipe operating life with material-fluid combinations capable of extended operation. To accomplish this goal acceleration is required to compress 10 years of operational life into 3 years of laboratory testing through a combination of increased temperature and mass fluence. Specific test series have been identified, based on American Society for Testing and Materials (ASTM) specifications, to investigate long-term corrosion rates. The refractory metal selected for demonstration purposes is a molybdenum-44.5% rhenium alloy formed by powder metallurgy. The heat pipes each have an annular crescent wick formed by hot isostatic pressing of molybdenum-rhenium wire mesh. The heat pipes are filled by vacuum distillation with purity sampling of the completed assembly. Round-the-clock heat pipe tests with 6-month destructive and non-destructive inspection intervals are conducted to identify the onset and level of corrosion. Non-contact techniques are employed to provide power to the evaporator (radio frequency induction heating at 1 to 5 kW per heat pipe) and calorimetry at the condenser (static gas gap coupled water cooled calorimeter). The planned operating temperature range extends from 1123 to 1323 K. Accomplishments before project cancellation included successful development of the heat pipe wick fabrication technique, establishment of all engineering designs, baseline operational test requirements, and procurement/assembly of supporting test hardware systems. (authors)

  12. Shielding measurements and augmentation for high power operations of FBTR

    International Nuclear Information System (INIS)

    Jose, M.T.; Baskar, S.; Viswanathan, S.; Balasundar, S.; Subramanian, V.; Ravi, T.; Sundaram, V.M.; Raghunath, V.M.; Varadarajan, S.; Jena, A.K.

    1996-01-01

    Fast breeder test reactor (FBTR) at Kalpakkam is a 40 MWt loop type fast reactor with sodium coolant. Since criticality in 1985, radiation surveys were carried out at all accessible locations at different power levels to find out the hot spots and evaluate the shielding adequacy. This paper gives the details of findings of these measurements, consequent changes in shielding, and the present status of dose profile after the augmentation of shielding. (author). 1 ref., 1 fig., 1 tab

  13. Numerical simulation of a reinforced concrete shield around a nuclear reactor

    International Nuclear Information System (INIS)

    Mahama, Mumuni Salifu

    1996-02-01

    Ghana currently operates a Research Reactor and other nuclear facilities including a Gamma Irradiation Facility, a Radiographic Non-Destructive Testing laboratory and would be operating in the nearest future a Radiotherapy Centre. Each of these has a concrete radiation shield as a major safety device. In carrying out its functions, a concrete radiation shield may be subjected to thermal and mechanical stresses. A facility for analysing these stresses is desirable. Two computer codes have been developed under this programme for radiation shielding computation and stress analysis of cylindrical reactor shields. (au)

  14. Test of a new gonad shield in radiographic hip joint examinations of sucklings and infants

    International Nuclear Information System (INIS)

    Bronsch, T.

    1977-01-01

    Preparation and application of a shield consisting of lead rubber are described. Using the shield, a considerable decrease of radiation exposure to male and female infants could be achieved. Therefore it is recommended for application in mass examinations of hip joints. (author)

  15. The status of shielding research at Tajoura research center

    International Nuclear Information System (INIS)

    El-Bakkoush, F.A.

    2005-01-01

    This paper gives a description to the shielding research activities which have been carried-out at the radiation shielding group ,Tajoura Research Center. This includes the design of different types of concrete shields made from local aggregates which have suitable radiation attenuation properties. These include, Ordinary Concrete(with density p = 2.3 ton/m3) heavy weight concrete (with density p =3.6 ton/m3) and heat resistant concrete with aggregates having bound- in water. Investigation have been carried -out by measuring the neutron and gamma-rays spectra which have been transmitted through barriers having different thickness. These were performed using a collimated beam of reactor neutrons and gamma-ray transmitted from the horizontal channel no 1 of Tajoura-Research reactor with 10 MW Max ape rating power. The transmitted fast neutron and gamma spectra were measured by neutron-gamma spectrometer employing NE-213 liquid organic scintillater. Discrimination of against undesired pulses of neutrons or gamma-ray was achieved by a pulse shape discrimination method based on differences in the shape of the decay part of the emitted pulses. The obtained results are presented in the form of displayed neutron and gamma spectra measured behind different thickness of the investigated concrete shield. These spectra were used to derive the macroscopic cross section for at different energy for material under investigation

  16. Poor Utility of Gonadal Shielding for Pediatric Pelvic Radiographs.

    Science.gov (United States)

    Lee, Mark C; Lloyd, Jessica; Solomito, Matthew J

    2017-07-01

    Plain pelvic radiographs are commonly used for a variety of pediatric orthopedic disorders. Lead shielding is typically placed over the gonads to minimize radiation exposure to these sensitive tissues. However, misplaced shielding can sabotage efforts to protect patients from excessive radiation exposure either by not covering radiosensitive tissues or by obscuring anatomic areas of interest, prompting repeat radiographic examinations. The goal of this study was to determine the incidence of misplaced shielding for pelvic radiographs obtained for pediatric orthopedic evaluation. Children 8 to 16 years old who had an anteroposterior or frog lateral pelvic radiograph between 2008 and 2014 were included. A total of 3400 patients met the inclusion criteria, and 84 boys and 84 girls were randomly selected for review. For both boys and girls, the percentage of incorrectly positioned or missing shields was calculated. Chi-square testing was used to compare the frequency of missing or incorrectly placed shields between sexes and age groups. Pelvic shields were misplaced in 49% of anteroposterior and 63% of frog lateral radiographs. Shielding was misplaced more frequently for girls than for boys on frog lateral radiographs (76% vs 51%; P<.05). Pelvic bony landmarks were often obscured by pelvic shielding, with a frequency of 7% to 43%, depending on the specific landmark. The femoral head and acetabulum were obscured by shielding in up to 2% of all images. The findings suggest that accepted pelvic shielding protocols are ineffective. Consideration should be given to alternative protocols or abandonment of this practice. [Orthopedics. 2017; 40(4):e623-e627.]. Copyright 2017, SLACK Incorporated.

  17. Heat pumps in field test; Waermepumpen im Feldtest

    Energy Technology Data Exchange (ETDEWEB)

    Becker, R. [Fraunhofer-Institut fuer Solare Energiesysteme (ISE), Freiburg im Breisgau (Germany); Miara, M.; Russ, C.

    2007-09-15

    The Fraunhofer ISE has launched two field tests of newly installed heat pumps in 2006. Both deal with the measurement of a high number of heat pump units under real conditions in small houses. Values of volume flows, temperatures, heat quantity and electricity consumption are collected and daily saved and analysed at the Fraunhofer ISE. (orig.)

  18. Radiation shielding plate

    International Nuclear Information System (INIS)

    Kobayashi, Torakichi; Sugawara, Takeo.

    1983-01-01

    Purpose: To reduce the weight and stabilize the configuration of a radiation shielding plate which is used in close contact with an object to be irradiated with radiation rays. Constitution: The radiation shielding plate comprises a substrate made of lead glass and a metallic lead coating on the surface of the substrate by means of plating, vapor deposition or the like. Apertures for permeating radiation rays are formed to the radiation shielding plate. Since the shielding plate is based on a lead glass plate, a sufficient mechanical strength can be obtained with a thinner structure as compared with the conventional plate made of metallic lead. Accordingly, if the shielding plate is disposed on a soft object to be irradiated with radiation rays, the object and the plate itself less deform to obtain a radiation irradiation pattern with distinct edges. (Moriyama, K.)

  19. Status report of shielding investigation in Japan

    International Nuclear Information System (INIS)

    Shindo, M.

    1964-01-01

    The Japan Atomic Energy Research Institute (JAERI) was established in 1954, and immediately proceeded with the construction of a research reactor. The first symposium in Japan on nuclear energy was held in 1957. Most of the papers presented in the field of reactor shielding were limited to shielding materials and their fabrication. In the first stage of our investigations, our efforts were devoted to practical design studies of reactor shielding. As a result of these studies, it was found that the formulae at hand for calculations were inadequate, but at that time no electronic computer was available in Japan nor were theoretical calculations very actively undertaken. Problems on nuclear ship shielding had been investigated at the Ship Research Institute, since 1956 and many fruitful results had been obtained. About that time the Japan Atomic Industry Forum started activities and took the initiative in organizing shielding research. Research workers in the shipbuilding industry in particular have been seriously studying shielding problems. Few years after the first symposium, problems concerning more fundamental studies were treated by many research workers. Shielding experiments using radioisotopes were carried out and many fruitful results were obtained. They are described in the this paper. Medium size electronic computers became available in Japan, permitting a theoretical study group to make an active contribution. They produced some codes, and their results are also described in the following sections. This constituted the second stage of our investigations. A swimming-pool reactor, JRR-4 (Japan Research Reactor-4), has been under construction at JAERI since 1962 and will become critical in autumn 1964. After characteristic tests it will be a very powerful tool for the shielding investigations. This id the beginning of the third stage of investigations

  20. Infinite slab-shield dose calculations

    International Nuclear Information System (INIS)

    Russell, G.J.

    1989-01-01

    I calculated neutron and gamma-ray equivalent doses leaking through a variety of infinite (laminate) slab-shields. In the shield computations, I used, as the incident neutron spectrum, the leakage spectrum (<20 MeV) calculated for the LANSCE tungsten production target at 90 degree to the target axis. The shield thickness was fixed at 60 cm. The results of the shield calculations show a minimum in the total leakage equivalent dose if the shield is 40-45 cm of iron followed by 20-15 cm of borated (5% B) polyethylene. High-performance shields can be attained by using multiple laminations. The calculated dose at the shield surface is very dependent on shield material. 4 refs., 4 figs., 1 tab

  1. A theoretical study of the fast-neutron attenuation in Ghanaian serpentine shields

    International Nuclear Information System (INIS)

    Akaho, E.H.K.; Anim-Sampong, S.

    1994-01-01

    Theoretical calculations were done to determine the suitability of local serpentine rocks for shielding fast neutrons. A coupled neutron-gamma library of 25 energy groups, IRAN3.LIB developed for ANISN/PC was used to generate nuclear data for the tested shields. Calculations were carried out assuming a P 3 scattering order for spherical geometry with S 6 angular quadrature. From the trends of attenuation and computer factors such as relaxation length and transmission there is the indication that the shielding properties of the local shields are better than the foreign serpentine shields used in this study. They are slightly inferior to ordinary concrete employed in shielding power reactors. (author). 9 refs.; 5 tabs.; 5 figs

  2. Electromagnetic shield

    International Nuclear Information System (INIS)

    Miller, J.S.

    1987-01-01

    An electromagnetic shield is described comprising: closed, electrically-conductive rings, each having an open center; and binder means for arranging the rings in a predetermined, fixed relationship relative to each other, the so-arranged rings and binder means defining an outer surface; wherein electromagnetic energy received by the shield from a source adjacent its outer surface induces an electrical current to flow in a predetermined direction adjacent and parallel to the outer surface, through the rings; and wherein each ring is configured to cause source-induced alternating current flowing through the portion of the ring closest to the outer surface to electromagnetically induce an oppositely-directed current in the portion of the ring furthest from the surface, such oppositely-directed current bucking any source-induced current in the latter ring portion and thus reducing the magnitude of current flowing through it, whereby the electromagnetic shielding effected by the shield is enhanced

  3. Nuclear design of the blanket/shield system for a Tokamak Experimental Power Reactor

    International Nuclear Information System (INIS)

    Abdou, M.A.

    1976-01-01

    The various options and trade-offs in the nuclear design of the blanket/shield for a Tokamak Experimental Power Reactor (TEPR) are investigated. The TEPR size and cost are particularly sensitive to the blanket/shield thickness, Δ/sub BS/, on the inner side of the torus. Radition damage to the components of the superconducting magnet and refrigeration power requirements set lower limits on Δ/sub BS/. These limits are developed in terms of TEPR design parameters such as the wall loading, duty cycle, and frequency of magnet anneals. The study of the nuclear performance of various material compositions shows that mixtures of tungsten, or tantalum, or stainless-steel alloys and boron carbide require the smallest Δ/sub BS/ for a given attenuation. This Δ/sub BS/ has to be doubled if the low induced activation materials graphite and aluminum are used. The space problems are greatly eased in the Argonne National Laboratory ANL-TEPR reference design by using two separate segments of the blanket/shield. The inner segment occupies the region of the high magnetic field, uses very efficient attenuators (tungsten- or tantalum- or stainless-steel-boron carbide mixtures), and is only 1 m thick. The outer blanket/shield is 131 cm and consists of an optimized composition of stainless steel and boron carbide. For the design parameters of 0.2 MW/m 2 neutron wall loading and 50 percent duty cycle, the reactor components can operate satisfactorily up to (a) 10 yr for the stainless-steel first wall, (b) 10 yr for the superconductor composite after which magnet warmup becomes necessary, and (c) 30 yr for the Mylar insulation. Nuclear heat generation rates in the blanket/shield and magnet are well within the practical limits for heat removal

  4. Status of the full scale component testing of the KERENA TM emergency condenser and Containment Cooling Condenser

    International Nuclear Information System (INIS)

    Leyer, S.; Maisberger, F.; Herbst, V.; Doll, M.; Wich, M.; Wagner, T.

    2010-01-01

    KERENA TM (SWR1000) is an innovative boiling water reactor concept with passive safety systems. In order to verify the functionality of the passive components required for the transient and accident management, the test facility INKA (Integral-Versuchstand Karlstein) is build in Karlstein (Germany). The key elements of the KERENA TM passive safety concept -the Emergency Condenser, the Containment Cooling Condenser, the Passive Core Flooding System and the Passive Pressure Pulse Transmitter - will be tested at INKA. The Emergency Condenser system transfers heat from the reactor pressure vessel to the core flooding pools of the containment. The heat introduced into the containment during accidents will be transferred to the main heat sink for passive accident management (Shielding/Storage Pool) via the Containment Cooling Condensers. Therefore both systems are part of the passive cooling chain connecting the heat source RPV (Reactor Pressure Vessel) with the heat sink. At the INKA test facility both condensers are tested in full scale setup, in order to determine the heat transfer capacity as function of the main input parameters. For the EC these are the RPV pressure, the RPV water level, the containment pressure and the water temperature of the flooding pools. For the Containment Cooling Condenser the heat transfer capacity is a function of the containment pressure, the water temperature of the Shielding/Storage Pool and the fraction of non -condensable gases in the containment. The status of the test program and the available test data will be presented. An outlook of the future test of the passive core flooding system and the integral system test including also the passive pressure pulse transmitter will be given. (authors)

  5. Laboratory-scale shielded cell for 252Cf

    International Nuclear Information System (INIS)

    Anderl, R.A.; Cargo, C.H.

    1979-01-01

    A shielded-cell facility for storing and handling remotely up to 2 milligram quantities of unencapsulated 252 Cf has been built in a radiochemistry laboratory at the Test Reactor Area of the Idaho National Engineering Laboratory. Unique features of this facility are its compact bulk radiation shield of borated gypsum and transfer lines which permit the transport of fission product activity from 252 Cf fission sources within the cell to a mass separator and to a fast radiochemistry system in nearby rooms

  6. Testing, development and demonstration of large scale solar district heating systems

    DEFF Research Database (Denmark)

    Furbo, Simon; Fan, Jianhua; Perers, Bengt

    2015-01-01

    In 2013-2014 the project “Testing, development and demonstration of large scale solar district heating systems” was carried out within the Sino-Danish Renewable Energy Development Programme, the so called RED programme jointly developed by the Chinese and Danish governments. In the project Danish...... know how on solar heating plants and solar heating test technology have been transferred from Denmark to China, large solar heating systems have been promoted in China, test capabilities on solar collectors and large scale solar heating systems have been improved in China and Danish-Chinese cooperation...

  7. Induction Heating on Dynamic Tensile Tests in CEA Saclay

    International Nuclear Information System (INIS)

    Averty, X.; Yvon, P.; Duguay, C.; Pizzanelli, J. P.; Basini, V.

    2001-01-01

    The LCMI (Laboratory for characterization of irradiated materials), located in CEA from Saclay, is in charge of the mechanical tests on irradiated materials. The dynamic tensile testing machine, in a hot cell equipped with two remote handling, has been first improved in 1995, to fulfill the French safety programs on Reactivity Initiated Accident (RIA). One objective of this machine is to obtain mechanical property data on current Zircaloy cladding types needed to quality the cladding's response under RIA or LOCA transient loading and thermal conditions. For the RIA, this means testing at strain rates up to 5 s' and heating rates up to 200 degree centigree-s''-1, while for Loss of Coolant Accidents (LOCA) testing at strain rates of 10''-3 s''-1 and heating rates of 20 degree centigree s''-1 would be appropriate. The tensile samples are machined with a spark erosion machine, directly from pieces of cladding previously de fueled. Two kinds of samples can be machined in the cladding. Axial samples in order to test axial mechanical characteristics Ring samples in order to test transverse mechanical characteristics, more representative of RIA conditions. On one hand, the axial tensile tests were performed using the Joule effect, and heating rates up to about 500 degree centigree .s''-1 were obtained. This enabled us to perform the axial tests in a satisfactory manner. On the other hand, the tensile ring were first performed in a vertical furnace with a heating rate about 0.2 degree centigree.s''-1 and a thermal stability about 1 degree centigree. For temperatures above 480 degree centigree, the mechanical characteristics showed a sharp drop which could be attributed to irradiation defect annealing. Therefore we have recently developed an induction heating system to reach heating rates high enough (200 degree centigree.s''-1) to prevent any significant annealing before performing the ring tensile tests. To apply a uniaxial tangential tension, two matching half

  8. Evaporation and condensation devices for passive heat removal systems in nuclear power engineering

    International Nuclear Information System (INIS)

    Gershuni, A.N.; Pis'mennyj, E.N.; Nishchik, A.P.

    2016-01-01

    The paper justifies advantages of evaporation and condensation heat transfer devices as means of passive heat removal and thermal shielding in nuclear power engineering. The main thermophysical factors that limit heat transfer capacity of evaporation and condensation systems have been examined in the research. The results of experimental studies of heat engineering properties of elongated (8-m) vertically oriented evaporation and condensation devices (two-phase thermosyphons), which showed a high enough heat transfer capacity, as well as stability and reliability both in steady state and in start-up modes, are provided. The paper presents the examples of schematic designs of evaporation and condensation systems for passive heat removal and thermal shielding in application to nuclear power equipment

  9. Technical management on commissioning test of nuclear heating reactor

    International Nuclear Information System (INIS)

    Zhang Yajun; Su Qingshan

    1999-01-01

    The commissioning is the last construction stage of a nuclear heating project. The commissioning quality will directly affect on the safe operation and availability of the heating reactor. The author presents the whole test process until the completion of the test report from the point of test documents, including the preparation and execution of the test, the management of the various unexpected events during the test. And it will be emphatically discussed that the managing procedures of the various unexpected events during the test, including temporary control change, setpoint change, unexpected events and design change

  10. Latest experiences in inspecting the inside of BWR vessel shields

    Energy Technology Data Exchange (ETDEWEB)

    Alberdi, R.; Gonzalez, E.

    2001-07-01

    In the last few years, the owners of BWR nuclear power plants have been forced to address new fuel shield inspection requirements, TECNATOM has responded to this situation by launching the TEIDE projects, which include development of an inspection machine and the corresponding Non-Destructive Tests to examine the inside of this shield. With these projects, TECNATOM has performed more than 12 fuel shield inspections in different countries. This article describes the experience gained in the last three years. (Author)

  11. Performance Test of Korea Heat Load Test Facility (KoHLT-EB) for the Plasma Facing Components of Fusion Reactor

    International Nuclear Information System (INIS)

    Kim, Suk-Kwon; Jin, Hyung Gon; Lee, Eo Hwak; Yoon, Jae-Sung; Lee, Dong Won; Cho, Seungyon

    2014-01-01

    The main components of the plasma facing components (PFCs) in the tokamak are the blanket first wall and divertor, which include the armour materials, the heat sink with the cooling mechanism, and the diagnostics devices for the temperature measurement. The Korea Heat Load Test facility by using electron beam (KoHLT-EB) has been operating for the plasma facing components to develop fusion engineering. This electron beam facility was constructed using a 300 kW electron gun and a cylindrical vacuum chamber. Performance tests were carried out for the calorimetric calibrations with Cu dummy mockup and for the heat load test of large Cu module. For the simulation of the heat load test of each mockup, the preliminary thermal-hydraulic analyses with ANSYS-CFX were performed. For the development of the plasma facing components in the fusion reactors, test mockups were fabricated and tested in the high heat flux test facility. To perform a beam profile test, an assessment of the possibility of electron beam Gaussian power density profile and the results of the absorbed power for that profile before the test starts are needed. To assess the possibility of a Gaussian profile, for the qualification test of the Gaussian heat load profile, a calorimeter mockup and large Cu module were manufactured to simulate real heat. For this high-heat flux test, the Korean high-heat flux test facility using an electron beam system was constructed. In this facility, a cyclic heat flux test will be performed to measure the surface heat flux, surface temperature profile, and cooling capacity

  12. Performance Test of Korea Heat Load Test Facility (KoHLT-EB) for the Plasma Facing Components of Fusion Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Suk-Kwon; Jin, Hyung Gon; Lee, Eo Hwak; Yoon, Jae-Sung; Lee, Dong Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Cho, Seungyon [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    The main components of the plasma facing components (PFCs) in the tokamak are the blanket first wall and divertor, which include the armour materials, the heat sink with the cooling mechanism, and the diagnostics devices for the temperature measurement. The Korea Heat Load Test facility by using electron beam (KoHLT-EB) has been operating for the plasma facing components to develop fusion engineering. This electron beam facility was constructed using a 300 kW electron gun and a cylindrical vacuum chamber. Performance tests were carried out for the calorimetric calibrations with Cu dummy mockup and for the heat load test of large Cu module. For the simulation of the heat load test of each mockup, the preliminary thermal-hydraulic analyses with ANSYS-CFX were performed. For the development of the plasma facing components in the fusion reactors, test mockups were fabricated and tested in the high heat flux test facility. To perform a beam profile test, an assessment of the possibility of electron beam Gaussian power density profile and the results of the absorbed power for that profile before the test starts are needed. To assess the possibility of a Gaussian profile, for the qualification test of the Gaussian heat load profile, a calorimeter mockup and large Cu module were manufactured to simulate real heat. For this high-heat flux test, the Korean high-heat flux test facility using an electron beam system was constructed. In this facility, a cyclic heat flux test will be performed to measure the surface heat flux, surface temperature profile, and cooling capacity.

  13. Shielding Calculations for PUSPATI TRIGA Reactor (RTP) Fuel Transfer Cask with Micro shield

    International Nuclear Information System (INIS)

    Nurhayati Ramli; Ahmad Nabil Abdul Rahim; Ariff Shah Ismail

    2011-01-01

    The shielding calculations for RTP fuel transfer cask was performed by using computer code Micro shield 7.02. Micro shield is a computer code designed to provide a model to be used for shielding calculations. The results of the calculations can be obtained fast but the code is not suitable for complex geometries with a shielding composed of more than one material. Nevertheless, the program is sufficient for As Low As Reasonable Achievable (ALARA) optimization calculations. In this calculation, a geometry based on the conceptual design of RTP fuel transfer cask was modeled. Shielding material used in the calculations were lead (Pb) and stainless steel 304 (SS304). The results obtained from these calculations are discussed in this paper. (author)

  14. The Active Muon Shield

    CERN Document Server

    Bezshyiko, Iaroslava

    2016-01-01

    In the SHiP beam-dump of the order of 1011 muons will be produced per second. An active muon-shield is used to magnetically deflect these muons out of the acceptance of the spectrom- eter. This note describes how this shield is modelled and optimized. The SHiP spectrometer is being re-optimized using a conical decay-vessel, and utilizing the possibility to magnetize part of the beam-dump shielding iron. A shield adapted to these new conditions is presented which is significantly shorter and lighter than the shield used in the Technical Proposal (TP), while showing a similar performance.

  15. High level radioactive waste vitrification process equipment component testing

    International Nuclear Information System (INIS)

    Siemens, D.H.; Heath, W.O.; Larson, D.E.; Craig, S.N.; Berger, D.N.; Goles, R.W.

    1985-04-01

    Remote operability and maintainability of vitrification equipment were assessed under shielded-cell conditions. The equipment tested will be applied to immobilize high-level and transuranic liquid waste slurries that resulted from plutonium production for defense weapons. Equipment tested included: a turntable for handling waste canisters under the melter; a removable discharge cone in the melter overflow section; a thermocouple jumper that extends into a shielded cell; remote instrument and electrical connectors; remote, mechanical, and heat transfer aspects of the melter glass overflow section; a reamer to clean out plugged nozzles in the melter top; a closed circuit camera to view the melter interior; and a device to retrieve samples of the glass product. A test was also conducted to evaluate liquid metals for use in a liquid metal sealing system

  16. Thermodynamic and heat transfer analysis of heat recovery from engine test cell by Organic Rankine Cycle

    Science.gov (United States)

    Shokati, Naser; Mohammadkhani, Farzad; Farrokhi, Navid; Ranjbar, Faramarz

    2014-12-01

    During manufacture of engines, evaluation of engine performance is essential. This is accomplished in test cells. During the test, a significant portion of heat energy released by the fuel is wasted. In this study, in order to recover these heat losses, Organic Rankine Cycle (ORC) is recommended. The study has been conducted assuming the diesel oil to be composed of a single hydrocarbon such as C12H26. The composition of exhaust gases (products of combustion) have been computed (and not determined experimentally) from the stoichiometric equation representing the combustion reaction. The test cell heat losses are recovered in three separate heat exchangers (preheater, evaporator and superheater). These heat exchangers are separately designed, and the whole system is analyzed from energy and exergy viewpoints. Finally, a parametric study is performed to investigate the effect of different variables on the system performance characteristics such as the ORC net power, heat exchangers effectiveness, the first law efficiency, exergy destruction and heat transfer surfaces. The results of the study show that by utilizing ORC, heat recovery equivalent to 8.85 % of the engine power is possible. The evaporator has the highest exergy destruction rate, while the pump has the lowest among the system components. Heat transfer surfaces are calculated to be 173.6, 58.7, and 11.87 m2 for the preheater, evaporator and superheater, respectively.

  17. 46 CFR 190.20-50 - Heating and cooling.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Heating and cooling. 190.20-50 Section 190.20-50... CONSTRUCTION AND ARRANGEMENT Accomodations for Officers, Crew, and Scientific Personnel § 190.20-50 Heating and... the space. (b) Radiators and other heating apparatus must be so placed and shielded, where necessary...

  18. Critical heat flux tests for a 12 finned-element assembly

    Energy Technology Data Exchange (ETDEWEB)

    Yang, J., E-mail: Jun.Yang@cnl.ca; Groeneveld, D.C.; Yuan, L.Q.

    2017-03-15

    Highlights: • CHF tests for a 12 finned-fuel-element assembly at highly subcooled conditions. • Test approach to maximize experimental information and minimize heater failures. • Three series of tests were completed in vertical upward light water flow. • Bundle simulators of two axial power profiles and three heated lengths were tested. • Results confirm that the prediction method predicts lower CHF values than measured. - Abstract: An experimental study was undertaken to provide relevant data to validate the current critical heat flux (CHF) prediction method of the NRU driver fuel for safety analysis, i.e., to confirm no CHF occurrence below the predicted values. The NRU driver fuel assembly consists of twelve finned fuel elements arranged in two rings – three in the inner ring and nine in the outer ring. To satisfy the experimental objective tests at very high heat fluxes, very high mass velocities, and high subcoolings were conducted where the CHF mechanism is the departure from nucleate boiling (DNB). Such a CHF experiment can be very difficult, costly and time consuming since failure of the heating surface due to rupture or melting (physical burnout) is expected when the DNB type of CHF is reached. A novel experimental approach has been developed to maximize the amount of relevant experimental information on safe operating conditions in the tests, and to minimize any possible heater failures that inherently accompany the CHF occurrence at these conditions. Three series of tests using electrically heated NRU driver fuel simulators with three heated lengths and two axial power profiles (or axial heat flux distribution (AFD)) were completed in vertical upward light water flow. Each series of tests covered two mass flow rates, several heat flux levels, and local subcoolings that bound the ranges of interest for the analysis of postulated slow loss-of-regulation accident (LORA) and loss-of-flow accident (LOFA) scenarios. Tests for each mass flow rate of

  19. REACTOR SHIELD

    Science.gov (United States)

    Wigner, E.P.; Ohlinger, L.E.; Young, G.J.; Weinberg, A.M.

    1959-02-17

    Radiation shield construction is described for a nuclear reactor. The shield is comprised of a plurality of steel plates arranged in parallel spaced relationship within a peripheral shell. Reactor coolant inlet tubes extend at right angles through the plates and baffles are arranged between the plates at right angles thereto and extend between the tubes to create a series of zigzag channels between the plates for the circulation of coolant fluid through the shield. The shield may be divided into two main sections; an inner section adjacent the reactor container and an outer section spaced therefrom. Coolant through the first section may be circulated at a faster rate than coolant circulated through the outer section since the area closest to the reactor container is at a higher temperature and is more radioactive. The two sections may have separate cooling systems to prevent the coolant in the outer section from mixing with the more contaminated coolant in the inner section.

  20. Shield or not to Shield: Effects of Solar Radiation on Water Temperature Sensor Accuracy

    Directory of Open Access Journals (Sweden)

    Robert L. Wilby

    2013-10-01

    Full Text Available Temperature sensors are potentially susceptible to errors due to heating by solar radiation. Although this is well known for air temperature (Ta, significance to continuous water temperature (Tw monitoring is relatively untested. This paper assesses radiative errors by comparing measurements of exposed and shielded Tinytag sensors under indirect and direct solar radiation, and in laboratory experiments under controlled, artificial light. In shallow, still-water and under direct solar radiation, measurement discrepancies between exposed and shielded sensors averaged 0.4 °C but can reach 1.6 °C. Around 0.3 °C of this inconsistency is explained by variance in measurement accuracy between sensors; the remainder is attributed to solar radiation. Discrepancies were found to increase with light intensity, but to attain Tw differences in excess of 0.5 °C requires direct, bright solar radiation (>400 W m−2 in the total spectrum. Under laboratory conditions, radiative errors are an order of magnitude lower when thermistors are placed in flowing water (even at velocities as low as 0.1 m s−1. Radiative errors were also modest relative to the discrepancy between different thermistor manufacturers. Based on these controlled experiments, a set of guidelines are recommended for deploying thermistor arrays in water bodies.

  1. Benchmark analysis and evaluations of materials for shielding

    International Nuclear Information System (INIS)

    Benton, E.R.; Gersey, B.B.; Uchihori, Y.; Yasuda, N.; Kitamura, H.; Shavers, M.R.

    2005-01-01

    The goal of this project is to provide a benchmark set of heavy ion beam measurements behind ''standard'' targets made using radiation detectors routinely used for astronaut dosimetry and to test the radiation shielding properties of candidate multifunctional spacecraft materials. These measurements are used in testing and validating space radiation transport codes currently being developed by NASA and in selecting promising materials for further development. The radiation dosimetry instruments being used include CR-39 plastic nuclear track detector (PNTD), Tissue-Equivalent Proportional Counter (TEPC), the Liulin Mobile Dosimetry Unit (MDU) and thermoluminescent detector (TLD). Each set of measurements include LET/y spectra, and dose and dose equivalent as functions of shield thickness. Measurements are being conducted at the NIRS HIMAC, using heavy-ion beams of energy commonly encountered in the galactic cosmic ray (GCR) environment and that have been identified as being of particular concern to the radiation protection of space crews. Measurements are being made behind a set of standard'' targets including Al, Cu, polyethylene (HDPE) and graphite that vary in thickness from 0.5 to > 30 g/cm 2 . In addition, we are measuring the shielding properties of novel shielding materials being developed by and for NASA, including carbon and polymer composites. (author)

  2. SHIELD 1.0: development of a shielding calculator program in diagnostic radiology

    International Nuclear Information System (INIS)

    Santos, Romulo R.; Real, Jessica V.; Luz, Renata M. da; Friedrich, Barbara Q.; Silva, Ana Maria Marques da

    2013-01-01

    In shielding calculation of radiological facilities, several parameters are required, such as occupancy, use factor, number of patients, source-barrier distance, area type (controlled and uncontrolled), radiation (primary or secondary) and material used in the barrier. The shielding design optimization requires a review of several options about the physical facility design and, mainly, the achievement of the best cost-benefit relationship for the shielding material. To facilitate the development of this kind of design, a program to calculate the shielding in diagnostic radiology was implemented, based on data and limits established by National Council on Radiation Protection and Measurements (NCRP) 147 and SVS-MS 453/98. The program was developed in C⌗ language, and presents a graphical interface for user data input and reporting capabilities. The module initially implemented, called SHIELD 1.0, refers to calculating barriers for conventional X-ray rooms. The program validation was performed by the comparison with the results of examples of shielding calculations presented in NCRP 147.

  3. Design of emergency shield

    International Nuclear Information System (INIS)

    Soliman, S.E.

    1993-01-01

    Manufacturing of an emergency movable shield in the hot laboratories center is urgently needed for the safety of personnel in case of accidents or spilling of radioactive materials. In this report, a full design for an emergency shield is presented and the corresponding dose rates behind the shield for different activities (from 1 mCi to 5 Ci) was calculated by using micro shield computer code. 4 figs., 1 tab

  4. The Structural Heat Intercept-Insulation-Vibration Evaluation Rig (SHIVER)

    Science.gov (United States)

    Johnson, W. L.; Zoeckler, J. G.; Best-Ameen, L. M.

    2015-01-01

    NASA is currently investigating methods to reduce the boil-off rate on large cryogenic upper stages. Two such methods to reduce the total heat load on existing upper stages are vapor cooling of the cryogenic tank support structure and integration of thick multilayer insulation systems to the upper stage of a launch vehicle. Previous efforts have flown a 2-layer MLI blanket and shown an improved thermal performance, and other efforts have ground-tested blankets up to 70 layers thick on tanks with diameters between 2 3 meters. However, thick multilayer insulation installation and testing in both thermal and structural modes has not been completed on a large scale tank. Similarly, multiple vapor cooled shields are common place on science payload helium dewars; however, minimal effort has gone into intercepting heat on large structural surfaces associated with rocket stages. A majority of the vapor cooling effort focuses on metallic cylinders called skirts, which are the most common structural components for launch vehicles. In order to provide test data for comparison with analytical models, a representative test tank is currently being designed to include skirt structural systems with integral vapor cooling. The tank is 4 m in diameter and 6.8 m tall to contain 5000 kg of liquid hydrogen. A multilayer insulation system will be designed to insulate the tank and structure while being installed in a representative manner that can be extended to tanks up to 10 meters in diameter. In order to prove that the insulation system and vapor cooling attachment methods are structurally sound, acoustic testing will also be performed on the system. The test tank with insulation and vapor cooled shield installed will be tested thermally in the B2 test facility at NASAs Plumbrook Station both before and after being vibration tested at Plumbrooks Space Power Facility.

  5. Shielding of the NBI boxes against W7-X magnetic stray fields

    Energy Technology Data Exchange (ETDEWEB)

    Kick, Manfred [Max-Planck-Institut fuer Plasmaphysik, Boltzmannstr. 2, D-85748 Garching (Germany)], E-mail: Kick@arcor.de; Sielanko, Juliusz [Maria Curie Sklodowska University, Pl. M. C. Sklodowskie 1, 20-031 Lublin (Poland); Heinemann, Bernd; Riedl, Rudolf; Speth, Eckehart; Staebler, Albrecht [Max-Planck-Institut fuer Plasmaphysik, Boltzmannstr. 2, D-85748 Garching (Germany)

    2009-06-15

    Neutral Beam Injection (NBI), besides ECRH, is foreseen as one of the main heating devices at the W7-X stellarator currently under construction at IPP Greifswald, Germany. In a final stage 20 MW of NBI heating power will be installed generated by two NBI boxes of the ASDEX Upgrade (AUG) type. Since magnetic fields generally affect the trajectories of charged particles, essentially all the NBI boxes - including ion sources, acceleration sections, neutralisers and deflection magnets - must be shielded against the stray fields of W7-X. In the magnetic stray fields of W7-X there exist significant radial and toroidal components whereas at tokamaks the vertical components are dominant. The power loads on the ion dump and the protecting structures of the deflecting magnets and the beam lines caused by residual beam ions, therefore, will be strongly different. Thus the shielding concept of AUG cannot simply be taken over, but must be carefully redesigned in order to remain below the critical power limits. New modelling calculations of the magnetic shielding, the ion trajectories and the resulting power loads have been carried out for the 'high iota' and 'low shear' experimental scenarios of W7-X. The fields taken for these calculations are modelled by averaging the calculated W7-X stray fields on the one hand, and by fields generated by two-hypothetical-planar coils perpendicular to the x-y plane, on the other hand. The shielding concept for W7-X mainly consist of iron plates in the outer side regions of the boxes and as little magnetic material as possible inside the boxes.

  6. Recent High Heat Flux Tests on W-Rod-Armored Mockups

    International Nuclear Information System (INIS)

    Nygren, Richard E.; Youchison, Dennis L.; McDonald, Jimmie M.; Lutz, Thomas J.; Miszkiel, Mark E.

    2000-01-01

    In the authors initial high heat flux tests on small mockups armored with W rods, done in the small electron beam facility (EBTS) at Sandia National Laboratories, the mockups exhibited excellent thermal performance. However, to reach high heat fluxes, they reduced the heated area to only a portion (approximately25%) of the sample. They have now begun tests in their larger electron beam facility, EB 1200, where the available power (1.2 MW) is more than enough to heat the entire surface area of the small mockups. The initial results indicate that, at a given power, the surface temperatures of rods in the EB 1200 tests is somewhat higher than was observed in the EBTS tests. Also, it appears that one mockup (PW-10) has higher surface temperatures than other mockups with similar height (10mm) W rods, and that the previously reported values of absorbed heat flux on this mockup were too high. In the tests in EB 1200 of a second mockup, PW-4, absorbed heat fluxes of approximately22MW/m 2 were reached but the corresponding surface temperatures were somewhat higher than in EBTS. A further conclusion is that the simple 1-D model initially used in evaluating some of the results from the EBTS testing was not adequate, and 3-D thermal modeling will be needed to interpret the results

  7. Efficiency of the cervical lead shield during intraoral radiography

    International Nuclear Information System (INIS)

    Kaffe, I.; Littner, M.M.; Shlezinger, T.; Segal, P.

    1986-01-01

    The cervical lead shield was compared with the conventional lead apron with regard to efficiency of protection against radiation during a full-month survey (fourteen periapical and two bitewing radiographs). The study was performed on a Temex tissue-equivalent human phantom, and thermoluminescent dosimetry was used to measure radiation absorption in the ovaries, testes, and thyroid gland areas. Results showed that the cervical shield significantly reduces the amount of radiation to the skin in all three areas and is equally as effective as the combination of lead apron and thyroid shield. It is therefore recommended as a protective measure during intraoral radiography

  8. Multi-Shock Shield Performance at 15 MJ for Catalogued Debris

    Science.gov (United States)

    Miller, J. E.; Davis, B. A.; Christiansen, E. L.; Lear, D. M.

    2015-01-01

    While orbital debris of ten centimeters or more are tracked and catalogued, the difficulty of finding and accurately accounting for forces acting on the objects near the ten centimeter threshold results in both uncertainty of their presence and location. These challenges result in difficult decisions for operators balancing potential costly operational approaches with system loss risk. In this paper, the assessment of the feasibility of protecting a spacecraft from this catalogued debris is described using numerical simulations and a test of a multi-shock shield system against a cylindrical projectile impacting normal to the surface with approximately 15 MJ of kinetic energy. The hypervelocity impact test has been conducted at the Arnold Engineering Development Complex (AEDC) with a 598 g projectile at 6.905 km/s on a NASA supplied multi-shock shield. The projectile used is a hollow aluminum and nylon cylinder with an outside diameter of 8.6 cm and length of 10.3 cm. Figure 1 illustrates the multi-shock shield test article, which consisted of five separate bumpers, four of which are fiberglass fabric and one of steel mesh, and two rear walls, each consisting of Kevlar fabric. The overall length of the test article was 2.65 m. The test article was a 5X scaled-up version of a smaller multi-shock shield previously tested using a 1.4 cm diameter aluminum projectile for an inflatable module project. The distances represented by S1 and S1/2 in the figure are 61 cm and 30.5 cm, respectively. Prior to the impact test, hydrodynamic simulations indicated that some enhancement to the standard multi-shock system is needed to address the effects of the cylindrical shape of the projectile. Based on the simulations, a steel mesh bumper has been added to the shield configuration to enhance the fragmentation of the projectile. The AEDC test occurred as planned, and the modified NASA multi-shock shield successfully stopped 598 g projectile using 85.6 kg/m(exp 2). The fifth bumper

  9. RadShield: semiautomated shielding design using a floor plan driven graphical user interface.

    Science.gov (United States)

    DeLorenzo, Matthew C; Wu, Dee H; Yang, Kai; Rutel, Isaac B

    2016-09-08

    The purpose of this study was to introduce and describe the development of RadShield, a Java-based graphical user interface (GUI), which provides a base design that uniquely performs thorough, spatially distributed calculations at many points and reports the maximum air-kerma rate and barrier thickness for each barrier pursuant to NCRP Report 147 methodology. Semiautomated shielding design calculations are validated by two approaches: a geometry-based approach and a manual approach. A series of geometry-based equations were derived giv-ing the maximum air-kerma rate magnitude and location through a first derivative root finding approach. The second approach consisted of comparing RadShield results with those found by manual shielding design by an American Board of Radiology (ABR)-certified medical physicist for two clinical room situations: two adjacent catheterization labs, and a radiographic and fluoroscopic (R&F) exam room. RadShield's efficacy in finding the maximum air-kerma rate was compared against the geometry-based approach and the overall shielding recommendations by RadShield were compared against the medical physicist's shielding results. Percentage errors between the geometry-based approach and RadShield's approach in finding the magnitude and location of the maximum air-kerma rate was within 0.00124% and 14 mm. RadShield's barrier thickness calculations were found to be within 0.156 mm lead (Pb) and 0.150 mm lead (Pb) for the adjacent catheteriza-tion labs and R&F room examples, respectively. However, within the R&F room example, differences in locating the most sensitive calculation point on the floor plan for one of the barriers was not considered in the medical physicist's calculation and was revealed by the RadShield calculations. RadShield is shown to accurately find the maximum values of air-kerma rate and barrier thickness using NCRP Report 147 methodology. Visual inspection alone of the 2D X-ray exam distribution by a medical physicist may not

  10. The shielding performance of multilayer composite shielding structures to 14.8 MeV fast neutrons

    International Nuclear Information System (INIS)

    Shen Zhiqiang; Kang Qing; Xu Jun; Wang Zhenggang; Lu Nan

    2014-01-01

    Cement-based round thin-layer samples mixed with 30% quality content of barite, and 20% quality content of carbide boron has Prepared, the same-diameter sliced samples of pure graphite and pure polyethylene has cut, then, samples combination and cross stack order has designed, formed four species Multilayer Composite shield structure, at last, neutron attenuation measurements has been done by experimental system of using 14.8 MeV neutrons from the 5SDH-2 accelerator and long counter composition, penetrating rate of samples and the shield structure to 14.8 MeV fast neutron has tested, and attenuation section has calculated. Results show that 14.8 MeV fast neutrons to higher penetration rates of thin layer samples, attenuation cross section of samples distinguish small between each other, must be increasing the thickness of the samples to reduce the experimental uncertainty; through composed of attenuation cross section and thickness parameters of composite structure, can more accurately predict the shielding ability of composite structures, error between calculation results and experimental results in 4%. (authors)

  11. Magnetic shielding of a limiter

    International Nuclear Information System (INIS)

    Brevnov, N.N.; Stepanov, S.B.; Khimchenko, L.N.; Matthews, G.F.; Goodal, D.H.J.

    1991-01-01

    Localization of plasma interaction with material surfaces in a separate chamber, from where the escape of impurities is hardly realized, i.e. application of magnetic divertors or pump limiters, is the main technique for reduction of the impurity content in a plasma. In this case, the production of a divertor configuration requires a considerable power consumption and results in a less effective utilization of the magnetic field volume. Utilization of a pump limiter, for example the ICL-type, under tokamak-reactor conditions would result in the extremely high and forbidden local heat loadings onto the limiter surface. Moreover, the magnetically-shielded pump limiter (MSL) was proposed to combine positive properties of the divertor and the pump limiter. The idea of magnetic shielding is to locate the winding with current inside the limiter head so that the field lines of the resultant magnetic field do not intercept the limiter surface. In this case the plasma flows around the limiter leading edges and penetrates into the space under the limiter. The shielding magnetic field can be directed either counter the toroidal field or counter the poloidal one of a tokamak, dependent on the concrete diagram of the device. Such a limiter has a number of advantages: -opportunity to control over the particle and impurity recycling without practical influence upon the plasma column geometry, - perturbation of a plasma column magnetic configuration from the side of such a limiter is less than that from the side of the divertor coils. The main deficiency is the necessity to locate active windings inside the discharge chamber. (author) 5 refs., 3 figs

  12. Evaluation of a method to shield a welding electron beam from magnetic interference

    Science.gov (United States)

    Wall, W. A.

    1976-01-01

    It is known that electron beams are easily deflected by magnetic and electrostatic fields. Therefore, to prevent weld defects, stray electromagnetic fields are avoided in electron beam welding chambers if at all possible. The successful results of tests conducted at MSFC to evaluate a simple magnetic shield made from steel tubing are reported. Tests indicate that this shield was up to 85 percent effective in reducing magnetic effects on the electron beam of a welding machine. In addition, residual magnetic fields within the shield were so nearly uniform that the net effect on the beam alignment was negligible. It is concluded that the shield, with the addition of a tungsten liner, could be used in production welding.

  13. Application of a dummy eye shield for electron treatment planning

    International Nuclear Information System (INIS)

    Kang, Sei-Kwon; Park, Soah; Hwang, Taejin; Cheong, Kwang-Ho; Han, Taejin; Kim, Haeyoung; Lee, Me-Yeon; Kim, Kyoung Ju; Oh, Do Hoon; Bae, Hoonsik

    2013-01-01

    Metallic eye shields have been widely used for near-eye treatments to protect critical regions, but have never been incorporated into treatment plans because of the unwanted appearance of the metal artifacts on CT images. The purpose of this work was to test the use of an acrylic dummy eye shield as a substitute for a metallic eye shield during CT scans. An acrylic dummy shield of the same size as the tungsten eye shield was machined and CT scanned. The BEAMnrc and the DOSXYZnrc were used for the Monte Carlo (MC) simulation, with the appropriate material information and density for the aluminum cover, steel knob and tungsten body of the eye shield. The Pinnacle adopting the Hogstrom electron pencil-beam algorithm was used for the one-port 6-MeV beam plan after delineation and density override of the metallic parts. The results were confirmed with the metal oxide semiconductor field effect transistor (MOSFET) detectors and the Gafchromic EBT2 film measurements. For both the maximum eyelid dose over the shield and the maximum dose under the shield, the MC results agreed with the EBT2 measurements within 1.7%. For the Pinnacle plan, the maximum dose under the shield agreed with the MC within 0.3%; however, the eyelid dose differed by -19.3%. The adoption of the acrylic dummy eye shield was successful for the treatment plan. However, the Pinnacle pencil-beam algorithm was not sufficient to predict the eyelid dose on the tungsten shield, and more accurate algorithms like MC should be considered for a treatment plan. (author)

  14. Detection limits of the NaI(Tl) shielded HPGe spectrometer

    International Nuclear Information System (INIS)

    Bikit, I.; Slivka, J.; Krmar, M.; Durcic, Z.; Zikic, N.; Conkic, Lj.; Veskovic, M.; Anicin, I.

    1999-01-01

    The results of a detailed study of the low-level performance of a NaI(Tl) shield added to an iron shielded HPGe spectrometer are presented. Both the 'slow' and the 'fast' anticoincidence gating modes were tested, the 'slow' mode being found better suited for general low-level spectroscopy applications. In long runs the stability of the system in this mode is satisfactory. The anticoincidence action of the NaI(T1) shield lowers the integral background of the iron shielded HPGe detector in the energy range from 30 keV to 2 MeV by a factor of 6.5, and suppresses the continuum above 150 keV by a factor larger than 10

  15. Self-Shielding Of Transmission Lines

    Energy Technology Data Exchange (ETDEWEB)

    Christodoulou, Christos [Univ. of New Mexico, Albuquerque, NM (United States)

    2017-03-01

    The use of shielding to contend with noise or harmful EMI/EMR energy is not a new concept. An inevitable trade that must be made for shielding is physical space and weight. Space was often not as much of a painful design trade in older larger systems as they are in today’s smaller systems. Today we are packing in an exponentially growing number of functionality within the same or smaller volumes. As systems become smaller and space within systems become more restricted, the implementation of shielding becomes more problematic. Often, space that was used to design a more mechanically robust component must be used for shielding. As the system gets smaller and space is at more of a premium, the trades starts to result in defects, designs with inadequate margin in other performance areas, and designs that are sensitive to manufacturing variability. With these challenges in mind, it would be ideal to maximize attenuation of harmful fields as they inevitably couple onto transmission lines without the use of traditional shielding. Dr. Tom Van Doren proposed a design concept for transmission lines to a class of engineers while visiting New Mexico. This design concept works by maximizing Electric field (E) and Magnetic Field (H) field containment between operating transmission lines to achieve what he called “Self-Shielding”. By making the geometric centroid of the outgoing current coincident with the return current, maximum field containment is achieved. The reciprocal should be true as well, resulting in greater attenuation of incident fields. Figure’s 1(a)-1(b) are examples of designs where the current centroids are coincident. Coax cables are good examples of transmission lines with co-located centroids but they demonstrate excellent field attenuation for other reasons and can’t be used to test this design concept. Figure 1(b) is a flex circuit design that demonstrate the implementation of self-shielding vs a standard conductor layout.

  16. Shielding benchmark problems, (2)

    International Nuclear Information System (INIS)

    Tanaka, Shun-ichi; Sasamoto, Nobuo; Oka, Yoshiaki; Shin, Kazuo; Tada, Keiko.

    1980-02-01

    Shielding benchmark problems prepared by Working Group of Assessment of Shielding Experiments in the Research Committee on Shielding Design in the Atomic Energy Society of Japan were compiled by Shielding Laboratory in Japan Atomic Energy Research Institute. Fourteen shielding benchmark problems are presented newly in addition to twenty-one problems proposed already, for evaluating the calculational algorithm and accuracy of computer codes based on discrete ordinates method and Monte Carlo method and for evaluating the nuclear data used in codes. The present benchmark problems are principally for investigating the backscattering and the streaming of neutrons and gamma rays in two- and three-dimensional configurations. (author)

  17. Evolution of a test article handling system for the SP-100 GES test

    International Nuclear Information System (INIS)

    Shen, E.J.; Schweiger, L.J.; Miller, W.C.; Gluck, R.; Davies, S.M.

    1987-01-01

    A simulated space environment test of a flight prototypic SP-100 reactor, control system, and flight shield will be conducted at the Hanford Engineering Development Laboratory (HEDL). The flight prototypic components and the supporting primary heat removal system are collectively known as the nuclear assembly test article (TA). The unique configuration and materials of fabrication for the Test Article require a specialized handling facility to support installation, maintenance, and final disposal operation. The test site operator, working in conjunction with the test article supplier, developed and evaluated several handling concepts resulting in the selection of a reference test article handling system. The development of the reference concept for the handling system is presented

  18. Heat loss and fluid leakage tests of the ROSA-III facility

    International Nuclear Information System (INIS)

    Suzuki, Mitsuhiro; Tasaka, Kanji; Shiba, Masayoshi

    1981-12-01

    The report presents characteristic test results about the steady state heat loss, one of the inherent characteristics of the ROSA-III test facility. The steady state heat loss tests were conducted at five different temperature conditions between 111 0 C and 290 0 C . Net heat loss rates were obtained by estimating the electric power supplied to the core, heat input from the recirculation pumps and steam leakage rate. The heat loss characteristics have important contribution to analyses of the ROSA-III small break tests. A following simple relation was obtained between the net heat loss rate Q*sub(HL) (kJ/s) (*: radical) of the ROSA-III facility and the temperature difference ΔT ( 0 C) between the fluid temperature of the system and the room temperature, Q*sub(HL) = 0.56 x ΔT. (*: radical) And the steam leak flow at normal operating condition of the ROSA-III test, (P = 7.2 MPa) was obtained as 8.9 x 10 -3 kg/s and corresponding steam leakage energy as 10.5 kJ/s. The heat input from the recirculation pumps was indirectly estimated under a constant speed by assuming the heat input was equal to the brake horce power of the pumps. (author)

  19. Magnetic shielding for superconducting RF cavities

    Science.gov (United States)

    Masuzawa, M.; Terashima, A.; Tsuchiya, K.; Ueki, R.

    2017-03-01

    Magnetic shielding is a key technology for superconducting radio frequency (RF) cavities. There are basically two approaches for shielding: (1) surround the cavity of interest with high permeability material and divert magnetic flux around it (passive shielding); and (2) create a magnetic field using coils that cancels the ambient magnetic field in the area of interest (active shielding). The choice of approach depends on the magnitude of the ambient magnetic field, residual magnetic field tolerance, shape of the magnetic shield, usage, cost, etc. However, passive shielding is more commonly used for superconducting RF cavities. The issue with passive shielding is that as the volume to be shielded increases, the size of the shielding material increases, thereby leading to cost increase. A recent trend is to place a magnetic shield in a cryogenic environment inside a cryostat, very close to the cavities, reducing the size and volume of the magnetic shield. In this case, the shielding effectiveness at cryogenic temperatures becomes important. We measured the permeabilities of various shielding materials at both room temperature and cryogenic temperature (4 K) and studied shielding degradation at that cryogenic temperature.

  20. Determination of ICRF antenna fields in the vicinity of a 3-D Faraday shield structure

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, P M; Rothe, K E; Whealton, J H; Shepard, T D [Oak Ridge National Lab., TN (USA)

    1990-04-01

    A three-dimensional (3-D) magnetostatic analysis developed at Oak Ridge National Laboratory has been used to calculate the electromagnetic transmission properties of representative Faraday shield designs. The analysis uses the long-wavelength approximation to obtain a 3-D Laplace solution for the magnetic scalar potential over one poloidal period of the Faraday shield, from which the complete magnetic field distribution may be obtained. Once the magnetic field distributions in the presence and absence of a Faraday shield are known, the flux transmission coefficient can be found, as well as any change in the distributed inductance of the current strap. The distrbuted capacitance of the strap can be found from an analogous 3-D electrostatic calculation, enabling the phase velocity of the slow-wave structure to be determined. Power dissipation in the shield may be estimated by equating the surface current on a perfect conductor with the surface magnetic field and using this surface current in conjunction with the finite conductivities of the shield materials to obtain the power distribution due to eddy current heating. (orig.).

  1. Testing of PCM Heat Storage Modules with Solar Collectors as Heat Source

    DEFF Research Database (Denmark)

    Englmair, Gerald; Dannemand, Mark; Johansen, Jakob Berg

    2016-01-01

    A latent heat storage based on the phase change material Sodium Acetate Trihydrate (SAT) has been tested as part of a demonstration system. The full heat storage consisted of 4 individual modules each containing about 200 kg of sodium acetate trihydrate with different additives. The aim...... was to actively utilize the ability of the material to supercool to obtain long storage periods. The modules were charged with solar heat supplied by 22.4 m2 evacuated tubular collectors. The investigation showed that it was possible to fully charge one module within a period of 270 minutes with clear skies...

  2. Design and test of low-capacitance, air-insulated, 80-kV, 0.5-sec source cables for MFTF sustaining-neutral-beam power supples

    International Nuclear Information System (INIS)

    Mayhall, D.J.; Wilson, J.H.; Caldwell, W.J.; Watson, T.F.; Jenkins, J.W. Jr.

    1981-01-01

    The design of air-insulated cables, which meet strict requirements, is described. Inductance, heat transfer, and electrostatic computer codes are used in design. Tests include electric circiut parameters, dc voltage holdoff, impulse voltage holdoff, heat rise at greater than peak duty, and shield mechanical strength

  3. Westinghouse-Gothic comparisons with passive containment cooling tests using a one-to-ten-scale test facility

    International Nuclear Information System (INIS)

    Kennedy, M.D.; Woodcock, J.; Wright, R.F.; Gresham, J.A.

    1996-01-01

    The Heavy Water Reactor Facility is equipped with a passive cooling system to provide long-term decay heat removal during postulated beyond-design-basis accidents. The passive containment cooling system (PCCS) consists of an annular space between the steel containment vessel and the concrete shield building and optimized inlet and chimney designs. The design, analysis, and regulatory acceptance of a plant with PCCS requires an understanding of the external convective and radiative heat transfer phenomena, as well as the internal distributions of noncondensable gases. The internal distribution of noncondensable gases has a strong effect on the resistance to condensation heat transfer and therefore affects the wall temperature distribution applied to the external channel. To evaluate these phenomena, a test facility having a scale of approximately one to ten, known as the large-scale test, was constructed, and several series of tests were performed. Test results have been used to validate the Westinghouse-GOTHIC (WGOTHIC) computer code. A comparison of WGOTHIC predictions and test results has been completed. This paper shows that mixed-convection models applied to the interior and exterior surfaces as well as a heat and mass transfer analogy for internal condensation provides good comparison to test results. An axial distribution of noncondensables within the test vessel is also predicted

  4. Shielding container for radioactive isotopes

    International Nuclear Information System (INIS)

    Sumi, Tetsuo; Tosa, Masayoshi; Hatogai, Tatsuaki.

    1975-01-01

    Object: To effect opening and closing bidirectional radiation used particularly for a gamma densimeter or the like by one operation. Structure: This device comprises a rotatable shielding body for receiving radioactive isotope in the central portion thereof and having at least two radiation openings through which radiation is taken out of the isotope, and a shielding container having openings corresponding to the first mentioned radiation openings, respectively. The radioactive isotope is secured to a rotational shaft of the shielding body, and the shielding body is rotated to register the openings of the shielding container with the openings of the shielding body or to shield the openings, thereby effecting radiation and cut off of gamma ray in the bidirection by one operation. (Kamimura, M.)

  5. Study of Incoloy 800HT alloy tested by heat-cycling

    International Nuclear Information System (INIS)

    Velciu, L.; Meleg, T.; Pantiru, M.; Petrescu, D.; Voicu, F.

    2016-01-01

    This paper investigated Incoloy 800HT (UNS N08811) alloy after some heat-cycling tests. The study continues prior tests realized in INR Pitesti concerning utilization of some nickel-based alloys in the heat exchangers and steam generators construction. The thermal-cycling consist in a successive series of heating and cooling with some rates in a range temperature. Technical parameters of thermal cycling: 50 & 200 cycles, 25 °C/minute heating-cooling rate, temperature range 450-1000°C, and argon working medium. The analysis consisted in metallographic examination (microstructure), Vickers microhardness, and traction tests. The average grain size was determined by linear interception method (ASTM E-112). The micro hardness was calculated by the relationship of the device technical book. On the Strength-Deformation diagrams were obtained: tensile strength and elongation. The tested samples were compared with the ''as received'' material. The results showed a good metallographic and mechanical behaviour of Incoloy 800HT at these thermal-cycling tests. (authors)

  6. Shielding in experimental areas

    International Nuclear Information System (INIS)

    Stevens, A.; Tarnopolsky, G.; Thorndike, A.; White, S.

    1979-01-01

    The amount of shielding necessary to protect experimental detectors from various sources of background radiation is discussed. As illustrated an experiment has line of sight to sources extending approx. 90 m upstream from the intersection point. Packing a significant fraction of this space with shielding blocks would in general be unacceptable because primary access to the ring tunnel is from the experimental halls. (1) From basic machine design considerations and the inherent necessity to protect superconducting magnets it is expected that experimental areas in general will be cleaner than at any existing accelerator. (2) Even so, it will likely be necessary to have some shielding blocks available to protect experimental apparatus, and it may well be necessary to have a large amount of shielding available in the WAH. (3) Scraping will likely have some influence on all halls, and retractable apparatus may sometimes be necessary. (4) If access to any tunnel is needed to replace a magnet, one has 96 h (4 days) available to move shielding away to permit access without additional downtime. This (the amount of shielding one can shuffle about in 96 h) is a reasonable upper limit to shielding necessary in a hall

  7. Evaluation of neutron shielding made of cement type material

    International Nuclear Information System (INIS)

    Seshimo, Takuya; Nagai, Takayuki; Onose, Atsushi; Takuma, Yasuhisa; Tanuma, Hiroyuki; Otagawa, Masaaki

    1998-01-01

    We prepared boron-containing cement and evaluated the characteristics of this new cement. This is the material of neutron shielding which is lighter than existing one. The quality we aimed is: H ≥ 0.025 g/cm 3 , B ≥ 0.065 g/cm 3 , density ≤ 1.70 g/cm 3 . We made test pieces changing water powder ratio (W/P), adding amount of air entraining agent, adding amount of water reducing agent, and time of vibration, and then, evaluated the characteristics. The measured parameters are the air content, mortar flow and homogeneity for cement mortar, homogeneity and compressive strength for hardened one. From the results of these tests, we confirmed the possibility of making neutron shielding that can satisfy the aimed quality using this boron-containing cement. After all, we established the method of making the neutron shielding, and this method was used in the construction of RETF. (author)

  8. Heat generation and temperature-rise in ordinary concrete due to capture of thermal neutrons

    International Nuclear Information System (INIS)

    Abdo, E.A.; Amin, E.

    1997-01-01

    The aim of this work is the evaluation of the heat generation and temperature-rise in local ordinary concrete as a biological shield due to capture of total thermal and reactor thermal neutrons. The total thermal neutron fluxes were measured and calculated. The channel number 2 of the ETRR-1 reactor was used in the measurements as a neutron source. Computer code ANISN (VAX version) and neutron multigroup cross-section library EURLiB-4 was used in the calculations. The heat generation and temperature-rise in local ordinary concrete were evaluated and calculated. The results were displayed in curves to show the distribution of thermal neutron fluxes and heat generation as well as temperature-rise with the shield thickness. The results showed that, the heat generation as well as the temperature-rise have their maximum values in the first layers of the shield thickness. 4 figs., 12 refs

  9. Optimal design of tests for heat exchanger fouling identification

    International Nuclear Information System (INIS)

    Palmer, Kyle A.; Hale, William T.; Such, Kyle D.; Shea, Brian R.; Bollas, George M.

    2016-01-01

    Highlights: • Built-in test design that optimizes the information extractable from the said test. • Method minimizes the covariance of a fault with system uncertainty. • Method applied for the identification and quantification of heat exchanger fouling. • Heat exchanger fouling is identifiable despite the uncertainty in inputs and states. - Graphical Abstract: - Abstract: Particulate fouling in plate fin heat exchangers of aircraft environmental control systems is a recurring issue in environments rich in foreign object debris. Heat exchanger fouling detection, in terms of quantification of its severity, is critical for aircraft maintenance scheduling and safe operation. In this work, we focus on methods for offline fouling detection during aircraft ground handling, where the allowable variability range of admissible inputs is wider. We explore methods of optimal experimental design to estimate heat exchanger inputs and input trajectories that maximize the identifiability of fouling. In particular, we present a methodology in which D-optimality is used as a criterion for statistically significant inference of heat exchanger fouling in uncertain environments. The optimal tests are designed on the basis of a heat exchanger model of the inherent mass, energy and momentum balances, validated against literature data. The model is then used to infer sensitivities of the heat exchanger outputs with respect to fouling metrics and maximize them by manipulating input trajectories; thus enhancing the accuracy in quantifying the fouling extent. The proposed methodology is evaluated with statistical indices of the confidence in estimating thermal fouling resistance at uncertain operating conditions, explored in a series of case studies.

  10. Radiation shielding issues on the FMIT

    International Nuclear Information System (INIS)

    Burke, R.J.; Davis, A.A.; Huang, S.; Morford, R.J.

    1981-05-01

    The Fusion Materials Irradiation Test Facility (FMIT) is being built to study neutron radiation effects in candidate fusion reactor materials. The FMIT will yield high fluence data in a fusion-like neutron radiation environment produced by the interaction of a 0.1A, 35 MeV deuteron beam with a flowing lithium target. The design of the facility as a whole is driven by a high availability requirement. The variety of radiation environments in the facility requires the use of diverse and extensive shielding. Shielding design throughout the FMIT must accommodate the need for maintenance and operations access while providing adequate personnel and equipment protection

  11. Protected isotope heat source

    International Nuclear Information System (INIS)

    Burns, R.K.; Shure, L.I.; Katzen, E.D.

    1975-01-01

    A radioactive isotope capsule is disposed in a container (heat shield) which will have a single stable trim attitude when reentering the earth's atmosphere and while falling to earth. The center of gravity of the heat source is located forward of the midpoint between the front face and the rear face of the container. The capsule is insulated from the front face of the container but not from the rear surface of the container. (auth)

  12. Radiological shielding of low power compact reactor: calculation and design

    International Nuclear Information System (INIS)

    Marino, Raul

    2004-01-01

    The development of compact reactors becoming a technology that offers great projection and innumerable use possibilities, both in electricity generation and in propulsion.One of the requirements for the operation of this type of reactor is that it must include a radiological shield that will allow for different types of configurations and that, may be moved with the reactor if it needs to be transported.The nucleus of a reactor emits radiation, mainly neutrons and gamma rays in the heat of power, and gamma radiation during the radioactive decay of fission products.This radiation must be restrained in both conditions of operation to avoid it affecting workers or the public.The combination of different materials and properties in layers results in better performance in the form of a decrease in radiation, hence causing the dosage outside the reactor, whether in operation or shut down, to fall within the allowed limits.The calculations and design of radiological shields is therefore of paramount importance in reactor design.The choice of material and the design of the shield have a strong impact on the cost and the load capacity, the latter being one of the characteristics to optimize.The imposed condition of design is that the reactor can be transported together with the decay shield in a standard container of 40 foot [es

  13. PENGARUH VARIASI SUHU POST WELD HEAT TREATMENT ANNEALING TERHADAP SIFAT MEKANIS MATERIAL BAJA EMS-45 DENGAN METODE PENGELASAN SHIELDED METAL ARC WELDING (SMAW

    Directory of Open Access Journals (Sweden)

    Rusiyanto Rusiyanto

    2012-02-01

    Full Text Available Penelitian ini bertujuan Untuk mengetahui nilai kekerasan Vickers material Baja EMS-45 sebelum proses pengelasan dan setelah dilakukan proses pengelasan tanpa post weld heat treatment annealing, Untuk mengetahui berapakah suhu optimal post weld heat treatment annealing untuk material baja EMS-45 dengan variasi suhu yang digunakan 350 o C, 550 o C, dan 750 C. Untuk mengetahui struktur mikro dari material baja EMS-45 akibat variasi suhu post weld heat treatment annealing pada proses pengelasan dengan menggunakan metode pengelasan shielded metal arc welding. Bahan atau material dasar yang digunakan pada penelitian ini adalah Baja EMS-45 dengan ketebalan pelat 10 mm, lebar pelat 20 mm dan panjang 100 mm. Berdasarkan hasil pengujian nilai kekerasan tertinggi setelah proses pengelasan terletak pada daerah Logam Las. Pengelasan non PWHT memiliki nilai kekerasan paling tinggi setelah proses pengelasan yaitu sebesar 183,2 VHN. Suhu optimal Post Weld Heat Treatment Annealing untuk material baja EMS-45 adalah pada suhu 750 C. Karena pada PWHT pada suhu tersebut mengalami penurunan kekerasan yang besar yaitu sebesar 127,2 VHN, sehingga material baja EMS-45 dapat memperbaiki sifat mampu mesinnya. Struktur mikro dari material baja EMS-45 sebelum proses pengelasan berupa grafit serpih, perlit dan ferit, setelah dilakukan proses pengelasan mempunyai struktur mikro berupa matrik ferit dan grafit pada daerah logam las, matrik perlit kasar dan grafit serpih pada daerah HAZ dan struktur perlit, grafit serpih dan ferit pada daerah logam induk o o

  14. Experimental research of the effects of different shields on power frequency electric field mitigation

    Directory of Open Access Journals (Sweden)

    Nahman Jovan

    2012-01-01

    Full Text Available The paper describes experimental research on the effects of different shields on power frequency electric field mitigation. This research was performed in order to determine those materials that may be used for electric field mitigation in cases where the reference level is exceeded. Using measured results, the value of the shielding factor has been calculated for all tested shields and the most efficient shields were determined.

  15. Experimental simulation and numerical modeling of vapor shield formation and divertor material erosion for ITER typical plasma disruptions

    International Nuclear Information System (INIS)

    Wuerz, H.; Arkhipov, N.I.; Bakhtin, V.P.; Konkashbaev, I.; Landman, I.; Safronov, V.M.; Toporkov, D.A.; Zhitlukhin, A.M.

    1995-01-01

    The high divertor heat load during a tokamak plasma disruption results in sudden evaporation of a thin layer of divertor plate material, which acts as vapor shield and protects the target from further excessive evaporation. Formation and effectiveness of the vapor shield are theoretically modeled and are experimentally analyzed at the 2MK-200 facility under conditions simulating the thermal quench phase of ITER tokamak plasma disruptions. ((orig.))

  16. Analysis of ferromagnetic shielding of the ITER NBI

    International Nuclear Information System (INIS)

    Roccella, M.; Lucca, F.; Roccella, R.; Cocilovo, V.; Ramogida, G.; Portone, A.; Tanga, A.; Formisano, A.; Martone, R.

    2006-01-01

    In ITER two heating and one diagnostic Neutral Beam Injectors (NBIs) are foreseen [P. L. Mondino et al., ''ITER neutral beam system '', Nucl. Fus., vol. 40, p. 501 (2000)]. Inside these components there are very stringent limits on the magnetic field (the flux density must be below some Gauss (G) along the ion path and below 20 G in the neutralizing region). To achieve these performances in an environment with high stray field due to the plasma and the poloidal field coils, both passive and active shielding systems are foreseen. The present design of the Magnetic Field Reduction System (MFRS) is made of seven active coils and of a box surrounding the NBI region, consisting of ferromagnetic plates 15 cm thick. The electromagnetic analysis of the effectiveness of these shields has been performed by a full 3D FEM model using the ANSYS code. To perform the FEM modeling of the component special care has been used to face the particular geometrical features of the component (a box of about 15 x 5 x 5 m vs. a ferromagnetic layer of only 15 cm thick). To insert an adequate number of FEM elements (at least 5) in the thickness of the ferromagnetic layer, without a prohibitive increase in the total FEM elements number, a particular modeling approach (a sort of '' Chinese boxes '' technique) has been developed. Due to this technique the FEM model enclosing the ferromagnetic box results completely independent on the fine FEM structure inside the shielding layer. It has been even possible, using this technique, introducing a thin (below 1 cm thick) slot all through the shielding plates, without perturbing the rest of the model. This slot has been used to analyze the effects of possible manufacturing lacks on the residual magnetic field inside the component. This technique has allowed the use of only structured meshes made by brick elements, much more accurate than the tetra elements, needed in the usual free meshing techniques. To have the possibility of changing the shielding

  17. Heat transfer coefficient testing in nuclear fuel rod bundles with mixing vane grids

    International Nuclear Information System (INIS)

    Conner, Michael E.; Smith, L. David III; Holloway, Mary V.; Beasley, Donald E.

    2005-01-01

    An air heat transfer test facility was developed to test the heat transfer downstream of support grids in simulated PWR nuclear fuel rod bundles. The goal of this testing is to study the single-phase heat transfer coefficients downstream of grids with mixing vanes in a square-pitch rod bundle. The technique developed utilizes fully-heated grid spans and a specially designed thermocouple holder that can be moved axially down the rod bundle and aximuthally within a test rod. From this testing, the axial and aximuthally varying heat transfer coefficient can be determined. Different grid designs are tested and compared to determine the heat transfer enhancement associated with key grid features such as mixing vanes. (author)

  18. Heat flow and radiogenic heat production in Brazil with implications for thermal evolution of continents

    International Nuclear Information System (INIS)

    Vitorello, I.

    1978-01-01

    Heat flow and heat production results are reported from nineteen widely spaced sites in eastern and central parts of Brazil. Three sites in the stable Sao Francisco Craton comprising rocks with Transamazonic ages (2600 to 1800 Ma) or older present an average heat flow of 41.8 +- 4.6 (standard error of the mean=sem) mW m -2 , typical of shield areas; eight sites located in the Late Precambrian Braziliane metamorphic belt have an average heat flow of 54.7 +- 3.8 (sem) mW m -2 ; and four sites in the Parana basin, locus of a Late Jurassic-Early Cretaceous basaltic volcanicity, have a mean heat flow of 70.1 +- 5.9 (sem) mW m -2 . Heat flow results from the Late Cretaceous-Early Tertiary alkalic intrusion of Pocos de Caldas have yielded a site mean of 55.3 mW m -2 . These results indicate a systematic decrease of heat flow with increasing age of the last tectonothermal event. As an explanation for this pattern, a model comprising three main heat flow components is advanced: radiogenic heat from the crust (40%), with the decrease of this contribution with time being achieved by erosional removal of radioactive material; a residual heat from a transient thermal perturbation associated with tectogenesis; and a uniform heat flow of about 28 mW m -2 from deeper sources. The Coastal Brazilian Shield is characterized by ordinary surface and reduced heat flow, but its heat production appears to be less concentrated near the surface, and distributed over a greater depth. Because of the variation in plate thickness, relative movements between the South American plate and the underlying mantle material are possibly constrained to depths exceeding 400 km

  19. Manufacturing and thermomechanical testing of actively cooled all beryllium high heat flux test pieces

    International Nuclear Information System (INIS)

    Vasiliev, N.N.; Sokolov, Yu.A.; Shatalov, G.E.

    1995-01-01

    One of the problems affiliated to ITER high heat flux elements development is a problem of interface of beryllium protection with heat sink routinely made of copper alloys. To get rid of this problem all beryllium elements could be used as heat receivers in places of enhanced thermal loads. In accordance with this objectives four beryllium test pieces of two types have been manufactured in open-quotes Institute of Berylliumclose quotes for succeeding thermomechanical testing. Two of them were manufactured in accordance with JET team design; they are round open-quotes hypervapotron typeclose quotes test pieces. Another two ones are rectangular test sections with a twisted tape installed inside of the circular channel. Preliminary stress-strain analysis have been performed for both type of the test pieces. Hypervapotrons have been shipped to JET where they were tested on JET test bed. Thermomechanical testing of pieces of the type of open-quotes swirl tape inside of tubeclose quotes have been performed on Kurchatov Institute test bed. Chosen beryllium grade properties, some details of manufacturing, results of preliminary stress-strain analysis and thermomechanical testing of the test pieces open-quotes swirl tape inside of tubeclose quotes type are given in this report

  20. Method and Apparatus for the Portable Identification Of Material Thickness And Defects Along Uneven Surfaces Using Spatially Controlled Heat Application

    Science.gov (United States)

    Reilly, Thomas L. (Inventor); Jacobstein, A. Ronald (Inventor); Cramer, K. Elliott (Inventor)

    2006-01-01

    A method and apparatus for testing a material such as the water-wall tubes in boilers includes the use of a portable thermal line heater having radiation shields to control the amount of thermal radiation that reaches a thermal imager. A procedure corrects for variations in the initial temperature of the material being inspected. A method of calibrating the testing device to determine an equation relating thickness of the material to temperatures created by the thermal line heater uses empirical data derived from tests performed on test specimens for each material type, geometry, density, specific heat, speed at which the line heater is moved across the material and heat intensity.

  1. Shielding container

    International Nuclear Information System (INIS)

    Darling, K.A.M.

    1981-01-01

    A shielding container incorporates a dense shield, for example of depleted uranium, cast around a tubular member of curvilinear configuration for accommodating a radiation source capsule. A lining for the tubular member, in the form of a close-coiled flexible guide, provides easy replaceability to counter wear while the container is in service. Container life is extended, and maintenance costs are reduced. (author)

  2. A multi-functional testing instrument for heat assisted magnetic recording media

    International Nuclear Information System (INIS)

    Yang, H. Z.; Chen, Y. J.; Leong, S. H.; An, C. W.; Ye, K. D.; Hu, J. F.; Yin, M. J.

    2014-01-01

    With recent developments in heat assisted magnetic recording (HAMR), characterization of HAMR media is becoming very important. We present a multi-functional instrument for testing HAMR media, which integrates HAMR writing, reading, and a micro-magneto-optic Kerr effect (μ-MOKE) testing function. A potential application of the present instrument is to make temperature dependent magnetic property measurement using a pump-probe configuration. In the measurement, the media is heated up by a heating (intense) beam while a testing (weak) beam is overlapped with the heating beam for MOKE measurement. By heating the media with different heating beam power, magnetic measurements by MOKE at different temperatures can be performed. Compared to traditional existing tools such as the vibrating sample magnetometer, the present instrument provides localized and efficient heating at the measurement spot. The integration of HAMR writing and μ-MOKE system can also facilitate a localized full investigation of the magnetic media by potential correlation of HAMR head independent write/read performance to localized magnetic properties

  3. Vapor compression heat pump system field tests at the tech complex

    Science.gov (United States)

    Baxter, Van D.

    1985-11-01

    The Tennessee Energy Conservation In Housing (TECH) complex has been utilized since 1977 as a field test site for several novel and conventional heat pump systems for space conditioning and water heating. Systems tested include the Annual Cycle Energy System (ACES), solar assisted heat pumps (SAHP) both parallel and series, two conventional air-to-air heat pumps, an air-to-air heat pump with desuperheater water heater, and horizontal coil and multiple shallow vertical coil ground-coupled heat pumps (GCHP). A direct comparison of the measured annual performance of the test systems was not possible. However, a cursory examination revealed that the ACES had the best performance, however, its high cost makes it unlikely that it will achieve wide-spread use. Costs for the SAHP systems are similar to those of the ACES but their performance is not as good. Integration of water heating and space conditioning functions with a desuperheater yielded significant efficiency improvement at modest cost. The GCHP systems performed much better for heating than for cooling and may well be the most efficient alternative for residences in cold climates.

  4. Influence of preheating on API 5L-X80 pipeline joint welding with self shielded flux-cored wire

    International Nuclear Information System (INIS)

    Cooper, R.; Silva, J. H. F.; Trevisan, R. E.

    2004-01-01

    The present work refers to the characterization of API 5L-X80 pipeline joints welded with self-shielded flux cored wire. This process was evaluated under preheating conditions, with an uniform and steady heat input. All joints were welded in flat position (1G), with the pipe turning and the torch still. Tube dimensions were 762 mm in external diameter and 16 mm in thickness. Welds were applied on single V-groove, with six weld beads, along with three levels of preheating temperatures (room temperature, 100 degree centigree, 160 degree centigree). These temperatures were maintained as inter pass temperature. The filler metal E71T8-K6 with mechanical properties different from parent metal was used in under matched conditions. The weld characterization is presented according to the mechanical test results of tensile strength, hardness and impact test. The mechanical tests were conducted according to API 1104, AWS and ASTM standards. API 1104 and API 51 were used as screening criteria. According to the results obtained, it was possible to remark that it is appropriate to weld API 5L-X80 steel ducts with Self-shielded Flux Cored wires, in conformance to the API standards and no preheat temperature is necessary. (Author) 22 refs

  5. Shielding calculations for the TFTR neutral beam injectors

    International Nuclear Information System (INIS)

    Santoro, R.T.; Lillie, R.A.; Alsmiller, R.G. Jr.; Barnes, J.M.

    1979-07-01

    Two-dimensional discrete ordinates calculations have been performed to determine the location and thickness of concrete shielding around the Tokamak Fusion Test Reactor (TFTR) neutral beam injectors. Two sets of calculations were performed: one to determine the dose equivalent rate on the roof and walls of the test cell building when no injectors are present, and one to determine the contribution to the dose equivalent rate at these locations from radiation streaming through the injection duct. Shielding the side and rear of the neutral beam injector with 0.305 and 0.61 m of concrete, respectively, and lining the inside of the test cell wall with an additional layer of concrete having a thickness of 0.305 m and a height above the axis of deuteron injection of 3.10 m are sufficient to maintain the biological dose equivalent rate outside the test cell to approx. 1 mrem/DT pulse

  6. High heat flux tests of mock-ups for ITER divertor application

    International Nuclear Information System (INIS)

    Giniatulin, R.; Gervash, A.; Komarov, V.L.; Makhankov, A.; Mazul, I.; Litunovsky, N.; Yablokov, N.

    1998-01-01

    One of the most difficult tasks in fusion reactor development is the designing, fabrication and high heat flux testing of actively cooled plasma facing components (PFCs). At present, for the ITER divertor project it is necessary to design and test components by using mock-ups which reflect the real design and fabrication technology. The cause of failure of the PFCs is likely to be through thermo-cycling of the surface with heat loads in the range 1-15 MW m -2 . Beryllium, tungsten and graphite are considered as the most suitable armour materials for the ITER divertor application. This work presents the results of the tests carried out with divertor mock-ups clad with beryllium and tungsten armour materials. The tests were carried out in an electron beam facility. The results of high heat flux screening tests and thermo-cycling tests in the heat load range 1-9 MW m -2 are presented along with the results of metallographic analysis carried out after the tests. (orig.)

  7. Evolution of a test article handling system for the SP-100 ground engineering system test

    International Nuclear Information System (INIS)

    Shen, E.J.; Schweiger, L.J.; Miller, W.C.; Gluck, R.; Devies, S.M.

    1987-04-01

    A simulated space environment test of a flight prototypic SP-100 reactor, control system, and flight shield will be conducted at the Hanford Engineering Development Laboratory (HEDL). The flight prototypic components and the supporting primary heat removal system are collectively known as the Nuclear Assembly Test Article (TA). The unique configuration and materials of fabrication for the Test Article require a specialized handling facility to support installation, maintenance, and final disposal operations. Westinghouse Hanford Company, the Test Site Operator, working in conjunction with General Electric Company, the Test Article supplier, developed and evaluated several handling concepts resulting in the selection of a reference Test Article Handling System. The development of the reference concept for the handling system is presented

  8. Electromagnetic Shielding Characteristics of Eco-Friendly Foamed Concrete Wall

    Directory of Open Access Journals (Sweden)

    Sung-Sil Cho

    2017-01-01

    Full Text Available The electromagnetic shielding characteristics according to the material composition of foamed concrete, which was manufactured to reduce environmental pollution and to economically apply it in actual building walls, were researched herein. Industrial by-products such as ladle furnace slag (LFS, gypsum, and blast furnace slag (BFS were added to manufacture foamed concrete with enhanced functionalities such as lightweight, heat insulation, and sound insulation. The electrical characteristics such as permittivity and loss tangent according to the foam and BFS content were calculated and measured. Free space measurement was used to measure the electromagnetic shielding characteristics of the actually manufactured foamed concrete. It was confirmed that electromagnetic signals were better blocked when the foam content was low and the BFS content was high in the measured frequency bands (1–8 GHz and that approximately 90% of the electromagnetic signals were blocked over 4 GHz.

  9. Validation of intermediate heat and decay heat exchanger model in MARS-LMR with STELLA-1 and JOYO tests

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Chiwoong; Ha, Kwiseok; Hong, Jonggan; Yeom, Sujin; Eoh, Jaehyuk [Sodium-cooled Fast Reactor Design Division, Korea Atomic Energy Research Institute (KAERI), 989-111, Daedeok-Daero, Yuseong-Gu, Daejeon 305-353 (Korea, Republic of); Jeong, Hae-yong, E-mail: hyjeong@sejong.ac.kr [Department of Nuclear Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 143-747 (Korea, Republic of)

    2016-11-15

    Highlights: • The capability of the MARS-LMR for heat transfer through IHX and DHX is evaluated. • Prediction of heat transfer through IHXs and DHXs is essential in the SFR analysis. • Data obtained from the STELLA-1 and the JOYO test are analyzed with the MARS-LMR. • MARS-LMR adopts the Aoki’s correlation for tube side and Graber-Rieger’s for shell. • The performance of the basic models and other available correlations is evaluated. • The current models in MARS-LMR show best prediction for JOYO and STELLA-1 data. - Abstract: The MARS-LMR code has been developed by the Korea Atomic Energy Research Institute (KAERI) to analyze transients in a pool-type sodium-cooled fast reactor (SFR). Currently, KAERI is developing a prototype Gen-IV SFR (PGSFR) with metallic fuel. The decay heat exchangers (DHXs) and the intermediate heat exchangers (IHXs) were designed as a sodium-sodium counter-flow tube bundle type for decay heat removal system (DHRS) and intermediate heat transport system (IHTS), respectively. The IHX and DHX are important components for a heat removal function under normal and accident conditions, respectively. Therefore, sodium heat transfer models for the DHX and IHX heat exchangers were added in MARS-LMR. In order to validate the newly added heat transfer model, experimental data were obtained from the JOYO and STELLA-1 facilities were analyzed. JOYO has two different types of IHXs: type-A (co-axial circular arrangement) and type-B (triangular arrangement). For the code validation, 38 and 39 data points for type A and type B were selected, respectively. A DHX performance test was conducted in STELLA-1, which is the test facility for heat exchangers and primary pump in the PGSFR. The DHX test in STELLA-1 provided eight data points for a code validation. Ten nodes are used in the heat transfer region is used, based on the verification test for the heat transfer models. RMS errors for JOYO IHX type A and type B of 19.1% and 4.3% are obtained

  10. Development and testing of aluminum micro channel heat sink

    Science.gov (United States)

    Kumaraguruparan, G.; Sornakumar, T.

    2010-06-01

    Microchannel heat sinks constitute an innovative cooling technology for the removal of a large amount of heat from a small area and are suitable for electronics cooling. In the present work, Tool Steel D2 grade milling slitting saw type plain milling cutter is fabricated The microchannels are machined in aluminum work pieces to form the microchannel heat sink using the fabricated milling cutter in an horizontal milling machine. A new experimental set-up is fabricated to conduct the tests on the microchannel heat sink. The heat carried by the water increases with mass flow rate and heat input. The heat transfer coefficient and Nusselt number increases with mass flow rate and increased heat input. The pressure drop increases with Reynolds number and decreases with input heat. The friction factor decreases with Reynolds number and decreases with input heat. The thermal resistance decreases with pumping power and decreases with input heat.

  11. Concrete radiation shielding

    International Nuclear Information System (INIS)

    Kaplan, M.F.

    1989-01-01

    The increased use of nuclear energy has given rise to a growth in the amount of artificially produced radiation and radioactive materials. The design and construction of shielding to protect people, equipment and structures from the effects of radiation has never been more important. Experience has shown that concrete is an effective, versatile and economical material for the construction of radiation shielding. This book provides information on the principles governing the interaction of radiation with matter and on relevant nuclear physics to give the engineer an understanding of the design and construction of concrete shielding. It covers the physical, mechanical and nuclear properties of concrete; the effects of elevated temperatures and possible damage to concrete due to radiation; basic procedures for the design of concrete radiation shields and finally the special problems associated with their construction and cost. Although written primarily for engineers concerned with the design and construction of concrete shielding, the book also reviews the widely scattered data and information available on this subject and should therefore be of interest to students and those wishing to research further in this field. (author)

  12. Novel shielding materials for space and air travel

    International Nuclear Information System (INIS)

    Vana, N.; Hajek, M.; Berger, T.; Fugger, M.; Hofmann, P.

    2006-01-01

    The reduction of dose onboard spacecraft and aircraft by appropriate shielding measures plays an essential role in the future development of space exploration and air travel. The design of novel shielding strategies and materials may involve hydrogenous composites, as it is well known that liquid hydrogen is most effective in attenuating charged particle radiation. As precursor for a later flight experiment, the shielding properties of newly developed hydrogen-rich polymers and rare earth-doped high-density rubber were tested in various ground-based neutron and heavy ion fields and compared with aluminium and polyethylene as reference materials. Absorbed dose, average linear energy transfer and gamma-equivalent neutron absorbed dose were determined by means of LiF:Mg,Ti thermoluminescence dosemeters and CR-39 plastic nuclear track detectors. First results for samples of equal aerial density indicate that selected hydrogen-rich plastics and rare-earth-doped rubber may be more effective in attenuating cosmic rays by up to 10% compared with conventional aluminium shielding. The appropriate adaptation of shielding thicknesses may thus allow reducing the biologically relevant dose. Owing to the lower density of the plastic composites, mass savings shall result in a significant reduction of launch costs. The experiment was flown as part of the European Space Agency's Biopan-5 mission in May 2005. (authors)

  13. Status of reactor-shielding research in the US

    International Nuclear Information System (INIS)

    Maienshein, F.C.

    1980-01-01

    While reactor programs change, shielding analysis methods are improved slowly. Version-V of ENDF/B provides improved data and Version-VI will be cost effective in advanced fission reactors are to be developed in the US. Benchmarks for data and methods validation are collected and distributed in the US in two series, one primarily for FBR-related experiments and one for LWR calculational methods. For LWR design, cavity streaming is now handled adequately, if with varying degrees of elegance. Investigations of improved detector response for LWRs rely upon transport methods. The great potential importance of pressure-vessel damage is dreflected in widespread studies to aid in the prediction of neutron fluences in vessels. For LMFBRS, the FFTF should give attenuation results on an operating reactor. For larger power reactors, the advantages of alternate shield materials appear compelling. A few other shielding studies appear to require experimental confirmation if LMFBRs are to be economically competitive. A coherent shielding program for the GCFR is nearing completion. For the fusion-reactor program, methods verification is under way, practical calculations are well advanced for test devices such as the TFTR and FMIT, and consideration is now given to shielding problems of large reactors, as in the ETF study

  14. Gonad shielding in diagnostic radiology

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    The use of gonad shielding is an important radiation protection technique, intended to reduce unnecessary x-ray exposure of the gonads of patients from diagnostic x-ray procedures. The types of gonad shields in use are discussed as are the types of diagnostic examinations that should include gonad shielding. It was found that when properly used, most shields provided substantial gonad dose reductions

  15. Eye-lens bismuth shielding in paediatric head CT: artefact evaluation and reduction

    International Nuclear Information System (INIS)

    Raissaki, Maria; Perisinakis, Kostas; Damilakis, John; Gourtsoyiannis, Nicholas

    2010-01-01

    CT scans of the brain, sinuses and petrous bones performed as the initial imaging test for a variety of indications have the potential to expose the eye-lens, considered among the most radiosensitive human tissues, to a radiation dose. There are several studies in adults discussing the reduction of orbital dose resulting from the use of commercially available bismuth-impregnated latex shields during CT examinations of the head. To evaluate bismuth shielding-induced artefacts and to provide suggestions for optimal eye-lens shielding in paediatric head CT. A bismuth shield was placed over the eyelids of 60 consecutive children undergoing head CT. Images were assessed for the presence and severity of artefacts with regard to eye-shield distance and shield wrinkling. An anthropomorphic paediatric phantom and thermoluminescence dosimeters (TLDs) were used to study the effect of eye lens-to-shield distance on shielding efficiency. Shields were tolerated by 56/60 children. Artefacts were absent in 45% of scans. Artefacts on orbits, not affecting and affecting orbit evaluation were noted in 39% and 14% of scans, respectively. Diagnostically insignificant artefacts on intracranial structures were noted in 1 case (2%) with shield misplacement. Mean eye-lens-to-shield distance was 8.8 mm in scans without artefacts, and 4.3 mm and 2.2 mm in scans with unimportant and diagnostically important artefacts, respectively. Artefacts occurred in 8 out of 9 cases with shield wrinkling. Dose reduction remained unchanged for different shield-to-eye distances. Bismuth shielding-related artefacts occurring in paediatric head CT are frequent, superficial and diagnostically insignificant when brain pathology is assessed. Shields should be placed 1 cm above the eyes when orbital pathology is addressed. Shield wrinkling should be avoided. (orig.)

  16. Shielding structure analysis for LSDS facility

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hong Yeop; Kim, Jeong Dong; Lee, Yong Deok; Kim, Ho Dong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The nuclear material (Pyro, Spent nuclear fuel) itself and the target material to generate neutrons is the LSDS system for isotopic fissile assay release of high intensity neutron and gamma rays. This research was performed to shield from various strong radiation. A shielding evaluation was carried out with a facilities model of LSDS system. The MCNPX 2.5 code was used and a shielding evaluation was performed for the shielding structure and location. The radiation dose based on the hole structure and location of the wall was evaluated. The shielding evaluation was performed to satisfy the safety standard for a normal person (1 μSv/h) and to use enough interior space. The MCNPX2.5 code was used and a dose evaluation was performed for the location of the shielding material, shielding structure, and hole structure. The evaluation result differs according to the shielding material location. The dose rate was small when the shielding material was positioned at the center. The dose evaluation result regarding the location of the shielding material was applied to the facility and the shielding thickness was determined (In 50 cm + Borax 5 cm + Out 45cm). In the existing hole structure, the radiation leak is higher than the standard. A hole structure model to prevent leakage of radiation was proposed. The general public dose limit was satisfied when using the concrete reinforcement and a zigzag structure. The shielding result will be of help to the facility shielding optimization.

  17. Shielding structure analysis for LSDS facility

    International Nuclear Information System (INIS)

    Choi, Hong Yeop; Kim, Jeong Dong; Lee, Yong Deok; Kim, Ho Dong

    2014-01-01

    The nuclear material (Pyro, Spent nuclear fuel) itself and the target material to generate neutrons is the LSDS system for isotopic fissile assay release of high intensity neutron and gamma rays. This research was performed to shield from various strong radiation. A shielding evaluation was carried out with a facilities model of LSDS system. The MCNPX 2.5 code was used and a shielding evaluation was performed for the shielding structure and location. The radiation dose based on the hole structure and location of the wall was evaluated. The shielding evaluation was performed to satisfy the safety standard for a normal person (1 μSv/h) and to use enough interior space. The MCNPX2.5 code was used and a dose evaluation was performed for the location of the shielding material, shielding structure, and hole structure. The evaluation result differs according to the shielding material location. The dose rate was small when the shielding material was positioned at the center. The dose evaluation result regarding the location of the shielding material was applied to the facility and the shielding thickness was determined (In 50 cm + Borax 5 cm + Out 45cm). In the existing hole structure, the radiation leak is higher than the standard. A hole structure model to prevent leakage of radiation was proposed. The general public dose limit was satisfied when using the concrete reinforcement and a zigzag structure. The shielding result will be of help to the facility shielding optimization

  18. Atmosphere-entry behavior of a modular, disk-shaped, isotope heat source.

    Science.gov (United States)

    Vorreiter, J. W.; Pitts, W. C.; Stine, H. A.; Burns, J. J.

    1973-01-01

    The authors have studied the entry and impact behavior of an isotope heat source for space nuclear power that disassembles into a number of modules which would enter the earth's atmosphere separately if a flight aborted. These modules are disk-shaped units, each with its own reentry heat shield and protective impact container. In normal operation, the disk modules are stacked inside the generator, but during a reentry abort they separate and fly as individual units of low ballistic coefficient. Flight tests at hypersonic speeds have confirmed that a stack of disks will separate and assume a flat-forward mode of flight. Free-fall tests of single disks have demonstrated a nominal impact velocity of 30 m/sec at sea level for a practical range of ballistic coefficients.

  19. Testing for cross-subsidisation in the combined heat and power generation sector

    DEFF Research Database (Denmark)

    Amundsen, Eirik S; Andersen, Per; Jensen, Frank

    2011-01-01

    In this paper we examine cross-subsidisation among combined heat and power producers in Denmark.Information on stand-alone costs for heat generation allows us to empirically compare the Faulhaber tests,tests with an upper bound on stand-alone costs (the Palmer tests) and the fully distributed cos...... test (FDC). All tests indicate a substantial amount of cross-subsidisation from heat generation to power generation. It is shown that the FDC test is closer to that of the Faulhaber tests in its results than the Palmer tests. Thus as the Faulhaber tests are considered in the literature...

  20. Preparation of a basic data base for shielding design. 4

    International Nuclear Information System (INIS)

    Nakao, Makoto; Takemura, Morio

    1999-03-01

    With use of a standard groupwise shielding design library JSSTDL produced from the latest evaluated nuclear data library JENDL-3.2, experimental analyses for the JASPER experiments were performed. In order to verify the new version of JSSTDL, whose cross sections of thermal energy region was updated, the polyethylene transmission experiments of the Special Materials Experiment was analysed again, and also zirconium transmission experiment of the Experiment was newly analysed. JSSTDL was applied to the analysis of neutron multiplicative region of the in-vessel fuel storage mockup configurations in the IVS Experiment. Also it was applied to the analyses of neutron streaming effect through the mockup of sodium window in B 4 C shield in the Flux Monitor Experiment and also the mockup of narrow gaps in thick concrete shield in the Gap streaming Experiment. The results were compared with those obtained by the same analysis method and input data using the JSDJ2 library that had been applied consistently to the JASPER experiment analyses. Although the analysis with the new version of JSSTDL resulted in a little reduction of overestimation in the polyethylene transmission configuration, the results obtained with JSSTDL are, in general, higher than those with JSDJ2 as had been found in analyses in preceding years for the Radial Shield Attenuation Experiment, the Axial Shield Experiment, the Intermediate Heat Exchanger Experiment and so on. Compilation of the input data necessary for future reanalyses of important configurations in JASPER experiments, that were selected at the first stage of this study, were continued and new data were added into the computer disk holding previously accumulated data. (author)

  1. On the hydraulic behaviour of ITER Shield Blocks #14 and #08. Computational analysis and comparison with experimental tests

    Energy Technology Data Exchange (ETDEWEB)

    Di Maio, P.A. [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo Viale delle Scienze, 90128, Palermo (Italy); Merola, M.; Mitteau, R.; Raffray, R. [ITER Organization, Route de Vinon sur Verdon, 13067 Saint Paul, Lez Durance (France); Vallone, E., E-mail: eug.vallone@gmail.com [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo Viale delle Scienze, 90128, Palermo (Italy)

    2016-11-01

    Highlights: • A benchmarking activity has been carried out focusing the attention on the cooling circuits of ITER Shield Blocks #08 and #14. • A theoretical-computational fluid-dynamic approach based on the Finite Volume Method has been followed, adopting a commercial code. • Hydraulic characteristic functions and spatial distributions of coolant mass flow rate, velocity and pressure drop have been assessed. • Results obtained have allowed code benchmarking for Blanket modules and the numerical predictions have been found to be generally lower than but quite close to the experimental results (lower than 10%). - Abstract: As a consequence of its position and functions, the ITER blanket system will be subjected to significant heat loads under nominal reference conditions. Therefore, the design of its cooling system is particularly demanding. Coolant water is distributed individually to the 440 blanket modules (BMs) through manifold piping, which makes it a highly parallelized system. The mass flow rate distribution is finely tuned to meet all operation constraints: adequate margin to burn out in the plasma facing components, even distribution of water flow among the so-called plasma-facing “fingers” of the Blanket First Wall panels, high enough water flow rate to avoid excessive water temperature in the outlet pipes, maximum allowable water velocity lower than 7 m/s in manifold pipes. Furthermore the overall pressure drop and flow rate in each BM shall be within the fixed specified design limit to avoid an unduly unbalance of cooling among the 440 modules. Analyses have to be carried out following a computational fluid-dynamic (CFD) approach based on the finite volume method and adopting a CFD commercial code to assess the thermal-hydraulic behaviour of each single circuit of the ITER blanket cooling system. This paper describes the code benchmarking needed to determine the best method to get reliable and timely results. Since experimental tests are

  2. Radiation shielding considerations for the repair and maintenance of a swimming pool-type tokamak reactor

    International Nuclear Information System (INIS)

    Seki, Y.; Mori, S.

    1984-01-01

    The radiation shielding relevant to the repair and maintenance of a swimming pool-type tokamak reactor is considered. The dose rate during the reactor operation can be made low enough for personnel access into the reactor room if a 2m thick water layer is installed above the magnet cryostat. The dose rate 24 h after shutdown is such that the human access is allowed above the magnet cryostat. Sufficient water layer thickness is provided in the inboard space for the operation of automatic welder/cutter while retaining the magnet shielding capability. Some forced cooling is required for the decay heat removal in the first wall. The penetration shield thickness around the neutral beam injector port is estimated to be barely sufficient in terms of the magnet radiation damage. (orig.)

  3. Piping structural design for the ITER thermal shield manifold

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Chang Hyun, E-mail: chnoh@nfri.re.kr [ITER Korea, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Chung, Wooho, E-mail: whchung@nfri.re.kr [ITER Korea, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Nam, Kwanwoo; Kang, Kyoung-O. [ITER Korea, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Bae, Jing Do; Cha, Jong Kook [Korea Marine Equipment Research Institute, Busan 606-806 (Korea, Republic of); Kim, Kyoung-Kyu [Mecha T& S, Jinju-si 660-843 (Korea, Republic of); Hamlyn-Harris, Craig; Hicks, Robby; Her, Namil; Jun, Chang-Hoon [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France)

    2015-10-15

    Highlights: • We finalized piping design of ITER thermal shield manifold for procurement. • Support span is determined by stress and deflection limitation. • SQP, which is design optimization method, is used for the pipe design. • Benchmark analysis is performed to verify the analysis software. • Pipe design is verified by structural analyses. - Abstract: The thermal shield (TS) provides the thermal barrier in the ITER tokamak to minimize heat load transferred by thermal radiation from the hot components to the superconducting magnets operating at 4.2 K. The TS is actively cooled by 80 K pressurized helium gas which flows from the cold valve box to the cooling tubes on the TS panels via manifold piping. This paper describes the manifold piping design and analysis for the ITER thermal shield. First, maximum allowable span for the manifold support is calculated based on the simple beam theory. In order to accommodate the thermal contraction in the manifold feeder, a contraction loop is designed and applied. Sequential Quadratic Programming (SQP) method is used to determine the optimized dimensions of the contraction loop to ensure adequate flexibility of manifold pipe. Global structural behavior of the manifold is investigated when the thermal movement of the redundant (un-cooled) pipe is large.

  4. Ammunition Peculiar Equipment (APE) 1995, NIR Propellant Analyzer, to MIL-STD-398, Military Standard Shields, Operational for Ammunition Operations, Criteria for Design of and Tests for Acceptance

    National Research Council Canada - National Science Library

    2003-01-01

    ... (SJMAC-DEM) to test the Ammunition Peculiar Equipment (APE) 1995 NIR Propellant Analyzer, to MIL-STD-398, "Military Standard Shields, Operational for Ammunition Operations, Criteria for Design of and Tests for Acceptance...

  5. Solar-energy heats a transportation test center--Pueblo, Colorado

    Science.gov (United States)

    1981-01-01

    Petroleum-base, thermal energy transport fluid circulating through 583 square feet of flat-plate solar collectors accumulates majority of energy for space heating and domestic hot-water of large Test Center. Report describes operation, maintenance, and performance of system which is suitable for warehouses and similar buildings. For test period from February 1979 to January 1980, solar-heating fraction was 31 percent, solar hot-water fraction 79 percent.

  6. Cost-benefit analysis of shieldings for pipes inspections at JPDR

    International Nuclear Information System (INIS)

    Furuta, Toshishiro; Matsuno, Kenji; Katoh, Shoohei; Anazawa, Yutaka

    1979-01-01

    During the test operations of JPDR-II(BWR), cracks were detected at primary pipe nozzle, and the inspections were made over about 2.5 years. In this report, the procedures such as shielding and removal of fuels which were taken to reduce radiation exposure during the inspections are summarized and the cost-benefit analysis of the shieldings were attempted to determine whether the optimum shieldings were made or not. The radiation doses was measured to be about 62 man.rem for 420 workers and the maximum individual dose was 1.3 rem. The average cost to reduce exposures at various working areas was calculated approximately 1.4 x 10 5 yen/man-rem. Especially, the provisional shielding at under core area reduced 61 man-rem and its reduction cost was 8.9 x 10 6 yen. Assuming that the economic and social detriment cost is 1,000 dollar/man-rem, it seems that the optimum shielding were taken, although the optimum conditions shifted depending on the economic and social detriment cost which cannot be simply determined. It was found that the optimum conditions depended on the order of combination of the provisional shields. (author)

  7. Full-size solar dynamic heat receiver thermal-vacuum tests

    Science.gov (United States)

    Sedgwick, L. M.; Kaufmann, K. J.; Mclallin, K. L.; Kerslake, T. W.

    1991-01-01

    The testing of a full-size, 102 kW, solar dynamic heat receiver utilizing high-temperature thermal energy storage is described. The purpose of the test program was to quantify receiver thermodynamic performance, operating temperatures, and thermal response to changes in environmental and power module interface boundary conditions. The heat receiver was tested in a vacuum chamber with liquid nitrogen cold shrouds and an aperture cold plate to partly simulate a low-Earth-orbit environment. The cavity of the receiver was heated by an infrared quartz lamp heater with 30 independently controllable zones to allow axially and circumferentially varied flux distributions. A closed-Brayton cycle engine simulator conditioned a helium-xenon gas mixture to specific interface conditions to simulate the various operational modes of the solar dynamic power module on the Space Station Freedom. Inlet gas temperature, pressure, and flow rate were independently varied. A total of 58 simulated orbital cycles, each 94 minutes in duration, was completed during the test period.

  8. Development, manufacturing and testing of a gas-loaded variable conductance methanol heat pipe

    Science.gov (United States)

    Vanbuggenum, R. I. J.; Daniels, D. H. W.

    1987-02-01

    The experimental technology required to measure the performance of moderate temperature heat pipes is presented. The heat pipe manufacturing process is described. The hydrodynamic characteristics of the porous structure inside the heat pipe envelope were examined using a specially developed test rig, based upon a steady-state evaporation test. A fully automated test facility was developed and validated by testing constant conductance and variable conductance heat pipes (VCHP). Theoretical performance predictions are illustrated in terms of pressure, depicted in 3D-plots, and compared with the test results of the heat pipe performance tests. The design of the VCHP was directed towards the verification of the VCHP mathematical model. The VCHP design is validated and ready for the final testing and model verification.

  9. Testing and Performance Validation of a Shielded Waste Segregation and Clearance Monitor Designed for the Measurement of Low Level Waste-13043

    International Nuclear Information System (INIS)

    Mason, John A.; Burke, Kevin J.; Towner, Antony C.N.; Beaven, Graham; Spence, Robert

    2013-01-01

    This paper describes the development, testing and validation of a shielded waste segregation and clearance monitor designed for the measurement of low-density low-level waste (LLW). The monitor is made of a measurement chamber surrounded by detectors and a shielded outer frame. The shielded chamber consists of a steel frame, which contains typically 1.5 inches (3.81 cm) of lead and 0.5 inches (1.27 cm) of steel shielding. Inside the shielding are plastic scintillator panels, which serve as gross gamma ray detectors. The detector panels, with embedded photomultipliers, completely surround the internal measurement chamber on all 6 sides. Care has been taken to distribute the plastic scintillator detectors in order to optimise both the efficiency for gamma ray detection and at the same time achieve a volumetric sensitivity, which is as uniform as possible. A common high voltage power supply provides the bias voltage for each of the six photomultipliers. The voltage signals arising from the detectors and photomultipliers are amplified by six sensitive amplifiers. Each amplifier incorporates a single channel analyser with both upper and lower thresholds and the digitised counts from each detector are recorded on six scalars. Operation of the device is by means of a microprocessor from which the scalars are controlled. An internal load cell linked to the microprocessor determines the weight of the waste object, and this information is used to calculate the specific activity of the waste. The monitor makes background measurements when the shielded door is closed and a sample, usually a bag of low-density waste, is not present in the measurement chamber. Measurements of the minimum detectable activity (MDA) of an earlier large volume prototype instrument are reported as part of the development of the Waste Segregation and Clearance Monitor (WSCM) described in the paper. For the optimised WSCM a detection efficiency of greater than 32% was measured using a small Cs-137

  10. Influence of lead apron shielding on absorbed doses from panoramic radiography.

    Science.gov (United States)

    Rottke, D; Grossekettler, L; Sawada, K; Poxleitner, P; Schulze, D

    2013-01-01

    This study investigated the absorbed doses in a full anthropomorphic body phantom from two different panoramic radiography devices, performing protocols with and without applying a lead apron. A RANDO(®) full body phantom (Alderson Research Laboratories Inc., Stamford, CT) was equipped with 110 thermoluminescent dosemeters at 55 different sites and set up in two different panoramic radiography devices [SCANORA(®) three-dimensional (3D) (SOREDEX, Tuusula, Finland) and ProMax(®) 3D (Planmeca, Helsinki, Finland)] and exposed. Two different protocols were performed in the two devices. The first protocol was performed without any lead shielding, whereas the phantom was equipped with a standard adult lead apron for the second protocol. A two-tailed paired samples t-test for the SCANORA 3D revealed that there is no difference between the protocol using lead apron shielding (m = 87.99, s = 102.98) and the protocol without shielding (m = 87.34, s = 107.49), t(54) = -0.313, p > 0.05. The same test for the ProMax 3D showed that there is also no difference between the protocol using shielding (m = 106.48, s = 117.38) and the protocol without shielding (m = 107.75, s = 114,36), t(54) = 0.938, p > 0.05. In conclusion, the results of this study showed no statistically significant differences between a panoramic radiography with or without the use of lead apron shielding.

  11. Radiation shielding calculation using MCNP

    International Nuclear Information System (INIS)

    Masukawa, Fumihiro

    2001-01-01

    To verify the Monte Carlo code MCNP4A as a tool to generate the reference data in the shielding designs and the safety evaluations, various shielding benchmark experiments were analyzed using this code. These experiments were categorized in three types of the shielding subjects; bulk shielding, streaming, and skyshine. For the variance reduction technique, which is indispensable to get meaningful results with the Monte Carlo shielding calculation, we mainly used the weight window, the energy dependent Russian roulette and spitting. As a whole, our analyses performed enough small statistical errors and showed good agreements with these experiments. (author)

  12. Phase Change Material Heat Exchanger Life Test

    Science.gov (United States)

    Lillibridge, Sean; Stephan, Ryan

    2009-01-01

    Low Lunar Orbit (LLO) poses unique thermal challenges for the orbiting space craft, particularly regarding the performance of the radiators. The IR environment of the space craft varies drastically from the light side to the dark side of the moon. The result is a situation where a radiator sized for the maximal heat load in the most adverse situation is subject to freezing on the dark side of the orbit. One solution to this problem is to implement Phase Change Material (PCM) Heat Exchangers. PCM Heat Exchangers act as a "thermal capacitor," storing thermal energy when there is too much being produced by the space craft to reject to space, and then feeding that energy back into the thermal loop when conditions are more favorable. Because they do not use an expendable resource, such as the feed water used by sublimators and evaporators, PCM Heat Exchangers are ideal for long duration LLO missions. In order to validate the performance of PCM Heat Exchangers, a life test is being conducted on four n-Pentadecane, carbon filament heat exchangers. Fluid loop performance, repeatability, and measurement of performance degradation over 2500 melt-freeze cycles will be performed.

  13. Heat transfer enhancement of NBI vacuum pump cryopanels

    International Nuclear Information System (INIS)

    Ochoa Guaman, Santiago; Hanke, Stefan; Day, Christian

    2013-01-01

    Highlights: ► Cryopanel is optimized minimizing its maximal temperature rise and heat capacity. ► Copper coating on the cryopanels is necessary to reach a high thermal efficiency. ► The copper coating is achieved using an electroplating technique. ► A thermal shield for the cryopump 4 K manifold would reduce heat leaks down to 10%. ► The manufacturability and operation of the thermal shield is discussed. -- Abstract: Huge cryogenic pumps are installed inside neutral beam injectors in order to manage the typically very large gas flows. This paper deals with the aspect of passive cooling in NBI cryopump design development and discusses design considerations in two example areas. One is the design of cryopanels consisting of a pipe, centrally supplied with cryogenic helium, and a welded fin, passively cooled, to provide the necessary pumping surface below a given maximum temperature. The results of several parametric simulations in ANSYS are presented using different copper thicknesses and cryopanel geometries to discuss the thermal capability (heat transfer characteristics and heat capacities) of a number of design variants. The optimum design solution is based on copper-coated fins, using an electroplating technique, and thereby improving the heat transfer of the cryopanels while attaining an overall reduction in weight. The other area is the sound design of the manifold shielding system with a weld contact between copper and stainless steel. Weld samples were manufactured and investigated to raise awareness of the demands and risks during manufacturing and to demonstrate that readily applicable weld procedures exist

  14. TPX heating and cooling system

    International Nuclear Information System (INIS)

    Kungl, D.J.; Knutson, D.S.; Costello, J.; Stoenescu, S.; Yemin, L.

    1995-01-01

    TPX, while having primarily super-conducting coils that do not require water cooling, still has very significant water cooling requirements for the plasma heating systems, vacuum vessel, plasma facing components, diagnostics, and ancillary equipment. This is accentuated by the 1000-second pulse requirement. Two major design changes, which have significantly affected the TPX Heating and Cooling System, have been made since the conceptual design review in March of 1993. This paper will discuss these changes and review the current status of the conceptual design. The first change involves replacing the vacuum vessel neutron shielding configuration of lead/glass composite tile by a much simpler and more reliable borated water shield. The second change reduces the operating temperature of the vacuum vessel from 150 C to ≥50 C. With this temperature reduction, all in-vessel components and the vessel will be supplied by coolant at a common ≥50 C inlet temperature. In all, six different heating and cooling supply requirements (temperature, pressure, water quality) for the various TPX components must be met. This paper will detail these requirements and provide an overview of the Heating and Cooling System design while focusing on the ramifications of the TPX changes described above

  15. LOFT shield tank steady state temperatures with addition of gamma and neutron shielding

    International Nuclear Information System (INIS)

    Kyllingstad, G.

    1977-01-01

    The effect of introducing a neutron and gamma shield into the annulus between the reactor vessel and the shield tank is analyzed. This addition has been proposed in order to intercept neutron streaming up the annulus during nuclear operations. Its installation will require removal of approximately 20- 1 / 2 inches of stainless steel foil insulation at the top of the annulus. The resulting conduction path is believed to result in increased water temperatures within the shield tank, possibly beyond the 150 0 F limit, and/or cooling of the reactor vessel nozzles such that adverse thermal stresses would be generated. A two dimensional thermal analysis using the finite element code COUPLE/MOD2 was done for the shield tank system illustrated in the figure (1). The reactor was assumed to be at full power, 55 MW (th), with a loop flow rate of 2.15 x 10 6 lbm/hr (268.4 kg/s) at 2250 psi (15.51 MPa). Calculations indicate a steady state shield tank water temperature of 140 0 F (60 0 C). This is below the 150 0 F (65.56 0 C) limit. Also, no significant changes in thermal gradients within the nozzle or reactor vessel wall are generated. A spacer between the gamma shield and the shield tank is recommended, however, in order to ensure free air circulation through the annulus

  16. High temperature superconducting current lead test facility with heat pipe intercepts

    International Nuclear Information System (INIS)

    Blumenfeld, P.E.; Prenger, C.; Roth, E.W.; Stewart, J.A.

    1998-01-01

    A high temperature superconducting (HTS) current lead test facility using heat pipe thermal intercepts is under development at the Superconducting Technology Center at Los Alamos National Laboratory. The facility can be configured for tests at currents up to 1,000 A. Mechanical cryocoolers provide refrigeration to the leads. Electrical isolation is maintained by intercepting thermal energy from the leads through cryogenic heat pipes. HST lead warm end temperature is variable from 65 K to over 90 K by controlling heat pipe evaporator temperature. Cold end temperature is variable up to 30 K. Performance predictions in terms of heat pipe evaporator temperature as a function of lead current are presented for the initial facility configuration, which supports testing up to 200 A. Measurements are to include temperature and voltage gradient in the conventional and HTS lead sections, temperature and heat transfer rate in the heat pipes. as well as optimum and off-optimum performance of the conventional lead sections

  17. Electron beam welding of iridium heat source capsules

    International Nuclear Information System (INIS)

    Mustaleski, T.M.; Yearwood, J.C.; Burgan, C.E.; Green, L.A.

    1991-01-01

    The development of the welding procedures for the production of DOP-26 iridium alloy cups for heat source encapsulation is described. All the final assembly welds were made using the electron beam welding process. The welding of the 0.13-mm weld shield required the use of computer controlled X-Y table and a run-off tab. Welding of the frit vent to the cup required that a laser weld be made to hold the frit assembly edges together for the final electron beam weld. Great care is required in tooling design and beam placement to achieve acceptable results. Unsuccessful attempts to use laser beam welding for heat shield butt weld are discussed

  18. Accelerator shielding benchmark problems

    International Nuclear Information System (INIS)

    Hirayama, H.; Ban, S.; Nakamura, T.

    1993-01-01

    Accelerator shielding benchmark problems prepared by Working Group of Accelerator Shielding in the Research Committee on Radiation Behavior in the Atomic Energy Society of Japan were compiled by Radiation Safety Control Center of National Laboratory for High Energy Physics. Twenty-five accelerator shielding benchmark problems are presented for evaluating the calculational algorithm, the accuracy of computer codes and the nuclear data used in codes. (author)

  19. Comparing heat flow models for interpretation of precast quadratic pile heat exchanger thermal response tests

    DEFF Research Database (Denmark)

    Alberdi Pagola, Maria; Poulsen, Søren Erbs; Loveridge, Fleur

    2018-01-01

    This paper investigates the applicability of currently available analytical, empirical and numerical heat flow models for interpreting thermal response tests (TRT) of quadratic cross section precast pile heat exchangers. A 3D finite element model (FEM) is utilised for interpreting five TRTs by in...

  20. A Reliability Comparison of Classical and Stochastic Thickness Margin Approaches to Address Material Property Uncertainties for the Orion Heat Shield

    Science.gov (United States)

    Sepka, Steve; Vander Kam, Jeremy; McGuire, Kathy

    2018-01-01

    The Orion Thermal Protection System (TPS) margin process uses a root-sum-square approach with branches addressing trajectory, aerothermodynamics, and material response uncertainties in ablator thickness design. The material response branch applies a bond line temperature reduction between the Avcoat ablator and EA9394 adhesive by 60 C (108 F) from its peak allowed value of 260 C (500 F). This process is known as the Bond Line Temperature Material Margin (BTMM) and is intended to cover material property and performance uncertainties. The value of 60 C (108 F) is a constant, applied at any spacecraft body location and for any trajectory. By varying only material properties in a random (monte carlo) manner, the perl-based script mcCHAR is used to investigate the confidence interval provided by the BTMM. In particular, this study will look at various locations on the Orion heat shield forebody for a guided and an abort (ballistic) trajectory.

  1. HPGe detector shielding adjustment

    International Nuclear Information System (INIS)

    Trnkova, L.; Rulik, P.

    2008-01-01

    Low-level background shielding of HPGe detectors is used mainly for environmental samples with very low content of radionuclides. National Radiation Protection Institute (SURO) in Prague is equipped with 14 HPGe detectors with relative efficiency up to 150%. The detectors are placed in a room built from materials with low content of natural radionuclides and equipped with a double isolation of the floor against radon. Detectors themselves are placed in lead or steel shielding. Steel shielding with one of these detectors with relative efficiency of 100% was chosen to be rebuilt to achieve lower minimum detectable activity (MDA). Additional lead and copper shielding was built up inside the original steel shielding to reduce the volume of the inner space and filled with nitrogen by means of evaporating liquid nitrogen. The additional lead and copper shielding, consequent reduction of the inner volume and supply of evaporated nitrogen, caused a decrease of the background count and accordingly MDA values as well. The effect of nitrogen evaporation on the net areas of peaks belonging to radon daughters is significant. The enhanced shielding adjustment has the biggest influence in low energy range, what can be seen in collected data. MDA values in energy range from 30 keV to 400 keV decreased to 0.65-0.85 of original value, in energy range from 400 keV to 2 MeV they fell to 0.70-0.97 of original value. (authors)

  2. External dosimetry sources and shielding

    International Nuclear Information System (INIS)

    Calisto, Washington

    1994-01-01

    A definition of external dosimetry r external sources dosimetry,physical and mathematical treatment of the interaction of gamma radiation with a minimal area in that direction. Concept of attenuation coefficient, cumulated effect by polyenergetic sources, exposition rate, units, cumulated dose,shielding, foton shielding, depth calculation, materials used for shielding.Beta shielding, consideration of range and maximum β energy , low stopping radiation by use of low Z shielding. Tables for β energy of β emitters, I (tau) factor, energy-range curves for β emitters in aqueous media, gamma attenuation factors for U, W and Pb. Y factor for bone tissue,muscle and air, build-up factors

  3. Concept of spatial channel theory applied to reactor shielding analysis

    International Nuclear Information System (INIS)

    Williams, M.L.; Engle, W.W. Jr.

    1977-01-01

    The concept of channel theory is used to locate spatial regions that are important in contributing to a shielding response. The method is analogous to the channel-theory method developed for ascertaining important energy channels in cross-section analysis. The mathematical basis for the theory is shown to be the generalized reciprocity relation, and sample problems are given to exhibit and verify properties predicted by the mathematical equations. A practical example is cited from the shielding analysis of the Fast Flux Test Facility performed at Oak Ridge National Laboratory, in which a perspective plot of channel-theory results was found useful in locating streaming paths around the reactor cavity shield

  4. Technical Requirements for Fabrication and Installation of Removable Shield for CNRF in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Jeong Soo; Cho, Yeong Garp; Lee, Jung Hee; Shin, Jin Won

    2008-04-15

    This report details the technical requirements for the fabrication and installation of the removable shield for the Cold Neutron Research Facility (CNRF) in HANARO reactor hall. The removable shield is classified as non-nuclear safety (NNS), seismic category II, and quality class T. The main function of the removable shield is to do the biological shielding of neutrons and gamma from the CN port and the guides. The removable shield consists of block type walls and roofs that can be necessarily assembled, disassembled and moveable. These will be installed between the reactor pool wall and the CNS guide bunker in. This report describes technical requirements for the removable shield such as quality assurance, seismic analysis requirements, configuration, concrete compositions, fabrication and installation requirements, test and inspection, shipping, delivery, etc. Appendix is the technical specification of structural design and analysis. Attachments are composed of the technical specification for the fabrication of the removable shield, shielding design drawings and procurement quality requirements. These technical requirements will be provided to a contract for the manufacturing and installation.

  5. Analysis of panthers full-scale heat transfer tests with RELAP5

    International Nuclear Information System (INIS)

    Parlatan, Y.; Boyer, B.D.; Jo, J.; Rohatgi, S.

    1996-01-01

    The RELAP5 code is being assessed on the full-scale Passive Containment Cooling System (PCCS) in the Performance ANalysis and Testing of HEat Removal Systems (PANTHERS) facility at Societa Informazioni Termoidrauliche (SIET) in Italy. PANTHERS is a test facility with fall-size prototype beat exchangers for the PCCS in support of the General Electric's (GE) Simplified Boiling Water Reactor (SBWR) program. PANTHERS tests with a low noncondensable gas concentration and with a high noncondensable gas concentration were analyzed with RELAP5. The results showed that beat transfer rate decreases significantly along the PCCS tubes. In the test case with a higher inlet noncondensable gas fraction, the PCCS removed 35% less heat than in the test case with the lower noncondensable gas fraction. The dominant resistance to the overall heat transfer is the condensation beat transfer resistance inside the tubes. This resistance increased by about 5-fold between the inlet and exit of the tube due to the build up of noncondensable gases along the tube. The RELAP5 calculations also predicted that 4% to 5% of the heat removed to the PCCS pool occurs in the inlet steam piping and PCCS upper and lower headers. These piping needs to be modeled for other tests systems. The full-scale PANTHERS predictions are also compared against 1/400 scale GIRAFFE tests. GIRAFFE has 33% larger heat surface area, but its efficiency is only 15% and 23% higher than PANTHERS for the two cases analyzed This was explained by the high heat transfer resistance inside the tubes near the exit

  6. Method for dismantling shields

    International Nuclear Information System (INIS)

    Fukuzawa, Rokuro; Kondo, Nobuhiro; Kamiyama, Yoshinori; Kawasato, Ken; Hiraga, Tomoaki.

    1990-01-01

    The object of the present invention is to enable operators to dismantle shieldings contaminated by radioactivity easily and in a short period of time without danger of radiation exposure. A plurality of introduction pipes are embedded previously to the shielding walls of shielding members which contain a reactor core in a state where both ends of the introduction pipes are in communication with the outside. A wire saw is inserted into the introduction pipes to cut the shieldings upon dismantling. Then, shieldings can be dismantled easily in a short period of time with no radiation exposure to operator's. Further, according to the present invention, since the wire saw can be set easily and a large area can be cut at once, operation efficiency is improved. Further, since remote control is possible, cutting can be conducted in water and complicated places of the reactor. Biting upon starting the wire saw in the introduction pipe is reduced to facilitate startup for the rotation. (I.S.)

  7. Cold Test and Performance Evaluation of Prototype Cryoline-X

    Science.gov (United States)

    Shah, N.; Choukekar, K.; Kapoor, H.; Muralidhara, S.; Garg, A.; Kumar, U.; Jadon, M.; Dash, B.; Bhattachrya, R.; Badgujar, S.; Billot, V.; Bravais, P.; Cadeau, P.

    2017-12-01

    The multi-process pipe vacuum jacketed cryolines for the ITER project are probably world’s most complex cryolines in terms of layout, load cases, quality, safety and regulatory requirements. As a risk mitigation plan, design, manufacturing and testing of prototype cryoline (PTCL) was planned before the approval of final design of ITER cryolines. The 29 meter long PTCL consist of 6 process pipes encased by thermal shield inside Outer Vacuum Jacket of DN 600 size and carries cold helium at 4.5 K and 80 K. The global heat load limit was defined as 1.2 W/m at 4.5 K and 4.5 W/m at 80 K. The PTCL-X (PTCL for Group-X cryolines) was specified in detail by ITER-India and designed as well as manufactured by Air Liquide. PTCL-X was installed and tested at cryogenic temperature at ITER-India Cryogenic Laboratory in 2016. The heat load at 4.5 K and 80 K, estimated using enthalpy difference method, was found to be approximately 0.8 W/m at 4.5 K, 4.2 W/m at 80 K, which is well within the defined limits. Thermal shield temperature profile was also found to be satisfactory. Paper summarizes the cold test results of PTCL-X

  8. He II Heat Exchanger Test Unit for the LHC Inner Triplet

    CERN Document Server

    Blanco-Viñuela, E; Huang, Y; Nicol, T H; Peterson, T; Van Weelderen, R

    2002-01-01

    The Inner Triplet Heat Exchanger Test Unit (IT-HXTU) is a 30-m long thermal model designed at Fermilab, built in US industry, fully automated and tested at CERN as part of the US LHC program to develop the LHC Interaction Region quadrupole system. The cooling scheme of the IT-HXTU is based on heat exchange between stagnant pressurized He II in the magnet cold mass and saturated He II (two-phase) flowing in a heat exchanger located outside of and parallel to the cold mass. The purposes of this test are, among others, to validate the proposed cooling scheme and to define an optimal control strategy to be implemented in the future LHC accelerator. This paper discusses the results for the heat exchanger test runs and emphasizes the thermal and hydraulic behavior of He II for the inner triplet cooling scheme.

  9. Evaluation of piping heat transfer, piping flow regimes, and steam generator heat transfer for the Semiscale Mod-1 isothermal tests

    International Nuclear Information System (INIS)

    French, R.T.

    1975-08-01

    Selected experimental data pertinent to piping heat transfer, transient fluid flow regimes, and steam generator heat transfer obtained during the Semiscale Mod-1 isothermal blowdown test series (Test Series 1) are analyzed. The tests in this first test series were designed to provide counterparts to the LOFT nonnuclear experiments. The data from the Semiscale Mod-1 intact and broken loop piping are evaluated to determine the surface heat flux and average heat transfer coefficients effective during the blowdown transient and compared with well known heat transfer correlations used in the RELAP4 computer program. Flow regimes in horizontal pipe sections are calculated and compared with data obtained from horizontal and vertical densitometers and with an existing steady state flow map. Effects of steam generator heat transfer are evaluated quantitatively and qualitatively. The Semiscale Mod-1 data and the analysis presented in this report are valuable for evaluating the adequacy and improving the predictive capability of analytical models developed to predict system response to piping heat transfer, piping flow regimes, and steam generator heat transfer during a postulated loss-of-coolant accident (LOCA) in a pressurized water reactor (PWR). 16 references. (auth)

  10. Magnetic shield effect simulation of superconducting film shield covering directly coupled HTS dc-SQUID magnetometer

    International Nuclear Information System (INIS)

    Terauchi, N.; Noguchi, S.; Igarashi, H.

    2011-01-01

    A superconducting film shield over a SQUID ring improves the robustness of the SQUID with respect to magnetic noise. Supercurrent in the SQUID magnetometer and the superconducting film shield were simulated. The superconducting film shield reduces the influence of the external magnetic field on the SQUID ring. An HTS SQUID is a high sensitive magnetic sensor. In recent years, the HTS SQUID is widely used in various applications. In some applications, high robustness with respect to magnetic noise is required to realize stable operation at outside of a magnetic shielding room. The target of this paper is a directly coupled HTS dc-SQUID magnetometer. To enhance the robustness of the SQUID magnetometer, use of a superconducting thin film shield has been proposed. The magnetic field directly penetrating the SQUID ring causes the change of the critical current of Josephson junction, and then the SQUID magnetometer transitions into inoperative state. In order to confirm the magnetic shield effect of the superconducting film shield, electromagnetic field simulation with 3D edge finite element method was performed. To simulate the high temperature superconductor, E-J characteristics and c-axis anisotropy are considered. To evaluate the effect of the superconducting film shield, an external magnetic field which is supposed to be a magnetic noise is applied. From the simulation results, the time transition of the magnetic flux penetrating the SQUID ring is investigated and the effect of the superconducting film shield is confirmed. The amplitude of the magnetic flux penetrating the SQUID ring can be reduced to about one-sixth since the superconducting film shield prevents the magnetic noise from directly penetrating the SQUID ring.

  11. Testing a Quantum Heat Pump with a Two-Level Spin

    Directory of Open Access Journals (Sweden)

    Luis A. Correa

    2016-04-01

    Full Text Available Once in its non-equilibrium steady state, a nanoscale system coupled to several heat baths may be thought of as a “quantum heat pump”. Depending on the direction of its stationary heat flows, it may function as, e.g., a refrigerator or a heat transformer. These continuous heat devices can be arbitrarily complex multipartite systems, and yet, their working principle is always the same: they are made up of several elementary three-level stages operating in parallel. As a result, it is possible to devise external “black-box” testing strategies to learn about their functionality and performance regardless of any internal details. In particular, one such heat pump can be tested by coupling a two-level spin to one of its “contact transitions”. The steady state of this external probe contains information about the presence of heat leaks and internal dissipation in the device and, also, about the direction of its steady-state heat currents. Provided that the irreversibility of the heat pump is low, one can further estimate its coefficient of performance. These techniques may find applications in the emerging field of quantum thermal engineering, as they facilitate the diagnosis and design optimization of complex thermodynamic cycles.

  12. Test bench HEATREC for heat loss measurement on solar receiver tubes

    Science.gov (United States)

    Márquez, José M.; López-Martín, Rafael; Valenzuela, Loreto; Zarza, Eduardo

    2016-05-01

    In Solar Thermal Electricity (STE) plants the thermal energy of solar radiation is absorbed by solar receiver tubes (HCEs) and it is transferred to a heat transfer fluid. Therefore, heat losses of receiver tubes have a direct influence on STE plants efficiency. A new test bench called HEATREC has been developed by Plataforma Solar de Almería (PSA) in order to determinate the heat losses of receiver tubes under laboratory conditions. The innovation of this test bench consists in the possibility to determine heat losses under controlled vacuum.

  13. Passive magnetic shielding in MRI-Linac systems

    Science.gov (United States)

    Whelan, Brendan; Kolling, Stefan; Oborn, Brad M.; Keall, Paul

    2018-04-01

    Passive magnetic shielding refers to the use of ferromagnetic materials to redirect magnetic field lines away from vulnerable regions. An application of particular interest to the medical physics community is shielding in MRI systems, especially integrated MRI-linear accelerator (MRI-Linac) systems. In these systems, the goal is not only to minimize the magnetic field in some volume, but also to minimize the impact of the shield on the magnetic fields within the imaging volume of the MRI scanner. In this work, finite element modelling was used to assess the shielding of a side coupled 6 MV linac and resultant heterogeneity induced within the 30 cm diameter of spherical volume (DSV) of a novel 1 Tesla split bore MRI magnet. A number of different shield parameters were investigated; distance between shield and magnet, shield shape, shield thickness, shield length, openings in the shield, number of concentric layers, spacing between each layer, and shield material. Both the in-line and perpendicular MRI-Linac configurations were studied. By modifying the shield shape around the linac from the starting design of an open ended cylinder, the shielding effect was boosted by approximately 70% whilst the impact on the magnet was simultaneously reduced by approximately 10%. Openings in the shield for the RF port and beam exit were substantial sources of field leakage; however it was demonstrated that shielding could be added around these openings to compensate for this leakage. Layering multiple concentric shield shells was highly effective in the perpendicular configuration, but less so for the in-line configuration. Cautious use of high permeability materials such as Mu-metal can greatly increase the shielding performance in some scenarios. In the perpendicular configuration, magnetic shielding was more effective and the impact on the magnet lower compared with the in-line configuration.

  14. Incorrectly placed gonad shields: Effect on CT automatic exposure correction from four different scanners

    International Nuclear Information System (INIS)

    Martin Weber Kusk, R.T.

    2014-01-01

    Purpose: To examine the influence of incorrectly placed gonad shields on radiation dose when performing abdominal CT with automatic exposure correction, using systems from different vendors. Methods and materials: An anthropomorphic phantom was scanned without gonad shields, and with gonad shields placed in two different positions relative to the scan range. Dose Length Product was recorded. mA distribution in the longitudinal direction was plotted. Mean dose was compared using the t-test. Results: Three scanners showed different increase in relative DLP according to shield position. Conclusion: Care must be taken when placing lead shielding at CT and characteristics of each scanner should be known to the operator

  15. Scintillation counter, segmented shield

    International Nuclear Information System (INIS)

    Olson, R.E.; Thumim, A.D.

    1975-01-01

    A scintillation counter, particularly for counting gamma ray photons, includes a massive lead radiation shield surrounding a sample-receiving zone. The shield is disassembleable into a plurality of segments to allow facile installation and removal of a photomultiplier tube assembly, the segments being so constructed as to prevent straight-line access of external radiation through the shield into radiation-responsive areas. Provisions are made for accurately aligning the photomultiplier tube with respect to one or more sample-transmitting bores extending through the shield to the sample receiving zone. A sample elevator, used in transporting samples into the zone, is designed to provide a maximum gamma-receiving aspect to maximize the gamma detecting efficiency. (U.S.)

  16. Modeling, Testing and Deploying a Multifunctional Radiation Shielding / Hydrogen Storage Unit, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This project addresses two vital problems for long-term space travel activities: radiation shielding and hydrogen storage for power and propulsion. While both...

  17. Density-tunable lightweight polymer composites with dual-functional ability of efficient EMI shielding and heat dissipation.

    Science.gov (United States)

    Lee, Seung Hwan; Yu, Seunggun; Shahzad, Faisal; Kim, Woo Nyon; Park, Cheolmin; Hong, Soon Man; Koo, Chong Min

    2017-09-21

    Lightweight dual-functional materials with high EMI shielding performance and thermal conductivity are of great importance in modern cutting-edge applications, such as mobile electronics, automotive, aerospace, and military. Unfortunately, a clear material solution has not emerged yet. Herein, we demonstrate a simple and effective way to fabricate lightweight metal-based polymer composites with dual-functional ability of excellent EMI shielding effectiveness and thermal conductivity using expandable polymer bead-templated Cu hollow beads. The low-density Cu hollow beads (ρ ∼ 0.44 g cm -3 ) were fabricated through electroless plating of Cu on the expanded polymer beads with ultralow density (ρ ∼ 0.02 g cm -3 ). The resulting composites that formed a continuous 3D Cu network with a very small Cu content (∼9.8 vol%) exhibited excellent EMI shielding (110.7 dB at 7 GHz) and thermal conductivity (7.0 W m -1 K -1 ) with isotropic features. Moreover, the densities of the composites are tunable from 1.28 to 0.59 g cm -3 in accordance with the purpose of their applications. To the best of our knowledge, the resulting composites are the best lightweight dual-functional materials with exceptionally high EMI SE and thermal conductivity performance among synthetic polymer composites.

  18. Shielding Benchmark Computational Analysis

    International Nuclear Information System (INIS)

    Hunter, H.T.; Slater, C.O.; Holland, L.B.; Tracz, G.; Marshall, W.J.; Parsons, J.L.

    2000-01-01

    Over the past several decades, nuclear science has relied on experimental research to verify and validate information about shielding nuclear radiation for a variety of applications. These benchmarks are compared with results from computer code models and are useful for the development of more accurate cross-section libraries, computer code development of radiation transport modeling, and building accurate tests for miniature shielding mockups of new nuclear facilities. When documenting measurements, one must describe many parts of the experimental results to allow a complete computational analysis. Both old and new benchmark experiments, by any definition, must provide a sound basis for modeling more complex geometries required for quality assurance and cost savings in nuclear project development. Benchmarks may involve one or many materials and thicknesses, types of sources, and measurement techniques. In this paper the benchmark experiments of varying complexity are chosen to study the transport properties of some popular materials and thicknesses. These were analyzed using three-dimensional (3-D) models and continuous energy libraries of MCNP4B2, a Monte Carlo code developed at Los Alamos National Laboratory, New Mexico. A shielding benchmark library provided the experimental data and allowed a wide range of choices for source, geometry, and measurement data. The experimental data had often been used in previous analyses by reputable groups such as the Cross Section Evaluation Working Group (CSEWG) and the Organization for Economic Cooperation and Development/Nuclear Energy Agency Nuclear Science Committee (OECD/NEANSC)

  19. Evaluating shielding effectiveness for reducing space radiation cancer risks

    International Nuclear Information System (INIS)

    Cucinotta, Francis A.; Kim, Myung-Hee Y.; Ren, Lei

    2006-01-01

    We discuss calculations of probability distribution functions (PDF) representing uncertainties in projecting fatal cancer risk from galactic cosmic rays (GCR) and solar particle events (SPE). The PDFs are used in significance tests for evaluating the effectiveness of potential radiation shielding approaches. Uncertainties in risk coefficients determined from epidemiology data, dose and dose-rate reduction factors, quality factors, and physics models of radiation environments are considered in models of cancer risk PDFs. Competing mortality risks and functional correlations in radiation quality factor uncertainties are included in the calculations. We show that the cancer risk uncertainty, defined as the ratio of the upper value of 95% confidence interval (CI) to the point estimate is about 4-fold for lunar and Mars mission risk projections. For short-stay lunar missions ( 180d) or Mars missions, GCR risks may exceed radiation risk limits that are based on acceptable levels of risk. For example, the upper 95% CI exceeding 10% fatal risk for males and females on a Mars mission. For reducing GCR cancer risks, shielding materials are marginally effective because of the penetrating nature of GCR and secondary radiation produced in tissue by relativistic particles. At the present time, polyethylene or carbon composite shielding cannot be shown to significantly reduce risk compared to aluminum shielding based on a significance test that accounts for radiobiology uncertainties in GCR risk projection

  20. Experiment data report for semiscale Mod-1 test S-02-3 (blowdown heat transfer test)

    International Nuclear Information System (INIS)

    Crapo, H.S.; Jensen, M.F.; Sackett, K.E.

    1975-09-01

    Recorded test data are presented for Test S-02-3 of the Semiscale Mod-1 blowdown heat transfer test series. Test S-02-3 was conducted from an initial cold leg fluid temperature of 544 0 F and an initial pressure of 2,263 psig. A simulated double-ended offset shear cold leg break was used to investigate the system response to a depressurization transient with a moderately heated core (75 percent design power level). An electrically heated core was used in the pressure vessel to simulate the effects of a nuclear core. System flow was also set at the 75 percent design level to achieve full core temperature differential. The flow resistance of the intact loop was based on core area scaling. During system depressurization, core power was reduced from the initial level of 1.2 MW in such a manner as to simulate the surface heat flux response of the LOFT nuclear fuel rods until such time that departure from nucleate boiling (DNB) occurs. Blowdown to the pressure suppression system was accomplished without simulated emergency core coolant injection or pressure suppression system coolant spray

  1. A versatile program for the calculation of linear accelerator room shielding.

    Science.gov (United States)

    Hassan, Zeinab El-Taher; Farag, Nehad M; Elshemey, Wael M

    2018-03-22

    This work aims at designing a computer program to calculate the necessary amount of shielding for a given or proposed linear accelerator room design in radiotherapy. The program (Shield Calculation in Radiotherapy, SCR) has been developed using Microsoft Visual Basic. It applies the treatment room shielding calculations of NCRP report no. 151 to calculate proper shielding thicknesses for a given linear accelerator treatment room design. The program is composed of six main user-friendly interfaces. The first enables the user to upload their choice of treatment room design and to measure the distances required for shielding calculations. The second interface enables the user to calculate the primary barrier thickness in case of three-dimensional conventional radiotherapy (3D-CRT), intensity modulated radiotherapy (IMRT) and total body irradiation (TBI). The third interface calculates the required secondary barrier thickness due to both scattered and leakage radiation. The fourth and fifth interfaces provide a means to calculate the photon dose equivalent for low and high energy radiation, respectively, in door and maze areas. The sixth interface enables the user to calculate the skyshine radiation for photons and neutrons. The SCR program has been successfully validated, precisely reproducing all of the calculated examples presented in NCRP report no. 151 in a simple and fast manner. Moreover, it easily performed the same calculations for a test design that was also calculated manually, and produced the same results. The program includes a new and important feature that is the ability to calculate required treatment room thickness in case of IMRT and TBI. It is characterised by simplicity, precision, data saving, printing and retrieval, in addition to providing a means for uploading and testing any proposed treatment room shielding design. The SCR program provides comprehensive, simple, fast and accurate room shielding calculations in radiotherapy.

  2. Development and Evaluation of a Proposed Neck Shield for the 5 Percentile Hybrid III Female Dummy.

    Science.gov (United States)

    Banglmaier, Richard F; Pecoraro, Katie M; Feustel, Jim R; Scherer, Risa D; Rouhana, Stephen W

    2005-11-01

    Frontal airbag interaction with the head and neck of the Hybrid III family of dummies may involve a non-biofidelic interaction. Researchers have found that the deploying airbag may become entrapped in the hollow cavity behind the dummy chin. This study evaluated a prototype neck shield design, the Flap Neck Shield, for biofidelic response and the ability to prevent airbag entrapment in the chin/jaw cavity. Neck pendulum calibration tests were conducted for biofidelity evaluation. Static and dynamic airbag deployments were conducted to evaluate neck shield performance. Tests showed that the Flap Neck Shield behaved in a biofidelic manner with neck loads and head motion within established biofidelic limits. The Flap Neck Shield did not alter the neck loads during static or dynamic airbag interactions, but it did consistently prevent the airbag from penetrating the chin/jaw cavity. Use of the Flap Neck Shield with the 5(th) percentile Hybrid III female dummy is recommended for frontal airbag deployments given its acceptable biofidelic response and repeatable performance.

  3. Heat production in an Archean crustal profile and implications for heat flow and mobilization of heat-producing elements

    Energy Technology Data Exchange (ETDEWEB)

    Ashwal, L.D.; Morgan, P.; Kelley, S.A.; Percival, J.A.

    1987-10-01

    We have measured concentrations of heat producing elements (Th, U, and K) in 58 samples representative of the main lithologies in a 100 km transect of the Superior Province of the Canadian Shield, from the Michipicoten (Wawa) greenstone belt, near Wawa, Ontario, through a domal gneiss terrane of amphibolite grade, to the granulite belt of the Kapuskasing Structural Zone, near Foleyet. (orig./SHOE).

  4. F-doped VO2 nanoparticles for thermochromic energy-saving foils with modified color and enhanced solar-heat shielding ability.

    Science.gov (United States)

    Dai, Lei; Chen, Shi; Liu, Jianjun; Gao, Yanfeng; Zhou, Jiadong; Chen, Zhang; Cao, Chuanxiang; Luo, Hongjie; Kanehira, Minoru

    2013-07-28

    F-doped VO2 (M1) nanoparticles were prepared via one-pot hydrothermal synthesis. The F-doping can minimise the size of the VO2 (M1) nanoparticles, induce a homogeneous size distribution and effectively decrease the phase transition temperature to 35 °C at 2.93% F in VO2. VO2 smart glass foils obtained by casting these nanoparticles exhibit excellent thermochromism in the near-infrared region, which suggests that these foils can be used for energy-efficient glass. Compared to a pure VO2 foil, the 2.93% F-doped VO2 foil exhibits an increased solar-heat shielding ability (35.1%) and a modified comfortable colour, while still retaining an excellent solar modulation ability (10.7%) and an appropriate visible transmittance (48.7%). The F-doped VO2 foils are the first to simultaneously meet the requirements of a reduced phase transition temperature, diluted colour and excellent thermochromic properties, and these properties make the further improved F-doped VO2 foils suitable for commercial applications in energy efficient glass.

  5. Flux trapping and shielding in irreversible superconductors

    International Nuclear Information System (INIS)

    Frankel, D.J.

    1978-05-01

    Flux trappings and shielding experiments were carried out on Pb, Nb, Pb-Bi, Nb-Sn, and Nb-Ti samples of various shapes. Movable Hall probes were used to measure fields near or inside the samples as a function of position and of applied field. The trapping of transverse multipole magnetic fields in tubular samples was accomplished by cooling the samples in an applied field and then smoothly reducing the applied field to zero. Transverse quadrupole and sextupole fields with gradients of over 2000 G/cm were trapped with typical fidelity to the original impressed field of a few percent. Transverse dipole fields of up to 17 kG were also trapped with similar fidelity. Shielding experiments were carried out by cooling the samples in zero field and then gradually applying an external field. Flux trapping and shielding abilities were found to be limited by two factors, the pinning strength of the material, and the susceptibility of a sample to flux jumping. The trapping and shielding behavior of flat disk samples in axial fields and thin-walled tubular samples in transverse fields was modeled. The models, which were based on the concept of the critical state, allowed a connection to be made between the pinning strength and critical current level, and the flux trapping and shielding abilities. Adiabatic and dynamic stability theories are discussed and applied to the materials tested. Good qualitative, but limited quantitative agreement was obtained between the predictions of the theoretical stability criteria and the observed flux jumping behavior

  6. Radiation shielding for fusion reactors

    International Nuclear Information System (INIS)

    Santoro, R.T.

    2000-01-01

    Radiation shielding requirements for fusion reactors present different problems than those for fission reactors and accelerators. Fusion devices, particularly tokamak reactors, are complicated by geometry constraints that complicate disposition of fully effective shielding. This paper reviews some of these shielding issues and suggested solutions for optimizing the machine and biological shielding. Radiation transport calculations are essential for predicting and confirming the nuclear performance of the reactor and, as such, must be an essential part of the reactor design process. Development and optimization of reactor components from the first wall and primary shielding to the penetrations and containment shielding must be carried out in a sensible progression. Initial results from one-dimensional transport calculations are used for scoping studies and are followed by detailed two- and three-dimensional analyses to effectively characterize the overall radiation environment. These detail model calculations are essential for accounting for the radiation leakage through ports and other penetrations in the bulk shield. Careful analysis of component activation and radiation damage is cardinal for defining remote handling requirements, in-situ replacement of components, and personnel access at specific locations inside the reactor containment vessel. (author)

  7. Analysis methods for Kevlar shield response to rotor fragments

    Science.gov (United States)

    Gerstle, J. H.

    1977-01-01

    Several empirical and analytical approaches to rotor burst shield sizing are compared and principal differences in metal and fabric dynamic behavior are discussed. The application of transient structural response computer programs to predict Kevlar containment limits is described. For preliminary shield sizing, present analytical methods are useful if insufficient test data for empirical modeling are available. To provide other information useful for engineering design, analytical methods require further developments in material characterization, failure criteria, loads definition, and post-impact fragment trajectory prediction.

  8. Manufacturing and testing of full scale prototype for ITER blanket shield block

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sa-Woong, E-mail: swkim12@nfri.re.kr [ITER Korea, National Fusion Research Institute, Daejeon (Korea, Republic of); Kim, Duck-Hoi; Jung, Hun-Chea [ITER Korea, National Fusion Research Institute, Daejeon (Korea, Republic of); Lee, Sung-Ki [WONIL Co., Ltd., Haman (Korea, Republic of); Kang, Sung-Chan [POSCO Specialty Steel Co., Ltd., Changwon (Korea, Republic of); Zhang, Fu; Kim, Byoung-Yoon [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Ahn, Hee-Jae; Lee, Hyeon-Gon; Jung, Ki-Jung [ITER Korea, National Fusion Research Institute, Daejeon (Korea, Republic of)

    2015-04-15

    Highlights: • 316L(N)-IG forged steel was successfully fabricated and qualified. • Related R&D activities were implemented to resolve the fabrication issues. • SB #8 FSP was successfully manufactured with conventional fabrication techniques. • All of the validation tests were carried out and met the acceptance criteria. - Abstract: Based on the preliminary design of the ITER blanket shield block (SB) #8, the full scale prototype (FSP) has been manufactured and tested in accordance with pre-qualification program, and related R&D was performed to resolve the technical issues of fabrication. The objective of the SB pre-qualification program is to demonstrate the acceptable manufacturing quality by successfully passing the formal test program. 316L(N)-IG stainless steel forging blocks with 1.80L × 1.12W × 0.43t (m) were developed by using an electric arc furnace, and as a result, the material properties were satisfied with technical specification. In the course of applying conventional fabrication techniques such as cutting, milling, drilling and welding of the forged stainless steel block for the manufacturing of the SB #8 FSP, several technical problems have been addressed. And also, the hydraulic connector of cross-forged material re-melted by electro slag or vacuum arc requires the application of advanced joining techniques such as automatic bore TIG and friction welding. Many technical issues – drilling, welding, slitting, non-destructive test and so on – have been raised during manufacturing. Associated R&D including the computational simulation and coupon testing has been done in collaboration with relevant industries in order to resolve these engineering issues. This paper provides technical key issues and their possible resolutions addressed during the manufacture and formal test of the SB #8 FSP, and related R&D.

  9. Chinese nuclear heating test reactor and demonstration plant

    International Nuclear Information System (INIS)

    Wang Dazhong; Ma Changwen; Dong Duo; Lin Jiagui

    1992-01-01

    In this report the importance of nuclear district heating is discussed. From the viewpoint of environmental protection, uses of energy resources and transport, the development of nuclear heating in China is necessary. The development program of district nuclear heating in China is given in the report. At the time being, commissioning of the 5 MW Test Heating Reactor is going on. A 200 MWt Demonstration Plant will be built. In this report, the main characteristics of these reactors are given. It shows this type of reactor has a high inherent safety. Further the report points out that for this type of reactor the stability is very important. Some experimental results of the driving facility are included in the report. (orig.)

  10. The effect of patient shield position on gonad dose during lumbar spine radiography

    International Nuclear Information System (INIS)

    Clancy, Conor L.; O'Reilly, Geraldine; Brennan, Patrick C.; McEntee, Mark F.

    2010-01-01

    Background: In an effort to standardise radiological practices in the Republic of Ireland, current legislation states that 'written protocols for every type of standard radiological practice shall be established'. In order to fulfil this requirement the Irish Medical Council recommends the protocols issued by the Commission of European Communitees (CEC) for adoption in the country. Whilst this document does provide good guidance with regard to various radiographic factors, patient shielding instructions are notably ambiguous. The aim of this study was to remove some of this ambiguity by defining the optimal method of positioning patient shielding in antero-posterior (AP) and lateral lumbar spine radiographic examinations. These projections were chosen on the basis of their area of coverage being in close to and in some cases including the reproductive organs. They also represent the highest source of collective population dose of any conventional radiographic examination carried out in the UK. Method: A dosimetry study was devised to establish organ dose to the male testes and female ovaries using various clinically advocated methodologies for positioning patient shielding these included: no apron; tube-side apron; receptor-side apron and a wrap-around apron. The study was carried out using a direct digital radiography unit, an anthropomorphic phantom, various lead aprons and lithium thermoluminescent dosimeters (TLD). Results: For the AP projection, a statistically significant testes dose reduction of 42% (p ≤ 0.01) was observed when a tube-sided apron was used. No testes dose reductions were noted for the lateral projection. Ovary dose savings were not observed for any of the shielding methods investigated. Conclusion: This study found that the testes dose in AP examinations was reduced by 42% when patient shielding was positioned inferior to the imaged field and on the tube-side of the patient. This result validates the shielding methods used at the majority

  11. Technological issues of ion cyclotron heating of fusion plasmas

    International Nuclear Information System (INIS)

    Hwang, D.Q.; Fortgang, C.M.

    1985-01-01

    With the recent promising results of plasma heating using electromagnetic waves (EM waves) in the ion cyclotron range of frequency (ICRF) on the Princeton Large Torus (PLT) tokamak the feasibility of employing ICRF heating to a reactor-like magnetic confinement device is increasing. The high power ICRF experiments funded on JET (Joint European Torus in England) and JT-60 (in Japan) will have rf source power in the range of 10-30 MW. The time scale for the duration of the RF pulse will range from seconds up to steady-state. The development of new RF components that can transmit and launch such high power, long pulse length, EM waves in a plasma environment is a major technological task. In general, the technology issues may be divided into two categories. The first category concerns the region where the plasma comes in contact with the wave launchers. The problems here are dominated by plasmamaterial interaction, heat deposition by the plasma onto the wave launcher, and erosion of the launcher material. It is necessary to minimize the heat deposition from the plasma, the losses of the RF wave energy in the structure, and to prevent sputtering of the antenna components. A solution involves a combined design using special materials and optimal shaping of the Faraday shield (the electrostatic shields which can be used both for an EM wave polarization adjustment and as a particle shield for the launcher). Recent studies by PPPL and McDonnell Douglas Corp. on the Faraday shield designs will be discussed. The second important area where technology development will be necessary is the transmission of high power RF waves through a gas/vacuum interface region. In the past, the vacuum feedthrough has been the bottle neck which prevented high power operation of the PLT antenna

  12. Parameters calculation of shielding experiment

    International Nuclear Information System (INIS)

    Gavazza, S.

    1986-02-01

    The radiation transport methodology comparing the calculated reactions and dose rates for neutrons and gama-rays, with experimental measurements obtained on iron shield, irradiated in the YAYOI reactor is evaluated. The ENDF/B-IV and VITAMIN-C libraries and the AMPX-II modular system, for cross sections generation collapsed by the ANISN code were used. The transport calculations were made using the DOT 3.5 code, adjusting the boundary iron shield source spectrum to the reactions and dose rates, measured at the beginning of shield. The neutron and gamma ray distributions calculated on the iron shield presented reasonable agreement with experimental measurements. An experimental arrangement using the IEA-R1 reactor to determine a shielding benchmark is proposed. (Author) [pt

  13. Morphometry of terrestrial shield volcanoes

    Science.gov (United States)

    Grosse, Pablo; Kervyn, Matthieu

    2018-03-01

    Shield volcanoes are described as low-angle edifices built primarily by the accumulation of successive lava flows. This generic view of shield volcano morphology is based on a limited number of monogenetic shields from Iceland and Mexico, and a small set of large oceanic islands (Hawaii, Galápagos). Here, the morphometry of 158 monogenetic and polygenetic shield volcanoes is analyzed quantitatively from 90-meter resolution SRTM DEMs using the MORVOLC algorithm. An additional set of 24 lava-dominated 'shield-like' volcanoes, considered so far as stratovolcanoes, are documented for comparison. Results show that there is a large variation in shield size (volumes from 0.1 to > 1000 km3), profile shape (height/basal width (H/WB) ratios mostly from 0.01 to 0.1), flank slope gradients (average slopes mostly from 1° to 15°), elongation and summit truncation. Although there is no clear-cut morphometric difference between shield volcanoes and stratovolcanoes, an approximate threshold can be drawn at 12° average slope and 0.10 H/WB ratio. Principal component analysis of the obtained database enables to identify four key morphometric descriptors: size, steepness, plan shape and truncation. Hierarchical cluster analysis of these descriptors results in 12 end-member shield types, with intermediate cases defining a continuum of morphologies. The shield types can be linked in terms of growth stages and shape evolution, related to (1) magma composition and rheology, effusion rate and lava/pyroclast ratio, which will condition edifice steepness; (2) spatial distribution of vents, in turn related to the magmatic feeding system and the tectonic framework, which will control edifice plan shape; and (3) caldera formation, which will condition edifice truncation.

  14. Design and qualification testing of a strontium-90 fluoride heat source

    International Nuclear Information System (INIS)

    Fullam, H.T.

    1981-12-01

    The Strontium Heat Source Development Program began at the Pacific Northwest Laboratory (PNL) in 1972 and is scheduled to be completed by the end of FY-1981. The program is currently funded by the US Department of Energy (DOE) By-Product Utilization Program. The primary objective of the program has been to develop the data and technology required to permit the licensing of power systems for terrestrial applications that utilize 90 SrF 2 -fueled radioisotope heat sources. A secondary objective of the program has been to design and qualification-test a general purpose 90 SrF 2 -fueled heat source. The effort expended in the design and testing of the heat source is described. Detailed information is included on: heat source design, licensing requirements, and qualification test requirements; the qualification test procedures; and the fabrication and testing of capsules of various materials. The results obtained in the qualification tests show that the outer capsule design proposed for the 90 SrF 2 heat source is capable of meeting current licensing requirements when Hastelloy S is used as the outer capsule material. The data also indicate that an outer capsule of Hastelloy C-4 would probably also meet licensing requirements, although Hastelloy S is the preferred material. Therefore, based on the results of this study, the general purpose 90 SrF 2 heat source will consist of a standard WESF Hastelloy C-276 inner capsule filled with 90 SrF 2 and a Hastelloy S outer capsule having a 2.375-in. inner diameter and 0.500-in. wall thickness. The end closures for this study, the general purpose 90 SrF 2 heat a Hastelloy S outer capsule having a 2.375-in. inner diameter and 0.500-in. wall thickness. The end closures for the outer capsule will utilize an interlocking joint design requiring a 0.1-in. penetration closure weld

  15. Induction Heating Model of Cermet Fuel Element Environmental Test (CFEET)

    Science.gov (United States)

    Gomez, Carlos F.; Bradley, D. E.; Cavender, D. P.; Mireles, O. R.; Hickman, R. R.; Trent, D.; Stewart, E.

    2013-01-01

    Deep space missions with large payloads require high specific impulse and relatively high thrust to achieve mission goals in reasonable time frames. Nuclear Thermal Rockets (NTR) are capable of producing a high specific impulse by employing heat produced by a fission reactor to heat and therefore accelerate hydrogen through a rocket nozzle providing thrust. Fuel element temperatures are very high (up to 3000 K) and hydrogen is highly reactive with most materials at high temperatures. Data covering the effects of high-temperature hydrogen exposure on fuel elements are limited. The primary concern is the mechanical failure of fuel elements due to large thermal gradients; therefore, high-melting-point ceramics-metallic matrix composites (cermets) are one of the fuels under consideration as part of the Nuclear Cryogenic Propulsion Stage (NCPS) Advance Exploration System (AES) technology project at the Marshall Space Flight Center. The purpose of testing and analytical modeling is to determine their ability to survive and maintain thermal performance in a prototypical NTR reactor environment of exposure to hydrogen at very high temperatures and obtain data to assess the properties of the non-nuclear support materials. The fission process and the resulting heating performance are well known and do not require that active fissile material to be integrated in this testing. A small-scale test bed; Compact Fuel Element Environmental Tester (CFEET), designed to heat fuel element samples via induction heating and expose samples to hydrogen is being developed at MSFC to assist in optimal material and manufacturing process selection without utilizing fissile material. This paper details the analytical approach to help design and optimize the test bed using COMSOL Multiphysics for predicting thermal gradients induced by electromagnetic heating (Induction heating) and Thermal Desktop for radiation calculations.

  16. Self-shielding characteristics of aqueous self-cooled blankets for next generation fusion devices

    International Nuclear Information System (INIS)

    Pelloni, S.; Cheng, E.T.; Embrechts, M.J.

    1987-11-01

    The present study examines self-shielding characteristics for two aqueous self-cooled tritium producing driver blankets for next generation fusion devices. The aqueous Self-Cooled Blanket concept (ASCB) is a very simple blanket concept that relies on just structural material and coolant. Lithium compounds are dissolved in water to provide for tritium production. An ASCB driver blanket would provide a low technology and low temperature environment for blanket test modules in a next generation fusion reactor. The primary functions of such a blanket would be shielding, energy removal and tritium production. One driver blanket considered in this study concept relates to the one proposed for the Next European Torus (NET), while the second concept is indicative for the inboard shield design for the Engineering Test Reactor proposed by the USA (TIBER II/ETR). The driver blanket for NET is based on stainless steel for the structural material and aqueous solution, while the inboard shielding blanket for TIBER II/ETR is based on a tungsten/aqueous solution combination. The purpose of this study is to investigate self-shielding and heterogeneity effects in aqueous self-cooled blankets. It is found that no significant gains in tritium breeding can be achieved in the stainless steel blanket if spatial and energy self-shielding effects are considered, and the heterogeneity effects are also insignificant. The tungsten blanket shows a 5 percent increase in tritium production in the shielding blanket when energy and spatial self-shielding effects are accounted for. However, the tungsten blanket shows a drastic increase in the tritium breeding ratio due to heterogeneity effects. (author) 17 refs., 9 figs., 9 tabs

  17. Shielding experiments for accelerator facilities

    Energy Technology Data Exchange (ETDEWEB)

    Nakashima, Hiroshi; Tanaka, Susumu; Sakamoto, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    2000-06-01

    A series of shielding experiments was carried out by using AVF cyclotron accelerator of TIARA at JAERI in order to validate shielding design methods for accelerator facilities in intermediate energy region. In this paper neutron transmission experiment through thick shields and radiation streaming experiment through a labyrinth are reported. (author)

  18. Shielding experiments for accelerator facilities

    International Nuclear Information System (INIS)

    Nakashima, Hiroshi; Tanaka, Susumu; Sakamoto, Yukio

    2000-01-01

    A series of shielding experiments was carried out by using AVF cyclotron accelerator of TIARA at JAERI in order to validate shielding design methods for accelerator facilities in intermediate energy region. In this paper neutron transmission experiment through thick shields and radiation streaming experiment through a labyrinth are reported. (author)

  19. Nuclear data for radiation shielding

    International Nuclear Information System (INIS)

    Miyasaka, Shunichi; Takahashi, Hiroshi.

    1976-01-01

    The third shielding expert conference was convened in Paris in Oct. 1975 for exchanging informations about the sensitivity evaluation of nuclear data in shielding calculation and integral bench mark experiment. The requirements about nuclear data presented at present from the field of nuclear design do not reflect sufficiently the requirements of shielding design, therefore it was the object to gather the requirements about nuclear data from the field of shielding. The nuclides used for shielding are numerous, and the nuclear data on these isotopes are required. Some of them cannot be ignored as the source of secondary γ-ray or in view of the radioactivation of materials. The requirements for the nuclear data of neutrons in the field of shielding are those concerning the reaction cross sections producing secondary γ-ray, the reaction cross sections including the production of secondary neutrons, elastic scattering cross sections, and total cross sections. The topics in the Paris conference about neutron shielding data are described, such as the methodology of sensitivity evaluation, the standardization of group constant libraries, the bench mark experiment on iron and sodium, and the cross section of γ-ray production. In the shielding of nuclear fission reactors, the γ-ray production owing to nuclear fission reaction is also important. In (d, t) fusion reactors, high energy neutrons are generated, and high energy γ-ray is emitted through giant E1 resonance. (Kako, I.)

  20. Optimization of multi-layered metallic shield

    International Nuclear Information System (INIS)

    Ben-Dor, G.; Dubinsky, A.; Elperin, T.

    2011-01-01

    Research highlights: → We investigated the problem of optimization of a multi-layered metallic shield. → The maximum ballistic limit velocity is a criterion of optimization. → The sequence of materials and the thicknesses of layers in the shield are varied. → The general problem is reduced to the problem of Geometric Programming. → Analytical solutions are obtained for two- and three-layered shields. - Abstract: We investigate the problem of optimization of multi-layered metallic shield whereby the goal is to determine the sequence of materials and the thicknesses of the layers that provide the maximum ballistic limit velocity of the shield. Optimization is performed under the following constraints: fixed areal density of the shield, the upper bound on the total thickness of the shield and the bounds on the thicknesses of the plates manufactured from every material. The problem is reduced to the problem of Geometric Programming which can be solved numerically using known methods. For the most interesting in practice cases of two-layered and three-layered shields the solution is obtained in the explicit analytical form.