WorldWideScience

Sample records for heat removal capability

  1. Heat removal capability of core-catcher with inclined cooling channels

    International Nuclear Information System (INIS)

    Suzuki, Y.; Tahara, M.; Kurita, T.; Hamazaki, R.; Morooka, S.

    2009-01-01

    A core-catcher is one of the mitigation systems that provide functions of molten corium cooling and stabilization during a severe accident. Toshiba has been developing a compact core-catcher to be placed at the lower drywell floor in the containment vessel for the next generation BWR as well as near term ABWR. This paper presents the evaluation of heat removal capability of the core-catcher with inclined cooling channels, our verification status and plan. The heat removal capability of the core-catcher is analyzed by using the newly developed two-phase flow analysis code which incorporates drift flux parameters for inclined channels and the CHF correlation obtained from SULTAN tests. Effects of geometrical parameters such as the inclination and the gap size of the cooling channel on the heat removal capability are also evaluated. These results show that the core-catcher has sufficient capability to cool the molten corium during a severe accident. Based on the analysis, it has been shown that the core-catcher has an efficient capability of heat removal to cool the molten corium. (author)

  2. Study on decay heat removal capability of reactor vessel auxiliary cooling system

    International Nuclear Information System (INIS)

    Nishi, Y.; Kinoshita, I.

    1991-01-01

    The reactor vessel auxiliary cooling system (RVACS) is a simple, Passive decay heat removal system for an LMFBR. However, the heat removal capacity of this system is small compared to that of an immersed type of decay heat exchanger. In this study, a high-porosity porous body is proposed to enhance the RVACS's heat transfer performance to improve its applicability. The objectives of this study are to propose a new method which is able to use thermal radiation effectively, to confirm its heat removal capability and to estimate its applicability limit of RVACS for an LMFBR. Heat transfer tests were conducted in an experimental facility with a 3.5 m heat transfer height to evaluate the heat transfer performance of the high-porosity porous body. Using the experimental results, plant transient analyses were performed for a 300 MWe pool type LMFBR under a Total Black Out (TBO) condition to confirm the heat removal capability. Furthermore, the relationship between heat removal capability and thermal output of a reactor were evaluated using a simple parameter model

  3. Possibility of a pressurized water reactor concept with highly inherent heat removal following capability

    International Nuclear Information System (INIS)

    Araya, Fumimasa; Murao, Yoshio

    1995-01-01

    If the core power inherently follows change in heat removal rate from the primary coolant system within small thermal expansion of the coolant which can be absorbed in a practical size of pressurizer, reactor systems may have more safety and load following capability. In order to know possibility and necessary conditions of a concept on reactor core and primary coolant system of a pressurized water reactor (PWR) with such 'highly inherent heat removal following capability', transient analyses on an ordinary two-loop PWR have been performed for a transient due to 50% change in heat removal with the RETRAN-02 code. The possibility of a PWR concept with the highly inherent heat removal following capability has been demonstrated under the conditions of the absolute value of ratio of the coolant density reactivity coefficient to the Doppler reactivity coefficient more than 10x10 3 kg·cm 3 which is two to three times larger than that at beginning of cycle (BOC) in an ordinary PWR and realized by elimination of the chemical shim, the 12% lower average linear heat generation rate of 17.9 kW/m, and the 1.5 times larger pressurizer volume than those of the ordinary PWR. (author)

  4. The heat removal capability of actively cooled plasma-facing components for the ITER divertor

    Science.gov (United States)

    Missirlian, M.; Richou, M.; Riccardi, B.; Gavila, P.; Loarer, T.; Constans, S.

    2011-12-01

    Non-destructive examination followed by high-heat-flux testing was performed for different small- and medium-scale mock-ups; this included the most recent developments related to actively cooled tungsten (W) or carbon fibre composite (CFC) armoured plasma-facing components. In particular, the heat-removal capability of these mock-ups manufactured by European companies with all the main features of the ITER divertor design was investigated both after manufacturing and after thermal cycling up to 20 MW m-2. Compliance with ITER requirements was explored in terms of bonding quality, heat flux performances and operational compatibility. The main results show an overall good heat-removal capability after the manufacturing process independent of the armour-to-heat sink bonding technology and promising behaviour with respect to thermal fatigue lifetime under heat flux up to 20 MW m-2 for the CFC-armoured tiles and 15 MW m-2 for the W-armoured tiles, respectively.

  5. The heat removal capability of actively cooled plasma-facing components for the ITER divertor

    International Nuclear Information System (INIS)

    Missirlian, M; Richou, M; Loarer, T; Riccardi, B; Gavila, P; Constans, S

    2011-01-01

    Non-destructive examination followed by high-heat-flux testing was performed for different small- and medium-scale mock-ups; this included the most recent developments related to actively cooled tungsten (W) or carbon fibre composite (CFC) armoured plasma-facing components. In particular, the heat-removal capability of these mock-ups manufactured by European companies with all the main features of the ITER divertor design was investigated both after manufacturing and after thermal cycling up to 20 MW m - 2. Compliance with ITER requirements was explored in terms of bonding quality, heat flux performances and operational compatibility. The main results show an overall good heat-removal capability after the manufacturing process independent of the armour-to-heat sink bonding technology and promising behaviour with respect to thermal fatigue lifetime under heat flux up to 20 MW m - 2 for the CFC-armoured tiles and 15 MW m - 2 for the W-armoured tiles, respectively.

  6. Heat removal capability of divertor coaxial tube assembly

    International Nuclear Information System (INIS)

    Shibui, Masanao; Nakahira, Masataka; Tada, Eisuke; Takatsu, Hideyuki

    1994-05-01

    To deal with high power flowing in the divertor region, an advanced divertor concept with gas target has been proposed for use in ITER/EDA. The concept uses a divertor channel to remove the radiated power while allowing neutrals to recirculate. Candidate channel wall designs include a tube array design where many coaxial tubes are arranged in the toroidal direction to make louver. The coaxial tube consists of a Be protection tube encases many supply tubes wound helically around a return tube. V-alloy and hardened Cu-alloy have been proposed for use in the supply and return tubes. Some coolants have also been proposed for the design including pressurized He and liquid metals, because these coolants are consistent with the selection of coolants for the blanket and also meet the requirement of high temperature operation. In the coaxial tube design, the coolant area is restricted and brittle Be material is used under severe thermal cyclings. Thus, to obtain the coaxial tube with sufficient safety margin for the expected fusion power excursion, it is essential to understand its applicability limit. The paper discusses heat removal capability of the coaxial tube and recommends some design modifications. (author)

  7. CRBRP decay heat removal systems

    International Nuclear Information System (INIS)

    Hottel, R.E.; Louison, R.; Boardman, C.E.; Kiley, M.J.

    1977-01-01

    The Decay Heat Removal Systems for the Clinch River Breeder Reactor Plant (CRBRP) are designed to adequately remove sensible and decay heat from the reactor following normal shutdown, operational occurrences, and postulated accidents on both a short term and a long term basis. The Decay Heat Removal Systems are composed of the Main Heat Transport System, the Main Condenser and Feedwater System, the Steam Generator Auxiliary Heat Removal System (SGAHRS), and the Direct Heat Removal Service (DHRS). The overall design of the CRBRP Decay Heat Removal Systems and the operation under normal and off-normal conditions is examined. The redundancies of the system design, such as the four decay heat removal paths, the emergency diesel power supplies, and the auxiliary feedwater pumps, and the diversities of the design such as forced circulation/natural circulation and AC Power/DC Power are presented. In addition to overall design and system capabilities, the detailed designs for the Protected Air Cooled Condensers (PACC) and the Air Blast Heat Exchangers (ABHX) are presented

  8. Position paper -- Waste storage tank heat removal

    International Nuclear Information System (INIS)

    Stine, M.D.

    1995-01-01

    The purpose of this paper is to develop and document a position on the heat removal system to be used on the waste storage tanks currently being designed for the Multi-Function Waste Tank Facility (MWTF), project W-236A. The current preliminary design for the waste storage primary tank heat removal system consists of the following subsystems: (1) a once-through dome space ventilation system; (2) a recirculation dome space ventilation system; and (3) an annulus ventilation system. Recently completed and ongoing studies have evaluated alternative heat removal systems in an attempt to reduce system costs and to optimize heat removal capabilities. In addition, a thermal/heat transfer analysis is being performed that will provide assurance that the heat removal systems selected will be capable of removing the total primary tank design heat load of 1.25 MBtu/hr at an allowable operating temperature of 190 F. Although 200 F is the design temperature limit, 190 F has been selected as the maximum allowable operating temperature limit based on instrumentation sensitivity, instrumentation location sensitivity, and other factors. Seven options are discussed and recommendations are made

  9. Evaluation of the decay heat removal capability using the concept of a thermosyphon in the liquid metal reactor

    International Nuclear Information System (INIS)

    Kim, Y. S.; Sim, Y. S.; Kim, W. K.

    2000-01-01

    A study related to understand the characteristics of the heat pipe and thermosyphon was performed to evaluate their applicabilities to the current PSDRS (Passive Safety Decay heat Removal System) in the KALIMER (Korea Advanced LIquid MEtal Reactor) design. The possible heat transfer rate by the heat pipe and thermosyphon was reviewed to compare the required capability in the PSDRS. A quantitative comparison was done between the current PSDRS and the modified PSDRS with the thermosyphon. The result showed the dominant heat transfer rate in the air channel, e.g. radiation or convection, is different from each other. The total heat transfer rate is not sensitive to the operating temperature of the thermosyphon. The heat removal by the air in the modified case is relatively reduced and the resultant outlet temperature appears less than above 10 .deg. C. A reversal heat transfer between the air and the thermosyphon may exist near the exit of the active heat transfer region. The total heat transfer rate by the modified case showed about 20∼40% increase relative to the reference one

  10. Passive heat removal in CANDU

    International Nuclear Information System (INIS)

    Hart, R.S.

    1997-01-01

    CANDU has a tradition of incorporating passive systems and passive components whenever they are shown to offer performance that is equal to or better than that of active systems, and to be economic. Examples include the two independent shutdown systems that employ gravity and stored energy respectively, the dousing subsystem of the CANDU 6 containment system, and the ability of the moderator to cool the fuel in the event that all coolant is lost from the fuel channels. CANDU 9 continues this tradition, incorporating a reserve water system (RWS) that increases the inventory of water in the reactor building and profiles a passive source of makeup water and/or heat sinks to various key process systems. The key component of the CANDU 9 reserve water system is a large (2500 cubic metres) water tank located at a high elevation in the reactor building. The reserve water system, while incorporating the recovery system functions, and the non-dousing functions of the dousing tank in CANDU 6, embraces other key systems to significantly extend the passive makeup/heat sink capability. The capabilities of the reserve water system include makeup to the steam generators secondary side if all other sources of water are lost; makeup to the heat transport system in the event of a leak in excess of the D 2 O makeup system capability; makeup to the moderator in the event of a moderator leak when the moderator heat sink is required; makeup to the emergency core cooling (ECC) system to assure NPSH to the ECC pumps during a loss of coolant accident (LOCA), and provision of a passive heat sink for the shield cooling system. Other passive designs are now being developed by AECL. These will be incorporated in future CANDU plants when their performance has been fully proven. This paper reviews the passive heat removal systems and features of current CANDU plants and the CANDU 9, and briefly reviews some of the passive heat removal concepts now being developed. (author)

  11. MHTGR inherent heat transfer capability

    International Nuclear Information System (INIS)

    Berkoe, J.M.

    1992-01-01

    This paper reports on the Commercial Modular High Temperature Gas-Cooled Reactor (MHTGR) which achieves improved reactor safety performance and reliability by utilizing a completely passive natural convection cooling system called the RCCS to remove decay heat in the event that all active cooling systems fail to operate. For the highly improbable condition that the RCCS were to become non-functional following a reactor depressurization event, the plant would be forced to rely upon its inherent thermo-physical characteristics to reject decay heat to the surrounding earth and ambient environment. A computational heat transfer model was created to simulate such a scenario. Plant component temperature histories were computed over a period of 20 days into the event. The results clearly demonstrate the capability of the MHTGR to maintain core integrity and provide substantial lead time for taking corrective measures

  12. After-heat removing device

    International Nuclear Information System (INIS)

    Iwashige, Kengo; Otsuka, Masaya; Yokoyama, Iwao; Yamakawa, Masanori.

    1990-01-01

    The present invention concerns an after-heat removing device for first reactors. A heat accumulation portion provided in a cooling channel of an after-heat removing device is disposed before a coil-like heat conduction pipe for cooling of the after-heat removing device. During normal reactor operation, the temperature in the heat accumulation portion is near the temperature of the high temperature plenum due to heat conduction and heat transfer from the high temperature plenum. When the reactor is shutdown and the after-heat removing device is started, coolants cooled in the air cooler start circulation. The coolants arriving at the heat accumulation portion deprive heat from the heat accumulation portion and, ion turn, increase their temperature and then reach the cooling coil. Subsequently, the heat calorie possessed in the heat accumulation portion is reduced and the after-heat removing device is started for the operation at a full power. This can reduce the thermal shocks applied to the cooling coil or structures in a reactor vessel upon starting the after-heat removing device. (I.N.)

  13. Analysis of decay heat removal following loss of RHR

    International Nuclear Information System (INIS)

    Naff, S.A.; Ward, L.W.

    1991-01-01

    Recent plant experience has included many events occurring during outages at pressurized water reactors. A recent example is the loss of residual heat removal system event that occurred March 20, 1990 at the Vogtle-1 plant following refueling. Plant conditions during outages differ markedly from those prevailing at normal full-power operation on which most past research has concentrated. Specifically, during outages the core power is low, the coolant system may be in a drained state with air or nitrogen present, and various reactor coolant system closures may be unsecured. With the residual heat removal system operating, the core decay heat is readily removed. However, if the residual heat removal system capability is lost and alternative heat removal means cannot be established, heat up of the coolant could lead to core coolant boil-off, fuel rod heat up, and core damage. A study was undertaken by the Nuclear Regulatory Commission to identify what information was needed to understand pressurized water reactor response to an extended loss of residual heat removal event during refueling and maintenance outages. By identifying the possible plant conditions and cooling methods that might be used, the controlling thermal-hydraulic processes and phenomena were identified. Controlling processes and phenomena include: gravity drain into the reactor coolant system, core water boil-off, and reflux condensation cooling processes

  14. PWR passive plant heat removal assessment: Joint EPRI-CRIEPI advanced LWR studies

    International Nuclear Information System (INIS)

    1991-03-01

    An independent assessment of the capabilities of the PWR passive plant heat removal systems was performed, covering the Passive Residual Heat Removal (PRHR) System, the Passive Safety Injection System (PSIS) and the Passive Containment Cooling System (PCCS) used in a 600 MWe passive plant (e.g., AP600). Additional effort included a review of the test programs which support the design and analysis of the systems, an assessment of the licensability of the plant with regard to heat removal adequacy, and an evaluation of the use of the passive systems with a larger plant. The major conclusions are as follows. The PRHR can remove core decay heat, prevents the pressurizer from filling with water for a loss-of-feedwater transient, and provides safety-grade means for maintaining the reactor coolant system in a safe shutdown condition for the case where the non-safety residual heat removal system becomes unavailable. The PSIS is effective in maintaining the core covered with water for loss-of-coolant accident pipe breaks to eight inches. The PCCS has sufficient heat removal capability to maintain the containment pressure within acceptable limits. The tests performed and planned are adequate to confirm the feasibility of the passive heat removal system designs and to provide a database for verification of the analytical techniques used for the plant evaluations. Each heat removal system can perform in accordance with Regulatory requirements, with the exception that the PRHR system is unable to achieve the required cold shutdown temperature of 200 F within the required 36-hour period. The passive heat removal systems to be used for the 600 MWe plant could be scaled up to a 900 MWe passive plant in a straightforward manner and only minimal, additional confirmatory testing would be required. Sections have been indexed separately for inclusion on the data base

  15. Experience with after-shutdown decay heat removal - BWRs and PWRs

    International Nuclear Information System (INIS)

    Haugh, J.J.; Mollerus, F.J.; Booth, H.R.

    1992-01-01

    Boiling-water reactors (BWRs) and pressurized-water reactors (PWRs) make use of residual heat removal systems (RHRSs) during reactor shutdown. RHRS operational events involving an actual loss or significant degradation of an RHRS during shutdown heat removal are often prompted or aggravated by complex, changing plant conditions and by concurrent maintenance operations. Events involving loss of coolant inventory, loss of decay heat removal capability, or inadvertent pressurization while in cold shutdown have occurred. Because fewer automatic protective fetures are operative during cold shutdowns, both prevention and termination of events depend heavily on operator action. The preservation of RHRS cooling should be an important priority in all shutdown operations, particularly where there is substantial decay heat and a reduced water inventory. 13 refs., 3 figs., 4 tabs

  16. Sensitivity analysis for maximum heat removal from debris in the lower head

    International Nuclear Information System (INIS)

    Kim, Yong Hoon; Suh, Kune Y.

    2000-01-01

    Sensitivity analyses were performed to determine the maximum heat removal capability from the debris and the reactor pressure vessel (RPV) wall through the gap that may be formed during a core melt relocation accident. Cases studied included four different nuclear power plant (TMI-2,KORI-2,YGN 3and4 and KNGR) per the thermal opower output. Results of the analysis show that the heat removal through gap cooling relative to flooding is efficacious as much as about 40% of the core material accumulated in the lower plenum in case of the TMI-2 reactor. In excess of 40%, however, the gap cooling alone was found not to be enough for heat removal from the core debris. There being uncertaainties aoboout the assumptions made in the present study,the analyses yield consistent results. If different cooling effects are considered, heat removal may be greatly enhanced. The LAVA experiements were performed at the Korea Atomic Energy Research Institute (KAERI) using al 2 O 3 /Fe thermite melt relocating down to the scaled vessel of a reactor lower head filled with preheated water. Test results indicated a cooling effect of water ingression through the debris-to-vessel gap and the intra-debris pores and crevices. If the cooling capacity of the intra-debris pores and crevices is comparable to debris-to-vessel heat removal capability, heat removal from the debris will be greatly augmented than heat removal by the gap cooling alone. The three nuclear reactor (KORI-2, YGN 3and4 and KNGR) calculation results for heat removal through the debris-to-vessel gap size of about 1mm were compared with the TMI-2 reactor calculation results for the case of gap cooling alone. (author)

  17. Application study of the heat pipe to the passive decay heat removal system of the modular HTR

    International Nuclear Information System (INIS)

    Ohashi, K.; Okamoto, F.; Hayakawa, H.; Hayashi, T.

    2001-01-01

    To investigate the applicability of the heat pipe to the decay hat removal (DHR) system of the modular HTRs, preliminary study of the Heat Pipe DHR System was performed. The results show that the Heat Pipe DHR System is applicable to the modular HTRs and its heat removal capability is sufficient. Especially by applying the variable conductance heat pipe, the possibility of a fully passive DHR system with lower heat loss during normal operation is suggested. The experiments to obtain the fundamental characteristics data of the variable conductance heat pipe were carried out. The experimental results show very clear features of self-control characteristics. The experimental results and the experimental analysis results are also shown. (author)

  18. Postaccident heat removal. II. Heat transfer from an internally heated liquid to a melting solid

    International Nuclear Information System (INIS)

    Faw, R.E.; Baker, L. Jr.

    1976-01-01

    Microwave heating has been used in studies of heat transfer from a horizontal layer of internally heated liquid to a melting solid. Experiments were designed to simulate heat transfer and meltthrough processes of importance in the analysis of postaccident heat removal capabilities of nuclear reactors. Glycerin, heated by 2.45-GHz microwave radiation, was used to simulate molten fuel. Paraffin wax was used to simulate a melting barrier confining the fuel. Experimentally measured heat fluxes and melting rates were consistent with a model based on downward heat transfer by conduction through a stagnant liquid layer and upward heat transfer augmented by natural convection. Melting and displacement of the barrier material occurred by upward-moving droplets randomly distributed across the melting surface. Results indicated that the melting and displacement process had no effect on the heat transfer process

  19. Study on thermal-hydraulic phenomena identification of passive heat removal facilities

    International Nuclear Information System (INIS)

    Park, J. Y.

    2011-01-01

    Recently, passive heat removal facilities have been integral features of new generation or future reactor designs worldwide. This is because the passive heat removal facilities depending on a natural force such as buoyancy can give much higher operational reliability compared to active heat removal facilities depending on pumped fluid flow and as a result they can decrease core damage frequency of a nuclear power plant drastically ever achievable before. Keeping pace with this global trend, SMART and APR+ reactors also have introduced passive heat removal features such as a passive residual heat removal system (PRHRS) and a passive auxiliary feed water system (PAFS) in their designs. Since many thermal-hydraulic (T-H) phenomena including steam condensation are involved during operation of the passive heat removal facilities, they ought to be properly simulated by T-H codes such as MARS-KS and RELAP5 in order to guarantee reliable safety analysis by these codes. Unfortunately, however, these T-H codes are not well validated with respect to phenomena related to passive heat removal mechanism because previous focus on these codes validation was mainly on the LB LOCA and resulting phenomena. To resolve this gap, Korea Institute of Nuclear Safety has initiated a research program on the development of safety analysis technology for passive heat removal facilities. The main target of this program is PRHRS and PAFS in SMART and APR+ reactors and through this program, validation of capability of existing T-H codes and improvement of codes regarding passive facilities analysis are to be sought. In part of this research, T-H phenomena important to passive heat removal facilities (PRHRS and PAFS) are investigated in the present study

  20. Preliminary Analysis on Heat Removal Capacity of Passive Air-Water Combined Cooling Heat Exchanger Using MARS

    International Nuclear Information System (INIS)

    Kim, Seung-Sin; Jeon, Seong-Su; Hong, Soon-Joon; Bae, Sung-Won; Kwon, Tae-Soon

    2015-01-01

    Current design requirement for working time of PAFS heat exchanger is about 8 hours. Thus, it is not satisfied with the required cooling capability for the long term SBO(Station Black-Out) situation that is required to over 72 hours cooling. Therefore PAFS is needed to change of design for 72 hours cooling. In order to acquirement of long terms cooling using PAFS, heat exchanger tube has to be submerged in water tank for long time. However, water in the tank is evaporated by transferred heat from heat exchanger tubes, so water level is gradually lowered as time goes on. The heat removal capacity of air cooling heat exchanger is core parameter that is used for decision of applicability on passive air-water combined cooling system using PAFS in long term cooling. In this study, the development of MARS input model and plant accident analysis are performed for the prediction of the heat removal capacity of air cooling heat exchanger. From analysis result, it is known that inflow air velocity is the decisive factor of the heat removal capacity and predicted air velocity is lower than required air velocity. But present heat transfer model and predicted air velocity have uncertainty. So, if changed design of PAFS that has over 4.6 kW heat removal capacity in each tube, this type heat exchanger can be applied to long term cooling of the nuclear power plant

  1. Transient testing of the FFTF for decay-heat removal by natural convection

    International Nuclear Information System (INIS)

    Beaver, T.R.; Johnson, H.G.; Stover, R.L.

    1982-06-01

    This paper reports on the series of transient tests performed in the FFTF as a major part of the pre-operations testing program. The structure of the transient test program was designed to verify the capability of the FFTF to safely remove decay heat by natural convection. The series culminated in a scram from full power to complete natural convection in the plant, simulating a loss of all electrical power. Test results and acceptance criteria related to the verification of safe decay heat removal are presented

  2. A passive decay heat removal system for LWRs based on air cooling

    Energy Technology Data Exchange (ETDEWEB)

    Mochizuki, Hiroyasu, E-mail: mochizki@u-fukui.ac.jp [Research Institute of Nuclear Engineering, University of Fukui, 1-2-4 Kanawa-cho, Tsuruga, Fukui 914-0055 (Japan); Yano, Takahiro [Graduate School of Engineering, University of Fukui, 1-2-4 Kanawa-cho, Tsuruga, Fukui 914-0055 (Japan)

    2015-05-15

    Highlights: • A passive decay heat removal system for LWRs is discussed. • An air cooler model which condenses steam is developed. • The decay heat can be removed by air coolers with forced convection. • The dimensions of the air cooler are proposed. - Abstract: The present paper describes the capability of an air cooling system (ACS) to remove decay heat from a core of LWR such as an advanced boiling water reactor (ABWR) and a pressurized water reactor (PWR). The motivation of the present research is the Fukushima severe accident (SA) on 11 March 2011. Since emergency cooling systems using electricity were not available due to station blackout (SBO) and malfunctions, many engineers might understand that water cooling was not completely reliable. Therefore, a passive decay heat removal (DHR) system would be proposed in order to prevent such an SA under the conditions of an SBO event. The plant behaviors during the SBO are calculated using the system code NETFLOW++ for the ABWR and PWR with the ACS. Two types of air coolers (ACs) are applied for the ABWR, i.e., a steam condensing air cooler (SCAC) of which intake for heat transfer tubes is provided in the steam region, and single-phase type of which intake is provided in the water region. The DHR characteristics are calculated under the conditions of the forced air circulation and also the natural air convection. As a result of the calculations, the decay heat can be removed safely by the reasonably sized ACS when heat transfer tubes are cooled with the forced air circulation. The heat removal rate per one finned heat transfer tube is evaluated as a function of air flow rate. The heat removal rate increases as a function of the air flow rate.

  3. Nuclear reactor auxiliary heat removal system

    International Nuclear Information System (INIS)

    Thompson, R.E.; Pierce, B.L.

    1977-01-01

    An auxiliary heat removal system to remove residual heat from gas-cooled nuclear reactors is described. The reactor coolant is expanded through a turbine, cooled in a heat exchanger and compressed by a compressor before reentering the reactor coolant. The turbine powers both the compressor and the pump which pumps a second fluid through the heat exchanger to cool the reactor coolant. A pneumatic starter is utilized to start the turbine, thereby making the auxiliary heat removal system independent of external power sources

  4. Regulatory analysis for the resolution of Generic Issue 99: Loss of RHR [residual heat removal] capability in PWRs

    International Nuclear Information System (INIS)

    Spano, A.H.

    1989-02-01

    Generic Issue 99 is concerned with the loss of residual heat removal (RHR) capability in pressurized water reactors during cold-plant outage operations. The issue focuses on two risk-significant common-cause failure modes of the RHR system: (1) air binding of the RHR pumps during reduced-inventory operations and (2) spurious closure of the RHR suction valves due to misapplication of the autoclosure interlocks. Resolution of this issue involves consideration of the adequacy of plant capabilities for (1) preventing losses of RHR, (2) responding promptly and effectively to such challenges in order to prevent core damage, and (3) ensuring timely containment protection against the release of radioactivity to the environment in the unlikely event of core damage due to loss of shutdown cooling. This entails examination of (1) relevant operational and accident response procedures, (2) the instrumentation available to the operator for accident diagnosis and mitigation, and (3) the administrative controls available for ensuring control room cognizance of ongoing maintenance activities that could potentially affect the stability of the reactor coolant system. This regulatory analysis provides quantitative assessments of the costs and benefits associated with several alternatives considered for the resolution of Generic Issue 99. 24 refs

  5. Preliminary Analysis on Decay Heat Removal Capability of Helium Cooled Solid Breeder Test Blanket Module

    International Nuclear Information System (INIS)

    Ahn, Mu Young; Cho, Seung Yon; Kim, Duck Hoi; Lee, Eun Seok; Kim, Hyung Seok; Suh, Jae Seung; Yun, Sung Hwan; Cho, Nam Zin

    2007-01-01

    One of the main ITER goals is to test and validate design concepts of tritium breeding blankets relevant to DEMO or fusion power plants. Korea Helium-Cooled Solid Breeder (HCSB) Test Blanket Module (TBM) has been developed with overall objectives of achieving this goal. The TBM employs high pressure helium to cool down the First Wall (FW), Side Wall (SW) and Breeding Zone (BZ). Therefore, safety consideration is a part of the design process. Each ITER Party performing the TBM program is requested to reach a similar level of confidence in the TBM safety analysis. To meet ITER's request, Failure Mode and Effects Analysis (FMEA) studies have been performed on the TBM to identify the Postulated Initial Event (PIE). Although FMEA on the KO TBM has not been completed, in-vessel, in-box and ex-vessel Loss Of Coolant Accident (LOCA) are considered as enveloping cases of PIE in general. In this paper, accidental analyses for the three selected LOCA were performed to investigate the decay heat removal capability of the TBM. To simulate transient thermo-hydraulic behavior of the TBM for the selected scenarios, RELAP5/MOD3.2 code was used

  6. Application of heat pipes in nuclear reactors for passive heat removal

    Energy Technology Data Exchange (ETDEWEB)

    Haque, Z.; Yetisir, M., E-mail: haquez@aecl.ca [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    2013-07-01

    This paper introduces a number of potential heat pipe applications in passive (i.e., not requiring external power) nuclear reactor heat removal. Heat pipes are particularly suitable for small reactors as the demand for heat removal is significantly less than commercial nuclear power plants, and passive and reliable heat removal is required. The use of heat pipes has been proposed in many small reactor designs for passive heat removal from the reactor core. This paper presents the application of heat pipes in AECL's Nuclear Battery design, a small reactor concept developed by AECL. Other potential applications of heat pipes include transferring excess heat from containment to the atmosphere by integrating low-temperature heat pipes into the containment building (to ensure long-term cooling following a station blackout), and passively cooling spent fuel bays. (author)

  7. Study on diverse passive decay heat removal approach

    International Nuclear Information System (INIS)

    Lin Qian; Si Shengyi

    2012-01-01

    One of the most important principles for nuclear safety is the decay heat removal in accidents. Passive decay heat removal systems are extremely helpful to enhance the safety. In currently design of many advanced nuclear reactors, kinds of passive systems are proposed or developed, such as the passive residual heat removal system, passive injection system, passive containment cooling system. These systems provide entire passive heat removal paths from core to ultimate heat sink. Various kinds of passive systems for decay heat removal are summarized; their common features or differences on heat removal paths and design principle are analyzed. It is found that, these passive decay heat removal paths are similarly common on and connected by several basic heat transfer modes and steps. By the combinations or connections of basic modes and steps, new passive decay heat removal approach or diverse system can be proposed. (authors)

  8. Heat Transfer Characteristics of SiC-coated Heat Pipe for Passive Decay Heat Removal

    International Nuclear Information System (INIS)

    Kim, Kyung Mo; Kim, In Guk; Jeong, Yeong Shin; Bang, In Cheol

    2014-01-01

    The main concern with the Fukushima accident was the failure of active and passive core cooling systems. The main function of existing passive decay heat removal systems is feeding additional coolant to the reactor core. Thus, an established emergency core cooling system (ECCS) cannot operate properly because of impossible depressurization under the station blackout (SBO) condition. Therefore, a new concept for passive decay heat removal system is required. In this study, an innovative hybrid control rod concept is considered for passive in-core decay heat removal that differs from the existing direct vessel injection core cooling system and passive auxiliary feedwater system (PAFS). The heat transfer between the evaporator and condenser sections occurs by phase change of the working fluid and capillary action induced by wick structures installed on the inner wall of the heat pipe. In this study, a hybrid control rod is developed to take the roles of both neutron absorption and heat removal by combining the functions of a heat pipe and control rod. Previous studies on enhancing the heat removal capacity of heat pipes used nanofluids, self-rewetting fluids, various wick structures and condensers. Many studies have examined the thermal performances of heat pipes using various nanofluids. They concluded that the enhanced thermal performance of the heat pipe using nanofluids is due to nanoparticle deposition on the wick structures. Thus, the wick structure of heat pipes has been modified by nanoparticle deposition to enhance the heat removal capacity. However, previous studies used relatively small heat pipes and narrow ranges of heat loads. The environment of a nuclear reactor is very specific, and the decay heat produced by fission products after shutdown is relatively large. Thus, this study tested a large-scale heat pipe over a wide range of power. The concept of a hybrid heat pipe for an advanced in-core decay heat removal system was introduced for complete

  9. Heat Transfer Characteristics of SiC-coated Heat Pipe for Passive Decay Heat Removal

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung Mo; Kim, In Guk; Jeong, Yeong Shin; Bang, In Cheol [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2014-10-15

    The main concern with the Fukushima accident was the failure of active and passive core cooling systems. The main function of existing passive decay heat removal systems is feeding additional coolant to the reactor core. Thus, an established emergency core cooling system (ECCS) cannot operate properly because of impossible depressurization under the station blackout (SBO) condition. Therefore, a new concept for passive decay heat removal system is required. In this study, an innovative hybrid control rod concept is considered for passive in-core decay heat removal that differs from the existing direct vessel injection core cooling system and passive auxiliary feedwater system (PAFS). The heat transfer between the evaporator and condenser sections occurs by phase change of the working fluid and capillary action induced by wick structures installed on the inner wall of the heat pipe. In this study, a hybrid control rod is developed to take the roles of both neutron absorption and heat removal by combining the functions of a heat pipe and control rod. Previous studies on enhancing the heat removal capacity of heat pipes used nanofluids, self-rewetting fluids, various wick structures and condensers. Many studies have examined the thermal performances of heat pipes using various nanofluids. They concluded that the enhanced thermal performance of the heat pipe using nanofluids is due to nanoparticle deposition on the wick structures. Thus, the wick structure of heat pipes has been modified by nanoparticle deposition to enhance the heat removal capacity. However, previous studies used relatively small heat pipes and narrow ranges of heat loads. The environment of a nuclear reactor is very specific, and the decay heat produced by fission products after shutdown is relatively large. Thus, this study tested a large-scale heat pipe over a wide range of power. The concept of a hybrid heat pipe for an advanced in-core decay heat removal system was introduced for complete

  10. Efficient on-chip hotspot removal combined solution of thermoelectric cooler and mini-channel heat sink

    International Nuclear Information System (INIS)

    Hao, Xiaohong; Peng, Bei; Xie, Gongnan; Chen, Yi

    2016-01-01

    Highlights: • A combined solution of thermoelectric cooler (TEC) and mini-channel heat sink to remove the hotspot of the chip has been proposed. • The TEC's mathematical model is established to assess its work performance. • A comparative study on the proposed efficient On-Chip Hotspot Removal Combined Solution. - Abstract: Hotspot will significantly degrade the reliability and performance of the electronic equipment. The efficient removal of hotspot can make the temperature distribution uniform, and ensure the reliable operation of the electronic equipment. This study proposes a combined solution of thermoelectric cooler (TEC) and mini-channel heat sink to remove the hotspot of the chip in the electronic equipment. Firstly, The TEC's mathematical model is established to assess its work performance under different boundary conditions. Then, the hotspot removal capability of the TEC is discussed for different cooling conditions, which has shown that the combined equipment has better hotspot removal capability compared with others. Finally, A TEC is employed to investigate the hotspot removal capacity of the combined solution, and the results have indicated that it can effectively remove hotspot in the diameter of 0.5 mm, the power density of 600W/cm 2 when its working current is 3A and heat transfer thermal resistance is 0 K/W.

  11. A decay heat removal methodology for reuseable orbital transfer vehicles

    Science.gov (United States)

    McDaniel, Patrick J.; Perkins, David R.

    1992-07-01

    Operation of a nuclear thermal rocket(NTR) as the propulsion system for a reusable orbital transfer vehicle has been considered. This application is the most demanding in terms of designing a multiple restart capability for an NTR. The requirements on a NTR cooling system associated with the nuclear decay heat stored during operation have been evaluated, specifically for a Particle Bed Reactor(PBR) configuration. A three mode method of operation has been identified as required to adequately remove the nuclear decay heat.

  12. A passive decay-heat removal system for an ABWR based on air cooling

    Energy Technology Data Exchange (ETDEWEB)

    Mochizuki, Hiroyasu, E-mail: mochizki@u-fukui.ac.jp [Research Institute of Nuclear Engineering, University of Fukui, 1-2-4 Kanawa-cho, Tsuruga, Fukui 914-0055 (Japan); Yano, Takahiro [School of Engineering, University of Fukui, 1-2-4 Kanawa-cho, Tsuruga, Fukui 914-0055 (Japan)

    2017-01-15

    Highlights: • A passive decay heat removal system for an ABWR is discussed using combined system of the reactor and an air cooler. • Effect of number of pass of the finned heat transfer tubes on heat removal is investigated. • The decay heat can be removed by air coolers with natural convection. • Two types of air cooler are evaluated, i.e., steam condensing and water cooling types. • Measures how to improve the heat removal rate and to make compact air cooler are discussed. - Abstract: This paper describes the capability of an air cooling system (ACS) operated under natural convection conditions to remove decay heat from the core of an Advanced Boiling Water Reactor (ABWR). The motivation of the present research is the Fukushima Severe Accident (SA). The plant suffered damages due to the tsunami and entered a state of Station Blackout (SBO) during which seawater cooling was not available. To prevent this kind of situation, we proposed a passive decay heat removal system (DHRS) in the previous study. The plant behavior during the SBO was calculated using the system code NETFLOW++ assuming an ABWR with the ACS. However, decay heat removal under an air natural convection was difficult. In the present study, a countermeasure to increase heat removal rate is proposed and plant transients with the ACS are calculated under natural convection conditions. The key issue is decreasing pressure drop over the tube banks in order to increase air flow rate. The results of the calculations indicate that the decay heat can be removed by the air natural convection after safety relief valves are actuated many times during a day. Duct height and heat transfer tube arrangement of the AC are discussed in order to design a compact and efficient AC for the natural convection mode. As a result, a 4-pass heat transfer tubes with 2-row staggered arrangement is the candidate of the AC for the DHRS under the air natural convection conditions. The heat removal rate is re-evaluated as

  13. Safety analysis of increase in heat removal from reactor coolant system with inadvertent operation of passive residual heat removal at no load conditions

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Ge; Cao, Xuewu [School of Mechanical and Engineering, Shanghai Jiao Tong University, Shanghai (China)

    2015-06-15

    The advanced passive pressurized water reactor (PWR) is being constructed in China and the passive residual heat removal (PRHR) system was designed to remove the decay heat. During accident scenarios with increase of heat removal from the primary coolant system, the actuation of the PRHR will enhance the cooldown of the primary coolant system. There is a risk of power excursion during the cooldown of the primary coolant system. Therefore, it is necessary to analyze the thermal hydraulic behavior of the reactor coolant system (RCS) at this condition. The advanced passive PWR model, including major components in the RCS, is built by SCDAP/RELAP5 code. The thermal hydraulic behavior of the core is studied for two typical accident sequences with PRHR actuation to investigate the core cooling capability with conservative assumptions, a main steam line break (MSLB) event and inadvertent opening of a steam generator (SG) safety valve event. The results show that the core is ultimately shut down by the boric acid solution delivered by Core Makeup Tank (CMT) injections. The effects of CMT boric acid concentration and the activation delay time on accident consequences are analyzed for MSLB, which shows that there is no consequential damage to the fuel or reactor coolant system in the selected conditions.

  14. Study on diverse passive decay heat removal approach and principle

    International Nuclear Information System (INIS)

    Lin Qian; Si Shengyi

    2012-01-01

    Decay heat removal in post-accident is one of the most important aspects concerned in the reactor safety analysis. Passive decay heat removal approach is used to enhance nuclear safety. In advanced reactors, decay heat is removed by multiple passive heat removal paths through core to ultimate heat sink by passive residual heat removal system, passive injection system, passive containment cooling system and so on. Various passive decay heat removal approaches are summarized in this paper, the common features and differences of their heat removal paths are analyzed, and the design principle of passive systems for decay heat removal is discussed. It is found that. these decay heat removal paths is combined by some basic heat transfer processes, by the combination of these basic processes, diverse passive decay heat removal approach or system design scheme can be drawn. (authors)

  15. Passive heat removal from containment

    International Nuclear Information System (INIS)

    Gou, P.F.; Townsend, H.E.

    1990-01-01

    This patent describes a heat removal system for removing heat from a containment of a nuclear reactor. It comprises: a sealed suppression chamber in the containment; means for venting steam from the nuclear reactor into the suppression chamber upon occurrence of an event requiring dissipation of heat from the nuclear reactor. The suppression chamber containing a quantity of water; the suppression chamber having a gas-containing space above the water; a heat exchanger disposed within the gas-containing space of the suppression chamber; the heat exchanger including an enclosed structure for holding a heat-exchange fluid; means for metering a supply of heat-exchange fluid to the heat exchanger to maintain a predetermined level thereof in the enclosed structure. The heat-exchange fluid boiling in the heat exchanger in consequence of heat transfer thereto from steam present in the suppression chamber; means for separating a heat-exchange fluid vapor in the heat exchanger from the heat-exchange fluid; and means for discharging the vapor immediately following its separation from heat-exchange fluid directly from the heat exchanger to a location exterior of the containment, whereby heat is discharged from the suppression chamber, and the containment is maintained at a temperature and pressure below its design value

  16. After-heat removing system in FBR type reactor

    International Nuclear Information System (INIS)

    Ohashi, Yukio.

    1990-01-01

    The after-heat removing system of the present invention removes the after heat generated in a reactor core without using dynamic equipments such as pumps or blowers. There are disposed a first heat exchanger for heating a heat medium by the heat in a reactor container and a second heat exchanger situated above the first heat exchanger for spontaneously air-cooling the heat medium. Recycling pipeways connect the first and the second heat exchangers to form a recycling path for the heat medium. Then, since the second heat exchanger for spontaneously air-cooling the heat medium is disposed above the first heat exchanger and they are connected by the recycling pipeways, the heat medium can be circulated spontaneously. Accordingly, dynamic equipments such as pumps or blowers are no more necessary. As a result, the after-heat removing system of the FBR type reactor of excellent safety and reliability can be obtained. (I.S.)

  17. Analysis of decay heat removal by natural convection in PFBR

    International Nuclear Information System (INIS)

    Kasinathan, N.; Vaidyanathan, G.; Chetal, S.C.; Bhoje, S.B.

    1993-01-01

    PFBR is a 500 MWe, 1200 MWt pool type LMFBR. In order to assure reliable decay heat removal, four totally independent Safety Grade Decay Heat Removal Systems (SGDHRS) which removes heat directly from the hot pool, is provided. Each of the SGDHRS comprises of a hot pool dipped decay heat exchanger (DHX), a sodium - air heat exchanger (AHX) at a suitable elevation and associated piping and circuits. This paper brings out the step by step approach that have been taken to decide on the preliminary sizing of the SGDHRS components, and static and transient analysis to assess the adequacy of the Decay Heat Removal capacity of the SGDHRS during the worst of the foreseen design basis conditions. The maximum values the important safety related temperatures viz., clad hotspot, hot pool top surface, reactor inlet, fuel subassembly outlets etc., would reach, can be obtained only through a comprehensive transient analysis. In order to get quick and reasonably meaningful results, one dimensional thermal-hydraulics models for the core, hot and cold pools, IHX, DHX, AHX and various pipings were developed and a code DHDYN formulated. With this a total power failure situation followed by initiations of DHR half an hour later was studied and the results revealed the following: (i) clad hotspot temperature in the in-vessel stored spent fuel subassemblies could be held below 800 deg. C only if primary sodium flow through these subassemblies are increased up to three times the originally allocated flow in the design, (ii) hotpool top zone temperature reaches 572 deg. C, (iii) reactor inlet temperature reaches 482 deg. C, (iv) the hot pool top zone temperature cools down to 450 deg. C in about 25 h. Thus these results satisfactorily established the adequacy of the sizing and the capability of the SGDHRS. DHDYN code is also used to study the RAMONA water experiments conducted in Germany. Initial results available has brought out the conservative nature of the DHDYN predictions as compared

  18. Evaluation of Heat Removal Performance of Passive Decay Heat Removal system for S-CO{sub 2} Cooled Micro Modular Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Jangsik; Lee, Jeong Ik; Jeong, Yong Hoon [KAIST, Daejeon (Korea, Republic of)

    2015-05-15

    The modular systems is able to be transported by large trailer. Moreover, dry cooling system is applied for waste heat removal. The characteristics of MMR takes wide range of construction area from coast to desert, isolated area and disaster area. In MMR, Passive decay heat removal system (PDHRS) is necessary for taking the advantage on selection of construction area where external support cannot be offered. The PDHRS guarantees to protect MMR without external support. In this research, PDHRS of MMR is introduced and decay heat removal performance is analyzed. The PDHRS guarantees integrity of reactor coolant system. The high level of decay heat (2 MW) can be removed by PDHRS without offsite power.

  19. After-heat removal system

    International Nuclear Information System (INIS)

    Yamamoto, Michiyoshi; Mitani, Shinji.

    1982-01-01

    Purpose: To prevent contamination of suppression pool water and intrusion of corrosion products into a nuclear reactor. Constitution: Upon stop of an after-heat removing system, reactor water contained in pipelines is drained out to a radioactive wastes processing facility at the time the cooling operation mode has been completed. At the same time, water is injected from a pure water supply system to the after-heat removing system to discharge corrosion product and activated materials while cleaning the inside of the pipelines. Then, pure water is held in the pipelines and it is discharged again and replaced with pure water before entering the cooling mode operation. Thereafter, the cooling mode operation upon reactor shutdown is performed. (Yoshino, Y.)

  20. Multiple pollutant removal using the condensing heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Jankura, B. J. [McDermott Technology Inc., Alliance, OH (United States); Kudlac, G. A. [McDermott Technology Inc., Alliance, OH (United States); Bailey, R. T. [McDermott Technology Inc., Alliance, OH (United States)

    1998-06-01

    The Integrated Flue Gas Treatment (IFGT) system is a new concept whereby a Teflon ® covered condensing heat exchanger is adapted to remove certain flue gas constituents, both particulate and gaseous, while recovering low level heat. The pollutant removal performance and durability of this device is the subject of a USDOE sponsored program to develop this technology. The program was conducted under contract to the United States Department of Energy's Fossil Energy Technology Center (DOE-FETC) and was supported by the Ohio Coal Development Office (OCDO) within the Ohio Department of Development, the Electric Power Research Institute's Environmental Control Technology Center (EPRI-ECTC) and Babcock and Wilcox - a McDermott Company (B&W). This report covers the results of the first phase of this program. This Phase I project has been a two year effort. Phase I includes two experimental tasks. One task dealt principally with the pollutant removal capabilities of the IFGT at a scale of about 1.2MWt. The other task studied the durability of the Teflon ® covering to withstand the rigors of abrasive wear by fly ash emitted as a result of coal combustion. The pollutant removal characteristics of the IFGT system were measured over a wide range of operating conditions. The coals tested included high, medium and low-sulfur coals. The flue gas pollutants studied included ammonia, hydrogen chloride, hydrogen fluoride, particulate, sulfur dioxide, gas phase and particle phase mercury and gas phase and particle phase trace elements. The particulate removal efficiency and size distribution was investigated. These test results demonstrated that the IFGT system is an effective device for both acid gas absorption and fine particulate collection. Although soda ash was shown to be the most effective reagent for acid gas absorption, comparative cost analyses suggested that magnesium enhanced lime was the most promising avenue for future study. The durability of the

  1. PBMR spent fuel bulk dry storage heat removal - HTR2008-58170

    International Nuclear Information System (INIS)

    De Wet, G. J.; Dent, C.

    2008-01-01

    A low decay heat (implying Spent Fuel (SF) pebbles older than 8-9 years) bulk dry storage section is proposed to supplement a 12-tank wet storage section. Decay heat removal by passive means must be guaranteed, taking into account the fact that dry storage vessels are under ground and inside the building footprint. Cooling takes place when ambient air (drawn downwards from ground level) passes on the outside of the 6 tanks' vessel containment (and gamma shielding), which is in a separate room inside the building, but outside PBMR building confinement and open to atmosphere. Access for loading/unloading of SF pebbles is only from the top of a tank, which is inside PBMR building confinement. No radioactive substances can therefore leak into atmosphere, as vessel design will take into account corrosion allowance. In this paper, it is shown (using CFD (Computational Fluid Dynamics) modelling and analytical analyses) that natural convection and draught induced flow combine to remove decay heat in a self-sustaining process. Decay heat is the energy source, which powers the draught inducing capability of the dry storage modular cell system: the more decay heat, the bigger the drive to expel heated air through a higher outlet and entrain cool ambient air from ground level to the bottom of the modular cell. (authors)

  2. Study on heat removal capability concrete cask system with horizontal orientation

    International Nuclear Information System (INIS)

    Nabemoto, Toyonobu; Sakai, Mikio; Fujiwara, Hiroaki; Sakaya, Tadatsugu

    2002-01-01

    In Japan, nuclear fuel cycle, has been promoted, so the recycle fuels formed at nuclear power stations are planned to be processed at reprocessing facilities in future. However, as forming quantities of the recycle fuels are more than reprocessing quantities of the facilities, it is needed to practice a facility (interim storage facility (ISF)) to temporarily store them among the recycle fuels will be reprocessed. The Ishikawajima-Harima Heavy Industries, Co., Ltd. has investigated on vault system and concrete cask system for dry storage system with excellent economical efficiency among various systems on ISFs. As the latter method has a number of actual results in U.S.A., its practice is progressed after some improvements suitable for Japan. When progressing this practice on the latter method on fiscal year 1999, at first, a concrete cask with actual size was experimentally produced, to confirm its productivity. On fiscal year 2000, aiming to establish heat removal evaluation at storage, a thermal load test simulated at the storage was carried out by using this trial product. Here was reported results obtained at a test simulated at repacking carried out on fiscal year 2001. (G.K.)

  3. A study on the characteristics of the decay heat removal capacity for a large thermal rated LMR design

    International Nuclear Information System (INIS)

    Uh, J. H.; Kim, E. K.; Kim, S. O.

    2003-01-01

    The design characteristics and the decay heat removal capacity according to the type of DHR (Decay Heat Removal) system in LMR are quantitatively analyzed, and the general relationship between the rated core thermal power and decay heat removal capacity is created in this study. Based on these analyses results, a feasibility of designing a larger thermal rating KALIMER plant is investigated in view of decay heat removal capacity, and DRC (Direct Reactor Cooling) type DHR system which rejects heat from the reactor pool to air is proper to satisfy the decay heat removal capacity for a large thermal rating plant above 1,000 MWth. Some defects, however, including the heat loss under normal plant operation and the lack of reliance associated with system operation should be resolved in order to adopt the total passive concept. Therefore, the new concept of DHR system for a larger thermal rating KALIMER design, named as PDRC (passive decay heat removal circuit), is established in this study. In the newly established concept of PDRC, the Na-Na heat exchanger is located above the sodium cold pool and is prevented from the direct sodium contact during normal operation. This total passive feature has the superiority in the aspect of the minimizing the normal heat loss and the increasing the operation reliance of DHR system by removing either any operator action or any external operation signal associated with system operation. From this study, it is confirmed that the new concept of PDRC is useful to the designing of a large thermal rating power plant of KALIMER-600 in view of decay heat removal capability

  4. Analysis of Decay Heat Removal by Natural Convection in LMR with a Combined Steam Generator

    International Nuclear Information System (INIS)

    Kim, Eui Kwang; Eoh, Jae Hyuk; Han, Ji Woong; Lee, Tae Ho

    2011-01-01

    Liquid metal reactors (LMRs) conventionally employ an intermediate heat transport system (IHTS) to protect the nuclear core during a sodium-water reaction (SWR) event. However these SWR-related components increase plant construction costs. In order to eliminate the need for an IHTS, a combined steam generator, which is an integrated heat exchanger of a steam generator and intermediate heat exchanger (IHX), was proposed by the Korea Atomic Energy Research Institute (KAERI). The objective of this work is to analyze the natural circulation heat removal capability of the rector system using a combined steam generator. As a means of decay heat removal, a normal heat transport path is composed of a primary sodium system, intermediate lead-bismuth circuit combined with SG and steam/water system. This paper presents the results of the possible temperature and natural circulation flows in all circuits during a steady state for a given reactor power level varied as a function of time

  5. Verification of heat removal capability of a concrete cask system for spent fuel storage

    International Nuclear Information System (INIS)

    Sakai, Mikio; Fujiwara, Hiroaki; Sakaya, Tadatugu

    2001-01-01

    The reprocessing works comprising of a center of nuclear fuel cycle in Japan is now under construction at Rokkasho-mura in Aomori prefecture, which is to be operated in 2005. However, as reprocessing capacity of the works is under total forming amount of spent nuclear fuels, it has been essential to construct a new facility intermediately to store them at a period before reprocessing them because of prediction to reach limit of pool storage in nuclear power stations. There are some intermediate storage methods, which are water pool method for wet storage, and bolt method, metal cask method, silo method and concrete cask method for dry storage. Among many methods, the dry storage is focussed at a standpoint of its operability and economy, the concrete cask method which has a lot of using results in U.S.A. has been focussed as a method expectable in its cost reduction effect among it. The Ishikawajima-Harima Heavy Industries Co., Ltd. produced, in trial, a concrete cask with real size to confirm productivity when advancing design work on concrete cask. By using the trial product, a heat removal test mainly focussing temperature of concrete in the cask was carried out to confirm heat conductive performances of the cask. And, analysis of heat conductivity was also carried out to verify validity of its analysis model. (G.K.)

  6. Horizontal Heat Exchanger Design and Analysis for Passive Heat Removal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Vierow, Karen

    2005-08-29

    This report describes a three-year project to investigate the major factors of horizontal heat exchanger performance in passive containment heat removal from a light water reactor following a design basis accident LOCA (Loss of Coolant Accident). The heat exchanger studied in this work may be used in advanced and innovative reactors, in which passive heat removal systems are adopted to improve safety and reliability The application of horizontal tube-bundle condensers to passive containment heat removal is new. In order to show the feasibility of horizontal heat exchangers for passive containment cooling, the following aspects were investigated: 1. the condensation heat transfer characteristics when the incoming fluid contains noncondensable gases 2. the effectiveness of condensate draining in the horizontal orientation 3. the conditions that may lead to unstable condenser operation or highly degraded performance 4. multi-tube behavior with the associated secondary-side effects This project consisted of two experimental investigations and analytical model development for incorporation into industry safety codes such as TRAC and RELAP. A physical understanding of the flow and heat transfer phenomena was obtained and reflected in the analysis models. Two gradute students (one funded by the program) and seven undergraduate students obtained research experience as a part of this program.

  7. Confirmatory analysis of the AP1000 passive residual heat removal heat exchanger with 3-D computational fluid dynamic analysis

    International Nuclear Information System (INIS)

    Schwall, James R.; Karim, Naeem U.; Thakkar, Jivan G.; Taylor, Creed; Schulz, Terry; Wright, Richard F.

    2006-01-01

    The AP1000 is an 1100 MWe advanced nuclear power plant that uses passive safety features to enhance plant safety and to provide significant and measurable improvements in plant simplification, reliability, investment protection and plant costs. The AP1000 received final design approval from the US-NRC in 2004. The AP1000 design is based on the AP600 design that received final design approval in 1999. Wherever possible, the AP1000 plant configuration and layout was kept the same as AP600 to take advantage of the maturity of the design and to minimize new design efforts. As a result, the two-loop configuration was maintained for AP1000, and the containment vessel diameter was kept the same. It was determined that this significant power up-rate was well within the capability of the passive safety features, and that the safety margins for AP1000 were greater than those of operating PWRs. A key feature of the passive core cooling system is the passive residual heat removal heat exchanger (PRHR HX) that provides decay heat removal for postulated LOCA and non-LOCA events. The PRHR HX is a C-tube heat exchanger located in the in-containment refueling water storage tank (IRWST) above the core promoting natural circulation heat removal between the reactor cooling system and the tank. Component testing was performed for the AP600 PRHR HX to determine the heat transfer characteristics and to develop correlations to be used for the AP1000 safety analysis codes. The data from these tests were confirmed by subsequent integral tests at three separate facilities including the ROSA facility in Japan. Owing to the importance of this component, an independent analysis has been performed using the ATHOS-based computational fluid dynamics computer code PRHRCFD. Two separate models of the PRHR HX and IRWST have been developed representing the ROSA test geometry and the AP1000 plant geometry. Confirmation of the ROSA test results were used to validate PRHRCFD, and the AP1000 plant model

  8. Prediction of Heat Removal Capacity of Horizontal Condensation Heat Exchanger submerged in Pool

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Seong-Su; Hong, Soon-Joon [FNC Tech., Yongin (Korea, Republic of); Cho, Hyoung-Kyu [Seoul National University, Seoul (Korea, Republic of); Park, Goon-Cherl [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2014-10-15

    As representative passive safety systems, there are the passive containment cooling system (PCCS) of ESBWR, the emergency condenser system (ECS) of the SWR-1000, the passive auxiliary feed-water system (PAFS) of the APR+ and etc. During the nuclear power plant accidents, these passive safety systems can cool the nuclear system effectively via the heat transfer through the steam condensation, and then mitigate the accidents. For the optimum design and the safety analysis of the passive safety system, it is essential to predict the heat removal capacity of the heat exchanger well. The heat removal capacity of the horizontal condensation heat exchanger submerged in a pool is determined by a combination of a horizontal in-tube condensation heat transfer and a boiling heat transfer on the horizontal tube. Since most correlations proposed in the previous nuclear engineering field were developed for the vertical tube, there is a certain limit to apply these correlations to the horizontal tube. Therefore, this study developed the heat transfer model for the horizontal Ushaped condensation heat exchanger submerged in a pool to predict well the horizontal in-tube condensation heat transfer, the boiling heat transfer on the horizontal tube and the overall heat removal capacity of the heat exchanger using the best-estimate system analysis code, MARS.

  9. After-heat removal system of fast reactor

    International Nuclear Information System (INIS)

    Otsuka, Masaya; Shibata, Yoji; Ikeda, Takashi; Iwashige, Kengo; Yoneda, Yoshiyuki.

    1988-01-01

    Purpose: To remove after-heat by natural convection without disposing a movable portion even in a large-scaled reactor. Constitution: The exit of a reactor wall air-cooling duct disposed to the outside of a safety vessel is connected to the secondary inlet of an air cooler that conducts heat exchange with sodium in a high temperature plenum. That is, after-heat is removed only through the natural convection by a structure in which the reactor wall air-cooling duct and the secondary side of the air cooler are connected in series. Air exhausted from the exit of the air-cooling duct by the air cooler is further heated with sodium in the high temperature plenum. The flow rate of air flowing through the air-cooling duct is increased as compared with the case where the air cooler is not present. Accordingly, the flow rate of air at low temperature flowing through the inlet of the air duct is increased to increase the heat conduction amount. In this way, after-heat can be removed only by means of natural convection without providing movable portions even in a large-scaled reactor with the thermal power in excess of 2,000 MW. (Horiuchi, T.)

  10. Advances in technologies for decay heat removal

    International Nuclear Information System (INIS)

    Yadigaroglu, G.; Berkovich, V.; Bianchi, A.; Chen B.; Meseth, J.; Vecchiarelli, J.; Vidard, M.

    1999-01-01

    The various decay heat removal concepts that have been used for the evolutionary water reactor plant designs developed worldwide are examined and common features identified. Although interesting new features of the 'classical' plants are mentioned, the emphasis is on passive core and containment decay heat removal systems. The various systems are classified according to the function they have to accomplish; they often share common characteristics and similar equipment. (author)

  11. Heat removing under hypersonic conditions

    Directory of Open Access Journals (Sweden)

    Semenov Mikhail E.

    2016-01-01

    Full Text Available In this paper we consider the heat transfer properties of the axially symmetric body with parabolic shape at hypersonic speeds (with a Mach number M > 5. We use the numerical methods based on the implicit difference scheme (Fedorenko method with direct method based on LU-decomposition and iterative method based on the Gauss-Seigel method. Our numerical results show that the heat removing process should be performed in accordance with the nonlinear law of heat distribution over the surface taking into account the hypersonic conditions of motion.

  12. Solution of heat removal from nuclear reactors by natural convection

    Directory of Open Access Journals (Sweden)

    Zitek Pavel

    2014-03-01

    Full Text Available This paper summarizes the basis for the solution of heat removal by natural convection from both conventional nuclear reactors and reactors with fuel flowing coolant (such as reactors with molten fluoride salts MSR.The possibility of intensification of heat removal through gas lift is focused on. It might be used in an MSR (Molten Salt Reactor for cleaning the salt mixture of degassed fission products and therefore eliminating problems with iodine pitting. Heat removal by natural convection and its intensification increases significantly the safety of nuclear reactors. Simultaneously the heat removal also solves problems with lifetime of pumps in the primary circuit of high-temperature reactors.

  13. Feasibility study for a postaccident heat removal facility

    International Nuclear Information System (INIS)

    Barts, E.W.; Apperson, C.E. Jr.; Dunwoody, W.E.; Bennett, J.G.

    1978-01-01

    An initial feasibility investigation for PAHRTEF, a Postaccident Heat Removal Test Facility, is presented. The facility would provide an experimental capability for PAHR experiments beyond that available in any currently existing or proposed U.S. safety test facility. The facility design presented in this report is based upon the technology developed for the ROVER nuclear rocket propulsion program. The core is a graphite-moderated, helium-cooled, epithermal core with radial reflector control. The PAHR experiments are located just below the reactor containment vessel, very near the bottom of the core. The experiments (up to 55% enriched) are driven and controlled by neutrons leaking axially from the core such that the PAHRTEF core and the experiment form a coupled reactor system. The experiment can be designed so that it is extremely unlikely that the test fuel by itself could form a critical system. The investigation indicates that adequate fission heating of large PAHR experiments could be provided at low driver core power levels. Both the reactor and the experiment handling and examination equipment can use available technology and, whenever possible, existing equipment and buildings

  14. Analysis and testing of W-DHR system for decay heat removal in the lead-cooled ELSY reactor

    International Nuclear Information System (INIS)

    Bandini, Giacomino; Meloni, Paride; Polidori, Massimiliano; Gaggini, Piero; Labanti, Valerio; Tarantino, Mariano; Cinotti, Luciano; Presciuttini, Leonardo

    2009-01-01

    An innovative LFR system that complies with GEN IV goals is under design in the frame of ELSY European project. ELSY is a lead-cooled pool-type reactor of about 1500 MW thermal power which normally relies on the secondary system for decay heat removal. Since the secondary system is not safety-grade and must be fully depressurized in case of detection of a steam generator tube rupture, an independent and much reliable decay heat removal (DHR) system is foreseen on the primary side. Owing to the limited capability of the Reactor Vessel Air Cooling System (RVACS) in this large power reactor, additional safety-grade loops equipped with coolers immersed in the primary coolant are necessary for an efficient removal of decay heat. Some of these loops (W-DHR) are of innovative design and may operate with water at atmospheric pressure. In the frame of the ICE program to be performed on the integral facility CIRCE at ENEA/Brasimone research centre within the EUROTRANS European project, integral circulation experiments with core heat transport and heat removal by steam generator will be conducted in a reactor pool-type configuration. Taking advantage from this experimental program, a mock-up of W-DHR heat exchanger will be tested in order to investigate its functional behavior for decay heat removal. Some pre-test calculations of W-DHR heat exchanger operation in CIRCE have been performed with the RELAP5 thermal-hydraulic code in order to support the heat exchanger design and test conduct. In this paper the experimental activity to be conducted in CIRCE and main results from W-DHR pre-test calculations are presented, along with a preliminary investigation of the W-DHR system efficiency in ELSY configuration. (author)

  15. Decay heat removal for the liquid metal fast breeder reactor

    International Nuclear Information System (INIS)

    Zemanick, P.P.; Brown, N.W.

    1975-01-01

    The functional and reliability requirements of the decay heat removal systems are described. The reliability requirement and its rationale as adequate assurance that public health and safety are safeguarded are presented. The means by which the reliability of the decay heat removal systems are established to meet their requirement are identified. The heat removal systems and their operating characteristics are described. The discussion includes the overflow heat removal service and its role in decay heat removal if needed. The details of the systems are described to demonstrate the elements of redundancy and diversity in the systems design. The quantitative reliability assessment is presented, including the reliability model, the most important assumptions on which the analysis is based, sources of failure data, and the preliminary numerical results. Finally, the qualitative analyses and administrative controls will be discussed which ensure reliability attainment in design, fabrication, and operation, including minimization of common mode failures. A component test program is planned to provide reliability data on selected critical heat removal system equipment. This test plan is described including a definition of the test parameters of greatest interest and the motivation for the test article selection. A long range plan is also in place to collect plant operational data and the broad outlines of this plan are described. A statement of the high reliability of the Clinch River Breeder reactor Plant decay heat removal systems and a summary of the supporting arguments is presented. (U.S.)

  16. Decay Heat Removal for the Liquid Metal Fast Breeder Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zemanick, P. P.; Brown, N. W.

    1975-10-15

    The functional and reliability requirements of the decay heat removal systems are described. The reliability requirement and its rationale as adequate assurance that public health and safety are safeguarded are presented. The means by which the reliability of the decay heat removal systems are established to meet their requirement are identified. The heat removal systems and their operating characteristics are described. The discussion includes the overflow heat removal service and its role in decay heat removal if needed. The details of the systems are described to demonstrate the elements of redundancy and diversity in the systems design. The quantitative reliability assessment is presented, including the reliability model, the most important assumptions on which the analysis is based, sources of failure data, and the preliminary numerical results. Finally, the qualitative analyses and administrative controls will be discussed which ensure reliability attainment in design, fabrication, and operation, including minimization of common mode failures. A component test program is planned to provide reliability data on selected critical heat removal system equipment. This test plan is described including a definition of the test parameters of greatest interest and the motivation for the test article selection. A long range plan is also in place to collect plant operational data and the broad outlines of this plan are described. The paper closes with a statement of the high reliability of the Clinch River Breeder Reactor Plant decay heat removal systems and a summary of the supporting arguments. (author)

  17. Highly heat removing radiation shielding material

    International Nuclear Information System (INIS)

    Asano, Norio; Hozumi, Masahiro.

    1990-01-01

    Organic materials, inorganic materials or metals having excellent radiation shielding performance are impregnated into expanded metal materials, such as Al, Cu or Mg, having high heat conductivity. Further, the porosity of the expanded metals and combination of the expanded metals and the materials to be impregnated are changed depending on the purpose. Further, a plurality of shielding materials are impregnated into the expanded metal of the same kind, to constitute shielding materials. In such shielding materials, impregnated materials provide shielding performance against radiation rays such as neutrons and gamma rays, the expanded metals provide heat removing performance respectively and they act as shielding materials having heat removing performance as a whole. Accordingly, problems of non-informity and discontinuity in the prior art can be dissolved be provide materials having flexibility in view of fabrication work. (T.M.)

  18. Experimental and analytical studies for the validation of HTR-VGD and primary cell passive decay heat removal. Supplement. Calculations

    International Nuclear Information System (INIS)

    Geiss, M.; Giannikos, A.; Hejzlar, P.; Kneer, A.

    1993-04-01

    The alternative concept for a modular HTR-reactor design by Siempelkamp, Krefeld, using a prestressed cast iron vessel (VGD) combined with a cast iron/concrete module for the primary cell with integrated passive decay heat removal system was fully qualified with respect to operational and accidental thermal loads. The main emphasis was to confirm and validate the passive decay heat removal capability. An experimental facility (INWA) was designed, instrumented and operated with an appropriate electrical heating system simulating steady-state operational and transient accidental thermal loads. The experiments were accompanied by extensive computations concerning the combination of conductive, radiative and convective energy transport mechanisms in the different components of the VGD/primary cell structures, as well as elastic-plastic stress analyses of the VGD. In addition, a spectrum of potential alternatives for passive energy removed options have been parametrically examined. The experimental data clearly demonstrate that the proposed Siempelkamp-design is able to passively and safely remove the decay heat for operational and accidental conditions without invalidating technological important thermal limits. This also holds in case of failures of both the natural convection system and ultimate heat sink by outside concrete water film cooling. (orig./HP) [de

  19. An innovative pool with a passive heat removal system

    International Nuclear Information System (INIS)

    Vitale Di Maio, Damiano; Naviglio, Antonio; Giannetti, Fabio; Manni, Fabio

    2012-01-01

    Heat removal systems are of primary importance in several industrial processes. As heat sink, a water pool or atmospheric air may be selected. The first solution takes advantage of high heat transfer coefficient with water but it requires active systems to maintain a constant water level; the second solution takes benefit from the unlimited heat removal capacity by air, but it requires a larger heat exchanger to compensate the lower heat transfer coefficient. In NPPs (nuclear power plants) during a nuclear reactor shutdown, as well as in some chemical plants to control runaway reactions, it is possible to use an innovative heat sink that joins the advantages of the two previous solutions. This solution is based on a special heat exchanger submerged in a water pool designed so that when heat removal is requested, active systems are not required to maintain the water level; due to the special design, when the pool is empty, atmospheric air becomes the only heat sink. The special heat exchanger design allows to have a heat exchanger without being oversized and to have a system able to operate for unlimited period without external interventions. This innovative system provides an economic advantage as well as enhanced safety features.

  20. Assessment of ASME code examinations on regenerative, letdown and residual heat removal heat exchangers

    International Nuclear Information System (INIS)

    Gosselin, Stephen R.; Cumblidge, Stephen E.; Anderson, Michael T.; Simonen, Fredric A.; Tinsley, G A.; Lydell, B.; Doctor, Steven R.

    2005-01-01

    Inservice inspection requirements for pressure retaining welds in the regenerative, letdown, and residual heat removal heat exchangers are prescribed in Section XI Articles IWB and IWC of the ASME Boiler and Pressure Vessel Code. Accordingly, volumetric and/or surface examinations are performed on heat exchanger shell, head, nozzle-to-head, and nozzle-to-shell welds. Inspection difficulties associated with the implementation of these Code-required examinations have forced operating nuclear power plants to seek relief from the U.S. Nuclear Regulatory Commission. The nature of these relief requests are generally concerned with metallurgical, geometry, accessibility, and radiation burden. Over 60% of licensee requests to the NRC identify significant radiation exposure burden as the principle reason for relief from the ASME Code examinations on regenerative heat exchangers. For the residual heat removal heat exchangers, 90% of the relief requests are associated with geometry and accessibility concerns. Pacific Northwest National Laboratory was funded by the NRC Office of Nuclear Regulatory Research to review current practice with regard to volumetric and/or surface examinations of shell welds of letdown heat exchangers regenerative heat exchangers and residual (decay) heat removal heat exchangers Design, operating, common preventative maintenance practices, and potential degradation mechanisms are reviewed. A detailed survey of domestic and international PWR-specific operating experience was performed to identify pressure boundary failures (or lack of failures) in each heat exchanger type and NSSS design. The service data survey was based on the PIPExp- database and covers PWR plants worldwide for the period 1970-2004. Finally a risk assessment of the current ASME Code inspection requirements for residual heat removal, letdown, and regenerative heat exchangers is performed. The results are then reviewed to discuss the examinations relative to plant safety and

  1. RELAP5 and SIMMER-III code assessment on CIRCE decay heat removal experiments

    International Nuclear Information System (INIS)

    Bandini, Giacomino; Polidori, Massimiliano; Meloni, Paride; Tarantino, Mariano; Di Piazza, Ivan

    2015-01-01

    Highlights: • The CIRCE DHR experiments simulate LOHS+LOF transients in LFR systems. • Decay heat removal by natural circulation through immersed heat exchangers is investigated. • The RELAP5 simulation of DHR experiments is presented. • The SIMMER-III simulation of DHR experiments is presented. • The focus is on the transition from forced to natural convection and stratification in a large pool. - Abstract: In the frame of THINS Project of the 7th Framework EU Program on Nuclear Fission Safety, some experiments were carried out on the large scale LBE-cooled CIRCE facility at the ENEA/Brasimone Research Center to investigate relevant safety aspects associated with the removal of decay heat through heat exchangers (HXs) immersed in the primary circuit of a pool-type lead fast reactor (LFR), under loss of heat sink (LOHS) accidental conditions. The start-up and operation of this decay heat removal (DHR) system relies on natural convection on the primary side and then might be affected by coolant mixing and temperature stratification phenomena occurring in the LBE pool. The main objectives of the CIRCE experimental campaign were to verify the behavior of the DHR system under representative accidental conditions and provide a valuable database for the assessment of both CFD and system codes. The reproduced accidental conditions refer to a station blackout scenario, namely a protected LOHS and loss of flow (LOF) transient. In this paper the results of 1D RELAP5 and 2D SIMMER-III simulations are compared with the experimental data of more representative DHR transients T-4 and T-5 in order to verify the capability of these codes to reproduce both forced and natural convection conditions observed in the primary circuit and the right operation of the DHR system for decay heat removal. Both codes are able to reproduce the stationary conditions and with some uncertainties the transition to natural convection conditions until the end of the transient phase. The trend

  2. CAREM-25: Residual heat removal system

    International Nuclear Information System (INIS)

    Arvia, Roberto P.; Coppari, Norberto R.; Gomez de Soler, Susana M.; Ramilo, Lucia B.

    2000-01-01

    The objective of this work was the definition and consolidation of the residual heat removal system for the CAREM 25 reactor. The function of this system is cool down the primary circuit, removing the core decay heat from hot stand-by to cold shutdown and during refueling. In addition, this system heats the primary water from the cold shutdown condition to hot stand-by condition during the reactor start up previous to criticality. The system has been designed according to the requirements of the standards: ANSI/ANS 51.1 'Nuclear safety criteria for the design of stationary PWR plants'; ANSI/ANS 58.11 'Design criteria for safe shutdown following selected design basis events in light water reactors' and ANSI/ANS 58.9 'Single failure criteria for light water reactor safety-related fluid systems'. The suggested design fulfills the required functions and design criteria standards. (author)

  3. Improved Design Concept for ensuring the Passive Decay Heat Removal Performance of an SFR

    International Nuclear Information System (INIS)

    Eoh, Jae Hyuk; Lee, Tae Ho; Han, Ji Woong; Kim, Seong O

    2011-01-01

    In order to enhance the operational reliability of a purely passive decay heat removal system in KALIMER, which is named as PDRC, three design options to prevent a sodium freezing in an intermediate decay heat removal circuit were proposed, and their feasibilities was quantitatively evaluated. For all the options, more specific design considerations were made to confirm their feasibility to properly materialize their concepts in a practical system design procedure, and the general definitions for a purely passive concept and its design features have been discussed. A numerical study to evaluate the coastdown flow effect of the primary pump was performed to figure out the early stage DHR capability inside reactor pool during a loss of normal heat sink accident. The thermal-hydraulic calculations have been made by using the COMMIX-1AR/P code, and it was found that the initiation of heat removal by DHX could be accelerated by the increase of the coastdown time but it needs a large-sized flywheel. For the demonstration of the innovative concept, a large scale sodium thermal-hydraulic test facility is currently being designed. It is very difficult to reproduce both a hydrodynamic and a thermodynamic similarity to the prototype plant if the thermal driving head is determined by structure-to-fluid heat transfer under natural circulation flow. Hence the similitude requirements for the sodium thermal-hydraulic test facility employing natural convection heat transfer were developed, and the preliminary design data of the test facility by implementing proper scaling methodologies was produced. The design restrictions imposed on the test facility and the scaling distortions of the design data to the full-scale system were also discussed

  4. A concept of passive safety pressurized water reactor system with inherent matching nature of core heat generation and heat removal

    International Nuclear Information System (INIS)

    Murao, Yoshio; Araya, Fumimasa; Iwamura, Takamichi; Okumura, Keisuke

    1995-01-01

    The reduction of manpower in operation and maintenance by simplification of the system are essential to improve the safety and the economy of future light water reactors. At the Japan Atomic Energy Research Institute (JAERI), a concept of a simplified passive safety reactor system JPSR was developed for this purpose and in the concept minimization of developing work and conservation of scale-up capability in design were considered. The inherent matching nature of core heat generation and heat removal rate is introduced by the core with high reactivity coefficient for moderator density and low reactivity coefficient for fuel temperature (Doppler effect) and once-through steam generators (SGs). This nature makes the nuclear steam supply system physically-slave for the steam and energy conversion system by controlling feed water mass flow rate. The nature can be obtained by eliminating chemical shim and adopting in-vessel control rod drive mechanism (CRDM) units and a low power density core. In order to simplify the system, a large pressurizer, canned pumps, passive residual heat removal systems with air coolers as a final heat sink and passive coolant injection system are adopted and the functions of volume and boron concentration control and seal water supply are eliminated from the chemical and volume control system (CVCS). The emergency diesel generators and auxiliary component cooling system of 'safety class' for transferring heat to sea water as a final heat sink in emergency are also eliminated. All of systems are built in the containment except for the air coolers of the passive residual heat removal system. The analysis of the system revealed that the primary coolant expansion in 100% load reduction in 60 s can be mitigated in the pressurizer without actuating the pressure relief valves and the pressure in 50% load change in 30 s does not exceed the maximum allowable pressure in accidental conditions in regardless of pressure regulation. (author)

  5. Component Cooling Heat Exchanger Heat Transfer Capability Operability Monitoring

    International Nuclear Information System (INIS)

    Mihalina, M.; Djetelic, N.

    2010-01-01

    The ultimate heat sink (UHS) is of highest importance for nuclear power plant safe and reliable operation. The most important component in line from safety-related heat sources to the ultimate heat sink water body is a component cooling heat exchanger (CC Heat Exchanger). The Component Cooling Heat Exchanger has a safety-related function to transfer the heat from the Component Cooling (CC) water system to the Service Water (SW) system. SW systems throughout the world have been the root of many plant problems because the water source, usually river, lake, sea or cooling pond, are conductive to corrosion, erosion, biofouling, debris intrusion, silt, sediment deposits, etc. At Krsko NPP, these problems usually cumulate in the summer period from July to August, with higher Sava River (service water system) temperatures. Therefore it was necessary to continuously evaluate the CC Heat Exchanger operation and confirm that the system would perform its intended function in accordance with the plant's design basis, given as a minimum heat transfer rate in the heat exchanger design specification sheet. The Essential Service Water system at Krsko NPP is an open cycle cooling system which transfers heat from safety and non-safety-related systems and components to the ultimate heat sink the Sava River. The system is continuously in operation in all modes of plant operation, including plant shutdown and refueling. However, due to the Sava River impurities and our limited abilities of the water treatment, the system is subject to fouling, sedimentation buildup, corrosion and scale formation, which could negatively impact its performance being unable to satisfy its safety related post accident heat removal function. Low temperature difference and high fluid flows make it difficult to evaluate the CC Heat Exchanger due to its specific design. The important effects noted are measurement uncertainties, nonspecific construction, high heat transfer capacity, and operational specifics (e

  6. Design and analysis of a new passive residual heat removal system

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Xing [Key Subject Laboratory of Nuclear Safety and Simulation Technology, Harbin Engineering University, Harbin, Heilongjiang 150001 (China); Peng, Minjun, E-mail: heupmj@163.com [Key Subject Laboratory of Nuclear Safety and Simulation Technology, Harbin Engineering University, Harbin, Heilongjiang 150001 (China); Yuan, Xiao [Guangxi Fangchenggang Nuclear Power Co., Ltd (China); Xia, Genglei [Key Subject Laboratory of Nuclear Safety and Simulation Technology, Harbin Engineering University, Harbin, Heilongjiang 150001 (China)

    2016-07-15

    Highlights: • An air cooling passive residual heat removal System (PRHRs) is designed. • Using RELAP5/MOD3.4 code to analyze the operation characteristics of the PRHRs. • Noncondensable gas is used to simulate the hydrodynamic behavior in the air cooling tower. • The natural circulations could respectively establish in the primary circuit and the PRHRs circuit. • The PRHRs could remove the residual heat effectively. - Abstract: The inherent safety functions will mitigate the consequences of the accidents, and it can be accomplished through the passive safety systems which employed in the typical pressurized water reactor (PWR). In this paper, a new passive residual heat removal system (PRHRS) is designed for a typical nuclear power plant. PRHRS consists of a steam generator (SG), a cooling tank with two groups of cooling pipes, an air-cooling heat exchanger (AHX), an air-cooling tower, corresponding pipes and valves. The cooling tank which works as an intermediate buffer device is used to transfer the core decay heat to the AHX, and then the core decay heat will be removed to the atmosphere finally. The RELAP5/MOD3.4 code is used to analyze the operation characteristics of PRHRS and the primary loop system. It shows PRHRS could remove the decay heat from the primary loop effectively, and the natural circulations can be established in the primary circuit and the PRHRS circuit respectively. Furthermore, the sensitivity study has also been done to research the effect of various factors on the heat removal capacity.

  7. Passive Decay Heat Removal System for Micro Modular Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Jangsik; Lee, Jeong Ik; Jeong, Yong Hoon [KAIST, Daejeon (Korea, Republic of)

    2015-10-15

    Dry cooling system is applied as waste heat removal system therefore it is able to consider wide construction site. Schematic figure of the reactor is shown in Fig. 1. In safety features, the reactor has double containment and passive decay heat removal (PDHR) system. The double containment prevents leakage from reactor coolant system to be emitted into environment. The passive decay heat removal system copes with design basis accidents (DBAs). Micros Modular Reactor (MMR) which has been being developed in KAIST is S-CO{sub 2} gas cooled reactor and shows many advantages. The S-CO{sub 2} power cycle reduces size of compressor, and it makes small size of power plant enough to be transported by trailer.The passive residual heat removal system is designed and thermal hydraulic (TH) analysis on coolant system is accomplished. In this research, the design process and TH analysis results are presented. PDHR system is designed for MMR and coolant system with the PDHR system is analyzed by MARS-KS code. Conservative assumptions are applied and the results show that PDHR system keeps coolant system under the design limitation.

  8. 3-D thermal hydraulic analysis of transient heat removal from fast reactor core using immersion coolers

    International Nuclear Information System (INIS)

    Chvetsov, I.; Volkov, A.

    2000-01-01

    For advanced fast reactors (EFR, BN-600M, BN-1600, CEFR) the special complementary loop is envisaged in order to ensure the decay heat removal from the core in the case of LOF accidents. This complementary loop includes immersion coolers that are located in the hot reactor plenum. To analyze the transient process in the reactor when immersion coolers come into operation one needs to involve 3-D thermal hydraulics code. Furthermore sometimes the problem becomes more complicated due to necessity of simulation of the thermal hydraulics processes into the core interwrapper space. For example on BN-600M and CEFR reactors it is supposed to ensure the effective removal of decay heat from core subassemblies by specially arranged internal circulation circuit: 'inter-wrapper space'. For thermal hydraulics analysis of the transients in the core and in the whole reactor including hot plenum with immersion coolers and considering heat and mass exchange between the main sodium flow and sodium that moves in the inter-wrapper space the code GRIFIC (the version of GRIF code family) was developed in IPPE. GRIFIC code was tested on experimental data obtained on RAMONA rig under conditions simulating decay heat removal of a reactor with the use of immersion coolers. Comparison has been made of calculated and experimental result, such as integral characteristics (flow rate through the core and water temperature at the core inlet and outlet) and the local temperatures (at thermocouple location) as well. In order to show the capabilities of the code some results of the transient analysis of heat removal from the core of BN-600M - type reactor under loss-of-flow accident are presented. (author)

  9. The kinetics of removal of heat-induced excess nuclear protein

    International Nuclear Information System (INIS)

    Roti, J.L.R.; Uygur, N.; Higashikubo, R.

    1984-01-01

    To investigate the role of protein content, temperature and heating time in the removal of heat-induced excess protein associated with the isolated nucleus, the kinetics of protein removal was monitored for 6 to 8 hours following exposure to 7 hyperthermic protocols. Four of these (47 0 C-7.5 min., 46 0 C-15 min., 45 0 C-30 min., and 44 0 C-60 min.) resulted in a nuclear protein content approximately twice that of nuclei from unheated cells (2.05 +- .14) following heat exposure. Three protocols (45 0 C-15 min., 44 0 C-30 min. and 43 0 C-60 min.) resulted in a nuclear protein content approximately 1.6 times normal (1.63 +- .12). If nuclear protein content were the only determinant in the recovery rate, then the same half time for nuclear protein removal would be expected within each group of protocols. Rate constants for nuclear protein removal were obtained by regression analysis. The half-time for nuclear protein removal increased with decreasing temperature and increasing heating time for the same nuclear protein content. This result suggests that the heating time and temperature are more of a determinant in the removal kinetics than protein content alone. Extended kinetics of recovery (to 36 hours) showed incomplete recovery and a secondary increase in protein associated with the isolated nucleus. These results were due to cell-cycle rearrangement (G/sub 2/ block) and unbalanced growth

  10. The heat engine cycle, the heat removal cycle, and ergonomics of the control room displays

    International Nuclear Information System (INIS)

    Beltracchi, L.

    1986-01-01

    This paper discusses and illustrates the ergonomics of an integrated display, which will allow operators to monitor the heat engine cycle during normal operation of the plant, and the heat removal cycle during emergency operation of the plant. A computer-based iconic display is discussed as an overview to monitor these cycles. Specific emphasis is placed upon the process variables and process functions within each cycle, and the action of control systems and engineered safeguard systems within each cycle. This paper contains examples of display formats for the heat engine cycle and the heat removal cycle in a pressurized water reactor

  11. Performance of the prism reactor's passive decay heat removal system

    International Nuclear Information System (INIS)

    Magee, P.M.; Hunsbedt, A.

    1989-01-01

    The PRISM modular reactor concept has a totally passive safety-grade decay heat removal system referred to as the Reactor Vessel Auxiliary Cooling System (RVACS) that rejects heat from the reactor by radiation and natural convection of air. The system is inherently reliable and is not subject to the failure modes commonly associated with active cooling systems. The thermal performance of RVACS exceeds requirements and significant thermal margins exist. RVACS has been shown to perform its function under many postulated accident conditions. The PRISM power plant is equipped with three methods for shutdown: condenser cooling in conjunction with intermediate sodium and steam generator systems, and auxiliary cooling system (ACS) which removes heat from the steam generator by natural convection of air and transport of heat from the core by natural convection in the primary and intermediate systems, and a safety- grade reactor vessel auxiliary cooling system (RVACS) which removes heat passively from the reactor containment vessel by natural convection of air. The combination of one active and two passive systems provides a highly reliable and economical shutdown heat removal system. This paper provides a summary of the RVACS thermal performance for expected operating conditions and postulated accident events. The supporting experimental work, which substantiates the performance predictions, is also summarized

  12. Passive heat removal characteristics of SMART

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Jae Kwang; Kang, Hyung Seok; Yoon, Joo Hyun; Kim, Hwan Yeol; Cho, Bong Hyun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    A new advanced integral reactor of 330 MWt thermal capacity named SMART (System-Integrated Modular Advanced Reactor) is currently under development in Korea Atomic Energy Research Institute (KAERI) for multi-purpose applications. Modular once-through steam generator (SG) and self-pressurizing pressurizer equipped with wet thermal insulator and cooler are essential components of the SMART. The SMART provides safety systems such as Passive Residual Heat Removal System (PRHRS). In this study, a computer code for performance analysis of the PRHRS is developed by modeling relevant components and systems of the SMART. Using this computer code, a performance analysis of the PRHRS is performed in order to check whether the passive cooling concept using the PRHRS is feasible. The results of the analysis show that PRHRS of the SMART has excellent passive heat removal characteristics. 2 refs., 4 figs., 1 tab. (Author)

  13. Experimental study on heat pipe heat removal capacity for passive cooling of spent fuel pool

    International Nuclear Information System (INIS)

    Xiong, Zhenqin; Wang, Minglu; Gu, Hanyang; Ye, Cheng

    2015-01-01

    Highlights: • A passively cooling SFP heat pipe with an 8.2 m high evaporator was tested. • Heat removed by the heat pipe is in the range of 3.1–16.8 kW. • The heat transfer coefficient of the evaporator is 214–414 W/m 2 /K. • The heat pipe performance is sensitive to the hot water temperature. - Abstract: A loop-type heat pipe system uses natural flow with no electrically driven components. Therefore, such a system was proposed to passively cool spent fuel pools during accidents to improve nuclear power station safety especially for station blackouts such as those in Fukushima. The heat pipe used for a spent fuel pool is large due to the spent fuel pool size. An experimental heat pipe test loop was developed to estimate its heat removal capacity from the spent fuel pool during an accident. The 7.6 m high evaporator is heated by hot water flowing vertically down in an assistant tube with a 207-mm inner diameter. R134a was used as the potential heat pipe working fluid. The liquid R134a level was 3.6 m. The tests were performed for water velocities from 0.7 to 2.1 × 10 −2 m/s with water temperatures from 50 to 90 °C and air velocities from 0.5 m/s to 2.5 m/s. The results indicate significant heat is removed by the heat pipe under conditions that may occur in the spent fuel pool

  14. After-heat removing device in nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Mizuno, K [Nippon Atomic Industry Group Co. Ltd., Tokyo

    1977-01-14

    Purpose: To prevent water hammer in a BWR type reactor or the like by moving water in pipe lines having stagnant portions in an after-heat removing device. Constitution: To a reactor container, is provided a recycling pump which constitutes a closed loop type recycling system in a nuclear power plant together with a pressure vessel and pipe lines. A pump and a heat exchanger are provided outside of the reactor container and they are connected to up- and down-streams of the recycling pump to form an after-heat removing device in the plant. Upon shutdown of the nuclear power plant, since water in the stagnant portion flows to the intake port of the recycling pump and water from the reactor is spontaneously supplemented thereafter to the stagnant portion, neither pressurized water nor heated steam is generated and thus water hammer is prevented.

  15. Modes of heat removal from a heat-generating debris bed

    International Nuclear Information System (INIS)

    Squarer, D.; Hochreiter, L.E.; Piecznski, A.T.

    1984-01-01

    In the worst hypothetical accident in a light water reactor, when all protection systems fail, the core could be converted into a deep particulate bed either in-vessel or ex-vessel. The containment of such an accident depends on the coolability of a heat-generating debris bed. Some recent experimental and analytical studies that are concerned with heat removal from such a particulate bed are reviewed. Studies have indicated that bed dryout flux and, therefore, the heat removal rate from the particulate bed increases with the particle diameter (i.e., the permeability) for pool boiling conditions and can exceed the critical heat flux of a flat plate. Bed dryout in a large particle bed (i.e., a few millimetres) was found to be closely related to the ''flooding'' limit of the bed. Dryout under forced flow conditions was found to be affected by both forced and natural convection for mass flow rate smaller than m /SUB cr/ , whereas above this mass flow rate, bed dryout is proportional to the mass flow rate. Recent analyses were found to be in agreement with experimental data; however, additional research is needed to assess factors not accounted for in previous studies (e.g., effect of pressure, multidimensionality, stratification, etc.). Based on the expected pressure and particle sizes in a postulated severe accident sequence, a debris bed should be coolable, given a sufficient water supply

  16. Experimental study on the supercritical startup and heat transport capability of a neon-charged cryogenic loop heat pipe

    International Nuclear Information System (INIS)

    Guo, Yuandong; Lin, Guiping; He, Jiang; Bai, Lizhan; Zhang, Hongxing; Miao, Jianyin

    2017-01-01

    Highlights: • A neon-charged CLHP integrated with a G-M cryocooler was designed and investigated. • The CLHP can realize the supercritical startup with an auxiliary heat load of 1.5 W. • Maximum heat transport capability of the CLHP was 4.5 W over a distance of 0.6 m. • There existed an optimum auxiliary heat load to expedite the supercritical startup. • There existed an optimum charged pressure to reach the largest heat transfer limit. - Abstract: Neon-charged cryogenic loop heat pipe (CLHP) can realize efficient cryogenic heat transport in the temperature range of 30–40 K, and promises great application potential in the thermal control of future space infrared exploration system. In this work, extensive experimental studies on the supercritical startup and heat transport capability of a neon-charged CLHP integrated with a G-M cryocooler were carried out, where the effects of the auxiliary heat load applied to the secondary evaporator and charged pressure of the working fluid were investigated. Experimental results showed that the CLHP could successfully realize the supercritical startup with an auxiliary heat load of 1.5 W, and there existed an optimum auxiliary heat load and charged pressure of the working fluid respectively, to achieve the maximum temperature drop rate of the primary evaporator during the supercritical startup. The CLHP could reach a maximum heat transport capability of 4.5 W over a distance of 0.6 m corresponding to the optimum charged pressure of the working fluid; however, the heat transport capability decreased with the increase of the auxiliary heat load. Furthermore, the inherent mechanisms responsible for the phenomena observed in the experiments were analyzed and discussed, to provide a better understanding from the theoretical view.

  17. Numerical simulation of passive heat removal under severe core meltdown scenario in a sodium cooled fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    David, Dijo K.; Mangarjuna Rao, P., E-mail: pmr@igcar.gov.in; Nashine, B.K.; Selvaraj, P.; Chellapandi, P.

    2015-09-15

    Highlights: • PAHR in SFR under large core relocation to in-vessel core catcher is numerically analyzed. • A 1-D thermal conduction model and a 2-D axisymmetric CFD model are developed for turbulent natural convection phenomenon. • The side pool (cold pool) was found out to be instrumental in storing heat and dissipating it to the heat sink. • Single tray type in-vessel core catcher is found to be thermally effective under one-fourth core relocation. - Abstract: A sequence of highly unlikely events leading to significant meltdown of the Sodium cooled Fast Reactor (SFR) core can cause the failure of reactor vessel if the molten fuel debris settles at the bottom of the reactor main vessel. To prevent this, pool type SFRs are usually provided with an in-vessel core catcher above the bottom wall of the main vessel. The core catcher should collect, retain and passively cool these debris by facilitating decay heat removal by natural convection. In the present work, the heat removal capability of the existing single tray core catcher design has been evaluated numerically by analyzing the transient development of natural convection loops inside SFR pool. A 1-D heat diffusion model and a simplified 2-D axi-symmetric CFD model are developed for the same. Maximum temperature of the core catcher plate evaluated for different core meltdown scenarios using these models showed that there is much higher heat removal potential for single tray in-vessel SFR core catcher compared to the design basis case of melting of 7 subassemblies under total instantaneous blockage of a subassembly. The study also revealed that the side pool of cold sodium plays a significant role in decay heat removal. The maximum debris bed temperature attained during the initial hours of PAHR does not depend much on when the Decay Heat Exchanger (DHX) gets operational, and it substantiates the inherent safety of the system. The present study paves the way for better understanding of the thermal

  18. Passive heat removal system with injector-condenser

    Energy Technology Data Exchange (ETDEWEB)

    Soplenkov, K I [All-Russian Inst. of Nuclear Power Plant Operation, Electrogorsk Research and Engineering Centre of Nuclear Power Safety (Russian Federation)

    1996-12-01

    The system described in this paper is a passive system for decay heat removal from WWERs. It operates off the secondary side of the steam generators (SG). Steam is taken from the SG to operate a passive injector pump which causes secondary fluid to be pumped through a heat exchanger. Variants pass either water or steam from the SG through the heat exchanger. There is a passive initiation scheme. The programme for experimental and theoretical validation of the system is described. (author). 8 figs.

  19. SASSYS validation with the EBR-II shutdown heat removal tests

    International Nuclear Information System (INIS)

    Herzog, J.P.

    1989-01-01

    SASSYS is a coupled neutronic and thermal hydraulic code developed for the analysis of transients in liquid metal cooled reactors (LMRs). The code is especially suited for evaluating of normal reactor transients -- protected (design basis) and unprotected (anticipated transient without scram) transients. Because SASSYS is heavily used in support of the IFR concept and of innovative LMR designs, such as PRISM, a strong validation base for the code must exist. Part of the validation process for SASSYS is analysis of experiments performed on operating reactors, such as the metal fueled Experimental Breeder Reactor -- II (EBR-II). During the course of a series of historic whole-plant experiments, EBR-II illustrated key safety features of metal fueled LMRs. These experiments, the Shutdown Heat Removal Tests (SHRT), culminated in unprotected loss of flow and loss of heat sink transients from full power and flow. Analysis of these and earlier SHRT experiments constitutes a vital part of SASSYS validation, because it facilitates scrutiny of specific SASSYS models and of integrated code capability. 12 refs., 11 figs

  20. Heat removal in INTOR via a toroidal limiter

    International Nuclear Information System (INIS)

    Mioduszewski, P.

    1981-01-01

    In the present paper the potential of removing about 100 MW of thermal plasma power via a toroidal limiter in INTOR is studied. The heat flux distributions on various limiter configurations are calculated and the thermal response of a graphite tile limiter is estimated on the base of a one-dimensional heat conduction approach. The evaporation rates which have to be expected for the given energy flux densities and radiation cooled graphite tiles are evaluated. According to the present understanding it should be possible to remove 100 MW power from the INTOR plasma via a radiation cooled toroidal limiter. (author)

  1. Decision Document for Heat Removal from High-Level Waste Tanks

    International Nuclear Information System (INIS)

    WILLIS, W.L.

    2000-01-01

    This document establishes the combination of design and operational configurations that will be used to provide heat removal from high-level waste tanks during Phase 1 waste feed delivery to prevent the waste temperature from exceeding tank safety requirement limits. The chosen method--to use the primary and annulus ventilation systems to remove heat from the high-level waste tanks--is documented herein

  2. Nuclear reactor with makeup water assist from residual heat removal system

    Science.gov (United States)

    Corletti, Michael M.; Schulz, Terry L.

    1993-01-01

    A pressurized water nuclear reactor uses its residual heat removal system to make up water in the reactor coolant circuit from an in-containment refueling water supply during staged depressurization leading up to passive emergency cooling by gravity feed from the refueling water storage tank, and flooding of the containment building. When depressurization commences due to inadvertence or a manageable leak, the residual heat removal system is activated manually and prevents flooding of the containment when such action is not necessary. Operation of the passive cooling system is not impaired. A high pressure makeup water storage tank is coupled to the reactor coolant circuit, holding makeup coolant at the operational pressure of the reactor. The staged depressurization system vents the coolant circuit to the containment, thus reducing the supply of makeup coolant. The level of makeup coolant can be sensed to trigger opening of successive depressurization conduits. The residual heat removal pumps move water from the refueling water storage tank into the coolant circuit as the coolant circuit is depressurized, preventing reaching the final depressurization stage unless the makeup coolant level continues to drop. The residual heat removal system can also be coupled in a loop with the refueling water supply tank, for an auxiliary heat removal path.

  3. Nuclear reactor with makeup water assist from residual heat removal system

    International Nuclear Information System (INIS)

    Corletti, M.M.; Schulz, T.L.

    1993-01-01

    A pressurized water nuclear reactor uses its residual heat removal system to make up water in the reactor coolant circuit from an in-containment refueling water supply during staged depressurization leading up to passive emergency cooling by gravity feed from the refueling water storage tank, and flooding of the containment building. When depressurization commences due to inadvertence or a manageable leak, the residual heat removal system is activated manually and prevents flooding of the containment when such action is not necessary. Operation of the passive cooling system is not impaired. A high pressure makeup water storage tank is coupled to the reactor coolant circuit, holding makeup coolant at the operational pressure of the reactor. The staged depressurization system vents the coolant circuit to the containment, thus reducing the supply of makeup coolant. The level of makeup coolant can be sensed to trigger opening of successive depressurization conduits. The residual heat removal pumps move water from the refueling water storage tank into the coolant circuit as the coolant circuit is depressurized, preventing reaching the final depressurization stage unless the makeup coolant level continues to drop. The residual heat removal system can also be coupled in a loop with the refueling water supply tank, for an auxiliary heat removal path. 2 figures

  4. Nuclear reactor with makeup water assist from residual heat removal system

    Science.gov (United States)

    Corletti, M.M.; Schulz, T.L.

    1993-12-07

    A pressurized water nuclear reactor uses its residual heat removal system to make up water in the reactor coolant circuit from an in-containment refueling water supply during staged depressurization leading up to passive emergency cooling by gravity feed from the refueling water storage tank, and flooding of the containment building. When depressurization commences due to inadvertence or a manageable leak, the residual heat removal system is activated manually and prevents flooding of the containment when such action is not necessary. Operation of the passive cooling system is not impaired. A high pressure makeup water storage tank is coupled to the reactor coolant circuit, holding makeup coolant at the operational pressure of the reactor. The staged depressurization system vents the coolant circuit to the containment, thus reducing the supply of makeup coolant. The level of makeup coolant can be sensed to trigger opening of successive depressurization conduits. The residual heat removal pumps move water from the refueling water storage tank into the coolant circuit as the coolant circuit is depressurized, preventing reaching the final depressurization stage unless the makeup coolant level continues to drop. The residual heat removal system can also be coupled in a loop with the refueling water supply tank, for an auxiliary heat removal path. 2 figures.

  5. Safety studies on heat transport and afterheat removal for GCR accident conditions

    International Nuclear Information System (INIS)

    Hishida, Makoto

    1996-01-01

    The IAEA coordinated an international research program on 'Heat Transport and Afterheat Removal for GCRs under Accident Conditions (CRP-3)'. America, China, France, Germany, Japan, Netherlands and Russia participate the program. Final goal of the program is to show clearly to the world one of the most important salient features of the HTGR, that is the HTGR reactor can be cooled down by passive measures without causing any damage to the nuclear reactor system even in accidental conditions, and to make clear the boundaries (or restrictions) for the passive cooling regime. The first 5 year term of the coordinate program started in 1993 and established a goal to improve common knowledge for decay heat removal and to improve our tools, like computer codes and analytical models for the prediction of the performance of decay heat removal system. We are now performing benchmark problems for these purposes. The present efforts are concentrated on the benchmark for the passive heat removal performance outside the reactor vessel, partly because we have two different type of the HTGR in the world, the pebble bed type and the block type reactor. They have quite different heat dissipation behavior inside the reactor vessel. However, they have quite similar residual heat removal process outside the reactor vessel. For the first step of the international cooperation, we selected the common problem. After finishing the present benchmark we are planning to proceed to tackle the inside heat removal problem. (J.P.N.)

  6. Residual heat removal pump retrofit program

    International Nuclear Information System (INIS)

    Dudiak, J.G.; McKenna, J.M.

    1990-01-01

    Residual Heat Removal (RHR) pumps installed in pressurized water reactor power plants are used to provide the removal of decay heat from the reactor and to provide low head safety injection in the event of loss of coolant in the reactor coolant system. These pumps are subjected to rather severe temperature and pressure transients, therefore, the majority of pumps installed in the RHR service are vertical pumps with a single stage impeller. RHR pumps have traditionally been a significant maintenance item for many utilities. The close-coupled pump design requires disassembly of the casing cover from the lower pump casing while performing these routine maintenance tasks. The casing separation requires the loosening of numerous highly torqued studs. Once the casing is separated, the impeller is dropped from the motor shaft to allow removal of the mechanical seal and casing cover from the motor shaft. Galling of the impeller to the motor shaft is not uncommon. The RHR pump internals are radioactive and the separation of the pump casing to perform routine maintenance exposes the maintenance personnel to high radiation levels. The handling of the impeller also exposes the maintenance personnel to high radiation levels. This paper introduces a design modification developed to convert the close-coupled RHR pumps to a coupled configuration

  7. Heat transfer and flow characteristics of a cooling thimble in a molten salt reactor residual heat removal system

    Directory of Open Access Journals (Sweden)

    Zonghao Yang

    2017-12-01

    Full Text Available In the passive residual heat removal system of a molten salt reactor, one of the residual heat removal methods is to use the thimble-type heat transfer elements of the drain salt tank to remove the residual heat of fuel salts. An experimental loop is designed and built with a single heat transfer element to analyze the heat transfer and flow characteristics. In this research, the influence of the size of a three-layer thimble-type heat transfer element on the heat transfer rate is analyzed. Two methods are used to obtain the heat transfer rate, and a difference of results between methods is approximately 5%. The gas gap width between the thimble and the bayonet has a large effect on the heat transfer rate. As the gas gap width increases from 1.0 mm to 11.0 mm, the heat transfer rate decreases from 5.2 kW to 1.6 kW. In addition, a natural circulation startup process is described in this paper. Finally, flashing natural circulation instability has been observed in this thimble-type heat transfer element.

  8. Application of the PSA method to decay heat removal systems in a large scale FBR design

    International Nuclear Information System (INIS)

    Kotake, S.; Satoh, K.; Matsumoto, H.; Sugawara, M.; Sakata, K.; Okabe, A.

    1993-01-01

    The Probabilistic Safety Assessment (PSA) method is applied to a large scale loop-type FBR in its conceptual design stage in order to establish a well-balanced safety. Both the reactor shut down and decay heat removal systems are designed to be highly reliable, e.g. 10 -7 /d. In this paper the results of several reliability analyses concerning the DHRS have been discussed, where the effects of the analytical assumptions, design options, accident managements on the reliability are examined. The reliability is evaluated small enough, since DRACSs consists of four independent loops with sufficient heat removal capacity and both forced and natural circulation capabilities are designed. It is found that the common mode failures for the active components in the DRACS dominate the reliability. The design diversity concerning these components can be effective for the improvements and the accident managements on BOP are also possible by making use of the long grace period in FBR. (author)

  9. Application of the PSA method to decay heat removal systems in a large scale FBR design

    Energy Technology Data Exchange (ETDEWEB)

    Kotake, S; Satoh, K [Japan Atomic Power Company, Otemachi, Chiyoda-ku, Tokyo (Japan); Matsumoto, H; Sugawara, M [Toshiba Corporation (Japan); Sakata, K [Mitsubishi Atomic Power Industries Inc. (Japan); Okabe, A [Hitachi Engineering Co., Ltd. (Japan)

    1993-02-01

    The Probabilistic Safety Assessment (PSA) method is applied to a large scale loop-type FBR in its conceptual design stage in order to establish a well-balanced safety. Both the reactor shut down and decay heat removal systems are designed to be highly reliable, e.g. 10{sup -7}/d. In this paper the results of several reliability analyses concerning the DHRS have been discussed, where the effects of the analytical assumptions, design options, accident managements on the reliability are examined. The reliability is evaluated small enough, since DRACSs consists of four independent loops with sufficient heat removal capacity and both forced and natural circulation capabilities are designed. It is found that the common mode failures for the active components in the DRACS dominate the reliability. The design diversity concerning these components can be effective for the improvements and the accident managements on BOP are also possible by making use of the long grace period in FBR. (author)

  10. Shutdown risk analysis for a BWR plant (residual heat removal systems)

    International Nuclear Information System (INIS)

    Rebollo Garcia, C.; Merino Teillet, A.; Cerezo, L.

    1994-01-01

    This report analyses the different risk situations which may arise during refuelling outage at Cofrentes NPP. The most critical situations are determined in terms of the small amount of coolant available and the lowest number of heat removal and water make-up systems available. The available times before the boiling point of the coolant is reached and the subsequent moment when the fuel elements are left uncovered in the event of the failure of the normal heat removal functions are determined. The analysis identifies the alternative systems which can be used besides those required by the technical specification and their capacity for residual heat removal and coolant make-up functions. (Author)

  11. Tritium removal by CO2 laser heating

    International Nuclear Information System (INIS)

    Skinner, C.H.; Kugel, H.; Mueller, D.

    1997-01-01

    Efficient techniques for rapid tritium removal will be necessary for ITER to meet its physics and engineering goals. One potential technique is transient surface heating by a scanning CO 2 or Nd:Yag laser that would release tritium without the severe engineering difficulties of bulk heating of the vessel. The authors have modeled the heat propagation into a surface layer and find that a multi-kW/cm 2 flux with an exposure time of order 10 ms is suitable to heat a 50 micron co-deposited layer to 1,000--2,000 degrees. Improved wall conditioning may be a significant side benefit. They identify remaining issues that need to be addressed experimentally

  12. Tritium removal by CO2 laser heating

    International Nuclear Information System (INIS)

    Skinner, C.H.; Kugel, H.; Mueller, D.

    1997-10-01

    Efficient techniques for rapid tritium removal will be necessary for ITER (International Thermonuclear Experimental Reactor) to meet its physics and engineering goals. One potential technique is transient surface heating by a scanning CO 2 or Nd:YAG laser that would release tritium without the severe engineering difficulties of bulk heating of the vessel. The authors have modeled the heat propagation into a surface layer and find that a multi-kW/cm 2 flux with an exposure time of order 10 msec is suitable to heat a 50 micron co-deposited layer to 1,000--2,000 degrees. Improved wall conditioning may be a significant side benefit. They identify remaining issues that need to be addressed experimentally

  13. Results from evaporation tests to support the MWTF heat removal system design

    International Nuclear Information System (INIS)

    Crea, B.A.

    1994-01-01

    An experimental tests program was conducted to measure the evaporative heat removal from the surface of a tank of simulated waste. The results contained in this report constitute definition design data for the latest heat removal function of the MWTF primary ventilation system

  14. Passive decay heat removal from the core region

    International Nuclear Information System (INIS)

    Hichen, E.F.; Jaegers, H.

    2002-01-01

    The decay heat in commercial Light Water Reactors is commonly removed by active and redundant safety systems supported by emergency power. For advanced power plant designs passive safety systems using a natural circulation mode are proposed: several designs are discussed. New experimental data gained with the NOKO and PANDA facilities as well as operational data from the Dodewaard Nuclear Power Plant are presented and compared with new calculations by different codes. In summary, the effectiveness of these passive decay heat removal systems have been demonstrated: original geometries and materials and for the NOKO facility and the Dodewaard Reactor typical thermal-hydraulic inlet and boundary conditions have been used. With several codes a good agreement between calculations and experimental data was achieved. (author)

  15. AEA studies on passive decay heat removal in advanced reactors

    International Nuclear Information System (INIS)

    Lillington, J.N.

    1994-01-01

    The main objectives of the UK study were: to identify, describe and compare different types of systems proposed in current designs; to identify key scenarios in which passive decay heat removal systems play an important preventative or mitigative role; to assess the adequacy of the relevant experimental database; to assess the applicability and suitability of current generation models/codes for predicting passive decay heat removal; to assess the potential effectiveness of different systems in respect of certain key licensing questions

  16. Heat removal in gas-cooled fuel rod clusters

    International Nuclear Information System (INIS)

    Rehme, K.

    1975-01-01

    For a thermo- and fluid-dynamic analysis of fuel rod cluster subchannels for gas-cooled breeder reactors, the following values must be verified: a) friction coefficient as flow parameter; b) Stanton number as heat transfer parameter; c) influence of spacers on friction coefficient and Stanton number; d) heat and mass exchange between subchannels with different temperatures. These parameters are established by combining results of single experiments and of integral experiments. Mention is made of further studies to be performed in order to determine the heat removal from gas-cooled fast breeder fuel elements. (HR) [de

  17. Heat transfer augmentation for high heat flux removal in rib-roughened narrow channels

    International Nuclear Information System (INIS)

    Islam, M.S.; Hino, Ryutaro; Haga, Katsuhiro; Sudo, Yukio; Monde, Masanori.

    1997-03-01

    Heat transfer augmentation in narrow rectangular channels in a target system is a very important method to remove high heat flux up to 12 MW/m 2 generated at target plates of a high-intensity proton accelerator of 1.5 GeV and 1 mA with a proton beam power of 1.5 MW. In this report, heat transfer coefficients and friction factors in narrow rectangular channels with one-sided rib-roughened surface were evaluated for fully developed flows in the range of the Reynolds number from 6,000 to 1,00,000; the rib pitch-to-height ratios (p/k) were 10,20 and 30; the rib height-to-equivalent diameter ratios (k/De) were 0.025, 0.03 and 0.1 by means of previous existing experimental correlations. The rib-roughened surface augmented heat transfer coefficients approximately 4 times higher than the smooth surface at Re=10,000, p/k=10 and k/De=0.1; friction factors increase around 22 times higher. In this case, higher heat flux up to 12 MW/m 2 could be removed from the rib-roughened surface without flow boiling which induces flow instability; but pressure drop reaches about 1.8 MPa. Correlations obtained by air-flow experiments have showed lower heat transfer performance with the water-flow conditions. The experimental apparatus was proposed for further investigation on heat transfer augmentation in very narrow channels under water-flow conditions. This report presents the evaluation results and an outline of the test apparatus. (author)

  18. Post-accident fuel relocation and heat removal in the LMFBR

    International Nuclear Information System (INIS)

    Kazimi, M.S.; Tsai, S.S.; Gasser, R.D.

    1976-08-01

    Assessment of the dynamics of post-accident fuel relocation and heat removal is an important aspect of the evaluation of the consequences of a hypothetical accident in an LMFBR. Such an assessment is of particular importance in the evaluation of the post-accident radiological doses around the reactor site. In the present evaluation particular attention is given to the design features of the Clinch River Breeder Reactor Plant (CRBR). Fuel relocation and heat removal, assuming certain conditions have resulted in core disruption, are discussed. The discussion of events and phenomena involved in the relocation processes is centered around the resulting patterns of heat source distribution. The factors influencing fuel relocation and distribution in the inlet and outlet plena of the reactor vessel are discussed. The current technology of in-vessel heat removal is applied to the design of the CRBR reactor. Both fuel debris cooling limits and overall coolant flow in the reactor under natural convection conditions are explored. Some of the uncertainties in ex-vessel fuel behavior are addressed. In particular, the effect of melting the cavity bed on the rate of growth of a molten fuel pool is investigated

  19. Removal of contaminated concrete surfaces by microwave heating: Phase 1 results

    International Nuclear Information System (INIS)

    White, T.L.; Grubb, R.G.; Pugh, L.P.; Foster, D. Jr.; Box, W.D.

    1992-01-01

    Oak Ridge National Laboratory (ORNL) is developing a microwave heating process to remove radiologically contaminated surface layers from concrete. The microwave energy is directed at the concrete surface and heats the concrete and free water present in the concrete matrix. Continued heating produces steam-pressure-induced mechanical stresses that cause the concrete surface to burst. The concrete particles from this steam explosion are small enough to be removed by a vacuum system, yet less than 1% of the debris is small enough to pose an airborne contamination hazard. The first phase of this program has demonstrated reliable removal of noncontaminated concrete surfaces at frequencies of 2.45 GHz and 10.6 GHz. Continuous concrete removal rates of 1.07 cm 3 /s with 5.2 kW of 2.45.-GHz power and 2.11 cm 3 /s with 3.6 kW of 10.6-GHz power have been demonstrated. Figures-of-merit for microwave removal of concrete have been calculated to be 0.21 cm 3 /s/kW at 2.45 GHz and 0.59 cm 3 /s/kW at 10.6 GHz. The amount of concrete removed in a single pass can be controlled by choosing the frequency and power of the microwave system

  20. Numerical investigation of passive heat removal system via steam generator in VVER 1200

    International Nuclear Information System (INIS)

    Dinh Anh Tuan; Duong Thanh Tung; Tran Chi Thanh; Nguyen Van Thai

    2015-01-01

    Passive heat removal system (PHRS) via Steam Generator is an important part in VVER design. In case of Design Basic Accidents such as blackout, failure of feed water supply to steam generator or coolant leakage with failure of emergency core cooling at high pressure. PHRS is designed to remove the residual heat from reactor core through steam generator to heat exchanger which is placed outside reactor vessel. In order to evaluate the passive system, a numerical investigation using a CFD code is performed. However, PHRS has complex geometry for using CFD simulation. Thus, RELAP5 is applied to provide the wall heat flux of tube in the heat exchanger tank. The natural convection in the heat exchanger tank is investigated in this report. Numerical results show temperature and velocity distribution in the heat exchanger tank are calculated with different wall heat flux corresponding to various transient conditions. The calculated results contribute to the capacity analysis of passive heat removal system and giving valuable information for safe operation of VVER 1200. (author)

  1. Tests for removal of decay heat by natural convection

    International Nuclear Information System (INIS)

    Kashiwagi, E.; Wataru, M.; Gomi, Y.; Hattori, Y.; Ozaki, S.

    1993-01-01

    Interim storage technology for spent fuel by dry storage casks have been investigated. The casks are vertically placed in a storage building. The decay heat is removed from the outer cask surface by natural convection of air entering from the building wall to the roof. The air flow pattern in the storage building was governed by the natural driving pressure difference and circulating flow. The purpose of this study is to understand the mechanism of the removal of decay heat from casks by natural convection. The simulated flow conditions in the building were assumed as a natural and forced combined convection and were investigated by the turbulent quantities near wall. (author)

  2. Analysis of a convection loop for GFR post-LOCA decay heat removal

    International Nuclear Information System (INIS)

    Williams, W.C.; Hejzlar, P.; Saha, P.

    2004-01-01

    A computer code (LOCA-COLA) has been developed at MIT for steady state analysis of convective heat transfer loops. In this work, it is used to investigate an external convection loop for decay heat removal of a post-LOCA gas-cooled fast reactor (GFR). The major finding is that natural circulation cooling of the GFR is feasible under certain circumstances. Both helium and CO 2 cooled system components are found to operate in the mixed convection regime, the effects of which are noticeable as heat transfer enhancement or degradation. It is found that CO 2 outdoes helium under identical natural circulation conditions. Decay heat removal is found to have a quadratic dependence on pressure in the laminar flow regime and linear dependence in the turbulent flow regime. Other parametric studies have been performed as well. In conclusion, convection cooling loops are a credible means for GFR decay heat removal and LOCA-COLA is an effective tool for steady state analysis of cooling loops. (authors)

  3. Development of a steady-state calculation model for the KALIMER PDRC(Passive Decay Heat Removal Circuit)

    International Nuclear Information System (INIS)

    Chang, Won Pyo; Ha, Kwi Seok; Jeong, Hae Yong; Kwon, Young Min; Eoh, Jae Hyuk; Lee, Yong Bum

    2003-06-01

    A sodium circuit has usually featured for a Liquid Metal Reactor(LMR) using sodium as coolant to remove the decay heat ultimately under accidental conditions because of its high reliability. Most of the system codes used for a Light Water Reactor(LWR) analysis is capable of calculating natural circulation within such circuit, but the code currently used for the LMR analysis does not feature stand alone capability to simulate the natural circulation flow inside the circuit due to its application limitation. To this end, the present study has been carried out because the natural circulation analysis for such the circuit is realistically raised for the design with a new concept. The steady state modeling is presented in this paper, development of a transient model is also followed to close the study. The incompressibility assumption of sodium which allow the circuit to be modeled with a single flow, makes the model greatly simplified. Models such as a heat exchanger developed in the study can be effectively applied to other system analysis codes which require such component models

  4. Development of a new decay heat removal system for a high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Sim, Yoon Sub; Park, Rae Young; Kim, Seyun

    2007-01-01

    The heat removal capacity of a RCCS is one of the major parameters limiting the capacity of a HTGR based on a passive safety system. To improve the plant economy of a HTGR, the decay heat removal capacity needs to be improved. For this, a new analysis system of an algebraic method for the performance of various RCCS designs was set up and the heat transfer characteristics and performance of the designs were analyzed. Based on the analysis results, a new passive decay heat removal system with a substantially improved performance, LFDRS was developed. With the new system, one can have an expectation that the heat removal capacity of a HTGR could be doubled

  5. Cryogen spray cooling: Effects of droplet size and spray density on heat removal.

    Science.gov (United States)

    Pikkula, B M; Torres, J H; Tunnell, J W; Anvari, B

    2001-01-01

    Cryogen spray cooling (CSC) is an effective method to reduce or eliminate non-specific injury to the epidermis during laser treatment of various dermatological disorders. In previous CSC investigations, fuel injectors have been used to deliver the cryogen onto the skin surface. The objective of this study was to examine cryogen atomization and heat removal characteristics of various cryogen delivery devices. Various cryogen delivery device types including fuel injectors, atomizers, and a device currently used in clinical settings were investigated. Cryogen mass was measured at the delivery device output orifice. Cryogen droplet size profiling for various cryogen delivery devices was estimated by optically imaging the droplets in flight. Heat removal for various cryogen delivery devices was estimated over a range of spraying distances by temperature measurements in an skin phantom used in conjunction with an inverse heat conduction model. A substantial range of mass outputs were measured for the cryogen delivery devices while heat removal varied by less than a factor of two. Droplet profiling demonstrated differences in droplet size and spray density. Results of this study show that variation in heat removal by different cryogen delivery devices is modest despite the relatively large difference in cryogen mass output and droplet size. A non-linear relationship between heat removal by various devices and droplet size and spray density was observed. Copyright 2001 Wiley-Liss, Inc.

  6. Summary report of RAMONA investigations into passive decay heat removal

    International Nuclear Information System (INIS)

    Hoffmann, H.; Marten, K.; Weinberg, D.; Frey, H.H.; Rust, K.; Ieda, Y.; Kamide, H.; Ohshima, H.; Ohira, H.

    1995-07-01

    An important safety feature of an advanced sodium-cooled reactor (e.g. European Fast Reactor, EFR) is the passive decay heat removal. This passive concept is based on several direct reactor cooling systems operating independently from each other. Each of the systems consists of a sodium/sodium decay heat exchanger immersed in the primary vessel and connected via an intermediate sodium loop to a heat sink formed by a sodium/air heat exchanger installed in a stack with air inlet and outlet dampers. The decay heat is removed by natural convection on the sodium side and natural draft on the air side. To demonstrate the coolability of the pool-type primary system by buoyancy-driven natural circulation, tests were performed under steady-state and transient conditions in facilities of different scale and detail. All these investigations serve to understand the physical processes and to verify computer codes used to transfer the results to reactor conditions. RAMONA is the three-dimensional 1:20-scaled apparatus equipped with all active components. Water is used as simulant fluid for sodium. The maximum core power is 75 kW. The facility is equipped with about 250 thermocouples to register fluid temperatures. Velocities and mass flows are measured by Laser Doppler Anemometers and magneto-inductive flowmeters. Flow paths are visualized by tracers. The conclusion of the investigations is that the decay heat can be removed from the primary system by means of natural convection. Always flow paths develop, which ensure an effective cooling of all regions. This is even proved for extreme conditions, e.g. in case of delays of the decay heat exchanger startup, failures of several DHR chains, and a drop of the fluid level below the inlet windows of the IHXs and decay heat exchangers. (orig.) [de

  7. Numerical analysis of cavitating flow characteristics in impeller of residual heat removal pump

    NARCIS (Netherlands)

    Hong, Feng; Yuan, Jianping; Zhou, Banglun

    2016-01-01

    In order to investigate internal cavitating flow characteristics of the impeller in residual heat removal pumps, the three-dimensional cavitating flow in a residual heat removal model pump is numerically calculated by using the homogeneous mixture cavitation model based on the Rayleigh-Plesset

  8. Removal of decay heat by specially designed isolation condensers for advanced heavy water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Dhawan, M L; Bhatia, S K [Reactor Engineering Division, Bhabha Atomic Research Centre, Mumbai (India)

    1994-06-01

    For Advanced Heavy Water Reactor (AHWR), removal of decay heat and containment heat is being considered by passive means. For this, special type of isolation condensers are designed. Isolation condensers when submerged in a pool of water, are the best choice because condensation of high temperature steam is an extremely efficient heat transfer mechanism. By the use of isolation condensers, not only heat is removed but also pressure and temperature of the system are automatically controlled without losing the coolant and without using conventional safety relief valves. In this paper, design optimisation studies of isolation condensers of different types with natural circulation for the removal of core decay heat for AHWR is presented. (author). 8 refs., 2 figs.

  9. Impact of the amount of working fluid in loop heat pipe to remove waste heat from electronic component

    Directory of Open Access Journals (Sweden)

    Smitka Martin

    2014-03-01

    Full Text Available One of the options on how to remove waste heat from electronic components is using loop heat pipe. The loop heat pipe (LHP is a two-phase device with high effective thermal conductivity that utilizes change phase to transport heat. It was invented in Russia in the early 1980’s. The main parts of LHP are an evaporator, a condenser, a compensation chamber and a vapor and liquid lines. Only the evaporator and part of the compensation chamber are equipped with a wick structure. Inside loop heat pipe is working fluid. As a working fluid can be used distilled water, acetone, ammonia, methanol etc. Amount of filling is important for the operation and performance of LHP. This work deals with the design of loop heat pipe and impact of filling ratio of working fluid to remove waste heat from insulated gate bipolar transistor (IGBT.

  10. Study on constraints for heat removal duties of the main fractionator in delayed coking units

    International Nuclear Information System (INIS)

    Lei, Yang; Zhang, Bingjian; Qi, Xin; Chen, Qinglin; Hui, Chi-Wai

    2014-01-01

    A novel method is presented in this paper to quantitatively define the heat removal of the main fractionator in delayed coking units on the basis of a fractionating precision diagram (Houghland diagram) and column grand composite curve (CGCC). By referring to the CGCC method, several envelopes are illustrated at draw trays including the top pumparound draw, diesel draw, intermediate pumparound draw and gas oil draw, the energy and material balances are then calculated. Assuming practical near-minimum thermodynamic condition (PNMTC), the minimum liquid reflux flow is zero in the envelope for pumparound trays without product draw and the minimum liquid reflux flow is defined by Houghland diagram for pumparound trays with product draw. The PNMTC-CGCC is constructed by calculating the enthalpy-flow deficit to quantitatively define the heat removal constraints in each envelope. Meanwhile, the corresponding practical heat removal curve is constructed. A case study shows that the high temperature heat removal ratio within the main fractionator increased by 8%. The proposed method offers heat removal inequality constraints for the model to optimize the heat integration between the main fractionator and the heat exchanger network. - Highlights: • A novel method defines the heat removal constraints of the main fractionator. • Fractionating precision diagram and column grand composite curve are combined. • The results are the inequality constraints in a simultaneous optimization model

  11. Investigation of characteristics of passive heat removal system based on the assembled heat transfer tube

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xiang Cheng; Yan, Changqi; Meng, Zhao Ming; Chen, Kailun; Song, Shao Chuang; Yang, Zong Hao; Yu, Jie [Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University, Harbin (China)

    2016-12-15

    To get an insight into the operating characteristics of the passive residual heat removal system of molten salt reactors, a two-phase natural circulation test facility was constructed. The system consists of a boiling loop absorbing the heat from the drain tank, a condensing loop consuming the heat, and a steam drum. A steady-state experiment was carried out, in which the thimble temperature ranged from 450 .deg. C to 700 .deg. C and the system pressure was controlled at levels below 150 kPa. When reaching a steady state, the system was operated under saturated conditions. Some important parameters, including heat power, system resistance, and water level in the steam drum and water tank were investigated. The experimental results showed that the natural circulation system is feasible in removing the decay heat, even though some fluctuations may occur in the operation. The uneven temperature distribution in the water tank may be inevitable because convection occurs on the outside of the condensing tube besides boiling with decreasing the decay power. The instabilities in the natural circulation loop are sensitive to heat flux and system resistance rather than the water level in the steam drum and water tank. RELAP5 code shows reasonable results compared with experimental data.

  12. Investigation of Characteristics of Passive Heat Removal System Based on the Assembled Heat Transfer Tube

    Directory of Open Access Journals (Sweden)

    Xiangcheng Wu

    2016-12-01

    Full Text Available To get an insight into the operating characteristics of the passive residual heat removal system of molten salt reactors, a two-phase natural circulation test facility was constructed. The system consists of a boiling loop absorbing the heat from the drain tank, a condensing loop consuming the heat, and a steam drum. A steady-state experiment was carried out, in which the thimble temperature ranged from 450°C to 700°C and the system pressure was controlled at levels below 150 kPa. When reaching a steady state, the system was operated under saturated conditions. Some important parameters, including heat power, system resistance, and water level in the steam drum and water tank were investigated. The experimental results showed that the natural circulation system is feasible in removing the decay heat, even though some fluctuations may occur in the operation. The uneven temperature distribution in the water tank may be inevitable because convection occurs on the outside of the condensing tube besides boiling with decreasing the decay power. The instabilities in the natural circulation loop are sensitive to heat flux and system resistance rather than the water level in the steam drum and water tank. RELAP5 code shows reasonable results compared with experimental data.

  13. Alternatives Generation and Analysis for Heat Removal from High Level Waste Tanks

    International Nuclear Information System (INIS)

    WILLIS, W.L.

    2000-01-01

    This document addresses the preferred combination of design and operational configurations to provide heat removal from high-level waste tanks during Phase 1 waste feed delivery to prevent the waste temperature from exceeding tank safety requirement limits. An interim decision for the preferred method to remove the heat from the high-level waste tanks during waste feed delivery operations is presented herein

  14. Alternatives Generation and Analysis for Heat Removal from High Level Waste Tanks

    Energy Technology Data Exchange (ETDEWEB)

    WILLIS, W.L.

    2000-06-15

    This document addresses the preferred combination of design and operational configurations to provide heat removal from high-level waste tanks during Phase 1 waste feed delivery to prevent the waste temperature from exceeding tank safety requirement limits. An interim decision for the preferred method to remove the heat from the high-level waste tanks during waste feed delivery operations is presented herein.

  15. Heat removing device for reactor container

    International Nuclear Information System (INIS)

    Hisamochi, Kohei; Matsumoto, Tomoyuki; Matsumoto, Masayoshi; Sato, Ken-ichi.

    1996-01-01

    A recycling loop for reactor water is disposed in a reactor pressure vessel of a BWR type reactor. Extracted reactor water from the recycling loop passes through a extracted reactor water pipeline and flows into a reactor coolant cleanup system. A pipeline for connecting the extracted reactor water pipeline and a suppression pool is disposed, and a discharged water pressurizing pump is disposed to the pipeline. Upon occurrence of emergency, discharged water from the suppression pool is pressurized by a discharged water pressurizing pump and sent to a reactor coolant cleanup system. The discharged water is cooled while passing through a sucking water cooling portion of a regenerative heat exchanger and a non-regenerative heat exchanger. Then, it is sent to a feed water pipeline passing a bypass line of a filtering desalter and a bypass line of the sucked water cooling portion of the regenerative heat exchanger, injected to the inside of the pressure vessel to cool the reactor core and remove after-heat. Then, it cools the inside of the reactor container together with coolants flown out of the pressure vessel and then returns to the suppression pool. (I.N.)

  16. Can a Clean-Air Heat Pump (CAHP) maintain air purification capability when using polluted air for regeneration?

    DEFF Research Database (Denmark)

    Sheng, Ying; Fang, Lei

    2018-01-01

    Clean Air Heat Pump (CAHP) was one type of rotary desiccant cooling system which combined a silica gel rotor with a heat pump to achieve air cleaning, dehumidifying and cooling in buildings. Using exhaust air from the conditioned room for regeneration of the silica gel rotor might have an advantage...... on reducing the regeneration air temperature and further improving the energy performance of the CAHP. However, the exhaust air carried a lot of indoor air pollutants. Whether using exhaust air for the regeneration of the silica gel rotor had an impact on the air cleaning performance of the CAHP...... was experimentally studied. The results showed that using the air contained acetone or toluene for regeneration reduced the pollutants removal capability of CAHP with a reduction of approx. 10% in air cleaning efficiency. The energy performance of the CAHP when using exhaust air for regeneration was also evaluated...

  17. Mitigation Measures Following a Loss-of-Residual-Heat-Removal Event During Shutdown

    International Nuclear Information System (INIS)

    Seul, Kwang Won; Bang, Young Seok; Kim, Hho Jung

    2000-01-01

    The transient following a loss-of-residual-heat-removal event during shutdown was analyzed to determine the containment closure time (CCT) to prevent uncontrolled release of fission products and the gravity-injection path and rate (GIPR) for effective core cooling using the RELAP5/MOD3.2 code. The plant conditions of Yonggwang Units 3 and 4, a pressurized water reactor (PWR) of 2815-MW(thermal) power in Korea, were reviewed, and possible event sequences were identified. From the CCT analysis for the five cases of typical plant configurations, it was estimated for the earliest CCT to be 40 min after the event in a case with a large cold-leg opening and emptied steam generators (SGs). However, the case with water-filled SGs significantly delayed the CCT through the heat removal to the secondary side. From the GIPR analysis for the six possible gravity-injection paths from the refueling water storage tank (RWST), the case with the injection point and opening on the other leg side was estimated to be the most suitable path to avoid core boiling. In addition, from the sensitivity study, it was evaluated for the plant to be capable of providing the core cooling for the long-term transient if nominal RWST water is available. As a result, these analysis methods and results will provide useful information in understanding the plant behavior and preparing the mitigation measures after the event, especially for Combustion Engineering-type PWR plants. However, to directly apply the analysis results to the emergency procedure for such an event, additional case studies are needed for a wide range of operating conditions such as reactor coolant inventory, RWST water temperature, and core decay heat rate

  18. Experimental and analytical studies of a passive shutdown heat removal system for advanced LMRs

    International Nuclear Information System (INIS)

    Heineman, J.; Kraimer, M.; Lottes, P.; Pedersen, D.; Stewart, R.; Tessier, J.

    1988-01-01

    A facility designed and constructed to demonstrate the viability of natural convection passive heat removal systems as a key feature of innovative LMR Shutdown Heat Removal (SHR) systems is in operation at Argonne National Laboratory (ANL). This Natural Convection Shutdown Heat Removal Test Facility (NSTF) is being used to investigate the heat transfer performance of the GE/PRISM and the RI/SAFR passive designs. This paper presents a description of the NSTF, the pretest analysis of the Radiant Reactor Vessel Auxiliary Cooling System (RVACS) in support of the GE/PRISM IFR concept, and experiment results for the RVACS simulation. Preliminary results show excellent agreement with predicted system performance

  19. Experimental and analytical studies of a passive shutdown heat removal system for advanced LMRs

    Energy Technology Data Exchange (ETDEWEB)

    Heineman, J.; Kraimer, M.; Lottes, P.; Pedersen, D.; Stewart, R.; Tessier, J.

    1988-01-01

    A facility designed and constructed to demonstrate the viability of natural convection passive heat removal systems as a key feature of innovative LMR Shutdown Heat Removal (SHR) systems is in operation at Argonne National Laboratory (ANL). This Natural Convection Shutdown Heat Removal Test Facility (NSTF) is being used to investigate the heat transfer performance of the GE/PRISM and the RI/SAFR passive designs. This paper presents a description of the NSTF, the pretest analysis of the Radiant Reactor Vessel Auxiliary Cooling System (RVACS) in support of the GE/PRISM IFR concept, and experiment results for the RVACS simulation. Preliminary results show excellent agreement with predicted system performance.

  20. Feasibility of passive heat removal systems

    Energy Technology Data Exchange (ETDEWEB)

    Ashurko, Yu M [Institute of Physics and Power Engineering, Obninsk (Russian Federation)

    1996-12-01

    This paper presents a review of decay heat removal systems (DHRSs) used in liquid metal-cooled fast reactors (LMFRs). Advantages and the disadvantages of these DHRSs, extent of their passivity and prospects for their use in advanced fast reactor projects are analyzed. Methods of extending the limitations on the employment of individual systems, allowing enhancement in their effectiveness as safety systems and assuring their total passivity are described. (author). 10 refs, 10 figs.

  1. Modelling of decay heat removal using large water pools

    International Nuclear Information System (INIS)

    Munther, R.; Raussi, P.; Kalli, H.

    1992-01-01

    The main task for investigating of passive safety systems typical for ALWRs (Advanced Light Water Reactors) has been reviewing decay heat removal systems. The reference system for calculations has been represented in Hitachi's SBWR-concept. The calculations for energy transfer to the suppression pool were made using two different fluid mechanics codes, namely FIDAP and PHOENICS. FIDAP is based on finite element methodology and PHOENICS uses finite differences. The reason choosing these codes has been to compare their modelling and calculating abilities. The thermal stratification behaviour and the natural circulation was modelled with several turbulent flow models. Also, energy transport to the suppression pool was calculated for laminar flow conditions. These calculations required a large amount of computer resources and so the CRAY-supercomputer of the state computing centre was used. The results of the calculations indicated that the capabilities of these codes for modelling the turbulent flow regime are limited. Output from these codes should be considered carefully, and whenever possible, experimentally determined parameters should be used as input to enhance the code reliability. (orig.). (31 refs., 21 figs., 3 tabs.)

  2. Specialists' meeting on evaluation of decay heat removal by natural convection

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-02-01

    Decay heat removal by natural convection (DHRNC) is essential to enhancing the safety of liquid metal fast reactors (LMFRs). Various design concepts related to DHRNC have been proposed and experimental and analytical studies have been carried out in a number of countries. The purpose of this Specialists' Meeting on 'Decay Heat Removal by Natural Convection' organized by the International Working Group on Fast Reactors IAEA, is to exchange information about the state of the art related to methodologies on evaluation of DHRNC features (experimental studies and code developments) and to discuss problems which need to be solved in order to evaluate DHRNC properly and reasonably. The following main topical areas were discussed by delegates: Overview; Experimental studies and code validation; Design study. Two main DHR systems for LMFR are under consideration: (i) direct reactor auxiliary cooling system (DRACS) with immersed DFIX in main vessel, intermediate sodium loop and sodium-air heat exchanger; and (ii) auxiliary cooling system which removes heat from the outside surface of the reactor vessel by natural convection of air (RVACS). The practicality and economic viability of the use of RVACS is possible up to a modular type reactor or a middle size reactor based on current technology. For the large monolithic plant concepts DRACS is preferable. The existing experimental results and the codes show encouraging results so that the decay heat removal by pure natural convection is feasible. Concerning the objective, 'passive safety', the DHR by pure natural convection is essential feature to enhance the reliability of DHR.

  3. Specialists' meeting on evaluation of decay heat removal by natural convection

    International Nuclear Information System (INIS)

    1993-02-01

    Decay heat removal by natural convection (DHRNC) is essential to enhancing the safety of liquid metal fast reactors (LMFRs). Various design concepts related to DHRNC have been proposed and experimental and analytical studies have been carried out in a number of countries. The purpose of this Specialists' Meeting on 'Decay Heat Removal by Natural Convection' organized by the International Working Group on Fast Reactors IAEA, is to exchange information about the state of the art related to methodologies on evaluation of DHRNC features (experimental studies and code developments) and to discuss problems which need to be solved in order to evaluate DHRNC properly and reasonably. The following main topical areas were discussed by delegates: Overview; Experimental studies and code validation; Design study. Two main DHR systems for LMFR are under consideration: (i) direct reactor auxiliary cooling system (DRACS) with immersed DFIX in main vessel, intermediate sodium loop and sodium-air heat exchanger; and (ii) auxiliary cooling system which removes heat from the outside surface of the reactor vessel by natural convection of air (RVACS). The practicality and economic viability of the use of RVACS is possible up to a modular type reactor or a middle size reactor based on current technology. For the large monolithic plant concepts DRACS is preferable. The existing experimental results and the codes show encouraging results so that the decay heat removal by pure natural convection is feasible. Concerning the objective, 'passive safety', the DHR by pure natural convection is essential feature to enhance the reliability of DHR

  4. Device for removing alkali metal residues from heat exchanger

    International Nuclear Information System (INIS)

    Matal, O.

    1987-01-01

    The main parts of the facility consists of a condensing vessel and a vacuum pump unit interconnected via a vacuum pipe. The heat exchanger is heated to a temperature at which the alkali metal residues evaporate. Metal vapors are collected in the condensing vessel where they condense. The removal of the alkali metal residues from the heat exchanger pipes allows thorough inspection of the pipe inside during scheduled nuclear power plant shutdowns. The facility can be used especially with reverse steam generators. (E.S.). 1 fig

  5. After heat removing system of a nuclear reactor

    International Nuclear Information System (INIS)

    Hayashi, Takao; Yamada, Masao; Ohashi, Kazutaka.

    1994-01-01

    In a variable conductance heat pipe of an after heat removing system, an evaporation portion and a condensator are connected by a steam diffusing path for an operation fluid and a liquid condensate recycling path. Further, incondensible gases are sealed at the inside together with the operation fluid, and a gas reservoir for the incondensible gases is disposed at the downstream of a condensation portion. If heat input is applied to the evaporation portion of the heat pipe, the incondensible gases are separated to form a boundary between both of them. When the amount of heat applied is small, the incondensible gases partially seal the condensation portion to form a local condensation insensitive portion, so that a heat conductance can be suppressed low. On the other hand, as the amount of heat inputted is increased, the incondensible gases are compressed, the heat conduction area of the condensation portion is increased and a heat conductance is increased to conduct self-control so as to increase heat transfer performance of the heat pipe. Then, the liquid condensate is recycled to the evaporation portion by spontaneous dripping of the condensate itself without wick, thereby enabling to conduct automatic switching so as to increase the heat dissipation amount to maximum. (N.H.)

  6. Design and transient analyses of emergency passive residual heat removal system of CPR1000

    International Nuclear Information System (INIS)

    Zhang, Y.P.; Qiu, S.Z.; Su, G.H.; Tian, W.X.

    2012-01-01

    Highlights: ► Designing an EPRHRs for CPR1000. ► Developing a RELAP model of the EPRHRs. ► The EPRHRs could take away the decay heat effectively. - Abstract: The steam generator secondary emergency passive residual heat removal system (EPRHRs) is a new design for traditional generation II + reactor CPR1000. The EPRHRs is designed to improve the safety and reliability of CPR1000 by completely or partially replacing traditional emergency water cooling system in the event of the station blackout or loss of heat sink accident. The EPRHRs consists of steam generator (SG), heat exchanger (HX), emergency makeup tank (EMT), cooling water tank (CWT), and corresponding pipes and valves. In order to improve the safety and reliability of CPR1000, the model of the primary loop and the EPRHRs was developed to investigate residual heat removal capability of the EPRHRs and the transient characteristics of the primary loop affected by the EPRHRs using RELAP5/MOD3.4. The transient characteristics of the primary loop and the EPRHRs were calculated in the event of station blackout accident. Sensitivity studies of the EPRHRs were also conducted to investigate the response of the primary loop and the EPRHRs on the main parameters of the EPRHRs. The EPRHRs could supply water to the SG shell side from the EMT successfully. The calculation results showed that the EPRHRs could take away the decay heat from the primary loop effectively, and that the single-phase and two-phase natural circulations were established in the primary loop and EPRHRs loop, respectively. The results also indicated that the effect of isolation valve open time on the transient characteristics of the primary loop was little. However, the effect of isolation valve open time on the EPRHRs condensate flow was relatively greater. The isolation valves should not be opened too rapidly during the isolation valve opening process, and the isolation valve opening time should be greater than 10 s, which could avoid the

  7. Evaporation and condensation devices for passive heat removal systems in nuclear power engineering

    International Nuclear Information System (INIS)

    Gershuni, A.N.; Pis'mennyj, E.N.; Nishchik, A.P.

    2016-01-01

    The paper justifies advantages of evaporation and condensation heat transfer devices as means of passive heat removal and thermal shielding in nuclear power engineering. The main thermophysical factors that limit heat transfer capacity of evaporation and condensation systems have been examined in the research. The results of experimental studies of heat engineering properties of elongated (8-m) vertically oriented evaporation and condensation devices (two-phase thermosyphons), which showed a high enough heat transfer capacity, as well as stability and reliability both in steady state and in start-up modes, are provided. The paper presents the examples of schematic designs of evaporation and condensation systems for passive heat removal and thermal shielding in application to nuclear power equipment

  8. Excessive heat removal due to feedwater system malfunction

    International Nuclear Information System (INIS)

    Beader, D.; Peterlin, G.

    1986-01-01

    Excessive heat removal transient of the Krsko Nuclear Power Plant, caused by steam generators feedwater system malfunctions was simulated by RELAP5/MOD1 computer code. The results are increase of power and reactor scram caused by high-high steam generator level. (author)

  9. Hydrodynamical tests with an original PWR heat removal pump

    International Nuclear Information System (INIS)

    Wietstock, P.

    1984-01-01

    GKSS-Forschungszentrum performes hydrodynamical tests with an original PWR heat removal pump to analyse the influences of fluid parameters on the capacity and cavitation behavior of the pump in order to get further improvements of the quantification of the reached safety-level. It can be concluded, that in case of the tested heat removal pump the additional loads during transition from cavitation free operation into fully cavitation for the investigated operation point with 980 m 3 /h will be smaller than the alteration of loads during passing through the total characteristic. The results from cavitation tests for other operation points indicate, that this very important consequence especially for accident operation will be valid for the total specified pump flow area. (orig.)

  10. Design and implementation of a multiaxial loading capability during heating on an engineering neutron diffractometer

    Energy Technology Data Exchange (ETDEWEB)

    Benafan, O., E-mail: othmane.benafan@nasa.gov [NASA Glenn Research Center, Structures and Materials Division, Cleveland, Ohio 44135 (United States); Advanced Materials Processing and Analysis Center, Materials Science and Engineering Department, University of Central Florida, Orlando, Florida 32816 (United States); Padula, S. A. [NASA Glenn Research Center, Structures and Materials Division, Cleveland, Ohio 44135 (United States); Skorpenske, H. D.; An, K. [Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Vaidyanathan, R. [Advanced Materials Processing and Analysis Center, Materials Science and Engineering Department, University of Central Florida, Orlando, Florida 32816 (United States)

    2014-10-01

    A gripping capability was designed, implemented, and tested for in situ neutron diffraction measurements during multiaxial loading and heating on the VULCAN engineering materials diffractometer at the spallation neutron source at Oak Ridge National Laboratory. The proposed capability allowed for the acquisition of neutron spectra during tension, compression, torsion, and/or complex loading paths at elevated temperatures. The design consisted of age-hardened, Inconel{sup ®} 718 grips with direct attachment to the existing MTS load frame having axial and torsional capacities of 100 kN and 400 N·m, respectively. Internal cooling passages were incorporated into the gripping system for fast cooling rates during high temperature experiments up to ~1000 K. The specimen mounting couplers combined a threaded and hexed end-connection for ease of sample installation/removal without introducing any unwanted loads. Instrumentation of this capability is documented in this work along with various performance parameters. The gripping system was utilized to investigate deformation in NiTi shape memory alloys under various loading/control modes (e.g., isothermal, isobaric, and cyclic), and preliminary results are presented. The measurements facilitated the quantification of the texture, internal strain, and phase fraction evolution in NiTi shape memory alloys under various loading/control modes.

  11. Design and implementation of a multiaxial loading capability during heating on an engineering neutron diffractometer

    International Nuclear Information System (INIS)

    Benafan, O.; Padula, S. A.; Skorpenske, H. D.; An, K.; Vaidyanathan, R.

    2014-01-01

    A gripping capability was designed, implemented, and tested for in situ neutron diffraction measurements during multiaxial loading and heating on the VULCAN engineering materials diffractometer at the spallation neutron source at Oak Ridge National Laboratory. The proposed capability allowed for the acquisition of neutron spectra during tension, compression, torsion, and/or complex loading paths at elevated temperatures. The design consisted of age-hardened, Inconel ® 718 grips with direct attachment to the existing MTS load frame having axial and torsional capacities of 100 kN and 400 N·m, respectively. Internal cooling passages were incorporated into the gripping system for fast cooling rates during high temperature experiments up to ∼1000 K. The specimen mounting couplers combined a threaded and hexed end-connection for ease of sample installation/removal without introducing any unwanted loads. Instrumentation of this capability is documented in this work along with various performance parameters. The gripping system was utilized to investigate deformation in NiTi shape memory alloys under various loading/control modes (e.g., isothermal, isobaric, and cyclic), and preliminary results are presented. The measurements facilitated the quantification of the texture, internal strain, and phase fraction evolution in NiTi shape memory alloys under various loading/control modes

  12. Decay heat removal and transient analysis in accidental conditions in the EFIT reactor

    International Nuclear Information System (INIS)

    Bandini, G.; Meloni, P.; Polidori, M.; Casamirra, M.; Castiglia, F.; Giardina, M.

    2007-01-01

    The development of a conceptual design of an industrial scale transmutation facility (EFIT) of several 100 MW thermal power based on Accelerator Driven System (ADS) is addressed in the frame of the European EUROTRANS Integral Project. In normal operation, the core power of EFIT reactor is removed through steam generators by four secondary loops fed by water. A safety-related Decay Heat Removal (DHR) system provided with four independent inherently safe loops is installed in the primary vessel to remove the decay heat by natural convection circulation under accidental conditions which lead to the Loss of Heat Sink (LOHS). In order to confirm the adequacy of the adopted solution for decay heat removal in accidental conditions, some multi-D analyses have been carried out with the SIMMER-III code. The results of the SIMMER-III code have been then used to support the RELAP5 1-D representation of the natural circulation flow paths in the reactor vessel. Finally, the thermal-hydraulic RELAP5 code has been employed for the analysis of LOHS accidental scenarios. (author)

  13. Decay Heat Removal and Transient Analysis in Accidental Conditions in the EFIT Reactor

    Directory of Open Access Journals (Sweden)

    Giacomino Bandini

    2008-01-01

    Full Text Available The development of a conceptual design of an industrial-scale transmutation facility (EFIT of several 100 MW thermal power based on accelerator-driven system (ADS is addressed in the frame of the European EUROTRANS Integral Project. In normal operation, the core power of EFIT reactor is removed through steam generators by four secondary loops fed by water. A safety-related decay heat removal (DHR system provided with four independent inherently safe loops is installed in the primary vessel to remove the decay heat by natural convection circulation under accidental conditions which are caused by a loss-of-heat sink (LOHS. In order to confirm the adequacy of the adopted solution for decay heat removal in accidental conditions, some multi-D analyses have been carried out with the SIMMER-III code. The results of the SIMMER-III code have been then used to support the RELAP5 1D representation of the natural circulation flow paths in the reactor vessel. Finally, the thermal-hydraulic RELAP5 code has been employed for the analysis of LOHS accidental scenarios.

  14. Loss of residual heat removal system: Diablo Canyon, Unit 2, April 10, 1987

    International Nuclear Information System (INIS)

    1987-06-01

    This report presents the findings of an NRC Augmented Inspection Team (AIT) investigation into the circumstances associated with the loss of residual heat removal (RHR) system capability for a period of approximately one and one-half hours at the Diablo Canyon, Unit 2 reactor facility on April 10, 1987. This event occurred while the Diablo Canyon, Unit 2, a pressurized water reactor, was shutdown with the reactor coolant system (RCS) water level drained to approximately mid-level of the hot leg piping. The reactor containment building equipment hatch was removed at the time of the event, and plant personnel were in the process of removing the primary side manways to gain access into the steam generator channel head areas. Thus, two fission product barriers were breached throughout the event. The RCS temperature increased from approximately 87 0 F to bulk boiling conditions without RCS temperature indication available to the plant operators. The RCS was subsequently pressurized to approximately 7 to 10 psig. The NRC AIT members concluded that the Diablo Canyon, Unit 2 plant was, at the time of the event, in a condition not previously analyzed by the NRC staff. The AIT findings from this event appear significant and generic to other pressurized water reactor facilities licensed by the NRC

  15. Heat-Assisted Machining for Material Removal Improvement

    Science.gov (United States)

    Mohd Hadzley, A. B.; Hafiz, S. Muhammad; Azahar, W.; Izamshah, R.; Mohd Shahir, K.; Abu, A.

    2015-09-01

    Heat assisted machining (HAM) is a process where an intense heat source is used to locally soften the workpiece material before machined by high speed cutting tool. In this paper, an HAM machine is developed by modification of small CNC machine with the addition of special jig to hold the heat sources in front of the machine spindle. Preliminary experiment to evaluate the capability of HAM machine to produce groove formation for slotting process was conducted. A block AISI D2 tool steel with100mm (width) × 100mm (length) × 20mm (height) size has been cut by plasma heating with different setting of arc current, feed rate and air pressure. Their effect has been analyzed based on distance of cut (DOC).Experimental results demonstrated the most significant factor that contributed to the DOC is arc current, followed by the feed rate and air pressure. HAM improves the slotting process of AISI D2 by increasing distance of cut due to initial cutting groove that formed during thermal melting and pressurized air from the heat source.

  16. Decay heat removal analyses on the heavy liquid metal cooled fast breeding reactor. Comparisons of the decay heat removal characteristics on lead, lead-bismuth and sodium cooled reactors

    International Nuclear Information System (INIS)

    Sakai, Takaaki; Ohshima, Hiroyuki; Yamaguchi, Akira

    2000-04-01

    The feasibility study on several concepts for the commercial fast breeder reactor(FBR) in future has been conducted in JNC for the kinds of possible coolants and fuel types to confirm the direction of the FBR developments in Japan. In this report, Lead and Lead-Bismuth eutectic coolants were estimated for the decay heat removal characteristics by the comparison with sodium coolant that has excellent features for the heat transfer and heat transport performance. Heavy liquid metal coolants, such as Lead and Lead-Bismuth, have desirable chemical inertness for water and atmosphere. Therefore, there are many economical plant proposals without an intermediate heat transport system that prevents the direct effect on a reactor core by the chemical reaction between water and the liquid metal coolant at the hypocritical tube failure accidents in a steam generator. In this study, transient analyses on the thermal-hydraulics have been performed for the decay heat removal events in Equivalent plant' with the Lead, Lead-Bismuth and Sodium coolant by using Super-COPD code. And a resulted optimized lead cooled plant in feasibility study was also analyzed for the comparison. In conclusion, it is become clear that the natural circulation performance, that has an important roll in passive safety characteristic of the reactor, is more excellent in heavy liquid metals than sodium coolant during the decay heat removal transients. However, we need to confirm the heat transfer reduction by the oxidized film or the corrosion products expected to appear on the heat transfer surface in the Lead and Lead-Bismuth circumstance. (author)

  17. Heating Changes Bio-Schwertmannite Microstructure and Arsenic(III Removal Efficiency

    Directory of Open Access Journals (Sweden)

    Xingxing Qiao

    2017-01-01

    Full Text Available Schwertmannite (Sch is an efficient adsorbent for arsenic(III removal from arsenic(III-contaminated groundwater. In this study, bio-schertmannite was synthesized in the presence of dissolved ferrous ions and Acidithiobacillus ferrooxidans LX5 in a culture media. Bio-synthesized Sch characteristics, such as total organic carbon (TOC, morphology, chemical functional groups, mineral phase, specific surface area, and pore volume were systematically studied after it was dried at 105 °C and then heated at 250–550 °C. Differences in arsenic(III removal efficiency between 105 °C dried-sch and 250–550 °C heated-sch also were investigated. The results showed that total organic carbon content in Sch and Sch weight gradually decreased when temperature increased from 105 °C to 350 °C. Sch partly transformed to another nanocrystalline or amorphous phase above 350 °C. The specific surface area of 250 °C heated-sch was 110.06 m2/g compared to 5.14 m2/g for the 105 °C dried-sch. Total pore volume of 105 °C dried-sch was 0.025 cm3/g with 32.0% mesopore and 68.0% macropore. However, total pore volume of 250 °C heated-mineral was 0.106 cm3/g with 23.6% micropore, 33.0% mesopore, and 43.4% macropore. The arsenic(III removal efficiency from an initial 1 mg/L arsenic(III solution (pH 7.5 was 25.1% when 0.25 g/L of 105 °C dried-sch was used as adsorbent. However, this efficiency increased to 93.0% when using 250 °C heated-sch as adsorbent. Finally, the highest efficiency for arsenic(III removal was obtained with sch-250 °C due to high amounts of sorption sites in agreement with the high specific surface area (SSA obtained for this sample.

  18. Study on concrete cask for practical use. Heat removal test under normal condition

    International Nuclear Information System (INIS)

    Takeda, Hirofumi; Wataru, Masumi; Shirai, Koji; Saegusa, Toshiari

    2005-01-01

    In Japan, it is planed to construct interim storage facilities taking account of dry storage away form reactor in 2010. Recently, a concrete cask is noticed from the economical point of view. But data for its safety analysis have not been sufficient yet. Heat removal tests using to types of full-scale concrete casks were conducted. This paper describes the results under normal condition of spent fuel storage. In the tests, data on heat removal performance and integrity of cask components were obtained for different storage periods. The change of decay heat of spent fuel was simulated using electric heaters. Reinforced Concrete cask (RC cask) and Concrete Filled Steel cask (CFS cask) were the specimen casks. The levels of decay heat at the initial period of 60 years of storage, the intermediate period (20 years of storage), and the final period (40 years of storage) correspond to 22.6 kW, 16 kW and 10 kW, respectively. Quantitative temperature data of the cask components were obtained as compared with their limit temperature. In addition, heat balance data required for heat removal analyses were obtained. (author)

  19. Post-accident heat removal research: A state of the art review

    International Nuclear Information System (INIS)

    Mueller, U.; Schulenberg, T.

    1983-11-01

    For a realistic assessment of the consequence of extremely unlikely reactor accidents resulting in core degradation or core meltdown key questions are how to remove the decay heat from the reactor system and how to retain the radioactive core debris within the containment. Usually, this complex of questions is referred to as Post-Accident Heat Removal (PAHR). In this article the research work on PAHR performed by various institutions during the last decade has been reviewed. The main results have been summarized under the chapter headings ''Accident Scenarios,'' - ''Core Debris Accommodation Concepts,'' and ''PAHR Topics.'' Particular emphasis has been placed on the presentation of the following problems: characteristics and coolability of solid core debris in the vector vessel, heat removal from molten pools of core material, and core-melt interaction with structural materials. Some unresolved or insufficiently answered questions relating to special ''PAHR Topics'' have been mentioned or discussed at the end of the particular Chapter. Problem areas of major uncertainty have been identified and listed at the end of the review article. They include the following subjects: formation of debris beds and bed characteristics, post dryout behaviour of particle beds, long-term availability and proper location of heat sinks, creep rupture of structures under high thermal loads. (orig.) [de

  20. Passive decay heat removal by natural circulation

    International Nuclear Information System (INIS)

    Vijayan, P.K.; Venkat Raj, V.; Kakodkar, A.; Mehta, S.K.

    1990-01-01

    The standardised 235 MWe PHWRs being built in India are the pressure tube type, heavy water moderated, heavy water cooled and natural uranium fuelled reactors. Several passive safety features are incorporated in these reactors. These include: (1) Containment pressure reduction and fission product trapping with the help of suppression pool following LOCA. (2) Emergency coolant injection by means of accumulators. (3) Large heat sink provided by the low temperature moderator under accident conditions. (4) Low excess reactivity, through the use of natural uranium fuel and on power fuelling. (5) Residual heat removal by means of natural circulation, etc. of which the last item is the subject matter of this report. (author). 8 refs, 10 figs

  1. Control of the ASTRA decay heat removal system

    International Nuclear Information System (INIS)

    Nedelik, A.

    1982-11-01

    To ensure a minimum of core cooling even under severest accident conditions (loss of reactor pool water) a core spray system for decay heat removal has been installed at the ASTRA-reactor. The automatic and manual control of the system, its power supply and test procedures are shortly described. (Author)

  2. Design of CAREM-25 Residual Heat Removal System: Nuclear Safety Aspects

    International Nuclear Information System (INIS)

    Zanocco, Pablo; Gimenez, Marcelo; Schlamp, Miguel; Barrera, M.

    2000-01-01

    In this paper Carem-25 residual heat removal system (RHRS) design is analyzed from the nuclear safety point of view.The proposed RHRS is a condenser that transfers the heat to a pool located in the upper level of the containment.The RHRS design basis accident is a reactor loss of heat sink.The following requirements were settled to be verified: a) To remove 2 MW, for a primary circuit pressure of 12.25 MPa and a pool temperature of 100 0 C. b) No condenser tubes flooding, for a primary circuit pressure of 14 MPa and a pool temperature of 100 0 C. c) To reach hot shutdown in 48-hrs, that is to remove of 0.6 MW for a primary circuit pressure of 2.3 MPa and a pool temperature of 120 0 C.Heat transfer regimes inside and outside the condenser and flow patterns were analyzed.Steady state conditions for the above design conditions were modeled.The design requirements were verified taking into account heat transfer coefficients uncertainties and their propagation to the equipment elevation in the containment over the RPV, in order to minimize its elevation and its possible flooding.The resulting condenser tubes were 2 S CH 160 TP 347 SS, with a total area of 4 m 2 and a required minimum height of 6 m from the RPV water level to the condenser outlet headers

  3. Residual Heat Removal System qualitative probabilistic safety analysis before and after auto closure interlock removal

    International Nuclear Information System (INIS)

    Mikulicic, V.; Simic, Z.

    1992-01-01

    The analysis evaluates the consequences of the removal of the auto closure interlock (ACI) on the Residual Heat Removal System (RHRS) suction/isolation valves at the nuclear power plant. The deletion of the RHRS ACI is in part based on a probabilistic safety analysis (PSA) which justifies the removal based on a criterion of increased availability and reliability. Three different areas to be examined in PSA: the likelihood of an interfacing system LOCA; RHRS availability and reliability; and low temperature overpressurization control. The paper emphasizes particularly the RHRS unavailability and reliability evaluation utilizing the current control circuitry configuration and then with the proposed modification to the control circuitry. (author)

  4. After-heat removing system in FBR type reactor

    International Nuclear Information System (INIS)

    Goto, Tadashi; Inoue, Kotaro; Yamakawa, Masanori; Ikeda, Takashi.

    1988-01-01

    Purpose: To promote more positive forcive circulation of primary circuit fluids thereby increase the heat removing amount. Constitution: The primary side of an electromagnetic flow coupler type heat exchanger is opened to the primary fluid of a reactor, while the secondary side is connected with the secondary circuit comprising an air cooler and an electromagnetic pump. Since the secondary circuit stands-by during normal operation, the electromagnetic flow coupler does not operate and does not generate force for flowing primary circuit fluid. If flow due to the external force to the primary circuit fluid should occur in the electromagnetic flow coupler type heat exchanger, an electromagnetic force tending to flow the secondary circuit fluid is exerted oppositely. However the coupler undergoes reaction inertia of the fluid or flowing resistance, to exert in the direction of suppressing the flow, thereby prevent the heat loss. (Yoshihara, H.)

  5. Decay heat removal plan of the SNR-300: a licensed concept

    International Nuclear Information System (INIS)

    Morgenstern, F.H.; Gyr, W.; Stoetzel, H.; Vossebrecker, H.

    1976-01-01

    The report describes how the decay heat removal plan of the SNR-300 has been established in 3 essential licensing steps, thus giving a very significant example for the slow but steady progress in the overall licensing process of the plant. (1) Introduction of an ECCS in addition to the 3 main heat transfer chains as a back-up for rather unlikely and undefined occurrences, 1970; (2) Experimental and computational demonstration of a reliable functioning of the in-vessel natural convection of the fluid flow, 1974; and (3) Proof of fulfilling the general safety and specific reliability criteria for the overall decay heat removal plan; i.e., the 3 main heat transfer chains with specific installations on the steam/water system side and the ECCS, 1976. Some special problem areas, for instance the cavity concept provided for the pipe fracture accident, have still to be licensed, but they do not contribute considerably to the overall risk

  6. Development of evaluation method for heat removal design of dry storage facilities. pt. 1. Heat removal test on vault storage system of cross flow type

    International Nuclear Information System (INIS)

    Sakamoto, Kazuaki; Koga, Tomonari; Wataru, Masumi; Hattori, Yasuo

    1997-01-01

    The report describes the result of heat removal test of passive cooling vault storage system of cross flow type using 1/5 scale model. Based on a prospect of steady increase in the amount of spent fuel, it is needed to establish large capacity dry storage technologies for spent fuel. Air flow patterns, distributions of air temperature and velocity were measured, by which heat removal characteristics of the system were made clear. Air flow patterns in the storage module depended on the ratio of the buoyant force to the inertial force; the former generated by the difference of air temperatures and the height of the storage module, the latter by the difference of air densities between the outlet of the storage module and ambience and the height of the chimney of the storage facility. A simple method to estimate air flow patterns in the storage module was suggested, where Ri(Richardson) number was applied to represent the ratio. Moreover, heat transfer coefficient from a model of storage tube to cooling air was evaluated, and it was concluded that the generalized expression of heat transfer coefficient for common heat exchangers could be applied to the vault storage system of cross flow type, in which dozens of storage tubes were placed in a storage module. (author)

  7. Analytical studies on the impact of using repeated-rib roughness in LMR [Liquid Metal Reactor] decay heat removal systems

    International Nuclear Information System (INIS)

    Obot, N.T.; Tessier, J.H.; Pedersen, D.R.

    1988-01-01

    A numerical study was carried out to determine the effects of roughness on the thermal performance of Liquid Metal Reactor (LMR) decay heat removal systems for a range of possible design configurations and operating conditions. The ranges covered for relative rib height (e/D/sub h/), relative pitch (p/e) and flow attack angle were 0.026--0.103, 5--20 and 0--90 degrees, successively. The heat flux was varied between 1.1 and 21.5 kW/m 2 (0.1 and 2.0 kW/ft 2 ). Calculations were made for three cases: smooth duct with no ribs, ribs on both the guard vessel and collector wall, and ribs on the collector wall only. The results indicate that significant benefits, amounting to nearly two-fold reductions in guard vessel and collector wall temperatures, can be realized by placing repeated ribs on both the guard vessel and the collector wall. The magnitudes of the reduction in the reactor vessel temperature are considerably smaller. In general, the level of improvement, be it with respect to temperature or heat flux, is only mildly affected by changes in rib height or pitch but exhibits greater sensitivity to the assumed value for the system form loss. When the ribs are placed only on the collector wall, the heat removal capability is substantially reduced

  8. Separately removable tubes in heavy duty heat exchanger assemblies

    International Nuclear Information System (INIS)

    Neudeck, G.T.

    1980-01-01

    The invention is directed to removable heat exchanger tube assemblies in heavy duty equipment radiators in which the tubes are each separately removable if they become defective in service. An inwardly facing annular ledge or abutment is molded into the inside diameter of each upper and lower sealing member to receive the respective ends of the tubes and prevent vertical movement of the tubes in service. A flange or shoulder is also provided on the lower portions of each tube and engages the inside of the lower sealing member to further restrain downward movement of the tubes in service. Each tube may be removed by pushing the tube upwardly to overcome the upper ledge abutment and thereby lift the tube free of the lower seal. Each tube may then be removed sidewise from the radiator. Variations of the removable sealing arrangement can be made and are described herein

  9. The thermal performance of a loop-type heat pipe for passively removing residual heat from spent fuel pool

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Zhenqin [School of Nuclear Science and Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai 200240 (China); Gu, Hanyang, E-mail: guhanyang@stu.edu.cn [School of Nuclear Science and Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai 200240 (China); Wang, Minglu [School of Nuclear Science and Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai 200240 (China); Cheng, Ye [Shanghai Nuclear Engineering Research and Design Institute, Shanghai 200233 (China)

    2014-12-15

    Highlights: • Feasibility of applying loop-type heat pipes for SFP is studied. • The heat transfer rate of the heat pipes was tested. • The heat transfer coefficient was between 200 and 490 W/m{sup 2}/s. • The effect of the water temperature is dominant. • Three kinds of the filling ratio 27%, 21% and 14% are compared. - Abstract: Heat pipe is an efficient heat transfer device without electrically driven parts. Therefore large-scale loop type heat pipe systems have potential uses for passively removing heat from spent fuel pools and reactor cores under the accidental conditions to improve the safety of the nuclear power station. However, temperature difference between the hot water in the spent fuel pool and the ambient air which is the heat sink is small, in the range of 20–60 °C. To understand and predict the heat removal capacity of such a large scale loop type heat pipe in the situation similar to the accidental condition of the spent fuel pool (SFP) for the design purpose, a loop-type heat pipe with a very high and large evaporator has been fabricated and was tested using ammonia as the working fluid. The evaporator with inner diameter of 65 mm and length of 7.6 m is immersed in a hot water tube which simulate the spent fuel pool. The condenser of the loop-type heat pipe is cooled by the air. The tests were performed with the velocity of the hot water in the tube in the range of 0.7–2.1 × 10{sup −2} m/s, the hot water inlet temperature between 50 and 90 °C and the air velocity ranging from 0.5 m/s to 2.5 m/s. Three kinds of the ammonia volumetric filling ratio in the heat pipe were tested, i.e. 27%, 21% and 14%. It is found that the heat transfer rate was in the range of 1.5–14.9 kW, and the heat transfer coefficient of evaporator was between 200 and 490 W/m{sup 2}/s. It is feasible to use the large scale loop type heat pipe to passively remove the residual heat from SFP. Furthermore, the effect of air velocity, air temperature, water flow

  10. The thermal performance of a loop-type heat pipe for passively removing residual heat from spent fuel pool

    International Nuclear Information System (INIS)

    Xiong, Zhenqin; Gu, Hanyang; Wang, Minglu; Cheng, Ye

    2014-01-01

    Highlights: • Feasibility of applying loop-type heat pipes for SFP is studied. • The heat transfer rate of the heat pipes was tested. • The heat transfer coefficient was between 200 and 490 W/m 2 /s. • The effect of the water temperature is dominant. • Three kinds of the filling ratio 27%, 21% and 14% are compared. - Abstract: Heat pipe is an efficient heat transfer device without electrically driven parts. Therefore large-scale loop type heat pipe systems have potential uses for passively removing heat from spent fuel pools and reactor cores under the accidental conditions to improve the safety of the nuclear power station. However, temperature difference between the hot water in the spent fuel pool and the ambient air which is the heat sink is small, in the range of 20–60 °C. To understand and predict the heat removal capacity of such a large scale loop type heat pipe in the situation similar to the accidental condition of the spent fuel pool (SFP) for the design purpose, a loop-type heat pipe with a very high and large evaporator has been fabricated and was tested using ammonia as the working fluid. The evaporator with inner diameter of 65 mm and length of 7.6 m is immersed in a hot water tube which simulate the spent fuel pool. The condenser of the loop-type heat pipe is cooled by the air. The tests were performed with the velocity of the hot water in the tube in the range of 0.7–2.1 × 10 −2 m/s, the hot water inlet temperature between 50 and 90 °C and the air velocity ranging from 0.5 m/s to 2.5 m/s. Three kinds of the ammonia volumetric filling ratio in the heat pipe were tested, i.e. 27%, 21% and 14%. It is found that the heat transfer rate was in the range of 1.5–14.9 kW, and the heat transfer coefficient of evaporator was between 200 and 490 W/m 2 /s. It is feasible to use the large scale loop type heat pipe to passively remove the residual heat from SFP. Furthermore, the effect of air velocity, air temperature, water flow rate and

  11. Strategy of experimental studies in PNC on natural convection decay heat removal

    International Nuclear Information System (INIS)

    Ieda, Y.; Kamide, H.; Ohshima, H.; Sugawara, S.; Ninokata, H.

    1993-01-01

    Experimental studies have been and are being carried out in PNC to establish the design and safety evaluation methods and the design and safety evaluation guide lines for decay heat removal by natural convection. A strategy of the experimental studies in PNC is described in this paper. The sphere of studies in PNC is to develop the evaluation methods to be available to DRACS as well as PRACS and IRACS for the plant where decay heat is removed by natural convection in some cases of loss of station service power. Similarity parameters related to natural convection are derived from the governing equations. The roles of both sodium and water experiments are defined in consideration of the importance of the similarity parameters and characteristics of scale model experiments. The experimental studies in PNC are reviewed. On the basis of the experimental results, recommended evaluation methods are shown for decay heat removal feature by natural convection. Future experimental works are also proposed. (author)

  12. Design of Passive Decay Heat Removal System using Mercury Thermosyphon for SFR

    Energy Technology Data Exchange (ETDEWEB)

    You, Byung Hyun; Jeong, Yong Hoon [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2013-10-15

    In this study, thermosyphon application is suggested to accomplish the fully passive safety grade system and compactness of components via enhance the heat removal performance. A two-phase evaporating thermosyphon operates when the evaporator is heated, the working fluid start boiling, the vapor that is formed moves to the condenser, where it is condensed on the walls, giving up the heat of phase change to the cooling fluid. Gravity forces cause the condensate to condensed liquid flow to the evaporator again. These processes occur continuously, which causes transfer of heat from evaporator to condenser vice versa. After the thermal design and performance evaluation, the results were compared with the performance of conventional DRACS system. For the same amount of decay heat removal performance of PDRC system of KALIMER-600 mercury thermosyphon system can archive around 30∼50% of compactness. For the detailed design, improved analytical model and experimental data for the validation will be required to specify the new DHR system.

  13. Method for removal of decay heat of radioactive substances

    International Nuclear Information System (INIS)

    Hesky, H.; Wunderer, A.

    1981-01-01

    In this process, the decay heat from radioactive substances is removed by means of a liquid carried in the coolant loop. The liquid is partially evaporated by the decay heat. The steam is used to drive the liquid through the loop. When a static pressure level equivalent to the pressure drop in the loop is exceeded, the steam is separated from the liquid, condensed, and the condensate is reunited with the return flow of liquid for partial evaporation. (orig.) [de

  14. Design of an Experimental Facility for Passive Heat Removal in Advanced Nuclear Reactors

    Science.gov (United States)

    Bersano, Andrea

    With reference to innovative heat exchangers to be used in passive safety system of Gen- eration IV nuclear reactors and Small Modular Reactors it is necessary to study the natural circulation and the efficiency of heat removal systems. Especially in safety systems, as the decay heat removal system of many reactors, it is increasing the use of passive components in order to improve their availability and reliability during possible accidental scenarios, reducing the need of human intervention. Many of these systems are based on natural circulation, so they require an intense analysis due to the possible instability of the related phenomena. The aim of this thesis work is to build a scaled facility which can reproduce, in a simplified way, the decay heat removal system (DHR2) of the lead-cooled fast reactor ALFRED and, in particular, the bayonet heat exchanger, which transfers heat from lead to water. Given the thermal power to be removed, the natural circulation flow rate and the pressure drops will be studied both experimentally and numerically using the code RELAP5 3D. The first phase of preliminary analysis and project includes: the calculations to design the heat source and heat sink, the choice of materials and components and CAD drawings of the facility. After that, the numerical study is performed using the thermal-hydraulic code RELAP5 3D in order to simulate the behavior of the system. The purpose is to run pretest simulations of the facility to optimize the dimensioning setting the operative parameters (temperature, pressure, etc.) and to chose the most adequate measurement devices. The model of the system is continually developed to better simulate the system studied. High attention is dedicated to the control logic of the system to obtain acceptable results. The initial experimental tests phase consists in cold zero power tests of the facility in order to characterize and to calibrate the pressure drops. In future works the experimental results will be

  15. Nuclear reactor with makeup water assist from residual heat removal system

    International Nuclear Information System (INIS)

    Schulz, T.L.; Corletti, M.M.

    1994-01-01

    A pressurized water nuclear reactor uses its residual heat removal system to make up water in the reactor coolant circuit by pumping water from an in-containment refueling water storage tank during staged depressurization of the coolant circuit, the final stage including passive emergency cooling by gravity feed from the refueling water storage tank to the coolant circuit and to flood the containment building. When depressurization commences due to inadvertence or a manageable leak, the residual heat removal system is activated manually and avoids the final stage of depressurization with its flooding of the containment when such action is not necessary, but does not prevent the final stage when it is necessary. A high pressure makeup water storage tank coupled to the reactor coolant circuit holds makeup coolant at the operational pressure of the reactor. The staged depressurization system vents the coolant circuit to the containment, thus reducing the supply of makeup coolant. The level of makeup coolant can be sensed to trigger opening of successive depressurization conduits. The residual heat removal system can also be coupled in a loop with the refueling water supply tanks for cooling the tank. (Author)

  16. Simplified analysis of passive residual heat removal systems for small size PWR's

    International Nuclear Information System (INIS)

    Botelho, D.A.

    1992-02-01

    The function and general objectives of a passive residual heat removal system for small size PWR's are defined. The characteristic configuration, the components and the operation modes of this system are concisely described. A preliminary conceptual specification of this system, for a small size PWR of 400 MW thermal, is made analogous to the decay heat removal system of the AP-600 reactor. It is shown by analytic models that such passive systems can dissipate 2% of nominal power within the thermal limits allowed to the reactor fuel elements. (author)

  17. Production of molten UO2 pools by internal heating: apparatus and preliminary experimental heat transfer results

    International Nuclear Information System (INIS)

    Chasanov, M.G.; Gunther, W.H.; Baker, L. Jr.

    1977-01-01

    The capability for removal of heat from a pool of molten fuel under postaccident conditions is an important consideration in liquid-metal fast breeder reactor safety analysis. No experimental data for pool heat transfer from molten UO 2 under conditions simulating internal heat generation by fission product decay have been reported previously in the literature. An apparatus to provide such data was developed and used to investigate heat transfer from pools containing up to 7.5 kg of UO 2 ; the internal heat generation rates and pool depths attained cover most of the ranges of interest for postaccident heat removal analysis. It was also observed in these studies that the presence of simulated fission products corresponding to approximately 150,000 kW-day/kg burnup had no significant effect on the observed heat transfer

  18. Large scale experiments with a 5 MW sodium/air heat exchanger for decay heat removal

    International Nuclear Information System (INIS)

    Stehle, H.; Damm, G.; Jansing, W.

    1994-01-01

    Sodium experiments in the large scale test facility ILONA were performed to demonstrate proper operation of a passive decay heat removal system for LMFBRs based on pure natural convection flow. Temperature and flow distributions on the sodium and the air side of a 5 MW sodium/air heat exchanger in a natural draught stack were measured during steady state and transient operation in good agreement with calculations using a two dimensional computer code ATTICA/DIANA. (orig.)

  19. Behavior study on Na heat pipe in passive heat removal system of new concept molten salt reactor

    International Nuclear Information System (INIS)

    Wang Chenglong; Tian Wenxi; Su Guanghui; Zhang Dalin; Wu Yingwei; Qiu Suizheng

    2013-01-01

    The high temperature Na heat pipe is an effective device for transporting heat, which is characterized by remarkable advantages in conductivity, isothermally and passively working. The application of Na heat pipe on passive heat removal system of new concept molten salt reactor (MSR) is significant. The transient performance of high temperature Na heat pipe was simulated by numerical method under the MSR accident. The model of the Na heat pipe was composed of three conjugate heat transfer zones, i.e. the vapor, wick and wall. Based on finite element method, the governing equations were solved by making use of FORTRAN to acquire the profiles of the temperature, velocity and pressure for the heat pipe transient operation. The results show that the high temperature Na heat pipe has a good performance on operating characteristics and high heat transfer efficiency from the frozen state. (authors)

  20. LMFBR post accident heat removal testing needs and conceptual design of a test facility

    International Nuclear Information System (INIS)

    Kleefeldt, K.; Kuechle, M.; Royl, P.; Werle, H.; Boenisch, G.; Heinzel, V.; Mueller, R.A.; Schramm, K.; Smidt, D.

    1977-03-01

    A study has been carried out in which the needs and requirements for a test facility were derived, enabling detailed investigation of key phenomena anticipated during the post accident heat removal (PAHR) phase as a consequence of a postulated LMFBR whole core accident. Part I of the study concentrates on demonstrating the PAHR phenomena and related testing needs. Three types of experiments were identified which require in-pile testing, ranging from 10 to 70 cm test bed diameter and correspondingly, 30 to 5 W/g minimum power density in the test fuel. In part II a conceptual design for a test facility is presented, emphasizing the capability for accomodating large test beds. This is achieved by a below-reactor-vessel testing device, neutronically coupled to a 100 MWt sodium cooled fast reactor. (orig.) [de

  1. Photovoltaic cell electrical heating system for removing snow on panel including verification.

    Science.gov (United States)

    Weiss, Agnes; Weiss, Helmut

    2017-11-16

    Small photovoltaic plants in private ownership are typically rated at 5 kW (peak). The panels are mounted on roofs at a decline angle of 20° to 45°. In winter time, a dense layer of snow at a width of e.g., 10 cm keeps off solar radiation from the photovoltaic cells for weeks under continental climate conditions. Practically, no energy is produced over the time of snow coverage. Only until outside air temperature has risen high enough for a rather long-time interval to allow partial melting of snow; the snow layer rushes down in an avalanche. Following this proposal, snow removal can be arranged electrically at an extremely positive energy balance in a fast way. A photovoltaic cell is a large junction area diode inside with a threshold voltage of about 0.6 to 0.7 V (depending on temperature). This forward voltage drop created by an externally driven current through the modules can be efficiently used to provide well-distributed heat dissipation at the cell and further on at the glass surface of the whole panel. The adhesion of snow on glass is widely reduced through this heating in case a thin water film can be produced by this external short time heating. Laboratory experiments provided a temperature increase through rated panel current of more than 10 °C within about 10 min. This heating can initiate the avalanche for snow removal on intention as described before provided the clamping effect on snow at the edge of the panel frame is overcome by an additional heating foil. Basics of internal cell heat production, heating thermal effects in time course, thermographic measurements on temperature distribution, power circuit opportunities including battery storage elements and snow-removal under practical conditions are described.

  2. Removal of corrosion products of construction materials in heat carrier

    International Nuclear Information System (INIS)

    1975-01-01

    A review of reported data has been made on the removal of structural material corrosion products into the heat-carrying agent of power reactors. The corrosion rate, and at the same time, removal of corrosion products into the heat-carrying agent (water) decreases with time. Thus, for example, the corrosion rate of carbon steel in boiling water at 250 deg C and O 2 concentration of 0.1 mg/1 after 3000 hr is 0.083 g/m 2 . day; after 9000 hr the corrosion rate has been reduced 2.5 times. Under static conditions the transfer rate of corrosion products into water has been smaller than in the stream and also depends on time. The corrosion rate of carbon steel under nuclear plant operating conditions is almost an order higher over that of steel Kh18N10T

  3. Design of a natural draft air-cooled condenser and its heat transfer characteristics in the passive residual heat removal system for 10 MW molten salt reactor experiment

    International Nuclear Information System (INIS)

    Zhao, Hangbin; Yan, Changqi; Sun, Licheng; Zhao, Kaibin; Fa, Dan

    2015-01-01

    As one of the Generation IV reactors, Molten Salt Reactor (MSR) has its superiorities in satisfying the requirements on safety. In order to improve its inherent safety, a concept of passive residual heat removal system (PRHRS) for the 10 MW Molten Salt Reactor Experiment (MSRE) was put forward, which mainly consisted of a fuel drain tank, a feed water tank and a natural draft air-cooled condenser (NDACC). Besides, several valves and pipes are also included in the PRHRS. A NDACC for the PRHRS was preliminarily designed in this paper, which contained a finned tube bundle and a chimney. The tube bundle was installed at the bottom of the chimney for increasing the velocity of the air across the bundle. The heat transfer characteristics of the NDACC were investigated by developing a model of the PRHRS using C++ code. The effects of the environmental temperature, finned tube number and chimney height on heat removal capacity of the NDACC were analyzed. The results show that it has sufficient heat removal capacity to meet the requirements of the residual heat removal for MSRE. The effects of these three factors are obvious. With the decay heat reducing, the heat dissipation power declines after a short-time rise in the beginning. The operation of the NDACC is completely automatic without the need of any external power, resulting in a high safety and reliability of the reactor, especially once the accident of power lost occurs to the power plant. - Highlights: • A model to study the heat transfer characteristics of the NDACC was developed. • The NDACC had sufficient heat removal capacity to remove the decay heat of MSRE. • NDACC heat dissipation power depends on outside temperature and condenser geometry. • As time grown, the effects of outside temperature and condenser geometry diminish. • The NDACC could automatically adjust its heat removal capacity

  4. Natural convection as the way of heat removal from fast reactor core at cooldown regimes

    International Nuclear Information System (INIS)

    Zhukov, A.V.; Kuzina, J.A.; Uhov, V.A.; Sorokin, G.A.

    2000-01-01

    The problems of thermohydraulics in fast reactors at cooldown regimes at heat removal by natural convection are considered The results of experiments and calculations obtained in various countries in this area are presented. The special attention is given to heat removal through inter-assembly space in the core and also to problems of thermohydraulics in the upper plenum. (author)

  5. Valve arrangement for a nuclear plant residual heat removal system

    International Nuclear Information System (INIS)

    Fidler, G.L.; Hill, R.A.; Carrera, J.P.

    1978-01-01

    Disclosed is an improved valve arrangement for a two-train Residual Heat Removal System (RHRS) of a nuclear reactor plant which ensures operational integrity of the system under single failure circumstances including loss of one of two electrical power sources

  6. RCS pressure under reduced inventory conditions following a loss of residual heat removal

    International Nuclear Information System (INIS)

    Palmrose, D.E.; Hughes, E.D.; Johnsen, G.W.

    1992-01-01

    The thermal-hydraulic response of a closed-reactor coolant system to loss of residual heat removal (RHR) cooling is investigated. The processes examined include: core coolant boiling and steam generator reflux condensation, pressure increase on the primary side, heat transfer mechanisms on the steam generator primary and secondary sides, and effects of noncondensible gas on heat transfer processes

  7. Nuclear power plant with improved arrangements for the removal of post fission and emergency heating

    International Nuclear Information System (INIS)

    Buescher, E.; Vinzens, K.

    1977-01-01

    This is concerned with additional equipment for emergency heat removal in a sodium cooled reactor, which operates on failure of the post fission heat removal system. The space for pressure relieving spaces and concrete masses as heat sinks within the reactor cell is no longer required. In this nuclear power plant, a heat exchanger chain transmits heat and power: There is a first sodium circuit between pressure vessel and the first heat exchanger, a second one between the first and second heat excahngers, and a third (Steam) circuit with turbine, condenser and return pump. A fourth circuit connects the secondary side of the condenser with a cooling tower. There is a threee component heat excahgner in the primary circuit after the first heat exchanger, which is built around the first heat exchanger, and is sealed into an unloading space. This space is situated next to the reactor cell and is above the operating level of the sodium in the pressure vessel. It is connected to the cell by an upper duct, normally closed by a bursting disc, and by a lower duct. In the three comopnent heat exchanger, a liquid lead-bismuth eutectic mixture transmits the heat from sodium pipes to water pipes. In normal operation it is used for steam superheating or feedwater preheating. The three component heat exchanger bridges the first and second heat exchangers as an emergency heat exchanger. If in such a case the post fission heat removal has failed, the sodium evaporating in the pressure vessel flows into the unloading space and condenses on the ribs of the emergency heat exchanger. The post fission heat is fed by the water secondary medium directly into the tertiary circuit. The sodium condensate flows back from the unloading space via the lower duct into the reactor cell and maintains the emergency level there. (RW) 891 RW [de

  8. Optimized design of an ex-vessel cooling thermosyphon for decay heat removal in SFR

    International Nuclear Information System (INIS)

    Choi, Jae Young; Jeong, Yong Hoon; Song, Sub Lee; Chang, Soon Heung

    2017-01-01

    Passive decay heat removal and sodium fire are two major key issues of nuclear safety in sodium-cooled fast reactor (SFR). Several decay heat removal systems (DHR) were suggested for SFR around the world so far. Those DHRS mainly classified into two concepts: Direct reactor cooling system and ex-vessel cooling system. Direct reactor cooling method represented by PDHRS from PGSFR has disadvantages on its additional in-vessel structure and potential sodium fire risk due to the sodium-filled heat exchanger exposed to air. Contrastively, ex-vessel cooling method represented by RVACS from PRISM has low decay heat removal performance, which cannot be applicable to large scale reactors, generally over 1000 MWth. No passive DHRSs which can solve both side of disadvantages has been suggested yet. The goal of this study was to propose ex-vessel cooling system using two-phase closed thermosyphon to compensate the disadvantages of the past DHRSs. Reference reactor was Innovative SFR (iSFR), a pool-type SFR designed by KAIST and featured by extended core lifetime and increased thermal efficiency. Proposed ex-vessel cooling system consisted of 4 trains of thermosyphons and designed to remove 1% of thermal power with 10% of margin. The scopes of this study were design of proposed passive DHRS, validation of system analysis and optimization of system design. Mercury was selected as working fluid to design ex-vessel thermosyphon in consideration of system geometry, operating temperature and required heat flux. SUS 316 with chrome coated liner was selected as case material to resist against high corrosivity of mercury. Thermosyphon evaporator was covered on the surface of reactor vessel as the geometry of hollow shell filled with mercury. Condenser was consisted of finned tube bundles and was located in isolated water pool, the ultimate heat sink. Operation limits and thermal resistance was estimated to guarantee whether the design was adequate. System analysis was conducted by in

  9. A PRA case study of extended long term decay heat removal for shutdown risk assessment

    International Nuclear Information System (INIS)

    Roglans, J.; Ragland, W.A.; Hill, D.J.

    1992-01-01

    A Probabilistic Risk Assessment (PRA) of the Experimental Breeder Reactor II (EBR-II), a Department of Energy (DOE) Category A research reactor, has recently been completed at Argonne National Laboratory (ANL). The results of this PRA have shown that the decay heat removal system for EBR-II is extremely robust and reliable. In addition, the methodology used demonstrates how the actions of other systems not normally used for actions of other systems not normally used for decay heat removal can be used to expand the mission time of the decay heat removal system and further increase its reliability. The methodology may also be extended to account for the impact of non-safety systems in enhancing the reliability of other dedicated safety systems

  10. Preliminary study of the decay heat removal strategy for the gas demonstrator allegro

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, Gusztáv, E-mail: gusztav.mayer@energia.mta.hu [Hungarian Academy of Sciences, Centre for Energy Research, P.O. Box 49, H-1525 Budapest (Hungary); Bentivoglio, Fabrice, E-mail: fabrice.bentivoglio@cea.fr [CEA/DEN/DM2S/STMF/LMES, F-38054, Grenoble (France)

    2015-05-15

    Highlights: • Improved decay heat removal strategy was adapted for the 75 MW ALLEGRO MOX core. • New nitrogen injection strategy was proposed for the DEC LOCA transients. • Preliminary CATHARE study shows that most of the investigated transients fulfill criteria. • Further improvements and optimizations are needed for nitrogen injection. - Abstract: The helium cooled Gas Fast Reactor (GFR) is one of the six reactor concepts selected in the frame of the Generation IV International Forum. Since no gas cooled fast reactor has ever been built, a medium power demonstrator reactor – named ALLEGRO – is necessary on the road towards the 2400 MWth GFR power reactor. The French Commissariat à l’Energie Atomique (CEA) completed a wide range of studies during the early stage of development of ALLEGRO, and later the ALLEGRO reactor concept was developed in several European Union projects in parallel with the GFR2400. The 75 MW thermal power ALLEGRO is currently developed in the frame of the European ALLIANCE project. As a result of the collaboration between CEA and the Hungarian Academy of Sciences Centre for Energy Research (MTA EK) new improvements were done in the safety approach of ALLEGRO. A complete Decay Heat Removal (DHR) strategy was devised, relying on the primary circuits as a first way to remove decay heat using pony-motors to drive the primary blowers, and on the secondary and tertiary circuits being able to work in forced or natural circulation. Three identical dedicated loops circulating in forced convection are used as a second way to remove decay heat, and these loops can circulate in natural convection for pressurized transients, providing a third way to remove decay heat in case of accidents when the primary circuit is still under pressure. The possibility to use nitrogen to enhance both forced and natural circulation is discussed. This DHR strategy is supported by a wide range of accident transient simulations performed using the CATHARE2 code

  11. Emergency Cooling of Nuclear Power Plant Reactors With Heat Removal By a Forced-Draft Cooling Tower

    Energy Technology Data Exchange (ETDEWEB)

    Murav’ev, V. P., E-mail: murval1@mail.ru

    2016-07-15

    The feasibility of heat removal during emergency cooling of a reactor by a forced-draft cooling tower with accumulation of the peak heat release in a volume of precooled water is evaluated. The advantages of a cooling tower over a spray cooling pond are demonstrated: it requires less space, consumes less material, employs shorter lines in the heat removal system, and provides considerably better protection of the environment from wetting by entrained moisture.

  12. Passive safety systems for decay heat removal of MRX

    Energy Technology Data Exchange (ETDEWEB)

    Ochiai, M; Iida, H; Hoshi, T [Japan Atomic Energy Research Inst., Ibaraki (Japan). Nuclear Ship System Lab.

    1996-12-01

    The MRX (marine Reactor X) is an advanced marine reactor, its design has been studied in Japan Atomic Energy Research Institute. It is characterized by four features, integral type PWR, in-vessel type control rod drive mechanisms, water-filled containment vessel and passive decay heat removal system. A water-filled containment vessel is of great advantage since it ensures compactness of a reactor plant by realizing compact radiation shielding. The containment vessel also yields passive safety of MRX in the event of a LOCA by passively maintaining core flooding without any emergency water injection. Natural circulation of water in the vessels (reactor and containment vessels) is one of key factors of passive decay heat removal systems of MRX, since decay heat is transferred from fuel rods to atmosphere by natural circulation of the primary water, water in the containment vessel and thermal medium in heat pipe system for the containment vessel water cooling in case of long terms cooling after a LOCA as well as after reactor scram. Thus, the ideal of water-filled containment vessel is considered to be very profitable and significant in safety and economical point of view. This idea is, however, not so familiar for a conventional nuclear system, so experimental and analytical efforts are carried out for evaluation of hydrothermal behaviours in the reactor pressure vessel and in the containment vessel in the event of a LOCA. The results show the effectiveness of the new design concept. Additional work will also be conducted to investigate the practical maintenance of instruments in the containment vessel. (author). 4 refs, 9 figs, 2 tabs.

  13. Application of grey model on analyzing the passive natural circulation residual heat removal system of HTR-10

    Institute of Scientific and Technical Information of China (English)

    ZHOU Tao; PENG Changhong; WANG Zenghui; WANG Ruosu

    2008-01-01

    Using the grey correlation analysis, it can be concluded that the reactor pressure vessel wall temperature has the strongest effect on the passive residual heat removal system in HTR (High Temperature gas-cooled Reactor),the chimney height takes the second place, and the influence of inlet air temperature of the chimney is the least. This conclusion is the same as that analyzed by the traditional method. According to the grey model theory, the GM(1,1) and GM(1, 3) model are built based on the inlet air temperature of chimney, pressure vessel temperature and the chimney height. Then the effect of three factors on the heat removal power is studied in this paper. The model plays an important role on data prediction, and is a new method for studying the heat removal power. The method can provide a new theoretical analysis to the passive residual heat removal system of HTR.

  14. Decay Heat Removal in GEN IV Gas-Cooled Fast Reactors

    International Nuclear Information System (INIS)

    Lap-Yan, C.; Wie, T. Y. C.

    2009-01-01

    The safety goal of the current designs of advanced high-temperature thermal gas-cooled reactors (HTRs) is that no core meltdown would occur in a depressurization event with a combination of concurrent safety system failures. This study focused on the analysis of passive decay heat removal (DHR) in a GEN IV direct-cycle gas-cooled fast reactor (GFR) which is based on the technology developments of the HTRs. Given the different criteria and design characteristics of the GFR, an approach different from that taken for the HTRs for passive DHR would have to be explored. Different design options based on maintaining core flow were evaluated by performing transient analysis of a depressurization accident using the system code RELAP5-3D. The study also reviewed the conceptual design of autonomous systems for shutdown decay heat removal and recommends that future work in this area should be focused on the potential for Brayton cycle DHRs.

  15. Analysis of Multiple Spurious Operation Scenarios for Decay Heat Removal Function of CANDU Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Youngseung; Bae, Yeon-kyoung; Kim, Myungsu [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    The worst fire broke out in the Browns Ferry Nuclear Power Plant on March 22, 1975. A fire occurrence in a nuclear power plant has recognized a latently serious incident. Nuclear power plants should achieve and maintain the safe shutdown conditions during and after the occurrence of a fire. Functions of the safe shutdown are five such as the shutdown function, the decay heat removal function, the containment function, monitoring and control function, and the supporting function for CANDU type reactors. The purpose of this paper is to analyze that the decay heat removal function of the safe shutdown functions for CANDU type reactors is achieved under the fire induced multiple spurious operation. The scenarios of the fire induced multiple spurious operations (MSO) for the systems used for the decay heat cooling were analyzed. Additionally, Integrated Severe Accident Analysis code for CANDU plants (ISAAC) for determining success criteria of thermal hydraulic analysis was used. Decay heat cooling systems of CANDU reactors are the auxiliary feedwater system, the emergency water supply system, and the shutdown cooling system. A big fire can threat the safety of nuclear power plants, and safe shutdown conditions. The regulatory body in Korea requires the fire hazard analysis including fire induced MSOs. The safe shutdown functions for CANDU reactors are the shutdown function, the decay heat removal function, the containment function, the monitoring and control function, and the supporting service function. The number of spurious operations for the auxiliary feedwater system is more than six and that for the emergency water supply system is one. Additionally, misoperations for the shutdown cooling system are more than two. Accordingly, if total nine components could be spuriously operated, the decay heat removal function would be lost entirely.

  16. Analysis of Multiple Spurious Operation Scenarios for Decay Heat Removal Function of CANDU Reactors

    International Nuclear Information System (INIS)

    Lee, Youngseung; Bae, Yeon-kyoung; Kim, Myungsu

    2016-01-01

    The worst fire broke out in the Browns Ferry Nuclear Power Plant on March 22, 1975. A fire occurrence in a nuclear power plant has recognized a latently serious incident. Nuclear power plants should achieve and maintain the safe shutdown conditions during and after the occurrence of a fire. Functions of the safe shutdown are five such as the shutdown function, the decay heat removal function, the containment function, monitoring and control function, and the supporting function for CANDU type reactors. The purpose of this paper is to analyze that the decay heat removal function of the safe shutdown functions for CANDU type reactors is achieved under the fire induced multiple spurious operation. The scenarios of the fire induced multiple spurious operations (MSO) for the systems used for the decay heat cooling were analyzed. Additionally, Integrated Severe Accident Analysis code for CANDU plants (ISAAC) for determining success criteria of thermal hydraulic analysis was used. Decay heat cooling systems of CANDU reactors are the auxiliary feedwater system, the emergency water supply system, and the shutdown cooling system. A big fire can threat the safety of nuclear power plants, and safe shutdown conditions. The regulatory body in Korea requires the fire hazard analysis including fire induced MSOs. The safe shutdown functions for CANDU reactors are the shutdown function, the decay heat removal function, the containment function, the monitoring and control function, and the supporting service function. The number of spurious operations for the auxiliary feedwater system is more than six and that for the emergency water supply system is one. Additionally, misoperations for the shutdown cooling system are more than two. Accordingly, if total nine components could be spuriously operated, the decay heat removal function would be lost entirely

  17. Heat Removal Performance of Hybrid Control Rod for Passive In-Core Cooling System

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung Mo; Jeong, Yeong Shin; Kim, In Guk; Bang, In Cheol [UNIST, Ulsan (Korea, Republic of)

    2015-10-15

    The two-phase closed heat transfer device can be divided by thermosyphon heat pipe and capillary wicked heat pipe which uses gravitational force or capillary pumping pressure as a driving force of the convection of working fluid. If there is a temperature difference between reactor core and ultimate heat sink, the decay heat removal and reactor shutdown is possible at any accident conditions without external power sources. To apply the hybrid control rod to the commercial nuclear power plants, its modelling about various parameters is the most important work. Also, its unique geometry is coexistence of neutron absorber material and working fluid in a cladding material having annular vapor path. Although thermosyphon heat pipe (THP) or wicked heat pipe (WHP) shows high heat transfer coefficients for limited space, the maximum heat removal capacity is restricted by several phenomena due to their unique heat transfer mechanism. Validation of the existing correlations on the annular vapor path thermosyphon (ATHP) which has different wetted perimeter and heated diameter must be conducted. The effect of inner structure, and fill ratio of the working fluid on the thermal performance of heat pipe has not been investigated. As a first step of the development of hybrid heat pipe, the ATHP which contains neutron absorber in the concentric thermosyphon (CTHP) was prepared and the thermal performance of the annular thermosyphon was experimentally studied. The heat transfer characteristics and flooding limit of the annular vapor path thermosyphon was studied experimentally to model the performance of hybrid control rod. The following results were obtained: (1) The annular vapor path thermosyphon showed better evaporation heat transfer due to the enhanced convection between adiabatic and condenser section. (2) Effect of fill ratio on the heat transfer characteristics was negligible. (3) Existing correlations about flooding limit of thermosyphon could not reflect the annular vapor

  18. To capabilities of heat engines with gas working medium in closed cycle

    International Nuclear Information System (INIS)

    Kotov, V.M.; Tikhomirov, L.N.; Rajkhanov, N.A.; Kotov, S.V.

    2003-01-01

    The effort gives analysis of performance of engines and heat pumps with closed cycles based on use of well practiced adiabatic and isobaric processes. Advantages of theses cycles are demonstrated as compared to Stirling engines, and capabilities of their application in piston machines. (author)

  19. Performance of ALMR passive decay heat removal system

    International Nuclear Information System (INIS)

    Boardman, C.E.; Hunsbedt, A.

    1991-01-01

    The Advanced Liquid Metal Reactor (ALMR) concept has a totally passive safety-grade decay heat removal system referred to as the Reactor Vessel Auxiliary Cooling System (RVACS) that rejects heat from the small (471 MWt) modular reactor to the environmental air by natural convection heat transfer. The system has no active components, requires no operator action to initiate, and is inherently reliable. The RVACS can perform its function under off-normal or degraded operating conditions without significant loss in performance. Several such events are described and the RVACS thermal performance for each is given and compared to the normal operation performance. The basic RVACS performance as well as the performance during several off-normal events have been updated to reflect design changes for recycled fuel with minor actinides for end of equilibrium cycle conditions. The performance results for several other off-normal events involving various degrees of RVACS air flow passage blockages are presented. The results demonstrated that the RVACS is unusually tolerant to a wide range of postulated faults. (author)

  20. Heat Removal from Bipolar Transistor by Loop Heat Pipe with Nickel and Copper Porous Structures

    Science.gov (United States)

    Smitka, Martin; Malcho, Milan

    2014-01-01

    Loop heat pipes (LHPs) are used in many branches of industry, mainly for cooling of electrical elements and systems. The loop heat pipe is a vapour-liquid phase-change device that transfers heat from evaporator to condenser. One of the most important parts of the LHP is the porous wick structure. The wick structure provides capillary force to circulate the working fluid. To achieve good thermal performance of LHP, capillary wicks with high permeability and porosity and fine pore radius are expected. The aim of this work was to develop porous structures from copper and nickel powder with different grain sizes. For experiment copper powder with grain size of 50 and 100 μm and nickel powder with grain size of 10 and 25 μm were used. Analysis of these porous structures and LHP design are described in the paper. And the measurements' influences of porous structures in LHP on heat removal from the insulated gate bipolar transistor (IGBT) have been made. PMID:24959622

  1. Overview report of RAMONA-NEPTUN program on passive decay heat removal

    International Nuclear Information System (INIS)

    Weinberg, D.; Rust, K.; Hoffmann, H.

    1996-03-01

    The design of the advanced sodium-cooled European Fast Reactor provides a safety graded decay heat removal concept which ensures the coolability of the primary system by natural convection when forced cooling is lost. The findings of the RAMONA and NEPTUN experiments indicate that the decay heat can be safely removed by natural convection. The operation of the decay heat exchangers being installed in the upper plenum causes the formation of a thermal stratification associated with a pronounced temperature gradient. The vertical extent of the stratification and the qualitity of the gradient are depending on the fact whether a permeable or an impermeable shell covers the above core structure. A delayed startup time of the decay heat exchangers leads only to a slight increase of the temperatures in the upper plenum. A complete failure of half of the decay heat exchangers causes a higher temperature level in the primary system, but does not alter the global temperature distribution. The transient development of the temperatures is faster going on in a three-loop model than in a four-loop model due to the lower amount of heat stored in the compacter primary vessel. If no coolant reaches the core inlet side via the intermediate heat exchangers, the core remains coolable. In this case, cold water of the upper plenum penetrates into the subassemblies (thermosyphon effects) and the interwrapper spaces existing in the NEPTUN core. The core coolability from above is feasible without any difficulty though the temperatures increase to a minor degree at the top end of the core. The thermal hydraulic computer code FLUTAN was applied for the 3D numerical simulation of the majority of the steady state RAMONA and NEPTUN tests as well as for selected transient RAMONA tests. (orig./HP) [de

  2. Nitrogen Removal Characteristics of Pseudomonas putida Y-9 Capable of Heterotrophic Nitrification and Aerobic Denitrification at Low Temperature

    Directory of Open Access Journals (Sweden)

    Yi Xu

    2017-01-01

    Full Text Available The cold-adapted bacterium Pseudomonas putida Y-9 was investigated and exhibited excellent capability for nitrogen removal at 15°C. The strain capable of heterotrophic nitrification and aerobic denitrification could efficiently remove ammonium, nitrate, and nitrite at an average removal rate of 2.85 mg, 1.60 mg, and 1.83 mg NL−1 h−1, respectively. Strain Y-9 performed nitrification in preference to denitrification when ammonium and nitrate or ammonium and nitrite coexisted in the solution. Meantime, the presence of nitrate had no effect on the ammonium removal rate of strain Y-9, and yet the presence of high concentration of nitrite would inhibit the cell growth and decrease the nitrification rate. The experimental results indicate that P. putida Y-9 has potential application for the treatment of wastewater containing high concentrations of ammonium along with its oxidation products at low temperature.

  3. Experiments on the Heat Transfer and Natural Circulation Characteristics of the Passive Residual Heat Removal System for the Advanced Integral Type Reactor

    International Nuclear Information System (INIS)

    Park, Hyun-Sik; Choi, Ki-Yong; Cho, Seok; Park, Choon-Kyung; Lee, Sung-Jae; Song, Chul-Hwa; Chung, Moon-Ki; Lee, Un-Chul

    2004-01-01

    Experiments on the heat transfer characteristics and natural circulation performance of the passive residual heat removal system (PRHRS) for the SMART-P have been performed using the high temperature/high pressure thermal-hydraulic test facility (VISTA). The VISTA facility consists of the primary loop, the secondary loop, the PRHRS loop, and auxiliary systems to simulate the SMART-P, a pilot plant of the SMART. The primary loop is composed of the steam generator (SG) primary side, a simulated core, a main coolant pump, and loop piping, and the PRHRS loop consists of the SG secondary side, a PRHRS heat exchanger, and loop piping. The natural circulation performance of the PRHRS, the heat transfer characteristics of the PRHRS heat exchangers and the emergency cooldown tank (ECT), and the thermal-hydraulic behavior of the primary loop are intensively investigated. The experimental results show that the coolant flows steadily in the PRHRS loop and the heat transfers through the PRHRS heat exchanger and the emergency cooldown tank are sufficient enough to enable the natural circulation of the coolant. The results also show that the core decay heat can be sufficiently removed from the primary loop with the operation of the PRHRS. (authors)

  4. Concepts for passive heat removal and filtration systems under core meltdown conditions

    International Nuclear Information System (INIS)

    Wilhelm, J.G.; Neitzel, H.-J.

    1993-01-01

    The objective of the new containment concept being developed by KfK is the complete passive enclosure of a power reactor after a core meltdown accident by means of a solid containment structure and passive removal of the decay heat. This is to be accomplished by cooling the containment walls with ambient air, with thermoconvection as the driving force. The concept of the containment is described. Data are given of the heat removal and the requirements for filtration of the exhaust air, which is contaminated due to the leak rate assumed for the inner containment. The concept for the filter system is described. Various solutions for reduction of the large volumetric flow to be filtered are discussed. 3 refs., 8 figs

  5. Post shut-down decay heat removal from nuclear reactor core by natural convection loops in sodium pool

    Energy Technology Data Exchange (ETDEWEB)

    Rajamani, A. [Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036 (India); Sundararajan, T., E-mail: tsundar@iitm.ac.in [Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036 (India); Prasad, B.V.S.S.S. [Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036 (India); Parthasarathy, U.; Velusamy, K. [Nuclear Engineering Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India)

    2016-05-15

    Highlights: • Transient simulations are performed for a worst case scenario of station black-out. • Inter-wrapper flow between various sub-assemblies reduces peak core temperature. • Various natural convection paths limits fuel clad temperatures below critical level. - Abstract: The 500 MWe Indian pool type Prototype Fast Breeder Reactor (PFBR) has a passive core cooling system, known as the Safety Grade Decay Heat Removal System (SGDHRS) which aids to remove decay heat after shut down phase. Immediately after reactor shut down the fission products in the core continue to generate heat due to beta decay which exponentially decreases with time. In the event of a complete station blackout, the coolant pump system may not be available and the safety grade decay heat removal system transports the decay heat from the core and dissipates it safely to the atmosphere. Apart from SGDHRS, various natural convection loops in the sodium pool carry the heat away from the core and deposit it temporarily in the sodium pool. The buoyancy driven flow through the small inter-wrapper gaps (known as inter-wrapper flow) between fuel subassemblies plays an important role in carrying the decay heat from the sub-assemblies to the hot sodium pool, immediately after reactor shut down. This paper presents the transient prediction of flow and temperature evolution in the reactor subassemblies and the sodium pool, coupled with the safety grade decay heat removal system. It is shown that with a properly sized decay heat exchanger based on liquid sodium and air chimney stacks, the post shutdown decay heat can be safely dissipated to atmospheric air passively.

  6. Extending SIESTA capabilities: removing field-periodic and stellarator symmetric limitations

    Science.gov (United States)

    Cook, C. R.; Hirshman, S. P.; Sanchez, R.; Anderson, D. T.

    2011-10-01

    SIESTA is a three-dimensional magnetohydrodynamics equilibrium code capable of resolving magnetic islands in toroidal plasma confinement devices. Currently SIESTA assumes that plasma perturbations, and thus also magnetic islands, are field-periodic. This limitation is being removed from the code by allowing the displacement toroidal mode number to not be restricted to multiples of the number of field periods. Extending SIESTA in this manner will allow larger, lower-order resonant islands to form in devices such as CTH. An example of a non-field-periodic perturbation in CTH will be demonstrated. Currently the code also operates in a stellarator-symmetric fashion in which an ``up-down'' symmetry is present at some toroidal angle. Nearly all of the current tokamaks (and ITER in the future) operate with a divertor and as such do not possess stellarator symmetry. Removal of this symmetry restriction requires including both sine and cosine terms in the Fourier expansion for the geometry of the device and the fields contained within. The current status of this extension of the code will be discussed, along with the method of implementation. U.S. DOE Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC.

  7. Removal of contaminated asphalt layers by using heat generating powder metallic systems

    International Nuclear Information System (INIS)

    Barinov, A.S.; Karlina, O.K.; Ojovan, M.I.

    1996-01-01

    Heat generating systems on the base of powder metallic fuel were used for the removal of contaminated asphalt layers. Decontamination of spots which had complex geometric form was performed. Asphalt layers with deep contamination were removed essentially all radionuclides being retained in asphalt residue. Only a small part (1 - 2 %) of radionuclides could pass to combustion slag. No radionuclides were detected in aerosol-gas phase during decontamination process

  8. Thermal-hydraulic analysis of an innovative decay heat removal system for lead-cooled fast reactors

    International Nuclear Information System (INIS)

    Giannetti, Fabio; Vitale Di Maio, Damiano; Naviglio, Antonio; Caruso, Gianfranco

    2016-01-01

    Highlights: • LOOP thermal-hydraulic transient analysis for lead-cooled fast reactors. • Passive decay heat removal system concept to avoid lead freezing. • Solution developed for the diversification of the decay heat removal functions. • RELAP5 vs. RELAP5-3D comparison for lead applications. - Abstract: Improvement of safety requirements in GEN IV reactors needs more reliable safety systems, among which the decay heat removal system (DHR) is one of the most important. Complying with the diversification criteria and based on pure passive and very reliable components, an additional DHR for the ALFRED reactor (Advanced Lead Fast Reactor European Demonstrator) has been proposed and its thermal-hydraulic performances are analyzed. It consists in a coupling of two innovative subsystems: the radiative-based direct heat exchanger (DHX), and the pool heat exchanger (PHX). Preliminary thermal-hydraulic analyses, by using RELAP5 and RELAP5-3D© computer programs, have been carried out showing that the whole system can safely operate, in natural circulation, for a long term. Sensitivity analyses for: the emissivity of the DHX surfaces, the PHX water heat transfer coefficient (HTC) and the lead HTC have been carried out. In addition, the effects of the density variation uncertainty on the results has been analyzed and compared. It allowed to assess the feasibility of the system and to evaluate the acceptable range of the studied parameters. A comparison of the results obtained with RELAP5 and RELAP5-3D© has been carried out and the analysis of the differences of the two codes for lead is presented. The features of the innovative DHR allow to match the decay heat removal performance with the trend of the reactor decay heat power after shutdown, minimizing at the same time the risk of lead freezing. This system, proposed for the diversification of the DHR in the LFRs, could be applicable in the other pool-type liquid metal fast reactors.

  9. Thermal-hydraulic analysis of an innovative decay heat removal system for lead-cooled fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Giannetti, Fabio; Vitale Di Maio, Damiano; Naviglio, Antonio; Caruso, Gianfranco, E-mail: gianfranco.caruso@uniroma1.it

    2016-08-15

    Highlights: • LOOP thermal-hydraulic transient analysis for lead-cooled fast reactors. • Passive decay heat removal system concept to avoid lead freezing. • Solution developed for the diversification of the decay heat removal functions. • RELAP5 vs. RELAP5-3D comparison for lead applications. - Abstract: Improvement of safety requirements in GEN IV reactors needs more reliable safety systems, among which the decay heat removal system (DHR) is one of the most important. Complying with the diversification criteria and based on pure passive and very reliable components, an additional DHR for the ALFRED reactor (Advanced Lead Fast Reactor European Demonstrator) has been proposed and its thermal-hydraulic performances are analyzed. It consists in a coupling of two innovative subsystems: the radiative-based direct heat exchanger (DHX), and the pool heat exchanger (PHX). Preliminary thermal-hydraulic analyses, by using RELAP5 and RELAP5-3D© computer programs, have been carried out showing that the whole system can safely operate, in natural circulation, for a long term. Sensitivity analyses for: the emissivity of the DHX surfaces, the PHX water heat transfer coefficient (HTC) and the lead HTC have been carried out. In addition, the effects of the density variation uncertainty on the results has been analyzed and compared. It allowed to assess the feasibility of the system and to evaluate the acceptable range of the studied parameters. A comparison of the results obtained with RELAP5 and RELAP5-3D© has been carried out and the analysis of the differences of the two codes for lead is presented. The features of the innovative DHR allow to match the decay heat removal performance with the trend of the reactor decay heat power after shutdown, minimizing at the same time the risk of lead freezing. This system, proposed for the diversification of the DHR in the LFRs, could be applicable in the other pool-type liquid metal fast reactors.

  10. EFFECT OF HEAT-DISPERSING ON STICKIES AND THEIR REMOVAL IN POST-FLOTATION

    OpenAIRE

    Yang Gao,; Menghua Qin,; Hailong Yu,; Fengshan Zhang

    2012-01-01

    The effect of heat-dispersing on sticky substances in a deinking pulping line was studied under different conditions including varying temperature, disc clearance, and pulp consistency. Sticky substances were quantitatively investigated before and after the heat-dispersing, and categorized into macro-, mini-, and micro-stickies as well as dissolved and colloidal substances. Meanwhile, their extents of removal in post-flotation were evaluated. The results showed that raising temperature, reduc...

  11. Design of a sodium-air heat dissipator capable of transmitting powers till a megawatt

    International Nuclear Information System (INIS)

    Castellanos C, G.

    1977-01-01

    This is a theoretical study of the transport phenomenon in which emphasis is put on heat transference. From the chemical and nuclear point of view a revision is made of the sodium behavior as an agent of heat transference and as a fluid. The heat transference is analyzed on wide surfaces and the design of a sodium air heat dissipator capable of transferring powers at the range of a megawatt is presented with a simulation by computer. The results show that the heat transference coefficients don't vary in a great measure in relation with the temperature. This way we can use the caloric temperature for the determination of the sodium properties and the medium temperature for the determination of the air properties. (author)

  12. Heat removing device for nuclear reactor container facility

    Energy Technology Data Exchange (ETDEWEB)

    Tateno, Seiya; Tominaga, Kenji; Iwata, Yasutaka; Kinoshita, Shoichiro; Niino, Tsuyoshi

    1994-09-30

    A pressure suppression chamber incorporating pool water is disposed inside of a reactor container for condensating steams released to a dry well upon occurrence of abnormality. A pool is disposed at the outer circumference of the pressure suppression chamber having a steel wall surface of the reactor container as a partition wall. The outer circumferential pool is in communication with ocean by way of a lower communication pipeline and an upper communication pipeline. During normal plant operation state, partitioning valves disposed respectively to the upper and lower communication pipelines are closed, so that the outer circumferential pool is kept empty. After occurrence loss of coolant accident, steams generated by after-heat of the reactor core are condensated by pool water of the pressure suppression chamber, and the temperature of water in the pressure suppression chamber is gradually elevated. During the process, the partition valves of the upper and lower communication pipelines are opened to introduce cold seawater to the outer circumferential pool. With such procedures, heat of the outer circumferential pool is released to the sea by natural convection of seawater, thereby enabling to remove residual heat without dynamic equipments. (I.N.).

  13. Residual heat removal system diagnostic advisor

    International Nuclear Information System (INIS)

    Tripp, L.

    1991-01-01

    This paper reports on the Residual Heat Removal System (RHRS) Diagnostic Advisor which is an expert system designed to alert the operators to abnormal conditions that exits in the RHRS and offer advice about the cause of the abnormal conditions. The Advisor uses a combination of rule-based and model-based diagnostic techniques to perform its functions. This diagnostic approach leads to a deeper understanding of the RHRS by the Advisor and consequently makes it more robust to unexpected conditions. The main window of the interactive graphic display is a schematic diagram of the RHRS piping system. When a conclusion about a failed component can be reached, the operator can bring up windows that describe the failure mode of the component and a brief explanation about how the Advisor arrived at its conclusion

  14. Heat Removal from Bipolar Transistor by Loop Heat Pipe with Nickel and Copper Porous Structures

    Directory of Open Access Journals (Sweden)

    Patrik Nemec

    2014-01-01

    Full Text Available Loop heat pipes (LHPs are used in many branches of industry, mainly for cooling of electrical elements and systems. The loop heat pipe is a vapour-liquid phase-change device that transfers heat from evaporator to condenser. One of the most important parts of the LHP is the porous wick structure. The wick structure provides capillary force to circulate the working fluid. To achieve good thermal performance of LHP, capillary wicks with high permeability and porosity and fine pore radius are expected. The aim of this work was to develop porous structures from copper and nickel powder with different grain sizes. For experiment copper powder with grain size of 50 and 100 μm and nickel powder with grain size of 10 and 25 μm were used. Analysis of these porous structures and LHP design are described in the paper. And the measurements’ influences of porous structures in LHP on heat removal from the insulated gate bipolar transistor (IGBT have been made.

  15. Modeling of a heat sink and high heat flux vapor chamber

    Science.gov (United States)

    Vadnjal, Aleksander

    An increasing demand for a higher heat flux removal capability within a smaller volume for high power electronics led us to focus on a novel cold plate design. A high heat flux evaporator and micro channel heat sink are the main components of a cold plate which is capable of removing couple of 100 W/cm2. In order to describe performance of such porous media device a proper modeling has to be addressed. A universal approach based on the volume average theory (VAT) to transport phenomena in porous media is shown. An approach on how to treat the closure for momentum and energy equations is addressed and a proper definition for friction factors and heat transfer coefficients are discussed. A numerical scheme using a solution to Navier-Stokes equations over a representative elementary volume (REV) and the use of VAT is developed to show how to compute friction factors and heat transfer coefficients. The calculation show good agreement with the experimental data. For the heat transfer coefficient closure, a proper average for both fluid and solid is investigated. Different types of heating are also investigated in order to determine how it influences the heat transfer coefficient. A higher heat fluxes in small area condensers led us to the micro channels in contrast to the classical heat fin design. A micro channel can have various shapes to enhance heat transfer, but the shape that will lead to a higher heat flux removal with a moderate pumping power needs to be determined. The standard micro-channel terminology is usually used for channels with a simple cross section, e.g. square, round, triangle, etc., but here the micro channel cross section is going to be expanded to describe more complicated and interconnected micro scale channel cross sections. The micro channel geometries explored are pin fins (in-line and staggered) and sintered porous micro channels. The problem solved here is a conjugate problem involving two heat transfer mechanisms; (1) porous media

  16. Heat transfer capability analysis of heat pipe for space reactor

    International Nuclear Information System (INIS)

    Li Huaqi; Jiang Xinbiao; Chen Lixin; Yang Ning; Hu Pan; Ma Tengyue; Zhang Liang

    2015-01-01

    To insure the safety of space reactor power system with no single point failures, the reactor heat pipes must work below its heat transfer limits, thus when some pipes fail, the reactor could still be adequately cooled by neighbor heat pipes. Methods to analyze the reactor heat pipe's heat transfer limits were presented, and that for the prevailing capillary limit analysis was improved. The calculation was made on the lithium heat pipe in core of heat pipes segmented thermoelectric module converter (HP-STMC) space reactor power system (SRPS), potassium heat pipe as radiator of HP-STMC SRPS, and sodium heat pipe in core of scalable AMTEC integrated reactor space power system (SAIRS). It is shown that the prevailing capillary limits of the reactor lithium heat pipe and sodium heat pipe is 25.21 kW and 14.69 kW, providing a design margin >19.4% and >23.6%, respectively. The sonic limit of the reactor radiator potassium heat pipe is 7.88 kW, providing a design margin >43.2%. As the result of calculation, it is concluded that the main heat transfer limit of HP-STMC SRPS lithium heat pipe and SARIS sodium heat pipe is prevailing capillary limit, but the sonic limit for HP-STMC SRPS radiator potassium heat pipe. (authors)

  17. Concept Design of a Gravity Core Cooling Tank as a Passive Residual Heat Removal System for a Research Reactor

    International Nuclear Information System (INIS)

    Lee, Kwonyeong; Chi, Daeyoung; Kim, Seong Hoon; Seo, Kyoungwoo; Yoon, Juhyeon

    2014-01-01

    A core downward flow is considered to use a plate type fuel because it is benefit to install the fuel in the core. If a flow inversion from a downward to upward flow in the core by a natural circulation is introduced within a high heat flux region of residual heat, the fuel fails instantly due to zero flow. Therefore, the core downward flow should be sufficiently maintained until the residual heat is in a low heat flux region. In a small power research reactor, inertia generated by a flywheel of the PCP can maintain a downward flow shortly and resolve the problem of a flow inversion. However, a high power research reactor more than 10 MW should have an additional method to have a longer downward flow until a low heat flux. Usually, other research reactors have selected an active residual heat removal system as a safety class. But, an active safety system is difficult to design and expensive to construct. A Gravity Core Cooling Tank (GCCT) beside the reactor pool with a Residual Heat Removal Pipe connecting two pools was developed and designed preliminarily as a passive residual heat removal system for an open-pool type research reactor. It is very simple to design and cheap to construct. Additionally, a non-safety, but active residual heat removal system is applied with the GCCT. It is a Pool Water Cooling and Purification System. It can improve the usability of the research reactor by removing the thermal waves, and purify the reactor pool, the Primary Cooling System, and the GCCT. Moreover, it can reduce the pool top radiation level

  18. 2.5 MWT Heat Exchanger Designs for Passive DHRS in PGSFR

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dehee; Eoh, Jaehyuk; Lee, Tae-Ho [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Decay Heat Removal System (DHRS) of PGSFR consists of two passive DHRS (PDHRS) trains and two active DHRS (ADHRS) trains. Recently, total heat removal capacity of the DHRS in the PGSFR has increased to 10 MWT from 4 MWT reflecting safety analysis results. Consequently, DHRS components including heat exchangers, dampers, electro-magnetic pump, fan, piping, expansion tank and stack have been newly designed. In this work, physical models and correlations to design two main components of the PDHRS, decay heat exchanger (DHX) and natural-draft sodium-to-air heat exchanger (AHX), are introduced and designed data are presented. Physical models and correlations applied for heat exchangers in the PDHRS design were introduced and design works using the SHXSA and AHXSA codes has been completed for 2.5 MWT decay heat removal capability. DHX and AHX are designed utilizing SHXSA and AHXSA codes, respectively. Those design codes have capability of thermal sizing and performance analysis for the shell-and-tube type and counter-current flow heat exchanger unit. Since both SHXSA and AHXSA codes are similar, following description is focused on the SHXSA code. A single flow channel associated with an individual heat transfer tube is basically considered for thermal sizing and then the calculation results and design variables regarding heat transfer and pressure drop, etc. are extended to whole tubes. Various correlations of heat transfer and pressure loss for the shell- and tubeside flows were implemented in the computer codes. The analysis domain is discretized into several control volumes and heat transfer and pressure losses are calculated in each control volume.

  19. Heat transport and afterheat removal for gas cooled reactors under accident conditions

    International Nuclear Information System (INIS)

    2001-01-01

    The Co-ordinated Research Project (CRP) on Heat Transport and Afterheat Removal for Gas Cooled Reactors Under Accident Conditions was organized within the framework of the International Working Group on Gas Cooled Reactors (IWGGCR). This International Working Group serves as a forum for exchange of information on national programmes, provides advice to the IAEA on international co-operative activities in advanced technologies of gas cooled reactors (GCRs) and supports the conduct of these activities. Advanced GCR designs currently being developed are predicted to achieve a high degree of safety through reliance on inherent safety features. Such design features should permit the technical demonstration of exceptional public protection with significantly reduced emergency planning requirements. For advanced GCRs, this predicted high degree of safety largely derives from the ability of the ceramic coated fuel particles to retain the fission products under normal and accident conditions, the safe neutron physics behaviour of the core, the chemical stability of the core and the ability of the design to dissipate decay heat by natural heat transport mechanisms without reaching excessive temperatures. Prior to licensing and commercial deployment of advanced GCRs, these features must first be demonstrated under experimental conditions representing realistic reactor conditions, and the methods used to predict the performance of the fuel and reactor must be validated against these experimental data. Within this CRP, the participants addressed the inherent mechanisms for removal of decay heat from GCRs under accident conditions. The objective of this CRP was to establish sufficient experimental data at realistic conditions and validated analytical tools to confirm the predicted safe thermal response of advance gas cooled reactors during accidents. The scope includes experimental and analytical investigations of heat transport by natural convection conduction and thermal

  20. Experimental research on passive residual heat remove system for advanced PWR

    International Nuclear Information System (INIS)

    Huang Yanping; Zhuo Wenbin; Yang Zumao; Xiao Zejun; Chen Bingde

    2003-01-01

    The experimental and qualified results of MISAP in the research of passive residual heat remove system of advanced PWR performed in the Bubble physics and natural circulation laboratory in Nuclear Power Institute of China in the past ten years is overviewed. Further researches for engineering research and design are also suggested

  1. Tritium Removal by Laser Heating and Its Application to Tokamaks

    International Nuclear Information System (INIS)

    Skinner, C.H.; Gentile, C.A.; Guttadora, G.; Carpe, A.; Langish, S.; Young, K.M.; Nishi, M.; Shu, W.

    2001-01-01

    A novel laser heating technique has recently been applied to removing tritium from carbon tiles that had been exposed to deuterium-tritium (DT) plasmas in the Tokamak Test Fusion Reactor (TFTR). A continuous wave neodymium laser, of power up to 300 watts, was used to heat the surface of the tiles. The beam was focused to an intensity, typically 8 kW/cm 2 , and rapidly scanned over the tile surface by galvanometer-driven scanning mirrors. Under the laser irradiation, the surface temperature increased dramatically, and temperatures up to 2,300 degrees C were recorded by an optical pyrometer. Tritium was released and circulated in a closed-loop system to an ionization chamber that measured the tritium concentration. Most of the tritium (up to 84%) could be released by the laser scan. This technique appears promising for tritium removal in a next-step DT device as it avoids oxidation, the associated deconditioning of the plasma facing surfaces, and the expense of processing large quantities of tritium oxide. Some engineering aspects of the implementation of this method in a next-step fusion device will be discussed

  2. Design of DC Conduction Pump for PGSFR Active Decay Heat Removal System

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dehee; Hong, Jonggan; Lee, Taeho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    A DC conduction pump has been designed for the ADHRS of PGSFR. A VBA code developed by ANL was utilized to design and optimize the pump. The pump geometry dependent parameters were optimized to minimize the total current while meeting the design requirements. A double-C type dipole was employed to produce the calculated magnetic strength. Numerical simulations for the magnetic field strength and its distribution around the dipole and for the turbulent flow under magnetic force will be carried out. A Direct Current (DC) conduction Electromagnetic Pump (EMP) has been designed for Active Decay Heat Removal System (ADHRS) of PGSFR. The PGSFR has active as well as passive systems for the DHRS. The passive DHRS (PDHRS) works by natural circulation head and the ADHRS is driven by an EMP for the DHRS sodium loop and a blower for the finned-tube sodium-to-air heat exchanger (FHX). An Annular Linear Induction Pump (ALIP) can be also considered for the ADHRS, but DC conduction pump has been chosen. Selection basis of DHRS EMP is addressed and EMP design for single ADHRS loop with 1MWt heat removal capacity is introduced.

  3. Gas-Cooled Fast Reactor (GFR) Decay Heat Removal Concepts

    International Nuclear Information System (INIS)

    K. D. Weaver; L-Y. Cheng; H. Ludewig; J. Jo

    2005-01-01

    Current research and development on the Gas-Cooled Fast Reactor (GFR) has focused on the design of safety systems that will remove the decay heat during accident conditions, ion irradiations of candidate ceramic materials, joining studies of oxide dispersion strengthened alloys; and within the Advanced Fuel Cycle Initiative (AFCI) the fabrication of carbide fuels and ceramic fuel matrix materials, development of non-halide precursor low density and high density ceramic coatings, and neutron irradiation of candidate ceramic fuel matrix and metallic materials. The vast majority of this work has focused on the reference design for the GFR: a helium-cooled, direct power conversion system that will operate with an outlet temperature of 850 C at 7 MPa. In addition to the work being performed in the United States, seven international partners under the Generation IV International Forum (GIF) have identified their interest in participating in research related to the development of the GFR. These are Euratom (European Commission), France, Japan, South Africa, South Korea, Switzerland, and the United Kingdom. Of these, Euratom (including the United Kingdom), France, and Japan have active research activities with respect to the GFR. The research includes GFR design and safety, and fuels/in-core materials/fuel cycle projects. This report is a compilation of work performed on decay heat removal systems for a 2400 MWt GFR during this fiscal year (FY05)

  4. Study of passive residual heat removal system of a modular small PWR reactor

    International Nuclear Information System (INIS)

    Araujo, Nathália N.; Su, Jian

    2017-01-01

    This paper presents a study on the passive residual heat removal system (PRHRS) of a small modular nuclear reactor (SMR) of 75MW. More advanced nuclear reactors, such as generation III + and IV, have passive safety systems that automatically go into action in order to prevent accidents. The purpose of the PRHRS is to transfer the decay heat from the reactor's nuclear fuel, keeping the core cooled after the plant has shut down. It starts operating in the event of fall of power supply to the nuclear station, or in the event of an unavailability of the steam generator water supply system. Removal of decay heat from the core of the reactor is accomplished by the flow of the primary refrigerant by natural circulation through heat exchangers located in a pool filled with water located above the core. The natural circulation is caused by the density gradient between the reactor core and the pool. A thermal and comparative analysis of the PRHRS was performed consisting of the resolution of the mass conservation equations, amount of movement and energy and using incompressible fluid approximations with the Boussinesq approximation. Calculations were performed with the aid of Mathematica software. A design of the heat exchanger and the cooling water tank was done so that the core of the reactor remained cooled for 72 hours using only the PRHRS

  5. ALPHA - The long-term passive decay heat removal and aerosol retention program

    International Nuclear Information System (INIS)

    Guentay, S.; Varadi, G.; Dreier, J.

    1996-01-01

    The Paul Scherrer Institute initiated the major new experimental and analytical program ALPHA in 1990. The program is aimed at understanding the long-term decay heat removal and aerosol questions for the next generation of Passive Light Water Reactors. The ALPHA project currently includes four major items: the large-scale, integral system behaviour test facility PANDA, which will be used to examine multidimensional effects of the SBWR decay heat removal system; an investigation of the thermal hydraulics of natural convection and mixing in pools and large volumes (LINX); a separate-effects study of aerosols transport and deposition in plenum and tubes (AIDA); while finally, data from the PANDA facility and supporting separate effects tests will be used to develop and qualify models and provide validation of relevant system codes. The paper briefly reviews the above four topics and current status of the experimental facilities. (author). 3 refs, 12 figs

  6. ALPHA - The long-term passive decay heat removal and aerosol retention program

    Energy Technology Data Exchange (ETDEWEB)

    Guentay, S; Varadi, G; Dreier, J [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1996-12-01

    The Paul Scherrer Institute initiated the major new experimental and analytical program ALPHA in 1990. The program is aimed at understanding the long-term decay heat removal and aerosol questions for the next generation of Passive Light Water Reactors. The ALPHA project currently includes four major items: the large-scale, integral system behaviour test facility PANDA, which will be used to examine multidimensional effects of the SBWR decay heat removal system; an investigation of the thermal hydraulics of natural convection and mixing in pools and large volumes (LINX); a separate-effects study of aerosols transport and deposition in plenum and tubes (AIDA); while finally, data from the PANDA facility and supporting separate effects tests will be used to develop and qualify models and provide validation of relevant system codes. The paper briefly reviews the above four topics and current status of the experimental facilities. (author). 3 refs, 12 figs.

  7. Cyclic process for producing methane from carbon monoxide with heat removal

    Science.gov (United States)

    Frost, Albert C.; Yang, Chang-lee

    1982-01-01

    Carbon monoxide-containing gas streams are converted to methane by a cyclic, essentially two-step process in which said carbon monoxide is disproportionated to form carbon dioxide and active surface carbon deposited on the surface of a catalyst, and said carbon is reacted with steam to form product methane and by-product carbon dioxide. The exothermic heat of reaction generated in each step is effectively removed during each complete cycle so as to avoid a build up of heat from cycle-to-cycle, with particularly advantageous techniques being employed for fixed bed, tubular and fluidized bed reactor operations.

  8. Removal of Pb(II) from water by the activated carbon modified by nitric acid under microwave heating.

    Science.gov (United States)

    Yao, Shuheng; Zhang, Jiajun; Shen, Dekui; Xiao, Rui; Gu, Sai; Zhao, Ming; Liang, Junyu

    2016-02-01

    The rice husk based activated carbon (RH-AC) was treated by nitric acid under microwave heating, in order to improve its capability for the removal of heavy metal ions from water. The optimal conditions for the modification of RH-AC (M-RH-AC) were determined by means of orthogonal array experimental design, giving those as the concentration of nitric acid of 8mol/L, modification time of 15min, modification temperature of 130°C and microwave power of 800W. The characteristics of the M-RH-AC and RH-AC were examined by BET, XRD, Raman spectrum, pH titration, zeta potential, Boehm titration and FTIR analysis. The M-RH-AC has lower pore surface area, smaller crystallite, lower pHIEP and more oxygen-containing functional groups than the RH-AC. Removal capacity of Pb(II) ions by the M-RH-AC and RH-AC from water solution was estimated concerning the influence of contact time, pH value, and initial concentration. The equilibrium time of Pb(II) removal was found to be around 90min after modification process. Two kinetic models are adopted to describe the possible Pb(II) adsorption mechanism, finding that the adsorption rate of Pb(II) ions by the M-RH-AC is larger than that of RH-AC. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. An analysis of heat removal during cryogen spray cooling and effects of simultaneous airflow application.

    Science.gov (United States)

    Torres, J H; Tunnell, J W; Pikkula, B M; Anvari, B

    2001-01-01

    Cryogen spray cooling (CSC) is a method used to protect the epidermis from non-specific thermal injury that may occur as a result of various dermatological laser procedures. However, better understanding of cryogen deposition and skin thermal response to CSC is needed to optimize the technique. Temperature measurements and video imaging were carried out on an epoxy phantom as well as human skin during CSC with and without simultaneous application of airflow which was intended to accelerate cryogen evaporation from the substrate surface. An inverse thermal conduction model was used to estimate heat flux and total heat removed. Lifetime of the cryogen film deposited on the surface of skin and epoxy phantom lasted several hundred milliseconds beyond the spurt, but could be reduced to the spurt duration by application of airflow. Values over 100 J/cm(3) were estimated for volumetric heat removed from the epidermis using CSC. "Film cooling" instead of "evaporative cooling" appears to be the dominant mode of CSC on skin. Estimated values of heat removed from the epidermis suggest that a cryogen spurt as long as 200 milliseconds is required to counteract heat generated by high laser fluences (e.g., in treatment of port wine stains) in patients with high concentration of epidermal melanin. Additional cooling beyond spurt termination can be avoided by simultaneous application of airflow, although it is unclear at the moment if avoiding the additional cooling would be beneficial in the actual clinical situation. Copyright 2001 Wiley-Liss, Inc.

  10. Aging assessment of Residual Heat Removal systems in Boiling Water Reactors

    International Nuclear Information System (INIS)

    Lofaro, R.J.; Aggarwal, S.

    1992-01-01

    The effects of aging on Residual Heat Removal systems in Boiling Water Reactors have been studied as part of the Nuclear Plant Aging Research Program. The aging phenomena has been characterized by analyzing operating experience from various national data bases. In addition, actual plant data was obtained to supplement and validate the data base findings

  11. Application of optimal estimation techniques to FFTF decay heat removal analysis

    International Nuclear Information System (INIS)

    Nutt, W.T.; Additon, S.L.; Parziale, E.A.

    1979-01-01

    The verification and adjustment of plant models for decay heat removal analysis using a mix of engineering judgment and formal techniques from control theory are discussed. The formal techniques facilitate dealing with typical test data which are noisy, redundant and do not measure all of the plant model state variables directly. Two pretest examples are presented. 5 refs

  12. Expeditionary Rubber Removal Capability

    Science.gov (United States)

    2006-12-31

    the modified spray unit or system with equivalent capabilities. 24 25 9.8. A pressure sensor or caster wheels should be incorporated into the...DISCUSSION 18 8.0 CONCLUSIONS 23 9.0 RECOMMENDATIONS 24 APPENDIX A – DETAILED LIST OF EQUIPMENT AND MODIFICATIONS 26 APPENDIX B – LIST OF SOURCES FOR...tall Weight – 4820 lb (No Attachments) Top Speed – 18 mph High Flow Hydraulics (Optional) – 26 gpm Steering – All Wheel Steering Cargo Max Load

  13. Studies related to emergency decay heat removal in EBR-II

    International Nuclear Information System (INIS)

    Singer, R.M.; Gillette, J.L.; Mohr, D.; Tokar, J.V.; Sullivan, J.E.; Dean, E.M.

    1979-01-01

    Experimental and analytical studies related to emergency decay heat removal by natural circulation in the EBR-II heat transport circuits are described. Three general categories of natural circulation plant transients are discussed and the resultant reactor flow and temperature response to these events are presented. these categories include the following: (1) loss of forced flow from decay power and low initial flow rates; (2) reactor scram with a delayed loss of forced flow; and (3) loss of forced flow with a plant protective system activated scram. In all cases, the transition from forced to natural convective flow was smooth and the peak in-core temperature rises were small to moderate. Comparisons between experimental measurements in EBR-II and analytical predictions of the NATDEMO code are included

  14. Heat removal tests on dry storage facilities for nuclear spent fuels

    International Nuclear Information System (INIS)

    Wataru, M.; Saegusa, T.; Koga, T.; Sakamoto, K.; Hattori, Y.

    1999-01-01

    In Japan, spent fuel generated in NPP is controlled and stored in dry storage facility away-from reactor. Natural convection cooling system of the storage facility is considered advantageous from both safety and economic point of view. In order to realize this type of facility it is necessary to develop an evaluation method for natural convection characteristics and to make a rational design taking account safety and economic factors. Heat removal tests with the reduces scale models of storage facilities (cask, vault and silo) identified the the flow pattern in the test modules. The temperature and velocity distributions were obtained and the heat transfer characteristics were evaluated

  15. Design of SMART waste heat removal dry cooling tower using solar energy

    International Nuclear Information System (INIS)

    Choi, Yong Jae; Jeong, Yong Hoon

    2014-01-01

    The 85% of cooling system are once-through cooling system and closed cycle wet cooling system. However, many countries are trying to reduce the power plant water requirement due to the water shortage and water pollution. Dry cooling system is investigated for water saving advantage. There are two dry cooling system which are direct and indirect cooling system. In direct type, turbine exhaust is directly cooled by air-cooled condenser. In indirect system, turbine steam is cooled by recirculating intermediate cooling water loop, then the loop is cooled by air-cooled heat exchanger in cooling tower. In this paper, the purpose is to remove SMART waste heat, 200MW by using newly designed tower. The possibility of enhancing cooling performance by solar energy is analyzed. The simple cooling tower and solar energy cooling tower are presented and two design should meet the purpose of removing SMART waste heat, 200MW. In first design, when tower diameter is 70m, the height of tower should be 360m high. In second design, the chimney height decrease from 360m to 180m as collector radius increase from 100m to 500m due to collector temperature enhancement by solar energy, To analyze solar cooling tower further, consideration of solar energy performance at night should be analyzed

  16. Design of SMART waste heat removal dry cooling tower using solar energy

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yong Jae; Jeong, Yong Hoon [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-10-15

    The 85% of cooling system are once-through cooling system and closed cycle wet cooling system. However, many countries are trying to reduce the power plant water requirement due to the water shortage and water pollution. Dry cooling system is investigated for water saving advantage. There are two dry cooling system which are direct and indirect cooling system. In direct type, turbine exhaust is directly cooled by air-cooled condenser. In indirect system, turbine steam is cooled by recirculating intermediate cooling water loop, then the loop is cooled by air-cooled heat exchanger in cooling tower. In this paper, the purpose is to remove SMART waste heat, 200MW by using newly designed tower. The possibility of enhancing cooling performance by solar energy is analyzed. The simple cooling tower and solar energy cooling tower are presented and two design should meet the purpose of removing SMART waste heat, 200MW. In first design, when tower diameter is 70m, the height of tower should be 360m high. In second design, the chimney height decrease from 360m to 180m as collector radius increase from 100m to 500m due to collector temperature enhancement by solar energy, To analyze solar cooling tower further, consideration of solar energy performance at night should be analyzed.

  17. Probabilistic analysis of the loss of the decay heat removal function for Creys-Malville reactor

    International Nuclear Information System (INIS)

    Lanore, J.M.; Villeroux-Lombard, C.; Bouscatie, F.; Pavret de la Rochefordiere, A.

    1982-01-01

    The classical fault tree/event tree methods do not take into account the dependence in time of the systems behaviour during the sequences, and that is quite unrealistic for the decay heat removal function. It was then necessary to use a new methodology based on functional states of the whole system and on transition laws between these states. Thus, the probabilistic analysis of the decay heat removal function for Creys-Malville plant is performed in a global way. The main accident sequences leading to the loss of the function are then determined a posteriori. The weak points are pointed out, in particular the importance of common mode failures

  18. Residual heat removal during accidental situations

    International Nuclear Information System (INIS)

    Depond, M.; Sureau, H.; Tellier, N.

    1983-07-01

    Existing emergency procedures, whose purpose is residual heat removal and a safe recovery are based on sequential analysis and initiating event diagnosis. This approach was found in some cases inappropriate and inefficient, specially in case of out-of-design accidents corresponding to multiple equipment failure or simultaneous human failures. To cope with these situations, a new approach was necessary. Parallel studies performed in France at Framatome (the designer) and Electricity de France (the utility) gave a new method, called NSSS physical states approach. Prior to the implementation of this method which necessitates further studies and developments, some improvements in the existing operating procedures derived from the NSSS physical states have already been achieved: that is the case for the safety injection control and the development of an emergency procedure called ''U1''. This paper will briefly physical states approach and present the ''U1'' procedure. The tools which will be used to chack these methods are also mentioned

  19. A decay heat removal system requiring no external energy

    International Nuclear Information System (INIS)

    Costes, D.; Fermandjian, J.

    1983-12-01

    A new Decay heat Removal System is described for PWR's with dry containment, i.e. a containment building which encloses no permanent reserve of cooling water. This new system is intended to provide a high level of safety since it uses no external energy, but only the thermodynamic energy of the air-steam-liquid water mixture generated in the containment after the failure of the primary circuit (''LOCA'') or of the secondary circuit. Thermodynamics of the system is evaluated first: after some design considerations, the use of the system for protecting actual PWR's is addressed

  20. Experimental study on heat transfer augmentation for high heat flux removal in rib-roughened narrow channels

    Energy Technology Data Exchange (ETDEWEB)

    Islam, M.S.; Monde, Masanori [Saga Univ. (Japan); Hino, Ryutaro; Haga, Katsuhiro; Sudo, Yukio

    1997-07-01

    Frictional pressure drop and heat transfer performance in a very narrow rectangular channel having one-sided constant heat flux and repeated-ribs for turbulent flow have been investigated experimentally, and their experimental correlations were obtained using the least square method. The rib pitch-to-height ratios(p/k) were 10 and 20 while holding the rib height constant at 0.2mm, the Reynolds number(Re) from 2,414 to 98,458 under different channel heights of 1.2mm, 2.97mm, and 3.24mm, the rib height-to-channel equivalent diameter(k/De) of 0.03, 0.04, and 0.09 respectively. The results show that the rib-roughened surface augments heat transfer 2-3 times higher than that of the smooth surface with the expense of 2.8-4 times higher frictional pressure drop under Re=5000-10{sup 5}, p/k=10, and H=1.2mm. Experimental results obtained by channel height, H=1.2mm shows a little bit higher heat transfer and friction factor performance than the higher channel height, H=3.24mm. The effect of fin and consequently higher turbulence intensity are responsible for producing higher heat transfer rates. The obtained correlations could be used to design the cooling passages between the target plates to remove high heat flux up to 12MW/m{sup 2} generated at target plates in a high-intensity proton accelerator system. (author). 54 refs.

  1. Experimental study on heat transfer augmentation for high heat flux removal in rib-roughened narrow channels

    International Nuclear Information System (INIS)

    Islam, M.S.; Monde, Masanori; Hino, Ryutaro; Haga, Katsuhiro; Sudo, Yukio.

    1997-07-01

    Frictional pressure drop and heat transfer performance in a very narrow rectangular channel having one-sided constant heat flux and repeated-ribs for turbulent flow have been investigated experimentally, and their experimental correlations were obtained using the least square method. The rib pitch-to-height ratios(p/k) were 10 and 20 while holding the rib height constant at 0.2mm, the Reynolds number(Re) from 2,414 to 98,458 under different channel heights of 1.2mm, 2.97mm, and 3.24mm, the rib height-to-channel equivalent diameter(k/De) of 0.03, 0.04, and 0.09 respectively. The results show that the rib-roughened surface augments heat transfer 2-3 times higher than that of the smooth surface with the expense of 2.8-4 times higher frictional pressure drop under Re=5000-10 5 , p/k=10, and H=1.2mm. Experimental results obtained by channel height, H=1.2mm shows a little bit higher heat transfer and friction factor performance than the higher channel height, H=3.24mm. The effect of fin and consequently higher turbulence intensity are responsible for producing higher heat transfer rates. The obtained correlations could be used to design the cooling passages between the target plates to remove high heat flux up to 12MW/m 2 generated at target plates in a high-intensity proton accelerator system. (author). 54 refs

  2. Reliability assessment on decay heat removal system of a fast reactor

    International Nuclear Information System (INIS)

    Hioki, Kazumasa

    1991-01-01

    The reliability of a decay heat removal system (DHRS) is influenced by the success criteria, the components which constitute the system, the support systems configuration, and the mission time. Assessments were performed to investigate quantitatively the effects of these items. Failure probabilities of DHRS under forced or natural circulation modes were calculated and then components and systems of large importance for each mode were identified. (author)

  3. Steam generator concept of a small HTR for reheating and for removal of the residual heat

    Energy Technology Data Exchange (ETDEWEB)

    Singh, J; Barnert, H; Hohn, H; Mondry, M [Institut fuer Reaktorenentwicklung, Kernforschungsanlage Juelich GmbH, Juelich (Germany)

    1988-07-01

    The steam generator of a small HTR is arranged above the core in an in line design of the primary loop, thereby helium flows upwards. Water flows downwards in the steam generator to realize cross flow. To achieve stable evaporation conditions during part load operation it is desired to realize upward evaporation in the steam generator. Moreover if the steam generator is also used as a heat sink for removal of residual heat, this desire of upwards evaporation becomes more imperative. It is possible to realize the design of steam generator with upwards evaporation by arranging a hot gas duct in its central region, so that hot helium can flow upwards through it. Therefore helium enters the steam generator from the top and flows downwards and water upwards. In the presented design, a heat exchanger is arranged in the central region of the steam generator instead of a hot gas duct. Hot helium of 750 deg. C flows upwards in this heat exchanger and thereby cools down to the temperature of about 700 deg. C before it enters the bundle of the steam generator at the top. Through an intermediate loop this heat is transferred outside the primary loop, where in an extra heat exchanger live steam is reheated to improve the thermal efficiency of the plant. This intermediate loop works on the basis of forced convection and transfer about 25 MW for reheating. During the shutdown operation of the reactor, this heat exchanger in the central region of the steam generator serves as a heat sink for removal of the residual heat through natural convection in the primary loop. At the same time it is further possible, that intermediate loop also works on the basis of natural convection, because during shutdown operation only a very small amount of heat has to be removed and moreover the outside heat exchanger can be arranged much higher above the central heat exchanger to get favourable conditions for the natural convection. Some of the highlights of the central heat exchanger are: coaxial

  4. Evaluation of Advanced Models for PAFS Condensation Heat Transfer in SPACE Code

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Byoung-Uhn; Kim, Seok; Park, Yu-Sun; Kang, Kyung Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Ahn, Tae-Hwan; Yun, Byong-Jo [Pusan National University, Busan (Korea, Republic of)

    2015-10-15

    The PAFS (Passive Auxiliary Feedwater System) is operated by the natural circulation to remove the core decay heat through the PCHX (Passive Condensation Heat Exchanger) which is composed of the nearly horizontal tubes. For validation of the cooling and operational performance of the PAFS, PASCAL (PAFS Condensing Heat Removal Assessment Loop) facility was constructed and the condensation heat transfer and natural convection phenomena in the PAFS was experimentally investigated at KAERI (Korea Atomic Energy Research Institute). From the PASCAL experimental result, it was found that conventional system analysis code underestimated the condensation heat transfer. In this study, advanced condensation heat transfer models which can treat the heat transfer mechanisms with the different flow regimes in the nearly horizontal heat exchanger tube were analyzed. The models were implemented in a thermal hydraulic safety analysis code, SPACE (Safety and Performance Analysis Code for Nuclear Power Plant), and it was evaluated with the PASCAL experimental data. With an aim of enhancing the prediction capability for the condensation phenomenon inside the PCHX tube of the PAFS, advanced models for the condensation heat transfer were implemented into the wall condensation model of the SPACE code, so that the PASCAL experimental result was utilized to validate the condensation models. Calculation results showed that the improved model for the condensation heat transfer coefficient enhanced the prediction capability of the SPACE code. This result confirms that the mechanistic modeling for the film condensation in the steam phase and the convection in the condensate liquid contributed to enhance the prediction capability of the wall condensation model of the SPACE code and reduce conservatism in prediction of condensation heat transfer.

  5. Applications of heat pipes for HVAC dehumidification at Walt Disney World

    International Nuclear Information System (INIS)

    Allen, P.J.; Dinh, K.

    1993-01-01

    This paper presents the theory and application of heat pipes for HVAC dehumidification purposes. In HVAC applications, a heat pipe is used as a heat exchanger that transfers heat from the return air directly to the supply air. The air is pre-cooled entering the cooling coil and reheated using the same heat removed from the return air. While consuming no energy, the heat pipe lets the evaporator coil operate at a lower temperature, increasing the moisture removal capabilities of the HVAC system by 50% to 100%. WALT DISNEY WORLD is currently testing several heat pipe applications ranging from 1 to 240 tons. The applications include (1) water attractions (2) museums/artifacts areas (3) resort guest rooms and (4) locker rooms. Actual energy usage and relative humidity reductions are shown to determine the effectiveness of the heat pipe as an energy efficient method of humidity control

  6. Scale analysis of decay heat removal system between HTR-10 and HTR-PM reactors under accidental conditions

    International Nuclear Information System (INIS)

    Roberto, Thiago D.; Alvim, Antonio C.M.

    2017-01-01

    The 10 MW high-temperature gas-cooled test module (HTR-10) is a graphite-moderated and helium-cooled pebble bed reactor prototype that was designed to demonstrate the technical and safety feasibility of this type of reactor project under normal and accidental conditions. In addition, one of the systems responsible for ensuring the safe operation of this type of reactor is the passive decay heat removal system (DHRS), which operates using passive heat removal processes. A demonstration of the heat removal capacity of the DHRS under accidental conditions was analyzed based on a benchmark problem for design-based accidents on an HTR-10, i.e., the pressurized loss of forced cooling (PLOFC) described in technical reports produced by the International Atomic Energy Agency. In fact, the HTR-10 is also a proof-of-concept reactor for the high-temperature gas-cooled reactor pebble-bed module (HTR-PM), which generates approximately 25 times more heat than the HTR-10, with a thermal power of 250 MW, thereby requiring a DHRS with a higher system capacity. Thus, because an HTR-10 is a prototype reactor for an HTR-PM, a scaling analysis of the heat transfer process from the reactor to the DHRS was carried out between the HTR-10 and HTR-PM systems to verify the distortions of scale and the differences between the main dimensionless numbers from the two projects. (author)

  7. Scale analysis of decay heat removal system between HTR-10 and HTR-PM reactors under accidental conditions

    Energy Technology Data Exchange (ETDEWEB)

    Roberto, Thiago D.; Alvim, Antonio C.M. [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (PEN/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Lapa, Celso M.F., E-mail: thiagodbtr@gmail.com, E-mail: lapa@ien.gov.br, E-mail: alvim@nuclear.ufrj.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    The 10 MW high-temperature gas-cooled test module (HTR-10) is a graphite-moderated and helium-cooled pebble bed reactor prototype that was designed to demonstrate the technical and safety feasibility of this type of reactor project under normal and accidental conditions. In addition, one of the systems responsible for ensuring the safe operation of this type of reactor is the passive decay heat removal system (DHRS), which operates using passive heat removal processes. A demonstration of the heat removal capacity of the DHRS under accidental conditions was analyzed based on a benchmark problem for design-based accidents on an HTR-10, i.e., the pressurized loss of forced cooling (PLOFC) described in technical reports produced by the International Atomic Energy Agency. In fact, the HTR-10 is also a proof-of-concept reactor for the high-temperature gas-cooled reactor pebble-bed module (HTR-PM), which generates approximately 25 times more heat than the HTR-10, with a thermal power of 250 MW, thereby requiring a DHRS with a higher system capacity. Thus, because an HTR-10 is a prototype reactor for an HTR-PM, a scaling analysis of the heat transfer process from the reactor to the DHRS was carried out between the HTR-10 and HTR-PM systems to verify the distortions of scale and the differences between the main dimensionless numbers from the two projects. (author)

  8. Heat removal tests for pressurized water reactor containment spray by largescale facility

    International Nuclear Information System (INIS)

    Motoki, Y.; Hashimoto, K.; Kitani, S.; Naritomi, M.; Nishio, G.; Tanaka, M.

    1983-01-01

    Heat removal tests for pressurized water reactor (PWR) containment spray were carried out to investigate effectiveness of the depressurization by Japan Atomic Energy Research Institute model containment (7-m diameter, 20 m high, and 708-m 3 volume) with PWR spray nozzles. The depressurization rate is influenced by the spray heat transfer efficiency and the containment wall surface heat transfer coefficient. The overall spray heat transfer efficiency was investigated with respect to spray flow rate, weight ratio of steam/air, and spray height. The spray droplet heat transfer efficiency was investigated whether the overlapping of spray patterns gives effect or not. The effect was not detectable in the range of large value of steam/air, however, it was better in the range of small value of it. The experimental results were compared with the calculated results by computer code CONTEMPT-LT/022. The overall spray heat transfer efficiency was almost 100% in the containment pressure, ranging from 2.5 to 0.9 kg/cm 2 X G, so that the code was useful on the prediction of the thermal hydraulic behavior of containment atmosphere in a PWR accident condition

  9. Possible design of PBR for passive decay heat removal

    International Nuclear Information System (INIS)

    Sambuu, Odmaa; Obara, Toru

    2016-01-01

    Conditions for design parameters of above-ground and underground, prismatic high-temperature gas-cooled reactor (HTGR)s for passive decay heat removal based on fundamental heat transfer mechanisms were obtained in the previous works. In the present study, analogous conditions were obtained for pebble bed reactors by performing the same procedure using the model for heat transfer in porous media of COMSOL 4.3a software, and the results were compared. For the power density profile, several approximated distributions together with original one throughout the 10-MWt high-temperature gas-cooled reactor-test module (HTR-10) were used, and it was found that an HTR-10 with a uniform power density profile has the higher safety margin than those with other profiles. In other words, the safety features of a PBR can be enhanced by flattening the power density profile. We also found that a prismatic HTGR with a uniform power density profile throughout the core has a greater safety margin than a PBR with the same design characteristics. However, when the power density profile is not flattened during the operation, the PBR with the linear power density profile has more safety margin than the prismatic HTGR with the same design parameters and with the power density profile by cosine and Bessel functions. (author)

  10. Design and modeling of an advanced marine machinery system including waste heat recovery and removal of sulphur oxides

    DEFF Research Database (Denmark)

    Frimann Nielsen, Rasmus; Haglind, Fredrik; Larsen, Ulrik

    2014-01-01

    the efficiency of machinery systems. The wet sulphuric acid process is an effective way of removing flue gas sulphur oxides from land-based coal-fired power plants. Moreover, organic Rankine cycles (ORC) are suitable for heat to power conversion for low temperature heat sources. This paper describes the design...... that an ORC placed after the conventional waste heat recovery system is able to extract the sulphuric acid from the exhaust gas, while at the same time increase the combined cycle thermal efficiency by 2.6%. The findings indicate that the technology has potential in marine applications regarding both energy...... and modeling of a highly efficient machinery system which includes the removal of exhaust gas sulphur oxides. The system consists of a two-stroke diesel engine, the wet sulphuric process for sulphur removal, a conventional steam Rankine cycle and an ORC. Results of numerical modeling efforts suggest...

  11. Modular Micromachined Si Heat Removal (MOMS Heat Removal): Electronic Integration and System Test

    National Research Council Canada - National Science Library

    Brown, Elliott

    2003-01-01

    ...: (1) insulated-gated bipolar transistors (IGBTs), and (2) laterally-diffused (LD) MOSFETs. Heat pipes were found to provide little or no advantage over conventional copper-based heat spreaders in both device applications...

  12. Heat release, time required, and cleaning ability of MTwo R and ProTaper universal retreatment systems in the removal of filling material.

    Science.gov (United States)

    Bramante, Clovis Monteiro; Fidelis, Natasha Siqueira; Assumpção, Tatiana Santos; Bernardineli, Norberti; Garcia, Roberto Brandão; Bramante, Alexandre Silva; de Moraes, Ivaldo Gomes

    2010-11-01

    This ex vivo study evaluated the heat release, time required, and cleaning efficacy of MTwo (VDW, Munich, Germany) and ProTaper Universal Retreatment systems (Dentsply/Maillefer, Ballaigues, Switzerland) and hand instrumentation in the removal of filling material. Sixty single-rooted human teeth with a single straight canal were obturated with gutta-percha and zinc oxide and eugenol-based cement and randomly allocated to 3 groups (n = 20). After 30-day storage at 37 °C and 100% humidity, the root fillings were removed using ProTaper UR, MTwo R, or hand files. Heat release, time required, and cleaning efficacy data were analyzed statistically (analysis of variance and the Tukey test, α = 0.05). None of the techniques removed the root fillings completely. Filling material removal with ProTaper UR was faster but caused more heat release. Mtwo R produced less heat release than the other techniques but was the least efficient in removing gutta-percha/sealer. ProTaper UR and MTwo R caused the greatest and lowest temperature increase on root surface, respectively; regardless of the type of instrument, more heat was released in the cervical third. Pro Taper UR needed less time to remove fillings than MTwo R. All techniques left filling debris in the root canals. Copyright © 2010 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  13. Assessment of predictive capabilities for aerodynamic heating in hypersonic flow

    Science.gov (United States)

    Knight, Doyle; Chazot, Olivier; Austin, Joanna; Badr, Mohammad Ali; Candler, Graham; Celik, Bayram; Rosa, Donato de; Donelli, Raffaele; Komives, Jeffrey; Lani, Andrea; Levin, Deborah; Nompelis, Ioannis; Panesi, Marco; Pezzella, Giuseppe; Reimann, Bodo; Tumuklu, Ozgur; Yuceil, Kemal

    2017-04-01

    The capability for CFD prediction of hypersonic shock wave laminar boundary layer interaction was assessed for a double wedge model at Mach 7.1 in air and nitrogen at 2.1 MJ/kg and 8 MJ/kg. Simulations were performed by seven research organizations encompassing both Navier-Stokes and Direct Simulation Monte Carlo (DSMC) methods as part of the NATO STO AVT Task Group 205 activity. Comparison of the CFD simulations with experimental heat transfer and schlieren visualization suggest the need for accurate modeling of the tunnel startup process in short-duration hypersonic test facilities, and the importance of fully 3-D simulations of nominally 2-D (i.e., non-axisymmmetric) experimental geometries.

  14. Failure Modes and Effects Analysis (FMEA) of the Residual Heat Removal System

    International Nuclear Information System (INIS)

    Eggleston, F.T.

    1976-01-01

    The Residual Heat Removal System (RHRS) transfer heat from the Reactor Coolant System (RCS) to the reactor plant Component Cooling System (CCS) to reduce the temperature of the RCS at a controlled rate during the second part of normal plant cooldown and maintains the desired temperature until the plant is restarted. By the use of an analytic tool, the Failure Modes and Effects Analysis, it is shown that the RHRS, because of its redundant two train design, is able to accommodate any credible component single failure with the only effect being an extension in the required cooldown time, thus demonstrating the reliability of the RHRS to perform its intended function

  15. Increase in the free radical scavenging capability of bitter gourd by a heat-drying process.

    Science.gov (United States)

    Wei, Lu; Shaoyun, Wang; Shutao, Liu; Jianwu, Zhou; Lijing, Ke; Pingfan, Rao

    2013-12-01

    Bitter gourd (Momordica charantia Linn.) is widely regarded as one of the best remedy foods for diabetes. The positive effect of bitter gourd on diabetes has been attributed in part to the remarkable free radical scavenging activity of its boiled water extract from sun-dried fruits. It is well known that a heat process significantly influences the antioxidant activity of fresh fruits. However, the heat drying processes of bitter gourd have not been studied so far. Here, we show that the free radical scavenging capability of bitter gourd extract significantly increases after the heat drying process, while the content of flavonoids and phenols, which are generally regarded as the main antioxidant components in bitter gourd, remain unaffected. Furthermore, the content of free amino acids and the total reducing sugar were found to decrease with increasing browning index, indicating the progression of the Maillard reaction, products of which are known to possess significant antioxidant activity. Therefore, it suggests that Maillard reaction products may be the main contributors to the increase in antioxidant capability. Finally, the bitter gourd extract with the higher antioxidant activity, was shown to manifest a corresponding higher proliferation activity on NIT-1 beta-cells. These results suggest that controllable conditions in the heat-drying processing of fresh bitter gourd fruit is of significance for enhancing the total free radical scavenging capacity, beta-cell proliferation activity and possibly the anti-diabetic activity of this fruit.

  16. System Study: Residual Heat Removal 1998-2014

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, John Alton [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-12-01

    This report presents an unreliability evaluation of the residual heat removal (RHR) system in two modes of operation (low-pressure injection in response to a large loss-of-coolant accident and post-trip shutdown-cooling) at 104 U.S. commercial nuclear power plants. Demand, run hours, and failure data from fiscal year 1998 through 2014 for selected components were obtained from the Institute of Nuclear Power Operations (INPO) Consolidated Events Database (ICES). The unreliability results are trended for the most recent 10 year period, while yearly estimates for system unreliability are provided for the entire active period. No statistically significant increasing trends were identified in the RHR results. A highly statistically significant decreasing trend was observed for the RHR injection mode start-only unreliability. Statistically significant decreasing trends were observed for RHR shutdown cooling mode start-only unreliability and RHR shutdown cooling model 24-hour unreliability.

  17. Method and device to remove the decay heat produced in the core of a nuclear reactor

    International Nuclear Information System (INIS)

    Loimann, E.; Reutler, H.

    1977-01-01

    For decay haet removal of the HTGR the heat absorbed by the top reflector is discharged by means of heat exchangers. For this purpose the heat exchangers are arranged between the top bricks consisting of graphite blocks. By convection or forced circulation with the aid of pumps the liquid coolant is flowing in a cycle between the individual heat exchangers connected in parallel and a heat sink arranged outside the containment. The distributing and collection pipes are mounted between the upper and lower thermal shield. The heat exchanger compartments themselves consist of double-walled hollow bodies with a disc-shaped section and a columnar part extending from there to one side respectively. (RW) [de

  18. Design of passive decay heat removal system using thermosyphon for low temperature and low pressure pool type LWR

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Jangsik; You, Byung Hyun; Jung, Yong Hun; Jeong, Yong Hoon [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2013-10-15

    In seawater desalination process which doesn't need high temperature steam, the reactor has profitability. KAIST has be developing the new reactor design, AHR400, for only desalination. For maximizing safety, the reactor requires passive decay heat removal system. In many nuclear reactors, DHR system is loop form. The DHR system can be designed simple by applying conventional thermosyphon, which is fully passive device, shows high heat transfer performance and simple structure. DHR system utilizes conventional thermosyphon and its heat transfer characteristics are analyzed for AHR400. For maximizing safety of the reactor, passive decay heat removal system are prepared. Thermosyphon is useful device for DHR system of low pressure and low temperature pool type reactor. Thermosyphon is operated fully passive and has simple structure. Bundle of thermosyphon get the goal to prohibit boiling in reactor and high pressure in reactor vessel.

  19. Development and validation of models for simulation of supercritical carbon dioxide Brayton cycles and application to self-propelling heat removal systems in boiling water reactors

    International Nuclear Information System (INIS)

    Venker, Jeanne

    2015-01-01

    The objective of the current work was to develop a model that is able to describe the transient behavior of supercritical carbon dioxide (sCO 2 ) Brayton cycles, to be applied to self-propelling residual heat removal systems in boiling water reactors. The developed model has been implemented into the thermohydraulic system code ATHLET. By means of this improved ATHLET version, novel residual heat removal systems, which are based on closed sCO 2 Brayton cycles, can be assessed as a retrofit measure for present light water reactors. Transient simulations are hereby of great importance. The heat removal system has to be modeled explicitly to account for the interaction between the system and the behavior of the plant during different accident conditions. As a first step, transport and thermodynamic fluid properties of supercritical carbon dioxide have been implemented in ATHLET to allow for the simulation of the new working fluid. Additionally, a heat transfer correlation has been selected to represent the specific heat transfer of supercritical carbon dioxide. For the calculation of pressure losses due to wall friction, an approach for turbulent single phase flow has been adopted that is already implemented in ATHLET. In a second step, a component model for radial compressors has been implemented in the system code. Furthermore, the available model for axial turbines has been adapted to simulate the transient behavior of radial turbines. All extensions have been validated against experimental data. In order to simulate the interaction between the self-propelling heat removal system and a generic boiling water reactor, the components of the sCO 2 Brayton cycle have been dimensioned with first principles. An available input deck of a generic BWR has then been extended by the residual heat removal system. The modeled application has shown that the extended version of ATHLET is suitable to simulate sCO 2 Brayton cycles and to evaluate the introduced heat removal system

  20. Experimental evaluation of sodium to air heat exchanger performance

    International Nuclear Information System (INIS)

    Vinod, V.; Pathak, S.P.; Paunikar, V.D.; Suresh Kumar, V.A.; Noushad, I.B.; Rajan, K.K.

    2013-01-01

    Highlights: ► Sodium to air heat exchangers are used to remove the decay heat produced in fast breeder reactor after shutdown. ► Finned tube sodium to air heat exchanger with sodium on tube side was tested for its heat transfer performance. ► A one dimensional computer code was validated by the experimental data obtained. ► Non uniform sodium and air flow distribution was present in the heat exchanger. - Abstract: Sodium to air heat exchangers (AHXs) is used in Prototype Fast Breeder Reactor (PFBR) circuits to reject the decay heat produced by the radioactive decay of the fission products after reactor shutdown, to the atmospheric air. The heat removal through sodium to air heat exchanger maintains the temperature of reactor components in the pool within safe limits in case of non availability of normal heat transport path. The performance of sodium to air heat exchanger is very critical to ensure high reliability of the decay heat removal systems in sodium cooled fast breeder reactors. Hence experimental evaluation of the adequacy of the heat transfer capability gives confidence to the designers. A finned tube cross flow sodium to air heat exchanger of 2 MW heat transfer capacity with sodium on tube side and air on shell side was tested in the Steam Generator Test Facility at Indira Gandhi Center for Atomic Research, India. Heat transfer experiments were carried out with forced circulation of sodium and air, which confirmed the adequacy of heat removal capacity of the heat exchanger. The testing showed that 2.34 MW of heat power is transferred from sodium to air at nominal flow and temperature conditions. A one dimensional computer code developed for design and analysis of the sodium to air heat exchanger was validated by the experimental data obtained. An equivalent Nusselt number, Nu eq is derived by approximating that the resistance of heat transfer from sodium to air is contributed only by the film resistance of air. The variation of Nu eq with respect

  1. Cyclic process for producing methane in a tubular reactor with effective heat removal

    Science.gov (United States)

    Frost, Albert C.; Yang, Chang-Lee

    1986-01-01

    Carbon monoxide-containing gas streams are converted to methane by a cyclic, essentially two-step process in which said carbon monoxide is disproportionated to form carbon dioxide and active surface carbon deposited on the surface of a catalyst, and said carbon is reacted with steam to form product methane and by-product carbon dioxide. The exothermic heat of reaction generated in each step is effectively removed during each complete cycle so as to avoid a build up of heat from cycle-to-cycle, with particularly advantageous techniques being employed for fixed bed, tubular and fluidized bed reactor operations.

  2. Experimental and analytical studies on the passive residual heat removal system for the advanced integral type reactor

    International Nuclear Information System (INIS)

    Park, Hyun-Sik; Choi, Ki-Yong; Cho, Seok; Park, Choon-Kyung; Lee, Sung-Jae; Song, Chul-Hwa; Chung, Moon-Ki

    2004-01-01

    An experiment on the thermal-hydraulic characteristics of the passive residual heat removal system (PRHRS) for an advanced integral type reactor, SMART-P, has been performed, and its experimental results have been analyzed using a best-estimated system analysis code, MARS. The experiment is performed to investigate the performance of the passive residual heat removal system using the high temperature and high pressure thermal-hydraulic test facility (VISTA) which simulates the SMART-P. The natural circulation performance of the PRHRS, the heat transfer characteristics of the PRHRS heat exchangers and the emergency cooldown tank (ECT), and the thermal-hydraulic behavior of the primary loop are investigated. The experimental results show that the coolant flows steadily in the PRHRS loop and the heat transfer through the PRHRS heat exchanger in the emergency cooldown tank is sufficient enough to enable a natural circulation of the coolant. Analysis on a typical PRHRS test has been carried out using the MARS code. The overall trends of the calculated flow rate, pressure, temperature, and heat transfer rate in the PRHRS are similar to the experimental data. There is good agreement between the experimental data and the calculated one for the fluid temperature in the PRHRS steam line. However, the calculated fluid temperature in the PRHRS condensate line is higher, the calculated coolant outlet temperature is lower, and the heat transfer rate through the PRHRS heat exchanger is lower than the experimental data. It seems that it is due to an insufficient heat transfer modeling in the pool such as the emergency cooldown tank in the MARS calculation. (author)

  3. Evaluation on the heat removal capacity of the first wall for water cooled breeder blanket of CFETR

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Kecheng, E-mail: jiangkecheng@ipp.ac.cn; Cheng, Xiaoman; Chen, Lei; Huang, Kai; Ma, Xuebin; Liu, Songlin

    2016-02-15

    Highlights: • Heat removal capacity of the FW is evaluated under BWR, PWR and He coolant inlet conditions. • Heat transfer property of the gas–liquid two phase and the two boiling crises are analyzed. • Heat removal capacity of water is larger than helium coolant. - Abstract: The water cooled ceramic breeder blanket (WCCB) is being researched for Chinese Fusion Engineering Test Reactor (CFETR). As an important component of the blanket, the FW should satisfy with the thermal requirements in any case. In this paper, three parameters including the heat removal capacity, coolant pressure drop as well as the temperature rise of the FW were investigated under different coolant velocity and heat flux from the plasma. Using the same first wall structure, two main water cooled schemes including Boiling Water Reactor (BWR, 7 MPa pressure and 265 °C temperature inlet) and Pressurized Water Reactor (PWR, 15 MPa pressure and 285 °C temperature inlet) conditions are discussed in the thermal hydraulic calculation. For further research, the thermal hydraulic characteristics of using helium as coolant (8 MPa pressure, 300 °C temperature inlet) are also explored to provide CFETR blanket design with more useful data supports. Without regard to the outlet coolant condition requirements of the blanket, the results indicate that the ultimate heat flux that the FW can resist is 2.2 MW/m{sup 2} at velocity of 5 m/s for BWR, 2.0 MW/m{sup 2} at velocity of 5 m/s for PWR and 0.87 MW/m{sup 2} for helium at velocity 100 m/s under the chosen operation condition. The detrimental departure from nucleate boiling (DNB) crisis would occur at the velocity of 1 m/s under the heat flux of 3 MW/m{sup 2} and dry out crisis appears at the velocity of less than 0.2 m/s with the heat flux of more than 1 MW/m{sup 2} for BWR. The further blanket/FW optimization design is provided with more useful data references according to the abundant calculation results.

  4. Control of reactor coolant flow path during reactor decay heat removal

    International Nuclear Information System (INIS)

    Hunsbedt, A.N.

    1988-01-01

    This patent describes a sodium cooled reactor of the type having a reactor hot pool, a slightly lower pressure reactor cold pool and a reactor vessel liner defining a reactor vessel liner flow gap separating the hot pool and the cold pool along the reactor vessel sidewalls and wherein the normal sodium circuit in the reactor includes main sodium reactor coolant pumps having a suction on the lower pressure sodium cold pool and an outlet to a reactor core; the reactor core for heating the sodium and discharging the sodium to the reactor hot pool; a heat exchanger for receiving sodium from the hot pool, and removing heat from the sodium and discharging the sodium to the lower pressure cold pool; the improvement across the reactor vessel liner comprising: a jet pump having a venturi installed across the reactor vessel liner, the jet pump having a lower inlet from the reactor vessel cold pool across the reactor vessel liner and an upper outlet to the reactor vessel hot pool

  5. Study on enhancement of heat transfer of reactor vessel auxiliary cooling system of fast breeder reactor

    International Nuclear Information System (INIS)

    Nishi, Yoshihisa; Kinoshita, Izumi; Ueda, Nobuyuki; Furuya, Masahiro

    1996-01-01

    A reactor vessel auxiliary cooling system (RVACS), which is one of the decay heat removal systems of the fast breeder reactor (FBR), has passive safety as well as high reliability. However, the heat removal capability is relatively small, because its heat exchange is dependent on the natural convection of the air. The objectives of this report are to propose a heat transfer medium to enhance the heat transfer and to confirm the heat transfer performance of this system by experimental and analytical studies. From these studies, the following main results were obtained. (1) A porous plate with 5 mm thickness, 5 mm pore diameter, 92% porosity, was found to have the highest enhancement of heat transfer. (2) The heat transfer enhancement was demonstrated by large scale heat transfer experiments. Also, the heat transfer correlations, which can be used in the plant transient analyses, were derived from the experimental results. (3) Analysing the transient conditions of conventional pool-type FBR by means of the system analysis code, the applicable range of this system was assumed from the capability of the RVACS with porous plates. As a result, this type of RVACS was found to be applicable to conventional pool-type FBRs with capacity of about 500 MWe or less. (author)

  6. Development of evaluation method for heat removal design of dry storage facilities. Pt. 4. Numerical analysis on vault storage system of cross flow type

    International Nuclear Information System (INIS)

    Sakamoto, Kazuaki; Hattori, Yasuo; Koga, Tomonari; Wataru, Masumi

    1999-01-01

    On the basis of the result of the heat removal test on vault storage system of cross flow type using the 1/5 scale model, an evaluation method for the heat removal design was established. It was composed of the numerical analysis for the convection phenomena of air flow inside the whole facility and that for the natural convection and the detailed turbulent mechanism near the surface of the storage tube. In the former analysis, air temperature distribution in the storage area obtained by the calculation gave good agreement within ±3degC with the test result. And fine turbulence models were introduced in the latter analysis to predict the separation flow in the boundary layer near the surface of the storage tube and the buoyant flow generated by the heat from the storage tube. Furthermore, the properties of removing the heat in a designed full-scale storage facility, such as flow pattern in the storage area, temperature and heat transfer rate of the storage tubes, were evaluated by using each of three methods, which were the established numerical analysis method, the experimental formula demonstrated in the heat removal test and the conventional evaluation method applied to the past heat removal design. As a result, the safety margin and issues included in the methods were grasped, and the measures to make a design more rational were proposed. (author)

  7. Simultaneous removal of NO and SO2 using vacuum ultraviolet light (VUV)/heat/peroxymonosulfate (PMS).

    Science.gov (United States)

    Liu, Yangxian; Wang, Yan; Wang, Qian; Pan, Jianfeng; Zhang, Jun

    2018-01-01

    Simultaneous removal process of SO 2 and NO from flue gas using vacuum ultraviolet light (VUV)/heat/peroxymonosulfate (PMS) in a VUV spraying reactor was proposed. The key influencing factors, active species, reaction products and mechanism of SO 2 and NO simultaneous removal were investigated. The results show that vacuum ultraviolet light (185 nm) achieves the highest NO removal efficiency and yield of and under the same test conditions. NO removal is enhanced at higher PMS concentration, light intensity and oxygen concentration, and is inhibited at higher NO concentration, SO 2 concentration and solution pH. Solution temperature has a double impact on NO removal. CO 2 concentration has no obvious effect on NO removal. and produced from VUV-activation of PMS play a leading role in NO removal. O 3 and ·O produced from VUV-activation of O 2 also play an important role in NO removal. SO 2 achieves complete removal under all experimental conditions due to its very high solubility in water and good reactivity. The highest simultaneous removal efficiency of SO 2 and NO reaches 100% and 91.3%, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Numerical analyses of the effect of a biphasic thermosyphon vapor channel sizes on the heat transfer intensity when heat removing from a power transformer of combined heat and power station

    Directory of Open Access Journals (Sweden)

    Nurpeiis Atlant

    2017-01-01

    Full Text Available Numerical analyses of the effect of a biphasic thermosyphon vapor channel sizes on the heat transfer intensity was conducted when heat removing from an oil tank of a power transformer of combined heat and power station (CHP. The power transformer cooling system by the closed biphasic thermosyphon was proposed. The mathematical modeling of heat transfer and phase transitions of coolant in the thermosyphon was performed. The problem of heat transfer is formulated in dimensionless variables “velocity vorticity vector – current function – temperature” and solved by finite difference method. As a result of numerical simulation it is found that an increase in the vapor channel length from 0.15m to 1m leads to increasing the temperature difference by 3.5 K.

  9. Numerical simulation of flow field in cooling tower of passive residual heat removal system of HTGR

    International Nuclear Information System (INIS)

    Li Xiaowei; Zhang Li; Wu Xinxin; He Shuyan

    2011-01-01

    Environmental wind will influence the working conditions of natural convection cooling tower. The velocity and temperature fields in the natural convection cooling tower of the HTGR residual heat removal system at different environmental wind velocities were numerically simulated. The results show that, if there is no wind baffle, the flow in the cooling tower is blocked when environmental wind velocity is higher than 6 m/s, residual heat can hardly be removed, and when wind velocity is higher than 9 m/s, the air even flow downwards in the tower, so wind baffle is very necessary. With the wind baffle installed, the cooling tower works well at the wind speed even higher than 9 m/s. The optimum baffle size and positions are also analyzed. (authors)

  10. Reliability analysis on passive residual heat removal of AP1000 based on Grey model

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Shi; Zhou, Tao; Shahzad, Muhammad Ali; Li, Yu [North China Electric Power Univ., Beijing (China). School of Nuclear Science and Engineering; Beijing Key Laboratory of Passive Safety Technology for Nuclear Energy, Beijing (China); Jiang, Guangming [Nuclear Power Institute of China, Chengdu (China). Science and Technology on Reactor System Design Technology Laboratory

    2017-06-15

    It is common to base the design of passive systems on the natural laws of physics, such as gravity, heat conduction, inertia. For AP1000, a generation-III reactor, such systems have an inherent safety associated with them due to the simplicity of their structures. However, there is a fairly large amount of uncertainty in the operating conditions of these passive safety systems. In some cases, a small deviation in the design or operating conditions can affect the function of the system. The reliability of the passive residual heat removal is analysed.

  11. Development and validation of models for simulation of supercritical carbon dioxide Brayton cycles and application to self-propelling heat removal systems in boiling water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Venker, Jeanne

    2015-03-31

    The objective of the current work was to develop a model that is able to describe the transient behavior of supercritical carbon dioxide (sCO{sub 2}) Brayton cycles, to be applied to self-propelling residual heat removal systems in boiling water reactors. The developed model has been implemented into the thermohydraulic system code ATHLET. By means of this improved ATHLET version, novel residual heat removal systems, which are based on closed sCO{sub 2} Brayton cycles, can be assessed as a retrofit measure for present light water reactors. Transient simulations are hereby of great importance. The heat removal system has to be modeled explicitly to account for the interaction between the system and the behavior of the plant during different accident conditions. As a first step, transport and thermodynamic fluid properties of supercritical carbon dioxide have been implemented in ATHLET to allow for the simulation of the new working fluid. Additionally, a heat transfer correlation has been selected to represent the specific heat transfer of supercritical carbon dioxide. For the calculation of pressure losses due to wall friction, an approach for turbulent single phase flow has been adopted that is already implemented in ATHLET. In a second step, a component model for radial compressors has been implemented in the system code. Furthermore, the available model for axial turbines has been adapted to simulate the transient behavior of radial turbines. All extensions have been validated against experimental data. In order to simulate the interaction between the self-propelling heat removal system and a generic boiling water reactor, the components of the sCO{sub 2} Brayton cycle have been dimensioned with first principles. An available input deck of a generic BWR has then been extended by the residual heat removal system. The modeled application has shown that the extended version of ATHLET is suitable to simulate sCO{sub 2} Brayton cycles and to evaluate the introduced

  12. A value/impact assessment for alternative decay heat removal systems

    International Nuclear Information System (INIS)

    Cave, L.; Kastenberg, W.E.; Lin, K.Y.

    1984-01-01

    A Value/Impact assessment for several alternative decay heat removal systems has been carried out using several measures. The assessment is based on an extension of the methodology presented in the Value/Impact Handbook and includes the effects of uncertainty. The assessment was carried out as a function of site population density, existing plant features, and new plant features. Value/Impact measures based on population dose are shown to be sensitive to site, while measures which monetize and aggregate risk are less so. The latter are dominated by on-site costs such as replacement power costs. (orig.)

  13. Advanced materials for alternative fuel capable directly fired heat engines

    Energy Technology Data Exchange (ETDEWEB)

    Fairbanks, J.W.; Stringer, J. (eds.)

    1979-12-01

    The first conference on advanced materials for alternative fuel capable directly fired heat engines was held at the Maine Maritime Academy, Castine, Maine. It was sponsored by the US Department of Energy, (Assistant Secretary for Fossil Energy) and the Electric Power Research Institute, (Division of Fossil Fuel and Advanced Systems). Forty-four papers from the proceedings have been entered into EDB and ERA and one also into EAPA; three had been entered previously from other sources. The papers are concerned with US DOE research programs in this area, coal gasification, coal liquefaction, gas turbines, fluidized-bed combustion and the materials used in these processes or equipments. The materials papers involve alloys, ceramics, coatings, cladding, etc., and the fabrication and materials listing of such materials and studies involving corrosion, erosion, deposition, etc. (LTN)

  14. Shutdown decay heat removal analysis of a Babcock and Wilcox pressurized water reactor: Case study

    International Nuclear Information System (INIS)

    Cramond, W.R.; Ericson, D.M. Jr.; Sanders, G.A.

    1987-03-01

    This is one of six case studies for USI A-45 Decay Heat Removal (DHR) Requirements. The purpose of this study is to identify any potential vulnerabilities in the DHR systems of a typical Babcock and Wilcox PWR, to suggest possible modifications to improve the DHR capability, and to assess the value and impact of the most promising alternatives to the existing DHR systems. The systems analysis considered small LOCAs and transient internal initiating events, and seismic, fire, extreme wind, internal and external flood, and lightning external events. A full-scale systems analysis was performed with detailed fault trees and event trees including support system dependencies. The system analysis results were extrapolated into release categories using applicable past PRA phenomenological results and improved containment failure mode probabilities. Public consequences were estimated using site specific CRAC2 calculations. The Value-Impact (VI) analysis of possible alternatives considered both onsite and offsite impacts arriving at several risk measures such as averted population dose out to a 50-mile radius and dollars per person rem averted. Uncertainties in the VI analysis are discussed and the issues of feed and bleed and secondary blowdown are analyzed

  15. Removal of sulphur-containing odorants from fuel gases for fuel cell-based combined heat and power applications

    Energy Technology Data Exchange (ETDEWEB)

    De Wild, P.J.; Nyqvist, R.G.; De Bruijn, F.A.; Stobbe, E.R. [ECN Hydrogen and Clean Fossil Fuels, Petten (Netherlands)

    2006-02-15

    Natural gas (NG) and liquefied petroleum gas (LPG) are important potential feedstocks for the production of hydrogen for fuel cell-based (e.g. proton exchange membrane fuel cells (PEMFC)) or solid oxide fuel Cells (SOFC) combined heat and power (CHP) applications. To prevent detrimental effects on the (electro)catalysts in fuel cell-based combined heat and power installations (FC-CHP), sulphur removal from the feedstock is mandatory. An experimental bench-marking study of adsorbents has identified several candidates for the removal of sulphur containing odorants at low temperature. Among these adsorbents a new material has been discovered that offers an economically attractive means to remove TetraHydroThiophene (THT), the main European odorant, from natural gas at ambient temperature. The material is environmentally benign, easy to use and possesses good activity (residual sulphur levels below 20 ppbv) and capacity for the common odorant THT in natural gas. When compared to state-of-the-art metal-promoted active carbon the new material has a THT uptake capacity that is up to 10 times larger, depending on temperature and pressure. Promoted versions of the new material have shown potential for the removal of THT at higher temperatures and/or for the removal of other odorants such as mercaptans from natural gas or from LPG.

  16. Removal of sulphur-containing odorants from fuel gases for fuel cell-based combined heat and power applications

    Energy Technology Data Exchange (ETDEWEB)

    de Wild, P.J.; Nyqvist, R.G.; de Bruijn, F.A.; Stobbe, E.R. [Energy Research Centre of The Netherlands ECN, P.O. Box 1, 1755 ZG Petten (Netherlands)

    2006-09-22

    Natural gas (NG) and liquefied petroleum gas (LPG) are important potential feedstocks for the production of hydrogen for fuel cell-based (e.g. proton exchange membrane fuel cells (PEMFC) or solid oxide fuel Cells (SOFC) combined heat and power (CHP) applications. To prevent detrimental effects on the (electro)catalysts in fuel cell-based combined heat and power installations (FC-CHP), sulphur removal from the feedstock is mandatory. An experimental bench-marking study of adsorbents has identified several candidates for the removal of sulphur containing odorants at low temperature. Among these adsorbents a new material has been discovered that offers an economically attractive means to remove TetraHydroThiophene (THT), the main European odorant, from natural gas at ambient temperature. The material is environmentally benign, easy to use and possesses good activity (residual sulphur levels below 20ppbv) and capacity for the common odorant THT in natural gas. When compared to state-of-the-art metal-promoted active carbon the new material has a THT uptake capacity that is up to 10 times larger, depending on temperature and pressure. Promoted versions of the new material have shown potential for the removal of THT at higher temperatures and/or for the removal of other odorants such as mercaptans from natural gas or from LPG. (author)

  17. Development of margin assessment methodology of decay heat removal function against external hazards. (2) Tornado PRA methodology

    International Nuclear Information System (INIS)

    Nishino, Hiroyuki; Kurisaka, Kenichi; Yamano, Hidemasa

    2014-01-01

    Probabilistic Risk Assessment (PRA) for external events has been recognized as an important safety assessment method after the TEPCO's Fukushima Daiichi nuclear power station accident. The PRA should be performed not only for earthquake and tsunami which are especially key events in Japan, but also the PRA methodology should be developed for the other external hazards (e.g. tornado). In this study, the methodology was developed for Sodium-cooled Fast Reactors paying attention to that the ambient air is their final heat sink for removing decay heat under accident conditions. First, tornado hazard curve was estimated by using data recorded in Japan. Second, important structures and components for decay heat removal were identified and an event tree resulting in core damage was developed in terms of wind load and missiles (i.e. steel pipes, boards and cars) caused by a tornado. Main damage cause for important structures and components is the missiles and the tornado missiles that can reach those components and structures placed on high elevations were identified, and the failure probabilities of the components and structures against the tornado missiles were calculated as a product of two probabilities: i.e., a probability for the missiles to enter the intake or outtake in the decay heat removal system, and a probability of failure caused by the missile impacts. Finally, the event tree was quantified. As a result, the core damage frequency was enough lower than 10 -10 /ry. (author)

  18. Passive deca-heat removal in the fixed bed nuclear reactor (FBNR) - 15551

    International Nuclear Information System (INIS)

    Solano Diaz, E.C.; Luna Aguilera, G.M.; Santos, R.A.; Vaca, D.E.

    2015-01-01

    The Fixed Bed Nuclear Reactor (FBNR) is a Generation IV small reactor concept, where the spherical elements contain Triso-type microspheres with UO 2 , which serves as nuclear fuel. In the event that adverse operation conditions occur, the water pump is automatically shut off and the fuel pebbles fall back by gravity into the fuel chamber. Since the FBNR relies on passive security systems, the removal of the decay heat in the fuel chamber is achieved by contact with quiescent water. In the present paper, a mathematical simulation of the passive cooling of the system was conducted in SOLIDWORKS so as to obtain a temperature profile in the body during the decay heat removal process. Homogenization techniques were employed to smooth out spatial variations across the multiphase system and to derive expression for the effective thermophysical properties that are valid through the macroscopic entry (the chamber). The simulation showed that the chamber's temperature rose from 573 K to its maximum temperature, 1234 K, in the first hour. Afterwards, the temperature fluctuated, but stayed under 552 K. Since the temperature of the system was always kept under the value of the safety parameter (1200 C. degrees) the simulation confirmed that an effective passive cooling of the fuel chamber is indeed feasible. (authors)

  19. Study on grey theoretical model of passive residual heat removal system

    International Nuclear Information System (INIS)

    Zhou Tao; Yang Ruichang; Su, G.H.; Jia Dounan; Sugiyama, K.

    2004-01-01

    Natural Circulation Passive Residual Heat Removal System is treated as a Grey System by taking into account of its complexity and uncertainty of effect for factors each other. The magnitude and degree of some factors are confirmed by grey incidence analysis method; The one-one relationship of some variables is built by GM (1, 1) model; The relationship between key factor and other effect factors is built (1, 4) model. Grey model shows its more advantage of precision through comparing with multivariate model. (author)

  20. Influence of wick properties in a vertical LHP on remove waste heat from electronic equipment

    International Nuclear Information System (INIS)

    Smitka, Martin; Nemec, Patrik; Malcho, Milan

    2014-01-01

    The loop heat pipe is a vapour-liquid phase-change device that transfers heat from evaporator to condenser. One of the most important parts of the LHP is the porous wick structure. The wick structure provides capillary force to circulate the working fluid. To achieve good thermal performance of LHP, capillary wicks with high permeability and porosity and fine pore radius are expected. The aim of this work is to develop porous wick of sintered nickel powder with different grain sizes. These porous wicks were used in LHP and there were performed a series of measurements to remove waste heat from the insulated gate bipolar transistor (IGBT)

  1. Influence of wick properties in a vertical LHP on remove waste heat from electronic equipment

    Energy Technology Data Exchange (ETDEWEB)

    Smitka, Martin, E-mail: martin.smitka@fstroj.uniza.sk, E-mail: patrik.nemec@fstroj.uniza.sk, E-mail: milan.malcho@fstroj.uniza.sk; Nemec, Patrik, E-mail: martin.smitka@fstroj.uniza.sk, E-mail: patrik.nemec@fstroj.uniza.sk, E-mail: milan.malcho@fstroj.uniza.sk; Malcho, Milan, E-mail: martin.smitka@fstroj.uniza.sk, E-mail: patrik.nemec@fstroj.uniza.sk, E-mail: milan.malcho@fstroj.uniza.sk [University of Žilina, Faculty of Mechanical Engineering, Department of Power Engeneering, Univerzitna 1, 010 26 Žilina (Slovakia)

    2014-08-06

    The loop heat pipe is a vapour-liquid phase-change device that transfers heat from evaporator to condenser. One of the most important parts of the LHP is the porous wick structure. The wick structure provides capillary force to circulate the working fluid. To achieve good thermal performance of LHP, capillary wicks with high permeability and porosity and fine pore radius are expected. The aim of this work is to develop porous wick of sintered nickel powder with different grain sizes. These porous wicks were used in LHP and there were performed a series of measurements to remove waste heat from the insulated gate bipolar transistor (IGBT)

  2. Effect of short-term heat acclimation training on kinetics of lactate removal following maximal exercise.

    Science.gov (United States)

    Dileo, Tsavis D; Powell, Jeffrey B; Kang, Hyoung K; Roberge, Raymond J; Coca, Aitor; Kim, Jung-Hyun

    2016-01-01

    Heat acclimation (HA) evokes numerous physiological adaptations, improves heat tolerance and has also been shown to enhance lactate (LA) responses during exercise, similar to that seen with endurance training. The purpose of this study was to examine whether HA improves the body's ability to remove LA during recovery following maximal exercise. Ten healthy men completed two trials of maximal treadmill exercise (pre- and post-HA) separated by 5 days of HA. Each day of HA consisted of two 45 minute periods of cycling at ~50% VO2max separated by a 15min rest period in an environmental chamber (T(db) 45° C, RH 20%). In pre-/post-HA trials, venous blood was collected during 60 minutes of recovery to determine LA concentrations and removal kinetics (A2: amplitude and y2: velocity constant) using bi-exponential curve fitting. Physiological adaptation to heat was significantly developed during HA, as evidenced by end-exercise T(re) (DAY1 vs. 5) (38.89±0.56 vs. 38.66±0.44° C), T(sk) (38.07±0.51 vs. 37.66±0.48° C), HR (175.0±9.9 vs. 165.0±18.5 beats·min(-1)), and sweat rate (1.24 ±.26 vs. 1.47 ±0.27 L·min(-1)) (PLA concentrations (LA(0min): 8.78±1.08 vs. 8.69±1.23; LA(peak): 10.97±1.77 vs. 10.95±1.46; and La(60min); 2.88±0.82 vs. 2.96±0.93 mmol·L(-1)) or removal kinetics (A2: -13.05±7.05 vs -15.59±7.90 mmol.L(-1) and y2: 0.02±0.01 vs. 0.03±.01 min(-1)). The present study concluded that, while effective in inducing thermo-physiological adaptations to heat stress, short-term HA does not improve the body's ability to remove LA following maximal exercise. Therefore, athletes and workers seeking faster LA recovery from intense physical activity may not benefit from short-term HA.

  3. Analysis of the passive heat removal enhancement for AP1000 containment due to the partially wetted coverage

    Energy Technology Data Exchange (ETDEWEB)

    Li, Cheng, E-mail: 510395453@qq.com [State Nuclear Power Technology Research & Development Center, 102209 Beijing (China); Li, Le [Tsinghua University, Institute of Nuclear and New Energy Technology, 100084 Beijing (China); Li, Junming [Tsinghua University, Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Beijing 100084 (China); Zhang, Yajun [Tsinghua University, Institute of Nuclear and New Energy Technology, 100084 Beijing (China); Li, Zhihui [State Nuclear Power Technology Research & Development Center, 102209 Beijing (China)

    2017-03-15

    Highlights: • Heat removal by steam condensation, thermal conduction and evaporation is the most important scheme for AP1000 PCCS. Traditionally, studies on containment wall condensation and evaporation have been widely made, while it lacks studies on the shell two-dimension (2-D) thermal conduction. Currently, based on the known heat and mass transfer correlations and the phenomenon from water wetted coverage test, the physical model for 2-D thermal conduction is given and numerical simulation is then made. By discussions, it forms the following highlights. • The partially wetted surface can enhance the whole heat transfer process (including inner condensation, wall thermal conduction and outside cooling) and the maximum enhancement factor can be as large as 63%. There is an enhancement peak at around dry strip fraction a = 90%. When L is less than 0.03 m, its influence on heat transfer is small and the enhancement is mainly affected by dry coverage. However, for larger L, both α and L contribute much to larger enhancement. • Location at the spring line is often used for safety analysis and the dry strip fraction there for AP1000 is mainly at 10%–80%. Accordingly, further analysis is made on L (0.03 < L < 0.3) and a fitting expression is given for α = 10%–80%. It could be used to improve the corresponding software and it could also be used for containment scaling-down criteria analysis. - Abstract: AP1000 containment uses the water film evaporation, coupled with containment inner condensation, to remove the core decay heat. However, water film cannot fully cover heat transfer surface and dry-wetted strips appear. As a result, heat transfer within the containment shell is a two-dimension thermal conduction. Current work numerically studied the AP1000 heat removal enhancement due to the partially wetted coverage phenomenon. It used the evaporation and condensation boundary conditions and Fluent software to calculate the local heat fluxes and their

  4. Analysis of the passive heat removal enhancement for AP1000 containment due to the partially wetted coverage

    International Nuclear Information System (INIS)

    Li, Cheng; Li, Le; Li, Junming; Zhang, Yajun; Li, Zhihui

    2017-01-01

    Highlights: • Heat removal by steam condensation, thermal conduction and evaporation is the most important scheme for AP1000 PCCS. Traditionally, studies on containment wall condensation and evaporation have been widely made, while it lacks studies on the shell two-dimension (2-D) thermal conduction. Currently, based on the known heat and mass transfer correlations and the phenomenon from water wetted coverage test, the physical model for 2-D thermal conduction is given and numerical simulation is then made. By discussions, it forms the following highlights. • The partially wetted surface can enhance the whole heat transfer process (including inner condensation, wall thermal conduction and outside cooling) and the maximum enhancement factor can be as large as 63%. There is an enhancement peak at around dry strip fraction a = 90%. When L is less than 0.03 m, its influence on heat transfer is small and the enhancement is mainly affected by dry coverage. However, for larger L, both α and L contribute much to larger enhancement. • Location at the spring line is often used for safety analysis and the dry strip fraction there for AP1000 is mainly at 10%–80%. Accordingly, further analysis is made on L (0.03 < L < 0.3) and a fitting expression is given for α = 10%–80%. It could be used to improve the corresponding software and it could also be used for containment scaling-down criteria analysis. - Abstract: AP1000 containment uses the water film evaporation, coupled with containment inner condensation, to remove the core decay heat. However, water film cannot fully cover heat transfer surface and dry-wetted strips appear. As a result, heat transfer within the containment shell is a two-dimension thermal conduction. Current work numerically studied the AP1000 heat removal enhancement due to the partially wetted coverage phenomenon. It used the evaporation and condensation boundary conditions and Fluent software to calculate the local heat fluxes and their

  5. Control of reactor coolant flow path during reactor decay heat removal

    Science.gov (United States)

    Hunsbedt, Anstein N.

    1988-01-01

    An improved reactor vessel auxiliary cooling system for a sodium cooled nuclear reactor is disclosed. The sodium cooled nuclear reactor is of the type having a reactor vessel liner separating the reactor hot pool on the upstream side of an intermediate heat exchanger and the reactor cold pool on the downstream side of the intermediate heat exchanger. The improvement includes a flow path across the reactor vessel liner flow gap which dissipates core heat across the reactor vessel and containment vessel responsive to a casualty including the loss of normal heat removal paths and associated shutdown of the main coolant liquid sodium pumps. In normal operation, the reactor vessel cold pool is inlet to the suction side of coolant liquid sodium pumps, these pumps being of the electromagnetic variety. The pumps discharge through the core into the reactor hot pool and then through an intermediate heat exchanger where the heat generated in the reactor core is discharged. Upon outlet from the heat exchanger, the sodium is returned to the reactor cold pool. The improvement includes placing a jet pump across the reactor vessel liner flow gap, pumping a small flow of liquid sodium from the lower pressure cold pool into the hot pool. The jet pump has a small high pressure driving stream diverted from the high pressure side of the reactor pumps. During normal operation, the jet pumps supplement the normal reactor pressure differential from the lower pressure cold pool to the hot pool. Upon the occurrence of a casualty involving loss of coolant pump pressure, and immediate cooling circuit is established by the back flow of sodium through the jet pumps from the reactor vessel hot pool to the reactor vessel cold pool. The cooling circuit includes flow into the reactor vessel liner flow gap immediate the reactor vessel wall and containment vessel where optimum and immediate discharge of residual reactor heat occurs.

  6. Heat exchanger device and method for heat removal or transfer

    Science.gov (United States)

    Koplow, Jeffrey P

    2013-12-10

    Systems and methods for a forced-convection heat exchanger are provided. In one embodiment, heat is transferred to or from a thermal load in thermal contact with a heat conducting structure, across a narrow air gap, to a rotating heat transfer structure immersed in a surrounding medium such as air.

  7. GOTHIC-IST 6.1b code validation exercises relating to heat removal by dousing and air coolers in CANDU containment

    International Nuclear Information System (INIS)

    Ramachandran, S.; Krause, M.; Nguyen, T.

    2003-01-01

    This paper presents validation results relating to the use of the GOTHIC containment analysis code for CANDU safety analysis. The validation results indicate that GOTHIC predicts heat removal by dousing and air cooler heat transfer with reasonable accuracy. (author)

  8. Study of Capability of Zebra Mussel (Dreissena polymorpha in Nitrate and Phosphate Indirect Removal from Urban Wastewater

    Directory of Open Access Journals (Sweden)

    Leyli Gholamhosseini

    2007-03-01

    Full Text Available Zebra mussel (Dreissenidae polymorpha is capable of filtering great volumes of water due to its high population density. In this study, Nitrate and Phosphate removal capability of 3 shell masses (20, 40, and 60 gr in urban wastewater was investigated based on filtering rate measurements (using simultaneous phytoplankton, chlorella, and Scenedesmus cultures and indirect absorption of nitrate and phosphate in open and closed systems with 3 to 10 replications. Open and closed systems showed a positive correlation between shell weights and Nitrate and Phosphate filtration rates (R2 =0.99 but a negative correlation between influent Nitrate and Phosphate concentrations and their filtration rates (R2=0.97. Increasing of shell weights in the open system resulted in absorption rates of 0.08-0.2mg.l-1 of the shell dry weight for Nitrate and 0.02-0.04 mg.l-1 for Phosphate. In the closed system, these rates were 0.03-0.11 mg.l-1 of the shell dry weight for Nitrate absorption and 0.01-0.02 mg.l-1 for Phosphate. These results show that shell masses have a low nitrate and phosphate removal efficiency, especially in the case of phosphate, and they can not be, therefore, recommended for urban wastewater treatment.

  9. Investigation on natural convection decay heat removal for the EFR status of the program

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, F [Kernforschungszentrum Karlsruhe (Germany); Essig, C [Siemens AG, Bergisch Gladbach (Germany); Georgeoura, S [AEA Reactor Service, Dounreay (United Kingdom); Tenchine, D [CEA Grenoble (France)

    1993-02-01

    The European Research and Development (R+D) Program on decay heat removal by natural convection for the European Fast Reactor (EFR) covers the calculational methods and the model experiments performed for code validation. The studies concentrate on important physical effects of the cooling modes within the primary system and the direct reactor cooling circuits and include reactor experiments. (author)

  10. Investigation on natural convection decay heat removal for the EFR status of the program

    International Nuclear Information System (INIS)

    Hofmann, F.; Essig, C; Georgeoura, S.; Tenchine, D.

    1993-01-01

    The European Research and Development (R+D) Program on decay heat removal by natural convection for the European Fast Reactor (EFR) covers the calculational methods and the model experiments performed for code validation. The studies concentrate on important physical effects of the cooling modes within the primary system and the direct reactor cooling circuits and include reactor experiments. (author)

  11. Heat transfer capability of solar radiation in colored roof and influence on room thermal comfort

    Science.gov (United States)

    Syuhada, Ahmad; Maulana, Muhammad Ilham

    2018-02-01

    Colored zinc is the most widely used by people in Indonesia as the roof of the building. Each color has different heat absorption capability, the higher the absorption capacity of a roof will cause high room temperature. A high temperature in the room will cause the room is not thermally comfortable for activity. Lack of public knowledge about the ability of each color to absorb heat can cause errors in choosing the color of the roof of the building so that it becomes uncomfortable regarding thermal comfort. This study examined how big the ability of each color in influencing the heat absorption on the roof of the zinc. The purpose of this study is to examine which colors are the lowest to absorb radiation heat. This research used theexperimental method. Data collected by measuring the temperature of the environment above and below the colored tin roof, starting at 11:00 am until 15:00 pm. The zinc roofs tested in this study are zinc black, red zinc, green zinc, blue zinc, brown zinc, maroon zinc, orange zinc, zinc gray, zinc color chrome and zinc white color. The study results show that black and blackish colors will absorb more heat than other colors. While the color white or close to whitish color will absorb a slight heat.

  12. Assessment of the advantages of a residual heat removal system inside the reactor pressure vessel

    International Nuclear Information System (INIS)

    Gautier, G.M.

    1995-01-01

    In the framework of research on diversified means for removing the residual heat from pressurized water reactors, the CEA is studying a passive system called RRP (Refroidissement du Reacteur au Primaire, or primary circuit cooling system), which includes integrated heat-exchangers and a layout of the internal structures so as to obtain convection from the primary circuit inside the vessel, whatever the state of the loops. This system is operational for all primary circuit temperatures and pressures, as well as for a wide range of conditions: it is independent of the state of the loops, even if the volume of water in the primary circuit is small, it is compatible with either a passive or an active operation mode, and compatible with any other decay heat removal systems. An evaluation is presented here of the performance of the RRP system in the event of a small primary circuit break in a totally passive operation mode without the intervention of another system. The results of this evaluation show the interest of such a system: a clear increase of the time-delay for the implementation of a low pressure safety injection system, no need for the use of a high pressure safety injection system. (author). 4 refs., 7 figs., 1 tab

  13. Assessment of the advantages of a residual heat removal system inside the reactor pressure vessel

    Energy Technology Data Exchange (ETDEWEB)

    Gautier, G.M. [Commissariat a l`Energie Atomique, Saint-Paul-Lez-Durance (France)

    1995-09-01

    In the framework of research on diversified means for removing residual heat from pressurized water reactors, the CEA is studying a passive system called RRP (Refroidissement du Reacteur au Primaire, or primary circuit cooling system). This system consists of integrated heat-exchangers and a layout of the internal structures so as to obtain convection from the primary circuit inside the vessel, whatever the state of the loops. This system is operational for all primary circuit temperatures and pressures, as well as for a wide range of conditions: such as independent from the state of the loops, low volume of water in the primary circuit, compatibility with either a passive or an active operation mode, and compatibility with any other decay heat removal systems. This paper presents an evaluation of the performance of the RRP system in the event of a small primary circuit break in a totally passive operation mode without the intervention of any another system. The results of this evaluation show the potential interest of such a system: a clear increase of the time-delay for the implementation of a low pressure safety injection system and no need for the use of a high pressure safety injection system.

  14. Passive Decay Heat Removal Strategy of Integrated Passive Safety System (IPSS) for SBO-combined Accidents

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Ho; Chang, Soon Heung; Jeong, Yong Hoon [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-10-15

    The weak points of nuclear safety would be in outmoded nuclear power plants like the Fukushima reactors. One of the systems for the safety enhancement is integrated passive safety system (IPSS) proposed after the Fukushima accidents. It has the five functions for the prevention and mitigation of a severe accident. Passive decay heat removal (PDHR) strategy using IPSS is proposed for coping with SBO-combined accidents in this paper. The two systems for removing decay heat before core-melt were applied in the strategy. The accidents were simulated by MARS code. The reference reactor was OPR1000, specifically Ulchin-3 and 4. The accidents included loss-of-coolant accidents (LOCA) because the coolant losses could be occurred in the SBO condition. The examples were the stuck open of PSV, the abnormal open of SDV and the leakage of RCP seal water. Also, as LOCAs with the failure of active safety injection systems were considered, various LOCAs were simulated in SBO. Based on the thermal hydraulic analysis, the probabilistic safety analysis was carried out for the PDHR strategy to estimate the safety enhancement in terms of the variation of core damage frequency. AIMS-PSA developed by KAERI was used for calculating CDF of the plant. The IPSS was applied in the PDHR strategy which was developed in order to cope with the SBO-combined accidents. The estimation for initiating SGGI or PSIS was based on the pressure in RCS. The simulations for accidents showed that the decay heat could be removed for the safety duration time in SBO. The increase of safety duration time from the strategy provides the increase of time for the restoration of AC power.

  15. Heat transfer performance test of PDHRS heat exchangers of PGSFR using STELLA-1 facility

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jonggan, E-mail: hong@kaeri.re.kr; Yeom, Sujin; Eoh, Jae-Hyuk; Lee, Tae-Ho; Jeong, Ji-Young

    2017-03-15

    Highlights: • Heat transfer performance test of heat exchangers of PGSFR PDHRS is conducted using STELLA-1 facility. • Steady-state test results of DHX and AHX show good agreement with theoretical results of design codes. • Design codes for DHX and AHX are validated by STELLA-1 experimental results. • Heat transport capability of DHX and AHX is turned out to be satisfactory for reliable plant operation. - Abstract: The STELLA-1 facility was designed and constructed to carry out separate effect tests of the decay heat exchanger (DHX) and natural draft sodium-to-air heat exchanger (AHX), which are key components of the safety-grade decay heat removal system in PGSFR. The DHX is a sodium-to-sodium heat exchanger with a straight tube arrangement, and the AHX is a sodium-to-air heat exchanger with a helically coiled tube arrangement. The model heat exchangers in STELLA-1 have been designed to meet their own similitude conditions from the prototype ones, of which scale ratios were set to be unity in height (or length) and 1/2.5 in heat transfer rate. Consequently, the overall heat transfer coefficients and log-mean temperature differences of the prototypes have been preserved as well. The steady-state test results for each model heat exchanger obtained from STELLA-1 showed good agreement with the theoretical results of the computer design codes for thermal-sizing and a performance analysis of the DHX and AHX. In the DHX result comparison, the discrepancies in the heat transfer rate ranged from −4.4% to 2.0%, and in the AHX result comparison, they ranged from −11.1% to 12.6%. Therefore, the first step in thermal design codes validation for sodium heat exchangers, e.g., DHX and AHX, has been successfully completed with the experimental database obtained from STELLA-1. In addition, the heat transfer performance of the DHX and AHX was found to be satisfactory enough to secure a reliable decay heat removal performance.

  16. Calculations of heat transfer and liquid temperature for inspection vessel with irradiated center fuel module

    International Nuclear Information System (INIS)

    Harris, P.A.

    1978-01-01

    The operating environment for fuel requalification personnel has been reviewed. The review included both the use of heating and ventilating equipment and the waste-heat removal capabilities of the containment building during this operation. The results of the review indicate that the environment is acceptable for operating personnel without further modification to equipment designs. Operations personnel have stated that the major portion of the heating and ventilating system will be in continuous operation during all phases of LOFT reactor tests. Full isolation of the containment building will be used only when monitors indicate that a serious contamination hazard is present. The peak containment air temperature for the hottest summer day is calculated at 90F. Normal in-containment air temperature should be 75 to 85F. This temperature range is acceptable for operating personnel dressed in Anit-C clothing. Calculations of waste heat removal were prepared using three sets of assumptions and three pre-removal cooldown periods. A graphical representation of the results is attached

  17. PANDA passive decay heat removal transient test results

    International Nuclear Information System (INIS)

    Bandurski, Th.; Dreier, J.; Huggenberger, M.

    1997-01-01

    PANDA is a large scale facility for investigating the long-term decay heat removal from the containment of a next generation of 'passive' Advanced Light Water Reactors (ALWR). PANDA was used to examine the long-term LOCA response of the Passive Containment Cooling System (PCCS) for the General Electric (GE) Simplified Boiling Water Reactor (SBWR). The first PANDA test series had the dual objectives of demonstrating the performance of the SBWR PCCS and extending the data base available for containment analysis code qualification. The test objectives also include the study of the effects of mixing and stratification of steam and noncondensible gases in the drywell (DW) and in the suppression chamber or wetwell (WW). Ten tests were conducted in the course of the PANDA SBWR Program. The tests demonstrated a favorable and robust overall PCCS performance under different conditions. The present paper focuses on the main phenomena observed during the tests with respect to PCCS operation and DW gas mixing. (author)

  18. Numerical calculation and analysis of natural convection removal of the spent fuel residual heat of 10 MW high temperature gas cooled reactor

    International Nuclear Information System (INIS)

    Wang Jinhua; Huang Yifan; Wu Bin

    2013-01-01

    The spent fuel of 10 MW High Temperature Gas Cooled Reactor (HTR-10) could be stored in the shielded tank, and the tank is stored in the concrete shielded canister in spent fuel storage room, the residual heat of the spent fuel could be removed by the air. The ability of residual heat removal is analyzed in the paper, and the temperature field is numerically calculated through FEA program ANSYS, the analysis and the calculation are used to validate the safety of the spent fuel and the tank, the ultimate temperature of the spent fuel and the tank should below the safety limit. The calculation shows that the maximum temperature locates in the middle of the fuel pebble bed in the spent fuel tank, and the temperature decreases gradually with radial distance, the temperature in the tank body is evenly distributed, and the temperature in the concrete shielded canister decreases gradually with radial distance. It is feasible to remove the residual heat of the spent fuel storage tank by natural ventilation, in natural ventilation condition, the temperature of the spent fuel and the tank is lower than the temperature limit, which provides theoretical evidence for the choice of the residual heat removal method. (authors)

  19. SASSYS-1 modelling of RVACS/RACS heat removal in an LMR

    International Nuclear Information System (INIS)

    Dunn, F.E.

    1987-01-01

    The SASSYS-1 LMR systems analysis code contains a model for transient analysis of heat removal by a RVACS (Reactor Vessel Auxiliary Cooling System) or a RACS (Reactor Air Cooling System) in an LMR (Liquid Metal Reactor). This air-side RVACS/RACS model is coupled with the sodium-side primary loop thermal hydraulics model in SASSYS-1 to give a complete treatment of the problem. Application of this model to an unprotected loss-of-flow event in the PRISM rector shows that in the long run the RVACS cooling is sufficient to prevent unacceptably high system temperatures in this case

  20. Design and modeling of an advanced marine machinery system including waste heat recovery and removal of sulphur oxides

    DEFF Research Database (Denmark)

    Frimann Nielsen, Rasmus; Haglind, Fredrik; Larsen, Ulrik

    2013-01-01

    -stroke diesel engine and a conventional waste heat recovery system. The results suggest that an organic Rankine cycle placed after the conventional waste heat recovery system is able to extract the sulphuric acid from the exhaust gas, while at the same time increase power generation from waste heat by 32...... consists of a two-stroke diesel engine, the wet sulphuric process for sulphur removal and an advanced waste heat recovery system including a conventional steam Rankine cycle and an organic Rankine cycle. The results are compared with those of a state-of-the-art machinery system featuring a two...

  1. Study on thermalhydraulics of natural circulation decay heat removal in FBR. Experiment with water of typical reactor trip in the demonstration FBR

    International Nuclear Information System (INIS)

    Koga, Tomonari; Murakami, Takahiro; Eguchi, Yuzuru

    2010-01-01

    Intending to enhance safety and to reduce costs, an FBR plant is being developed in Japan. In relies solely on natural circulation of the primary cooling loop to remove a decay heat of the core after reactor trips. A water test was carried out to advance the development. The test used a 1/10 reduced scale model simulating the core and cooling systems. The experiments simulated representative accidents from steady state to decay heat removal through reactor trip and clarified thermal-hydraulic issues on the thermal circulation performance. Some modifications of the system design were proposed for solving serious problems of natural circulation. An improved design complying with the suggestions will make it possible for natural circulation of the cooling systems to remove the decay heat of the core without causing and unstable or unpredictable change. (author)

  2. Shutdown decay heat removal analysis: Plant case studies and special issues: Summary report

    International Nuclear Information System (INIS)

    Ericson, D.M. Jr.; Cramond, W.R.; Sanders, G.A.; Hatch, S.W.

    1989-04-01

    Shutdown Decay Heat Removal Requirements has been designated as Unresolved Safety Issue (USI) A-45. The overall objectives of the USI A-45 program were to evaluate the safety adequacy of decay heat removal (DHR) systems in existing light water reactor nuclear power plants and to assess the value and impact (benefit-cost) of alternative measures for improving the overall reliability of the DHR function. To provide the technical data required to meet these objectives a program was developed that examined the state of DHR system reliability in a sample of existing plants. This program identified potential vulnerabilities and identified and established the feasibility of potential measures to improve the reliability of the DHR function. A value/impact (V/I) analysis of the more promising of such measures was conducted and documented. This report summarizes those studies. In addition, because of the evolving nature of V/I analyses in support of regulation, a number of supporting studies related to appropriate procedures and measures for the V/I analyses were also conducted. These studies are also summarized herein. This report only summarizes findings of technical studies performed by Sandia National Laboratories as part of the program to resolve this issue. 46 refs., 7 figs., 124 tabs

  3. Investigation on natural convection decay heat removal for the EFR: Status of the program

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, H; Weinberg, D [Kernforschungszentrum Karlsruhe GmbH, IATF, Karlsruhe (Germany); Webster, R [AEA Reactor Services, Dounreay (United Kingdom)

    1991-07-01

    The European Research and Development Program on decay heat removal by natural convection for the European Fast Reactor (EFR) covers the calculational methods and the model experiments performed for code validation. The studies concentrate on important physical effects of the cooling modes withinthe primary system and the direct reactor cooling circuits and include fundamental tests as well as reactor experiments. (author)

  4. Unavailability of the residual system heat removal of Angra 1 by Bayesian networks considering dependent failures

    International Nuclear Information System (INIS)

    Gomes, Many R.S.; Melo, Paulo F.F.F. e

    2015-01-01

    This work models by Bayesian networks the residual heat removal system (SRCR) of Angra I nuclear power plant, using fault tree mapping for systematically identifying all possible modes of occurrence caused by a large loss of coolant accident (large LOCA). The focus is on dependent events, such as the bridge system structure of the residual heat removal system and the occurrence of common-cause failures. We used the Netica™ tool kit, Norsys Software Corporation and Python 2.7.5 for modeling Bayesian networks and Microsoft Excel for modeling fault trees. Working with dependent events using Bayesian networks is similar to the solutions proposed by other models, beyond simple understanding and ease of application and modification throughout the analysis. The results obtained for the unavailability of the system were satisfactory, showing that in most cases the system will be available to mitigate the effects of an accident as described above. (author)

  5. Unavailability of the residual system heat removal of Angra 1 by Bayesian networks considering dependent failures

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Many R.S.; Melo, Paulo F.F.F. e, E-mail: mgomes@con.ufrj.br, E-mail: frutuoso@nuclear.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Programa de Pos-Graduacao em Engenharia Nuclear

    2015-07-01

    This work models by Bayesian networks the residual heat removal system (SRCR) of Angra I nuclear power plant, using fault tree mapping for systematically identifying all possible modes of occurrence caused by a large loss of coolant accident (large LOCA). The focus is on dependent events, such as the bridge system structure of the residual heat removal system and the occurrence of common-cause failures. We used the Netica™ tool kit, Norsys Software Corporation and Python 2.7.5 for modeling Bayesian networks and Microsoft Excel for modeling fault trees. Working with dependent events using Bayesian networks is similar to the solutions proposed by other models, beyond simple understanding and ease of application and modification throughout the analysis. The results obtained for the unavailability of the system were satisfactory, showing that in most cases the system will be available to mitigate the effects of an accident as described above. (author)

  6. Passive Decay Heat Removal System Options for S-CO2 Cooled Micro Modular Reactor

    International Nuclear Information System (INIS)

    Moon, Jangsik; Jeong, Yong Hoon; Lee, Jeong Ik

    2014-01-01

    To achieve modularization of whole reactor system, Micro Modular Reactor (MMR) which has been being developed in KAIST took S-CO 2 Brayton power cycle. The S-CO 2 power cycle is suitable for SMR due to high cycle efficiency, simple layout, small turbine and small heat exchanger. These characteristics of S-CO 2 power cycle enable modular reactor system and make reduced system size. The reduced size and modular system motived MMR to have mobility by large trailer. Due to minimized on-site construction by modular system, MMR can be deployed in any electricity demand, even in isolated area. To achieve the objective, fully passive safety systems of MMR were designed to have high reliability when any offsite power is unavailable. In this research, the basic concept about MMR and Passive Decay Heat Removal (PDHR) system options for MMR are presented. LOCA, LOFA, LOHS and SBO are considered as DBAs of MMR. To cope with the DBAs, passive decay heat removal system is designed. Water cooled PDHR system shows simple layout, but has CCF with reactor systems and cannot cover all DBAs. On the other hand, air cooled PDHR system with two-phase closed thermosyphon shows high reliability due to minimized CCF and is able to cope with all DBAs. Therefore, the PDHR system of MMR will follows the air-cooled PDHR system and the air cooled system will be explored

  7. Theoretical Design of a Thermosyphon for Efficient Process Heat Removal from Next Generation Nuclear Plant (NGNP) for Production of Hydrogen

    International Nuclear Information System (INIS)

    Piyush Sabharwall; Fred Gunnerson; Akira Tokuhiro; Vivek Utgiker; Kevan Weaver; Steven Sherman

    2007-01-01

    The work reported here is the preliminary analysis of two-phase Thermosyphon heat transfer performance with various alkali metals. Thermosyphon is a device for transporting heat from one point to another with quite extraordinary properties. Heat transport occurs via evaporation and condensation, and the heat transport fluid is re-circulated by gravitational force. With this mode of heat transfer, the thermosyphon has the capability to transport heat at high rates over appreciable distances, virtually isothermally and without any requirement for external pumping devices. For process heat, intermediate heat exchangers (IHX) are required to transfer heat from the NGNP to the hydrogen plant in the most efficient way possible. The production of power at higher efficiency using Brayton Cycle, and hydrogen production requires both heat at higher temperatures (up to 1000 C) and high effectiveness compact heat exchangers to transfer heat to either the power or process cycle. The purpose for selecting a compact heat exchanger is to maximize the heat transfer surface area per volume of heat exchanger; this has the benefit of reducing heat exchanger size and heat losses. The IHX design requirements are governed by the allowable temperature drop between the outlet of the NGNP (900 C, based on the current capabilities of NGNP), and the temperatures in the hydrogen production plant. Spiral Heat Exchangers (SHE's) have superior heat transfer characteristics, and are less susceptible to fouling. Further, heat losses to surroundings are minimized because of its compact configuration. SHEs have never been examined for phase-change heat transfer applications. The research presented provides useful information for thermosyphon design and Spiral Heat Exchanger

  8. Studies on the characteristics of the separated heat pipe system with non-condensible gas for the use of the passive decay heat removal in reactor systems

    International Nuclear Information System (INIS)

    Hayashi, Takao; Ishi, Takayuki; Hayakawa, Hitoshi; Ohashi, Kazutaka

    1997-01-01

    Experiments on the separated heat pipe system of variable conductance type, which enclose non-condensible gas, have been carried out with intention of applying such system to passive decay heat removal of the modular reactors such as HTR plant. Basic experiments have been carried out on the experimental apparatus consisting of evaporator, vapor transfer tube, condenser tube and return tube which returns the condensed liquid back to the evaporator. Water and methanol were examined as the working fluids and nitrogen gas was enclosed as the non-condensible gas. The behaviors of the system were examined for the parametric changes of the heat input under the various pressures of nitrogen gas initially enclosed, including the case without enclosing N 2 gas for the comparison. The results of the experiments shows very clear features of self control characteristics. The self control mechanism was made clear, that is, in such system in which the condensing area in the condenser expands automatically in accordance with the increase of the heat input to keep the system temperature nearly constant. The working temperature of the system are clearly dependent on the pressure of the non-condensable gas initially enclosed, with higher system working temperature with higher initial gas pressure enclosed. The analyses were done on water and methanol as the working fluids, which show very good agreement with the experimental results. A lot of attractive applications are expected including the self switching feature with minimum heat loss during normal operation with maintaining the sufficient heat removal at accidents. (author)

  9. A study of a small nuclear power plant system for district heating

    International Nuclear Information System (INIS)

    Imamura, Mitsuru; Sato, Kotaro; Narabayashi, Tadashi; Shimazu, Yoichiro; Tsuji, Masashi

    2008-01-01

    We have studied nuclear power plant for district heating. Already some towns and villages in Hokkaido have requested small reactor for district heating. Using existing technology allows us to shorten development period and to keep a lid on development cost. We decided to develop new reactor based on 'MUTSU' reactor technology. 'MUTSU' had already proved its safety. And 'MUTSU' reactor was boron free reactor. It allows plant system to become more compact and simple. And load following capability by core reactivity become bigger. It means to reduce control rod movement. It leads to dependability enhancement. We calculated burn-up calculation of erbium addition fuel. In the result the core life became about 10 years. In the district heating system, there are not only district heating but also snow melting with warm water. It uses steam condenser's heat, which are only discharged now. This small plant has passive safety system. It is natural cooling of containment vessel. In case of loss of coolant accident, decay heat can remove by natural convection air cooling after 6 hours. Decay heat within 6 hours can remove by evaporative heat transfer of pool on containment vessel. (author)

  10. Reliability evaluation of power supply and distribution for special heat removal systems in nuclear power stations

    International Nuclear Information System (INIS)

    Jazbec, D.

    1982-01-01

    An example of the power supply and distribution of a Special Emergency Heat Removal System (SEHR) shows how an engineering organization may, with the aid of the analytical method of min-cut sets optimize the system reliability. Herein are given the necessary simple calculation methods. (Auth.)

  11. The steady-state modeling and optimization of a refrigeration system for high heat flux removal

    International Nuclear Information System (INIS)

    Zhou Rongliang; Zhang Tiejun; Catano, Juan; Wen, John T.; Michna, Gregory J.; Peles, Yoav; Jensen, Michael K.

    2010-01-01

    Steady-state modeling and optimization of a refrigeration system for high heat flux removal, such as electronics cooling, is studied. The refrigeration cycle proposed consists of multiple evaporators, liquid accumulator, compressor, condenser and expansion valves. To obtain more efficient heat transfer and higher critical heat flux (CHF), the evaporators operate with two-phase flow only. This unique operating condition necessitates the inclusion of a liquid accumulator with integrated heater for the safe operation of the compressor. Due to the projected incorporation of microchannels into the system to enhance the heat transfer in heat sinks, the momentum balance equation, rarely seen in previous vapor compression cycle heat exchangers modeling efforts, is utilized in addition to the mass and energy balance equations to capture the expected significant microchannel pressure drop witnessed in previous experimental investigations. Using the steady-state model developed, a parametric study is performed to study the effect of various external inputs on the system performance. The Pareto optimization is applied to find the optimal system operating conditions for given heat loads such that the system coefficient of performance (COP) is optimized while satisfying the CHF and other system operation constraints. Initial validation efforts show the good agreement between the experimental data and model predictions.

  12. Decay heat removal and heat transfer under normal and accident conditions in gas cooled reactors

    International Nuclear Information System (INIS)

    1994-08-01

    The meeting was convened by the International Atomic Energy Agency on the recommendation of the IAEA's International Working Group on Gas Cooled Reactors. It was attended by participants from China, France, Germany, Japan, Poland, the Russian Federation, Switzerland, the United Kingdom and the United States of America. The meeting was chaired by Prof. Dr. K. Kugeler and Prof. Dr. E. Hicken, Directors of the Institute for Safety Research Technology of the KFA Research Center, and covered the following: Design and licensing requirements for gas cooled reactors; concepts for decay heat removal in modern gas cooled reactors; analytical methods for predictions of thermal response, accuracy of predictions; experimental data for validation of predictive methods - operational experience from gas cooled reactors and experimental data from test facilities. Refs, figs and tabs

  13. Summary report of NEPTUN investigations into the steady state thermal hydraulics of the passive decay heat removal

    International Nuclear Information System (INIS)

    Rust, K.; Weinberg, D.; Hoffmann, H.; Frey, H.H.; Baumann, W.; Hain, K.; Leiling, W.; Hayafune, H.; Ohira, H.

    1995-12-01

    During the course of steady state NEPTUN investigations, the effects of different design and operating parameters were studied; in particular: The shell design of the above core sturcture, the core power, the number of decay heat exchangers put in operation, the complete flow path blockage at the primary side of the intermediate heat exchangers, and the fluid level in the primary vessel. The findings of the NEPTUN experiments indicate that the decay heat can be safely removed by natural convection. The interwrapper flow makes an essential contribution to that behavior. The decay heat exchangers installed in the upper plenum cause a thermal stratification associated with a pronounced gradient. The vertical extent of the stratification and the quantity of the gradient are depending on the fact whether a permeable or an impermeable shell covers the above core structure. An increase of the core power or a reduction of the number of decay heat exchangers being in operation leads to a higher temperature level in the primary system but does not alter the global temperature distribution. In the case that no coolant enters the inlet windows at the primary side of the intermediate and decay heat exchangers, the core remains coolable as far as the primary vessel is filled with fluid up to a minimum level. Cold water penetrates from the upper plenum into the core and removes the decay heat. The thermal hydraulic computer code FLUTAN was applied for the three-dimensional numerical simulation of the majority of NEPTUN tests reported here. The comparison of computed against experimental data indicates a qualitatively and quantitatively satisfying agreement of the findings with respect to the field of isotherms as well as the temperature profiles in the upper plenum and within the core region of very complex geometry. (orig./HP) [de

  14. Passive decay heat removal by natural air convection after severe accidents

    Energy Technology Data Exchange (ETDEWEB)

    Erbacher, F.J.; Neitzel, H.J. [Forschungszentrum Karlsruhe Institut fur Angewandte Thermo- und Fluiddynamik, Karlsruhe (Germany); Cheng, X. [Technische Universitaet Karlsruhe Institut fur Stroemungslehre und Stroemungsmaschinen, Karlsruhe (Germany)

    1995-09-01

    The composite containment proposed by the Research Center Karlsruhe and the Technical University Karlsruhe is to cope with severe accidents. It pursues the goal to restrict the consequences of core meltdown accidents to the reactor plant. One essential of this new containment concept is its potential to remove the decay heat by natural air convection and thermal radiation in a passive way. To investigate the coolability of such a passive cooling system and the physical phenomena involved, experimental investigations are carried out at the PASCO test facility. Additionally, numerical calculations are performed by using different codes. A satisfying agreement between experimental data and numerical results is obtained.

  15. Time evolution simulation of heat removal in a small water tank by natural convection

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, Carlos Alberto de, E-mail: carlos.freitas1950@hotmail.com [Instituto Federal do Rio de Janeiro (IFRJ), Nilopolis, RJ (Brazil); Jachic, Joao; Moreira, Maria de Lourdes, E-mail: jjachic@ien.gov.br, E-mail: malu@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2013-07-01

    One of the cooling modes for any source of heat such as in a shutdown nuclear core is the natural convection. The design specifications of any cooling pool can only be done when the removal heat rate and the corresponding mass flow rate is reasonably established. In our simulation scheme, we assumed that the body forces acting in the cubic water cell are: the weight, the drag force and the integrated pressure forces on the horizontal surfaces, the viscosity shear forces on the vertical surfaces and also a special viscosity drag force due to the mass dislocation along a Bernoulli type current tube outside the motive region. For a suitable time step, the uprising convection velocity is determined by an implicit and also by an explicit solution algorithm. The resulting differential equation depends on updating specific mass, dynamic viscosity and constant pressure heat coefficient with the last known temperature in the cell that absorbed heat. Numerical calculation software was performed using MATLAB’s technical computing language and then applied for a heat generation plate simulating a spent fuel assembler from a shutdown nuclear core. The results show time evolution of convection, terminal velocity and water temperature distribution. Pool dimension as well as pool level decrement are also determined for various air exhausting system conditions and heat rate of the spent fuel plate being cooled. (author)

  16. Time evolution simulation of heat removal in a small water tank by natural convection

    International Nuclear Information System (INIS)

    Freitas, Carlos Alberto de; Jachic, Joao; Moreira, Maria de Lourdes

    2013-01-01

    One of the cooling modes for any source of heat such as in a shutdown nuclear core is the natural convection. The design specifications of any cooling pool can only be done when the removal heat rate and the corresponding mass flow rate is reasonably established. In our simulation scheme, we assumed that the body forces acting in the cubic water cell are: the weight, the drag force and the integrated pressure forces on the horizontal surfaces, the viscosity shear forces on the vertical surfaces and also a special viscosity drag force due to the mass dislocation along a Bernoulli type current tube outside the motive region. For a suitable time step, the uprising convection velocity is determined by an implicit and also by an explicit solution algorithm. The resulting differential equation depends on updating specific mass, dynamic viscosity and constant pressure heat coefficient with the last known temperature in the cell that absorbed heat. Numerical calculation software was performed using MATLAB’s technical computing language and then applied for a heat generation plate simulating a spent fuel assembler from a shutdown nuclear core. The results show time evolution of convection, terminal velocity and water temperature distribution. Pool dimension as well as pool level decrement are also determined for various air exhausting system conditions and heat rate of the spent fuel plate being cooled. (author)

  17. Development of an Air-Source Heat Pump Integrated with a Water Heating / Dehumidification Module

    Energy Technology Data Exchange (ETDEWEB)

    Rice, C Keith [ORNL; Uselton, Robert B. [Lennox Industries, Inc; Shen, Bo [ORNL; Baxter, Van D [ORNL; Shrestha, Som S [ORNL

    2014-01-01

    A residential-sized dual air-source integrated heat pump (AS-IHP) concept is under development in partnership between ORNL and a manufacturer. The concept design consists of a two-stage air-source heat pump (ASHP) coupled on the air distribution side with a separate novel water heating/dehumidification (WH/DH) module. The motivation for this unusual equipment combination is the forecast trend for home sensible loads to be reduced more than latent loads. Integration of water heating with a space dehumidification cycle addresses humidity control while performing double-duty. This approach can be applied to retrofit/upgrade applications as well as new construction. A WH/DH module capable of ~1.47 L/h water removal and ~2 kW water heating capacity was assembled by the manufacturer. A heat pump system model was used to guide the controls design; lab testing was conducted and used to calibrate the models. Performance maps were generated and used in a TRNSYS sub-hourly simulation to predict annual performance in a well-insulated house. Annual HVAC/WH energy savings of ~35% are predicted in cold and hot-humid U.S. climates compared to a minimum efficiency baseline.

  18. Mathematical modelling for magnetite (crude removal from primary heat transfer loop by ion-exchange resins

    Directory of Open Access Journals (Sweden)

    Zeeshan Nawaz

    2009-04-01

    Full Text Available The present research focuses to develop mathematical model for the removal of iron (magnetite by ion-exchange resin from primary heat transfer loop of process industries. This mathematical model is based on operating capacities (that’s provide more effective design as compared to loading capacity from static laboratory tests. Results showed non-steady state distribution of external Fe2+ and limitations imposed on operating conditions, these conditions includes; loading and elution cycle time, flow rate, concentration of both loading and removal, volume of resin required. Number of generalized assumptions was made under shortcut modeling techniques to overcome the gap of theoretical and actual process design.

  19. Conceptual study of ferromagnetic pebbles for heat exhaust in fusion reactors with short power decay length

    Directory of Open Access Journals (Sweden)

    N. Gierse

    2015-03-01

    The key results of this study are that very high heat fluxes are accessible in the operation space of ferromagnetic pebbles, that ferromagnetic pebbles are compatible with tokamak operation and current divertor designs, that the heat removal capability of ferromagnetic pebbles increases as λq decreases and, finally, that for fusion relevant values of q∥ pebble diameters below 100 μm are required.

  20. Summary report for Group X6: Heat removal system and system analysis

    Energy Technology Data Exchange (ETDEWEB)

    Leung, W

    2005-12-15

    This report is a summary of the activities of the X6 design support for the Heat Removal System (HRS) of MEGAPIE. It can be divided into two main parts: The first part is about the design and manufacturing of he cooling loop (the first 3 chapters), and the second part is dealing with the thermal hydraulic analysis of the overall HRS. This also reflects the change of the X6 activities from design to operation support. The activities of this group are more or less driven by the needs rather than a complete set of tasks given at the start of the project. The first part chronicles the system development. Some of the arguments are probably outdated but are kept in the original form to illustrate the evolution of concepts. The main objective is, of course, to design a heat removal system that can cool the liquid metal spallation target for a 1 MW proton beam i.e. 1.74 mA in 575 MeV). It is also reckoned that the liquid metal, BE (lead-bismuth-eutectic), must be kept liquid even when the proton beam was switched off. This requires either that the cooling system can be shut down or the operating temperature of the coolant be higher than the freezing point of LBE. As for safety concerns, the HRS system must not exert a pressure that exceeds the design pressure of the target beam window in case of a break at the target heat exchanger (THX); this limits the cover gas pressure to about 4 bar(a). These are the basic design principles that carry through the conceptual and engineering design of he system. The organic coolant Diphyl THT was then chosen, because of its wide range of operating temperature (i.e. from 0 to 340 degC) and high boiling point, and a proven record in industrial applications. (author)

  1. Summary report for Group X6: Heat removal system and system analysis

    International Nuclear Information System (INIS)

    Leung, W.

    2005-12-01

    This report is a summary of the activities of the X6 design support for the Heat Removal System (HRS) of MEGAPIE. It can be divided into two main parts: The first part is about the design and manufacturing of he cooling loop (the first 3 chapters), and the second part is dealing with the thermal hydraulic analysis of the overall HRS. This also reflects the change of the X6 activities from design to operation support. The activities of this group are more or less driven by the needs rather than a complete set of tasks given at the start of the project. The first part chronicles the system development. Some of the arguments are probably outdated but are kept in the original form to illustrate the evolution of concepts. The main objective is, of course, to design a heat removal system that can cool the liquid metal spallation target for a 1 MW proton beam i.e. 1.74 mA in 575 MeV). It is also reckoned that the liquid metal, BE (lead-bismuth-eutectic), must be kept liquid even when the proton beam was switched off. This requires either that the cooling system can be shut down or the operating temperature of the coolant be higher than the freezing point of LBE. As for safety concerns, the HRS system must not exert a pressure that exceeds the design pressure of the target beam window in case of a break at the target heat exchanger (THX); this limits the cover gas pressure to about 4 bar(a). These are the basic design principles that carry through the conceptual and engineering design of he system. The organic coolant Diphyl THT was then chosen, because of its wide range of operating temperature (i.e. from 0 to 340 degC) and high boiling point, and a proven record in industrial applications. (author)

  2. Non-linear effects in vortex viscous flow in superconductors-role of finite heat removal velocity

    International Nuclear Information System (INIS)

    Bezuglyj, A.I.; Shklovskij, V.A.

    1991-01-01

    The role of finite heat removal velocity in experiments on non-linear effects in vortex viscous flow in superconducting films near critical temperature was investigated. It was shown that the account of thermal effects permits to explain the experimentally observed dependence of electron energy relaxation time and current break-down in voltage-current characteristic from magnetic field value. 5 refs.; 1 fig. (author)

  3. Technical specification improvements to containment heat removal and emergency core cooling systems: Final report

    International Nuclear Information System (INIS)

    Sullivan, W.P.; Ha, C.; Pentzien, D.C.; Visweswaran, S.

    1988-07-01

    This report presents the results of an analysis for technical specification improvements to the emergency core cooling systems (ECCS) and containment heat removal systems (EPRI Research Project 2142-3). The objective of this project is to further develop a reliability- and risk-based methodology to provide improvements by considering groups of surveillance test intervals and allowed out-of-service times jointly. This was done for the technical specifications for the ECCS, containment heat removal equipment, and supporting systems of a boiling water reactor plant. The project (1) developed a methodology for optimizing groups of surveillance test intervals and allowed out-of-service times jointly, (2) applied the methodology in a case study of a specific operating plant, Hatch-2, and (3) evaluated benefits of the application. The results of the case study demonstrate that beneficial technical specification improvements can be realized with application of the methodology. By tightening a small group of sensitive surveillance test intervals (STIs) and allowed out-of-service times (AOTs), a larger group of less sensitive STIs and AOTs can be extended resulting in an overall plant operating cost improvement without reducing the plant safety. The reliability- and risk-based methodology and results from this project can be effectively applied for technical specification improvements at other operating plants

  4. Removable orthodontic appliances: new perspectives on capabilities and efficiency.

    Science.gov (United States)

    Hamid Zafarmand, A; Mahdi Zafarmand, M

    2013-06-01

    Removable appliances are a dependable choice for many patients but like all orthodontic appliances, they have some limitations in use. Patient selection and appropriate appliance design are two key factors for success. Many patients, especially adults, prefer intra-oral appliances to extra-oral devices. Sometimes a removable intra-oral appliance can solve a dental problem in a shorter period of time compared to fixed treatment, and this has also been repeatedly seen in molar distalisation. From the interceptive perspective, the appliance can prevent or alleviate an impending crowding for erupting permanent incisors. This article describes 5 patients with different orthodontic problems: impending crowding for erupting upper canine with 2 approaches, provision of space for upper cuspids, resolution of chronic attrition of anterior teeth, relief of space shortage for upper canines eruption, and reduction of excess overjet. All subjects were treated with removable appliances of various designs.

  5. Heat removal performance of auxiliary cooling system for the high temperature engineering test reactor during scrams

    International Nuclear Information System (INIS)

    Takeda, Takeshi; Tachibana, Yukio; Iyoku, Tatsuo; Takenaka, Satsuki

    2003-01-01

    The auxiliary cooling system of the high temperature engineering test reactor (HTTR) is employed for heat removal as an engineered safety feature when the reactor scrams in an accident when forced circulation can cool the core. The HTTR is the first high temperature gas-cooled reactor in Japan with reactor outlet gas temperature of 950 degree sign C and thermal power of 30 MW. The auxiliary cooling system should cool the core continuously avoiding excessive cold shock to core graphite components and water boiling of itself. Simulation tests on manual trip from 9 MW operation and on loss of off-site electric power from 15 MW operation were carried out in the rise-to-power test up to 20 MW of the HTTR. Heat removal characteristics of the auxiliary cooling system were examined by the tests. Empirical correlations of overall heat transfer coefficients were acquired for a helium/water heat exchanger and air cooler for the auxiliary cooling system. Temperatures of fluids in the auxiliary cooling system were predicted on a scram event from 30 MW operation at 950 degree sign C of the reactor outlet coolant temperature. Under the predicted helium condition of the auxiliary cooling system, integrity of fuel blocks among the core graphite components was investigated by stress analysis. Evaluation results showed that overcooling to the core graphite components and boiling of water in the auxiliary cooling system should be prevented where open area condition of louvers in the air cooler is the full open

  6. The status of thermal-hydraulic studies on the decay heat removal by natural convection using RAMONA and NEPTUN models

    International Nuclear Information System (INIS)

    Hoffmann, H.; Hain, K.; Marten, K.; Rust, K.; Weinberg, D.; Ohira, H.

    2004-01-01

    Thermal-hydraulic experiments were performed with water in order to simulate the decay heat removal by natural convection in a pool-type sodium-cooled reactor. Two test rigs of different scales were used, namely RAMONA (1:20) and NEPTUN (1:5). RAMONA served to study the transition from nominal operation by forced convection to decay heat removal operation by natural convection. Steady-state similarity tests were carried out in both facilities. The investigations cover nominal and non-nominal operation conditions. These data provide a broad basis for the verification of computer programs. Numerical analyses performed with the three-dimensional FLUTAN code indicated that the thermal-hydraulic processes can be quantitatively simulated even for the very complex geometry of the NEPTUN test rig. (author)

  7. Study of Phytoremediation Capability in Sulfate Removal from Water

    Directory of Open Access Journals (Sweden)

    Milad Tafazoli

    2014-07-01

    Full Text Available Phytoremediation is known as a pollutants method with low cost, without operational complexity, with low energy consumption and no need for sludge disposal. In this study, hydroponic cultivation was chosen for estimation of sulfate removal as a significant sulfur compound in effluents on two fenny plants: pampas grass and bamboo.In this case, the plants were examined under two different retention times and after determining the optimum time (7 days, the main experiments were done for evaluating the plants removal efficiency and sulfate mass absorbance by plants. For better analysis, T-Test and ANOVA with significant influence (p < 0.05% were also done. Finally, the removal efficiency in pampas grass for all concentrations of 50, 200, 300, 600, 900, 1200, 1500 and 3000 mg/L were 44, 36, 34.22, 30.55, 15.93, 9.72, 7.77 and 4.44 percent, respectively, which were up to two times higher for the bamboos.

  8. Design of a dry cask storage system for spent LWR fuels: radiation protection, subcriticality, and heat removal aspects

    Energy Technology Data Exchange (ETDEWEB)

    Yavuz, U. [Turkish Atomic Energy Authority, Ankara (Turkey). Nuclear Safety Dept.; Zabunoolu, O.H. [Hacettepe Univ., Ankara (Turkey). Dept. of Nuclear Engineering

    2006-08-15

    Spent nuclear fuel resulting from reactor operation must be safely stored and managed prior to reprocessing and/or final disposal of high-level waste. Any spent fuel storage system must provide for safe receipt, handling, retrieval, and storage of spent fuel. In order to achieve the safe storage, the design should primarily provide for radiation protection, subcriticality of spent fuel, and removal of spent fuel residual heat. This article is focused on the design of a metal-shielded dry-cask storage system, which will host spent LWR fuels burned to 33 000, 45 000, and 55 000 MWd/t U and cooled for 5 or 10 years after discharge from reactor. The storage system is analyzed by taking into account radiation protection, subcriticality, and heat-removal aspects; and appropriate designs, in accordance with the international standards. (orig.)

  9. Optimization of residual heat removal pump axial thrust and axial bearing

    International Nuclear Information System (INIS)

    Schubert, F.

    1996-01-01

    The residual heat removal (RHR) pumps of German 1300 megawatt pressurized-water reactor (PWR) power plants are of the single stage end suction type with volute casing or with diffuser and forged circular casing. Due to the service conditions the pumps have to cover the full capacity range as well as a big variation in suction static pressure. This results in a big difference in the axial thrust that has to be borne by the axial bearing. Because these pumps are designed to operate without auxiliary systems (things that do not exist can not fail), they are equipped with antifriction bearings and sump oil lubrication. To minimize the heat production within the bearing casing, a number of PWR plants have pumps with combined axial/radial bearings of the ball type. Due to the fact that the maximum axial thrust caused by static pressure and hydrodynamic forces on the impeller is too big to be borne by that type of axial bearing, the impellers were designed to produce a hydrodynamic axial force that counteracts the static axial force. Thus, the resulting axial thrust may change direction when the static pressure varies

  10. Optimization of residual heat removal pump axial thrust and axial bearing

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, F.

    1996-12-01

    The residual heat removal (RHR) pumps of German 1300 megawatt pressurized-water reactor (PWR) power plants are of the single stage end suction type with volute casing or with diffuser and forged circular casing. Due to the service conditions the pumps have to cover the full capacity range as well as a big variation in suction static pressure. This results in a big difference in the axial thrust that has to be borne by the axial bearing. Because these pumps are designed to operate without auxiliary systems (things that do not exist can not fail), they are equipped with antifriction bearings and sump oil lubrication. To minimize the heat production within the bearing casing, a number of PWR plants have pumps with combined axial/radial bearings of the ball type. Due to the fact that the maximum axial thrust caused by static pressure and hydrodynamic forces on the impeller is too big to be borne by that type of axial bearing, the impellers were designed to produce a hydrodynamic axial force that counteracts the static axial force. Thus, the resulting axial thrust may change direction when the static pressure varies.

  11. The effect of carbon type on arsenic and trichloroethylene removal capabilities of iron (hydr)oxide nanoparticle-impregnated granulated activated carbons

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Anne Marie, E-mail: Anne.M.Cooper@asu.edu [Environmental Technology, College of Technology and Innovation. Arizona State University - Polytechnic Campus, 6075 South Williams Campus Loop West, Mesa, AZ 85212 (United States); Hristovski, Kiril D., E-mail: Kiril.Hristovski@asu.edu [Environmental Technology, College of Technology and Innovation, Arizona State University - Polytechnic Campus, 6073 South Backus Mall, Mesa, AZ 85212 (United States); Moeller, Teresia, E-mail: tmoller@solmetex.com [SolmeteX - Division of Layne Christiansen, 50 Bearfoot Road, Northborough, MA 01532 (United States); Westerhoff, Paul, E-mail: p.westerhoff@asu.edu [School of Sustainable Engineering and the Built Environment, Arizona State University, Box 5306, Tempe, AZ 85287-5306 (United States); Sylvester, Paul, E-mail: psylvester@solmetex.com [SolmeteX - Division of Layne Christiansen, 50 Bearfoot Road, Northborough, MA 01532 (United States)

    2010-11-15

    This study investigates the impact of the type of virgin granular activated carbon (GAC) media used to synthesize iron (hydr)oxide nanoparticle-impregnated granular activated carbon (Fe-GAC) on its properties and its ability to remove arsenate and organic trichloroethylene (TCE) from water. Two Fe-GAC media were synthesized via a permanganate/ferrous ion synthesis method using bituminous and lignite-based virgin GAC. Data obtained from an array of characterization techniques (pore size distribution, surface charge, etc.) in correlation with batch equilibrium tests, and continuous flow modeling suggested that GAC type and pore size distribution control the iron (nanoparticle) contents, Fe-GAC synthesis mechanisms, and contaminant removal performances. Pore surface diffusion model calculations predicted that lignite Fe-GAC could remove {approx}6.3 L g{sup -1} dry media and {approx}4 L g{sup -1} dry media of water contaminated with 30 {mu}g L{sup -1} TCE and arsenic, respectively. In contrast, the bituminous Fe-GAC could remove only {approx}0.2 L/g dry media for TCE and {approx}2.8 L/g dry media for As of the same contaminated water. The results show that arsenic removal capability is increased while TCE removal is decreased as a result of Fe nanoparticle impregnation. This tradeoff is related to several factors, of which changes in surface properties and pore size distributions appeared to be the most dominant.

  12. The effect of carbon type on arsenic and trichloroethylene removal capabilities of iron (hydr)oxide nanoparticle-impregnated granulated activated carbons

    International Nuclear Information System (INIS)

    Cooper, Anne Marie; Hristovski, Kiril D.; Moeller, Teresia; Westerhoff, Paul; Sylvester, Paul

    2010-01-01

    This study investigates the impact of the type of virgin granular activated carbon (GAC) media used to synthesize iron (hydr)oxide nanoparticle-impregnated granular activated carbon (Fe-GAC) on its properties and its ability to remove arsenate and organic trichloroethylene (TCE) from water. Two Fe-GAC media were synthesized via a permanganate/ferrous ion synthesis method using bituminous and lignite-based virgin GAC. Data obtained from an array of characterization techniques (pore size distribution, surface charge, etc.) in correlation with batch equilibrium tests, and continuous flow modeling suggested that GAC type and pore size distribution control the iron (nanoparticle) contents, Fe-GAC synthesis mechanisms, and contaminant removal performances. Pore surface diffusion model calculations predicted that lignite Fe-GAC could remove ∼6.3 L g -1 dry media and ∼4 L g -1 dry media of water contaminated with 30 μg L -1 TCE and arsenic, respectively. In contrast, the bituminous Fe-GAC could remove only ∼0.2 L/g dry media for TCE and ∼2.8 L/g dry media for As of the same contaminated water. The results show that arsenic removal capability is increased while TCE removal is decreased as a result of Fe nanoparticle impregnation. This tradeoff is related to several factors, of which changes in surface properties and pore size distributions appeared to be the most dominant.

  13. Development of core hot spot evaluation method for decay heat removal by natural circulation under transient conditions in sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Ohshima, Hiroyuki; Doda, Norihiro; Kamide, Hideki; Watanabe, Osamu; Ohkubo, Yoshiyuki

    2010-01-01

    Toward the commercialization of fast reactors, a design study of Japan Sodium-cooled Fast Reactor (JSFR) is being performed. In this design study, the adoption of decay heat removal system operated by fully natural circulation is being examined from viewpoints of economic competitiveness and passive safety. This paper describes a new evaluation method of core hot spot under transient conditions from forced to natural circulation operations that is necessary for confirming feasibility of the fully natural circulation decay heat removal system. The new method consists of three analysis steps in order to include effects of thermal hydraulic phenomena particular to the natural circulation decay heat removal, e.g., flow redistribution in fuel assemblies caused by buoyancy force, and therefore it enables more rational hot spot evaluation rather than conventional ones. This method was applied to a hot spot evaluation of loss-of-external-power event and the result was compared with those by conventional 1D and detailed 3D simulations. It was confirmed that the proposed method can estimate the hot spot with reasonable degree of conservativeness. (author)

  14. Analysing Leontiev Tube Capabilities in the Space-based Plants

    Directory of Open Access Journals (Sweden)

    N. L. Shchegolev

    2017-01-01

    Full Text Available The paper presents a review of publications dedicated to the gas-dynamic temperature stratification device (the Leontief tube and shows main factors affecting its efficiency. Describes an experimental installation, which is used to obtain data on the value of energy separation in the air to prove this device the operability.The assumption that there is an optimal relationship between the flow velocities in the subsonic and supersonic channels of the gas-dynamic temperature stratification device is experimentally confirmed.The paper conducts analysis of possible ways to raise the efficiency of power plants of various (including space basing, and shows that, currently, a mainstream of increasing efficiency of their operation is to complicate design solutions.A scheme of the closed gas-turbine space-based plant using a mixture of inert gases (helium-xenon one for operation is proposed. What differs it from the simplest variants is a lack of the cooler-radiator and integration into gas-dynamic temperature stratification device and heat compressor.Based on the equations of one-dimensional gas dynamics, it is shown that the total pressure restorability when removing heat in a thermal compressor determines operating capability of this scheme. The exploratory study of creating a heat compressor is performed, and it is shown that when operating on gases with a Prandtl number close to 1, the total pressure does not increase.The operating capability conditions of the heat compressor are operation on gases with a low value of the Prandtl number (helium-xenon mixture at high supersonic velocities and with a longitudinal pressure gradient available.It is shown that there is a region of the low values of the Prandtl number (Pr <0.3 for which, with the longitudinal pressure gradient available in the supersonic flows of a viscous gas, the total pressure can be restored.

  15. Thermal hydraulic parametric investigation of decay heat removal from degraded core of a sodium cooled fast Breeder reactor

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Lokesh [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Kumar Sharma, Anil, E-mail: aksharma@igcar.gov.in [Reactor Design Group, Indira Gandhi Centre for Atomic Research, HBNI, Kalpakkam (India); Velusamy, K. [Reactor Design Group, Indira Gandhi Centre for Atomic Research, HBNI, Kalpakkam (India)

    2017-03-15

    Highlights: • Decay heat removal from degraded core of a typical SFR is highlighted. • Influence of number of DHXs in operation on PAHR is analyzed. • Investigations on structural integrity of the inner vessel and core catcher. • Feasibility study for retention of a part of debris in upper pool of SFR. - Abstract: Ensuring post accident decay heat removal with high degree of reliability following a Core Disruptive Accident (CDA) is very important in the design of sodium cooled fast reactors (SFR). In the recent past, a lot of research has been done towards the design of an in-vessel core catcher below the grid plate to prevent the core debris reaching the main vessel in a pool type SFR. However, during an energetic CDA, the entire core debris is unlikely to reach the core catcher. A significant part of the debris is likely to settle in core periphery between radial shielding subassemblies and the inner vessel. Failure of inner vessel due to the decay heat can lead to core debris reaching the main vessel and threatening its integrity. On the other hand, retention of a part of debris in core periphery can reduce the load on main core catcher. Towards achieving an optimum design of SFR and safety evaluation, it is essential to quantify the amount of heat generating core debris that can be retained safely within the primary vessel. This has been performed by a mathematical simulation comprising solution of 2-D transient form of the governing equations of turbulent sodium flow and heat transfer with Boussinesq approximations. The conjugate conduction-convection model adopted for this purpose is validated against in-house experimental data. Transient evolutions of natural convection in the pools and structural temperatures in critical components have been predicted. It is found that 50% of the core debris can be safely accommodated in the gap between radial shielding subassemblies and inner vessel without exceeding structural temperature limit. It is also

  16. Passive decay heat removal by sump cooling after core meltdown

    International Nuclear Information System (INIS)

    Knebel, J.U.; Mueller, U.

    1996-01-01

    This article presents the basic physical phenomena and scaling criteria of decay heat removal from a large coolant pool by single-phase and two-phase natural circulation flow. The physical significance of the dimensionless similarity groups derived is evaluated. The above results are applied to the SUCO program that is performed at the Forschungszentrum Karlsruhe. The SUCO program is a three-step series of scaled model experiments investigating the possibility of a sump cooling concept for future light water reactors. The sump cooling concept is based on passive safety features within the containment. The work is supported by the German utilities and the Siemens AG. The article gives first measurement results of the 1:20 linearly scaled plane two-dimensional SUCOS-2D test facility. The experimental results of the model geometry are transformed to prototype conditions

  17. Pretreatment Capabilities and Benefits of Electrocoagulation

    Science.gov (United States)

    2004-12-01

    Electrocoagulation (EC) processes are a non-chemical, electrical means of removing suspended solids, colloidal material, and sparingly soluble salts as well as...precipitation or sedimentation (6). The following table provides a comparison of removal percentages: Chemical Electrocoagulation ...OBJECTIVES The goals of the research project were 1) to demonstrate the removal capabilities of the electrocoagulation (EC) technology and 2) to

  18. Capability of cation exchange technology to remove proven N-nitrosodimethylamine precursors.

    Science.gov (United States)

    Li, Shixiang; Zhang, Xulan; Bei, Er; Yue, Huihui; Lin, Pengfei; Wang, Jun; Zhang, Xiaojian; Chen, Chao

    2017-08-01

    N-nitrosodimethylamine (NDMA) precursors consist of a positively charged dimethylamine group and a non-polar moiety, which inspired us to develop a targeted cation exchange technology to remove NDMA precursors. In this study, we tested the removal of two representative NDMA precursors, dimethylamine (DMA) and ranitidine (RNTD), by strong acidic cation exchange resin. The results showed that pH greatly affected the exchange efficiency, with high removal (DMA>78% and RNTD>94%) observed at pHMg 2+ >RNTD + >K + >DMA + >NH 4 + >Na + . The partition coefficient of DMA + to Na + was 1.41±0.26, while that of RNTD + to Na + was 12.1±1.9. The pseudo second-order equation fitted the cation exchange kinetics well. Bivalent inorganic cations such as Ca 2+ were found to have a notable effect on NA precursor removal in softening column test. Besides DMA and RNTD, cation exchange process also worked well for removing other 7 model NDMA precursors. Overall, NDMA precursor removal can be an added benefit of making use of cation exchange water softening processes. Copyright © 2017. Published by Elsevier B.V.

  19. Features of an emergency heat-conducting path in reactors about lead-bismuth and lead heat-carriers

    International Nuclear Information System (INIS)

    Beznosov, A.V.; Bokova, T.A.; Molodtsov, A.A.

    2006-01-01

    The reactor emergency heat removal systems should transfer heat from the surface of reactor core fuel element claddings to the primary circuit followed by heat transfer to the environment. One suggests three design approaches for emergency heat removal systems in lead-bismuth and lead cooled reactor circuits that take account of the peculiar nature of their features. Application of the discussed systems for emergency heat removal improves safety of lead-bismuth and lead cooled reactor plants [ru

  20. An application of zeta potential method for the selection of nano-fluids to enhance IVR capability

    International Nuclear Information System (INIS)

    Pham Quynh Trang; Kim, Tae Il; Chang, Soon Heung

    2009-01-01

    In-vessel Retention (IVR) is one of the key severe accident management strategies that have been applied currently for advanced light water reactors such as APR1000 or APR1400. The concept of IVR consists of external cooling of the reactor vessel by flooding the reactor cavity to remove the decay heat from the molten core through the lower head of the vessel. However, the heat removal process is limited by the occurrence of critical heat flux (CHF) at the reactor vessel outer surface that may lead to a sharp increase of local temperature, damaging the integrity of the reactor vessel. In order to obtain higher power of nuclear reactors and to assure the achievement of the IVR capability during accident conditions, an enhancement of CHF at the outer surface of the vessel is required. The potential use of nano-fluids to increase the CHF is among the main IVR enhancing approaches. In this study, Al 2 O 3 and CNT nano-fluids with different concentrations have been used as the potential coolant to enhance IVR capabilities. The dispersion stability of the nano-fluids was verified by zeta potential measurements. The results showed effects of time, concentration and pH on the stability of nanofluids. Three types of nano-fluids were selected as the candidates to apply for the IVR. A series of experiments have been performed in this study to understand the pool-boiling critical heat flux behavior on downward facing surfaces submerged in a pool of nano-fluids at very low concentration. The inclination angle was changed from horizontal to vertical to investigate the effect of orientation on CHF enhancement which is needed for the application in IVR

  1. Air temperature determination inside residual heat removal pump room of Angra-1 nuclear power plant after a design basic accident

    International Nuclear Information System (INIS)

    Siniscalchi, Marcio Rezende

    2005-01-01

    This work develops heat transfer theoretical models for determination of air temperature inside the Residual Heat Removal Pump Room of Angra 1 Nuclear Power Plant after a Design Basis Accident without forced ventilation. Two models had been developed. The differential equations are solved by analytical methods. A software in FORTRAN language are developed for simulations of temperature inside rooms for different geometries and materials. (author)

  2. Integrated system of nuclear reactor and heat exchanger

    International Nuclear Information System (INIS)

    McDonald, B.N.; Schluderberg, D.C.

    1977-01-01

    The invention concerns PWRs in which the heat exchanger is associated with a pressure vessel containing the core and from which it can be selectively detached. This structural configuration applies to electric power generating uses based on land or on board ships. An existing reactor of this kind is fitted with a heat exchanger in which the tubes are 'U' shaped. This particular design of heat exchangers requires that the ends of the curved tubes be solidly maintained in a tube plate of great thickness, hence difficult to handle and to fabricate and requiring unconventional fine control systems for the control rods and awkward coolant pump arrangements. These complications limit the thermal power of the system to level below 100 megawatts. On the contrary, the object of this invention is to provide a one-piece PWR reactor capable of reaching power levels of 1500 thermal megawatts at least. For this, a pressure vessel is provided in the cylindrical assembly with not only a transversal separation on a plane located between the reactor and the heat exchanger but also a cover selectively detachable which supports the fine control gear of the control rods. Removing the cover exposes a part of the heat exchanger for easy inspection and maintenance. Further, the heat exchanger can be removed totally from the pressure vessel containing the core by detaching the cylindrical part, which composes the heat exchanger section, from the part that holds the reactor core on a level with the transversal separation [fr

  3. Radiation detector system having heat pipe based cooling

    Science.gov (United States)

    Iwanczyk, Jan S.; Saveliev, Valeri D.; Barkan, Shaul

    2006-10-31

    A radiation detector system having a heat pipe based cooling. The radiation detector system includes a radiation detector thermally coupled to a thermo electric cooler (TEC). The TEC cools down the radiation detector, whereby heat is generated by the TEC. A heat removal device dissipates the heat generated by the TEC to surrounding environment. A heat pipe has a first end thermally coupled to the TEC to receive the heat generated by the TEC, and a second end thermally coupled to the heat removal device. The heat pipe transfers the heat generated by the TEC from the first end to the second end to be removed by the heat removal device.

  4. Assessment of alternate ion exchange resins for improved antimony removal from the primary heat transport system

    Energy Technology Data Exchange (ETDEWEB)

    Burany, R.; Suryanarayan, S.; Husain, A. [Kinectrics, Inc., Toronto, ON (Canada)

    2015-07-01

    Radiation fields around the CANDU heat transport system are a major contributor to worker dose during inspection, maintenance and refurbishment activities. While Co-60 is typically the dominant contributor to radiation fields in CANDU reactors, Sb-124, an activation product of antimony, is also a significant contributor, accounting for 5-20% of the radiation fields. The goal of this research project was to investigate resins for improved removal of antimony under both oxidizing and reducing conditions.Several candidate resins were tested and short-listed through a sequence of iterative testing. The results of the laboratory testing have identified potential candidates for improved antimony removal. Further testing is required to ensure compatibility with existing station resin specifications. (author)

  5. Steady-state heat and particle removal with the actively cooled Phase III outboard pump limiter in Tore Supra

    International Nuclear Information System (INIS)

    Nygren, R.; Koski, J.; Lutz, T.; McGrath; Miller, J.; Watkins, J.; Guilhem, D.; Chappuis, P.; Cordier, J.; Loarer, T.

    1995-01-01

    Tore Supra's Phase III outboard pump limiter (OPL) is a modular actively-cooled mid-plane limiter, designed for heat and particle removal during long pulse operation. During its initial operation in 1993, the OPL successfully removed about 1 MW of power during ohmicly heated shots of up to 10 s duration and reached (steady state) thermal equilibrium. The particle pumping of the Phase III OPL was found to be about 50% greater than the Phase II OPL which had a radial distance between the last closed flux surface and the entrance of the pumping throat of 3.5 cm compared with only 2.5 cm for the Phase III OPL. This paper gives examples of power distribution over the limiter from IR measurements of surface temperature and from extensively calorimetry (34 thermocouples and 10 flow meters) and compares the distributions with values predicted by a 3D model (HF3D) with a detailed magnetic configuration (e.g., includes field ripple). ((orig.))

  6. Validation of Heat Transfer and Film Cooling Capabilities of the 3-D RANS Code TURBO

    Science.gov (United States)

    Shyam, Vikram; Ameri, Ali; Chen, Jen-Ping

    2010-01-01

    The capabilities of the 3-D unsteady RANS code TURBO have been extended to include heat transfer and film cooling applications. The results of simulations performed with the modified code are compared to experiment and to theory, where applicable. Wilcox s k-turbulence model has been implemented to close the RANS equations. Two simulations are conducted: (1) flow over a flat plate and (2) flow over an adiabatic flat plate cooled by one hole inclined at 35 to the free stream. For (1) agreement with theory is found to be excellent for heat transfer, represented by local Nusselt number, and quite good for momentum, as represented by the local skin friction coefficient. This report compares the local skin friction coefficients and Nusselt numbers on a flat plate obtained using Wilcox's k-model with the theory of Blasius. The study looks at laminar and turbulent flows over an adiabatic flat plate and over an isothermal flat plate for two different wall temperatures. It is shown that TURBO is able to accurately predict heat transfer on a flat plate. For (2) TURBO shows good qualitative agreement with film cooling experiments performed on a flat plate with one cooling hole. Quantitatively, film effectiveness is under predicted downstream of the hole.

  7. Experimental investigation on Heat Transfer Performance of Annular Flow Path Heat Pipe

    International Nuclear Information System (INIS)

    Kim, In Guk; Kim, Kyung Mo; Jeong, Yeong Shin; Bang, In Cheol

    2015-01-01

    Mochizuki et al. was suggested the passive cooling system to spent nuclear fuel pool. Detail analysis of various heat pipe design cases was studied to determine the heat pipes cooling performance. Wang et al. suggested the concept PRHRS of MSR using sodium heat pipes, and the transient performance of high temperature sodium heat pipe was numerically simulated in the case of MSR accident. The meltdown at the Fukushima Daiichi nuclear power plants alarmed to the dangers of station blackout (SBO) accident. After the SBO accident, passive decay heat removal systems have been investigated to prevent the severe accidents. Mochizuki et al. suggested the heat pipes cooling system using loop heat pipes for decay heat removal cooling and analysis of heat pipe thermal resistance for boiling water reactor (BWR). The decay heat removal systems for pressurized water reactor (PWR) were suggested using natural convection mechanisms and modification of PWR design. Our group suggested the concept of a hybrid heat pipe with control rod as Passive IN-core Cooling System (PINCs) for decay heat removal for advanced nuclear power plant. Hybrid heat pipe is the combination of the heat pipe and control rod. In the present research, the main objective is to investigate the effect of the inner structure to the heat transfer performance of heat pipe containing neutron absorber material, B 4 C. The main objective is to investigate the effect of the inner structure in heat pipe to the heat transfer performance with annular flow path. ABS pellet was used instead of B 4 C pellet as cylindrical structures. The thermal performances of each heat pipes were measured experimentally. Among them, concentric heat pipe showed the best performance compared with others. 1. Annular evaporation section heat pipe and annular flow path heat pipe showed heat transfer degradation. 2. AHP also had annular vapor space and contact cooling surface per unit volume of vapor was increased. Heat transfer coefficient of

  8. Growth characteristics and nutrient removal capability of eco-ditch plants in mesocosm sediment receiving primary domestic wastewater.

    Science.gov (United States)

    Kumwimba, Mathieu Nsenga; Zhu, Bo; Muyembe, Diana Kavidia; Dzakpasu, Mawuli

    2017-10-01

    Eco-ditches are being explored to maximize their capability of capturing pollutants and mitigate any harmful side effects in rivers. In this study, mesocosm plastic drum sediment and field experiments were set up to screen 18 plant species found in ditches and identify those with potential for high biomass production and nutrients removal. Terrestrial plants grown in the mesocosm system were shown to be able to acclimate to aquatic conditions and to survive in primary domestic sewage. About 73-95% increase in plant biomass was recorded. Removal efficiencies for total nitrogen, total phosphorus, and ammonium-nitrogen from the sewage of 72-99%, 64-99%, and 75-100%, respectively, were recorded. Furthermore, complete removal of the applied nitrate-nitrogen load was achieved in mesocosm systems. Findings also show that all species, but especially Acorus calamus, Canna indica, Canna lily, Cyperus alternifolius, Colocasia gigantea, Eichhornia crassipes, Iris sibirica, and Typha latifolia had the highest efficiencies for nitrogen and phosphorous removal. The N and P mass balance analysis demonstrated that plant uptake and sediment N and P accumulation accounted for 41-86% and 18-49% of the total influent TN and TP loads, respectively. In addition, the amounts of nitrogen and phosphorous uptake by these plant species were influenced significantly by biomass. The field-culture experiment further identified Canna indica followed by Cyperus alternifolius as the most promising for high biomass production and nutrients uptake. Therefore, these plants may be recommended for extensive use in treating highly eutrophicated rivers. Outcomes of this work can be useful for model design specifications in eco-ditch mitigation of sewage pollution.

  9. Heat transfer characteristics and operation limit of pressurized hybrid heat pipe for small modular reactors

    International Nuclear Information System (INIS)

    Kim, Kyung Mo; Bang, In Cheol

    2017-01-01

    Highlights: • Thermal performances and operation limits of hybrid heat pipe were experimentally studied. • Models for predicting the operation limit of the hybrid heat pipe was developed. • Non-condensable gas affected heat transfer characteristics of the hybrid heat pipe. - Abstract: In this paper, a hybrid heat pipe is proposed for use in advanced nuclear power plants as a passive heat transfer device. The hybrid heat pipe combines the functions of a heat pipe and a control rod to simultaneously remove the decay heat generated from the core and shutdown the reactor under accident conditions. Thus, the hybrid heat pipe contains a neutron absorber in the evaporator section, which corresponds to the core of the reactor pressure vessel. The presence of the neutron absorber material leads to differences in the heated diameter and hydraulic diameter of the heat pipe. The cross-sectional areas of the vapor paths through the evaporator, adiabatic, and condenser sections are also different. The hybrid heat pipe must operate in a high-temperature, high-pressure environment to remove the decay heat. In other words, the operating pressure must be higher than those of the commercially available thermosyphons. Hence, the thermal performances, including operation limit of the hybrid heat pipe, were experimentally studied in the operating pressure range of 0.2–20 bar. The operating pressure of the hybrid heat pipe was controlled by charging the non-condensable gas which is unused method to achieve the high saturation pressure in conventional thermosyphons. The effect of operating pressure on evaporation heat transfer was negligible, while condensation heat transfer was affected by the amount of non-condensable gas in the test section. The operation limit of the hybrid heat pipe increased with the operating pressure. Maximum heat removal capacity of the hybrid heat pipe was up to 6 kW which is meaningful value as a passive decay heat removal device in the nuclear power

  10. Simulation of decay heat removal by natural convection in a pool type fast reactor model-ramona-with coupled 1D/2D thermal hydraulic code system

    Energy Technology Data Exchange (ETDEWEB)

    Kasinathan, N.; Rajakumar, A.; Vaidyanathan, G.; Chetal, S.C. [Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    1995-09-01

    Post shutdown decay heat removal is an important safety requirement in any nuclear system. In order to improve the reliability of this function, Liquid metal (sodium) cooled fast breeder reactors (LMFBR) are equipped with redundant hot pool dipped immersion coolers connected to natural draught air cooled heat exchangers through intermediate sodium circuits. During decay heat removal, flow through the core, immersion cooler primary side and in the intermediate sodium circuits are also through natural convection. In order to establish the viability and validate computer codes used in making predictions, a 1:20 scale experimental model called RAMONA with water as coolant has been built and experimental simulation of decay heat removal situation has been performed at KfK Karlsruhe. Results of two such experiments have been compiled and published as benchmarks. This paper brings out the results of the numerical simulation of one of the benchmark case through a 1D/2D coupled code system, DHDYN-1D/THYC-2D and the salient features of the comparisons. Brief description of the formulations of the codes are also included.

  11. Meeting of Specialists on the Reliability of Decay Heat Removal Systems for Fast Reactors. Summary Report

    International Nuclear Information System (INIS)

    1975-10-01

    The Specialists Meeting on Reliability of Decay Heat Removal Systems proposed for Fast Reactors was sponsored by the UKAEA Safety & Reliability Directorate and held at Harwell between 28th April and 1st May, 1975. The meeting was attended by delegates from six countries - (USA, Federal Republic of Germany, France, Japan, USSR and the UK). A list of participants is included in an Appendix to this report. The subject matter of the meeting was concerned with the degree to which the ability to maintain decay heat removal from a fast reactor after shutdown in normal and abnormal circumstances could be guaranteed by design provisions and substantiated by reliability analysis techniques, operational testing etc. Consideration of conditions prevailing after a hypothetical core melt down incident were not included in the subject matter. The deliberations of the meeting were focussed at each working session on a defined theme and its dependant topics as shown in the detailed Agenda included in this report. Although provision had been made in the Agenda for a limited amount of discussion of the decay heat rejection problems of Gas Cooled Fast Reactors, delegates had no contributions to offer on this subject. During each session a Recording Secretary prepared a summary of the main points made by national delegates and of the resulting recommendations and conclusions. These draft summaries were made available to delegates during subsequent sessions of the meeting and approved by them for inclusion in the Summary, General Conclusions and Recommendations provided under Table of Contents (item 3 and 4)

  12. Nuclear reactor equipped with a flooding tank and a residual heat removal and emergency cooling system

    International Nuclear Information System (INIS)

    Schabert, H.P.; Winkler, F.

    1975-01-01

    A description is given of a nuclear reactor such as a pressurized-water reactor or the like which is equipped with a flooding tank and a residual heat removal and emergency cooling system. The flooding tank is arranged within the containment shell at an elevation above the upper edge of the reactor core and contains a liquid for flooding the reactor core in the event of a loss of coolant

  13. Human push capability.

    Science.gov (United States)

    Barnett, Ralph L; Liber, Theodore

    2006-02-22

    Use of unassisted human push capability arises from time to time in the areas of crowd and animal control, the security of locked doors, the integrity of railings, the removal of tree stumps and entrenched vehicles, the manoeuvering of furniture, and athletic pursuits such as US football or wrestling. Depending on the scenario, human push capability involves strength, weight, weight distribution, push angle, footwear/floor friction, and the friction between the upper body and the pushed object. Simple models are used to establish the relationships among these factors.

  14. CATHARE2 V1.4 capability to simulate the performance of isolation condenser systems with thermal valve

    International Nuclear Information System (INIS)

    Meloni, P.

    2001-01-01

    ENEA (Italy) in co-operation with CEA (France) has carried out an R and D activity aimed at increasing the reliability of Decay Heat Removal (DHR) passive systems that implement in-pool heat exchangers. The main outcome reached was the definition of a device, called Thermal Valve (TV), able to avoid the installation of mechanical valve on the primary circuit, thus reducing thermalmechanical constrains and thermal-hydraulic instabilities. This paper presents a preliminary assessment performed with CATHARE of this innovative device. In the first part the code capability to simulate in-pool heat exchangers is verified against experimental data of the PANDA facility, that are available within the frame of the ISP 42. In the second part a CATHARE calculation showing the performances of the PANDA passive condenser with TV (start-up and shutdown) is described.(author)

  15. Deep underground reactor (passive heat removal of LWR with hard neutron energy spectrum)

    Energy Technology Data Exchange (ETDEWEB)

    Hiroshi, Takahashi [Brookhaven National Lab., Upton, NY (United States)

    2001-07-01

    To run a high conversion reactor with Pu-Th fueled tight fueled assembly which has a long burn-up of a fuel, the reactor should be sited deep underground. By putting the reactor deep underground heat can be removed passively not only during a steady-state run and also in an emergency case of loss of coolant and loss of on-site power; hence the safety of the reactor can be much improved. Also, the evacuation area around the reactor can be minimized, and the reactor placed near the consumer area. This approach reduces the cost of generating electricity by eliminating the container building and shortening transmission lines. (author)

  16. Deep underground reactor (passive heat removal of LWR with hard neutron energy spectrum)

    International Nuclear Information System (INIS)

    Hiroshi, Takahashi

    2001-01-01

    To run a high conversion reactor with Pu-Th fueled tight fueled assembly which has a long burn-up of a fuel, the reactor should be sited deep underground. By putting the reactor deep underground heat can be removed passively not only during a steady-state run and also in an emergency case of loss of coolant and loss of on-site power; hence the safety of the reactor can be much improved. Also, the evacuation area around the reactor can be minimized, and the reactor placed near the consumer area. This approach reduces the cost of generating electricity by eliminating the container building and shortening transmission lines. (author)

  17. Dynamic simulation of the air-cooled decay heat removal system of the German KNK-II experimental breeder reactor

    International Nuclear Information System (INIS)

    Schubert, B.K.

    1984-07-01

    A Dump Heat Exchanger and associated feedback control system models for decay heat removal in the German KNK-II experimental fast breeder reactor are presented. The purpose of the controller is to minimize temperature variations in the circuits and, hence, to prevent thermal shocks in the structures. The basic models for the DHX include the sodium-air thermodynamics and hydraulics, as well as a control system. Valve control models for the primary and intermediate sodium flow regulation during post shutdown conditions are also presented. These models have been interfaced with the SSC-L code. Typical results of sample transients are discussed

  18. Studies on the characteristics of the separated type heat pipe system with non-condensible gas for the use of the passive decay heat removal in reactor systems

    International Nuclear Information System (INIS)

    Hayashi, Takao; Iigaki, Kazuhiko; Ohashi, Kazutaka; Hayakawa, Hitoshi; Yamada, Masao.

    1995-01-01

    This study is the fundamental research by experiments to aim at the development of the complete passive decay heat removal system on the modular reactor systems by the form of the separated type of heat pipe system utilizing the features of both the big latent heat for vaporization from water to steam and easy transportation characteristics. Special intention in our study on the fundamental experiments is to look for the effects in such a separated type of heat pipe system to introduce non-condensible gas such as nitrogen gas together with the working fluid of water. Many interesting findings have been obtained so far on the experiments for the variable conductance heat pipe characteristics from viewpoint of the actual application on the aim said above. This study has been carried out by the joint study between Tokai University and Fuji Electric Co., Ltd. and this paper is made up from the several papers presented so far at both the national and international symposiums under the name of joint study of the both bodies. (author)

  19. An estimation of core damage frequency of a pressurized water reactor during midloop operation due to loss of residual heat removal

    International Nuclear Information System (INIS)

    Chao, C.C.; Chen, C.T.; Lee, M.

    1995-01-01

    The core damage frequency caused by loss of residual heat removal (RHR) events was assessed during midloop operation of a Westinghouse-designed three-loop pressurized water reactor. The assessment considers two types of outages (refueling and drained maintenance) and uses failure data collected specifically for shutdown condition. Event trees were developed for five categories of loss of RHR events. Human actions to mitigate the loss of RHR events were identified and human error probabilities were quantified using the human cognitive reliability (HCR) and the technique for human error rate prediction (THERP) models. The results showed that the core damage frequency caused by loss of RHR events during midloop operation was 3.4 x 10 -5 per year. The results also showed that the core damage frequency can be reduced significantly by removing a pressurizer safety valve before entering midloop operation. The establishment of reflux cooling, i.e., decay heat removal through the steam generator secondary side, also plays an important role in mitigating the loss of RHR events during midloop operation

  20. Removing lead from metallic mixture of waste printed circuit boards by vacuum distillation: factorial design and removal mechanism.

    Science.gov (United States)

    Li, Xingang; Gao, Yujie; Ding, Hui

    2013-10-01

    The lead removal from the metallic mixture of waste printed circuit boards by vacuum distillation was optimized using experimental design, and a mathematical model was established to elucidate the removal mechanism. The variables studied in lead evaporation consisted of the chamber pressure, heating temperature, heating time, particle size and initial mass. The low-level chamber pressure was fixed at 0.1 Pa as the operation pressure. The application of two-level factorial design generated a first-order polynomial that agreed well with the data for evaporation efficiency of lead. The heating temperature and heating time exhibited significant effects on the efficiency, which was validated by means of the copper-lead mixture experiments. The optimized operating conditions within the region studied were the chamber pressure of 0.1 Pa, heating temperature of 1023 K and heating time of 120 min. After the conditions were employed to remove lead from the metallic mixture of waste printed circuit boards, the efficiency was 99.97%. The mechanism of the effects was elucidated by mathematical modeling that deals with evaporation, mass transfer and condensation, and can be applied to a wider range of metal removal by vacuum distillation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Properties of an irradiated heat-treated Zr-2.5Nb pressure tube removed from the NPD reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chow, C.K. [Atomic Energy of Canada Limited, Pinawa, Manitoba (Canada); Coleman, C.E. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Koike, M.H. [Power Reactor and Nuclear Fuel Development Corp., O-Arai Engineering Centre, O-Arai (Japan); Causey, A.R.; Ells, C.E.; Hosbons, R.R.; Sagat, S.; Urbanic, V.F.; Rodgers, D.K

    1997-07-01

    Some pressure tubes in reactors moderated by heavy water have been made from heat-treated (HT) Zr-2.5Nb. One such tube was removed from the NPD nuclear reactor after 20 years of operation. An extensive program was carried out jointly by AECL and PNC to evaluate the condition and properties of this pressure tube. The investigations include irradiation creep, tensile, corrosion, delayed hydride cracking (DHC), fatigue, and fracture properties. Results show that: (I) the in-reactor elongation rate is much lower and the transverse strain rates are slightly larger than in cold-worked (CW) Zr-2.5Nb tubes; (2) the tensile properties, hydrogen pickup, threshold stress intensity factor for DHC initiation, DHC velocity, and fatigue crack growth rates were similar to those of the CW Zr-2.5Nb material; (3) the fracture toughness of this tube, as measured by curved compact toughness specimens and burst tests, is slightly higher than the CW tubes. The results were also compared with other heat-treated Zr-2.5Nb materials irradiated in the Fugen reactor. The tube was in excellent condition when removed from the reactor and would have been satisfactory for further service. (author)

  2. A thermoacoustic engine capable of utilizing multi-temperature heat sources

    International Nuclear Information System (INIS)

    Qiu Limin; Wang Bo; Sun Daming; Liu Yu; Steiner, Ted

    2009-01-01

    Low-grade energy is widespread. However, it cannot be utilized with high thermal efficiency directly. Following the principle of thermal energy cascade utilization, a thermoacoustic engine (TE) with a new regenerator that can be driven by multiple heat sources at different temperature levels is proposed. Taking a regenerator that utilizes heat sources at two temperatures as an example, theoretical research has been conducted on a traveling-wave TE with the new regenerator to predict its performance. Experimental verification is also done to demonstrate the benefits of the new regenerator. Results indicate that a TE with the new regenerator utilizing additional heat at a lower temperature experiences an increase in pressure ratio, acoustic power, efficiency, and exergy efficiency with proper heat input at an appropriate temperature at the mid-heater. A regenerator that uses multi-temperature heat sources can provide a means of recovering lower grade heat.

  3. Comparisons of RELAP5-3D Analyses to Experimental Data from the Natural Convection Shutdown Heat Removal Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Bucknor, Matthew; Hu, Rui; Lisowski, Darius; Kraus, Adam

    2016-04-17

    The Reactor Cavity Cooling System (RCCS) is an important passive safety system being incorporated into the overall safety strategy for high temperature advanced reactor concepts such as the High Temperature Gas- Cooled Reactors (HTGR). The Natural Convection Shutdown Heat Removal Test Facility (NSTF) at Argonne National Laboratory (Argonne) reflects a 1/2-scale model of the primary features of one conceptual air-cooled RCCS design. The project conducts ex-vessel, passive heat removal experiments in support of Department of Energy Office of Nuclear Energy’s Advanced Reactor Technology (ART) program, while also generating data for code validation purposes. While experiments are being conducted at the NSTF to evaluate the feasibility of the passive RCCS, parallel modeling and simulation efforts are ongoing to support the design, fabrication, and operation of these natural convection systems. Both system-level and high fidelity computational fluid dynamics (CFD) analyses were performed to gain a complete understanding of the complex flow and heat transfer phenomena in natural convection systems. This paper provides a summary of the RELAP5-3D NSTF model development efforts and provides comparisons between simulation results and experimental data from the NSTF. Overall, the simulation results compared favorably to the experimental data, however, further analyses need to be conducted to investigate any identified differences.

  4. Containment heat removal system

    International Nuclear Information System (INIS)

    Wade, G.E.; Barbanti, G.; Gou, P.F.; Rao, A.S.; Hsu, L.C.

    1992-01-01

    This patent describes a nuclear system of a type including a containment having a nuclear reactor therein, the nuclear reactor including a pressure vessel and a core in the pressure vessel, the system. It comprises a gravity pool of coolant disposed at an elevation sufficient to permit a flow of coolant into the nuclear reactor pressure vessel against a predetermined pressure within the nuclear reactor pressure vessel; means for reducing a pressure of steam in the nuclear reactor pressure vessel to a value less than the predetermined pressure in the event of a nuclear accident, the means including a depressurization valve connected to the pressure vessel, the means further including steam heat dissipating means such dissipating means including a suppression pool; a supply of water in the suppression pool, there being a headspace in the suppression pool above the water supply; a substantial amount of air in the head space; means for feeding pressurized steam from the nuclear reactor pressure vessel to a location under a surface of the supply of water, the supply of water being effective to absorb heat sufficient to reduce steam pressure below the predetermined pressure; and a check valve for communicating the headspace with the containment, the check valve being oriented to vent air in the headspace to the containment when a pressure in the headspace exceeds a pressure in the containment by a predetermined pressure differential

  5. SLAG CHARACTERIZATION AND REMOVAL USING PULSE DETONATION TECHNOLOGY DURING COAL GASIFICATION

    Energy Technology Data Exchange (ETDEWEB)

    DR. DANIEL MEI; DR. JIANREN ZHOU; DR. PAUL O. BINEY; DR. ZIAUL HUQUE

    1998-07-30

    Pulse detonation technology for the purpose of removing slag and fouling deposits in coal-fired utility power plant boilers offers great potential. Conventional slag removal methods including soot blowers and water lances have great difficulties in removing slags especially from the down stream areas of utility power plant boilers. The detonation wave technique, based on high impact velocity with sufficient energy and thermal shock on the slag deposited on gas contact surfaces offers a convenient, inexpensive, yet efficient and effective way to supplement existing slag removal methods. A slight increase in the boiler efficiency, due to more effective ash/deposit removal and corresponding reduction in plant maintenance downtime and increased heat transfer efficiency, will save millions of dollars in operational costs. Reductions in toxic emissions will also be accomplished due to reduction in coal usage. Detonation waves have been demonstrated experimentally to have exceptionally high shearing capability, important to the task of removing slag and fouling deposits. The experimental results describe the parametric study of the input parameters in removing the different types of slag and operating condition. The experimental results show that both the single and multi shot detonation waves have high potential in effectively removing slag deposit from boiler heat transfer surfaces. The results obtained are encouraging and satisfactory. A good indication has also been obtained from the agreement with the preliminary computational fluid dynamics analysis that the wave impacts are more effective in removing slag deposits from tube bundles rather than single tube. This report presents results obtained in effectively removing three different types of slag (economizer, reheater, and air-heater) t a distance of up to 20 cm from the exit of the detonation tube. The experimental results show that the softer slags can be removed more easily. Also closer the slag to the exit of

  6. Overview of bladder heating technology: matching capabilities with clinical requirements

    Science.gov (United States)

    Stauffer, Paul R.; van Rhoon, Gerard C.

    2016-01-01

    Moderate temperature hyperthermia (40–450°C for one hour) is emerging as an effective treatment to enhance best available chemotherapy strategies for bladder cancer. A rapidly increasing number of clinical trials have investigated the feasibility and efficacy of treating bladder cancer with combined intravesical chemotherapy and moderate temperature hyperthermia. To date, most studies have concerned treatment of non-muscle invasive bladder cancer (NMIBC) limited to the interior wall of the bladder. Following the promising results of initial clinical trials, investigators are now considering protocols for treatment of muscle invasive bladder cancer (MIBC). This paper provides a brief overview of the devices and techniques used for heating bladder cancer. Systems are described for thermal conduction heating of bladder wall via circulation of hot fluid, intravesical microwave antenna heating, capacitively coupled RF current heating, and radiofrequency phased array deep regional heating of the pelvis. Relative heating characteristics of the available technologies are compared based on published feasibility studies, and the systems correlated with clinical requirements for effective treatment of MIBC and NMIBC. PMID:26939993

  7. The influence of heat treatments on several types of base-metal removable partial denture alloys.

    Science.gov (United States)

    Morris, H F; Asgar, K; Rowe, A P; Nasjleti, C E

    1979-04-01

    Four removable partial denture alloys, Vitallium (Co-Cr alloy), Dentillium P.D. (Fe-Cr alloy), Durallium L.G. (Co-Cr-Ni alloy), and Ticonium 100 (Ni-Cr alloy), were evaluated in the as-cast condition and after heat treatment for 15 minutes at 1,300 degrees, 1,600 degrees, 1,900 degrees, and 2,200 degrees F followed by quenching in water. The following properties were determined and compared for each alloy at each heat treatment condition: the yield strengths at 0.01%, 0.1%, and 0.2% offsets, the ultimate tensile strength, the percent elongation, the modulus of elasticity, and the Knoop microhardness. The results were statistically analyzed. Photomicrographs were examined for each alloy and test condition. The following conclusions were made: 1. The "highest values" were exhibited by the as-cast alloy. 2. Heat treatment of the partial denture alloys tested resulted in reductions in strength, while the elongations varied. This study demonstrates that, in practice, one should avoid (a) prolonged "heat-soaking" while soldering and (b) grinding or polishing of the casting until the alloy is "red hot". 3. Durallium L.G. was the least affected by the various heat treatment conditions. 4. Conventional reporting of the yield strength at 0.2% offset, the ultimate tensile strength, and percent elongation are not adequate to completely describe and compare the mechanical behavior of alloys. The reporting of the yield strength at 0.01% offset, in addition to the other reported properties, will provide a more complete description of the behavior of the dental alloys.

  8. Design capability of CANDU heat transport pump shafts against cracking

    International Nuclear Information System (INIS)

    Kumar, A.N.; Sheikh, Z.B.; Padgett, A.

    1993-01-01

    During 1986 three different Light Water Reactors (LWR's) in the U.S. reported either a cracked or fractured shaft on one or more of their reactor coolant (RC) pumps. The RC pumps for all these stations were supplied by Byron Jackson (BJ) Pump Company. A majority of CANDU heat transport (HT) pumps (equivalent of RC pumps) are supplied by BJ Pump Company and are similar in design to RC pumps. Hence the failure of these RC pumps in the U.S. utilities caused concern regarding the relevance of these failures to the BJ supplied CANDU HT pumps (HTP). This paper presents the results of AECL assessment to establish the capability of the HT pump shaft against cracking. Two methods were used for assessment: (a) detailed comparative design review of the HTP and RCP shafts; (b) semi-empirical analysis of the HTP shafts. The results of the AECL assessment showed significant differences in detailed design, materials, assembly and fits of various components and the control of operating parameters between the HT and RC pumps. It was concluded that because of these differences the failures similar to RC pump shafts are not likely to appear in HT pump shafts. This conclusion is further reinforced by about 140,000 hours of operating history of the longest running HT pump of comparable size to RC Pumps, without failures

  9. The effect of different aspect ratio and bottom heat flux towards contaminant removal using numerical analysis

    International Nuclear Information System (INIS)

    Saadun, M N A; Manaf, M Z A; Zakaria, M S; Hafidzal, M H M; Azwadi, C S Nor; Malek, Z A A

    2013-01-01

    Cubic Interpolated Pseudo-particle (CIP) numerical simulation scheme has been anticipated to predict the interaction involving fluids and solid particles in an open channel with rectangular shaped cavity flow. The rectangular shaped cavity is looking by different aspect ratio in modelling the real pipeline joints that are in a range of sizes. Various inlet velocities are also being applied in predicting various fluid flow characteristics. In this paper, the constant heat flux is introduced at the bottom wall, showing the buoyancy effects towards the contaminant's removal rate. In order to characterize the fluid flow, the numerical scheme alone is initially tested and validated in a lid driven cavity with a single particle. The study of buoyancy effects and different aspect ratio of rectangular geometry were carried out using a MATLAB govern by Navier-Stokes equation. CIP is used as a model for a numerical scheme solver for fluid solid particles interaction. The result shows that the higher aspect ratio coupled with heated bottom wall give higher percentage of contaminant's removal rate. Comparing with the benchmark results has demonstrated the applicability of the method to reproduce fluid structure which is complex in the system. Despite a slight deviation of the formations of vortices from some of the literature results, the general pattern is considered to be in close agreement with those published in the literature

  10. Design and Testing of an Active Heat Rejection Radiator with Digital Turn-Down Capability

    Science.gov (United States)

    Sunada, Eric; Birur, Gajanana C.; Ganapathi, Gani B.; Miller, Jennifer; Berisford, Daniel; Stephan, Ryan

    2010-01-01

    NASA's proposed lunar lander, Altair, will be exposed to vastly different external environment temperatures. The challenges to the active thermal control system (ATCS) are compounded by unfavorable transients in the internal waste heat dissipation profile: the lowest heat load occurs in the coldest environment while peak loads coincide with the warmest environment. The current baseline for this fluid is a 50/50 inhibited propylene glycol/water mixture with a freeze temperature around -35 C. While the overall size of the radiator's heat rejection area is dictated by the worst case hot scenario, a turn-down feature is necessary to tolerate the worst case cold scenario. A radiator with digital turn-down capability is being designed as a robust means to maintain cabin environment and equipment temperatures while minimizing mass and power consumption. It utilizes active valving to isolate and render ineffective any number of parallel flow tubes which span across the ATCS radiator. Several options were assessed in a trade-study to accommodate flow tube isolation and how to deal with the stagnant fluid that would otherwise remain in the tube. Bread-board environmental tests were conducted for options to drain the fluid from a turned-down leg as well an option to allow a leg to freeze/thaw. Each drain option involved a positive displacement gear pump with different methods of providing a pressure head to feed it. Test results showed that a start-up heater used to generate vapor at the tube inlet held the most promise for tube evacuation. Based on these test results and conclusions drawn from the trade-study, a full-scale radiator design is being worked for the Altair mission profile.

  11. Post-accident heat removal ''information exchange''

    International Nuclear Information System (INIS)

    Plein, H.G.; Carlson, G.A.

    1975-01-01

    The in-core molten pool experiments are designed to produce a pool of fission heated temperature and flow patterns of such pools, and evaluate the barrier melt-through potential of the molten UO 2 . The first experiments, to be conducted this fiscal year in the Annular Core Pulse Reactor, will be uncomplicated and multiply-contained to prove containment design and to provide initial information on fission heated molten pool characteristics. Concurrent with the in-core experiments, high temperature ultrasonic techniques are being developed to measure UO 2 temperatures up to and above the melting point for use in later more definitive experiments scheduled for FY77

  12. Design Report for the ½ Scale Air-Cooled RCCS Tests in the Natural convection Shutdown heat removal Test Facility (NSTF)

    Energy Technology Data Exchange (ETDEWEB)

    Lisowski, D. D. [Argonne National Lab. (ANL), Argonne, IL (United States); Farmer, M. T. [Argonne National Lab. (ANL), Argonne, IL (United States); Lomperski, S. [Argonne National Lab. (ANL), Argonne, IL (United States); Kilsdonk, D. J. [Argonne National Lab. (ANL), Argonne, IL (United States); Bremer, N. [Argonne National Lab. (ANL), Argonne, IL (United States); Aeschlimann, R. W. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2014-06-01

    The Natural convection Shutdown heat removal Test Facility (NSTF) is a large scale thermal hydraulics test facility that has been built at Argonne National Laboratory (ANL). The facility was constructed in order to carry out highly instrumented experiments that can be used to validate the performance of passive safety systems for advanced reactor designs. The facility has principally been designed for testing of Reactor Cavity Cooling System (RCCS) concepts that rely on natural convection cooling for either air or water-based systems. Standing 25-m in height, the facility is able to supply up to 220 kW at 21 kW/m2 to accurately simulate the heat fluxes at the walls of a reactor pressure vessel. A suite of nearly 400 data acquisition channels, including a sophisticated fiber optic system for high density temperature measurements, guides test operations and provides data to support scaling analysis and modeling efforts. Measurements of system mass flow rate, air and surface temperatures, heat flux, humidity, and pressure differentials, among others; are part of this total generated data set. The following report provides an introduction to the top level-objectives of the program related to passively safe decay heat removal, a detailed description of the engineering specifications, design features, and dimensions of the test facility at Argonne. Specifications of the sensors and their placement on the test facility will be provided, along with a complete channel listing of the data acquisition system.

  13. RF Pulsed Heating

    Energy Technology Data Exchange (ETDEWEB)

    Pritzkau, David P.

    2002-01-03

    RF pulsed heating is a process by which a metal is heated from magnetic fields on its surface due to high-power pulsed RF. When the thermal stresses induced are larger than the elastic limit, microcracks and surface roughening will occur due to cyclic fatigue. Pulsed heating limits the maximum magnetic field on the surface and through it the maximum achievable accelerating gradient in a normal conducting accelerator structure. An experiment using circularly cylindrical cavities operating in the TE{sub 011} mode at a resonant frequency of 11.424 GHz is designed to study pulsed heating on OFE copper, a material commonly used in normal conducting accelerator structures. The high-power pulsed RF is supplied by an X-band klystron capable of outputting 50 MW, 1.5 {micro}s pulses. The test pieces of the cavity are designed to be removable to allow testing of different materials with different surface preparations. A diagnostic tool is developed to measure the temperature rise in the cavity utilizing the dynamic Q change of the resonant mode due to heating. The diagnostic consists of simultaneously exciting a TE{sub 012} mode to steady-state in the cavity at 18 GHz and measuring the change in reflected power as the cavity is heated from high-power pulsed RF. Two experimental runs were completed. One run was executed at a calculated temperature rise of 120 K for 56 x 10{sup 6} pulses. The second run was executed at a calculated temperature rise of 82 K for 86 x 10{sup 6} pulses. Scanning electron microscope pictures show extensive damage occurring in the region of maximum temperature rise on the surface of the test pieces.

  14. A new approach to inertise the containments during catalytic removal of hydrogen

    International Nuclear Information System (INIS)

    Chakraborty, A.K.; Markandeya, S.G.

    1994-01-01

    Use of catalytic recombiners for the removal of hydrogen during a severe accident has been recommended by the German Reactor Safety Commission (RSK) due to numerous successful demonstrations of their performances. At the early stages of the accident, a huge quantity of hydrogen is expected to be released in some compartments requiring supplementary measures to ensure that the excess hydrogen concentration wouldn't pose a threat of deflagration /1/. In this presentation a new idea based on catalytic removal of hydrogen with simultaneous passive inertisation of the atmosphere is proposed for large dry containments particularly for those compartments where high H 2 -concentrations are expected. During the catalytic oxidation of hydrogen, the large exothermic heat of reaction causes strong heating of the catalytic plates as well as a continuous energy input in the containment. This can be limited if this large heat energy is efficiently used for heating some chemical compounds to release inert gases such as steam and/or CO 2 by dissociation at moderate temperatures. Such compounds can be arranged in the form of thin slabs in good thermal contact with the catalytic plates. Several such compounds have been identified which are capable of releasing steam and CO 2 equivalent to about 40 - 75% of their mass. Preliminary calculations have been carded out to demonstrate the effectiveness of the proposed concept for the case of two such selected chemicals placed adjacent to the catalytic plate type recombiners. The calculations performed show promising results. (author)

  15. Sana experiments for self-acting removal of the after-heat in reactors with pebble bed fuel and their interpretation

    International Nuclear Information System (INIS)

    Niessen, H.F.; Stoecker, Bernd; Amoignon, Olivier; Zuying, Gao; Jie, Liu

    1997-01-01

    For the confirmation of self-acting afterheat removal under hypothetical accident conditions from pebble bed reactors at the Research Center Juelich a test facility with an electrical heating input up to 30kW was erected and operated. A description of the test facility is given. Within the different tests the pebble diameter, the pebble material, the gas in the pebble bed, the heating-power and the arrangement of the heating were changed. Parts of the data were used within an IAEA Co-ordinated Research Program as benchmark problems for the code validation. All computer codes could simulate the test results with a sufficient good agreement, when the tests were executed with helium. For the tests with nitrogen the natural convection has to be taken into account. (author)

  16. Process for removing sulfur from sulfur-containing gases: high calcium fly-ash

    Science.gov (United States)

    Rochelle, Gary T.; Chang, John C. S.

    1991-01-01

    The present disclosure relates to improved processes for treating hot sulfur-containing flue gas to remove sulfur therefrom. Processes in accordance with the present invention include preparing an aqueous slurry composed of a calcium alkali source and a source of reactive silica and/or alumina, heating the slurry to above-ambient temperatures for a period of time in order to facilitate the formation of sulfur-absorbing calcium silicates or aluminates, and treating the gas with the heat-treated slurry components. Examples disclosed herein demonstrate the utility of these processes in achieving improved sulfur-absorbing capabilities. Additionally, disclosure is provided which illustrates preferred configurations for employing the present processes both as a dry sorbent injection and for use in conjunction with a spray dryer and/or bagfilter. Retrofit application to existing systems is also addressed.

  17. Assessment of capability of models for prediction of pressure drop and dryout heat flux in a heat generating particulate debris bed

    International Nuclear Information System (INIS)

    Kulkarni, P.P.; Nayak, A.K.; Rashid, M.; Kulenovic, R.

    2009-01-01

    During a severe accident in a light water reactor, the core can melt and be relocated to the lower plenum of the reactor pressure vessel. There it can form a particulate debris bed due to the possible presence of water. This bed, if not quenched in time, can lead to the failure of the pressure vessel because of the insufficient heat removal of decay heat in the debris bed. Therefore, addressing the issue of coolability behaviour of heat generating particulate debris bed is of prime importance in the framework of severe accident management strategies, particularly in case of above mentioned late phase scenario of an accident. In order to investigate the coolability behaviour of particulate debris bed, experiments were carried out at IKE test facility 'DEBRIS' on particle beds of irregularly shaped particles mixed with spheres under top- and bottom-flooding condition. The pressure drop and dryout heat flux (DHF) were measured for top- and bottom-flooding conditions. For top-flooding conditions, it was found that the pressure gradients are all smaller than the hydrostatic pressure gradient of water, indicating an important role of the counter-current interfacial shear stress of the two-phase flow. For bottom-flooding with a relatively high liquid inflow velocity, the pressure gradient increases consistently with the vapour velocity and the fluid-particle drags become important. Also, with additional forced liquid inflow from the bottom, the DHF increases dramatically. In all the cases, it was found that the DHF is significantly larger with bottom-flooding condition compared to top-flooding condition. Different models such as Lipinski, Reed, Tung and Dhir, Hu and Theophanous, and Schulenberg and Mueller have been used to predict the pressure drop characteristics and the DHF of heat generating particulate debris beds. Comparison is made among above mentioned models and experimental results for DHF and pressure drop characteristics. Considering the overall trend in

  18. New portable monitor enhances the ability to evaluate heat exchanger performance

    International Nuclear Information System (INIS)

    O'Toole, W.; Lacy, J.R.; Karlovich, D.N.

    1992-01-01

    Corrosion and fouling problems in nuclear power plant service water systems have led to industry-wide concern. These problems can affect the ability of these important heat exchangers to remove design heat loads. In addition, a limited amount of permanently installed on-line instrumentation is available to monitor key heat transfer parameters. A new, computerized monitoring system has been developed that acquires and manipulates process data. This enables power plant personnel to evaluate the on-line performance of important cooling system heat exchangers. The equipment provides the capability to continuously monitor, graph, and record cooling and process heat transfer parameters. The computer hardware is in a portable cabinet on wheels, which can be easily rolled from exchanger to exchanger for monitoring. This new monitoring system is being used at Consolidated Edison Company of New York Inc.'s Indian Point 2 Nuclear Station. They are currently expanding their performance testing on service water system heat exchangers and other auxiliary components to include those units that have limited on-line instrumentation. The ability to use clamp on flow and temperature sensing devices is necessary for trending exchanger performance. With on-line testing capabilities it is possible to: evaluate the cleanliness of plant heat transfer surfaces; make judgments about biofouling or antiscalant programs; and determine when equipment needs to be shut down for inspection or cleaning This paper describes this state-of-the-art equipment in detail and its application at the Indian Point 2 Nuclear Station. 9 refs., 8 figs., 1 tab

  19. Numerical Study on the Design Concept of an Air-Cooled Condensation Heat Exchanger in a Long-term Passive Cooling System

    International Nuclear Information System (INIS)

    Kim, Myoung Jun; Moon, Joo Hyung; Bae, Youngmin; Kim, Young In; Park, Hyun Sik; Lee, Hee Joon

    2016-01-01

    SMART is the only licensed SMR in the world since the Nuclear Safety and Security Commission (NSSC) issued officially the Standard Design Approval (SDA) on 4 July 2012. Recently, the pre-project engineering (PPE) was officially launched for the construction of SMART and developing human resources capability. Both KAERI and King Abdullah City for Atomic and Renewable Energy (K.A. CARE) will conduct a three-year preliminary study to review the feasibility of building SMART and to prepare for its commercialization. SMART is equipped with passive cooling systems in order to enhance the safety of the reactor. The PRHRS (Passive Residual Heat Removal System) is the major passive safety system, which is actuated after an accident to remove the residual heat and the sensible heat from the RCS (Reactor Coolant System) through the steam generators (SGs) until the safe shutdown condition is reached. In this study, condensing heat transfer correlations in TSCON were validated using experimental data. It was shown that most of the condensation correlation gave satisfactory predictions of the cooling capacity of an-air cooled condensation heat exchanger

  20. Numerical Study on the Design Concept of an Air-Cooled Condensation Heat Exchanger in a Long-term Passive Cooling System

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Myoung Jun; Moon, Joo Hyung; Bae, Youngmin; Kim, Young In; Park, Hyun Sik [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, Hee Joon [Kookmin University, Seoul (Korea, Republic of)

    2016-10-15

    SMART is the only licensed SMR in the world since the Nuclear Safety and Security Commission (NSSC) issued officially the Standard Design Approval (SDA) on 4 July 2012. Recently, the pre-project engineering (PPE) was officially launched for the construction of SMART and developing human resources capability. Both KAERI and King Abdullah City for Atomic and Renewable Energy (K.A. CARE) will conduct a three-year preliminary study to review the feasibility of building SMART and to prepare for its commercialization. SMART is equipped with passive cooling systems in order to enhance the safety of the reactor. The PRHRS (Passive Residual Heat Removal System) is the major passive safety system, which is actuated after an accident to remove the residual heat and the sensible heat from the RCS (Reactor Coolant System) through the steam generators (SGs) until the safe shutdown condition is reached. In this study, condensing heat transfer correlations in TSCON were validated using experimental data. It was shown that most of the condensation correlation gave satisfactory predictions of the cooling capacity of an-air cooled condensation heat exchanger.

  1. Utilising heat from nuclear waste for space heating

    International Nuclear Information System (INIS)

    Deacon, D.

    1982-01-01

    A heating unit utilising the decay heat from irradiated material comprises a storage envelope for the material associated with a heat exchange system, means for producing a flow of air over the heat exchange system to extract heat from the material, an exhaust duct capable of discharging the heated air to the atmosphere, and means for selectively diverting at least some of the heated air to effect the required heating. With the flow of air over the heat exchange system taking place by a natural thermosyphon process the arrangement is self regulating and inherently reliable. (author)

  2. Heat pipes for ground heating and cooling

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, L L

    1988-01-01

    Different versions of heat pipe ground heating and cooling devices are considered. Solar energy, biomass, ground stored energy, recovered heat of industrial enterprises and ambient cold air are used as energy and cold sources. Heat pipe utilization of air in winter makes it possible to design accumulators of cold and ensures deep freezing of ground in order to increase its mechanical strength when building roadways through the swamps and ponds in Siberia. Long-term underground heat storage systems are considered, in which the solar and biomass energy is accumulated and then transferred to heat dwellings and greenhouses, as well as to remove snow from roadways with the help of heat pipes and solar collectors.

  3. Integrated CFD investigation of heat transfer enhancement using multi-tray core catcher in SFR

    International Nuclear Information System (INIS)

    Rakhi; Sharma, Anil Kumar; Velusamy, K.

    2017-01-01

    Highlights: • Heat transfer enhancement using multi-tray core catcher for SFR is investigated. • The capability of a single core collector tray is estimated. • Double and triple collector trays with innovative designs is discussed. • Provision of openings in the trays contributed to enhanced natural circulation. - Abstract: To render future SFR more robust and safe, certain BDBE have been considered in the recent years. A Core Disruptive Accident leading to a whole core meltdown scenario has gained the interest of researchers. Various design concepts and safety measures have been suggested and incorporated in design to address such a low probability scenario. A core catcher concept, in particular, has proved to be inevitable as an in-vessel core retention device in SFR for safe retention of core debris arising out after the severe accident. This study aims to analyse the cooling capability of the innovative design concept of core catcher to remove decay heat of degraded core after the accident. First, the capability of single collection tray is established and then the study is extended to two and three collection trays with different design concepts. Transient forms of governing equations of mass, momentum and energy conservations along with k-ε turbulence model are solved by finite volume based CFD solver. Boussinesq approximation is invoked to model buoyancy in sodium. The study shows that a single collection tray is capable of removing up to 20 MW decay heat load in a typical 500 MWe pool type SFR. Further, studies are carried out to improve the natural circulation of sodium around the source, in the lower plenum and to distribute core debris of the whole core to multiple collection trays. It is found that the double and triple collection trays can accommodate decay loads up to 29 MW. Provision of openings in the collection trays has proved to be effective in improving the heat transfer and sodium flow as well as in distributing the core debris to the

  4. Heat dissipating nuclear reactor with metal liner

    Science.gov (United States)

    Gluekler, E.L.; Hunsbedt, A.; Lazarus, J.D.

    1985-11-21

    A nuclear reactor containment including a reactor vessel disposed within a cavity with capability for complete inherent decay heat removal in the earth and surrounded by a cast steel containment member which surrounds the vessel is described in this disclosure. The member has a thick basemat in contact with metal pilings. The basemat rests on a bed of porous particulate material, into which water is fed to produce steam which is vented to the atmosphere. There is a gap between the reactor vessel and the steel containment member. The containment member holds any sodium or core debris escaping from the reactor vessel if the core melts and breaches the vessel.

  5. Natural Circulation in the Blanket Heat Removal System During a Loss-of-Pumping Accident (LOFA) Based on Initial Conceptual Design

    International Nuclear Information System (INIS)

    Hamm, L.L.

    1998-01-01

    A transient natural convection model of the APT blanket primary heat removal (HR) system was developed to demonstrate that the blanket could be cooled for a sufficient period of time for long term cooling to be established following a loss-of-flow accident (LOFA). The particular case of interest in this report is a complete loss-of-pumping accident. For the accident scenario in which pumps are lost in both the target and blanket HR systems, natural convection provides effective cooling of the blanket for approximately 68 hours, and, if only the blanket HR systems are involved, natural convection is effective for approximately 210 hours. The heat sink for both of these accident scenarios is the assumed stagnant fluid and metal on the secondary sides of the heat exchangers

  6. Capabilities of a New Pressure Controller for Gas-Controlled Heat Pipes

    Science.gov (United States)

    Giunta, S.; Merlone, A.; Marenco, S.; Marcarino, P.; Tiziani, A.

    2008-10-01

    Pressure control is used in many metrological applications and for the control of thermodynamic quantities. At the Italian National Research Institute of Metrology (INRiM), a new pressure controller has been designed and assembled, operating in the pressure range between 4 kPa and 400 kPa. This innovative instrument uses a commercial pressure transducer with a sensitivity of 10-4 and several electro-valves interposed among calibrated volumes of different dimensions in order to realize known ratios for very fine pressure changes. The device is provided with several circuits to drive the electro-valve actions, for signal processing and transmission, and for both manual and automatic control. Input/output peripherals, such as a 4 × 20 dot matrix display and a 4 × 4 keyboard, allow setting of the parameters and data visualization, while a remote control port allows interfacing with a computer. The operating principle of this pressure controller has been recently applied, with excellent results, to control the pressure in gas-controlled heat pipes by using a standard platinum resistance thermometer as a temperature/pressure sensor, achieving in this case a relative sensitivity better than 10-6 in pressure. Several tests were also made to control the pressure by means of a commercial sensor. The device, its main components, and its capabilities are here reported, together with application tests and results.

  7. Evaluation of Heat Transfer to the Implant-Bone Interface During Removal of Metal Copings Cemented onto Titanium Abutments.

    Science.gov (United States)

    Cakan, Umut; Cakan, Murat; Delilbasi, Cagri

    2016-01-01

    The aim of this investigation was to measure the temperature increase due to heat transferred to the implant-bone interface when the abutment screw channel is accessed or a metal-ceramic crown is sectioned buccally with diamond or tungsten carbide bur using an air rotor, with or without irrigation. Cobalt-chromium copings were cemented onto straight titanium abutments. The temperature changes during removal of the copings were recorded over a period of 1 minute. The sectioning of coping with diamond bur and without water irrigation generated the highest temperature change at the cervical part of the implant. Both crown removal methods resulted in an increase in temperature at the implant-bone interface. However, this temperature change did not exceed 47°C, the potentially damaging threshold for bone reported in the literature.

  8. The use of ferrofluids for heat removal: Advantage or disadvantage?

    Energy Technology Data Exchange (ETDEWEB)

    Krauzina, Marina T., E-mail: krauzina@psu.ru [Faculty of Physics, Perm State University, 15 Bukirev Street, Perm 614990 (Russian Federation); Bozhko, Aleksandra A., E-mail: bozhko@psu.ru [Faculty of Physics, Perm State University, 15 Bukirev Street, Perm 614990 (Russian Federation); Krauzin, Pavel V., E-mail: krauzin@psu.ru [Faculty of Physics, Perm State University, 15 Bukirev Street, Perm 614990 (Russian Federation); Suslov, Sergey A., E-mail: ssuslov@swin.edu.au [Department of Mathematics H38, Swinburne University of Technology, Hawthorn, Victoria 3122 (Australia)

    2017-06-01

    It is shown experimentally that, depending on the relative orientation of the gravity and the thermal gradient and on the pre-history of experiment, the application of a uniform external vertical magnetic field to a spherical cavity filled with magnetic ferrofluid can either enhance or suppress a convective heat transfer. - Highlights: • Conduction heat transfer in magnetic fluid heated from above is stronger than that in a fluid not containing nanoparticles. • The application of a uniform vertical magnetic field enhances heat transfer when magnetic fluid is heated from above. • Heat transfer in a magnetic fluid heated from below is weaker than that in a fluid not containing nanoparticles.

  9. [Experimental study on two-way application of traditional Chinese medicines capable of promoting blood circulation and removing blood stasis with neutral property in cold and hot blood stasis syndrome I].

    Science.gov (United States)

    Hao, Er-Wei; Deng, Jia-Gang; Du, Zheng-Cai; Yan, Ke; Zheng, Zuo-Wen; Wang, Qin; Huang, Li-Zhen; Bao, Chuan-Hong; Deng, Xiu-Qiong; Lu, Xiao-Yan; Tang, Zhi-Ling

    2012-11-01

    To study the action characteristics of "two-way application and conditioned dominance" of traditional Chinese medicines with neutral property by observing the action characteristic of 10 traditional Chinese medicines capable of promoting blood circulation and removing blood stasis with neutral property in the microcirculation in rats with heat stagnation and blood stasis syndrome. The rat model with heat stagnation and blood stasis syndrome was established by injecting carrageenan and dry yeast, and the rat model with cold stagnation and blood stasis syndrome was built by the body freezing method. Ten traditional Chinese medicines with neutral property, including 5 with hot property and 5 with cold property, were selected for intervention to observe blood flow rate and flow state indicators in rat auricles and make a comparative analysis on action characteristics of traditional Chinese medicines with neutral property. ANOVA showed that among the 10 traditional Chinese medicines with neutral property, 6 such as Typhae Pollen, Sappan Lignum and Vaccariae Semen can obviously increase the blood flow rate (P traditional Chinese medicines with cold property can increase the blood flow rate (P medicines showed no notable effect; among the 5 traditional Chinese medicines with hot property, Carthamus tinctorius and Ligusticum chuanxiong can increase the blood flow rate (P traditional Chinese medicines with natural and cold properties showed similar effect on heat stagnation and blood stasis syndrome and better effect in increasing blood flow rate than those with hot property; those with natural and hot properties showed similar effect and better effect in increasing blood flow rate than those with cold property. Under the condition of heat stagnation and blood stasis syndrome, traditional Chinese medicines with neutral property have the similar action characteristics with those with cold property; wile under the condition of cold stagnation and blood stasis syndrome

  10. Validation of intermediate heat and decay heat exchanger model in MARS-LMR with STELLA-1 and JOYO tests

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Chiwoong; Ha, Kwiseok; Hong, Jonggan; Yeom, Sujin; Eoh, Jaehyuk [Sodium-cooled Fast Reactor Design Division, Korea Atomic Energy Research Institute (KAERI), 989-111, Daedeok-Daero, Yuseong-Gu, Daejeon 305-353 (Korea, Republic of); Jeong, Hae-yong, E-mail: hyjeong@sejong.ac.kr [Department of Nuclear Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 143-747 (Korea, Republic of)

    2016-11-15

    Highlights: • The capability of the MARS-LMR for heat transfer through IHX and DHX is evaluated. • Prediction of heat transfer through IHXs and DHXs is essential in the SFR analysis. • Data obtained from the STELLA-1 and the JOYO test are analyzed with the MARS-LMR. • MARS-LMR adopts the Aoki’s correlation for tube side and Graber-Rieger’s for shell. • The performance of the basic models and other available correlations is evaluated. • The current models in MARS-LMR show best prediction for JOYO and STELLA-1 data. - Abstract: The MARS-LMR code has been developed by the Korea Atomic Energy Research Institute (KAERI) to analyze transients in a pool-type sodium-cooled fast reactor (SFR). Currently, KAERI is developing a prototype Gen-IV SFR (PGSFR) with metallic fuel. The decay heat exchangers (DHXs) and the intermediate heat exchangers (IHXs) were designed as a sodium-sodium counter-flow tube bundle type for decay heat removal system (DHRS) and intermediate heat transport system (IHTS), respectively. The IHX and DHX are important components for a heat removal function under normal and accident conditions, respectively. Therefore, sodium heat transfer models for the DHX and IHX heat exchangers were added in MARS-LMR. In order to validate the newly added heat transfer model, experimental data were obtained from the JOYO and STELLA-1 facilities were analyzed. JOYO has two different types of IHXs: type-A (co-axial circular arrangement) and type-B (triangular arrangement). For the code validation, 38 and 39 data points for type A and type B were selected, respectively. A DHX performance test was conducted in STELLA-1, which is the test facility for heat exchangers and primary pump in the PGSFR. The DHX test in STELLA-1 provided eight data points for a code validation. Ten nodes are used in the heat transfer region is used, based on the verification test for the heat transfer models. RMS errors for JOYO IHX type A and type B of 19.1% and 4.3% are obtained

  11. Residual heat removal pump and low pressure safety injection pump retrofit program

    International Nuclear Information System (INIS)

    Dudiak, J.G.; McKenna, J.M.

    1992-01-01

    Residual Heat Removal (RHR) and low pressure safety injection (LPSI) pumps installed in pressurized water-to-reactor power plants are used to provide low-head safety injection in the event of loss of coolant in the reactor coolant system. Because these pumps are subjected to rather severe temperature and pressure transients, the majority of pumps installed in the RHR service are vertical pumps with a single stage impeller. Typically the pump impeller is mounted on an extended motor shaft (close-coupled configuration) and a mechanical seal is employed at the pump end of the shaft. Traditionally RHR and LPSI pumps have been a significant maintenance item for many utilities. Periodic mechanical seal of motor bearing replacement often is considered routine maintenance. The closed-coupled pump design requires disassembly of the casing cover from the lower pump casing while performing these routine maintenance tasks. This paper introduces a design modification developed to convert the close-coupled RHR and LPSI pumps to a coupled configuration

  12. CFD modeling and thermal-hydraulic analysis for the passive decay heat removal of a sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Hung, T.C.; Dhir, V.K.; Chang, J.C.; Wang, S.K.

    2011-01-01

    Research highlights: → The COOLOD/N2 and PARET/ANL codes were used for a steady-state thermal-hydraulic and safety analysis of the 2 MW TRIGA MARK II reactor located at the Nuclear Studies Center of Maamora (CENM), Morocco. → The main objective of this study is to ensure the safety margins of different safety related parameters by steady-state calculations at full power level (2 MW). → The most important conclusion is that all obtained values of DNBR, fuel center and surface temperature, cladding surface temperature and coolant temperature across the hottest channel are largely far to compromise safety of the reactor. - Abstract: In this study, a pool-typed design similar to sodium-cooled fast reactor (SFR) of the fourth generation reactors has been modeled using CFD simulations to investigate the characteristics of a passive mechanism of Shutdown Heat Removal System (SHRS). The main aim is to refine the reactor pool design in terms of temperature safety margin of the sodium pool. Thus, an appropriate protection mechanism is maintained in order to ensure the safety and integrity of the reactor system during a shutdown mode without using any active heat removal system. The impacts on the pool temperature are evaluated based on the following considerations: (1) the aspect ratio of pool diameter to depth, (2) the values of thermal emissivity of the surface materials of reactor and guard vessels, and (3) innerpool liner and core periphery structures. The computational results show that an optimal pool design in geometry can reduce the maximum pool temperature down to ∼551 o C which is substantially lower than ∼627 o C as calculated for the reference case. It is also concluded that the passive Reactor Air Cooling System (RACS) is effective in removing decay heat after shutdown. Furthermore, thermal radiation from the surface of the reactor vessel is found to be important; and thus, the selection of the vessel surface materials with a high emissivity would be a

  13. Thermal-hydraulic processes involved in loss of residual heat removal during reduced inventory operation

    International Nuclear Information System (INIS)

    Fletcher, C.D.; McHugh, P.R.; Naff, S.A.; Johnsen, G.W.

    1991-02-01

    This paper identifies the topics needed to understand pressurized water reactor response to an extended loss of residual heat removal event during refueling and maintenance outages. By identifying the possible plant conditions and cooling methods that would be used for each cooling mode, the controlling thermal-hydraulic processes and phenomena were identified. Controlling processes and phenomena include: gravity drain, core water boil-off, and reflux cooling processes. Important subcategories of the reflux cooling processes include: the initiation of reflux cooling from various plant conditions, the effects of air on reflux cooling, core level depression effects, issues regarding the steam generator secondaries, and the special case of boiler-condenser cooling with once-through steam generators. 25 refs., 6 figs., 1 tab

  14. Preliminary review of critical shutdown heat removal items for common cause failure susceptibility on LMFBR's. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Allard, L.T.; Elerath, J.G.

    1976-02-01

    This document presents a common cause failure analysis for Critical LMFBR Shutdown Heat Removal Systems. The report is intended to outline a systematic approach to defining areas with significant potential for common causes of failure, and ultimately provide inputs to the reliability prediction model. A preliminary evaluation of postulatd single initiating causes resulting in multiple failures of LMFBR-SHRS items is presented in Appendix C. This document will be periodically updated to reflect new information and activity.

  15. CATHARE2 analysis on the loss of residual heat removal system during mid-loop operation : pressurizer and SGI outlet plenum manways open

    International Nuclear Information System (INIS)

    Chung, Young Jong; Chang, Won Pyo.

    1997-06-01

    The present study is to analyze the BETHSY test 6.9c using CATHARE2 v1.3u. BETHSY test 6.9c simulates plant conditions following loss of residual heat removal system under mid-loop operation. The configuration is that the pressurizer and steam generator outlet plenum manways are opened as vent paths in order to protect the system from overpressurization by removing the steam generated in the core. Most of the important physical phenomena are observed in the experiment have been predicted reasonably by the CATHARE2 code. Since the differential pressure between the pressurizer and the surge line is overestimated, the peak pressure in the upper plenum is predicted higher than the experimental value by 11 kPa and occurrence is delayed by 210s. Also earlier core uncovery is predicted, mainly due to overprediction of the manway flows. The analysis results are demonstrated that opening of the pressurizer and the steam generator outlet plenum manways is effective to prevent the core uncovery by only gravity feed injection. Although some disagreements found in detailed phenomena, the prediction of the overall system behavior by the code does not deviate from the experimental results unacceptably. The core bypass flowrate is found to be very sensitive to mass distribution in the core and the system behaviors are strongly affected by phase separation modeling under low pressure and particularly stratified flow condition. the main purpose of the present study is to understand physical phenomena under the accident and to assess the capability of CATHARE2 prediction for enhancement of reliability in actual plant analyses. (author). 11 refs., 3 tabs., 41 figs

  16. The cryogenic cooling program in high-heat-load optics at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Rogers, C.S.

    1993-07-01

    This paper describes some of the aspects of the cryogenic optics program at the Advanced Photon Source (APS). A liquid-nitrogen-cooled, high-vacuum, double crystal monochromator is being fabricated at Argonne National Laboratory (ANL). A pumping system capable of delivering a variable flow rate of up to 10 gallons per minute of pressurized liquid nitrogen and removing 5 kilowatts of x-ray power is also being constructed. This specialized pumping system and monochromator will be used to test the viability of cryogenically cooled, high-heat-load synchrotron optics. It has been determined that heat transfer enhancement will be required for optics used with APS insertion devices. An analysis of a porous-matrix-enhanced monochromator crystal is presented. For the particular case investigated, a heat transfer enhancement factor of 5 to 6 was calculated

  17. Experience on sodium removal from various components

    Energy Technology Data Exchange (ETDEWEB)

    Kamei, M; Kanbe, M; Yagisawa, H; Sasaki, S; Kataoka, H; Fukada, T; Ishii, Y; Saito, R; Mimoto, Y [O-arai Engineering Centre, PNC, Ibaraki-ken, Tokio (Japan)

    1978-08-01

    Since 1970, OEC (O-arai Engineering Center) has been Investigating the following methods for removal of sodium from the components of sodium plants: steam cleaning for the 50 MW Steam Generator, secondary proto-type pump of 'JOYO' and Dummy fuel assembly of 'JOYO', alcohol cleaning for Sector Model of Intermediate Heat Exchanger (IHX) of 'JOYO', a sector model of Sodium-to-Air cooler of 'JOYO' and a proto-type isolation valve of 'JOYO' and cleaning by vacuumization at high temperature for Regenerative Heat Exchanger. This report describes the outline of the Sodium Disposal Facility and experience of sodium removal processing on the 50 MW Steam Generator, the crevices of the experimental sub-assemblies, the Fuel Handling Machine of 'MONJU' and the Regenerative Heat Exchanger of the Sodium Flow Test Facility. Through these experiences it was noted that, (1) Removal of sodium from crevices such as in bolted joints are very difficult. (2) Consideration is needed in the removal process where material damage might occur from the generation of hydro-oxides. (3) Some detection device to tell the completion of sodium removal as well as the end of reaction is required. (4) Requalification rules should be clarified. Efforts in this direction have been made in the case of a 'JOYO' prototype pump by reinstalling it after sodium removal five times. (author)

  18. Experience on sodium removal from various components

    International Nuclear Information System (INIS)

    Kamei, M.; Kanbe, M.; Yagisawa, H.; Sasaki, S.; Kataoka, H.; Fukada, T.; Ishii, Y.; Saito, R.; Mimoto, Y.

    1978-01-01

    Since 1970, OEC (O-arai Engineering Center) has been Investigating the following methods for removal of sodium from the components of sodium plants: steam cleaning for the 50 MW Steam Generator, secondary proto-type pump of 'JOYO' and Dummy fuel assembly of 'JOYO', alcohol cleaning for Sector Model of Intermediate Heat Exchanger (IHX) of 'JOYO', a sector model of Sodium-to-Air cooler of 'JOYO' and a proto-type isolation valve of 'JOYO' and cleaning by vacuumization at high temperature for Regenerative Heat Exchanger. This report describes the outline of the Sodium Disposal Facility and experience of sodium removal processing on the 50 MW Steam Generator, the crevices of the experimental sub-assemblies, the Fuel Handling Machine of 'MONJU' and the Regenerative Heat Exchanger of the Sodium Flow Test Facility. Through these experiences it was noted that, (1) Removal of sodium from crevices such as in bolted joints are very difficult. (2) Consideration is needed in the removal process where material damage might occur from the generation of hydro-oxides. (3) Some detection device to tell the completion of sodium removal as well as the end of reaction is required. (4) Requalification rules should be clarified. Efforts in this direction have been made in the case of a 'JOYO' prototype pump by reinstalling it after sodium removal five times. (author)

  19. Experience on sodium removal from various components

    International Nuclear Information System (INIS)

    Kamei, M.; Kanbe, M.; Yagisawa, H.; Sasaki, S.; Kataoka, H.

    1978-02-01

    Since 1970, OEC (O-arai Engineering Center) has been investigating the following methods for removal of sodium from the components of sodium plants: steam cleaning for the 50 MW Steam Generator, secondary proto-type pump of ''JOYO'' and Dummy fuel assembly of ''JOYO'', alcohol cleaning for Sector Model of Intermediate Heat Exchanger (IHX) of ''JOYO'', a sector model of Sodium-to-Air cooler of ''JOYO'' and a proto-type Isolation valve of ''JOYO'' and cleaning by vacuumization at high temperature for Regenerative Heat Exchanger. This report describes the outline of the Sodium Disposal Facility and experience of sodium removal processing on the 50 MW Steam Generator, the crevices of the experimental subassemblies, the Fuel Handling Machine of ''MONJU'' and the Regenerative Heat Exchanger of the Sodium Flow Test Facility. Through these experiences it was noted that, (1) Removal of Sodium from crevices such as in bolted joints are very difficult. (2) Consideration is needed in the removal process where material damage might occur from the generation of hydro-oxides. (3) Some detection device to tell the completion of sodium removal as well as the end of reaction is required. (4) Requalification rules should be clarified. Efforts in this direction have been made in the case of a ''JOYO'' prototype pump by reinstalling it after sodium removal five times. (author)

  20. Thermal control system. [removing waste heat from industrial process spacecraft

    Science.gov (United States)

    Hewitt, D. R. (Inventor)

    1983-01-01

    The temperature of an exothermic process plant carried aboard an Earth orbiting spacecraft is regulated using a number of curved radiator panels accurately positioned in a circular arrangement to form an open receptacle. A module containing the process is insertable into the receptacle. Heat exchangers having broad exterior surfaces extending axially above the circumference of the module fit within arcuate spacings between adjacent radiator panels. Banks of variable conductance heat pipes partially embedded within and thermally coupled to the radiator panels extend across the spacings and are thermally coupled to broad exterior surfaces of the heat exchangers by flanges. Temperature sensors monitor the temperature of process fluid flowing from the module through the heat exchanges. Thermal conduction between the heat exchangers and the radiator panels is regulated by heating a control fluid within the heat pipes to vary the effective thermal length of the heat pipes in inverse proportion to changes in the temperature of the process fluid.

  1. Safety technology qualification of the prestressed cast iron pressure vessel (PCIV) and of the primary cell of the HTR-modul for the passive removal of decay heat, phase 1 (INHR)

    International Nuclear Information System (INIS)

    Warnke, E.P.

    1990-02-01

    During this development program the thermodynamic behaviour of a system was investigated, consisting of a hot working Prestressed Cast Iron Pressure Vessel and an inactive heat sink in the surrounding cavern cell. It could be shown, that the inactive heat removal system designed as a natural circuit can remove the maximum amount of heat of 890 kW during emergency conditions via a natural-draught air cooling tower even under very conservative assumptions and for a 50% loss of cooling pipes. Further it could be shown, that the hot working Prestressed Cast Iron Pressure Vessel has a very safe load carrying behaviour during all normal and upset conditions. (orig.) With 10 tabs., 38 figs., 43 refs [de

  2. Heat pipe development

    Science.gov (United States)

    Bienart, W. B.

    1973-01-01

    The objective of this program was to investigate analytically and experimentally the performance of heat pipes with composite wicks--specifically, those having pedestal arteries and screwthread circumferential grooves. An analytical model was developed to describe the effects of screwthreads and screen secondary wicks on the transport capability of the artery. The model describes the hydrodynamics of the circumferential flow in triangular grooves with azimuthally varying capillary menisci and liquid cross-sections. Normalized results were obtained which give the influence of evaporator heat flux on the axial heat transport capability of the arterial wick. In order to evaluate the priming behavior of composite wicks under actual load conditions, an 'inverted' glass heat pipe was designed and constructed. The results obtained from the analysis and from the tests with the glass heat pipe were applied to the OAO-C Level 5 heat pipe, and an improved correlation between predicted and measured evaporator and transport performance were obtained.

  3. Local Heat Transfer and CHF for Subcooled Flow Boiling - Annual Report 1993

    International Nuclear Information System (INIS)

    Boyd, Ronald D.

    2000-01-01

    Subcooled flow boiling in heated coolant channels is an important heat transfer enhancement technique in the development of fusion reactor components, where high heat fluxes must be accommodated. As energy fluxes increase in magnitude, additional emphasis must be devoted to enhancing techniques such as sub cooling and enhanced surfaces. In addition to subcooling, other high heat flux alternatives such as high velocity helium and liquid metal cooling have been considered as serious contenders. Each technique has its advantages and disadvantages [1], which must be weighed as to reliability and reduced cost of fusion reactor components. Previous studies [2] have set the stage for the present work, which will concentrate on fundamental thermal hydraulic issues associated with the h-international Thermonuclear Experimental Reactor (ITER) and the Engineering Design Activity (EDA). This proposed work is intended to increase our understanding of high heat flux removal alternatives as well as our present capabilities by: (1) including single-side heating effects in models for local predictions of heat transfer and critical heat flux; (2) inspection of the US, Japanese, and other possible data sources for single-side heating, with the aim of exploring possible correlations for both CHF and local heat transfer; and (3) assessing the viability of various high heat flux removal techniques. The latter task includes: (a) sub-cooled water flow boiling with enhancements such as twisted tapes, and hypervapotrons, (b) high velocity helium cooling, and (c) other potential techniques such as liquid metal cooling. This assessment will increase our understanding of: (1) hypervapotron heat transfer via fins, flow recirculation, and flow oscillation, and (2) swirl flow. This progress report contains selective examples of ongoing work. Section II contains an extended abstract, which is part of and evolving technical paper on single-side f heating. Section III describes additional details

  4. Heat recovery from flue gas of coal fired installations with reduced pollutant emission - the Zittau process

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, H; Strauss, R; Hofmann, K -D; Suder, M; Hultsch, T; Wetzel, W; Gabrysch, H; Jung, J [Technische Hochschule, Zittau (German Democratic Republic)

    1988-12-01

    Reviews the technology applied in the Zittau process for flue gas heat recovery and flue gas desulfurization in small brown coal fired power plants. Steam generators have a capacity of 6.5 or 10 t/h, low grade fuel with 8.2 MJ/kg calorific value is combusted. Technology has been developed on an experimental 10 t/h steam generator since 1986; an industrial 6.5 t/h prototype steam generator is now in operation achieving 95% SO{sub 2} removal from flue gas with 5600 to 7800 mg SO{sub 2} per m{sup 3} of dry flue gas. The Zittau technology is available in 3 variants: with maximum waste heat recovery, with partial waste heat recovery or without waste heat recovery and only wet flue gas scrubbing. Two flowsheets of flue gas and suspension circulation are provided. The first variant recovers 25.7% of nominal heat capacity (1.1 thermal MW from a 4.2 MW steam generator with 6.5 t/h steam capacity), the second variant recovers 6.5% of waste heat by reducing heat exchangers to 20% of the size of the first variant. Flue gas suspension scrubbing utilizes power plant ash, which is capable of absorbing 50 to 70% of SO{sub 2}, additional 25% SO{sub 2} removal is achieved by providing either 40% ash from another power plant or limestone for suspensions. Various technological details are included. 5 refs.

  5. Numerical investigation of heat transfer enhancement in ribbed channel for the first wall of DFLL-TBM in ITER

    International Nuclear Information System (INIS)

    Jin Qiang; Liu Songlin; Li Min; Wang Weihua

    2012-01-01

    As an important component of Dual Functional Lithium Lead-Test Blanket Module (DFLL-TBM), the first wall (FW) must withstand and remove the heat flux from the plasma (q″ = 0.3 MW/m 2 ) and high nuclear power deposited in the structure at normal plasma operation scenario of ITER. In this paper the transverse ribs arranged along the plasma facing inner wall surface were used to enhance the heat transfer capability. After the validation compared with empirical correlations the Standard k–ω model was employed to do the numerical simulation using FLUENT code to investigate the heat transfer efficiency and flow performance of coolant in the ribbed channel preliminarily. The perforation on the bottom of rib was proposed near the lower heat transfer area (LHTA) to improve the heat transfer performance according to results of analyses.

  6. Numerical research on natural convection in molten salt reactor with non-uniformly distributed volumetric heat generation

    International Nuclear Information System (INIS)

    Qian Libo; Qiu Suizheng; Zhang Dalin; Su Guanghui; Tian Wenxi

    2010-01-01

    Molten salt reactor is one of the six Generation IV systems capable of breeding and transmutation of actinides and long-lived fission products, which uses the liquid molten salt as the fuel solvent, coolant and heat generation simultaneously. The present work presents a numerical investigation on natural convection with non-uniform heat generation through which the heat generated by the fluid fuel is removed out of the core region when the reactor is under post-accident condition or zero-power condition. The two-group neutron diffusion equation is applied to calculated neutron flux distribution, which leads to non-uniform heat generation. The SIMPLER algorithm is used to calculate natural convective heat transfer rate with isothermal or adiabatic rigid walls. These two models are coupled through the temperature field and heat sources. The peculiarities of natural convection with non-uniform heat generation are investigated in a range of Ra numbers (10 3 ∼ 10 7 ) for the laminar regime of fluid motion. In addition, the numerical results are also compared with those containing uniform heat generation.

  7. Spray cooling heat transfer: Technology overview and assessment of future challenges for micro-gravity application

    International Nuclear Information System (INIS)

    Silk, Eric A.; Golliher, Eric L.; Paneer Selvam, R.

    2008-01-01

    Advanced on-board flight systems for future NASA space exploration programs consist of components such as laser-diode arrays (LDA's) and multi-chip modules (MCM's). Thermal management of these systems require high heat flux cooling capability (≥100 W/cm 2 ), tight temperature control (approx. ±2 deg. C), reliable start-up (on demand) and long term stability. Traditional multiphase thermal control technologies for space flight (e.g., loop heat pipes, capillary pumped loops, etc.) satisfy the temperature control, start-up and stability requirements, but their heat flux removal capabilities are limited. Spray cooling can provide high heat fluxes in excess of 100 W/cm 2 using fluorinerts and over 1000 W/cm 2 with water while allowing tight temperature control at low coolant fluid flow rates. Spray cooling has been flight proven in an open loop configuration through the Space shuttle's flash evaporator system (FES). However, several closed system issues require investigation to further advance the technology to a technology readiness level (TRL) appropriate for closed system space flight application. This paper provides a discussion of the current status of spray cooling technology as well as NASA's goals, current direction, and challenges associated with the implementation and practice of this technology in the micro-gravity environment

  8. Chemical heat pump and chemical energy storage system

    Science.gov (United States)

    Clark, Edward C.; Huxtable, Douglas D.

    1985-08-06

    A chemical heat pump and storage system employs sulfuric acid and water. In one form, the system includes a generator and condenser, an evaporator and absorber, aqueous acid solution storage and water storage. During a charging cycle, heat is provided to the generator from a heat source to concentrate the acid solution while heat is removed from the condenser to condense the water vapor produced in the generator. Water is then stored in the storage tank. Heat is thus stored in the form of chemical energy in the concentrated acid. The heat removed from the water vapor can be supplied to a heat load of proper temperature or can be rejected. During a discharge cycle, water in the evaporator is supplied with heat to generate water vapor, which is transmitted to the absorber where it is condensed and absorbed into the concentrated acid. Both heats of dilution and condensation of water are removed from the thus diluted acid. During the discharge cycle the system functions as a heat pump in which heat is added to the system at a low temperature and removed from the system at a high temperature. The diluted acid is stored in an acid storage tank or is routed directly to the generator for reconcentration. The generator, condenser, evaporator, and absorber all are operated under pressure conditions specified by the desired temperature levels for a given application. The storage tanks, however, can be maintained at or near ambient pressure conditions. In another form, the heat pump system is employed to provide usable heat from waste process heat by upgrading the temperature of the waste heat.

  9. Solving the inverse heat conduction problem using NVLink capable Power architecture

    Directory of Open Access Journals (Sweden)

    Sándor Szénási

    2017-11-01

    Full Text Available The accurate knowledge of Heat Transfer Coefficients is essential for the design of precise heat transfer operations. The determination of these values requires Inverse Heat Transfer Calculations, which are usually based on heuristic optimisation techniques, like Genetic Algorithms or Particle Swarm Optimisation. The main bottleneck of these heuristics is the high computational demand of the cost function calculation, which is usually based on heat transfer simulations producing the thermal history of the workpiece at given locations. This Direct Heat Transfer Calculation is a well parallelisable process, making it feasible to implement an efficient GPU kernel for this purpose. This paper presents a novel step forward: based on the special requirements of the heuristics solving the inverse problem (executing hundreds of simulations in a parallel fashion at the end of each iteration, it is possible to gain a higher level of parallelism using multiple graphics accelerators. The results show that this implementation (running on 4 GPUs is about 120 times faster than a traditional CPU implementation using 20 cores. The latest developments of the GPU-based High Power Computations area were also analysed, like the new NVLink connection between the host and the devices, which tries to solve the long time existing data transfer handicap of GPU programming.

  10. Assessment of Coping Capability of KORI Unit 1 under Extended Loss AC Power and Loss of Ultimate Heat Sink Initiated by Beyond Design Natural Disaster

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang Hyun; Ha, Sang Jun [KHNP CRI, Daejeon (Korea, Republic of); Han, Kee Soo [Nuclear Engineering Service and Solution (NESS) Co. Ltd., Deajeon (Korea, Republic of); Park, Chan Eok [KEPCO Engineering and Constructd., Deajeon (Korea, Republic of)

    2016-10-15

    In Korea, the government and industry performed comprehensive safety inspection on all domestic nuclear power plants against beyond design basis external events and fifty action items have been issued. In addition to post- Fukushima action items, the stress tests for all domestic nuclear power plants are on the way to enhance the safety of domestic nuclear power plants through finding the vulnerabilities in intentional stress conditions initiated by beyond design natural disaster. This paper presents assessment results of coping capability of KORI Unit 1 under the simultaneous Extended Loss of AC Power (ELAP) and Loss of Ultimate Heat Sink (LUHS) which is a representative plant condition initiated by beyond design natural disaster. The assessment of the coping capability of KORI Unit 1 has been performed under simultaneous the extended loss of AC power and loss of ultimate heat sink initiated by beyond design natural disaster. It is concluded that KORI Unit 1 has the capability, in the event of loss of safety functions by beyond design natural disaster, to sufficiently cool down the reactor core without fuel damage, to keep pressure boundaries of the reactor coolant system in transient condition and to control containment and temperature to maintain the integrity of the containment buildings.

  11. Assessment of Coping Capability of KORI Unit 1 under Extended Loss AC Power and Loss of Ultimate Heat Sink Initiated by Beyond Design Natural Disaster

    International Nuclear Information System (INIS)

    Kim, Chang Hyun; Ha, Sang Jun; Han, Kee Soo; Park, Chan Eok

    2016-01-01

    In Korea, the government and industry performed comprehensive safety inspection on all domestic nuclear power plants against beyond design basis external events and fifty action items have been issued. In addition to post- Fukushima action items, the stress tests for all domestic nuclear power plants are on the way to enhance the safety of domestic nuclear power plants through finding the vulnerabilities in intentional stress conditions initiated by beyond design natural disaster. This paper presents assessment results of coping capability of KORI Unit 1 under the simultaneous Extended Loss of AC Power (ELAP) and Loss of Ultimate Heat Sink (LUHS) which is a representative plant condition initiated by beyond design natural disaster. The assessment of the coping capability of KORI Unit 1 has been performed under simultaneous the extended loss of AC power and loss of ultimate heat sink initiated by beyond design natural disaster. It is concluded that KORI Unit 1 has the capability, in the event of loss of safety functions by beyond design natural disaster, to sufficiently cool down the reactor core without fuel damage, to keep pressure boundaries of the reactor coolant system in transient condition and to control containment and temperature to maintain the integrity of the containment buildings

  12. Heat transfer system

    Science.gov (United States)

    Not Available

    1980-03-07

    A heat transfer system for a nuclear reactor is described. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

  13. A standalone decay heat removal device for the Gas-cooled Fast Reactor for intermediate to atmospheric pressure conditions

    Energy Technology Data Exchange (ETDEWEB)

    Epiney, A., E-mail: aaron@epiney.ch [Paul Scherrer Institute PSI, Villigen (Switzerland); Ecole Polytechnique Federale EPFL, Lausanne (Switzerland); Alpy, N., E-mail: nicolas.alpy@cea.fr [CEA, DEN, Service d' Etudes des Systemes Innovants, F-13108 Saint Paul Lez Durance (France); Mikityuk, K., E-mail: konstantin.mikityuk@psi.ch [Paul Scherrer Institute PSI, Villigen (Switzerland); Chawla, R., E-mail: rakesh.chawla@psi.ch [Paul Scherrer Institute PSI, Villigen (Switzerland); Ecole Polytechnique Federale EPFL, Lausanne (Switzerland)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer An analytical model predicting Brayton cycle off-design steady states, is developed. Black-Right-Pointing-Pointer The model is used to design an autonomous decay heat removal system for the GFR. Black-Right-Pointing-Pointer Predictions of the analytical model are verified using CATHARE. Black-Right-Pointing-Pointer CATHARE code is used to simulate a set of GFR safety depressurization transients using this device. Black-Right-Pointing-Pointer Convenient turbo-machine designs exist for the targeted autonomous decay heat removal for a wide pressure range. - Abstract: This paper reports a design study for a Brayton cycle machine, which would constitute a dedicated, standalone decay heat removal (DHR) device for the Generation IV Gas-cooled Fast Reactor (GFR). In comparison to the DHR reference strategy developed by the French Commissariat a l'Energie Atomique during the GFR pre-conceptual design phase (which was completed at the end of 2007), the salient feature of this alternative device would be to combine the energetic autonomy of the natural convection process - which is foreseen for operation at high and medium pressures - with the efficiency of the forced convection process which is foreseen for operation down to very low pressures. An analytical model, the so-called 'Brayton scoping model', is described first. This is based on simplified thermodynamic and aerodynamic equations, and was developed to highlight design choices. Two different machine designs are analyzed: a Brayton loop turbo-machine working with helium, and a second one working with nitrogen, since nitrogen is the heavy gas foreseen to be injected into the primary system to enhance the natural convection under loss-of-coolant-accident (LOCA) conditions. Simulations of the steady-state and transient behavior of the proposed device have then been carried out using the CATHARE code. These serve to confirm the insights obtained from usage of the

  14. Heat transfer enhancement in cross-flow heat exchanger using vortex generator

    International Nuclear Information System (INIS)

    Yoo, S. Y.; Kwon, H. K.; Kim, B. C.; Park, D. S.; Lee, S. S.

    2003-01-01

    Fouling is very serious problem in heat exchanger because it rapidly deteriorates the performance of heat exchanger. Cross-flow heat exchanger with vortex generators is developed, which enhance heat transfer and reduce fouling. In the present heat exchanger, shell and baffle are removed from the conventional shell-and-tube heat exchanger. The naphthalene sublimation technique is employed to measure the local heat transfer coefficients. The experiments are performed for single circular tube, staggered array tube bank and in-line array tube bank with and without vortex generators. Local and average Nusselt numbers of single tube and tube bank with vortex generator are investigated and compared to those of without vortex generator

  15. Heat recovery from a cement plant with a Marnoch Heat Engine

    International Nuclear Information System (INIS)

    Saneipoor, P.; Naterer, G.F.; Dincer, I.

    2011-01-01

    This paper examines the performance of a new Marnoch Heat Engine (MHE) that recovers waste heat from within a typical cement plant. Two MHE units with compressed air as the working fluid are installed to recover the waste heat. The first unit on the main stack has four pairs of shell and tube heat exchangers. The second heat recovery unit is installed on a clinker quenching system. This unit operates with three pairs of shell and tube heat exchangers. The recovered heat is converted to electricity through the MHE system and used internally within the cement plant. A predictive model and results are presented and discussed. The results show the promising performance of the MHE's capabilities for efficient generation of electricity from waste heat sources in a cement plant. The new heat recovery system increases the efficiency of the cement plant and lowers the CO 2 emissions from the clinker production process. Moreover, it reduces the amount of waste heat to the environment and lowers the temperature of the exhaust gases. - Highlights: → This paper examines the thermodynamic performance of a new Marnoch Heat Engine (MHE) that recovers waste heat to produce electricity and improve the operating efficiency of a typical cement plant. → The first unit of the MHE on the main stack has four pairs of shell and tube heat exchangers and the second heat recovery unit is installed on a clinker quenching system. → Both predicted and experimental results demonstrate the promising performance of the MHE's capabilities for efficient generation of electricity from waste heat sources in a cement plant.

  16. Measurement capability overview in PolyNano

    DEFF Research Database (Denmark)

    Calaon, Matteo; Tosello, Guido; Hansen, Hans Nørgaard

    2012-01-01

    A measurement capability overview has been conducted to evaluate, among the most used instruments in the field of nanometrology, where the PolyNano project should focus its research. The deliverable presents the most relevant instruments to achieve the best possible measurements accuracy matching...... requirements such as low uncertainty, high repeatability and resolution, adequate measuring range and availability among the different project partners. Based on the present measurement capability overview and in relation to the objective of PolyNano to “remove the technology barrier between lab‐scale proof...

  17. Reliability study of a special decay heat removal system of a gas-cooled fast reactor demonstrator

    Energy Technology Data Exchange (ETDEWEB)

    Burgazzi, Luciano, E-mail: luciano.burgazzi@enea.it

    2014-12-15

    The European roadmap toward the development of generation IV concepts addresses the safety and reliability assessment of the special system designed for decay heat removal of a gas-cooled fast reactor demonstrator (GFRD). The envisaged system includes the combination of both active and passive means to accomplish the fundamental safety function. Failure probabilities are calculated on various system configurations, according to either pressurized or depressurized accident events under investigation, and integrated with probabilities of occurrence of corresponding hardware components and natural circulation performance assessment. The analysis suggests the improvement of measures against common cause failures (CCF), in terms of an appropriate diversification among the redundant systems, to reduce the system failure risk. Particular emphasis is placed upon passive system reliability assessment, being recognized to be still an open issue, and the approach based on the functional reliability is adopted to address the point. Results highlight natural circulation as a challenging factor for the decay heat removal safety function accomplishment by means of passive devices. With the models presented here, the simplifying assumptions and the limited scenarios considered according to the level of definition of the design, where many systems are not yet established, one can conclude that attention has to be paid to the functional aspects of the passive system, i.e. the ones not pertaining to the “hardware” of the system. In this article the results of the analysis are discussed, where the effects of the analytical assumptions, design options, accident managements on the reliability are examined. The design diversity of the components undergoing CCFs can be effective for the improvement and some accident management measures are also possible by making use of the long grace period in GFRD.

  18. Six-phase soil heating accelerates VOC extraction from clay soil

    International Nuclear Information System (INIS)

    Gauglitz, P.A.; Roberts, J.S.; Bergsman, T.M.; Caley, S.M.; Heath, W.O.; Miller, M.C.; Moss, R.W.; Schalla, R.; Jarosch, T.R.; Eddy-Dilek, C.A.

    1994-08-01

    Six-Phase Soil Heating (SPSH) was demonstrated as a viable technology for heating low permeability soils containing volatile organic contaminants. Testing was performed as part of the Volatile Organic Compounds in Non-Arid Soils Integrated Demonstration (VOC Non-Arid ID) at the Savannah River Site. The soil at the integrated demonstration site is contaminated with perchloroethylene (PCE) and trichloroethylene (TCE); the highest soil contamination occurs in clay-rich zones that are ineffectively treated by conventional soil vapor extraction due to the very low permeability of the clay. The SPSH demonstration sought to heat the clay zone and enhance the performance of conventional soil vapor extraction. Thermocouples at thirty locations quantified the areal and vertical heating within the treated zone. Soil samples were collected before and after heating to quantify the efficacy of heat-enhanced vapor extraction of PCE and TCE from the clay soil. Samples were taken (essentially every foot) from six wells prior to heating and adjacent to these wells after heating. Results show that contaminant removal from the clay zone was 99.7% (median) within the electrode array. Outside the array where the soil was heated, but to only 50 degrees C, the removal efficiency was 93%, showing that heating accelerated the removal of VOCs from the clay soil. The accelerated remediation resulted from effective heating of the contaminated clay zone by SPSH. The temperature of the clay zone increased to 100 degrees C after 8 days of heating and was maintained near 100 degrees C for 17 days. Electrical heating removed 19,000 gal of water from the soil as steam, with peak removal rate of 1,500 gpd of condensed steam

  19. In-vessel natural circulation during a hypothetical loss-of-heat-sink accident in the Fast Flux Test Facility

    International Nuclear Information System (INIS)

    Perkins, K.R.; Bari, R.A.; Pratt, W.T.

    1979-05-01

    The capability to remove decay heat from the FFTF core via in-vessel natural circulation has been analyzed for the preboiling phase using a lumped parameter model. The results indicate that boiling will occur in the average fuel assembly for a wide spectrum of initial conditions which appear to be representative of the hypothetical loss-of-heat-sink accident. Two-phase pressure drop calculations indicate that, once the saturation temperature is reached, coolability can only be assured for decay heat levels which are less than 0.5% of the operating power. A review of the limited sodium boiling data indicates that boiling-induced natural circulation may support up to 4% of the operating power, but geometric atypicalities and a large degree of inlet subcooling for the existing data limit the applicability to the loss-of-heat-sink accident in FFTF

  20. Competition to provide heat in Kosice

    International Nuclear Information System (INIS)

    Haluza, I.

    2007-01-01

    Replacing political nominees at state-owned companies after each change of the cabinet has become a standard. The consequences are all too well-known. In the best case, the company gets a manager that is an expert in the given area and in the worst case the new manager is a person who does not have the vaguest idea of the business and the only reason he has taken the position is to collect the salary. And in addition to this they might harm the company due to a lack of experience and expertise. These post-election changes often remove capable people from company management that do not have friends in the new cabinet but do not wish to leave the business. Over the years, they gained experience so why not start up a new company in the same business area. And heat supply in Kosice is a good example. For many years, there was only one heat supplier in Kosice, the state-owned joint stock company Teplaren Kosice (TEKO). It uses natural gas and coal from Russia. But at the end of last year, a new private limited liability company, Teplarenska spolocnost, was established. And it plans to build a new heating plant using wooden bio-mass for about 300 mil. Sk (8.82 mil. EUR) to compete with TEKO. The owners and managers of the company include former employees of the state-owned heating plant. (author)

  1. Innovative techniques for removing concrete surfaces

    International Nuclear Information System (INIS)

    McFarland, J.M.

    1980-01-01

    This report centers on the use of heat to decompose contaminated concrete to facilitate its removal. It discusses the use of electrical resistance heating and induction heating to cause differential expansion between the reinforcing steel and the concrete in order to spall the concrete. It introduces the concept of using induction heating to both decompose and spall steel impregnated concrete, acknowledging the work of Charles H. Henager in this field. The techniques are offered as theoretical and untested possibilities. Their practical application depends upon the effectiveness of alternatives and upon further development of these concepts

  2. Experimental investigations on scaled models for the SNR-2 decay heat removal by natural convection

    International Nuclear Information System (INIS)

    Hoffmann, H.; Weinberg, D.; Tschoeke, H.; Frey, H.H.; Pertmer, G.

    1986-01-01

    Scaled water models are used to prove the mode of function of the decay heat removal by natural convection for the SNR-2. The 2D and 3D models were designed to reach the characteristic numbers (Richardson, Peclet) of the reactor. In the experiments on 2D models the position of the immersed cooler (IC) and the power were varied. Temperature fields and velocities were measured. The IC installed as a separate component in the hot plenum resulted in a very complex flow behavior and low temperatures. Integrating the IC in the IHX showed a very simple circulating flow and high temperatures within the hot plenum. With increasing power only slightly rising temperature differences within the core and IC were detected. Recalculations using the COMMIX 1B code gave qualitatively satisfying results. (author)

  3. Effectiveness of photocatalytic filter for removing volatile organic compounds in the heating, ventilation, and air conditioning system.

    Science.gov (United States)

    Yu, Kuo-Pin; Lee, Grace Whei-May; Huang, Wei-Ming; Wu, Chih-Cheng; Lou, Chia-ling; Yang, Shinhao

    2006-05-01

    Nowadays, the heating, ventilation, and air conditioning (HVAC) system has been an important facility for maintaining indoor air quality. However, the primary function of typical HVAC systems is to control the temperature and humidity of the supply air. Most indoor air pollutants, such as volatile organic compounds (VOCs), cannot be removed by typical HVAC systems. Thus, some air handling units for removing VOCs should be added in typical HVAC systems. Among all of the air cleaning techniques used to remove indoor VOCs, photocatalytic oxidation is an attractive alternative technique for indoor air purification and deodorization. The objective of this research is to investigate the VOC removal efficiency of the photocatalytic filter in a HVAC system. Toluene and formaldehyde were chosen as the target pollutants. The experiments were conducted in a stainless steel chamber equipped with a simplified HVAC system. A mechanical filter coated with Degussa P25 titania photocatalyst and two commercial photocatalytic filters were used as the photocatalytic filters in this simplified HVAC system. The total air change rates were controlled at 0.5, 0.75, 1, 1.25, and 1.5 hr(-1), and the relative humidity (RH) was controlled at 30%, 50%, and 70%. The ultraviolet lamp used was a 4-W, ultraviolet-C (central wavelength at 254 nm) strip light bulb. The first-order decay constant of toluene and formaldehyde found in this study ranged from 0.381 to 1.01 hr(-1) under different total air change rates, from 0.34 to 0.433 hr(-1) under different RH, and from 0.381 to 0.433 hr(-1) for different photocatalytic filters.

  4. Gas-Cooled Fast Breeder Reactor Preliminary Safety Information Document, Amendment 10. GCFR residual heat removal system criteria, design, and performance

    International Nuclear Information System (INIS)

    1980-01-01

    This report presents a comprehensive set of safety design bases to support the conceptual design of the gas-cooled fast breeder reactor (GCFR) residual heat removal (RHR) systems. The report is structured to enable the Nuclear Regulatory Commission (NRC) to review and comment in the licensability of these design bases. This report also presents information concerning a specific plant design and its performance as an auxiliary part to assist the NRC in evaluating the safety design bases

  5. Evaluation of the Safety Issue Concerning the Potential for Loss of Decay Heat Removal Function due to Crude Oil Spill in the Ultimate Heat Sink of Nuclear Reactors

    International Nuclear Information System (INIS)

    Jo, Jong Chull; Roh, Kyung Wan; Yune, Young Gill; Kang, Dong Gu; Kim, Hho Jhung

    2008-01-01

    A barge crashed into a moored oil tanker at about 7:15 a.m., Dec. 12, 2007, dumping around 10,500 tons of crude oil into the sea in Korea. The incident took place about 15 kilometers northwest of Manripo beach in South Chungcheong where is Korea's west coast in the Yellow Sea. In a few days, the oil slicks spread to the northern and southern tips of the Taean Peninsula by strong winds and tides. As time went the spilled oil floating on the surface of sea water was volatilized to become tar-balls and lumps and drifted far away in the southern direction. 13 days after the incident, some of oil slicks and tar lumps were observed to flow in the service water intake at the Younggwang nuclear power plants (NPPs) operating 6 reactors, which are over 150 km away from the incident spot in the southeastern direction. According to the report by the Younggwang NPPs, a total weight 83 kg of tar lumps was removed for about 3 days. Oil spills in the sea can happen in any country or anytime due to human errors or mistakes, wars, terrors, intentional dumping of waste oils, and natural disasters like typhoon and tsunami. In fact, there have been 7 major oil spills over 10,000 tons that have occurred around the world since 1983. As such serious oil spill incidents may happen near the operating power plants using the sea water as ultimate heat sink. To ensure the safe operation of nuclear reactors it is required to evaluate the potential for loss of decay heat removal function of nuclear reactors due to the spilled oils flowing in the service water intake, from which the service water is pumped. Thus, Korea Institute of Nuclear Safety identified this problem as one of the important safety. When an incident of crude oil spill from an oil carrier occurs in the sea near the nuclear power plants, the spilled oil can be transported to the intake pit, where all service water pumps locate, by sea current and wind drift (induced) current. The essential service water pumps take the service

  6. Evaluation of the Safety Issue Concerning the Potential for Loss of Decay Heat Removal Function due to Crude Oil Spill in the Ultimate Heat Sink of Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Jong Chull; Roh, Kyung Wan; Yune, Young Gill; Kang, Dong Gu; Kim, Hho Jhung [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2008-05-15

    A barge crashed into a moored oil tanker at about 7:15 a.m., Dec. 12, 2007, dumping around 10,500 tons of crude oil into the sea in Korea. The incident took place about 15 kilometers northwest of Manripo beach in South Chungcheong where is Korea's west coast in the Yellow Sea. In a few days, the oil slicks spread to the northern and southern tips of the Taean Peninsula by strong winds and tides. As time went the spilled oil floating on the surface of sea water was volatilized to become tar-balls and lumps and drifted far away in the southern direction. 13 days after the incident, some of oil slicks and tar lumps were observed to flow in the service water intake at the Younggwang nuclear power plants (NPPs) operating 6 reactors, which are over 150 km away from the incident spot in the southeastern direction. According to the report by the Younggwang NPPs, a total weight 83 kg of tar lumps was removed for about 3 days. Oil spills in the sea can happen in any country or anytime due to human errors or mistakes, wars, terrors, intentional dumping of waste oils, and natural disasters like typhoon and tsunami. In fact, there have been 7 major oil spills over 10,000 tons that have occurred around the world since 1983. As such serious oil spill incidents may happen near the operating power plants using the sea water as ultimate heat sink. To ensure the safe operation of nuclear reactors it is required to evaluate the potential for loss of decay heat removal function of nuclear reactors due to the spilled oils flowing in the service water intake, from which the service water is pumped. Thus, Korea Institute of Nuclear Safety identified this problem as one of the important safety. When an incident of crude oil spill from an oil carrier occurs in the sea near the nuclear power plants, the spilled oil can be transported to the intake pit, where all service water pumps locate, by sea current and wind drift (induced) current. The essential service water pumps take the

  7. Experimental device for the residential heating with heat pipe and electric heat storage blocks

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, L L; Boldak, I M; Domorod, L S; Rabetsky, M I; Schirokov, E I [AN Belorusskoj SSR, Minsk (Belarus). Inst. Teplo- i Massoobmena

    1992-01-01

    Residential heating using electric heat storage blocks nowadays is an actual problem from the point of view of heat recovery and nature protection. In the Luikov Heat and Mass Transfer Institute a new residential electrical heater capable of heating chambers by controlling air temperature and heat output using heat pipes and an electric heat storage block was developed. This heater (BETA) is fed from the source of energy and during 7 h of night time accumulates energy sufficiently to heat 10 m{sup 3} during 24 h. Heating device BETA has a ceramic thermal storage block, electric heaters and a heat pipe with evaporator inside the ceramic block and constant temperature (65{sup o}C) finned condenser outside it. The condenser temperature could be controlled easily. BETA is compact, has high thermal response, accurate air temperature control and safe operation. Such types of residential heaters are necessary for heating residential and office building in the Mogilev and Gomel regions in Byelorussia which suffered after the Chernobyl catastrophe. (Author).

  8. Influence of the Kinetics of Heat and Mass Transfer in a Binary-Rectification Column on the Realizability Range of its Regimes

    Science.gov (United States)

    Zaeva, M. A.; Tsirlin, A. M.; Sukin, I. A.

    2018-05-01

    The range of realizable rates of flows in a binary-rectification column in which heat is supplied into the boiler and is removed from the dephlegmator was investigated. It is shown that this range is determined by two characteristic parameters related to the kinetics of heat and mass transfer in the column and the composition of the mixture subjected to separation. The limiting capabilities of a cascade of two binary-rectification columns for the separation of a ternary mixture in it were considered. The conditions for an optimum sequence of separation of a mixture in this cascade and for a consistent arrangement of its heat and mass exchange surfaces and the relation between the ultimate production rate of the cascade and the total heat losses in it were determined.

  9. Removal of cobalt ions from aqueous solution by an amination graphene oxide nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Fang [Research Center for Biomimetic Functional Materials and Sensing Devices, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000 (China); Kong, Lingtao, E-mail: ltkong@iim.ac.cn [Research Center for Biomimetic Functional Materials and Sensing Devices, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Huang, Jiarui [College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000 (China); Wu, Shibiao [Research Center for Biomimetic Functional Materials and Sensing Devices, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); School of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui 230039 (China); Zhang, Kaisheng [Research Center for Biomimetic Functional Materials and Sensing Devices, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Wang, Xuelong [Research Center for Biomimetic Functional Materials and Sensing Devices, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); School of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui 230039 (China); Sun, Bai; Jin, Zhen; Wang, Jin [Research Center for Biomimetic Functional Materials and Sensing Devices, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Huang, Xing-Jiu, E-mail: xjhuang@iim.ac.cn [Research Center for Biomimetic Functional Materials and Sensing Devices, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Liu, Jinhuai, E-mail: jhliu@iim.ac.cn [Research Center for Biomimetic Functional Materials and Sensing Devices, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, Anhui 230031 (China)

    2014-04-01

    Highlights: • A newly designed GO-NH{sub 2}: Higher adsorption capability than that of activated carbon. • Very quick adsorption property: More than 90% of Co(II) can be removed within 5 min. • One of the highest adsorption capabilities of today's nanomaterials for Co(II) (116.35 mg/g). • GO-NH{sub 2} membrane can remove more than 98% Co(II) from the water. - Abstract: A newly designed amination graphene oxide (GO-NH{sub 2}), a superior adsorption capability to that of activated carbon, was fabricated by graphene oxide (GO) combining with aromatic diazonium salt. The resultant GO-NH{sub 2} maintained a high surface area of 320 m{sup 2}/g. When used as an adsorbent, the GO-NH{sub 2} demonstrated a very quick adsorption property for the removal of Co(II) ions, more than 90% of Co(II) ions could be removed within 5 min for dilute solutions at 0.3 g/L adsorbent dose. The adsorption capability approaches 116.35 mg/g, which is one of the highest capabilities of today's materials. The thermodynamic parameters calculated from temperature-dependent adsorption isotherms suggested that the Co(II) ions adsorption on GO-NH{sub 2} was a spontaneous process. Considering the superior adsorption capability, the GO-NH{sub 2} filter membrane was fabricated for the removal of Co(II) ions. Membrane filtration experiments revealed that the removal capabilities of the materials for cobalt ions depended on the membrane's thickness, flow rate and initial concentration of Co(II) ions. The highest percentage removal of Co(II) exceeds 98%, indicating that the GO-NH{sub 2} is one of the very suitable membrane materials in environmental pollution management.

  10. Transient Analysis of a Magnetic Heat Pump

    Science.gov (United States)

    Schroeder, E. A.

    1985-01-01

    An experimental heat pump that uses a rare earth element as the refrigerant is modeled using NASTRAN. The refrigerant is a ferromagnetic metal whose temperature rises when a magnetic field is applied and falls when the magnetic field is removed. The heat pump is used as a refrigerator to remove heat from a reservoir and discharge it through a heat exchanger. In the NASTRAN model the components modeled are represented by one-dimensional ROD elements. Heat flow in the solids and fluid are analyzed. The problem is mildly nonlinear since the heat capacity of the refrigerant is temperature-dependent. One simulation run consists of a series of transient analyses, each representing one stroke of the heat pump. An auxiliary program was written that uses the results of one NASTRAN analysis to generate data for the next NASTRAN analysis.

  11. Method of extracting heat from dry geothermal reservoirs

    Science.gov (United States)

    Potter, R.M.; Robinson, E.S.; Smith, M.C.

    1974-01-22

    Hydraulic fracturing is used to interconnect two or more holes that penetrate a previously dry geothermal reservoir, and to produce within the reservoir a sufficiently large heat-transfer surface so that heat can be extracted from the reservoir at a usefully high rate by a fluid entering it through one hole and leaving it through another. Introduction of a fluid into the reservoir to remove heat from it and establishment of natural (unpumped) convective circulation through the reservoir to accomplish continuous heat removal are important and novel features of the method. (auth)

  12. Analysis of removal of residual decay heat from interim storage facilities by means of the CFD program FLUENT

    International Nuclear Information System (INIS)

    Stratmann, W.; Hages, P.

    2004-01-01

    Within the scope of nuclear licensing procedures of on-site interim storage facilities for dual purpose casks it is necessary, among other things, to provide proof of sufficient removal of the residual decay heat emitted by the casks. The results of the analyses performed for this purpose define e.g. the boundary conditions for further thermal analyses regarding the permissible cask component temperatures or the maximum permissible temperatures of the fuel cladding tubes of the fuel elements stored in the casks. Up to now, for the centralized interim storage facilities in Germany such analyses were performed on the basis of experimental investigations using scaled-down storage geometries. In the engineering phase of the Lingen on-site interim storage facility, proof was furnished for the first time using the CFD (computational fluid dynamics) program FLUENT. The program FLUENT is an internationally recognized and comprehensively verified program for the calculation of flow and heat transport processes. Starting from a brief discussion of modeling and the different boundary conditions of the computation, this contribution presents various results regarding the temperatures of air, cask surfaces and storage facility components, the mass flows through the storage facility and the heat transfer at the cask surface. The interface point to the cask-specific analyses is defined to be the cask surface

  13. Graphene-enhanced thermal interface materials for heat removal from photovoltaic solar cells

    Science.gov (United States)

    Saadah, M.; Gamalath, D.; Hernandez, E.; Balandin, A. A.

    2016-09-01

    The increase in the temperature of photovoltaic (PV) solar cells affects negatively their power conversion efficiency and decreases their lifetime. The negative effects are particularly pronounced in concentrator solar cells. Therefore, it is crucial to limit the PV cell temperature by effectively removing the excess heat. Conventional thermal phase change materials (PCMs) and thermal interface materials (TIMs) do not possess the thermal conductivity values sufficient for thermal management of the next generation of PV cells. In this paper, we report the results of investigation of the increased efficiency of PV cells with the use of graphene-enhanced TIMs. Graphene reveals the highest values of the intrinsic thermal conductivity. It was also shown that the thermal conductivity of composites can be increased via utilization of graphene fillers. We prepared TIMs with up to 6% of graphene designed specifically for PV cell application. The solar cells were tested using the solar simulation module. It was found that the drop in the output voltage of the solar panel under two-sun concentrated illumination can be reduced from 19% to 6% when grapheneenhanced TIMs are used. The proposed method can recover up to 75% of the power loss in solar cells.

  14. Assessment of cooling tower (ultimate heat sink) performance in the Byron individual plant examination

    International Nuclear Information System (INIS)

    Campbell, H.D.; Hawley, J.T.; Klopp, G.T.; Thelen, W.A.

    2004-01-01

    A time-dependent model of the Byron Nuclear Generation Station safety-related cooling towers has been developed for use with the Byron PRA (IPE). The model can either be run in a stand-alone program with externally supplied heat loads, or can be directly coupled into MAAP (Modular Accident Analysis Program). The primary feature of the model is a careful tracking of the basin temperature through the progression of different severe accidents. Heat removal rates from containment, both from containment fan-coolers and the residual heat removal system, are determined by the feed-back of this time-varying return temperature. Also, the inventory of the basin is tracked in time, and this is controlled by make-up, evaporative losses due to the heat load supplied to the towers, and the possibility of unsecured blowdown. The model has been used to determine the overall capabilities and vulnerabilities of the Byron Ultimate Heat Sink (UHS). It was determined that the UHS is very reliable with respect to maintaining acceptably low basin temperatures, requiring only at most two of eight operating cooling tower fans. Further, when the two units have their Essential Service Water (ESW) systems cross-tied, one of four ESW operating pumps is sufficient to handle the loads from the accident unit with the other unit proceeding to an orderly shutdown. The major vulnerability of the Byron UHS is shown to be the ability to maintain inventory, although the time-scales for basin dry-out are relatively long, being eight to twenty-one hours, depending upon when blowdown is secured. (author)

  15. Heat exchanger restart evaluation

    International Nuclear Information System (INIS)

    Morrison, J.M.; Hirst, C.W.; Lentz, T.F.

    1992-01-01

    On December 24, 1991, the K-Reactor was in the shutdown mode with full AC process water flow and full cooling water flow. Safety rod testing was being performed as part of the power ascension testing program. The results of cooling water samples indicated tritium concentrations higher than allowable. Further sampling and testing confirmed a Process Water System to Cooling Water System leak in heat exchanger 4A (HX 4A). The heat exchanger was isolated and the plant shutdown. Heat exchanger 4A was removed from the plant and moved to C-Area prior to performing examinations and diagnostic testing. This included locating and identifying the leaking tube or tubes, eddy current examination of the leaking tube and a number of adjacent tubes, visually inspecting the leaking tube from both the inside as well as the area surrounding the identified tube. The leaking tube was removed and examined metallurgically to determine the failure mechanism. In addition ten other tubes that either exhibited eddy current indications or would represent a baseline condition were removed from heat exchanger 4A for metallurgical examination. Additional analysis and review of heat exchanger leakage history was performed to determine if there are any patterns which can be used for predictive purposes. Compensatory actions have been taken to improve the sensitivity and response time to any future events of this type. The results of these actions are summarized

  16. Heat exchanger restart evaluation

    International Nuclear Information System (INIS)

    Morrison, J.M.; Hirst, C.W.; Lentz, T.F.

    1992-01-01

    On December 24, 1991, the K-Reactor was in the shutdown mode with full AC process water flow and full cooling water flow. Safety rod testing was being performed as part of the power ascension testing program. The results of cooling water samples indicated tritium concentrations higher than allowable. Further sampling and testing confirmed a Process Water System to Cooling Water System leak in heat exchanger 4A (HX 4A). The heat exchanger was isolated and the plant shutdown. Heat exchanger 4A was removed from the plant and moved to C-Area prior to performing examinations and diagnostic testing. This included locating and identifying the leaking tube or tubes, eddy current examination of the leaking tube and a number of adjacent tubes, visually inspecting the leaking tube from both the inside as well as the area surrounding the identified tube. The leaking tube was removed and examined metallurgically to determine the failure mechanism. In addition ten other tubes that either exhibited eddy current indications or would represent a baseline condition were removed from heat exchanger 4A for metallurgical examination. Additional analysis and review of heat exchanger leakage history was performed to determine if there are any patterns which can be used for predictive purposes. Compensatory actions have been taken to improve the sensitivity and response time to any future events of this type. The results of these actions are summary herein

  17. Critical heat fluxes in tubular fuel elements of nuclear power reactors

    International Nuclear Information System (INIS)

    Subbotin, V.I.; Alekseev, G.V.; Peskov, O.L.

    1974-01-01

    The results of the experiments carried out show that with appropriate choice of tube, type and dimensions of intensifier the attainment of critical conditions at certain parameters is not accompanied by sharp or considerable increases in temperature of the heat removing surface. Increase in power to above critical under these conditions does not lead to considerable variation in temperature either. Thus, it appears possible to change from heat removal by steam-water mixture to convective heat removal by wet steam without manifestation of intolerable temperature conditions of the heating surface (Fig. 6). A change to convective heat removal by wet steam is possible at different levels of heat fluxes which depend during constant conditions at the inlet on tube length and the degree of the disturbing influence on the flow. This is especially important since in principle the possibility arises for developing a power reactor with tubular fuel elements, in which a once-through cycle with steam superheat involving no intermediate separation can be realised

  18. Cyro Power and Heat Transfer

    National Research Council Canada - National Science Library

    Chow, L

    1998-01-01

    .... The heat generated from a 9x9-heater array was removed by liquid nitrogen pool boiling. The orientation and space limitation of the array were varied to explore their effects on the critical heat flux (CHF) value...

  19. Removing Pathogens Using Nano-Ceramic-Fiber Filters

    Science.gov (United States)

    Tepper, Frederick; Kaledin, Leonid

    2005-01-01

    A nano-aluminum-oxide fiber of only 2 nanometers in diameter was used to develop a ceramic-fiber filter. The fibers are electropositive and, when formulated into a filter material (NanoCeram(TradeMark)), would attract electro-negative particles such as bacteria and viruses. The ability to detect and then remove viruses as well as bacteria is of concern in space cabins since they may be carried onboard by space crews. Moreover, an improved filter was desired that would polish the effluent from condensed moisture and wastewater, producing potable drinking water. A laboratory- size filter was developed that was capable of removing greater than 99.9999 percent of bacteria and virus. Such a removal was achieved at flow rates hundreds of times greater than those through ultraporous membranes that remove particles by sieving. Because the pore size of the new filter was rather large as compared to ultraporous membranes, it was found to be more resistant to clogging. Additionally, a full-size cartridge is being developed that is capable of serving a full space crew. During this ongoing effort, research demonstrated that the filter media was a very efficient adsorbent for DNA (deoxyribonucleic acid), RNA (ribonucleic acid), and endotoxins. Since the adsorption is based on the charge of the macromolecules, there is also a potential for separating proteins and other particulates on the basis of their charge differences. The separation of specific proteins is a major new thrust of biotechnology. The principal application of NanoCeram filters is based on their ability to remove viruses from water. The removal of more than 99.9999 percent of viruses was achieved by a NanoCeram polishing filter added to the effluent of an existing filtration device. NanoCeram is commercially available in laboratory-size filter discs and in the form of a syringe filter. The unique characteristic of the filter can be demonstrated by its ability to remove particulate dyes such as Metanyl yellow. Its

  20. Validation of the TASS/SMR-S Code for the PRHRS Condensation Heat Transfer Model

    International Nuclear Information System (INIS)

    Jun, In Sub; Yang, Soo Hyoung; Chung, Young Jong; Lee, Won Jae

    2011-01-01

    When some accidents or events are occurred in the SMART, the secondary system is used to remove the core decay heat for the long time such as a feedwater system. But if the feedwater system can't remove the residual core heat because of its malfunction, the core decay heat is removed using the Passive Residual Heat Removal System (PRHRS). The PRHRS is passive type safety system adopted to enhance the safety of the SMART. It can fundamentally eliminate the uncertainty of operator action. TASS/SMR-S (Transient And Setpoint Simulation/ System-integrated Modular Reactor-Safety) code has various heat transfer models reflecting the design features of the SMART. One of the heat transfer models is the PRHRS condensation heat transfer model. The role of this model is to calculate the heat transfer coefficient in the heat exchanger (H/X) tube side using the relevant heat transfer correlations for all of the heat transfer modes. In this paper, the validation of the condensation heat transfer model was carried out using the POSTECH H/X heat transfer test

  1. Removal of anthracene and phenanthrene by filamentous fungi capable of cortexolone 11-hydroxylation.

    Science.gov (United States)

    Lisowska, K; Długoński, J

    1999-01-01

    Nine fungal strains showing ability of cortexolone hydroxylation to epicortisol and/or cortisol were screened in this work for anthracene and phenanthrene elimination (250 mg/l). All of the strains (Cylindrocladium simplex IM 2358, C. simplex IM 2358/650, Monosporium olivaceum IM 484, Curvularia lunata IM 2901, C. lunata IM 2901/366, C. tuberculata IM 4417, Cunninghamella elegans IM 1785, C. elegans IM 1785/21Gp, C. elegans IM 1785/10Gi) significantly removed anthracene and phenanthrene. During incubation with anthracene formation of intermediate products was observed. The amount of the main intermediate product, identified as 9, 10-anthraquinone, was not greater than 22.2% of the anthracene introduced to the fungal cultures. C. elegans IM 1785/21Gp was the best degrader of both anthracene and phenanthrene, removing 81.6 and 99.4% of these compounds after 7 days, respectively. Phenanthrene removal by C. elegans IM 1785/21Gp was preceded by PAHs accumulation in mycelium and growth inhibition. Elimination of phenanthrene started after one day of incubation and was related to the fungus growth.

  2. Electrochemical filtration for turbidity removal in industrial cooling/process water systems

    International Nuclear Information System (INIS)

    Kumbhar, A.G.; Venkateswaran, G.

    2008-01-01

    Water samples of large cooling water reservoirs may look visibly clear and transparent, but still may contain sub-micron size particles at sub-parts-per-million levels. Deposition of these particles on heat exchanger surfaces, reduces the heat transfer efficiency in power industry. In nuclear power plants, additionally it creates radiation exposure problems due to activation of fine metallic turbidity in the reactor core and its subsequent transfer to out-of-core surfaces. Sub-micron filtration creates back high-pressure problem. Zeta filters available commercially are prescribed for separating either positively or negatively charged particles. They are of once-use and throw-type. Precipitation surface modified ion exchangers impart chemical impurities to the system. Thus, sub-micron size and dilute turbidity removal from large volumes of waters such as heat exchanger cooling water in nuclear and power industry poses a problem. Electro deposition of the turbidity causing particles, on porous carbon/graphite felt electrodes, is one of the best suited methods for turbidity removal from large volumes of water due to the filter's high permeability, inertness to the system and regenerability resulting in low waste generation. Initially, active indium turbidity removal from RAPS-1 heavy water moderator system, and microbes removal from heat exchanger cooling lake water of RAPS 1 and 2 were demonstrated with in-house designed and fabricated prototype electrochemical filter (ECF). Subsequently, a larger size, high flow filter was fabricated and deployed for iron turbidity removal from active process waters system of Kaiga Generation Station unit 1 and silica and iron turbidity removal from cooling water pond used for heat exchanger of a high temperature high pressure (HTHP) loop at WSCD, Kalpakkam. The ECF proved its exclusive utility for sub-micron size turbidity removal and microbes removal. ECF maneuverability with potential and current for both positively and

  3. Passive heat removal in CANDU

    Energy Technology Data Exchange (ETDEWEB)

    Hart, R S; Snell, V G [AECL CANDU, Sheridan Park Research Community, Mississauga, ON (Canada)

    1996-12-01

    The Three Mile Island accident spurred a world-wide interest in severe accidents. The initial reaction was to increase the preventative measures in existing designs, followed by development of predictive capabilities to improve the management of severe accidents. Recently, emphasis has been placed in new designs on mitigative measures which slow down or contain the progression of a severe accidents. U.S. requirements for Advanced Light Water Reactor designs must now: provide reactor cavity floor space to enhance debris spreading; provide a means to flood the reactor cavity to assist in the cooling process. The paper describes how CANDU Pressurized Heavy Water Reactors (PHWRs) have severe accident prevention and mitigation inherent in the design; in particular, the U.S. severe accident requirements can be met without significant change to the design of current CANDUs. (author). 32 refs, 7 figs, 1 tab.

  4. Passive heat removal in CANDU

    International Nuclear Information System (INIS)

    Hart, R.S.; Snell, V.G.

    1996-01-01

    The Three Mile Island accident spurred a world-wide interest in severe accidents. The initial reaction was to increase the preventative measures in existing designs, followed by development of predictive capabilities to improve the management of severe accidents. Recently, emphasis has been placed in new designs on mitigative measures which slow down or contain the progression of a severe accidents. U.S. requirements for Advanced Light Water Reactor designs must now: provide reactor cavity floor space to enhance debris spreading; provide a means to flood the reactor cavity to assist in the cooling process. The paper describes how CANDU Pressurized Heavy Water Reactors (PHWRs) have severe accident prevention and mitigation inherent in the design; in particular, the U.S. severe accident requirements can be met without significant change to the design of current CANDUs. (author). 32 refs, 7 figs, 1 tab

  5. Heat recovery from flue gas of coal fired installations with reduced pollutant emission - the Zittau process

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, H; Strauss, R; Hofmann, K -D; Suder, M; Hultsch, T; Wetzel, W; Gabrysch, H; Jung, J [Technische Hochschule, Zittau (German Democratic Republic)

    1989-01-01

    Explains the Zittau technology of combined flue gas heat recovery and flue gas desulfurization in small brown coal fired power plants. Steam generators to be equipped with this technology have 6.5 or 10 t/h steam capacity and are intended for combustion of low-grade brown coal (8.2 MJ/kg). An industrial 6.5 t/h prototype steam generator is in operation and it achieves 95% SO{sub 2} removal from flue gas with 5600 to 7800 mg SO{sub 2} per m{sup 3} of dry flue gas. The Zittau technology is available in 3 variants: with maximum waste heat recovery, with partial waste heat recovery or without waste heat recovery and only wet flue gas scrubbing. Two flowsheets of flue gas and suspension circulation are provided. The first variant recovers 25.7% of nominal heat capacity (1.1 thermal MW from a 4.2 MW steam generator with 6.5 t/h steam capacity), which amounts to economizing 2,400 t/a brown coal equivalent over 4,000 annual operating hours. The second variant recovers 6.5% of waste heat, requiring less investment by installing smaller heat exchangers than used in the first variant. All three variants have contact spray separators, suction units and suspension preparation equipment. Flue gas suspension scrubbing is carried out with fly ash produced by the steam generator. This ash is capable of absorbing 50 to 70% of flue gas SO{sub 2}. Supply of additional ash from other plants achieve a further 25% SO{sub 2} removal; a higher desulfurization degree is obtained by adding limestone to suspensions. 5 refs.

  6. Analysis of the Integral Response of CAREM Reactor and the Residual Heat Removal System During a Failure of the Steam Generators Feed Water System

    International Nuclear Information System (INIS)

    Gimenez, Marcelo; Zanocco, Pablo; Schlamp, Miguel

    2000-01-01

    A global analysis of the behavior of Carem-25 Reactor and Residual Heat Removal System (RHRS) to mitigate a loss of heat sink accident is done in the present work.The proposed RHRS removes 2 MW of power and is duplicated to fulfill the redundancy criteria.It consists of two condensers with two tubes in a parallel array.Each tube has 2 S CH 160 TP 347 SS and 2 m 2 of area.The RHRS design requierements (for this accidental sequence) are: Short-term: primary circuit pressure must remain below the safety valves opening set point and the condensers must not flood in order to avoid instabilities. Long-term: reach hot-shutdown condition (primary circuit pressure below 2.3 MPa) at least before 48 hrs. Short-term reactor behavior is simulated using RELAP5 with a detail nodalization of the primary circuit and RHRS.Long term performance is simulated with a simple and conservative model, assuming a saturated primary circuit. This condition is expected during RHRS operation

  7. Institute for High Heat Flux Removal (IHHFR). Phases I, II, and III

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, Ronald D. [Prairie View A& M Univ., TX (United States)

    2014-08-31

    The IHHFR focused on interdisciplinary applications as it relates to high heat flux engineering issues and problems which arise due to engineering systems being miniaturized, optimized, or requiring increased high heat flux performance. The work in the IHHFR focused on water as a coolant and includes: (1) the development, design, and construction of the high heat flux flow loop and facility; (2) test section development, design, and fabrication; and, (3) single-side heat flux experiments to produce 2-D boiling curves and 3-D conjugate heat transfer measurements for single-side heated test sections. This work provides data for comparisons with previously developed and new single-side heated correlations and approaches that address the single-side heated effect on heat transfer. In addition, this work includes the addition of single-side heated circular TS and a monoblock test section with a helical wire insert. Finally, the present work includes: (1) data base expansion for the monoblock with a helical wire insert (only for the latter geometry), (2) prediction and verification using finite element, (3) monoblock model and methodology development analyses, and (4) an alternate model development for a hypervapotron and related conjugate heat transfer controlling parameters.

  8. Open Loop Heat Pipe Radiator Having a Free-Piston for Wiping Condensed Working Fluid

    Science.gov (United States)

    Weinstein, Leonard M. (Inventor)

    2015-01-01

    An open loop heat pipe radiator comprises a radiator tube and a free-piston. The radiator tube has a first end, a second end, and a tube wall, and the tube wall has an inner surface and an outer surface. The free-piston is enclosed within the radiator tube and is capable of movement within the radiator tube between the first and second ends. The free-piston defines a first space between the free-piston, the first end, and the tube wall, and further defines a second space between the free-piston, the second end, and the tube wall. A gaseous-state working fluid, which was evaporated to remove waste heat, alternately enters the first and second spaces, and the free-piston wipes condensed working fluid from the inner surface of the tube wall as the free-piston alternately moves between the first and second ends. The condensed working fluid is then pumped back to the heat source.

  9. A comparison of the heat transfer capabilities of two manufacturing methods for high heat flux water-cooled devices

    International Nuclear Information System (INIS)

    McKoon, R.H.

    1986-10-01

    An experimental program was undertaken to compare the heat transfer characteristics of water-cooled copper devices manufactured via conventional drilled passage construction and via a technique whereby molten copper is cast over a network of preformed cooling tubes. Two similar test blocks were constructed; one using the drilled passage technique, the other via casting copper over Monel pipe. Each test block was mounted in a vacuum system and heated uniformly on the top surface using a swept electron beam. From the measured absorbed powers and resultant temperatures, an overall heat transfer coefficient was calculated. The maximum heat transfer coefficient calculated for the case of the drilled passage test block was 2534 Btu/hr/ft 2 / 0 F. This corresponded to an absorbed power density of 320 w/cm 2 and resulted in a maximum recorded copper temperature of 346 0 C. Corresponding figures for the cast test block were 363 Btu/hr/ft 2 / 0 F, 91 w/cm 2 , and 453 0 C

  10. Performance test of miniature heat exchangers with microchannels

    International Nuclear Information System (INIS)

    Hong, Yong Ju; Koh, Deuk Yong

    2005-01-01

    Etched microchannel heat exchanger, a subfield within MEMS, has high heat flux capability. This capability makes microchannels well-suited for a wide variety of application of cooling and chemical reaction. In this study, counter flow type miniature heat exchangers, which have flat metal plates with chemically etched microchannels, were manufactured by brazing method. Four type of the heat exchangers, which have straight microchannels, wavy shape microchannels, pin-fin channels and serpentine shape microchannels, were investigated to compare their thermal and hydraulic performance. Gas to gas heat exchange experiments were performed to measure the pressure drop and effectiveness of the heat exchangers at given gas flow rates and temperature difference

  11. Removal of the codeposited carbon layer using He-O glow discharge

    International Nuclear Information System (INIS)

    Kunz, C.L.; Causey, R.A.; Clift, M.; Wampler, W.R.; Cowgill, D.F.

    2007-01-01

    In this study we examine the combination of a He-O glow discharge with heating as a possible technique to remove deuterium from TFTR tiles. Samples were cut from a relatively large area containing a uniform codeposited layer of deuterium and carbon. Auger/SEM was used to generate micrographs of each of the samples. The samples were also examined using Rutherford backscattering to determine the near surface composition. Individual samples were then exposed to a He-O glow discharge while being heated. After the exposure, the samples were returned for Auger/SEM and RBS of the same areas examined prior to the exposure. Comparing the samples before and after exposure revealed that the amount of the codeposited layer removed was significantly less than 1 μm. Removal rates this low would suggest that He-O glow discharge with heating is insufficient to remove the thick layers predicted for ITER in a timely fashion

  12. Process for removing heavy metal compounds from heavy crude oil

    Science.gov (United States)

    Cha, Chang Y.; Boysen, John E.; Branthaver, Jan F.

    1991-01-01

    A process is provided for removing heavy metal compounds from heavy crude oil by mixing the heavy crude oil with tar sand; preheating the mixture to a temperature of about 650.degree. F.; heating said mixture to up to 800.degree. F.; and separating tar sand from the light oils formed during said heating. The heavy metals removed from the heavy oils can be recovered from the spent sand for other uses.

  13. Absorption-heat-pump system

    Science.gov (United States)

    Grossman, G.; Perez-Blanco, H.

    1983-06-16

    An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.

  14. Tritium effluent removal system

    International Nuclear Information System (INIS)

    Lamberger, P.H.; Gibbs, G.E.

    1978-01-01

    An air detritiation system has been developed and is in routine use for removing tritium and tritiated compounds from glovebox effluent streams before they are released to the atmosphere. The system is also used, in combination with temporary enclosures, to contain and decontaminate airborne releases resulting from the opening of tritium containment systems during maintenance and repair operations. This detritiation system, which services all the tritium handling areas at Mound Facility, has played an important role in reducing effluents and maintaining them at 2 percent of the level of 8 y ago. The system has a capacity of 1.7 m 3 /min and has operated around the clock for several years. A refrigerated in-line filtration system removes water, mercury, or pump oil and other organics from gaseous waste streams. The filtered waste stream is then heated and passed through two different types of oxidizing beds; the resulting tritiated water is collected on molecular sieve dryer beds. Liquids obtained from regenerating the dryers and from the refrigerated filtration system are collected and transferred to a waste solidification and packaging station. Component redundancy and by-pass capabilities ensure uninterrupted system operation during maintenance. When processing capacity is exceeded, an evacuated storage tank of 45 m 3 is automatically opened to the inlet side of the system. The gaseous effluent from the system is monitored for tritium content and recycled or released directly to the stack. The average release is less than 1 Ci/day. The tritium effluent can be reduced by isotopically swamping the tritium; this is accomplished by adding hydrogen prior to the oxidizer beds, or by adding water to the stream between the two final dryer beds

  15. Assessment of feasibility of helium ash exhaust and heat removal by pumped-limiter in tokamak fusion reactor

    International Nuclear Information System (INIS)

    Hitoki, Shigehisa; Sugihara, Masayoshi; Saito, Seiji; Fujisawa, Noboru

    1985-01-01

    A detailed calculation of the behavior of fuel and He particles in tokamak reactor with pumped-limiter is performed by one-dimensional tokamak transport code. Energy of neutral particles flowing back from limiter chamber is calculated by two-dimensional Monte Carlo neutral code. Feasibility of He ash exhaust and heat removal by the pumped-limiter are analyzed. Following features of the pumped-limiter are clarified: (1) Electron temperature decays rapidly in radial direction in scrape-off layer, while density profile is broader than that of temperature. (2) Helium accumulation in main plasma can be kept at desired level by rather short limiter and moderate pumping system. (3) Minimum amount of tritium pumped out little depends on limiter length. (4) Although high temperature plasma in scrape-off layer could be realized by large pumping and ideal pellet injection, it is not sufficiently high to reduce the erosion of the limiter surface and the leading edge. In conclusion, He ash exhaust may be possible by the pumped-limiter, while the heat load and erosion will be so high that the pumped-limiter may not be applicable unless the boundary plasma is cooled by radiation or by some other means. (author)

  16. Assessment of In-Situ Natural Dendroremediation Capability of ...

    African Journals Online (AJOL)

    Assessment of In-Situ Natural Dendroremediation Capability of Rhizophora racemosa in a Heavy Metal Polluted Mangrove Forest, Rivers State, Nigeria. ... Many of these noxious substances have been noted to be removable from polluted environment through proper application of phytoremediation techniques, particularly ...

  17. Vetiver grass is capable of removing TNT from soil in the presence of urea

    Energy Technology Data Exchange (ETDEWEB)

    Das, Padmini [Department of Earth and Environmental Studies, Montclair State University, One Normal Avenue, Montclair, NJ 07104 (United States); Datta, Rupali [Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931 (United States); Makris, Konstantinos C., E-mail: konstantinos.makris@cut.ac.c [Cyprus International Institute for Environmental and Public Health in Association with Harvard School Of Public Health, Cyprus University of Technology, Limassol (Cyprus); Sarkar, Dibyendu [Department of Earth and Environmental Studies, Montclair State University, One Normal Avenue, Montclair, NJ 07104 (United States)

    2010-05-15

    The high affinity of vetiver grass for 2,4,6 trinitrotoluene (TNT) and the catalytic effectiveness of urea in enhancing plant uptake of TNT in hydroponic media we earlier demonstrated were further illustrated in this soil-pot-experiment. Complete removal of TNT in urea-treated soil was accomplished by vetiver at the low initial soil-TNT concentration (40 mg kg{sup -1}), masking the effect of urea. Doubling the initial TNT concentration (80 mg kg{sup -1}) significantly (p < 0.002) increased TNT removal by vetiver, in the presence of urea. Without vetiver grass, no significant (p = 0.475) change in the soil-TNT concentrations was observed over a period of 48 days, suggesting that natural attenuation of soil TNT could not explain the documented TNT disappearance from soil. - Vetiver grass in the presence of urea effectively removes TNT from soil.

  18. Capability to Recover Plutonium-238 in H-Canyon/HB-Line - 13248

    Energy Technology Data Exchange (ETDEWEB)

    Fuller, Kenneth S. Jr.; Smith, Robert H. Jr.; Goergen, Charles R. [Savannah River Nuclear Solutions, LLC, Savannah River Site, Aiken, SC 29802 (United States)

    2013-07-01

    Plutonium-238 is used in Radioisotope Thermoelectric Generators (RTGs) to generate electrical power and in Radioisotope Heater Units (RHUs) to produce heat for electronics and environmental control for deep space missions. The domestic supply of Pu-238 consists of scrap material from previous mission production or material purchased from Russia. Currently, the United States has no significant production scale operational capability to produce and separate new Pu-238 from irradiated neptunium-237 targets. The Department of Energy - Nuclear Energy is currently evaluating and developing plans to reconstitute the United States capability to produce Pu-238 from irradiated Np-237 targets. The Savannah River Site had previously produced and/or processed all the Pu-238 utilized in Radioisotope Thermoelectric Generators (RTGs) for deep space missions up to and including the majority of the plutonium for the Cassini Mission. The previous full production cycle capabilities included: Np- 237 target fabrication, target irradiation, target dissolution and Np-237 and Pu-238 separation and purification, conversion of Np-237 and Pu-238 to oxide, scrap recovery, and Pu-238 encapsulation. The capability and equipment still exist and could be revitalized or put back into service to recover and purify Pu-238/Np-237 or broken General Purpose Heat Source (GPHS) pellets utilizing existing process equipment in HB-Line Scrap Recovery, and H-Canyon Frame Waste Recovery processes. The conversion of Np-237 and Pu-238 to oxide can be performed in the existing HB-Line Phase-2 and Phase- 3 Processes. Dissolution of irradiated Np-237 target material, and separation and purification of Np-237 and Pu-238 product streams would be possible at production rates of ∼2 kg/month of Pu-238 if the existing H-Canyon Frames Process spare equipment were re-installed. Previously, the primary H-Canyon Frames equipment was removed to be replaced: however, the replacement project was stopped. The spare equipment

  19. 49 CFR 179.500-6 - Heat treatment.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Heat treatment. 179.500-6 Section 179.500-6...-6 Heat treatment. (a) Each necked-down tank shall be uniformly heat treated. Heat treatment shall... treatment of alternate steels shall be approved. All scale shall be removed from outside of tank to an...

  20. Transient core-debris bed heat-removal experiments and analysis

    International Nuclear Information System (INIS)

    Ginsberg, T.; Klein, J.; Klages, J.; Schwarz, C.E.; Chen, J.C.

    1982-08-01

    An experimental investigation is reported of the thermal interaction between superheated core debris and water during postulated light-water reactor degraded core accidents. Data are presented for the heat transfer characteristics of packed beds of 3 mm spheres which are cooled by overlying pools of water. Results of transient bed temperature and steam flow rate measurements are presented for bed heights in the range 218 mm-433 mm and initial particle bed temperatures between 530K and 972K. Results display a two-part sequential quench process. Initial frontal cooling leaves pockets or channels of unquenched spheres. Data suggest that heat transfer process is limited by a mechanism of countercurrent two-phase flow. An analytical model which combines a bed energy equation with either a quasisteady version of the Lipinski debris bed model or a critical heat flux model reasonably well predicts the characteristic features of the bed quench process. Implications with respect to reactor safety are discussed

  1. Preliminary feasibility study of the heat - pipe ENHS reactor

    International Nuclear Information System (INIS)

    Fratoni, M.; Kim, L.; Mattafirri, S.; Petroski, R.; Greenspan, E.

    2007-01-01

    This preliminary study assesses the feasibility of designing an Encapsulated Nuclear Heat Source (ENHS) reactor [1] to have a solid core from which heat is removed by liquid-metal heat pipes (HP). Like the SAFE space nuclear reactor core [2], the HP-ENHS core is comprised of fuel rods and HPs embedded in a solid structure arranged in a hexagonal lattice in a 3:1 ratio. The HPs extend beyond the core length and transfer heat to a secondary coolant that flows by natural circulation. The HP-ENHS reactor is designed to preserve many features of the ENHS reactor including 20-year operation without refueling, very small excess reactivity throughout life, natural circulation cooling, walk-away passive safety, and robust proliferation resistance. The target power level and specific power of the HP-ENHS reactor are those of the reference ENHS reactor [1]. Compared to previous ENHS reactor designs utilizing a lead or lead-bismuth alloy natural circulation cooling system, the HP-ENHS reactor offers a number of possible advantageous features including: (1) significantly enhanced decay heat removal capability; (2) no positive void reactivity coefficients; (3) no direct contact between the fuel clad and coolant, hence, relatively lower wet corrosion of the clad; (4) a core that is more robust for transportation; (5) higher temperature potentially offering higher efficiency and hydrogen production capability. The study focuses on four areas: material compatibility analysis, HP performance analysis, neutronic analysis and thermal-hydraulic analysis. Of four high-temperature structural materials evaluated, Mo TZM alloy is the preferred choice; its upper estimated feasible operating temperature is 1350 K. HP performance is evaluated as a function of working fluid type, operating temperature, wick design and HP diameter and length. Sodium is the preferred working fluid and the HP working temperature is 1300 K. The neutronic analysis found that it is possible to achieve criticality

  2. Removal of oil films from stainless steel tubes

    Energy Technology Data Exchange (ETDEWEB)

    Yan, J.F.; Saez, A.E.; Grant, C.S. [North Carolina State Univ., Raleigh, NC (United States). Dept. of Chemical Engineering

    1997-01-01

    The contamination of metal surfaces with oil is a widespread problem in the chemical, metalworking, and automotive industries. The main source of oil fouling comes from the process fluids in various operations. For example, in a heat exchanger, the oil contaminates the equipment surface causing a lower heat-transfer efficiency. The fouled equipment leads to increased costs due to added heat-transfer area, maintenance, energy, and production losses caused by unit downtime. The removal of oil films from the inner surface of a stainless steel tube cell using aqueous cleaning solutions was studied. The two oils used in the cleaning experiments, Sunquench 1042 and heavy mineral oil, contained P{sup 32} labeled tributyl phosphate (TBP) as a radioactive tracer. The {beta}{sup {minus}} particles emitted from the radioactive TBP were detected by a CaF{sub 2} scintillator and used as a measure of the amount of oil remaining in the tube cell. Cleaning experiments performed at different flow rates, surface treatment, and surfactant concentrations indicated that initially the oil films were removed rapidly. At the end of the experiments, the oil removal rate reduced significantly, eventually becoming negligible. The stainless steel morphology affected oil removal significantly, and the rougher tube tended to retard the oil removal. The rate and extent of the decontamination were significantly increased in the presence of sodium dodecyl sulfate, a nonionic surfactant. Experimental data were compared to a hydrodynamic model based on the removal of a liquid contaminant from a solid surface by an immiscible fluid. The model deviated from the experimental data due to the presence of instabilities at the oil-water interface.

  3. A numerical study on the heat transfer in a swirl-tube heated/cooled on the half periphery of the tube wall

    International Nuclear Information System (INIS)

    Aoyama, Yoshiyuki; Kunugi, Tomoaki

    2002-01-01

    Convection heat transfer in a swirl tube was numerically analyzed so as to investigate a characteristic of heat removal when the cooling fluid flows within the swirl tube mounted in a solid structure represented as like a slab. Since the condition of heat inflow was treated as being transmitted only on the one-side surface of the structure, heat conduction through the structure was analyzed in linkage with the convection. Some results for the change in the coefficient of heat transmission along the tube axis are shown. The performance of heat removal was found to be strengthened due to the continuous renovation of thermal boundary layer close to the inside tube surface because the fluid flows in helical motion to shift the range alternate higher and lower temperature. (author)

  4. Passive afterheat removal in the HTGR with the liner cooling system as a heat sink

    International Nuclear Information System (INIS)

    Rehm, W.; Jahn, W.; Verfondern, K.

    1984-09-01

    The report deals with the transients of temperature and system pressure and the fission product behaviour in the primary circuit of an HTGR during passive afterheat removal, where the liner cooling system of the PCRV serves as a heat sink. The analysis has been made for the PNP-500-reactor representing nuclear plants with medium thermal power. The investigations show that the liner cooling system is able to control a core heatup. High temperature loads are encountered in the upper core region. In the case of a reactor under pressure the fuel elements and the primary circuit remain intact as the first and second barriers for fission products. In the case of a depressurized primary circuit the liner cooling system also keeps the PCRV at normal operating temperatures. The effects of a core heatup on component damage and release of fission products are thus limited. (orig.) [de

  5. Latest innovations for tattoo and permanent makeup removal.

    Science.gov (United States)

    Mao, Johnny C; DeJoseph, Louis M

    2012-05-01

    The goal of this article is to reveal the latest techniques and advances in laser removal of both amateur and professional tattoos, as well as cosmetic tattoos and permanent makeup. Each pose different challenges to the removing physician, but the goal is always the same: removal without sequelae. The authors' technique is detailed, and discussion of basic principles of light reflection, ink properties, effects of laser energy and heat, and outcomes and complications of tattoo removal are presented. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Effect of heat treatment on corrosion behavior of duplex stainless steel in orthodontic applications

    Science.gov (United States)

    Sabea Hammood, Ali; Faraj Noor, Ahmed; Talib Alkhafagy, Mohammed

    2017-12-01

    Heat treatment is necessary for duplex stainless steel (DSS) to remove or dissolve intermetallic phases, to remove segregation and to relieve any residual thermal stress in DSS, which may be formed during production processes. In the present study, the corrosion resistance of a DSS in artificial saliva was studied by potentiodynamic measurements. The microstructure was investigated by scanning electron microscopy (SEM),x-ray diffraction (XRD) and Vickers hardness (HV). The properties were tested in as-received and in thermally treated conditions (800-900 °C, 2-8 min). The research aims to evaluate the capability of DSS for orthodontic applications, in order to substitute the austenitic grades. The results indicate that the corrosion resistance is mainly affected by the ferrite/austenite ratio. The best result was obtained with a treatment at 900 °C for 2 min.

  7. Numerical study on boiling heat transfer enhancement in a microchannel heat exchanger

    International Nuclear Information System (INIS)

    Jeon, Jin Ho; Suh, Young Ho; Son, Gi Hun

    2008-01-01

    Flow boiling in a microchannel heat exchanger has received attention as an effective heat removal mechanism for high power-density microelectronics. Despite extensive experimental studied, the bubble dynamics coupled with boiling heat transfer in a microchannel heat exchanger is still not well understood due to the technological difficulties in obtaining detailed measurements of microscale two-phase flows. In this study, complete numerical simulations are performed to further clarify the dynamics of flow boiling in a microchannel heat exchanger. The level set method for tracking the liquid-vapor interface is modified to include the effects of phase change and contact angle and to treat an immersed solid surface. Based on the numerical results, the effects of modified channel shape on the bubble growth and heat transfer are quantified

  8. Dam removal: Listening in

    Science.gov (United States)

    Foley, M. M.; Bellmore, J. R.; O'Connor, J. E.; Duda, J. J.; East, A. E.; Grant, G. E.; Anderson, C. W.; Bountry, J. A.; Collins, M. J.; Connolly, P. J.; Craig, L. S.; Evans, J. E.; Greene, S. L.; Magilligan, F. J.; Magirl, C. S.; Major, J. J.; Pess, G. R.; Randle, T. J.; Shafroth, P. B.; Torgersen, C. E.; Tullos, D.; Wilcox, A. C.

    2017-07-01

    Dam removal is widely used as an approach for river restoration in the United States. The increase in dam removals—particularly large dams—and associated dam-removal studies over the last few decades motivated a working group at the USGS John Wesley Powell Center for Analysis and Synthesis to review and synthesize available studies of dam removals and their findings. Based on dam removals thus far, some general conclusions have emerged: (1) physical responses are typically fast, with the rate of sediment erosion largely dependent on sediment characteristics and dam-removal strategy; (2) ecological responses to dam removal differ among the affected upstream, downstream, and reservoir reaches; (3) dam removal tends to quickly reestablish connectivity, restoring the movement of material and organisms between upstream and downstream river reaches; (4) geographic context, river history, and land use significantly influence river restoration trajectories and recovery potential because they control broader physical and ecological processes and conditions; and (5) quantitative modeling capability is improving, particularly for physical and broad-scale ecological effects, and gives managers information needed to understand and predict long-term effects of dam removal on riverine ecosystems. Although these studies collectively enhance our understanding of how riverine ecosystems respond to dam removal, knowledge gaps remain because most studies have been short (< 5 years) and do not adequately represent the diversity of dam types, watershed conditions, and dam-removal methods in the U.S.

  9. Match properties of heat transfer and coupled heat and mass transfer processes in air-conditioning system

    International Nuclear Information System (INIS)

    Zhang Tao; Liu Xiaohua; Zhang Lun; Jiang Yi

    2012-01-01

    Highlights: ► Investigates match properties of heat or mass transfer processes in HVAC system. ► Losses are caused by limited transfer ability, flow and parameter mismatching. ► Condition of flow matching is the same heat capacity of the fluids. ► Parameter matching is only reached along the saturation line in air–water system. ► Analytical solutions of heat and mass transfer resistance are derived. - Abstract: Sensible heat exchangers and coupled heat and mass transfer devices between humid air and water/desiccant are commonly used devices in air-conditioning systems. This paper focuses on the match properties of sensible heat transfer processes and coupled heat and mass transfer processes in an effort to understand the reasons for performance limitations in order to optimize system performance. Limited heat transfer capability and flow mismatching resulted in heat resistance of the sensible heat transfer process. Losses occurred during the heat and mass transfer processes due to limited transfer capability, flow mismatching, and parameter mismatching. Flow matching was achieved when the heat capacities of the fluids were identical, and parameter matching could only be reached along the saturation line in air–water systems or the iso-concentration line in air–desiccant systems. Analytical solutions of heat transfer resistance and mass transfer resistance were then derived. The heat and mass transfer process close to the saturation line is recommended, and heating sprayed water resulted in better humidification performance than heating inlet air in the air humidifier.

  10. Chromate Binding and Removal by the Molybdate-Binding Protein ModA.

    Science.gov (United States)

    Karpus, Jason; Bosscher, Michael; Ajiboye, Ifedayo; Zhang, Liang; He, Chuan

    2017-04-04

    Effective and cheap methods and techniques for the safe removal of hexavalent chromate from the environment are in increasingly high demand. High concentrations of hexavalent chromate have been shown to have numerous harmful effects on human biology. We show that the E. coli molybdate-binding protein ModA is a genetically encoded tool capable of removing chromate from aqueous solutions. Although previously reported to not bind chromate, we show that ModA binds chromate tightly and is capable of removing chromate to levels well below current US federal standards. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. AMBIDEXTER Dynamics and Self-Regulation Capability

    International Nuclear Information System (INIS)

    Oh, Se Kee; Lee, Young Joon; Ham, Tae Kyu; Seo, Myung Hwan; Hong, Sung Taek; Kwon, Tae An

    2009-01-01

    Safety-related events in a nuclear reactor system are mostly incurred by sudden imbalance between their heat source and sink behaviors. Controllability and resiliency are assessed if the system be safely recoverable from the imbalance. Inherent safety characteristics of the reactor should be an ideal design philosophy in this aspect. The AMBIDEXTER safety design was explored with maximum reliance on counteractive responses by the system itself. As for the realization, negative reactivity feedback and fail-safe criteria are the fundamental considerations. Details of how to implement them in the design can be found in the paper accompanied. the reactor and the primary heat exchanger are integrated into a closed loop in the vessel. The fuel salt flows downwardly in the outer core region, gains fission heat and then, rises upwardly through the central inner core region where resonance absorbers face better conversion chance. In the primary heat exchanger, heat transfer between the tube-side fuel salt and the shell-side coolant salt is made. For chemical processing, part of the fuel salt flow is discharged from the heat exchanger and returns to the reactor through bypass line. This paper examines the dynamic performances of the AMBIDEXTER reactor system to investigate the range of its self-regulation capability and safety impacts

  12. Local heat transfer where heated rods touch in axially flowing water

    International Nuclear Information System (INIS)

    Kast, S.J.

    1983-05-01

    An anlaytic model is developed to predict the azimuthal width of a stablesteam blanket region near the line of contact between two heated rods cooled by axially flowing water at high pressure. The model is intended to aid analysis of reduced surface heat transfer capability for the abnormal configuration of nuclear fuel rods bowed into contact in the core of a pressurized water nuclear reactor. The analytic model predicts the azimuthal width of the steam blanket zone having reduced surface heat transfer as a function of rod average heat flux, subchannel coolant conditions and rod dimensions. The analytic model is developed from a heat balance between the heat generated in the wall of a heated empty tube and the heat transported away by transverse mixing and axial convection in the coolant subchannel. The model is developed for seveal geometries including heated rods in line contact, a heated rod touching a short insulating plane and a heated rod touching the inside of a metal guide tube

  13. Heat Flux Sensors for Infrared Thermography in Convective Heat Transfer

    Science.gov (United States)

    Carlomagno, Giovanni Maria; de Luca, Luigi; Cardone, Gennaro; Astarita, Tommaso

    2014-01-01

    This paper reviews the most dependable heat flux sensors, which can be used with InfraRed (IR) thermography to measure convective heat transfer coefficient distributions, and some of their applications performed by the authors' research group at the University of Naples Federico II. After recalling the basic principles that make IR thermography work, the various heat flux sensors to be used with it are presented and discussed, describing their capability to investigate complex thermo-fluid-dynamic flows. Several applications to streams, which range from natural convection to hypersonic flows, are also described. PMID:25386758

  14. Heat Flux Sensors for Infrared Thermography in Convective Heat Transfer

    Directory of Open Access Journals (Sweden)

    Giovanni Maria Carlomagno

    2014-11-01

    Full Text Available This paper reviews the most dependable heat flux sensors, which can be used with InfraRed (IR thermography to measure convective heat transfer coefficient distributions, and some of their applications performed by the authors’ research group at the University of Naples Federico II. After recalling the basic principles that make IR thermography work, the various heat flux sensors to be used with it are presented and discussed, describing their capability to investigate complex thermo-fluid-dynamic flows. Several applications to streams, which range from natural convection to hypersonic flows, are also described.

  15. Compilation of information on modeling of inductively heated cold crucible melters

    International Nuclear Information System (INIS)

    Lessor, D.L.

    1996-03-01

    The objective of this communication, Phase B of a two-part report, is to present information on modeling capabilities for inductively heated cold crucible melters, a concept applicable to waste immobilization. Inductively heated melters are those in which heat is generated using coils around, rather than electrodes within, the material to be heated. Cold crucible or skull melters are those in which the melted material is confined within unmelted material of the same composition. This phase of the report complements and supplements Phase A by Loren Eyler, specifically by giving additional information on modeling capabilities for the inductively heated melter concept. Eyler discussed electrically heated melter modeling capabilities, emphasizing heating by electrodes within the melt or on crucible walls. Eyler also discussed requirements and resources for the computational fluid dynamics, heat flow, radiation effects, and boundary conditions in melter modeling; the reader is referred to Eyler's discussion of these. This report is intended for use in the High Level Waste (HLW) melter program at Hanford. We sought any modeling capabilities useful to the HLW program, whether through contracted research, code license for operation by Department of Energy laboratories, or existing codes and modeling expertise within DOE

  16. Bisphenol A Removal by Submerged Macrophytes and the Contribution of Epiphytic Microorganisms to the Removal Process.

    Science.gov (United States)

    Zhang, Guosen; Wang, Yu; Jiang, Jinhui; Yang, Shao

    2017-06-01

    Bisphenol A (BPA), a typical endocrine disruptor, has been found in global aquatic environments, causing great concern. The capabilities of five common submerged macrophytes to remove BPA from water and the contributions of epiphytic microorganisms were investigated. Macrophytes removed 62%-100% of total BPA (5 mg/L) over 12 days; much higher rates than that observed in the control (2%, F = 261.511, p = 0.000). Ceratophyllum demersum was the most efficient species. C. demersum samples from lakes with different water qualities showed no significant differences in BPA removal rates. Moreover, removal, inhibition or re-colonization of epiphytic microorganisms did not significantly change the BPA removal rates of C. demersum. Therefore, the contributions of epiphytic microorganisms to the BPA removal process were negligible. The rate of BPA accumulation in C. demersum was 0.1%, indicating that BPA was mainly biodegraded by the macrophyte. Hence, submerged macrophytes, rather than epiphytic microorganisms, substantially contribute to the biodegradation of BPA in water.

  17. Reliability analysis of emergency decay heat removal system of nuclear ship under various accident conditions

    International Nuclear Information System (INIS)

    Matsuoka, Takeshi

    1984-01-01

    A reliability analysis is given for the emergency decay heat removal system of the Nuclear Ship ''Mutsu'' and the emergency sea water cooling system of the Nuclear Ship ''Savannah'', under ten typical nuclear ship accident conditions. Basic event probabilities under these accident conditions are estimated from literature survey. These systems of Mutsu and Savannah have almost the same reliability under the normal condition. The dispersive arrangement of a system is useful to prevent the reduction of the system reliability under the condition of an accident restricted in one room. As for the reliability of these two systems under various accident conditions, it is seen that the configuration and the environmental condition of a system are two main factors which determine the reliability of the system. Furthermore, it was found that, for the evaluation of the effectiveness of safety system of a nuclear ship, it is necessary to evaluate its reliability under various accident conditions. (author)

  18. Heat transfer capacity of heat pipes: An application in coalfield wildfire in China

    Science.gov (United States)

    Li, Bei; Deng, Jun; Xiao, Yang; Zhai, Xiaowei; Shu, Chi-Min; Gao, Wei

    2018-06-01

    Coalfield wildfires are serious catastrophes associated with mining activities. Generally, the coal wildfire areas have tremendous heat accumulation regions. Eliminating the internal heat is an effective method for coal wildfire control. In this study, high thermal conductivity component of a heat pipe (HP) was used for enhancing the heat dissipation efficiency and impeding heat accumulation. An experimental system was set up to analyze the thermal resistance network of the coal-HP system. A coal-HP heat removal model was also established for studying the heat transfer performance of HP on the coal pile. The HP exhibited outstanding cooling performance in the initial period, resulting in the highest temperature difference between the coal pile and ambient temperature. However, the effect of the HP on the distribution temperature of coal piles decreased with increasing distance. The largest decline in the coal temperature occurred in a 20-mm radius of the HP; the temperature decreased from 84.3 to 50.9 °C, a decline of 39.6%. The amount of energy transfer by the HP after 80 h was 1.0865, 2.1680, and 3.3649 MJ under the initial heat source temperatures of 100, 150, and 200 °C, respectively. The coal was governed below 80 °C with the HP under the experimental conditions. It revealed that the HP had a substantial effect on thermal removal and inhibited spontaneous coal combustion. In addition, this paper puts forward the technological path of HP to control typical coalfield wildfire. [Figure not available: see fulltext.

  19. Apparatus to simulate nuclear heating in advanced fuels

    International Nuclear Information System (INIS)

    Wrona, B.J.; Galvin, T.M.; Johanson, E.

    1976-10-01

    A direct-electrical-heating apparatus has been built to simulate in-reactor temperature gradients and heating conditions in both the mixed nitrides and carbides of uranium and plutonium. The apparatus has the capability for the investigation and direct observation of fuel-behavior phenomena that should significantly enlarge the data base on mixed carbides and nitrides at temperatures near and above their melting points. In addition to heating UC, results of prooftests showed that the apparatus has the capability to heat graphite, 30 vol % ZrC in graphite, B 4 C control-rod pellets, and stainless steel

  20. Efficiency of the heat pump cooperating with various heat sources in monovalent and bivalent systems

    Energy Technology Data Exchange (ETDEWEB)

    Kurpaska, S.; Latala, H. [Krakow Univ. of Agriculture, Krakow (Poland). Inst. of Agricultural Engineering and Computer Science

    2010-07-01

    This paper reported on a study that tested the efficiency of compressor heat pumps cooperating with various types of lower heat sources such as horizontal ground heat exchangers, vertical exchangers and sources operating in the bivalent system. The system for receiving energy consisted of a traditional heating system and liquid-air exchangers. The study identified a strong relationship between the heating efficiency of the analysed systems and temperature inside the structure. The study showed that the bivalent system was fully capable of meeting a heat requirement of about 1 MJ -2.

  1. Auxiliary Heat Exchanger Flow Distribution Test

    International Nuclear Information System (INIS)

    Kaufman, J.S.; Bressler, M.M.

    1983-01-01

    The Auxiliary Heat Exchanger Flow Distribution Test was the first part of a test program to develop a water-cooled (tube-side), compact heat exchanger for removing heat from the circulating gas in a high-temperature gas-cooled reactor (HTGR). Measurements of velocity and pressure were made with various shell side inlet and outlet configurations. A flow configuration was developed which provides acceptable velocity distribution throughout the heat exchanger without adding excessive pressure drop

  2. Tritium Removal from Carbon Plasma Facing Components

    International Nuclear Information System (INIS)

    Skinner, C.H.; Coad, J.P.; Federici, G.

    2003-01-01

    Tritium removal is a major unsolved development task for next-step devices with carbon plasma-facing components. The 2-3 order of magnitude increase in duty cycle and associated tritium accumulation rate in a next-step tokamak will place unprecedented demands on tritium removal technology. The associated technical risk can be mitigated only if suitable removal techniques are demonstrated on tokamaks before the construction of a next-step device. This article reviews the history of codeposition, the tritium experience of TFTR (Tokamak Fusion Test Reactor) and JET (Joint European Torus) and the tritium removal rate required to support ITER's planned operational schedule. The merits and shortcomings of various tritium removal techniques are discussed with particular emphasis on oxidation and laser surface heating

  3. Capabilities of a remote work vehicle

    International Nuclear Information System (INIS)

    Whittaker, W.L.; Champeny, L.

    1987-01-01

    The remote work vehicle (RWV) is a mobile work system for recovery operations in radiological environments. A teleoperated, electrohydraulically powered system, the RWV features omnidirectional locomotion, a telescoping boom with a seven meter reach, a master/slave manipulator, ten cameras, a tether for sustained power, and an offboard console where three operators control vehicle functions. (The RWV is more fully described elsewhere see bibliography; capability is emphasized here). Capabilities of the base vehicle and specialized tooling allow the RWV to perform accident recovery tasks, including demolishing concrete and steel structures, decontaminating and sealing surfaces, removing water and sediment from flooded areas, emplacing shields, packaging and transporting materials, and performing general inspections. Aspirations for reliability have made the RWV an order of magnitude more complex than its predecessor recovery robots, and ambitions for task performance have made it two orders of magnitude more capable. In addition to nuclear recovery work, the RWV is a viable candidate for other remote work applications, including nuclear facility maintenance and decommissioning

  4. Capability of microalgae-based wastewater treatment systems to remove emerging organic contaminants: a pilot-scale study.

    Science.gov (United States)

    Matamoros, Víctor; Gutiérrez, Raquel; Ferrer, Ivet; García, Joan; Bayona, Josep M

    2015-05-15

    The effect of hydraulic retention time (HRT) and seasonality on the removal efficiency of 26 organic microcontaminants from urban wastewater was studied in two pilot high-rate algal ponds (HRAPs). The targeted compounds included pharmaceuticals and personal care products, fire retardants, surfactants, anticorrosive agents, pesticides and plasticizers, among others. The pilot plant, which was fed at a surface loading rate of 7-29 g of COD m(-2)d(-1), consisted of a homogenisation tank and two parallel lines, each one with a primary settler and an HRAP with a surface area of 1.5 m(2) and a volume of 0.5 m(3). The two HRAPs were operated with different HRTs (4 and 8 d). The removal efficiency ranged from negligible removal to more than 90% depending on the compound. Microcontaminant removal efficiencies were enhanced during the warm season, while the HRT effect on microcontaminant removal was only noticeable in the cold season. Our results suggest that biodegradation and photodegradation are the most important removal pathways, whereas volatilization and sorption were solely achieved for hydrophobic compounds (log Kow>4) with a moderately high Henry's law constant values (11-12 Pa m(-3)mol(-1)) such as musk fragrances. Whereas acetaminophen, ibuprofen and oxybenzone presented ecotoxicological hazard quotients (HQs) higher than 1 in the influent wastewater samples, the HQs for the effluent water samples were always below 1. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Solid0Core Heat-Pipe Nuclear Batterly Type Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ehud Greenspan

    2008-09-30

    This project was devoted to a preliminary assessment of the feasibility of designing an Encapsulated Nuclear Heat Source (ENHS) reactor to have a solid core from which heat is removed by liquid-metal heat pipes (HP).

  6. Study of passive residual heat removal system of a modular small PWR reactor; Estudo do sistema passivo de remoção de calor residual de um reator PWR pequeno modular

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Nathália N., E-mail: nathalianunes@poli.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Departamento de Engenharia Nuclear; Faccini, José L.H., E-mail: faccini@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Su, Jian, E-mail: sujian@lasme.coppe.ufrj.br [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear

    2017-07-01

    This paper presents a study on the passive residual heat removal system (PRHRS) of a small modular nuclear reactor (SMR) of 75MW. More advanced nuclear reactors, such as generation III + and IV, have passive safety systems that automatically go into action in order to prevent accidents. The purpose of the PRHRS is to transfer the decay heat from the reactor's nuclear fuel, keeping the core cooled after the plant has shut down. It starts operating in the event of fall of power supply to the nuclear station, or in the event of an unavailability of the steam generator water supply system. Removal of decay heat from the core of the reactor is accomplished by the flow of the primary refrigerant by natural circulation through heat exchangers located in a pool filled with water located above the core. The natural circulation is caused by the density gradient between the reactor core and the pool. A thermal and comparative analysis of the PRHRS was performed consisting of the resolution of the mass conservation equations, amount of movement and energy and using incompressible fluid approximations with the Boussinesq approximation. Calculations were performed with the aid of Mathematica software. A design of the heat exchanger and the cooling water tank was done so that the core of the reactor remained cooled for 72 hours using only the PRHRS.

  7. Heat pipe as a cooling mechanism in an aeroponic system

    Energy Technology Data Exchange (ETDEWEB)

    Srihajong, N.; Terdtoon, P.; Kamonpet, P. [Department of Mechanical Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200 (Thailand); Ruamrungsri, S. [Department of Horticulture, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200 (Thailand); Ohyama, T. [Department of Applied Biological Chemistry, Faculty of Agriculture, Niigata University (Japan)

    2006-02-01

    This paper presents an establishment of a mathematical model explaining the operation of an aeroponic system for agricultural products. The purpose is to study the rate of energy consumption in a conventional aeroponic system and the feasibility of employing a heat pipe as an energy saver in such a system. A heat pipe can be theoretically employed to remove heat from the liquid nutrient that flows through the growing chamber of an aeroponic system. When the evaporator of the heat pipe receives heat from the nutrient, the inside working fluid evaporates into vapor and flows to condense at the condenser section. The outlet temperature of the nutrient from the evaporator section is, therefore, decreased by the heat removal mechanism. The heat pipe can also be used to remove heat from the greenhouse by applying it on the greenhouse wall. By doing this, the nutrient temperature before entering into the nutrient tank decreases and the cooling load of evaporative cooling will subsequently be decreased. To justify the heat pipe application as an energy saver, numerical computations have been done on typical days in the month of April from which maximum heating load occurs and an appropriate heat pipe set was theoretically designed. It can be seen from the simulation that the heat pipe can reduce the electric energy consumption of an evaporative cooling and a refrigeration systems in a day by 17.19% and 10.34% respectively. (author)

  8. Test results from a helium gas-cooled porous metal heat exchanger

    International Nuclear Information System (INIS)

    North, M.T.; Rosenfeld, J.H.; Youchison, D.L.

    1996-01-01

    A helium-cooled porous metal heat exchanger was built and tested, which successfully absorbed heat fluxes exceeding all previously tested gas-cooled designs. Helium-cooled plasma-facing components are being evaluated for fusion applications. Helium is a favorable coolant for fusion devices because it is not a plasma contaminant, it is not easily activated, and it is easily removed from the device in the event of a leak. The main drawback of gas coolants is their relatively poor thermal transport properties. This limitation can be removed through use of a highly efficient heat exchanger design. A low flow resistance porous metal heat exchanger design was developed, based on the requirements for the Faraday shield for the International Thermonuclear Experimental Reactor (ITER) device. High heat flux tests were conducted on two representative test articles at the Plasma Materials Test Facility (PMTF) at Sandia National Laboratories. Absorbed heat fluxes as high as 40 MW/m 2 were successfully removed during these tests without failure of the devices. Commercial applications for electronics cooling and other high heat flux applications are being identified

  9. Solid-Core Heat-Pipe Nuclear Batterly Type Reactor

    International Nuclear Information System (INIS)

    Ehud Greenspan

    2008-01-01

    This project was devoted to a preliminary assessment of the feasibility of designing an Encapsulated Nuclear Heat Source (ENHS) reactor to have a solid core from which heat is removed by liquid-metal heat pipes (HP). Like the SAFE 400 space nuclear reactor core, the HPENHS core is comprised of fuel rods and HPs embedded in a solid structure arranged in a hexagonal lattice in a 3:1 ratio. The core is oriented horizontally and has a square rather cylindrical cross section for effective heat transfer. The HPs extend from the two axial reflectors in which the fission gas plena are embedded and transfer heat to an intermediate coolant that flows by natural-circulation. The HP-ENHS is designed to preserve many features of the ENHS including 20-year operation without refueling, very small excess reactivity throughout life, natural circulation cooling, walkaway passive safety, and robust proliferation resistance. The target power level and specific power of the HP-ENHS reactor are those of the reference ENHS reactor. Compared to previous ENHS reactor designs utilizing a lead or lead-bismuth alloy natural circulation cooling system, the HP-ENHS reactor offers a number of advantageous features including: (1) significantly enhanced passive decay heat removal capability; (2) no positive void reactivity coefficients; (3) relatively lower corrosion of the cladding (4) a core that is more robust for transportation; (5) higher temperature potentially offering higher efficiency and hydrogen production capability. This preliminary study focuses on five areas: material compatibility analysis, HP performance analysis, neutronic analysis, thermal-hydraulic analysis and safety analysis. Of the four high-temperature structural materials evaluated, Mo TZM alloy is the preferred choice; its upper estimated feasible operating temperature is 1350 K. HP performance is evaluated as a function of working fluid type, operating temperature, wick design and HP diameter and length. Sodium is the

  10. Study on Heat Transfer Characteristics of One Side Heated Vertical Channel Applied as Vessel Cooling System

    International Nuclear Information System (INIS)

    Kuriyama, Shinji; Takeda, Tetsuaki; Funatani, Shumpei

    2014-01-01

    The inherent properties of the Very-High-Temperature Reactor facilitate the design of the VHTR with high degree of passive safe performances, compared to other type of reactors. However; it is still not clear if the VHTR can maintain a passive safe function during the severe accident, or what would be a design criterion to guarantee the VHTR with the high degree of passive safe performances during the accidents. In the Very High Temperature Reactor (VHTR) which is a next generation nuclear reactor system, ceramics and graphite are used as a fuel coating material and a core structural material, respectively. Even if the depressurization accident occurs and the reactor power goes up instantly, the temperature of the core will change slowly. This is because the thermal capacity of the core is so large. Therefore, the VHTR system can passively remove the decay heat of the core by natural convection and radiation from the surface of the reactor pressure vessel (RPV). This study is to develop the passive cooling system for the VHTR using the vertical channel inserting porous materials. The objective of this study is to investigate heat transfer characteristics of natural convection of a one-side heated vertical channel inserting the porous materials with high porosity. In order to obtain the heat transfer and fluid flow characteristics of a vertical channel inserting porous material, we have also carried out a numerical analysis using the commercial CFD code. From the analytical results obtained in the natural convection cooling, an amount of removed heat enhanced inserting the copper wire. It was found that an amount of removed heat inserting the copper wire (porosity = 0.9972) was about 10% higher than that without the copper wire. This paper describes a thermal performance of the one-side heated vertical channel inserting copper wire with high porosity. (author)

  11. Reliability analyses to detect weak points in secondary-side residual heat removal systems of KWU PWR plants

    International Nuclear Information System (INIS)

    Schilling, R.

    1983-01-01

    Requirements made by Federal German licensing authorities called for the analysis of the secondary-side residual heat removal systems of new PWR plants with regard to availability, possible weak points and the balanced nature of the overall system for different incident sequences. Following a description of the generic concept and the process and safety-related systems for steam generator feed and main steam discharge, the reliability of the latter is analyzed for the small break LOCA and emergency power mode incidents, weak points in the process systems identified, remedial measures of a system-specific and test-strategic nature presented and their contribution to improving system availability quantified. A comparison with the results of the German Risk Study on Nuclear Power Plants (GRS) shows a distinct reduction in core meltdown frequency. (orig.)

  12. Numerical modeling and validation of helium jet impingement cooling of high heat flux divertor components

    International Nuclear Information System (INIS)

    Koncar, Bostjan; Simonovski, Igor; Norajitra, Prachai

    2009-01-01

    Numerical analyses of jet impingement cooling presented in this paper were performed as a part of helium-cooled divertor studies for post-ITER generation of fusion reactors. The cooling ability of divertor cooled by multiple helium jets was analysed. Thermal-hydraulic characteristics and temperature distributions in the solid structures were predicted for the reference geometry of one cooling finger. To assess numerical errors, different meshes (hexagonal, tetra, tetra-prism) and discretisation schemes were used. The temperatures in the solid structures decrease with finer mesh and higher order discretisation and converge towards finite values. Numerical simulations were validated against high heat flux experiments, performed at Efremov Institute, St. Petersburg. The predicted design parameters show reasonable agreement with measured data. The calculated maximum thimble temperature was below the tile-thimble brazing temperature, indicating good heat removal capability of reference divertor design. (author)

  13. Electro-Thermal-Mechanical Simulation Capability Final Report

    International Nuclear Information System (INIS)

    White, D

    2008-01-01

    This is the Final Report for LDRD 04-ERD-086, 'Electro-Thermal-Mechanical Simulation Capability'. The accomplishments are well documented in five peer-reviewed publications and six conference presentations and hence will not be detailed here. The purpose of this LDRD was to research and develop numerical algorithms for three-dimensional (3D) Electro-Thermal-Mechanical simulations. LLNL has long been a world leader in the area of computational mechanics, and recently several mechanics codes have become 'multiphysics' codes with the addition of fluid dynamics, heat transfer, and chemistry. However, these multiphysics codes do not incorporate the electromagnetics that is required for a coupled Electro-Thermal-Mechanical (ETM) simulation. There are numerous applications for an ETM simulation capability, such as explosively-driven magnetic flux compressors, electromagnetic launchers, inductive heating and mixing of metals, and MEMS. A robust ETM simulation capability will enable LLNL physicists and engineers to better support current DOE programs, and will prepare LLNL for some very exciting long-term DoD opportunities. We define a coupled Electro-Thermal-Mechanical (ETM) simulation as a simulation that solves, in a self-consistent manner, the equations of electromagnetics (primarily statics and diffusion), heat transfer (primarily conduction), and non-linear mechanics (elastic-plastic deformation, and contact with friction). There is no existing parallel 3D code for simulating ETM systems at LLNL or elsewhere. While there are numerous magnetohydrodynamic codes, these codes are designed for astrophysics, magnetic fusion energy, laser-plasma interaction, etc. and do not attempt to accurately model electromagnetically driven solid mechanics. This project responds to the Engineering R and D Focus Areas of Simulation and Energy Manipulation, and addresses the specific problem of Electro-Thermal-Mechanical simulation for design and analysis of energy manipulation systems

  14. Nuclear heat source design for an advanced HTGR process heat plant

    International Nuclear Information System (INIS)

    McDonald, C.F.; O'Hanlon, T.W.

    1983-01-01

    A high-temperature gas-cooled reactor (HTGR) coupled with a chemical process facility could produce synthetic fuels (i.e., oil, gasoline, aviation fuel, methanol, hydrogen, etc.) in the long term using low-grade carbon sources (e.g., coal, oil shale, etc.). The ultimate high-temperature capability of an advanced HTGR variant is being studied for nuclear process heat. This paper discusses a process heat plant with a 2240-MW(t) nuclear heat source, a reactor outlet temperature of 950 0 C, and a direct reforming process. The nuclear heat source outputs principally hydrogen-rich synthesis gas that can be used as a feedstock for synthetic fuel production. This paper emphasizes the design of the nuclear heat source and discusses the major components and a deployment strategy to realize an advanced HTGR process heat plant concept

  15. Simultaneous biological nutrient removal: evaluation of autotrophic denitrification, heterotrophic nitrification, and biological phosphorus removal in full-scale systems.

    Science.gov (United States)

    Littleton, Helen X; Daigger, Glen T; Strom, Peter F; Cowan, Robert A

    2003-01-01

    Simultaneous biological nutrient removal (SBNR) is the biological removal of nitrogen and phosphorus in excess of that required for biomass synthesis in a biological wastewater treatment system without defined anaerobic or anoxic zones. Evidence is growing that significant SBNR can occur in many systems, including the aerobic zone of systems already configured for biological nutrient removal. Although SBNR systems offer several potential advantages, they cannot be fully realized until the mechanisms responsible for SBNR are better understood. Consequently, a research program was initiated with the basic hypothesis that three mechanisms might be responsible for SBNR: the reactor macroenvironment, the floc microenvironment, and novel microorganisms. Previously, the nutrient removal capabilities of seven full-scale, staged, closed-loop bioreactors known as Orbal oxidation ditches were evaluated. Chemical analysis and microbiological observations suggested that SBNR occurred in these systems. Three of these plants were further examined in this research to evaluate the importance of novel microorganisms, especially for nitrogen removal. A screening tool was developed to determine the relative significance of the activities of microorganisms capable of autotrophic denitrification and heterotrophic nitrification-aerobic denitrification in biological nutrient removal systems. The results indicated that novel microorganisms were not substantial contributors to SBNR in the plants studied. Phosphorus metabolism (anaerobic release, aerobic uptake) was also tested in one of the plants. Activity within the mixed liquor that was consistent with current theories for phosphorus-accumulating organisms (PAOs) was observed. Along with other observations, this suggests the presence of PAOs in the facilities studied.

  16. Demonstration testing and evaluation of in situ soil heating. Revision 1, Demonstration system design

    International Nuclear Information System (INIS)

    Dev, H.

    1994-01-01

    Over the last nine years IIT Research Institute (IITRI) has been developing and testing the in situ heating and soil decontamination process for the remediation of soils containing hazardous organic contaminants. In this process the soil is heated in situ using electrical energy. The contaminants are removed from the soil due to enhanced vaporization, steam distillation and stripping. The vaporized contaminants, water vapor and air are recovered from the heated zone by means of a vacuum manifold system which collects gases from below surface as well as from the soil surface. A vapor barrier is used to prevent fugitive emissions of the contaminants and to control air infiltration to minimize dilution of the contaminant gases and vapors. The recovered gases and vapors are conveyed to an on site vapor treatment system for the clean up of the vent gases. Electrical energy is applied to the soil by forming an array of electrodes in the soil which are electrically interconnected and supplied with power. The electrodes are placed in drilled bore holes which are made through the contaminated zone. There are two versions of the in situ heating and soil treatment process: the f irst version is called the In Situ Radio Frequency (RF) Soil Decontamination Process and the second version is called the In Situ Electromagnetic (EM) Soil Decontamination Process. The first version, the RF Process is capable of heating the soil in a temperature range of 100 degrees to 400 degrees C. The soil temperature in the second version, the EM Process, is limited to the boiling point of water under native conditions. Thus the soil will be heated to a temperature of about 85 degrees to 95 degrees C. In this project IITRI will demonstrate the EM Process for in situ soil decontamination at K-25 Site due to the fact that most of the contaminants of concern are volatile organics which can be removed by heating the soil to a temperature range of 85 degrees to 95 degrees C

  17. Demonstration testing and evaluation of in situ soil heating. Revision 1, Demonstration system design

    Energy Technology Data Exchange (ETDEWEB)

    Dev, H.

    1994-08-16

    Over the last nine years IIT Research Institute (IITRI) has been developing and testing the in situ heating and soil decontamination process for the remediation of soils containing hazardous organic contaminants. In this process the soil is heated in situ using electrical energy. The contaminants are removed from the soil due to enhanced vaporization, steam distillation and stripping. The vaporized contaminants, water vapor and air are recovered from the heated zone by means of a vacuum manifold system which collects gases from below surface as well as from the soil surface. A vapor barrier is used to prevent fugitive emissions of the contaminants and to control air infiltration to minimize dilution of the contaminant gases and vapors. The recovered gases and vapors are conveyed to an on site vapor treatment system for the clean up of the vent gases. Electrical energy is applied to the soil by forming an array of electrodes in the soil which are electrically interconnected and supplied with power. The electrodes are placed in drilled bore holes which are made through the contaminated zone. There are two versions of the in situ heating and soil treatment process: the f irst version is called the In Situ Radio Frequency (RF) Soil Decontamination Process and the second version is called the In Situ Electromagnetic (EM) Soil Decontamination Process. The first version, the RF Process is capable of heating the soil in a temperature range of 100{degrees} to 400{degrees}C. The soil temperature in the second version, the EM Process, is limited to the boiling point of water under native conditions. Thus the soil will be heated to a temperature of about 85{degrees} to 95{degrees}C. In this project IITRI will demonstrate the EM Process for in situ soil decontamination at K-25 Site due to the fact that most of the contaminants of concern are volatile organics which can be removed by heating the soil to a temperature range of 85{degrees} to 95{degrees}C.

  18. A passive decay heat removal strategy of the integrated passive safety system (IPSS) for SBO combined with LOCA

    International Nuclear Information System (INIS)

    Kim, Sang Ho; Chang, Soon Heung; Choi, Yu Jung; Jeong, Yong Hoon

    2015-01-01

    Highlights: • A new PDHR strategy is proposed to cope with SBO-combined accidents. • The concept of integrated passive safety system (IPSS) is used in this strategy. • This strategy performs the functions of passive safety injection and SG gravity injection. • LOCAs in SBO are classified by the pressures in reactor coolant system for passive functions. • The strategy can be integrated with EOP and SAMG as a complementary strategy for ensuring safety. - Abstract: An integrated passive safety system (IPSS), to be achieved by the use of a large water tank placed at high elevation outside the containment, was proposed to achieve various passive functions. These include decay heat removal, safety injection, containment cooling, in-vessel retention through external reactor vessel cooling, and containment filtered venting. The purpose of the passive decay heat removal (PDHR) strategy using the IPSS is to cope with SBO and SBO-combined accidents under the assumption that existing engineered safety features have failed. In this paper, a PDHR strategy was developed based on the design and accident management strategy of Korean representative PWR, the OPR1000. The functions of a steam generator gravity injection and a passive safety injection system in the IPSS with safety depressurization systems were included in the PDHR strategy. Because the inadvertent opening of pressurizer valves and seal water leakage from RCPs could cause a loss of coolant in an SBO, LOCAs during a SBO were simulated to verify the performance of the strategy. The failure of active safety injection in LOCAs could also be covered by this strategy. Although LOCAs have generally been categorized according to their equivalent break diameters, the RCS pressure is used to classify the LOCAs during SBOs. The criteria values for categorization were determined from the proposed systems, which could maintain a reactor in a safe state by removing the decay heat for the SBO coping time of 8 h. The

  19. A passive decay heat removal strategy of the integrated passive safety system (IPSS) for SBO combined with LOCA

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Ho [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 291, Daehak-ro, Yuseong-gu, Daejeon 34141 (Korea, Republic of); Chang, Soon Heung [Handong Global University, 558, Handong-ro, Buk-gu, Pohang Gyeongbuk 37554 (Korea, Republic of); Choi, Yu Jung [Korea Hydro and Nuclear Power Co.—Central Research Institute, 70, 1312-gil, Yuseong-daero, Yuseong-gu, Daejeon 34101 (Korea, Republic of); Jeong, Yong Hoon, E-mail: jeongyh@kaist.ac.kr [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 291, Daehak-ro, Yuseong-gu, Daejeon 34141 (Korea, Republic of)

    2015-12-15

    Highlights: • A new PDHR strategy is proposed to cope with SBO-combined accidents. • The concept of integrated passive safety system (IPSS) is used in this strategy. • This strategy performs the functions of passive safety injection and SG gravity injection. • LOCAs in SBO are classified by the pressures in reactor coolant system for passive functions. • The strategy can be integrated with EOP and SAMG as a complementary strategy for ensuring safety. - Abstract: An integrated passive safety system (IPSS), to be achieved by the use of a large water tank placed at high elevation outside the containment, was proposed to achieve various passive functions. These include decay heat removal, safety injection, containment cooling, in-vessel retention through external reactor vessel cooling, and containment filtered venting. The purpose of the passive decay heat removal (PDHR) strategy using the IPSS is to cope with SBO and SBO-combined accidents under the assumption that existing engineered safety features have failed. In this paper, a PDHR strategy was developed based on the design and accident management strategy of Korean representative PWR, the OPR1000. The functions of a steam generator gravity injection and a passive safety injection system in the IPSS with safety depressurization systems were included in the PDHR strategy. Because the inadvertent opening of pressurizer valves and seal water leakage from RCPs could cause a loss of coolant in an SBO, LOCAs during a SBO were simulated to verify the performance of the strategy. The failure of active safety injection in LOCAs could also be covered by this strategy. Although LOCAs have generally been categorized according to their equivalent break diameters, the RCS pressure is used to classify the LOCAs during SBOs. The criteria values for categorization were determined from the proposed systems, which could maintain a reactor in a safe state by removing the decay heat for the SBO coping time of 8 h. The

  20. Behavior of tungsten coatings on CuCrZr heat sink with the different interlayers under high heat flux

    International Nuclear Information System (INIS)

    Chong, F.L.; Chen, J.L.; Li, J.G.; Zheng, X.B.; Hu, D.Y.; Ding, C.X.

    2007-01-01

    In recent years, tungsten coated CuCrZr by means of vacuum plasma spraying technology was studied at Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP). Plasma spraying technology is a good integration way of armor material and heat sink, which overcomes the disadvantage of heavy weight and poor workability of tungsten, and offers the ability to coat large area, even complex shapes and in situ repair of damaged parts. But tungsten coated CuCrZr is a challenge due to the larger mismatch of their thermal expansion coefficients (CTE), which will induce the stress concentration on the joint interface of plasma facing component. In order to enhance the adhesion of W coating on CuCrZr substrate and avoid the thermal stress concentration, it is necessary to use a compliant interlayer. At present, titanium (Ti), nickel-chromium-aluminum (NiCrAl) alloys and W/Cu mixtures were chosen as the compliant layers to insert between W coating and CuCrZr substrate. The adhesion strength was performed at RT. The behaviors of W/Cu mock up under high heat flux were carried out by means of the electron beam facility with actively cooling. The results indicated that the mock-ups with the interlayer architectures can withstand the higher heat flux compared to that with the sharp interface, which exhibited the effect of interlayers on reducing the maximum stress and enhancing the properties of resistant heat flux load, though the maximum surface temperature increased due to inserting the interlayers. Among three interlayers, W/Cu interlayer was much better due to its good heat removal capability and flexible W/Cu ratios. Meanwhile, the behaviors of W/Cu mock-ups with the different interlayers were analyzed and optimized by ANSYS finite element code. (authors)

  1. Organic compound destruction and removal efficiency (DRE) for plasma incinerator off-gases using an electrically heated secondary combustion chamber

    International Nuclear Information System (INIS)

    Whitworth, C.G.; Babko-Malyi, S.; Battleson, D.M.; Olstad, S.J.

    1998-01-01

    The US Department of Energy (DOE) sponsored a series pilot-scale plasma incineration tests of simulated mixed wastes at the MSE Technology Applications, Inc. technology development test facility in Butte, MT. One of the objectives of the test series was to assess the ability of an electrically heated afterburner to destroy organic compounds that may be present in the off-gases resulting from plasma incineration of mixed wastes. The anticipated benefit of an electrically heated afterburner was to decrease total off-gas volume by 50% or more, relative to fossil fuel-fired afterburners. For the present test series, feeds of interest to the DOE Mixed Waste Focus Area (MWFA) were processed in a plasma centrifugal furnace while metering selected organic compounds upstream of the electrically heated afterburner. The plasma furnace was equipped with a transferred-mode torch and was operated under oxidizing conditions. Feeds consisted of various mixtures of soil, plastics, portland cement, silicate fines, diesel fuel, and scrap metals. Benzene, chloroform, and 1,1,1-trichloroethane were selected for injection as simulates of organics likely to be present in DOE mixed wastes, and because of their relative rankings on the US Environmental Protection Agency (EPA) thermal stability index. The organic compounds were injected into the off-gas system at a nominal concentration of 2,000 ppmv. The afterburner outlet gas stream was periodically sampled, and analyzed by gas chromatography/mass spectrometry. For the electrically heated afterburner, at operating temperatures of 1,800--1,980 F (982--1,082 C), organic compound destruction and removal efficiencies (DREs) for benzene, chloroform, and 1,1,1-trichloroethane were found to be > 99.99%

  2. 3D CFD simulations to study the effect of inclination of condenser tube on natural convection and thermal stratification in a passive decay heat removal system

    Energy Technology Data Exchange (ETDEWEB)

    Minocha, Nitin [Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094 (India); Joshi, Jyeshtharaj B., E-mail: jbjoshi@gmail.com [Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094 (India); Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai 400 019 (India); Nayak, Arun K. [Reactor Engineering Division, Bhabha Atomic Research Center, Trombay, Mumbai 400 085 (India); Vijayan, Pallippattu K., E-mail: vijayanp@barc.gov.in [Reactor Engineering Division, Bhabha Atomic Research Center, Trombay, Mumbai 400 085 (India)

    2016-08-15

    Highlights: • Investigation of three-dimensional natural convection and thermal stratification inside large water pool. • Effect of inclination (α) of condenser tube on fluid flow and heat transfer. • The heat transfer was found to be maximum for α = 90° and minimum for α = 15°. • Laminar-turbulent natural convection and heat transfer in the presence of longitudinal vortices. - Abstract: Many advanced nuclear reactors adopt methodologies of passive safety systems based on natural forces such as gravity. In one of such system, the decay heat generated from a reactor is removed by isolation condenser (ICs) submerged in a large water pool called the Gravity Driven Water Pool (GDWP). The objective of the present study was to design an IC for the passive decay heat removal system (PDHRS) for advanced nuclear reactor. First, the effect of inclination of IC tube on three dimensional temperature and flow fields was investigated inside a pilot scale (10 L) GDWP. Further, the knowledge of these fields has been used for the quantification of heat transfer and thermal stratification phenomenon. In a next step, the knowledge gained from the pilot scale GDWP has been extended to design an IC for real size GDWP (∼10,000 m{sup 3}). Single phase CFD simulation using open source CFD code [OpenFOAM-2.2] was performed for different tube inclination angles (α) (w.r.t. to vertical direction) in the range 0° ⩽ α ⩽ 90°. The results indicate that the heat transfer coefficient increases with increase in tube inclination angle. The heat transfer was found to be maximum for α = 90° and minimum for α = 15°. This behavior is due to the interaction between the primary flow (due to pressure gradient) and secondary flow (due to buoyancy force). The primary flow enhanced the fluid sliding motion at the tube top whereas the secondary flow resulted in enhancement in fluid motion along the circumference of tube. As the angle of inclination (α) of the tube was increased, the

  3. An experimental study of high heat flux removal by shear-driven liquid films

    Directory of Open Access Journals (Sweden)

    Zaitsev Dmitry

    2017-01-01

    Full Text Available Intensively evaporating liquid films, moving under the friction of a co-current gas flow in a mini-channel (shear-driven liquid films, are promising for the use in cooling systems of modern semiconductor devices with high local heat release. In this work, the effect of various parameters, such as the liquid and gas flow rates and channel height, on the critical heat flux in the locally heated shear-driven water film has been studied. A record value of the critical heat flux of 1200 W/cm2 has been achieved in experiments. Heat leaks to the substrate and heat losses to the atmosphere in total do not exceed 25% for the heat flux above 400 W/cm2. Comparison of the critical heat fluxes for the shear-driven liquid film and for flow boiling in a minichannel shows that the critical heat flux is an order of magnitude higher for the shear-driven liquid film. This confirms the prospect of using shear-driven liquid films in the modern high-efficient cooling systems.

  4. An experimental study on natural draft-dry cooling tower as part of the passive system for the residual decay heat removal

    International Nuclear Information System (INIS)

    Caruso, G.; Fatone, M.; Naviglio, A.

    2007-01-01

    An experimental apparatus has been built in order to perform sensitivity analysis on the performance of a natural draft-dry cooling tower. This component plays an important role in the passive system for the residual heat decay removal foreseen in the MARS reactor and in the GCFR of the Generation IV reactors. The sensitivity analysis has investigated: 1) the heat exchanger arrangement; two different arrangements have been considered: a horizontal arrangement, in which a system of electrical heaters are placed at the inlet cross section of the tower, and a vertical arrangement, with the heaters distributed vertically around the circumference of the tower. 2) The shape of the cooling tower; by varying the angle of the shell inclination it is possible to obtain a different shape for the tower itself. An upper and a lower angle inclination were modified and by a calculation procedure eleven different configuration were selected. 3) The effect of cross wind on the tower performance. An equation-based procedure to design the dry-cooling tower is presented. In order to evaluate the influence of the shape and the heat exchanger arrangement on the performance of the cooling tower, a geometrical factor (FG) and a thermal factor (FT) are introduced. By analyzing the experimental results, engineering design relations are obtained to model the cooling tower performance. The comparison between the experimental heat transfer coefficient and the heat transfer coefficient obtained by the mathematical procedure shows that there is a good agreement. The obtained results show that it is possible to evaluate the shape and the heat exchanger arrangement to optimize the performance of the cooling tower either in wind-less condition either in presence of cross wind. (authors)

  5. Heat exchanger restart evaluation

    International Nuclear Information System (INIS)

    Morrison, J.M.; Hirst, C.W.; Lentz, T.F.

    1992-01-01

    On December 24, 1991, the K-Reactor was in the shutdown mode with full AC process water flow and full cooling water flow. Safety rod testing was being performed as part of the power ascension testing program. The results of cooling water samples indicated tritium concentrations higher than allowable. Further sampling and testing confirmed a Process Water System to Cooling Water System leak in heat exchanger 4A (HX 4A). The heat exchanger was isolated and the plant shutdown. Heat exchanger 4kA was removed from the plant and moved to C-Area prior to performing examinations and diagnostic testing. This included locating and identifying the leaking tube or tubes, eddy current examination of the leaking tube and a number of adjacent tubes, visually inspecting the leaking tube from both the inside as well as the area surrounding the failure mechanism. In addition ten other tubes that either exhibited eddy current indications or would represent a baseline condition were removed from heat exchanger 4A for metallurgical examination. Additional analysis and review of heat exchanger leakage history was performed to determine if there are any patterns which can be used for predictive purposes. Compensatory actions have been taken to improve the sensitivity and response time to any future events of this type. The results of these actions are summarized herein

  6. Mass removal modes in the laser ablation of silicon by a Q-switched diode-pumped solid-state laser (DPSSL)

    International Nuclear Information System (INIS)

    Lim, Daniel J; Ki, Hyungson; Mazumder, Jyoti

    2006-01-01

    A fundamental study on the Q-switched diode-pumped solid-state laser interaction with silicon was performed both experimentally and numerically. Single pulse drilling experiments were conducted on N-type silicon wafers by varying the laser intensity from 10 8 -10 9 W cm -2 to investigate how the mass removal mechanism changes depending on the laser intensity. Hole width and depth were measured and surface morphology was studied using scanning electron microscopy. For the numerical model study, Ki et al's self-consistent continuous-wave laser drilling model (2001 J. Phys. D: Appl. Phys. 34 364-72) was modified to treat the solidification phenomenon between successive laser pulses. The model has the capabilities of simulating major interaction physics, such as melt flow, heat transfer, evaporation, homogeneous boiling, multiple reflections and surface evolution. This study presents some interesting results on how the mass removal mode changes as the laser intensity increases

  7. Metal adsorption capabilities of clinoptilolite and selected strains of bacteria from mine water

    Science.gov (United States)

    Mamba, B. B.; Dlamini, N. P.; Nyembe, D. W.; Mulaba-Bafubiandi, A. F.

    Small-scale mining has socio-economic advantages such as the reduction of unemployment and the general improvement of the economy. However, these operations if not properly managed or controlled have a potential to cause environmental damage, particularly with respect to the contamination of groundwater and water supplies that are not distant from where these mining activities take place. This paper focuses on metal removal from water contaminated by heavy metals emanating from small-scale mining operations using clinoptilolite and bacteria. Removal of As, Ni, Mn, Au, Co, Cu and Fe was carried out on mine water samples using original and HCl-activated (in 0.02 M and 0.04 M) natural clinoptilolite and bacterial strains (a mixed consortia of Bacillus strains ( Bacillus subtilis, Bacillus cereus, Bacillus firmus, Bacillus fusiformis, Bacillus macroides and Bacillus licheniformis), Pseudomonas spp., Shewanella spp. and a mixed consortia of Acidithiobcillus caldus, Leptospirillum spp., Ferroplasma spp. and Sulphobacillus spp.). The purpose of the study was to compare the removal efficiencies of the bacterial strains versus natural clinoptilolite adsorbents for metal cations. The Bacillus consortia removed most of the metals up to 98% metal removal efficiency with the exception of nickel where clinoptilolite showed good removal efficiency. The 0.02 M HCl-activated clinoptilolite also demonstrated excellent removal capabilities with Cu, Co and Fe removal efficiency of up to 98%. Both clinoptilolite and bacteria demonstrated capabilities of removing Cu 2+, Co 2+, Fe 2+, Mn 2+, As 3+ and Au from solution which augurs well for metal recovery from mining and mineral processing solutions, as well as in water decontamination.

  8. Prediction of Heat Transfer Performance on Horizontal U-Shaped Heat Exchanger in Passive Safety System Using MARS

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Seong-Su; Hong, Soon-Joon [FNC Tech, Yongin (Korea, Republic of); Cho, Hyoung-Kyu; Park, Goon-Cherl [Seoul National University, Seoul (Korea, Republic of)

    2015-10-15

    The design and the safety analysis of the passive safety systems are performed mainly using the best-estimate thermal-hydraulic analysis codes such as RELAP5 and MARS. This study developed the heat transfer model package for the horizontal U-shaped HX submerged in a pool by improving the horizontal in-tube condensation model and developing the outside-tube natural convective nucleate boiling model. This paper presents the HX model package and the validation results against the passive safety system-related experimental data of PASCAL and ATLAS-PAFS. This study developed the heat transfer model package of the horizontal U-shaped HX submerged in a pool in order to obtain a reliable prediction of the HX heat removal performance of the passive safety system, especially PAFS, using MARS. From the validation results, the proposed model package provided the improved prediction of HX performance (condensation, natural convective nucleate boiling, and heat removal rate of the HX) compared to the default model in MARS.

  9. In-pool energy removal system for emergency operation: experiment and analytical assessment

    International Nuclear Information System (INIS)

    Bianchi, F.; Meloni, P.; Ferri, R.; Achilli, A.

    2003-01-01

    In the framework of a domestic research program on innovative safety systems, ENEA has developed a device, so-called PERSEO, aimed at increasing the reliability of Residual Heat Removal Systems that implement in-pool heat exchangers. This device is suitable to transfer power from the primary side to the pool without the installation of valves on the pressurized loop, thus reducing thermal-mechanical constraints and thermal-hydraulic instabilities. The experiments have been performed at SIET Thermal-hydraulic Research Centre by modifying the existing PANTHERS IC-PCC facility and RELAP5/mod 3.2 and 3.3 beta releases have been run to perform the pre and post-test analyses respectively. The pre-test calculations provided a quantitative representation of the device behaviour and gave interesting indications on the procedures to be adopted for the experiments. The post-test calculations have been compared with the experimental data addressing particular attention to the simulation of three-dimensional effects of water circulation in both the HX and Overall Pool and have confirmed the RELAP5 code capability to fit the experimental data. The paper deals with the activity performed up to now. (author)

  10. A non-equilibrium model for soil heating and moisture transport during extreme surface heating: The soil (heat-moisture-vapor) HMV-Model Version

    Science.gov (United States)

    William Massman

    2015-01-01

    Increased use of prescribed fire by land managers and the increasing likelihood of wildfires due to climate change require an improved modeling capability of extreme heating of soils during fires. This issue is addressed here by developing and testing the soil (heat-moisture-vapor) HMVmodel, a 1-D (one-dimensional) non-equilibrium (liquid- vapor phase change)...

  11. Heating of roads. Heat consumption and heat output as a function of climate, construction, demands on surface conditions and principle of heat supply. Uppvaermning av vaegar

    Energy Technology Data Exchange (ETDEWEB)

    Magnusson, R

    1977-01-01

    In this work analytical formulas for calculation of temperatures in a heated roadbed are given. The heat flux from a heated surface has been studied. The methods for snowclearence on different types of roads have been investigated. The construction work has been studied. The analytical formulas have been evaluated by comparison between calculated temperatures and temperatures measured in field and laboratory. The heat transfer coefficients in those formulas have been developed empirically by tests in laboratory and field. Surfaces with different types of traffic are divided into three classes according to the demands for snow removal. The construction work has been divided into cost elements. This has given a basis for calculating the economic effects of alternative designs. By this work has been developed a method useful on one hand for calculation of the optimum principle of regulation of the supply of heat and on the other hand for the design of the heat installations in the road.

  12. Heat exchanger performance monitoring guidelines

    International Nuclear Information System (INIS)

    Stambaugh, N.; Closser, W. Jr.; Mollerus, F.J.

    1991-12-01

    Fouling can occur in many heat exchanger applications in a way that impedes heat transfer and fluid flow and reduces the heat transfer or performance capability of the heat exchanger. Fouling may be significant for heat exchanger surfaces and flow paths in contact with plant service water. This report presents guidelines for performance monitoring of heat exchangers subject to fouling. Guidelines include selection of heat exchangers to monitor based on system function, safety function and system configuration. Five monitoring methods are discussed: the heat transfer, temperature monitoring, temperature effectiveness, delta P and periodic maintenance methods. Guidelines are included for selecting the appropriate monitoring methods and for implementing the selected methods. The report also includes a bibliography, example calculations, and technical notes applicable to the heat transfer method

  13. Qualification of high heat flux components: application to target elements of W7-X divertor

    International Nuclear Information System (INIS)

    Missirlian, M; Durocher, A; Grosman, A; Schlosser, J; Boscary, J; Escourbiac, F; Cismondi, F

    2007-01-01

    The development of actively cooled plasma-facing components (PFC) represents one of fusion's most challenging engineering efforts. In this frame, a high-quality bonding between the refractory armour and the heat sink is essential to ensure the heat removal capability and the thermal performances of PFC. Experience gained during manufacturing of Tore Supra actively cooled PFC led to the establishment of a qualification methodology and provided a large experience of acceptance criteria using an active infrared thermography (systeme d'acquisition de traitement infra-rouge, SATIR). This paper presents the application of this qualification process to the W7-X pre-series components, with the objective of assessing and defining workable acceptance criteria that enable reliable predictions of performance at the nominal heat flux requirements in W7-X. Finally, to check the reliability of the non-destructive examination (NDE) method by transient infrared thermography, the newly defined acceptance criteria were applied to W7-X pre-series target elements (batch no. 3). The SATIR results, benchmarked with HHF tests performed on the GLADIS ion beam facility were discussed to assess the ability to detect critical defects at the interface between tiles and heat sink

  14. Capability of some agricultural wastes for removing some heavy metals from polluted water stocked in combination with Nile tilapia, Oreochromis niloticus (L.

    Directory of Open Access Journals (Sweden)

    Mohsen Abdel-Tawwab

    2017-04-01

    Full Text Available Abstract Heavy metal (HM pollution is one of the major problems that adversely affect the aquatic ecosystem and inhabiting biota. Heavy metals adsorption by low-cost adsorbents is one of the techniques used for HM removing from polluted water. In the present study, agricultural wastes (AW, i.e., rice straw, sugarcane bagasse, and maize stalks, were washed with distilled water, dried in a dry-oven, cut into small pieces (<0.5 cm long, and immersed at 1.0 g/L in aquaria containing synthetic mixture of lead (Pb, cadmium (Cd, copper (Cu, and zinc (Zn. Nile tilapia, Oreochromis niloticus (L., fingerlings (25.2 ± 0.88 g were stocked at a density of ten fish per 100-L aquarium for 72 h, during which fish were fed on a fish diet containing 25% crude protein ad libitum twice daily. Samples of water, AW, and fish were collected at different times to determine HM concentrations. The HM removal from polluted water was depending on the type of the metal ions, AW, and the contact time. However, HM concentrations in aquaria waters of all AW treatments decreased significantly by increasing contact time up to 24 h after which their concentrations were almost the same. Concentrations of waterborne Pb, Cd, Cu, and Zn in AW-containing aquaria were significantly lower than those of AW-free aquaria. The presence of any AW reduced significantly HM concentrations. In AW-free aquaria, HM-exposed fish accumulated more HM in their body than those reared in AW-containing aquaria. The results of this experiment showed that all AW had the capability to remove HM levels from the polluted water and reduce their bioaccumulation in fish body. However, rice straw was the more efficient adsorbent for all metals.

  15. Heat waves over Central Europe in regional climate model simulations

    Science.gov (United States)

    Lhotka, Ondřej; Kyselý, Jan

    2014-05-01

    Regional climate models (RCMs) have become a powerful tool for exploring impacts of global climate change on a regional scale. The aim of the study is to evaluate the capability of RCMs to reproduce characteristics of major heat waves over Central Europe in their simulations of the recent climate (1961-2000), with a focus on the most severe and longest Central European heat wave that occurred in 1994. We analyzed 7 RCM simulations with a high resolution (0.22°) from the ENSEMBLES project, driven by the ERA-40 reanalysis. In observed data (the E-OBS 9.0 dataset), heat waves were defined on the basis of deviations of daily maximum temperature (Tmax) from the 95% quantile of summer Tmax distribution in grid points over Central Europe. The same methodology was applied in the RCM simulations; we used corresponding 95% quantiles (calculated for each RCM and grid point) in order to remove the bias of modelled Tmax. While climatological characteristics of heat waves are reproduced reasonably well in the RCM ensemble, we found major deficiencies in simulating heat waves in individual years. For example, METNOHIRHAM simulated very severe heat waves in 1996, when no heat wave was observed. Focusing on the major 1994 heat wave, considerable differences in simulated temperature patterns were found among the RCMs. The differences in the temperature patterns were clearly linked to the simulated amount of precipitation during this event. The 1994 heat wave was almost absent in all RCMs that did not capture the observed precipitation deficit, while it was by far most pronounced in KNMI-RACMO that simulated virtually no precipitation over Central Europe during the 15-day period of the heat wave. By contrast to precipitation, values of evaporative fraction in the RCMs were not linked to severity of the simulated 1994 heat wave. This suggests a possible major contribution of other factors such as cloud cover and associated downward shortwave radiation. Therefore, a more detailed

  16. The New S-RAM Air Variable Compressor/Expander for Heat Pump and Waste Heat to Power Application

    Energy Technology Data Exchange (ETDEWEB)

    Dehoff, Ryan R [ORNL; Jestings, Lee [S-RAM Dynamics; Conde, Ricardo [S-RAM Dynamics

    2016-05-23

    S-RAM Dynamics (S-RAM) has designed an innovative heat pump system targeted for commercial and industrial applications. This new heat pump system is more efficient than anything currently on the market and utilizes air as the refrigerant instead of hydrofluorocarbon (HFC) refrigerants, leading to lower operating costs, minimal environmental costs or concerns, and lower maintenance costs. The heat pumps will be manufactured in the United States. This project was aimed at determining the feasibility of utilizing additive manufacturing to make the heat exchanger device for the new heat pump system. ORNL and S-RAM Dynamics collaborated on determining the prototype performance and subsequently printing of the prototype using additive manufacturing. Complex heat exchanger designs were fabricated using the Arcam electron beam melting (EBM) powder bed technology using Ti-6Al-4V material. An ultrasonic welding system was utilized in order to remove the powder from the small openings of the heat exchanger. The majority of powder in the small chambers was removed, however, the amount of powder remaining in the heat exchanger was a function of geometry. Therefore, only certain geometries of heat exchangers could be fabricated. SRAM Dynamics evaluated a preliminary heat exchanger design. Although the results of the additive manufacturing of the heat exchanger were not optimum, a less complex geometry was demonstrated. A sleeve valve was used as a demonstration piece, as engine designs from S-RAM Dynamics require the engine to have a very high density. Preliminary designs of this geometry were successfully fabricated using the EBM technology.

  17. A constant heat flux plasma limiter for TEXTOR

    International Nuclear Information System (INIS)

    Mioduszewski, P.

    1980-10-01

    In future large tokamak machines heat removal from the plasma is going to play an important role. In TEXTOR the total plasma power is expected to be in the range of 0.5-2.5 MW. Typical fractions of about 50% of this power have to be removed from the plasma by limiters. The power flux from the limiter scrape-off layer to the limiter surface decays rapidly with distance into the scrape-off layer resulting in a highly space-dependent heat load on the limiter. Therefore, limiters are shaped in a way to smooth of the heat load, and the ideal limiter shape should produce a constant heat flux over the whole limiter surface. The ideally shaped limiter offers a better chance to handle the high heat loads with the preferred materials like stainless steel (or inconel 625 as in the case of TEXTOR). (orig./GG)

  18. A good year for district heating

    International Nuclear Information System (INIS)

    Bakken, Stein Arne

    2003-01-01

    In Norway, high prices on electric power have caused economic progress for the district heating companies. The price of district heating is determined by the prices of power and fuel oil. However, the government wants to remove the tax on electricity to the industry, which is the district heating companies' major group of customers, along with public buildings. This is likely to entail a great loss of income

  19. Ultimate after-heat removal system for nuclear reactors

    International Nuclear Information System (INIS)

    Bernard, L. Jr.

    1980-01-01

    The invention concerns the safety region of a nuclear power plant, especially the divertor for the residual heat which keeps forming after shutdown of the reactor. According to the invention a dry cooling tower of enclosed construction is planned. The walls and roof shall be rocket-proof. Such a configuration is described and explained by means of designs. (UWI) [de

  20. A single-probe heat pulse method for estimating sap velocity in trees.

    Science.gov (United States)

    López-Bernal, Álvaro; Testi, Luca; Villalobos, Francisco J

    2017-10-01

    Available sap flow methods are still far from being simple, cheap and reliable enough to be used beyond very specific research purposes. This study presents and tests a new single-probe heat pulse (SPHP) method for monitoring sap velocity in trees using a single-probe sensor, rather than the multi-probe arrangements used up to now. Based on the fundamental conduction-convection principles of heat transport in sapwood, convective velocity (V h ) is estimated from the temperature increase in the heater after the application of a heat pulse (ΔT). The method was validated against measurements performed with the compensation heat pulse (CHP) technique in field trees of six different species. To do so, a dedicated three-probe sensor capable of simultaneously applying both methods was produced and used. Experimental measurements in the six species showed an excellent agreement between SPHP and CHP outputs for moderate to high flow rates, confirming the applicability of the method. In relation to other sap flow methods, SPHP presents several significant advantages: it requires low power inputs, it uses technically simpler and potentially cheaper instrumentation, the physical damage to the tree is minimal and artefacts caused by incorrect probe spacing and alignment are removed. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.