Sample records for heat removal capability

  1. The heat removal capability of actively cooled plasma-facing components for the ITER divertor (United States)

    Missirlian, M.; Richou, M.; Riccardi, B.; Gavila, P.; Loarer, T.; Constans, S.


    Non-destructive examination followed by high-heat-flux testing was performed for different small- and medium-scale mock-ups; this included the most recent developments related to actively cooled tungsten (W) or carbon fibre composite (CFC) armoured plasma-facing components. In particular, the heat-removal capability of these mock-ups manufactured by European companies with all the main features of the ITER divertor design was investigated both after manufacturing and after thermal cycling up to 20 MW m-2. Compliance with ITER requirements was explored in terms of bonding quality, heat flux performances and operational compatibility. The main results show an overall good heat-removal capability after the manufacturing process independent of the armour-to-heat sink bonding technology and promising behaviour with respect to thermal fatigue lifetime under heat flux up to 20 MW m-2 for the CFC-armoured tiles and 15 MW m-2 for the W-armoured tiles, respectively.

  2. Verification of heat removal capability of a concrete cask system for spent fuel storage

    Energy Technology Data Exchange (ETDEWEB)

    Mikio, Sakai; Hiroaki, Fujiwara; Tadatsugu, Sakaya; Akira, Sakai [Nuclear Fuel Cycle Development Dept., Nuclear Power Div., Ishikawajima-Harima Heavy Industries Co., Ltd., IHI, Yokohama (Japan)


    IHI (Ishikawajima-Harima heavy industries) has developed the concrete cask system that is used for an interim storage facility for spent fuel assemblies generated from nuclear power plants. IHI has designed and fabricated the prototype of a canister and a concrete storage cask, the storage cask consists of reinforced concrete and steel liner. The canister consists of shell, guide tubes and spacer plates mainly. The canister is designed to maintain the integrity of fuel cladding during storage period. Helium gas filled in the canister increases the efficiency of heat removal. A heat shield is equipped in the annulus gap between the canister sidewall and the liner to reduce the radiation heat transferred from the canister surface to the storage cask. The spent fuel decay heat is removed by natural cooling system. Most of the decay heat shall be removed by natural convection air that enters through the four inlet vents at the bottom, then flows through airflow paths and finally outwards to ambient through the four outlet vents at the top. Heat removal experiment on the prototype concrete cask mainly focused on temperature distributions and air flow rates in the storage cask. It is shown that the analytical results are in good agreement with experimental results and that they exceed the experimental results by a few degrees. (A.C.)

  3. Expeditionary Rubber Removal Capability (United States)


    polishing of the aggregate and damage to the pavement surface, particularly on grooved pavements . Due to these concerns a detergent removal method was...The quantity required can range from 15,000 to 27,000 gallons depending on the slope of the runway and the pavement surface texture . A broom is required to safely operate. The equipment and technique had to minimize the risk of damaging the existing pavement . Maximum use of commercial

  4. Heat removing under hypersonic conditions

    Directory of Open Access Journals (Sweden)

    Semenov Mikhail E.


    Full Text Available In this paper we consider the heat transfer properties of the axially symmetric body with parabolic shape at hypersonic speeds (with a Mach number M > 5. We use the numerical methods based on the implicit difference scheme (Fedorenko method with direct method based on LU-decomposition and iterative method based on the Gauss-Seigel method. Our numerical results show that the heat removing process should be performed in accordance with the nonlinear law of heat distribution over the surface taking into account the hypersonic conditions of motion.

  5. Modular heat pipe radiators for enhanced Shuttle mission capabilities (United States)

    Alario, J.; Haslett, R.


    Current heat pipe radiator technology is reviewed and the results from three state-of-the-art hardware programs are summarized. Heat pipe radiators are shown to be an improvement over all-fluid loop panels for long duration space missions, when micrometeoroid survivability is important. Finally, several heat pipe radiator design concepts are presented which would enhance Shuttle mission capabilities by either extending mission life and/or augmenting heat rejection capability.

  6. Passive heat removal characteristics of SMART

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Jae Kwang; Kang, Hyung Seok; Yoon, Joo Hyun; Kim, Hwan Yeol; Cho, Bong Hyun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)


    A new advanced integral reactor of 330 MWt thermal capacity named SMART (System-Integrated Modular Advanced Reactor) is currently under development in Korea Atomic Energy Research Institute (KAERI) for multi-purpose applications. Modular once-through steam generator (SG) and self-pressurizing pressurizer equipped with wet thermal insulator and cooler are essential components of the SMART. The SMART provides safety systems such as Passive Residual Heat Removal System (PRHRS). In this study, a computer code for performance analysis of the PRHRS is developed by modeling relevant components and systems of the SMART. Using this computer code, a performance analysis of the PRHRS is performed in order to check whether the passive cooling concept using the PRHRS is feasible. The results of the analysis show that PRHRS of the SMART has excellent passive heat removal characteristics. 2 refs., 4 figs., 1 tab. (Author)

  7. Heat Removal from Bipolar Transistor by Loop Heat Pipe with Nickel and Copper Porous Structures

    National Research Council Canada - National Science Library

    Nemec, Patrik; Smitka, Martin; Malcho, Milan


    ... of insufficient cooling. In order to maintain appropriate working conditions, waste heat must be removed. One possibility to remove waste heat is to use loop heat pipe (LHP). LHPs are two-phase ...

  8. Multiple pollutant removal using the condensing heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Jankura, B. J. [McDermott Technology Inc., Alliance, OH (United States); Kudlac, G. A. [McDermott Technology Inc., Alliance, OH (United States); Bailey, R. T. [McDermott Technology Inc., Alliance, OH (United States)


    The Integrated Flue Gas Treatment (IFGT) system is a new concept whereby a Teflon ® covered condensing heat exchanger is adapted to remove certain flue gas constituents, both particulate and gaseous, while recovering low level heat. The pollutant removal performance and durability of this device is the subject of a USDOE sponsored program to develop this technology. The program was conducted under contract to the United States Department of Energy's Fossil Energy Technology Center (DOE-FETC) and was supported by the Ohio Coal Development Office (OCDO) within the Ohio Department of Development, the Electric Power Research Institute's Environmental Control Technology Center (EPRI-ECTC) and Babcock and Wilcox - a McDermott Company (B&W). This report covers the results of the first phase of this program. This Phase I project has been a two year effort. Phase I includes two experimental tasks. One task dealt principally with the pollutant removal capabilities of the IFGT at a scale of about 1.2MWt. The other task studied the durability of the Teflon ® covering to withstand the rigors of abrasive wear by fly ash emitted as a result of coal combustion. The pollutant removal characteristics of the IFGT system were measured over a wide range of operating conditions. The coals tested included high, medium and low-sulfur coals. The flue gas pollutants studied included ammonia, hydrogen chloride, hydrogen fluoride, particulate, sulfur dioxide, gas phase and particle phase mercury and gas phase and particle phase trace elements. The particulate removal efficiency and size distribution was investigated. These test results demonstrated that the IFGT system is an effective device for both acid gas absorption and fine particulate collection. Although soda ash was shown to be the most effective reagent for acid gas absorption, comparative cost analyses suggested that magnesium enhanced lime was the most promising avenue for future study. The durability of the

  9. Solution of heat removal from nuclear reactors by natural convection

    Directory of Open Access Journals (Sweden)

    Zitek Pavel


    Full Text Available This paper summarizes the basis for the solution of heat removal by natural convection from both conventional nuclear reactors and reactors with fuel flowing coolant (such as reactors with molten fluoride salts MSR.The possibility of intensification of heat removal through gas lift is focused on. It might be used in an MSR (Molten Salt Reactor for cleaning the salt mixture of degassed fission products and therefore eliminating problems with iodine pitting. Heat removal by natural convection and its intensification increases significantly the safety of nuclear reactors. Simultaneously the heat removal also solves problems with lifetime of pumps in the primary circuit of high-temperature reactors.

  10. Emergency heat removal system for a nuclear reactor (United States)

    Dunckel, Thomas L.


    A heat removal system for nuclear reactors serving as a supplement to an Emergency Core Cooling System (ECCS) during a Loss of Coolant Accident (LOCA) comprises a plurality of heat pipes having one end in heat transfer relationship with either the reactor pressure vessel, the core support grid structure or other in-core components and the opposite end located in heat transfer relationship with a heat exchanger having heat transfer fluid therein. The heat exchanger is located external to the pressure vessel whereby excessive core heat is transferred from the above reactor components and dissipated within the heat exchanger fluid.


    Energy Technology Data Exchange (ETDEWEB)



    OAK-B135 With each plasma shot, the DIII-D tokamak dissipates 0.5 to 1.0 GJ of energy. Plasma shots may occur as frequently as every ten minutes, and the energy is removed in the form of heat by a cooling water system. to remove heat from the machine, cooling water circulates through each major heat source. These sources include the power supplies, motor/generator, rf current drives, neutral beam power supplies, magnetic field coils, and vacuum vessel. The cooling water system consists of isolated primary and secondary cooling loops separated by intermediate heat exchangers. As future DIII-D plans include operation during summer months and longer pulse duration, the cooling system's overall heat removal capability and performance efficiency must be assessed. Temperature and flow data from around the DIII-D facility are collected by a programmable logic controller (PLC); the data are used to analyze the heat generating sources, the heat transfer rate to intermediate heat exchangers, and the ultimate heat rejection to the environment via the cooling towers. A comparison of the original DIII-D machine design versus the actual performance determines the margin of heat removal capacity. projections of the heat removal rate for various longer plasma shots are made. Improvements in design and/or operational procedure will be necessary to attain the desired pulse duration.

  12. Heat exchanger device and method for heat removal or transfer (United States)

    Koplow, Jeffrey P


    Systems and methods for a forced-convection heat exchanger are provided. In one embodiment, heat is transferred to or from a thermal load in thermal contact with a heat conducting structure, across a narrow air gap, to a rotating heat transfer structure immersed in a surrounding medium such as air.

  13. Active Removal of Large Debris: Electrical Propulsion Capabilities (United States)

    Billot Soccodato, Carole; Lorand, Anthony; Perrin, Veronique; Couzin, Patrice; FontdecabaBaig, Jordi


    The risk for current operational spacecraft or future market induced by large space debris, dead satellites or rocket bodies, in Low Earth Orbit has been identified several years ago. Many potential solutions and architectures are traded with a main objective of reducing cost per debris. Based on cost consideration, specially driven by launch cost, solutions constructed on multi debris capture capacities seem to be much affordable The recent technologic evolutions in electric propulsion and solar power generation can be used to combine high potential vehicles for debris removal. The present paper reports the first results of a study funded by CNES that addresses full electric solutions for large debris removal. Some analysis are currently in progress as the study will end in August. It compares the efficiency of in-orbit Active Removal of typical debris using electric propulsion The electric engine performances used in this analysis are demonstrated through a 2012/2013 PPS 5000 on-ground tests campaign. The traded missions are based on a launch in LEO, the possible vehicle architectures with capture means or contact less, the selection of deorbiting or reorbiting strategy. For contact less strategy, the ion-beam shepherd effect towards the debris problematic will be addressed. Vehicle architecture and performance of the overall system will be stated, showing the adequacy and the limits of each solution.

  14. Advanced materials for alternative fuel capable directly fired heat engines

    Energy Technology Data Exchange (ETDEWEB)

    Fairbanks, J.W.; Stringer, J. (eds.)


    The first conference on advanced materials for alternative fuel capable directly fired heat engines was held at the Maine Maritime Academy, Castine, Maine. It was sponsored by the US Department of Energy, (Assistant Secretary for Fossil Energy) and the Electric Power Research Institute, (Division of Fossil Fuel and Advanced Systems). Forty-four papers from the proceedings have been entered into EDB and ERA and one also into EAPA; three had been entered previously from other sources. The papers are concerned with US DOE research programs in this area, coal gasification, coal liquefaction, gas turbines, fluidized-bed combustion and the materials used in these processes or equipments. The materials papers involve alloys, ceramics, coatings, cladding, etc., and the fabrication and materials listing of such materials and studies involving corrosion, erosion, deposition, etc. (LTN)

  15. A passive decay-heat removal system for an ABWR based on air cooling

    Energy Technology Data Exchange (ETDEWEB)

    Mochizuki, Hiroyasu, E-mail: [Research Institute of Nuclear Engineering, University of Fukui, 1-2-4 Kanawa-cho, Tsuruga, Fukui 914-0055 (Japan); Yano, Takahiro [School of Engineering, University of Fukui, 1-2-4 Kanawa-cho, Tsuruga, Fukui 914-0055 (Japan)


    Highlights: • A passive decay heat removal system for an ABWR is discussed using combined system of the reactor and an air cooler. • Effect of number of pass of the finned heat transfer tubes on heat removal is investigated. • The decay heat can be removed by air coolers with natural convection. • Two types of air cooler are evaluated, i.e., steam condensing and water cooling types. • Measures how to improve the heat removal rate and to make compact air cooler are discussed. - Abstract: This paper describes the capability of an air cooling system (ACS) operated under natural convection conditions to remove decay heat from the core of an Advanced Boiling Water Reactor (ABWR). The motivation of the present research is the Fukushima Severe Accident (SA). The plant suffered damages due to the tsunami and entered a state of Station Blackout (SBO) during which seawater cooling was not available. To prevent this kind of situation, we proposed a passive decay heat removal system (DHRS) in the previous study. The plant behavior during the SBO was calculated using the system code NETFLOW++ assuming an ABWR with the ACS. However, decay heat removal under an air natural convection was difficult. In the present study, a countermeasure to increase heat removal rate is proposed and plant transients with the ACS are calculated under natural convection conditions. The key issue is decreasing pressure drop over the tube banks in order to increase air flow rate. The results of the calculations indicate that the decay heat can be removed by the air natural convection after safety relief valves are actuated many times during a day. Duct height and heat transfer tube arrangement of the AC are discussed in order to design a compact and efficient AC for the natural convection mode. As a result, a 4-pass heat transfer tubes with 2-row staggered arrangement is the candidate of the AC for the DHRS under the air natural convection conditions. The heat removal rate is re-evaluated as

  16. Heat Transfer Analysis of Passive Residual Heat Removal Heat Exchanger under Natural Convection Condition in Tank

    Directory of Open Access Journals (Sweden)

    Qiming Men


    Full Text Available Aiming at the heat transfer calculation of the Passive Residual Heat Removal Heat Exchanger (PRHR HX, experiments on the heat transfer of C-shaped tube immerged in a water tank were performed. Comparisons of different correlation in literatures with the experimental data were carried out. It can be concluded that the Dittus-Boelter correlation provides a best-estimate fit with the experimental results. The average error is about 0.35%. For the tube outside, the McAdams correlations for both horizontal and vertical regions are best-estimated. The average errors are about 0.55% for horizontal region and about 3.28% for vertical region. The tank mixing characteristics were also investigated in present work. It can be concluded that the tank fluid rose gradually which leads to a thermal stratification phenomenon.

  17. Reaction heat used in static water removal from fuel cells (United States)

    Platner, J. L.


    Reaction heat is used for removal of water formed at the hydrogen fuel electrode in a hydrogen-oxygen fuel cell. A portion of the heat inherent in the fuel cell current generation reaction is used to transfer excess water into water vapor and cause it to be exhausted from the cell by a porous vapor transport membrane adjoining a vapor cavity.

  18. Shutdown heat removal: safety water tests. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)



    This specification establishes the requirements to design the SAFETY WATER TESTS to be constructed in the Hydraulic Test Facility (HTF) at the GE San Jose site. The test is an 1/8th scale model of a large loop type breeder reactor or a 1/14th scale model of a large pool type breeder reactor and uses water as the test fluid. It simulates a breeder reactor system with a 0.5 MW heated core with an upper and a lower plenum, a primary loop with 300 gpm flow rate and four auxiliary cooling systems (DRACS) that are to be immersed in the upper plenum and connected to the inlet plenum through a check valve.

  19. Modular Micromachined Si Heat Removal (MOMS Heat Removal): Electronic Integration and System Test

    National Research Council Canada - National Science Library

    Brown, Elliott


    ...: (1) insulated-gated bipolar transistors (IGBTs), and (2) laterally-diffused (LD) MOSFETs. Heat pipes were found to provide little or no advantage over conventional copper-based heat spreaders in both device applications...

  20. Assessment of ASME code examinations on regenerative, letdown and residual heat removal heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Gosselin, Stephen R.; Cumblidge, Stephen E.; Anderson, Michael T.; Simonen, Fredric A.; Tinsley, G. A.; Lydell, B.; Doctor, Steven R.


    Inservice inspection requirements for pressure retaining welds in the regenerative, letdown, and residual heat removal heat exchangers are prescribed in Section XI Articles IWB and IWC of the ASME Boiler and Pressure Vessel Code. Accordingly, volumetric and/or surface examinations are performed on heat exchanger shell, head, nozzle-to-head, and nozzle-to-shell welds. Inspection difficulties associated with the implementation of these Code-required examinations have forced operating nuclear power plants to seek relief from the U.S. Nuclear Regulatory Commission. The nature of these relief requests are generally concerned with metallurgical, geometry, accessibility, and radiation burden. Over 60% of licensee requests to the NRC identify significant radiation exposure burden as the principle reason for relief from the ASME Code examinations on regenerative heat exchangers. For the residual heat removal heat exchangers, 90% of the relief requests are associated with geometry and accessibility concerns. Pacific Northwest National Laboratory was funded by the NRC Office of Nuclear Regulatory Research to review current practice with regard to volumetric and/or surface examinations of shell welds of letdown heat exchangers regenerative heat exchangers and residual (decay) heat removal heat exchangers Design, operating, common preventative maintenance practices, and potential degradation mechanisms are reviewed. A detailed survey of domestic and international PWR-specific operating experience was performed to identify pressure boundary failures (or lack of failures) in each heat exchanger type and NSSS design. The service data survey was based on the PIPExp® database and covers PWR plants worldwide for the period 1970-2004. Finally a risk assessment of the current ASME Code inspection requirements for residual heat removal, letdown, and regenerative heat exchangers is performed. The results are then reviewed to discuss the examinations relative to plant safety and

  1. Design and implementation of a multiaxial loading capability during heating on an engineering neutron diffractometer

    Energy Technology Data Exchange (ETDEWEB)

    Benafan, O., E-mail: [NASA Glenn Research Center, Structures and Materials Division, Cleveland, Ohio 44135 (United States); Advanced Materials Processing and Analysis Center, Materials Science and Engineering Department, University of Central Florida, Orlando, Florida 32816 (United States); Padula, S. A. [NASA Glenn Research Center, Structures and Materials Division, Cleveland, Ohio 44135 (United States); Skorpenske, H. D.; An, K. [Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Vaidyanathan, R. [Advanced Materials Processing and Analysis Center, Materials Science and Engineering Department, University of Central Florida, Orlando, Florida 32816 (United States)


    A gripping capability was designed, implemented, and tested for in situ neutron diffraction measurements during multiaxial loading and heating on the VULCAN engineering materials diffractometer at the spallation neutron source at Oak Ridge National Laboratory. The proposed capability allowed for the acquisition of neutron spectra during tension, compression, torsion, and/or complex loading paths at elevated temperatures. The design consisted of age-hardened, Inconel{sup ®} 718 grips with direct attachment to the existing MTS load frame having axial and torsional capacities of 100 kN and 400 N·m, respectively. Internal cooling passages were incorporated into the gripping system for fast cooling rates during high temperature experiments up to ~1000 K. The specimen mounting couplers combined a threaded and hexed end-connection for ease of sample installation/removal without introducing any unwanted loads. Instrumentation of this capability is documented in this work along with various performance parameters. The gripping system was utilized to investigate deformation in NiTi shape memory alloys under various loading/control modes (e.g., isothermal, isobaric, and cyclic), and preliminary results are presented. The measurements facilitated the quantification of the texture, internal strain, and phase fraction evolution in NiTi shape memory alloys under various loading/control modes.

  2. Survey of industrial coal conversion equipment capabilities: heat recovery and utilization. [53 references

    Energy Technology Data Exchange (ETDEWEB)

    Gambill, W. R.; Reed, W. R.


    A scoping survey of the capabilities of industrial heat recovery equipment was conducted to determine their adaptability to proposed coal-conversion complexes. Major categories of heat exchangers included shell-and-tube, periodic-flow and rotary regenerators, heat pipe arrays, direct phase contactors, and steam and organic Rankine cycles for power generation from waste heat. Primary applications encompassed feed-effluent and other process stream interchangers, combustion air preheaters, and heat recovery steam generators (waste heat boiler-superheaters). It is concluded that the single area providing the greatest potential for extending US industrial heat-recovery equipment capabilities as related to coal-conversion processes is a research, development, and testing program to acquire more physical-property and heat-transfer data and more-reliable design correlations.

  3. Design and Analysis of a Passive Heat Removal System for a Small Modular Reactor Using Star CCM+ (United States)

    Fanning, Raymond Michael

    Next generation nuclear power plants, specifically small modular reactor designs, are the best alternative to fossil fuels for power generation due to their power density and low carbon emissions and constant awareness of safety concerns. A promising safety feature of new designs is the removal of heat by passive systems in accident scenarios. The passive systems require no moving parts and no intervention by personnel. These systems must be accurately simulated for better understanding of the heat transport phenomena: natural convection cooling. Due to the fact that most work developing these passive heat removal systems are proprietary information, a passive heat removal system for a small modular reactor was designed and simulated in Star CCM+ to evaluate the capability of natural convective flows to remove decay heat in a shutdown scenario. The size and dimensions of the heat exchanger are based on the Westinghouse-SMR design. The design of the passive heat removal system was a hexagonal lattice heat exchanger. The final design was projected to dissipate the 56MW of decay heat at the rate simulated in Star CCM+.

  4. Estimating Heat and Mass Transfer Processes in Green Roof Systems: Current Modeling Capabilities and Limitations (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Tabares Velasco, P. C.


    This presentation discusses estimating heat and mass transfer processes in green roof systems: current modeling capabilities and limitations. Green roofs are 'specialized roofing systems that support vegetation growth on rooftops.'

  5. Urinary catheter capable of repeated on-demand removal of infectious biofilms via active deformation. (United States)

    Levering, Vrad; Cao, Changyong; Shivapooja, Phanindhar; Levinson, Howard; Zhao, Xuanhe; López, Gabriel P


    Biofilm removal from biomaterials is of fundamental importance, and is especially relevant when considering the problematic and deleterious impact of biofilm infections on the inner surfaces of urinary catheters. Catheter-associated urinary tract infections are the most common cause of hospital-acquired infections and there are over 30 million Foley urinary catheters used annually in the USA. In this paper, we present the design and optimization of urinary catheter prototypes capable of on-demand removal of biofilms from the inner luminal surface of catheters. The urinary catheters utilize 4 intra-wall inflation lumens that are pressure-actuated to generate region-selective strains in the elastomeric urine lumen, and thereby remove overlying biofilms. A combination of finite-element modeling and prototype fabrication was used to optimize the catheter design to generate greater than 30% strain in the majority of the luminal surface when subjected to pressure. The catheter prototypes are able to remove greater than 80% of a mixed community biofilm of Proteus mirabilis and Escherichia coli on-demand, and furthermore are able to remove the biofilm repeatedly. Additionally, experiments with the prototypes demonstrate that biofilm debonding can be achieved upon application of both tensile and compressive strains in the inner surface of the catheter. The fouling-release catheter offers the potential for a non-biologic, non-antibiotic method to remove biofilms and thereby for impacting the thus far intractable problem of catheter-associated infections. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Multiple pollutant removal using the condensing heat exchanger: Phase 1 final report, October 1995--July 1997

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, R.T.; Jankura, B.J.; Kudlac, G.A.


    The Integrated Flue Gas Treatment (IFGT) system is a new concept whereby a Teflon{reg_sign} covered condensing heat exchanger is adapted to remove certain flue gas constitutents, both particulate and gaseous, while recovering low level heat. Phase 1 includes two experimental tasks. One task dealt principally with the pollutant removal capabilities of the IFGT at a scale of about 1.2MW{sub t}. The other task studied the durability of the Teflon{reg_sign} covering to withstand the rigors of abrasive wear by fly ash emitted as a result of coal combustion. The pollutant removal characteristics of the IFGT system were measured over a wide range of operating conditions. The coals tested included high, medium and low-sulfur coals. The flue gas pollutants studied included ammonia, hydrogen chloride, hydrogen fluoride, particulate, sulfur dioxide, gas phase and particle phase mercury and gas phase and particle phase trace elements. The particulate removal efficiency and size distribution was investigated. These test results demonstrated that the IFGT system is an effective device for both acid gas absorption and fine particulate collection. The durability of the Teflon{reg_sign} covered heat exchanger tubes was studied on a pilot-scale single-stage condensing heat exchanger (CHX{reg_sign}). Data from the test indicate that virtually no decrease in Teflon{reg_sign} thickness was observed for the coating on the first two rows of heat exchanger tubes, even at high inlet particulate loadings. Evidence of wear was present only at the microscopic level, and even then was very minor in severity.

  7. System Study: Residual Heat Removal 1998–2013

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, John Alton [Idaho National Lab. (INL), Idaho Falls, ID (United States). Risk Assessment and Management Services Dept.


    This report presents an unreliability evaluation of the residual heat removal (RHR) system in two modes of operation (low-pressure injection in response to a large loss-of-coolant accident and post-trip shutdown-cooling) at 104 U.S. commercial nuclear power plants. Demand, run hours, and failure data from fiscal year 1998 through 2013 for selected components were obtained from the Institute of Nuclear Power Operations (INPO) Consolidated Events Database (ICES). The unreliability results are trended for the most recent 10-year period while yearly estimates for system unreliability are provided for the entire active period. No statistically significant trends were identified in the RHR results.

  8. Methods of Helium Injection and Removal for Heat Transfer Augmentation (United States)

    Haight, Harlan; Kegley, Jeff; Bourdreaux, Meghan


    While augmentation of heat transfer from a test article by helium gas at low pressures is well known, the method is rarely employed during space simulation testing because the test objectives usually involve simulation of an orbital thermal environment. Test objectives of cryogenic optical testing at Marshall Space Flight Center's X-ray Cryogenic Facility (XRCF) have typically not been constrained by orbital environment parameters. As a result, several methods of helium injection have been utilized at the XRCF since 1999 to decrease thermal transition times. A brief synopsis of these injection (and removal) methods including will be presented.

  9. Tritium Removal by Laser Heating and Its Application to Tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    C.H. Skinner; C.A. Gentile; G. Guttadora; A. Carpe; S. Langish; K.M. Young; M. Nishi; W. Shu


    A novel laser heating technique has recently been applied to removing tritium from carbon tiles that had been exposed to deuterium-tritium (DT) plasmas in the Tokamak Test Fusion Reactor (TFTR). A continuous wave neodymium laser, of power up to 300 watts, was used to heat the surface of the tiles. The beam was focused to an intensity, typically 8 kW/cm{sup 2}, and rapidly scanned over the tile surface by galvanometer-driven scanning mirrors. Under the laser irradiation, the surface temperature increased dramatically, and temperatures up to 2,300 degrees C were recorded by an optical pyrometer. Tritium was released and circulated in a closed-loop system to an ionization chamber that measured the tritium concentration. Most of the tritium (up to 84%) could be released by the laser scan. This technique appears promising for tritium removal in a next-step DT device as it avoids oxidation, the associated deconditioning of the plasma facing surfaces, and the expense of processing large quantities of tritium oxide. Some engineering aspects of the implementation of this method in a next-step fusion device will be discussed.

  10. Capabilities of the ITER Electron Cyclotron Equatorial Launcher for Heating and Current Drive

    Directory of Open Access Journals (Sweden)

    Ramponi G.


    Full Text Available The ITER Electron Cyclotron Equatorial Launcher is designed to be one of the heating systems to assist and sustain the development of various ITER plasma scenarios starting with the very first plasma operation. Here the capabilities for Heating and Current Drive of this system are reviewed. In particular, the optimum launching conditions are investigated for two scenarios at burn, comparing toroidal and poloidal steering options. Then, the EC capabilities are investigated for different plasma parameters corresponding to various phases of the ITER plasma discharge, from current ramp-up up to burn, and for a wide range of magnetic field, focusing in particular on the EC potential for heating and for L to H-mode assist. It is found that the EC system can contribute to a wide range of heating scenarios during the ramp-up of the magnetic field, significantly increasing the applicable range as a function of magnetic field.

  11. System Study: Residual Heat Removal 1998-2014

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, John Alton [Idaho National Lab. (INL), Idaho Falls, ID (United States)


    This report presents an unreliability evaluation of the residual heat removal (RHR) system in two modes of operation (low-pressure injection in response to a large loss-of-coolant accident and post-trip shutdown-cooling) at 104 U.S. commercial nuclear power plants. Demand, run hours, and failure data from fiscal year 1998 through 2014 for selected components were obtained from the Institute of Nuclear Power Operations (INPO) Consolidated Events Database (ICES). The unreliability results are trended for the most recent 10 year period, while yearly estimates for system unreliability are provided for the entire active period. No statistically significant increasing trends were identified in the RHR results. A highly statistically significant decreasing trend was observed for the RHR injection mode start-only unreliability. Statistically significant decreasing trends were observed for RHR shutdown cooling mode start-only unreliability and RHR shutdown cooling model 24-hour unreliability.

  12. Heat Removal from Bipolar Transistor by Loop Heat Pipe with Nickel and Copper Porous Structures (United States)

    Smitka, Martin; Malcho, Milan


    Loop heat pipes (LHPs) are used in many branches of industry, mainly for cooling of electrical elements and systems. The loop heat pipe is a vapour-liquid phase-change device that transfers heat from evaporator to condenser. One of the most important parts of the LHP is the porous wick structure. The wick structure provides capillary force to circulate the working fluid. To achieve good thermal performance of LHP, capillary wicks with high permeability and porosity and fine pore radius are expected. The aim of this work was to develop porous structures from copper and nickel powder with different grain sizes. For experiment copper powder with grain size of 50 and 100 μm and nickel powder with grain size of 10 and 25 μm were used. Analysis of these porous structures and LHP design are described in the paper. And the measurements' influences of porous structures in LHP on heat removal from the insulated gate bipolar transistor (IGBT) have been made. PMID:24959622

  13. Light-responsive threadlike micelles as drag reducing fluids with enhanced heat-transfer capabilities. (United States)

    Shi, Haifeng; Wang, Yi; Fang, Bo; Talmon, Yeshayahu; Ge, Wu; Raghavan, Srinivasa R; Zakin, Jacques L


    Drag-reducing (DR) surfactant fluids based on threadlike micelles are known to suffer from poor heat-transfer capabilities. Accordingly, the use of these fluids is limited to recirculating systems in which heat exchange is not important. Here, we show for the first time that light-responsive threadlike micelles can offer a potential solution to the above problem. The fluids studied here are composed of the cationic surfactant Ethoquad O/12 PG (EO12) and the sodium salt of trans-ortho-methoxycinnamic acid (OMCA). Initially, these fluids contain numerous threadlike micelles and, in turn, are strongly viscoelastic and effective at reducing drag (up to 75% DR). Upon exposure to UV light, OMCA is photoisomerized from trans to cis. This causes the micelles to shorten considerably, as confirmed by cryo-transmission electron microscopy (cryo-TEM). Because of the absence of long micelles, the UV-irradiated fluid shows lower viscoelasticity and much lower DR properties; however, its heat-transfer properties are considerably superior to the initial fluid. Thus, our study highlights the potential of switching off the DR (and in turn enhancing heat-transfer) at the inlet of a heat exchanger in a recirculating system. While the fluids studied here are not photoreversible, an extension of the above concept would be to subsequently switch on the DR again at the exit of the heat exchanger, thus ensuring an ideal combination of DR and heat-transfer properties.

  14. The use of ferrofluids for heat removal: Advantage or disadvantage?

    Energy Technology Data Exchange (ETDEWEB)

    Krauzina, Marina T., E-mail: [Faculty of Physics, Perm State University, 15 Bukirev Street, Perm 614990 (Russian Federation); Bozhko, Aleksandra A., E-mail: [Faculty of Physics, Perm State University, 15 Bukirev Street, Perm 614990 (Russian Federation); Krauzin, Pavel V., E-mail: [Faculty of Physics, Perm State University, 15 Bukirev Street, Perm 614990 (Russian Federation); Suslov, Sergey A., E-mail: [Department of Mathematics H38, Swinburne University of Technology, Hawthorn, Victoria 3122 (Australia)


    It is shown experimentally that, depending on the relative orientation of the gravity and the thermal gradient and on the pre-history of experiment, the application of a uniform external vertical magnetic field to a spherical cavity filled with magnetic ferrofluid can either enhance or suppress a convective heat transfer. - Highlights: • Conduction heat transfer in magnetic fluid heated from above is stronger than that in a fluid not containing nanoparticles. • The application of a uniform vertical magnetic field enhances heat transfer when magnetic fluid is heated from above. • Heat transfer in a magnetic fluid heated from below is weaker than that in a fluid not containing nanoparticles.

  15. Impact of the amount of working fluid in loop heat pipe to remove waste heat from electronic component

    Directory of Open Access Journals (Sweden)

    Smitka Martin


    Full Text Available One of the options on how to remove waste heat from electronic components is using loop heat pipe. The loop heat pipe (LHP is a two-phase device with high effective thermal conductivity that utilizes change phase to transport heat. It was invented in Russia in the early 1980’s. The main parts of LHP are an evaporator, a condenser, a compensation chamber and a vapor and liquid lines. Only the evaporator and part of the compensation chamber are equipped with a wick structure. Inside loop heat pipe is working fluid. As a working fluid can be used distilled water, acetone, ammonia, methanol etc. Amount of filling is important for the operation and performance of LHP. This work deals with the design of loop heat pipe and impact of filling ratio of working fluid to remove waste heat from insulated gate bipolar transistor (IGBT.

  16. Results from evaporation tests to support the MWTF heat removal system design

    Energy Technology Data Exchange (ETDEWEB)

    Crea, B.A.


    An experimental tests program was conducted to measure the evaporative heat removal from the surface of a tank of simulated waste. The results contained in this report constitute definition design data for the latest heat removal function of the MWTF primary ventilation system.

  17. Novel Ways of Heat Removal from Highly Irradiated Superconducting Windings in Accelerator Magnets

    NARCIS (Netherlands)

    Bielert, Erwin; Verweij, Arjan P.; ten Kate, Herman H.J.


    Novel ideas of heat removal from superconducting windings in accelerator type magnets are investigated with the help of a recently developed and validated thermal model of a magnet cold mass implemented in COMSOL Multiphysics. Here the focus is on how to improve heat removal from the midplane of a

  18. Heating capabilities of the Hotline and Autoline at low flow rates. (United States)

    Schnoor, Joerg; Weber, Ingo; Macko, Stephan; Heussen, Nicole; Rossaint, Rolf


    At low flow rates, fluid warmers using coaxial warming tubes are superior in preventing heat loss. This laboratory investigation was performed in order to compare the heating capabilities of two coaxial fluid warmers. The Hotline and the Autoline were investigated by using normal saline at various flow rates (10-99 ml x h(-1)). Final infusion temperatures were measured six times in a row at the end of the tubing by using a rapid-response thermometer. Final temperatures were compared with those of infusions, which passed through disposable i.v. tubing covered and warmed using an 'off label' convective air warming system (WarmTouch). Measurements were performed at two different room temperatures (20 and 24 degrees C). Each group was analyzed with respect to differences between various flow rates as well as differences between the groups at comparable flow rates by using a three-way anova with multiple comparisons according to Tukey's procedure. Significance was defined at P flow rates efficiently above 34 degrees C, with the Hotline being more effective than the Autoline (P flow rates (10-60 and 80 ml x h(-1)), the Autoline demonstrated lower infusion temperatures throughout elevated room temperature at flow rates between 20 and 90 ml x h(-1). Both devices heated infusions more efficiently compared with 'off label used' convective air warmer (each with P flow rates. However, the heating capability of the Hotline was superior and can further be increased at low flow rates by increasing the room temperature.

  19. Increase in the free radical scavenging capability of bitter gourd by a heat-drying process. (United States)

    Wei, Lu; Shaoyun, Wang; Shutao, Liu; Jianwu, Zhou; Lijing, Ke; Pingfan, Rao


    Bitter gourd (Momordica charantia Linn.) is widely regarded as one of the best remedy foods for diabetes. The positive effect of bitter gourd on diabetes has been attributed in part to the remarkable free radical scavenging activity of its boiled water extract from sun-dried fruits. It is well known that a heat process significantly influences the antioxidant activity of fresh fruits. However, the heat drying processes of bitter gourd have not been studied so far. Here, we show that the free radical scavenging capability of bitter gourd extract significantly increases after the heat drying process, while the content of flavonoids and phenols, which are generally regarded as the main antioxidant components in bitter gourd, remain unaffected. Furthermore, the content of free amino acids and the total reducing sugar were found to decrease with increasing browning index, indicating the progression of the Maillard reaction, products of which are known to possess significant antioxidant activity. Therefore, it suggests that Maillard reaction products may be the main contributors to the increase in antioxidant capability. Finally, the bitter gourd extract with the higher antioxidant activity, was shown to manifest a corresponding higher proliferation activity on NIT-1 beta-cells. These results suggest that controllable conditions in the heat-drying processing of fresh bitter gourd fruit is of significance for enhancing the total free radical scavenging capacity, beta-cell proliferation activity and possibly the anti-diabetic activity of this fruit.

  20. Assessment of the dye removal capability of submersed aquatic plants in a laboratory-scale wetland system using anova

    Directory of Open Access Journals (Sweden)

    O. Keskinkan


    Full Text Available The textile dye (Basic Blue 41(BB41 removal capability of a laboratory-scale wetland system was presented in this study. Twenty glass aquaria were used to establish the wetland. Myriophyllum spicatum and Ceratophyllum demersum were planted in the aquaria and acclimated. After establishing flow conditions, the aquaria were fed with synthetic wastewaters containing BB41. The concentration of the dye was adjusted to 11.0 mg/L in the synthetic wastewater. Hydraulic retention times (HRTs ranged between 3 and 18 days. Effective HRTs were 9 and 18 days. The highest dye removal rates were 94.8 and 94.1% for M. spicatum and C. demersum aquaria respectively. The statistical ANOVA method was used to assess the dye removal capability of the wetland system. In all cases the ANOVA method revealed that plants in the wetland system and HRT were important factors and the wetland system was able to remove the dye from influent wastewater.

  1. Heat removal (wetting, heat transfer, T/H, secondary circuit, code validation etc.)

    Energy Technology Data Exchange (ETDEWEB)

    Dury, T.; Siman-Tov, M.


    This working group provided a comprehensive list of feasibility and uncertainty issues. Most of the issues seem to fall into the `needed but can be worked out` category. They feel these can be worked out as the project develops. A few issues can be considered critical or feasibility issues (that must be proven to be feasible). Those include: (1) Thermal shock and its mitigation (>1 MW); how to inject the He bubbles (if used) - back pressure into He lines - mercury traces in He lines; how to maintain proper bubble distribution and size (static and dynamic; if used); vibrations and fatigue (dynamic); possibility of cavitation from thermal shock. (2) Wetting and/or non-wetting of mercury on containment walls with or without gases and its effect on heat transfer (and materials). (3) Prediction capabilities in the CFD code; bubbles behavior in mercury (if used) - cross stream turbulence (ESS only) - wetting/non-wetting effects. (4) Cooling of beam `windows`; concentration of local heat deposition at center, especially if beam is of parabolic profile.

  2. An investigation of the storage capability of district heating networks. Consequences of heat production; Untersuchung der Speicherfaehigkeit von Fernwaermenetzen. Auswirkungen auf die Waermeerzeugung

    Energy Technology Data Exchange (ETDEWEB)

    Gross, Sebastian; Felsmann, Clemens [Technische Univ. Dresden (Germany). Professur fuer Gebaeudeenergietechnik und Waermeversorgung


    The storage of energy is a key issue in terms of the energy policy turnaround and the concomitant increase in decentralized power generation. District heating networks can be used as a heat storage. But is this reasonable energetically and economically? And what is the situation with the storage capacity of district heating networks? How does this storage capability impact on the use of heat sources? The authors of the contribution under consideration try to give an answer to these questions.

  3. Fabrication of Hollow Silica Microspheres with Orderly Hemispherical Protrusions and Capability for Heat-Induced Controlled Cracking. (United States)

    Takafuji, Makoto; Hano, Nanami; Alam, Md A; Ihara, Hirotaka


    Hollow silica microspheres with orderly protrusions on their outer and inner surfaces were fabricated in three simple steps: (1) suspension polymerization of a polymerizable monomer containing silica nanoparticles to obtain polymeric microspheres with a layered shell of silica particles; (2) sol-gel reaction of tetraethoxysilane (TEOS) on the surface of the microspheres to connect the silica nanoparticles; (3) removal of polymer core by calcination. The shell composed of silica-connected silica nanoparticles remained spherical even after calcination, and the characteristic surface morphology with protrusions were obtained on both inner and outer surfaces. Measurements of the mechanical strength revealed that the compression modulus of the hollow microspheres increased with increasing thickness of the silica layer, which could be controlled by changing the concentration of TEOS in the sol-gel reaction. Rapid heating of the hollow silica microspheres with the thin silica-connected layer led to silica shell cracking, and the cracks were mostly observed in the connecting layer between the silica nanoparticles. The stress was probably concentrated in the connecting layer because of its lower thickness than the nanoparticles. Such characteristic of the hollow microspheres is useful for a capsule with capability for heat-induced controlled cracking caused by internal pressure changes.

  4. Validation of Heat Transfer and Film Cooling Capabilities of the 3-D RANS Code TURBO (United States)

    Shyam, Vikram; Ameri, Ali; Chen, Jen-Ping


    The capabilities of the 3-D unsteady RANS code TURBO have been extended to include heat transfer and film cooling applications. The results of simulations performed with the modified code are compared to experiment and to theory, where applicable. Wilcox s k-turbulence model has been implemented to close the RANS equations. Two simulations are conducted: (1) flow over a flat plate and (2) flow over an adiabatic flat plate cooled by one hole inclined at 35 to the free stream. For (1) agreement with theory is found to be excellent for heat transfer, represented by local Nusselt number, and quite good for momentum, as represented by the local skin friction coefficient. This report compares the local skin friction coefficients and Nusselt numbers on a flat plate obtained using Wilcox's k-model with the theory of Blasius. The study looks at laminar and turbulent flows over an adiabatic flat plate and over an isothermal flat plate for two different wall temperatures. It is shown that TURBO is able to accurately predict heat transfer on a flat plate. For (2) TURBO shows good qualitative agreement with film cooling experiments performed on a flat plate with one cooling hole. Quantitatively, film effectiveness is under predicted downstream of the hole.

  5. Cryogen spray cooling: Effects of droplet size and spray density on heat removal. (United States)

    Pikkula, B M; Torres, J H; Tunnell, J W; Anvari, B


    Cryogen spray cooling (CSC) is an effective method to reduce or eliminate non-specific injury to the epidermis during laser treatment of various dermatological disorders. In previous CSC investigations, fuel injectors have been used to deliver the cryogen onto the skin surface. The objective of this study was to examine cryogen atomization and heat removal characteristics of various cryogen delivery devices. Various cryogen delivery device types including fuel injectors, atomizers, and a device currently used in clinical settings were investigated. Cryogen mass was measured at the delivery device output orifice. Cryogen droplet size profiling for various cryogen delivery devices was estimated by optically imaging the droplets in flight. Heat removal for various cryogen delivery devices was estimated over a range of spraying distances by temperature measurements in an skin phantom used in conjunction with an inverse heat conduction model. A substantial range of mass outputs were measured for the cryogen delivery devices while heat removal varied by less than a factor of two. Droplet profiling demonstrated differences in droplet size and spray density. Results of this study show that variation in heat removal by different cryogen delivery devices is modest despite the relatively large difference in cryogen mass output and droplet size. A non-linear relationship between heat removal by various devices and droplet size and spray density was observed. Copyright 2001 Wiley-Liss, Inc.

  6. [Study on phosphorus removal capability of constructed wetlands filled with broken bricks]. (United States)

    Wang, Zhen; Liu, Chao-Xiang; Li, Peng-Yu; Dong, Jian; Liu, Lin; Zhu, Ge-Fu


    Physico-chemical properties of broken bricks (BB) were determined, as well as its phosphorus adsorption ability. The results showed that BB was appropriate for enrichment of microorganisms and growth of plants as filter medium in CWs, in addition, BB had high phosphorus adsorption ability. A vertical subsurface flow constructed wetland (VSSF) filled with BB was constructed in order to investigate the phosphorus removal effect of domestic sewage, and the phosphorus removal mechanism of VSSF was also explored. The results showed that the phosphorus removal rate of VSSF was more than 90%, which remained stable when the hydraulic loading rate was 5 cm x d(-1) and the running time was 1 a; adsorption and precipitation within BB played the greatest role in phosphorus removal; distribution characteristics of total phosphorus in the filter media were attributed to the vertical flow state of wastewater in the system, besides, the contents and chemical forms of elements which could precipitate with phosphorus should be principal factors for the phosphorus removal processes of BB. Therefore, BB might be an ideal filter medium used in CWs.

  7. Vetiver grass is capable of removing TNT from soil in the presence of urea

    Energy Technology Data Exchange (ETDEWEB)

    Das, Padmini [Department of Earth and Environmental Studies, Montclair State University, One Normal Avenue, Montclair, NJ 07104 (United States); Datta, Rupali [Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931 (United States); Makris, Konstantinos C., E-mail: [Cyprus International Institute for Environmental and Public Health in Association with Harvard School Of Public Health, Cyprus University of Technology, Limassol (Cyprus); Sarkar, Dibyendu [Department of Earth and Environmental Studies, Montclair State University, One Normal Avenue, Montclair, NJ 07104 (United States)


    The high affinity of vetiver grass for 2,4,6 trinitrotoluene (TNT) and the catalytic effectiveness of urea in enhancing plant uptake of TNT in hydroponic media we earlier demonstrated were further illustrated in this soil-pot-experiment. Complete removal of TNT in urea-treated soil was accomplished by vetiver at the low initial soil-TNT concentration (40 mg kg{sup -1}), masking the effect of urea. Doubling the initial TNT concentration (80 mg kg{sup -1}) significantly (p < 0.002) increased TNT removal by vetiver, in the presence of urea. Without vetiver grass, no significant (p = 0.475) change in the soil-TNT concentrations was observed over a period of 48 days, suggesting that natural attenuation of soil TNT could not explain the documented TNT disappearance from soil. - Vetiver grass in the presence of urea effectively removes TNT from soil.

  8. Jet pump-drive system for heat removal (United States)

    French, James R. (Inventor)


    The invention does away with the necessity of moving parts such as a check valve in a nuclear reactor cooling system. Instead, a jet pump, in combination with a TEMP, is employed to assure safe cooling of a nuclear reactor after shutdown. A main flow exists for a reactor coolant. A point of withdrawal is provided for a secondary flow. A TEMP, responsive to the heat from said coolant in the secondary flow path, automatically pumps said withdrawn coolant to a higher pressure and thus higher velocity compared to the main flow. The high velocity coolant is applied as a driver flow for the jet pump which has a main flow chamber located in the main flow circulation pump. Upon nuclear shutdown and loss of power for the main reactor pumping system, the TEMP/jet pump combination continues to boost the coolant flow in the direction it is already circulating. During the decay time for the nuclear reactor, the jet pump keeps running until the coolant temperature drops to a lower and safe temperature where the heat is no longer a problem. At this lower temperature, the TEMP/jet pump combination ceases its circulation boosting operation. When the nuclear reactor is restarted and the coolant again exceeds the lower temperature setting, the TEMP/jet pump automatically resumes operation. The TEMP/jet pump combination is thus automatic, self-regulating and provides an emergency pumping system free of moving parts.

  9. Nuclear reactor with makeup water assist from residual heat removal system (United States)

    Corletti, Michael M.; Schulz, Terry L.


    A pressurized water nuclear reactor uses its residual heat removal system to make up water in the reactor coolant circuit from an in-containment refueling water supply during staged depressurization leading up to passive emergency cooling by gravity feed from the refueling water storage tank, and flooding of the containment building. When depressurization commences due to inadvertence or a manageable leak, the residual heat removal system is activated manually and prevents flooding of the containment when such action is not necessary. Operation of the passive cooling system is not impaired. A high pressure makeup water storage tank is coupled to the reactor coolant circuit, holding makeup coolant at the operational pressure of the reactor. The staged depressurization system vents the coolant circuit to the containment, thus reducing the supply of makeup coolant. The level of makeup coolant can be sensed to trigger opening of successive depressurization conduits. The residual heat removal pumps move water from the refueling water storage tank into the coolant circuit as the coolant circuit is depressurized, preventing reaching the final depressurization stage unless the makeup coolant level continues to drop. The residual heat removal system can also be coupled in a loop with the refueling water supply tank, for an auxiliary heat removal path.

  10. Isolating metal-tolerant bacteria capable of removing copper, chromium, and arsenic from treated wood (United States)

    Carol A. Clausen


    Bioremediation of chromated copper arsenate-treated waste wood with one or more metal-tolerant bacteria is a potential method of naturally releasing metals from treated wood fibre. Sampling eight environments with elevated levels of copper, chromium, and arsenic resulted in the isolation of 28 bacteria with the capability of releasing one or more of the components from...

  11. The Gas-Cooled Fast Reactor: Report on Safety System Design for Decay Heat Removal

    Energy Technology Data Exchange (ETDEWEB)

    K. D. Weaver; T. Marshall; T. Y. C. Wei; E. E. Feldman; M. J. Driscoll; H. Ludewig


    The gas-cooled fast reactor (GFR) was chosen as one of the Generation IV nuclear reactor systems to be developed based on its excellent potential for sustainability through reduction of the volume and radiotoxicity of both its own fuel and other spent nuclear fuel, and for extending/utilizing uranium resources orders of magnitude beyond what the current open fuel cycle can realize. In addition, energy conversion at high thermal efficiency is possible with the current designs being considered, thus increasing the economic benefit of the GFR. However, research and development challenges include the ability to use passive decay heat removal systems during accident conditions, survivability of fuels and in-core materials under extreme temperatures and radiation, and economical and efficient fuel cycle processes. This report addresses/discusses the decay heat removal options available to the GFR, and the current solutions. While it is possible to design a GFR with complete passive safety (i.e., reliance solely on conductive and radiative heat transfer for decay heat removal), it has been shown that the low power density results in unacceptable fuel cycle costs for the GFR. However, increasing power density results in higher decay heat rates, and the attendant temperature increase in the fuel and core. Use of active movers, or blowers/fans, is possible during accident conditions, which only requires 3% of nominal flow to remove the decay heat. Unfortunately, this requires reliance on active systems. In order to incorporate passive systems, innovative designs have been studied, and a mix of passive and active systems appears to meet the requirements for decay heat removal during accident conditions.

  12. Simultaneous removal of NO and SO2 using vacuum ultraviolet light (VUV)/heat/peroxymonosulfate (PMS). (United States)

    Liu, Yangxian; Wang, Yan; Wang, Qian; Pan, Jianfeng; Zhang, Jun


    Simultaneous removal process of SO2 and NO from flue gas using vacuum ultraviolet light (VUV)/heat/peroxymonosulfate (PMS) in a VUV spraying reactor was proposed. The key influencing factors, active species, reaction products and mechanism of SO2 and NO simultaneous removal were investigated. The results show that vacuum ultraviolet light (185 nm) achieves the highest NO removal efficiency and yield of and under the same test conditions. NO removal is enhanced at higher PMS concentration, light intensity and oxygen concentration, and is inhibited at higher NO concentration, SO2 concentration and solution pH. Solution temperature has a double impact on NO removal. CO2 concentration has no obvious effect on NO removal. and produced from VUV-activation of PMS play a leading role in NO removal. O3 and ·O produced from VUV-activation of O2 also play an important role in NO removal. SO2 achieves complete removal under all experimental conditions due to its very high solubility in water and good reactivity. The highest simultaneous removal efficiency of SO2 and NO reaches 100% and 91.3%, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Optimized Synthesis of FeS Nanoparticles with a High Cr(VI Removal Capability

    Directory of Open Access Journals (Sweden)

    Yuanyuan Liu


    Full Text Available FeS nanoparticles were synthesized using chemical precipitation method involving sulfide and ferrous solutions. Effects of important synthesis parameters including stabilizer, time taken for titration, horizontal oscillation speed, and initial salt concentration on the size of synthesized FeS nanoparticles were investigated by Orthogonal Array design. Increasing the CMC dosage significantly made the hydrodynamic diameter decrease between 0.05 wt.% and 0.15 wt.% while Na2S titration, oscillation rate, and Na2S concentration did not show significant influence on the hydrodynamic diameter of FeS nanoparticles. The synthesized FeS nanoparticles were characterized by using XRD (X-ray diffraction, TEM (transmission electron microscopy, and XPS (X-ray photoelectron spectroscopy. The as-synthesized FeS nanoparticles had an average size of 25 ± 10 nm and had a better long-term stability after storage for 150 days compared to bare FeS particles. Because of the optimized process parameters, the synthesized FeS nanoparticles had a higher Cr(VI removal capacity of 683 mg per gram of FeS in comparison to the previously reported cases, and up to 92.48% Cr(VI was removed from aqueous solutions. The small size, special surface property, and high reactivity make the synthesized FeS nanoparticles a promising tool for the remediation of Cr(VI contaminated soil and groundwater.

  14. Effect of hotspot position fluctuation to writing capability in heated-dot magnetic recording (United States)

    Tipcharoen, Warunee; Warisarn, Chanon; Kaewrawang, Arkom; Kovintavewat, Piya


    This work presents the effect of hotspot position fluctuation to writing capability in heated-dot magnetic recording systems at an areal density (AD) beyond 2 Tbpsi via a micromagnetic modeling. At high ADs, the hotspot and the write field gradient may not be correctly focused on the target island because the bit islands are closely positioned to one another. This may lead to the overwriting/erasing of the previously written islands, which can severely affect the recording performance. Therefore, this work studies the 3-by-3 data patterns that easily cause an error when the hotspot and write head positions are fluctuated by various island pitches. Simulation results indicate that the data pattern that leads to the highest/lowest error occurrence frequency is the one with the first, second and fourth islands having the opposite/same magnetization direction to/as the write field, regardless of the magnetization direction of the third island. This result can, for example, be utilized to design a two-dimensional modulation code to prevent such destructive data patterns, thus helping enhance the overall system performance.

  15. Safety aspects of intermediate heat transport and decay heat removal systems of sodium-cooled fast reactors

    Directory of Open Access Journals (Sweden)

    Subhash Chander Chetal


    Full Text Available Twenty sodium-cooled fast reactors (SFRs have provided valuable experience in design, licensing, and operation. This paper summarizes the important safety criteria and safety guidelines of intermediate sodium systems, steam generators, decay heat removal systems and associated construction materials and in-service inspection. The safety criteria and guidelines provide a sufficient framework for design and licensing, in particular by new entrants in SFRs.

  16. Influence of wick properties in a vertical LHP on remove waste heat from electronic equipment (United States)

    Smitka, Martin; Nemec, Patrik; Malcho, Milan


    The loop heat pipe is a vapour-liquid phase-change device that transfers heat from evaporator to condenser. One of the most important parts of the LHP is the porous wick structure. The wick structure provides capillary force to circulate the working fluid. To achieve good thermal performance of LHP, capillary wicks with high permeability and porosity and fine pore radius are expected. The aim of this work is to develop porous wick of sintered nickel powder with different grain sizes. These porous wicks were used in LHP and there were performed a series of measurements to remove waste heat from the insulated gate bipolar transistor (IGBT).

  17. Experimental investigations at the GENEVA passive residual heat removal test facility

    Energy Technology Data Exchange (ETDEWEB)

    Cloppenborg, Tim; Schuster, Christoph; Hurtado, Antonio [Technische Univ. Dresden (Germany). Professur fuer Wasserstoff- und Kernenergietechnik


    Phenomena of heat transfer system at low driving forces - mainly the transition zone between single phase and two phase heat transfer - is of high interest for several technical applications. Passive safety systems of advanced nuclear reactor concepts and operation of concentrated solar power systems are only two examples. The GENEVA natural circulation test facility was established for generic investigations of thermohydraulic impact factors on natural circulation residual heat removal systems at the Professorship of Hydrogen- and Nuclear Energy Technology, TU Dresden in 2013. (orig.)

  18. Moisture removal characteristics of thin layer rough rice under sequenced infrared radiation heating and cooling (United States)

    Rice drying with infrared (IR) radiation has been investigated during recent years and showed promising potential with improved quality and energy efficiency. The objective of this study was to further investigate the moisture removal characteristics of thin layer rough rice heated by IR and cooled ...

  19. Decay Heat Removal and Transient Analysis in Accidental Conditions in the EFIT Reactor

    Directory of Open Access Journals (Sweden)

    Giacomino Bandini


    Full Text Available The development of a conceptual design of an industrial-scale transmutation facility (EFIT of several 100 MW thermal power based on accelerator-driven system (ADS is addressed in the frame of the European EUROTRANS Integral Project. In normal operation, the core power of EFIT reactor is removed through steam generators by four secondary loops fed by water. A safety-related decay heat removal (DHR system provided with four independent inherently safe loops is installed in the primary vessel to remove the decay heat by natural convection circulation under accidental conditions which are caused by a loss-of-heat sink (LOHS. In order to confirm the adequacy of the adopted solution for decay heat removal in accidental conditions, some multi-D analyses have been carried out with the SIMMER-III code. The results of the SIMMER-III code have been then used to support the RELAP5 1D representation of the natural circulation flow paths in the reactor vessel. Finally, the thermal-hydraulic RELAP5 code has been employed for the analysis of LOHS accidental scenarios.

  20. An analysis of heat removal during cryogen spray cooling and effects of simultaneous airflow application. (United States)

    Torres, J H; Tunnell, J W; Pikkula, B M; Anvari, B


    Cryogen spray cooling (CSC) is a method used to protect the epidermis from non-specific thermal injury that may occur as a result of various dermatological laser procedures. However, better understanding of cryogen deposition and skin thermal response to CSC is needed to optimize the technique. Temperature measurements and video imaging were carried out on an epoxy phantom as well as human skin during CSC with and without simultaneous application of airflow which was intended to accelerate cryogen evaporation from the substrate surface. An inverse thermal conduction model was used to estimate heat flux and total heat removed. Lifetime of the cryogen film deposited on the surface of skin and epoxy phantom lasted several hundred milliseconds beyond the spurt, but could be reduced to the spurt duration by application of airflow. Values over 100 J/cm(3) were estimated for volumetric heat removed from the epidermis using CSC. "Film cooling" instead of "evaporative cooling" appears to be the dominant mode of CSC on skin. Estimated values of heat removed from the epidermis suggest that a cryogen spurt as long as 200 milliseconds is required to counteract heat generated by high laser fluences (e.g., in treatment of port wine stains) in patients with high concentration of epidermal melanin. Additional cooling beyond spurt termination can be avoided by simultaneous application of airflow, although it is unclear at the moment if avoiding the additional cooling would be beneficial in the actual clinical situation. Copyright 2001 Wiley-Liss, Inc.

  1. Experimental validation of an analytical model for predicting the thermal and hydrodynamic capabilities of flat micro heat pipes


    Revellin, Rémi; Rullière, Romuald; Lefèvre, Frédéric; Bonjour, Jocelyn


    Experimental validation of an analytical model for predicting the thermal and hydrodynamic capabilities of flat micro heat pipes correspondance: Corresponding author. Tel.: +33 4 7243 82 51; fax: +33 4 7243 8811. (Lefevre, Frederic) (Lefevre, Frederic) Centre de Thermique de Lyon (CETHIL) UMR 5008 CNRS-INSA-Univ. Lyon 1 Bat. Sadi Carnot--> , INSA-Lyon--> , F-69621 Villeurbanne Cedex--> -...

  2. Photovoltaic cell electrical heating system for removing snow on panel including verification. (United States)

    Weiss, Agnes; Weiss, Helmut


    Small photovoltaic plants in private ownership are typically rated at 5 kW (peak). The panels are mounted on roofs at a decline angle of 20° to 45°. In winter time, a dense layer of snow at a width of e.g., 10 cm keeps off solar radiation from the photovoltaic cells for weeks under continental climate conditions. Practically, no energy is produced over the time of snow coverage. Only until outside air temperature has risen high enough for a rather long-time interval to allow partial melting of snow; the snow layer rushes down in an avalanche. Following this proposal, snow removal can be arranged electrically at an extremely positive energy balance in a fast way. A photovoltaic cell is a large junction area diode inside with a threshold voltage of about 0.6 to 0.7 V (depending on temperature). This forward voltage drop created by an externally driven current through the modules can be efficiently used to provide well-distributed heat dissipation at the cell and further on at the glass surface of the whole panel. The adhesion of snow on glass is widely reduced through this heating in case a thin water film can be produced by this external short time heating. Laboratory experiments provided a temperature increase through rated panel current of more than 10 °C within about 10 min. This heating can initiate the avalanche for snow removal on intention as described before provided the clamping effect on snow at the edge of the panel frame is overcome by an additional heating foil. Basics of internal cell heat production, heating thermal effects in time course, thermographic measurements on temperature distribution, power circuit opportunities including battery storage elements and snow-removal under practical conditions are described.


    Energy Technology Data Exchange (ETDEWEB)

    Hardy, B


    It is recognized that detailed models of proposed hydrogen storage systems are essential to gain insight into the complex processes occurring during the charging and discharging processes. Such insight is an invaluable asset for both assessing the viability of a particular system and/or for improving its design. The detailed models, however, require time to develop and run. Clearly, it is much more efficient to begin a modeling effort with a good system design and to progress from that point. To facilitate this approach, it is useful to have simplified models that can quickly estimate optimal loading and discharge kinetics, effective hydrogen capacities, system dimensions and heat removal requirements. Parameters obtained from these models can then be input to the detailed models to obtain an accurate assessment of system performance that includes more complete integration of the physical processes. This report describes three scoping models that assess preliminary system design prior to invoking a more detailed finite element analysis. The three models address the kinetics, the scaling and heat removal parameters of the system, respectively. The kinetics model is used to evaluate the effect of temperature and hydrogen pressure on the loading and discharge kinetics. As part of the kinetics calculations, the model also determines the mass of stored hydrogen per mass of hydride (in a particular reference form). As such, the model can determine the optimal loading and discharge rates for a particular hydride and the maximum achievable loading (over an infinite period of time). The kinetics model developed with the Mathcad{reg_sign} solver, runs in a mater of seconds and can quickly be used to identify the optimal temperature and pressure for either the loading or discharge processes. The geometry scoping model is used to calculate the size of the system, the optimal placement of heat transfer elements, and the gravimetric and volumetric capacities for a particular

  4. Post-accident fuel relocation and heat removal in the LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Kazimi, M S; Tsai, S S; Gasser, R D


    Assessment of the dynamics of post-accident fuel relocation and heat removal is an important aspect of the evaluation of the consequences of a hypothetical accident in an LMFBR. Such an assessment is of particular importance in the evaluation of the post-accident radiological doses around the reactor site. In the present evaluation particular attention is given to the design features of the Clinch River Breeder Reactor Plant (CRBR). Fuel relocation and heat removal, assuming certain conditions have resulted in core disruption, are discussed. The discussion of events and phenomena involved in the relocation processes is centered around the resulting patterns of heat source distribution. The factors influencing fuel relocation and distribution in the inlet and outlet plena of the reactor vessel are discussed. The current technology of in-vessel heat removal is applied to the design of the CRBR reactor. Both fuel debris cooling limits and overall coolant flow in the reactor under natural convection conditions are explored. Some of the uncertainties in ex-vessel fuel behavior are addressed. In particular, the effect of melting the cavity bed on the rate of growth of a molten fuel pool is investigated.

  5. Determination of the heat transfer capability of laser mirrors with cooled cells (United States)

    Zhernovyi, Yu. V.; Odnorozhenko, I. G.; Potyagailo, D. B.; Romanchuk, Ya. P.


    A mathematical model of steady-state heat transfer in a laser mirror involving cooled prismatically shaped cells has been developed. Using cooling systems with hexahedral and tetrahedral cells (by the number of side walls) as examples, the influence of the mirror illumination nonuniformity, reflector thickness, and other parameters on the effective heat-transfer coefficient and thermal head coefficient is investigated; the physical limits for heat-transfer characteristics in the case of an unlimited increase in heat transfer from the surfaces of the cell walls have been determined.

  6. Emergency Cooling of Nuclear Power Plant Reactors With Heat Removal By a Forced-Draft Cooling Tower

    Energy Technology Data Exchange (ETDEWEB)

    Murav’ev, V. P., E-mail:


    The feasibility of heat removal during emergency cooling of a reactor by a forced-draft cooling tower with accumulation of the peak heat release in a volume of precooled water is evaluated. The advantages of a cooling tower over a spray cooling pond are demonstrated: it requires less space, consumes less material, employs shorter lines in the heat removal system, and provides considerably better protection of the environment from wetting by entrained moisture.

  7. Metabolic Heat Regenerated Temperature Swing Adsorption for CO2 and Heat Removal/Rejection in a Martian PLSS (United States)

    Iacomini, Christine; Powers, Aaron; Bower, Chad; Straub-Lopez, Kathrine; Anderson, Grant; MacCallum, Taber; Paul, Heather L.


    Two of the fundamental problems facing the development of a Portable Life Support System (PLSS) for use on Mars, are (i) heat rejection (because traditional technologies use sublimation of water, which wastes a scarce resource and contaminates the premises), and (ii) rejection of carbon dioxide (CO2) in an environment with a CO2 partial pressure (ppCO2) of 0.4-0.9 kPa. Patent-pending Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is being developed to address both these challenges. The technology utilizes an adsorbent that when cooled with liquid CO2 to near sublimation temperatures (195K) removes metabolically-produced CO2 in the ventilation loop. Once fully loaded, the adsorbent is then warmed externally by the ventilation loop (300K), rejecting the captured CO2 to Mars ambient. Two beds are used to provide a continuous cycle of CO2 removal/rejection as well as facilitate heat exchange out of the ventilation loop. Any cryogenic fluid can be used in the application; however, since CO2 is readily available on Mars and can be easily produced and stored on the Martian surface, the solution is rather elegant and less complicated when employing liquid CO2. As some metabolic heat will need to be rejected anyway, finding a practical use for metabolic heat is also an overall benefit to the PLSS. To investigate the feasibility of the technology, a series of experiments were conducted which lead to the selection and partial characterization of an appropriate adsorbent. The Molsiv Adsorbents 13X 8x12 (also known as NaX zeolite) successfully removed CO2 from a simulated ventilation loop at the prescribed temperature swing anticipated during PLSS operating conditions on Mars using a cryogenic fluid. Thermal conductivity of the adsorbent was also measured to eventually aid in a demonstrator design of the technology. These results provide no show stoppers to the development of MTSA technology and allow its development to focus on other design


    Directory of Open Access Journals (Sweden)

    S. A. Peredkov


    Full Text Available Objectives. The aim of the study is to conduct an analysis of thermophysical processes in a thermoelectric system used for  providing the thermal regime of electronic equipment located in a cabinet. A cabinet design and thermoelectric system for efficient  heat removal from the condensing part of the heat pipe are  proposed. An additional advantage of the proposed design is the  obviation of significant additional power consumption requirement  for regulating the temperature of radio electronic equipment stored  in the cabinet.A distinctive feature of the constructive realisation is  the presence of an intermediate heat removal.Methods. The three-dimensionality of the problem and mixed boundary conditions lead to the need to develop a calculation  of heat transfer in the elements of the construction of the  thermoelectric system. The numerical calculation method is based on the method of energy balances. The analysis of the heat regimes of  the intermediate heat removal is performed on the basis of a mathematical model for a locally-heated and -cooled restricted plate.Results. A cabinet design and a thermoelectric system for efficient  heat removal from the condensing part of the heat pipe are  proposed. A distinctive feature of the constructive realisation is the  presence of an intermediate heat removal.Conclusion.The capacity of the intermediate heat removal for given dimensions and temperature of the source is weakly affected by its  thickness (in constructively reasonable limits, as well as the  temperature and area of the absorbing side of the thermoelectric  module; the total heat output from the heat source is determined by the dimensions and heat exchange conditions on the free surface of the intermediate heat removal, as well as by the temperature and dimensions of the heat absorbing side of the thermoelectric module. The use of an intermediate heat removal can significantly reduce the thermal load on

  9. Decay Heat Removal in GEN IV Gas-Cooled Fast Reactors

    Directory of Open Access Journals (Sweden)

    Lap-Yan Cheng


    Full Text Available The safety goal of the current designs of advanced high-temperature thermal gas-cooled reactors (HTRs is that no core meltdown would occur in a depressurization event with a combination of concurrent safety system failures. This study focused on the analysis of passive decay heat removal (DHR in a GEN IV direct-cycle gas-cooled fast reactor (GFR which is based on the technology developments of the HTRs. Given the different criteria and design characteristics of the GFR, an approach different from that taken for the HTRs for passive DHR would have to be explored. Different design options based on maintaining core flow were evaluated by performing transient analysis of a depressurization accident using the system code RELAP5-3D. The study also reviewed the conceptual design of autonomous systems for shutdown decay heat removal and recommends that future work in this area should be focused on the potential for Brayton cycle DHRs.

  10. Scaled model studies of decay heat removal by natural convection for sodium cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, H. (Institut fuer Angewandte Thermo- und Fluiddynamik (IATF), Kernforschungszentrum Karlsruhe (Germany)); Weinberg, D. (Institut fuer Angewandte Thermo- und Fluiddynamik (IATF), Kernforschungszentrum Karlsruhe (Germany)); Marten, K. (Institut fuer Angewandte Thermo- und Fluiddynamik (IATF), Kernforschungszentrum Karlsruhe (Germany)); Schnetgoeke, G. (Institut fuer Angewandte Thermo- und Fluiddynamik (IATF), Kernforschungszentrum Karlsruhe (Germany))


    Thermohydraulic experiments were performed with water in order to simulate decay heat removal by natural convection in a pool-type sodium cooled reactor. Two water test rigs of different scales were used, namely, RAMONA (1:20) and NEPTUN (1:5). RAMONA was taken to study the transition from nominal operation by forced convection to decay heat removal operation by natural convection. Steady-state similarity tests were carried out in both facilities. All tests provide a basis for verification of computer programs. Calculations performed with the three-dimensional code FLUTAN proved that the thermohydraulic processes are quantitatively mastered, even for the very complex geometry of the NEPTUN test rig. (orig.)

  11. Development of Axial Compressor Heat-Extraction Capability for Thermal Management Applications Project (United States)

    National Aeronautics and Space Administration — ATA Engineering, Inc. (ATA) proposes a small business innovation research (SBIR) program for a novel compressor heat-extraction development program in response to...

  12. Topical report: Natural convection shutdown heat removal test facility (NSTF) evaluation for generating additional reactor cavity cooling system (RCCS) data.

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, M. T.; Kilsdonk, D. J.; Tzanos, C.P.; Lomperski, S.; Aeschlimann, R.W.; Pointer, D.; Nuclear Engineering Division


    As part of the Department of Energy (DOE) Generation IV roadmapping activity, the Very High Temperature gas cooled Reactor (VHTR) has been selected as the principal concept for hydrogen production and other process-heat applications such as district heating and potable water production. On this basis, the DOE has selected the VHTR for additional R&D with the ultimate goal of demonstrating emission-free electricity and hydrogen production with this advanced reactor concept. One of the key passive safety features of the VHTR is the potential for decay heat removal by natural circulation of air in a Reactor Cavity Cooling System (RCCS). The air-cooled RCCS concept is notably similar to the Reactor Vessel Auxiliary Cooling System (RVACS) that was developed for the General Electric PRISM sodium-cooled fast reactor. As part of the DOE R&D program that supported the development of this fast reactor concept, the Natural Convection Shutdown Heat Removal Test Facility (NSTF) was developed at ANL to provide proof-of-concept data for the RVACS under prototypic natural convection flow, temperature, and heat flux conditions. Due to the similarity between RVACS and the RCCS, current VHTR R&D plans call for the utilization of the NSTF to provide RCCS model development and validation data, in addition to supporting design validation and optimization activities. Both air-cooled and water-cooled RCCS designs are to be included. In support of this effort, ANL has been tasked with the development of an engineering plan for mechanical and instrumentation modifications to NSTF to ensure that sufficiently detailed temperature, heat flux, velocity and turbulence profiles are obtained to adequately qualify the codes under the expected range of air-cooled RCCS flow conditions. Next year, similar work will be carried out for the alternative option of a water-cooled RCCS design. Analysis activities carried out in support of this experiment planning task have shown that: (a) in the RCCS, strong

  13. Heat radiation vs air drying to remove interfacial water from self-etch adhesives

    Directory of Open Access Journals (Sweden)

    Mathews Irene


    Full Text Available The clinician′s quest for time-saving and technique-insensitive technology has led to the development of simplified self-etch adhesives that are predominantly water or solvent based. Several studies have shown that conventional air-drying procedures are incapable of eliminating all the residual water in the adhesive and that it may even cause collapse of the underlying collagen matrix. We hypothesized that heat from a light source may be effective in removing water from these adhesives. The aim of this study was, therefore, to evaluate the effectiveness of heat vs conventional air drying in eliminating water droplets from self-etch adhesive. A self-etch adhesive was applied to bur-cut dentin surfaces, which were then allotted to one of two treatment procedures for eliminating residual water from the adhesive: conventional air drying or the experimental heat application. Specimens were then prepared and analyzed using SEM. Specimens in the experimental group showed no evidence of water treeing within the adhesive layer. Thus, it was concluded that heat radiation was an effective method to remove residual water from simplified adhesives.

  14. Preliminary study of the decay heat removal strategy for the gas demonstrator allegro

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, Gusztáv, E-mail: [Hungarian Academy of Sciences, Centre for Energy Research, P.O. Box 49, H-1525 Budapest (Hungary); Bentivoglio, Fabrice, E-mail: [CEA/DEN/DM2S/STMF/LMES, F-38054, Grenoble (France)


    Highlights: • Improved decay heat removal strategy was adapted for the 75 MW ALLEGRO MOX core. • New nitrogen injection strategy was proposed for the DEC LOCA transients. • Preliminary CATHARE study shows that most of the investigated transients fulfill criteria. • Further improvements and optimizations are needed for nitrogen injection. - Abstract: The helium cooled Gas Fast Reactor (GFR) is one of the six reactor concepts selected in the frame of the Generation IV International Forum. Since no gas cooled fast reactor has ever been built, a medium power demonstrator reactor – named ALLEGRO – is necessary on the road towards the 2400 MWth GFR power reactor. The French Commissariat à l’Energie Atomique (CEA) completed a wide range of studies during the early stage of development of ALLEGRO, and later the ALLEGRO reactor concept was developed in several European Union projects in parallel with the GFR2400. The 75 MW thermal power ALLEGRO is currently developed in the frame of the European ALLIANCE project. As a result of the collaboration between CEA and the Hungarian Academy of Sciences Centre for Energy Research (MTA EK) new improvements were done in the safety approach of ALLEGRO. A complete Decay Heat Removal (DHR) strategy was devised, relying on the primary circuits as a first way to remove decay heat using pony-motors to drive the primary blowers, and on the secondary and tertiary circuits being able to work in forced or natural circulation. Three identical dedicated loops circulating in forced convection are used as a second way to remove decay heat, and these loops can circulate in natural convection for pressurized transients, providing a third way to remove decay heat in case of accidents when the primary circuit is still under pressure. The possibility to use nitrogen to enhance both forced and natural circulation is discussed. This DHR strategy is supported by a wide range of accident transient simulations performed using the CATHARE2 code

  15. Theoretical Design of a Thermosyphon for Efficient Process Heat Removal from Next Generation Nuclear Plant (NGNP) for Production of Hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Piyush Sabharwall; Fred Gunnerson; Akira Tokuhiro; Vivek Utgiker; Kevan Weaver; Steven Sherman


    The work reported here is the preliminary analysis of two-phase Thermosyphon heat transfer performance with various alkali metals. Thermosyphon is a device for transporting heat from one point to another with quite extraordinary properties. Heat transport occurs via evaporation and condensation, and the heat transport fluid is re-circulated by gravitational force. With this mode of heat transfer, the thermosyphon has the capability to transport heat at high rates over appreciable distances, virtually isothermally and without any requirement for external pumping devices. For process heat, intermediate heat exchangers (IHX) are required to transfer heat from the NGNP to the hydrogen plant in the most efficient way possible. The production of power at higher efficiency using Brayton Cycle, and hydrogen production requires both heat at higher temperatures (up to 1000oC) and high effectiveness compact heat exchangers to transfer heat to either the power or process cycle. The purpose for selecting a compact heat exchanger is to maximize the heat transfer surface area per volume of heat exchanger; this has the benefit of reducing heat exchanger size and heat losses. The IHX design requirements are governed by the allowable temperature drop between the outlet of the NGNP (900oC, based on the current capabilities of NGNP), and the temperatures in the hydrogen production plant. Spiral Heat Exchangers (SHE’s) have superior heat transfer characteristics, and are less susceptible to fouling. Further, heat losses to surroundings are minimized because of its compact configuration. SHEs have never been examined for phase-change heat transfer applications. The research presented provides useful information for thermosyphon design and Spiral Heat Exchanger.

  16. Solving the inverse heat conduction problem using NVLink capable Power architecture

    Directory of Open Access Journals (Sweden)

    Sándor Szénási


    Full Text Available The accurate knowledge of Heat Transfer Coefficients is essential for the design of precise heat transfer operations. The determination of these values requires Inverse Heat Transfer Calculations, which are usually based on heuristic optimisation techniques, like Genetic Algorithms or Particle Swarm Optimisation. The main bottleneck of these heuristics is the high computational demand of the cost function calculation, which is usually based on heat transfer simulations producing the thermal history of the workpiece at given locations. This Direct Heat Transfer Calculation is a well parallelisable process, making it feasible to implement an efficient GPU kernel for this purpose. This paper presents a novel step forward: based on the special requirements of the heuristics solving the inverse problem (executing hundreds of simulations in a parallel fashion at the end of each iteration, it is possible to gain a higher level of parallelism using multiple graphics accelerators. The results show that this implementation (running on 4 GPUs is about 120 times faster than a traditional CPU implementation using 20 cores. The latest developments of the GPU-based High Power Computations area were also analysed, like the new NVLink connection between the host and the devices, which tries to solve the long time existing data transfer handicap of GPU programming.

  17. Copper vertical micro dendrite fin arrays and their superior boiling heat transfer capability (United States)

    Wang, Ya-Qiao; Lyu, Shu-Shen; Luo, Jia-Li; Luo, Zhi-Yong; Fu, Yuan-Xiang; Heng, Yi; Zhang, Jian-Hui; Mo, Dong-Chuan


    Micro pin fin arrays have been widely used in electronic cooling, micro reactors, catalyst support, and wettability modification and so on, and a facile way to produce better micro pin fin arrays is demanded. Herein, a simple electrochemical method has been developed to fabricate copper vertical micro dendrite fin arrays (Cu-VMDFA) with controllable shapes, number density and height. High copper sulphate concentration is one key point to make the dendrite stand vertically. Besides, the applied current should rise at an appropriate rate to ensure the copper dendrite can grow vertically on its own. The Cu-VMDFA can significantly enhance the heat transfer coefficient by approximately twice compared to the plain copper surface. The Cu-VMDFA may be widely used in boiling heat transfer areas such as nuclear power plants, electronic cooling, heat exchangers, and so on.

  18. NOM removal by adsorption and membrane filtration using heated aluminum oxide particles. (United States)

    Cai, Zhenxiao; Kim, Jaeshin; Benjamin, Mark M


    Heated aluminum oxide particles (HAOPs) are a newly synthesized adsorbent with attractive properties for use in hybrid adsorption/membrane filtration systems. This study compared removal of natural organic matter (NOM) from water by adsorption onto HAOPs with that by adsorption onto powdered activated carbon (PAC) or coagulation with alum or ferric chloride (FeCl3); explored the overlap between the NOM molecules that preferentially adsorb to HAOPs and those that are removed by the more conventional approaches; and evaluated NOM removal and fouling in hybrid adsorbent/membrane systems. For equivalent molar doses of the trivalent metals, HAOPs remove more NOM, and NOM with higher SUVA254, than alum or FeCl3. Most of the HAOPs-nonadsorbable fraction of the NOM can be adsorbed by PAC; in fact, that fraction appears to be preferentially adsorbed compared to the average NOM in untreated water. Predeposition of the adsorbents on a microfiltration membrane improves system performance. For the water tested, at a flux of 100 L/m2-hr, predeposition of 11 mg/L PAC and 5 mg/L HAOPs (as Al3+) allowed the system to operate 5 times as long before the transmembrane pressure increased by 1 psi and to remove 10-20 times as much NOM as when no adsorbents were added.

  19. Heating Changes Bio-Schwertmannite Microstructure and Arsenic(III Removal Efficiency

    Directory of Open Access Journals (Sweden)

    Xingxing Qiao


    Full Text Available Schwertmannite (Sch is an efficient adsorbent for arsenic(III removal from arsenic(III-contaminated groundwater. In this study, bio-schertmannite was synthesized in the presence of dissolved ferrous ions and Acidithiobacillus ferrooxidans LX5 in a culture media. Bio-synthesized Sch characteristics, such as total organic carbon (TOC, morphology, chemical functional groups, mineral phase, specific surface area, and pore volume were systematically studied after it was dried at 105 °C and then heated at 250–550 °C. Differences in arsenic(III removal efficiency between 105 °C dried-sch and 250–550 °C heated-sch also were investigated. The results showed that total organic carbon content in Sch and Sch weight gradually decreased when temperature increased from 105 °C to 350 °C. Sch partly transformed to another nanocrystalline or amorphous phase above 350 °C. The specific surface area of 250 °C heated-sch was 110.06 m2/g compared to 5.14 m2/g for the 105 °C dried-sch. Total pore volume of 105 °C dried-sch was 0.025 cm3/g with 32.0% mesopore and 68.0% macropore. However, total pore volume of 250 °C heated-mineral was 0.106 cm3/g with 23.6% micropore, 33.0% mesopore, and 43.4% macropore. The arsenic(III removal efficiency from an initial 1 mg/L arsenic(III solution (pH 7.5 was 25.1% when 0.25 g/L of 105 °C dried-sch was used as adsorbent. However, this efficiency increased to 93.0% when using 250 °C heated-sch as adsorbent. Finally, the highest efficiency for arsenic(III removal was obtained with sch-250 °C due to high amounts of sorption sites in agreement with the high specific surface area (SSA obtained for this sample.

  20. Multiple pollutant removal using the condensing heat exchanger: Phase 1 final report, November 1995--May 1997. Addendum 1: Task 2 topical report -- Pollutant removal tests

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, R.T.; Jankura, B.J.


    Integrated Flue Gas Treatment (IFGT) uses two Condensing Heat Exchangers (CHXs{reg_sign}) in series to recover waste heat from the flue gas and remove a variety of pollutants from the flue gas. The Teflon{reg_sign}-covered internals of the condensing heat exchanger permit heat recovery at temperatures below the acid dew-point of the flue gas. The pollutant removal characteristics of the IFGT system were measured over a wide range of operating conditions in a pilot Integrated Flue Gas Treatment System rated at 1.2 MW{sub t} (4 million Btu/hr) using a wide range of coals. The coals tested included a high-sulfur coal, a medium-sulfur coal and a low-sulfur coal. The flue gas pollutants investigated included ammonia, hydrogen chloride, hydrogen fluoride, particulate, sulfur dioxide, gas phase and particle phase mercury and gas phase and particle phase trace elements. The particulate removal efficiency and size distribution was also investigated. Soda ash, lime and magnesium-lime scrubbing reagents were investigated. The test results show that the IFGT system can remove greater than 95% removal of acid gases with a liquid-to-gas ratio less than 1.34 l/m{sup 3} (10 gal/1,000 ft{sup 3}), and that lime reagents show promise as a substitute for soda ash. Particulate and ammonia gas removal was also very high. Ionic mercury removal averaged 80%, while elemental mercury removal was very low. Trace metals were found to be concentrated in the fine particulate with removal efficiencies in the range of 50% to 80%. The data measured in this task provides the basis for predictions of the performance of an IFGT system for both utility and industrial applications.

  1. Design of DC Conduction Pump for PGSFR Active Decay Heat Removal System

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dehee; Hong, Jonggan; Lee, Taeho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)


    A DC conduction pump has been designed for the ADHRS of PGSFR. A VBA code developed by ANL was utilized to design and optimize the pump. The pump geometry dependent parameters were optimized to minimize the total current while meeting the design requirements. A double-C type dipole was employed to produce the calculated magnetic strength. Numerical simulations for the magnetic field strength and its distribution around the dipole and for the turbulent flow under magnetic force will be carried out. A Direct Current (DC) conduction Electromagnetic Pump (EMP) has been designed for Active Decay Heat Removal System (ADHRS) of PGSFR. The PGSFR has active as well as passive systems for the DHRS. The passive DHRS (PDHRS) works by natural circulation head and the ADHRS is driven by an EMP for the DHRS sodium loop and a blower for the finned-tube sodium-to-air heat exchanger (FHX). An Annular Linear Induction Pump (ALIP) can be also considered for the ADHRS, but DC conduction pump has been chosen. Selection basis of DHRS EMP is addressed and EMP design for single ADHRS loop with 1MWt heat removal capacity is introduced.

  2. Design of SMART waste heat removal dry cooling tower using solar energy

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yong Jae; Jeong, Yong Hoon [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)


    The 85% of cooling system are once-through cooling system and closed cycle wet cooling system. However, many countries are trying to reduce the power plant water requirement due to the water shortage and water pollution. Dry cooling system is investigated for water saving advantage. There are two dry cooling system which are direct and indirect cooling system. In direct type, turbine exhaust is directly cooled by air-cooled condenser. In indirect system, turbine steam is cooled by recirculating intermediate cooling water loop, then the loop is cooled by air-cooled heat exchanger in cooling tower. In this paper, the purpose is to remove SMART waste heat, 200MW by using newly designed tower. The possibility of enhancing cooling performance by solar energy is analyzed. The simple cooling tower and solar energy cooling tower are presented and two design should meet the purpose of removing SMART waste heat, 200MW. In first design, when tower diameter is 70m, the height of tower should be 360m high. In second design, the chimney height decrease from 360m to 180m as collector radius increase from 100m to 500m due to collector temperature enhancement by solar energy, To analyze solar cooling tower further, consideration of solar energy performance at night should be analyzed.

  3. Thermally-Conductive Metallic Coatings and Applications for Heat Removal on In-Space Cryogenic Vehicles (United States)

    Ameen, Lauren; Hervol, David; Waters, Deborah


    For large in-space cryogenic upper stages, substantial axial heat removal from a forward skirt by vapor-based heat interception may not be achieved by simple attachment methods unless sufficient thermal conductance from the skirt to the cooling fluid can be achieved. Preferable methods would allow for the addition of the cooling system to existing structure with minimal impact on the structure. Otherwise, significant modification to the basic structural design andor novel and complex attachment mechanisms with high effective thermal conductance are likely to be required. The approach being pursued by evolvable Cryogenics (eCryo) is to increase the thermal performance of a relatively simple attachment system by applying metallic or other thermally conductive material coatings to the mating surface area of the fluid channel where it is attached the skirt wall. The expectation of candidate materials is that the dramatic increase in conductivity of pure metals at temperatures close to liquid hydrogen vapor temperature will compensate for the reduced actual contact area typical of mechanical joints. Basic contact conductance data at low temperatures for candidate interface materials is required to enable the test approach. A test rig was designed at NASA Glenn Research Center to provide thermal contact resistance testing between small sample coupons coated with conductive material via electron beam evaporation, a low-temperature option that will not affect physical properties of base materials. Average coating thicknesses were 10 k. The test fixture was designed to mount directly to a cryocooler cold head within a vacuum test chamber. The purpose of this test was to determine qualitative contact conductance between various test samples. Results from this effort will be implemented in a sub-scale vapor-based heat interception test, where the applicability for increased heat removal on large structural skirts will be considered.

  4. Can a Clean-Air Heat Pump (CAHP) maintain air purification capability when using polluted air for regeneration?

    DEFF Research Database (Denmark)

    Sheng, Ying; Fang, Lei


    was experimentally studied. The results showed that using the air contained acetone or toluene for regeneration reduced the pollutants removal capability of CAHP with a reduction of approx. 10% in air cleaning efficiency. The energy performance of the CAHP when using exhaust air for regeneration was also evaluated...... on reducing the regeneration air temperature and further improving the energy performance of the CAHP. However, the exhaust air carried a lot of indoor air pollutants. Whether using exhaust air for the regeneration of the silica gel rotor had an impact on the air cleaning performance of the CAHP...

  5. Theoretical study on volatile organic compound removal and energy performance of a novel heat pump assisted solid desiccant cooling system

    DEFF Research Database (Denmark)

    Nie, Jinzhe; Fang, Lei; Zhang, Ge


    A theoretical model was established for predicting the volatile organic compound (VOC) removal and energy performance of a novel heat pump assisted solid desiccant cooling system (HP-SDC). The HP-SDC was proposed based on the combination of desiccant rotor with heat pump, and was designed...

  6. Detailed Design of the Safety Residual Heat Removal System and a Circulation Pump for the KIJANG Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Hyungi; Seo, Kyoungwoo; Kim, Seonghoon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)


    Primary cooling system (PCS) circulates the coolant from the reactor core to the heat exchanger. Therefore the heat generated from the fuel assembly in the reactor core is removed continuously. The PCS is designed based on the required thermal design flow rate of the reactor core, uncertainty of measuring instruments and the safe functions. Primary coolant is generally dumped into the pool and goes to the reactor core through the flow guide. The fission heat generated from the fuel assembly is transferred to the coolant, and then heated coolant goes to the PCS equipment room in order to remove the heat through the heat exchanger. SRHSR is designed based on the required flow rate and system constraints. Centrifugal pump of Case 1 with a non-dimensional specific speed of 0.97 [-] and specific diameter of 3.33 [-] is chosen as the SRHRS pump for the KJRR.

  7. Concept of a self-sustaining cooling system for after-heat removal in BWR-type reactors; Konzept eines autarken Kuehlsystems zur Nachwaermeabfuhr in Siedewasserreaktoren

    Energy Technology Data Exchange (ETDEWEB)

    Venker, J. [RWE Technology GmbH, Essen (Germany). Nukleartechnologie; Stuttgart Univ. (Germany). Inst. fuer Kernenergetik und Energiesysteme (IKE); Lavante, D. von [TUEV Rheinland, Koeln (Germany); Buck, M.; Starflinger, J. [Stuttgart Univ. (Germany). Inst. fuer Kernenergetik und Energiesysteme (IKE); Gitzel, D. [RWE Technology GmbH, Essen (Germany). Nukleartechnologie


    The concept, technical feasibility and potential capability of a new self-sustaining after-heat removal system based on supercritical carbon dioxide is described. The effect of the system on the plant behavior of appropriately retrofitted BWR-type reactors is discussed. Based on calculations using the thermal hydraulic code ATHLET it is shown that the safe after-heat removal time of existing BWR-type reactors in case of station blackout can be increased for several hours. The calculations have also shown that a enduring control of the station blackout situation cannot be reached by the retrofitting of the pressure relief system. The question is raised whether the pressure relief is reasonable independent of the accident scenario. Without the possibility of further coolant supply in case of station blackout the pressure relief will enhance the dry-out of the reactor core. The high-pressure path for the primary circuit increases the time for possible external measures to activate ECCS or active after-heat removal.

  8. The effect of different aspect ratio and bottom heat flux towards contaminant removal using numerical analysis (United States)

    Saadun, M. N. A.; Nor Azwadi, C. S.; Malek, Z. A. A.; Manaf, M. Z. A.; Zakaria, M. S.; Hafidzal, M. H. M.


    Cubic Interpolated Pseudo-particle (CIP) numerical simulation scheme has been anticipated to predict the interaction involving fluids and solid particles in an open channel with rectangular shaped cavity flow. The rectangular shaped cavity is looking by different aspect ratio in modelling the real pipeline joints that are in a range of sizes. Various inlet velocities are also being applied in predicting various fluid flow characteristics. In this paper, the constant heat flux is introduced at the bottom wall, showing the buoyancy effects towards the contaminant's removal rate. In order to characterize the fluid flow, the numerical scheme alone is initially tested and validated in a lid driven cavity with a single particle. The study of buoyancy effects and different aspect ratio of rectangular geometry were carried out using a MATLAB govern by Navier-Stokes equation. CIP is used as a model for a numerical scheme solver for fluid solid particles interaction. The result shows that the higher aspect ratio coupled with heated bottom wall give higher percentage of contaminant's removal rate. Comparing with the benchmark results has demonstrated the applicability of the method to reproduce fluid structure which is complex in the system. Despite a slight deviation of the formations of vortices from some of the literature results, the general pattern is considered to be in close agreement with those published in the literature.

  9. Numerical Analysis of Flow Phenomena in a Residual Heat Removal Pump

    Directory of Open Access Journals (Sweden)

    Jianping Yuan


    Full Text Available The hydraulic performances as well as the cavitation phenomena in a scaled residual heat removal pump were investigated by experimental and numerical methods, respectively. In particular, a 3D numerical model of cavitation was adopted to simulate the internal cavitating flow through the model pump. The hydraulic performances of the model pump predicted by numerical simulations were in good agreement with the corresponding experimental data. The main generation and evolution of attached cavitation throughout the blade channels at different cavitating conditions have been investigated using the vapor fraction ISO surface and in-plane velocity vectors. Results show that the low static pressure at the impeller inlet is the main reason for leading edge cavitation by correlation analysis of static pressure on the midspan of impeller. Cavitation proved to occur over a wide range of flow rates, producing a characteristic creeping shape of the head-drop curve and developing in the form of nonaxisymmetric cavities at design flow rate. Moreover, the occurrence of these cavities, attached to the suction surface of blades, was found to depend on the NPSHA value. Numerical and experimental results in this paper can provide better understanding of the origin of leading edge cavitation in residual heat removal pumps.

  10. Removal of silver nanoparticles using live and heat shock Aspergillus niger cultures. (United States)

    Gomaa, Ola M


    Silver nanoparticles (SNPs) are extensively used in many industrial and medical applications; however, the impact of their release in the environment is still considered an understudied field. In the present work, SNPs present in aqueous lab waste water (average size of 30 nm) were used to determine their impact on microflora if released in soil rhizosphere and sewage waste water. The results showed that 24 h incubation with different SNP concentrations resulted in a 2.6-fold decrease for soil rhizosphere microflora and 7.45-fold decrease for sewage waste water microflora, both at 24 ppm. Live and heat shock (50 and 70 °C) Aspergillus niger cultures were used to remove SNP waste, the results show 76.6, 81.74 and 90.8 % SNP removal, respectively after 3 h incubation. There was an increase in the log total bacterial count again after SNP removal by A. niger in the following order: live A. niger niger niger. The pH value decreased from 5.8 to 3.8 in the same order suggesting the production of an acid in the culture media. Scanning electron microscopy images showed agglomeration and/or complexation of SNP particles, in a micron size, in between the fungal mycelia, hence settling on and in between the mycelial network. The results suggest that silver was reduced again and agglomerated and/or chelated together in its oxidized form by an acid in A. niger media. More studies are recommended to determine the acid and the heat shock proteins to confirm the exact mode of action.

  11. Summary report for Group X6: Heat removal system and system analysis

    Energy Technology Data Exchange (ETDEWEB)

    Leung, W


    This report is a summary of the activities of the X6 design support for the Heat Removal System (HRS) of MEGAPIE. It can be divided into two main parts: The first part is about the design and manufacturing of he cooling loop (the first 3 chapters), and the second part is dealing with the thermal hydraulic analysis of the overall HRS. This also reflects the change of the X6 activities from design to operation support. The activities of this group are more or less driven by the needs rather than a complete set of tasks given at the start of the project. The first part chronicles the system development. Some of the arguments are probably outdated but are kept in the original form to illustrate the evolution of concepts. The main objective is, of course, to design a heat removal system that can cool the liquid metal spallation target for a 1 MW proton beam i.e. 1.74 mA in 575 MeV). It is also reckoned that the liquid metal, BE (lead-bismuth-eutectic), must be kept liquid even when the proton beam was switched off. This requires either that the cooling system can be shut down or the operating temperature of the coolant be higher than the freezing point of LBE. As for safety concerns, the HRS system must not exert a pressure that exceeds the design pressure of the target beam window in case of a break at the target heat exchanger (THX); this limits the cover gas pressure to about 4 bar(a). These are the basic design principles that carry through the conceptual and engineering design of he system. The organic coolant Diphyl THT was then chosen, because of its wide range of operating temperature (i.e. from 0 to 340 degC) and high boiling point, and a proven record in industrial applications. (author)

  12. Ultrafine particle removal by residential heating, ventilating, and air-conditioning filters. (United States)

    Stephens, B; Siegel, J A


    This work uses an in situ filter test method to measure the size-resolved removal efficiency of indoor-generated ultrafine particles (approximately 7-100 nm) for six new commercially available filters installed in a recirculating heating, ventilating, and air-conditioning (HVAC) system in an unoccupied test house. The fibrous HVAC filters were previously rated by the manufacturers according to ASHRAE Standard 52.2 and ranged from shallow (2.5 cm) fiberglass panel filters (MERV 4) to deep-bed (12.7 cm) electrostatically charged synthetic media filters (MERV 16). Measured removal efficiency ranged from 0 to 10% for most ultrafine particles (UFP) sizes with the lowest rated filters (MERV 4 and 6) to 60-80% for most UFP sizes with the highest rated filter (MERV 16). The deeper bed filters generally achieved higher removal efficiencies than the panel filters, while maintaining a low pressure drop and higher airflow rate in the operating HVAC system. Assuming constant efficiency, a modeling effort using these measured values for new filters and other inputs from real buildings shows that MERV 13-16 filters could reduce the indoor proportion of outdoor UFPs (in the absence of indoor sources) by as much as a factor of 2-3 in a typical single-family residence relative to the lowest efficiency filters, depending in part on particle size. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. The effect of the removal of steam generator tube ID deposits of heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Klimas, S.J.; Miller, D.G.; Semmler, J.; Turner, C.W


    The thermal resistance of boiler primary-side tube deposits from the Gentilly-2 Nuclear Generating Station (Hydro-Quebec) was evaluated by an experimental comparison of the heat-transfer rates between fouled samples and identical, factory-new, 'clean' tubing. The deposits were subsequently removed using either a chemical decontamination process (CAN-DEREM Plus) or a mechanical cleaning process (Siemens SIVABLAST) in two stages. After each removal, the thermal resistance of the remaining deposit was remeasured. The 90- to 150-{mu}m-thick deposits on the inside diameter of steam generator cold-leg tubes were found to pose significant resistance to heat transfer (0.05 to 0.06 m{sup 2}{center_dot}K/kW at 210 degrees C). However, the 10- to 30-{mu}m-thick dense layers remaining on the tubes after the decontamination were found to have no measurable effect on the heat transfer. The thin, 2-{mu}m tube deposit on the steam generator hot leg slightly enhanced heat transfer. The measured thermal resistance results in a calculated thermal conductivity of 1.5 W/m{center_dot}K for the 90-{mu}m-thick deposit. The 150-{mu}m-thick deposits were found to consist of two layers: an outer surface layer having an average porosity of 50% and a conductivity of 2.3 W/m{center_dot}K, and an inner layer having an average porosity of 5% and a conductivity of >3.0 W/m{center_dot}K. The previous best estimate of the thermal conductivity was 1.4 W/m.K for the porous magnetite deposits that had formed with a thickness <90 {mu}m on the primary side of nuclear steam generators. This work confirms this number, but also demonstrates that it is applicable only for porous, unconsolidated deposits. The conductivity increases for thicker deposits because of increasing deposit consolidation, particularly at the innermost layer adjacent to the tube metal. (author)

  14. Thermal-hydraulic processes involved in loss of residual heat removal during reduced inventory operation

    Energy Technology Data Exchange (ETDEWEB)

    Fletcher, C.D.; McHugh, P.R.; Naff, S.A.; Johnsen, G.W.


    This paper identifies the topics needed to understand pressurized water reactor response to an extended loss of residual heat removal event during refueling and maintenance outages. By identifying the possible plant conditions and cooling methods that would be used for each cooling mode, the controlling thermal-hydraulic processes and phenomena were identified. Controlling processes and phenomena include: gravity drain, core water boil-off, and reflux cooling processes. Important subcategories of the reflux cooling processes include: the initiation of reflux cooling from various plant conditions, the effects of air on reflux cooling, core level depression effects, issues regarding the steam generator secondaries, and the special case of boiler-condenser cooling with once-through steam generators. 25 refs., 6 figs., 1 tab.

  15. Experimental and numerical simulation of passive decay heat removal by sump cooling after core melt down

    Energy Technology Data Exchange (ETDEWEB)

    Knebel, J.U.; Mueller, U. [Forschungszentrum Karlsruhe - Technik und Umwelt Inst. fuer Angewandte Thermo- und Fluiddynamik (IATF), Karlsruhe (Germany)


    This article presents the basic physical phenomena and scaling criteria of passive decay heat removal from a large coolant pool by single-phase natural circulation. The physical significance of the dimensionless similarity groups derived is evaluated. The results are applied to the SUCO program that experimentally and numerically investigates the possibility of a sump cooling concept for future light water reactors. The sump cooling concept is based on passive safety features within the containment. The work is supported by the German utilities and the Siemens AG. The article gives results of temperature and velocity measurements in the 1:20 linearly scaled SUCOS-2D test facility. The experiments are backed up by numerical calculations using the commercial software Fluent. Finally, using the similarity analysis from above, the experimental results of the model geometry are scaled-up to the conditions in the prototype, allowing a statement with regard to the feasibility of the sump cooling concept. (author)

  16. Optimization of residual heat removal pump axial thrust and axial bearing

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, F.


    The residual heat removal (RHR) pumps of German 1300 megawatt pressurized-water reactor (PWR) power plants are of the single stage end suction type with volute casing or with diffuser and forged circular casing. Due to the service conditions the pumps have to cover the full capacity range as well as a big variation in suction static pressure. This results in a big difference in the axial thrust that has to be borne by the axial bearing. Because these pumps are designed to operate without auxiliary systems (things that do not exist can not fail), they are equipped with antifriction bearings and sump oil lubrication. To minimize the heat production within the bearing casing, a number of PWR plants have pumps with combined axial/radial bearings of the ball type. Due to the fact that the maximum axial thrust caused by static pressure and hydrodynamic forces on the impeller is too big to be borne by that type of axial bearing, the impellers were designed to produce a hydrodynamic axial force that counteracts the static axial force. Thus, the resulting axial thrust may change direction when the static pressure varies.

  17. Thermal-hydraulic analysis of an innovative decay heat removal system for lead-cooled fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Giannetti, Fabio; Vitale Di Maio, Damiano; Naviglio, Antonio; Caruso, Gianfranco, E-mail:


    Highlights: • LOOP thermal-hydraulic transient analysis for lead-cooled fast reactors. • Passive decay heat removal system concept to avoid lead freezing. • Solution developed for the diversification of the decay heat removal functions. • RELAP5 vs. RELAP5-3D comparison for lead applications. - Abstract: Improvement of safety requirements in GEN IV reactors needs more reliable safety systems, among which the decay heat removal system (DHR) is one of the most important. Complying with the diversification criteria and based on pure passive and very reliable components, an additional DHR for the ALFRED reactor (Advanced Lead Fast Reactor European Demonstrator) has been proposed and its thermal-hydraulic performances are analyzed. It consists in a coupling of two innovative subsystems: the radiative-based direct heat exchanger (DHX), and the pool heat exchanger (PHX). Preliminary thermal-hydraulic analyses, by using RELAP5 and RELAP5-3D© computer programs, have been carried out showing that the whole system can safely operate, in natural circulation, for a long term. Sensitivity analyses for: the emissivity of the DHX surfaces, the PHX water heat transfer coefficient (HTC) and the lead HTC have been carried out. In addition, the effects of the density variation uncertainty on the results has been analyzed and compared. It allowed to assess the feasibility of the system and to evaluate the acceptable range of the studied parameters. A comparison of the results obtained with RELAP5 and RELAP5-3D© has been carried out and the analysis of the differences of the two codes for lead is presented. The features of the innovative DHR allow to match the decay heat removal performance with the trend of the reactor decay heat power after shutdown, minimizing at the same time the risk of lead freezing. This system, proposed for the diversification of the DHR in the LFRs, could be applicable in the other pool-type liquid metal fast reactors.

  18. Scale analysis of decay heat removal system between HTR-10 and HTR-PM reactors under accidental conditions

    Energy Technology Data Exchange (ETDEWEB)

    Roberto, Thiago D.; Alvim, Antonio C.M. [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (PEN/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Lapa, Celso M.F., E-mail:, E-mail:, E-mail: [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)


    The 10 MW high-temperature gas-cooled test module (HTR-10) is a graphite-moderated and helium-cooled pebble bed reactor prototype that was designed to demonstrate the technical and safety feasibility of this type of reactor project under normal and accidental conditions. In addition, one of the systems responsible for ensuring the safe operation of this type of reactor is the passive decay heat removal system (DHRS), which operates using passive heat removal processes. A demonstration of the heat removal capacity of the DHRS under accidental conditions was analyzed based on a benchmark problem for design-based accidents on an HTR-10, i.e., the pressurized loss of forced cooling (PLOFC) described in technical reports produced by the International Atomic Energy Agency. In fact, the HTR-10 is also a proof-of-concept reactor for the high-temperature gas-cooled reactor pebble-bed module (HTR-PM), which generates approximately 25 times more heat than the HTR-10, with a thermal power of 250 MW, thereby requiring a DHRS with a higher system capacity. Thus, because an HTR-10 is a prototype reactor for an HTR-PM, a scaling analysis of the heat transfer process from the reactor to the DHRS was carried out between the HTR-10 and HTR-PM systems to verify the distortions of scale and the differences between the main dimensionless numbers from the two projects. (author)

  19. Graphene-enhanced thermal interface materials for heat removal from photovoltaic solar cells (United States)

    Saadah, M.; Gamalath, D.; Hernandez, E.; Balandin, A. A.


    The increase in the temperature of photovoltaic (PV) solar cells affects negatively their power conversion efficiency and decreases their lifetime. The negative effects are particularly pronounced in concentrator solar cells. Therefore, it is crucial to limit the PV cell temperature by effectively removing the excess heat. Conventional thermal phase change materials (PCMs) and thermal interface materials (TIMs) do not possess the thermal conductivity values sufficient for thermal management of the next generation of PV cells. In this paper, we report the results of investigation of the increased efficiency of PV cells with the use of graphene-enhanced TIMs. Graphene reveals the highest values of the intrinsic thermal conductivity. It was also shown that the thermal conductivity of composites can be increased via utilization of graphene fillers. We prepared TIMs with up to 6% of graphene designed specifically for PV cell application. The solar cells were tested using the solar simulation module. It was found that the drop in the output voltage of the solar panel under two-sun concentrated illumination can be reduced from 19% to 6% when grapheneenhanced TIMs are used. The proposed method can recover up to 75% of the power loss in solar cells.

  20. Experimental and numerical simulation of passive decay heat removal by sump cooling after cool melt down

    Energy Technology Data Exchange (ETDEWEB)

    Knebel, J.U.; Kuhn, D.; Mueller, U. [Institut fuer Angewandet Thermo- und Fluiddynamik (IATF) (Germany)


    This article presents the basic physical phenomena and scaling criteria of passive decay heat removal from a large coolant pool by single-phase and two-phase natural circulation. The physical significance of the dimensionless similarity groups derived is evaluated. The above results are applied to the SUCO program that is performed at the Forschungszentrum Karlsruhe. The SUCO program is a three-step series of scaled model experiments investigating the possibility of a sump cooling concept for future light water reactors. The sump cooling concept is based on passive safety features within the containment. The work is supported by the German utilities and the Siemens AG. The article gives results of temperature and velocity measurements in the 1:20 linearly scaled SUCOS-2D test facility. The experiments are backed up by numerical calculations using the commercial software package Fluent. Finally, using the similarity analysis from above, the experimental results of the model geometry are scaled-up to the conditions in the prototype, allowing a first statement with regard to the feasibility of the sump cooling concept. 11 refs., 9 figs., 3 tabs.

  1. Capability of air filters to retain airborne bacteria and molds in heating, ventilating and air-conditioning (HVAC) systems. (United States)

    Möritz, M; Peters, H; Nipko, B; Rüden, H


    The capability of air filters (filterclass: F6, F7) to retain airborne outdoor microorganisms was examined in field experiments in two heating, ventilating and air conditioning (HVAC) systems. At the beginning of the 15-month investigation period, the first filter stages of both HVAC systems were equipped with new unused air filters. The number of airborne bacteria and molds before and behind the filters were determined simultaneously in 14 days-intervals using 6-stage Andersen cascade impactors. Under relatively dry ( 12 degrees C) outdoor air conditions air filters led to a marked reduction of airborne microorganism concentrations (bacteria by approximately 70% and molds by > 80%). However, during long periods of high relative humidity (> 80% R. H.) a proliferation of bacteria on air filters with subsequent release into the filtered air occurred. These microorganisms were mainly smaller than 1.1 microns therefore being part of the respirable fraction. The results showed furthermore that one possibility to avoid microbial proliferation is to limit the relative humidity in the area of the air filters to 80% R. H. (mean of 3 days), e.g. by using preheaters in front of air filters in HVAC-systems.

  2. Heat Transfer Capability of (Ethylene Glycol + Water)-Based Nanofluids Containing Graphene Nanoplatelets: Design and Thermophysical Profile (United States)

    Cabaleiro, D.; Colla, L.; Barison, S.; Lugo, L.; Fedele, L.; Bobbo, S.


    This research aims at studying the stability and thermophysical properties of nanofluids designed as dispersions of sulfonic acid-functionalized graphene nanoplatelets in an (ethylene glycol + water) mixture at (10:90)% mass ratio. Nanofluid preparation conditions were defined through a stability analysis based on zeta potential and dynamic light scattering (DLS) measurements. Thermal conductivity, dynamic viscosity, and density were experimentally measured in the temperature range from 283.15 to 343.15 K and nanoparticle mass concentrations of up to 0.50% by using a transient plate source, a rotational rheometer, and a vibrating-tube technique, respectively. Thermal conductivity enhancements reach up to 5% without a clear effect of temperature while rheological tests evidence a Newtonian behavior of the studied nanofluids. Different equations such as the Nan, Vogel-Fulcher-Tamman (VFT), or Maron-Pierce (MP) models were utilized to describe the temperature or nanoparticle concentration dependences of thermal conductivity and viscosity. Finally, different figures of merit based on the experimental values of thermophysical properties were also used to compare the heat transfer capability and pumping power between nanofluids and base fluid.

  3. Comparison of efficacy of sodium hypochlorite with sodium perborate in removal of stains from heat-cured clear acrylic resin. (United States)

    Mathai, Joseph Robin; Sholapurkar, Amar A; Raghu, Aparna; Shenoy, Revathi P; Mallya, H Madhukar; Pai, Keerthilatha M; D'Souza, Mariette


    Acrylic resin bases of removable dentures attract stains and odor-producing organic and inorganic deposits. The use of chemical denture cleanser soaks is the most popular method of denture cleansing. This study was undertaken to compare the efficacy of two different denture cleansers--sodium perborate (Clinsodent) and sodium hypochlorite (VI-Clean)--in removing tea, coffee, turmeric and tobacco (paan) stains from heat-cured clear acrylic resins. Distilled water was used as a control. Both Clinsodent and VI-Clean were found to be the least effective in removing coffee stains and best for removing turmeric stain. It is necessary that the dental professional be aware of these results to ensure that denture wearers know how to select the appropriate denture cleanser.

  4. A study on natural circulation of primary Pb-Bi coolant and decay heat removal system for ENHS

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kwang Gu; Chang, Soon Heung [KAIST, Taejon (Korea, Republic of)


    The feasibility study has been carried out for verifying the feasibility of the ENHS (Encapsulated Nuclear Heat Source) concept with 100%-natural circulation of primary Pb-Bi coolant. However, the transfer characteristics of Pb-Bi heavy liquid metal were not quantified. This problem leads to the uncertainty of accuracy of the ENHS module scale and layout. In addition, the most accident scenarios were not simulated through the detailed analysis code. Therefore, this paper presents the heat transfer characteristics of Pb-Bi coolant and the optimized ENHS design. The other is decay heat removal system, which is proper to Pb-Bi eutectic pool of ENHS secondary system, which is simulated through the detailed code- DSNP (Dynamic Simulator Nuclear Power Plant). In addition, as the validation of the DNHS stability, the LOHS (Loss of Heat Sink) and reactivity insertion are simulated through the DSNP code. Results illustrate that the performance of the ENHS module is reasonable.

  5. Experimental evaluation of a breadboard heat and product-water removal system for a space-power fuel cell designed with static water removal and evaporative cooling (United States)

    Hagedorn, N. H.; Prokipius, P. R.


    A test program was conducted to evaluate the design of a heat and product-water removal system to be used with fuel cell having static water removal and evaporative cooling. The program, which was conducted on a breadboard version of the system, provided a general assessment of the design in terms of operational integrity and transient stability. This assessment showed that, on the whole, the concept appears to be inherently sound but that in refining this design, several facets will require additional study. These involve interactions between pressure regulators in the pumping loop that occur when they are not correctly matched and the question of whether an ejector is necessary in the system.

  6. Design and modeling of an advanced marine machinery system including waste heat recovery and removal of sulphur oxides

    DEFF Research Database (Denmark)

    Frimann Nielsen, Rasmus; Haglind, Fredrik; Larsen, Ulrik


    Stricter legislation on sulphur oxide emissions from ships will apply as of 2015 in emission control areas. Consequently, prices on low sulphur fuels are expected to increase drastically, providing a strong incentive to find alternative ways of complying with the legislation and improving...... the efficiency of machinery systems. The wet sulphuric acid process is an effective way of removing flue gas sulphur oxides from land-based coal-fired power plants. Moreover, organic Rankine cycles (ORC) are suitable for heat to power conversion for low temperature heat sources. This paper describes the design...

  7. Proceedings of the third post-accident heat removal information exchange

    Energy Technology Data Exchange (ETDEWEB)

    Baker, L. Jr.; Bingle, J.D. (eds.)


    Separate abstracts are included for 49 of the papers presented concerning heat distribution and criticality considerations, particulate-bed phenomena, pool heat transfer and melt-front phenomena, behavior of heated concrete and sodium-concrete interactions, design-related studies, gas bubbling and boiling effects, and materials interactions at high temperatures and experimental methods.

  8. An experimental and theoretical investigation on heat transfer capability of Mg (OH)2/MWCNT-engine oil hybrid nano-lubricant adopted as a coolant and lubricant fluid

    DEFF Research Database (Denmark)

    Asadi, Amin; Asadi, Meisam; Rezaniakolaei, Alireza


    The major objective of the present study is to investigate the heat transfer capability of Mg (OH)2/MWCNT- engine oil hybrid nano-lubricant. First, the effects of temperature and Solid volume fraction on the dynamic viscosity and thermal conductivity of Mg (OH)2/MWCNT- engine oil hybrid nano...... been proposed. Finally, the heat transfer capability of the nanofluid has been theoretically investigated in both the internal laminar and turbulent flow regimes and it is found that the studied nanofluid can be advantageous in heat transfer applications....... of the nanofluid showed increasing trend as the solid concentration and temperature increased. The minimum and maximum enhancement were about 13% and 50%, respectively. Based on experimental data, two new trustworthy correlations to predict the dynamic viscosity and thermal conductivity of the nano-lubricant has...

  9. Polypyrrole-grafted peanut shell biological carbon as a potential sorbent for fluoride removal: Sorption capability and mechanism. (United States)

    Li, Chunlu; Chen, Nan; Zhao, Yanan; Li, Rui; Feng, Chuanping


    In this study, an effective defluoridation adsorbent was developed by depositing polypyrrole (PPy) on granular peanut shell biological carbon (BC) via in situ chemical oxidative polymerization. The variables of defluoridation process (i.e., adsorbent dosage, fluoride solution pH, and anionic interference) were tested. The mechanism was determined by isotherm and kinetic studies, Brunauer-Emmett-Teller (BET) method, scanning electronic microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) spectroscopy and automatic titration. The PPy-grafted BC (PPy/BC) composite performed commendably from pH 2.0 to 10.0, and exhibited high selectivity for fluoride in the presence of several co-existing anions. The experimental data were described well by a Langmuir isotherm curve, and the maximum adsorption capacity was 17.15 mg g(-1). Kinetic studies illustrated the adsorption process was accomplished via surface adsorption as well as by intraparticle diffusion. In addition, mesoporous diffusion was the rate-controlling step in intraparticle diffusion process. BET and SEM analysis revealed the sponge-like polymer adhered to the BC and plugged the pores. XPS, FTIR, and SEM confirmed that fluoride removal was accomplished via the replacement of doped ionizable chloride ions (Cl(-)) coupled with positively charged nitrogen (N(+)), computation of XPS data enabled the formulation of a three-layer-deep hypothesis for PPy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Institute for High Heat Flux Removal (IHHFR). Phases I, II, and III

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, Ronald D. [Prairie View A& M Univ., TX (United States)


    The IHHFR focused on interdisciplinary applications as it relates to high heat flux engineering issues and problems which arise due to engineering systems being miniaturized, optimized, or requiring increased high heat flux performance. The work in the IHHFR focused on water as a coolant and includes: (1) the development, design, and construction of the high heat flux flow loop and facility; (2) test section development, design, and fabrication; and, (3) single-side heat flux experiments to produce 2-D boiling curves and 3-D conjugate heat transfer measurements for single-side heated test sections. This work provides data for comparisons with previously developed and new single-side heated correlations and approaches that address the single-side heated effect on heat transfer. In addition, this work includes the addition of single-side heated circular TS and a monoblock test section with a helical wire insert. Finally, the present work includes: (1) data base expansion for the monoblock with a helical wire insert (only for the latter geometry), (2) prediction and verification using finite element, (3) monoblock model and methodology development analyses, and (4) an alternate model development for a hypervapotron and related conjugate heat transfer controlling parameters.

  11. Alternative method of Boc-removal from sulfamide using silica-phenyl sulfonic acid in conjunction with microwave heating. (United States)

    Ghassemi, Shahnaz; Fuchs, Kristin


    A general method was used to prepare an array of unsymmetric sulfamides. This was accomplished by the stepwise addition of CSI to tert-butanol followed by the addition of amines. To increase diversity, nitrogen group of Boc-sulfamides was alkylated with alcohols using Mitsunobu reaction and Boc-group was removed using Si-TsOH. Microwave heating was used in all the steps. The final sulfamides were released from Si-TsOH using NH3 in MeOH.

  12. Preliminary review of critical shutdown heat removal items for common cause failure susceptibility on LMFBR's. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Allard, L.T.; Elerath, J.G.


    This document presents a common cause failure analysis for Critical LMFBR Shutdown Heat Removal Systems. The report is intended to outline a systematic approach to defining areas with significant potential for common causes of failure, and ultimately provide inputs to the reliability prediction model. A preliminary evaluation of postulatd single initiating causes resulting in multiple failures of LMFBR-SHRS items is presented in Appendix C. This document will be periodically updated to reflect new information and activity.

  13. OLGA. Flexible tar removal for high efficient production of clean heat and power as well as sustainable fuels and chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Zwart, R.W.R. [ECN Biomass, Coal and Environmental Research, Petten (Netherlands)


    The content of the paper lists the following subjects: The tar problem; The OLGA technology; The development with Step 1: Demonstration of high-efficient production of clean heat and power, Step 2: Developing high-efficient production of sustainable fuels and chemicals, and Step 3: Demonstrating the flexibility of the OLGA tar removal technology. Further, attention is paid to Commercial gasification projects, and finally Conclusions are formulated and an Outlook is given.

  14. Heat radiation vs air drying to remove interfacial water from self-etch adhesives


    Mathews Irene; Arathi G; Balagopal S


    The clinician′s quest for time-saving and technique-insensitive technology has led to the development of simplified self-etch adhesives that are predominantly water or solvent based. Several studies have shown that conventional air-drying procedures are incapable of eliminating all the residual water in the adhesive and that it may even cause collapse of the underlying collagen matrix. We hypothesized that heat from a light source may be effective in removing water from these adhesives...

  15. Thermal hydraulic parametric investigation of decay heat removal from degraded core of a sodium cooled fast Breeder reactor

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Lokesh [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Kumar Sharma, Anil, E-mail: [Reactor Design Group, Indira Gandhi Centre for Atomic Research, HBNI, Kalpakkam (India); Velusamy, K. [Reactor Design Group, Indira Gandhi Centre for Atomic Research, HBNI, Kalpakkam (India)


    Highlights: • Decay heat removal from degraded core of a typical SFR is highlighted. • Influence of number of DHXs in operation on PAHR is analyzed. • Investigations on structural integrity of the inner vessel and core catcher. • Feasibility study for retention of a part of debris in upper pool of SFR. - Abstract: Ensuring post accident decay heat removal with high degree of reliability following a Core Disruptive Accident (CDA) is very important in the design of sodium cooled fast reactors (SFR). In the recent past, a lot of research has been done towards the design of an in-vessel core catcher below the grid plate to prevent the core debris reaching the main vessel in a pool type SFR. However, during an energetic CDA, the entire core debris is unlikely to reach the core catcher. A significant part of the debris is likely to settle in core periphery between radial shielding subassemblies and the inner vessel. Failure of inner vessel due to the decay heat can lead to core debris reaching the main vessel and threatening its integrity. On the other hand, retention of a part of debris in core periphery can reduce the load on main core catcher. Towards achieving an optimum design of SFR and safety evaluation, it is essential to quantify the amount of heat generating core debris that can be retained safely within the primary vessel. This has been performed by a mathematical simulation comprising solution of 2-D transient form of the governing equations of turbulent sodium flow and heat transfer with Boussinesq approximations. The conjugate conduction-convection model adopted for this purpose is validated against in-house experimental data. Transient evolutions of natural convection in the pools and structural temperatures in critical components have been predicted. It is found that 50% of the core debris can be safely accommodated in the gap between radial shielding subassemblies and inner vessel without exceeding structural temperature limit. It is also

  16. Limits in virus filtration capability? Impact of virus quality and spike level on virus removal with xenotropic murine leukemia virus. (United States)

    Roush, David J; Myrold, Adam; Burnham, Michael S; And, Joseph V; Hughes, Joseph V


    Virus filtration (VF) is a key step in an overall viral clearance process since it has been demonstrated to effectively clear a wide range of mammalian viruses with a log reduction value (LRV) > 4. The potential to achieve higher LRV from virus retentive filters has historically been examined using bacteriophage surrogates, which commonly demonstrated a potential of > 9 LRV when using high titer spikes (e.g. 10(10) PFU/mL). However, as the filter loading increases, one typically experiences significant decreases in performance and LRV. The 9 LRV value is markedly higher than the current expected range of 4-5 LRV when utilizing mammalian retroviruses on virus removal filters (Miesegaes et al., Dev Biol (Basel) 2010;133:3-101). Recent values have been reported in the literature (Stuckey et al., Biotech Progr 2014;30:79-85) of LRV in excess of 6 for PPV and XMuLV although this result appears to be atypical. LRV for VF with therapeutic proteins could be limited by several factors including process limits (flux decay, load matrix), virus spike level and the analytical methods used for virus detection (i.e. the Limits of Quantitation), as well as the virus spike quality. Research was conducted using the Xenotropic-Murine Leukemia Virus (XMuLV) for its direct relevance to the most commonly cited document, the International Conference of Harmonization (ICH) Q5A (International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use, Geneva, Switzerland, 1999) for viral safety evaluations. A unique aspect of this work is the independent evaluation of the impact of retrovirus quality and virus spike level on VF performance and LRV. The VF studies used XMuLV preparations purified by either ultracentrifugation (Ultra 1) or by chromatographic processes that yielded a more highly purified virus stock (Ultra 2). Two monoclonal antibodies (Mabs) with markedly different filtration characteristics and with similar levels of

  17. [Identification of a high ammonia nitrogen tolerant and heterotrophic nitrification-aerobic denitrification bacterial strain TN-14 and its nitrogen removal capabilities]. (United States)

    Xin, Xin; Yao, Li; Lu, Lei; Leng, Lu; Zhou, Ying-Qin; Guo, Jun-Yuan


    A new strain of high ammonia nitrogen tolerant and heterotrophic nitrification-aerobic denitrification bacterium TN-14 was isolated from the environment. Its physiological and biochemical characteristics and molecular identification, performences of heterotrophic nitrification-aerobic, the abilities of resistance to ammonia nitrogen as well as the decontamination abilities were studied, respectively. It was preliminary identified as Acinetobacter sp. according to its physiological and biochemical characteristics and molecular identification results. In heterotrophic nitrification system, the ammonia nitrogen and total nitrogen removal rate of the bacterial strain TN-14 could reach 97.13% and 93.53% within 24 h. In nitrates denitrification system, the nitrate concentration could decline from 94.24 mg · L(-1) to 39.32 mg · L(-1) within 24 h, where the removal rate was 58.28% and the denitrification rate was 2.28 mg · (L · h)(-1); In nitrite denitrification systems, the initial concentration of nitrite could be declined from 97.78 mg · L(-1) to 21.30 mg x L(-1), with a nitrite nitrogen removal rate of 78.22%, and a denitrification rate of 2.55 mg · (L· h)(-1). Meanwhile, strain TN-14 had the capability of flocculant production, and the flocculating rate could reach 94.74% when its fermentation liquid was used to treat 0.4% kaolin suspension. Strain TN-14 could grow at an ammonia nitrogen concentration as high as 1200 mg · L(-1). In the aspect of actual piggery wastewater treatment by strain TN-14, the removal rate of COD, ammonia nitrogen, TN and TP cloud reached 85.30%, 65.72%, 64.86% and 79.41%, respectively. Strain TN-14 has a good application prospect in biological treatment of real high- ammonia wastewater.

  18. Dense Non Aqueous Phase Liquid (DNAPL) Removal from Fractured Rock using Thermal Conductive Heating (TCH) (United States)


    may include thermal destruction by oxidation and pyrolysis near heating elements (for thermal conductive heating) at temperatures around 400Ε is used for enhanced oil recovery applications to depths >1,000 ft and for volumes exceeding 100,000 cubic yards (yd3). • pdf . Heron, G., R.S. Baker, J.M. Bierschenk, and J.C. LaChance, 2006. Heat it All the Way - Mechanisms and

  19. Comparisons of RELAP5-3D Analyses to Experimental Data from the Natural Convection Shutdown Heat Removal Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Bucknor, Matthew; Hu, Rui; Lisowski, Darius; Kraus, Adam


    The Reactor Cavity Cooling System (RCCS) is an important passive safety system being incorporated into the overall safety strategy for high temperature advanced reactor concepts such as the High Temperature Gas- Cooled Reactors (HTGR). The Natural Convection Shutdown Heat Removal Test Facility (NSTF) at Argonne National Laboratory (Argonne) reflects a 1/2-scale model of the primary features of one conceptual air-cooled RCCS design. The project conducts ex-vessel, passive heat removal experiments in support of Department of Energy Office of Nuclear Energy’s Advanced Reactor Technology (ART) program, while also generating data for code validation purposes. While experiments are being conducted at the NSTF to evaluate the feasibility of the passive RCCS, parallel modeling and simulation efforts are ongoing to support the design, fabrication, and operation of these natural convection systems. Both system-level and high fidelity computational fluid dynamics (CFD) analyses were performed to gain a complete understanding of the complex flow and heat transfer phenomena in natural convection systems. This paper provides a summary of the RELAP5-3D NSTF model development efforts and provides comparisons between simulation results and experimental data from the NSTF. Overall, the simulation results compared favorably to the experimental data, however, further analyses need to be conducted to investigate any identified differences.

  20. One-dimensional modeling of radial heat removal during depressurized heatup transients in modular pebble-bed and prismatic high temperature gas-cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Savage, M.G.


    A one-dimensional computational model was developed to evaluate the heat removal capabilities of both prismatic-core and pebble-bed modular HTGRs during depressurized heatup transients. A correlation was incorporated to calculate the temperature- and neutron-fluence-dependent thermal conductivity of graphite. The modified Zehner-Schluender model was used to determine the effective thermal conductivity of a pebble bed, accounting for both conduction and radiation. Studies were performed for prismatic-core and pebble-bed modular HTGRs, and the results were compared to analyses performed by GA and GR, respectively. For the particular modular reactor design studied, the prismatic HTGR peak temperature was 2152.2/sup 0/C at 38 hours following the transient initiation, and the pebble-bed peak temperature was 1647.8/sup 0/C at 26 hours. These results compared favorably with those of GA and GE, with only slight differences caused by neglecting axial heat transfer in a one-dimensional radial model. This study found that the magnitude of the initial power density had a greater effect on the temperature excursion than did the initial temperature.

  1. The removal of sodium dodecylbenzene sulfonate surfactant from water using silica/titania nanorods/nanotubes composite membrane with photocatalytic capability

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Haimin [School of Environmental and Biological Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024 (China); Quan Xie [School of Environmental and Biological Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024 (China)]. E-mail:; Chen Shuo [School of Environmental and Biological Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024 (China); Zhao Huimin [School of Environmental and Biological Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024 (China); Zhao Yazhi [School of Environmental and Biological Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024 (China)


    This paper reports experimental results on removal of sodium dodecylbenzene sulfonate (SDBS), using silica/titania nanorods/nanotubes composite membrane with photocatalytic capability. This multifunctional composite membrane has been successfully prepared from colloidal X-silica/titania sols (X denotes molar percent of silica) by the sol-gel technique. The prepared nanorods/nanotubes composite membranes were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), scanning probe microscope (SPM) and UV-vis diffuse reflectance spectra (DRS). XRD patterns confirmed that the embedding of amorphous silica into nanophase titania matrix helped to increase the thermal stability of titania and control the size of titania particles. The small size titania particles with anatase phase played an important role in formation of silica/titania nanorods/nanotubes composite membranes with photocatalytic capability. The percentage of anatase phase titania reached 93% when 20%-silica/titania nanorods/nanotubes composite membrane calcined at 400 deg. C for 2 h. Most (95%) of the pore volume was located in mesopores of diameters ranging from 1.4 to 10 nm. The experimental results showed that the removal of SDBS achieved 89% after 100 min by combining the photocatalysis with membrane filtration techniques. Although the SDBS was not completely decomposed by photocatalysis, the degradation of the SDBS helped to enhance composite membrane flux and prevent membrane fouling. It was possible to treat successfully surfactant wastewater using multifunctional silica/titania nanorods/nanotubes composite membrane by means of a continuous process; this could be interesting for industrial applications.

  2. Purwarupa Pembersih Pipa Otomatis (Automatic Tube Remover) Pada Heat Exchanger Menggunakan Teknik Pengolahan Citra


    Sholeh, Hermawati; Suprapto, Bhakti Yudho; Pranata, Andi; Firmansyah, Firmansyah


    In the industry era, especially the oil processing industry, the heat exchanger is needed to regulate temperature and produce oil products such as petroleum, kerosene and diesel fuel. In the operation, the heat exchanger requires maintenance, especially when the minor unit is shut down or stop and routine reparation. Maintenance is done by replacing the tubesheet that commonly referred to as bundle retube where there are pipe fritter to be cleaned, which are cutted at the time of maintenance....

  3. Chromium removal capability and photosynthetic characteristics of Cyperus alternifolius and Coix lacryma-jobi L. in vertical flow constructed wetland treated with hexavalent chromium bearing domestic sewage. (United States)

    Li, Suli; Huang, Hailian; Li, Zhigang; Li, Zhengwen; He, Zhenli; Liang, He


    In this study, the chromium removal capability and photosynthetic capacity response of plants were investigated in vertical flow wetland microcosms (VFWM) treated with Cr(VI) bearing domestic sewage. Two plants, Cyperus alternifolius (C. alternifolius) and Coix lacryma-jobi L. (C. lacryma-jobi L.) grown in the VFWM enhanced the purification of Cr(VI) enriched domestic sewage. Cr concentration in the effluent fell below detection limit (<0.03 mg L-1), except for the C. alternifolius wetland treated with 40 mg L-1 Cr(VI). The biomasses of both plants species were increased at 10 and 20 mg L-1 Cr(VI) exposure but inhibited at 40 mg L-1 Cr(VI). The photosynthetic capacities of both plants were not affected at 10-40 mg L-1 Cr(VI) exposure during the days 20-60. However, they were inhibited significantly (P < 0.05) at 40 mg L-1 Cr(VI) exposure during days 80-100. These results demonstrated that a VFWM with C. alternifolius and/or C. lacryma-jobi L. was capable of maintaining its efficiency and recovering its vegetation. VFWM with C. alternifolius and/or C. lacryma-jobi L. was promising for purifying wastewater which contains low to medium concentrations of Cr(VI) (<20 mg L-1).

  4. Evaluation of the Safety Issue Concerning the Potential for Loss of Decay Heat Removal Function due to Crude Oil Spill in the Ultimate Heat Sink of Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Jong Chull; Roh, Kyung Wan; Yune, Young Gill; Kang, Dong Gu; Kim, Hho Jhung [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)


    A barge crashed into a moored oil tanker at about 7:15 a.m., Dec. 12, 2007, dumping around 10,500 tons of crude oil into the sea in Korea. The incident took place about 15 kilometers northwest of Manripo beach in South Chungcheong where is Korea's west coast in the Yellow Sea. In a few days, the oil slicks spread to the northern and southern tips of the Taean Peninsula by strong winds and tides. As time went the spilled oil floating on the surface of sea water was volatilized to become tar-balls and lumps and drifted far away in the southern direction. 13 days after the incident, some of oil slicks and tar lumps were observed to flow in the service water intake at the Younggwang nuclear power plants (NPPs) operating 6 reactors, which are over 150 km away from the incident spot in the southeastern direction. According to the report by the Younggwang NPPs, a total weight 83 kg of tar lumps was removed for about 3 days. Oil spills in the sea can happen in any country or anytime due to human errors or mistakes, wars, terrors, intentional dumping of waste oils, and natural disasters like typhoon and tsunami. In fact, there have been 7 major oil spills over 10,000 tons that have occurred around the world since 1983. As such serious oil spill incidents may happen near the operating power plants using the sea water as ultimate heat sink. To ensure the safe operation of nuclear reactors it is required to evaluate the potential for loss of decay heat removal function of nuclear reactors due to the spilled oils flowing in the service water intake, from which the service water is pumped. Thus, Korea Institute of Nuclear Safety identified this problem as one of the important safety. When an incident of crude oil spill from an oil carrier occurs in the sea near the nuclear power plants, the spilled oil can be transported to the intake pit, where all service water pumps locate, by sea current and wind drift (induced) current. The essential service water pumps take the

  5. Development of remountable joints and heat removable techniques for high-temperature superconducting magnets (United States)

    Hashizume, H.; Ito, S.; Yanagi, N.; Tamura, H.; Sagara, A.


    Segment fabrication is now a candidate for the design of superconducting helical magnets in the helical fusion reactor FFHR-d1, which adopts the joint winding of high-temperature superconducting (HTS) helical coils as a primary option and the ‘remountable’ HTS helical coil as an advanced option. This paper reports on recent progress in two key technologies: the mechanical joints (remountable joints) of the HTS conductors and the metal porous media inserted into the cooling channel for segment fabrication. Through our research activities it has been revealed that heat treatment during fabrication of the joint can reduce joint resistance and its dispersion, which can shorten the fabrication process and be applied to bent conductor joints. Also, heat transfer correlations of the cooling channel were established to evaluate heat transfer performance with various cryogenic coolants based on the correlations to analyze the thermal stability of the joint.

  6. Prototipe Pembersih Pipa Otomatis (Automatic Tube Remover) pada Heat Exchanger menggunakan Pengolahan Citra


    Hermawati Sholeh; Bhakti Yudho Suprapto; Andi Pranata; Firmansyah Firmansyah


    In the industry era, especially the oil processing industry, the heat exchanger is needed to regulate temperature and produce oil products such as petroleum, kerosene and diesel fuel. In the operation, the heat exchanger requires maintenance, especially when the minor unit is shut down or stop and routine reparation. Maintenance is done by replacing the tubesheet that commonly referred to as bundle retube where there are pipe fritter to be cleaned, which are cutted at the time of maintenance....

  7. Steady-state heat and particle removal with the actively cooled Phase III outboard pump limiter in Tore Supra (United States)

    Nygren, R.; Koski, J.; Lutz, T.; McGrath; Miller, J.; Watkins, J.; Guilhem, D.; Chappuis, P.; Cordier, J.; Loarer, T.


    Tore Supra's Phase III outboard pump limiter (OPL) is a modular actively-cooled mid-plane limiter, designed for heat and particle removal during long pulse operation. During its initial operation in 1993, the OPL successfully removed about 1 MW of power during ohmicly heated shots of up to 10 s duration and reached (steady state) thermal equilibrium. The particle pumping of the Phase III OPL was found to be about 50% greater than the Phase II OPL which had a radial distance between the last closed flux surface and the entrace of the pumping throat of 3.5 cm compared with only 2.5 cm for the Phase III OPL. This paper gives examples of power distribution over the limiter from IR measurements of surface temperature and from extensively calorimetry (34 thermocouples and 10 flow meters) and compares the distributions with values predicted by a 3D model (HF3D) with a detailed magnetic configuration (e.g., includes field ripple).

  8. Steady-state heat and particle removal with the actively cooled phase 3 outboard pump limiter in Tore Supra (United States)

    Nygren, R.; Koski, J.; Lutz, T.; McGrath, R.; Miller, J.; Watkins, J.; Guilhem, D.; Chappuis, P.; Cordier, J.; Loarer, T.

    Tore Supra's Phase 3 Outboard Pump Limiter (OPL) is a modular actively-cooled midplane limiter, designed for heat and particle removal during long pulse operation. During its initial operation in 1993, the OPL successfully removed about 1 MW of power during ohmically heated shots of up to 10 seconds duration and reached (steady state) thermal equilibrium. The particle pumping of the Phase 3 OPL was found to be about 50% greater than the Phase 2 OPL which had a radial distance between the last closed flux surface and the entrance of the pumping throat of 3.5 cm compared with only 2.5 cm for the Phase 3 OPL. This paper gives examples of power distribution over the limiter from IR measurements of surface temperature and from extensive calorimetry (34 thermocouples and 10 flow meters) and compares the distributions with values predicted by a 3-D model (HF3D) with a detailed magnetic configuration (e.g., includes field ripple).

  9. Assessment of Coping Capability of KORI Unit 1 under Extended Loss AC Power and Loss of Ultimate Heat Sink Initiated by Beyond Design Natural Disaster

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang Hyun; Ha, Sang Jun [KHNP CRI, Daejeon (Korea, Republic of); Han, Kee Soo [Nuclear Engineering Service and Solution (NESS) Co. Ltd., Deajeon (Korea, Republic of); Park, Chan Eok [KEPCO Engineering and Constructd., Deajeon (Korea, Republic of)


    In Korea, the government and industry performed comprehensive safety inspection on all domestic nuclear power plants against beyond design basis external events and fifty action items have been issued. In addition to post- Fukushima action items, the stress tests for all domestic nuclear power plants are on the way to enhance the safety of domestic nuclear power plants through finding the vulnerabilities in intentional stress conditions initiated by beyond design natural disaster. This paper presents assessment results of coping capability of KORI Unit 1 under the simultaneous Extended Loss of AC Power (ELAP) and Loss of Ultimate Heat Sink (LUHS) which is a representative plant condition initiated by beyond design natural disaster. The assessment of the coping capability of KORI Unit 1 has been performed under simultaneous the extended loss of AC power and loss of ultimate heat sink initiated by beyond design natural disaster. It is concluded that KORI Unit 1 has the capability, in the event of loss of safety functions by beyond design natural disaster, to sufficiently cool down the reactor core without fuel damage, to keep pressure boundaries of the reactor coolant system in transient condition and to control containment and temperature to maintain the integrity of the containment buildings.

  10. A simple method for removing leakage of metal pipes, like district heating and NG pipes

    Energy Technology Data Exchange (ETDEWEB)

    Tabatabaeeghomi, Mohammad; Mahmoudi, Jafar (Maelardalen Univ., Vaesteraas (Sweden)). E-mail:; Liaghat, Gholamhossien (Tarbiat Modaress Univ., Tehran (Iran))


    Explosive welding occur under high velocity oblique impact, though it is possible to use explosive energy to form a usual cold pressure weld. One of the advantages of this method is welding kind of materials with different shapes together. The ability of explosive welding can be used to maintenance of pipes and vessels, preventing pipe leakage especially under water in oil and gas industries. This research suggests a simple explosive welding method for removing the leakage of metal pipes that is very economy and easy for repairing pipes and vessels full of water or liquid

  11. A standalone decay heat removal device for the Gas-cooled Fast Reactor for intermediate to atmospheric pressure conditions

    Energy Technology Data Exchange (ETDEWEB)

    Epiney, A., E-mail: [Paul Scherrer Institute PSI, Villigen (Switzerland); Ecole Polytechnique Federale EPFL, Lausanne (Switzerland); Alpy, N., E-mail: [CEA, DEN, Service d' Etudes des Systemes Innovants, F-13108 Saint Paul Lez Durance (France); Mikityuk, K., E-mail: [Paul Scherrer Institute PSI, Villigen (Switzerland); Chawla, R., E-mail: [Paul Scherrer Institute PSI, Villigen (Switzerland); Ecole Polytechnique Federale EPFL, Lausanne (Switzerland)


    Highlights: Black-Right-Pointing-Pointer An analytical model predicting Brayton cycle off-design steady states, is developed. Black-Right-Pointing-Pointer The model is used to design an autonomous decay heat removal system for the GFR. Black-Right-Pointing-Pointer Predictions of the analytical model are verified using CATHARE. Black-Right-Pointing-Pointer CATHARE code is used to simulate a set of GFR safety depressurization transients using this device. Black-Right-Pointing-Pointer Convenient turbo-machine designs exist for the targeted autonomous decay heat removal for a wide pressure range. - Abstract: This paper reports a design study for a Brayton cycle machine, which would constitute a dedicated, standalone decay heat removal (DHR) device for the Generation IV Gas-cooled Fast Reactor (GFR). In comparison to the DHR reference strategy developed by the French Commissariat a l'Energie Atomique during the GFR pre-conceptual design phase (which was completed at the end of 2007), the salient feature of this alternative device would be to combine the energetic autonomy of the natural convection process - which is foreseen for operation at high and medium pressures - with the efficiency of the forced convection process which is foreseen for operation down to very low pressures. An analytical model, the so-called 'Brayton scoping model', is described first. This is based on simplified thermodynamic and aerodynamic equations, and was developed to highlight design choices. Two different machine designs are analyzed: a Brayton loop turbo-machine working with helium, and a second one working with nitrogen, since nitrogen is the heavy gas foreseen to be injected into the primary system to enhance the natural convection under loss-of-coolant-accident (LOCA) conditions. Simulations of the steady-state and transient behavior of the proposed device have then been carried out using the CATHARE code. These serve to confirm the insights obtained from usage of the

  12. Prototipe Pembersih Pipa Otomatis (Automatic Tube Remover pada Heat Exchanger menggunakan Pengolahan Citra

    Directory of Open Access Journals (Sweden)

    Hermawati Sholeh


    Full Text Available In the industry era, especially the oil processing industry, the heat exchanger is needed to regulate temperature and produce oil products such as petroleum, kerosene and diesel fuel. In the operation, the heat exchanger requires maintenance, especially when the minor unit is shut down or stop and routine reparation. Maintenance is done by replacing the tubesheet that commonly referred to as bundle retube where there are pipe fritter to be cleaned, which are cutted at the time of maintenance. This maintenance is typically done in manual approach, which is not efficient in terms of time. For a more efficient maintanence, this paper proposes a prototype design to discard these pipes fritter by utilizing image processing method for detecting the edge of the circle and the position of the pipe fritter. Based on the experiments, it has been obtained that the test circle radius that can be captured is at 4 to 10 pixels. The longest time for positioning was 2.41 minutes and the whole process of disposal of this pipeline reaches 47.92 %.

  13. High Heat Flux Interactions and Tritium Removal from Plasma Facing Components by a Scanning Laser

    Energy Technology Data Exchange (ETDEWEB)

    C.H. Skinner; C.A. Gentile; A. Hassanein


    A new technique for studying high heat flux interactions with plasma facing components is presented. The beam from a continuous wave 300 W neodymium laser was focused to 80 W/mm2 and scanned at high speed over the surface of carbon tiles. These tiles were previously used in the TFTR [Tokamak Fusion Test Reactor] inner limiter and have a surface layer of amorphous hydrogenated carbon that was codeposited during plasma operations. Laser scanning released up to 84% of the codeposited tritium. The temperature rise of the codeposit on the tiles was significantly higher than that of the manufactured material. In one experiment, the codeposit surface temperature rose to 1,770 C while for the same conditions, the manufactured surface increased to only 1,080 C. The peak temperature did not follow the usual square-root dependence on heat pulse duration. Durations of order 100 ms resulted in brittle destruction and material loss from the surface, while a duration of approximately 10 ms showed minimal change. A digital microscope imaged the codeposit before, during, and after the interaction with the laser and revealed hot spots on a 100-micron scale. These results will be compared to analytic modeling and are relevant to the response of plasma facing components to disruptions and vertical displacement events (VDEs) in next-step magnetic fusion devices.

  14. Research of the capillary structure heat removal efficiency under divertor conditions

    Energy Technology Data Exchange (ETDEWEB)

    Pistunovich, V.I. [Rossijskij Nauchnyj Tsentr ``Kurchatovskij Inst.``, Moscow (Russian Federation); Vertkov, A.V. [Stock Corp. `Prana`, Moscow (Russian Federation); Evtikhin, V.A. [Stock Corp. `Prana`, Moscow (Russian Federation); Korjavin, V.M. [Fusion Dept. Ministry of Atomic Energy, Moscow (Russian Federation); Lyublinski, I.E. [Stock Corp. `Prana`, Moscow (Russian Federation); Petrov, V.B. [Rossijskij Nauchnyj Tsentr ``Kurchatovskij Inst.``, Moscow (Russian Federation); Khripunov, B.I. [Rossijskij Nauchnyj Tsentr ``Kurchatovskij Inst.``, Moscow (Russian Federation); Shapkin, V.V. [Rossijskij Nauchnyj Tsentr ``Kurchatovskij Inst.``, Moscow (Russian Federation)


    Experimental models of capillary structure for liquid metal fusion reactor divertor simulation have been designed, manufactured and tested in order to estimate the behaviour and possibilities of plasma-facing components based on lithium capillary system at long-pulse high heat load. The power load on the capillary target structures up to 50 MW/m{sup 2} was provided by electron beam with electron energy {<=}10 keV. The exposition-time was up to several minutes and was limited by the lithium quantity in the supply vessel. The operation parameters of the models determined in the experiments are in accordance with there design estimations. The tests of various model constructions at the divertor relevant power loads have shown promise for the new concept of a divertor taking into account long life and reliability. (orig.).

  15. Thermal-hydraulic processes involved in loss of residual heat removal during reduced inventory operation. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Fletcher, C.D.; McHugh, P.R.; Naff, S.A.; Johnsen, G.W.


    This paper identifies the topics needed to understand pressurized water reactor response to an extended loss of residual heat removal event during refueling and maintenance outages. By identifying the possible plant conditions and cooling methods that would be used for each cooling mode, the controlling thermal-hydraulic processes and phenomena were identified. Controlling processes and phenomena include: gravity drain, core water boil-off, and reflux cooling processes. Important subcategories of the reflux cooling processes include: the initiation of reflux cooling from various plant conditions, the effects of air on reflux cooling, core level depression effects, issues regarding the steam generator secondaries, and the special case of boiler-condenser cooling with once-through steam generators. 25 refs., 6 figs., 1 tab.

  16. The development and testing of the thermal break divertor monoblock target design delivering 20 MW m‑2 heat load capability (United States)

    Fursdon, M.; Barrett, T.; Domptail, F.; Evans, Ll M.; Luzginova, N.; Greuner, N. H.; You, J.-H.; Li, M.; Richou, M.; Gallay, F.; Visca, E.


    The design and development of a novel plasma facing component (for fusion power plants) is described. The component uses the existing ‘monoblock’ construction which consists of a tungsten ‘block’ joined via a copper interlayer to a through CuCrZr cooling pipe. In the new concept the interlayer stiffness and conductivity properties are tuned so that stress in the principal structural element of the component (the cooling pipe) is reduced. Following initial trials with off-the-shelf materials, the concept was realized by machined features in an otherwise solid copper interlayer. The shape and distribution of the features were tuned by finite element analyses subject to ITER structural design criterion in-vessel components (SDC-IC) design rules. Proof of concept mock-ups were manufactured using a two stage brazing process verified by tomography and micrographic inspection. Full assemblies were inspected using ultrasound and thermographic (SATIR) test methods at ENEA and CEA respectively. High heat flux tests using IPP’s GLADIS facility showed that 200 cycles at 20 MW m‑2 and five cycles at 25 MW m‑2 could be sustained without apparent component damage. Further testing and component development is planned.

  17. Microglia in the degenerating brain are capable of phagocytosis of beads and of apoptotic cells, but do not efficiently remove PrPSc, even upon LPS stimulation. (United States)

    Hughes, Martina M; Field, Robert H; Perry, V Hugh; Murray, Carol L; Cunningham, Colm


    Despite the phagocytic machinery available to microglia the aberrant amyloid proteins produced during Alzheimer's and prion disease, amyloid-β and PrP(Sc), are inefficiently cleared. We have shown that microglia in the ME7 model of prion disease show morphological evidence of activation, synthesize low levels of pro-inflammatory cytokines and are primed to produce exaggerated responses to subsequent inflammatory challenges. Whether these microglia engage in significant phagocytic activity in the disease per se, or upon subsequent inflammatory challenge is not clear. In the present study we show transcriptional activation of a large number of scavenger receptors (SRs), matrix metalloproteinases (MMPs), oxidative enzymes, and cathepsins in ME7 animals. Hippocampally-injected inert latex beads (6 μm) are efficiently phagocytosed by microglia of ME7 prion-diseased animals, but not by microglia in normal animals. Stimulation of ME7 animals with systemic bacterial endotoxin (lipopolysaccharide, LPS) induced further increases in SR-A2, MMP3, and urokinase plasminogen activator receptor (uPAR) but decreased, or did not alter, transcription of most phagocytosis-related genes examined and did not enhance clearance of deposited PrP(Sc). Furthermore, intracerebral injection with LPS (0.5 μg) induced marked microglial production of IL-1β, robust cellular infiltration and marked apoptosis but also did not induce further clearance of PrP(Sc). These data indicate that microglia in the prion-diseased brain are capable of phagocytosis per se, but show limited efficacy in removing PrP(Sc) even upon marked escalation of CNS inflammation. Furthermore, microglia/macrophages remain IL-1β-negative during phagocytosis of apoptotic cells. The data demonstrate that phagocytic activity and pro-inflammatory microglial phenotype do not necessarily correlate.

  18. CFD Analysis on the Passive Heat Removal by Helium and Air in the Canister of Spent Fuel Dry Storage System

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Do Young; Jeong, Ui Ju; Kim, Sung Joong [Hanyang University, Seoul (Korea, Republic of)


    In the current commercial design, the canister of the dry storage system is mainly backfilled with helium gas. Helium gas shows very conductive behavior due to high thermal conductivity and small density change with temperature. However, other gases such as air, argon, or nitrogen are expected to show effective convective behavior. Thus these are also considered as candidates for the backfill gas to provide effective coolability. In this study, to compare the dominant cooling mechanism and effectiveness of cooling between helium gas and air, a computational fluid dynamics (CFD) analysis for the canister of spent fuel dry storage system with backfill gas of helium and air is carried out. In this study, CFD simulations for the helium and air backfilled gas for dry storage system canister were carried out using ANSYS FLUENT code. For the comparison work, two backfilled fluids were modeled with same initial and boundary conditions. The observed major difference can be summarized as follows. - The simulation results showed the difference in dominant heat removal mechanism. Conduction for helium, and convection for air considering Reynolds number distribution. - The temperature gradient inside the fuel assembly showed that in case of air, more effective heat mixing occurred compared to helium.

  19. An experimental and theoretical investigation on heat transfer capability of Mg (OH)2/MWCNT-engine oil hybrid nano-lubricant adopted as a coolant and lubricant fluid

    DEFF Research Database (Denmark)

    Asadi, Amin; Asadi, Meisam; Rezaniakolaei, Alireza


    The major objective of the present study is to investigate the heat transfer capability of Mg (OH)2/MWCNT- engine oil hybrid nano-lubricant. First, the effects of temperature and Solid volume fraction on the dynamic viscosity and thermal conductivity of Mg (OH)2/MWCNT- engine oil hybrid nano...... Newtonian behavior in all the studied temperatures and solid concentrations. Furthermore, the experimental results indicated that the dynamic viscosity of the nano-lubricant increases with an increase in solid concentration while it decreases with an increase in temperature. The thermal conductivity...... of the nanofluid showed increasing trend as the solid concentration and temperature increased. The minimum and maximum enhancement were about 13% and 50%, respectively. Based on experimental data, two new trustworthy correlations to predict the dynamic viscosity and thermal conductivity of the nano-lubricant has...

  20. Heat transfer system safety: Comparing the effectiveness of batch venting and a light-ends removal kit (LERK

    Directory of Open Access Journals (Sweden)

    Christopher Ian Wright


    Full Text Available Heat transfer fluids (HTF should be analysed at least once per year to determine the extent of thermal degradation. Under normal operating conditions, mineral-based HTFs will thermally degrade and the bonds between hydrocarbons break to form shorter-chain hydrocarbons known as “light-ends”. These light-ends accumulate in a HTF system and present a future potential fire risk. Light-ends can be removed from a HTF system via a batch vent or installation of a temporary or permanently installed light-ends removal kit (LERK. Data was collected prior to and following batch venting or installation of a LERK. The main study parameter was closed flash temperature as open flash temperature and fire point did not change considerably. Analysis showed that both methods increased closed flash temperature in excess of 130 °C three months after the intervention, so both methods were deemed effective. Data showed that the percentage change achieved with the LERK, compared to batch venting, was 2-fold higher at three months and 10-fold higher at 6 months. The duration of effect was longer with the LERK with closed flash temperature being stable and consistently above 130 °C for 50 months after being permanently installed. This case highlights the effectiveness of a permanently fitted LERK which is effective for the longer-term control of closed flash temperature. However, mobile LERKs could be an option for manufacturers looking to manage closed flash temperature on a shorter-term basis or as an alternative to batch venting.

  1. Arsenic Removal of Filters by Heat Treated Mixtures of Yellow Loess and Sand in One-Dimensional Column for Real Groundwater Treatment. (United States)

    Lee, Young-Chul; Lee, Jong Min; Lee, Go-Woon; Choi, Junho; Huh, Yun Suk


    It is described that the arsenic (As) removal in real groundwater by filters in one-dimensional (1D) column (30 mm diameter × 240 mm height) using mixtures of heat treated yellow loess (YL) and sand is applied with consideration of water permeability. The effluent satisfies the concentration of <10 ppb drinking water regulation before As saturation with filters. Heat treated mixture of YL and sand under 4% H2/96% Ar condition result in higher As removal capacity than heat treated one under air atmosphere condition at 500 °C for 3 hours. It is due to more evolution of Fe3O4 phase in the mixture. In order to increase As removal efficiency significantly, α-Fe2O3 coated filters on mixture of YL and sand by hydrothermal treatment at 100 °C for 12 hours are utilized. It leads to highly enhanced As removal efficiency with little Fe ions leaching but half reduction of effluent rate, appealing as an alternative of practical As removal filters.

  2. Analysis of temperature rise and the use of coolants in the dissipation of ultrasonic heat buildup during post removal. (United States)

    Davis, Stephen; Gluskin, Alan H; Livingood, Philip M; Chambers, David W


    This study was designed to calculate probabilities for tissue injury and to measure effectiveness of various coolant strategies in countering heat buildup produced by dry ultrasonic vibration during post removal. A simulated biological model was used to evaluate the cooling efficacy of a common refrigerant spray, water spray, and air spray in the recovery of post temperatures deep within the root canal space. The data set consisted of cervical and apical measures of temperature increase at 1-second intervals from baseline during continuous ultrasonic instrumentation until a 10 °C increase in temperature at the cervical site was registered, wherein instrumentation ceased, and the teeth were allowed to cool under ambient conditions or with the assistance of 4 coolant methods. Data were analyzed with analysis of variance by using the independent variables of time of ultrasonic application (10, 15, 20 seconds) and cooling method. In addition to the customary means, standard deviations, and analysis of variance tests, analyses were conducted to determine probabilities that procedures would reach or exceed the 10 °C threshold. Both instrumentation time and cooling agent effects were significant at P posts. Cycles of short instrumentation times with active coolants were effective in reducing the probability of tissue damage when teeth were instrumented dry. With as little as 20 seconds of continuous dry ultrasonic instrumentation, the consequences of thermal buildup to an individual tooth might contribute to an injurious clinical outcome. Copyright © 2010 American Association of Endodontists. All rights reserved.

  3. A mechanism for corrosion product deposition on the carbon steel piping in the residual heat removal system of BWRs

    Energy Technology Data Exchange (ETDEWEB)

    Aizawa, Motohiro; Chiba, Yoshinori [Hitachi Engineering Co., Ltd., Nuclear Power Plant Engineering Dept., Hitachi, Ibaraki (Japan); Hosokawa, Hideyuki [Hitachi Ltd., Power and Industrial Systems R and D Laboratory, Hitachi, Ibaraki (Japan); Ohsumi, Katsumi [Hitachi Ltd., Power and Industrial Systems Nuclear Systems Division, Hitachi, Ibaraki (Japan); Uchida, Shunsuke [Tohoku Univ., Graduate School of Engineering, Dept. of Quantum Science and Energy Engineering, Sendai, Miyagi (Japan); Ishizawa, Noboru [Tokyo Electric Power Company, Kashiwazaki-Kariwa Nuclear Power Station, Kashiwazaki, Niigata (Japan)


    The dose rate of the residual heat removal (RHR) piping has been considered to be caused by accumulation of insoluble (crud) radioactive corrosion products on carbon steel surfaces. Soft shutdown procedures (i.e., plant shutdown with moderate coolant temperature reduction rate) used to be applied to reduce crud radioactivity release from the fuel surface, but these are no longer used because of the need for shorter plant shutdown times. In order to apply other suitable countermeasures to reduce RHR dose rate, assessment of plant data, experiments on deposition of crud and ion species on carbon steel, and mass balance evaluation of radioactive corrosion products based on plant and laboratory data were carried out and the following findings were made. (1) Deposits of ion species on carbon steel surfaces of the RHR piping was much more numerous than for crud. (2) Ion species accumulation behavior on RHR piping, which is temperature dependent, can be evaluated with the calculation model used for the dehydration reaction of corrosion products generated during the wet lay-up period. (3) Deposition amounts could be reduced to 1/2.5 when the starting RHR system operation temperature was lowered from 155degC to 120degC. (author)

  4. Heat

    CERN Document Server

    Lawrence, Ellen


    Is it possible to make heat by rubbing your hands together? Why does an ice cube melt when you hold it? In this title, students will conduct experiments to help them understand what heat is. Kids will also investigate concepts such as which materials are good at conducting heat and which are the best insulators. Using everyday items that can easily be found around the house, students will transform into scientists as they carry out step-by-step experiments to answer interesting questions. Along the way, children will pick up important scientific skills. Heat includes seven experiments with detailed, age-appropriate instructions, surprising facts and background information, a "conclusions" section to pull all the concepts in the book together, and a glossary of science words. Colorful, dynamic designs and images truly put the FUN into FUN-damental Experiments.

  5. Capability Paternalism

    NARCIS (Netherlands)

    Claassen, R.J.G.|info:eu-repo/dai/nl/269266224

    A capability approach prescribes paternalist government actions to the extent that it requires the promotion of specific functionings, instead of the corresponding capabilities. Capability theorists have argued that their theories do not have much of these paternalist implications, since promoting

  6. Development, verification and validation of an FPGA-based core heat removal protection system for a PWR

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yichun, E-mail: [College of Energy, Xiamen University, Xiamen 361102 (China); Shui, Xuanxuan, E-mail: [College of Energy, Xiamen University, Xiamen 361102 (China); Cai, Yuanfeng, E-mail: [College of Energy, Xiamen University, Xiamen 361102 (China); Zhou, Junyi, E-mail: [College of Energy, Xiamen University, Xiamen 361102 (China); Wu, Zhiqiang, E-mail: [State Key Laboratory of Reactor System Design Technology, Nuclear Power Institute of China, Chengdu 610041 (China); Zheng, Jianxiang, E-mail: [College of Energy, Xiamen University, Xiamen 361102 (China)


    Highlights: • An example on life cycle development process and V&V on FPGA-based I&C is presented. • Software standards and guidelines are used in FPGA-based NPP I&C system logic V&V. • Diversified FPGA design and verification languages and tools are utilized. • An NPP operation principle simulator is used to simulate operation scenarios. - Abstract: To reach high confidence and ensure reliability of nuclear FPGA-based safety system, life cycle processes of discipline specification and implementation of design as well as regulations verification and validation (V&V) are needed. A specific example on how to conduct life cycle development process and V&V on FPGA-based core heat removal (CHR) protection system for CPR1000 pressure water reactor (PWR) is presented in this paper. Using the existing standards and guidelines for life cycle development and V&V, a simplified FPGA-based CHR protection system for PWR has been designed, implemented, verified and validated. Diversified verification and simulation languages and tools are used by the independent design team and the V&V team. In the system acceptance testing V&V phase, a CPR1000 NPP operation principle simulator (OPS) model is utilized to simulate normal and abnormal operation scenarios, and provide input data to the under-test FPGA-based CHR protection system and a verified C code CHR function module. The evaluation results are applied to validate the under-test FPGA-based CHR protection system. The OPS model operation outputs also provide reasonable references for the tests. Using an OPS model in the system acceptance testing V&V is cost-effective and high-efficient. A dedicated OPS, as a commercial-off-the-shelf (COTS) item, would contribute as an important tool in the V&V process of NPP I&C systems, including FPGA-based and microprocessor-based systems.

  7. 3D CFD simulations to study the effect of inclination of condenser tube on natural convection and thermal stratification in a passive decay heat removal system

    Energy Technology Data Exchange (ETDEWEB)

    Minocha, Nitin [Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094 (India); Joshi, Jyeshtharaj B., E-mail: [Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094 (India); Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai 400 019 (India); Nayak, Arun K. [Reactor Engineering Division, Bhabha Atomic Research Center, Trombay, Mumbai 400 085 (India); Vijayan, Pallippattu K., E-mail: [Reactor Engineering Division, Bhabha Atomic Research Center, Trombay, Mumbai 400 085 (India)


    Highlights: • Investigation of three-dimensional natural convection and thermal stratification inside large water pool. • Effect of inclination (α) of condenser tube on fluid flow and heat transfer. • The heat transfer was found to be maximum for α = 90° and minimum for α = 15°. • Laminar-turbulent natural convection and heat transfer in the presence of longitudinal vortices. - Abstract: Many advanced nuclear reactors adopt methodologies of passive safety systems based on natural forces such as gravity. In one of such system, the decay heat generated from a reactor is removed by isolation condenser (ICs) submerged in a large water pool called the Gravity Driven Water Pool (GDWP). The objective of the present study was to design an IC for the passive decay heat removal system (PDHRS) for advanced nuclear reactor. First, the effect of inclination of IC tube on three dimensional temperature and flow fields was investigated inside a pilot scale (10 L) GDWP. Further, the knowledge of these fields has been used for the quantification of heat transfer and thermal stratification phenomenon. In a next step, the knowledge gained from the pilot scale GDWP has been extended to design an IC for real size GDWP (∼10,000 m{sup 3}). Single phase CFD simulation using open source CFD code [OpenFOAM-2.2] was performed for different tube inclination angles (α) (w.r.t. to vertical direction) in the range 0° ⩽ α ⩽ 90°. The results indicate that the heat transfer coefficient increases with increase in tube inclination angle. The heat transfer was found to be maximum for α = 90° and minimum for α = 15°. This behavior is due to the interaction between the primary flow (due to pressure gradient) and secondary flow (due to buoyancy force). The primary flow enhanced the fluid sliding motion at the tube top whereas the secondary flow resulted in enhancement in fluid motion along the circumference of tube. As the angle of inclination (α) of the tube was increased, the

  8. Multiple pollutant removal using the condensing heat exchanger: Phase 1 final report, November 1995--June 1997. Addendum 2: Task 3 topical report -- Long term wear test

    Energy Technology Data Exchange (ETDEWEB)

    Kudlac, G.A.


    Long-term operation of a condensing heat exchanger under typical coal-fired flue gas conditions was investigated in Phase 1, Task 3 of the Multiple Pollutant Removal Using the Condensing Heat Exchanger test program. The specific goal of this task was to determine the amount of wear, if any, on the Teflon{reg_sign}-covered heat transfer tubes in a condensing heat exchanger. A pilot-scale single-stage condensing heat exchanger (CHX{reg_sign}) was operated under typical coal-fired flue gas conditions on a continuous basis for a period of approximately 10 months. Operating conditions and particulate loadings for the test unit were monitored, Teflon{reg_sign} film thickness measurements were conducted, and surface replications (which duplicate the surface finish at the microscopic level) were taken at various times during the test. Data from the test indicate that virtually no decrease in Teflon{reg_sign} thickness was observed for the coating on the first two rows of heat exchanger tubes, even at high inlet particulate loadings (400 mg/dscm [0.35 lb/10{sup 6} Btu]). Evidence of wear was present only at the microscopic level, and even then was very minor in severity. Operation at high inlet particulate loadings resulted in accumulated ash deposits within the heat exchanger. Installation of a modified (higher flow rate) wash nozzle manifold substantially reduced subsequent deposit formation.

  9. Conceptual design study, Phase 1, Task 7.3. Shutdown heat removal system. Working group final report. Volume 2. Overall results

    Energy Technology Data Exchange (ETDEWEB)

    None, None


    Task 7.3 of the Conceptual Design Study (CDS) had the objective of choosing an optimal Shutdown Heat Removal System (SHRS) for the CDS plant. A working group was formed with the primary objective of defining a SHRS consensus position. This position could define specific recommended system concepts or it could identify the work and information needed to establish the preferred SHRS for the CDS plant. This report documents the recommended SHRS position for CDS.

  10. Comparison of Adsorption Capability of Activated Carbon and Metal Doped TiO2 for Geosmin and 2-MIB Removal from Water

    Directory of Open Access Journals (Sweden)

    Aisha Asghar


    Full Text Available This study stemmed from consumer complaints about earthy and musty off-flavours in treated water of Rawal Lake Filtration Plant. In recent years, several novel adsorbents have been developed from nanomaterials for enhancing the contaminant removal efficiency. This paper presents preparation and the use of new adsorbents Pt doped titania and Fe doped titania, for the adsorption capacity of Geosmin and 2-MIB from water under laboratory conditions and their comparison, with most widely used activated carbon, under batch and column experiments. Stock solutions were prepared by using Geosmin and 2-MIB standards, procured by Sigma Aldrich (England. Samples were analysed using SPME-GC-FID. The adsorption of Geosmin and 2-MIB on GAC conformed to the Freundlich isotherm, while that of adsorption on metal doped titania fit equally well to both Langmuir and Freundlich isotherms. Moreover, data, generated for the kinetic isotherm, confirmed that Geosmin and 2-MIB removal is a function of contact time. Breakthrough column tests using 125 mg/L Pt doped titania nanoparticles, coated on glass beads against 700 ng/L of off-flavours, attained later breakthrough and exhaustion points and removed 98% of Geosmin and 97% of 2-MIB at room temperature. All columns could be regenerated using 50 mL 0.1 molar sodium hydroxide.

  11. Evaluation of catalyzed and electrically heated filters for removal of particulate emissions from diesel-A- and JP-8-fueled engines. (United States)

    Kelly, Kerry E; Wagner, David A; Lighty, JoAnn S; Sarofim, Adel F; Bretecher, Brad; Holden, Bruce; Helgeson, Norm; Sahay, Keshav; Nardi, Zack


    In-service diesel engines are a significant source of particulate matter (PM) emissions, and they have been subjected to increasingly strict emissions standards. Consequently, the wide-scale use of some type of particulate filter is expected. This study evaluated the effect of an Engelhard catalyzed soot filter (CSF) and a Rypos electrically heated soot filter on the emissions from in-service diesel engines in terms of PM mass, black carbon concentration, particle-bound polycyclic aromatic hydrocarbon concentration, and size distribution. Both filters capture PM. The CSF relies on the engine's exhaust to reach the catalyst regeneration temperature and oxidize soot, whereas the electrically heated filter contains a heating element to oxidize soot. The filters were installed on several military diesel engines. Particle concentrations and compositions were measured before and after installation of the filter and again after several months of operation. Generally, the CSF removed at least 90% of total PM, and the removal efficiency improved or remained constant after several months of operation. In contrast, the electrical filters removed 44-69% of PM mass. In addition to evaluating the soot filters, the sampling team also compared the results of several real-time particle measurement instruments to traditional filter measurements of total mass.

  12. Design Report for the ½ Scale Air-Cooled RCCS Tests in the Natural convection Shutdown heat removal Test Facility (NSTF)

    Energy Technology Data Exchange (ETDEWEB)

    Lisowski, D. D. [Argonne National Lab. (ANL), Argonne, IL (United States); Farmer, M. T. [Argonne National Lab. (ANL), Argonne, IL (United States); Lomperski, S. [Argonne National Lab. (ANL), Argonne, IL (United States); Kilsdonk, D. J. [Argonne National Lab. (ANL), Argonne, IL (United States); Bremer, N. [Argonne National Lab. (ANL), Argonne, IL (United States); Aeschlimann, R. W. [Argonne National Lab. (ANL), Argonne, IL (United States)


    The Natural convection Shutdown heat removal Test Facility (NSTF) is a large scale thermal hydraulics test facility that has been built at Argonne National Laboratory (ANL). The facility was constructed in order to carry out highly instrumented experiments that can be used to validate the performance of passive safety systems for advanced reactor designs. The facility has principally been designed for testing of Reactor Cavity Cooling System (RCCS) concepts that rely on natural convection cooling for either air or water-based systems. Standing 25-m in height, the facility is able to supply up to 220 kW at 21 kW/m2 to accurately simulate the heat fluxes at the walls of a reactor pressure vessel. A suite of nearly 400 data acquisition channels, including a sophisticated fiber optic system for high density temperature measurements, guides test operations and provides data to support scaling analysis and modeling efforts. Measurements of system mass flow rate, air and surface temperatures, heat flux, humidity, and pressure differentials, among others; are part of this total generated data set. The following report provides an introduction to the top level-objectives of the program related to passively safe decay heat removal, a detailed description of the engineering specifications, design features, and dimensions of the test facility at Argonne. Specifications of the sensors and their placement on the test facility will be provided, along with a complete channel listing of the data acquisition system.

  13. Use of RSM modeling for optimizing decolorization of simulated textile wastewater by Pseudomonas aeruginosa strain ZM130 capable of simultaneous removal of reactive dyes and hexavalent chromium. (United States)

    Maqbool, Zahid; Hussain, Sabir; Ahmad, Tanvir; Nadeem, Habibullah; Imran, Muhammad; Khalid, Azeem; Abid, Muhammad; Martin-Laurent, Fabrice


    Remediation of colored wastewater loaded with dyes and metal ions is a matter of interest nowadays. In this study, 220 bacteria isolated from textile wastewater were tested for their potential to decolorize each of the four reactive dyes (reactive red-120, reactive black-5, reactive yellow-2, and reactive orange-16) in the presence of a mixture of four different heavy metals (Cr, Zn, Pb, Cd) commonly found in textile effluents. Among the tested bacteria, the isolate ZM130 was found to be the most efficient in decolorizing reactive dyes in the presence of the mixture of heavy metals and was identified as Pseudomonas aeruginosa strain ZM130 by 16S rRNA gene analysis. The strain ZM130 was highly effective in simultaneously removing hexavalent chromium (25 mg L(-1)) and the azo dyes (100 mg L(-1)) from the simulated wastewater even in the presence of other three heavy metals (Zn, Pb, Cd). Simultaneous removal of chromium and azo dyes ranged as 76.6-98.7 % and 51.9-91.1 %, respectively, after 180 h incubation. On the basis of quadratic polynomial equation and response surfaces given by the response surface methodology (RSM), optimal salt content, pH, carbon co-substrate content, and level of multi-metal mixtures for decolorization of reactive red-120 in a simulated textile wastewater by the strain ZM130 were predicted to be 19.8, 7.8, and 6.33 g L(-1) and a multi-metal mixture (Cr 13.10 mg L(-1), Pb 26.21 mg L(-1), Cd 13.10 mg L(-1), Zn 26.21 mg L(-1)), respectively. Moreover, the strain ZM130 also exhibited laccase and nicotinamide adenine dinucleotide (reduced)-dichlorophenolindophenol reductase (NADH-DCIP reductase) activity during the decolorization of reactive red-120. However, the laccase activity was found to be maximum in the presence of 300 mg L(-1) of the dye as compared to other concentrations. Hence, the isolation of this strain might serve as a potential bio-resource required for developing the strategies aiming at bioremediation of the

  14. Estimates of decay heat removal by natural air convection for a new containment concept; Abschaetzung der Waermeabfuhr durch Naturkonvektion bei einem alternativen Containmentkonzept

    Energy Technology Data Exchange (ETDEWEB)

    Neitzel, H.J.


    A new containment concept for future pressurized water reactors should ensure that the containment remains intact even in severe accidents and that the decay heat can be removed by natural air convection in a passive way. The composite containment proposed consists of an inner steel shell of 60 m diameter with a 38 mm wall thickness and an outer reinforced concrete shell of about 2 m wall thickness. The annulus of about 80 cm radial width is bridged by longitudinal support ribs placed at intervals of about 50 cm on the circumference forming in this way individual chimneys. In these chimneys the decay heat is removed by natural air convection to the environment. Filters prevent eventual fission gas leakages into the annulus from being released to the environment. Estimates have been performed to assess the coolability by natural air convection. It has been shown that a decay heat of about 8 MW can be removed which seems to be sufficient for a 1300 MWe PWR. (orig.). [Deutsch] Durch ein neuartiges Containmentkonzept fuer zukuenftige Druckwasserreaktoren soll gewaehrleistet werden, dass auch nach schwersten Unfaellen das Containment intakt bleibt und die Nachwaerme passiv durch Naturkonvektion an die Luft abgefuehrt wird. Das vorgeschlagene Verbund-Containment besteht aus einer inneren Stahlschale von 60 m Durchmesser und 38 mm Wandstaerke sowie einem aeusseren etwa 2 m starken Stahlbetonmantel. Dazwischen befindet sich ein Ringraum von etwa 80 cm radialer Tiefe, der durch laengslaufende Rippen in kaminartige etwa 50 cm breite Kanaele unterteilt ist. In diesen Kanaelen wird die Nachwaerme durch Naturkonvektion an die Luft abgegeben. Durch Einsatz von Filtern wird verhindert, dass die durch eventuelle Leckagen in den Ringraum austretenden Spaltgase in die Umgebung gelangen. Fuer die Waermeuebertragung auf der Luftseite wurden rechnerische Abschaetzungen durchgefuehrt. Es ergab sich, dass eine Nachwaermeleistung von 8 MW abgefuehrt werden kann, was fuer einen 1300 MWe

  15. Capability ethics

    NARCIS (Netherlands)

    I.A.M. Robeyns (Ingrid)


    textabstractThe capability approach is one of the most recent additions to the landscape of normative theories in ethics and political philosophy. Yet in its present stage of development, the capability approach is not a full-blown normative theory, in contrast to utilitarianism, deontological

  16. Design and modeling of an advanced marine machinery system including waste heat recovery and removal of sulphur oxides

    DEFF Research Database (Denmark)

    Frimann Nielsen, Rasmus; Haglind, Fredrik; Larsen, Ulrik


    and modelling a highly efficient machinery system which includes the removal of exhaust gas sulphur oxides. Numerical simulations are carried out using an open source software developed at Technical University of Denmark called Dynamic Network Analysis (DNA). The machinery system suggested in this paper...

  17. Effects of pH and concentration on the capability of E. coli and S. epidermidis with bentonite clay as biosorbent for the removal of Copper, Nickel and Lead from polluted water (United States)

    Senoro, Delia B.; Godezano, Josel B.; Wan, Meng-Wei; Tayo, Lemmuel L.; Sauli, Zaliman; Aris, Hasnizah


    This paper discusses the effects of pH and concentration on the capability of E. coli ATCC29522 and S. epidermidis RP62A biofilm with bentonite in removing divalent copper, nickel and lead from wastewater. Batch adsorption study at laboratory scale was utilized to evaluate the potential use of bacterial biomass (E. coli ATCC29522 and S. epidermidis RP62A) aided with geosynthetic clay (bentonite) for the removal of Cu2+, Ni2+and Pb2+. Results revealed that removal of Cu2+, Ni2+and Pb2+ by both types of organisms supported with bentonite were high in the first 4 hours of the experiment. This illustrates that the binding site on that particular time was abundant. Hence, the removal rate was evident at high concentration depicting the line adsorption equilibrium. It also revealed that S. epidermidis RP62A supported with bentonite had the highest affinity to Copper and Lead with Qm = 277.7 mg/g and 5.0075 mg/g, respectively. While E. coli ATCC 29522 had the highest affinity to Nickel (Qm= 58.82 mg/g). Hence, the sorption of Cu2+, Ni2+and Pb2+ onto E. coli ATCC29522 and S. epidermidis RP62A biofilm supported with bentonite clay occurred through monolayer chemisorption on the homogeneous surface of E. coli ATCC29522 and S. epidermidis RP62A biofilm with bentonite clay. Batch kinetics studies revealed that the sorption of Cu2+, Ni2+and Pb2+ onto E. coli ATCC29522 and S. epidermidis RP62A biofilm supported with bentonite clay was well described by a pseudo-second-order equation model of type 1 (R2 = 0.9999), which implies that chemisorption is the rate limiting step.

  18. Integrating Waste Heat from CO2 Removal and Coal-Fired Flue Gas to Increase Plant Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Irvin, Nick [Southern Company Services, Inc., Birmingham, AL (United States); Kowalczyk, Joseph [Southern Company Services, Inc., Birmingham, AL (United States)


    In project DE-FE0007525, Southern Company Services demonstrated heat integration methods for the capture and sequestration of carbon dioxide produced from pulverized coal combustion. A waste heat recovery technology (termed High Efficiency System) from Mitsubishi Heavy Industries America was integrated into an existing 25-MW amine-based CO2 capture process (Kansai Mitsubishi Carbon Dioxide Recovery Process®1) at Southern Company’s Plant Barry to evaluate improvements in the energy performance of the pulverized coal plant and CO2 capture process. The heat integration system consists of two primary pieces of equipment: (1) the CO2 Cooler which uses product CO2 gas from the capture process to heat boiler condensate, and (2) the Flue Gas Cooler which uses air heater outlet flue gas to further heat boiler condensate. Both pieces of equipment were included in the pilot system. The pilot CO2 Cooler used waste heat from the 25-MW CO2 capture plant (but not always from product CO2 gas, as intended). The pilot Flue Gas Cooler used heat from a slipstream of flue gas taken from downstream of Plant Barry’s air heater. The pilot also included a 0.25-MW electrostatic precipitator. The 25-MW High Efficiency System operated for approximately six weeks over a four month time period in conjunction with the 25-MW CO2 capture facility at Plant Barry. Results from the program were used to evaluate the technical and economic feasibility of full-scale implementation of this technology. The test program quantified energy efficiency improvements to a host power plant that could be realized due to the High Efficiency System. Through the execution of this project, the team verified the integrated operation of the High Efficiency System and Kansai Mitsubishi Carbon Dioxide Recovery Process®. The ancillary benefits of the High Efficiency System were also quantified, including reduced water consumption

  19. Waste heat recovery system including a mechanism for collection, detection and removal of non-condensable gas

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, Timothy C.; Zigan, James A.


    The disclosure describes a non-condensable gas collection, detection, and removal system for a WHR system that helps to maintain cycle efficiency of the WHR system across the life of an engine system associated with the WHR system. A storage volume is configured to collect non-condensable gas received from the working fluid circuit, and a release valve is configured to selectively release non-condensable gas contained within the storage volume.

  20. Removal of Persistent Organic Pollutants from a Solid Matrix by Thermal Desorption Technology Using Conventional and Microwave Heating

    Czech Academy of Sciences Publication Activity Database

    Mašín, P.; Hendrych, J.; Kroužek, J.; Kubal, M.; Kochánková, L.; Sobek, Jiří


    Roč. 22, č. 7A (2013), s. 2017-2021 ISSN 1018-4619. [International Conference on Environmental Management, Engineering, Planning and Economics (CEMEPE 2011) & SECOTOX Conference /3./. Skiathos Island, 19.06.2011-24.06.2011] Grant - others:GA MŽP(CZ) SP/2f3/133/08 Institutional support: RVO:67985858 Keywords : thermal desorption * microwave heating * remediation * persistent pollutants * pilot scale Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 0.527, year: 2013

  1. Chlorella sorokiniana UTEX 2805, a heat and intense, sunlight-tolerant microalga with potential for removing ammonium from wastewater. (United States)

    de-Bashan, Luz E; Trejo, Adan; Huss, Volker A R; Hernandez, Juan-Pablo; Bashan, Yoav


    In the summer of 2003, a microalga strain was isolated from a massive green microalgae bloom in wastewater stabilization ponds at the treatment facility of La Paz, B.C.S., Mexico. Prevailing environmental conditions were air temperatures over 40 degrees C, water temperature of 37 degrees C, and insolation of up to 2400 micromol m2 s(-1) at midday for several hours at the water surface for four months. The microalga was identified as Chlorella sorokiniana Shih. et Krauss, based on sequencing its entire 18S rRNA gene. In a controlled photo-bioreactor, this strain can grow to high population densities in synthetic wastewater at temperatures of 40-42 degrees C and light intensity of 2500 micromol m2 s(-1) for 5h daily and efficiently remove ammonium from the wastewater under these conditions better than under normal lower temperature (28 degrees C) and lower light intensity (60 micromol m2 s(-1)). When co-immobilized with the bacterium Azospirillum brasilense that promotes growth of microalgae, the population of microalga grew faster and removed even more ammonium. Under exposure to extreme growth conditions, the quantity of four photosynthetic pigments increased in the co-immobilized cultures. This strain of microalga has potential as a wastewater treatment agent under extreme conditions of temperature and light intensity.

  2. Capability approach

    DEFF Research Database (Denmark)

    Jensen, Niels Rosendal; Kjeldsen, Christian Christrup

    Lærebogen er den første samlede danske præsentation af den af Amartya Sen og Martha Nussbaum udviklede Capability Approach. Bogen indeholder en præsentation og diskussion af Sen og Nussbaums teoretiske platform. I bogen indgår eksempler fra såvel uddannelse/uddannelsespolitik, pædagogik og omsorg....


    DEFF Research Database (Denmark)

    Rasmussen, Lauge Baungaard; Nielsen, Thorkild


    The aim of this article is to analyse entrepreneurship from an action research perspective. What is entrepreneurship about? Which are the fundamental capabilities and processes of entrepreneurship? To answer these questions the article includes a case study of a Danish entrepreneur and his networks...

  4. Reduced-scale water test of natural circulation for decay heat removal in loop-type sodium-cooled fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, T., E-mail: [Central Research Institute of Electric Power Industry, 1646 Abiko, Chiba (Japan); Eguchi, Y., E-mail: [Central Research Institute of Electric Power Industry, 1646 Abiko, Chiba (Japan); Oyama, K., E-mail: [Mitsubishi FBR Systems, Inc., 2-34-17 Jinguumae, Shibuya, Tokyo (Japan); Watanabe, O., E-mail: [Mitsubishi FBR Systems, Inc., 2-34-17 Jinguumae, Shibuya, Tokyo (Japan)


    Highlights: • The natural circulation characteristics of a loop-type SFR are examined by a water test. • The performance of decay heat removal system is evaluated using a similarity law. • The effects of flow deviation in the parallel piping of a primary loop are clarified. • The reproducibility of the natural circulation test is confirmed. - Abstract: Water tests of a loop-type sodium-cooled fast reactor have been conducted to physically evaluate the natural circulation characteristics. The water test apparatus was manufactured as a 1/10-scale mock-up of the Japan Sodium-Cooled Fast Reactor, which adopts a decay heat removal system (DHRS) utilizing natural circulation. Tests simulating a variety of events and operation conditions clarified the thermal hydraulic characteristics and core-cooling performance of the natural circulation in the primary loop. Operation conditions such as the duration of the pump flow coast-down and the activation time of the DHRS affect the natural circulation characteristics. A long pump flow coast-down cools the upper plenum of the reactor vessel (RV). This causes the loss of the buoyant force in the RV. The test result indicates that a long pump flow coast-down tends to result in a rapid increase in the core temperature because of the loss of the buoyant force. The delayed activation of the DHRS causes a decrease in the natural circulation flow rate and a temperature rise in the RV. Flow rate deviation and a reverse flow appear in the parallel cold-leg piping in some events, which cause thermal stratification in the cold-leg piping. The DHRS prevents the core temperature from fatally rise even for the most severe design-basis event, in which sodium leakage in a secondary loop of the DHRS and the opening failure of a single damper of the air cooler occur simultaneously. In the water test for the case of siphon break in the primary loop, which is one of the design extension conditions, a circulation flow consisting of ascendant

  5. Influence of Pyrolysis Temperature on Rice Husk Char Characteristics and Its Tar Adsorption Capability

    Directory of Open Access Journals (Sweden)

    Anchan Paethanom


    Full Text Available A biomass waste, rice husk, was inspected by thermoanalytical investigation to evaluate its capability as an adsorbent medium for tar removal. The pyrolysis process has been applied to the rice husk material at different temperatures 600, 800 and 1000 °C with 20 °C/min heating rate, to investigate two topics: (1 influence of temperature on characterization of rice husk char and; (2 adsorption capability of rice husk char for tar removal. The results showed that subsequent to high temperature pyrolysis, rice husk char became a highly porous material, which was suitable as tar removal adsorbent with the ability to remove tar effectively. In addition, char characteristics and tar removal ability were significantly influenced by the pyrolysis temperature.

  6. Study of optimization of wastewater contaminant removal along with extracellular polymeric substances (EPS) production by a thermotolerant Bacillus sp. ISTVK1 isolated from heat shocked sewage sludge. (United States)

    Gupta, Asmita; Thakur, Indu Shekhar


    The present work involved study of wastewater contaminant removal along with EPS production by a thermotolerant bacterium Bacillus sp. ISTVK1, isolated from heat shocked sewage sludge. EPS production in basal and mineral medium containing 50% filter sterilized wastewater and 0.5% sucrose was found to be 0.83±0.12gL(-1) and 0.31±0.10gL(-1) culture, respectively. GC-MS analysis of EPS revealed the presence of β-d-glucose, α-d-galactose and β-d-arabinose. FT-IR spectrum confirmed the presence carbohydrates. Box-Behnken design was used to optimize process parameters for enhanced EPS production along with % COD reduction of wastewater. The optimised conditions when used in a 1.5L bioreactor showed EPS production of 1.67±0.06gL(-1) culture and 93.0±0.21 % COD removal. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Analysis of the Processes in Spent Fuel Pools in Case of Loss of Heat Removal due to Water Leakage

    Directory of Open Access Journals (Sweden)

    Algirdas Kaliatka


    Full Text Available The safe storage of spent fuel assemblies in the spent fuel pools is very important. These facilities are not covered by leaktight containment; thus, the consequences of overheating and melting of fuel in the spent fuel pools can be very severe. On the other hand, due to low decay heat of fuel assemblies, the processes in pools are slow in comparison with processes in reactor core during LOCA accident. Thus, the accident management measures play a very important role in case of some accidents in spent fuel pools. This paper presents the analysis of possible consequences of fuel overheating due to leakage of water from spent fuel pool. Also, the accident mitigation measure, the late injection of water was evaluated. The analysis was performed for the Ignalina NPP Unit 2 spent fuel pool, using system thermal hydraulic code for severe accident analysis ATHLET-CD. The phenomena, taking place during such accident, are discussed. Also, benchmarking of results of the same accident calculation using ASTEC and RELAP/SCDAPSIM codes is presented here.

  8. The Development of an INL Capability for High Temperature Flow, Heat Transfer, and Thermal Energy Storage with Applications in Advanced Small Modular Reactors, High Temperature Heat Exchangers, Hybrid Energy Systems, and Dynamic Grid Energy Storage C

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xiaodong [The Ohio State Univ., Columbus, OH (United States); Zhang, Xiaoqin [The Ohio State Univ., Columbus, OH (United States); Kim, Inhun [The Ohio State Univ., Columbus, OH (United States); O' Brien, James [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sabharwall, Piyush [Idaho National Lab. (INL), Idaho Falls, ID (United States)


    The overall goal of this project is to support Idaho National Laboratory in developing a new advanced high temperature multi fluid multi loop test facility that is aimed at investigating fluid flow and heat transfer, material corrosion, heat exchanger characteristics and instrumentation performance, among others, for nuclear applications. Specifically, preliminary research has been performed at The Ohio State University in the following areas: 1. A review of fluoride molten salts’ characteristics in thermal, corrosive, and compatibility performances. A recommendation for a salt selection is provided. Material candidates for both molten salt and helium flow loop have been identified. 2. A conceptual facility design that satisfies the multi loop (two coolant loops [i.e., fluoride molten salts and helium]) multi purpose (two operation modes [i.e., forced and natural circulation]) requirements. Schematic models are presented. The thermal hydraulic performances in a preliminary printed circuit heat exchanger (PCHE) design have been estimated. 3. An introduction of computational methods and models for pipe heat loss analysis and cases studies. Recommendations on insulation material selection have been provided. 4. An analysis of pipe pressure rating and sizing. Preliminary recommendations on pipe size selection have been provided. 5. A review of molten fluoride salt preparation and chemistry control. An introduction to the experience from the Molten Salt Reactor Experiment at Oak Ridge National Laboratory has been provided. 6. A review of some instruments and components to be used in the facility. Flowmeters and Grayloc connectors have been included. This report primarily presents the conclusions drawn from the extensive review of literatures in material selections and the facility design progress at the current stage. It provides some useful guidelines in insulation material and pipe size selection, as well as an introductory review of facility process and components.

  9. Feasibility study for use of the natural convection shutdown heat removal test facility (NSTF) for VHTR water-cooled RCCS shutdown.

    Energy Technology Data Exchange (ETDEWEB)

    Tzanos, C.P.; Farmer, M.T.; Nuclear Engineering Division


    -normal operating conditions. The standpipes are headered (in groups of four in the prototype) to water supply (header) tanks that are situated well above the reactor vessel to facilitate natural convection cooling during a loss of forced flow event. During normal operations, the water is pumped from a heat sink located outside the containment to the headered inlets to the standpipes. The water is then delivered to each standpipe through a centrally located downcomer that passes the coolant to the bottom of each pipe. The water then turns 180{sup o} and rises up through the annular gap while extracting heat from the reactor cavity due to a combination of natural convection and radiation across the gap between the reactor vessel and standpipes. The water exits the standpipes at the top where it is headered (again in groups of four) into a return line that passes the coolant to the top of the header tank. Coolant is drawn from each tank through a fitting located near the top of the tank where it flows to the heat rejection system located outside the containment. This completes the flow circuit for normal operations. During off-normal conditions, forced convection water cooling in the RCCS is presumed to be lost, as well as the ultimate heat sink outside the containment. In this case, water is passively drawn from an open line located at the bottom of the header tank. This line is orificed so that flow bypass during normal operations is small, yet the line is large enough to provide adequate flow during passive operations to remove decay heat while maintaining acceptable fuel temperatures. In the passive operating mode, water flows by natural convection from the bottom of the supply tank to the standpipes, and returns through the normal pathway to the top of the tanks. After the water reaches saturation and boiling commences, steam will pass through the top of the tanks and be vented to atmosphere. In the experiment system shown in Fig. 4, a steam condensation and collection system is

  10. Application of in-service temperature lowering to reduce radioactivity corrosion product deposition on carbon steel piping of BWR residual heat removal system

    Energy Technology Data Exchange (ETDEWEB)

    Aizawa, Motohiro; Chiba, Yoshinori [Hitachi Engineering Co., Ltd., Nuclear Power Plant Engineering Dept., Hitachi, Ibaraki (Japan); Ohsumi, Katsumi [Hitachi Ltd., Power and Industrial Systems Nuclear Systems Division, Hitachi, Ibaraki (Japan); Uchida, Shunsuke [Tohoku Univ., Graduate School of Engineering, Dept. of Quantum Science and Energy Engineering, Sendai, Miyagi (Japan); Takahashi, Toshihiko; Saitoh, Takeshi [Hokuriku Electric Power Company, Shika Nuclear Power Station, Radiation Safety and Chemistry Section, Shika, Ishikawa (Japan)


    Assessment of plant data and experiments on deposition of ion species on carbon steel were carried out in order to develop suitable countermeasures to reduce RHR (residual heat removal) piping dose rate. It was thought that radioactivity deposits on the RHR piping were mainly from radioactive ion species in the coolant and they were enhanced by the dehydration reaction of corrosion products on the piping. From an evaluation for temperature dependence of the dehydration reaction, it was proposed to lower the start-up temperature of RHR operation as a way to reduce radioactivity deposition. Feasibility studies of improved RHR operation were conducted and test operations were carried out in the Shika Nuclear Power Station Unit 1. Application of the improved RHR operation resulted in a temperature reduction from 150degC to 110degC, and a radioactivity deposition reduction on the RHR piping to one-fifth of that in conventional RHR operation. The improved RHR operation has now been applied to more than fifteen Japanese BWRs and significant suppression effects of radioactivity deposition have been observed. (author)

  11. Process for removing heat from liquid manure in containers, cesspits and/or stables. Verfahren zur Entwaermung von Fluessigmist in Behaeltern, Gruben und/oder Stallungen

    Energy Technology Data Exchange (ETDEWEB)

    Anders, G.; Hell, F.


    The invention bears on a process for energy conservation through heat recovery from liquid manure. By airing the manure, a biological oxidation process is initiated releasing heat and producing a low-odour biofertilizer. The heat itself can be intercepted by means of energy-collecting lines in combination with a heat pump.

  12. RF Pulsed Heating

    Energy Technology Data Exchange (ETDEWEB)

    Pritzkau, David P.


    RF pulsed heating is a process by which a metal is heated from magnetic fields on its surface due to high-power pulsed RF. When the thermal stresses induced are larger than the elastic limit, microcracks and surface roughening will occur due to cyclic fatigue. Pulsed heating limits the maximum magnetic field on the surface and through it the maximum achievable accelerating gradient in a normal conducting accelerator structure. An experiment using circularly cylindrical cavities operating in the TE{sub 011} mode at a resonant frequency of 11.424 GHz is designed to study pulsed heating on OFE copper, a material commonly used in normal conducting accelerator structures. The high-power pulsed RF is supplied by an X-band klystron capable of outputting 50 MW, 1.5 {micro}s pulses. The test pieces of the cavity are designed to be removable to allow testing of different materials with different surface preparations. A diagnostic tool is developed to measure the temperature rise in the cavity utilizing the dynamic Q change of the resonant mode due to heating. The diagnostic consists of simultaneously exciting a TE{sub 012} mode to steady-state in the cavity at 18 GHz and measuring the change in reflected power as the cavity is heated from high-power pulsed RF. Two experimental runs were completed. One run was executed at a calculated temperature rise of 120 K for 56 x 10{sup 6} pulses. The second run was executed at a calculated temperature rise of 82 K for 86 x 10{sup 6} pulses. Scanning electron microscope pictures show extensive damage occurring in the region of maximum temperature rise on the surface of the test pieces.

  13. Oscillating-Coolant Heat Exchanger (United States)

    Scotti, Stephen J.; Blosser, Max L.; Camarda, Charles J.


    Devices useful in situations in which heat pipes inadequate. Conceptual oscillating-coolant heat exchanger (OCHEX) transports heat from its hotter portions to cooler portions. Heat transported by oscillation of single-phase fluid, called primary coolant, in coolant passages. No time-averaged flow in tubes, so either heat removed from end reservoirs on every cycle or heat removed indirectly by cooling sides of channels with another coolant. Devices include leading-edge cooling devices in hypersonic aircraft and "frost-free" heat exchangers. Also used in any situation in which heat pipe used and in other situations in which heat pipes not usable.

  14. CFD Analysis and Visualization of the Two Phase Flow in a Thermosyphon for a Passive Heat Removal System of a Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Joseph; Lee, Jae Young [Handong Global University, Pohang (Korea, Republic of)


    A thermosyphon, wickless heat pipe, is a heat transfer device of high thermal conductance that functions passively on the principle of evaporation and condensation of a working fluid. The heat-pipe concept was first proposed by Gaugler in 1942. After its independent invention by Grover in the early 1960s, serious development progress was made, and the heat pipe concept was studied intensively for both space and terrestrial applications, because of its beneficial characteristics. Annamalai and Ramalingam developed a CFD modeling for wick part of heat pipe using commercial code, ANSYS CFX. Khurram Kafeel numerically studied thermal hydraulic characteristics of thermosyphon in both transient and steady state. Bandar Fadhl et al. built a CFD modeling for boiling and condensing of thermosyphon using VOF method of ANSYS Fluent. They made user defined function (UDF) to define source term based on Lee model. In this study, CFD model of 1m-thermosyphon has been studied using VOF model. Unlike formal studies, vacuum pressure condition was applied because thermosyphon with vacuum inner pressure is much generally used. Furthermore, to check out hydraulic characteristics of the model, transparent thermosyphon experiment also has been conducted. The main purpose of this research is the investigation of CFD model of thermosyphon. Simulations using VOF method were performed to analyze evaporating, condensing and two phase flow of a thermosyphon. The simulation results show that complex phenomena inside of thermosyphon can be modeled using VOF method. Flow visualizations of working fluid matched well with transparent heat pipe experiment.

  15. Rights, goals, and capabilities

    NARCIS (Netherlands)

    van Hees, M.


    This article analyses the relationship between rights and capabilities in order to get a better grasp of the kind of consequentialism that the capability theory represents. Capability rights have been defined as rights that have a capability as their object (rights to capabilities). Such a

  16. Rights, goals, and capabilities

    NARCIS (Netherlands)

    van Hees, M.V.B.P.M

    This article analyses the relationship between rights and capabilities in order to get a better grasp of the kind of consequentialism that the capability theory represents. Capability rights have been defined as rights that have a capability as their object (rights to capabilities). Such a

  17. Poly-α,β-DL-aspartyl-L-cysteine: a novel nanomaterial having a porous structure, special complexation capability for Pb(II), and selectivity of removing Pb(II). (United States)

    Li, Li; Wu, Jianhui; Zhao, Ming; Wang, Yuji; Zhang, Huiliang; Zhang, Xiaoyi; Gui, Lin; Liu, Jiawang; Mair, Nathan; Peng, Shiqi


    Poly-α,β-DL-aspartic acid is known as a green chelant of various metal ions. To provide a novel nanochelant for treating Pb(II) poisoning, poly-α,β-DL-aspartic acid was modified with L-Cys to form poly-α,β-DL-aspartyl-L-cysteine (PDC; MW, 27273). DL-Asp was converted into polysuccinimide through a thermal polycondensation, and the amidation of polysuccinimide with L-Cys provided PDC. In water, PDC formed various porous nanospecies. In the mouse lead intoxication model, both intraperitoneal and oral administration of PDC (0.1, 1.0, and 10.0 nmol/kg) dose dependently removed Pb(II) accumulated in the organ, bone, and blood. PDC did not remove the essential metals including Cu(2+), Fe(2+), Mn(2+), Zn(2+), and Ca(2+) of the treated mice. The porous feature and size of the pH- and concentration-dependent nanospecies of PDC benefited the removal of Pb(II).

  18. Improvement of the decay heat removal characteristics of the generation IV gas-cooled fast reactor; Amelioration des caracteristiques de la dissipation de la chaleur de decroissance pour les reacteurs a neutrons rapides de quatrieme generation refroidi au gaz

    Energy Technology Data Exchange (ETDEWEB)

    Epiney, A.S.


    The main drawback of the GFR is the difficulty to evacuate decay heat following a loss-of-coolant accident (LOCA) due to the low thermal inertia of the core, as well as to the low coolant density. The present doctoral research focuses on the improvement of decay heat removal (DHR) for the Generation-IV GFR. The reference GFR system design considered in the thesis is the 2006 CEA concept, with a power of 2400 MWth. The CEA 2006 DHR strategy foresees, in all accidental cases (independent of the system pressure), that the reactor is shut down. For high pressure events, dedicated DHR loops with blowers and heat exchangers are designed to operate when the power conversion system cannot be used to provide acceptable core temperatures under natural convection conditions. For de-pressurized events, the strategy relies on a dedicated small containment (called the guard containment) providing an intermediate back-up pressure. The DHR blowers, designed to work under these pressure conditions, need to be powered either by the power grid or by batteries for at least 24 hours. The specific contributions of the present research - aimed at achieving enhanced passivity of the DHR system for the GFR - are design and analysis related to (1) the injection of heavy gas into the primary circuit after a LOCA, to enable natural convection cooling at an intermediate-pressure level, and (2) an autonomous Brayton loop to evacuate decay heat at low primary pressure in case of a loss of the guard containment pressure. Both these developments reduce the dependence on blower power availability considerably. First, the thermal-hydraulic codes used in the study - TRACE and CATHARE - are validated for gas cooling. The validation includes benchmark comparisons between the codes, serving to identify the sensitivity of the results to the different modeling assumptions. The parameters found to be the most sensitive in this analysis, such as heat transfer and friction models, are then validated via a

  19. Mobile Test Capabilities (United States)

    Federal Laboratory Consortium — The Electrical Power Mobile Test capabilities are utilized to conduct electrical power quality testing on aircraft and helicopters. This capability allows that the...

  20. New Insights on the Simultaneous Removal by Adsorption on Organoclays of Humic Acid and Phenol

    Directory of Open Access Journals (Sweden)

    Emese Szabó


    Full Text Available The exploitation of thermal water as a heat source in houses and apartments (during winter is a widely used alternative to natural gas. However, this type of water may contain organic contaminants, which must be removed before releasing the used water into rivers and lakes. Because of the presence of a wide range of pollutants (including phenolic compounds and humates, efficient, cheap removal processes are needed. In order to demonstrate their capability in thermal water cleaning, clay minerals were applied for the removal of phenol and humic acid via adsorption. To determine the most efficient removal strategy for the aforementioned pollutants, the following parameters were investigated: the type of the clay mineral, the organophilization strategy (in situ or pre-organophilization, and the individual or simultaneous removability of the model pollutants. The current study revealed that the applied low cost, in situ prepared clay mineral adsorbents are applicable in the removal of pollutants from thermal water.

  1. Dam removal: Listening in (United States)

    Foley, Melissa M.; Bellmore, James; O'Connor, James E.; Duda, Jeff; East, Amy E.; Grant, Gordon G.; Anderson, Chauncey; Bountry, Jennifer A.; Collins, Mathias J.; Connolly, Patrick J.; Craig, Laura S.; Evans, James E.; Greene, Samantha; Magilligan, Francis J.; Magirl, Christopher S.; Major, Jon J.; Pess, George R.; Randle, Timothy J.; Shafroth, Patrick B.; Torgersen, Christian; Tullos, Desiree D.; Wilcox, Andrew C.


    Dam removal is widely used as an approach for river restoration in the United States. The increase in dam removals—particularly large dams—and associated dam-removal studies over the last few decades motivated a working group at the USGS John Wesley Powell Center for Analysis and Synthesis to review and synthesize available studies of dam removals and their findings. Based on dam removals thus far, some general conclusions have emerged: (1) physical responses are typically fast, with the rate of sediment erosion largely dependent on sediment characteristics and dam-removal strategy; (2) ecological responses to dam removal differ among the affected upstream, downstream, and reservoir reaches; (3) dam removal tends to quickly reestablish connectivity, restoring the movement of material and organisms between upstream and downstream river reaches; (4) geographic context, river history, and land use significantly influence river restoration trajectories and recovery potential because they control broader physical and ecological processes and conditions; and (5) quantitative modeling capability is improving, particularly for physical and broad-scale ecological effects, and gives managers information needed to understand and predict long-term effects of dam removal on riverine ecosystems. Although these studies collectively enhance our understanding of how riverine ecosystems respond to dam removal, knowledge gaps remain because most studies have been short (< 5 years) and do not adequately represent the diversity of dam types, watershed conditions, and dam-removal methods in the U.S.

  2. Conceptual study of ferromagnetic pebbles for heat exhaust in fusion reactors with short power decay length

    Directory of Open Access Journals (Sweden)

    N. Gierse


    The key results of this study are that very high heat fluxes are accessible in the operation space of ferromagnetic pebbles, that ferromagnetic pebbles are compatible with tokamak operation and current divertor designs, that the heat removal capability of ferromagnetic pebbles increases as λq decreases and, finally, that for fusion relevant values of q∥ pebble diameters below 100 μm are required.

  3. Dynamic capabilities, Marketing Capability and Organizational Performance

    Directory of Open Access Journals (Sweden)

    Adriana Roseli Wünsch Takahashi


    Full Text Available The goal of the study is to investigate the influence of dynamic capabilities on organizational performance and the role of marketing capabilities as a mediator in this relationship in the context of private HEIs in Brazil. As a research method we carried out a survey with 316 IES and data analysis was operationalized with the technique of structural equation modeling. The results indicate that the dynamic capabilities have influence on organizational performance only when mediated by marketing ability. The marketing capability has an important role in the survival, growth and renewal on educational services offerings for HEIs in private sector, and consequently in organizational performance. It is also demonstrated that mediated relationship is more intense for HEI with up to 3,000 students and other organizational profile variables such as amount of courses, the constitution, the type of institution and type of education do not significantly alter the results.

  4. Heat pipe radiation cooling of advanced hypersonic propulsion system components (United States)

    Martin, R. A.; Keddy, M.; Merrigan, M. A.; Silverstein, C. C.


    Heat transfer, heat pipe, and system studies were performed to assess the newly proposed heat pipe radiation cooling (HPRC) concept. With an HPRC system, heat is removed from the ramburner and nozzle of a hypersonic aircraft engine by a surrounding, high-temperature, heat pipe nacelle structure, transported to nearby external surfaces, and rejected to the environment by thermal radiation. With HPRC, the Mach number range available for using hydrocarbon fuels for aircraft operation extends into the Mach 4 to Mach 6 range, up from the current limit of about Mach 4. Heat transfer studies using a newly developed HPRC computer code determine cooling system and ramburner and nozzle temperatures, heat loads, and weights for a representative combined-cycle engine cruising at Mach 5 at 80,000 ft altitude. Heat pipe heat transport calculations, using the Los Alamos code HTPIPE, reveal that adequate heat trasport capability is available using molybdenum-lithium heat pipe technology. Results show that the HPRC system radiator area is limited in size to the ramburner-nozzle region of the engine nacelle; reasonable system weights are expected; hot section temperatures are consistent with advanced structural materials development goals; and system impact on engine performance is minimal.

  5. Analysing Leontiev Tube Capabilities in the Space-based Plants

    Directory of Open Access Journals (Sweden)

    N. L. Shchegolev


    Full Text Available The paper presents a review of publications dedicated to the gas-dynamic temperature stratification device (the Leontief tube and shows main factors affecting its efficiency. Describes an experimental installation, which is used to obtain data on the value of energy separation in the air to prove this device the operability.The assumption that there is an optimal relationship between the flow velocities in the subsonic and supersonic channels of the gas-dynamic temperature stratification device is experimentally confirmed.The paper conducts analysis of possible ways to raise the efficiency of power plants of various (including space basing, and shows that, currently, a mainstream of increasing efficiency of their operation is to complicate design solutions.A scheme of the closed gas-turbine space-based plant using a mixture of inert gases (helium-xenon one for operation is proposed. What differs it from the simplest variants is a lack of the cooler-radiator and integration into gas-dynamic temperature stratification device and heat compressor.Based on the equations of one-dimensional gas dynamics, it is shown that the total pressure restorability when removing heat in a thermal compressor determines operating capability of this scheme. The exploratory study of creating a heat compressor is performed, and it is shown that when operating on gases with a Prandtl number close to 1, the total pressure does not increase.The operating capability conditions of the heat compressor are operation on gases with a low value of the Prandtl number (helium-xenon mixture at high supersonic velocities and with a longitudinal pressure gradient available.It is shown that there is a region of the low values of the Prandtl number (Pr <0.3 for which, with the longitudinal pressure gradient available in the supersonic flows of a viscous gas, the total pressure can be restored.

  6. Isolated quantum heat engine. (United States)

    Fialko, O; Hallwood, D W


    We present a theoretical and numerical analysis of a quantum system that is capable of functioning as a heat engine. This system could be realized experimentally using cold bosonic atoms confined to a double well potential that is created by splitting a harmonic trap with a focused laser. The system shows thermalization, and can model a reversible heat engine cycle. This is the first demonstration of the operation of a heat engine with a finite quantum heat bath.

  7. Isolated quantum heat engine


    Fialko, O.; Hallwood, D.


    We present a theoretical and numerical analysis of a quantum system that is capable of functioning as a heat engine. This system could be realized experimentally using cold bosonic atoms confined to a double well potential that is created by splitting a harmonic trap with a focused laser. The system shows thermalization, and can model a reversible heat engine cycle. This is the first demonstration of the operation of a heat engine with a finite quantum heat bath.

  8. Cataract removal (United States)

    ... eye diseases and eye surgery. Adults are usually awake for the procedure. Numbing medicine (local anesthesia) is ... removed. Tips for recovering after cataract surgery: Wear dark sunglasses outside after you remove the patch. Wash ...

  9. Nevus Removal (United States)

    ... find the answers you seek. What are the Negative Effects of Nevus Removal? Removal procedures are major ... Reunited Donor Challenge Met! Find Nevus Outreach on Facebook To New Parents of a Child With a ...

  10. Heat transfer performance test of PDHRS heat exchangers of PGSFR using STELLA-1 facility

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jonggan, E-mail:; Yeom, Sujin; Eoh, Jae-Hyuk; Lee, Tae-Ho; Jeong, Ji-Young


    Highlights: • Heat transfer performance test of heat exchangers of PGSFR PDHRS is conducted using STELLA-1 facility. • Steady-state test results of DHX and AHX show good agreement with theoretical results of design codes. • Design codes for DHX and AHX are validated by STELLA-1 experimental results. • Heat transport capability of DHX and AHX is turned out to be satisfactory for reliable plant operation. - Abstract: The STELLA-1 facility was designed and constructed to carry out separate effect tests of the decay heat exchanger (DHX) and natural draft sodium-to-air heat exchanger (AHX), which are key components of the safety-grade decay heat removal system in PGSFR. The DHX is a sodium-to-sodium heat exchanger with a straight tube arrangement, and the AHX is a sodium-to-air heat exchanger with a helically coiled tube arrangement. The model heat exchangers in STELLA-1 have been designed to meet their own similitude conditions from the prototype ones, of which scale ratios were set to be unity in height (or length) and 1/2.5 in heat transfer rate. Consequently, the overall heat transfer coefficients and log-mean temperature differences of the prototypes have been preserved as well. The steady-state test results for each model heat exchanger obtained from STELLA-1 showed good agreement with the theoretical results of the computer design codes for thermal-sizing and a performance analysis of the DHX and AHX. In the DHX result comparison, the discrepancies in the heat transfer rate ranged from −4.4% to 2.0%, and in the AHX result comparison, they ranged from −11.1% to 12.6%. Therefore, the first step in thermal design codes validation for sodium heat exchangers, e.g., DHX and AHX, has been successfully completed with the experimental database obtained from STELLA-1. In addition, the heat transfer performance of the DHX and AHX was found to be satisfactory enough to secure a reliable decay heat removal performance.

  11. Capabilities for Strategic Adaptation

    DEFF Research Database (Denmark)

    Distel, Andreas Philipp

    This dissertation explores capabilities that enable firms to strategically adapt to environmental changes and preserve competitiveness over time – often referred to as dynamic capabilities. While dynamic capabilities being a popular research domain, too little is known about what these capabilities...... on capabilities for sensing and seizing new business opportunities and reconfiguring corporate resources. More specifically, the dissertation examines the role of key organization members, such as knowledge workers and top managers, in defining and building these capabilities. Moreover, it investigates how...... empirical studies through the dynamic capabilities lens and develops propositions for future research. The second paper is an empirical study on the origins of firm-level absorptive capacity; it explores how organization-level antecedents, through their impact on individual-level antecedents, influence...

  12. Investigation of material removal rate (MRR) and wire wear ratio (WWR) for alloy Ti6Al4 V exposed to heat treatment processing in WEDM and optimization of parameters using Grey relational analysis

    Energy Technology Data Exchange (ETDEWEB)

    Altug, Mehmet [Inonu Univ., Malatya (Turkey). Dept. of Machine and Metal Technologies


    The study examines the changes of the microstructural, mechanical and conductivity characteristics of the titanium alloy Ti6Al4 V as a result of heat treatment using wire electrical discharge machining, and their effect on machinability. By means of optical microscopy and scanning electron microscopy (SEM), analyses have been performed to determine various characteristics and additionally, microhardness and conductivity measurements have been conducted. Material removal rate (MRR) and wire wear ratio (WWR) values have been determined by using L18 Taguchi test design. The microstructures of the samples have been changed by thermal procedures. Results have been obtained by using the Grey relational analysis (GRA) optimization technique to solve the maximum MRR and minimum WWR values. The best (highest) MRR value is obtained from sample E which was water quenched in dual phase processing. The microstructure of this sample is composed of primary α and α' phases. The best (lowest) WWR value is obtained from sample A.

  13. Cooperative Engagement Capability (CEC) (United States)


    Selected Acquisition Report (SAR) RCS: DD-A&T(Q&A)823-582 Cooperative Engagement Capability (CEC) As of FY 2017 President’s Budget Defense...Program Information Program Name Cooperative Engagement Capability (CEC) DoD Component Navy Joint Participants United States Marine Corps; United...dated June 16, 2004 CEC December 2015 SAR March 17, 2016 12:13:59 UNCLASSIFIED 5 Mission and Description Mission The Cooperative Engagement Capability

  14. Heat dissipating nuclear reactor with metal liner (United States)

    Gluekler, E.L.; Hunsbedt, A.; Lazarus, J.D.


    A nuclear reactor containment including a reactor vessel disposed within a cavity with capability for complete inherent decay heat removal in the earth and surrounded by a cast steel containment member which surrounds the vessel is described in this disclosure. The member has a thick basemat in contact with metal pilings. The basemat rests on a bed of porous particulate material, into which water is fed to produce steam which is vented to the atmosphere. There is a gap between the reactor vessel and the steel containment member. The containment member holds any sodium or core debris escaping from the reactor vessel if the core melts and breaches the vessel.

  15. Absorption heat pump system (United States)

    Grossman, Gershon; Perez-Blanco, Horacio


    An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.

  16. Telematics Options and Capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Hodge, Cabell [National Renewable Energy Laboratory (NREL), Golden, CO (United States)


    This presentation describes the data tracking and analytical capabilities of telematics devices. Federal fleet managers can use the systems to keep their drivers safe, maintain a fuel efficient fleet, ease their reporting burden, and save money. The presentation includes an example of how much these capabilities can save fleets.

  17. Dynamic Capabilities and Performance

    DEFF Research Database (Denmark)

    Wilden, Ralf; Gudergan, Siegfried P.; Nielsen, Bo Bernhard


    Dynamic capabilities are widely considered to incorporate those processes that enable organizations to sustain superior performance over time. In this paper, we argue theoretically and demonstrate empirically that these effects are contingent on organizational structure and the competitive...... intensity in the market. Results from partial least square structural equation modeling (PLS-SEM) analyses indicate that organic organizational structures facilitate the impact of dynamic capabilities on organizational performance. Furthermore, we find that the performance effects of dynamic capabilities...... are contingent on the competitive intensity faced by firms. Our findings demonstrate the performance effects of internal alignment between organizational structure and dynamic capabilities, as well as the external fit of dynamic capabilities with competitive intensity. We outline the advantages of PLS...


    DEFF Research Database (Denmark)

    Calkins, Hugh; Hindricks, Gerhard; Cappato, Riccardo


    The publisher regrets that this article has been temporarily removed. A replacement will appear as soon as possible in which the reason for the removal of the article will be specified, or the article will be reinstated. The full Elsevier Policy on Article Withdrawal can be found at https://www.e...

  19. KSC Technical Capabilities Website (United States)

    Nufer, Brian; Bursian, Henry; Brown, Laurette L.


    This document is the website pages that review the technical capabilities that the Kennedy Space Center (KSC) has for partnership opportunities. The purpose of this information is to make prospective customers aware of the capabilities and provide an opportunity to form relationships with the experts at KSC. The technical capabilities fall into these areas: (1) Ground Operations and Processing Services, (2) Design and Analysis Solutions, (3) Command and Control Systems / Services, (4) Materials and Processes, (5) Research and Technology Development and (6) Laboratories, Shops and Test Facilities.

  20. Preparation of odour removal catalysts with self-regeneration capability

    National Research Council Canada - National Science Library

    Zhao, Yongxiang; Zhao, Lili; Huang, Yu; Chen, Haoyi; Xiao, Tiancun


    .... Here, for the first time, we have developed an activated carbon-alumina composite-supported ZnCu bimetallic metal oxide catalyst, which not only has very high capacity to absorb the strong smell...

  1. Solar Array Panels With Dust-Removal Capability (United States)

    Dawson, Stephen; Mardesich, Nick; Spence, Brian; White, Steve


    It has been proposed to incorporate piezoelectric vibrational actuators into the structural supports of solar photovoltaic panels, for the purpose of occasionally inducing vibrations in the panels in order to loosen accumulated dust. Provided that the panels were tilted, the loosened dust would slide off under its own weight. Originally aimed at preventing obscuration of photovoltaic cells by dust accumulating in the Martian environment, the proposal may also offer an option for the design of solar photovoltaic panels for unattended operation at remote locations on Earth. The figure depicts a typical lightweight solar photovoltaic panel comprising a backside grid of structural spars that support a thin face sheet that, in turn, supports an array of photovoltaic cells on the front side. The backside structure includes node points where several spars intersect. According to the proposal, piezoelectric buzzers would be attached to the node points. The process of designing the panel would be an iterative one that would include computational simulation of the vibrations by use of finite- element analysis to guide the selection of the vibrational frequency of the actuators and the cross sections of the spars to maximize the agitation of dust.

  2. Capabilities for innovation

    DEFF Research Database (Denmark)

    Nielsen, Peter; Nielsen, René Nesgaard; Bamberger, Simon Grandjean


    between employers and employees are expected to be of vital importance. This article will follow a resource-based perspective on developing dynamic capabilities in order to test the importance of enhancing human and organizational capabilities for innovation in firms. In particular, the article will focus...... on some of the important institutional conditions in Danish firms derived from the Nordic model, such as the formal and informal relations of cooperation between employers and employees in firms and their function in building capabilities for innovation. The foundation of the empirical analysis...... and in particular their ability to develop firm-specific innovative capabilities through employee participation and creation of innovative workplaces. In this article, we argue that national institutional conditions can play an enhancing or hampering role in this. Especially the norms and values governing relations...

  3. Capabilities and social cohesion


    Diego Lanzi


    The paper connects the concepts of well-being and social cohesion. By using Sen's capability approach to well-being, and analysing the socio-psychological literature on cohesiveness in groups and communities, we explain when social cohesion has positive effects on the development of social capabilities and human well-being. Furthermore, we discuss cases and conditions in which stronger social cohesion may delay the achievement of the kind of goals Sen has in mind. Finally, we suggest a multid...

  4. CASL Dakota Capabilities Summary

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Brian M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Simmons, Chris [Univ. of Texas, Austin, TX (United States); Williams, Brian J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    The Dakota software project serves the mission of Sandia National Laboratories and supports a worldwide user community by delivering state-of-the-art research and robust, usable software for optimization and uncertainty quantification. These capabilities enable advanced exploration and riskinformed prediction with a wide range of computational science and engineering models. Dakota is the verification and validation (V&V) / uncertainty quantification (UQ) software delivery vehicle for CASL, allowing analysts across focus areas to apply these capabilities to myriad nuclear engineering analyses.

  5. Education and Innovative Capabilities


    Leiponen, Aija


    This study investigates the role of capabilities, acquired through education and on the job learning, in innovation. It is argued that education enhances learning and innovation because it provides employees with communication and interaction skills, and, more importantly, with abilities to receive, understand and utilize relevant knowledge, and solve problems. These dynamic capabilities are one of the sources of innovation. A dataset of 333 Finnish manufacturing firms is used to estimat...

  6. Space Logistics: Launch Capabilities (United States)

    Furnas, Randall B.


    The current maximum launch capability for the United States are shown. The predicted Earth-to-orbit requirements for the United States are presented. Contrasting the two indicates the strong National need for a major increase in Earth-to-orbit lift capability. Approximate weights for planned payloads are shown. NASA is studying the following options to meet the need for a new heavy-lift capability by mid to late 1990's: (1) Shuttle-C for near term (include growth versions); and (2) the Advanced Lauching System (ALS) for the long term. The current baseline two-engine Shuttle-C has a 15 x 82 ft payload bay and an expected lift capability of 82,000 lb to Low Earth Orbit. Several options are being considered which have expanded diameter payload bays. A three-engine Shuttle-C with an expected lift of 145,000 lb to LEO is being evaluated as well. The Advanced Launch System (ALS) is a potential joint development between the Air Force and NASA. This program is focused toward long-term launch requirements, specifically beyond the year 2000. The basic approach is to develop a family of vehicles with the same high reliability as the Shuttle system, yet offering a much greater lift capability at a greatly reduced cost (per pound of payload). The ALS unmanned family of vehicles will provide a low end lift capability equivalent to Titan IV, and a high end lift capability greater than the Soviet Energia if requirements for such a high-end vehicle are defined.In conclusion, the planning of the next generation space telescope should not be constrained to the current launch vehicles. New vehicle designs will be driven by the needs of anticipated heavy users.

  7. Tattoo removal. (United States)

    Adatto, Maurice A; Halachmi, Shlomit; Lapidoth, Moshe


    Over 50,000 new tattoos are placed each year in the United States. Studies estimate that 24% of American college students have tattoos and 10% of male American adults have a tattoo. The rising popularity of tattoos has spurred a corresponding increase in tattoo removal. Not all tattoos are placed intentionally or for aesthetic reasons though. Traumatic tattoos due to unintentional penetration of exogenous pigments can also occur, as well as the placement of medical tattoos to mark treatment boundaries, for example in radiation therapy. Protocols for tattoo removal have evolved over history. The first evidence of tattoo removal attempts was found in Egyptian mummies, dated to have lived 4,000 years BC. Ancient Greek writings describe tattoo removal with salt abrasion or with a paste containing cloves of white garlic mixed with Alexandrian cantharidin. With the advent of Q-switched lasers in the late 1960s, the outcomes of tattoo removal changed radically. In addition to their selective absorption by the pigment, the extremely short pulse duration of Q-switched lasers has made them the gold standard for tattoo removal. Copyright © 2011 S. Karger AG, Basel.

  8. Advanced Coating Removal Techniques (United States)

    Seibert, Jon


    An important step in the repair and protection against corrosion damage is the safe removal of the oxidation and protective coatings without further damaging the integrity of the substrate. Two such methods that are proving to be safe and effective in this task are liquid nitrogen and laser removal operations. Laser technology used for the removal of protective coatings is currently being researched and implemented in various areas of the aerospace industry. Delivering thousands of focused energy pulses, the laser ablates the coating surface by heating and dissolving the material applied to the substrate. The metal substrate will reflect the laser and redirect the energy to any remaining protective coating, thus preventing any collateral damage the substrate may suffer throughout the process. Liquid nitrogen jets are comparable to blasting with an ultra high-pressure water jet but without the residual liquid that requires collection and removal .As the liquid nitrogen reaches the surface it is transformed into gaseous nitrogen and reenters the atmosphere without any contamination to surrounding hardware. These innovative technologies simplify corrosion repair by eliminating hazardous chemicals and repetitive manual labor from the coating removal process. One very significant advantage is the reduction of particulate contamination exposure to personnel. With the removal of coatings adjacent to sensitive flight hardware, a benefit of each technique for the space program is that no contamination such as beads, water, or sanding residue is left behind when the job is finished. One primary concern is the safe removal of coatings from thin aluminum honeycomb face sheet. NASA recently conducted thermal testing on liquid nitrogen systems and found that no damage occurred on 1/6", aluminum substrates. Wright Patterson Air Force Base in conjunction with Boeing and NASA is currently testing the laser remOval technique for process qualification. Other applications of liquid

  9. Campus Capability Plan

    Energy Technology Data Exchange (ETDEWEB)

    Adams, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Arsenlis, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bailey, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bergman, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Brase, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Brenner, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Camara, L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Carlton, H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Cheng, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chrzanowski, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Colson, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); East, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Farrell, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ferranti, L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Gursahani, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hansen, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Helms, L. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hernandez, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Jeffries, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Larson, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lu, K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); McNabb, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mercer, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Skeate, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sueksdorf, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Zucca, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Le, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ancria, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Scott, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Leininger, L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Gagliardi, F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Gash, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bronson, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chung, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hobson, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Meeker, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sanchez, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Zagar, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Quivey, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sommer, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Atherton, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)


    Lawrence Livermore National Laboratory Campus Capability Plan for 2018-2028. Lawrence Livermore National Laboratory (LLNL) is one of three national laboratories that are part of the National Nuclear Security Administration. LLNL provides critical expertise to strengthen U.S. security through development and application of world-class science and technology that: Ensures the safety, reliability, and performance of the U.S. nuclear weapons stockpile; Promotes international nuclear safety and nonproliferation; Reduces global danger from weapons of mass destruction; Supports U.S. leadership in science and technology. Essential to the execution and continued advancement of these mission areas are responsive infrastructure capabilities. This report showcases each LLNL capability area and describes the mission, science, and technology efforts enabled by LLNL infrastructure, as well as future infrastructure plans.

  10. Technological Capability's Predictor Variables

    Directory of Open Access Journals (Sweden)

    Fernanda Maciel Reichert


    Full Text Available The aim of this study was to identify the factors that influence in configuration of the technological capability of companies in sectors with medium-low technological intensity. To achieve the goal proposed in this article a survey was carried out. Based on the framework developed by Lall (1992 which classifies firms in basic, intermediate and advanced level of technological capability; it was found that the predominant technological capability is intermediate, with 83.7% of respondent companies (plastics companies in Brazil. It is believed that the main contribution of this study is the finding that the dependent variable named “Technological Capability” can be explained at a rate of 65% by six variables: development of new processes; selection of the best equipment supplier; sales of internally developed new technology to third parties; design and manufacture of equipment; study of the work methods and perform inventory control; and improvement of product quality.

  11. Sandia QIS Capabilities.

    Energy Technology Data Exchange (ETDEWEB)

    Muller, Richard P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)


    Sandia National Laboratories has developed a broad set of capabilities in quantum information science (QIS), including elements of quantum computing, quantum communications, and quantum sensing. The Sandia QIS program is built atop unique DOE investments at the laboratories, including the MESA microelectronics fabrication facility, the Center for Integrated Nanotechnologies (CINT) facilities (joint with LANL), the Ion Beam Laboratory, and ASC High Performance Computing (HPC) facilities. Sandia has invested $75 M of LDRD funding over 12 years to develop unique, differentiating capabilities that leverage these DOE infrastructure investments.

  12. Capability Handbook- offline metrology

    DEFF Research Database (Denmark)

    Islam, Aminul; Marhöfer, David Maximilian; Tosello, Guido

    This offline metrological capability handbook has been made in relation to HiMicro Task 3.3. The purpose of this document is to assess the metrological capability of the HiMicro partners and to gather the information of all available metrological instruments in the one single document. It provides...... a quick overview of what is possible today by the state of the art, what the HiMicro consortium can do and what metrological requirements we have concerning the HiMicro industrial demonstrators....

  13. Management Innovation Capabilities

    DEFF Research Database (Denmark)

    Harder, Mie

    Management innovation is the implementation of a new management practice, process, technique or structure that significantly alters the way the work of management is performed. This paper presents a typology categorizing management innovation along two dimensions; radicalness and complexity. Then......, the paper introduces the concept of management innovation capabilities which refers to the ability of a firm to purposefully create, extend and modify its managerial resource base to address rapidly changing environments. Drawing upon behavioral theory of the firm and the dynamic capabilities framework......, the paper proposes a model of the foundations of management innovation. Propositions and implications for future research are discussed....

  14. Capabilities for Intercultural Dialogue (United States)

    Crosbie, Veronica


    The capabilities approach offers a valuable analytical lens for exploring the challenge and complexity of intercultural dialogue in contemporary settings. The central tenets of the approach, developed by Amartya Sen and Martha Nussbaum, involve a set of humanistic goals including the recognition that development is a process whereby people's…

  15. a Capability approach

    African Journals Online (AJOL)

    efforts towards gender equality in education as a means of achieving social justice. Over the years .... who, in exploring the idea of capabilities in support of the intrinsic importance of gender equality in education, came up ... Firstly, personal conversion factors (e.g. metabolism, physical condition, sex, gender, reading skills ...

  16. The Capability Approach

    NARCIS (Netherlands)

    I.A.M. Robeyns (Ingrid)


    textabstract In its most general description, the capability approach is a flexible and multi-purpose normative framework, rather than a precise theory of well-being, freedom or justice. At its core are two normative claims: first, the claim that the freedom to achieve well-being is of primary

  17. Building Service Provider Capabilities

    DEFF Research Database (Denmark)

    Brandl, Kristin; Jaura, Manya; Ørberg Jensen, Peter D.

    In this paper we study whether and how the interaction between clients and the service providers contributes to the development of capabilities in service provider firms. In situations where such a contribution occurs, we analyze how different types of activities in the production process...

  18. a Capability approach

    African Journals Online (AJOL)

    focus on personal and socio-environmental conversion factors that transform resources into functionings, and on the whole social and institutional context that affects the conversion factors and also the capability set directly (Sen, 2009; Unterhalter, 2007 and Robeyns, 2007). Applying this to the SMTs learning and teaching ...

  19. Visual Absorption Capability (United States)

    Lee Anderson; Jerry Mosier; Geoffrey Chandler


    Visual absorption capability (VAC) is a tool to assess a landscape's susceptibility to visual change caused by man's activities. This paper explores different descriptive approaches to VAC and addresses in depth the development of the VAC process used on the Klamath National Forest. Four biophysical factors were selected to assess VAC for the lands within the...

  20. Capabilities and Special Needs

    DEFF Research Database (Denmark)

    Kjeldsen, Christian Christrup

    into international consideration in relation to the implementation of the UN convention on the rights of persons with disabilities. As for the theoretical basis, the research makes use of the sociological open-ended and relational concepts of Pierre Bourdieu and the normative yardstick of the Capability Approach...

  1. Capabilities Composition (Briefing Charts) (United States)


    and support , , processes (including ITIL v3) • Understanding of Governance is still evolving Engineering Acquisition and Operational Governance...L – Logistics • NC – Net-Centric • CPM – Capability Portfolio Management • ITIL v3 – Information Technology • ONR – Office of Naval Research

  2. Capitalizing on capabilities. (United States)

    Ulrich, Dave; Smallwood, Norm


    By making the most of organizational capabilities--employees' collective skills and fields of expertise--you can dramatically improve your company's market value. Although there is no magic list of proficiencies that every organization needs in order to succeed, the authors identify 11 intangible assets that well-managed companies tend to have: talent, speed, shared mind-set and coherent brand identity, accountability, collaboration, learning, leadership, customer connectivity, strategic unity, innovation, and efficiency. Such companies typically excel in only three of these capabilities while maintaining industry parity in the other areas. Organizations that fall below the norm in any of the 11 are likely candidates for dysfunction and competitive disadvantage. So you can determine how your company fares in these categories (or others, if the generic list doesn't suit your needs), the authors explain how to conduct a "capabilities audit," describing in particular the experiences and findings of two companies that recently performed such audits. In addition to highlighting which intangible assets are most important given the organization's history and strategy, this exercise will gauge how well your company delivers on its capabilities and will guide you in developing an action plan for improvement. A capabilities audit can work for an entire organization, a business unit, or a region--indeed, for any part of a company that has a strategy to generate financial or customer-related results. It enables executives to assess overall company strengths and weaknesses, senior leaders to define strategy, midlevel managers to execute strategy, and frontline leaders to achieve tactical results. In short, it helps turn intangible assets into concrete strengths.

  3. Skin lesion removal (United States)

    Shave excision - skin; Excision of skin lesions - benign; Skin lesion removal - benign; Cryosurgery - skin, benign; BCC - removal; Basal cell cancer - removal; Actinic keratosis - removal; Wart - removal; Squamous cell - removal; ...

  4. Validation of intermediate heat and decay heat exchanger model in MARS-LMR with STELLA-1 and JOYO tests

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Chiwoong; Ha, Kwiseok; Hong, Jonggan; Yeom, Sujin; Eoh, Jaehyuk [Sodium-cooled Fast Reactor Design Division, Korea Atomic Energy Research Institute (KAERI), 989-111, Daedeok-Daero, Yuseong-Gu, Daejeon 305-353 (Korea, Republic of); Jeong, Hae-yong, E-mail: [Department of Nuclear Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 143-747 (Korea, Republic of)


    Highlights: • The capability of the MARS-LMR for heat transfer through IHX and DHX is evaluated. • Prediction of heat transfer through IHXs and DHXs is essential in the SFR analysis. • Data obtained from the STELLA-1 and the JOYO test are analyzed with the MARS-LMR. • MARS-LMR adopts the Aoki’s correlation for tube side and Graber-Rieger’s for shell. • The performance of the basic models and other available correlations is evaluated. • The current models in MARS-LMR show best prediction for JOYO and STELLA-1 data. - Abstract: The MARS-LMR code has been developed by the Korea Atomic Energy Research Institute (KAERI) to analyze transients in a pool-type sodium-cooled fast reactor (SFR). Currently, KAERI is developing a prototype Gen-IV SFR (PGSFR) with metallic fuel. The decay heat exchangers (DHXs) and the intermediate heat exchangers (IHXs) were designed as a sodium-sodium counter-flow tube bundle type for decay heat removal system (DHRS) and intermediate heat transport system (IHTS), respectively. The IHX and DHX are important components for a heat removal function under normal and accident conditions, respectively. Therefore, sodium heat transfer models for the DHX and IHX heat exchangers were added in MARS-LMR. In order to validate the newly added heat transfer model, experimental data were obtained from the JOYO and STELLA-1 facilities were analyzed. JOYO has two different types of IHXs: type-A (co-axial circular arrangement) and type-B (triangular arrangement). For the code validation, 38 and 39 data points for type A and type B were selected, respectively. A DHX performance test was conducted in STELLA-1, which is the test facility for heat exchangers and primary pump in the PGSFR. The DHX test in STELLA-1 provided eight data points for a code validation. Ten nodes are used in the heat transfer region is used, based on the verification test for the heat transfer models. RMS errors for JOYO IHX type A and type B of 19.1% and 4.3% are obtained

  5. Hair Removal (United States)

    ... in girls who need it. Deciding to remove body hair is a personal choice. Getting rid of body hair doesn't make a person healthier, and you ... you don't want to. Some cultures view body hair as beautiful and natural, so do what feels ...

  6. Building Server Capabilities

    DEFF Research Database (Denmark)

    Adeyemi, Oluseyi


    Many western companies have moved part of their operations to China in order to take advantage of cheap resources and/or to gain access to a high potential market. Depending on motive, offshore facilities usually start either as “sales-only” of products exported by headquarters or “production......-only”, exporting parts and components back to headquarter for sales in the home country. In the course of time, the role of offshore subsidiaries in a company’s operations network tends to change and, with that, the capabilities, of the subsidiaries. Focusing on Danish subsidiaries in China, the objective...... of this project is to identify and explain trajectories of offshore subsidiary capability development. Given the nature of this objective the chief methodology is longitudinal, partly retrospective, partly real-time, case studies....

  7. Metrology Measurement Capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, L.M.


    This document contains descriptions of Federal Manufacturing & Technologies (FM&T) Metrology capabilities, traceability flow charts, and the measurement uncertainty of each measurement capability. Metrology provides NIST traceable precision measurements or equipment calibration for a wide variety of parameters, ranges, and state-of-the-art uncertainties. Metrology laboratories conform to the requirements of the Department of Energy Development and Production Manual Chapter 8.4, ANSI/ISO/IEC ANSI/ISO/IEC 17025:2000, and ANSI/NCSL Z540-1 (equivalent to ISO Guide 25). FM&T Metrology laboratories are accredited by NVLAP for the parameters, ranges, and uncertainties listed in the specific scope of accreditation under NVLAP Lab code 200108-0. See the Internet at These parameters are summarized in the table at the bottom of this introduction.

  8. Group Capability Model (United States)

    Olejarski, Michael; Appleton, Amy; Deltorchio, Stephen


    The Group Capability Model (GCM) is a software tool that allows an organization, from first line management to senior executive, to monitor and track the health (capability) of various groups in performing their contractual obligations. GCM calculates a Group Capability Index (GCI) by comparing actual head counts, certifications, and/or skills within a group. The model can also be used to simulate the effects of employee usage, training, and attrition on the GCI. A universal tool and common method was required due to the high risk of losing skills necessary to complete the Space Shuttle Program and meet the needs of the Constellation Program. During this transition from one space vehicle to another, the uncertainty among the critical skilled workforce is high and attrition has the potential to be unmanageable. GCM allows managers to establish requirements for their group in the form of head counts, certification requirements, or skills requirements. GCM then calculates a Group Capability Index (GCI), where a score of 1 indicates that the group is at the appropriate level; anything less than 1 indicates a potential for improvement. This shows the health of a group, both currently and over time. GCM accepts as input head count, certification needs, critical needs, competency needs, and competency critical needs. In addition, team members are categorized by years of experience, percentage of contribution, ex-members and their skills, availability, function, and in-work requirements. Outputs are several reports, including actual vs. required head count, actual vs. required certificates, CGI change over time (by month), and more. The program stores historical data for summary and historical reporting, which is done via an Excel spreadsheet that is color-coded to show health statistics at a glance. GCM has provided the Shuttle Ground Processing team with a quantifiable, repeatable approach to assessing and managing the skills in their organization. They now have a common

  9. Hair removal. (United States)

    Haedersdal, Merete; Haak, Christina S


    Hair removal with optical devices has become a popular mainstream treatment that today is considered the most efficient method for the reduction of unwanted hair. Photothermal destruction of hair follicles constitutes the fundamental concept of hair removal with red and near-infrared wavelengths suitable for targeting follicular and hair shaft melanin: normal mode ruby laser (694 nm), normal mode alexandrite laser (755 nm), pulsed diode lasers (800, 810 nm), long-pulse Nd:YAG laser (1,064 nm), and intense pulsed light (IPL) sources (590-1,200 nm). The ideal patient has thick dark terminal hair, white skin, and a normal hormonal status. Currently, no method of lifelong permanent hair eradication is available, and it is important that patients have realistic expectations. Substantial evidence has been found for short-term hair removal efficacy of up to 6 months after treatment with the available systems. Evidence has been found for long-term hair removal efficacy beyond 6 months after repetitive treatments with alexandrite, diode, and long-pulse Nd:YAG lasers, whereas the current long-term evidence is sparse for IPL devices. Treatment parameters must be adjusted to patient skin type and chromophore. Longer wavelengths and cooling are safer for patients with darker skin types. Hair removal with lasers and IPL sources are generally safe treatment procedures when performed by properly educated operators. However, safety issues must be addressed since burns and adverse events do occur. New treatment procedures are evolving. Consumer-based treatments with portable home devices are rapidly evolving, and presently include low-level diode lasers and IPL devices. Copyright © 2011 S. Karger AG, Basel.

  10. Investigations in gallium removal

    Energy Technology Data Exchange (ETDEWEB)

    Philip, C.V.; Pitt, W.W. [Texas A and M Univ., College Station, TX (United States); Beard, C.A. [Amarillo National Resource Center for Plutonium, TX (United States)


    Gallium present in weapons plutonium must be removed before it can be used for the production of mixed-oxide (MOX) nuclear reactor fuel. The main goal of the preliminary studies conducted at Texas A and M University was to assist in the development of a thermal process to remove gallium from a gallium oxide/plutonium oxide matrix. This effort is being conducted in close consultation with the Los Alamos National Laboratory (LANL) personnel involved in the development of this process for the US Department of Energy (DOE). Simple experiments were performed on gallium oxide, and cerium-oxide/gallium-oxide mixtures, heated to temperatures ranging from 700--900 C in a reducing environment, and a method for collecting the gallium vapors under these conditions was demonstrated.

  11. Removing Bureaucracy (United States)


    threshold of an Acquisition Category ( ACAT ) I program. The comptroller then added a significant cost for “oversight” to the bottom line. Suddenly, senior...content reduction in order to avoid designation as ACAT I. We should not have such a burdensome process that people are willing to reduce capability to

  12. Experimental and Computational Studies of Heat Transfer for Wall-type and Fin-type Heat Exchanger (United States)

    Feng, Guochao; Xu, Peng; Gong, Linghui; Li, Laifeng; Zhang, Hengcheng; Li, Hongmei


    Wall-type heat exchangers (WTHX) and fin-type heat exchangers (FTHX) are attached to the first and second stage cold head of two G-M crycoolers respectively in the simulating experimental platform of the internal purifier (SEPEIP). WTHX and FTHX play a significant role in SEPEIP, WTHX is designed to remove heat from helium and freeze-out extremely few impurities, FTHX is for further cooling the helium. In this study, numerical simulation and experimental results for WTHX and FTHX are carried out. According to the comparison, the numerical results have a little discrepancy with the experimental results. However, the discrepancy is within the acceptable level. Finally, it is observed that the WTHX and FTHX are suitable to apply in the experimental system and are capable of guaranteeing a purifying function.

  13. Removing Solids From Supercritical Water (United States)

    Hong, Glenn T.


    Apparatus removes precipitated inorganic salts and other solids in water-recycling process. Designed for use with oxidation in supercritical water which treats wastes and yields nearly pure water. Heating coils and insulation around vessel keep it hot. Locking bracket seals vessel but allows it to be easily opened for replacement of filled canisters.

  14. Solid0Core Heat-Pipe Nuclear Batterly Type Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ehud Greenspan


    This project was devoted to a preliminary assessment of the feasibility of designing an Encapsulated Nuclear Heat Source (ENHS) reactor to have a solid core from which heat is removed by liquid-metal heat pipes (HP).

  15. Heat Islands (United States)

    EPA's Heat Island Effect Site provides information on heat islands, their impacts, mitigation strategies, related research, a directory of heat island reduction initiatives in U.S. communities, and EPA's Heat Island Reduction Program.

  16. Heat Waves (United States)

    Heat Waves Dangers we face during periods of very high temperatures include: Heat cramps: These are muscular pains and ... having trouble with the heat. If a heat wave is predicted or happening… - Slow down. Avoid strenuous ...

  17. ISOPHOT - Capabilities and performance

    DEFF Research Database (Denmark)

    Lemke, D.; Klaas, U.; Abolins, J.


    ISOPHOT covers the largest wavelength range on ISO from 2.5 to 240 mu m. Its scientific capabilities include multi filter and multi-aperture photometry, polarimetry, imaging and spectrophotometry. All modes can optionally include a focal plane chopper. The backbone of the photometric calibration...... operating the instrument in space are continuously being implemented in the standard data reduction software packages available to every observer. Particular strengths of the instrument include the detectability of very cold sources, high resolution mapping and fast spectrophotometry. The far infrared...

  18. Synthesized Magnetic Activated Carbon for Phosphate Removal from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Emad Dehghanifard


    Conclusion: The high efficacy of the adsorption process in this study showed that magnetic activated carbon had good capability in the removal of phosphate and can be used as an appropriate and new method for phosphate removal from aqueous solutions

  19. Milk removal


    Ferneborg, Sabine


    Milk from dairy cows is a staple dietary component for humans all over the world. Regardless of whether milk is consumed in its purest, unaltered form or as high-end products such as fine cheese or ice cream, it needs to be of high quality when taken from the cow, produced at a low price and produced in a system that consider aspects such as animal health, animal welfare and sustainability. This thesis investigated the role of milk removal and the importance of residual milk on milk yield...

  20. Structural Capability of an Organization toward Innovation Capability

    DEFF Research Database (Denmark)

    Nielsen, Susanne Balslev; Momeni, Mostafa


    indicated that the advantages relying on the internal capabilities of organizations may determine the competitive position of organizations better than environmental opportunities do. Characteristics of firms shows that one of the most internal capabilities that lead the organizations to the strongest...... competitive advantage in the organizations is the innovation capability. The innovation capability is associated with other organizational capabilities, and many organizations have focused on the need to identify innovation capabilities.This research focuses on recognition of the structural aspect...... of innovation capability and proposes a conceptual framework based on a Qualitative Meta Synthesis of academic literature on organizations innovation capability. This is proposed for the development of the concept of innovation capability in the organizations and this paper includes an expert based validation...


    Directory of Open Access Journals (Sweden)

    José Carlos Leandro de Sousa


    Full Text Available In integrates pulp and paper mills, the effluent generated by the paper machine can be considered as a sector effluent, called white water, due to the high concentration of calcium. In this work, experiments were conducted to understand the behavior of the effluent in different pH values and to develop removal methods of calcium from the white water, aiming the reuse of water and the calcium recovery. Potentiometric titrations were carried out with HCl 0.022 mol L-1 and NaOH 0.025 mol L-1 standards, after adjusting the effluent pH at 12.0 and 2.0; respectively, which indicated inflection points for the carbonate, bicarbonate and kaolin, components capable of interaction with the soluble calcium. The methods for calcium removal consisted of coprecipitation/adsorption with iron (III and aluminum hydroxides, and precipitation in the presence of sodium oxalate. The results indicated that at low concentrations of ferric sulfate and aluminum sulfate, the removal of calcium is low. In the adsorption assays in the presence of Fe(OH3 and Al(OH3, the increased of the ferric sulfate concentration enabled a slight increase in the calcium removal (16.5 to 31.0 %, reaching 65.0% in the adsorption more precipitation process in pH 10.0. In case of aluminum sulfate, the removal percentages were indifferent (close to 10.0%. In the precipitation of Ca2+ in the oxalate presence, the possibility of satisfactory percentages of removal was observed (75 to 87%, keeping the effluent with the conductivity and pH unchanged, it’s very important, because the increase of effluent conductivity to reuse cause break of paper made. The calcium oxalate recuperated can be heated excessively and changed and calcium carbonate and to be reused. Tests in the highest scale have to be realized to approve the reuse of water and calcium of paper machine.

  2. Absorption-heat-pump system (United States)

    Grossman, G.; Perez-Blanco, H.


    An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.

  3. LHC Capabilities for Quarkonia

    CERN Document Server

    Petrushanko, Sergey


    The measurement of the charmonium and bottomonium resonances in nucleus-nucleus collisions provides crucial information on high-density QCD matter. First, the suppression of quarkonia production is generally agreed to be one of the most direct probes of quark-gluon plasma formation. The observation of anomalous J/$\\psi$ suppression at the CERN-SPS and at RHIC is well established but the clarification of some important remaining questions requires equivalent studies of the $\\Upsilon$ family, only possible at the LHC energies. Second, the production of heavy-quarks proceeds mainly via gluon-gluon fusion processes and, as such, is sensitive to saturation of the gluon density at low-x in the nucleus. Measured departures from the expected vacuum quarkonia cross-sections in Pb+Pb collisions at the LHC will thus provide valuable information not only on the thermodynamical state of the produced partonic medium, but also on the initial-state modifications of the nuclear parton distribution functions. The capabilities ...

  4. Mobile systems capability plan

    Energy Technology Data Exchange (ETDEWEB)



    This plan was prepared to initiate contracting for and deployment of these mobile system services. 102,000 cubic meters of retrievable, contact-handled TRU waste are stored at many sites around the country. Also, an estimated 38,000 cubic meters of TRU waste will be generated in the course of waste inventory workoff and continuing DOE operations. All the defense TRU waste is destined for disposal in WIPP near Carlsbad NM. To ship TRU waste there, sites must first certify that the waste meets WIPP waste acceptance criteria. The waste must be characterized, and if not acceptable, subjected to additional processing, including repackaging. Most sites plan to use existing fixed facilities or open new ones between FY1997-2006 to perform these functions; small-quantity sites lack this capability. An alternative to fixed facilities is the use of mobile systems mounted in trailers or skids, and transported to sites. Mobile systems will be used for all characterization and certification at small sites; large sites can also use them. The Carlsbad Area Office plans to pursue a strategy of privatization of mobile system services, since this offers a number of advantages. To indicate the possible magnitude of the costs of deploying mobile systems, preliminary estimates of equipment, maintenance, and operating costs over a 10-year period were prepared and options for purchase, lease, and privatization through fixed-price contracts considered.

  5. Reduction of fine particle emissions from wood combustion with optimized condensing heat exchangers. (United States)

    Gröhn, Arto; Suonmaa, Valtteri; Auvinen, Ari; Lehtinen, Kari E J; Jokiniemi, Jorma


    In this study, we designed and built a condensing heat exchanger capable of simultaneous fine particle emission reduction and waste heat recovery. The deposition mechanisms inside the heat exchanger prototype were maximized using a computer model which was later compared to actual measurements. The main deposition mechanisms were diffusio- and thermophoresis which have previously been examined in similar conditions only separately. The obtained removal efficiency in the experiments was measured in the total number concentration and ranged between 26 and 40% for the given pellet stove and the heat exchanger. Size distributions and number concentrations were measured with a TSI Fast mobility particle sizer (FMPS). The computer model predicts that there exists a specific upper limit for thermo- and diffusiophoretic deposition for each temperature and water vapor concentration in the flue gas.

  6. Overview of bladder heating technology: matching capabilities with clinical requirements

    NARCIS (Netherlands)

    J.C. Stauffer; G.C. van Rhoon (Gerard)


    textabstractModerate temperature hyperthermia (40–45°C for 1 h) is emerging as an effective treatment to enhance best available chemotherapy strategies for bladder cancer. A rapidly increasing number of clinical trials have investigated the feasibility and efficacy of treating bladder cancer with

  7. Impact of Personnel Capabilities on Organizational Innovation Capability

    DEFF Research Database (Denmark)

    Nielsen, Susanne Balslev; Momeni, Mostafa


    One of the most dynamic capabilities that lead to the strongest competitive advantage in the organizations is the innovation capability. Analysing the development of a firm’s innovation capability is an important research project, and can help organizations to achieve competitive advantage in thi...


    Energy Technology Data Exchange (ETDEWEB)



    Pulse detonation technology for the purpose of removing slag and fouling deposits in coal-fired utility power plant boilers offers great potential. Conventional slag removal methods including soot blowers and water lances have great difficulties in removing slags especially from the down stream areas of utility power plant boilers. The detonation wave technique, based on high impact velocity with sufficient energy and thermal shock on the slag deposited on gas contact surfaces offers a convenient, inexpensive, yet efficient and effective way to supplement existing slag removal methods. A slight increase in the boiler efficiency, due to more effective ash/deposit removal and corresponding reduction in plant maintenance downtime and increased heat transfer efficiency, will save millions of dollars in operational costs. Reductions in toxic emissions will also be accomplished due to reduction in coal usage. Detonation waves have been demonstrated experimentally to have exceptionally high shearing capability, important to the task of removing slag and fouling deposits. The experimental results describe the parametric study of the input parameters in removing the different types of slag and operating condition. The experimental results show that both the single and multi shot detonation waves have high potential in effectively removing slag deposit from boiler heat transfer surfaces. The results obtained are encouraging and satisfactory. A good indication has also been obtained from the agreement with the preliminary computational fluid dynamics analysis that the wave impacts are more effective in removing slag deposits from tube bundles rather than single tube. This report presents results obtained in effectively removing three different types of slag (economizer, reheater, and air-heater) t a distance of up to 20 cm from the exit of the detonation tube. The experimental results show that the softer slags can be removed more easily. Also closer the slag to the exit of

  9. Heat Stress (United States)

    ... Publications and Products Programs Contact NIOSH NIOSH HEAT STRESS Recommend on Facebook Tweet Share Compartir NEW OSHA- ... hot environments may be at risk of heat stress. Exposure to extreme heat can result in occupational ...

  10. Evaluating the efficacy of denture cleansing materials in removal of tea and turmeric stains: An in vitro study. (United States)

    Makhija, Priyanka P; Shigli, Kamal; Awinashe, Vaibhav


    Extrinsic staining of acrylic resin dentures could be a major esthetic problem for denture wearers. Tea, coffee, cola, turmeric, and tobacco often cause extrinsic staining of dentures. To evaluate the efficacy of various denture cleansing materials in the removal of tea and turmeric stains and to compare the efficacy of those denture cleansers with each other in the removal of tea and turmeric stains. Heat-cured acrylic resin specimens were stained using tea and turmeric solutions. The spectrophotometer was used to determine the reflectance values of the samples and to evaluate the efficacy of various denture cleansing materials in removal of tea and turmeric stains. Three denture cleansers, namely, sodium hypochlorite, Safe plus, and Clinsodent were used in the study. Water was used as a control. ANOVA test and post hoc Tukey's test were used to determine the statistical difference between the groups. A statistically significant difference was found (p ≤ 0.05) between the different denture cleansing materials used. Products containing sodium perborate along with trisodium phosphate had the highest stain removing capability. It was found that all the denture cleansing materials used in the study were effective in removing tea and turmeric stains. Products containing sodium perborate along with trisodium phosphate had a comparatively greater stain removal capability than products containing sodium perborate along with sodium bicarbonate followed by products containing sodium hypochlorite followed by water (control).

  11. The development of capability indicators

    NARCIS (Netherlands)

    Anand, Paul; Hunter, Graham; Carter, Ian; Dowding, Keith; Guala, Francesco; Van Hees, Martin


    This paper is motivated by sustained interest in the capabilities approach to welfare economics combined with the paucity of economic statistics that measure capabilities at the individual level. Specifically, it takes a much discussed account of the normatively desirable capabilities constitutive

  12. The Capability to Hold Property

    NARCIS (Netherlands)

    Claassen, Rutger


    This paper discusses the question of whether a capability theory of justice (such as that of Martha Nussbaum) should accept a basic “capability to hold property.” Answering this question is vital for bridging the gap between abstract capability theories of justice and their institutional

  13. Capability-based computer systems

    CERN Document Server

    Levy, Henry M


    Capability-Based Computer Systems focuses on computer programs and their capabilities. The text first elaborates capability- and object-based system concepts, including capability-based systems, object-based approach, and summary. The book then describes early descriptor architectures and explains the Burroughs B5000, Rice University Computer, and Basic Language Machine. The text also focuses on early capability architectures. Dennis and Van Horn's Supervisor; CAL-TSS System; MIT PDP-1 Timesharing System; and Chicago Magic Number Machine are discussed. The book then describes Plessey System 25

  14. Transforming organizational capabilities in strategizing

    DEFF Research Database (Denmark)

    Jørgensen, Claus; Friis, Ole Uhrskov; Koch, Christian


    Offshored and networked enterprises are becoming an important if not leading organizational form and this development seriously challenges their organizational capabilities. More specifically, over the last years, SMEs have commenced entering these kinds of arrangements. As the organizational...... capabilities of SMEs are limited at the outset, even more emphasis is needed regarding the issues of developing relevant organizational capabilities. This paper aims at investigating how capabilities evolve during an offshoring process of more than 5 years in two Danish SMEs, i.e. not only short- but long......-term evolvements within the companies. We develop our framework of understanding organizational capabilities drawing on dynamic capability, relational capability and strategy as practice concepts, appreciating the performative aspects of developing new routines. Our two cases are taken from one author’s Ph...

  15. Heat pumps

    CERN Document Server

    Macmichael, DBA


    A fully revised and extended account of the design, manufacture and use of heat pumps in both industrial and domestic applications. Topics covered include a detailed description of the various heat pump cycles, the components of a heat pump system - drive, compressor, heat exchangers etc., and the more practical considerations to be taken into account in their selection.

  16. Guidelines for removing permanent makeup

    Directory of Open Access Journals (Sweden)

    C.Bettina Rümmelein


    Full Text Available Permanent makeup (PMU is a frequently implemented cosmetic procedure performed by beauticians. From a technical point, PMU is considered a facial tattoo. Failed procedures or a change of mind can lead to the desire for removal. The purpose of this retrospective evaluation of patients who came to the clinic with the desire to remove PMU between 2011 and 2015 was to explore the problems, side effects, and results in order to define treatment guidelines for other doctors. We evaluated 87 individual cases in total. In treatable cases, i.e. 52 out of the 87 cases, laser treatments were performed using a nanosecond Q-switched neodymium-doped yttrium aluminium garnet (Nd:YAG laser. It takes between 1-12 treatments to remove the PMU. In three cases, the colour of the PMU could not be removed by laser and remained after the treatment. In two cases, laser treatment had to be terminated due to colour changes towards the green-blue spectrum. Before PMU removal, laser test shots are urgently recommended as unforeseeable colour changes can cause severe aesthetically unpleasant results. Covered up PMU (skin colour is particularly susceptible to changes in colour. Heat-induced shrinking of the eye area can cause an ectropium. Surgical solutions also have to be taken into consideration. The use of proper eye protection with intraocular eye shields is mandatory. This article is an attempt to set up some guidelines for the treatment of PMU removal.

  17. Lunar Base Heat Pump (United States)

    Walker, D.; Fischbach, D.; Tetreault, R.


    The objective of this project was to investigate the feasibility of constructing a heat pump suitable for use as a heat rejection device in applications such as a lunar base. In this situation, direct heat rejection through the use of radiators is not possible at a temperature suitable for lde support systems. Initial analysis of a heat pump of this type called for a temperature lift of approximately 378 deg. K, which is considerably higher than is commonly called for in HVAC and refrigeration applications where heat pumps are most often employed. Also because of the variation of the rejection temperature (from 100 to 381 deg. K), extreme flexibility in the configuration and operation of the heat pump is required. A three-stage compression cycle using a refrigerant such as CFC-11 or HCFC-123 was formulated with operation possible with one, two or three stages of compression. Also, to meet the redundancy requirements, compression was divided up over multiple compressors in each stage. A control scheme was devised that allowed these multiple compressors to be operated as required so that the heat pump could perform with variable heat loads and rejection conditions. A prototype heat pump was designed and constructed to investigate the key elements of the high-lift heat pump concept. Control software was written and implemented in the prototype to allow fully automatic operation. The heat pump was capable of operation over a wide range of rejection temperatures and cooling loads, while maintaining cooling water temperature well within the required specification of 40 deg. C +/- 1.7 deg. C. This performance was verified through testing.

  18. Laterite-A Potential Alternative for Removal of Groundwater Arsenic ...

    African Journals Online (AJOL)

    Laterite-A Potential Alternative for Removal of Groundwater Arsenic. IMM Rahman, K Iwakabe, J Kawasaki. Abstract. Arsenic removal by heat treated laterite from contaminated water was investigated through batch adsorption experiments. The removal rate was dependent on the initial arsenic concentrations and a high

  19. Heat Pipe Integrated Microsystems

    Energy Technology Data Exchange (ETDEWEB)

    Gass, K.; Robertson, P.J.; Shul, R.; Tigges, C.


    The trend in commercial electronics packaging to deliver ever smaller component packaging has enabled the development of new highly integrated modules meeting the demands of the next generation nano satellites. At under ten kilograms, these nano satellites will require both a greater density electronics and a melding of satellite structure and function. Better techniques must be developed to remove the subsequent heat generated by the active components required to-meet future computing requirements. Integration of commercially available electronics must be achieved without the increased costs normally associated with current generation multi chip modules. In this paper we present a method of component integration that uses silicon heat pipe technology and advanced flexible laminate circuit board technology to achieve thermal control and satellite structure. The' electronics/heat pipe stack then becomes an integral component of the spacecraft structure. Thermal management on satellites has always been a problem. The shrinking size of electronics and voltage requirements and the accompanying reduction in power dissipation has helped the situation somewhat. Nevertheless, the demands for increased onboard processing power have resulted in an ever increasing power density within the satellite body. With the introduction of nano satellites, small satellites under ten kilograms and under 1000 cubic inches, the area available on which to place hot components for proper heat dissipation has dwindled dramatically. The resulting satellite has become nearly a solid mass of electronics with nowhere to dissipate heat to space. The silicon heat pipe is attached to an aluminum frame using a thermally conductive epoxy or solder preform. The frame serves three purposes. First, the aluminum frame provides a heat conduction path from the edge of the heat pipe to radiators on the surface of the satellite. Secondly, it serves as an attachment point for extended structures attached

  20. Developing Collaborative Product Development Capabilities

    DEFF Research Database (Denmark)

    Mahnke, Volker; Tran, Yen


    innovation strategies’. Our analyses suggest that developing such collaboration capabilities benefits from the search for complementary practices, the combination of learning styles, and the development of weak and strong ties. Results also underscore the crucial importance of co-evolution of multi......-level, simultaneous learning processes and highlight the role of human agency in capability development with partners. Building on our analyses, we advance propositions for future research and managerial practices on developing dynamic collaboration capabilities....

  1. Laminated insulators having heat dissipation means (United States)

    Niemann, R.C.; Mataya, K.F.; Gonczy, J.D.


    A laminated body is provided with heat dissipation capabilities. The insulator body is formed by dielectric layers interleaved with heat conductive layers, and bonded by an adhesive to form a composite structure. The heat conductive layers include provision for connection to an external thermal circuit.

  2. Climate change and CO2 removal from the atmosphere

    NARCIS (Netherlands)

    Schuiling, R.D.


    Several methods have been proposed in recent years to counteract climate change and ocean acidification by removing CO2 from the atmosphere (Carbon Dioxide Removal). The most versatile and widely applicable of these methods is enhanced weathering of olivine, which is capable of removing billions of

  3. Heat pumps

    CERN Document Server

    Brodowicz, Kazimierz; Wyszynski, M L; Wyszynski


    Heat pumps and related technology are in widespread use in industrial processes and installations. This book presents a unified, comprehensive and systematic treatment of the design and operation of both compression and sorption heat pumps. Heat pump thermodynamics, the choice of working fluid and the characteristics of low temperature heat sources and their application to heat pumps are covered in detail.Economic aspects are discussed and the extensive use of the exergy concept in evaluating performance of heat pumps is a unique feature of the book. The thermodynamic and chemical properties o

  4. Measurement capability overview in PolyNano

    DEFF Research Database (Denmark)

    Calaon, Matteo; Tosello, Guido; Hansen, Hans Nørgaard


    A measurement capability overview has been conducted to evaluate, among the most used instruments in the field of nanometrology, where the PolyNano project should focus its research. The deliverable presents the most relevant instruments to achieve the best possible measurements accuracy matching...... of principle and high volume low cost production”, WP6 future work will be on standardizing new measuring methods through traceable procedures which will enable product quality control implemented in‐line with micro/nano manufacturing processing technologies....... requirements such as low uncertainty, high repeatability and resolution, adequate measuring range and availability among the different project partners. Based on the present measurement capability overview and in relation to the objective of PolyNano to “remove the technology barrier between lab‐scale proof......A measurement capability overview has been conducted to evaluate, among the most used instruments in the field of nanometrology, where the PolyNano project should focus its research. The deliverable presents the most relevant instruments to achieve the best possible measurements accuracy matching...

  5. A business analytics capability framework

    Directory of Open Access Journals (Sweden)

    Ranko Cosic


    Full Text Available Business analytics (BA capabilities can potentially provide value and lead to better organisational performance. This paper develops a holistic, theoretically-grounded and practically relevant business analytics capability framework (BACF that specifies, defines and ranks the capabilities that constitute an organisational BA initiative. The BACF was developed in two phases. First, an a priori conceptual framework was developed based on the Resource-Based View theory of the firm and a thematic content analysis of the BA literature. Second, the conceptual framework was further developed and refined using a three round Delphi study involving 16 BA experts. Changes from the Delphi study resulted in a refined and confirmed framework including detailed capability definitions, together with a ranking of the capabilities based on importance. The BACF will help academic researchers and industry practitioners to better understand the capabilities that constitute an organisational BA initiative and their relative importance. In future work, the capabilities in the BACF will be operationalised to measure their as-is status, thus enabling organisations to identify key areas of strength and weakness and prioritise future capability improvement efforts.

  6. Technological Dynamics and Social Capability

    DEFF Research Database (Denmark)

    Fagerberg, Jan; Feldman, Maryann; Srholec, Martin


    for the sample as a whole between 1998 and 2008. The results indicate that social capabilities, such as well-developed public knowledge infrastructure, an egalitarian distribution of income, a participatory democracy and prevalence of public safety condition the growth of technological capabilities. Possible...

  7. Experimental Investigation on Effect of Fin Height on Microscale Heat Transfer and Fluid Flow for Macro Scale Industrial Applications (United States)

    Cheng, K. X.; Goh, A. L.; Hadi, M.; Ooi, K. T.


    Microchannel for macro geometry application is gaining popularity particularly in aerospace, biomedical and photovoltaic. A novel method of employing microchannel in macro geometry at lower cost using conventional machining methods has been developed. A solid cylinder on outer diameter 19.4 mm is placed concentrically into a copper pipe of inner diameter 20 mm, forming an annular microchannel with 300 μm gap. This study takes a step further by introducing surface profile of different heights on the surface of solid cylinder and investigating the effect on two main design objectives- increasing heat removal capability at same pumping power and reducing pumping power for the same heat removal duty. Four surface profiles -parallel fins as well as fins with height of 0.1, 0.2 and 0.3 mm, were investigated experimentally at constant heat flux at Reynolds number from 690 to 4600. The amount of fluid in the microchannel, channel length of 30 mm, bifurcating angle of 75 degrees and mean hydraulic diameter of 600 μm are kept as constant parameters. A plain insert is used as benchmark for comparison of enhancement. In this study, insert with fins of 0.3 mm attains the highest enhancement of 43 percent increment in heat transfer as compared to plain insert using the same pumping power. While keeping the heat removal duty constant, the same insert is able to perform the duty using less than 50 percent the pumping power required by the plain insert at low Reynolds numbers.

  8. Simulation and transient analyses of a complete passive heat removal system in a downward cooling pool-type material testing reactor against a complete station blackout and long-term natural convection mode using the RELAP5/3.2 code

    Energy Technology Data Exchange (ETDEWEB)

    Hedayat, Afshin [Reactor and Nuclear Safety School, Nuclear Science and Technology Research Institute (NSTRI), Tehran (Iran, Islamic Republic of)


    In this paper, a complete station blackout (SBO) or complete loss of electrical power supplies is simulated and analyzed in a downward cooling 5-MW pool-type Material Testing Reactor (MTR). The scenario is traced in the absence of active cooling systems and operators. The code nodalization is successfully benchmarked against experimental data of the reactor's operating parameters. The passive heat removal system includes downward water cooling after pump breakdown by the force of gravity (where the coolant streams down to the unfilled portion of the holdup tank), safety flapper opening, flow reversal from a downward to an upward cooling direction, and then the upward free convection heat removal throughout the flapper safety valve, lower plenum, and fuel assemblies. Both short-term and long-term natural core cooling conditions are simulated and investigated using the RELAP5 code. Short-term analyses focus on the safety flapper valve operation and flow reversal mode. Long-term analyses include simulation of both complete SBO and long-term operation of the free convection mode. Results are promising for pool-type MTRs because this allows operators to investigate RELAP code abilities for MTR thermal–hydraulic simulations without any oscillation; moreover, the Tehran Research Reactor is conservatively safe against the complete SBO and long-term free convection operation.

  9. Characterization and Thermal Properties of Nitrate Based Molten Salt for Heat Recovery System (United States)

    Faizal Tukimon, Mohd; Muhammad, Wan Nur Azrina Wan; Nor Annuar Mohamad, Md; Yusof, Farazila


    Molten salt can acts like a storage medium or heat transfer fluid in heat recovery system. Heat transfer fluid is a fluid that has the capability to deliver heat this one side to another while heat recovery system is a system that transfers heat to produce energy. This studies shows about determining the new formulation of different molten nitrate/nitrite salts consisting of LiNO3, KNO2, KNO3 and NaNO2 that give a low temperature of melting point and high average specific heat capacity. Mixed alkaline molten nitrate/nitrite salt can act as a heat transfer fluid due to their advantageous in terms of its properties that feasible in heat recovery system such as high specific heat capacity, low vapour pressure, low cost and wide range of temperature in its application. The mixing of these primary substances will form a new line of quaternary nitrate salt (LiNO3 - KNO2 - KNO3 - NaNO2). The quaternary mixture was heated inside the box furnace at 150°C for four hours and rose up the temperature to 400°C for eight hours to homogenize the mixture. Through heating process, the elements of nitrate/nitrite base were mixed completely. The temperature was then reduced to 115°C for several hours before removing the mixture from the furnace. The melting point of each sample were testified by using thermal gravimetric analysis, TGA/DTA and experiment of determining the specific heat capacity were conducted by using Differential Scanning Calorimeter, DSC. From the result, it is found that the melting point Sample 1 with percentage of weightage (25.4wt% of LiNO3, 33.8wt% of KNO2, 20.7wt% of KNO3 and 20.1wt% of NaNO2) is 94.4°C whereas the average specific heat capacity was 1.0484/g°C while for Sample 3 with percentages of weightage (30.0wt% of LiNO3, 50.2wt% of KNO2, 3.1wt% of KNO3 and 16.7wt% of NaNO2), the melting point is 86.1°C with average specific heat capacity of 0.7274 J/g°C. In the nut shell, the quaternary mixture salts had been a good mixture with good thermal


    Directory of Open Access Journals (Sweden)

    S. L. Rovin


    Full Text Available Heat recovery is an effective method of shortening specific energy consumption. new constructions of recuperators for heating and cupola furnaces have been designed and successfully introduced. two-stage recuperator with computer control providing blast heating up to 600 °C and reducing fuel consumption by 30% is of special interest.

  11. Marketing Capability in Strategy Research

    DEFF Research Database (Denmark)

    Ritter, Thomas; Distel, Andreas Philipp

    Following the call for a demand-side perspective of strategic management (e.g., Priem et al., 2012), a firm’s marketing capability, i.e. its ability to interact with down-stream stakeholders, becomes a pivotal element in explaining a firm’s competitiveness. While marketing capability is recognize...... ground for advancing marketing capability research and thus supporting the demand-side perspective in strategic management, we develop an integrative framework to explain the differences and propose a research agenda for developing the field....

  12. Manufacturing fuel-switching capability, 1988

    Energy Technology Data Exchange (ETDEWEB)


    Historically, about one-third of all energy consumed in the United States has been used by manufacturers. About one-quarter of manufacturing energy is used as feedstocks and raw material inputs that are converted into nonenergy products; the remainder is used for its energy content. During 1988, the most recent year for which data are available, manufacturers consumed 15.5 quadrillion British thermal units (Btu) of energy to produce heat and power and to generate electricity. The manufacturing sector also has widespread capabilities to switch from one fuel to another for either economic or emergency reasons. There are numerous ways to define fuel switching. For the purposes of the Manufacturing Energy Consumption Survey (MECS), fuel switching is defined as the capability to substitute one energy source for another within 30 days with no significant modifications to the fuel-consuming equipment, while keeping production constant. Fuel-switching capability allows manufacturers substantial flexibility in choosing their mix of energy sources. The consumption of a given energy source can be maximized if all possible switching into that energy source takes place. The estimates in this report are based on data collected on the 1988 Manufacturing Energy Consumption Survey (MECS), Forms 846 (A through C). The EIA conducts this national sample survey of manufacturing energy consumption on a triennial basis. The MECS is the only comprehensive source of national-level data on energy-related information for the manufacturing industries. The MECS was first conducted in 1986 to collect data for 1985. This report presents information on the fuel-switching capabilities of manufacturers in 1988. This report is the second of a series based on the 1988 MECS. 8 figs., 31 tabs.

  13. 49 CFR 179.500-6 - Heat treatment. (United States)


    ... 49 Transportation 2 2010-10-01 2010-10-01 false Heat treatment. 179.500-6 Section 179.500-6...-6 Heat treatment. (a) Each necked-down tank shall be uniformly heat treated. Heat treatment shall... treatment of alternate steels shall be approved. All scale shall be removed from outside of tank to an...

  14. Capability to Recover Plutonium-238 in H-Canyon/HB-Line - 13248

    Energy Technology Data Exchange (ETDEWEB)

    Fuller, Kenneth S. Jr.; Smith, Robert H. Jr.; Goergen, Charles R. [Savannah River Nuclear Solutions, LLC, Savannah River Site, Aiken, SC 29802 (United States)


    Plutonium-238 is used in Radioisotope Thermoelectric Generators (RTGs) to generate electrical power and in Radioisotope Heater Units (RHUs) to produce heat for electronics and environmental control for deep space missions. The domestic supply of Pu-238 consists of scrap material from previous mission production or material purchased from Russia. Currently, the United States has no significant production scale operational capability to produce and separate new Pu-238 from irradiated neptunium-237 targets. The Department of Energy - Nuclear Energy is currently evaluating and developing plans to reconstitute the United States capability to produce Pu-238 from irradiated Np-237 targets. The Savannah River Site had previously produced and/or processed all the Pu-238 utilized in Radioisotope Thermoelectric Generators (RTGs) for deep space missions up to and including the majority of the plutonium for the Cassini Mission. The previous full production cycle capabilities included: Np- 237 target fabrication, target irradiation, target dissolution and Np-237 and Pu-238 separation and purification, conversion of Np-237 and Pu-238 to oxide, scrap recovery, and Pu-238 encapsulation. The capability and equipment still exist and could be revitalized or put back into service to recover and purify Pu-238/Np-237 or broken General Purpose Heat Source (GPHS) pellets utilizing existing process equipment in HB-Line Scrap Recovery, and H-Canyon Frame Waste Recovery processes. The conversion of Np-237 and Pu-238 to oxide can be performed in the existing HB-Line Phase-2 and Phase- 3 Processes. Dissolution of irradiated Np-237 target material, and separation and purification of Np-237 and Pu-238 product streams would be possible at production rates of ∼2 kg/month of Pu-238 if the existing H-Canyon Frames Process spare equipment were re-installed. Previously, the primary H-Canyon Frames equipment was removed to be replaced: however, the replacement project was stopped. The spare equipment

  15. Advanced Capabilities for Combat Medics

    National Research Council Canada - National Science Library

    Convertino, Victor A; Cooke, William H; Salinas, Jose; Holcomb, John B


    The US Army Institute of Surgical Research (USAISR) has the lead for directing the Research Program Area for Advanced Triage Capabilities for Combat Medics in the Medical Research and Materiel Command (MRMC...

  16. Counterforce Targeting Capabilities and Challenges

    National Research Council Canada - National Science Library

    Schneider, Barry R


    .... To fully understand what progress the United States has made in counterforce capability, as well as the continuing shortfalls and the way ahead, one has to search for answers to a few key questions, namely...

  17. Broadening Access to Geospatial Capabilities


    Song, Carol


    Responding to the need for geospatial tool and data capabilities in HUBzero from various communities, a Purdue team is developing and integrating geospatial capabilities into the HUBzero software. Funded by the National Science Foundation’s Data Infrastructure Building Blocks (DIBBs) initiative, the follow-on program to the DataNet program, the GABBs project is a four-year software development effort aiming at enabling researchers, students and citizens to share geospatial data and tools onli...

  18. Judgmental Forecasting of Operational Capabilities


    Hallin, Carina Antonia; Tveterås, Sigbjørn; Andersen, Torben Juul


    This paper explores a new judgmental forecasting indicator, the Employee Sensed Operational Capabilities (ESOC). The purpose of the ESOC is to establish a practical prediction tool that can provide early signals about changes in financial performance by gauging frontline employees’ sensing of changes in the firm’s operational capabilities. We present the first stage of the development of ESOC by applying a formative measurement approach to test the index in relation to financia...

  19. Earth Science Capability Demonstration Project (United States)

    Cobleigh, Brent


    A viewgraph presentation reviewing the Earth Science Capability Demonstration Project is shown. The contents include: 1) ESCD Project; 2) Available Flight Assets; 3) Ikhana Procurement; 4) GCS Layout; 5) Baseline Predator B Architecture; 6) Ikhana Architecture; 7) UAV Capability Assessment; 8) The Big Picture; 9) NASA/NOAA UAV Demo (5/05 to 9/05); 10) NASA/USFS Western States Fire Mission (8/06); and 11) Suborbital Telepresence.

  20. Capabilities for Constrained Military Operations (United States)


    information derived from social media, the Internet of Things (IoT) and advanced data analytical methods must be integrated with conventional...Department does have significant capabilities to support whole-of- government approaches. The good news is that The DoD can prevail with inexpensive...for the U.S. to address such conflicts. The good news is that The DoD can prevail with inexpensive capabilities that have low technology risk and on a

  1. Transient Analysis of a Magnetic Heat Pump (United States)

    Schroeder, E. A.


    An experimental heat pump that uses a rare earth element as the refrigerant is modeled using NASTRAN. The refrigerant is a ferromagnetic metal whose temperature rises when a magnetic field is applied and falls when the magnetic field is removed. The heat pump is used as a refrigerator to remove heat from a reservoir and discharge it through a heat exchanger. In the NASTRAN model the components modeled are represented by one-dimensional ROD elements. Heat flow in the solids and fluid are analyzed. The problem is mildly nonlinear since the heat capacity of the refrigerant is temperature-dependent. One simulation run consists of a series of transient analyses, each representing one stroke of the heat pump. An auxiliary program was written that uses the results of one NASTRAN analysis to generate data for the next NASTRAN analysis.

  2. Delta capability for launch of communications satellites (United States)

    Grimes, D. W.; Russell, W. A., Jr.; Kraft, J. D.


    The evolution of capabilities and the current performance levels of the Delta launch vehicle are outlined. The first payload was the Echo I passive communications satellite, weighing 179 lb, and placed in GEO in 1960. Emphasis since then has been to use off-the-shelf hardware where feasible. The latest version in the 3924 first stage, 3920 second stage, and Pam D apogee kick motor third stage. The Delta is presently equipped to place 2800 lb in GEO, as was proven with the 2717 lb Anik-D1 satellite. The GEO payload placement performance matches the Shuttle's, and work is therefore under way to enhance the Delta performance to handle more massive payloads. Installation of the Castor-IV solid motor separation system, thereby saving mass by utilizing compressed nitrogen, rather than mechanical thrusters to remove the strap-on boosters, is indicated, together with use of a higher performance propellant and a wider nose fairing.

  3. Development of Students Learning Capabilities and Professional Capabilities

    DEFF Research Database (Denmark)

    Ringtved, Ulla Lunde; Wahl, Christian; Belle, Gianna

    This paper describes the work-in-progress on a project that aims to develop a tool that via learning analytic methods enable students to enhance, document and assess the development of their learning capabilities and professional capabilities in consequence of their self-initiated study activities...... during their bachelor educations. The tool aims at enhancing the development of students’ capabilities to self-initiate, self-regulate and self-assess their study activities. The tool uses the concept of collective intelligence as source for motivation and inspiration in self-initiating study activities...... as well as self-assessing them. The tool is based on a heutagogical approach to support reflection on learning potential in these activities. This enhances the educational use of students self-initiated learning activities by bringing visibility and evidence to them, and thereby bringing value...

  4. Tritium Removal from Carbon Plasma Facing Components

    Energy Technology Data Exchange (ETDEWEB)

    C.H. Skinner; J.P. Coad; G. Federici


    Tritium removal is a major unsolved development task for next-step devices with carbon plasma-facing components. The 2-3 order of magnitude increase in duty cycle and associated tritium accumulation rate in a next-step tokamak will place unprecedented demands on tritium removal technology. The associated technical risk can be mitigated only if suitable removal techniques are demonstrated on tokamaks before the construction of a next-step device. This article reviews the history of codeposition, the tritium experience of TFTR (Tokamak Fusion Test Reactor) and JET (Joint European Torus) and the tritium removal rate required to support ITER's planned operational schedule. The merits and shortcomings of various tritium removal techniques are discussed with particular emphasis on oxidation and laser surface heating.

  5. Accelerator and electrodynamics capability review

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Kevin W [Los Alamos National Laboratory


    Los Alamos National Laboratory (LANL) uses capability reviews to assess the science, technology and engineering (STE) quality and institutional integration and to advise Laboratory Management on the current and future health of the STE. Capability reviews address the STE integration that LANL uses to meet mission requirements. The Capability Review Committees serve a dual role of providing assessment of the Laboratory's technical contributions and integration towards its missions and providing advice to Laboratory Management. The assessments and advice are documented in reports prepared by the Capability Review Committees that are delivered to the Director and to the Principal Associate Director for Science, Technology and Engineering (PADSTE). Laboratory Management will use this report for STE assessment and planning. LANL has defined fifteen STE capabilities. Electrodynamics and Accelerators is one of the seven STE capabilities that LANL Management (Director, PADSTE, technical Associate Directors) has identified for review in Fiscal Year (FY) 2010. Accelerators and electrodynamics at LANL comprise a blend of large-scale facilities and innovative small-scale research with a growing focus on national security applications. This review is organized into five topical areas: (1) Free Electron Lasers; (2) Linear Accelerator Science and Technology; (3) Advanced Electromagnetics; (4) Next Generation Accelerator Concepts; and (5) National Security Accelerator Applications. The focus is on innovative technology with an emphasis on applications relevant to Laboratory mission. The role of Laboratory Directed Research and Development (LDRD) in support of accelerators/electrodynamics will be discussed. The review provides an opportunity for interaction with early career staff. Program sponsors and customers will provide their input on the value of the accelerator and electrodynamics capability to the Laboratory mission.

  6. Heated Goggles (United States)


    The electrically heated ski goggles shown incorporate technology similar to that once used in Apollo astronauts' helmet visors, and for the same reason-providing fogfree sight in an activity that demands total vision. Defogging is accomplished by applying heat to prevent moisture condensation. Electric heat is supplied by a small battery built into the h goggles' headband. Heat is spread across the lenses by means of an invisible coating of electrically conductive metallic film. The goggles were introduced to the market last fall. They were designed by Sierracin Corporation, Sylmar, California, specialists in the field of heated transparent materials. The company produces heated windshields for military planes and for such civil aircraft as the Boeing 747, McDonnell Douglas DC-10 and Lockheed L-1011 TriStar.

  7. Extending particle tracking capability with Delaunay triangulation. (United States)

    Chen, Kejia; Anthony, Stephen M; Granick, Steve


    Particle tracking, the analysis of individual moving elements in time series of microscopic images, enables burgeoning new applications, but there is need to better resolve conformation and dynamics. Here we describe the advantages of Delaunay triangulation to extend the capabilities of particle tracking in three areas: (1) discriminating irregularly shaped objects, which allows one to track items other than point features; (2) combining time and space to better connect missing frames in trajectories; and (3) identifying shape backbone. To demonstrate the method, specific examples are given, involving analyzing the time-dependent molecular conformations of actin filaments and λ-DNA. The main limitation of this method, shared by all other clustering techniques, is the difficulty to separate objects when they are very close. This can be mitigated by inspecting locally to remove edges that are longer than their neighbors and also edges that link two objects, using methods described here, so that the combination of Delaunay triangulation with edge removal can be robustly applied to processing large data sets. As common software packages, both commercial and open source, can construct Delaunay triangulation on command, the methods described in this paper are both computationally efficient and easy to implement.

  8. Meso-scale machining capabilities and issues

    Energy Technology Data Exchange (ETDEWEB)



    Meso-scale manufacturing processes are bridging the gap between silicon-based MEMS processes and conventional miniature machining. These processes can fabricate two and three-dimensional parts having micron size features in traditional materials such as stainless steels, rare earth magnets, ceramics, and glass. Meso-scale processes that are currently available include, focused ion beam sputtering, micro-milling, micro-turning, excimer laser ablation, femto-second laser ablation, and micro electro discharge machining. These meso-scale processes employ subtractive machining technologies (i.e., material removal), unlike LIGA, which is an additive meso-scale process. Meso-scale processes have different material capabilities and machining performance specifications. Machining performance specifications of interest include minimum feature size, feature tolerance, feature location accuracy, surface finish, and material removal rate. Sandia National Laboratories is developing meso-scale electro-mechanical components, which require meso-scale parts that move relative to one another. The meso-scale parts fabricated by subtractive meso-scale manufacturing processes have unique tribology issues because of the variety of materials and the surface conditions produced by the different meso-scale manufacturing processes.

  9. Methylene blue removal by carbonized textile sludge-based adsorbent. (United States)

    Rahman, Ari; Kishimoto, Naoyuki; Urabe, Takeo; Ikeda, Kazuki


    Colored effluent and a large amount of sludge are major pollutant sources derived from textile industry activity. In this research, the idea for converting textile sludge into a potential adsorbent was conducted through a carbonization process in order to solve the colored effluent problem. Textile sludge was carbonized at a temperature ranging from 400 to 800 °C in the absence of oxygen. Maximum adsorption capacity of carbonized sludge for methylene blue removal reached 60.30 mg/g when the sludge was carbonized at 600 °C with specific surface area of 138.9 m 2 /g and no significant alteration was observed until 800 °C. Experimental research by using a real wastewater also showed that there was almost no disruption during adsorption of methylene blue into surface of carbonized sludge. While reactivation process revealed that the regeneration of carbonized sludge was applicable by secondary heating at the same carbonization temperature. Furthermore, the application of this research demonstrated that the carbonized textile sludge was a good adsorbent for methylene blue removal and had a capability to be reactivated.

  10. Heat exchanger with oscillating flow (United States)

    Scotti, Stephen J. (Inventor); Blosser, Max L. (Inventor); Camarda, Charles J. (Inventor)


    Various heat exchange apparatuses are described in which an oscillating flow of primary coolant is used to dissipate an incident heat flux. The oscillating flow may be imparted by a reciprocating piston, a double action twin reciprocating piston, fluidic oscillators or electromagnetic pumps. The oscillating fluid flows through at least one conduit in either an open loop or a closed loop. A secondary flow of coolant may be used to flow over the outer walls of at least one conduit to remove heat transferred from the primary coolant to the walls of the conduit.

  11. autoimage: Multiple Heat Maps for Projected Coordinates. (United States)

    French, Joshua P


    Heat maps are commonly used to display the spatial distribution of a response observed on a two-dimensional grid. The autoimage package provides convenient functions for constructing multiple heat maps in unified, seamless way, particularly when working with projected coordinates. The autoimage package natively supports: 1. automatic inclusion of a color scale with the plotted image, 2. construction of heat maps for responses observed on regular or irregular grids, as well as non-gridded data, 3. construction of a matrix of heat maps with a common color scale, 4. construction of a matrix of heat maps with individual color scales, 5. projecting coordinates before plotting, 6. easily adding geographic borders, points, and other features to the heat maps. After comparing the autoimage package's capabilities for constructing heat maps to those of existing tools, a carefully selected set of examples is used to highlight the capabilities of the autoimage package.

  12. A unifying process capability metric

    Directory of Open Access Journals (Sweden)

    John Jay Flaig


    Full Text Available A new economic approach to process capability assessment is presented, which differs from the commonly used engineering metrics. The proposed metric consists of two economic capability measures – the expected profit and the variation in profit of the process. This dual economic metric offers a number of significant advantages over other engineering or economic metrics used in process capability analysis. First, it is easy to understand and communicate. Second, it is based on a measure of total system performance. Third, it unifies the fraction nonconforming approach and the expected loss approach. Fourth, it reflects the underlying interest of management in knowing the expected financial performance of a process and its potential variation.


    Presentation will discuss the removal of arsenic from drinking water using iron removal processes that include oxidation/filtration and the manganese greensand processes. Presentation includes results of U.S. EPA field studies conducted in Michigan and Ohio on existing iron remo...

  14. Heat Flux Sensors for Infrared Thermography in Convective Heat Transfer (United States)

    Carlomagno, Giovanni Maria; de Luca, Luigi; Cardone, Gennaro; Astarita, Tommaso


    This paper reviews the most dependable heat flux sensors, which can be used with InfraRed (IR) thermography to measure convective heat transfer coefficient distributions, and some of their applications performed by the authors' research group at the University of Naples Federico II. After recalling the basic principles that make IR thermography work, the various heat flux sensors to be used with it are presented and discussed, describing their capability to investigate complex thermo-fluid-dynamic flows. Several applications to streams, which range from natural convection to hypersonic flows, are also described. PMID:25386758

  15. Heat flux sensors for infrared thermography in convective heat transfer. (United States)

    Carlomagno, Giovanni Maria; de Luca, Luigi; Cardone, Gennaro; Astarita, Tommaso


    This paper reviews the most dependable heat flux sensors, which can be used with InfraRed (IR) thermography to measure convective heat transfer coefficient distributions, and some of their applications performed by the authors' research group at the University of Naples Federico II. After recalling the basic principles that make IR thermography work, the various heat flux sensors to be used with it are presented and discussed, describing their capability to investigate complex thermo-fluid-dynamic flows. Several applications to streams, which range from natural convection to hypersonic flows, are also described.

  16. Heat Flux Sensors for Infrared Thermography in Convective Heat Transfer

    Directory of Open Access Journals (Sweden)

    Giovanni Maria Carlomagno


    Full Text Available This paper reviews the most dependable heat flux sensors, which can be used with InfraRed (IR thermography to measure convective heat transfer coefficient distributions, and some of their applications performed by the authors’ research group at the University of Naples Federico II. After recalling the basic principles that make IR thermography work, the various heat flux sensors to be used with it are presented and discussed, describing their capability to investigate complex thermo-fluid-dynamic flows. Several applications to streams, which range from natural convection to hypersonic flows, are also described.

  17. Heat pipe heat rejection system. [for electrical batteries (United States)

    Kroliczek, E. J.


    A prototype of a battery heat rejection system was developed which uses heat pipes for more efficient heat removal and for temperature control of the cells. The package consists of five thermal mock-ups of 100 amp-hr prismatic cells. Highly conductive spacers fabricated from honeycomb panels into which heat pipes are embedded transport the heat generated by the cells to the edge of the battery. From there it can be either rejected directly to a cold plate or the heat flow can be controlled by means of two variable conductance heat pipes. The thermal resistance between the interior of the cells and the directly attached cold plate was measured to be 0.08 F/Watt for the 5-cell battery. Compared to a conductive aluminum spacer of equal weight the honeycomb/heat pipe spacer has approximately one-fifth of the thermal resistance. In addition, the honeycomb/heat pipe spacer virtually eliminates temperature gradients along the cells.

  18. Judgmental Forecasting of Operational Capabilities

    DEFF Research Database (Denmark)

    Hallin, Carina Antonia; Tveterås, Sigbjørn; Andersen, Torben Juul

    This paper explores a new judgmental forecasting indicator, the Employee Sensed Operational Capabilities (ESOC). The purpose of the ESOC is to establish a practical prediction tool that can provide early signals about changes in financial performance by gauging frontline employees’ sensing...... of changes in the firm’s operational capabilities. We present the first stage of the development of ESOC by applying a formative measurement approach to test the index in relation to financial performance and against an organizational commitment scale. We use distributed lag models to test whether the ESOC...

  19. Nanofabrication principles, capabilities and limits

    CERN Document Server

    Cui, Zheng


    This second edition of Nanofabrication is one of the most comprehensive introductions on nanofabrication technologies and processes. A practical guide and reference, this book introduces readers to all of the developed technologies that are capable of making structures below 100nm. The principle of each technology is introduced and illustrated with minimum mathematics involved. Also analyzed are the capabilities of each technology in making sub-100nm structures, and the limits of preventing a technology from going further down the dimensional scale. This book provides readers with a toolkit that will help with any of their nanofabrication challenges.

  20. Preliminary Heat Transfer Characteristics of RP-2 Fuel as Tested in the High Heat Flux Facility (PREPRINT)

    National Research Council Canada - National Science Library

    Irvine, S. A; Burns, R. M


    ...., high aspect ratio cooling channels, various fuel thermal stability issues, material compatibility, heat transfer capability, effects related to dissolved oxygen or specific sulfur species contained...

  1. Refrigerant charge management in a heat pump water heater (United States)

    Chen, Jie; Hampton, Justin W.


    Heat pumps that heat or cool a space and that also heat water, refrigerant management systems for such heat pumps, and methods of managing refrigerant charge. Various embodiments remove idle refrigerant from a heat exchanger that is not needed for transferring heat by opening a refrigerant recovery valve and delivering the idle refrigerant from the heat exchanger to an inlet port on the compressor. The heat exchanger can be isolated by closing an electronic expansion valve, actuating a refrigerant management valve, or both. Refrigerant charge can be controlled by controlling how much refrigerant is drawn from the heat exchanger, by letting some refrigerant back into the heat exchanger, or both. Heat pumps can be operated in different modes of operation, and various components can be interconnected with refrigerant conduit. Some embodiments deliver refrigerant gas to the heat exchanger and drive liquid refrigerant out prior to isolating the heat exchanger.

  2. Heat Stroke

    DEFF Research Database (Denmark)

    Mørch, Sofie Søndergaard; Andersen, Johnny Dohn Holmgren; Bestle, Morten Heiberg


    Heat stroke is an acute, life-threatening emergency characterized clinically by elevated body temperature and central nervous system dysfunction. Early recognition and treatment including aggressive cooling and management of life-threatening systemic complications are essential to reduce morbidity...... and mortality. This case report describes two Danish patients diagnosed with heat stroke syndrome during a heat wave in the summer of 2014. Both patients were morbidly obese and had several predisposing illnesses. However since heat stroke is a rare condition in areas with temperate climate, they were...... not diagnosed until several days after admittance; hence treatment with cooling was delayed. Both patients were admitted to the intensive care unit, where they were treated with an external cooling device and received treatment for complications. Both cases ended fatally. As global warming continues, more heat...

  3. Capabilities and Well-being

    NARCIS (Netherlands)

    I.P. van Staveren (Irene)


    textabstractIntroduction The Capability Approach (CA) has been initiated and guided by Amartya Sen, since the 1980s, as an alternative to neoclassical welfare economics. The approach emerged gradually out of his rich critique of mainstream economics, in particular his dissatisfaction with

  4. Indigenous Technological Innovation : Capability and ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Indigenous Technological Innovation : Capability and Competitiveness in China's Western Region. China has experienced extraordinary economic growth over the past 20 years. Nevertheless, the vast western region of the country tends to lag behind the dynamic eastern coastline. The gap between the two is an ongoing ...

  5. Microfoundations of Routines and Capabilities

    DEFF Research Database (Denmark)

    Felin, Tippo; Foss, Nicolai Juul; Heimericks, Koen H.


    This article introduces the Special Issue and discusses the microfoundations of routines and capabilities, including why a microfoundations view is needed and how it may inform work on organizational and competitive heterogeneity. Building on extant research, we identify three primary categories...


    Directory of Open Access Journals (Sweden)

    Cătălin IANCU


    Full Text Available In the paper are presented the SolidWorks analysis steps to be taken in order to study sustainability of parts or assemblies designed. There are presented the software capabilities and the settings that have to be done for such analysis and the results shown by software.

  7. Lifelong Learning: Capabilities and Aspirations (United States)

    Ilieva-Trichkova, Petya


    The present paper discusses the potential of the capability approach in conceptualizing and understanding lifelong learning as an agency process, and explores its capacity to guide empirical studies on lifelong learning. It uses data for 20 countries from the Adult Education Survey (2007; 2011) and focuses on aspirations for lifelong learning. The…

  8. ROV (remotely operated vehicles) capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, D.W. [Slingsby Engineering Ltd., Kirkbymoorside, York (United Kingdom)


    Remotely Operated Vehicles (ROVs) and associated tooling are being increasingly utilised in subsea installation and maintenance operations. With the offshore industry developing into deeper waters, 3000 metres and beyond, questions are arising as to the suitability of ROVs. This paper illustrates some of the current applications and capabilities of ROVs and highlights a number of the issues involved at 3000 metres and beyond. (author)

  9. Building server capabilities in China

    DEFF Research Database (Denmark)

    Adeyemi, Oluseyi; Slepniov, Dmitrij; Wæhrens, Brian Vejrum


    The purpose of this paper is to further our understanding of multinational companies building server capabilities in China. The paper is based on the cases of two western companies with operations in China. The findings highlight a number of common patterns in the 1) managerial challenges related...

  10. Research for new UAV capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Canavan, G.H.; Leadabrand, R.


    This paper discusses research for new Unmanned Aerial Vehicles (UAV) capabilities. Findings indicate that UAV performance could be greatly enhanced by modest research. Improved sensors and communications enhance near term cost effectiveness. Improved engines, platforms, and stealth improve long term effectiveness.

  11. Support to the elaboration of the engineering of detail, configuration and programming of the control system of heat removal of the TRIGA Mark III reactor; Apoyo a la elaboracion de la ingenieria de detalle, configuracion y programacion del sistema de control de remocion de calor del reactor Triga Mark III

    Energy Technology Data Exchange (ETDEWEB)

    Diaz G, C. A.


    Nowadays, the peaceful and responsible use of nuclear energy in Mexico is of great importance and contributes to economic, social, scientist and technologic development in the country, highlighting the Instituto Nacional de Investigaciones Nucleares (ININ) and the Nuclear Power Plant of Laguna Verde as one of the most important dependences. Among the main facilities and laboratories of ININ is the Nuclear Research Reactor TRIGA Mark III, this is a pool type reactor with mobile core, cooled and moderated by light water and a flow of 1013 n/cm{sup 2}/sec. Due to the technological obsolescence is a growing problem that threatens the information, operation and/or efficacy of elements of control and safety systems of the reactor, these must be changed each time more frequently. In the modernization of reactor was used a Modicon M340 programmable logic control (PLC) and a Twido PLC for the control of heat removal system (Primary Cooling System (PCS) and Secondary Cooling System (SCS) respectively), this because the PLC has proven to be safe and effective devices, addition to reduce the wiring elements and increase the possibilities of performance and design of the digital control console. This document shows and describes the elements of heat removal system (PCS and SCS), and the signals and signal types that such items send or received by the PLC, likewise, is indicated the methodology used to develop the applications for the control of the Primary Cooling System and Secondary Cooling System, beginning with the PLC design, the development of PLC plans and the control logic, and finally, the simulation and debugging of applications on Unity Pro and Twido Suite. All this in compliance with the safety standards to nuclear research reactors (NS-R-4), the rules of industrial programming (IEC 61131-3), and the reactor operating limits postulated in the safety report and the software assurance system used in the ININ. (Author)

  12. Development of Students Learning Capabilities and Professional Capabilities

    DEFF Research Database (Denmark)

    Ringtved, Ulla Lunde; Wahl, Christian; Belle, Gianna


    This paper describes the work-in-progress on a project that aims todevelop a tool that via learning analytic methods enable studentsto enhance, document and assess the development of their learningcapabilities and professional capabilities in consequence of theirself-initiated study activities...... during their bachelor educations. Thetool aims at enhancing the development of students’ capabilities toself-initiate, self-regulate and self-assess their study activities.The tool uses the concept of collective intelligence as source formotivation and inspiration in self-initiating study activities...... as wellas self-assessing them. The tool is based on a heutagogical approachto support reflection on learning potential in these activities. Thisenhances the educational use of students self-initiated learningactivities by bringing visibility and evidence to them, and therebybringing value to the assessment...


    African Journals Online (AJOL)

    Preferred Customer

    greatly hindered because they lack softening or melting property at usual processing temperature, and they tend to decompose at ... at 120 °C, then was cooled and poured onto crushed ice. The solid was precipitated, washed ... The mixture compounds were heated until completely melted. Then the heating was removed.

  14. Electronic modules easily separated from heat sink (United States)


    Metal heat sink and electronic modules bonded to a thermal bridge can be easily cleaved for removal of the modules for replacement or repair. A thin film of grease between a fluorocarbon polymer film on the metal heat sink and an adhesive film on the modules acts as the cleavage plane.

  15. Modeling Of Metabolic Heat Regenerated Temperature Swing Adsorption (MTSA) Subassembly For Prototype Design (United States)

    Bower, Chad E.; Padilla, Sebastian A.; Iacomini, Christie S.; Paul, Heather L.


    This paper describes modeling methods for the three core components of a Metabolic heat regenerated Temperature Swing Adsorption (MTSA) subassembly: a sorbent bed, a sublimation (cooling) heat exchanger (SHX), and a condensing icing (warming) heat exchanger (CIHX). The primary function of the MTSA, removing carbon dioxide from a space suit Portable Life Support System (PLSS) ventilation loop, is performed via the sorbent bed. The CIHX is used to heat the sorbent bed for desorption and to remove moisture from the ventilation loop while the SHX is alternately employed to cool the sorbent bed via sublimation of a spray of water at low pressure to prepare the reconditioned bed for the next cycle. This paper describes subsystem heat a mass transfer modeling methodologies relevant to the description of the MTSA subassembly in Thermal Desktop and SINDA/FLUINT. Several areas of particular modeling interest are discussed. In the sorbent bed, capture of the translating carbon dioxide (CO2) front and associated local energy and mass balance in both adsorbing and desorbing modes is covered. The CIHX poses particular challenges for modeling in SINDA/FLUINT as accounting for solids states in fluid submodels are not a native capability. Methods for capturing phase change and latent heat of ice as well as the transport properties across a layer of low density accreted frost are developed. This extended modeling capacity is applicable to temperatures greater than 258 K. To extend applicability to the minimum device temperature of 235 K, a method for a mapped transformation of temperatures from below the limit temperatures to some value above is given along with descriptions for associated material property transformations and the resulting impacts to total heat and mass transfer. Similar considerations are given for the SHX along with functional relationships for areal sublimation rates as limited by flow mechanics in t1he outlet duct.

  16. Testing of a Neon Loop Heat Pipe for Large Area Cryocooling (United States)

    Ku, Jentung; Robinson, Franklin Lee


    Cryocooling of large areas such as optics, detector arrays, and cryogenic propellant tanks is required for future NASA missions. A cryogenic loop heat pipe (CLHP) can provide a closed-loop cooling system for this purpose and has many advantages over other devices in terms of reduced mass, reduced vibration, high reliability, and long life. A neon CLHP was tested extensively in a thermal vacuum chamber using a cryopump as the heat sink to characterize its transient and steady performance and verify its ability to cool large areas or components. Tests conducted included loop cool-down from the ambient temperature, startup, power cycle, heat removal capability, loop capillary limit and recovery from a dry-out, low power operation, and long duration steady state operation. The neon CLHP demonstrated robust operation. The loop could be cooled from the ambient temperature to subcritical temperatures very effectively, and could start successfully by applying power to both the pump and evaporator without any pre-conditioning. It could adapt to changes in the pump power andor evaporator power, and reach a new steady state very quickly. The evaporator could remove heat loads between 0.25W and 4W. When the pump capillary limit was exceeded, the loop could resume its normal function by reducing the pump power. Steady state operations were demonstrated for up to 6 hours. The ability of the neon loop to cool large areas was therefore successfully verified.

  17. Diet After Gallbladder Removal (United States)

    ... keep having diarrhea. Is there a gallbladder removal diet I should follow? Answers from Katherine Zeratsky, R. ... months. There isn't a specific gallbladder removal diet that you should follow, but there are a ...

  18. Heat pipes

    CERN Document Server

    Dunn, Peter D


    It is approximately 10 years since the Third Edition of Heat Pipes was published and the text is now established as the standard work on the subject. This new edition has been extensively updated, with revisions to most chapters. The introduction of new working fluids and extended life test data have been taken into account in chapter 3. A number of new types of heat pipes have become popular, and others have proved less effective. This is reflected in the contents of chapter 5. Heat pipes are employed in a wide range of applications, including electronics cooling, diecasting and injection mo


    CERN Multimedia

    Service déménagement; ST Division


    To give you better service and avoid lengthy delays, the Removals Service advises you to refrain from programming moves between 26 July and 3 September, as large-scale removals are already planned during this summer period.Thanking you in advance for your co-operation and understanding.Removals Service STTel. 74185 / Mobile 164017

  20. Human-Centered Design Capability (United States)

    Fitts, David J.; Howard, Robert


    For NASA, human-centered design (HCD) seeks opportunities to mitigate the challenges of living and working in space in order to enhance human productivity and well-being. Direct design participation during the development stage is difficult, however, during project formulation, a HCD approach can lead to better more cost-effective products. HCD can also help a program enter the development stage with a clear vision for product acquisition. HCD tools for clarifying design intent are listed. To infuse HCD into the spaceflight lifecycle the Space and Life Sciences Directorate developed the Habitability Design Center. The Center has collaborated successfully with program and project design teams and with JSC's Engineering Directorate. This presentation discusses HCD capabilities and depicts the Center's design examples and capabilities.

  1. Developing Acquisition IS Integration Capabilities

    DEFF Research Database (Denmark)

    Wynne, Peter J.


    An under researched, yet critical challenge of Mergers and Acquisitions (M&A), is what to do with the two organisations’ information systems (IS) post-acquisition. Commonly referred to as acquisition IS integration, existing theory suggests that to integrate the information systems successfully......, an acquiring company must leverage two high level capabilities: diagnosis and integration execution. Through a case study, this paper identifies how a novice acquirer develops these capabilities in anticipation of an acquisition by examining its use of learning processes. The study finds the novice acquirer...... applies trial and error, experimental, and vicarious learning processes, while actively avoiding improvisational learning. The results of the study contribute to the acquisition IS integration literature specifically by exploring it from a new perspective: the learning processes used by novice acquirers...

  2. Manually operated elastomer heat pump (United States)

    Hutchinson, W. D.


    Device consisting of a rotating mechanism, a frame with multiple wide bands of rubber, and a fluid bath, demonstrates the feasibility of a human operated device capable of cooling or producing heat. This invention utilizes the basic thermodynamic properties of natural rubber.

  3. Determining your organization's 'risk capability'. (United States)

    Hannah, Bill; Hancock, Melinda


    An assessment of a provider's level of risk capability should focus on three key elements: Business intelligence, including sophisticated analytical models that can offer insight into the expected cost and quality of care for a given population. Clinical enterprise maturity, marked by the ability to improve health outcomes and to manage utilization and costs to drive change. Revenue transformation, emphasizing the need for a revenue cycle platform that allows for risk acceptance and management and that provides incentives for performance against defined objectives.

  4. Advanced CO2 Removal and Reduction System (United States)

    Alptekin, Gokhan; Dubovik, Margarita; Copeland, Robert J.


    An advanced system for removing CO2 and H2O from cabin air, reducing the CO2, and returning the resulting O2 to the air is less massive than is a prior system that includes two assemblies . one for removal and one for reduction. Also, in this system, unlike in the prior system, there is no need to compress and temporarily store CO2. In this present system, removal and reduction take place within a single assembly, wherein removal is effected by use of an alkali sorbent and reduction is effected using a supply of H2 and Ru catalyst, by means of the Sabatier reaction, which is CO2 + 4H2 CH4 + O2. The assembly contains two fixed-bed reactors operating in alternation: At first, air is blown through the first bed, which absorbs CO2 and H2O. Once the first bed is saturated with CO2 and H2O, the flow of air is diverted through the second bed and the first bed is regenerated by supplying it with H2 for the Sabatier reaction. Initially, the H2 is heated to provide heat for the regeneration reaction, which is endothermic. In the later stages of regeneration, the Sabatier reaction, which is exothermic, supplies the heat for regeneration.

  5. Employing a chemical method for tubesheet sludge removal (steam generators)

    Energy Technology Data Exchange (ETDEWEB)

    Stolzenberg, N.R.; Thomas, R.C.; Thomas, R.C.


    A chemical technique has been developed for tubesheet sludge removal from PWR steam generators. The process was first applied commercially, with good results, at Millstone Point 2 where the conventional techniques of sludge lancing had not been found capable of removing sufficient sludge to arrest tube degradation.

  6. Summary of Sandia Laboratories technical capabilities

    Energy Technology Data Exchange (ETDEWEB)


    The technical capabilities of Sandia Laboratories are detailed in a series of companion reports. In this summary the use of the capabilities in technical programs is outlined and the capabilities are summarized. 25 figures, 3 tables.

  7. Modular Heat Exchanger With Integral Heat Pipe (United States)

    Schreiber, Jeffrey G.


    Modular heat exchanger with integral heat pipe transports heat from source to Stirling engine. Alternative to heat exchangers depending on integrities of thousands of brazed joints, contains only 40 brazed tubes.

  8. An AMR capable finite element diffusion solver for ALE hydrocodes [An AMR capable diffusion solver for ALE-AMR

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, A. C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bailey, D. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kaiser, T. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Eder, D. C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Gunney, B. T. N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Masters, N. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Koniges, A. E. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Anderson, R. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)


    Here, we present a novel method for the solution of the diffusion equation on a composite AMR mesh. This approach is suitable for including diffusion based physics modules to hydrocodes that support ALE and AMR capabilities. To illustrate, we proffer our implementations of diffusion based radiation transport and heat conduction in a hydrocode called ALE-AMR. Numerical experiments conducted with the diffusion solver and associated physics packages yield 2nd order convergence in the L2 norm.

  9. Hydrogen Fuel Capability Added to Combustor Flametube Rig (United States)

    Frankenfield, Bruce J.


    Facility capabilities have been expanded at Test Cell 23, Research Combustor Lab (RCL23) at the NASA Glenn Research Center, with a new gaseous hydrogen fuel system. The purpose of this facility is to test a variety of fuel nozzle and flameholder hardware configurations for use in aircraft combustors. Previously, this facility only had jet fuel available to perform these various combustor flametube tests. The new hydrogen fuel system will support the testing and development of aircraft combustors with zero carbon dioxide (CO2) emissions. Research information generated from this test rig includes combustor emissions and performance data via gas sampling probes and emissions measuring equipment. The new gaseous hydrogen system is being supplied from a 70 000-standard-ft3 tube trailer at flow rates up to 0.05 lb/s (maximum). The hydrogen supply pressure is regulated, and the flow is controlled with a -in. remotely operated globe valve. Both a calibrated subsonic venturi and a coriolis mass flowmeter are used to measure flow. Safety concerns required the placement of all hydrogen connections within purge boxes, each of which contains a small nitrogen flow that is vented past a hydrogen detector. If any hydrogen leaks occur, the hydrogen detectors alert the operators and automatically safe the facility. Facility upgrades and modifications were also performed on other fluids systems, including the nitrogen gas, cooling water, and air systems. RCL23 can provide nonvitiated heated air to the research combustor, up to 350 psig at 1200 F and 3.0 lb/s. Significant modernization of the facility control systems and the data acquisition systems was completed. A flexible control architecture was installed that allows quick changes of research configurations. The labor-intensive hardware interface has been removed and changed to a software-based system. In addition, the operation of this facility has been greatly enhanced with new software programming and graphic operator interface


    Directory of Open Access Journals (Sweden)

    Ciobanu Dumitru


    Full Text Available The fact that the Internet has become a commodity in the world has created a framework for anew economy. Traditional businesses migrate to this new environment that offers many features and options atrelatively low prices. However competitiveness is fierce and successful Internet business is tied to rigorous use of allavailable information. The information is often hidden in data and for their retrieval is necessary to use softwarecapable of applying data mining algorithms and techniques. In this paper we want to review some of the programswith data mining capabilities currently available in this area.We also propose some classifications of this softwareto assist those who wish to use such software.

  11. Developing a dispersant spraying capability

    Energy Technology Data Exchange (ETDEWEB)

    Gill, S.D.


    In developing a national dispersant spraying capability, the Canadian Coast Guard (CCG) has undertaken a modification program to enable the conventional offshore spraying gear to be mounted on almost any vessel of convenience. Smaller, more versatile inshore spraying vessels and pumps have been designed and built. With the popularization of concentrated dispersants, the inshore pumping equipment can be used aboard hovercraft for special application situations. A program of acquiring mobile dispersant storage tanks has been undertaken with auxiliary equipment that will facilitate the shipment of dispersants in bulk by air freight. Work also has commenced on extending the dispersant application program to include the CCG fleet of helicopters.

  12. Production, innovation and service capabilities

    DEFF Research Database (Denmark)

    Slepniov, Dmitrij; Wæhrens, Brian Vejrum; Wu, Dong


    Fragmentation and global dispersion are among the most prominent characteristics of contemporary operations. Not only routine transactional tasks, but also more knowledge-intensive proprietary tasks are subjected to this trend. As a result of this, complex configurations of assets and capabilities...... crossing both national and organisational borders emerge. The challenge of coordination in these configurations is an imperative which has not been adequately addressed so far. Therefore, by using explorative cases of Chinese and Danish companies, this paper seeks to develop a conceptual framework relating...... functional nodes of global production networks and devising appropriate coordination mechanisms between them....

  13. Heat transfer. Basics and practice

    Energy Technology Data Exchange (ETDEWEB)

    Wetzel, Thomas [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany); Boeckh, Peter von


    The book provides an easy way to understand the fundamentals of heat transfer. The reader will acquire the ability to design and analyze heat exchangers. Without extensive derivation of the fundamentals, the latest correlations for heat transfer coefficients and their application are discussed. The following topics are presented - Steady state and transient heat conduction - Free and forced convection - Finned surfaces - Condensation and boiling - Radiation - Heat exchanger design - Problem-solving After introducing the basic terminology, the reader is made familiar with the different mechanisms of heat transfer. Their practical application is demonstrated in examples, which are available in the Internet as MathCad files for further use. Tables of material properties and formulas for their use in programs are included in the appendix. This book will serve as a valuable resource for both students and engineers in the industry. The author's experience indicates that students, after 40 lectures and exercises of 45 minutes based on this textbook, have proved capable of designing independently complex heat exchangers such as for cooling of rocket propulsion chambers, condensers and evaporators for heat pumps. (orig.)

  14. Acid gas removal in synfuels production

    Energy Technology Data Exchange (ETDEWEB)

    Eickmeyer, A.G.; Gangriwala, H.A.


    The CO/sub 2/, H/sub 2/S and COS contents of gas streams of some synfuel processes and the costs for removal of these gases are tabulated. Four different types of acid gas removal processes discussed are chemisorption, physical adsorption, hybrid or combination of the first two, and sulfur conversion processes. Results of an economic study of H/sub 2/S and CO/sub 2/ removal at pressures of 1379, 2758, and 4137 kPa for 13.8 million normal m/sup 3//day of gas containing 1% H/sub 2/S and 22% CO/sub 2/. The processes considered were selective removal of H/sub 2/S with a solvent process (CATASOL 3) followed by removal of CO/sub 2/ by either the CATASOL 4A physical solvent or the CATACARB process (catalyzed hot potassium). The main feature influencing the selection of acid gas removal process are the gas composition and pressure and availability of low-level waste heat. Capital investment, utilities, and chemical costs were considered for various processes. Since the cost of commercial size synfuel process plants runs into billions of dollars, the added cost of acid gas removal must be carefully considered. (BLM)

  15. Multi-lead heat sink (United States)

    Roose, Lars D.


    The disclosure relates to a heat sink used to protect integrated circuits from the heat resulting from soldering them to circuit boards. A tubular housing contains a slidable member which engages somewhat inwardly extending connecting rods, each of which is rotatably attached at one end to the bottom of the housing. The other end of each rod is fastened to an expandable coil spring loop. As the member is pushed downward in the housing, its bottom edge engages and forces outward the connecting rods, thereby expanding the spring so that it will fit over an integrated circuit. After the device is in place, the member is slid upward and the spring contracts about the leads of the integrated circuit. Soldering is now conducted and the spring absorbs excess heat therefrom to protect the integrated circuit. The placement steps are repeated in reverse order to remove the heat sink for use again.

  16. Droplet Evaporator For High-Capacity Heat Transfer (United States)

    Valenzuela, Javier A.


    Proposed heat-exchange scheme boosts heat transfer per unit area. Key component is generator that fires uniform size droplets of subcooled liquid at hot plate. On impact, droplets spread out and evaporate almost instantly, removing heat from plate. In practice, many generator nozzles arrayed over evaporator plate.

  17. Effect of heat treatment on corrosion behavior of duplex stainless steel in orthodontic applications (United States)

    Sabea Hammood, Ali; Faraj Noor, Ahmed; Talib Alkhafagy, Mohammed


    Heat treatment is necessary for duplex stainless steel (DSS) to remove or dissolve intermetallic phases, to remove segregation and to relieve any residual thermal stress in DSS, which may be formed during production processes. In the present study, the corrosion resistance of a DSS in artificial saliva was studied by potentiodynamic measurements. The microstructure was investigated by scanning electron microscopy (SEM),x-ray diffraction (XRD) and Vickers hardness (HV). The properties were tested in as–received and in thermally treated conditions (800–900 °C, 2–8 min). The research aims to evaluate the capability of DSS for orthodontic applications, in order to substitute the austenitic grades. The results indicate that the corrosion resistance is mainly affected by the ferrite/austenite ratio. The best result was obtained with a treatment at 900 °C for 2 min.

  18. System Modeling of Metabolic Heat Regenerated Temperature Swing Adsorption (MTSA) Subassembly for Prototype Design (United States)

    Bower, Chad; Padilla, Sebastian; Iacomini, Christie; Paul, Heather L.


    This paper describes modeling methods for the three core components of a Metabolic heat regenerated Temperature Swing Adsorption (MTSA) subassembly: the sorbent bed, a sublimation (cooling) heat exchanger (SHX), and a condensing icing (warming) heat exchanger (CIHX). The primary function of the MTSA, removing carbon dioxide from a ventilation loop, is performed via the sorbent bed. The CIHX is used to heat the sorbent bed for desorption and to remove moisture from the ventilation loop while the SHX is alternately employed to cool the sorbent bed via sublimation of a spray of water at low pressure to prepare the reconditioned bed for the next cycle. This paper describes a system level model of the MTSA as developed in Thermal Desktop and SINDA/FLUINT including assumptions on geometry and physical phenomena, modeling methodology and relevant pa ra mete rizatio ns. Several areas of particular modeling interest are discussed. In the sorbent bed, capture of the translating CO2 saturation front and associated local energy and mass balance in both adsorbing and desorbing modes is covered. The CIHX poses particular challenges for modeling in SINDA/FLUINT as accounting for solids states in fluid submodels are not a native capability. Methods for capturing phase change and latent heat of ice as well as the transport properties across a layer of low density accreted frost are developed. This extended modeling capacity is applicable to temperatures greater than 258 K. To extend applicability to the minimum device temperature of 235 K, a method for a mapped transformation of temperatures from below the limit temperatures to some value above is given along with descriptions for associated material property transformations and the resulting impacts to total heat and mass transfer. Similar considerations are shown for the SHX along with assumptions for flow mechanics and resulting model methods for sublimation in a flow.

  19. Hair removal in adolescence

    Directory of Open Access Journals (Sweden)

    Sandra Pereira


    Full Text Available Introduction: Due to hormonal stimulation during puberty, changes occur in hair type and distribution. In both sexes, body and facial unwanted hair may have a negative psychological impact on the teenager. There are several available methods of hair removal, but the choice of the most suitable one for each individual can raise doubts. Objective: To review the main methods of hair removal and clarify their indications, advantages and disadvantages. Development: There are several removal methods currently available. Shaving and depilation with chemicals products are temporary methods, that need frequent repetition, because hair removal is next to the cutaneous surface. The epilating methods in which there is full hair extraction include: epilation with wax, thread, tweezers, epilating machines, laser, intense pulsed light, and electrolysis. Conclusions: The age of beginning hair removal and the method choice must be individualized and take into consideration the skin and hair type, location, dermatological and endocrine problems, removal frequency, cost and personal preferences.

  20. Testing of a Methane Cryogenic Heat Pipe with a Liquid Trap Turn-Off Feature for use on Space Interferometer Mission (SIM) (United States)

    Cepeda-Rizo, Juan; Krylo, Robert; Fisher, Melanie; Bugby, David C.


    Camera cooling for SIM presents three thermal control challenges; stable operation at 163K (110 C), decontamination heating to +20 C, and a long span from the cameras to the radiator. A novel cryogenic cooling system based on a methane heat pipe meets these challenges. The SIM thermal team, with the help of heat pipe vendor ATK, designed and tested a complete, low temperature, cooling system. The system accommodates the two SIM cameras with a double-ended conduction bar, a single methane heat pipe, independent turn-off devices, and a flight-like radiator. The turn ]off devices consist of a liquid trap, for removing the methane from the pipe, and an electrical heater to raise the methane temperature above the critical point thus preventing two-phase operation. This is the first time a cryogenic heat pipe has been tested at JPL and is also the first heat pipe to incorporate the turn-off features. Operation at 163K with a methane heat pipe is an important new thermal control capability for the lab. In addition, the two turn-off technologies enhance the "bag of tricks" available to the JPL thermal community. The successful test program brings this heat pipe to a high level of technology readiness.

  1. Heat convection

    Energy Technology Data Exchange (ETDEWEB)

    Jiji, L.M. [City Univ. of New York, NY (United States). Dept. of Mechanical Engineering


    Professor Jiji's broad teaching experience lead him to select the topics for this book to provide a firm foundation for convection heat transfer with emphasis on fundamentals, physical phenomena, and mathematical modelling of a wide range of engineering applications. Reflecting recent developments, this textbook is the first to include an introduction to the challenging topic of microchannels. The strong pedagogic potential of Heat Convection is enhanced by the following ancillary materials: (1) Power Point lectures, (2) Problem Solutions, (3) Homework Facilitator, and, (4) Summary of Sections and Chapters. (orig.)

  2. Particle adhesion and removal

    CERN Document Server

    Mittal, K L


    The book provides a comprehensive and easily accessible reference source covering all important aspects of particle adhesion and removal.  The core objective is to cover both fundamental and applied aspects of particle adhesion and removal with emphasis on recent developments.  Among the topics to be covered include: 1. Fundamentals of surface forces in particle adhesion and removal.2. Mechanisms of particle adhesion and removal.3. Experimental methods (e.g. AFM, SFA,SFM,IFM, etc.) to understand  particle-particle and particle-substrate interactions.4. Mechanics of adhesion of micro- and  n

  3. Reexamination of METMAN, Recommendations on Enhancement of LCVG, and Development of New Concepts for EMU Heat Sink (United States)

    Karimi, Amir


    METMAN is a 41-node transient metabolic computer code developed in 1970 and revised in 1989 by Lockheed Engineering and Sciences, Inc. This program relies on a mathematical model to predict the transient temperature distribution in a body influenced by metabolic heat generation and thermal interaction with the environment. A more complex 315-node model is also available that not only simulates the thermal response of a body exposed to a warm environment, but is also capable of describing the thermal response resulting from exposure to a cold environment. It is important to compare the two models for the prediction of the body's thermal response to metabolic heat generation and exposure to various environmental conditions. Discrepancies between the twi models may warrant an investigation of METMAN to ensure its validity for describing the body's thermal response in space environment. The Liquid Cooling and Ventilation Garment is a subsystem of the Extravehicular Mobility Unit (EMU). This garment, worn under the pressure suit, contains the liquid cooling tubing and gas ventilation manifolds; its purpose is to alleviate or reduce thermal stress resulting from metabolic heat generation. There is renewed interest in modifying this garment through identification of the locus of maximum heat transfer at body-liquid cooled tubing interface. The sublimator is a vital component of the Primary Life Support System (PLSS) in the EMU. It acts as a heat sink to remove heat and humidity from the gas ventilating circuit and the liquid cooling loop of the LCVG. The deficiency of the sublimator is that the ice, used as the heat sink, sublimates into space. There is an effort to minimize water losses in the feedwater circuit of the EMU. This requires developing new concepts to design an alternative heat sink system. Efforts are directed to review and verify the heat transfer formulation of the analytical model employed by METMAN. A conceptual investigation of regenerative non

  4. Heat-Related Illnesses

    Medline Plus

    Full Text Available ... for signs of heat stroke or exhaustion. Heat Stroke and Exhaustion Symptoms of early heat exhaustion symptoms ... heavy sweating; nausea; and giddiness. Symptoms of heat stroke (late stage of heat illness) include flushed, hot, ...

  5. Renewable Heating and Cooling (United States)

    Renewable heating and cooling is a set of alternative resources and technologies that can be used in place of conventional heating and cooling technologies for common applications such as water heating, space heating, space cooling and process heat.

  6. Skin lesion removal-aftercare (United States)

    Shave excision - skin aftercare; Excision of skin lesions - benign aftercare; Skin lesion removal - benign aftercare; Cryosurgery - skin aftercare; BCC - removal aftercare; Basal cell cancer - removal aftercare; Actinic keratosis - removal aftercare; Wart - ...

  7. Satellite Servicing Capabilities Office Testing (United States)

    Sanders, Sean


    While at the KSC, I was given the opportunity of assisting the Satellite Servicing Capabilities Office (SSCO) specifically the Propellant Transfer System (PTS) lead by my mentor, Brian Nufer. While waiting to test different components in the PTS, I was able to assist with testing for the Hose Management Assembly (HMA) and was able to work on a simulation in Labview. For the HMA, I was able to help with testing of a coating as well as to help test the durability of the pinch rollers in space. In Labview, I experimented with building a simulation for the PTS, to show where fluids and gases were flowing depending on which valves in the PTS were opened. Not all of the integrated parts required assembly level testing, which allowed me to test these parts individually by myself and document the results. I was also able to volunteer to assist project NEO, allowing me to gain some knowledge of cryogenic fluid systems.

  8. Amartya Sen's Capability Approach and Education (United States)

    Walker, Melanie


    The human capabilities approach developed by the economist Amartya Sen links development, quality of life and freedom. This article explores the key ideas in the capability approach of: capability, functioning, agency, human diversity and public participation in generating valued capabilities. It then considers how these ideas relate specifically…

  9. Professionals and Public Good Capabilities

    Directory of Open Access Journals (Sweden)

    Melanie Walker


    Full Text Available Martha Nussbaum (2011 reminds us that, all over the world people are struggling for a life that is fully human - a life worthy of human dignity. Purely income-based and preference-based evaluations, as Sen (1999 argues, do not adequately capture what it means for each person to have quality of life. There are other things that make life good for a person, including access to publicly provided professional services. The question then is what version of education inflects more towards the intrinsic and transformational possibilities of professional work and contributions to decent societies? This paper suggests that we need a normative approach to professional education and professionalism; it is not the case that any old version will do. We also need normative criteria to move beyond social critique and to overcome a merely defensive attitude and to give a positive definition to the potential achievements of the professions. Moreover universities are connected to society, most especially through the professionals they educate; it is reasonable in our contemporary world to educate professional graduates to be in a position to alleviate inequalities, and to have the knowledge, skills and values to be able to do so. To make this case, we draw on the human capabilities approach of Sen (1999, 2009 and Nussbaum (2000, 2011 to conceptualise professional education for the public good as an ally of the struggles of people living in poverty and experiencing inequalities, expanding the well-being of people to be and to do in ways they have reason to value – to be mobile, cared for, respected, and so on. In particular we are interested in which human capabilities and functionings are most needed for a professional practice and professionalism that can contribute to transformative social change and how professional development is enabled via pedagogical arrangements.

  10. Infrared heating (United States)

    IR heating was first industrially used in the 1930s for automotive curing applications and rapidly became a widely applied technology in the manufacturing industry. Contrarily, a slower pace in the development of IR technologies for processing foods and agricultural products was observed, due to lim...

  11. Latest innovations for tattoo and permanent makeup removal. (United States)

    Mao, Johnny C; DeJoseph, Louis M


    The goal of this article is to reveal the latest techniques and advances in laser removal of both amateur and professional tattoos, as well as cosmetic tattoos and permanent makeup. Each pose different challenges to the removing physician, but the goal is always the same: removal without sequelae. The authors' technique is detailed, and discussion of basic principles of light reflection, ink properties, effects of laser energy and heat, and outcomes and complications of tattoo removal are presented. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Laparoscopic Adrenal Gland Removal (United States)

    ... growths that can usually be removed with laparoscopic techniques. Removal of the adrenal gland may also be required for ... Views: 34,507 Share this: Tweet Related Keep reading... Brought to you by: SOCIETY OF AMERICAN GASTROINTESTINAL AND ENDOSCOPIC SURGEONS (SAGES) 11300 West ...

  13. Multi-phase model development to assess RCIC system capabilities under severe accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kirkland, Karen Vierow [Texas A & M Univ., College Station, TX (United States); Ross, Kyle [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Beeny, Bradley [Texas A & M Univ., College Station, TX (United States); Luthman, Nicholas [Texas A& M Engineering Experiment Station, College Station, TX (United States); Strater, Zachary [Texas A & M Univ., College Station, TX (United States)


    The Reactor Core Isolation Cooling (RCIC) System is a safety-related system that provides makeup water for core cooling of some Boiling Water Reactors (BWRs) with a Mark I containment. The RCIC System consists of a steam-driven Terry turbine that powers a centrifugal, multi-stage pump for providing water to the reactor pressure vessel. The Fukushima Dai-ichi accidents demonstrated that the RCIC System can play an important role under accident conditions in removing core decay heat. The unexpectedly sustained, good performance of the RCIC System in the Fukushima reactor demonstrates, firstly, that its capabilities are not well understood, and secondly, that the system has high potential for extended core cooling in accident scenarios. Better understanding and analysis tools would allow for more options to cope with a severe accident situation and to reduce the consequences. The objectives of this project were to develop physics-based models of the RCIC System, incorporate them into a multi-phase code and validate the models. This Final Technical Report details the progress throughout the project duration and the accomplishments.

  14. Binder-free sheet-type all-solid-state batteries with enhanced rate capabilities and high energy densities. (United States)

    Yamamoto, Mari; Terauchi, Yoshihiro; Sakuda, Atsushi; Takahashi, Masanari


    All-solid-state batteries using inorganic solid electrolytes are considered promising energy storage systems because of their safety and long life. Stackable and compact sheet-type all-solid-state batteries are urgently needed for industrial applications such as smart grids and electric vehicles. A binder is usually indispensable to the construction of sheet-type batteries; however, it can decrease the power and cycle performance of the battery. Here we report the first fabrication of a binder-free sheet-type battery. The key to this development is the use of volatile poly(propylene carbonate)-based binders; used to fabricate electrodes, solid electrolyte sheets, and a stacked three-layered sheet, these binders can also be removed by heat treatment. Binder removal leads to enhanced rate capability, excellent cycle stability, and a 2.6-fold increase in the cell-based-energy-density over previously reported sheet-type batteries. This achievement is the first step towards realizing sheet-type batteries with high energy and power density.

  15. Heat blocking gallium arsenide solar cells (United States)

    Rahman, F.; Farmer, C. D.; Schmidt, C.; Pfaff, G.; Stanley, C. R.


    The solar cell industry is witnessing an era of unprecedented growth and this trend is set to continue for the foreseeable future. Here we describe a heat reflection pigment-coated single-junction gallium arsenide solar cell that is capable of reflecting heat-inducing near-infrared radiation. The cell maintains its performance better than non-coated cells when exposed to infrared-rich radiant flux. In situations where solar cells get heated mainly from incident infrared radiation, these cells exhibit superior performance. The heat reflecting pigment, cell structure, coating process and cell performance have been described.

  16. OPSAID improvements and capabilities report.

    Energy Technology Data Exchange (ETDEWEB)

    Halbgewachs, Ronald D.; Chavez, Adrian R.


    Process Control System (PCS) and Industrial Control System (ICS) security is critical to our national security. But there are a number of technological, economic, and educational impediments to PCS owners implementing effective security on their systems. Sandia National Laboratories has performed the research and development of the OPSAID (Open PCS Security Architecture for Interoperable Design), a project sponsored by the US Department of Energy Office of Electricity Delivery and Energy Reliability (DOE/OE), to address this issue. OPSAID is an open-source architecture for PCS/ICS security that provides a design basis for vendors to build add-on security devices for legacy systems, while providing a path forward for the development of inherently-secure PCS elements in the future. Using standardized hardware, a proof-of-concept prototype system was also developed. This report describes the improvements and capabilities that have been added to OPSAID since an initial report was released. Testing and validation of this architecture has been conducted in another project, Lemnos Interoperable Security Project, sponsored by DOE/OE and managed by the National Energy Technology Laboratory (NETL).

  17. Heat pump


    Klíma, Martin


    Bakalářská práce popisuje a charakterizuje tepelné čerpadlo. Obsahuje souhrn jednotlivých druhů tepelných čerpadel z hlediska získávání energie, princip jejich funkce a popis odlišností mezi jednotlivými druhy kompresorů, použití pracovní látky a její vývin do budoucna. Závěrem je zde uveden můj vlastní názor na tepelné čerpadlo, které bych preferoval. Bachelor thesis describes and characterizes the heat pump. Summarizes the various types of heat pumps in terms of energy production, princi...

  18. Active Space Debris Removal System

    Directory of Open Access Journals (Sweden)

    Gabriele GUERRA


    Full Text Available Since the start of the space era, more than 5000 launches have been carried out, each carrying satellites for many disparate uses, such as Earth observation or communication. Thus, the space environment has become congested and the problem of space debris is now generating some concerns in the space community due to our long-lived belief that “space is big”. In the last few years, solutions to this problem have been proposed, one of those is Active Space Debris Removal: this method will reduce the increasing debris growth and permit future sustainable space activities. The main idea of the method proposed below is a drag augmentation system: use a system capable of putting an expanded foam on a debris which will increase the area-to-mass ratio to increase the natural atmospheric drag and solar pressure. The drag augmentation system proposed here requires a docking system; the debris will be pushed to its release height and then, after un-docking, an uncontrolled re-entry takes place ending with a burn up of the object and the foam in the atmosphere within a given time frame. The method requires an efficient way to change the orbit between two debris. The present paper analyses such a system in combination with an Electric Propulsion system, and emphasizes the choice of using two satellites to remove five effective rockets bodies debris within a year.

  19. Heat Exchange


    Bottomley, Stephen


    Heat Exchange’ is an international touring exhibition of enamel metalwork curated by Turrell.E (UK), Gegenwart (Germany/UK) and Cameron (Australia). Bottomley was one of twenty-three international artists invited to join a transcontinental on-line blog and forum that recorded individual contemporary approaches to working with vitreous enamel the year prior to the 2012 exhibition that coincided with the SNAG (Society of North American Goldsmiths) National Conference in Phoenix Arizona USA.Vitr...

  20. Removing lead from metallic mixture of waste printed circuit boards by vacuum distillation: factorial design and removal mechanism. (United States)

    Li, Xingang; Gao, Yujie; Ding, Hui


    The lead removal from the metallic mixture of waste printed circuit boards by vacuum distillation was optimized using experimental design, and a mathematical model was established to elucidate the removal mechanism. The variables studied in lead evaporation consisted of the chamber pressure, heating temperature, heating time, particle size and initial mass. The low-level chamber pressure was fixed at 0.1 Pa as the operation pressure. The application of two-level factorial design generated a first-order polynomial that agreed well with the data for evaporation efficiency of lead. The heating temperature and heating time exhibited significant effects on the efficiency, which was validated by means of the copper-lead mixture experiments. The optimized operating conditions within the region studied were the chamber pressure of 0.1 Pa, heating temperature of 1023 K and heating time of 120 min. After the conditions were employed to remove lead from the metallic mixture of waste printed circuit boards, the efficiency was 99.97%. The mechanism of the effects was elucidated by mathematical modeling that deals with evaporation, mass transfer and condensation, and can be applied to a wider range of metal removal by vacuum distillation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. [Thoracoscopically removed thoracolithiasis]. (United States)

    Kataoka, K; Nishikawa, T; Fujiwara, T; Matsuura, M


    Thoracolithiasis is a rare condition with only 16 cases of surgically removed nodules reported in the literature in Japan. We report an additional thoracoscopically removed case. A 62-year-old man was pointed out an abnormal shadow behind the left diaphragmatic dome on a routine health examination. Computed tomography (CT) revealed a round mass lesion with calcification, about 11 mm in diameter, in the left thorax. Video-assisted thoracic surgery (VATS) was performed and a white 11 mm completely free nodule in the left pleural cavity was removed. Pathological findings revealed necrotic fat tissue in the center surrounded by hyalinized fibrous tissue, being consistent with thoracolithiasis.

  2. Heat pump system (United States)

    Swenson, Paul F.; Moore, Paul B.


    An air heating and cooling system for a building includes an expansion-type refrigeration circuit and a heat engine. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The heat engine includes a heat rejection circuit having a source of rejected heat and a primary heat exchanger connected to the source of rejected heat. The heat rejection circuit also includes an evaporator in heat exchange relation with the primary heat exchanger, a heat engine indoor heat exchanger, and a heat engine outdoor heat exchanger. The indoor heat exchangers are disposed in series air flow relationship, with the heat engine indoor heat exchanger being disposed downstream from the refrigeration circuit indoor heat exchanger. The outdoor heat exchangers are also disposed in series air flow relationship, with the heat engine outdoor heat exchanger disposed downstream from the refrigeration circuit outdoor heat exchanger. A common fluid is used in both of the indoor heat exchangers and in both of the outdoor heat exchangers. In a first embodiment, the heat engine is a Rankine cycle engine. In a second embodiment, the heat engine is a non-Rankine cycle engine.

  3. Enhancement of EAST plasma control capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Bingjia, E-mail: [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); School of Nuclear Science and Technology, University of Science and Technology of China, Hefei (China); Yuan, Qiping; Luo, Zhengping; Huang, Yao; Liu, Lei; Guo, Yong; Pei, Xiaofang; Chen, Shuliang [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Humphreys, D.A.; Hyatt, A.W. [General Atomics, P.O. Box 85608, San Diego, CA 92186-5608 (United States); Mueller, Dennis [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Calabró, G.; Crisanti, F. [ENEA UnitàTecnicaFusione, C.R. Frascati, Via E. Fermi 45, 00044 Frascati, Roma (Italy); Albanese, R.; Ambrosino, R. [CREATE, Università di Napoli Federicao II, Università di Cassino and Università di Napoli Parthenope, Via Claudio 19, 80125 Napoli (Italy)


    Highlights: • Parallel plasma equilibrium reconstruction using GPU for real-time control on EAST. • Vertical control using Bang-bang + PID method to improve the response and minimize the oscillation caused by the latency. • Quasi-snow flake divertor plasma configuration has been demonstrated on EAST. - Abstract: In order to improve the plasma control performance and enhance the capability for advanced plasma control, new algorithms such as PEFIT/ISOFLUX plasma shape feedback control, quasi-snowflake plasma shape development and vertical control under new vertical control power supply, have been implemented and experimentally tested and verified in EAST 2014 campaign. P-EFIT is a rewritten version of EFIT aiming at fast real-time equilibrium reconstruction by using GPU for parallelized computation. Successful control using PEFIT/ISOFLUX was established in dedicated experiment. Snowfldivertor plasma shape has the advantage of spreading heat over the divertor target and a quasi-snowflake (QSF) configuration was achieved in discharges with I{sub p} = 0.25 MA and B{sub t} = 1.8T, κ∼1.9, by plasma position feedback control. The shape feedback control to achieve QSF shape has been preliminary implemented by using PEFIT and the initial experimental test has been done. For more robust vertical instability control, the inner coil (IC) and its power supply have been upgraded. A new control algorithm with the combination of Bang-bang and PID controllers has been developed. It is shown that new vertical control power supply together with the new control algorithms results in higher vertical controllability.

  4. Metabolic Heat Regenerated Temperature Swing Adsorption for CO2, Thermal and Humidity Control Project (United States)

    National Aeronautics and Space Administration — Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is proposed for a Portable Life Support System to remove and reject heat and carbon dioxide...

  5. A Novel Heat Pipe Plate for Passive Thermal Control of Fuel Cells Project (United States)

    National Aeronautics and Space Administration — This SBIR project aims to develop a lightweight, highly thermally and electrically conductive heat pipe plate for passive removal of the heat from the individual...

  6. Heat-Exchanger/Heat-Pipe Interface (United States)

    Snyder, H. J.; Van Hagan, T. H.


    Monolithic assembly reliable and light in weight. Heat exchanger and evaporator ends of heat pipes integrated in monolithic halves welded together. Interface assembly connects heat exchanger of furnace, reactor, or other power source with heat pipes carrying heat to radiator or power-consuming system. One of several concepts proposed for nuclear power supplies aboard spacecraft, interface useful on Earth in solar thermal power systems, heat engines, and lightweight cooling systems.

  7. Sandia Laboratories technical capabilities: computation systems

    Energy Technology Data Exchange (ETDEWEB)


    This report characterizes the computation systems capabilities at Sandia Laboratories. Selected applications of these capabilities are presented to illustrate the extent to which they can be applied in research and development programs. 9 figures.

  8. Global dynamics, capabilities and the crisis

    Czech Academy of Sciences Publication Activity Database

    Fagerberg, J.; Srholec, Martin


    Roč. 26, č. 4 (2016), s. 765-784 ISSN 0936-9937 Institutional support: PRVOUK-P23 Keywords : technological capabilities * social capabilities * competitiveness Subject RIV: AH - Economics Impact factor: 0.862, year: 2016

  9. The Social, Historical, and Institutional Contingencies of Dam Removal (United States)

    Magilligan, F. J.; Sneddon, C. S.; Fox, C. A.


    Environmental managers in the United States and elsewhere are increasingly perceiving dam removal as a critical tool for river restoration and enhancing watershed resilience. In New England, over 125 dams have been dismantled for ecological and economic rationales. A surprising number of these removals, including many that are ongoing, have generated heated conflicts between restoration proponents and local communities who value their dammed landscapes. Using a comparative case study approach, we examine the environmental conflict around efforts to remove six dams in New England. Each of these removal efforts followed quite different paths and resultant outcomes: successful removal, stalled removal, and failure despite seemingly favorable institutional conditions. Lengthy conflicts often transpired in instances where removals occurred, but these were successfully arbitrated by paying attention to local historical-geographical conditions conducive to removal and by brokering effective compromises between dam owners and the various local actors and stakeholders involved in the removal process. Yet our results across all cases suggest that these are necessary, but not sufficient conditions for restoration through dam removal since a similar set of conditions typified cases where removals are continuously stalled or completely halted. Scholars examining the intersection between ecological restoration and environmental politics should remain vigilant in seeking patterns and generalities across cases of environmental conflict in order to promote important biophysical goals, but must also remain open to the ways in which those goals are thwarted and shaped by conflicts that are deeply contingent on historical-geographical conditions and broader institutional networks of power and influence.

  10. Thyroid gland removal - discharge (United States)

    ... this page: // Thyroid gland removal - discharge To use the sharing features ... surgery. This will make your scar show less. Thyroid Hormone Replacement You may need to take thyroid ...

  11. Paint removal using lasers. (United States)

    Liu, K; Garmire, E


    Experiments to investigate the potential for practical laser graffiti-removal systems are reported. A universal engineering curve for the time needed for removal of paint from nonconductive substrates that was valid over a range of 10(7) in intensity was measured with a variety of lasers. Comparable times were measured for conductive substrates, when pulses shorter than the thermal conduction times were used. Analysis suggests that Q-switched Nd:YAG lasers may be the most efficient means for removing graffiti and other unwanted paint. An 1-m(2) area of paint 14 µm thick can be removed in approximately 10 min with a 50-Hz laser system of 15-W average power.

  12. Laparoscopic Spleen Removal (Splenectomy) (United States)

    ... and Humanitarian Efforts Log In Laparoscopic Spleen Removal (Splenectomy) Patient Information from SAGES Download PDF Find a ... are suspected. What are the Advantages of Laparoscopic Splenectomy? Individual results may vary depending on your overall ...

  13. Methods to Remove Coke from Endothermic Heat Exchangers Project (United States)

    National Aeronautics and Space Administration — Currently the United States space program is recognized as the world leader in providing access to space. However, in order to maintain this position, it will be...

  14. Parametric Analyses of Heat Removal from High Level Waste Tanks

    Energy Technology Data Exchange (ETDEWEB)

    TRUITT, J.B.


    The general thermal hydraulics program GOTH-SNF was used to predict the thermal response of the waste in tanks 241-AY-102 and 241-AZ-102 when mixed by two 300 horsepower mixer pumps. This mixing was defined in terms of a specific waste retrieval scenario. Both dome and annulus ventilation system flow are necessary to maintain the waste within temperature control limits during the mixing operation and later during the sludge-settling portion of the scenario are defined.

  15. Methods to Remove Coke from Endothermic Heat Exchangers Project (United States)

    National Aeronautics and Space Administration — In February 2004 NASA released "The Vision for Space Exploration", which describes a strategy for exploring our solar system that builds upon the policy announced by...

  16. High Heat Flux Surface Coke Deposition and Removal Assessment (United States)


    obtained under these conditions. Another study was directed at hypersonic vehicles and was done with Inconel tubes, which eliminated complications...Release; distribution unlimited 13. SUPPLEMENTARY NOTES Technical paper presented at the AIAA Propulsion and Energy Forum and Exposition (Joint... Propulsion Conference)in Orlando, FL; 27-29 July, 2015 14. ABSTRACT The internal surfaces of liquid hydrocarbon-fueled rocket engine thrust chambers

  17. Heating systems for heating subsurface formations

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Scott Vinh [Houston, TX; Vinegar, Harold J [Bellaire, TX


    Methods and systems for heating a subsurface formation are described herein. A heating system for a subsurface formation includes a sealed conduit positioned in an opening in the formation and a heat source. The sealed conduit includes a heat transfer fluid. The heat source provides heat to a portion of the sealed conduit to change phase of the heat transfer fluid from a liquid to a vapor. The vapor in the sealed conduit rises in the sealed conduit, condenses to transfer heat to the formation and returns to the conduit portion as a liquid.

  18. Hydride heat pump with heat regenerator (United States)

    Jones, Jack A. (Inventor)


    A regenerative hydride heat pump process and system is provided which can regenerate a high percentage of the sensible heat of the system. A series of at least four canisters containing a lower temperature performing hydride and a series of at least four canisters containing a higher temperature performing hydride is provided. Each canister contains a heat conductive passageway through which a heat transfer fluid is circulated so that sensible heat is regenerated. The process and system are useful for air conditioning rooms, providing room heat in the winter or for hot water heating throughout the year, and, in general, for pumping heat from a lower temperature to a higher temperature.

  19. Chemical heat pump and chemical energy storage system (United States)

    Clark, Edward C.; Huxtable, Douglas D.


    A chemical heat pump and storage system employs sulfuric acid and water. In one form, the system includes a generator and condenser, an evaporator and absorber, aqueous acid solution storage and water storage. During a charging cycle, heat is provided to the generator from a heat source to concentrate the acid solution while heat is removed from the condenser to condense the water vapor produced in the generator. Water is then stored in the storage tank. Heat is thus stored in the form of chemical energy in the concentrated acid. The heat removed from the water vapor can be supplied to a heat load of proper temperature or can be rejected. During a discharge cycle, water in the evaporator is supplied with heat to generate water vapor, which is transmitted to the absorber where it is condensed and absorbed into the concentrated acid. Both heats of dilution and condensation of water are removed from the thus diluted acid. During the discharge cycle the system functions as a heat pump in which heat is added to the system at a low temperature and removed from the system at a high temperature. The diluted acid is stored in an acid storage tank or is routed directly to the generator for reconcentration. The generator, condenser, evaporator, and absorber all are operated under pressure conditions specified by the desired temperature levels for a given application. The storage tanks, however, can be maintained at or near ambient pressure conditions. In another form, the heat pump system is employed to provide usable heat from waste process heat by upgrading the temperature of the waste heat.

  20. Metal Removal in Wastewater


    Sanchez Roldan, Laura


    The aim of this work was to study Copper removal capacity of different algae species and their mixtures from the municipal wastewater. This project was implemented in the greenhouse in the laboratories of Tampere University of Applied Sciences and the wastewater used was the one from the Tampere municipal wastewater treatment plant. Five algae species and three mixtures of them were tested for their Copper removal potential in wastewater in one batch test run. The most efficient algae mixture...

  1. Hair removal in adolescence


    Sandra Pereira; Susana Machado; Manuela Selores


    Introduction: Due to hormonal stimulation during puberty, changes occur in hair type and distribution. In both sexes, body and facial unwanted hair may have a negative psychological impact on the teenager. There are several available methods of hair removal, but the choice of the most suitable one for each individual can raise doubts. Objective: To review the main methods of hair removal and clarify their indications, advantages and disadvantages. Development: There are several remova...

  2. Selecting Capabilities for Quality of Life Measurement (United States)

    Robeyns, Ingrid


    The capability approach advocates that interpersonal comparisons be made in the space of functionings and capabilities. However, Amartya Sen has not specified which capabilities should be selected as the relevant ones. This has provoked two types of criticism. The stronger critique is Martha Nussbaum's claim that Sen should endorse one specific…

  3. Organisational Capability--What Does It Mean? (United States)

    National Centre for Vocational Education Research (NCVER), 2006


    Organisational capability is rapidly becoming recognized as the key to organizational success. However, the lack of research on it has been well documented in the literature, and organizational capability remains an elusive concept. Yet an understanding of organizational capability can offer insights into how RTOs might work most effectively,…

  4. Assessment of Space Nuclear Thermal Propulsion Facility and Capability Needs

    Energy Technology Data Exchange (ETDEWEB)

    James Werner


    The development of a Nuclear Thermal Propulsion (NTP) system rests heavily upon being able to fabricate and demonstrate the performance of a high temperature nuclear fuel as well as demonstrating an integrated system prior to launch. A number of studies have been performed in the past which identified the facilities needed and the capabilities available to meet the needs and requirements identified at that time. Since that time, many facilities and capabilities within the Department of Energy have been removed or decommissioned. This paper provides a brief overview of the anticipated facility needs and identifies some promising concepts to be considered which could support the development of a nuclear thermal propulsion system. Detailed trade studies will need to be performed to support the decision making process.

  5. Note: A wide temperature range MOKE system with annealing capability (United States)

    Chahil, Narpinder Singh; Mankey, G. J.


    A novel sample stage integrated with a longitudinal MOKE system has been developed for wide temperature range measurements and annealing capabilities in the temperature range 65 K < T < 760 K. The sample stage incorporates a removable platen and copper block with inserted cartridge heater and two thermocouple sensors. It is supported and thermally coupled to a cold finger with two sapphire bars. The sapphire based thermal coupling enables the system to perform at higher temperatures without adversely affecting the cryostat and minimizes thermal drift in position. In this system the hysteresis loops of magnetic samples can be measured simultaneously while annealing the sample in a magnetic field.

  6. Real time capable infrared thermography for ASDEX Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Sieglin, B., E-mail:; Faitsch, M.; Herrmann, A.; Brucker, B.; Eich, T.; Kammerloher, L.; Martinov, S. [Max-Planck Institute for Plasma Physics, Boltzmannstr. 2, D-85748 Garching (Germany)


    Infrared (IR) thermography is widely used in fusion research to study power exhaust and incident heat load onto the plasma facing components. Due to the short pulse duration of today’s fusion experiments, IR systems have mostly been designed for off-line data analysis. For future long pulse devices (e.g., Wendelstein 7-X, ITER), a real time evaluation of the target temperature and heat flux is mandatory. This paper shows the development of a real time capable IR system for ASDEX Upgrade. A compact IR camera has been designed incorporating the necessary magnetic and electric shielding for the detector, cooler assembly. The camera communication is based on the Camera Link industry standard. The data acquisition hardware is based on National Instruments hardware, consisting of a PXIe chassis inside and a fibre optical connected industry computer outside the torus hall. Image processing and data evaluation are performed using real time LabVIEW.

  7. Laser hair removal pearls. (United States)

    Tierney, Emily P; Goldberg, David J


    A number of lasers and light devices are now available for the treatment of unwanted hair. The goal of laser hair removal is to damage stem cells in the bulge of the follicle through the targeting of melanin, the endogenous chromophore for laser and light devices utilized to remove hair. The competing chromophores in the skin and hair, oxyhemoglobin and water, have a decreased absorption between 690 nm and 1000 nm, thus making this an ideal range for laser and light sources. Pearls of laser hair removal are presented in this review, focusing on four areas of recent development: 1 treatment of blond, white and gray hair; 2 paradoxical hypertrichosis; 3 laser hair removal in children; and 4 comparison of lasers and IPL. Laser and light-based technologies to remove hair represents one of the most exciting areas where discoveries by dermatologists have led to novel treatment approaches. It is likely that in the next decade, continued advancements in this field will bring us closer to the development of a more permanent and painless form of hair removal.

  8. Photodynamic therapy for hair removal

    Directory of Open Access Journals (Sweden)

    Mohamed H. M. Ali


    in selectively damaging hair follicles, leaving an intact epidermis. The current PDT system provides better outcome than hair destruction through laser heat transfer procedures and laser-mediated hair removal, due to complete destruction of hair follicles.

  9. Item Unique Identification Capability Expansion: Established Process Analysis, Cost Benefit Analysis, and Optimal Marking Procedures (United States)


    proven to be a problem, however, since they can easily be peeled off the equipment or peel off due to wear and tear caused by extreme heat when...cold, heat, steam, liquids, chemicals, or by personnel peeling the labels off is also a concern for the current labelling process. While doing a site...method.  Negatives: Can be destroyed by temperature extremes, can fall off/be removed, are soft ( abrasion problems), vulnerable to certain chemicals

  10. Heat pipes

    CERN Document Server

    Dunn, Peter D


    A comprehensive, up-to-date coverage of the theory, design and manufacture of heat pipes and their applications. This latest edition has been thoroughly revised, up-dated and expanded to give an in-depth coverage of the new developments in the field. Significant new material has been added to all the chapters and the applications section has been totally rewritten to ensure that topical and important applications are appropriately emphasised. The bibliography has been considerably enlarged to incorporate much valuable new information. Thus readers of the previous edition, which has established

  11. Heat-Related Illnesses

    Medline Plus

    Full Text Available ... Emergencies A-Z Share this! Home » Emergency 101 Heat-Related Illnesses Dr. Glenn Mitchell , Emergency physician at ... about heat cramps and heat stroke and exhaustion. Heat Cramps Symptoms include muscle spasms, usually in the ...

  12. Low temperature nuclear heat

    Energy Technology Data Exchange (ETDEWEB)

    Kotakorpi, J.; Tarjanne, R. (comps.)


    The meeting was concerned with the use of low grade nuclear heat for district heating, desalination, process heat, and agriculture and aquaculture. The sessions covered applications and demand, heat sources, and economics.

  13. Regenerative Hydride Heat Pump (United States)

    Jones, Jack A.


    Hydride heat pump features regenerative heating and single circulation loop. Counterflow heat exchangers accommodate different temperatures of FeTi and LaNi4.7Al0.3 subloops. Heating scheme increases efficiency.

  14. General Purpose Heat Source Simulator (United States)

    Emrich, Bill


    The General Purpose Heat Source (GPHS) simulator project is designed to replicate through the use of electrical heaters, the form, fit, and function of actual GPHS modules which generate heat through the radioactive decay of Pu238. The use of electrically heated modules rather than modules containing Pu238 facilitates the testing of spacecraft subsystems and systems without sacrificing the quantity and quality of the test data gathered. Previous GPHS activities are centered around developing robust heater designs with sizes and weights that closely matched those of actual Pu238 fueled GPHS blocks. These efforts were successful, although their maximum temperature capabilities were limited to around 850 C. New designs are being pursued which also replicate the sizes and weights of actual Pu238 fueled GPHS blocks but will allow operation up to 1100 C.

  15. Organizational Economics of Capability and Heterogeneity

    DEFF Research Database (Denmark)

    Argyres, Nicholas S.; Felin, Teppo; Foss, Nicolai Juul


    economics, and we point to the dominance of a “capabilities first” logic in this relationship. We argue that capabilities considerations are inherently intertwined with questions about organizational boundaries and internal organization, and we use this point to respond to the prevalent capabilities first......For decades, the literatures on firm capabilities and organizational economics have been at odds with each other, specifically relative to explaining organizational boundaries and heterogeneity. We briefly trace the history of the relationship between the capabilities literature and organizational...

  16. A single-probe heat pulse method for estimating sap velocity in trees. (United States)

    López-Bernal, Álvaro; Testi, Luca; Villalobos, Francisco J


    Available sap flow methods are still far from being simple, cheap and reliable enough to be used beyond very specific research purposes. This study presents and tests a new single-probe heat pulse (SPHP) method for monitoring sap velocity in trees using a single-probe sensor, rather than the multi-probe arrangements used up to now. Based on the fundamental conduction-convection principles of heat transport in sapwood, convective velocity (Vh ) is estimated from the temperature increase in the heater after the application of a heat pulse (ΔT). The method was validated against measurements performed with the compensation heat pulse (CHP) technique in field trees of six different species. To do so, a dedicated three-probe sensor capable of simultaneously applying both methods was produced and used. Experimental measurements in the six species showed an excellent agreement between SPHP and CHP outputs for moderate to high flow rates, confirming the applicability of the method. In relation to other sap flow methods, SPHP presents several significant advantages: it requires low power inputs, it uses technically simpler and potentially cheaper instrumentation, the physical damage to the tree is minimal and artefacts caused by incorrect probe spacing and alignment are removed. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  17. Capability Development in an Offshoring Context

    DEFF Research Database (Denmark)

    Jaura, Manya

    activities to R&D activities. The third paper examines capability development at the cluster level, and examines how spillovers from firms contribute to the emergence and evolution of clusters. Overall, this thesis argues that capability development is a path dependent process, and the offshoring context...... complicates the identification of capabilities lacking, the resources required to develop these capabilities and the alignment of supporting organizational processes. Captive offshore units and local service providers often perform back-office or standardized tasks that have been disaggregated from the value...... chain. In these cases, capability development presents a challenge, as firms need to take deliberate actions in order to develop capabilities, and identify the external linkages they must form to aid the capability development process....

  18. Distinctive Dynamic Capabilities for New Business Creation

    DEFF Research Database (Denmark)

    Rosenø, Axel; Enkel, Ellen; Mezger, Florian


    and fast-paced industries, and that similarities exist across industries. Hence, the study contributes to dynamic capabilities literature by: 1) identifying the distinctive dynamic capabilities for new business creation; 2) shifting focus away from dynamic capabilities in environments characterised by high......This study examines the distinctive dynamic capabilities for new business creation in established companies. We argue that these are very different from those for managing incremental innovation within a company's core business. We also propose that such capabilities are needed in both slow...... clock-speed and uncertainty towards considering dynamic capabilities for the purpose of developing new businesses, which also implies a high degree of uncertainty. Based on interviews with 33 companies, we identify distinctive dynamic capabilities for new business creation, find that dynamic...

  19. Tattoo Removal: Options and Results (United States)

    ... Products For Consumers Home For Consumers Consumer Updates Tattoo Removal: Options and Results Share Tweet Linkedin Pin ... for tattoo lightening or removal. A Rise in Tattoo Removal According to a Harris Interactive poll conducted ...

  20. Conceptualizing innovation capabilities: A contingency perspective

    Directory of Open Access Journals (Sweden)

    Tor Helge Aas


    Full Text Available Empirical research has confirmed that a positive relationship exists between the implementation of innovation activities and the future performance of organizations. Firms utilize resources and capabilities to develop innovations in the form of new products, services or processes. Some firms prove to be better at reproducing innovation success than others, and the capacity to do so is referred to as innovation capability. However, the term innovation capability is ambiguously treated in extant literature. There are several different definitions of the concept and the distinction between innovation capabilities and other types of capabilities, such as dynamic capabilities, is neither explicitly stated, nor is the relationship between the concept and other resource- and capability-based concepts within strategy theory established. Although innovation is increasingly identified as crucial for a firm’s sustainable competitiveness in contemporary volatile and complex markets, the strategy-innovation link is underdeveloped in extant research. To overcome this challenge this paper raises the following research question: What type of innovation capabilities are required to innovate successfully? Due to the status of the extant research, we chose a conceptual research design to answer our research question and the paper contributes with a conceptual framework to discuss what innovation capabilities firms need to reproduce innovation success. Based on careful examination of current literature on innovation capability specifically, and the strategy-innovation link in general, we suggest that innovation capability must be viewed along two dimensions – innovation novelty and market characteristics. This framework enables the identification of four different contexts for innovation capabilities in a two-bytwo matrix. We discuss the types of innovation capabilities necessary within the four different contexts. This novel framework contributes to the

  1. Fusible pellet transport and storage of heat (United States)

    Bahrami, P. A.


    A new concept for both transport and storage of heat at high temperatures and heat fluxes is introduced and the first steps in analysis of its feasibility is taken. The concept utilizes the high energy storage capability of materials undergoing change of phase. The phase change material, for example a salt, is encapsulated in corrosion resistant sealed pellets and transported in a carrier fluid to heat source and storage. Calculations for heat transport from a typical solar collector indicate that the pellet mass flow rates are relatively small and that the required pumping power is only a small fraction of the energy transport capability of the system. Salts and eutectic salt mixtures as candidate phase change materials are examined and discussed. Finally, the time periods for melting or solidification of sodium chloride pellets is investigated and reported.

  2. Segmented heat exchanger (United States)

    Baldwin, Darryl Dean; Willi, Martin Leo; Fiveland, Scott Byron; Timmons, Kristine Ann


    A segmented heat exchanger system for transferring heat energy from an exhaust fluid to a working fluid. The heat exchanger system may include a first heat exchanger for receiving incoming working fluid and the exhaust fluid. The working fluid and exhaust fluid may travel through at least a portion of the first heat exchanger in a parallel flow configuration. In addition, the heat exchanger system may include a second heat exchanger for receiving working fluid from the first heat exchanger and exhaust fluid from a third heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the second heat exchanger in a counter flow configuration. Furthermore, the heat exchanger system may include a third heat exchanger for receiving working fluid from the second heat exchanger and exhaust fluid from the first heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the third heat exchanger in a parallel flow configuration.

  3. Dual source heat pump (United States)

    Ecker, Amir L.; Pietsch, Joseph A.


    What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating the fluid in heat exchange relationship with a refrigerant fluid; at least two refrigerant heat exchangers, one for effecting heat exchange with the fluid and a second for effecting heat exchange between refrigerant and a heat exchange fluid and the ambient air; a compressor for efficiently compressing the refrigerant; at least one throttling valve for throttling liquid refrigerant; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and direction of flow of the refrigerant therethrough for selecting a particular mode of operation. The heat exchange fluid provides energy for defrosting the second heat exchanger when operating in the air source mode and also provides a alternate source of heat.

  4. Variation in heat sink shape for thermal analysis (United States)

    Wong, C. M.; Aziz, M. H. B. A.; Ong, N. R.; Alcain, J. B.; Sauli, Z.


    The concern about the thermal performance of microelectronics is on the increase due to recent over-heating induced failures which have led to product recalls. Removal of excess heat from microelectronic systems with the use of heat sinks could improve thermal efficiency of the system. The shape of the heat sink model with difference fin configuration has significant influence on cooling performances. This paper investigates the effect of change in heat sink geometry on an electronic package through COMSOL Multiphysics software as well as the thermal performance of difference heat sink geometry corresponding to various air inlet velocities. Based on this study, plate fin heat sink has better thermal performance than strip pin fin and circular pin fin heat sink due to less obstruction of the heat sink design.

  5. Synchronized acoustic refrigerator and heat engine (SARAH)


    Banerjee, Aayan; Nayak, Gaurav


    In light of the present global energy scenario, it is imperative to seek novel and efficient energy solutions to redress the situation. Solar energy, wind energy, geothermal energy, ocean thermoclines and waste heat recovery are the major players in the sustainable energy field. In this paper we propose a Synchronized Acoustic Refrigerator And Heat Engine (SARAH), a Thermoacoustic (TA) device capable of harnessing these untapped sources in a cost-effective and efficient way on both small and ...

  6. Heat transfer performance of Al2O3/water nanofluids in a mini channel heat sink. (United States)

    Dominic, A; Sarangan, J; Suresh, S; Sai, Monica


    The high density heat removal in electronic packaging is a challenging task of modern days. Finding compact, energy efficient and cost effective methods of heat removal is being the interest of researchers. In the present work, mini channel with forced convective heat transfer in simultaneously developing regime is investigated as the heat transfer coefficient is inversely proportional to hydraulic diameter. Mini channel heat sink is made from the aluminium plate of 30 mm square with 8 mm thickness. It has 15 mini channel of 0.9 mm width, 1.3 mm height and 0.9 mm of pitch. DI water and water based 0.1% and 0.2% volume fractions of Al2O3/water nanofluids are used as coolant. The flow rates of the coolants are maintained in such a way that it is simultaneously developing. Reynolds number is varied from 400 to 1600 and heat input is varied from 40 W to 70 W. The results showed that heat transfer coefficient is more than the heat transfer coefficient of fully developed flow. Also the heat transfer is more for nanofluids compared to DI water.

  7. Laser micropolishing of AISI 304 stainless steel surfaces for cleanability and bacteria removal capability (United States)

    De Giorgi, Chiara; Furlan, Valentina; Demir, Ali Gökhan; Tallarita, Elena; Candiani, Gabriele; Previtali, Barbara


    In this work, laser micropolishing (LμP) was employed to reduce the surface roughness and waviness of cold-rolled AISI 304 stainless steel sheets. A pulsed fibre laser operating in the ns regime was used and the influence of laser parameters in a N2-controlled atmospheres was evaluated. In the optimal conditions, the surface remelting induced by the process allowed to reduce the surface roughness by closing cracks and defects formed during the rolling process. Other conditions that did not improve the surface quality were analysed for defect typology. Moreover, laser treatments allowed the production of more hydrophobic surfaces, and no surface chemistry modification was identified. Surface cleanability was investigated with Escherichia coli (E. coli), evaluating the number of residual bacteria adhering to the substrate after a washing procedure. These results showed that LμP is a suitable way to lower the average surface roughness by about 58% and average surface waviness by approximately 38%. The LμP process proved to be effective on the bacteria cleanability as approximately five times fewer bacteria remained on the surfaces treated with the optimized LμP parameters compared to the untreated surfaces.

  8. Low heat transfer oxidizer heat exchanger design and analysis (United States)

    Kanic, P. G.; Kmiec, T. D.; Peckham, R. J.


    The RL10-IIB engine, a derivative of the RLIO, is capable of multi-mode thrust operation. This engine operates at two low thrust levels: tank head idle (THI), which is approximately 1 to 2 percent of full thrust, and pumped idle (PI), which is 10 percent of full thrust. Operation at THI provides vehicle propellant settling thrust and efficient engine thermal conditioning; PI operation provides vehicle tank pre-pressurization and maneuver thrust for log-g deployment. Stable combustion of the RL10-IIB engine at THI and PI thrust levels can be accomplished by providing gaseous oxygen at the propellant injector. Using gaseous hydrogen from the thrust chamber jacket as an energy source, a heat exchanger can be used to vaporize liquid oxygen without creating flow instability. This report summarizes the design and analysis of a United Aircraft Products (UAP) low-rate heat transfer heat exchanger concept for the RL10-IIB rocket engine. The design represents a second iteration of the RL10-IIB heat exchanger investigation program. The design and analysis of the first heat exchanger effort is presented in more detail in NASA CR-174857. Testing of the previous design is detailed in NASA CR-179487.

  9. Hemodialysis removal of norfloxacin. (United States)

    Lau, A H; Tang, I; Fitzloff, J; Jain, R


    The effect of hemodialysis on norfloxacin removal was evaluated in 7 patients. Single 800-mg doses of the drug were given to the subjects prior to dialysis using cuprophan hollow fiber dialyzers. Arterial and venous sample pairs were obtained at hourly intervals during treatment. Norfloxacin plasma concentrations were determined by HPLC. The mean hemodialysis clearance and extraction ratio were 38.84 +/- 10.92 ml/min and 0.19 +/- 0.06, respectively. Small differences in these parameters were observed between dialyzers with different surface areas (p > 0.05) and also between treatments using different blood flow rates (p > 0.05). Since a relatively small amount of norfloxacin is removed by hemodialysis, dosage adjustment is not necessary to compensate for the extracorporeal removal.

  10. The heating effect on different light emitting diodes chips materials (United States)

    Chu, K. K.; Hambali, N. A. M. A.; Ariffin, S. N.; Wahid, M. H. A.; Shahimin, M. M.; Ali, Norshamsuri


    In this paper, simulation of non-radiative recombination heating and Joule heating effects based on different material of a light emitting diodes chip for Gallium Nitride, Indium Nitride, Zinc Oxide, Zinc Selenide and Titanium Dioxide are demonstrated. Among the light emitting diodes chips materials, Indium Nitride, Zinc Oxide and Zinc Selenide has the capability to produce the highest non-radiative recombination heating which the heating value is potential up to ×1012 to ×1013 W/m3. Meanwhile, Titanium Dioxide has the capability to generate higher value of non-radiative recombination heating with lowest value of electron carriers concentration. For the joule heating effect, the Titanium Dioxide shows the fast heating behavior as compared with other materials.

  11. A New Wick Structure to Significantly Improve Heat Pipe Performance Project (United States)

    National Aeronautics and Space Administration — Increasing thermal requirements for space-based thermal control systems are straining the capabilities of conventional heat pipes. Mainstream has experimentally...

  12. Optimising laser tattoo removal

    Directory of Open Access Journals (Sweden)

    Kabir Sardana


    Full Text Available Lasers are the standard modality for tattoo removal. Though there are various factors that determine the results, we have divided them into three logical headings, laser dependant factors such as type of laser and beam modifications, tattoo dependent factors like size and depth, colour of pigment and lastly host dependent factors, which includes primarily the presence of a robust immune response. Modifications in the existing techniques may help in better clinical outcome with minimal risk of complications. This article provides an insight into some of these techniques along with a detailed account of the factors involved in tattoo removal.

  13. Optimising Laser Tattoo Removal (United States)

    Sardana, Kabir; Ranjan, Rashmi; Ghunawat, Sneha


    Lasers are the standard modality for tattoo removal. Though there are various factors that determine the results, we have divided them into three logical headings, laser dependant factors such as type of laser and beam modifications, tattoo dependent factors like size and depth, colour of pigment and lastly host dependent factors, which includes primarily the presence of a robust immune response. Modifications in the existing techniques may help in better clinical outcome with minimal risk of complications. This article provides an insight into some of these techniques along with a detailed account of the factors involved in tattoo removal. PMID:25949018

  14. Machine capability index evaluation of machining center

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Won Pyo [Korea Institute of Industrial Technology, Ansan (Korea, Republic of)


    Recently, there has been an increasing need to produce more precise products, with only the smallest deviations from a defined target value. Machine capability is the ability of a machine tool to produce parts within the tolerance interval. Capability indices are a statistical way of describing how well a product is machined compared to defined target values and tolerances. Currently, there is no standardized way to acquire a machine capability value. This paper describes how machine capability indices are evaluated in machining centers. After the machining of specimens, straightness, roundness and positioning accuracy were measured using CMM(coordinate measuring machine). These measured values and defined tolerances were used to evaluate the machine capability index. It will be useful for the industry to have standardized ways to choose and calculate machine capability indices.

  15. Mathematical model for calculation of the heat-hydraulic modes of heating points of heat-supplying systems (United States)

    Shalaginova, Z. I.


    The mathematical model and calculation method of the thermal-hydraulic modes of heat points, based on the theory of hydraulic circuits, being developed at the Melentiev Energy Systems Institute are presented. The redundant circuit of the heat point was developed, in which all possible connecting circuits (CC) of the heat engineering equipment and the places of possible installation of control valve were inserted. It allows simulating the operating modes both at central heat points (CHP) and individual heat points (IHP). The configuration of the desired circuit is carried out automatically by removing the unnecessary links. The following circuits connecting the heating systems (HS) are considered: the dependent circuit (direct and through mixing elevator) and independent one (through the heater). The following connecting circuits of the load of hot water supply (HWS) were considered: open CC (direct water pumping from pipelines of heat networks) and a closed CC with connecting the HWS heaters on single-level (serial and parallel) and two-level (sequential and combined) circuits. The following connecting circuits of the ventilation systems (VS) were also considered: dependent circuit and independent one through a common heat exchanger with HS load. In the heat points, water temperature regulators for the hot water supply and ventilation and flow regulators for the heating system, as well as to the inlet as a whole, are possible. According to the accepted decomposition, the model of the heat point is an integral part of the overall heat-hydraulic model of the heat-supplying system having intermediate control stages (CHP and IHP), which allows to consider the operating modes of the heat networks of different levels connected with each other through CHP as well as connected through IHP of consumers with various connecting circuits of local systems of heat consumption: heating, ventilation and hot water supply. The model is implemented in the Angara data

  16. Compilation of Sandia Laboratories technical capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Lundergan, C. D.; Mead, P. L. [eds.


    This report is a compilation of 17 individual documents that together summarize the technical capabilities of Sandia Laboratories. Each document in this compilation contains details about a specific area of capability. Examples of application of the capability to research and development problems are provided. An eighteenth document summarizes the content of the other seventeen. Each of these documents was issued with a separate report number (SAND 74-0073A through SAND 74-0091, except -0078). (RWR)

  17. Graphical Visualization of Human Exploration Capabilities (United States)

    Rodgers, Erica M.; Williams-Byrd, Julie; Arney, Dale C.; Simon, Matthew A.; Williams, Phillip A.; Barsoum, Christopher; Cowan, Tyler; Larman, Kevin T.; Hay, Jason; Burg, Alex


    NASA's pioneering space strategy will require advanced capabilities to expand the boundaries of human exploration on the Journey to Mars (J2M). The Evolvable Mars Campaign (EMC) architecture serves as a framework to identify critical capabilities that need to be developed and tested in order to enable a range of human exploration destinations and missions. Agency-wide System Maturation Teams (SMT) are responsible for the maturation of these critical exploration capabilities and help formulate, guide and resolve performance gaps associated with the EMC-identified capabilities. Systems Capability Organization Reporting Engine boards (SCOREboards) were developed to integrate the SMT data sets into cohesive human exploration capability stories that can be used to promote dialog and communicate NASA's exploration investments. Each SCOREboard provides a graphical visualization of SMT capability development needs that enable exploration missions, and presents a comprehensive overview of data that outlines a roadmap of system maturation needs critical for the J2M. SCOREboards are generated by a computer program that extracts data from a main repository, sorts the data based on a tiered data reduction structure, and then plots the data according to specified user inputs. The ability to sort and plot varying data categories provides the flexibility to present specific SCOREboard capability roadmaps based on customer requests. This paper presents the development of the SCOREboard computer program and shows multiple complementary, yet different datasets through a unified format designed to facilitate comparison between datasets. Example SCOREboard capability roadmaps are presented followed by a discussion of how the roadmaps are used to: 1) communicate capability developments and readiness of systems for future missions, and 2) influence the definition of NASA's human exploration investment portfolio through capability-driven processes. The paper concludes with a description

  18. Dynamic capabilities and innovation capabilities: The case of the ‘Innovation Clinic’

    Directory of Open Access Journals (Sweden)

    Fred Strønen


    Full Text Available In this explorative study, we investigate the relationship between dynamic capabilities and innovation capabilities. Dynamic capabilities are at the core of strategic management in terms of how firms can ensure adaptation to changing environments over time. Our paper follows two paths of argumentation. First, we review and discuss some major contributions to the theories on ordinary capabilities, dynamic capabilities, and innovation capabilities. We seek to identify different understandings of the concepts in question, in order to clarify the distinctions and relationships between dynamic capabilities and innovation capabilities. Second, we present a case study of the ’Innovation Clinic’ at a major university hospital, including four innovation projects. We use this case study to explore and discuss how dynamic capabilities can be extended, as well as to what extent innovation capabilities can be said to be dynamic. In our conclusion, we discuss the conditions for nurturing ‘dynamic innovation capabilities’ in organizations.

  19. Nonazeotropic Heat Pump (United States)

    Ealker, David H.; Deming, Glenn


    Heat pump collects heat from water circulating in heat-rejection loop, raises temperature of collected heat, and transfers collected heat to water in separate pipe. Includes sealed motor/compressor with cooling coils, evaporator, and condenser, all mounted in outer housing. Gradients of temperature in evaporator and condenser increase heat-transfer efficiency of vapor-compression cycle. Intended to recover relatively-low-temperature waste heat and use it to make hot water.

  20. Developing Technological Capabilities in Agro-Industry

    DEFF Research Database (Denmark)

    Whitfield, Lindsay


    This article examines the emergence and trajectory of a new agro-industry in Ghana, the pineapple export industry, using the technological capabilities approach. It explains the limited expansion of the industry and its declining competitiveness in the face of new competition by looking at how...... Ghanaian exporters developed technological capabilities initially and the incentives and disincentives to building on those capabilities. The article argues that at the heart of the industry's crisis was an inability to further develop technological capabilities. The crisis had systemic features that have...

  1. Capabilities and Equality of Health II

    DEFF Research Database (Denmark)

    Keiding, Hans

    The concept of capabilities, introduced originally by Sen, has inspired many researchers but has not found any simple formal representation which might be instrumental in the construction of a comprehensive theory of equality. In a previous paper (Keiding, 2005), we investigated whether preferences...... of the capability approach to questions of health or equality. In the present paper we extend the notion of rationalizing orderings of capabilities to a dynamical context, in the sense that the utility function is not yet revealed to the individual at the time when the capabilities are ordered. It turns out...

  2. Removal of anionic surfactant sodium dodecyl benzene sulfonate (SDBS) from wastewaters by zero-valent iron (ZVI): predominant removal mechanism for effective SDBS removal. (United States)

    Takayanagi, Akari; Kobayashi, Maki; Kawase, Yoshinori


    Mechanisms for removal of anionic surfactant sodium dodecyl benzene sulfonate (SDBS) in wastewaters by zero-valent iron (ZVI) were systematically examined. The contributions of four removal mechanisms, i.e., reductive degradation, oxidative degradation, adsorption, and precipitation, changed significantly with solution pH were quantified and the effective removal of SDBS by ZVI was found to be attributed to the adsorption capability of iron oxides/hydroxides on ZVI surface at nearly neutral pH instead of the degradation at acidic condition. The fastest SDBS removal rate and the maximum TOC (total organic carbon) removal efficiency were obtained at pH 6.0. The maximum TOC removal at pH 6.0 was 77.8%, and the contributions of degradation, precipitation, and adsorption to TOC removal were 4.6, 14.9, and 58.3%, respectively. At pH 3.0, which is an optimal pH for oxidative degradation by the Fenton reaction, the TOC removal was only 9.8% and the contributions of degradation, precipitation, and adsorption to TOC removal were 2.3, 4.6, and 2.9%, respectively. The electrostatic attraction between dodecyl benzene sulfate anion and the iron oxide/hydroxide layer controlled the TOC removal of SDBS. The kinetic model based on the Langmuir-Hinshelwood/Eley-Rideal approach could successfully describe the experimental results for SDBS removal by ZVI with the averaged correlation coefficient of 0.994. ZVI was found to be an efficient material toward the removal of anionic surfactant at nearly neutral pH under the oxic condition.

  3. High heat flux single phase heat exchanger (United States)

    Valenzuela, Javier A.; Izenson, Michael G.


    This paper presents the results obtained to date in a program to develop a high heat flux, single-phase heat exchanger for spacecraft thermal management. The intended application is a net generation interface heat exchanger to couple the crew module water thermal bus to the two-phase ammonia main thermal bus in the Space Station Freedom. The large size of the interface heat exchanger is dictated by the relatively poor water-side heat transfer characteristics. The objective of this program is to develop a single-phase heat transfer approach which can achieve heat fluxes and heat transfer coefficients comparable to those of the evaporation ammonia side. A new heat exchanger concept has been developed to meet these objecties. The main feature of this heat exchanger is that it can achieve very high heat fluxes with a pressure drop one to two orders of magnitude lower than those of previous microchannel or jet impingement high heat flux heat exchangers. This paper describes proof-of-concept experiments performed in air and water and presents analytical model of the heat exchanger.

  4. Do Acquirer Capabilities Affect Acquisition Performance? Examining Strategic and Effectiveness Capabilities in Acquirers


    Mudde, Paul A.; Brush, Thomas


    This paper examines acquisition performance from the perspective of acquirer capabilities. It argues that the strategic capabilities underpinning a firm’s competitive strategy can be utilized to create economic value in acquisitions. Acquirers with strong cost leadership capabilities are expected to leverage these capabilities to reduce post-acquisition costs as they integrate acquisition targets. Acquirers with strong differentiation capabilities are expected to utilize their strategic capab...

  5. Bunion removal - slideshow (United States)

    ... GO GO About MedlinePlus Site Map FAQs Customer Support Health Topics Drugs & Supplements Videos & Tools Español You Are Here: Home → Medical Encyclopedia → Bunion removal - series—Normal anatomy URL of this page: // ...

  6. Adenoid removal - slideshow (United States)

    ... GO GO About MedlinePlus Site Map FAQs Customer Support Health Topics Drugs & Supplements Videos & Tools Español You Are Here: Home → Medical Encyclopedia → Adenoid removal - series—Normal anatomy URL of this page: // ...

  7. A non-equilibrium model for soil heating and moisture transport during extreme surface heating: The soil (heat-moisture-vapor) HMV-Model Version (United States)

    William Massman


    Increased use of prescribed fire by land managers and the increasing likelihood of wildfires due to climate change require an improved modeling capability of extreme heating of soils during fires. This issue is addressed here by developing and testing the soil (heat-moisture-vapor) HMVmodel, a 1-D (one-dimensional) non-equilibrium (liquid- vapor phase change)...

  8. Removing Noise From Pyrosequenced Amplicons

    Directory of Open Access Journals (Sweden)

    Davenport Russell J


    Full Text Available Abstract Background In many environmental genomics applications a homologous region of DNA from a diverse sample is first amplified by PCR and then sequenced. The next generation sequencing technology, 454 pyrosequencing, has allowed much larger read numbers from PCR amplicons than ever before. This has revolutionised the study of microbial diversity as it is now possible to sequence a substantial fraction of the 16S rRNA genes in a community. However, there is a growing realisation that because of the large read numbers and the lack of consensus sequences it is vital to distinguish noise from true sequence diversity in this data. Otherwise this leads to inflated estimates of the number of types or operational taxonomic units (OTUs present. Three sources of error are important: sequencing error, PCR single base substitutions and PCR chimeras. We present AmpliconNoise, a development of the PyroNoise algorithm that is capable of separately removing 454 sequencing errors and PCR single base errors. We also introduce a novel chimera removal program, Perseus, that exploits the sequence abundances associated with pyrosequencing data. We use data sets where samples of known diversity have been amplified and sequenced to quantify the effect of each of the sources of error on OTU inflation and to validate these algorithms. Results AmpliconNoise outperforms alternative algorithms substantially reducing per base error rates for both the GS FLX and latest Titanium protocol. All three sources of error lead to inflation of diversity estimates. In particular, chimera formation has a hitherto unrealised importance which varies according to amplification protocol. We show that AmpliconNoise allows accurate estimates of OTU number. Just as importantly AmpliconNoise generates the right OTUs even at low sequence differences. We demonstrate that Perseus has very high sensitivity, able to find 99% of chimeras, which is critical when these are present at high

  9. Conceptual design of cesium removal device for ITER NBI maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Oka, Kiyoshi; Shibanuma, Kiyoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment


    Cesium is required in order to generate a stable negative ion of hydrogen in an ion source of the neutral beam injector (NBI), which is one of the plasma-heating devices for International Thermonuclear Experimental Reactor (ITER). After long time operation of the NBI, the cesium deposits to the insulators supporting the electrode. Due to the deterioration of the insulation resistance, the continuous operation of the NBI will be difficult. In addition, the NBI device is activated by neutrons from D-T plasma, so that periodic removal and cleaning of the cesium on the insulators by remove handling is required. A study of the cesium removal scenario and the device is therefore required considering remote handling. In this report, a cesium removal procedure and conceptual design of the cesium removal device using laser ablation technique are studied, and the feasibility of the laser ablation method is shown. (author)

  10. Multiple source heat pump (United States)

    Ecker, Amir L.


    A heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating a fluid in heat exchange relationship with a refrigerant fluid, at least three refrigerant heat exchangers, one for effecting heat exchange with the fluid, a second for effecting heat exchange with a heat exchange fluid, and a third for effecting heat exchange with ambient air; a compressor for compressing the refrigerant; at least one throttling valve connected at the inlet side of a heat exchanger in which liquid refrigerant is vaporized; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circuit and pump for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and directional flow of refrigerant therethrough for selecting a particular mode of operation. Also disclosed are a variety of embodiments, modes of operation, and schematics therefor.

  11. Cryogenic heat transfer

    CERN Document Server

    Barron, Randall F


    Cryogenic Heat Transfer, Second Edition continues to address specific heat transfer problems that occur in the cryogenic temperature range where there are distinct differences from conventional heat transfer problems. This updated version examines the use of computer-aided design in cryogenic engineering and emphasizes commonly used computer programs to address modern cryogenic heat transfer problems. It introduces additional topics in cryogenic heat transfer that include latent heat expressions; lumped-capacity transient heat transfer; thermal stresses; Laplace transform solutions; oscillating flow heat transfer, and computer-aided heat exchanger design. It also includes new examples and homework problems throughout the book, and provides ample references for further study.

  12. Heat pump technology

    CERN Document Server

    Von Cube, Hans Ludwig; Goodall, E G A


    Heat Pump Technology discusses the history, underlying concepts, usage, and advancements in the use of heat pumps. The book covers topics such as the applications and types of heat pumps; thermodynamic principles involved in heat pumps such as internal energy, enthalpy, and exergy; and natural heat sources and energy storage. Also discussed are topics such as the importance of the heat pump in the energy industry; heat pump designs and systems; the development of heat pumps over time; and examples of practical everyday uses of heat pumps. The text is recommended for those who would like to kno

  13. Pentek metal coating removal system: Baseline report

    Energy Technology Data Exchange (ETDEWEB)



    The Pentek coating removal technology was tested and is being evaluated at Florida International University (FIU) as a baseline technology. In conjunction with FIU`s evaluation of efficiency and cost, this report covers evaluation conducted for safety and health issues. It is a commercially available technology and has been used for various projects at locations throughout the country. The Pentek coating removal system consisted of the ROTO-PEEN Scaler, CORNER-CUTTER{reg_sign}, and VAC-PAC{reg_sign}. They are designed to remove coatings from steel, concrete, brick, and wood. The Scaler uses 3M Roto Peen tungsten carbide cutters while the CORNER-CUTTER{reg_sign} uses solid needles for descaling activities. These hand tools are used with the VAC-PAC{reg_sign} vacuum system to capture dust and debris as removal of the coating takes place. The safety and health evaluation during the testing demonstration focused on two main areas of exposure: dust and noise. Dust exposure minimal, but noise exposure was significant. Further testing for each exposure is recommended because of the environment where the testing demonstration took place. It is feasible that the dust and noise levels will be higher in an enclosed operating environment of different construction. In addition, other areas of concern found were arm-hand vibration, whole-body, ergonomics, heat stress, tripping hazards, electrical hazards, machine guarding, and lockout/tagout.


    IITRI's patented in situ RFH technology enhances the removal of volatile and semi-volatile organics by soil vapor extraction (SVE). Electromagnetic energy heats the soil resulting in increased contaminant vapor pressures and potentially higher soil permeability. RFH heats soil us...

  15. Development, Verification and Validation of Enclosure Radiation Capabilities in the CHarring Ablator Response (CHAR) Code (United States)

    Salazar, Giovanni; Droba, Justin C.; Oliver, Brandon; Amar, Adam J.


    With the recent development of multi-dimensional thermal protection system (TPS) material response codes including the capabilities to account for radiative heating is a requirement. This paper presents the recent efforts to implement such capabilities in the CHarring Ablator Response (CHAR) code developed at NASA's Johnson Space Center. This work also describes the different numerical methods implemented in the code to compute view factors for radiation problems involving multiple surfaces. Furthermore, verification and validation of the code's radiation capabilities are demonstrated by comparing solutions to analytical results, to other codes, and to radiant test data.

  16. Measuring IT core capabilities for electronic commerce

    NARCIS (Netherlands)

    van der Heijden, J.G.M.


    This paper reports on the theoretical development and empirical validation of a measurement instrument for three information technology (IT) core capabilities in an electronic commerce context. The instrument is based on the work of Feeny and Willcocks (1998) and includes the capabilities

  17. Cultivating Human Capabilities in Venturesome Learning Environments (United States)

    Hogan, Padraig


    The notion of competencies has been a familiar feature of educational reform policies for decades. In this essay, Padraig Hogan begins by highlighting the contrasting notion of capabilities, pioneered by the research of Amartya Sen and Martha Nussbaum. An educational variant of the notion of capabilities then becomes the basis for exploring…

  18. Reputation management capabilities as decision rules

    NARCIS (Netherlands)

    P.P.M.A.R. Heugens (Pursey); C.B.M. van Riel (Cees); F.A.J. van den Bosch (Frans)


    textabstractWe draw on a detailed grounded theory study of the reactions of Dutch food firms to the recent introduction of genetically modified foods to inductively identify the capabilities that firms develop in response to reputational threats. Central to the view on capabilities we propose are

  19. A framework for offshore vendor capability development (United States)

    Yusuf Wibisono, Yogi; Govindaraju, Rajesri; Irianto, Dradjad; Sudirman, Iman


    Offshore outsourcing is a common practice conducted by companies, especially in developed countries, by relocating one or more their business processes to other companies abroad, especially in developing countries. This practice grows rapidly owing to the ease of accessing qualified vendors with a lower cost. Vendors in developing countries compete more intensely to acquire offshore projects. Indonesia is still below India, China, Malaysia as main global offshore destinations. Vendor capability is among other factors that contribute to the inability of Indonesian vendor in competing with other companies in the global market. Therefore, it is essential to study how to increase the vendor's capability in Indonesia, in the context of global offshore outsourcing. Previous studies on the vendor's capability mainly focus on capabilities without considering the dynamic of capabilities due to the environmental changes. In order to be able to compete with competitors and maintain the competitive advantage, it is necessary for vendors to develop their capabilities continuously. The purpose of this study is to develop a framework that describes offshore vendor capability development along the client-vendor relationship stages. The framework consists of three main components, i.e. the stages of client-vendor relationship, the success of each stage, and the capabilities of vendor at each stage.

  20. Knowledge Perspectives on Advancing Dynamic Capability

    NARCIS (Netherlands)

    van Reijsen, J.


    Dynamic Capability is the organizational capacity to timely adapt to a changing market environment by reconfiguring resources and routines in order to stay competitive. Although dynamic capability is considered the Holy Grail of strategic management, a connection to the knowledge management domain

  1. 'capabilities poverty' with learners attending informal settlement ...

    African Journals Online (AJOL)

    Erna Kinsey

    (2005) emphasise the denial of human and political rights as a central theme in understanding capabilities poverty. In Osmani's view (2005), the unidimen- sional approach of poverty as low income should be replaced with the multi- dimensional view that poverty consists in the failure to achieve a range of basic capabilities.

  2. Manifestations of 'capabilities poverty' with learners attending ...

    African Journals Online (AJOL)

    In this study I use the notion of 'capabilities poverty', as theorised by Sen, to examine the experiences of learners attending informal settlement schools in North-West Province, South Africa. Sen distinguishes between functionings (what people do or their ability to do something) and capabilities (various combinations of ...

  3. Capabilities of Universities in Achieving the Agricultural ...

    African Journals Online (AJOL)

    All (100%) the respondents had no capability in acquiring machines and equipment needed for teaching and conducting researches on climate change. Majority (85%) of the respondents had no capability in terms of human resource development with regards to climate change. Funding/manpower (0.657), organizational ...

  4. Organizational Capabilities of the Entrepreneurial University


    Lucian Gramescu; Nicolae Bibu


    Developing entrepreneurial capabilities has become a key competitiveness strategy in business across the world. Overall, organizational capabilities can provide performance improvements by taking an integrated approach to people, infrastructure and processes as means of codifying organizational learning. The paper proposes “organizational capability” as a valuable tool for universities who seek to develop their competitiveness entrepreneurially, especially across the EU, where hig...

  5. Global dynamics, capabilities and the crisis

    Czech Academy of Sciences Publication Activity Database

    Fagerberg, J.; Srholec, Martin


    Roč. 26, č. 4 (2016), s. 765-784 ISSN 0936-9937 R&D Projects: GA ČR GAP402/10/2310 Institutional support: RVO:67985998 Keywords : technological capabilities * social capabilities * competitiveness Subject RIV: AH - Economics Impact factor: 0.862, year: 2016

  6. Regenerable Sorbent for CO2 Removal (United States)

    Alptekin, Gokhan; Jayaraman, Ambal


    A durable, high-capacity regenerable sorbent can remove CO2 from the breathing loop under a Martian atmosphere. The system design allows near-ambient temperature operation, needs only a small temperature swing, and sorbent regeneration takes place at or above 8 torr, eliminating the potential for Martian atmosphere to leak into the regeneration bed and into the breathing loop. The physical adsorbent can be used in a metabolic, heat-driven TSA system to remove CO2 from the breathing loop of the astronaut and reject it to the Martian atmosphere. Two (or more) alternating sorbent beds continuously scrub and reject CO2 from the spacesuit ventilation loop. The sorbent beds are cycled, alternately absorbing CO2 from the vent loop and rejecting the adsorbed material into the environment at a high CO2 partial pressure (above 8 torr). The system does not need to run the adsorber at cryogenic temperatures, and uses a much smaller temperature swing. The sorbent removes CO2 via a weak chemical interaction. The interaction is strong enough to enable CO2 adsorption even at 3 to 7.6 torr. However, because the interaction between the surface adsorption sites and the CO2 is relatively weak, the heat input needed to regenerate the sorbent is much lower than that for chemical absorbents. The sorbent developed in this project could potentially find use in a large commercial market in the removal of CO2 emissions from coal-fired power plants, if regulations are put in place to curb carbon emissions from power plants.

  7. Considerations in Launch Vehicle Abort Capability and Failure Tolerance (United States)

    Hale, N. W., Jr.; Conte, B. A.


    operations, the Space Shuttle was designed to incur loss of thrust from one engine at liftoff and return safely to a runway. This is a very unusual capability in space launch vehicles and, if desired, must be designed into the system initially. For some extremely high value payloads on future expendable launch vehicles, this capability may be cost effective as well as for human space flights. Current designers may be inclined to design a "simple" emergency escape pod to resolve this issue. That may neither be the most effective nor the safest way to provide ascent failure tolerance. This paper discusses some real-world issues associated with this capability that the designers of the Space Shuttle did take into account that have become serious issues in real operations. paper discusses the affect of payload mass on abort capability. Issues related to abort modes can also be influence by other aspects of payload mass including center of gravity concerns. In a similar mode, consumables such as on-orbit attitude control propellant is a major factor in abort mode design. multiple engine failures during the powered ascent trajectory and have a happy outcome: landing on a runway. This paper discusses options and post-design fixes to the Space Shuttle to enhance multiple engine out capability. scenarios. include propellant underload on STS-61C, off nominal performance of engine clusters on STS-78 and STS-93, and other flights. Designers of these future human rated vehicles should consider the Space Shuttle experience in designing their systems. About the Authors: N. Wayne Hale, Jr. is currently the Deputy Chief for Shuttle of the NASA/JSC Flight Director Office. In 23 years with NASA at Houston's Johnson Space Center, he has served in the Mission Control Center for 41 Space Shuttle flights including 25 as Entry Flight Director. Mr. Hale received his Bachelor of Science Degree in Mechanical Engineering from Rice University in 1976 and his Master of Science Degree in

  8. Reactive capability limits of wind farms

    Energy Technology Data Exchange (ETDEWEB)

    Villacorta, A.R. [European Univ., Madrid (Spain). Dept. of Electrical and Electronic Engineering; Gomez, S.A.; Rodriguez Amenedo, J.L. [Carlos III Univ., Madrid (Spain). Dept. of Electrical Engineering


    Wind Energy Conversion Systems (WECS) technology can be classified into two main types: fixed speed and variable speed. Fixed speed WECS use an induction generator connected directly to the grid while variable speed WECS use a power converter to connect the generator to the grid. Fixed speed WECS require shunt capacitors for reactive power compensation, while variable speed WECS have reactive power capability. Under the Spanish grid code, wind farms have to operate in a range of power factor values. This paper determines the reactive power capability of wind farms equipped with both fixed and variable speed WECS. The reactive power capability can be represented as a reactive capability curve. In this paper, the reactive capability curve is used to calculate the additional reactive power compensation needed to meet the requirements of the Spanish grid code. (Author)

  9. Heat transfer with freezing in a scraped surface heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Lakhdar, M.B. [LGL France Refrigerating Division, Genas (France); Cerecero, R.; Alvarez, G.; Guilpart, J. [Cemagref, Antony cedex (France). Food Process Engineering; Flick, D. [Institut National Agronomique, Paris (France); Lallemand, A. [Institut National des Sciences Appliquees de Lyon (France). Centre de Thermique


    An experimental study was carried out on a scraped surface heat exchanger used for freezing of water-ethanol mixture and aqueous sucrose solution. The influence of various parameters on heat transfer intensity was established: product type and composition, flow rate, blade rotation speed, distance between blades and wall. During starting (transient period) the solution is first supercooled, then ice crystals appear on the scraped surface (heterogeneous nucleation) and no more supercooling is observed. It seems that, when blades are 3 mm far from the surface, a constant ice layer is formed having this thickness and acting as a thermal resistance. But when the blades rotate at 1 mm from the surface, periodically all the ice layer is removed despite the surface is not really scraped. This could simplify ice generator technology. An internal heat transfer coefficient was defined; it depends mainly on rotation speed. Correlations were proposed for its prediction, which could be applied, at least as a first approach, for the most common freezing applications of scraped surface heat exchanger i.e. ice creams (which are derived from sucrose solutions) and two-phase secondary refrigerants (which are principally ethanol solutions). (author)

  10. Removal of heavy metals from aqueous solution by using mango ...

    African Journals Online (AJOL)



    Mar 14, 2011 ... waste pollution, thermal pollution, shipping water pollution and radioactive wastes (Tyagi and Mehra, 1994). Heavy metals such as zinc, lead and chromium ... alkalis, acids, detergents and heat, which may enhance the amount of the metal sorbed. When non-viable biomass is used in the removal of heavy ...

  11. HFI energetic particle effects: characterization, removal, and simulation

    DEFF Research Database (Denmark)

    Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.


    We describe the detection, interpretation, and removal of the signal resulting from interactions of high energy particles with the Planck High Frequency Instrument (HFI). There are two types of interactions: heating of the 0.1 K bolometer plate; and glitches in each detector time stream. The tran...

  12. Material Removes Heavy Metal Ions From Water (United States)

    Philipp, Warren H., Jr.; Street, Kenneth W.; Hill, Carol; Savino, Joseph M.


    New high capacity ion-exchange polymer material removes toxic metal cations from contaminated water. Offers several advantages. High sensitivities for such heavy metals as lead, cadmium, and copper and capable of reducing concentrations in aqueous solutions to parts-per-billion range. Removes cations even when calcium present. Material made into variety of forms, such as thin films, coatings, pellets, and fibers. As result, adapted to many applications to purify contaminated water, usually hard wherever found, whether in wastewater-treatment systems, lakes, ponds, industrial plants, or homes. Another important feature that adsorbed metals easily reclaimed by either destructive or nondestructive process. Other tests show ion-exchange polymer made inexpensively; easy to use; strong, flexible, not easily torn; and chemically stable in storage, in aqueous solutions, and in acidic or basic solution.

  13. Centre vortex removal restores chiral symmetry (United States)

    Trewartha, Daniel; Kamleh, Waseem; Leinweber, Derek B.


    The influence of centre vortices on dynamical chiral symmetry breaking is investigated through the light hadron spectrum on the lattice. Recent studies of the quark propagator and other quantities have provided evidence that centre vortices are the fundamental objects underpinning dynamical chiral symmetry breaking in {SU}(3) gauge theory. For the first time, we use the chiral overlap fermion action to study the low-lying hadron spectrum on lattice ensembles consisting of Monte Carlo, vortex-removed, and vortex-projected gauge fields. We find that gauge field configurations consisting solely of smoothed centre vortices are capable of reproducing all the salient features of the hadron spectrum, including dynamical chiral symmetry breaking. The hadron spectrum on vortex-removed fields shows clear signals of chiral symmetry restoration at light values of the bare quark mass, while at heavy masses the spectrum is consistent with a theory of weakly interacting constituent quarks.

  14. A solar heating system with annual storage (United States)

    Lazzari, F.; Raffellini, G.


    A solar heated house with long term storage capability, built in Trento, Italy, is described. The one story house was built from modular components and has a total heated volume of 1130 cu m. Flat plate solar collectors with a water-antifreeze medium are located beneath the lawn, and six cylindrical underground tanks holding 130 cu m of water heated by thermal energy from the collectors are situated under the garden. The house walls have an 8 cm cavity filled with 5 cm of formaldehyde foam, yielding a heat transmission (U) of 0.37 W/sq m/deg C. The roof and ceilings are insulated with fiberglass and concrete, producing U-values of 0.46 W/sq m/deg C and 0.57 W/sq m/deg C, respectively. Heat pumps using 6 kW move thermal energy between the house and the tanks. Direct hot water heating occurs in the summer, and direct home heating when the stored water temperature exceeds 32 C. A computer model was developed which traces the annual heat flow and it is shown that the system supplies all heating requirements for the house, with electrical requirements equal to 20 percent of the annual house needs.

  15. Human capabilities in advanced dementia: Nussbaum's approach. (United States)

    Melander, Catharina; Sävenstedt, Stefan; Wälivaara, Britt-Marie; Olsson, Malin


    To explore how Martha Nussbaum's approach to human capabilities can apply to dignity in the lives of people with advanced dementia living in nursing homes. Challenges experienced when supporting people with advanced dementia who express problematic behaviours include understanding their needs and ensuring a dignified life for them. Data were gathered using an ethnographic approach based on participatory observation. Nussbaum's capability approach was then used as a framework for the analysis. Four women diagnosed with advanced dementia who also expressed problematic behaviours were recruited from a nursing home in Northern Sweden. The data collection was performed during 2015. Individuals with advanced dementia had difficulties in participating in the planning of their lives and achieving the human capability of practical reasoning. They were also at risk of being placed outside the social group, thus hindering them from attaining the human capability of affiliation. A dignified life for individuals with advanced dementia requires nursing staff to be present and to provide adapted support to ensure that the individual can actually pursue human capabilities. Creating opportunities for the human capabilities of practical reasoning and affiliation is essential as they permeate all other human capabilities. For these individuals, it was crucial not only to create opportunities for human capabilities but also to attend to their expressions and needs and to guide and steer them towards a dignified life. The normative structure of the capability approach described by Nussbaum can ensure that nursing staffs move beyond fulfilling patients' basic needs to consider other capabilities vital for a dignified life. © 2017 John Wiley & Sons Ltd.

  16. Necessity of Removing American Football Uniforms From Humans With Hyperthermia Before Cold-Water Immersion

    National Research Council Canada - National Science Library

    Miller, Kevin C; Long, Blaine C; Edwards, Jeffrey


    The National Athletic Trainers' Association and the American College of Sports Medicine have recommended removing American football uniforms from athletes with exertional heat stroke before cold-water immersion (CWI...

  17. Vasculature of the hive: heat dissipation in the honey bee (Apis mellifera) hive. (United States)

    Bonoan, Rachael E; Goldman, Rhyan R; Wong, Peter Y; Starks, Philip T


    Eusocial insects are distinguished by their elaborate cooperative behavior and are sometimes defined as superorganisms. As a nest-bound superorganism, individuals work together to maintain favorable nest conditions. Residing in temperate environments, honey bees (Apis mellifera) work especially hard to maintain brood comb temperature between 32 and 36 °C. Heat shielding is a social homeostatic mechanism employed to combat local heat stress. Workers press the ventral side of their bodies against heated surfaces, absorb heat, and thus protect developing brood. While the absorption of heat has been characterized, the dissipation of absorbed heat has not. Our study characterized both how effectively worker bees absorb heat during heat shielding, and where worker bees dissipate absorbed heat. Hives were experimentally heated for 15 min during which internal temperatures and heat shielder counts were taken. Once the heat source was removed, hives were photographed with a thermal imaging camera for 15 min. Thermal images allowed for spatial tracking of heat flow as cooling occurred. Data indicate that honey bee workers collectively minimize heat gain during heating and accelerate heat loss during cooling. Thermal images show that heated areas temporarily increase in size in all directions and then rapidly decrease to safe levels (<37 °C). As such, heat shielding is reminiscent of bioheat removal via the cardiovascular system of mammals.

  18. Vasculature of the hive: heat dissipation in the honey bee ( Apis mellifera) hive (United States)

    Bonoan, Rachael E.; Goldman, Rhyan R.; Wong, Peter Y.; Starks, Philip T.


    Eusocial insects are distinguished by their elaborate cooperative behavior and are sometimes defined as superorganisms. As a nest-bound superorganism, individuals work together to maintain favorable nest conditions. Residing in temperate environments, honey bees ( Apis mellifera) work especially hard to maintain brood comb temperature between 32 and 36 °C. Heat shielding is a social homeostatic mechanism employed to combat local heat stress. Workers press the ventral side of their bodies against heated surfaces, absorb heat, and thus protect developing brood. While the absorption of heat has been characterized, the dissipation of absorbed heat has not. Our study characterized both how effectively worker bees absorb heat during heat shielding, and where worker bees dissipate absorbed heat. Hives were experimentally heated for 15 min during which internal temperatures and heat shielder counts were taken. Once the heat source was removed, hives were photographed with a thermal imaging camera for 15 min. Thermal images allowed for spatial tracking of heat flow as cooling occurred. Data indicate that honey bee workers collectively minimize heat gain during heating and accelerate heat loss during cooling. Thermal images show that heated areas temporarily increase in size in all directions and then rapidly decrease to safe levels (<37 °C). As such, heat shielding is reminiscent of bioheat removal via the cardiovascular system of mammals.

  19. Paint removal principles (United States)

    Malavallon, Olivier


    An attempt is made to group the various processes of paint removal into families. The classifications are distinguished by chemical, mechanical, and thermal phenomena. For each of these phenomena, it is possible to identify the main mechanisms brought into play in material removal leading to paint stripping. The chemical strippers used are methylene chloride, phenolic compounds, and activated acids or activated bases free from phenols, chromates or methylene chloride. However, the methylene chloride and phenolic compounds are being replaced by a new generation of chemical strippers which are less active and their solvent power is lower. To improve the chemical kinetics, 'active' elements are introduced into the composition of these products. Mechanical stripping includes technologies using mechanical phenomena based on erosion, achieved by friction or blasting particles. Thermal stripping, the last classification, makes use of electronics and automation.


    Directory of Open Access Journals (Sweden)

    Justyna Koc-Jurczyk


    Full Text Available Industrialization and urbanization result in increase of heavy metals released into the environment (soil, lakes, rivers, seas, oceans, groundwater. Studies on biosorption of heavy metals are aimed to specify types of microorganisms which could efficiently bind metals. This approach has a very important significance for both slowing down metals exploitation by recovery, and also reduction of environmental pollution by decrease of their excessive concentration. Recent studies have reported about the capabilities of fungi, algae, yeasts, bacteria, waste and agricultural residues or materials containing chitosan derived from crustacean shells as a biosorbents. Biohydrometallurgy could be considered as a new “green” technology of heavy metals removal from wastewater.

  1. Facilities removal working group

    Energy Technology Data Exchange (ETDEWEB)



    This working group`s first objective is to identify major economic, technical, and regulatory constraints on operator practices and decisions relevant to offshore facilities removal. Then, the group will try to make recommendations as to regulatory and policy adjustments, additional research, or process improvements and/or technological advances, that may be needed to improve the efficiency and effectiveness of the removal process. The working group will focus primarily on issues dealing with Gulf of Mexico platform abandonments. In order to make the working group sessions as productive as possible, the Facilities Removal Working Group will focus on three topics that address a majority of the concerns and/or constraints relevant to facilities removal. The three areas are: (1) Explosive Severing and its Impact on Marine Life, (2) Pile and Conductor Severing, and (3) Deep Water Abandonments This paper will outline the current state of practice in the offshore industry, identifying current regulations and specific issues encountered when addressing each of the three main topics above. The intent of the paper is to highlight potential issues for panel discussion, not to provide a detailed review of all data relevant to the topic. Before each panel discussion, key speakers will review data and information to facilitate development and discussion of the main issues of each topic. Please refer to the attached agenda for the workshop format, key speakers, presentation topics, and panel participants. The goal of the panel discussions is to identify key issues for each of the three topics above. The working group will also make recommendations on how to proceed on these key issues.

  2. Laser removal of tattoos. (United States)

    Tammaro, A; Fatuzzo, G; Narcisi, A; Abruzzese, C; Caperchi, C; Gamba, A; Parisella, F R; Persechino, S


    In Western countries the phenomenon of "tattooing" is expanding and tattoos are considered a new fashion among young people. In this paper we briefly trace the history of tattooing, the techniques used, the analysis of pigments used, and their possible adverse reactions. We also carried out a review of the international literature on the use of Q-switched laser in tattoo removal and its complications, and we describe our experience in the use of this technique.

  3. Oscillating heat pipes

    CERN Document Server

    Ma, Hongbin


    This book presents the fundamental fluid flow and heat transfer principles occurring in oscillating heat pipes and also provides updated developments and recent innovations in research and applications of heat pipes. Starting with fundamental presentation of heat pipes, the focus is on oscillating motions and its heat transfer enhancement in a two-phase heat transfer system. The book covers thermodynamic analysis, interfacial phenomenon, thin film evaporation,  theoretical models of oscillating motion and heat transfer of single phase and two-phase flows, primary  factors affecting oscillating motions and heat transfer,  neutron imaging study of oscillating motions in an oscillating heat pipes, and nanofluid’s effect on the heat transfer performance in oscillating heat pipes.  The importance of thermally-excited oscillating motion combined with phase change heat transfer to a wide variety of applications is emphasized. This book is an essential resource and learning tool for senior undergraduate, gradua...

  4. Heat Related Illnesses

    National Research Council Canada - National Science Library

    Carter, R; Cheuvront, S. N; Sawka, M. N


    .... The risk of serious heat illness can be markedly reduced by implementing a variety of countermeasures, including becoming acclimated to the heat, managing heat stress exposure, and maintaining hydration...

  5. Heat Roadmap Europe 1

    DEFF Research Database (Denmark)

    Connolly, David; Mathiesen, Brian Vad; Østergaard, Poul Alberg


    Heat Roadmap Europe (Pre-study 1) investigates the role of district heating in the EU27 energy system by mapping local conditions across Europe, identifying the potential for district heating expansion, and subsequently simulating the potential resource in an hourly model of the EU27 energy system....... In 2010, approximately 12% of the space heating demand in Europe is met by district heating, but in this study four alternative scenarios are considered for the EU27 energy system: 1. 2010 with 30% district heating 2. 2010 with 50% district heating 3. 2030 with 30% district heating 4. 2050 with 50......% district heating These scenarios are investigated in two steps. Firstly, district heating replaces individual boilers by converting condensing power plants to combined heat and power plants (CHP) to illustrate how district heating improves the overall efficiency of the energy system. In the second step...

  6. Multidimensional Heat Conduction

    DEFF Research Database (Denmark)

    Rode, Carsten


    Analytical theory of multidimensional heat conduction. General heat conduction equation in three dimensions. Steay state, analytical solutions. The Laplace equation. Method of separation of variables. Principle of superposition. Shape factors. Transient, multidimensional heat conduction....

  7. Heat-Related Illnesses

    Medline Plus

    Full Text Available ... sweating; nausea; and giddiness. Symptoms of heat stroke (late stage of heat illness) include flushed, hot, dry ... consciousness, vomiting or a high body temperature. For late stage heat stroke symptoms, cool the person further ...

  8. Absorption heat pump system (United States)

    Grossman, Gershon


    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  9. Rehabilitation of district heating networks

    Energy Technology Data Exchange (ETDEWEB)

    Ottosson, Peter [AaF-Energikonsult Syd AB (Sweden)


    Often the choice is between reparation or exchange of a damaged section of the network. If the exchange is based on the wrong assumptions, large sections of undamaged pipelines could be removed. Most important for the district heating company is to decide which strategy to use for the future exchange of the pipelines. Whichever strategy used, it has to based on an assessment of the network and/or assumptions based on that assessment. The question if it is possible extend the life span of the pipelines arises. What is the most economical choice, the exchange or the renovation. (au)

  10. Community Psychology and the Capabilities Approach (United States)


    What makes for a good life? The capabilities approach to this question has much to offer community psychology, particularly with respect to marginalized groups. Capabilities are freedoms to engage in valued social activities and roles—what people can do and be given both their capacities, and environmental opportunities and constraints. Economist Amartya Sen’s focus on freedoms and agency resonates with psychological calls for empowerment, and philosopher Martha Nussbaum’s specification of requirements for a life that is fully human provides an important guide for social programs. Community psychology’s focus on mediating structures has much to offer the capabilities approach. Parallels between capabilities, as enumerated by Nussbaum, and settings that foster positive youth development, as described in a National Research Council Report (Eccles and Gootman (Eds) in Community programs to promote youth development. National Academy Press, Washington, 2002) suggest extensions of the approach to children. Community psychologists can contribute to theory about ways to create and modify settings to enhance capabilities as well as empowerment and positive youth development. Finally, capabilities are difficult to measure, because they involve freedoms to choose but only choices actually made or enacted can be observed. The variation in activities or goals across members of a setting provides a measure of the capabilities that the setting fosters. PMID:25822113

  11. Community psychology and the capabilities approach. (United States)

    Shinn, Marybeth


    What makes for a good life? The capabilities approach to this question has much to offer community psychology, particularly with respect to marginalized groups. Capabilities are freedoms to engage in valued social activities and roles-what people can do and be given both their capacities, and environmental opportunities and constraints. Economist Amartya Sen's focus on freedoms and agency resonates with psychological calls for empowerment, and philosopher Martha Nussbaum's specification of requirements for a life that is fully human provides an important guide for social programs. Community psychology's focus on mediating structures has much to offer the capabilities approach. Parallels between capabilities, as enumerated by Nussbaum, and settings that foster positive youth development, as described in a National Research Council Report (Eccles and Gootman (Eds) in Community programs to promote youth development. National Academy Press, Washington, 2002) suggest extensions of the approach to children. Community psychologists can contribute to theory about ways to create and modify settings to enhance capabilities as well as empowerment and positive youth development. Finally, capabilities are difficult to measure, because they involve freedoms to choose but only choices actually made or enacted can be observed. The variation in activities or goals across members of a setting provides a measure of the capabilities that the setting fosters.

  12. Evaluating Internal Technological Capabilities in Energy Companies

    Directory of Open Access Journals (Sweden)

    Mingook Lee


    Full Text Available As global competition increases, technological capability must be evaluated objectively as one of the most important factors for predominance in technological competition and to ensure sustainable business excellence. Most existing capability evaluation models utilize either quantitative methods, such as patent analysis, or qualitative methods, such as expert panels. Accordingly, they may be in danger of reflecting only fragmentary aspects of technological capabilities, and produce inconsistent results when different models are used. To solve these problems, this paper proposes a comprehensive framework for evaluating technological capabilities in energy companies by considering the complex properties of technological knowledge. For this purpose, we first explored various factors affecting technological capabilities and divided the factors into three categories: individual, organizational, and technology competitiveness. Second, we identified appropriate evaluation items for each category to measure the technological capability. Finally, by using a hybrid approach of qualitative and quantitative methods, we developed an evaluation method for each item and suggested a method to combine the results. The proposed framework was then verified with an energy generation and supply company to investigate its practicality. As one of the earliest attempts to evaluate multi-faceted technological capabilities, the suggested model can support technology and strategic planning.

  13. Enhancing innovation capability maturity through knowledge conversion

    Directory of Open Access Journals (Sweden)

    D. Esterhuizen


    Full Text Available Purpose: This research was aimed at investigating organisational support by means of knowledge conversion processes toward maturity growth in innovation capability areas. Problem investigated: No formal guidelines exist for the use of knowledge management to grow innovation capability maturity. As knowledge management plays a fundamental role in an enterprise's ability to innovate successfully, the following question arises: Can knowledge creation processes be used to enable innovation capability maturity growth? Methodology: The literature therefore provides a strong basis for the argument that knowledge management and more specifically knowledge creation processes could be used to improve an enterprise's innovation capability maturity. A knowledge creation framework that enables innovation capability maturity growth was designed by aligning knowledge creation processes to the requirements for innovation capability growth from one maturity level to the next. The time-frame of the research did not allow the implementation of the framework, and five industry and subject theory experts were used to evaluate the framework. Findings: All five experts responded positively to, and were in agreement that the reasoning applied when identifying the specific knowledge creation process path as a key enabler of growth between innovation capability maturity levels is logical and sound. Value of research: The unique research contribution of the framework lies in providing a tangible link between the fields of knowledge management and innovation capability maturity.Conclusion: The impact of this research lies in the development of a knowledge creation framework that provides guidelines for the use of knowledge creation processes as a vehicle for innovation capability maturity growth.

  14. Feasibility and design studies for heat recovery from a refrigeration system with a Canopus heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Kaushik, S.C.; Singh, M. [Indian Inst. of Tech., New Delhi (India). Centre of Energy Studies


    This paper presents an investigation of the feasibility of heat recovery from the condenser of a vapour compression refrigeration (VCR) system through a Canopus heat exchanger (CHE) between the compressor and condenser components. The presence of the CHE makes it possible to recover the superheat of the discharged vapour and utilize it for increasing the temperature of the external fluid (water) removing heat from the condenser. The effects of the operating temperatures in the condenser and evaporator for different inlet water temperatures and mass flow rates on the heat recovery output and its distribution over the condenser and CHE (the fraction of the condenser heat available through the CHE), available outlet water temperature and heat recovery factor have all been studied and optimum operating parameters for feasible heat recovery have been ascertained. The parametric results obtained for different working fluids, such as R-22, R-12, R-717 and R-500, have been presented. It is found that, in general, a heat recovery factor of the order of 2.0 and 40% of condenser heat can be recovered through the Canopus heat exchanger for a typical set of operating conditions. (Author)

  15. Regenerative adsorbent heat pump (United States)

    Jones, Jack A. (Inventor)


    A regenerative adsorbent heat pump process and system is provided which can regenerate a high percentage of the sensible heat of the system and at least a portion of the heat of adsorption. A series of at least four compressors containing an adsorbent is provided. A large amount of heat is transferred from compressor to compressor so that heat is regenerated. The process and system are useful for air conditioning rooms, providing room heat in the winter or for hot water heating throughout the year, and, in general, for pumping heat from a lower temperature to a higher temperature.

  16. Biological nitrate removal from synthetic wastewater using a fungal ...

    African Journals Online (AJOL)

    A series of lignocellulosic fungi, capable of cellulase and/or xylanase production, were isolated from soil to be used for cellulose degradation and nitrate removal from nitrate-rich wastewater in simple one-stage anaerobic bioreactors containing grass cuttings as source of cellulose. The fungal consortium, consisting of six ...

  17. Removal of nanoparticles from plain and patterned surfaces using nanobubbles

    NARCIS (Netherlands)

    Yang, S.; Duisterwinkel, A.E.


    It is the aim of this paper to quantitatively characterize the capability of surface nanobubbles for surface cleaning, i.e., removal of nanodimensioned polystyrene particles from the surface. We adopt two types of substrates: plain and nanopatterned (trench/ridge) silicon wafer. The method used to

  18. A selective sorbent for removing bacterial endotoxins from blood (United States)

    Morozov, A. S.; Kopitsyna, M. N.; Bessonov, I. V.; Karelina, N. V.; Nuzhdina, A. V.; Sarkisov, I. Yu.; Pavlova, L. A.; Tsyurupa, M. P.; Blinnikova, Z. K.; Davankov, V. A.


    Synthetic ligands carrying a positive charge and capable of selective binding of bacterial endotoxins are covalently immobilized on surfaces of domestic hemosorbent Styrosorb-514 based on hypercrosslinked polystyrene. It is shown that the resulting sorbent aimed at treating sepsis exceeds imported specific hemosorbent in Toraymyxin™ columns in removing lipopolysaccharides, and can be used in domestically-produced Desepta columns.

  19. Heat stress reduction of helicopter crew wearing a ventilated vest

    NARCIS (Netherlands)

    Reffeltrath, P.A.


    Background: Helicopter pilots are often exposed to periods of high heat strain, especially when wearing survival suits. Therefore, a prototype of a ventilated vest was evaluated on its capability to reduce the heat strain of helicopter pilots during a 2-h simulated flight. Hypothesis: It was

  20. Phytoremediation Capabilities of Spirodela polyrhiza, Salvinia molesta and Lemna sp. in Synthetic Wastewater: A Comparative Study. (United States)

    Ng, Yin Sim; Chan, Derek Juinn Chieh


    Macrophytes have been used to mitigate eutrophication and upgrade effluent quality via their nutrient removal capability. However, the available data are influenced by factors such as microbial activities, weather, and wastewater quality, making comparison between nutrient removal performance of different macrophytes almost impossible. In this study, phytoremediation by Spirodela polyrhiza, Salvinia molesta and Lemna sp. were carried out axenically in synthetic wastewater under controlled condition to precisely evaluate nutrient removal efficiency of NO 3 - -N, PO 4 3- , NH 3 -N, COD and pH in the water sample. The results showed that ammonia removal was rapid, significant for S. polyrhiza and Lemna sp., with efficiency of 60% and 41% respectively within 2 days. S. polyrhiza was capable of reducing 30% of the nitrate. Lemna sp. achieved the highest phosphate reduction of 86% at day 12 to mere 1.07 mg/L PO 4 3- -P. Correlation was found between COD and TC, suggesting the release of organic substances by macrophytes into the medium. All the macrophytes showed biomass increment. S. polyrhiza outperformed other macrophytes in nutrient removal despite lower biomass production. The acquired nutrient removal profiles can serve as a guideline for the selection of suitable macrophytes in wastewater treatment and to evaluate microbial activity in non-aseptic phytoremediation system.

  1. Numerical Modeling of Ablation Heat Transfer (United States)

    Ewing, Mark E.; Laker, Travis S.; Walker, David T.


    A unique numerical method has been developed for solving one-dimensional ablation heat transfer problems. This paper provides a comprehensive description of the method, along with detailed derivations of the governing equations. This methodology supports solutions for traditional ablation modeling including such effects as heat transfer, material decomposition, pyrolysis gas permeation and heat exchange, and thermochemical surface erosion. The numerical scheme utilizes a control-volume approach with a variable grid to account for surface movement. This method directly supports implementation of nontraditional models such as material swelling and mechanical erosion, extending capabilities for modeling complex ablation phenomena. Verifications of the numerical implementation are provided using analytical solutions, code comparisons, and the method of manufactured solutions. These verifications are used to demonstrate solution accuracy and proper error convergence rates. A simple demonstration of a mechanical erosion (spallation) model is also provided to illustrate the unique capabilities of the method.

  2. Options for a high heat flux enabled helium cooled first wall for DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Arbeiter, Frederik, E-mail:; Chen, Yuming; Ghidersa, Bradut-Eugen; Klein, Christine; Neuberger, Heiko; Ruck, Sebastian; Schlindwein, Georg; Schwab, Florian; Weth, Axel von der


    Highlights: • Design challenges for helium cooled first wall reviewed and otimization approaches explored. • Application of enhanced heat transfer surfaces to the First Wall cooling channels. • Demonstrated a design point for 1 MW/m{sup 2} with temperatures <550 °C and acceptable stresses. • Feasibility of several manufacturing processes for ribbed surfaces is shown. - Abstract: Helium is considered as coolant in the plasma facing first wall of several blanket concepts for DEMO fusion reactors, due to the favorable properties of flexible temperature range, chemical inertness, no activation, comparatively low effort to remove tritium from the gas and no chemical corrosion. Existing blanket designs have shown the ability to use helium cooled first walls with heat flux densities of 0.5 MW/m{sup 2}. Average steady state heat loads coming from the plasma for current EU DEMO concepts are expected in the range of 0.3 MW/m{sup 2}. The definition of peak values is still ongoing and depends on the chosen first wall shape, magnetic configuration and assumptions on the fraction of radiated power and power fall off lengths in the scrape off layer of the plasma. Peak steady state values could reach and excess 1 MW/m{sup 2}. Higher short-term transient loads are expected. Design optimization approaches including heat transfer enhancement, local heat transfer tuning and shape optimization of the channel cross section are discussed. Design points to enable a helium cooled first wall capable to sustain heat flux densities of 1 MW/m{sup 2} at an average shell temperature lower than 500 °C are developed based on experimentally validated heat transfer coefficients of structured channel surfaces. The required pumping power is in the range of 3–5% of the collected thermal power. The FEM stress analyses show code-acceptable stress intensities. Several manufacturing methods enabling the application of the suggested heat transfer enhanced first wall channels are explored. An

  3. Classifying organisational capabilities by their nature and role for technological capability

    NARCIS (Netherlands)

    Rousseva, R.


    Based on critical literature review this research highlights a number of gaps in the existing treatment of technological and organisational capabilities. It has been recognised that organisational capabilities have an important role to play in development of technological capabilities both in

  4. The Impact of IT Capability on Employee Capability, Customer Value, Customer Satisfaction, and Business Performance (United States)

    Chae, Ho-Chang


    This study empirically examines the impact of IT capability on firms' performance and evaluates whether firms' IT capabilities play a role in improving employee capability, customer value, customer satisfaction, and ultimately business performance. The results were based on comparing the business performance of the IT leader companies with that of…

  5. Heat pumps in district heating networks

    DEFF Research Database (Denmark)

    Ommen, Torben Schmidt; Markussen, Wiebke Brix; Elmegaard, Brian

    constraints limit the power plants. Efficient heat pumps can be used to decouple the constraints of electricity and heat production, while maintaining the high energy efficiency needed to match the politically agreed carbon emission goals. The requirements in terms of COP, location, capacity and economy...... are calculated using an energy system model which includes power plants, heat pumps and district heating consumption profiles. The model is developed with focus on accurate representation of the performance of the units in different locations and operating modes. The model can assist in investment decisions...... and strategic planning in the energy sector. The paper presents a case study of optimal implementation of heat pumps in the present energy system of the Copenhagen area. By introduction of the correct capacity of heat pumps, a 1,6 % reduction in fuel consumption for electricity and heat production can...

  6. A Liquid-Liquid Thermoelectric Heat Exchanger as a Heat Pump for Testing Phase Change Material Heat Exchangers (United States)

    Sheth, Rubik B.; Makinen, Janice; Le, Hung V.


    The primary objective of the Phase Change HX payload on the International Space Station (ISS) is to test and demonstrate the viability and performance of Phase Change Material Heat Exchangers (PCM HX). The system was required to pump a working fluid through a PCM HX to promote the phase change material to freeze and thaw as expected on Orion's Multipurpose Crew Vehicle. Due to limitations on ISS's Internal Thermal Control System, a heat pump was needed on the Phase Change HX payload to help with reducing the working fluid's temperature to below 0degC (32degF). This paper will review the design and development of a TEC based liquid-liquid heat exchanger as a way to vary to fluid temperature for the freeze and thaw phase of the PCM HX. Specifically, the paper will review the design of custom coldplates and sizing for the required heat removal of the HX.

  7. Technology support for military capability based acquisition

    CSIR Research Space (South Africa)

    Thaba, Mphahlela


    Full Text Available . DAP1000. Joint Defense Publication. Montealegre, R. (2002). A process model of capability development: Lessons from the electronic commerce strategy at Bolsa de Valores de Guayaquil. Organization science, Vol 13. No 5 (September - October, 2002), pp...

  8. Capability of Glossina tachinoides Westwood (Diptera: Glossinidae ...

    African Journals Online (AJOL)

    Capability of Glossina tachinoides Westwood (Diptera: Glossinidae) males to made and inseminate female flies in different mating ratios to sustain a laboratory tsetsefly colony for sterile insect technique control programme in Ghana.

  9. Defence Capability Plan 2006-2016

    National Research Council Canada - National Science Library


    The Defence Capability Plan: Public Version 2006-2016 (DCP 2006-16) provides a brief account of major capital equipment proposals that are currently planned to be approved in the period 2006 to 2016...

  10. Technological Capabilities of Brazilian Shipbuilding Suppliers

    Directory of Open Access Journals (Sweden)

    Marcos Primo


    Full Text Available Technological capabilities (TC play a key role in the competitiveness of firms in industrial sectors. Suppliers in emerging economies often acquire technological capabilities by operating and mastering technologies developed by others and then leveraging this learning to develop indigenous technologies. By reviewing research on firm specific technological capabilities, the development of global value chains and industrial clusters in emerging markets we discuss local suppliers’ insertion and upgrading in the supply chains of new large industrial enterprises. Using the Brazilian shipbuilding industry as context, we investigate and develop propositions related to the ability of local suppliers to develop technological capabilities that permit eventual insertion into the local supply chain. This research has applications for managers and policy makers from other emerging market countries seeking to increase local sourcing through development of local suppliers.

  11. Perception Management: A Core IO Capability

    National Research Council Canada - National Science Library

    Zaman, Khyber


    This thesis postulates that in today's media environment, with adversaries skillfully using propaganda to skirt nations' resolve, Perception Management is key to military success and should be an Information Operations (IO) Core Capability...

  12. Trilateral Strategic Defense Capability Planning Symposium

    National Research Council Canada - National Science Library

    Butts, Kent


    .... This strategic planning initiative has developed the Emerging Security Environment to 2022 document, a National Military Strategy, a National Internal Security Plan, and a Multi-Year Defense Capability Planning System (MYDCaPS...

  13. Geospatial Information System Capability Maturity Models (United States)


    To explore how State departments of transportation (DOTs) evaluate geospatial tool applications and services within their own agencies, particularly their experiences using capability maturity models (CMMs) such as the Urban and Regional Information ...

  14. Demonstration of New OLAF Capabilities and Technologies (United States)

    Kingston, C.; Palmer, E.; Stone, J.; Neese, C.; Mueller, B.


    Upgrades to the On-Line Archiving Facility (OLAF) PDS tool are leading to improved usability and additional functionality by integration of JavaScript web app frameworks. Also included is the capability to upload tabular data as CSV files.

  15. Building Airport Surface HITL Simulation Capability (United States)

    Chinn, Fay Cherie


    FutureFlight Central is a high fidelity, real-time simulator designed to study surface operations and automation. As an air traffic control tower simulator, FFC allows stakeholders such as the FAA, controllers, pilots, airports, and airlines to develop and test advanced surface and terminal area concepts and automation including NextGen and beyond automation concepts and tools. These technologies will improve the safety, capacity and environmental issues facing the National Airspace system. FFC also has extensive video streaming capabilities, which combined with the 3-D database capability makes the facility ideal for any research needing an immersive virtual and or video environment. FutureFlight Central allows human in the loop testing which accommodates human interactions and errors giving a more complete picture than fast time simulations. This presentation describes FFCs capabilities and the components necessary to build an airport surface human in the loop simulation capability.

  16. Eros-based Confined Capability Client

    National Research Council Canada - National Science Library

    Shapiro, Jonathan S


    .... This was accomplished by constructing of a single exemplar application, a web browser using capability-based structuring techniques, and determining whether this application can defend itself against hostile content...

  17. On the Capabilities of Digimaterial Artifacts

    DEFF Research Database (Denmark)

    Bækgaard, Lars

    The purpose of the paper is to propose and discuss three types of capabilities of digimaterial artifacts like laptop computers, cameras, cars, robots etc. Digimaterial artifacts are material artifacts that combine digital and non-digital elements by bearing one or more digital artifacts. Digital...... artifacts are linguistic expressions like, say, binary sequences of 0's and 1's. Software and databases are examples of digital artifacts. Paper pieces with digital inscriptions and cars with data and software are examples of digimaterial artifacts. Digimaterial artifacts can bear, and potentially...... manipulate, digital artifacts. We describe and discuss digimaterial structures and the capabilities that are enabled by these structures. And we describe and discuss the plastic nature of such structures and capabilities. We expect that our work can be used to understand digimaterial capabilities...

  18. Blue Force Tracking: Building a Joint Capability

    National Research Council Canada - National Science Library

    Sweeney, Michael M


    .... The realities of current operations have created such a need for this capability, and there are at least a dozen different devices being used in our current operations supporting all functional areas...

  19. The role of capability in technology valuation

    Directory of Open Access Journals (Sweden)

    Claudia Nelcy Jiménez


    Full Text Available  Technology valuation has traditionally been approached from an economics-based financial approach applied to project management. However, some authors have detected flaws in such approach, proposing that techniques should be included allowing technology’s qualitative and intangible aspects to be taken into account. Considering a broader definition of technology covering production systems’ technological capability, this article was aimed at analysing such capability as part of technology valuation, emphasising technological resources’ intangible aspects and their exploitation. The tendencies and some of the tools which have been developed for such valuation are shown, identifying the challenges involved in assessing technological capability within the context of developing countries where the creation of such capability must be promoted, implying a strategic vision of technological development.  

  20. TOMCAT: An Obsolescence Management Capability Assessment Framework


    Romero Rojo, Francisco Javier; Baguley, Paul; Shaikh, N.; Roy, Rajkumar; Kelly, S.


    As the UK Ministry of Defence (MoD) moves away from the traditional support contracts to contracting for availability/capability, it is essential that the MoD has confidence in Industry’s capability to manage the risk of obsolescence. For this purpose, it was necessary to develop a set of metrics to demonstrate it. The eight key elements identified are as follows: obsolescence management governance; supplier; design for obsolescence; risk assessment; obsolescence monitoring; communication; an...