WorldWideScience

Sample records for heat rejection system

  1. Experimental demonstrations of organic Rankine cycle waste heat rejection systems

    Science.gov (United States)

    Bland, Timothy J.; Lacey, P. Douglas

    Two phase fluid management is an important factor in the successful design of organic Rankine cycle (ORC) power conversion systems for space applications. The evolution of the heat rejection system approach from a jet condenser, through a rotary jet condenser, to a rotary fluid management device (RFMD) with a surface condenser has been described in a previous paper. Some of the test programs that were used to prove the validity of the selected approach are described.

  2. Optimal heat rejection pressure in transcritical carbon dioxide air conditioning and heat pump systems

    DEFF Research Database (Denmark)

    Liao, Shengming; Jakobsen, Arne

    1998-01-01

    Due to the urgent need for environmentally benign refrigerants, the use of the natural substance carbon dioxide in refrigeration systems has gained more and more attention. In systems such as automobile air-conditioners and heat pumps, owing to the relatively high heat rejection temperatures, the...... dioxide air conditioning or heat pump systems and for intelligent controlling such systems.......Due to the urgent need for environmentally benign refrigerants, the use of the natural substance carbon dioxide in refrigeration systems has gained more and more attention. In systems such as automobile air-conditioners and heat pumps, owing to the relatively high heat rejection temperatures......, the cycles using carbon dioxide as refrigerant will have to operate in the transcritical area. In a transcritical carbon dioxide system, there is an optimal heat rejection pressure that gives a maximum COP. In this paper, it is shown that the value of this optimal heat rejection pressure mainly depends...

  3. Performance Evaluation of Air-Based Heat Rejection Systems

    Directory of Open Access Journals (Sweden)

    Hannes Fugmann

    2015-01-01

    Full Text Available On the basis of the Number of Transfer Units (NTU method a functional relation between electric power for fans/pumps and effectiveness in dry coolers and wet cooling towers is developed. Based on this relation, a graphical presentation method of monitoring and simulation data of heat rejection units is introduced. The functional relation allows evaluating the thermodynamic performance of differently sized heat rejection units and comparing performance among them. The method is used to evaluate monitoring data of dry coolers of different solar cooling field projects. The novelty of this approach is that performance rating is not limited by a design point or standardized operating conditions of the heat exchanger, but is realizable under flexible conditions.

  4. The embodiment design of the heat rejection system for the portable life support system

    Science.gov (United States)

    Stuckwisch, Sue; Francois, Jason; Laughlin, Julia; Phillips, Lee; Carrion, Carlos A.

    1994-01-01

    The Portable Life Support System (PLSS) provides a suitable environment for the astronaut in the Extravehicular Mobility Unit (EMU), and the heat rejection system controls the thermal conditions in the space suit. The current PLSS sublimates water to the space environment; therefore, the system loses mass. Since additional supplies of fluid must be available on the Space Shuttle, NASA desires a closed heat rejecting system. This document presents the embodiment design for a radiative plate heat rejection system without mass transfer to the space environment. This project will transform the concept variant into a design complete with material selection, dimensions of the system, layouts of the heat rejection system, suggestions for manufacturing, and financial viability.

  5. Pumped Fluid Loop Heat Rejection and Recovery Systems for Thermal Control of the Mars Science Laboratory

    Science.gov (United States)

    Bhandari, Pradeep; Birur, Gajanana; Prina, Mauro; Ramirez, Brenda; Paris, Anthony; Novak, Keith; Pauken, Michael

    2006-01-01

    This viewgraph presentation reviews the heat rejection and heat recovery system for thermal control of the Mars Science Laboratory (MSL). The MSL mission will use mechanically pumped fluid loop based architecture for thermal control of the spacecraft and rover. The architecture is designed to harness waste heat from an Multi Mission Radioisotope Thermo-electric Generator (MMRTG) during Mars surface operations for thermal control during cold conditions and also reject heat during the cruise aspect of the mission. There are several test that are being conducted that will insure the safety of this concept. This architecture can be used during any future interplanetary missions utilizing radioisotope power systems for power generation.

  6. A Comparison of Coolant Options for Brayton Power Conversion Heat Rejection Systems

    International Nuclear Information System (INIS)

    Siamidis, John; Mason, Lee

    2006-01-01

    This paper describes potential heat rejection design concepts for Brayton power conversion systems. Brayton conversion systems are currently under study by NASA for Nuclear Electric Propulsion (NEP) and surface power applications. The Brayton Heat Rejection Subsystem (HRS) must dissipate waste heat generated by the power conversion system due to inefficiencies in the thermal-to-electric conversion process. Sodium potassium (NaK) and H2O are two coolant working fluids that have been investigated in the design of a pumped loop and heat pipe space HRS. In general NaK systems are high temperature (300 to 1000 K) low pressure systems, and H2O systems are low temperature (300 to 600 K) high pressure systems. NaK is an alkali metal with health and safety hazards that require special handling procedures. On the other hand, H2O is a common fluid, with no health hazards and no special handling procedures. This paper compares NaK and H2O for the HRS pumped loop coolant working fluid. A detailed excel analytical model, HRS O pt, was developed to evaluate the various HRS design parameters. It is capable of analyzing NaK or H2O coolant, parallel or series flow configurations, and numerous combinations of other key parameters (heat pipe spacing, diameter and radial flux, radiator facesheet thickness, fluid duct system pressure drop, system rejected power, etc.) of the HRS. This paper compares NaK against water for the HRS coolant working fluid with respect to the relative mass, performance, design and implementation issues between the two fluids

  7. Diversified emergency core cooling in CANDU with a passive moderator heat rejection system

    Energy Technology Data Exchange (ETDEWEB)

    Spinks, N [AECL Research, Chalk River Labs., Chalk River, ON (Canada)

    1996-12-01

    A passive moderator heat rejection system is being developed for CANDU reactors which, combined with a conventional emergency-coolant injection system, provides the diversity to reduce core-melt frequency to order 10{sup -7} per unit-year. This is similar to the approach used in the design of contemporary CANDU shutdown systems which leads to a frequency of order 10{sup -8} per unit-year for events leading to loss of shutdown. Testing of a full height 1/60 power-and-volume-scaled loop has demonstrated the feasibility of the passive system for removal of moderator heat during normal operation and during accidents. With the frequency of core-melt reduced, by these measures, to order 10{sup -7} per unit year, no need should exist for further mitigation. (author). 3 refs, 2 figs.

  8. The Liquid Droplet Radiator - an Ultralightweight Heat Rejection System for Efficient Energy Conversion in Space

    Science.gov (United States)

    Mattick, A. T.; Hertzberg, A.

    1984-01-01

    A heat rejection system for space is described which uses a recirculating free stream of liquid droplets in place of a solid surface to radiate waste heat. By using sufficiently small droplets ( 100 micron diameter) of low vapor pressure liquids the radiating droplet sheet can be made many times lighter than the lightest solid surface radiators (heat pipes). The liquid droplet radiator (LDR) is less vulnerable to damage by micrometeoroids than solid surface radiators, and may be transported into space far more efficiently. Analyses are presented of LDR applications in thermal and photovoltaic energy conversion which indicate that fluid handling components (droplet generator, droplet collector, heat exchanger, and pump) may comprise most of the radiator system mass. Even the unoptimized models employed yield LDR system masses less than heat pipe radiator system masses, and significant improvement is expected using design approaches that incorporate fluid handling components more efficiently. Technical problems (e.g., spacecraft contamination and electrostatic deflection of droplets) unique to this method of heat rejectioon are discussed and solutions are suggested.

  9. The Collection of Event Data and its Relevance to the Optimisation of Decay Heat Rejection Systems

    International Nuclear Information System (INIS)

    Roughley, R.; Jones, N.

    1975-01-01

    The precision with which the reliability of DHR (Decay Heat Rejection) systems for nuclear reactors can be predicted depends not only upon model representation but also on the accuracy of the data used. In the preliminary design stages when models are being used to arrive at major engineering decisions in relation to plant configuration, the best the designer can do is use the data available at the time. With the present state of the art it is acknowledged that some degree of judgement will have to be exercised particularly for plant involving sodium technology where a large amount of operational experience has not yet been generated. This paper reviews the current efforts being deployed in the acquisition of field data relevant to DHR systems so that improvements in reliability predictions may be realised

  10. Split radiator design for heat rejection optimization for a waste heat recovery system

    Science.gov (United States)

    Ernst, Timothy C.; Nelson, Christopher R.

    2016-10-18

    A cooling system provides improved heat recovery by providing a split core radiator for both engine cooling and condenser cooling for a Rankine cycle (RC). The cooling system includes a radiator having a first cooling core portion and a second cooling core portion. An engine cooling loop is fluidly connected the second cooling core portion. A condenser of an RC has a cooling loop fluidly connected to the first cooling core portion. A valve is provided between the engine cooling loop and the condenser cooling loop adjustably control the flow of coolant in the condenser cooling loop into the engine cooling loop. The cooling system includes a controller communicatively coupled to the valve and adapted to determine a load requirement for the internal combustion engine and adjust the valve in accordance with the engine load requirement.

  11. Increase net plant output through selective operation of the heat-rejection system

    International Nuclear Information System (INIS)

    Ostrowski, E.T.; Queenan, P.T.

    1987-01-01

    Depending on unit load and ambient meteorological conditions, a net increase of 800 to 5500 kW in plant output is possible for many generating units through optimized operation of the major motor-driven equipment in the heat-rejection system - the circulating water pumps and mechanical-draft cooling tower fans. This can be realised when the resulting decrease in auxiliary-power demand is greater than the decrease in gross electric generation caused by operating fewer pumps and/or fans. No capital expenditures are incurred and only operating procedures are involved so that the performance gains are achieved at no cost. The paper considers the application of this technique to nuclear power plants, pump optimization and the superimposition of fan and cooling tower performance curves

  12. Heat Rejection from a Variable Conductance Heat Pipe Radiator Panel

    Science.gov (United States)

    Jaworske, D. A.; Gibson, M. A.; Hervol, D. S.

    2012-01-01

    A titanium-water heat pipe radiator having an innovative proprietary evaporator configuration was evaluated in a large vacuum chamber equipped with liquid nitrogen cooled cold walls. The radiator was manufactured by Advanced Cooling Technologies, Inc. (ACT), Lancaster, PA, and delivered as part of a Small Business Innovative Research effort. The radiator panel consisted of five titanium-water heat pipes operating as thermosyphons, sandwiched between two polymer matrix composite face sheets. The five variable conductance heat pipes were purposely charged with a small amount of non-condensable gas to control heat flow through the condenser. Heat rejection was evaluated over a wide range of inlet water temperature and flow conditions, and heat rejection was calculated in real-time utilizing a data acquisition system programmed with the Stefan-Boltzmann equation. Thermography through an infra-red transparent window identified heat flow across the panel. Under nominal operation, a maximum heat rejection value of over 2200 Watts was identified. The thermal vacuum evaluation of heat rejection provided critical information on understanding the radiator s performance, and in steady state and transient scenarios provided useful information for validating current thermal models in support of the Fission Power Systems Project.

  13. An Operators View of Reliability Testing and Decay Heat Rejection Systems

    International Nuclear Information System (INIS)

    Henderson, J.D.C.

    1975-01-01

    The object of this paper is to review the in-situ testing of DHR systems, and to convey policy rather than to indicate a definitive test programme. The test policy is aimed primarily at commissioning the plant and secondly at providing such support for reliability predictions as is practical. Provisions for removal of decay heat from the core and from the reactor tank are described in papers by Broadley and Davies

  14. Development of Advanced In-Cylinder Components and Tribological Systems for Low Heat Rejection Diesel Engines

    Science.gov (United States)

    Yonushonis, T. M.; Wiczynski, P. D.; Myers, M. R.; Anderson, D. D.; McDonald, A. C.; Weber, H. G.; Richardson, D. E.; Stafford, R. J.; Naylor, M. G.

    1999-01-01

    In-cylinder components and tribological system concepts were designed, fabricated and tested at conditions anticipated for a 55% thermal efficiency heavy duty diesel engine for the year 2000 and beyond. A Cummins L10 single cylinder research engine was used to evaluate a spherical joint piston and connecting rod with 19.3 MPa (2800 psi) peak cylinder pressure capability, a thermal fatigue resistant insulated cylinder head, radial combustion seal cylinder liners, a highly compliant steel top compression ring, a variable geometry turbocharger, and a microwave heated particulate trap. Components successfully demonstrated in the final test included spherical joint connecting rod with a fiber reinforced piston, high conformability steel top rings with wear resistant coatings, ceramic exhaust ports with strategic oil cooling and radial combustion seal cylinder liner with cooling jacket transfer fins. A Cummins 6B diesel was used to develop the analytical methods, materials, manufacturing technology and engine components for lighter weight diesel engines without sacrificing performance or durability. A 6B diesel engine was built and tested to calibrate analytical models for the aluminum cylinder head and aluminum block.

  15. A Novel, Ultra-Light, Heat Rejection System for Nuclear Power Generation, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — For lunar-based fission power systems that will support In-Situ Resource Utilization (ISRU) or Mars robotic and manned missions, power requirements may vary from 10s...

  16. A Novel, Ultra-Light, Heat Rejection System for Nuclear Power Generation, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — For lunar-based fission power systems that will support In-Situ Resource Utilization (ISRU) or Mars robotic and manned missions, power requirements may vary from 10s...

  17. Characterization of dynamic thermal control schemes and heat transfer pathways for incorporating variable emissivity electrochromic materials into a space suit heat rejection system

    Science.gov (United States)

    Massina, Christopher James

    The feasibility of conducting long duration human spaceflight missions is largely dependent on the provision of consumables such as oxygen, water, and food. In addition to meeting crew metabolic needs, water sublimation has long served as the primary heat rejection mechanism in space suits during extravehicular activity (EVA). During a single eight hour EVA, approximately 3.6 kg (8 lbm) of water is lost from the current suit. Reducing the amount of expended water during EVA is a long standing goal of space suit life support systems designers; but to date, no alternate thermal control mechanism has demonstrated the ability to completely eliminate the loss. One proposed concept is to convert the majority of a space suit's surface area into a radiator such that the local environment can be used as a radiative thermal sink for rejecting heat without mass loss. Due to natural variations in both internal (metabolic) loads and external (environmental) sink temperatures, radiative transport must be actively modulated in order to maintain an acceptable thermal balance. Here, variable emissivity electrochromic devices are examined as the primary mechanism for enabling variable heat rejection. This dissertation focuses on theoretical and empirical evaluations performed to determine the feasibility of using a full suit, variable emissivity radiator architecture for space suit thermal control. Operational envelopes are described that show where a given environment and/or metabolic load combination may or may not be supported by the evaluated thermal architecture. Key integration considerations and guidelines include determining allowable thermal environments, defining skin-to-radiator heat transfer properties, and evaluating required electrochromic performance properties. Analysis also considered the impacts of dynamic environmental changes and the architecture's extensibility to EVA on the Martian surface. At the conclusion of this work, the full suit, variable emissivity

  18. Design and Modeling of a Variable Heat Rejection Radiator

    Science.gov (United States)

    Miller, Jennifer R.; Birur, Gajanana C.; Ganapathi, Gani B.; Sunada, Eric T.; Berisford, Daniel F.; Stephan, Ryan

    2011-01-01

    Variable Heat Rejection Radiator technology needed for future NASA human rated & robotic missions Primary objective is to enable a single loop architecture for human-rated missions (1) Radiators are typically sized for maximum heat load in the warmest continuous environment resulting in a large panel area (2) Large radiator area results in fluid being susceptible to freezing at low load in cold environment and typically results in a two-loop system (3) Dual loop architecture is approximately 18% heavier than single loop architecture (based on Orion thermal control system mass) (4) Single loop architecture requires adaptability to varying environments and heat loads

  19. Assessment of impact of borehole heat exchanger design on heat extraction/rejection efficiency

    Directory of Open Access Journals (Sweden)

    Gornov V.F.

    2016-01-01

    Full Text Available The article considers the impact of design of borehole heat exchanger (BHE as one of the main elements of a geothermal heat pump system on its efficiency in the ground heat extraction/rejection. Four BHE modifications are considered: coaxial with metal and polyethylene outside tube as well as single and double U-shaped structures of polyethylene tubes. Numerical modeling resulted to data on the efficiency of these BHE modifications for rejection heat into ground (heat pump system in cooling mode, and ground heat extraction (heat pump system in heating mode. Numerical values were obtained and BHEs were ranked according to their efficiency in both operation modes. Besides, additional calculations were made for the most common modification - double U-shaped design - in the ground heat extraction mode for various tube sizes with various wall thicknesses.

  20. Thermal analysis and modeling of a swimming pool heating system by utilizing waste energy rejected from a chiller unit of an ice rink

    OpenAIRE

    Kuyumcu Muhammed Enes; Yumrutaş Recep

    2017-01-01

    This study deals with the thermal analysis and modeling of a swimming pool heating system in which the waste energy rejected from the chiller unit of an ice rink is used as an energy source. The system consists of a swimming pool and an ice rink coupled by a chiller unit. The swimming pool and the ice rink both indoor types and were constructed in city of Gaziantep, Turkey. The thermal energy requirement for each section is determined by thermal analysis of each component of the system. Effec...

  1. Thermal analysis and modeling of a swimming pool heating system by utilizing waste energy rejected from a chiller unit of an ice rink

    Directory of Open Access Journals (Sweden)

    Kuyumcu Muhammed Enes

    2017-01-01

    Full Text Available This study deals with the thermal analysis and modeling of a swimming pool heating system in which the waste energy rejected from the chiller unit of an ice rink is used as an energy source. The system consists of a swimming pool and an ice rink coupled by a chiller unit. The swimming pool and the ice rink both indoor types and were constructed in city of Gaziantep, Turkey. The thermal energy requirement for each section is determined by thermal analysis of each component of the system. Effects of different design parameters such as ceiling insulation thickness, ceiling emissivity, Carnot efficiency factor and size of the ice rink on the thermal energy requirements and coefficient of performance of the chiller unit are investigated. As a result of analyses of the system, the minimum ice rink area is determined in order to meet annual total heat energy demand of the olympic-sized swimming pool.

  2. Performance of the Mechanically Pumped Fluid Loop Rover Heat Rejection System Used for Thermal Control of the Mars Science Laboratory Curiosity Rover on the Surface of Mars

    Science.gov (United States)

    Bhandari, Pradeep; Birur, Gajanana; Bame, David; Mastropietro, A. J.; Miller, Jennifer; Karlmann, Paul; Liu, Yuanming; Anderson, Kevin

    2013-01-01

    The challenging range of landing sites for which the Mars Science Laboratory Rover was designed, required a rover thermal management system that is capable of keeping temperatures controlled across a wide variety of environmental conditions. On the Martian surface where temperatures can be as cold as -123 C and as warm as 38 C, the Rover relies upon a Mechanically Pumped Fluid Loop (MPFL) Rover Heat Rejection System (RHRS) and external radiators to maintain the temperature of sensitive electronics and science instruments within a -40 C to +50 C range. The RHRS harnesses some of the waste heat generated from the Rover power source, known as the Multi Mission Radioisotope Thermoelectric Generator (MMRTG), for use as survival heat for the rover during cold conditions. The MMRTG produces 110 Watts of electrical power while generating waste heat equivalent to approximately 2000 Watts. Heat exchanger plates (hot plates) positioned close to the MMRTG pick up this survival heat from it by radiative heat transfer and supply it to the rover. This design is the first instance of use of a RHRS for thermal control of a rover or lander on the surface of a planet. After an extremely successful landing on Mars (August 5), the rover and the RHRS have performed flawlessly for close to an earth year (half the nominal mission life). This paper will share the performance of the RHRS on the Martian surface as well as compare it to its predictions.

  3. Potential use of power plant reject heat in commercial aquaculture

    Energy Technology Data Exchange (ETDEWEB)

    Olszewski, M.

    1977-01-01

    Current research and commercial activities in aquaculture operations have been reviewed. An aquaculture system using mostly herbivorous species in pond culture is proposed as a means of using waste heat to produce reasonably priced protein. The system uses waste water streams, such as secondary sewage effluent, animal wastes, or some industrial waste streams as a primary nutrient source to grow algae, which is fed to fish and clams. Crayfish feed on the clam wastes thereby providing a clean effluent from the aquaculture system. Alternate fish associations are presented and it appears that a carp or tilapia association is desirable. An aquaculture system capable of rejecting all the waste heat from a 1000-MW(e) power station in winter can accommodate about half the summer heat rejection load. The aquaculture facility would require approximately 133 ha and would produce 4.1 x 10/sup 5/ kg/year of fish, 1.5 x 10/sup 6/ kg/year of clam meat, and 1.5 x 10/sup 4/ kg/year of live crayfish. The estimated annual pretax profit from this operation is one million dollars. Several possible problem areas have been identified. However, technical solutions appear to be readily available to solve these problems. The proposed system shows considerable economic promise. Small scale experiments have demonstrated the technical feasibility of various components of the system. It therefore appears that a pilot scale experimental facility should be operated.

  4. Potential use of power plant reject heat in commercial aquaculture

    International Nuclear Information System (INIS)

    Olszewski, M.

    1977-01-01

    Current research and commercial activities in aquaculture operations have been reviewed. An aquaculture system using mostly herbivorous species in pond culture is proposed as a means of using waste heat to produce reasonably priced protein. The system uses waste water streams, such as secondary sewage effluent, animal wastes, or some industrial waste streams as a primary nutrient source to grow algae, which is fed to fish and clams. Crayfish feed on the clam wastes thereby providing a clean effluent from the aquaculture system. Alternate fish associations are presented and it appears that a carp or tilapia association is desirable. An aquaculture system capable of rejecting all the waste heat from a 1000-MW(e) power station in winter can accommodate about half the summer heat rejection load. The aquaculture facility would require approximately 133 ha and would produce 4.1 x 10 5 kg/year of fish, 1.5 x 10 6 kg/year of clam meat, and 1.5 x 10 4 kg/year of live crayfish. The estimated annual pretax profit from this operation is one million dollars. Several possible problem areas have been identified. However, technical solutions appear to be readily available to solve these problems. The proposed system shows considerable economic promise. Small scale experiments have demonstrated the technical feasibility of various components of the system. It therefore appears that a pilot scale experimental facility should be operated

  5. Performance of a swimming pool heating system by utilizing waste energy rejected from an ice rink with an energy storage tank

    International Nuclear Information System (INIS)

    Kuyumcu, Muhammed Enes; Tutumlu, Hakan; Yumrutaş, Recep

    2016-01-01

    Highlights: • An analytical model of the system, and a computational program were developed. • Transient behavior of the water in the buried energy storage tank was simulated. • Effects of various system parameters on the system performance were investigated. • Long period performance of the system was analyzed and obtained periodic condition. • Optimum ice rink size is determined for a semi-Olympic size swimming pool heating. - Abstract: This study deals with determining the long period performance of a swimming pool heating system by utilizing waste heat energy that is rejected from a chiller unit of ice rink and subsequently stored in an underground thermal energy storage (TES) tank. The system consists of an ice rink, a swimming pool, a spherical underground TES tank, a chiller and a heat pump. The ice rink and the swimming pool are both enclosed and located in Gaziantep, Turkey. An analytical model was developed to obtain the performance of the system using Duhamel’s superposition and similarity transformation techniques. A computational model written in MATLAB program based on the transient heat transfer is used to obtain the annual variation of the ice rink and the swimming pool energy requirements, the water temperature in the TES tank, COP, and optimum ice rink size depending on the different ground, TES tank, chiller, and heat pump characteristics. The results obtained from the analysis indicate that 6–7 years’ operational time span is necessary to obtain the annual periodic operation condition. In addition, an ice rink with a size of 475 m"2 gives the optimum performance of the system with a semi-Olympic size swimming pool (625 m"2).

  6. Active Disturbance Rejection Control of a Heat Integrated Distillation Column

    DEFF Research Database (Denmark)

    Al-Kalbani, Fahad; Zhang, Jie; Bisgaard, Thomas

    2016-01-01

    pressure. However, the control of some HiDC processesis generally difficult due to the strong control loop interaction, high purity of the components and undesired disturbances. Active disturbance rejection control (ADRC) is used in this paperto control a simulated HiDC for separating benzene-toluene......Heat integrated distillation column (HiDC) is the most energy efficient distillation approach making efficient utilization of internal heat integration through heat pump. The rectifying section acts as a heat source with high pressure, while the stripping section operates as a heat sink with low...

  7. Shape Morphing Adaptive Radiator Technology (SMART) for Variable Heat Rejection

    Science.gov (United States)

    Erickson, Lisa

    2016-01-01

    The proposed technology leverages the temperature dependent phase change of shape memory alloys (SMAs) to drive the shape of a flexible radiator panel. The opening/closing of the radiator panel, as a function of temperature, passively adapts the radiator's rate of heat rejection in response to a vehicle's needs.

  8. Design of Accumulators and Liquid/Gas Charging of Single Phase Mechanically Pumped Fluid Loop Heat Rejection Systems

    Science.gov (United States)

    Bhandari, Pradeep; Dudik, Brenda; Birur, Gajanana; Karlmann, Paul; Bame, David; Mastropietro, A. J.

    2012-01-01

    For single phase mechanically pumped fluid loops used for thermal control of spacecraft, a gas charged accumulator is typically used to modulate pressures within the loop. This is needed to accommodate changes in the working fluid volume due to changes in the operating temperatures as the spacecraft encounters varying thermal environments during its mission. Overall, the three key requirements on the accumulator to maintain an appropriate pressure range throughout the mission are: accommodation of the volume change of the fluid due to temperature changes, avoidance of pump cavitation and prevention of boiling in the liquid. The sizing and design of such an accumulator requires very careful and accurate accounting of temperature distribution within each element of the working fluid for the entire range of conditions expected, accurate knowledge of volume of each fluid element, assessment of corresponding pressures needed to avoid boiling in the liquid, as well as the pressures needed to avoid cavitation in the pump. The appropriate liquid and accumulator strokes required to accommodate the liquid volume change, as well as the appropriate gas volumes, require proper sizing to ensure that the correct pressure range is maintained during the mission. Additionally, a very careful assessment of the process for charging both the gas side and the liquid side of the accumulator is required to properly position the bellows and pressurize the system to a level commensurate with requirements. To achieve the accurate sizing of the accumulator and the charging of the system, sophisticated EXCEL based spreadsheets were developed to rapidly come up with an accumulator design and the corresponding charging parameters. These spreadsheets have proven to be computationally fast and accurate tools for this purpose. This paper will describe the entire process of designing and charging the system, using a case study of the Mars Science Laboratory (MSL) fluid loops, which is en route to

  9. Heat-rejection design for large concentrating solar arrays

    Science.gov (United States)

    French, E. P.

    1980-01-01

    This paper considers the effect of heat rejection devices (radiators) on the performance and cost of large concentrating solar arrays for space application. Overall array characteristics are derived from the weight, cost, and performance of four major components; namely primary structure, optics/secondary structure, radiator, and solar panel. An ideal concentrator analysis is used to establish general cost and performance trends independent of specific array design. Both passive and heat-pipe radiation are evaluated, with an incremental cost-of-power approach used in the evaluation. Passive radiators are found to be more cost effective with silicon than with gallium arsenide (GaAs) arrays. Representative concentrating arrays have been evaluated for both near-term and advanced solar cell technology. Minimum cost of power is achieved at geometric concentration ratios in the range 2 to 6.

  10. Heat rejection efficiency research of new energy automobile radiators

    Science.gov (United States)

    Ma, W. S.; Shen, W. X.; Zhang, L. W.

    2018-03-01

    The driving system of new energy vehicle has larger heat load than conventional engine. How to ensure the heat dissipation performance of the cooling system is the focus of the design of new energy vehicle thermal management system. In this paper, the heat dissipation efficiency of the radiator of the hybrid electric vehicle is taken as the research object, the heat dissipation efficiency of the radiator of the new energy vehicle is studied through the multi-working-condition enthalpy difference test. In this paper, the test method in the current standard QC/T 468-2010 “automobile radiator” is taken, but not limited to the test conditions specified in the standard, 5 types of automobile radiator are chosen, each of them is tested 20 times in simulated condition of different wind speed and engine inlet temperature. Finally, regression analysis is carried out for the test results, and regression equation describing the relationship of radiator heat dissipation heat dissipation efficiency air side flow rate cooling medium velocity and inlet air temperature is obtained, and the influence rule is systematically discussed.

  11. Sliding seal materials for low heat rejection engines

    Science.gov (United States)

    Beaty, Kevin; Lankford, James; Vinyard, Shannon

    1989-01-01

    Sliding friction coefficients and wear rates of promising piston seal materials were measured under temperature, environmental, velocity, and loading conditions that are representative of the low heat rejection (LHR) diesel engine environment. These materials included carbides, oxides, and nitrides. In addition, silicon nitride and partially stablized zirconia disks (cylinder liners) were ion-implanted with TiNi, Ni, Co, and Cr, and subsequently run against carbide pins (piston rings), with the objective of producing reduced friction via solid lubrication at elevated temperature. Friction and wear measurements were obtained using pin-on-disk laboratory experiments and a unique engine friction test rig. Unmodified ceramic sliding couples were characterized at all temperatures by friction coefficients of 0.24 and above during the pin-on-disk tests. The coefficient at 800 C in an oxidizing environment was reduced to below 0.1, for certain material combination, by the ion-implantation of TiNi or Co. This beneficial effect was found to derive from the lubricious Ti, Ni, and Co oxides. Similar results were demonstrated on the engine friction test rig at lower temperatures. The structural integrity and feasibility of engine application with the most promising material combination were demonstrated during a 30-hour single-cylinder, direct-injection diesel engine test.

  12. Refrigeration Playbook. Heat Reclaim; Optimizing Heat Rejection and Refrigeration Heat Reclaim for Supermarket Energy Conservation

    Energy Technology Data Exchange (ETDEWEB)

    Reis, Chuck [CTA Architects Engineers, Boise, ID (United States); Nelson, Eric [CTA Architects Engineers, Boise, ID (United States); Armer, James [CTA Architects Engineers, Boise, ID (United States); Johnson, Tim [CTA Architects Engineers, Boise, ID (United States); Hirsch, Adam [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Doebber, Ian [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2015-03-01

    The purpose of this playbook and accompanying spreadsheets is to generalize the detailed CBP analysis and to put tools in the hands of experienced refrigeration designers to evaluate multiple applications of refrigeration waste heat reclaim across the United States. Supermarkets with large portfolios of similar buildings can use these tools to assess the impact of large-scale implementation of heat reclaim systems. In addition, the playbook provides best practices for implementing heat reclaim systems to achieve the best long-term performance possible. It includes guidance on operations and maintenance as well as measurement and verification.

  13. Enabling Self-Propelled Condensate Flow During Phase-Change Heat Rejection Using Surface Texturing

    Data.gov (United States)

    National Aeronautics and Space Administration — A collaborative project between Oregon State University and Auburn University is proposed on the topic of heat rejection. A unique and innovative method of...

  14. Band rejection filter for measurement of electron cyclotron emission during electron cyclotron heating

    International Nuclear Information System (INIS)

    Iwase, Makoto; Ohkubo, Kunizo; Kubo, Shin; Idei, Hiroshi.

    1996-05-01

    For the measurement of electron cyclotron emission from the high temperature plasma, a band rejection filter in the range of 40-60 GHz is designed to reject the 53.2 GHz signal with large amplitude from the gyrotron for the purpose of plasma electron heating. The filter developed with ten sets of three quarters-wavelength coupled by TE 111 mode of tunable resonant cavity has rejection of 50 dB and 3 dB bandwidth of 500 MHz. The modified model of Tschebysheff type for the prediction of rejection is proposed. It is confirmed that the measured rejection as a function of frequency agrees well with the experimental results for small coupling hole, and also clarified that the rejection ratio increases for the large coupling hole. (author)

  15. Analysis & Tools to Spur Increased Deployment of “Waste Heat” Rejection/Recycling Hybrid Ground-source Heat Pump Systems in Hot, Arid or Semiarid Climates Like Texas

    Energy Technology Data Exchange (ETDEWEB)

    Masada, Glenn [Univ. of Texas, Austin, TX (United States); Moon, Tess [Univ. of Texas, Austin, TX (United States)

    2013-09-01

    This project team analyzed supplemental heat rejection/recovery (SHR) devices or systems that could be used in hybrid ground source heat pump (HGHP) systems located in arid or semi-arid regions in southwestern U.S. Identification of effective SHR solutions would enhance the deployment of ground source heat pumps (GHP) in these regions. In a parallel effort, the team developed integrated GHP models that coupled the building load, heat pump, and ground loop subsystems and which could be applied to residential and commercial office buildings. Then GHP and HGHP performances could be compared in terms of operational performance and life-cycle costs. Several potential SHR devices were analyzed by applying two strategies: 1) to remove heat directly from the water in the ground loop before it enters the ground and 2) to remove heat in the refrigerant loop of the vapor compression cycle (VCC) of the heat pump so less heat is transferred to the water loop at the condenser of the VCC. Cooling towers, adsorption coolers, and thermoelectric liquid coolers were included in strategy 1, and expanded desuperheaters, thermosyphons, and an optimized VCC were included in strategy 2. Of all SHR devices analyzed, only the cooling tower provided a cost-effective performance enhancement. For the integrated GHP model, the project team selected the building load model HAMBASE and its powerful computational Simulink/MatLab platform, empirical performance map models of the heat pumps based upon manufacturers’ performance data, and a ground loop model developed by Oklahoma State University and rewritten for this project in Simulink/MatLab. The design process used GLHEPRO, also from Oklahoma State University, to size the borehole fields. The building load and ground loop models were compared with simulations from eQuest, ASHRAE 140-2008 standards, EnergyPlus, and GLHEPRO and were found to predict those subsystems’ performance well. The integrated GHP model was applied to a 195m2

  16. Energy distributions in a diesel engine using low heat rejection (LHR) concepts

    International Nuclear Information System (INIS)

    Li, Tingting; Caton, Jerald A.; Jacobs, Timothy J.

    2016-01-01

    Highlights: • Altering coolant temperature was employed to devise low heat rejection concept. • The energy distributions at different engine coolant temperatures were analyzed. • Raising coolant temperature yields improvements in fuel conversion efficiency. • The exhaust energy is highly sensitive to the variations in exhaust temperature. • Effects of coolant temperature on mechanical efficiency were examined. - Abstract: The energy balance analysis is recognized as a useful method for aiding the characterization of the performance and efficiency of internal combustion (IC) engines. Approximately one-third of the total fuel energy is converted to useful work in a conventional IC engine, whereas the major part of the energy input is rejected to the exhaust gas and the cooling system. The idea of a low heat rejection (LHR) engine (also called “adiabatic engine”) was extensively developed in the 1980s due to its potential in improving engine thermal efficiency via reducing the heat losses. In this study, the LHR operating condition is implemented by increasing the engine coolant temperature (ECT). Experimentally, the engine is overcooled to low ECTs and then increased to 100 °C in an effort to get trend-wise behavior without exceeding safe ECTs. The study then uses an engine simulation of the conventional multi-cylinder, four-stroke, 1.9 L diesel engine operating at 1500 rpm to examine the five cases having different ECTs. A comparison between experimental and simulation results show the effects of ECT on fuel conversion efficiency. The results demonstrate that increasing ECT yields slight improvements in net indicated fuel conversion efficiency, with larger improvements observed in brake fuel conversion efficiency.

  17. Optimal piston motion for maximum net output work of Daniel cam engines with low heat rejection

    International Nuclear Information System (INIS)

    Badescu, Viorel

    2015-01-01

    Highlights: • The piston motion of low heat rejection compression ignition engines is optimized. • A realistic model taking into account the cooling system is developed. • The optimized cam is smaller for cylinders without thermal insulation. • The optimized cam size depends on ignition moment and cooling process intensity. - Abstract: Compression ignition engines based on classical tapper-crank systems cannot provide optimal piston motion. Cam engines are more appropriate for this purpose. In this paper the piston motion of a Daniel cam engine is optimized. Piston acceleration is taken as a control. The objective is to maximize the net output work during the compression and power strokes. A major research effort has been allocated in the last two decades for the development of low heat rejection engines. A thermally insulated cylinder is considered and a realistic model taking into account the cooling system is developed. The sinusoidal approximation of piston motion in the classical tapper-crank system overestimates the engine efficiency. The exact description of the piston motion in tapper-crank system is used here as a reference. The radiation process has negligible effects during the optimization. The approach with no constraint on piston acceleration is a reasonable approximation. The net output work is much larger (by 12–13%) for the optimized system than for the classical tapper-crank system, for similar thickness of cylinder walls and thermal insulation. Low heat rejection measures are not of significant importance for optimized cam engines. The optimized cam is smaller for a cylinder without thermal insulation than for an insulated cylinder (by up to 8%, depending on the local polar radius). The auto-ignition moment is not a parameter of significant importance for optimized cam engines. However, for given cylinder wall and insulation materials there is an optimum auto-ignition moment which maximizes the net output work. The optimum auto

  18. Semitransparent ceramic heat-insulation of eco-friendly Low- Heat-Rejection diesel

    Science.gov (United States)

    Merzlikin, V. G.; Gutierrez, M. O.; Makarov, A. R.; Kostukov, A. V.; Dementev, A. A.; Khudyakov, S. V.; Zagumennov, F. A.

    2018-03-01

    Efficiency of diesel has been studied using well-known types of the ceramic heat-insulating HICs- or thermal barrier TBCs-coatings. This problem is relevant for a high-speed diesel combustion chamber in which an intensive radiant component (near IR) reaches ~50% within total thermal flux. Therefore, in their works the authors had been offering new concept of study these materials as semitransparent SHICs-, STBCs-coatings. On the Mie scattering theory, the effect of selection of the specific structural composition and porosity of coatings on the variation of their optical parameters is considered. Conducted spectrophotometric modeling of the volume-absorbed radiant energy by the coating had determined their acceptable temperature field. For rig testings, a coated piston using selected SHIC (PSZ-ceramic ZrO2+8%Y2O3) with a calculated optimum temperature gradient was chosen. A single cylinder experimental tractor diesel was used. At rotation frequency n > 2800 rpm, the heat losses were no more than 0.2 MW/m2. Executed testings showed ~2-3% lower specific fuel consumption in contrast to the diesel with an uncoated piston. Effective power and drive torque were ∼2-5% greater. The authors have substantiated the growth the efficiency of this Low-Heat-Rejection(LHR) diesel due to the known effect of soot deposition gasification at high speed. Then unpolluted semitransparent ceramic thermal insulation forms the required thermoradiation fields and temperature profiles and can affect regulation of heat losses and a reduction of primarily nitrogen dioxide generation.

  19. STEADY-STATE HEAT REJECTION RATES FOR A COAXIAL BOREHOLE HEAT EXCHANGER DURING PASSIVE AND ACTIVE COOLING DETERMINED WITH THE NOVEL STEP THERMAL RESPONSE TEST METHOD

    Directory of Open Access Journals (Sweden)

    Marija Macenić

    2018-01-01

    Full Text Available At three locations in Zagreb, classical and extended thermal response test (TRT was conducted on installed coaxial heat exchangers. With classic TR test, thermogeological properties of the ground and thermal resistance of the borehole were determined at each location. It is seen that thermal conductivity of the ground varies, due to difference in geological profile of the sites. In addition, experimental research of steady-state thermal response step test (SSTRST was carried out to determine heat rejection rates for passive and active cooling in steady state regime. Results showed that heat rejection rate is only between 8-11 W/m, which indicates that coaxial system is not suitable for passive cooling demands. Furthermore, the heat pump in passive cooling mode uses additional plate heat exchanger where there is additional temperature drop of working fluid by approximately 1,5 °C. Therefore, steady-state rejection rate for passive cooling is even lower for a real case project. Coaxial heat exchanger should be always designed for an active cooling regime with an operation of a heat pump compressor in a classical vapour compression refrigeration cycle.

  20. Estimation of heat rejection based on the air conditioner use time and its mitigation from buildings in Taipei City

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Chun-Ming; Aramaki, Toshiya; Hanaki, Keisuke [The University of Tokyo, Bunkyo-ku, Tokyo (Japan). Department of Urban Engineering

    2007-09-15

    The main work in the research focuses on the analysis and mitigation of the anthropogenic heat discharged from buildings, which is one of the main reasons leading to the heat island effect. The residential and commercial buildings, divided into 10 categories, with HVAC systems were analyzed by the building energy program, EnergyPlus. With the help of GIS, the heat rejection of all the residential and commercial buildings in DaAn Ward of Taipei City were evaluated, in which the spatial data and diurnal variation of the heat rejection were described by 3-h time periods. Furthermore, the effect of mitigation strategies was discussed. The first strategy was to change the wall/roof material of building envelope. The second and third strategies, from the viewpoint of energy saving, were to change the temperature setting of air conditioners and to turn off the lighting and equipment when not in use. The fourth strategy was to use a better efficiency of the cooling systems. Finally, the evaluation of installing the water-cooled cooling system, which discharges heat in the form of sensible and latent heat, was also included. (author)

  1. Study of Background Rejection Systems for the IXO Mission.

    Science.gov (United States)

    Laurent, Philippe; Limousin, O.; Tatischeff, V.

    2009-01-01

    The scientific performances of the IXO mission will necessitate a very low detector background level. This will imply thorough background simulations, and efficient background rejection systems. It necessitates also a very good knowledge of the detectors to be shielded. In APC, Paris, and CEA, Saclay, we got experience on these activities by conceiving and optimising in parallel the high energy detector and the active and passive background rejection system of the Simbol-X mission. Considering that this work may be naturally extended to other X-ray missions, we have initiated with CNES a R&D project on the study of background rejection systems mainly in view the IXO project. We will detail this activity in the poster.

  2. Reactor waste heat utilization and district heating reactors. Nuclear district heating in Sweden - Regional reject heat utilization schemes and small heat-only reactors

    International Nuclear Information System (INIS)

    Hannerz, K.; Larsson, Y.; Margen, P.

    1977-01-01

    A brief review is given of the current status of district heating in Sweden. In future, district heating schemes will become increasingly interesting as a means of utilizing heat from nuclear reactors. Present recommendations in Sweden are that large reactors should not be located closer than about 20 km from large population centres. Reject heat from such reactors is cheap at source. To minimize the cost of long distance hot water transmission large heat rates must be transmitted. Only areas with large populations can meet this requirement. The three areas of main interest are Malmoe/Lund/Helsingborg housing close to 0.5 million; Greater Stockholm housing 1 to 1.5 million and Greater Gothenburg housing about 0.5 million people. There is an active proposal that the Malmoe/Lund/Helsingborg region would be served by a third nuclear unit at Barsebaeck, located about 20 km from Malmoe/Lund and supplying 950 MW of base load heat. Preliminary proposals for Stockholm involve a 2000 MW heat supply; proposals for Gothenburg are more tentative. The paper describes progress on these proposals and their technology. It also outlines technology under development to increase the economic range of large scale heat transport and to make distribution economic even for low heat-density family housing estates. Regions apart from the few major urban areas mentioned above require the adoption of a different approach. To this end the development of a small, simple low-temperature reactor for heat-only production suitable for urban location has been started in Sweden in close contact with Finland. Some results of the work in progress are presented, with emphasis on the safety requirements. An outline is given in the paper as to how problems of regional heat planning and institutional and legislative issues are being approached

  3. Heat Shock Protein 90α Is a Potential Serological Biomarker of Acute Rejection after Renal Transplantation.

    Directory of Open Access Journals (Sweden)

    Takeshi Maehana

    Full Text Available Heat shock protein 90 (HSP90, a molecular chaperone associated with the activation of client proteins, was recently reported to play an important role in immunologic reactions. To date, the role of HSP90 in solid organ transplantations has remained unknown. The aim of this study was to evaluate the relationship between serum HSP90α levels and acute allograft rejection after organ and tissue transplantation using serum samples from kidney allograft recipients, an in vitro antibody-mediated rejection model, and a murine skin transplantation.Serum HSP90α levels were significantly higher in kidney recipients at the time of acute rejection (AR than in those with no evidence of rejection. In most cases with AR, serum HSP90 decreased to baseline after the treatment. On the other hand, serum HSP90α was not elevated as much in patients with chronic rejection, calcineurin inhibitor nephrotoxicity, or BK virus nephropathy as in AR patients. In vitro study showed that HSP90α concentration in the supernatant was significantly higher in the supernatant of human aortic endothelial cells cocultured with specific anti-HLA IgG under complement attack than in that of cells cocultured with nonspecific IgG. In mice receiving skin transplantation, serum HSP90α was elevated when the first graft was rejected and the level further increased during more severe rejection of the second graft.The results suggest that HSP90α is released into the serum by cell damage due to AR in organ and tissue transplantation, and it is potentially a new biomarker to help detect AR in kidney recipients.

  4. Implementation and rejection of industrial steam system energy efficiency measures

    International Nuclear Information System (INIS)

    Therkelsen, Peter; McKane, Aimee

    2013-01-01

    Steam systems consume approximately one third of energy applied at US industrial facilities. To reduce energy consumption, steam system energy assessments have been conducted on a wide range of industry types over the course of 5 years through the Energy Savings Assessment (ESA) program administered by the US Department of Energy (US DOE). ESA energy assessments result in energy efficiency measure recommendations that are given potential energy and energy cost savings and potential implementation cost values. Saving and cost metrics that measure the impact recommended measures will have at facilities, described as percentages of facility baseline energy and energy cost, are developed from ESA data and used in analyses. Developed savings and cost metrics are examined along with implementation and rejection rates of recommended steam system energy efficiency measures. Based on analyses, implementation of steam system energy efficiency measures is driven primarily by cost metrics: payback period and measure implementation cost as a percentage of facility baseline energy cost (implementation cost percentage). Stated reasons for rejecting recommended measures are primarily based upon economic concerns. Additionally, implementation rates of measures are not only functions of savings and cost metrics, but time as well. - Highlights: ► We examine uptake/rejection of industrial steam system energy efficiency measures. ► We examine metrics that correspond to uptake/rejection of recommended measures. ► We examine barriers hindering steam system energy efficiency measure implementation. ► Uptake/rejection of steam measures is linked to potential cost metrics. ► Increased uptake of measures and uptake of more costly measures increases with time

  5. Design and Testing of an Active Heat Rejection Radiator with Digital Turn-Down Capability

    Science.gov (United States)

    Sunada, Eric; Birur, Gajanana C.; Ganapathi, Gani B.; Miller, Jennifer; Berisford, Daniel; Stephan, Ryan

    2010-01-01

    NASA's proposed lunar lander, Altair, will be exposed to vastly different external environment temperatures. The challenges to the active thermal control system (ATCS) are compounded by unfavorable transients in the internal waste heat dissipation profile: the lowest heat load occurs in the coldest environment while peak loads coincide with the warmest environment. The current baseline for this fluid is a 50/50 inhibited propylene glycol/water mixture with a freeze temperature around -35 C. While the overall size of the radiator's heat rejection area is dictated by the worst case hot scenario, a turn-down feature is necessary to tolerate the worst case cold scenario. A radiator with digital turn-down capability is being designed as a robust means to maintain cabin environment and equipment temperatures while minimizing mass and power consumption. It utilizes active valving to isolate and render ineffective any number of parallel flow tubes which span across the ATCS radiator. Several options were assessed in a trade-study to accommodate flow tube isolation and how to deal with the stagnant fluid that would otherwise remain in the tube. Bread-board environmental tests were conducted for options to drain the fluid from a turned-down leg as well an option to allow a leg to freeze/thaw. Each drain option involved a positive displacement gear pump with different methods of providing a pressure head to feed it. Test results showed that a start-up heater used to generate vapor at the tube inlet held the most promise for tube evacuation. Based on these test results and conclusions drawn from the trade-study, a full-scale radiator design is being worked for the Altair mission profile.

  6. Persistent disturbance rejection via state feedback for networked control systems

    Energy Technology Data Exchange (ETDEWEB)

    Yue Dong [Institute of Information and Control Engineering Technology, Nanjing Normal University, 78 Bancang Street, Nanjing, Jiangsu 210042 (China)], E-mail: medongy@njnu.edu.cn; Lam, James [Department of Mechanical Engineering, University of Hong Kong, Pokfulam Road (Hong Kong); Wang Zidong [Department of Information Systems and Computing, Brunel University, Uxbridge, Middlesex UB8 3PH (United Kingdom)], E-mail: Zidong.Wang@brunel.ac.uk

    2009-04-15

    The problem of persistent disturbance rejection via state feedback for networked control systems is concerned based on the Lyapunov function method. The effect of the network conditions, such as network-induced delay and data dropout, is considered in the modeling of the system. It is assumed that the state and the control signals are individually quantized by quantizers on the sensor side and the controller side. The feedback gain and the quantizer parameters that guarantee the internal stability and the disturbance rejection performance of the closed-loop system are obtained by solving some linear matrix inequalities. To illustrate the effectiveness of the proposed method, a numerical example is provided for the design of the feedback gain and the quantizer parameters.

  7. Persistent disturbance rejection via state feedback for networked control systems

    International Nuclear Information System (INIS)

    Yue Dong; Lam, James; Wang Zidong

    2009-01-01

    The problem of persistent disturbance rejection via state feedback for networked control systems is concerned based on the Lyapunov function method. The effect of the network conditions, such as network-induced delay and data dropout, is considered in the modeling of the system. It is assumed that the state and the control signals are individually quantized by quantizers on the sensor side and the controller side. The feedback gain and the quantizer parameters that guarantee the internal stability and the disturbance rejection performance of the closed-loop system are obtained by solving some linear matrix inequalities. To illustrate the effectiveness of the proposed method, a numerical example is provided for the design of the feedback gain and the quantizer parameters.

  8. Implementation and Rejection of Industrial Steam System Energy Efficiency Measures

    Energy Technology Data Exchange (ETDEWEB)

    Therkelesen, Peter [Environmental Energy Technologies Division Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); McKane, Aimee [Environmental Energy Technologies Division Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)

    2013-05-01

    Steam systems consume approximately one third of energy applied at U.S. industrial facilities. To reduce energy consumption, steam system energy assessments have been conducted on a wide range of industry types over the course of five years through the Energy Savings Assessment (ESA) program administered by the U.S. Department of Energy (U.S. DOE). ESA energy assessments result in energy efficiency measure recommendations that are given potential energy and energy cost savings and potential implementation cost values. Saving and cost metrics that measure the impact recommended measures will have at facilities, described as percentages of facility baseline energy and energy cost, are developed from ESA data and used in analyses. Developed savings and cost metrics are examined along with implementation and rejection rates of recommended steam system energy efficiency measures. Based on analyses, implementation of steam system energy efficiency measures is driven primarily by cost metrics: payback period and measure implementation cost as a percentage of facility baseline energy cost (implementation cost percentage). Stated reasons for rejecting recommended measures are primarily based upon economic concerns. Additionally, implementation rates of measures are not only functions of savings and cost metrics, but time as well.

  9. Adaptive Disturbance Rejection Control for Automatic Carrier Landing System

    Directory of Open Access Journals (Sweden)

    Xin Wang

    2016-01-01

    Full Text Available An adaptive disturbance rejection algorithm is proposed for carrier landing system in the final-approach. The carrier-based aircraft dynamics and the linearized longitudinal model under turbulence conditions in the final-approach are analyzed. A stable adaptive control scheme is developed based on LDU decomposition of the high-frequency gain matrix, which ensures closed-loop stability and asymptotic output tracking. Finally, simulation studies of a linearized longitudinal-directional dynamics model are conducted to demonstrate the performance of the adaptive scheme.

  10. Absorption heat pump system

    Science.gov (United States)

    Grossman, G.

    1982-06-16

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  11. Design Method of Active Disturbance Rejection Variable Structure Control System

    Directory of Open Access Journals (Sweden)

    Yun-jie Wu

    2015-01-01

    Full Text Available Based on lines cluster approaching theory and inspired by the traditional exponent reaching law method, a new control method, lines cluster approaching mode control (LCAMC method, is designed to improve the parameter simplicity and structure optimization of the control system. The design guidelines and mathematical proofs are also given. To further improve the tracking performance and the inhibition of the white noise, connect the active disturbance rejection control (ADRC method with the LCAMC method and create the extended state observer based lines cluster approaching mode control (ESO-LCAMC method. Taking traditional servo control system as example, two control schemes are constructed and two kinds of comparison are carried out. Computer simulation results show that LCAMC method, having better tracking performance than the traditional sliding mode control (SMC system, makes the servo system track command signal quickly and accurately in spite of the persistent equivalent disturbances and ESO-LCAMC method further reduces the tracking error and filters the white noise added on the system states. Simulation results verify the robust property and comprehensive performance of control schemes.

  12. Performance characteristics of a glowplug assisted low heat rejection diesel engine using ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Karthikeyan, B.; Srithar, K. [Department of Mechanical Engineering, Thiagarajar College of Engineering, Madurai, Tamilnadu 625 015 (India)

    2011-01-15

    Conventional diesel engines with ethanol as fuel are associated with problems due to high self-ignition temperature of the fuel. The hot surface ignition method, wherein a part of the injected fuel is made to touch an electrically heated hot surface (glowplug) for ignition, is an effective way of utilizing ethanol in conventional diesel engines. The purpose of the present study is to investigate the effect of thermal insulation on ethanol fueled compression ignition engine. One of the important ethanol properties to be considered in the high compression ratio engine is the long ignition delay of the fuel, normally characterized by lower cetane number. In the present study, the ignition delay was controlled by partial insulation of the combustion chamber (low heat rejection engine) by plasma spray coating of yttria stabilized zirconia for a thickness of 300 {mu}m. Experiments were carried out on the glowplug assisted engine with and without insulation in order to find out the possible benefits of combustion chamber insulation in ethanol and diesel operation. Highest brake thermal efficiency of 32% was obtained with ethanol fuel by insulating the combustion chamber. Emissions of the unburnt hydrocarbons, oxides of nitrogen and carbon monoxides were higher than that of diesel. But the smoke intensity and was less than that of diesel engine. Volumetric efficiency of the engine was reduced by a maximum of 9% in LHR mode of operation. (author)

  13. Systemic rejection: political pressures seen from the science system

    DEFF Research Database (Denmark)

    Young, Mitchell; Sørensen, Mads P.; Bloch, Carter Walter

    2017-01-01

    The emphasis on competitiveness and the knowledge-based economy in European policymaking has resulted in a heightened focus on monitoring and steering the science system, particularly through metric-based instruments. Policymakers’ general aims of fostering excellent research and breakthroughs......, the cases demonstrate why the relationship between the science system and the political system needs to be understood as a horizontal rather than a vertical relationship, and using concepts from organizational theory, provides a model and terminology for identifying and analyzing the types of mechanisms...

  14. Systemic Rejection: Political Pressures Seen from the Science System

    Science.gov (United States)

    Young, Mitchell; Sørensen, Mads P.; Bloch, Carter; Degn, Lise

    2017-01-01

    The emphasis on competitiveness and the knowledge-based economy in European policymaking has resulted in a heightened focus on monitoring and steering the science system, particularly through metric-based instruments. Policymakers' general aims of fostering excellent research and breakthroughs are shared by researchers as well; however, below the…

  15. Determination of hyperacute kidney rejection in different xenogeneic system by 133xenon washout technique

    International Nuclear Information System (INIS)

    Welter, H.; Schmidt, K.R.; Pfeifer, K.J.; Hammer, C.; Chaussy, C.

    1980-01-01

    1. 133 Xenon washout technique is suitable for studying all stages of xenogeneic kidney rejection. 2. Follow-up studies allow differentiation between kidney rejection and kidneys in shock. 3. Changes of intrarenal blood flow distribution correlate with the histologic changes caused by rejection. 4. Total blood flow measurements employing 133 xenon washout yield 10-20% lower values compared with venous outflow measurements. 5. Graft rejection in the xenogeneic cat-dog system can be significantly delayed by ALG pretreatment. 6. The beneficial effect of blood transfusion described in different clinical and experimental studies could not be found after pretreatment of dogs with fox red blood cells. (orig.)

  16. Heat transfer system

    Science.gov (United States)

    Not Available

    1980-03-07

    A heat transfer system for a nuclear reactor is described. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

  17. Heating networks and domestic central heating systems

    Energy Technology Data Exchange (ETDEWEB)

    Kamler, W; Wasilewski, W

    1976-08-01

    This is a comprehensive survey of the 26 contributions from 8 European countries submitted to the 3rd International District Heating Conference in Warsaw held on the subject 'Heating Networks and Domestic Central Heating Systems'. The contributions are grouped according to 8 groups of subjects: (1) heat carriers and their parameters; (2) system of heating networks; (3) calculation and optimization of heating networks; (4) construction of heating networks; (5) operation control and automation; (6) operational problems; (7) corrosion problems; and (8) methods of heat accounting.

  18. Heating systems for heating subsurface formations

    Science.gov (United States)

    Nguyen, Scott Vinh [Houston, TX; Vinegar, Harold J [Bellaire, TX

    2011-04-26

    Methods and systems for heating a subsurface formation are described herein. A heating system for a subsurface formation includes a sealed conduit positioned in an opening in the formation and a heat source. The sealed conduit includes a heat transfer fluid. The heat source provides heat to a portion of the sealed conduit to change phase of the heat transfer fluid from a liquid to a vapor. The vapor in the sealed conduit rises in the sealed conduit, condenses to transfer heat to the formation and returns to the conduit portion as a liquid.

  19. Heat Recovery System

    Science.gov (United States)

    1984-01-01

    Ball Metal's design of ducting and controls for series of roof top heat exchangers was inspired by Tech Briefs. Heat exchangers are installed on eight press and coating lines used to decorate sheet metal. The heat recovery system provides an estimated energy savings of more than $250,000 per year.

  20. 2-component heating systems

    Energy Technology Data Exchange (ETDEWEB)

    Radtke, W

    1987-03-01

    The knowledge accumulated only recently of the damage to buildings and the hazards of formaldehyde, radon and hydrocarbons has been inducing louder calls for ventilation, which, on their part, account for the fact that increasing importance is being attached to the controlled ventilation of buildings. Two-component heating systems provide for fresh air and thermal comfort in one. While the first component uses fresh air blown directly and controllably into the rooms, the second component is similar to the Roman hypocaustic heating systems, meaning that heated outer air is circulating under the floor, thus providing for hot surfaces and thermal comfort. Details concerning the two-component heating system are presented along with systems diagrams, diagrams of the heating system and tables identifying the respective costs. Descriptions are given of the two systems components, the fast heat-up, the two-component made, the change of air, heat recovery and control systems. Comparative evaluations determine the differences between two-component heating systems and other heating systems. Conclusive remarks are dedicated to energy conservation and comparative evaluations of costs. (HWJ).

  1. Automation of heating system with heat pump

    OpenAIRE

    Ferdin, Gašper

    2016-01-01

    Because of high prices of energy, we are upgrading our heating systems with newer, more fuel efficient heating devices. Each new device has its own control system, which operates independently from other devices in a heating system. With a relatively low investment costs in automation, we can group devices in one central control system and increase the energy efficiency of a heating system. In this project, we show how to connect an oil furnace, a sanitary heat pump, solar panels and a heat p...

  2. A False Rejection Oriented Threat Model for the Design of Biometric Authentication Systems

    NARCIS (Netherlands)

    Buhan, I.R.; Bazen, A.M.; Hartel, Pieter H.; Veldhuis, Raymond N.J.

    For applications like Terrorist Watch Lists and Smart Guns, a false rejection is more critical than a false acceptance. In this paper a new threat model focusing on false rejections is presented, and the 'standard' architecture of a biometric system is extended by adding components like crypto,

  3. A False Rejection Oriented Threat Model for the Design of Biometric Authentication Systems

    NARCIS (Netherlands)

    Buhan, I.R.; Bazen, A.M.; Hartel, Pieter H.; Veldhuis, Raymond N.J.; Zhang, David; Jain, Anil K.

    For applications like Terrorist Watch Lists and Smart Guns, a false rejection is more critical than a false acceptance. In this paper a new threat model focusing on false rejections is presented, and the standard architecture of a biometric system is extended by adding components like crypto, audit

  4. System for the Reduction of Substances in Reject Water from Reed-Bed Sludge Mineralization Plants

    DEFF Research Database (Denmark)

    2004-01-01

    The invention is a system for the reduction of substances in reject water from reed-bed sludge mineralization plants (also referred to as sludge dewatering reed-beds). The systems utilizes the composition of substances in reject water from reed-beds and that of sludge to reduce substance mass from...... the reject water via recirculation into a mixed reactor and back onto the reed-beds. The mixed rector consists of a container in which sludge (that is typically loaded directly on to reed-beds) is mixed with recirculated reject water from reed-beds. The sludge mixture has a definable hydraulic retention time...... of by sending it back to the head of a wastewater treatment plant. The system has proven to reduce the mass of nitrogen, COD, and water in the reject water, and can possibly reduce phosphorus and other substances. The overall effect is a reduction in the substance recycle within a wastewater treatment plant...

  5. Simulation of disturbance rejection control of half-car active suspension system using active disturbance rejection control with decoupling transformation

    Science.gov (United States)

    Hasbullah, Faried; Faris, Waleed F.

    2017-12-01

    In recent years, Active Disturbance Rejection Control (ADRC) has become a popular control alternative due to its easy applicability and robustness to varying processes. In this article, ADRC with input decoupling transformation (ADRC-IDT) is proposed to improve ride comfort of a vehicle with an active suspension system using half-car model. The ride performance of the ADRC-IDT is evaluated and compared with decentralized ADRC control as well as the passive system. Simulation results show that both ADRC and ADRC-IDT manage to appreciably reduce body accelerations and able to cope well with varying conditions typically encountered in an active suspension system. Also, it is sufficient to control only the body motions with both active controllers to improve ride comfort while maintaining good road holding and small suspension working space.

  6. Heat pipes and heat pipe exchangers for heat recovery systems

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, L L; Grakovich, L P; Kiselev, V G; Kurustalev, D K; Matveev, Yu

    1984-01-01

    Heat pipes and heat pipe exchangers are of great importance in power engineering as a means of recovering waste heat of industrial enterprises, solar energy, geothermal waters and deep soil. Heat pipes are highly effective heat transfer units for transferring thermal energy over large distance (tens of meters) with low temperature drops. Their heat transfer characteristics and reliable working for more than 10-15 yr permit the design of new systems with higher heat engineering parameters.

  7. Split heat pipe heat recovery system

    OpenAIRE

    E. Azad

    2008-01-01

    This paper describes a theoretical analysis of a split heat pipe heat recovery system. The analysis is based on an Effectiveness-NTU approach to deduce its heat transfer characteristics. In this study the variation of overall effectiveness of heat recovery with the number of transfer units are presented. Copyright , Manchester University Press.

  8. Automatic heating control system

    Energy Technology Data Exchange (ETDEWEB)

    Whittle, A.J.

    1989-11-15

    A heating control system for buildings comprises at least one heater incorporating heat storage means, a first sensor for detecting temperature within the building, means for setting a demand temperature, a second sensor for detecting outside temperature, a timer, and means for determining the switch on time of the heat storage means on the basis of the demand temperature and the internal and external temperatures. The system may additionally base the switch on time of the storage heater(s) on the heating and cooling rates of the building (as determined from the sensed temperatures); or on the anticipated daytime temperature (determined from the sensed night time temperature). (author).

  9. Solar heating system

    Science.gov (United States)

    Schreyer, James M.; Dorsey, George F.

    1982-01-01

    An improved solar heating system in which the incident radiation of the sun is absorbed on collector panels, transferred to a storage unit and then distributed as heat for a building and the like. The improvement is obtained by utilizing a storage unit comprising separate compartments containing an array of materials having different melting points ranging from 75.degree. to 180.degree. F. The materials in the storage system are melted in accordance with the amount of heat absorbed from the sun and then transferred to the storage system. An efficient low volume storage system is provided by utilizing the latent heat of fusion of the materials as they change states in storing and releasing heat for distribution.

  10. Improved solar heating systems

    Science.gov (United States)

    Schreyer, J.M.; Dorsey, G.F.

    1980-05-16

    An improved solar heating system is described in which the incident radiation of the sun is absorbed on collector panels, transferred to a storage unit and then distributed as heat for a building and the like. The improvement is obtained by utilizing a storage unit comprising separate compartments containing an array of materials having different melting points ranging from 75 to 180/sup 0/F. The materials in the storage system are melted in accordance with the amount of heat absorbed from the sun and then transferred to the storage system. An efficient low volume storage system is provided by utilizing the latent heat of fusion of the materials as they change states in storing ad releasing heat for distribution.

  11. Hybrid pulse pile-up rejection system as applied to Rutherford backscattering

    International Nuclear Information System (INIS)

    Boie, R.A.; Wildnauer, K.R.

    1977-01-01

    The problems of pulse on pulse pile-up and noise limited pile-up rejectors are considered in detail for Rutherford backscattering spectra. The forms of these spectra allow the distortions from pile-up and the residual pile-up after rejection to be understood via a simple model. Extended calculations allow us to predict the effects quite accurately. A new pile-up rejection system is described. The ''linear'' rejection method is implemented with peak stretchers and advantageously combined with an event counting rejector to provide a versatile high performance system

  12. Significance of atmospheric effects of heat rejection from energy centers in the semi arid northwest

    International Nuclear Information System (INIS)

    Ramsdell, J.V.; Drake, R.L.; Young, J.R.

    1976-01-01

    The results presented in this paper have been obtained using simple atmospheric models in an attempt to optimize heat sink management in a conceptual nuclear energy center (NEC) at Hanford. The models have been designed to be conservatice in the sense that they are biased toward over prediction of the impact of cooling system effluents on humidity and fog. Thus the models are screening tools to be used to identify subjects for further, more realistic examination. Within this context the following conclusions have been reached: the evaluation of any atmospheric impact postulated for heat dissipation must be conducted in quantitative terms which can be used to determine the significance of the impact; of the potential atmospheric impacts of large heat releases from energy centers, the one most amenable to quantitative evaluation in meaningful terms as the increase in fog; a postulated increase in frequency of fog can be translated into terms of visibility and both can be evaluated statistically; the translation of a increase in fog to visibility terms permits economic evaluation of the impact; and the predicted impact of the HNEC on fog and visibility is statistically significant whether the energy center consists of 20 or 40 units

  13. Reward, addiction, and emotion regulation systems associated with rejection in love.

    Science.gov (United States)

    Fisher, Helen E; Brown, Lucy L; Aron, Arthur; Strong, Greg; Mashek, Debra

    2010-07-01

    Romantic rejection causes a profound sense of loss and negative affect. It can induce clinical depression and in extreme cases lead to suicide and/or homicide. To begin to identify the neural systems associated with this natural loss state, we used functional magnetic resonance imaging to study 10 women and 5 men who had recently been rejected by a partner but reported they were still intensely "in love." Participants alternately viewed a photograph of their rejecting beloved and a photograph of a familiar, individual, interspersed with a distraction-attention task. Their responses while looking at their rejecter included love, despair, good, and bad memories, and wondering why this happened. Activation specific to the image of the beloved occurred in areas associated with gains and losses, craving and emotion regulation and included the ventral tegmental area (VTA) bilaterally, ventral striatum, medial and lateral orbitofrontal/prefrontal cortex, and cingulate gyrus. Compared with data from happily-in-love individuals, the regional VTA activation suggests that mesolimbic reward/survival systems are involved in romantic passion regardless of whether one is happily or unhappily in love. Forebrain activations associated with motivational relevance, gain/loss, cocaine craving, addiction, and emotion regulation suggest that higher-order systems subject to experience and learning also may mediate the rejection reaction. The results show activation of reward systems, previously identified by monetary stimuli, in a natural, endogenous, negative emotion state. Activation of areas involved in cocaine addiction may help explain the obsessive behaviors associated with rejection in love.

  14. Waste heat recovery system

    International Nuclear Information System (INIS)

    Phi Wah Tooi

    2010-01-01

    Full text: The Konzen in-house designed anaerobic digester system for the POME (Palm Oil Mill Effluent) treatment process is one of the registered Clean Development Mechanism (CDM) projects in Malaysia. It is an organic wastewater treatment process which achieves excellent co-benefits objectives through the prevention of water pollution and reduction of greenhouse gas emissions, which is estimated to be 40,000 to 50,000 t-CO 2 per year. The anaerobic digester was designed in mesophile mode with temperature ranging from 37 degree Celsius to 45 degree Celsius. A microorganisms growth is optimum under moderately warm temperature conditions. The operating temperature of the anaerobic digester needs to be maintained constantly. There are two waste heat recovery systems designed to make the treatment process self-sustaining. The heat recovered will be utilised as a clean energy source to heat up the anaerobic digester indirectly. The first design for the waste heat recovery system utilises heat generated from the flue gas of the biogas flaring system. A stainless steel water tank with an internal water layer is installed at the top level of the flare stack. The circulating water is heated by the methane enriched biogas combustion process. The second design utilizes heat generated during the compression process for the biogas compressor operation. The compressed biogas needs to be cooled before being recycled back into the digester tank for mixing purposes. Both the waste heat recovery systems use a design which applies a common water circulation loop and hot water tank to effectively become a closed loop. The hot water tank will perform both storage and temperature buffer functions. The hot water is then used to heat up recycled sludge from 30 degree Celsius to 45 degree Celsius with the maximum temperature setting at 50 degree Celsius. The recycled sludge line temperature will be measured and monitored by a temperature sensor and transmitter, which will activate the

  15. A heat receiver design for solar dynamic space power systems

    Science.gov (United States)

    Baker, Karl W.; Dustin, Miles O.; Crane, Roger

    1990-01-01

    An advanced heat pipe receiver designed for a solar dynamic space power system is described. The power system consists of a solar concentrator, solar heat receiver, Stirling heat engine, linear alternator and waste heat radiator. The solar concentrator focuses the sun's energy into a heat receiver. The engine and alternator convert a portion of this energy to electric power and the remaining heat is rejected by a waste heat radiator. Primary liquid metal heat pipes transport heat energy to the Stirling engine. Thermal energy storage allows this power system to operate during the shade portion of an orbit. Lithium fluoride/calcium fluoride eutectic is the thermal energy storage material. Thermal energy storage canisters are attached to the midsection of each heat pipe. The primary heat pipes pass through a secondary vapor cavity heat pipe near the engine and receiver interface. The secondary vapor cavity heat pipe serves three important functions. First, it smooths out hot spots in the solar cavity and provides even distribution of heat to the engine. Second, the event of a heat pipe failure, the secondary heat pipe cavity can efficiently transfer heat from other operating primary heat pipes to the engine heat exchanger of the defunct heat pipe. Third, the secondary heat pipe vapor cavity reduces temperature drops caused by heat flow into the engine. This unique design provides a high level of reliability and performance.

  16. Combustion, performance, and emission characteristics of low heat rejection engine operating on various biodiesels and vegetable oils

    International Nuclear Information System (INIS)

    Abedin, M.J.; Masjuki, H.H.; Kalam, M.A.; Sanjid, A.; Ashraful, A.M.

    2014-01-01

    Highlights: • Combustion, performance, and emissions of low heat rejection engine are studied. • Comparative assessment is carried out for different fuels and coating materials. • Alternative coating materials are suggested for engine. • Thermal efficiency is increased and fuel consumption is decreased for all fuels. • Exhaust emissions have improved except nitrogen oxides emission. - Abstract: Internal combustion engine with its combustion chamber walls insulated by thermal barrier coating materials is referred to as low heat rejection engine or LHR engine. The main purpose of this concept is to reduce engine coolant heat losses, hence improve engine performance. Most of the researchers have reported that the thermal coating increases thermal efficiency, and reduces exhaust emissions. In contrast to the above expectations, a few researchers reported that almost there was no improvement in thermal efficiency. This manuscript investigates the contradictory results in order to find out the exact scenario. A wide range of coating materials has been studied in order to justify their feasibility of implementation in engine. The influence of coating material, thickness, and technique on engine performance and emissions has been studied critically to accelerate the LHR engine evolution. The objectives of higher thermal efficiency, improved fuel economy, and lower emissions are accomplishable but much more investigations with improved engine modification, and design are required to explore full potentiality of LHR engine

  17. The Impact of an Electronic Ordering System on Blood Bank Specimen Rejection Rates.

    Science.gov (United States)

    Forest, Stefanie K; Shirazi, Maryam; Wu-Gall, Charlotte; Stotler, Brie A

    2017-01-01

    To evaluate the impact that an electronic ordering system has on the rate of rejection of blood type and screen testing samples and the impact on the number of ABO blood-type discrepancies over a 4-year period. An electronic ordering system was implemented in May 2011. Rejection rates along with reasons for rejection were tracked between January 2010 and December 2013. A total of 40,104 blood samples were received during this period, of which 706 (1.8%) were rejected for the following reasons: 382 (54.0%) unsigned samples, 235 (33.0%) mislabeled samples, 57 (8.0%) unsigned requisitions, 18 (2.5%) incorrect tubes, and 14 (1.9%) ABO discrepancies. Of the samples, 2.5% were rejected in the year prior to implementing the electronic ordering system compared with 1.2% in the year following implementation ( P  blood sample rejection. © American Society for Clinical Pathology, 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  18. Design of annual storage solar space heating systems

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, F C; Cook, J D

    1979-11-01

    Design considerations for annual storage solar space heating systems are discussed. A simulation model for the performance of suh systems is described, and a method of classifying system configurations is proposed. It is shown that annual systems sized for unconstrained performance, with no unused collector or storage capacity, and no rejected heat, minimize solar acquisition costs. The optimal performance corresponds to the condition where the marginal storage-to-collector sizing ratio is equal to the corresponding marginal cost ratio.

  19. Disturbance rejection performance analyses of closed loop control systems by reference to disturbance ratio.

    Science.gov (United States)

    Alagoz, Baris Baykant; Deniz, Furkan Nur; Keles, Cemal; Tan, Nusret

    2015-03-01

    This study investigates disturbance rejection capacity of closed loop control systems by means of reference to disturbance ratio (RDR). The RDR analysis calculates the ratio of reference signal energy to disturbance signal energy at the system output and provides a quantitative evaluation of disturbance rejection performance of control systems on the bases of communication channel limitations. Essentially, RDR provides a straightforward analytical method for the comparison and improvement of implicit disturbance rejection capacity of closed loop control systems. Theoretical analyses demonstrate us that RDR of the negative feedback closed loop control systems are determined by energy spectral density of controller transfer function. In this manner, authors derived design criteria for specifications of disturbance rejection performances of PID and fractional order PID (FOPID) controller structures. RDR spectra are calculated for investigation of frequency dependence of disturbance rejection capacity and spectral RDR analyses are carried out for PID and FOPID controllers. For the validation of theoretical results, simulation examples are presented. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  20. Distributed Optimization for a Class of Nonlinear Multiagent Systems With Disturbance Rejection.

    Science.gov (United States)

    Wang, Xinghu; Hong, Yiguang; Ji, Haibo

    2016-07-01

    The paper studies the distributed optimization problem for a class of nonlinear multiagent systems in the presence of external disturbances. To solve the problem, we need to achieve the optimal multiagent consensus based on local cost function information and neighboring information and meanwhile to reject local disturbance signals modeled by an exogenous system. With convex analysis and the internal model approach, we propose a distributed optimization controller for heterogeneous and nonlinear agents in the form of continuous-time minimum-phase systems with unity relative degree. We prove that the proposed design can solve the exact optimization problem with rejecting disturbances.

  1. Solar heating and cooling system with absorption chiller and low temperature latent heat storage: Energetic performance and operational experience

    Energy Technology Data Exchange (ETDEWEB)

    Helm, M.; Keil, C.; Hiebler, S.; Mehling, H.; Schweigler, C. [Bavarian Center for Applied Energy Research (ZAE Bayern) (Germany)

    2009-06-15

    Absorption cooling systems based on water/lithium bromide (LiBr) solution typically require an open wet cooling tower to transfer the reject heat to the ambient. Yet, water consumption, the need for water make-up and cleaning, formation of fog, and the risk of Legionella bacteria growth are hindering factors for the implementation of small solar cooling systems. The application of a latent heat storage supporting the heat rejection of the absorption chiller in conjunction with a dry cooling system allows eliminating the wet cooling tower. By that means heat rejection of the chiller is shifted to periods with lower ambient temperatures, i.e. night time or off-peak hours. The system concept and the hydraulic scheme together with an analysis of the energetic performance of the system are presented, followed by a report on the operation of a first pilot installation. (author)

  2. Development of a space-flight ADR providing continuous cooling at 50 mK with heat rejection at 10 K

    Science.gov (United States)

    Tuttle, James; Canavan, Edgar; DeLee, Hudson; DiPirro, Michael; Jahromi, Amir; James, Bryan; Kimball, Mark; Shirron, Peter; Sullivan, Dan; Switzer, Eric

    2017-12-01

    Future astronomical instruments will require sub-Kelvin detector temperatures to obtain high sensitivity. In many cases large arrays of detectors will be used, and the associated cooling systems will need performance surpassing the limits of present technologies. NASA is developing a compact cooling system that will lift heat continuously at temperatures below 50 mK and reject it at over 10 K. Based on adiabatic demagnetization refrigerators (ADRs), it will have high thermodynamic efficiency and vibration-free operation with no moving parts. It will provide more than 10 times the current flight ADR cooling power at 50 mK and will also continuously cool a 4 K stage for instruments and optics. In addition, it will include an advanced magnetic shield resulting in external field variations below 5 μT. We describe the cooling system here and report on the progress in its development.

  3. Solar heating systems

    International Nuclear Information System (INIS)

    1993-01-01

    This report is based on a previous, related, one which was quantitative in character and relied on 500 telephone interviews with house-owners. The aim of this, following, report was to carry out a more deep-going, qualitative analysis focussed on persons who already own a solar heating system (purchased during 1992) or were/are considering having one installed. Aspects studied were the attitudes, behaviour and plans of these two groups with regard to solar heating systems. Some of the key questions asked concerned general attitudes to energy supply, advantages and disadvantages of using solar heating systems, related decision-making factors, installation problems, positive and negative expectations, evaluation of the information situation, suggestions related to information systems regarding themes etc., dissemination of information, sources of advice and information, economical considerations, satisfaction with the currently-owned system which would lead to the installation of another one in connection with the purchase of a new house. The results of this investigation directed at Danish house-owners are presented and discussed, and proposals for following activities within the marketing situation are given. It is concluded that the basic attitude in both groups strongly supports environmental protection, renewable energy sources and is influenced by considerations of prestige and independence. Constraint factors are confusion about environmental factors, insecurity in relation to the effect of established supplementary energy supply and suspicion with regard to the integrity of information received. (AB)

  4. Heat transport system

    International Nuclear Information System (INIS)

    Pierce, B.L.

    1978-01-01

    A heat transport system of small size which can be operated in any orientation consists of a coolant loop containing a vaporizable liquid as working fluid and includes in series a vaporizer, a condenser and two one-way valves and a pressurizer connected to the loop between the two valves. The pressurizer may be divided into two chambers by a flexible diaphragm, an inert gas in one chamber acts as a pneumatic spring for the system. This system is suitable for use in a nuclear-powered artificial heart

  5. Study on hybrid ground-coupled heat pump systems

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Man; Hongxing, Yang [Renewable Energy Research Group, The Hong Kong Polytechnic University, Hong Kong (China); Zhaohong, Fang [School of Thermal Energy Engineering, Shandong Architecture University, Jinan (China)

    2008-07-01

    Although ground-coupled heat pump (GCHP) systems are becoming attractive air-conditioning systems in some regions, the significant drawback for their wider application is the high initial cost. Besides, more energy is rejected into ground by the GCHP system installed in cooling-dominated buildings than the energy extracted from ground on an annual basis and this imbalance can result in the degradation of system performance. One of the available options that can resolve these problems is to apply the hybrid ground-coupled heat pump (HGCHP) systems, with supplemental heat rejecters for rejecting extra thermal energy when they are installed in cooling-dominated buildings. This paper presents a practical hourly simulation model of the HGCHP system by modeling the heat transfer of its main components. The computer program developed on this hourly simulation model can be used to calculate the operating data of the HGCHP system according to the building load. The design methods and running control strategies of the HGCHP system for a sample building are investigated. The simulation results show that proper HGCHP system can effectively reduce both the initial cost and the operating cost of an air-conditioning system compared with the traditional GCHP system used in cooling-dominated buildings. (author)

  6. New scoring system identifies kidney outcome with radiation therapy in acute renal allograft rejection

    International Nuclear Information System (INIS)

    Chen, Luci M.; Godinez, Juan; Thisted, Ronald A.; Woodle, E. Steve; Thistlewaite, J. Richard; Powers, Claire; Haraf, Daniel

    2000-01-01

    concomitant immunosuppressive therapy. Independent factors examined by Cox regression modeling were: gender (p 0.005), creatinine levels (p = 0.000), HLA-DR (p = 0.05), PRA-Maximum >70% (p = 0.014). Each factor was scored using integral coefficients to generate four different groups. The Kaplan-Meier survival analyzed by group produces an interpretable separation of the risk factors for graft loss. Conclusions: The outcome in patients treated with radiation therapy for acute renal graft rejection can be predicted by a novel scoring system. Patients with scores of three or less are able to achieve 100% renal graft salvage, while patients who have scores of 12 or higher are not able to be salvaged with the current radiation therapy regimen. Future studies should be directed toward identifying more effective treatment for patients who have a high score based on our criteria. The scoring system should be utilized to identify patients at risk who could benefit from radiation therapy. Further study with a randomized trial utilizing this scoring system is needed to confirm the validity of the scoring system in predicting graft survival and the efficacy of radiation in patients who receive radiation therapy for acute graft rejection

  7. Development of a semitransparent ceramic heat-insulation for an eco-friendly combustion chamber of Low-Heat-Rejection diesel

    Science.gov (United States)

    Merzlikin, V. G.; Gutierrez, M. O.; Makarov, A. R.; Bekaev, A. A.; Bystrov, A. V.; Zagumennov, F. A.

    2018-02-01

    Efficiency of diesel has been studied using well-known types of the ceramic heat-insulating HICs- or thermal barrier TBCs-coatings. This problem is relevant for a high-speed diesel combustion chamber in which intensive radiant component (near IR) reaches ~50% within total thermal flux. Therefore, in their papers the authors offered new concept of study these materials as semitransparent SHICs-, STBCs-coatings. On the Mie scattering theory the effect of selection of the specific structural composition and porosity of coatings on the variation of their optical parameters is considered. Conducted spectrophotometric modeling of the volume-absorbed radiant energy by the coating had determined their acceptable temperature field. For rig testings coated piston using selected SHIC (PSZ-ceramic ZrO2+8%Y2O3) with a calculated optimum temperature gradient was chosen. A single cylinder experimental tractor diesel was used. At rotation frequency n > 2800 rpm the heat losses were no more than 0.2 MW/m2. Executed testings showed ~2-3% lower specific fuel consumption in contrast the diesel with uncoated piston. Effective power and drive torque were ~2-5% greater. The authors have substantiated the growth the efficiency of this Low-Heat-Rejection (LHR) diesel due to the known effect of soot deposition gasification at high speed.Then unpolluted semitransparent ceramic thermal insulation forms the required thermoradiation fields and temperature profiles and can affect regulation of heat losses and reduction of primarily nitrogen dioxide generation.

  8. Compact interior heat exchangers for CO{sub 2} mobile heat pumping systems

    Energy Technology Data Exchange (ETDEWEB)

    Hafner, Armin

    2003-07-01

    The natural refrigerant carbon dioxide (CO{sub 2}) offers new possibilities for design of flexible, efficient and environmentally safe mobile heat pumping systems. As high-efficient car engines with less waste heat are developed, extra heating of the passenger compartment is needed in the cold season. A reversible transcritical CO{sub 2} system with gliding temperature heat rejection can give high air delivery temperature which results in rapid heating of the passenger compartment and rapid defogging or defrosting of windows. When operated in cooling mode, the efficiency of transcritical CO{sub 2} systems is higher compared to common (HFC) air conditioning systems, at most dominant operating conditions. Several issues were identified for the design of compact interior heat exchangers for automotive reversible CO{sub 2} heat pumping systems. Among theses issues are: (1) Refrigerant flow distribution, (2) Heat exchanger fluid flow circuiting, (3) Air temperature uniformity downstream of the heat exchanger, (4) Minimization of temperature approach, (5) Windshield flash fogging due to retained water inside the heat exchanger, (6) Internal beat conduction in heating mode operation, and (7) Refrigerant side pressure drop In order to provide a basis for understanding these issues, the author developed a calculation model and set up a test facility and investigated different prototype heat exchangers experimentally.

  9. Status of projects using reject heat for aquaculture and horticulture at power plants in the EEC

    International Nuclear Information System (INIS)

    Aston, R.J.

    1988-08-01

    Data collected mainly from an inventory of waste heat projects in the EEC prepared by Potentiel Energie of Paris covers 46 projects approximately half of which are fish farms and half horticultural projects mainly in the form of greenhouses. About a half of the projects are run on a commercial basis while the other half are Research and Development (R and D) or demonstrations. At least 18 species of fish and 18 species of plant are produced at the various projects but eels and potted plants are grown at more of the commercially orientated projects than any other produce. There has been a significant increase in the number of commercially run projects during the past 10-15 years and this trend is likely to continue in view of the considerable savings that can be made on fuel. The size and number of commercial projects in the UK compares favourably with those in other EEC countries. (author)

  10. Containment heat removal system

    International Nuclear Information System (INIS)

    Wade, G.E.; Barbanti, G.; Gou, P.F.; Rao, A.S.; Hsu, L.C.

    1992-01-01

    This patent describes a nuclear system of a type including a containment having a nuclear reactor therein, the nuclear reactor including a pressure vessel and a core in the pressure vessel, the system. It comprises a gravity pool of coolant disposed at an elevation sufficient to permit a flow of coolant into the nuclear reactor pressure vessel against a predetermined pressure within the nuclear reactor pressure vessel; means for reducing a pressure of steam in the nuclear reactor pressure vessel to a value less than the predetermined pressure in the event of a nuclear accident, the means including a depressurization valve connected to the pressure vessel, the means further including steam heat dissipating means such dissipating means including a suppression pool; a supply of water in the suppression pool, there being a headspace in the suppression pool above the water supply; a substantial amount of air in the head space; means for feeding pressurized steam from the nuclear reactor pressure vessel to a location under a surface of the supply of water, the supply of water being effective to absorb heat sufficient to reduce steam pressure below the predetermined pressure; and a check valve for communicating the headspace with the containment, the check valve being oriented to vent air in the headspace to the containment when a pressure in the headspace exceeds a pressure in the containment by a predetermined pressure differential

  11. Residential solar-heating system

    Science.gov (United States)

    1978-01-01

    Complete residential solar-heating and hot-water system, when installed in highly-insulated energy-saver home, can supply large percentage of total energy demand for space heating and domestic hot water. System which uses water-heating energy storage can be scaled to meet requirements of building in which it is installed.

  12. Reproducibility of the acute rejection diagnosis in human cardiac allografts. The Stanford Classification and the International Grading System

    DEFF Research Database (Denmark)

    Nielsen, H; Sørensen, Flemming Brandt; Nielsen, B

    1993-01-01

    Transplantation has become an accepted treatment of many cardiac end-stage diseases. Acute cellular rejection accounts for 15% to 20% of all graft failures. The first grading system of acute cellular rejection, the Stanford Classification, was introduced in 1979, and since then many other grading...

  13. Waste heat recovery system

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, Timothy C.; Zigan, James A.

    2017-12-19

    A waste heat recovery system includes a Rankine cycle (RC) circuit having a pump, a boiler, an energy converter, and a condenser fluidly coupled via conduits in that order, to provide additional work. The additional work is fed to an input of a gearbox assembly including a capacity for oil by mechanically coupling to the energy converter to a gear assembly. An interface is positioned between the RC circuit and the gearbox assembly to partially restrict movement of oil present in the gear assembly into the RC circuit and partially restrict movement of working fluid present in the RC circuit into the gear assembly. An oil return line is fluidly connected to at least one of the conduits fluidly coupling the RC components to one another and is operable to return to the gear assembly oil that has moved across the interface from the gear assembly to the RC circuit.

  14. Absorption-heat-pump system

    Science.gov (United States)

    Grossman, G.; Perez-Blanco, H.

    1983-06-16

    An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.

  15. Response of the μ-opioid system to social rejection and acceptance.

    Science.gov (United States)

    Hsu, D T; Sanford, B J; Meyers, K K; Love, T M; Hazlett, K E; Wang, H; Ni, L; Walker, S J; Mickey, B J; Korycinski, S T; Koeppe, R A; Crocker, J K; Langenecker, S A; Zubieta, J-K

    2013-11-01

    The endogenous opioid system, which alleviates physical pain, is also known to regulate social distress and reward in animal models. To test this hypothesis in humans (n=18), we used an μ-opioid receptor (MOR) radiotracer to measure changes in MOR availability in vivo with positron emission tomography during social rejection (not being liked by others) and acceptance (being liked by others). Social rejection significantly activated the MOR system (i.e., reduced receptor availability relative to baseline) in the ventral striatum, amygdala, midline thalamus and periaqueductal gray (PAG). This pattern of activation is consistent with the hypothesis that the endogenous opioids have a role in reducing the experience of social pain. Greater trait resiliency was positively correlated with MOR activation during rejection in the amygdala, PAG and subgenual anterior cingulate cortex (sgACC), suggesting that MOR activation in these areas is protective or adaptive. In addition, MOR activation in the pregenual ACC was correlated with reduced negative affect during rejection. In contrast, social acceptance resulted in MOR activation in the amygdala and anterior insula, and MOR deactivation in the midline thalamus and sgACC. In the left ventral striatum, MOR activation during acceptance predicted a greater desire for social interaction, suggesting a role for the MOR system in social reward. The ventral striatum, amygdala, midline thalamus, PAG, anterior insula and ACC are rich in MORs and comprise a pathway by which social cues may influence mood and motivation. MOR regulation of this pathway may preserve and promote emotional well being in the social environment.

  16. Thermal energy recovery of air conditioning system--heat recovery system calculation and phase change materials development

    International Nuclear Information System (INIS)

    Gu Zhaolin; Liu Hongjuan; Li Yun

    2004-01-01

    Latent heat thermal energy storage systems can be used to recover the rejected heat from air conditioning systems, which can be used to generate low-temperature hot water. It decreases not only the consumption of primary energy for heating domestic hot water but also the calefaction to the surroundings due to the rejection of heat from air conditioning systems. A recovery system using phase change materials (PCMs) to store the rejected (sensible and condensation) heat from air conditioning system has been developed and studied, making up the shortage of other sensible heat storage system. Also, PCMs compliant for heat recovery of air conditioning system should be developed. Technical grade paraffin wax has been discussed in this paper in order to develop a paraffin wax based PCM for the recovery of rejected heat from air conditioning systems. The thermal properties of technical grade paraffin wax and the mixtures of paraffin wax with lauric acid and with liquid paraffin (paraffin oil) are investigated and discussed, including volume expansion during the phase change process, the freezing point and the heat of fusion

  17. Solar Heating System with Building-Integrated Heat Storage

    DEFF Research Database (Denmark)

    Heller, Alfred

    1996-01-01

    Traditional solar heating systems cover between 5 and 10% of the heat demand fordomestic hot water and comfort heating. By applying storage capacity this share can beincreased much. The Danish producer of solar heating systems, Aidt-Miljø, markets such a system including storage of dry sand heated...... by PP-pipe heat exchanger. Heat demand is reduced due to direct solar heating, and due to storage. Heat demand is reduced due to direct solar heating, due to storage and due to lower heat losses through the ground. In theory, by running the system flow backwards through the sand storage, active heating...... can be achieved.The objective of the report is to present results from measured system evaluation andcalculations and to give guidelines for the design of such solar heating systems with building integrated sand storage. The report is aimed to non-technicians. In another report R-006 the main results...

  18. CRBRP decay heat removal systems

    International Nuclear Information System (INIS)

    Hottel, R.E.; Louison, R.; Boardman, C.E.; Kiley, M.J.

    1977-01-01

    The Decay Heat Removal Systems for the Clinch River Breeder Reactor Plant (CRBRP) are designed to adequately remove sensible and decay heat from the reactor following normal shutdown, operational occurrences, and postulated accidents on both a short term and a long term basis. The Decay Heat Removal Systems are composed of the Main Heat Transport System, the Main Condenser and Feedwater System, the Steam Generator Auxiliary Heat Removal System (SGAHRS), and the Direct Heat Removal Service (DHRS). The overall design of the CRBRP Decay Heat Removal Systems and the operation under normal and off-normal conditions is examined. The redundancies of the system design, such as the four decay heat removal paths, the emergency diesel power supplies, and the auxiliary feedwater pumps, and the diversities of the design such as forced circulation/natural circulation and AC Power/DC Power are presented. In addition to overall design and system capabilities, the detailed designs for the Protected Air Cooled Condensers (PACC) and the Air Blast Heat Exchangers (ABHX) are presented

  19. Binary blend of carbon dioxide and fluoro ethane as working fluid in transcritical heat pump systems

    Directory of Open Access Journals (Sweden)

    Zhang Xian-Ping

    2015-01-01

    Full Text Available As an eco-friendly working fluid, carbon dioxide or R744 is expected to substitute for the existing working fluids used in heat pump systems. It is, however, challenged by the much higher heat rejection pressure in transcritical cycle compared with the traditional subcritical cycle using freons. There exists a worldwide tendency to utilize blend refrigerants as alternatives. Therefore, a new binary blend R744/R161 in this research is proposed in order to decrease the heat rejection pressure. Meanwhile, on mixing R744 with R161, the flammability and explosivity of R161 can be suppressed because of the extinguishing effect of R744. A transcritical thermodynamic model is developed, and then the system performances of heat pump using R744/R161 blend are investigated and compared with those of pure R744 system under the same operation conditions. The variations of heat rejection pressure, heating coefficient of performance, unit volumetric heating capacity, discharge temperature of compressor and the mass fraction of R744/R161 are researched. The results show that R744/R161 mixture can reduce the heat rejection pressure of transcritical heat pump system.

  20. Sandwich Core Heat-Pipe Radiator for Power and Propulsion Systems

    Science.gov (United States)

    Gibson, Marc; Sanzi, James; Locci, Ivan

    2013-01-01

    Next-generation heat-pipe radiator technologies are being developed at the NASA Glenn Research Center to provide advancements in heat-rejection systems for space power and propulsion systems. All spacecraft power and propulsion systems require their waste heat to be rejected to space in order to function at their desired design conditions. The thermal efficiency of these heat-rejection systems, balanced with structural requirements, directly affect the total mass of the system. Terrestrially, this technology could be used for thermal control of structural systems. One potential use is radiant heating systems for residential and commercial applications. The thin cross section and efficient heat transportability could easily be applied to flooring and wall structures that could evenly heat large surface areas. Using this heat-pipe technology, the evaporator of the radiators could be heated using any household heat source (electric, gas, etc.), which would vaporize the internal working fluid and carry the heat to the condenser sections (walls and/or floors). The temperature could be easily controlled, providing a comfortable and affordable living environment. Investigating the appropriate materials and working fluids is needed to determine this application's potential success and usage.

  1. Theoretical study of heat pump system using CO2/dimethylether as refrigerant

    Directory of Open Access Journals (Sweden)

    Fan Xiao-Wei

    2013-01-01

    Full Text Available Nowadays, HCFC22 is widely used in heat pump systems in China, which should be phased out in the future. Thus, eco-friendly mixture CO2/dimethylether is proposed to replace HCFC22. Compared with pure CO2 and pure dimethylether, the mixture can reduce the heat rejection pressure, and suppress the flammability and explosivity of pure dimethylether. According to the Chinese National Standards on heat pump water heater and space heating system, performances of the subcritical heat pump system are discussed and compared with those of the HCFC22 system. It can be concluded that CO2 /dimethylether mixture works efficiently as a refrigerant for heat pumps with a large heat-sink temperature rise. When mass fraction of dimethylether is increased, the heat rejection pressure is reduced. Under the nominal working condition, there is an optimal mixture mass fraction of 28/72 of CO2/dimethylether for water heater application under conventional condensation pressure, 3/97 for space heating application. For water heater application, both the heating coefficient of performance and volumetric heating capacity increase by 17.90% and 2.74%, respectively, compared with those of HCFC22 systems. For space heating application, the heating coefficient of performance increases by 8.44% while volumetric heating capacity decreases by 34.76%, compared with those of HCFC22 systems. As the superheat degree increases, both the heating coefficient of performance and volumetric heating capacity tend to decrease.

  2. Choosing fatherhood: how teens in the justice system embrace or reject a father identity.

    Science.gov (United States)

    Shade, Kate; Kools, Susan; Pinderhughes, Howard; Weiss, Sandra J

    2012-01-01

    The purpose of this qualitative study was to further the understanding of father identity and role development among adolescents involved in the justice system. Youth who were expecting a child or parenting an infant and who were incarcerated, arrested, or had admitted to criminal behavior participated in interviews and observations in a juvenile detention center and in the community. Data analysis revealed 4 patterns of fathering intentions: (a) embracing fatherhood, (b) being barred from fatherhood, (c) being ambivalent about fatherhood, or (d) rejecting fatherhood. Community health nurses can use this information to assess father identity status and address factors that interfere with father engagement. Copyright © Taylor & Francis Group, LLC

  3. Nonlinear modeling and dynamic analysis of hydro-turbine governing system in the process of load rejection transient

    International Nuclear Information System (INIS)

    Zhang, Hao; Chen, Diyi; Xu, Beibei; Wang, Feifei

    2015-01-01

    Graphical abstract: Nonlinear dynamic transfer coefficients are introduced to the hydro-turbine governing system. In the process of load reject ion transient, the nonlinear dynamical behaviors of the system are studied in detail. - Highlights: • A novel mathematical model of a hydro-turbine governing system is established. • The process of load rejection transient is considered. • Nonlinear dynamic transfer coefficients are introduced to the system. • The bifurcation diagram with the variable t has better engineering significance. • The nonlinear dynamical behaviors of the system are studied in detail. - Abstract: This article pays attention to the mathematical modeling of a hydro-turbine governing system in the process of load rejection transient. As a pioneer work, the nonlinear dynamic transfer coefficients are introduced in a penstock system. Considering a generator system, a turbine system and a governor system, we present a novel nonlinear dynamical model of a hydro-turbine governing system. Fortunately, for the unchanged of PID parameters, we acquire the stable regions of the governing system in the process of load rejection transient by numerical simulations. Moreover, the nonlinear dynamic behaviors of the governing system are illustrated by bifurcation diagrams, Poincare maps, time waveforms and phase orbits. More importantly, these methods and analytic results will present theoretical groundwork for allowing a hydropower station in the process of load rejection transient

  4. Chemical heat pump and chemical energy storage system

    Science.gov (United States)

    Clark, Edward C.; Huxtable, Douglas D.

    1985-08-06

    A chemical heat pump and storage system employs sulfuric acid and water. In one form, the system includes a generator and condenser, an evaporator and absorber, aqueous acid solution storage and water storage. During a charging cycle, heat is provided to the generator from a heat source to concentrate the acid solution while heat is removed from the condenser to condense the water vapor produced in the generator. Water is then stored in the storage tank. Heat is thus stored in the form of chemical energy in the concentrated acid. The heat removed from the water vapor can be supplied to a heat load of proper temperature or can be rejected. During a discharge cycle, water in the evaporator is supplied with heat to generate water vapor, which is transmitted to the absorber where it is condensed and absorbed into the concentrated acid. Both heats of dilution and condensation of water are removed from the thus diluted acid. During the discharge cycle the system functions as a heat pump in which heat is added to the system at a low temperature and removed from the system at a high temperature. The diluted acid is stored in an acid storage tank or is routed directly to the generator for reconcentration. The generator, condenser, evaporator, and absorber all are operated under pressure conditions specified by the desired temperature levels for a given application. The storage tanks, however, can be maintained at or near ambient pressure conditions. In another form, the heat pump system is employed to provide usable heat from waste process heat by upgrading the temperature of the waste heat.

  5. Floor heating systems

    Energy Technology Data Exchange (ETDEWEB)

    Radtke, U

    1984-02-01

    The question of whether PPC- and VPE-floor heating pipes can endure damage when incompletely imbedded in the floor finish is investigated in an experimental setup. An expansion of the pipe, caused by a temperature increase from 20/sup 0/C to 50/sup 0/C was measured and considered too small to deduce the degree of danger from the damage.

  6. Ground Source Heat Pump in Heating System with Electronics Monitoring

    Directory of Open Access Journals (Sweden)

    NEAMŢU Ovidiu

    2013-10-01

    Full Text Available The monitoring system is implemented for a ground coupled heat pump in heating/ system. The borehole heat exchangers – which are 150 m long - are filled with a mixture of water and ethilene glycol calledbrine. Metering and monitoring energy consumption is achieved for: heat pump, circulation pumps, additional electrical heating, hot air ventilation systems, control systems with sensors: analog and smart sensors. Instantaneous values are stored in a local computer.

  7. PID Based on Attractive Ellipsoid Method for Dynamic Uncertain and External Disturbances Rejection in Mechanical Systems

    Directory of Open Access Journals (Sweden)

    Jesus Patricio Ordaz Oliver

    2015-01-01

    Full Text Available This paper presents a stability analysis for LNDS (Lagrangian nonlinear dynamical systems with dynamic uncertain using a PID controller with external disturbances rejection based on attractive ellipsoid methods, since the PID-CT (proportional integral derivative computed torque compensator has been used for the nonlinear trajectory tracking of an LNDS, when there are external perturbations and system uncertainties. The global system convergence of the trivial solution has not been proved. In this sense, we propose an approach to find the gains of the nonlinear PID-CT controller to guarantee the boundedness of the trivial solution by means of the concept of the UUB (uniform-ultimately bounded stability. In order to show the effectiveness of the methodology proposed, we applied it in a real 2-DoF robot system.

  8. Pulsating Heat Pipes, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — An advanced heat transport technology is presented that can enable space nuclear power systems to transfer reactor heat, convert heat into electricity, reject waste...

  9. Boise geothermal district heating system

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, P.J.

    1985-10-01

    This document describes the Boise geothermal district heating project from preliminary feasibility studies completed in 1979 to a fully operational system by 1983. The report includes information about the two local governments that participated in the project - the City of Boise, Idaho and the Boise Warm Springs Water District. It also discusses the federal funding sources; the financial studies; the feasibility studies conducted; the general system planning and design; design of detailed system components; the legal issues involved in production; geological analysis of the resource area; distribution and disposal; the program to market system services; and the methods of retrofitting buildings to use geothermal hot water for space heating. Technically this report describes the Boise City district heating system based on 170/sup 0/F water, a 4000 gpm production system, a 41,000 foot pipeline system, and system economies. Comparable data are also provided for the Boise Warm Springs Water District. 62 figs., 31 tabs.

  10. Heat pipe heat exchangers in heat recovery systems

    Energy Technology Data Exchange (ETDEWEB)

    Stulc, P; Vasiliev, L L; Kiseljev, V G; Matvejev, Ju N

    1985-01-01

    The results of combined research and development activities of the National Research Institute for Machine Design, Prague, C.S.S.R. and the Institute for Heat and Mass Transfer, Minsk, U.S.S.R. concerning intensification heat pipes used in heat pipe heat exchangers are presented. This sort of research has been occasioned by increased interest in heat power economy trying to utilise waste heat produced by various technological processes. The developed heat pipes are deployed in construction of air-air, gas-air or gas-gas heat recovery exchangers in the field of air-engineering and air-conditioning. (author).

  11. A Linear Active Disturbance Rejection Control for a Ball and Rigid Triangle System

    Directory of Open Access Journals (Sweden)

    Carlos Aguilar-Ibanez

    2016-01-01

    Full Text Available This paper proposes an application of linear flatness control along with active disturbance rejection control (ADRC for the local stabilization and trajectory tracking problems in the underactuated ball and rigid triangle system. To this end, an observer-based linear controller of the ADRC type is designed based on the flat tangent linearization of the system around its corresponding unstable equilibrium rest position. It was accomplished through two decoupled linear extended observers and a single linear output feedback controller, with disturbance cancelation features. The controller guarantees locally exponentially asymptotic stability for the stabilization problem and practical local stability in the solution of the tracking error. An advantage of combining the flatness and the ADRC methods is that it possible to perform online estimates and cancels the undesirable effects of the higher-order nonlinearities discarded by the linearization approximation. Simulation indicates that the proposed controller behaves remarkably well, having an acceptable domain of attraction.

  12. Megawatt Class Nuclear Space Power Systems (MCNSPS) conceptual design and evaluation report. Volume 2, technologies 1: Reactors, heat transport, integration issues

    Science.gov (United States)

    Wetch, J. R.

    1988-01-01

    The objectives of the Megawatt Class Nuclear Space Power System (MCNSPS) study are summarized and candidate systems and subsystems are described. Particular emphasis is given to the heat rejection system and the space reactor subsystem.

  13. Heat recovery system series arrangements

    Science.gov (United States)

    Kauffman, Justin P.; Welch, Andrew M.; Dawson, Gregory R.; Minor, Eric N.

    2017-11-14

    The present disclosure is directed to heat recovery systems that employ two or more organic Rankine cycle (ORC) units disposed in series. According to certain embodiments, each ORC unit includes an evaporator that heats an organic working fluid, a turbine generator set that expands the working fluid to generate electricity, a condenser that cools the working fluid, and a pump that returns the working fluid to the evaporator. The heating fluid is directed through each evaporator to heat the working fluid circulating within each ORC unit, and the cooling fluid is directed through each condenser to cool the working fluid circulating within each ORC unit. The heating fluid and the cooling fluid flow through the ORC units in series in the same or opposite directions.

  14. Investigations of Heat Recovery in Different Refrigeration System Solutions in Supermarkets. Effsys2 project final report

    Energy Technology Data Exchange (ETDEWEB)

    Sawalha, Same; Chen, Yang

    2010-07-01

    Supermarkets are intensive energy consumers with constantly increasing number of installations. About 50 % of the energy consumption in the supermarket is absorbed by the refrigeration system to cover the cooling demands. Simultaneously, heating is needed in the supermarket where the rejected heat from the refrigeration system is usually higher than the needs. It is an interesting possibility to utilize the rejected heat from the refrigeration system to cover the heating needs in supermarkets. The objective of this project is to investigate the heat recovery performance of the new refrigeration system solutions in supermarket applications. The focus is on environmentally friendly systems with natural working fluids, mainly CO{sub 2} trans-critical systems. The project analyzes the temperature levels and capacities of rejected heat from different system solutions and investigates its matching with the heating needs in supermarkets. Using simulation tools this project also aims at defining the system solution/s which has good energy efficiency for simultaneous cooling and heat recovery.

  15. Errors in the estimation method for the rejection of vibrations in adaptive optics systems

    Science.gov (United States)

    Kania, Dariusz

    2017-06-01

    In recent years the problem of the mechanical vibrations impact in adaptive optics (AO) systems has been renewed. These signals are damped sinusoidal signals and have deleterious effect on the system. One of software solutions to reject the vibrations is an adaptive method called AVC (Adaptive Vibration Cancellation) where the procedure has three steps: estimation of perturbation parameters, estimation of the frequency response of the plant, update the reference signal to reject/minimalize the vibration. In the first step a very important problem is the estimation method. A very accurate and fast (below 10 ms) estimation method of these three parameters has been presented in several publications in recent years. The method is based on using the spectrum interpolation and MSD time windows and it can be used to estimate multifrequency signals. In this paper the estimation method is used in the AVC method to increase the system performance. There are several parameters that affect the accuracy of obtained results, e.g. CiR - number of signal periods in a measurement window, N - number of samples in the FFT procedure, H - time window order, SNR, b - number of ADC bits, γ - damping ratio of the tested signal. Systematic errors increase when N, CiR, H decrease and when γ increases. The value for systematic error is approximately 10^-10 Hz/Hz for N = 2048 and CiR = 0.1. This paper presents equations that can used to estimate maximum systematic errors for given values of H, CiR and N before the start of the estimation process.

  16. Performance of the prism reactor's passive decay heat removal system

    International Nuclear Information System (INIS)

    Magee, P.M.; Hunsbedt, A.

    1989-01-01

    The PRISM modular reactor concept has a totally passive safety-grade decay heat removal system referred to as the Reactor Vessel Auxiliary Cooling System (RVACS) that rejects heat from the reactor by radiation and natural convection of air. The system is inherently reliable and is not subject to the failure modes commonly associated with active cooling systems. The thermal performance of RVACS exceeds requirements and significant thermal margins exist. RVACS has been shown to perform its function under many postulated accident conditions. The PRISM power plant is equipped with three methods for shutdown: condenser cooling in conjunction with intermediate sodium and steam generator systems, and auxiliary cooling system (ACS) which removes heat from the steam generator by natural convection of air and transport of heat from the core by natural convection in the primary and intermediate systems, and a safety- grade reactor vessel auxiliary cooling system (RVACS) which removes heat passively from the reactor containment vessel by natural convection of air. The combination of one active and two passive systems provides a highly reliable and economical shutdown heat removal system. This paper provides a summary of the RVACS thermal performance for expected operating conditions and postulated accident events. The supporting experimental work, which substantiates the performance predictions, is also summarized

  17. Preventing Rejection

    Science.gov (United States)

    ... After the transplant Preventing rejection Post-transplant medications Types of immunosuppressants Switching immunosuppressants Side effects Other medications Generic and brand name drugs Post-transplant tests Infections and immunity Lifestyle changes Health concerns Back to work or ...

  18. Heat-pipe development for the SPAR space-power system

    International Nuclear Information System (INIS)

    Ranken, W.A.

    1981-01-01

    The SPAR space power system design is based on a high temperature fast spectrum nuclear reactor that furnishes heat to a thermoelectric conversion system to generate an electrical power output of 100 kW/sub (e)/. An important feature of this design is the use of alkali metal heat pipes to provide redundant, reliable, and low-loss heat transfer at high temperature. Three sets of heat pipes are used in the system. These include sodium/molybdenum heat pipes to transfer heat from the reactor core to the conversion system, potassium/niobium heat pipes to couple the conversion system to the radiator in a redundant manner, and potassium/titanium heat pipes to distribute rejected heat throughout the radiator surface. The designs of these units are discussed and fabrication methods and testing results are described. 12 figures

  19. A Decoupling Control Algorithm for Unwinding Tension System Based on Active Disturbance Rejection Control

    Directory of Open Access Journals (Sweden)

    Shanhui Liu

    2013-01-01

    Full Text Available This paper presents a new control methodology based on active disturbance rejection control (ADRC for designing the tension decoupling controller of the unwinding system in a gravure printing machine. The dynamic coupling can be actively estimated and compensated in real time, which makes feedback control an ideal approach to designing the decoupling controller of the unwinding system. This feature is unique to ADRC. In this study, a nonlinear mathematical model is established according to the working principle of the unwinding system. A decoupling model is also constructed to determine the order and decoupling plant of the unwinding system. Based on the order and decoupling plant, an ADRC decoupling control methodology is designed to enhance the tension stability in the unwinding system. The effectiveness and capability of the proposed methodology are verified through simulation and experiments. The results show that the proposed strategy not only realises a decoupling control for the unwinding system but also has an effective antidisturbance capability and is robust.

  20. Geothermal heat-pump systems of heat supply

    International Nuclear Information System (INIS)

    Vasil'ev, G.P.

    2004-01-01

    The data on the multilayer operation of the objects, located in the climatic conditions of the central area of Russia and equipped with the geothermal heat-pumping systems of the heat supply are presented. The results of the analytical studies on evaluating the geothermal heat-pumping systems of the heat supply integration efficiency into the structure of the energy supply system, prevailing in the country, are presented [ru

  1. Heat pump having improved defrost system

    Science.gov (United States)

    Chen, F.C.; Mei, V.C.; Murphy, R.W.

    1998-12-08

    A heat pump system includes, in an operable relationship for transferring heat between an exterior atmosphere and an interior atmosphere via a fluid refrigerant: a compressor; an interior heat exchanger; an exterior heat exchanger; an accumulator; and means for heating the accumulator in order to defrost the exterior heat exchanger. 2 figs.

  2. Vaccine Rejecting Parents' Engagement With Expert Systems That Inform Vaccination Programs.

    Science.gov (United States)

    Attwell, Katie; Leask, Julie; Meyer, Samantha B; Rokkas, Philippa; Ward, Paul

    2017-03-01

    In attempting to provide protection to individuals and communities, childhood immunization has benefits that far outweigh disease risks. However, some parents decide not to immunize their children with some or all vaccines for reasons including lack of trust in governments, health professionals, and vaccine manufacturers. This article employs a theoretical analysis of trust and distrust to explore how twenty-seven parents with a history of vaccine rejection in two Australian cities view the expert systems central to vaccination policy and practice. Our data show how perceptions of the profit motive generate distrust in the expert systems pertaining to vaccination. Our participants perceived that pharmaceutical companies had a pernicious influence over the systems driving vaccination: research, health professionals, and government. Accordingly, they saw vaccine recommendations in conflict with the interests of their child and "the system" underscored by malign intent, even if individual representatives of this system were not equally tainted. This perspective was common to parents who declined all vaccines and those who accepted some. We regard the differences between these parents-and indeed the differences between vaccine decliners and those whose Western medical epistemology informs reflexive trust-as arising from the internalization of countering views, which facilitates nuance.

  3. Heat Pumps in CHP Systems

    DEFF Research Database (Denmark)

    Ommen, Torben Schmidt

    that three configurations are particular advantageous, whereas the two remaining configurations result in system performance close to or below what may be expected from an electric heater. One of the three advantageous configurations is required to be positioned at the location of the heat demand, whereas...... the two remaining can be located at positions with availability of high temperature sources by utilising the DH network to distribute the heat. A large amount of operational and economic constraints limit the applicability of HPs operated with natural working fluids, which may be the only feasible choice...... representation allows infeasible production. Using MIP or NLP optimisation, the number of operation hours and the total production of heat from HPs are significantly increased, as the HPs may be used to shave the load patterns of CHP units in significantly constrained energy systems. A MIP energy system model...

  4. Combined feedforward and model-assisted active disturbance rejection control for non-minimum phase system.

    Science.gov (United States)

    Sun, Li; Li, Donghai; Gao, Zhiqiang; Yang, Zhao; Zhao, Shen

    2016-09-01

    Control of the non-minimum phase (NMP) system is challenging, especially in the presence of modelling uncertainties and external disturbances. To this end, this paper presents a combined feedforward and model-assisted Active Disturbance Rejection Control (MADRC) strategy. Based on the nominal model, the feedforward controller is used to produce a tracking performance that has minimum settling time subject to a prescribed undershoot constraint. On the other hand, the unknown disturbances and uncertain dynamics beyond the nominal model are compensated by MADRC. Since the conventional Extended State Observer (ESO) is not suitable for the NMP system, a model-assisted ESO (MESO) is proposed based on the nominal observable canonical form. The convergence of MESO is proved in time domain. The stability, steady-state characteristics and robustness of the closed-loop system are analyzed in frequency domain. The proposed strategy has only one tuning parameter, i.e., the bandwidth of MESO, which can be readily determined with a prescribed robustness level. Some comparative examples are given to show the efficacy of the proposed method. This paper depicts a promising prospect of the model-assisted ADRC in dealing with complex systems. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  5. Asymptotic tracking and disturbance rejection of the blood glucose regulation system.

    Science.gov (United States)

    Ashley, Brandon; Liu, Weijiu

    2017-07-01

    Type 1 diabetes patients need external insulin to maintain blood glucose within a narrow range from 65 to 108 mg/dl (3.6 to 6.0 mmol/l). A mathematical model for the blood glucose regulation is required for integrating a glucose monitoring system into insulin pump technology to form a closed-loop insulin delivery system on the feedback of the blood glucose, the so-called "artificial pancreas". The objective of this paper is to treat the exogenous glucose from food as a glucose disturbance and then develop a closed-loop feedback and feedforward control system for the blood glucose regulation system subject to the exogenous glucose disturbance. For this, a mathematical model for the glucose disturbance is proposed on the basis of experimental data, and then incorporated into an existing blood glucose regulation model. Because all the eigenvalues of the disturbance model have zero real parts, the center manifold theory is used to establish blood glucose regulator equations. We then use their solutions to synthesize a required feedback and feedforward controller to reject the disturbance and asymptotically track a constant glucose reference of 90  mg/dl. Since the regulator equations are nonlinear partial differential equations and usually impossible to solve analytically, a linear approximation solution is obtained. Our numerical simulations show that, under the linear approximate feedback and feedforward controller, the blood glucose asymptotically tracks its desired level of 90 mg/dl approximately. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Heat pumping in nanomechanical systems.

    Science.gov (United States)

    Chamon, Claudio; Mucciolo, Eduardo R; Arrachea, Liliana; Capaz, Rodrigo B

    2011-04-01

    We propose using a phonon pumping mechanism to transfer heat from a cold to a hot body using a propagating modulation of the medium connecting the two bodies. This phonon pump can cool nanomechanical systems without the need for active feedback. We compute the lowest temperature that this refrigerator can achieve. © 2011 American Physical Society

  7. Heat pumping in nanomechanical systems

    OpenAIRE

    Chamon, Claudio; Mucciolo, Eduardo R.; Arrachea, Liliana; Capaz, Rodrigo B.

    2010-01-01

    We propose using a phonon pumping mechanism to transfer heat from a cold to a hot body using a propagating modulation of the medium connecting the two bodies. This phonon pump can cool nanomechanical systems without the need for active feedback. We compute the lowest temperature that this refrigerator can achieve.

  8. New waste heat district heating system with combined heat and power based on absorption heat exchange cycle in China

    International Nuclear Information System (INIS)

    Sun Fangtian; Fu Lin; Zhang Shigang; Sun Jian

    2012-01-01

    A new waste heat district heating system with combined heat and power based on absorption heat exchange cycle (DHAC) was developed to increase the heating capacity of combined heat and power (CHP) through waste heat recovery, and enhance heat transmission capacity of the existing primary side district heating network through decreasing return water temperature by new type absorption heat exchanger (AHE). The DHAC system and a conventional district heating system based on CHP (CDH) were analyzed in terms of both thermodynamics and economics. Compared to CDH, the DHAC increased heating capacity by 31% and increased heat transmission capacity of the existing primary side district heating network by 75%. The results showed that the exergetic efficiency of DHAC was 10.41% higher and the product exergy monetary cost was 36.6¥/GJ less than a CHD. DHAC is an effective way to increase thermal utilization factor of CHP, and to reduce district heating cost. - Highlights: ► Absorption heat pumps are used to recover waste heat in CHP. ► Absorption heat exchanger can reduce exergy loss in the heat transfer process. ► New waste heat heating system (DHAC) can increase heating capacity of CHP by 31%. ► DHAC can enhance heat transmission capacity of the primary pipe network by 75%. ► DHAC system has the higher exergetic efficiency and the better economic benefit.

  9. Heat exchanges in coarsening systems

    Energy Technology Data Exchange (ETDEWEB)

    Corberi, Federico [Dipartimento di Fisica ' E R Caianiello' , Università di Salerno, via Ponte don Melillo, 84084 Fisciano (Italy); Gonnella, Giuseppe; Piscitelli, Antonio [Dipartimento di Fisica, Università di Bari and Istituto Nazionale di Fisica Nucleare, Sezione di Bari, via Amendola 173, 70126 Bari (Italy)

    2011-10-15

    This paper is a contribution to the understanding of the thermal properties of ageing systems where statistically independent degrees of freedom with greatly separated time scales are expected to coexist. Focusing on the prototypical case of quenched ferromagnets, where fast and slow modes can be respectively associated with fluctuations in the bulk of the coarsening domains and in their interfaces, we perform a set of numerical experiments specifically designed to compute the heat exchanges between different degrees of freedom. Our studies promote a scenario with fast modes acting as an equilibrium reservoir to which interfaces may release heat through a mechanism that allows fast and slow degrees to maintain their statistical properties independently.

  10. TPX heating and cooling system

    International Nuclear Information System (INIS)

    Kungl, D.J.; Knutson, D.S.; Costello, J.; Stoenescu, S.; Yemin, L.

    1995-01-01

    TPX, while having primarily super-conducting coils that do not require water cooling, still has very significant water cooling requirements for the plasma heating systems, vacuum vessel, plasma facing components, diagnostics, and ancillary equipment. This is accentuated by the 1000-second pulse requirement. Two major design changes, which have significantly affected the TPX Heating and Cooling System, have been made since the conceptual design review in March of 1993. This paper will discuss these changes and review the current status of the conceptual design. The first change involves replacing the vacuum vessel neutron shielding configuration of lead/glass composite tile by a much simpler and more reliable borated water shield. The second change reduces the operating temperature of the vacuum vessel from 150 C to ≥50 C. With this temperature reduction, all in-vessel components and the vessel will be supplied by coolant at a common ≥50 C inlet temperature. In all, six different heating and cooling supply requirements (temperature, pressure, water quality) for the various TPX components must be met. This paper will detail these requirements and provide an overview of the Heating and Cooling System design while focusing on the ramifications of the TPX changes described above

  11. Advanced regenerative heat recovery system

    Science.gov (United States)

    Prasad, A.; Jasti, J. K.

    1982-02-01

    A regenerative heat recovery system was designed and fabricated to deliver 1500 scfm preheated air to a maximum temperature of 1600 F. Since this system is operating at 2000 F, the internal parts were designed to be fabricated with ceramic materials. This system is also designed to be adaptable to an internal metallic structure to operate in the range of 1100 to 1500 F. A test facility was designed and fabricated to test this system. The test facility is equipped to impose a pressure differential of up to 27 inches of water column in between preheated air and flue gas lines for checking possible leakage through the seals. The preliminary tests conducted on the advanced regenerative heat recovery system indicate the thermal effectiveness in the range of 60% to 70%. Bench scale studies were conducted on various ceramic and gasket materials to identify the proper material to be used in high temperature applications. A market survey was conducted to identify the application areas for this heat recovery system. A cost/benefit analysis showed a payback period of less than one and a half years.

  12. Biomass universal district heating systems

    Science.gov (United States)

    Soltero, Victor Manuel; Rodríguez-Artacho, Salvador; Velázquez, Ramón; Chacartegui, Ricardo

    2017-11-01

    In mild climate regions Directive 27/2012 EU application for developing sustainable district heating networks in consolidated urban nucleus is a challenge. In Spain most of the municipalities above 5,000 inhabitants have a reliable natural gas network and individual heating systems at homes. In this work a new heating network paradigm is proposed, the biomass universal heating network in rural areas. This model involves all the economic, legal and technical aspects and interactions between the different agents of the systems: provider company, individual and collective end-users and local and regional administration. The continental region in Spain has 588 municipalities with a population above 1,500 inhabitants close to forest biomass with renewable use. In many of these cases the regulation identifies the ownership of the forest resources use. The universal heating networks are a great opportunity for energy saving of 2,000 GWh, avoiding 2.7 million tons of CO2 emissions and with a global annual savings for end users of 61.8 million of euros. The presented model is easily extrapolated to other small municipalities in Europe. The real application of the model is presented for three municipalities in different locations of Spain where Universal Heating Networks are under development. The analysis show the interest of the integrated model for the three cases with different structural agents and relationships between them. The use of sustainable forest resources, extracted and managed by local companies, strengths circular economy in the region with a potential global economic impact above 200 M€.

  13. After-heat removal system

    International Nuclear Information System (INIS)

    Yamamoto, Michiyoshi; Mitani, Shinji.

    1982-01-01

    Purpose: To prevent contamination of suppression pool water and intrusion of corrosion products into a nuclear reactor. Constitution: Upon stop of an after-heat removing system, reactor water contained in pipelines is drained out to a radioactive wastes processing facility at the time the cooling operation mode has been completed. At the same time, water is injected from a pure water supply system to the after-heat removing system to discharge corrosion product and activated materials while cleaning the inside of the pipelines. Then, pure water is held in the pipelines and it is discharged again and replaced with pure water before entering the cooling mode operation. Thereafter, the cooling mode operation upon reactor shutdown is performed. (Yoshino, Y.)

  14. Design manual. [High temperature heat pump for heat recovery system

    Energy Technology Data Exchange (ETDEWEB)

    Burch, T.E.; Chancellor, P.D.; Dyer, D.F.; Maples, G.

    1980-01-01

    The design and performance of a waste heat recovery system which utilizes a high temperature heat pump and which is intended for use in those industries incorporating indirect drying processes are described. It is estimated that use of this heat recovery system in the paper, pulp, and textile industries in the US could save 3.9 x 10/sup 14/ Btu/yr. Information is included on over all and component design for the heat pump system, comparison of prime movers for powering the compressor, control equipment, and system economics. (LCL)

  15. Optical performance of the SO/PHI full disk telescope due to temperature gradients effect on the heat rejection entrance window

    Science.gov (United States)

    Garranzo, D.; Núñez, A.; Zuluaga-Ramírez, P.; Barandiarán, J.; Fernández-Medina, A.; Belenguer, T.; Álvarez-Herrero, A.

    2017-11-01

    The Polarimetric Helioseismic Imager for Solar Orbiter (SO/PHI) is an instrument on board in the Solar Orbiter mission. The Full Disk Telescope (FDT) will have the capability of providing images of the solar disk in all orbital faces with an image quality diffraction-limited. The Heat Rejection Entrance Window (HREW) is the first optical element of the instrument. Its function is to protect the instrument by filtering most of the Solar Spectrum radiation. The HREW consists of two parallel-plane plates made from Suprasil and each surface has a coating with a different function: an UV shield coating, a low pass band filter coating, a high pass band filter coating and an IR shield coating, respectively. The temperature gradient on the HREW during the mission produces a distortion of the transmitted wave-front due to the dependence of the refractive index with the temperature (thermo-optic effect) mainly. The purpose of this work is to determine the capability of the PHI/FDT refocusing system to compensate this distortion. A thermal gradient profile has been considered for each surface of the plates and a thermal-elastic analysis has been done by Finite Element Analysis to determine the deformation of the optical elements. The Optical Path Difference (OPD) between the incident and transmitted wavefronts has been calculated as a function of the ray tracing and the thermo-optic effect on the optical properties of Suprasil (at the work wavelength of PHI) by means of mathematical algorithms based on the 3D Snell Law. The resultant wavefronts have been introduced in the optical design of the FDT to evaluate the performance degradation of the image at the scientific focal plane and to estimate the capability of the PHI refocusing system for maintaining the image quality diffraction-limited. The analysis has been carried out considering two different situations: thermal gradients due to on axis attitude of the instrument and thermal gradients due to 1° off pointing attitude

  16. Feasibility study on novel hybrid ground coupled heat pump system with nocturnal cooling radiator for cooling load dominated buildings

    International Nuclear Information System (INIS)

    Man, Yi; Yang, Hongxing; Spitler, Jeffrey D.; Fang, Zhaohong

    2011-01-01

    Highlights: → Propose a novel HGCHP system with NCR works as supplemental heat rejecter. → Establish the analytical model and computer program of NCR and novel HGCHP system to simulate their operation performance. → Design the novel HGCHP system for a sample building located in Hong Kong. → It is found to be feasible to use NCR serves as supplemental heat rejecter of the novel HGCHP system. → The novel HGCHP system provides a new valuable choice for air conditioning in cooling load dominated buildings. -- Abstract: When the ground coupled heat pump (GCHP) system is utilized for air conditioning in cooling load dominated buildings, the heat rejected into ground will accumulate around the ground heat exchangers (GHE) and results in system performance degradation. A novel hybrid ground coupled heat pump (HGCHP) system with nocturnal cooling radiator (NCR) works as supplemental heat rejecter is proposed in this paper to resolve this problem. The practical analytical model of NCR and novel HGCHP system are established. The computer program based on established model is developed to simulate the system operation performance. The novel HGCHP system is designed and simulated for a sample building located in Hong Kong, and a simple life cycle cost comparisons are carried out between this system and conventional GCHP system. The results indicate that it is feasible to use NCR serves as supplemental heat rejecter of the novel HGCHP system for cooling load dominated buildings even those located in humid subtropical climate areas. This novel HGCHP system provides a new valuable choice for air conditioning in cooling load dominated buildings, and it is especially suitable for buildings with limited surface land areas.

  17. Optimization of the energy resolution and of the radioactive background rejection for ionization-heat detectors equipped with thermometric thin films for the direct WIMPs detection

    International Nuclear Information System (INIS)

    Dolgorouky, Y.W.

    2008-09-01

    The EDELWEISS experiment aims at the direct detection of WIMPs as possible candidates for dark matter. It uses heat-and-ionization detectors that can discriminate these particles from the radioactive background. To date, this method is limited by events with incomplete charge collection that occur just beneath the detectors electrodes. In order to identify and reject these undesirable events, we have developed detectors equipped with thin films used both as thermometers - and hence sensitive to the transient athermal regime - and as electrodes for the charge collection. This thesis focuses on the optimization of such thin films regarding surface events rejection and on the modelling of the physical processes enabling this identification. The optimization must both maximize the fiducial volume and conserve an energy resolution such that the recoil energy threshold is of the order of 30 keV. Our work explores four generations of detectors each of which corresponds to successive evolutions in their conception. In all cases, the electrode-thermometer is an amorphous Anderson insulator NbSi thin film polarized by two interleaved comb-shaped niobium electrodes. In spite of constant progress in the successive detectors performances, the latest generation does not display the performances required for the EDELWEISS II experiment. Our work has shown the difficulty of the transient thermal signal modelling due to the complex contribution of the charge collection. This works has lead to new ideas regarding the detectors configuration, so that the athermal regime can be optimized to enhance both the rejection capability and the resolution. (author)

  18. KSTAR RF heating system development

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, J. G.; Kim, S. K.; Hwang, C. K. (and others)

    2007-10-15

    Design, high-voltage test, and installation of 6 MW ICRF heating system for KSTAR is completed. The antenna demonstrated satisfactory standoff at high voltages up to 41 kV for 300 sec. The result indicates good power handling capabilities of the antenna as high as 10 MW/m2. This power density is equivalent to RF power coupling of 6 MW into a 4 {omega}/m target plasma, and is typical of advanced tokamak heating scenarios. In addition, vacuum feed through, DC break, and liquid stub developed for 300 sec operation are installed, as well as a 2 MW, 30-60MHz transmitter. The transmitter successfully produced output powers of 600 kW continuously, 1.5{approx}1.8 MW for 300 sec, and 2 MW for 100 msec or shorter pulses. A realtime control system based on DSP and EPICS is developed, installed, and tested on the ICRF system. Initial results from feasibility study indicate that the present antenna and the transmission lines could allow load-resilient operation on KSTAR. Until the KSTAR tokamak start to produce plasmas in 2008, however, hands-on operational experiences are obtained from participating in ICRF heating experiments at ASDEX and DIII-D tokamaks arranged through international cooperation.

  19. IEA Annex 26: Advanced Supermarket Refrigeration/Heat Recovery Systems

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, VAN

    2003-05-19

    has its own refrigeration unit; low-charge direct expansion--similar to conventional multiplex refrigeration systems but with improved controls to limit charge. Means to integrate store HVAC systems for space heating/cooling with the refrigeration system have been investigated as well. One approach is to use heat pumps to recover refrigeration waste heat and raise it to a sufficient level to provide for store heating needs. Another involves use of combined heating and power (CHP) or combined cooling, heating, and power (CCHP) systems to integrate the refrigeration, HVAC, and power services in stores. Other methods including direct recovery of refrigeration reject heat for space and water heating have also been examined.

  20. Solar/electric heating systems for the future energy system

    DEFF Research Database (Denmark)

    Furbo, Simon; Dannemand, Mark; Perers, Bengt

    elements/heat pump, advanced heat storage tanks and advanced control systems. Heat is produced by solar collectors in sunny periods and by electrical heating elements/heat pump. The electrical heating elements/heat pump will be in operation in periods where the heat demand cannot be covered by solar energy....... The aim is to use the auxiliary heating units when the electricity price is low, e.g. due to large electricity production by wind turbines. The unit is equipped with an advanced control system where the control of the auxiliary heating is based on forecasts of the electricity price, the heat demand...

  1. Heat pumps in combined heat and power systems

    DEFF Research Database (Denmark)

    Ommen, Torben Schmidt; Markussen, Wiebke Brix; Elmegaard, Brian

    2014-01-01

    Heat pumps have previously been proposed as a way to integrate higher amounts of renewable energy in DH (district heating) networks by integrating, e.g., wind power. The paper identifies and compares five generic configurations of heat pumps in DH systems. The operational performance...... of the considered cases. When considering a case where the heat pump is located at a CHP (combined heat and power) plant, a configuration that increases the DH return temperature proposes the lowest operation cost, as low as 12 EUR MWh-1 for a 90 °C e 40 °C DH network. Considering the volumetric heating capacity......, a third configuration is superior in all cases. Finally, the three most promising heat pump configurations are integrated in a modified PQ-diagram of the CHP plant. Each show individual advantages, and for two, also disadvantages in order to achieve flexible operation....

  2. Compact seasonal PCM heat storage for solar heating systems

    DEFF Research Database (Denmark)

    Dannemand, Mark

    Space heating of buildings and preparation of domestic hot water accounts for a large part of the society’s energy consumption. Solar radiation is an abundant and renewable energy source which can be harvested by solar collectors and used to cover heating demands in the built environment....... The seasonal availability of solar energy does however not match with the heating demands in buildings which typically are large in winter periods when limited solar energy is available. Heat can be stored over a few days in water stores but continuous heat losses limits the storage periods. The possibility...... of storing heat from summer where solar energy is widely available to winter periods where the heating demands are large, allows for implementing more renewable energy in our energy system. The phase change material (PCM) sodium acetate trihydrate (SAT) melts at 58 °C. The melting process requires...

  3. Cooling Characteristics of the V-1650-7 Engine. II - Effect of Coolant Conditions on Cylinder Temperatures and Heat Rejection at Several Engine Powers

    Science.gov (United States)

    Povolny, John H.; Bogdan, Louis J.; Chelko, Louis J.

    1947-01-01

    An investigation has been conducted on a V-1650-7 engine to determine the cylinder temperatures and the coolant and oil heat rejections over a range of coolant flows (50 to 200 gal/min) and oil inlet temperatures (160 to 2150 F) for two values of coolant outlet temperature (250 deg and 275 F) at each of four power conditions ranging from approximately 1100 to 2000 brake horsepower. Data were obtained for several values of block-outlet pressure at each of the two coolant outlet temperatures. A mixture of 30 percent by volume of ethylene glycol and 70-percent water was used as the coolant. The effect of varying coolant flow, coolant outlet temperature, and coolant outlet pressure over the ranges investigated on cylinder-head temperatures was small (0 deg to 25 F) whereas the effect of increasing the engine power condition from ll00 to 2000 brake horsepower was large (maximum head-temperature increase, 110 F).

  4. Advances in heat pump systems: A review

    International Nuclear Information System (INIS)

    Chua, K.J.; Chou, S.K.; Yang, W.M.

    2010-01-01

    Heat pump systems offer economical alternatives of recovering heat from different sources for use in various industrial, commercial and residential applications. As the cost of energy continues to rise, it becomes imperative to save energy and improve overall energy efficiency. In this light, the heat pump becomes a key component in an energy recovery system with great potential for energy saving. Improving heat pump performance, reliability, and its environmental impact has been an ongoing concern. Recent progresses in heat pump systems have centred upon advanced cycle designs for both heat- and work-actuated systems, improved cycle components (including choice of working fluid), and exploiting utilisation in a wider range of applications. For the heat pump to be an economical proposition, continuous efforts need to be devoted to improving its performance and reliability while discovering novel applications. Some recent research efforts have markedly improved the energy efficiency of heat pump. For example, the incorporation of a heat-driven ejector to the heat pump has improved system efficiency by more than 20%. Additionally, the development of better compressor technology has the potential to reduce energy consumption of heat pump systems by as much as 80%. The evolution of new hybrid systems has also enabled the heat pump to perform efficiently with wider applications. For example, incorporating a desiccant to a heat pump cycle allowed better humidity and temperature controls with achievable COP as high as 6. This review paper provides an update on recent developments in heat pump systems, and is intended to be a 'one-stop' archive of known practical heat pump solutions. The paper, broadly divided into three main sections, begins with a review of the various methods of enhancing the performance of heat pumps. This is followed by a review of the major hybrid heat pump systems suitable for application with various heat sources. Lastly, the paper presents novel

  5. Analysis of combustion performance and emission of extended expansion cycle and iEGR for low heat rejection turbocharged direct injection diesel engines

    Directory of Open Access Journals (Sweden)

    Shabir Mohd F.

    2014-01-01

    Full Text Available Increasing thermal efficiency in diesel engines through low heat rejection concept is a feasible technique. In LHR engines the high heat evolution is achieved by insulating the combustion chamber surfaces and coolant side of the cylinder with partially stabilized zirconia of 0.5 mm thickness and the effective utilization of this heat depend on the engine design and operating conditions. To make the LHR engines more suitable for automobile and stationary applications, the extended expansion was introduced by modifying the inlet cam for late closing of intake valve through Miller’s cycle for extended expansion. Through the extended expansion concept the actual work done increases, exhaust blow-down loss reduced and the thermal efficiency of the LHR engine is improved. In LHR engines, the formation of nitric oxide is more, to reduce the nitric oxide emission, the internal EGR is incorporated using modified exhaust cam with secondary lobe. Modifications of gas exchange with internal EGR resulted in decrease in nitric oxide emissions. In this work, the parametric studies were carried out both theoretically and experimentally. The combustion, performance and emission parameters were studied and were found to be satisfactory.

  6. Combined system of solar heating and cooling using heat pump

    International Nuclear Information System (INIS)

    Zakhidov, R.A.; Anarbaev, A.I.

    2014-01-01

    The heating and cooling systems of apartment buildings based on combined solar heat-pump equipment has been considered and the procedure of calculating its parameters has been worked out. A technical-economic analysis has been performed and compared with the boiler-setting version. (author)

  7. Fuzzy comprehensive evaluation of district heating systems

    International Nuclear Information System (INIS)

    Wei Bing; Wang Songling; Li Li

    2010-01-01

    Selecting the optimal type of district heating (DH) system is of great importance because different heating systems have different levels of efficiency, which will impact the system economics, environment and energy use. In this study, seven DH systems were analysed and evaluated by the fuzzy comprehensive evaluation method. The dimensionless number-goodness was introduced into the calculation, the economics, environment and energy technology factors were considered synthetically, and the final goodness values were obtained. The results show that if only one of the economics, environment or energy technology factors are considered, different heating systems have different goodness values. When all three factors were taken into account, the final ranking of goodness values was: combined heating and power>gas-fired boiler>water-source heat pump>coal-fired boiler>ground-source heat pump>solar-energy heat pump>oil-fired boiler. The combined heating and power system is the best choice from all seven systems; the gas-fired boiler system is the best of the three boiler systems for heating purpose; and the water-source heat pump is the best of the three heat pump systems for heating and cooling.

  8. Variable Structure Disturbance Rejection Control for Nonlinear Uncertain Systems with State and Control Delays via Optimal Sliding Mode Surface Approach

    Directory of Open Access Journals (Sweden)

    Jing Lei

    2013-01-01

    Full Text Available The paper considers the problem of variable structure control for nonlinear systems with uncertainty and time delays under persistent disturbance by using the optimal sliding mode surface approach. Through functional transformation, the original time-delay system is transformed into a delay-free one. The approximating sequence method is applied to solve the nonlinear optimal sliding mode surface problem which is reduced to a linear two-point boundary value problem of approximating sequences. The optimal sliding mode surface is obtained from the convergent solutions by solving a Riccati equation, a Sylvester equation, and the state and adjoint vector differential equations of approximating sequences. Then, the variable structure disturbance rejection control is presented by adopting an exponential trending law, where the state and control memory terms are designed to compensate the state and control delays, a feedforward control term is designed to reject the disturbance, and an adjoint compensator is designed to compensate the effects generated by the nonlinearity and the uncertainty. Furthermore, an observer is constructed to make the feedforward term physically realizable, and thus the dynamical observer-based dynamical variable structure disturbance rejection control law is produced. Finally, simulations are demonstrated to verify the effectiveness of the presented controller and the simplicity of the proposed approach.

  9. Correlation of cylinder-head temperatures and coolant heat rejections of a multicylinder, liquid-cooled engine of 1710-cubic-inch displacement

    Science.gov (United States)

    Lundin, Bruce T; Povolny, John H; Chelko, Louis J

    1949-01-01

    Data obtained from an extensive investigation of the cooling characteristics of four multicylinder, liquid-cooled engines have been analyzed and a correlation of both the cylinder-head temperatures and the coolant heat rejections with the primary engine and coolant variables was obtained. The method of correlation was previously developed by the NACA from an analysis of the cooling processes involved in a liquid-cooled-engine cylinder and is based on the theory of nonboiling, forced-convection heat transfer. The data correlated included engine power outputs from 275 to 1860 brake horsepower; coolant flows from 50 to 320 gallons per minute; coolants varying in composition from 100 percent water to 97 percent ethylene glycol and 3 percent water; and ranges of engine speed, manifold pressure, carburetor-air temperature, fuel-air ratio, exhaust-gas pressure, ignition timing, and coolant temperature. The effect on engine cooling of scale formation on the coolant passages of the engine and of boiling of the coolant under various operating conditions is also discussed.

  10. Evaluation of a ground thermal energy storage system for heating and cooling of an existing dwelling

    Energy Technology Data Exchange (ETDEWEB)

    Leong, W.H; Lawrence, C.J. [Ryerson Polytechnic Univ., Toronto, ON (Canada). Dept. of Mechanical and Industrial Engineering; Tarnawski, V.R. [Saint Mary' s Univ., Halifax, NS (Canada). Dept. of Engineering; Rosen, M.A. [University of Ontario Institute of Technology, Oshawa, ON (Canada). Faculty of Engineering and Applied Science

    2006-07-01

    A ground-coupled heat pump (GCHP) system for heating and cooling a residential house in Ontario was simulated. The system uses the surface ground as a thermal energy storage for storing thermal energy in the summer for later use in the winter. In the summer, the ground receives both solar energy and the heat rejected by the system during cooling operation. The relationship between a heat pump and the ground is a ground heat exchanger (GHE). This presentation described the vertical and horizontal configurations of the GHE, which are the 2 basic configurations. It also described the modelling and analysis of the GCHP system. The modelling involved both simplified and comprehensive models. The simplified models of heating and cooling loads of a building, a heat pump unit, and heat transfer at the ground heat exchanger provided a direct link to the comprehensive model of heat and moisture transfer in the ground, based on the finite element method. This combination of models provided an accurate and practical simulation tool for GCHP systems. The energy analysis was used to evaluate the performance of the system. The use of a horizontal ground heat exchanging pipe and the impact of heat deposition and extraction through it in the ground were also studied with reference to the length of pipe, depth of pipe and layout of the pipe loop. The objective of the analysis was to find ways to optimize the thermal performance of the system and environmental sustainability of the ground. 14 refs., 3 tabs., 5 figs.

  11. Microbial Heat Recovery Cell (MHRC) System Concept

    Energy Technology Data Exchange (ETDEWEB)

    None

    2017-09-01

    This factsheet describes a project that aimed to develop a microbial heat recovery cell (MHRC) system that combines a microbial reverse electrodialysis technology with waste heat recovery to convert industrial effluents into electricity and hydrogen.

  12. Input Shaping enhanced Active Disturbance Rejection Control for a twin rotor multi-input multi-output system (TRMS).

    Science.gov (United States)

    Yang, Xiaoyan; Cui, Jianwei; Lao, Dazhong; Li, Donghai; Chen, Junhui

    2016-05-01

    In this paper, a composite control based on Active Disturbance Rejection Control (ADRC) and Input Shaping is presented for TRMS with two degrees of freedom (DOF). The control tasks consist of accurately tracking desired trajectories and obtaining disturbance rejection in both horizontal and vertical planes. Due to un-measurable states as well as uncertainties stemming from modeling uncertainty and unknown disturbance torques, ADRC is employed, and feed-forward Input Shaping is used to improve the dynamical response. In the proposed approach, because the coupling effects are maintained in controller derivation, there is no requirement to decouple the TRMS into horizontal and vertical subsystems, which is usually performed in the literature. Finally, the proposed method is implemented on the TRMS platform, and the results are compared with those of PID and ADRC in a similar structure. The experimental results demonstrate the effectiveness of the proposed method. The operation of the controller allows for an excellent set-point tracking behavior and disturbance rejection with system nonlinearity and complex coupling conditions. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Monitoring of Danish marketed solar heating systems

    International Nuclear Information System (INIS)

    Ellehauge, K.

    1993-01-01

    The paper describes the monitoring of manufactured solar heating systems for domestic hot water combined with space heating and systems for domestic hot water only. Results from the monitoring of 5 marketed combined systems for domestic hot water and space heating are presented. The systems situated at one family houses at different sites in Denmark have been monitored from January/February 1992. For the detailed monitoring of manufactured systems only for domestic hot water a test facility for simultaneous monitoring of 5 solar heating systems has been established at the Thermal Insulation Laboratory. (au)

  14. Heat pipes as perspective base elements of heat recovery in heat supply and ventilating systems

    Directory of Open Access Journals (Sweden)

    Matveev Andrey

    2017-01-01

    Full Text Available Thermotechnical characteristics of heat pipes are considered as high-efficient heat-transfer devices, which can provide energy-saving technologies for heat supply and ventilating systems and for different branches of industry. Thermotechnical and working (”performance capability” characteristics of heat pipes are investigated. By ”performance capability” of heat pipes and heat-transfer devices on heat pipes we mean the system state, where it can perform set functions and keep parameter values (thermal power, conductivity, thermal resistance, heat-transfer coefficient, temperature level and differential, etc. within the regulations of standardized specifications. The article presents theoretical and experimental methods of «gaslock» length determination on noncondensable gases during long-lasting tests of ammonia heat pipes made of aluminum shape АS – КRА 7.5 – R1 (alloy АD – 31. The paper gives results of research of thermotechnical characteristics of heat pipes in horizontal and vertical states (separate and as a set part while using different systems of thermal insulation. The obtained results of thermotechnical and resource tests show the advantages of ammonia heat pipes as basic elements for heat exchanger design in heating and ventilation systems.

  15. Comparative Study of Performance and Combustion Characteristics of Conventional and Low Heat Rejection (Mullite Coated) Diesel Engines

    Science.gov (United States)

    Patond, S. B.; Chaple, S. A.; Shrirao, P. N.; Shaikh, P. I.

    2013-06-01

    Tests were performed on a single cylinder, four stroke, direct injection, diesel engine whose piston crown, cylinder head and valves were coated with a 0.5 mm thickness of 3Al2O3·2SiO2 (mullite) (Al2O3 = 60%, SiO2 = 40%) over a 150 μm thickness of NiCrAlY bond coat. The working conditions for the conventional engine (without coating) and LHR (mullite coated) engine were kept exactly same to ensure a comparison between the two configurations of the engine. This paper is intended to emphasis on performance and combustion characteristics of conventional and LHR (Mullite coated) diesel engines under identical conditions. Tests were carried out at same operational constraints i.e. air-fuel ratio and engine speed conditions for both conventional engine (without coating) and LHR (mullite coated) engines. The results showed that, there was as much as 1.8 % increasing on brake power for LHR (mullite coated) engine compared to conventional engine (without coating) at full load The average decrease in brake specific fuel consumption in the LHR engine compared with the conventional engine was 1.76 % for full engine load. However, there was increasing on cylinder gas pressure and net heat release rate for LHR engine compared to conventional engine. Also the results revealed that, there was as much as 22% increasing on exhaust gas temperature for LHR engine compared to conventional engine at full engine load.

  16. Comparative Study of Performance and Combustion Characteristics of Conventional and Low Heat Rejection (Mullite Coated) Diesel Engines

    International Nuclear Information System (INIS)

    Patond, S B; Chaple, S A; Shrirao, P N; Shaikh, P I

    2013-01-01

    Tests were performed on a single cylinder, four stroke, direct injection, diesel engine whose piston crown, cylinder head and valves were coated with a 0.5 mm thickness of 3Al 2 O 3 ·2SiO 2 (mullite) (Al 2 O 3 = 60%, SiO 2 = 40%) over a 150 μm thickness of NiCrAlY bond coat. The working conditions for the conventional engine (without coating) and LHR (mullite coated) engine were kept exactly same to ensure a comparison between the two configurations of the engine. This paper is intended to emphasis on performance and combustion characteristics of conventional and LHR (Mullite coated) diesel engines under identical conditions. Tests were carried out at same operational constraints i.e. air-fuel ratio and engine speed conditions for both conventional engine (without coating) and LHR (mullite coated) engines. The results showed that, there was as much as 1.8 % increasing on brake power for LHR (mullite coated) engine compared to conventional engine (without coating) at full load The average decrease in brake specific fuel consumption in the LHR engine compared with the conventional engine was 1.76 % for full engine load. However, there was increasing on cylinder gas pressure and net heat release rate for LHR engine compared to conventional engine. Also the results revealed that, there was as much as 22% increasing on exhaust gas temperature for LHR engine compared to conventional engine at full engine load.

  17. Hybrid heat recovery - flat plate Stirling engine system

    International Nuclear Information System (INIS)

    Bogdanizh, A.M.; Budin, R.; Sutlovizh, I.

    2000-01-01

    In this paper, the possibility of process condensate heat recovery for boiler water preheating as well as for combined heat and power production for chosen process in textile industry has been investigated. The garment industry requires low pressure process steam or hot water for which production expensive fossil fuel should be used. Fuel usage can be reduced by various energy conservation methods. During the process a great quantity of hot condensate or waste hot water is rejected in the sewage system. To reduce heat wastes and improve technological process this condensate could be returned to the boiler for feed water preheating. When 60% condensate is returned to the steam generator about 8 % natural gas is saved. The rest of the condensate should be used for driving low temperature flat plate Stirling motor the advantage of the flat plate Stirling engine is ability to work at low temperatures. This engine produces electrical energy which can put in motion an electrogenerator in the same plant. While Stirling engine can be used electrical power and economical effect could be much greater using such a hybrid system the process waste heat is not only converted into useful work but at the same time thermal pollution is greatly diminished. (Author)

  18. Residential CO{sub 2} heat pump system for combined space heating and hot water heating

    Energy Technology Data Exchange (ETDEWEB)

    Stene, Joern

    2004-02-01

    Carbon dioxide (CO{sub 2}, R-744) has been identified as a promising alternative to conventional working fluids in a number of applications due to its favourable environmental and thermophysical properties. Previous work on residential CO{sub 2} heat pumps has been dealing with systems for either space heating or hot water heating, and it was therefore considered interesting to carry out a theoretical and experimental study of residential CO{sub 2} heat pump systems for combined space heating and hot water heating - o-called integrated CO{sub 2} heat pump systems. The scope of this thesis is limited to brine-to-water and water-to-water heat pumps connected to low-temperature hydronic space heating systems. The main conclusions are: (1) Under certain conditions residential CO{sub 2} heat pump systems for combined space heating and hot water heating may achieve the same or higher seasonal performance factor (SPF) than the most energy efficient state-of-the-art brine-to-water heat pumps. (2) In contrary to conventional heat pump systems for combined space heating and DHW heating, the integrated CO{sub 2} heat pump system achieves the highest COP in the combined heating mode and the DHW heating mode, and the lowest COP in the space heating mode. Hence, the larger the annual DHW heating demand, the higher the SPF of the integrated CO{sub 2} heat pump system. (3) The lower the return temperature in the space heating system and the lower the DHW storage temperature, the higher the COP of the integrated CO{sub 2} heat pump. A low return temperature in the space heating system also results in a moderate DHW heating capacity ratio, which means that a relatively large part of the annual space heating demand can be covered by operation in the combined heating mode, where the COP is considerably higher than in the space heating mode. (4) During operation in the combined heating mode and the DHW heating mode, the COP of the integrated CO{sub 2} heat pump is heavily influenced by

  19. High performance passive solar heating system with heat pipe energy transfer and latent heat storage

    NARCIS (Netherlands)

    Dijk, van H.A.L.; Galen, van E; Hensen, J.L.M.; Wit, de M.H.

    1983-01-01

    Preliminar results are reported from a current project on the development of a high performance passive solar heating system. Two special components are introduced: a. A heat pipe as a thermal diode tube for the efficient transfer of collected solar heat from the absorber plate to behind an

  20. Solar heating systems for heating and hot water

    Energy Technology Data Exchange (ETDEWEB)

    Schnaith, G; Dittrich, K

    1980-07-01

    Deutsche Bundesbahn has shown an interest in solar heating systems, too. The items discussed include the useful radiation energy, design features of collectors, heat carrier media, safeguards and profitability studies. The system installed by Deutsche Bundesbahn in the social services building of the Munich-Laim railway workshop is described. In conclusion, the test results of the first few months of service are given. In order to obtain unambiguous results, it appears indispensable to arrange for an additional total trial period of not less than two years and to conduct tests also on further systems presently under construction.

  1. Energy cascading in large district heating systems

    International Nuclear Information System (INIS)

    Mayer, F.W.

    1978-01-01

    District heat transfer is the most economical utilization of the waste heat of power plants. Optimum utilization and heat transfer over large distances are possible because of a new energy distribution system, the ''energy cascading system,'' in which heat is transferred to several consumer regions at different temperature ranges. It is made more profitable by the use of heat pumps. The optimum flow-line temperature is 368 0 K, and the optimum return-line temperature is 288 0 K, resulting in an approximately 50% reduction of electric power loss at the power plant

  2. Control challenges in domestic heating systems

    DEFF Research Database (Denmark)

    Thybo, Honglian; Larsen, Lars F. S.; Weitzmann, Peter

    2007-01-01

    The objective of this paper is to analyze domestic heating applications and identify unfavorable building constructions and control challenges to be addressed by high performance heating control systems. Heating of domestic houses use a large amount of the total energy consumption in Scandinavia....... Hence the potential of reducing energy consumption by applying high performance control is vast. Indoor climate issues are becoming more in focus, which also leads to a demand for high performance heating systems. The paper presents an analysis of how the building elements of today's domestic houses...... with water based floor heating affect the control challenge. The analysis is documented with simulation results....

  3. Nuclear reactor auxiliary heat removal system

    International Nuclear Information System (INIS)

    Thompson, R.E.; Pierce, B.L.

    1977-01-01

    An auxiliary heat removal system to remove residual heat from gas-cooled nuclear reactors is described. The reactor coolant is expanded through a turbine, cooled in a heat exchanger and compressed by a compressor before reentering the reactor coolant. The turbine powers both the compressor and the pump which pumps a second fluid through the heat exchanger to cool the reactor coolant. A pneumatic starter is utilized to start the turbine, thereby making the auxiliary heat removal system independent of external power sources

  4. Performance analysis of hybrid district heating system

    DEFF Research Database (Denmark)

    Mikulandric, Robert; Krajačić, Goran; Khavin, Gennadii

    2013-01-01

    District heating system could contribute to more efficient heat generation through cogeneration power plants or waste heat utilization facilities and to increase of renewable energy sources share in total energy consumption. In the most developed EU countries, renewable energy sources have been...... as problems related to transportation, storage and environmental impacts of biomass and waste utilisation. Implementation of heat storages in district heating systems could contribute to integration of intermittent energy sources. Hybridisation of heat production facility combines two or more different energy...... more extensively used in district heating systems either separately or as a supplement to traditional fossil fuels in order to achieve national energy policy objectives. However, they are still facing problems such as high intermittences, high energy production costs and low load factors as well...

  5. Demand management: an audit of chemical pathology test rejections by an electronic gate-keeping system at an academic hospital in Cape Town.

    Science.gov (United States)

    Smit, Ida; Zemlin, Annalise E; Erasmus, Rajiv T

    2015-07-01

    Demand management is an area of laboratory activity, which is becoming increasingly important. Within the health-care system, demand management can be defined as the use of health resources to maximise its utility. Tygerberg Hospital has introduced an electronic gate-keeping system. Chemistry tests which generate the highest cost are subjected to this system and may be automatically rejected according to a set of rules. This study aimed: (1) to identify the number of chemistry tests rejected by the eGK; (2) to identify which of these rejected tests were subsequently restored and (3) to assess the impact of rejections on clinical outcome and cost-saving. A retrospective audit was conducted to determine the number of chemistry tests rejected and subsequently restored over a 6-month period. The case-notes of patients for whom requested tests previously rejected had been restored were randomly selected and investigated to assess clinical impact. Any cost-saving was calculated. A total of 68,480 tests were subjected to gate-keeping, and 4605 tests (6.7%) were rejected while 679 (14.7%) of these were restored by the requestor phoning the laboratory after obtaining authorisation. After examining a subset of clinical notes it was found that in most cases (80%), patient care was unaffected. The total cost saved was £ 25,387. The majority of the rejected tests were unnecessary and following rejection, real savings were made. Electronic gate-keeping is a simple, effective and sustainable method of demand management. © The Author(s) 2015 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  6. Hybrid district heating system with heat supply from nuclear source

    International Nuclear Information System (INIS)

    Havelka, Z.; Petrovsky, I.

    1987-01-01

    Several designs are described of heat supply from large remote power sources (e.g., WWER-1000 nuclear power plants with a 1000 MW turbine) to localities where mainly steam distribution networks have been built but only some or none networks for hot water distribution. The benefits of the designs stem from the fact that they do not require the conversion of the local steam distribution system to a hot water system. They are based on heat supply from the nuclear power plant to the consumer area in hot water of a temperature of 150 degC to 200 degC. Part of the hot water heat will be used for the production of low-pressure steam which will be compressed using heat pumps (steam compressors) to achieve the desired steam distribution network specifications. Water of lower temperature can be used in the hot water network. The hot water feeder forms an automatic pressure safety barrier in heat supply of heating or technological steam from a nuclear installation. (Z.M.). 5 figs., 9 refs

  7. Distributed heat generation in a district heating system

    OpenAIRE

    Lennermo, Gunnar; Lauenberg, Patrick

    2016-01-01

    District heating (OH) systems need to be improved  regarding integration  of decentralised  heat generation. Micro production, prosumers and smart grids are terms becoming more and more common  in  connection  to  the  power  grid.  Concerning district  heating,  the  development  is slower, although improving. Today there are a number of such decentralised units for heat generation,  mainly  solar,  that have been partly evaluated.  Previous  studies  have shown  that there is a need to deve...

  8. Improving Process Heating System Performance v3

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-04-11

    Improving Process Heating System Performance: A Sourcebook for Industry is a development of the U.S. Department of Energy (DOE) Advanced Manufacturing Office (AMO) and the Industrial Heating Equipment Association (IHEA). The AMO and IHEA undertook this project as part of an series of sourcebook publications developed by AMO on energy-consuming industrial systems, and opportunities to improve performance. Other topics in this series include compressed air systems, pumping systems, fan systems, steam systems, and motors and drives

  9. Performance of ALMR passive decay heat removal system

    International Nuclear Information System (INIS)

    Boardman, C.E.; Hunsbedt, A.

    1991-01-01

    The Advanced Liquid Metal Reactor (ALMR) concept has a totally passive safety-grade decay heat removal system referred to as the Reactor Vessel Auxiliary Cooling System (RVACS) that rejects heat from the small (471 MWt) modular reactor to the environmental air by natural convection heat transfer. The system has no active components, requires no operator action to initiate, and is inherently reliable. The RVACS can perform its function under off-normal or degraded operating conditions without significant loss in performance. Several such events are described and the RVACS thermal performance for each is given and compared to the normal operation performance. The basic RVACS performance as well as the performance during several off-normal events have been updated to reflect design changes for recycled fuel with minor actinides for end of equilibrium cycle conditions. The performance results for several other off-normal events involving various degrees of RVACS air flow passage blockages are presented. The results demonstrated that the RVACS is unusually tolerant to a wide range of postulated faults. (author)

  10. Proposal for a district heat supply system

    International Nuclear Information System (INIS)

    Alefeld, G.

    1976-01-01

    A district heating scheme is proposed which makes it possible to use the waste heat from power stations for the supply of households and industry. The heat is stored by evaporation of ammonia salts or liquids with dissolved salts. Both substances are transported on existing rail- or waterways to heating stations near the consumers, and the heat recovered by reaction of the two components. Then the product of reaction is transported back to the power stations, and reactivated by heat again. Based on a cost estimation, it can be shown that the proposed heat transport with heat trains or ships, at distances up to 100 km, results in heat costs which are to-day already below that of heat from fuel oil. The investment required for the heat transport system is unusually low due to the use of transport ways which already exist. The district heating system is not only favourable in respect of the environment, but actually reduces its present strain, both at the consumer and at the power stations. The technical advantages of the suggested concept, especially the possibility of introducing it in stages, are discussed. The consequences for the national economy regarding the safety of supply and the trade balance, as well as for the public transport undertakings, are obvious, and therefore not included in the paper. (orig.) [de

  11. On the rejection of internal and external disturbances in a wind energy conversion system with direct-driven PMSG.

    Science.gov (United States)

    Li, Shengquan; Zhang, Kezhao; Li, Juan; Liu, Chao

    2016-03-01

    This paper deals with the critical issue in a wind energy conversion system (WECS) based on a direct-driven permanent magnet synchronous generator (PMSG): the rejection of lumped disturbance, including the system uncertainties in the internal dynamics and unknown external forces. To simultaneously track the motor speed in real time and capture the maximum power, a maximum power point tracking strategy is proposed based on active disturbance rejection control (ADRC) theory. In real application, system inertia, drive torque and some other parameters change in a wide range with the variations of disturbances and wind speeds, which substantially degrade the performance of WECS. The ADRC design must incorporate the available model information into an extended state observer (ESO) to compensate the lumped disturbance efficiently. Based on this principle, a model-compensation ADRC is proposed in this paper. Simulation study is conducted to evaluate the performance of the proposed control strategy. It is shown that the effect of lumped disturbance is compensated in a more effective way compared with the traditional ADRC approach. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  12. A pumped, two-phase flow heat transport system for orbiting instrument payloads

    Science.gov (United States)

    Fowle, A. A.

    1981-01-01

    A pumped two-phase (heat absorption/heat rejection) thermal transport system for orbiting instrument payloads is investigated. The thermofluid characteristics necessary for the system design are discussed. A preliminary design with a series arrangement of four instrument heat stations and six radiators in a single loop is described in detail, and the total mass is estimated to be 134 kg, with the radiators, instrument heat stations, and fluid reservoir accounting for approximately 86, 24, and 12 kg, respectively. The evaluation of preliminary test results shows that the system has potential advantages; however, further research is necessary in the areas of one-g and zero-g heat transfer coefficients/fluid regimes, fluid by-pass temperature control, and reliability of small pumps.

  13. Large Efficient Intelligent Heating Relay Station System

    Science.gov (United States)

    Wu, C. Z.; Wei, X. G.; Wu, M. Q.

    2017-12-01

    The design of large efficient intelligent heating relay station system aims at the improvement of the existing heating system in our country, such as low heating efficiency, waste of energy and serious pollution, and the control still depends on the artificial problem. In this design, we first improve the existing plate heat exchanger. Secondly, the ATM89C51 is used to control the whole system and realize the intelligent control. The detection part is using the PT100 temperature sensor, pressure sensor, turbine flowmeter, heating temperature, detection of user end liquid flow, hydraulic, and real-time feedback, feedback signal to the microcontroller through the heating for users to adjust, realize the whole system more efficient, intelligent and energy-saving.

  14. Solar air heating system for combined DHW and space heating

    Energy Technology Data Exchange (ETDEWEB)

    Oestergaard Jensen, S.; Bosanac, M.

    2002-12-01

    The project deals with the development and testing of a simple system for utilization of the summer excess heat from small solar air heating systems for preheating of fresh air. The principle of the system is to lead the heated air down around a domestic hot water tank letting the surface of the tank act as heat exchanger between the air and the water. In order to increase the heat transfer, coefficient fins into the air stream were mounted on the tank. A complete system with 3 m{sup 2} solar air collector, ductworks and a 85 litre storage were set up and extensively monitored. The air stream through the system was created by a fan connected directly to one or two PV-panels leading to a solar radiation dependent flow rate without the use of any other control. Based on monitoring results the system was characterized and a TRNSYS model of the system was developed and calibrated/validated. The monitoring and the simulations with the TRNSYS model revealed several interesting things about the system. The monitoring revealed that the system is capable of bringing the temperature of the water in the storage above 60 deg. C at warm days with clear sky conditions. The storage is very stratified, which is beneficial as usable hot water temperatures rather quickly are obtained. The performance was highly dependent on the airflow rate through the system. It can be concluded that the investigated system will have a performance in the order of 500 kWh during the winter, spring and autumn months and around 250 kWh during the four summer months - or in total a yearly performance of 750 kWh/m{sup 2}. A small traditional solar heating system for preheating of domestic hot water would have a higher performance during the four summer months, but no performance during the rest of the year if the system is installed in a summer house, which only is occupied during the summer. The parametric analysis further indicates that it is possible to further optimise the system when the thermal

  15. Evaluation of Excess Heat Utilization in District Heating Systems by Implementing Levelized Cost of Excess Heat

    Directory of Open Access Journals (Sweden)

    Borna Doračić

    2018-03-01

    Full Text Available District heating plays a key role in achieving high primary energy savings and the reduction of the overall environmental impact of the energy sector. This was recently recognized by the European Commission, which emphasizes the importance of these systems, especially when integrated with renewable energy sources, like solar, biomass, geothermal, etc. On the other hand, high amounts of heat are currently being wasted in the industry sector, which causes low energy efficiency of these processes. This excess heat can be utilized and transported to the final customer by a distribution network. The main goal of this research was to calculate the potential for excess heat utilization in district heating systems by implementing the levelized cost of excess heat method. Additionally, this paper proves the economic and environmental benefits of switching from individual heating solutions to a district heating system. This was done by using the QGIS software. The variation of different relevant parameters was taken into account in the sensitivity analysis. Therefore, the final result was the determination of the maximum potential distance of the excess heat source from the demand, for different available heat supplies, costs of pipes, and excess heat prices.

  16. Study on hybrid ground-coupled heat pump system for air-conditioning in hot-weather areas like Hong Kong

    International Nuclear Information System (INIS)

    Man, Yi; Yang, Hongxing; Wang, Jinggang

    2010-01-01

    The ground-coupled heat pump (GCHP) system is becoming attractive for air-conditioning in some moderate-weather regions due to its high energy efficiency and reliable operation capability. However, when the technology is used in buildings where there is only cooling load in hot-weather areas like Hong Kong, the heat rejected into the ground by the GCHP systems will accumulate around the ground heat exchangers (GHE). This heat accumulation will result in degradation of system performance and increment of system operating costs. This problem can be resolved by using the hybrid ground-coupled heat pump (HGCHP) system, which uses supplemental heat rejecters to reject the accumulated heat. This paper presents a practical hourly simulation model of the HGCHP system by modeling the heat transfer process of the system's main components. The computer program based on this hourly simulation model can be used to calculate the hour-by-hour operation data of the HGCHP system. As a case study, both a HGCHP system and a traditional GCHP system are designed for a hypothetic private residential building located in Hong Kong, and the economic comparisons are conducted between these two types of systems. The simulation results show that the HGCHP system can effectively solve the heat accumulation problem and reduce both the initial costs and operating costs of the air-conditioning system in the building.

  17. Study on hybrid ground-coupled heat pump system for air-conditioning in hot-weather areas like Hong Kong

    Energy Technology Data Exchange (ETDEWEB)

    Man, Yi; Yang, Hongxing [Renewable Energy Research Group, Department of Building Services Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong (China); Wang, Jinggang [Hebei University of Engineering, Handan (China)

    2010-09-15

    The ground-coupled heat pump (GCHP) system is becoming attractive for air-conditioning in some moderate-weather regions due to its high energy efficiency and reliable operation capability. However, when the technology is used in buildings where there is only cooling load in hot-weather areas like Hong Kong, the heat rejected into the ground by the GCHP systems will accumulate around the ground heat exchangers (GHE). This heat accumulation will result in degradation of system performance and increment of system operating costs. This problem can be resolved by using the hybrid ground-coupled heat pump (HGCHP) system, which uses supplemental heat rejecters to reject the accumulated heat. This paper presents a practical hourly simulation model of the HGCHP system by modeling the heat transfer process of the system's main components. The computer program based on this hourly simulation model can be used to calculate the hour-by-hour operation data of the HGCHP system. As a case study, both a HGCHP system and a traditional GCHP system are designed for a hypothetic private residential building located in Hong Kong, and the economic comparisons are conducted between these two types of systems. The simulation results show that the HGCHP system can effectively solve the heat accumulation problem and reduce both the initial costs and operating costs of the air-conditioning system in the building. (author)

  18. Study on hybrid ground-coupled heat pump system for air-conditioning in hot-weather areas like Hong Kong

    Energy Technology Data Exchange (ETDEWEB)

    Man, Y.; Yang, H.X. [Hong Kong Polytechnic Univ., Renewable Energy Research Group, Hung Hom, Kowloon, (Hong Kong). Dept. of Building Services Engineering

    2008-07-01

    Due to its high energy efficiency and reliable operation capability, the ground-coupled heat pump (GCHP) system is becoming attractive for air-conditioning in some moderate-weather regions. However, when the technology is used in buildings where there is only cooling load in hot-weather areas such as Hong Kong, the heat rejected into the ground by the GCHP systems will accumulate around the ground heat exchangers (GHE), resulting in degradation of system performance and increased system operating costs. This problem can be resolved by using a hybrid ground-coupled heat pump (HGCHP) system, as it uses supplemental heat rejecters to reject the accumulated heat. By modeling the heat transfer process of the system's main components, this paper presented a practical hourly simulation model of the HGCHP system. Based on this hourly simulation model, the computer program could be used to calculate the hour-by-hour operation data of the HGCHP system according to the cooling and hot water heating loads of a building. The paper discussed a case study that involved a design of both a HGCHP system and a traditional GCHP system for a hypothetical private residential building located in Hong Kong. The economic comparisons were performed between these two types of systems. It was concluded through the simulations that the HGCHP system could effectively solve the heat accumulation problem and reduce both the initial cost and operating cost of the air-conditioning system in the building. 19 refs., 1 tab., 13 figs.

  19. Dynamic MRI-based computer aided diagnostic systems for early detection of kidney transplant rejection: A survey

    Science.gov (United States)

    Mostapha, Mahmoud; Khalifa, Fahmi; Alansary, Amir; Soliman, Ahmed; Gimel'farb, Georgy; El-Baz, Ayman

    2013-10-01

    Early detection of renal transplant rejection is important to implement appropriate medical and immune therapy in patients with transplanted kidneys. In literature, a large number of computer-aided diagnostic (CAD) systems using different image modalities, such as ultrasound (US), magnetic resonance imaging (MRI), computed tomography (CT), and radionuclide imaging, have been proposed for early detection of kidney diseases. A typical CAD system for kidney diagnosis consists of a set of processing steps including: motion correction, segmentation of the kidney and/or its internal structures (e.g., cortex, medulla), construction of agent kinetic curves, functional parameter estimation, diagnosis, and assessment of the kidney status. In this paper, we survey the current state-of-the-art CAD systems that have been developed for kidney disease diagnosis using dynamic MRI. In addition, the paper addresses several challenges that researchers face in developing efficient, fast and reliable CAD systems for the early detection of kidney diseases.

  20. Performance evaluation of an integrated automotive air conditioning and heat pump system

    International Nuclear Information System (INIS)

    Hosoz, M.; Direk, M.

    2006-01-01

    This study deals with the performance characteristics of an R134a automotive air conditioning system capable of operating as an air-to-air heat pump using ambient air as a heat source. For this aim, an experimental analysis has been performed on a plant made up of original components from an automobile air conditioning system and some extra equipment employed to operate the system in the reverse direction. The system has been tested in the air conditioning and heat pump modes by varying the compressor speed and air temperatures at the inlets of the indoor and outdoor coils. Evaluation of the data gathered in steady state test runs has shown the effects of the operating conditions on the capacity, coefficient of performance, compressor discharge temperature and the rate of exergy destroyed by each component of the system for both operation modes. It has been observed that the heat pump operation provides adequate heating only in mild weather conditions, and the heating capacity drops sharply with decreasing outdoor temperature. However, compared with the air conditioning operation, the heat pump operation usually yields a higher coefficient of performance and a lower rate of exergy destruction per unit capacity. It is also possible to improve the heating mode performance of the system by redesigning the indoor coil, using another refrigerant with a higher heat rejection rate in the condenser and employing a better heat source such as the engine coolant or exhaust gases

  1. Standard monitoring system for domestic heat pumps

    NARCIS (Netherlands)

    Geelen, C.P.J.M.; Oostendorp, P.A.

    1999-01-01

    In the years to come many domestic heat pump systems are to be installed in the Netherlands. The Dutch agency for energy and environment, NOVEM, and the association of energy utility companies, EnergieNed, give high priority to the monitoring of heat pump systems. The results of the projects,

  2. Radiant Heating and Cooling Systems. Part one

    DEFF Research Database (Denmark)

    Kim, Kwan Woo; Olesen, Bjarne W.

    2015-01-01

    The use of radiant heating systems has several thousand years of history.1,2 The early stage of radiant system application was for heating purposes, where hot air from flue gas (cooking, fires) was circulated under floors or in walls. After the introduction of plastic piping water-based radiant...

  3. Radiant Heating and Cooling Systems. Part two

    DEFF Research Database (Denmark)

    Kim, Kwan Woo; Olesen, Bjarne W.

    2015-01-01

    Control of the heating and cooling system needs to be able to maintain the indoor temperatures within the comfort range under the varying internal loads and external climates. To maintain a stable thermal environment, the control system needs to maintain the balance between the heat gain...

  4. Basics of Solar Heating & Hot Water Systems.

    Science.gov (United States)

    American Inst. of Architects, Washington, DC.

    In presenting the basics of solar heating and hot water systems, this publication is organized from the general to the specific. It begins by presenting functional and operational descriptions of solar heating and domestic hot water systems, outlining the basic concepts and terminology. This is followed by a description of solar energy utilization…

  5. Rankine cycle waste heat recovery system

    Science.gov (United States)

    Ernst, Timothy C.; Nelson, Christopher R.

    2015-09-22

    A waste heat recovery (WHR) system connects a working fluid to fluid passages formed in an engine block and/or a cylinder head of an internal combustion engine, forming an engine heat exchanger. The fluid passages are formed near high temperature areas of the engine, subjecting the working fluid to sufficient heat energy to vaporize the working fluid while the working fluid advantageously cools the engine block and/or cylinder head, improving fuel efficiency. The location of the engine heat exchanger downstream from an EGR boiler and upstream from an exhaust heat exchanger provides an optimal position of the engine heat exchanger with respect to the thermodynamic cycle of the WHR system, giving priority to cooling of EGR gas. The configuration of valves in the WHR system provides the ability to select a plurality of parallel flow paths for optimal operation.

  6. LPV Identification of a Heat Distribution System

    DEFF Research Database (Denmark)

    Trangbæk, K; Bendtsen, Jan Dimon

    2010-01-01

    This paper deals with incremental system identification of district heating systems to improve control performance. As long as various parameters, e.g. valve settings, are kept fixed, the dynamics of district heating systems can be approximated well by linear models; however, the dynamics change ....... The approach is tested on a laboratory setup emulating a district heating system, where local controllers regulate pumps connected to a common supply. Experiments show that cross-couplings in the system can indeed be identified in closed-loop operation....

  7. Reduced-order model based active disturbance rejection control of hydraulic servo system with singular value perturbation theory.

    Science.gov (United States)

    Wang, Chengwen; Quan, Long; Zhang, Shijie; Meng, Hongjun; Lan, Yuan

    2017-03-01

    Hydraulic servomechanism is the typical mechanical/hydraulic double-dynamics coupling system with the high stiffness control and mismatched uncertainties input problems, which hinder direct applications of many advanced control approaches in the hydraulic servo fields. In this paper, by introducing the singular value perturbation theory, the original double-dynamics coupling model of the hydraulic servomechanism was reduced to a integral chain system. So that, the popular ADRC (active disturbance rejection control) technology could be directly applied to the reduced system. In addition, the high stiffness control and mismatched uncertainties input problems are avoided. The validity of the simplified model is analyzed and proven theoretically. The standard linear ADRC algorithm is then developed based on the obtained reduced-order model. Extensive comparative co-simulations and experiments are carried out to illustrate the effectiveness of the proposed method. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  8. Specifying the auxiliary heating system on TFCX

    International Nuclear Information System (INIS)

    Metzler, D.H.

    1983-01-01

    This paper reviews the status of heating systems for the TFCX-S (all superconducting coil) and TFCX-H (hybrid coil) options. Three systems were defined; preheating (electron), current drive, and bulk (ion) heating. Application of systems engineering techniques facilitated fruitful discussions of requirements and their impact on equipment between physicists and engineers. A low-cost, flexible combination of systems allows plasma experiments using all rf startup and current drive

  9. A Time-Frequency Respiration Tracking System using Non-Contact Bed Sensors with Harmonic Artifact Rejection

    Science.gov (United States)

    Beattie, Zachary T.; Jacobs, Peter G.; Riley, Thomas C.; Hagen, Chad C.

    2015-01-01

    Sleep apnea is a serious health condition that affects many individuals and has been associated with serious health conditions such as cardiovascular disease. Clinical diagnosis of sleep apnea requires that a patient spend the night in a sleep clinic while being wired up to numerous obtrusive sensors. We are developing a system that utilizes respiration rate and breathing amplitude inferred from non-contact bed sensors (i.e. load cells placed under bed supports) to detect sleep apnea. Multi-harmonic artifacts generated either biologically or as a result of the impulse response of the bed have made it challenging to track respiration rate and amplitude with high resolution in time. In this paper, we present an algorithm that can accurately track respiration on a second-by-second basis while removing noise harmonics. The algorithm is tested using data collected from 5 patients during overnight sleep studies. Respiration rate is compared with polysomnography estimations of respiration rate estimated by a technician following clinical standards. Results indicate that certain subjects exhibit a large harmonic component of their breathing signal that can be removed by our algorithm. When compared with technician transcribed respiration rates using polysomnography signals, we demonstrate improved accuracy of respiration rate tracking using harmonic artifact rejection (mean error: 0.18 breaths/minute) over tracking not using harmonic artifact rejection (mean error: −2.74 breaths/minute). PMID:26738176

  10. Performance Analysis of Photovoltaic Water Heating System

    Directory of Open Access Journals (Sweden)

    Tomas Matuska

    2017-01-01

    Full Text Available Performance of solar photovoltaic water heating systems with direct coupling of PV array to DC resistive heating elements has been studied and compared with solar photothermal systems. An analysis of optimum fixed load resistance for different climate conditions has been performed for simple PV heating systems. The optimum value of the fixed load resistance depends on the climate, especially on annual solar irradiation level. Use of maximum power point tracking compared to fixed optimized load resistance increases the annual yield by 20 to 35%. While total annual efficiency of the PV water heating systems in Europe ranges from 10% for PV systems without MPP tracking up to 15% for system with advanced MPP trackers, the efficiency of solar photothermal system for identical hot water load and climate conditions is more than 3 times higher.

  11. Solar/electric heating systems for the future energy system

    Energy Technology Data Exchange (ETDEWEB)

    Furbo, S.; Dannemand, M.; Perers, B. [and others

    2013-05-15

    The aim of the project is to elucidate how individual heating units for single family houses are best designed in order to fit into the future energy system. The units are based on solar energy, electrical heating elements/heat pump, advanced heat storage tanks and advanced control systems. Heat is produced by solar collectors in sunny periods and by electrical heating elements/heat pump. The electrical heating elements/heat pump will be in operation in periods where the heat demand cannot be covered by solar energy. The aim is to use the auxiliary heating units when the electricity price is low, e.g. due to large electricity production by wind turbines. The unit is equipped with an advanced control system where the control of the auxiliary heating is based on forecasts of the electricity price, the heat demand and the solar energy production. Consequently, the control is based on weather forecasts. Three differently designed heating units are tested in a laboratory test facility. The systems are compared on the basis of: 1) energy consumption for the auxiliary heating; 2) energy cost for the auxiliary heating; 3) net utilized solar energy. Starting from a normal house a solar combi system (for hot water and house heating) can save 20-30% energy cost, alone, depending on sizing of collector area and storage volume. By replacing the heat storage with a smart tank based on electric heating elements and a smart control based on weather/load forecast and electricity price information 24 hours ahead, another 30-40% can be saved. That is: A solar heating system with a solar collector area of about 10 m{sup 2}, a smart tank based on electric heating element and a smart control system, can reduce the energy costs of the house by at least 50%. No increase of heat storage volume is needed to utilize the smart control. The savings in % are similar for different levels of building insulation. As expected a heat pump in the system can further reduce the auxiliary electricity

  12. Heat transfer in heterogeneous propellant combustion systems

    International Nuclear Information System (INIS)

    Brewster, M.Q.

    1992-01-01

    This paper reports that heat transfer plays an important role in several critical areas of heterogeneous, solid-propellant combustion systems. These areas include heat feedback to the propellant surface, heat transfer between burning aluminum droplets and their surroundings, heat transfer to internal insulation systems, and heat transfer to aft-end equipment. Gas conduction dominates heat feedback to the propellant surface in conventional ammonium perchlorate (AP) composite propellants, although particle radiative feedback also plays a significant role in combustion of metalized propellants. Particle radiation plays a dominant role in heat transfer to internal insulation, compared with that of convection. However, conduction by impingement of burning aluminum particles, which has not been extensively studied, may also be significant. Radiative heat loss plays an important role in determining the burning rate of molten aluminum particles due to a highly luminous, oxide particle-laden, detached flame envelope. Radiation by aluminum oxide smoke particles also plays a dominant role in heat transfer from the exhaust plume to aft-end equipment. Uncertainties in aluminum oxide particle-size distribution and optical properties still make it difficult to predict radiative plume heat transfer accurately from first principles

  13. OPTIMUM HEAT STORAGE DESIGN FOR SDHW SYSTEMS

    DEFF Research Database (Denmark)

    Shah, Louise Jivan; Furbo, Simon

    1997-01-01

    Two simulation models have been used to analyse the heat storage design’s influence on the thermal performance of solar domestic hot water (SDHW) systems. One model is especially designed for traditional SDHW systems based on a heat storage design where the solar heat exchanger is a built-in spiral....... The other model is especially designed for low flow SDHW systems based on a mantle tank.The tank design’s influence on the thermal performance of the SDHW systems has been investigated in a way where only one tank parameter has been changed at a time in the calculations. In this way a direct analysis...

  14. Investigation on Solar Heating System with Building-Integrated Heat Storage

    DEFF Research Database (Denmark)

    Heller, Alfred

    1996-01-01

    Traditional solar heating systems cover between 5 and 10% of the heat demand fordomestic hot water and comfort heating. By applying storage capacity this share can beincreased much. The Danish producer of solar heating systems, Aidt-Miljø, markets such a system including storage of dry sand heated...... by PP-pipe heat exchanger. Heat demand is reduced due to direct solar heating and due to storage. The storage affects the heat demand passively due to higher temperatures. Hence heat loss is reduced and passive heating is optioned. In theory, by running the system flow backwards, active heating can...... solar collector area of the system, was achieved. Active heating from the sand storage was not observed. The pay-back time for the system can be estimated to be similar to solar heated domestic hot water systems in general. A number of minor improvements on the system could be pointed out....

  15. Control System Design of Shunt Active Power Filter Based on Active Disturbance Rejection and Repetitive Control Techniques

    Directory of Open Access Journals (Sweden)

    Le Ge

    2014-01-01

    Full Text Available To rely on joint active disturbance rejection control (ADRC and repetitive control (RC, in this paper, a compound control law for active power filter (APF current control system is proposed. According to the theory of ADRC, the uncertainties in the model and from the circumstance outside are considered as the unknown disturbance to the system. The extended state observer can evaluate the unknown disturbance. Next, RC is introduced into current loop to improve the steady characteristics. The ADRC is used to get a good dynamic performance, and RC is used to get a good static performance. A good simulation result is got through choosing and changing the parameters, and the feasibility, adaptability, and robustness of the control are testified by this result.

  16. Fundamental Study of a Combined Hyperthermia System with RF Capacitive Heating and Interstitial Heating

    OpenAIRE

    Saitoh, Yoshiaki; Hori, Junichi; 斉藤, 義明; 堀, 潤一

    2001-01-01

    Interstitial RF heating with an inserted electrode allows the heating position selection in a subject, but the narrow heating region is problematic. This study elucidates development of new interstitial RF heating methods, combining with external RF heating using paired electrodes, heating the subject broadly in advance in order to selectively extend the heating region. Two kinds of heating system were developed by controlling a differential mode and a common mode of RF currents. Heating expe...

  17. Optimising corrosion monitoring in district heating systems

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel; Thorarinsdottir, R.I.; Andersen, A.

    2002-01-01

    A three-year project - financially supported by the Nordic Industrial Fund - on monitoring of corrosion in district heating systems has been initiated with participation of researchers and industrial partners in Denmark, Finland, Iceland, Norway and Sweden. The primary objective of the project...... is to improve the quality control in district heating systems by corrosion monitoring. In Danish systems electrochemical impedance spectroscopy (EIS), linear polarisation resistance (LPR), high-sensitive electrical resistance (ER) technology, crevice corrosion probes, as well as weight loss coupons...

  18. Prototype solar heating and hot water system

    Science.gov (United States)

    1977-01-01

    Progress is reported in the development of a solar heating and hot water system which uses a pyramidal optics solar concentrator for heating, and consists of the following subsystems: collector, control, transport, and site data acquisition. Improvements made in the components and subsystems are discussed.

  19. MULTIFUNCTIONAL SOLAR SYSTEMS FOR HEATING AND COOLING

    Directory of Open Access Journals (Sweden)

    Doroshenko A.V.

    2010-12-01

    Full Text Available The basic circuits of multifunctional solar systems of air drainage, heating (hot water supply and heating, cooling and air conditioning are developed on the basis of open absorption cycle with a direct absorbent regeneration. Basic decisions for new generation of gas-liquid solar collectors are developed. Heat-mass-transfer apparatus included in evaporative cooling system, are based on film interaction of flows of gas and liquid and in them, for the creation of nozzle, multi-channel structures from polymeric materials and porous ceramics are used. Preliminary analysis of multifunctional systems possibilities is implemented.

  20. The dry heat exchanger calorimeter system

    International Nuclear Information System (INIS)

    Renz, D.P.; Wetzel, J.R.; James, S.J.; Kasperski, P.W.; Duff, M.F.

    1991-01-01

    A radiometric isothermal heat flow calorimeter and preconditioner system that uses air instead of water as the heat exchange medium has been developed at Mound. The dry heat exchanger calorimeter is 42 inches high by 18 inches in diameter and the preconditioner is a 22 inch cube, making it extremely compact compared to existing units. The new system is ideally suited for transportable, stand-alone, or glovebox applications. Preliminary tests of the system have produced sample measurements with standard deviations less than 0.25% and sample errors less than 0.50%. These tests have shown that the dry heat exchanger system will yield acceptance data with an accuracy comparable to those of Mound water bath systems now in use. 4 figs., 1 tab

  1. Application of CMAC Neural Network Coupled with Active Disturbance Rejection Control Strategy on Three-motor Synchronization Control System

    Directory of Open Access Journals (Sweden)

    Hui Li

    2014-04-01

    Full Text Available Three-motor synchronous coordination system is a MI-MO nonlinear and complex control system. And it often works in poor working condition. Advanced control strategies are required to improve the control performance of the system and to achieve the decoupling between main motor speed and tension. Cerebellar Model Articulation Controller coupled with Active Disturbance Rejection Control (CMAC-ADRC control strategy is proposed. The speed of the main motor and tensions between two motors is decoupled by extended state observer (ESO in ADRC. ESO in ADRC is used to compensate internal and external disturbances of the system online. And the anti interference of the system is improved by ESO. And the same time the control model is optimized. Feedforward control is implemented by the adoption of CMAC neural network controller. And control precision of the system is improved in reason of CMAC. The overshoot of the system can be reduced without affecting the dynamic response of the system by the use of CMAC-ADRC. The simulation results show that: the CMAC- ADRC control strategy is better than the traditional PID control strategy. And CMAC-ADRC control strategy can achieve the decoupling between speed and tension. The control system using CMAC-ADRC have strong anti-interference ability and small regulate time and small overshoot. The magnitude of the system response incited by the interference using CMAC-ADRC is smaller than the system using conventional PID control 6.43 %. And the recovery time of the system with CMAC-ADRC is shorter than the system with traditional PID control 0.18 seconds. And the triangular wave tracking error of the system with CMAC-ADRC is smaller than the system with conventional PID control 0.24 rad/min. Thus the CMAC-ADRC control strategy is a good control strategy and is able to fit three-motor synchronous coordinated control.

  2. Optimal Control of Solar Heating System

    KAUST Repository

    Huang, Bin-Juine

    2017-02-21

    Forced-circulation solar heating system has been widely used in process and domestic heating applications. Additional pumping power is required to circulate the water through the collectors to absorb the solar energy. The present study intends to develop a maximum-power point tracking control (MPPT) to obtain the minimum pumping power consumption at an optimal heat collection. The net heat energy gain Qnet (= Qs − Wp/ηe) was found to be the cost function for MPPT. The step-up-step-down controller was used in the feedback design of MPPT. The field test results show that the pumping power is 89 W at Qs = 13.7 kW and IT = 892 W/m2. A very high electrical COP of the solar heating system (Qs/Wp = 153.8) is obtained.

  3. In situ heat treatment process utilizing a closed loop heating system

    Science.gov (United States)

    Vinegar, Harold J.; Nguyen, Scott Vinh

    2010-12-07

    Systems and methods for an in situ heat treatment process that utilizes a circulation system to heat one or more treatment areas are described herein. The circulation system may use a heated liquid heat transfer fluid that passes through piping in the formation to transfer heat to the formation. In some embodiments, the piping may be positioned in at least two of the wellbores.

  4. Rankine cycle waste heat recovery system

    Science.gov (United States)

    Ernst, Timothy C.; Nelson, Christopher R.

    2014-08-12

    This disclosure relates to a waste heat recovery (WHR) system and to a system and method for regulation of a fluid inventory in a condenser and a receiver of a Rankine cycle WHR system. Such regulation includes the ability to regulate the pressure in a WHR system to control cavitation and energy conversion.

  5. Exergy performance of different space heating systems: A theoretical study

    DEFF Research Database (Denmark)

    Kazanci, Ongun Berk; Shukuya, Masanori; Olesen, Bjarne W.

    2016-01-01

    , the effects of floor covering resistance on the whole system performance were studied using two heat sources; a natural gas fired condensing boiler and an air-source heat pump. The heating systems were also compared in terms of auxiliary exergy use for pumps and fans. The low temperature floor heating system......Three space heating systems (floor heating with different floor covering resistances, radiator heating with different working temperatures, warm-air heating with and without heat recovery) were compared using a natural gas fired condensing boiler as the heat source. For the floor heating systems...... performed better than other systems in terms of exergy demand. The use of boiler as a heat source for a low-exergy floor heating system creates a mismatch in the exergy supply and demand. Although an air-source heat pump could be a better heat source, this depends on the origin of the electricity supplied...

  6. Performance of a Solar Heating System with Photovoltaic Thermal Hybrid Collectors and Heat Pump

    DEFF Research Database (Denmark)

    Dannemand, Mark; Furbo, Simon; Perers, Bengt

    2017-01-01

    . When the solar collectors are unable to supply the heat demand an auxiliary heat source is used. Heat pumps can generate this heat. Liquid/water heat pumps have better performance than air/water heat pumps in cold climates but requires installation of a tubing system for the cold side of the heat pump....... The tubes are typically placed in the ground, requires a significant land area and increase the installation cost. A new system design of a solar heating system with two storage tanks and a liquid/water heat pump is presented. The system consists of PVT collectors that generate both heat and electricity......The energy consumption in buildings accounts for a large part of the World’s CO2 emissions. Much energy is used for appliances, domestic hot water preparation and space heating. In solar heating systems, heat is captured by solar collectors when the sun is shining and used for heating purposes...

  7. District heating with SLOWPOKE energy systems

    International Nuclear Information System (INIS)

    Lynch, G.F.

    1988-03-01

    The SLOWPOKE Energy System, a benign nuclear heat source designed to supply 10 thermal megawatts in the form of hot water for local heating systems in buildings and institutions, is at the forefront of these developments. A demonstration unit has been constructed in Canada and is currently undergoing an extensive test program. Because the nuclear heat source is small, operates at atmospheric pressure, and produces hot water below 100 degrees Celcius, intrinsic safety features will permit minimum operator attention and allow the heat source to be located close to the load and hence to people. In this way, a SLOWPOKE Energy System can be considered much like the oil- or coal-fired furnace it is designed to replace. The low capital investment requirements, coupled with a high degree of localization, even for the first unit, are seen as attractive features for the implementation of SLOWPOKE Energy Systems in many countries

  8. SIMS prototype system 1: Design data brochure. [solar heating system

    Science.gov (United States)

    1978-01-01

    A prototype solar heating and hot water system using air as the collector fluid and a pebble bed for heat storage was designed for installation into a single family dwelling. The system, subsystem, and installation requirements are described. System operation and performance are discussed, and procedures for sizing the system to a specific site are presented.

  9. The Social World of Peer Rejected Children as Revealed by a Wireless Audio-Visual Transmission System.

    Science.gov (United States)

    Asher, Steven R.; Gabriel, Sonda W.

    This paper describes an observational methodology designed to permit increased understanding of the day-to-day social world of school children. The methodology was developed in the course of investigations of the extent to which children classified as rejected on sociometric measures actually experience overt rejection at school. Discussions of…

  10. Loop heat pipes - highly efficient heat-transfer devices for systems of sun heat supply

    Energy Technology Data Exchange (ETDEWEB)

    Maydanik, Yu. [Ural Branch of the Russian Academy of Sciences, Ekaterinburg (Russian Federation). Inst. of Thermophysics

    2004-07-01

    Loop heat pipes (LHPs) are hermetic heat-transfer devices operating on a closed evaporation-condensation cycle with the use of capillary pressure for pumping the working fluid [1]. In accordance with this, they possess all the main advantages of conventional heat pipes, but, as distinct from the latter, have a considerably higher heat-transfer capacity, especially when operating in the ''antigravity'' regime, when heat is transferred from above downwards. Besides, LHPs possess a higher functional versatility, are adaptable to different operating conditions and provide great scope for various design embodiments. This is achieved at the expense of both the original design of the device and the properties of the wick - a special capillary structure used for the creation of capillary pressure. The LHP schematic diagram is given in Fig. 1. The device contains an evaporator and a condenser - heat exchanger connected by means of smooth-walled pipe-lines with a relatively small diameter intended for separate motion of vapor and liquid. At present loop heat pipes are most extensively employed in thermoregulation systems of spacecrafts. Miniature LHPs are used for cooling electronics and computers. At the same time there exists a considerable potential of using these devices for the recovery of low-grade (waste) heat from different sources, and also in systems of sun heat supply. In the latter case LHPs may serve as an efficient heat-transfer link between a sun collector and a heat accumulator, which has a low thermal resistance and does not consume any additional energy for pumping the working fluid between them. (orig.)

  11. Design of biomass district heating systems

    International Nuclear Information System (INIS)

    Vallios, Ioannis; Tsoutsos, Theocharis; Papadakis, George

    2009-01-01

    The biomass exploitation takes advantage of the agricultural, forest, and manure residues and in extent, urban and industrial wastes, which under controlled burning conditions, can generate heat and electricity, with limited environmental impacts. Biomass can - significantly - contribute in the energy supplying system, if the engineers will adopt the necessary design changes to the traditional systems and become more familiar with the design details of the biomass heating systems. The aim of this paper is to present a methodology of the design of biomass district heating systems taking into consideration the optimum design of building structure and urban settlement around the plant. The essential energy parameters are presented for the size calculations of a biomass burning-district heating system, as well as for the environmental (i.e. Greenhouse Gas Emissions) and economic evaluation (i.e. selectivity and viability of the relevant investment). Emphasis has been placed upon the technical parameters of the biomass system, the economic details of the boiler, the heating distribution network, the heat exchanger and the Greenhouse Gas Emissions

  12. Heat savings in buildings in a 100% renewable heat and power system in Denmark with different shares of district heating

    DEFF Research Database (Denmark)

    Zvingilaite, Erika; Balyk, Olexandr

    2014-01-01

    levels of heat savings, which can be implemented by reducing heat transmission losses through building elements and by installing ventilation systems with heat recovery, in different future Danish heat and power system scenarios. Today almost 50% of heat demand in Denmark is covered by district heating......The paper examines implementation of heat saving measures in buildings in 2050, under the assumption that heat and power supply comes solely from renewable resources in Denmark.Balmorel – a linear optimisation model of heat and power sectors in Denmark is used for investigating economically viable....... A further expansion of district heating network in Denmark is assessed and penetration of heat savings is analysed in this context.If all heat saving measures, included in the model, are implemented, heat demand in Danish buildings in 2050 could be reduced by around 40%. Results show that it is cost...

  13. CAREM-25: Residual heat removal system

    International Nuclear Information System (INIS)

    Arvia, Roberto P.; Coppari, Norberto R.; Gomez de Soler, Susana M.; Ramilo, Lucia B.

    2000-01-01

    The objective of this work was the definition and consolidation of the residual heat removal system for the CAREM 25 reactor. The function of this system is cool down the primary circuit, removing the core decay heat from hot stand-by to cold shutdown and during refueling. In addition, this system heats the primary water from the cold shutdown condition to hot stand-by condition during the reactor start up previous to criticality. The system has been designed according to the requirements of the standards: ANSI/ANS 51.1 'Nuclear safety criteria for the design of stationary PWR plants'; ANSI/ANS 58.11 'Design criteria for safe shutdown following selected design basis events in light water reactors' and ANSI/ANS 58.9 'Single failure criteria for light water reactor safety-related fluid systems'. The suggested design fulfills the required functions and design criteria standards. (author)

  14. Performance Analysis of SAC Optical PPM-CDMA System-Based Interference Rejection Technique

    Science.gov (United States)

    Alsowaidi, N.; Eltaif, Tawfig; Mokhtar, M. R.

    2016-03-01

    In this paper, we aim to theoretically analyse optical code division multiple access (OCDMA) system that based on successive interference cancellation (SIC) using pulse position modulation (PPM), considering the interference between the users, imperfection cancellation occurred during the cancellation process and receiver noises. Spectral amplitude coding (SAC) scheme is used to suppress the overlapping between the users and reduce the receiver noises effect. The theoretical analysis of the multiple access interference (MAI)-limited performance of this approach indicates the influence of the size of M-ary PPM on OCDMA system. The OCDMA system performance improves with increasing M-ary PPM. Therefore, it was found that the SIC/SAC-OCDMA system using PPM technique along with modified prime (MPR) codes used as signature sequence code offers significant improvement over the one without cancellation and it can support up to 103 users at the benchmarking value of bit error rate (BER) = 10-9 with prime number p = 11 while the system without cancellation scheme can support only up to 52 users.

  15. Solar Powered Heat Control System for Cars

    OpenAIRE

    Abin John; Jithin Thomas

    2014-01-01

    It takes times for an air-conditioner to effectively start cooling the passenger compartment in the car. So the passenger of the car will feel the heat in the car extremely before the air-conditioner fully cooling the interior of the car. Excessive heat can also damage an automobile's interior as well as personal property kept in the passenger compartment. So, a system to reduce this excessive heat by pumping out hot air and allowing cooler ambient air to enter the car by mean...

  16. Integrated multiscale simulation of combined heat and power based district heating system

    International Nuclear Information System (INIS)

    Li, Peifeng; Nord, Natasa; Ertesvåg, Ivar Ståle; Ge, Zhihua; Yang, Zhiping; Yang, Yongping

    2015-01-01

    Highlights: • Simulation of power plant, district heating network and heat users in detail and integrated. • Coupled calculation and analysis of the heat and pressure losses of the district heating network. • District heating is not preferable for very low heat load due to relatively high heat loss. • Lower design supply temperatures of the district heating network give higher system efficiency. - Abstract: Many studies have been carried out separately on combined heat and power and district heating. However, little work has been done considering the heat source, the district heating network and the heat users simultaneously, especially when it comes to the heating system with large-scale combined heat and power plant. For the purpose of energy conservation, it is very important to know well the system performance of the integrated heating system from the very primary fuel input to the terminal heat users. This paper set up a model of 300 MW electric power rated air-cooled combined heat and power plant using Ebsilon software, which was validated according to the design data from the turbine manufacturer. Then, the model of heating network and heat users were developed based on the fundamental theories of fluid mechanics and heat transfer. Finally the combined heat and power based district heating system was obtained and the system performances within multiscale scope of the system were analyzed using the developed Ebsilon model. Topics with regard to the heat loss, the pressure drop, the pump power consumption and the supply temperatures of the district heating network were discussed. Besides, the operational issues of the integrated system were also researched. Several useful conclusions were drawn. It was found that a lower design primary supply temperature of the district heating network would give a higher seasonal energy efficiency of the integrated system throughout the whole heating season. Moreover, it was not always right to relate low design

  17. 46 CFR 153.430 - Heat transfer systems; general.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Heat transfer systems; general. 153.430 Section 153.430... Temperature Control Systems § 153.430 Heat transfer systems; general. Each cargo cooling system required by... separated from all other cooling and heating systems; and (c) Allow manual regulation of the system's heat...

  18. Control system for fluid heated steam generator

    Science.gov (United States)

    Boland, J.F.; Koenig, J.F.

    1984-05-29

    A control system for controlling the location of the nucleate-boiling region in a fluid heated steam generator comprises means for measuring the temperature gradient (change in temperature per unit length) of the heating fluid along the steam generator; means for determining a control variable in accordance with a predetermined function of temperature gradients and for generating a control signal in response thereto; and means for adjusting the feedwater flow rate in accordance with the control signal.

  19. The cryogenic photon detection system for the ALPS II experiment. Characterization, optimization and background rejection

    International Nuclear Information System (INIS)

    Bastidon, Noemi Alice Chloe

    2017-01-01

    The search for new fundamental bosons at very low mass is the central objective of the ALPS II experiment which is currently set up at the Deutsches Elektronen-Synchrotron (DESY, Hamburg). This experiment follows the light-shining-through-the-wall concept where photons could oscillate into weakly interacting light bosons in front of a wall and back into photons behind the wall, giving the impression that light can shine through a light tight barrier. In this concept, the background-free detection of near-infrared photons is required to fully exploit the sensitivity of the apparatus. The high efficiency single-photon detection in the near-infrared is challenging and requires a cryogenic detector. In this project, a Transition-Edge Sensor (TES) operated below 100mK will be used to detect single photons. This thesis focuses on the characterization and optimization of the ALPS II detector system including an Adiabatic Demagnetisation Refrigerator (ADR) with its two-stage pulse-tube cooler, two TES detectors and their Superconducting Quantum Interference Devices (SQUIDs) read-out system. Stability of the detection system over time is a priority in the ALPS II experiment. It is in this context that the cooling system has been subjected to many upgrades. In the framework of this thesis, the cooling setup has been studied in detail in order to optimize its cooling performances. Furthermore, the stability of the detector has been studied according to various criteria. Other essential parameters of the ALPS II experiment are its detection efficiency and its background rate. Indeed, the sensitivity of the experiment directly depends on these two characteristics. Both elements have been studied in depth in order to define if the chosen TES detector will meet ALPS IIc specifications.

  20. The cryogenic photon detection system for the ALPS II experiment. Characterization, optimization and background rejection

    Energy Technology Data Exchange (ETDEWEB)

    Bastidon, Noemi Alice Chloe

    2017-01-12

    The search for new fundamental bosons at very low mass is the central objective of the ALPS II experiment which is currently set up at the Deutsches Elektronen-Synchrotron (DESY, Hamburg). This experiment follows the light-shining-through-the-wall concept where photons could oscillate into weakly interacting light bosons in front of a wall and back into photons behind the wall, giving the impression that light can shine through a light tight barrier. In this concept, the background-free detection of near-infrared photons is required to fully exploit the sensitivity of the apparatus. The high efficiency single-photon detection in the near-infrared is challenging and requires a cryogenic detector. In this project, a Transition-Edge Sensor (TES) operated below 100mK will be used to detect single photons. This thesis focuses on the characterization and optimization of the ALPS II detector system including an Adiabatic Demagnetisation Refrigerator (ADR) with its two-stage pulse-tube cooler, two TES detectors and their Superconducting Quantum Interference Devices (SQUIDs) read-out system. Stability of the detection system over time is a priority in the ALPS II experiment. It is in this context that the cooling system has been subjected to many upgrades. In the framework of this thesis, the cooling setup has been studied in detail in order to optimize its cooling performances. Furthermore, the stability of the detector has been studied according to various criteria. Other essential parameters of the ALPS II experiment are its detection efficiency and its background rate. Indeed, the sensitivity of the experiment directly depends on these two characteristics. Both elements have been studied in depth in order to define if the chosen TES detector will meet ALPS IIc specifications.

  1. Competitive solar heating systems for residential buildings

    DEFF Research Database (Denmark)

    Furbo, Simon; Thür, Alexander; Fiedler, Frank

    2005-01-01

    The paper describes the ongoing research project “Competitive solar heating systems for residential buildings”. The aim of the project is to develop competitive solar combisystems which are attractive to buyers. The solar combisystems must be attractive compared to traditional energy systems, both....... In Denmark and Norway the focus is on solar heating/natural gas systems, and in Sweden and Latvia the focus is on solar heating/pellet systems. Additionally, Lund Institute of Technology and University of Oslo are studying solar collectors of various types being integrated into the roof and facade......, are the universities: Technical University of Denmark, Dalarna University, University of Oslo, Riga Technical University and Lund Institute of Technology, as well as the companies: Metro Therm A/S (Denmark), Velux A/S (Denmark), Solentek AB (Sweden) and SolarNor (Norway). The project consists of a number of Ph...

  2. Heat transfer analysis of underground U-type heat exchanger of ground source heat pump system.

    Science.gov (United States)

    Pei, Guihong; Zhang, Liyin

    2016-01-01

    Ground source heat pumps is a building energy conservation technique. The underground buried pipe heat exchanging system of a ground source heat pump (GSHP) is the basis for the normal operation of an entire heat pump system. Computational-fluid-dynamics (CFD) numerical simulation software, ANSYS-FLUENT17.0 have been performed the calculations under the working conditions of a continuous and intermittent operation over 7 days on a GSHP with a single-well, single-U and double-U heat exchanger and the impact of single-U and double-U buried heat pipes on the surrounding rock-soil temperature field and the impact of intermittent operation and continuous operation on the outlet water temperature. The influence on the rock-soil temperature is approximately 13 % higher for the double-U heat exchanger than that of the single-U heat exchanger. The extracted energy of the intermittent operation is 36.44 kw·h higher than that of the continuous mode, although the running time is lower than that of continuous mode, over the course of 7 days. The thermal interference loss and quantity of heat exchanged for unit well depths at steady-state condition of 2.5 De, 3 De, 4 De, 4.5 De, 5 De, 5.5 De and 6 De of sidetube spacing are detailed in this work. The simulation results of seven working conditions are compared. It is recommended that the side-tube spacing of double-U underground pipes shall be greater than or equal to five times of outer diameter (borehole diameter: 180 mm).

  3. Demand modelling for central heating systems

    Energy Technology Data Exchange (ETDEWEB)

    Heller, A.

    2000-07-01

    Most researchers in the field of heat demand estimation have focussed on explaning the load for a given plant based on rather few measurements. This approach is simply the only one adaptable with the very limited data material and limited computer power. This way of dealing with the subject is here called the top-down approach, due to the fact that one tries to explain the load from the overall data. The results of such efforts are discussed in the report, leading to inspiration for own work. Also the significance of the findings to the causes for given heat loads are discussed and summarised. Contrary to the top-down approach applied in literature, a here-called bottom-up approach is applied in this work, describing the causes of a given partial load in detail and combining them to explain the total load for the system. Three partial load 'components' are discussed: 1) Space heating. 2) Hot-Water Consumption. 3) Heat losses in pipe networks. The report is aimed at giving an introduction to these subjects, but at the same time at collecting the previous work done by the author. Space heating is shortly discussed and loads are generated by an advanced simulation model. A hot water consumption model is presented and heat loads, generated by this model, utilised in the overall work. Heat loads due to heat losses in district heating a given a high priority in the current work. Hence a detailed presentation and overview of the subject is given to solar heating experts normally not dealing with district heating. Based on the 'partial' loads generated by the above-mentioned method, an overall load model is built in the computer simulation environment TRNSYS. The final tool is then employed for the generation of time series for heat demand, representing a district heating area. The results are compared to alternative methods for the generation of heat demand profiles. Results form this comparison will be presented. Computerised modelling of systems

  4. Upgrade of ICRF heating system on EAST

    International Nuclear Information System (INIS)

    Chen Gen; Zhao Yanpin; Mao Yuzhou

    2013-01-01

    ICRF (Ion Cyclotron Range of Frequency) heating is an essential heating and current drive tool on EAST (Experimental Advanced Superconducting Tokamak). The high-power steady-state transmitters were designed as a part of research and development of ICRF heating system which aimed at output power of 1.5 MW for 1000 s in a frequency range of 25 to 70 MHz. There are 3 stage power amplifiers for each transmitter. Tube TH525A and TH535 were chosen for drive power amplifier (DPA) and final power amplifier (FPA), respectively. The power supply system of DPA and FPA were upgraded by using reliable PSM high voltage sources, whose response time is less than 5 μs. The ICRF system, which consists of 8 transmitters, will give out more than 10 MW total output power in the future. Four of them have been already fabricated, and another four are under construction. Three liquid stub tuners are used for impedance matching between antennas and transmitters, which can be only tuned shot to shot. There are two fast wave heating antennas which are assembled at I port and B port on EAST. Several projects are in progress including fast response impedance matching, distributed data acquisition and control system and so on for EAST ICRF heating system. (author)

  5. Experimental investigation on an integrated thermal management system with heat pipe heat exchanger for electric vehicle

    OpenAIRE

    Zou, Huiming; Wang, Wei; Zhang, Guiying; Qin, Fei; Tian, Changqing; Yan, Yuying

    2016-01-01

    An integrated thermal management system combining a heat pipe battery cooling/preheating system with the heat pump air conditioning system is presented to fulfill the comprehensive energy utilization for electric vehicles. A test bench with battery heat pipe heat exchanger and heat pump air conditioning for a regular five-chair electric car is set up to research the performance of this integrated system under different working conditions. The investigation results show that as the system is d...

  6. After-heat removing system in FBR type reactor

    International Nuclear Information System (INIS)

    Ohashi, Yukio.

    1990-01-01

    The after-heat removing system of the present invention removes the after heat generated in a reactor core without using dynamic equipments such as pumps or blowers. There are disposed a first heat exchanger for heating a heat medium by the heat in a reactor container and a second heat exchanger situated above the first heat exchanger for spontaneously air-cooling the heat medium. Recycling pipeways connect the first and the second heat exchangers to form a recycling path for the heat medium. Then, since the second heat exchanger for spontaneously air-cooling the heat medium is disposed above the first heat exchanger and they are connected by the recycling pipeways, the heat medium can be circulated spontaneously. Accordingly, dynamic equipments such as pumps or blowers are no more necessary. As a result, the after-heat removing system of the FBR type reactor of excellent safety and reliability can be obtained. (I.S.)

  7. A new energy analysis tool for ground source heat pump systems

    Energy Technology Data Exchange (ETDEWEB)

    Michopoulos, A.; Kyriakis, N. [Process Equipment Design Laboratory, Mechanical Engineering Department, Aristotle University of Thessaloniki, POB 487, 541 24 Thessaloniki (Greece)

    2009-09-15

    A new tool, suitable for energy analysis of vertical ground source heat pump systems, is presented. The tool is based on analytical equations describing the heat exchanged with the ground, developed in Matlab {sup registered} environment. The time step of the simulation can be freely chosen by the user (e.g. 1, 2 h etc.) and the calculation time required is very short. The heating and cooling loads of the building, at the afore mentioned time step, are needed as input, along with the thermophysical properties of the soil and of the ground heat exchanger, the operation characteristic curves of the system's heat pumps and the basic ground source heat exchanger dimensions. The results include the electricity consumption of the system and the heat absorbed from or rejected to the ground. The efficiency of the tool is verified through comparison with actual electricity consumption data collected from an existing large scale ground coupled heat pump installation over a three-year period. (author)

  8. Nonstationary Heat Conduction in Atomic Systems

    Science.gov (United States)

    Singh, Amit K.

    Understanding heat at the atomistic level is an interesting exercises. It is fascinating to note how the vibration of atoms result into thermodynamic concept of heat. This thesis aims to bring insights into different constitutive laws of heat conduction. We also develop a framework in which the interaction of thermostats to the system can be studied and a well known Kapitza effect can be reduced. The thesis also explores stochastic and continuum methods to model the latent heat release in the first order transition of ideal silicon surfaces into dimers. We divide the thesis into three works which are connected to each other: 1. Fourier's law leads to a diffusive model of heat transfer in which a thermal signal propagates infinitely fast and the only material parameter is the thermal conductivity. In micro- and nano-scale systems, non-Fourier effects involving coupled diffusion and wavelike propagation of heat can become important. An extension of Fourier's law to account for such effects leads to a Jeffreys-type model for heat transfer with two relaxation times. In this thesis, we first propose a new Thermal Parameter Identification (TPI) method for obtaining the Jeffreys-type thermal parameters from molecular dynamics simulations. The TPI method makes use of a nonlinear regression-based approach for obtaining the coefficients in analytical expressions for cosine and sine-weighted averages of temperature and heat flux over the length of the system. The method is applied to argon nanobeams over a range of temperature and system sizes. The results for thermal conductivity are found to be in good agreement with standard Green-Kubo and direct method calculations. The TPI method is more efficient for systems with high diffusivity and has the advantage, that unlike the direct method, it is free from the influence of thermostats. In addition, the method provides the thermal relaxation times for argon. Using the determined parameters, the Jeffreys-type model is able to

  9. A neutron Albedo system with time rejection for landmine and IED detection

    Science.gov (United States)

    Kovaltchouk, V. D.; Andrews, H. R.; Clifford, E. T. H.; Faust, A. A.; Ing, H.; McFee, J. E.

    2011-10-01

    A neutron Albedo system has been developed for imaging of buried landmines and improvised explosive devices (IEDs). It involves irradiating the ground with fast neutrons and subsequently detecting the thermalized neutrons that return. A scintillating 6Li loaded ZnS(Ag) screen with a sensitive area of 40 cm×40 cm is used as a thermal neutron detector. Scintillation light is captured by orthogonal arrays of wavelength-shifting fibers placed on either side of the scintillator surface and then transferred to X and Y multi-pixel PMTs. A timing circuit, used with pulsed neutron sources, records the time when a neutron detection takes place relative to an external synchronization pulse from the pulsed source. Experimental tests of the Albedo system performance have been done in a sand box with a 252Cf neutron source (no time gating) and with pulsed D-D (2.6 MeV) neutrons from the Defense R&D Ottawa Van de Graaff accelerator (with time gating). Information contained in the time evolution of the thermal neutron field provided improved detection capability and image reconstruction. The detector design is described and experimental results are discussed.

  10. Improved linearity using harmonic error rejection in a full-field range imaging system

    Science.gov (United States)

    Payne, Andrew D.; Dorrington, Adrian A.; Cree, Michael J.; Carnegie, Dale A.

    2008-02-01

    Full field range imaging cameras are used to simultaneously measure the distance for every pixel in a given scene using an intensity modulated illumination source and a gain modulated receiver array. The light is reflected from an object in the scene, and the modulation envelope experiences a phase shift proportional to the target distance. Ideally the waveforms are sinusoidal, allowing the phase, and hence object range, to be determined from four measurements using an arctangent function. In practice these waveforms are often not perfectly sinusoidal, and in some cases square waveforms are instead used to simplify the electronic drive requirements. The waveforms therefore commonly contain odd harmonics which contribute a nonlinear error to the phase determination, and therefore an error in the range measurement. We have developed a unique sampling method to cancel the effect of these harmonics, with the results showing an order of magnitude improvement in the measurement linearity without the need for calibration or lookup tables, while the acquisition time remains unchanged. The technique can be applied to existing range imaging systems without having to change or modify the complex illumination or sensor systems, instead only requiring a change to the signal generation and timing electronics.

  11. 14 CFR 25.1326 - Pitot heat indication systems.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Pitot heat indication systems. 25.1326....1326 Pitot heat indication systems. If a flight instrument pitot heating system is installed, an indication system must be provided to indicate to the flight crew when that pitot heating system is not...

  12. A simplified heat pump model for use in solar plus heat pump system simulation studies

    DEFF Research Database (Denmark)

    Perers, Bengt; Andersen, Elsa; Nordman, Roger

    2012-01-01

    Solar plus heat pump systems are often very complex in design, with sometimes special heat pump arrangements and control. Therefore detailed heat pump models can give very slow system simulations and still not so accurate results compared to real heat pump performance in a system. The idea here...

  13. Primary energy savings using heat storage for biomass heating systems

    Directory of Open Access Journals (Sweden)

    Mitrović Dejan M.

    2012-01-01

    Full Text Available District heating is an efficient way to provide heat to residential, tertiary and industrial users. The heat storage unit is an insulated water tank that absorbs surplus heat from the boiler. The stored heat in the heat storage unit makes it possible to heat even when the boiler is not working, thus increasing the heating efficiency. In order to save primary energy (fuel, the boiler operates on nominal load every time it is in operation (for the purpose of this research. The aim of this paper is to analyze the water temperature variation in the heat storage, depending on the heat load and the heat storage volume. Heat load is calculated for three reference days, with average daily temperatures from -5 to 5°C. The primary energy savings are also calculated for those days in the case of using heat storage in district heating.[Projekat Ministarstva nauke Republike Srbije, br. TR 33051: The concept of sustainable energy supply of settlements with energy efficient buildings

  14. One-Loop Operation of Primary Heat Transport System in MONJU During Heat Transport System Modifications

    International Nuclear Information System (INIS)

    Goto, T.; Tsushima, H.; Sakurai, N.; Jo, T.

    2006-01-01

    MONJU is a prototype fast breeder reactor (FBR). Modification work commenced in March 2005. Since June 2004, MONJU has changed to one-loop operation of the primary heat transport system (PHTS) with all of the secondary heat transport systems (SHTS) drained of sodium. The purposes of this change are to shorten the modification period and to reduce the cost incurred for circuit trace heating electrical consumption. Before changing condition, the following issues were investigated to show that this mode of operation was possible. The heat loss from the reactor vessel and the single primary loop must exceed the decay heat by an acceptable margin but the capacity of pre-heaters to keep the sodium within the primary vessel at about 200 deg. C must be maintained. With regard to the heat loss and the decay heat, the estimated heat loss in the primary system was in the range of 90-170 kW in one-loop operation, and the calculated decay heat was 21.2 kW. Although the heat input of the primary pump was considered, it was clear that circuit heat loss greatly exceeded the decay heat. As for pre-heaters, effective capacity was less than the heat loss. Therefore, the temperature of the reactor vessel room was raised to reduce the heat loss. One-loop operation of the PHTS was able to be executed by means of these measures. The cost of electrical consumption in the power plant has been reduced by one-loop operation of the PHTS and the modification period was shortened. (authors)

  15. Design of A District Heating System Including The Upgrading of Residual Industrial Waste Heat

    NARCIS (Netherlands)

    Falcao, P.W.; Mesbah, A.; Suherman, M.V.; Wennekes, S.

    2005-01-01

    This study was aimed to evaluate the feasibility of using a waste heat stream from DSM for a District Heating System. A conceptual design was carried out with emphasis on the unit for upgrading the residual waste heat. Having reviewed heat pump technology, mechanical heat pump was found to be the

  16. House-internal heating systems; Husinterna vaermesystem

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Per-Olof; Wollerstrand, Janusz [Lund Univ. (Sweden). Dept. of Heat and Power Engineering

    2005-07-01

    In this report the placement of the circulation-pump in of waterborne radiator systems, as well as their filling and deairation are investigated. The study was done by literature studies and interviews with consultants and companies active on the HVAC-market. It was concluded that different placements of the pump in relationship to the heat exchanger exist, and the arguments for the choice of placement are varying. The main explanation of the choice of placement is that it is based on experience/or by practical reasons. The most important factor influencing the placement of the pump found, was how the pump is situated in relation to the expansion-tank. To maintain pressure in the whole system the expansion-tank should be placed on the suction side of the pump without any intermediate pressure-dropping devices in between. This placement ensures overpressure in the whole radiator-system and reduces the risk of unwanted leak in of air. To avoid cavitation sufficient static pressure on the suction side of the pump is necessary. The pressure increases with the temperature, which must be taken into consideration if the pump is placed on the warm side of the heat-exchanger. From this point of view a placement in the return-pipe from the radiator-system is to be preferred. Before advices for HVAC-branch regarding placement of the circulation-pump in the heating systems can be implemented, it is of big importance to analyse and clearly specify the advantages and disadvantages of a certain placement of the pump. There is a need of directions to get house-internal systems to operate properly together with district heating system. This is especially important when older heating systems with burners and shunt valves are being connected. Filling and deairation of the radiator system is of great importance for the function of the system. A radiator-system with significant level of air remains is difficult to adjust and will not work properly. Air in the radiators leads to

  17. Potentialities and type of integrating nuclear heating stations into district heating systems

    International Nuclear Information System (INIS)

    Munser, H.; Reetz, B.; Schmidt, G.

    1978-01-01

    Technical and economical potentialities of applying nuclear heating stations in district heating systems are discussed considering the conditions of the GDR. Special attention is paid to an optimum combination of nuclear heating stations with heat sources based on organic fuels. Optimum values of the contribution of nuclear heating stations to such combined systems and the economic power range of nuclear heating stations are estimated. Final considerations are concerned with the effect of siting and safety concepts of nuclear heating stations on the structure of the district heating system. (author)

  18. Radiation detector system having heat pipe based cooling

    Science.gov (United States)

    Iwanczyk, Jan S.; Saveliev, Valeri D.; Barkan, Shaul

    2006-10-31

    A radiation detector system having a heat pipe based cooling. The radiation detector system includes a radiation detector thermally coupled to a thermo electric cooler (TEC). The TEC cools down the radiation detector, whereby heat is generated by the TEC. A heat removal device dissipates the heat generated by the TEC to surrounding environment. A heat pipe has a first end thermally coupled to the TEC to receive the heat generated by the TEC, and a second end thermally coupled to the heat removal device. The heat pipe transfers the heat generated by the TEC from the first end to the second end to be removed by the heat removal device.

  19. Feasibility of passive heat removal systems

    Energy Technology Data Exchange (ETDEWEB)

    Ashurko, Yu M [Institute of Physics and Power Engineering, Obninsk (Russian Federation)

    1996-12-01

    This paper presents a review of decay heat removal systems (DHRSs) used in liquid metal-cooled fast reactors (LMFRs). Advantages and the disadvantages of these DHRSs, extent of their passivity and prospects for their use in advanced fast reactor projects are analyzed. Methods of extending the limitations on the employment of individual systems, allowing enhancement in their effectiveness as safety systems and assuring their total passivity are described. (author). 10 refs, 10 figs.

  20. Bivalent heating systems - Potential for savings through system optimisation

    International Nuclear Information System (INIS)

    Good, J.; Jenni, A.; Nussbaumer, T.

    2005-01-01

    This article tales a look at the potential for optimising bivalent heating installations for district heating systems fired with oil and wood. The influence of increases in the price of heating oil as compared to wood fuels is discussed. The authors comment that the proportion of expensive heating oil used in such installations is often too high. Price developments for both classes of fuel in 2005 are discussed. Factors influencing the proportions of oil and wood fuel used are listed and discussed, as is the mode of operation of the district heating systems, their extension and the consumers connected to them. The article provides information on the performance of 30 installations examined. Measures that can be taken to reduce the amount of heating oil used and to increase installation efficiency are presented and discussed

  1. 14 CFR 23.1326 - Pitot heat indication systems.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Pitot heat indication systems. 23.1326... Instruments: Installation § 23.1326 Pitot heat indication systems. If a flight instrument pitot heating system... provided to indicate to the flight crew when that pitot heating system is not operating. The indication...

  2. Characterization of the fetal blood transcriptome and proteome in maternal anti-fetal rejection: evidence of a distinct and novel type of human fetal systemic inflammatory response.

    Science.gov (United States)

    Lee, Joonho; Romero, Roberto; Chaiworapongsa, Tinnakorn; Dong, Zhong; Tarca, Adi L; Xu, Yi; Chiang, Po Jen; Kusanovic, Juan Pedro; Hassan, Sonia S; Yeo, Lami; Yoon, Bo Hyun; Than, Nandor Gabor; Kim, Chong Jai

    2013-10-01

    The human fetus is able to mount a systemic inflammatory response when exposed to microorganisms. This stereotypic response has been termed the 'fetal inflammatory response syndrome' (FIRS), defined as an elevation of fetal plasma interleukin-6 (IL-6). FIRS is frequently observed in patients whose preterm deliveries are associated with intra-amniotic infection, acute inflammatory lesions of the placenta, and a high rate of neonatal morbidity. Recently, a novel form of fetal systemic inflammation, characterized by an elevation of fetal plasma CXCL10, has been identified in patients with placental lesions consistent with 'maternal anti-fetal rejection'. These lesions include chronic chorioamnionitis, plasma cell deciduitis, and villitis of unknown etiology. In addition, positivity for human leukocyte antigen (HLA) panel-reactive antibodies (PRA) in maternal sera can also be used to increase the index of suspicion for maternal anti-fetal rejection. The purpose of this study was to determine (i) the frequency of pathologic lesions consistent with maternal anti-fetal rejection in term and spontaneous preterm births; (ii) the fetal serum concentration of CXCL10 in patients with and without evidence of maternal anti-fetal rejection; and (iii) the fetal blood transcriptome and proteome in cases with a fetal inflammatory response associated with maternal anti-fetal rejection. Maternal and fetal sera were obtained from normal term (n = 150) and spontaneous preterm births (n = 150). A fetal inflammatory response associated with maternal anti-fetal rejection was diagnosed when the patients met two or more of the following criteria: (i) presence of chronic placental inflammation; (ii) ≥80% of maternal HLA class I PRA positivity; and (iii) fetal serum CXCL10 concentration >75th percentile. Maternal HLA PRA was analyzed by flow cytometry. The concentrations of fetal CXCL10 and IL-6 were determined by ELISA. Transcriptome analysis was undertaken after the extraction of total RNA

  3. Dynamic behavior of district heating systems

    International Nuclear Information System (INIS)

    Kunz, J.

    1994-01-01

    The goal of this study is to develop a simulation model of a hot water system taking into account the time dependent phenomena which are important for the operational management of such a system. A state of the art literature review has shown that there is no such model considering all parts from the generation of the heat at the plant to its consumption in the connected buildings so far. First, an exhaustive list of all dynamic phenomena occurring in district heating systems has been drawn and analyzed. Considering this list, this thesis proposes that a model which satisfies the criteria listed above can be developed by superposing four sub-models which are a dynamic model of the heat generation plant, a steady state model of the hydraulic calculation of the distribution network, a dynamic model of the thermal behavior of the network and a dynamic model of the heat consumers. The development of the four sub-models starts from the fundamental conservation equations for fluid systems, i.e. the conservation of mass, momentum and energy. The transformations of those general equations into simple calculation formulas show and justify the hypotheses made in the modeling process. The heat generation plant model itself is a set of sub-models: the models for steam boilers, hot water boilers and heat accumulators which take account of the dynamic evolution of the water temperature by a simple form of the energy conservation equation, as well as the steady state models for circulation pumps and pressurizers. Since the velocities in the network pipes are small, a consideration of steady states is adopted. A network model allowing to calculate the hydraulic variables in every point is adopted from the graph theory. The pressures and flow rates in the network are calculated at discrete time steps and they are considered to be constant for the duration between the time steps. (author) figs., tabs., refs

  4. Modelling of Thermal Behavior of Borehole Heat Exchangers of Geothermal Heat Pump Heating Systems

    Directory of Open Access Journals (Sweden)

    Gornov V.F.

    2016-01-01

    Full Text Available This article reports results of comparing the accuracy of the software package “INSOLAR.GSHP.12”, modeling non-steady thermal behavior of geothermal heat pump heating systems (GHCS and of the similar model “conventional” using finite difference methods for solving spatial non-steady problems of heat conductivity. The software package is based on the method of formulating mathematical models of thermal behavior of ground low-grade heat collection systems developed by INSOLAR group of companies. Equations of mathematical model of spatial non-steady thermal behavior of ground mass of low-grade heat collection system obtained by the developed method have been solved analytically that significantly reduced computing time spent by the software complex “INSOLAR.GSHP.12” for calculations. The method allows to turn aside difficulties associated with information uncertainty of mathematical models of the ground thermal behavior and approximation of external factors affecting the ground. Use of experimentally obtained information about the ground natural thermal behavior in the software package allows to partially take into account the whole complex of factors (such as availability of groundwater, their velocity and thermal behavior, structure and arrangement of ground layers, the Earth’s thermal background, precipitation, phase transformations of moisture in the pore space, and more, significantly influencing the formation of thermal behavior of the ground mass of a low-grade geothermal heat collection system. Numerical experiments presented in the article confirmed the high convergence of the results obtained through the software package “INSOLAR.GSHP.12” with solutions obtained by conventional finite-difference methods.

  5. Recovery act. Development of design and simulation tool for hybrid geothermal heat pump system

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shaojie [ClimateMaster, Inc., Oklahoma City, OK (United States); Ellis, Dan [ClimateMaster, Inc., Oklahoma City, OK (United States)

    2014-05-29

    The ground source heat pump (GSHP) system is one of the most energy efficient HVAC technologies in the current market. However, the heat imbalance may degrade the ability of the ground loop heat exchanger (GLHX) to absorb or reject heat. The hybrid GSHP system, which combines a geothermal well field with a supplemental boiler or cooling tower, can balance the loads imposed on the ground loop heat exchangers to minimize its size while retaining superior energy efficiency. This paper presents a recent simulation-based study with an intention to compare multiple common control strategies used in hybrid GSHP systems, including fixed setpoint, outside air reset, load reset, and wetbulb reset. A small office in Oklahoma City conditioned by a hybrid GSHP system was simulated with the latest version of eQUEST 3.7[1]. The simulation results reveal that the hybrid GSHP system has the excellent capability to meet the cooling and heating setpoints during the occupied hours, balance thermal loads on the ground loop, as well as improve the thermal comfort of the occupants with the undersized well field.

  6. Optimal Control of Solar Heating System

    KAUST Repository

    Huang, Bin-Juine; Ton, Wei-Zhe; Wu, Chen-Chun; Ko, Hua-Wei; Chang, Hsien-Shun; Yen, Rue-Her

    2017-01-01

    was used in the feedback design of MPPT. The field test results show that the pumping power is 89 W at Qs = 13.7 kW and IT = 892 W/m2. A very high electrical COP of the solar heating system (Qs/Wp = 153.8) is obtained.

  7. Explosion-protected electric heating systems

    Energy Technology Data Exchange (ETDEWEB)

    Elsner, H

    1984-02-01

    Different constructions of explosion-protected heating systems are described concerning the different types of protection, the service conditions, the installation and the surveillance devices. Interpretations and regulations derived from the VDE Standards are discussed and their relation to the European Standards EN 50014 ... 50020 is considered in a survey.

  8. A heat pipe solar collector system for winter heating in Zhengzhou city, China

    Directory of Open Access Journals (Sweden)

    Zheng Hui-Fan

    2017-01-01

    Full Text Available A heat pipe solar collector system for winter heating is investigated both experimentally and theoretically. The hourly heat collecting capacity, water temperature and contribution rate of solar collector system based on Zhengzhou city typical sunshine are calculated. The study reveals that the heat collecting capacity and water temperature increases initially and then decreases, and the solar collector system can provide from 40% to 78% heating load for a 200 m2 villa with in Zhengzhou city from November to March.

  9. Inverse Problem and Variation Method to Optimize Cascade Heat Exchange Network in Central Heating System

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yin; WEI Zhiyuan; ZHANG Yinping; WANG Xin

    2017-01-01

    Urban heating in northern China accounts for 40% of total building energy usage.In central heating systems,heat is often transfened from heat source to users by the heat network where several heat exchangers arc installed at heat source,substations and terminals respectively.For given overall heating capacity and heat source temperarure,increasing the terminal fluid temperature is an effective way to improve the thermal performance of such cascade heat exchange network for energy saving.In this paper,the mathematical optimization model of the cascade heat exchange network with three-stage heat exchangers in series is established.Aim at maximizing the cold fluid temperature for given hot fluid temperature and overall heating capacity,the optimal heat exchange area distribution and the medium fluids' flow rates are determined through inverse problem and variation method.The preliminary results show that the heat exchange areas should be distributed equally for each heat exchanger.It also indicates that in order to improve the thernmal performance of the whole system,more heat exchange areas should be allocated to the heat exchanger where flow rate difference between two fluids is relatively small.This work is important for guiding the optimization design of practical cascade heating systems.

  10. Swedish Homeowners' Attitude towards Water-Based Heating Systems

    Energy Technology Data Exchange (ETDEWEB)

    Gustavsson, L; Mahapatra, K [Mid Sweden Univ., Ecotechnology, SE-831 25 Oestersund (Sweden)

    2008-10-15

    In 2004 and 2007, we conducted questionnaire surveys of 1,500 randomly selected Swedish homeowners of detached houses to understand their attitude towards adopting an innovative heating system (IHS). The results showed that there was no substantial change in homeowners' attitude towards IHSs. More than 80% of the respondents did not intend to install a new heating system. Economic aspects and functional reliability were the most important factors in the respondents' choice of heating system while environmental factors were of less importance. Installers were the most frequently consulted source of information on heating systems. Respondents perceived the relative advantage of pellet boilers over oil or electricity-based heating systems, but bedrock heat pump system was ranked higher than pellet heating system in every aspect except for investment cost. Pellet heating system has advantages with respect to investment cost. District heating system was considered as most functionally reliable and automatic. Keywords: Heat sector, socio-economic aspects, market implementation

  11. Characterization of a solar photovoltaic/loop-heat-pipe heat pump water heating system

    International Nuclear Information System (INIS)

    Zhang, Xingxing; Zhao, Xudong; Xu, Jihuan; Yu, Xiaotong

    2013-01-01

    Highlights: ► Describing concept and operating principle of the PV/LHP heat pump water heating system. ► Developing a numerical model to evaluate the performance of the system. ► Experimental testing of the prototype system. ► Characterizing the system performance using parallel comparison between the modelling and experimental results. ► Investigating the impact of the operating conditions to the system’s performance. -- Abstract: This paper introduced the concept, potential application and benefits relating to a novel solar photovoltaic/loop-heat-pipe (PV/LHP) heat pump system for hot water generation. On this basis, the paper reported the process and results of characterizing the performance of such a system, which was undertaken through dedicated thermo-fluid and energy balance analyses, computer model development and operation, and experimental verification and modification. The fundamental heat transfer, fluid flow and photovoltaic governing equations were applied to characterize the energy conversion and transfer processes occurring in each part and whole system layout; while the energy balance approach was utilized to enable inter-connection and resolution of the grouped equations. As a result, a dedicated computer model was developed and used to calculate the operational parameters, optimise the geometrical configurations and sizes, and recommend the appropriate operational condition relating to the system. Further, an experimental rig was constructed and utilized to acquire the relevant measurement data that thus enabled the parallel comparison between the simulation and experiment. It is concluded that the testing and modelling results are in good agreement, indicating that the model has the reasonable accuracy in predicting the system’s performance. Under the given experimental conditions, the electrical, thermal and overall efficiency of the PV/LHP module were around 10%, 40% and 50% respectively; whilst the system’s overall performance

  12. Combined heat and power solar system

    International Nuclear Information System (INIS)

    Anon

    2000-01-01

    An Australian-designed photovoltaic (PV) power system that also supplies hot water is close to commercial release. PVs have been around for decades and solar concentrators have been efficiently heating water for nearly a century. The Australian National University, Department of Engineering - Centre for Sustainable Energy systems (CSES), has designed a domestic scale modular system that not only generates electricity but also provides concentrated thermal energy to heat water for a Solahart hot water system and is designed to be deployed into small to medium scale applications such as hospitals, schools and dwellings with an easily assembled galvanised steel frame. A market research was carried out and is envisaged that at least 7,500 units will be installed annually by the year 2005 and up to 25,000 units by 2008

  13. Energy Savings for Solar Heating Systems

    DEFF Research Database (Denmark)

    Thür, Alexander; Furbo, Simon; Shah, Louise Jivan

    2004-01-01

    , various simulations of solar heating systems were done for different hot water demands and collector sizes. The result shows that the potential of fuel reduction can be much higher than the solar gain of the solar thermal system. For some conditions the fuel reduction can be up to the double of the solar......In this paper the realistic behaviour and efficiency of heating systems were analysed, based on long term monitoring projects. Based on the measurements a boiler model was evaluated. Comparisons of measured and calculated fuel consumptions showed a good degree of similarity. With the boiler model...... gain due to a strong increase of the system efficiency. As the monitored boilers were not older than 3 years, it can be assumed that the saving potential with older boilers could be even higher than calculated in this paper....

  14. Energy Savings for Solar Heating Systems

    DEFF Research Database (Denmark)

    Thür, Alexander; Furbo, Simon; Shah, Louise Jivan

    2006-01-01

    showed a good degree of similarity. With the boiler model, various simulations of solar domestic hot water heating systems were done for different hot water demands and collector sizes. The result shows that the potential of fuel reduction can be much higher than the solar gain of the solar thermal...... system. For some conditions the fuel reduction can be up to the double of the solar gain due to a strong increase of the system efficiency. As the monitored boilers were not older than 3 years, it can be assumed that the saving potential with older boilers could be even higher than calculated......In this paper the realistic behaviour and efficiency of heating systems were analysed, based on long term monitoring projects. Based on the measurements a boiler model used to calculate the boiler efficiency on a monthly basis was evaluated. Comparisons of measured and calculated fuel consumptions...

  15. Cooperative heat transfer and ground coupled storage system

    Science.gov (United States)

    Metz, P.D.

    A cooperative heat transfer and ground coupled storage system wherein collected solar heat energy is ground stored and permitted to radiate into the adjacent ground for storage therein over an extended period of time when such heat energy is seasonally maximally available. Thereafter, when said heat energy is seasonally minimally available and has propagated through the adjacent ground a substantial distance, the stored heat energy may be retrieved by a circumferentially arranged heat transfer means having a high rate of heat transfer.

  16. A comparison of the heat and mechanical energy of a heat-pump wind turbine system

    Energy Technology Data Exchange (ETDEWEB)

    Aybek, A.; Arslan, S.; Yildiz, E.; Atik, K. [University of Kahramanmaras (Turkey). Dept. of Agricultural Machinery

    2000-07-01

    While a variety of applications of wind energy have been studied in Turkey, no significant efforts have been made to utilize heat pumps for heat generation. The use of heat pumps in wind energy systems is worth considering because of the high efficiency of heat production. In this study, a directly coupled wind turbine-heat pump system was designed, constructed, and tested. Measurements determined the mechanical energy of the rotors of the wind turbine and the heat energy generated by the heat pump driven by the rotor shaft. Based on the comparisons between the power generated by the heat pump and the power of the Savonius rotors, it was found that the heat energy gained by the heat pump was four times greater than the mechanical energy obtained from the turbine. It was suggested that heat pumps could be efficiently used in wind energy systems. (Author)

  17. 46 CFR 154.178 - Contiguous hull structure: Heating system.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Contiguous hull structure: Heating system. 154.178... Equipment Hull Structure § 154.178 Contiguous hull structure: Heating system. The heating system for transverse and longitudinal contiguous hull structure must: (a) Be shown by a heat load calculation to have...

  18. 14 CFR 125.206 - Pitot heat indication systems.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Pitot heat indication systems. 125.206... Equipment Requirements § 125.206 Pitot heat indication systems. (a) Except as provided in paragraph (b) of... flight instrument pitot heating system unless the airplane is equipped with an operable pitot heat...

  19. 14 CFR 135.158 - Pitot heat indication systems.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Pitot heat indication systems. 135.158... Equipment § 135.158 Pitot heat indication systems. (a) Except as provided in paragraph (b) of this section... instrument pitot heating system unless the airplane is also equipped with an operable pitot heat indication...

  20. Improved Design Tools for Surface Water and Standing Column Well Heat Pump Systems (DE-EE0002961)

    Energy Technology Data Exchange (ETDEWEB)

    Spitler, J. D.; Culling, J. R.; Conjeevaram, K.; Ramesh, M.; Selvakumar, M.

    2012-11-30

    Ground-source heat pump (GSHP) systems are perhaps the most widely used “sustainable” heating and cooling systems, with an estimated 1.7 million installed units with total installed heating capacity on the order of 18 GW. They are widely used in residential, commercial, and institutional buildings. Standing column wells (SCW) are one form of ground heat exchanger that, under the right geological conditions, can provide excellent energy efficiency at a relatively low capital cost. Closed-loop surface water heat pump (SWHP) systems utilize surface water heat exchangers (SWHE) to reject or extract heat from nearby surface water bodies. For building near surface water bodies, these systems also offer a high degree of energy efficiency at a low capital cost. However, there have been few design tools available for properly sizing standing column wells or surface water heat exchangers. Nor have tools for analyzing the energy consumption and supporting economics-based design decisions been available. The main contributions of this project lie in providing new tools that support design and energy analysis. These include a design tool for sizing surface water heat exchangers, a design tool for sizing standing column wells, a new model of surface water heat pump systems implemented in EnergyPlus and a new model of standing column wells implemented in EnergyPlus. These tools will better help engineers design these systems and determine the economic and technical feasibility.

  1. A feasible system integrating combined heating and power system with ground-source heat pump

    International Nuclear Information System (INIS)

    Li, HongQiang; Kang, ShuShuo; Yu, Zhun; Cai, Bo; Zhang, GuoQiang

    2014-01-01

    A system integrating CHP (combined heating and power) subsystem based on natural gas and GSHP (ground-source heat pump subsystem) in series is proposed. By help of simulation software-Aspen Plus, the energy performance of a typical CHP and GSHP-S (S refers to ‘in series’) system was analyzed. The results show that the system can make a better use of waste heat in flue gas from CHP (combined heating and power subsystem). The total system energy efficiency is 123% and the COP (coefficient of performance) of GSHP (ground-source heat pump) subsystem is 5.3. A referenced CHP and GSHP-P (P refers to ‘in parallel’) system is used for comparison; its total system energy efficiency and COP of GSHP subsystem are 118.6% and 3.5 respectively. Compared with CHP and GSHP-P system with different operating parameters, the CHP and GSHP-S system can increase total system energy efficiency by 0.8–34.7%, with related output ratio of heat to power (R) from 1.9 to 18.3. Furthermore, the COP of GSHP subsystem can be increased between the range 3.6 and 6, which is much higher than that in conventional CHP and GSHP-P system. This study will be helpful for other efficient GSHP systems integrating if there is waste heat or other heat resources with low temperature. - Highlights: • CHP system based on natural gas and ground source heat pump. • The new system can make a better utilization of waste heat in flue gas by a special way. • The proposed system can realize energy saving potential from 0.8 to 34.7%. • The coefficient of performance of ground source heat pump subsystem is significantly improved from 3.5 to 3.6–6. • Warm water temperature and percentage of flue gas used to reheat are key parameters

  2. Efficiency of the heat pump cooperating with various heat sources in monovalent and bivalent systems

    Energy Technology Data Exchange (ETDEWEB)

    Kurpaska, S.; Latala, H. [Krakow Univ. of Agriculture, Krakow (Poland). Inst. of Agricultural Engineering and Computer Science

    2010-07-01

    This paper reported on a study that tested the efficiency of compressor heat pumps cooperating with various types of lower heat sources such as horizontal ground heat exchangers, vertical exchangers and sources operating in the bivalent system. The system for receiving energy consisted of a traditional heating system and liquid-air exchangers. The study identified a strong relationship between the heating efficiency of the analysed systems and temperature inside the structure. The study showed that the bivalent system was fully capable of meeting a heat requirement of about 1 MJ -2.

  3. Study of an innovative ejector heat pump-boosted district heating system

    International Nuclear Information System (INIS)

    Zhang, Bo; Wang, Yuanchao; Kang, Lisha; Lv, Jinsheng

    2013-01-01

    An Ejector heat pump-boosted District Heating (EDH) system is proposed to improve the heating capacity of existing district heating systems with Combined Heat and Power (CHP). In the EDH, two ejector heat pumps are installed: a primary heat pump (HP 1 ) at the heating station and a secondary heat pump (HP 2 ) at the heating substation. With the EDH, the low-grade waste heat from circulating cooling water in the CHP is recycled and the temperature difference between the water supply and the return of the primary heating network is increased. A thermodynamic model was provided. An experimental study was carried out for both HP 1 and HP 2 to verify the predicting performance. The results show that the COP of HP 1 can reach 1.5–1.9, and the return water temperature of the primary heating network could be decreased to 35 °C with HP 2 . A typical case study for the EDH was analyzed. -- Highlights: • An ejector heat pump-boosted district heating (EDH) is proposed. • The 1st ejector heat pump in EDH recycles heat from cooling water of the CHP. • The 2nd ejector heat pump in EDH boosts the thermal energy utilization of the primary heating network. • Modeling and experimental studies are presented

  4. An optimisation framework for thermal energy storage integration in a residential heat pump heating system

    International Nuclear Information System (INIS)

    Renaldi, R.; Kiprakis, A.; Friedrich, D.

    2017-01-01

    Highlights: • An integrated framework for the optimal design of low carbon heating systems. • Development of a synthetic heat demand model with occupancy profiles. • Linear model of a heat pump with thermal energy storage heating system. • Evaluation of domestic heating system from generally available input parameters. • The lower carbon heating system can be cost competitive with conventional systems. - Abstract: Domestic heating has a large share in the UK total energy consumption and significant contribution to the greenhouse gas emissions since it is mainly fulfilled by fossil fuels. Therefore, decarbonising the heating system is essential and an option to achieve this is by heating system electrification through heat pumps (HP) installation in combination with renewable power generation. A potential increase in performance and flexibility can be achieved by pairing HP with thermal energy storage (TES), which allows the shifting of heat demand to off peak periods or periods with surplus renewable electricity. We present a design and operational optimisation model which is able to assess the performance of HP–TES relative to conventional heating systems. The optimisation is performed on a synthetic heat demand model which requires only the annual heat demand, temperature and occupancy profiles. The results show that the equipment and operational cost of a HP system without TES are significantly higher than for a conventional system. However, the integration of TES and time-of-use tariffs reduce the operational cost of the HP systems and in combination with the Renewable Heating Incentive make the HP systems cost competitive with conventional systems. The presented demand model and optimisation procedure will enable the design of low carbon district heating systems which integrate the heating system with the variable renewable electricity supply.

  5. Solar Water Heating System for Biodiesel Production

    Directory of Open Access Journals (Sweden)

    Syaifurrahman

    2018-01-01

    Full Text Available Nowadays, electricity become very expensive thing in some remote areas. Energy from solar panels give the solution as renewable energy that is environment friendly. West Borneo is located on the equator where the sun shines for almost 10-15 hours/day. Solar water heating system which is includes storage tank and solar collections becomes a cost-effective way to generate the energy. Solar panel heat water is delivered to water in storage tank. Hot water is used as hot fluid in biodiesel jacked reactor. The purposes of this research are to design Solar Water Heating System for Biodiesel Production and measure the rate of heat-transfer water in storage tank. This test has done for 6 days, every day from 8.30 am until 2.30 pm. Storage tank and collection are made from stainless steel and polystyrene a well-insulated. The results show that the heater can be reach at 50ºC for ±2.5 hours and the maximum temperature is 62ºC where the average of light intensity is 1280 lux.

  6. Solar Water Heating System for Biodiesel Production

    Science.gov (United States)

    Syaifurrahman; Usman, A. Gani; Rinjani, Rakasiwi

    2018-02-01

    Nowadays, electricity become very expensive thing in some remote areas. Energy from solar panels give the solution as renewable energy that is environment friendly. West Borneo is located on the equator where the sun shines for almost 10-15 hours/day. Solar water heating system which is includes storage tank and solar collections becomes a cost-effective way to generate the energy. Solar panel heat water is delivered to water in storage tank. Hot water is used as hot fluid in biodiesel jacked reactor. The purposes of this research are to design Solar Water Heating System for Biodiesel Production and measure the rate of heat-transfer water in storage tank. This test has done for 6 days, every day from 8.30 am until 2.30 pm. Storage tank and collection are made from stainless steel and polystyrene a well-insulated. The results show that the heater can be reach at 50ºC for ±2.5 hours and the maximum temperature is 62ºC where the average of light intensity is 1280 lux.

  7. Early maternal rejection affects the development of monoaminergic systems and adult abusive parenting in rhesus macaques (Macaca mulatta).

    Science.gov (United States)

    Maestripieri, Dario; Higley, J Dee; Lindell, Stephen G; Newman, Timothy K; McCormack, Kai M; Sanchez, Mar M

    2006-10-01

    This study investigated the effects of early exposure to variable parenting style and infant abuse on cerebrospinal fluid (CSF) concentrations of monoamine metabolites and examined the role of monoaminergic function in the intergenerational transmission of infant abuse in rhesus monkeys (Macaca mulatta). Forty-three infants reared by their biological mothers and 15 infants that were cross-fostered at birth and reared by unrelated mothers were followed longitudinally through their first 3 years of life or longer. Approximately half of the infants were reared by abusive mothers and half by nonabusive controls. Abused infants did not differ from controls in CSF concentrations of 5-hydroxyindoleacetic acid (5-HIAA), homovanillic acid (HVA), or 3-methoxy-4-hydroxyphenylgycol (MHPG). Abused infants, however, were exposed to higher rates of maternal rejection, and highly rejected infants had lower CSF 5-HIAA and HVA than low-rejection infants. The abused females who became abusive mothers in adulthood had lower CSF 5-HIAA than the abused females who did not. A similar trend was also observed among the cross-fostered females, suggesting that low serotonergic function resulting from early exposure to high rates of maternal rejection plays a role in the intergenerational transmission of infant abuse.

  8. District heating and heat storage using the solution heat of an ammonia/water system

    International Nuclear Information System (INIS)

    Taube, M.; Peier, W.; Mayor, J.C.

    1976-01-01

    The article describes a model for the optimum use of the heat energy generated in a nuclear power station for district heating and heat storage taking account of the electricity and heat demand varying with time. (HR/AK) [de

  9. Intermetallic Al-, Fe-, Co- and Ni-Based Thermal Barrier Coatings Prepared by Cold Spray for Applications on Low Heat Rejection Diesel Engines

    Science.gov (United States)

    Leshchinsky, E.; Sobiesiak, A.; Maev, R.

    2018-02-01

    Conventional thermal barrier coating (TBC) systems consist of a duplex structure with a metallic bond coat and a ceramic heat insulating topcoat. They possess the desired low thermal conductivity, but at the same time they are very brittle and sensitive to thermal shock and thermal cycling due to the inherently low coefficient of thermal expansion. Recent research activities are focused on the developing of multilayer TBC structures obtained using cold spraying and following annealing. Aluminum intermetallics have demonstrated thermal and mechanical properties that allow them to be used as the alternative TBC materials, while the intermetallic layers can be additionally optimized to achieve superior thermal physical properties. One example is the six layer TBC structure in which cold sprayed Al-based intermetallics are synthesized by annealing in nitrogen atmosphere. These multilayer coating systems demonstrated an improved thermal fatigue capability as compared to conventional ceramic TBC. The microstructures and properties of the coatings were characterized by SEM, EDS and mechanical tests to define the TBC material properties and intermetallic formation mechanisms.

  10. Solar system for domestic hot water and space heating

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, W. [Arbeitsgemeinschaf Erneubare Energie, Gleisdorf (Austria)

    1997-12-31

    The solar thermal markets, different types of solar systems for hot water and space heating, the dimensioning and the components of solar heating systems, the properties of the systems are reviewed in this presentation

  11. Solar system for domestic hot water and space heating

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, W [Arbeitsgemeinschaf Erneubare Energie, Gleisdorf (Austria)

    1998-12-31

    The solar thermal markets, different types of solar systems for hot water and space heating, the dimensioning and the components of solar heating systems, the properties of the systems are reviewed in this presentation

  12. Transient heat pipe investigations for space power systems

    International Nuclear Information System (INIS)

    Merrigan, M.A.; Keddy, E.S.; Sena, J.T.

    1985-01-01

    A 4-meter long, high temperature, high power, molybdenum-lithium heat pipe has been fabricated and tested in transient and steady state operation at temperatures to 1500 K. Maximum power throughput during the tests was approximately 37 kW/cm 2 for the 1.4 cm diameter vapor space of the annular wick heat pipe. The evaporator flux density for the tests was 150.0 W/cm 2 over a length of 40 cm. Condenser length was approximately 3.0 m with radiant heat rejection from the condenser to a coaxial, water cooled radiation calorimeter. A variable radiation shield, controllable from the outside of the vacuum enclosure, was used to vary the load on the heat pipe during the tests. 1 ref., 9 figs

  13. Fuel cell heat utilization system; Nenryo denchi netsuriyo sochi

    Energy Technology Data Exchange (ETDEWEB)

    Urata, T. [Tokyo (Japan); Omura, T. [Tokyo (Japan)

    1995-07-04

    In the conventional fuel cell heat utilization system, the waste heat is recovered to be utilized by either the waste heat recovery heat exchanger or the waste heat recovery steam. In the employment of the waste heat recovery heat exchanger system, however, the utility value is decreased when the temperature of the waste heat is lowered. Contrarily, in the employment of the waste heat recovery steam system, the supplementary water requirement is increased corresponding to the amount of waste heat recovery steam, resulting in the cost increase for water treatment. This invention solves the problem. In the invented fuel cell heat utilization system, a pressurized water from the steam separator is introduced into the second circuit to utilize directly the heat in the heat utilization system without employing the heat exchanger. If a blowdown valve is installed between the second circuit heat utilization system and the steam separator, the heat loss due to the blowdown can be reduced, since the low temperature water is blown down after being utilized in the heat utilization system. 4 figs.

  14. Heat pipe cooling system for underground, radioactive waste storage tanks

    International Nuclear Information System (INIS)

    Cooper, K.C.; Prenger, F.C.

    1980-02-01

    An array of 37 heat pipes inserted through the central hole at the top of a radioactive waste storage tank will remove 100,000 Btu/h with a heat sink of 70 0 F atmospheric air. Heat transfer inside the tank to the heat pipe is by natural convection. Heat rejection to outside air utilizes a blower to force air past the heat pipe condenser. The heat pipe evaporator section is axially finned, and is constructed of stainless steel. The working fluid is ammonia. The finned pipes are individually shrouded and extend 35 ft down into the tank air space. The hot tank air enters the shroud at the top of the tank and flows downward as it is cooled, with the resulting increased density furnishing the pressure difference for circulation. The cooled air discharges at the center of the tank above the sludge surface, flows radially outward, and picks up heat from the radioactive sludge. At the tank wall the heated air rises and then flows inward to comple the cycle

  15. A central solar-industrial waste heat heating system with large scale borehole thermal storage

    NARCIS (Netherlands)

    Guo, F.; Yang, X.; Xu, L.; Torrens, I.; Hensen, J.L.M.

    2017-01-01

    In this paper, a new research of seasonal thermal storage is introduced. This study aims to maximize the utilization of renewable energy source and industrial waste heat (IWH) for urban district heating systems in both heating and non-heating seasons through the use of large-scale seasonal thermal

  16. Ohmic Heating System for the TFTR Tokamak

    International Nuclear Information System (INIS)

    Petree, F.; Cassel, R.

    1977-01-01

    The TFTR Ohmic Heating (OH) System will apply 140,000 volt impulses upon the OH coils to start the plasma. In order to reduce the voltage stress to ground on the OH coils to 12 kV without changing the magnetic field induced by the OH system in the plasma, six d-c current interrupters will be applied to six entry points in the OH coil system. And in order to impart a nearly rectangular shape to these impulses, the voltage determining elements will be nonlinear resistances placed in parallel with the interrupters. These nonlinear resistors, made of semiconducting material, are not normally used in repetitive or continuous duty, and their proper functioning is crucial to the reliable operation of the system. The system described herein, is being revised owing to the impact of revisions to the Toroidal Field Coil System, and to refinements to the OH System design

  17. Study on the simulation of heat pump heating and cooling systems to hospital building

    International Nuclear Information System (INIS)

    Choi, Young Don; Han, Seong Ho; Cho, Sung Hwan; Kim, Du Sung; Um, Chul Jun

    2008-01-01

    In Korea, air source heat pump system is less efficient than conventional heat source facilities, because the air temperature in winter season is so low that COP of air source heat pump system drops below 3.0. Therefore, the study on the application of heat pump heating and cooling systems is crucial for the efficient popularization of heat pump. In this work, we present the dynamic analysis of energy consumption for the large hospital building by heat resistance-capacitance method. The system simulation of water storage air source heat pump is additionally performed by changing sizes and locations of the hospital building. The computed results show that energy cost of water storage air source heat pump is low, so it is more economical than absorption chiller and heater

  18. WASTE HEAT RECOVERY IN HEAT PUMP SYSTEMS: SOLUTION TO REDUCE GLOBAL WARMING

    Directory of Open Access Journals (Sweden)

    Y. Baradey

    2015-11-01

    Full Text Available Energy conversion technologies, where waste heat recovery systems are included, have received significant attention in recent years due to reasons that include depletion of fossil fuel, increasing oil prices, changes in climatic conditions, and global warming. For low temperature applications, there are many sources of thermal waste heat, and several recovery systems and potential useful applications have been proposed by researchers [1-4]. In addition, many types of equipment are used to recover waste thermal energy from different systems at low, medium, and high temperature applications, such as heat exchangers, waste heat recovery boiler, thermo-electric generators, and recuperators. In this paper, the focus is on waste heat recovery from air conditioners, and an efficient application of these energy resources. Integration of solar energy with heat pump technologies and major factors that affect the feasibility of heat recovery systems have been studied and reviewed as well. KEYWORDS: waste heat recovery; heat pump.

  19. Heating systems with PLC and frequency control

    International Nuclear Information System (INIS)

    Abdallah, Salah; Abu-Mallouh, Riyad

    2008-01-01

    In this work, medium capacity controlled heating system is designed and constructed. The programming method of control of heating process is achieved by means of integrated programmable logic controller (PLC) and frequency inverter (FI). The PLC main function is to determine the required temperatures levels and the related time intervals of the heating hold time in the furnace. FI is used to control the dynamic change of temperature between various operating points. The designed system shows the capability for full control of temperature from zero to maximum for any required range of time in case of increasing or decreasing the temperature. All variables of the system will be changed gradually until reaching their needed working points. An experimental study was performed to investigate the effect of tempering temperature and tempering time on hardness and fatigue resistance of 0.4% carbon steel. It was found that increasing tempering temperature above 550 deg. C or tempering time decreases the hardness of the material. It was also found that there is a maximum number of cycles to which the specimen can survive what ever the applied load was

  20. Optimal Ground Source Heat Pump System Design

    Energy Technology Data Exchange (ETDEWEB)

    Ozbek, Metin [Environ Holdings Inc., Princeton, NJ (United States); Yavuzturk, Cy [Univ. of Hartford, West Hartford, CT (United States); Pinder, George [Univ. of Vermont, Burlington, VT (United States)

    2015-04-01

    Despite the facts that GSHPs first gained popularity as early as the 1940’s and they can achieve 30 to 60 percent in energy savings and carbon emission reductions relative to conventional HVAC systems, the use of geothermal energy in the U.S. has been less than 1 percent of the total energy consumption. The key barriers preventing this technically-mature technology from reaching its full commercial potential have been its high installation cost and limited consumer knowledge and trust in GSHP systems to deliver the technology in a cost-effective manner in the market place. Led by ENVIRON, with support from University Hartford and University of Vermont, the team developed and tested a software-based a decision making tool (‘OptGSHP’) for the least-cost design of ground-source heat pump (‘GSHP’) systems. OptGSHP combines state of the art optimization algorithms with GSHP-specific HVAC and groundwater flow and heat transport simulation. The particular strength of OptGSHP is in integrating heat transport due to groundwater flow into the design, which most of the GSHP designs do not get credit for and therefore are overdesigned.

  1. Optimization of heat supply systems employing nuclear power plants

    International Nuclear Information System (INIS)

    Urbanek, J.

    1988-01-01

    Decision making on the further development of heat supply systems requires optimization of the parameters. In particular, meeting the demands of peak load ranges is of importance. The heat supply coefficient α and the annual utilization of peak load equipment τ FS have been chosen as the characteristic quantities to describe them. The heat price at the consumer, C V , offers as the optimization criterion. The transport distance, temperature spread of the heating water, and different curves of annual variation of heat consumption on heat supply coefficient and heat price at the consumer. A comparison between heat supply by nuclear power plants and nuclear heating stations verifies the advantage of combined heat and power generation even with longer heat transport distances as compared with local heat supply by nuclear district heating stations based on the criterion of minimum employment of peak load boilers. (author)

  2. Efficient heat recovery: Integrated circuit systems and heat pipes; Gezielte Waermerueckgewinnung: KV-Systeme und Waermerohr

    Energy Technology Data Exchange (ETDEWEB)

    Kaup, C. [Howatherm, Bruecken (Germany)

    1995-09-18

    Integrated circuit systems and heat pipes are both known to be low-efficiency systems, but this shortcoming can be eliminated by constructive measures. (orig.) [Deutsch] Die beiden Verfahren - Kreislaufverbundsystem und das Waermerohr - sind als WRG-Systeme mit geringen Wirkungsgraden bekannt. Doch dieser Nachteil kann durch spezielle Konstruktionsmassnahmen eliminiert werden. (orig.)

  3. Preemptive scheduling with rejection

    NARCIS (Netherlands)

    Hoogeveen, H.; Skutella, M.; Woeginger, Gerhard

    2003-01-01

    We consider the problem of preemptively scheduling a set of n jobs on m (identical, uniformly related, or unrelated) parallel machines. The scheduler may reject a subset of the jobs and thereby incur job-dependent penalties for each rejected job, and he must construct a schedule for the remaining

  4. Preemptive scheduling with rejection

    NARCIS (Netherlands)

    Hoogeveen, J.A.; Skutella, M.; Woeginger, G.J.; Paterson, M.

    2000-01-01

    We consider the problem of preemptively scheduling a set of n jobs on m (identical, uniformly related, or unrelated) parallel machines. The scheduler may reject a subset of the jobs and thereby incur job-dependent penalties for each rejected job, and he must construct a schedule for the remaining

  5. FFTF primary heat transport system heating, ventilating and air conditioning system experience

    International Nuclear Information System (INIS)

    Umek, A.M.; Hicks, D.F.; Schweiger, D.L.

    1981-01-01

    FFTF cools its primary/in-containment sodium equipment cells by means of a forced nitrogen cooling system which exchanges heat with a water-glycol system. The nitrogen cooling system is also used to maintain an inert gas atmosphere in the cells containing sodium equipment. Sodium Piping and Components have installed electrical resistance heaters to maintain a minimum sodium temperature and stainless steel jacketed mineral insulation to reduce heat loss. Design features and test results of a comprehensive redesign of the HVAC and insulation system required to support long-term nuclear operations are discussed

  6. Thermal-hydraulic analysis of the improved TOPAZ-II power system using a heat pipe radiator

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wenwen; Zhang, Dalin, E-mail: dlzhang@mail.xjtu.edu.cn; Tian, Wenxi; Qiu, Suizheng; Su, G.H.

    2016-10-15

    Highlights: • The system thermal-hydraulic model of the improved space thermionic reactor is developed. • The temperature reactivity feedback effects of the moderator, UO2 fuel, electrodes and reflector are considered. • The alkali metal heat pipe radiator is modeled with the two dimensional heat pipe model. • The steady state and the start-up procedure of the system are analyzed. - Abstract: A system analysis code coupled with the heat pipe model is developed to analyze the thermal-hydraulic characteristics of the improved TOPAZ-II reactor power system with a heat pipe radiator. The core thermal-hydraulic model, neutron physics model, and the coolant loop component models (including pump, volume accumulator, pipes and plenums) are established. The designed heat pipe radiator, which replaces the original pumped loop radiator, is also modeled, including two-dimensional heat pipe analysis model, fin model and coolant transport duct model. The system analysis code and the heat pipe model is coupled in the transport duct model. Steady state condition and start-up procedure of the improved TOPAZ-II system are calculated. The results show that the designed radiator can satisfy the waste heat rejection requirement of the improved power system. Meanwhile, the code can be used to obtained the thermal characteristics of the system transients such as the start-up process.

  7. Lunar Base Heat Pump

    Science.gov (United States)

    Walker, D.; Fischbach, D.; Tetreault, R.

    1996-01-01

    The objective of this project was to investigate the feasibility of constructing a heat pump suitable for use as a heat rejection device in applications such as a lunar base. In this situation, direct heat rejection through the use of radiators is not possible at a temperature suitable for lde support systems. Initial analysis of a heat pump of this type called for a temperature lift of approximately 378 deg. K, which is considerably higher than is commonly called for in HVAC and refrigeration applications where heat pumps are most often employed. Also because of the variation of the rejection temperature (from 100 to 381 deg. K), extreme flexibility in the configuration and operation of the heat pump is required. A three-stage compression cycle using a refrigerant such as CFC-11 or HCFC-123 was formulated with operation possible with one, two or three stages of compression. Also, to meet the redundancy requirements, compression was divided up over multiple compressors in each stage. A control scheme was devised that allowed these multiple compressors to be operated as required so that the heat pump could perform with variable heat loads and rejection conditions. A prototype heat pump was designed and constructed to investigate the key elements of the high-lift heat pump concept. Control software was written and implemented in the prototype to allow fully automatic operation. The heat pump was capable of operation over a wide range of rejection temperatures and cooling loads, while maintaining cooling water temperature well within the required specification of 40 deg. C +/- 1.7 deg. C. This performance was verified through testing.

  8. Impact of Next Generation District Heating Systems on Distribution Network Heat Losses: A Case Study Approach

    Science.gov (United States)

    Li, Yu; Rezgui, Yacine

    2018-01-01

    District heating (DH) is a promising energy pathway to alleviate environmental negative impacts induced by fossil fuels. Improving the performance of DH systems is one of the major challenges facing its wide adoption. This paper discusses the heat losses of the next generation DH based on the constructed Simulink model. Results show that lower distribution temperature and advanced insulation technology greatly reduce network heat losses. Also, the network heat loss can be further minimized by a reduction of heat demand in buildings.

  9. TNS superconducting ohmic-heating system

    International Nuclear Information System (INIS)

    Wang, S.T.; Fuja, R.; Kim, S.H.; Kustom, R.L.; Praeg, W.F.; Thompson, K.; Turner, L.R.

    1978-01-01

    The superconducting ohmic-heating (OH) system is the selected design for the General Atomics Co./Argonne National Laboratory TNS tokamak design studies. The key features of the OH system design are: (1) parallel coil connection, (2) better utilization of flux core by embedding support cylinder of the toroidal-field coil within the OH inner radius, (3) independent trim coils for correcting the stray fields, (4) low-loss high-current cryostable cable design and (5) OH coil cycling circuit using a reversing bridge. Detailed designs are presented

  10. Preliminary thermal sizing of intermediate heat exchanger for NHDD system

    International Nuclear Information System (INIS)

    Kim, Chan Soo; Hong, Sung Deok; Kim, Yong Wan; Chang, Jongh Wa

    2009-01-01

    Nuclear Hydrogen Development and Demonstration (NHDD) system is a Very High Temperature gascooled Reactor (VHTR) coupled with hydrogen production systems. Intermediate heat exchanger transfers heat from the nuclear reactor to the hydrogen production system. This study presented the sensitivity analysis on a preliminary thermal sizing of the intermediate heat exchanger. Printed Circuit Heat Exchanger (PCHE) was selected for the thermal sizing because the printed circuit heat exchanger has the largest compactness among the heat exchanger types. The analysis was performed to estimate the effect of key parameters including the operating condition of the intermediate system, the geometrical factors of the PCHE, and the working fluid of the intermediate system.

  11. Improving the performance of district heating systems by utilization of local heat boosters

    DEFF Research Database (Denmark)

    Falcone, A.; Dominkovic, D. F.; Pedersen, A. S.

    was to evaluate the possibilities to lower the forward temperature of the heat supply in order to reduce the heat losses of the system. Booster heat pumps are introduced to increase the water temperature close to the final users. A Matlab model was developed to simulate the state of the case study DH network...... was set to minimize the system heat losses. * Corresponding author 0303-1 1 This goal was achieved by lowering the forward temperature to 40°C and relying on the installed heat pumps to boost the water temperature to the admissible value needed for the domestic hot water preparation. Depending......District Heating (DH) plays an important role into the Danish energy green transition towards the future sustainable energy systems. The new, 4 th generation district heating network, the so called Low Temperature District Heating (LTDH), tends to lower the supply temperature of the heat down to 40...

  12. Small-Scale Pellet Heating Systems from Consumer Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Mahapatra, K; Gustavsson, L [Mid Sweden Univ., Oestersund (Sweden). Ecotechnology

    2006-07-15

    A questionnaire survey of 1,500 detached house owners was carried out in the autumn of 2004 to find out the factors influencing the adoption and diffusion of pellet heating systems in the Swedish residential sector. The results revealed that most of the respondents had no plans to install new heating systems as they were satisfied with their existing ones. Economic aspects and functional reliability were the most important factors in the respondents' choice of heating system while environmental factors were of less importance. Therefore, internalizing external costs, such as environmental costs, might be effective in influencing house owners to adopt environmentally benign heating systems. Installers were the most important source of information on heating systems. Hence, it is important that they could inform the consumers comprehensively and accurately about different heating systems. Respondents perceived the relative advantage of pellet boilers over oil or electricity-based heating systems, but bedrock heat pump system was ranked higher than pellet heating system in every aspect except for investment cost. Pellet heating system has advantage over district heating system with respect to investment cost and annual cost of heating. District heating system was considered as most functionally reliable and automatic.

  13. Small-Scale Pellet Heating Systems from Consumer Perspective

    International Nuclear Information System (INIS)

    Mahapatra, K.; Gustavsson, L.

    2006-01-01

    A questionnaire survey of 1,500 detached house owners was carried out in the autumn of 2004 to find out the factors influencing the adoption and diffusion of pellet heating systems in the Swedish residential sector. The results revealed that most of the respondents had no plans to install new heating systems as they were satisfied with their existing ones. Economic aspects and functional reliability were the most important factors in the respondents' choice of heating system while environmental factors were of less importance. Therefore, internalizing external costs, such as environmental costs, might be effective in influencing house owners to adopt environmentally benign heating systems. Installers were the most important source of information on heating systems. Hence, it is important that they could inform the consumers comprehensively and accurately about different heating systems. Respondents perceived the relative advantage of pellet boilers over oil or electricity-based heating systems, but bedrock heat pump system was ranked higher than pellet heating system in every aspect except for investment cost. Pellet heating system has advantage over district heating system with respect to investment cost and annual cost of heating. District heating system was considered as most functionally reliable and automatic

  14. Design optimization of ORC systems for waste heat recovery on board a LNG carrier

    International Nuclear Information System (INIS)

    Soffiato, Marco; Frangopoulos, Christos A.; Manente, Giovanni; Rech, Sergio; Lazzaretto, Andrea

    2015-01-01

    Highlights: • ORC systems are one of the most promising options to recover low temperature heat. • Design of ORC systems on board a LNG carrier is optimized using the Heatsep method. • Simple, regenerative and two-stage, subcritical and supercritical ORCs are considered. • Three engine cooling systems layouts are found to supply heat to the ORCs. • The highest net power output is achieved by the two-stage ORC configuration. - Abstract: Organic Rankine Cycle (ORC) technology may represent an interesting way to exploit the low grade waste heat rejected by the ship power generation plant. This option is investigated here to recover the heat available from three of the four engines of a real electrically driven Liquefied Natural Gas (LNG) carrier. A detailed analysis of the engines operation is first performed to evaluate all thermal streams released by the engines. Heat associated with the jacket water, lubricating oil and charge air cooling of the engines is found to be available for the ORC, while the heat from the exhaust gases is already used to generate low pressure steam for ship internal use. Simple, regenerative and two-stage ORC configurations are compared using six different organic fluids that are selected as the most suitable for this application. The thermal matching that maximizes the net power output of the total system composed by engine cooling circuits and ORC cycle is then found by searching for the optimum heat transfer between thermal streams independently of the structure/number of the heat exchangers. Three layouts of the engine cooling systems are compared. Results show that the maximum net power output (820 kW) achieved by the two-stage ORC configuration almost doubles the simple cycle and regenerative ones (430–580 kW), but structure complexity and reliability issues may give different indications in terms of economic feasibility

  15. Corrosion Rate Monitoring in District Heating Systems

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel; Nielsen, Lars Vendelbo; Andersen, A.

    2005-01-01

    be applicable, and if on-line monitoring could improve the quality control. Water quality monitoring was applied as well as corrosion rate monitoring with linear polarization resistance (LPR), electrochemical impedance spectroscopy (EIS), electrical resistance (ER) technique, mass loss and a crevice corrosion......Quality control in district heating systems to keep uniform corrosion rates low and localized corrosion minimal is based on water quality control. Side-stream units equipped with carbon steel probes for online monitoring were mounted in district heating plants to investigate which techniques would...... cell for localized corrosion risk estimation. Important variations in corrosion rate due to changes in make-up water quality were detected with the continuous monitoring provided by ER and crevice cell, while LPR gave unreliable corrosion rates. The acquisition time of two-three days for EIS...

  16. Monju secondary heat transport system sodium leak

    International Nuclear Information System (INIS)

    Suzuki, Takeo; Hiroi, Hiroshi; Usami, Shin; Iwata, Koji.

    1996-01-01

    On December 8, 1995, the sodium leakage from the secondary heat transport system (SHTS) occurred in the piping room of the reactor auxiliary building in Monju. The secondary sodium leaked through a temperature sensor, due to the breakaway of the tip of the well tube of the sensor installed near the outlet of the intermediate heat exchanger (IHX) in the C loop of SHTS. The reactor core remained cooled and thus, from the viewpoint of radiological hazards, the safety of the reactor was secured. There were no adverse effects for operating personnel or the surrounding environment. The cause of the well tube failure is considered to result from high cycle fatigue due to flow induced vibrations. Delay in draining the sodium from the leaking loop increased the consequential effects from sodium combustion products. (author)

  17. Metabolic Heat Regenerated Temperature Swing Adsorption for CO2, Thermal and Humidity Control, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is proposed for a Portable Life Support System to remove and reject heat and carbon dioxide...

  18. Individual Heating systems vs. District Heating systems: What will consumers pay for convenience?

    International Nuclear Information System (INIS)

    Yoon, Taeyeon; Ma, Yongsun; Rhodes, Charles

    2015-01-01

    For Korea's two most popular apartment heating systems – Individual Heating (IH) and District Heating (DH), – user convenience rests heavily on location of the boiler, availability of hot water, administration of the system, and user control of indoor temperature. A double-bounded dichotomous choice method estimates consumer value for convenience, in a hypothetical market. Higher-income more-educated consumers in more expensive apartments prefer DH. Cost-conscious consumers, who use more electrical heating appliances and more actively adjust separate room temperatures, prefer IH. With willingness-to-pay (WTP) defined as the price ratio between IH and DH, 800 survey respondents indicate a WTP of 4.0% for DH over IH. IH users unfamiliar with DH expect little greater convenience (0.1% WTP), whereas the WTP for DH users runs to 7.9%, demonstrating consumer loyalty. Quantified estimates of consumer preference and convenience can inform design of a full-cost-plus pricing system with a price cap. Results here indirectly predict the effect of abolishing regulations that exclusively establish district heating zones. Strategies to foster the many external benefits of DH systems should stress not their lower cost, but convenience, comfort, and safety. Higher installation costs still hamper DH expansion, so policy-makers could set policies to lower cost barriers to entry. - Highlights: • District Heating (DH) and Individual Heating (IH) systems differ in user convenience. • Difference of convenience is evaluated by a double-bounded dichotomous choice method. • Consumers are willing to pay a 4.03–12.52% higher rate to use DH rather than IH. • Consumers with high living standards prefer DH to IH, and show high consumer loyalty. • Strategies to foster DH systems should stress DH convenience over its lower cost.

  19. Innovative system for delivery of low temperature district heating

    OpenAIRE

    Ianakiev, A; Cui, JM; Garbett, S; Filer, A

    2017-01-01

    An innovative low temperature district heating (LTDH) local network is developed in Nottingham, supported by the REMOURBAN project, part of the H2020 Smart City and Community Lighthouse scheme. It was proposed that a branch emanating from the return pipe of the existing district heating system in Nottingham would be created to use low temperature heating for the first time on such scale in the UK. The development is aimed to extract unused heat from existing district heating system and to mak...

  20. Experimental Investigation of A Heat Pipe-Assisted Latent Heat Thermal Energy Storage System

    Science.gov (United States)

    Tiari, Saeed; Mahdavi, Mahboobe; Qiu, Songgang

    2016-11-01

    In the present work, different operation modes of a latent heat thermal energy storage system assisted by a heat pipe network were studied experimentally. Rubitherm RT55 enclosed by a vertical cylindrical container was used as the Phase Change Material (PCM). The embedded heat pipe network consisting of a primary heat pipe and an array of four secondary heat pipes were employed to transfer heat to the PCM. The primary heat pipe transports heat from the heat source to the heat sink. The secondary heat pipes transfer the extra heat from the heat source to PCM during charging process or retrieve thermal energy from PCM during discharging process. The effects of heat transfer fluid (HTF) flow rate and temperature on the thermal performance of the system were investigated for both charging and discharging processes. It was found that the HTF flow rate has a significant effect on the total charging time of the system. Increasing the HTF flow rate results in a remarkable increase in the system input thermal power. The results also showed that the discharging process is hardly affected by the HTF flow rate but HTF temperature plays an important role in both charging and discharging processes. The authors would like to acknowledge the financial supports by Temple University for the project.

  1. Heat Saving Strategies in Sustainable Smart Energy Systems

    Directory of Open Access Journals (Sweden)

    Henrik Lund

    2014-06-01

    Full Text Available This paper investigates to which extent heat should be saved rather than produced and to which extent district heating infrastructures, rather than individual heating solutions, should be used in future sustainable smart energy systems. Based on a concrete proposal to implement the Danish governmental 2050 fossil-free vision, this paper identifies marginal heat production costs and compares these to marginal heat savings costs for two different levels of district heating. A suitable least-cost heating strategy seems to be to invest in an approximately 50% decrease in net heat demands in new buildings and buildings that are being renovated anyway, while the implementation of heat savings in buildings that are not being renovated hardly pays. Moreover, the analysis points in the direction that a least-cost strategy will be to provide approximately 2/3 of the heat demand from district heating and the rest from individual heat pumps.

  2. A state-of-the-art review on hybrid heat pipe latent heat storage systems

    International Nuclear Information System (INIS)

    Naghavi, M.S.; Ong, K.S.; Mehrali, M.; Badruddin, I.A.; Metselaar, H.S.C.

    2015-01-01

    The main advantage of latent heat thermal energy storage systems is the capability to store a large quantity of thermal energy in an isothermal process by changing phase from solid to liquid, while the most important weakness of these systems is low thermal conductivity that leads to unsuitable charging/discharging rates. Heat pipes are used in many applications – as one of the most efficient heat exchanger devices – to amplify the charging/discharging processes rate and are used to transfer heat from a source to the storage or from the storage to a sink. This review presents and critically discusses previous investigations and analysis on the incorporation of heat pipe devices into latent heat thermal energy storage with heat pipe devices. This paper categorizes different applications and configurations such as low/high temperature solar, heat exchanger and cooling systems, analytical approaches and effective parameters on the performance of hybrid HP–LHTES systems.

  3. Prototype solar heating and combined heating and cooling systems. Quarterly report No. 6

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-06

    The General Electric Company is developing eight prototype solar heating and combined heating and cooling systems. This effort includes development, manufacture, test, installation, maintenance, problem resolution, and performance evaluation.

  4. Performance analysis on solar-water compound source heat pump for radiant floor heating system

    Institute of Scientific and Technical Information of China (English)

    曲世林; 马飞; 仇安兵

    2009-01-01

    A solar-water compound source heat pump for radiant floor heating (SWHP-RFH) experimental system was introduced and analyzed. The SWHP-RFH system mainly consists of 11.44 m2 vacuum tube solar collector,1 000 L water tank assisted 3 kW electrical heater,a water source heat pump,the radiant floor heating system with cross-linked polyethylene (PE-X) of diameter 20 mm,temperature controller and solar testing system. The SWHP-RFH system was tested from December to February during the heating season in Beijing,China under different operation situations. The test parameters include the outdoor air temperature,solar radiation intensity,indoor air temperature,radiation floor average surface temperature,average surface temperature of the building envelope,the inlet and outlet temperatures of solar collector,the temperature of water tank,the heat medium temperatures of heat pump condenser side and evaporator side,and the power consumption includes the water source heat pump system,the solar source heat pump system,the auxiliary heater and the radiant floor heating systems etc. The experimental results were used to calculate the collector efficiency,heat pump dynamic coefficient of performance (COP),total energy consumption and seasonal heating performance during the heating season. The results indicate that the performance of the compound source heat pump system is better than that of the air source heat pump system. Furthermore,some methods are suggested to improve the thermal performance of each component and the whole SWHP-RFH system.

  5. Heat losses and thermal performance of commercial combined solar and pellet heating systems

    OpenAIRE

    Fiedler, Frank; Persson, Tomas; Bales, Chris; Nordlander, Svante

    2004-01-01

    Various pellet heating systems are marketed in Sweden, some of them in combination with a solar heating system. Several types of pellet heating units are available and can be used for a combined system. This article compares four typical combined solar and pellet heating systems: System 1 and 2 two with a pellet stove, system 3 with a store integrated pellet burner and system 4 with a pellet boiler. The lower efficiency of pellet heaters compared to oil or gas heaters increases the primary en...

  6. District heating systems for small scale development areas

    Energy Technology Data Exchange (ETDEWEB)

    McDougall, Rory e-mail: rory.mcdougall@online.no; Jensen, Bjoernulf

    2008-09-15

    Building projects are normally developed without considering integrated heating systems, especially where properties are for further sale. Due to focus on energy efficiency and environmental impact it is worth considering district heating systems, which include several energy carriers. The choice of energy carrier is assessed to optimize energy costs, account for environmental impact and obtain reliable heating supply, thus giving an energy flexible system for several buildings as opposed to individual heating systems in each building

  7. FFTF Heat Transport System (HTS) component and system design

    International Nuclear Information System (INIS)

    Young, M.W.; Edwards, P.A.

    1980-01-01

    The FFTF Heat Transport Systems and Components designs have been completed and successfully tested at isothermal conditions up to 427 0 C (800 0 F). General performance has been as predicted in the design analyses. Operational flexibility and reliability have been outstanding throughout the test program. The components and systems have been demonstrated ready to support reactor powered operation testing planned later in 1980

  8. Operation strategy analysis of a geothermal step utilization heating system

    International Nuclear Information System (INIS)

    Zheng, Guozhong; Li, Feng; Tian, Zhe; Zhu, Neng; Li, Qianru; Zhu, Han

    2012-01-01

    Geothermal energy has been successfully applied in many district heating systems. In order to promote better use of geothermal energy, it is important to analyze the operation strategy of geothermal heating system. This study proposes a comprehensive and systematic operation strategy for a geothermal step utilization heating system (GSUHS). Calculation models of radiator heating system (RHS), radiant floor heating system (RFHS), heat pump (HP), gas boiler (GB), plate heat exchanger (PHE) and pump are first established. Then the operation strategy of the GSUHS is analyzed with the aim to substantially reduce the conventional energy consumption of the whole system. Finally, the energy efficiency and geothermal tail water temperature are analyzed. With the operation strategy in this study, the geothermal energy provides the main heating amount for the system. The heating seasonal performance factor is 15.93. Compared with coal-fired heating, 75.1% of the standard coal equivalent can be saved. The results provide scientific guidance for the application of an operation strategy for a geothermal step utilization heating system. -- Highlights: ► We establish calculation models for the geothermal step utilization heating system. ► We adopt minimal conventional energy consumption to determine the operation strategy. ► The geothermal energy dominates the heating quantity of the whole system. ► The utilization efficiency of the geothermal energy is high. ► The results provide guidance to conduct operation strategy for scientific operation.

  9. MATHEMATICAL MODEL OF UNSTEADY HEAT TRANSFER OF PASSENGER CAR WITH HEATING SYSTEM

    OpenAIRE

    E. V. Biloshytskyi

    2018-01-01

    Purpose. The existing mathematical models of unsteady heat processes in a passenger car do not fully reflect the thermal processes, occurring in the car wits a heating system. In addition, unsteady heat processes are often studied in steady regime, when the heat fluxes and the parameters of the thermal circuit are constant and do not depend on time. In connection with the emergence of more effective technical solutions to the life support system there is a need for creating a new mathematical...

  10. Application of Predictive Control in District Heating Systems

    DEFF Research Database (Denmark)

    Palsson, Olafur Petur; Madsen, Henrik; Søgaard, Henning Tangen

    1993-01-01

    In district heating systems, and in particular if the heat production cakes place at a combined heat and power (CHP) plant, a reasonable control strategy is to keep the supply temperature from the district heating plant as low as possible. However, the control is subject to some restrictions, for...

  11. Limiting biomass consumption for heating in 100% renewable energy systems

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; Lund, Henrik; Connolly, David

    2012-01-01

    -scale solar thermal, large heat pumps, geothermal heat, industrial surplus heat, and waste incineration. Where the energy density in the building stock is not high enough for DH to be economical, geothermal heat pumps can be recommended for individual heating systems, even though biomass consumption is higher......The utilisation of biomass poses large challenges in renewable energy systems while buildings account for a substantial part of the energy supply even in 100% renewable energy systems. In this paper the focus is on how the heating sector can reduce its consumption of biomass, thus leaving biomass...... for other sectors, but while still enabling a 100% renewable energy system. The analyses of heating technologies shows that district heating (DH) systems are important in limiting the dependence on biomass and create cost effective solutions. DH systems are especially important in renewable energy systems...

  12. 24 CFR 3285.905 - Heating oil systems.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Heating oil systems. 3285.905... Installation Instructions § 3285.905 Heating oil systems. It is recommended that the installation instructions include the following information related to heating oil systems, when applicable: (a) Homes equipped with...

  13. Targeting the maximum heat recovery for systems with heat losses and heat gains

    International Nuclear Information System (INIS)

    Wan Alwi, Sharifah Rafidah; Lee, Carmen Kar Mun; Lee, Kim Yau; Abd Manan, Zainuddin; Fraser, Duncan M.

    2014-01-01

    Graphical abstract: Illustration of heat gains and losses from process streams. - Highlights: • Maximising energy savings through heat losses or gains. • Identifying location where insulation can be avoided. • Heuristics to maximise heat losses or gains. • Targeting heat losses or gains using the extended STEP technique and HEAT diagram. - Abstract: Process Integration using the Pinch Analysis technique has been widely used as a tool for the optimal design of heat exchanger networks (HENs). The Composite Curves and the Stream Temperature versus Enthalpy Plot (STEP) are among the graphical tools used to target the maximum heat recovery for a HEN. However, these tools assume that heat losses and heat gains are negligible. This work presents an approach that considers heat losses and heat gains during the establishment of the minimum utility targets. The STEP method, which is plotted based on the individual, as opposed to the composite streams, has been extended to consider the effect of heat losses and heat gains during stream matching. Several rules to guide the proper location of pipe insulation, and the appropriate procedure for stream shifting have been introduced in order to minimise the heat losses and maximise the heat gains. Application of the method on two case studies shows that considering heat losses and heat gains yield more realistic utility targets and help reduce both the insulation capital cost and utility cost of a HEN

  14. Optimization of Solar Water Heating System under Time and Spatial Partition Heating in Rural Dwellings

    Directory of Open Access Journals (Sweden)

    Yanfeng Liu

    2017-10-01

    Full Text Available This paper proposes the application of time and spatial partition heating to a solar water heating system. The heating effect and system performance were analyzed under the continuous and whole space heating and time and spatial partition heating using TRNSYS. The results were validated by comparing with the test results of the demonstration building. Compared to continuous and whole space heating, the use of time and spatial partition heating increases the solar fraction by 16.5%, reduces the auxiliary heating by 7390 MJ, and reduces the annual operation cost by 2010 RMB. Under time and spatial partition heating, optimization analyses were conducted for the two system capacity parameters of the solar collector area and tank volume and the one operation parameter of auxiliary heater setting outlet temperature. The results showed that a reasonable choice of the solar collector area can reduce the dynamic annual cost, the increased tank volume is advantageous to heat storage, and the auxiliary heater setting outlet temperature have greater influence on the indoor heating effect. The advanced opening of solar water heating system and the normal opening of passive air vents are recommended. Based on the comparison of the two modes, the time and spatial partition heating technology is a better choice for rural dwellings.

  15. Multilevel Flow Modeling of Domestic Heating Systems

    DEFF Research Database (Denmark)

    Hu, Junjie; Lind, Morten; You, Shi

    2012-01-01

    the operation on fault analysis and control. A significant improvement of the MFM methodology has been recently proposed, where the “role” concept was introduced to enable the representation of structural entities and the conveyance of important information for building up knowledge bases, with the purpose...... i.e. supplying and transferring thermal energy, it is off interest to use MFM to investigate similarities and differences between different implementations. In this paper, three typical domestic European heating systems, which differ from each other in the number of temperature sensors and auxiliary...

  16. Solar-powered turbocompressor heat pump system

    Science.gov (United States)

    Landerman, A.M.; Biancardi, F.R.; Melikian, G.; Meader, M.D.; Kepler, C.E.; Anderson, T.J.; Sitler, J.W.

    1982-08-12

    The turbocompressor comprises a power turbine and a compressor turbine having respective rotors and on a common shaft, rotatably supported by bearings. A first working fluid is supplied by a power loop and is expanded in the turbine. A second working fluid is compressed in the turbine and is circulated in a heat pump loop. A lubricant is mixed with the second working fluid but is excluded from the first working fluid. The bearings are cooled and lubricated by a system which circulates the second working fluid and the intermixed lubricant through the bearings. Such system includes a pump, a thermostatic expansion valve for expanding the working fluid into the space between the bearings, and a return conduit system for withdrawing the expanded working fluid after it passes through the bearings and for returning the working fluid to the evaporator. A shaft seal excludes the lubricant from the power turbine. The power loop includes a float operable by liquid working fluid in the condenser for controlling a recirculation valve so as to maintain a minimum liquid level in the condenser, while causing a feed pump to pump most of the working fluid into the vapor generator. The heat pump compressor loop includes a float in the condenser for operating and expansion valve to maintain a minimum liquid working fluid level in the condenser while causing most of the working fluid to be expanded into the evaporator.

  17. Heat pumps as a way to Low or Zero Emission district heating systems

    Directory of Open Access Journals (Sweden)

    Jadwiszczak Piotr

    2017-01-01

    In traditional district heating (DH system heat is generated from fossil fuel (FF combustion in heating only boilers (HOB or in combined heat and power (CHP plants. It results in greenhouse gases and other pollutants emission. The reduction of emission is one of the main target in EU climate policy. Among the alternative technologies in DH heat pumps (HP play a crucial role and enable to decrease or even eliminate emission to create a low or zero emission (LZE DH system. The emission reduction effect of integration the large scale HP units into DH systems can by defined by four groups of factors: the share of HP in the heat demand, the heat source for HP, the driving energy for HP and heat sink for HP. This paper illustrates the main options for large scale HP units application for LZE DH based on HP technology.

  18. Residual heat removal system diagnostic advisor

    International Nuclear Information System (INIS)

    Tripp, L.

    1991-01-01

    This paper reports on the Residual Heat Removal System (RHRS) Diagnostic Advisor which is an expert system designed to alert the operators to abnormal conditions that exits in the RHRS and offer advice about the cause of the abnormal conditions. The Advisor uses a combination of rule-based and model-based diagnostic techniques to perform its functions. This diagnostic approach leads to a deeper understanding of the RHRS by the Advisor and consequently makes it more robust to unexpected conditions. The main window of the interactive graphic display is a schematic diagram of the RHRS piping system. When a conclusion about a failed component can be reached, the operator can bring up windows that describe the failure mode of the component and a brief explanation about how the Advisor arrived at its conclusion

  19. Research status and evaluation system of heat source evaluation method for central heating

    Science.gov (United States)

    Sun, Yutong; Qi, Junfeng; Cao, Yi

    2018-02-01

    The central heating boiler room is a regional heat source heating center. It is also a kind of the urban environment pollution, it is an important section of building energy efficiency. This article through to the evaluation method of central heating boiler room and overviews of the researches during domestic and overseas, summarized the main influence factors affecting energy consumption of industrial boiler under the condition of stable operation. According to the principle of establishing evaluation index system. We can find that is great significance in energy saving and environmental protection for the content of the evaluation index system of the centralized heating system.

  20. Studying stellar binary systems with the Laser Interferometer Space Antenna using delayed rejection Markov chain Monte Carlo methods

    International Nuclear Information System (INIS)

    Trias, Miquel; Vecchio, Alberto; Veitch, John

    2009-01-01

    Bayesian analysis of Laser Interferometer Space Antenna (LISA) data sets based on Markov chain Monte Carlo methods has been shown to be a challenging problem, in part due to the complicated structure of the likelihood function consisting of several isolated local maxima that dramatically reduces the efficiency of the sampling techniques. Here we introduce a new fully Markovian algorithm, a delayed rejection Metropolis-Hastings Markov chain Monte Carlo method, to efficiently explore these kind of structures and we demonstrate its performance on selected LISA data sets containing a known number of stellar-mass binary signals embedded in Gaussian stationary noise.

  1. Experimental investigation on an integrated thermal management system with heat pipe heat exchanger for electric vehicle

    International Nuclear Information System (INIS)

    Zou, Huiming; Wang, Wei; Zhang, Guiying; Qin, Fei; Tian, Changqing; Yan, Yuying

    2016-01-01

    Highlights: • An integrated thermal management system is proposed for electric vehicle. • The parallel branch of battery chiller can supply additional cooling capacity. • Heat pipe performance on preheating mode is better than that on cooling mode. • Heat pipe heat exchanger is a feasible choice for battery thermal management. - Abstract: An integrated thermal management system combining a heat pipe battery cooling/preheating system with the heat pump air conditioning system is presented to fulfill the comprehensive energy utilization for electric vehicles. A test bench with battery heat pipe heat exchanger and heat pump air conditioning for a regular five-chair electric car is set up to research the performance of this integrated system under different working conditions. The investigation results show that as the system is designed to meet the basic cabinet cooling demand, the additional parallel branch of battery chiller is a good way to solve the battery group cooling problem, which can supply about 20% additional cooling capacity without input power increase. Its coefficient of performance for cabinet heating is around 1.34 at −20 °C out-car temperature and 20 °C in-car temperature. The specific heat of the battery group is tested about 1.24 kJ/kg °C. There exists a necessary temperature condition for the heat pipe heat exchanger to start action. The heat pipe heat transfer performance is around 0.87 W/°C on cooling mode and 1.11 W/°C on preheating mode. The gravity role makes the heat transfer performance of the heat pipe on preheating mode better than that on cooling mode.

  2. Geothermal source heat pump performance for a greenhouse heating system: an experimental study

    Directory of Open Access Journals (Sweden)

    Alexandros Sotirios Anifantis

    2016-09-01

    Full Text Available Greenhouses play a significant function in the modern agriculture economy even if require great amount of energy for heating systems. An interesting solution to alleviate the energy costs and environmental problems may be represented by the use of geothermal energy. The aim of this paper, based on measured experimental data, such as the inside greenhouse temperature and the heat pump performance (input and output temperatures of the working fluid, electric consumption, was the evaluation of the suitability of low enthalpy geothermal heat sources for agricultural needs such as greenhouses heating. The study was carried out at the experimental farm of the University of Bari, where a greenhouse was arranged with a heating system connected to a ground-source heat pump (GSHP, which had to cover the thermal energy request. The experimental results of this survey highlight the capability of the geothermal heat source to ensue thermal conditions suitable for cultivation in greenhouses even if the compressor inside the heat pump have operated continuously in a fluctuating state without ever reaching the steady condition. Probably, to increase the performance of the heat pump and then its coefficient of performance within GSHP systems for heating greenhouses, it is important to analyse and maximise the power conductivity of the greenhouse heating system, before to design an expensive borehole ground exchanger. Nevertheless, according to the experimental data obtained, the GSHP systems are effective, efficient and environmental friendly and may be useful to supply the heating energy demand of greenhouses.

  3. Heat Saving Strategies in Sustainable Smart Energy Systems

    DEFF Research Database (Denmark)

    Lund, Henrik; Thellufsen, Jakob Zinck; Aggerholm, Søren

    that a least‐cost strategy will be to provide approximately 2/3 of the heat demand from district heating and the rest from individual heat pumps. Keywords: Energy Efficiency, Renewable energy, Heating strategy, Heat savings, District heating, Smart energy......One of the important issues related to the implementation of future sustainable smart energy systems based on renewable energy sources is the heating of buildings. Especially, when it comes to long‐term investment in savings and heating infrastructures it is essential to identify long‐term least......‐cost strategies. With Denmark as a case, this paper investigates to which extent heat should be saved rather than produced and to which extent district heating infrastructures, rather than individual heating solutions, should be used. Based on a concrete proposal to implement the Danish governmental long...

  4. Heat Saving Strategies in Sustainable Smart Energy Systems

    DEFF Research Database (Denmark)

    Lund, Henrik; Thellufsen, Jakob Zinck; Aggerholm, Søren

    2014-01-01

    This paper investigates to which extent heat should be saved rather than produced and to which extent district heating infrastructures, rather than individual heating solutions, should be used in future sustainable smart energy systems. Based on a concrete proposal to implement the Danish...... governmental 2050 fossil-free vision, this paper identifies marginal heat production costs and compares these to marginal heat savings costs for two different levels of district heating. A suitable least-cost heating strategy seems to be to invest in an approximately 50% decrease in net heat demands in new...... buildings and buildings that are being renovated anyway, while the implementation of heat savings in buildings that are not being renovated hardly pays. Moreover, the analysis points in the direction that a least-cost strategy will be to provide approximately 2/3 of the heat demand from district heating...

  5. Investigation of a heat storage for a solar heating system for combined space heating and domestic hot water supply for homeowner´s association "Bakken"

    DEFF Research Database (Denmark)

    Vejen, Niels Kristian

    1998-01-01

    A heat storage for a solar heating system for combined space heating and domestic hot water supply was tested in a laboratory test facility.The heat storage consist of a mantle tank with water for the heating system and of a hot water tank, which by means of thermosyphoning is heated by the water...

  6. Mathematical model for calculation of the heat-hydraulic modes of heating points of heat-supplying systems

    Science.gov (United States)

    Shalaginova, Z. I.

    2016-03-01

    The mathematical model and calculation method of the thermal-hydraulic modes of heat points, based on the theory of hydraulic circuits, being developed at the Melentiev Energy Systems Institute are presented. The redundant circuit of the heat point was developed, in which all possible connecting circuits (CC) of the heat engineering equipment and the places of possible installation of control valve were inserted. It allows simulating the operating modes both at central heat points (CHP) and individual heat points (IHP). The configuration of the desired circuit is carried out automatically by removing the unnecessary links. The following circuits connecting the heating systems (HS) are considered: the dependent circuit (direct and through mixing elevator) and independent one (through the heater). The following connecting circuits of the load of hot water supply (HWS) were considered: open CC (direct water pumping from pipelines of heat networks) and a closed CC with connecting the HWS heaters on single-level (serial and parallel) and two-level (sequential and combined) circuits. The following connecting circuits of the ventilation systems (VS) were also considered: dependent circuit and independent one through a common heat exchanger with HS load. In the heat points, water temperature regulators for the hot water supply and ventilation and flow regulators for the heating system, as well as to the inlet as a whole, are possible. According to the accepted decomposition, the model of the heat point is an integral part of the overall heat-hydraulic model of the heat-supplying system having intermediate control stages (CHP and IHP), which allows to consider the operating modes of the heat networks of different levels connected with each other through CHP as well as connected through IHP of consumers with various connecting circuits of local systems of heat consumption: heating, ventilation and hot water supply. The model is implemented in the Angara data

  7. Investigations of Intelligent Solar Heating Systems for Single Family House

    DEFF Research Database (Denmark)

    Andersen, Elsa; Chen, Ziqian; Fan, Jianhua

    2014-01-01

    Three differently designed intelligent solar heating systems are investigated experimentally in a test facility. The systems provide all the needed yearly heating demand in single family houses. The systems are based on highly stratified tanks with variable auxiliary heated volumes. The tank is a......, the control strategy of intelligent solar heating systems is investigated and the yearly auxiliary energy use of the systems and the electricity price for supplying the consumers with domestic hot water and space heating are calculated....... systems.The system will be equipped with an intelligent control system where the control of the electrical heating element(s)/heat pump is based on forecasts of the variable electricity price, the heating demand and the solar energy production.By means of numerical models of the systems made in Trnsys......Three differently designed intelligent solar heating systems are investigated experimentally in a test facility. The systems provide all the needed yearly heating demand in single family houses. The systems are based on highly stratified tanks with variable auxiliary heated volumes. The tank...

  8. RESEARCH OF HYDRODYNAMICS OF HEAT GENERATORS FOR MECHANICAL SYSTEMS AUTONOMOUS HEATING

    Directory of Open Access Journals (Sweden)

    E. M. Derbasova

    2014-01-01

    Full Text Available A design of mechanical heat source, allows direct conversion of mechanical energy of the wind flow into thermal energy due to friction forces in a highly viscous fluid. Obtained theoretical dependence for calculating the heat generated by converting mechanical energy into heat. For laminar flow of a highly viscous, fluid in the gap between the stationary and rotating disk heat source. Based on experimental studies to determine the average thickness of the boundary layer between the rotating and fixed disks. The dependences to identify key structural dimensions of mechanical heat sources for heating systems

  9. MATHEMATICAL MODEL OF UNSTEADY HEAT TRANSFER OF PASSENGER CAR WITH HEATING SYSTEM

    Directory of Open Access Journals (Sweden)

    E. V. Biloshytskyi

    2018-02-01

    Full Text Available Purpose. The existing mathematical models of unsteady heat processes in a passenger car do not fully reflect the thermal processes, occurring in the car wits a heating system. In addition, unsteady heat processes are often studied in steady regime, when the heat fluxes and the parameters of the thermal circuit are constant and do not depend on time. In connection with the emergence of more effective technical solutions to the life support system there is a need for creating a new mathematical apparatus, which would allow taking into account these features and their influence on the course of unsteady heat processes throughout the travel time. The purpose of this work is to create a mathematical model of the heat regime of a passenger car with a heating system that takes into account the unsteady heat processes. Methodology. To achieve this task the author composed a system of differential equations, describing unsteady heat processes during the heating of a passenger car. For the solution of the composed system of equations, the author used the method of elementary balances. Findings. The paper presents the developed numerical algorithm and computer program for simulation of transitional heat processes in a locomotive traction passenger car, which allows taking into account the various constructive solutions of the life support system of passenger cars and to simulate unsteady heat processes at any stage of the trip. Originality. For the first time the author developed a mathematical model of heat processes in a car with a heating system, that unlike existing models, allows to investigate the unsteady heat engineering performance in the cabin of the car under different operating conditions and compare the work of various life support systems from the point of view their constructive solutions. Practical value. The work presented the developed mathematical model of the unsteady heat regime of the passenger car with a heating system to estimate

  10. Performance of ultra low temperature district heating systems with utility plant and booster heat pumps

    DEFF Research Database (Denmark)

    Ommen, Torben Schmidt; Thorsen, Jan Eric; Markussen, Wiebke Brix

    2017-01-01

    The optimal integration of booster heat pumps in ultra low temperature district heating (ULTDH) was investigated and compared to the performance of low temperature district heating. Two possible heat production technologies for the DH networks were analysed, namely extraction combined heat...... temperature and the heat consumption profile. For reference conditions, the optimal return of ULTDH varies between 21 °C and 27 °C. When using a central HP to supply the DH system, the resulting coefficient of system performance (COSP) was in the range of 3.9 (-) to 4.7 (-) for equipment with realistic...... component efficiencies and effectiveness, when including the relevant parameters such as DH system pressure and heat losses. By using ULTDH with booster HPs, performance improvements of 12% for the reference calculations case were found, if the system was supplied by central HPs. Opposite results were found...

  11. Simulation and energy analysis of distributed electric heating system

    Science.gov (United States)

    Yu, Bo; Han, Shenchao; Yang, Yanchun; Liu, Mingyuan

    2018-02-01

    Distributed electric heating system assistssolar heating systemby using air-source heat pump. Air-source heat pump as auxiliary heat sourcecan make up the defects of the conventional solar thermal system can provide a 24 - hour high - efficiency work. It has certain practical value and practical significance to reduce emissions and promote building energy efficiency. Using Polysun software the system is simulated and compared with ordinary electric boiler heating system. The simulation results show that upon energy request, 5844.5kW energy is saved and 3135kg carbon - dioxide emissions are reduced and5844.5 kWhfuel and energy consumption is decreased with distributed electric heating system. Theeffect of conserving energy and reducing emissions using distributed electric heating systemis very obvious.

  12. Heat pump system with selective space cooling

    Science.gov (United States)

    Pendergrass, J.C.

    1997-05-13

    A reversible heat pump provides multiple heating and cooling modes and includes a compressor, an evaporator and heat exchanger all interconnected and charged with refrigerant fluid. The heat exchanger includes tanks connected in series to the water supply and a condenser feed line with heat transfer sections connected in counterflow relationship. The heat pump has an accumulator and suction line for the refrigerant fluid upstream of the compressor. Sub-cool transfer tubes associated with the accumulator/suction line reclaim a portion of the heat from the heat exchanger. A reversing valve switches between heating/cooling modes. A first bypass is operative to direct the refrigerant fluid around the sub-cool transfer tubes in the space cooling only mode and during which an expansion valve is utilized upstream of the evaporator/indoor coil. A second bypass is provided around the expansion valve. A programmable microprocessor activates the first bypass in the cooling only mode and deactivates the second bypass, and vice-versa in the multiple heating modes for said heat exchanger. In the heating modes, the evaporator may include an auxiliary outdoor coil for direct supplemental heat dissipation into ambient air. In the multiple heating modes, the condensed refrigerant fluid is regulated by a flow control valve. 4 figs.

  13. Performance Analysis of a Hybrid District Heating System

    DEFF Research Database (Denmark)

    Mikulandric, Robert; Krajačić, Goran; Duic, Neven

    2015-01-01

    Hybridisation of district heating systems can contribute to more efficient heat generation through cogeneration power plants or through the share increase of renewable energy sources in total energy consumption while reducing negative aspects of particular energy source utilisation. In this work......, the performance of a hybrid district energy system for a small town in Croatia has been analysed. Mathematical model for process analysis and optimisation algorithm for optimal system configuration has been developed and described. The main goal of the system optimisation is to reduce heat production costs....... Several energy sources for heat production have been considered in 8 different simulation cases. Simulation results show that the heat production costs could be reduced with introduction of different energy systems into an existing district heating system. Renewable energy based district heating systems...

  14. Environmental issues and competitiveness of district heating systems

    International Nuclear Information System (INIS)

    Kypreos, S.

    1991-01-01

    The advantages of district heating systems are evaluated in competition to individual heating for the Swiss markets. The preservation of the environmental quality on the national (clean air concept) and global scale (Toronto recommendation) is formulated as constraint of the energy system. The implications of these constraints for the economic competition of district heating is evaluated. The study estimates the evolution of energy demand in the heating markets and shortly describes the technical possibilities in satisfying demand by a set of conventional heating systems, systems using renewable energy sources, energy conservation measures and district heating systems based on conventional or nuclear energy sources. The main conclusion is that small capacity nuclear district heating systems, if acceptable, could enhance the flexibility of the Swiss energy system in respect to CO 2 control. (author) 3 figs., 4 tabs., 9 refs

  15. Specific heat, polarization and heat conduction in microwave heating systems: A nonequilibrium thermodynamic point of view

    International Nuclear Information System (INIS)

    Bergese, Paolo

    2006-01-01

    A microwave (MW) field can induce in a dielectric material an oscillatory polarization. By this mechanism part of the energy carried by the waves is converted into chaotic agitation, and the material heats up. MW heating is a nonequilibrium phenomenon, while conventional heating can generally be considered as quasi-static. Excess (or nonthermal) effects of MWs with respect to conventional heating lie in this difference. Macroscopically, MW heating can be described in the framework of linear nonequilibrium thermodynamics (NET). This approach indicates that in a dielectric material under MW heating the specific heat has a dynamic component linked to the variation of polarization with temperature, and that polarization and heat conduction are intertwined. In particular, linear NET provides a new phenomenological equation for heat conduction that is composed of the classic Fourier's law and an additional term due to polarization relaxation. This term quantitatively describes the excess effect of MWs on thermal conduction

  16. Influencing Swedish homeowners to adopt district heating system

    Energy Technology Data Exchange (ETDEWEB)

    Mahapatra, Krushna; Gustavsson, Leif [Ecotechnology, Mid Sweden University, Akademigatan 1, 831 25 Oestersund (Sweden)

    2009-02-15

    Improved energy efficiency and greenhouse gas mitigation could be achieved by replacing resistance heaters with district heating system. In 2005, only about 8% of the Swedish detached houses had district heating system. The expansion of such systems largely depends on homeowners' adoption decisions. And, to motivate homeowners to adopt district heating, it is essential to understand their decision-making process. In this context, in June 2005 we carried out a questionnaire survey of about 700 homeowners who lived in the city of Oestersund in houses with resistance heaters (baseline survey). About 84% of the respondents did not intend to install a new heating system. Since then these homeowners were influenced by (a) an investment subsidy by the Swedish government to replace resistance heaters with district heating, a brine/water-based heat pump, or a biomass-based heating system and (b) a marketing campaign by the municipality-owned district heating company. This paper analyses how these two measures influenced about 78% of the homeowners to adopt the district heating system. For this purpose we carried out a follow-up survey of the same homeowners in December 2006 (resurvey). Results showed that the investment subsidy and the marketing campaign created a need among the homeowners to adopt a new heating system. The marketing campaign was successful in motivating them to adopt the district heating system. The marketing strategy by the district heating company corresponds to the results obtained in the baseline survey. (author)

  17. 14 CFR 25.833 - Combustion heating systems.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Combustion heating systems. 25.833 Section... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Ventilation and Heating § 25.833 Combustion heating systems. Combustion heaters must be approved. [Amdt. 25-72, 55 FR 29783, July 20, 1990...

  18. Influencing Swedish homeowners to adopt district heating system

    Energy Technology Data Exchange (ETDEWEB)

    Mahapatra, Krushna; Gustavsson, Leif [Ecotechnology, Mid Sweden University, Akademigatan 1, 831 25 Oestersund (Sweden)

    2009-02-15

    Improved energy efficiency and greenhouse gas mitigation could be achieved by replacing resistance heaters with district heating system. In 2005, only about 8% of the Swedish detached houses had district heating system. The expansion of such systems largely depends on homeowners' adoption decisions. And, to motivate homeowners to adopt district heating, it is essential to understand their decision-making process. In this context, in June 2005 we carried out a questionnaire survey of about 700 homeowners who lived in the city of Oestersund in houses with resistance heaters (baseline survey). About 84% of the respondents did not intend to install a new heating system. Since then these homeowners were influenced by (a) an investment subsidy by the Swedish government to replace resistance heaters with district heating, a brine/water-based heat pump, or a biomass-based heating system and (b) a marketing campaign by the municipality-owned district heating company. This paper analyses how these two measures influenced about 78% of the homeowners to adopt the district heating system. For this purpose we carried out a follow-up survey of the same homeowners in December 2006 (resurvey). Results showed that the investment subsidy and the marketing campaign created a need among the homeowners to adopt a new heating system. The marketing campaign was successful in motivating them to adopt the district heating system. The marketing strategy by the district heating company corresponds to the results obtained in the baseline survey. (author)

  19. Influencing Swedish homeowners to adopt district heating system

    International Nuclear Information System (INIS)

    Mahapatra, Krushna; Gustavsson, Leif

    2009-01-01

    Improved energy efficiency and greenhouse gas mitigation could be achieved by replacing resistance heaters with district heating system. In 2005, only about 8% of the Swedish detached houses had district heating system. The expansion of such systems largely depends on homeowners' adoption decisions. And, to motivate homeowners to adopt district heating, it is essential to understand their decision-making process. In this context, in June 2005 we carried out a questionnaire survey of about 700 homeowners who lived in the city of Ostersund in houses with resistance heaters (baseline survey). About 84% of the respondents did not intend to install a new heating system. Since then these homeowners were influenced by (a) an investment subsidy by the Swedish government to replace resistance heaters with district heating, a brine/water-based heat pump, or a biomass-based heating system and (b) a marketing campaign by the municipality-owned district heating company. This paper analyses how these two measures influenced about 78% of the homeowners to adopt the district heating system. For this purpose we carried out a follow-up survey of the same homeowners in December 2006 (resurvey). Results showed that the investment subsidy and the marketing campaign created a need among the homeowners to adopt a new heating system. The marketing campaign was successful in motivating them to adopt the district heating system. The marketing strategy by the district heating company corresponds to the results obtained in the baseline survey

  20. Optimal Placement of A Heat Pump in An Integrated Power and Heat Energy System

    DEFF Research Database (Denmark)

    Klyapovskiy, Sergey; You, Shi; Bindner, Henrik W.

    2017-01-01

    With the present trend towards Smart Grids and Smart Energy Systems it is important to look for the opportunities for integrated development between different energy sectors, such as electricity, heating, gas and transportation. This paper investigates the problem of optimal placement of a heat...... pump – a component that links electric and heating utilities together. The system used to demonstrate the integrated planning approach has two neighboring 10kV feeders and several distribution substations with loads that require central heating from the heat pump. The optimal location is found...

  1. Risk of renal allograft rejection following angiography

    International Nuclear Information System (INIS)

    Heideman, M.; Claes, G.; Nilson, A.E.

    1976-01-01

    In a retrospective study of 173 immediately functioning primary kidney transplants, correlation between angiography and renal allograft rejection was studied during the first 14 days. It was found that rejection was more frequent in kidneys undergoing angiography than in those not undergoing angiography. It was also found that in kidneys undergoing angiography an overwhelming number of the rejections started the day after angiography. These differences in rejection frequency could not be explained by differences in HLA matching or the origin of the kidneys. These findings suggest a possible connection indicating that the angiography might elicit an acute rejection episode. A possible mechanism for starting this reaction might be activation of the complement system which was found in 50 percent of the patients undergoing angiography in peripheral blood and in 100 percent when studied in vitro

  2. Improvement in Performance of a Thermochemical Heat Storage System by Implementing an Internal Heat Recovery System

    NARCIS (Netherlands)

    Gaeini, M.; Saris, L.; Zondag, H.A.; Rindt, C.C.M.

    A lab-scale prototype of a thermochemical heat storage system, employing a water-zeolite 13X as the working pair, is designed and optimized for providing hot tap water. During the hydration process, humid air is introduced to the packed bed reactor filled with dehydrated zeolite 13X, and the

  3. Effects of synthetic oil in a compression refrigeration system using R410A. Part II: quality of heat transfer and pressure losses within the heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Lottin, O.; Guillemet, P. [Ecole Polytechnique de l' Universite de Nantes (France). Laboratoire de Thermocinetique; Lebreton, J-M. [Electricite de France, Moret sur Loing (France)

    2003-11-01

    The consequences of the oil rejected by the compressor of a vapour-compression refrigeration system on the operation of the evaporator and condenser are analysed. The modelled prototype uses the mixture of HFC R410A and a synthetic polyolester (POE) oil. The rise of the amount of lubricant circulating in the system leads to a progressive change in the behaviour of the mixture of refrigerant and oil that, for the higher oil mass fraction, evolves like a zeotropic mixture. One also observes that the presence of lubricant is generally associated with a fall of the performances of the heat exchangers, except however in the evaporator where an optimum is observed when the quantity of oil is equal to 0.1% of the total mass of the mixture. Some conclusions are drawn about the choice of correlations for the calculation of the refrigerant side heat transfer coefficient in a plate evaporator. (author)

  4. Performance variations of river water source heat pump system according to heat exchanger capacity variations

    International Nuclear Information System (INIS)

    Park, Seong Ryong; Baik, Young Jin; Lee, Young Soo; Kim, Hee Hwan

    2003-01-01

    The utilization of unused energy is important because it can afford to offer a chance to increase energy efficiency of a heat pump system. One of the promising unused energy sources is river water. It can be used as a heat source in both heating and cooling effectively with its superior features as a secondary working fluids. In this study, the performance of a 5HP heat pump system using river water as a heat source is investigated by both experiment and simulation. According to system simulation results, performance improvement of condenser seems more effective than that of evaporator for better COPH. The serial connection is also preferred among several methods to improve plate type heat exchanger performance. The experimental results show that the hot water of 50∼60 .deg. C can be acquired from water heat source of 5∼9 .deg. C with COPH of 2.7∼3.5

  5. Investigation of Condensation Heat Transfer Correlation of Heat Exchanger Design in Secondary Passive Cooling System

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Yun Jae; Lee, Hee Joon [Kookmin Univ., Seoul (Korea, Republic of); Kang, Hanok; Lee, Taeho; Park, Cheontae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-12-15

    Recently, condensation heat exchangers have been studied for applications to the passive cooling systems of nuclear plants. To design vertical-type condensation heat exchangers in secondary passive cooling systems, TSCON (Thermal Sizing of CONdenser), a thermal sizing program for a condensation heat exchanger, was developed at KAERI (Korea Atomic Energy Research Institute). In this study, the existing condensation heat transfer correlation of TSCON was evaluated using 1,157 collected experimental data points from the heat exchanger of a secondary passive cooling system for the case of pure steam condensation. The investigation showed that the Shah correlation, published in 2009, provided the most satisfactory results for the heat transfer coefficient with a mean absolute error of 34.8%. It is suggested that the Shah correlation is appropriate for designing a condensation heat exchanger in TSCON.

  6. Indoor air pollution by different heating systems: coal burning, open fireplace and central heating.

    Science.gov (United States)

    Moriske, H J; Drews, M; Ebert, G; Menk, G; Scheller, C; Schöndube, M; Konieczny, L

    1996-11-01

    Investigations of indoor air pollution by different heating systems in private homes are described. Sixteen homes, 7 with coal burning, 1 with open fireplace (wood burning) and 8 with central heating have been investigated. We measured the concentrations of carbon monoxide, carbon dioxide and sedimented dust in indoor air, of total suspended particulates, heavy metals and of polycyclic aromatic hydrocarbons in indoor and outdoor air. Measurements were taken during winter (heating period) and during summer (non-heating period). Generally, we found higher indoor air pollution in homes with coal burning and open fireplace than in homes with central heating. Especially, the concentrations of carbon monoxide, sedimented dust and of some heavy metals were higher. In one case, we found also high indoor air pollution in a home with central heating. This apartment is on the ground floor of a block of flats, and the central heating system in the basement showed a malfunctioning of the exhaust system.

  7. Experimental study of a photovoltaic solar-assisted heat-pump/heat-pipe system

    International Nuclear Information System (INIS)

    Fu, H.D.; Pei, G.; Ji, J.; Long, H.; Zhang, T.; Chow, T.T.

    2012-01-01

    A practical design for a heat pump with heat-pipe photovoltaic/thermal (PV/T) collectors is presented. The hybrid system is called the photovoltaic solar-assisted heat-pump/heat-pipe (PV-SAHP/HP) system. To focus on both actual demand and energy savings, the PV-SAHP/HP system was designed to be capable of operating in three different modes, namely, the heat-pipe, solar-assisted heat pump, and air-source heat-pump modes. Based on solar radiation, the system operates in an optimal mode. A series of experiments were conducted in Hong Kong to study the performance of the system when operating in the heat-pipe and the solar-assisted heat-pump modes. Moreover, energy and exergy analyses were used to investigate the total PV/T performance of the system. - Highlights: ► A novel PV-SAHP/HP system with three different operating modes was proposed. ► Performance of the PV-SAHP/HP system was studied experimentally. ► A optimal operating mode of the PV-SAHP/HP system was suggested in this paper.

  8. Low-temperature heating systems and public administration

    Energy Technology Data Exchange (ETDEWEB)

    Boerner, H

    1981-06-01

    The even temperature distribution and comfortable climate in rooms heated by low-temperature heating systems is mostly due to one of the preconditions of this type of heating system namely, efficient thermal insulation of the rooms. Thermal insulation is already required as part of the pertinent legal regulations but it is also in the interest of the builder-owner as it will, in the long run, greatly reduce the heating cost.

  9. Numerical Investigation of Floor Heating Systems in Low Energy Houses

    DEFF Research Database (Denmark)

    Weitzmann, Peter; Kragh, Jesper; Jensen, Claus Franceos

    2002-01-01

    In this paper an investigation of floor heating systems is performed with respect to heating demand and room temperature. Presently (2001) no commercially available building simulation programs that can be used to evaluate heating demand and thermal comfort in buildings with building integrated....... The model calculates heating demand, room temperatures, and thermal comfort parameters for a person in the room. The model is based on a numerical Finite Control Volume (FCV) method for the heat transfer in walls, ceiling, windows and floor. The model uses both convective and radiative heat transfer...... to the room air and between the room surfaces. The simulation model has been used to calculate heating demand and room temperature in a typical well insulated Danish single-family house with a heating demand of approximately 6000 kWh per year, for a 130 m² house. Two different types of floor heating systems...

  10. Ferrite grade iron oxides from ore rejects

    Indian Academy of Sciences (India)

    Iron oxyhydroxides and hydroxides were synthesized from chemically beneficiated high SiO2/Al2O3 low-grade iron ore (57.49% Fe2O3) rejects and heated to get iron oxides of 96–99.73% purity. The infrared band positions, isothermal weight loss and thermogravimetric and chemical analysis established the chemical ...

  11. Impact of Seasonal Heat Accumulation on Operation of Geothermal Heat Pump System with Vertical Ground Heat Exchanger

    Science.gov (United States)

    Timofeev, D. V.; Malyavina, E. G.

    2017-11-01

    The subject of the investigation was to find out the influence of heat pump operation in summer on its function in winter. For this purpose a mathematical model of a ground coupled heat pump system has been developed and programmed. The mathematical model of a system ground heat exchanger uses the finite difference method to describe the heat transfer in soil and the analytical method to specify the heat transfer in the U-tubes heat exchanger. The thermal diffusivity by the heat transfer in the soil changes during gradual freezing of the pore moisture and thus slows soil freezing. The mathematical model of a heat pump includes the description of a scroll compressor and the simplified descriptions of the evaporator and condenser. The analysis showed that heating during the cold season and cooling in the warm season affect the average heat transfer medium temperature in the soil loop in the winter season. It has been also showed that the degree of this effect depends on the clay content in the soil.

  12. Residential heat pumps in the future Danish energy system

    DEFF Research Database (Denmark)

    Petrovic, Stefan; Karlsson, Kenneth Bernard

    2016-01-01

    for politically agreed targets which include: at least 50% of electricity consumption from wind power starting from 2020, fossil fuel free heat and power sector from 2035 and 100% renewable energy system starting from 2050. Residential heat pumps supply around 25% of total residential heating demand after 2035......Denmark is striving towards 100% renewable energy system in 2050. Residential heat pumps are expected to be a part of that system.We propose two novel approaches to improve the representation of residential heat pumps: Coefficients of performance (COPs) are modelled as dependent on air and ground...... temperature while installation of ground-source heat pumps is constrained by available ground area. In this study, TIMES-DK model is utilised to test the effects of improved modelling of residential heat pumps on the Danish energy system until 2050.The analysis of the Danish energy system was done...

  13. Lab-scale experiment of a closed thermochemical heat storage system including honeycomb heat exchanger

    International Nuclear Information System (INIS)

    Fopah-Lele, Armand; Rohde, Christian; Neumann, Karsten; Tietjen, Theo; Rönnebeck, Thomas; N'Tsoukpoe, Kokouvi Edem; Osterland, Thomas; Opel, Oliver

    2016-01-01

    A lab-scale thermochemical heat storage reactor was developed in the European project “thermal battery” to obtain information on the characteristics of a closed heat storage system, based on thermochemical reactions. The present type of storage is capable of re-using waste heat from cogeneration system to produce useful heat for space heating. The storage material used was SrBr 2 ·6H 2 O. Due to agglomeration or gel-like problems, a structural element was introduced to enhance vapour and heat transfer. Honeycomb heat exchanger was designed and tested. 13 dehydration-hydration cycles were studied under low-temperature conditions (material temperatures < 100 °C) for storage. Discharging was realized at water vapour pressure of about 42 mbar. Temperature evolution inside the reactor at different times and positions, chemical conversion, thermal power and overall efficiency were analysed for the selected cycles. Experimental system thermal capacity and efficiency of 65 kWh and 0.77 are respectively obtained with about 1 kg of SrBr 2 ·6H 2 O. Heat transfer fluid recovers heat at a short span of about 43 °C with an average of 22 °C during about 4 h, acceptable temperature for the human comfort (20 °C on day and 16 °C at night). System performances were obtained for a salt bed energy density of 213 kWh·m 3 . The overall heat transfer coefficient of the honeycomb heat exchanger has an average value of 147 W m −2  K −1 . Though promising results have been obtained, ameliorations need to be made, in order to make the closed thermochemical heat storage system competitive for space heating. - Highlights: • Lab-scale thermochemical heat storage is designed, constructed and tested. • The use of honeycomb heat exchanger as a heat and vapour process enhancement. • Closed system (1 kg SrBr 2 ·6H 2 O) able to give back 3/4 of initial thermal waste energy. • System storage capacity and thermal efficiency are respectively 65 kWh and 0.77.

  14. The economics of supplying the supplementary heat in a closed loop water source heat pump system

    International Nuclear Information System (INIS)

    Johnson, R.P.; Bartkus, V.E.; Singh, J.B.

    1993-01-01

    The paper describes the details of a research and demonstration project that will be completed in August 1992 at a healthcare facility in northeastern Pennsylvania. The purpose of the project is to compare the economics of several methods of supplying the supplementary heating in a facility served by a closed loop water source heat pump system. The systems being tested include a storage hot water tank with electric resistance heaters and three air source heat pumps that have the ability to supply the same heat during on-peak hours as well as off-peak hours. The paper compares the projected operating costs of the following: (1) Gas boiler supplying the supplementary heat. (2) Stored hot water supplying the supplementary heat which is generated and stored during off-peak hours using resistance heat on PP ampersand L's offpeak rate. (3) Stored hot water supplying the supplementary heat generated during off-peak hours using the air source heat pumps on PP ampersand L's off-peak rate. (4) Hot water generated by the air source heat pumps supplying the supplementary loop heating on PP ampersand L's general service and time-of-day electric rates. It is generally known in the HVAC industry that a closed loop water source heat pump system can provide one of the most efficient means of space conditioning to a building with high internal gains by transferring the excess heat available in one part of the building to another part of the building where it may be needed for heating. The following flow diagram depicts the relationship of the air source heat pumps with the storage tanks and the building closed water loop

  15. Heat pipe as a cooling mechanism in an aeroponic system

    Energy Technology Data Exchange (ETDEWEB)

    Srihajong, N.; Terdtoon, P.; Kamonpet, P. [Department of Mechanical Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200 (Thailand); Ruamrungsri, S. [Department of Horticulture, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200 (Thailand); Ohyama, T. [Department of Applied Biological Chemistry, Faculty of Agriculture, Niigata University (Japan)

    2006-02-01

    This paper presents an establishment of a mathematical model explaining the operation of an aeroponic system for agricultural products. The purpose is to study the rate of energy consumption in a conventional aeroponic system and the feasibility of employing a heat pipe as an energy saver in such a system. A heat pipe can be theoretically employed to remove heat from the liquid nutrient that flows through the growing chamber of an aeroponic system. When the evaporator of the heat pipe receives heat from the nutrient, the inside working fluid evaporates into vapor and flows to condense at the condenser section. The outlet temperature of the nutrient from the evaporator section is, therefore, decreased by the heat removal mechanism. The heat pipe can also be used to remove heat from the greenhouse by applying it on the greenhouse wall. By doing this, the nutrient temperature before entering into the nutrient tank decreases and the cooling load of evaporative cooling will subsequently be decreased. To justify the heat pipe application as an energy saver, numerical computations have been done on typical days in the month of April from which maximum heating load occurs and an appropriate heat pipe set was theoretically designed. It can be seen from the simulation that the heat pipe can reduce the electric energy consumption of an evaporative cooling and a refrigeration systems in a day by 17.19% and 10.34% respectively. (author)

  16. An innovative pool with a passive heat removal system

    International Nuclear Information System (INIS)

    Vitale Di Maio, Damiano; Naviglio, Antonio; Giannetti, Fabio; Manni, Fabio

    2012-01-01

    Heat removal systems are of primary importance in several industrial processes. As heat sink, a water pool or atmospheric air may be selected. The first solution takes advantage of high heat transfer coefficient with water but it requires active systems to maintain a constant water level; the second solution takes benefit from the unlimited heat removal capacity by air, but it requires a larger heat exchanger to compensate the lower heat transfer coefficient. In NPPs (nuclear power plants) during a nuclear reactor shutdown, as well as in some chemical plants to control runaway reactions, it is possible to use an innovative heat sink that joins the advantages of the two previous solutions. This solution is based on a special heat exchanger submerged in a water pool designed so that when heat removal is requested, active systems are not required to maintain the water level; due to the special design, when the pool is empty, atmospheric air becomes the only heat sink. The special heat exchanger design allows to have a heat exchanger without being oversized and to have a system able to operate for unlimited period without external interventions. This innovative system provides an economic advantage as well as enhanced safety features.

  17. Integration of large-scale heat pumps in the district heating systems of Greater Copenhagen

    DEFF Research Database (Denmark)

    Bach, Bjarne; Werling, Jesper; Ommen, Torben Schmidt

    2016-01-01

    This study analyses the technical and private economic aspects of integrating a large capacity of electric driven HP (heat pumps) in the Greater Copenhagen DH (district heating) system, which is an example of a state-of-the-art large district heating system with many consumers and suppliers....... The analysis was based on using the energy model Balmorel to determine the optimum dispatch of HPs in the system. The potential heat sources in Copenhagen for use in HPs were determined based on data related to temperatures, flows, and hydrography at different locations, while respecting technical constraints...

  18. Thermodynamic analysis of waste heat power generation system

    International Nuclear Information System (INIS)

    Guo, Jiangfeng; Xu, Mingtian; Cheng, Lin

    2010-01-01

    In the present work, a waste heat power generation system is analyzed based on the criteria with and without considering the heat/exergy loss to the environment. For the criteria without considering the heat/exergy loss to the environment, the first- and second-law efficiencies display different tendencies with the variations of some system parameters. When the heat/exergy loss to the environment is taken into consideration, the first and second law efficiencies display the same tendency. Thus, choosing the appropriate expressions for the performance criteria is crucial for the optimization design of the waste heat power generation system. It is found that there are two approaches to improving the system performance: one is to improve the heat/exergy input; the other is to enhance the heat-work conversion ability of the system. The former would deteriorate the environment if the heat-work conversion ability of the system remains unchanged; the latter could reduce the environmental impact but it's restricted by the heat/exergy input. Therefore, the optimal operation condition should be achieved at the trade-off between the heat/exergy input and the heat-work conversion ability of the system.

  19. Applying waste heat recovery system in a sewage sludge dryer – A technical and economic optimization

    International Nuclear Information System (INIS)

    Tańczuk, Mariusz; Kostowski, Wojciech; Karaś, Marcin

    2016-01-01

    Highlights: • A modernization of waste heat recovery system in a sludge drying plant is proposed. • Energy performance analysis rejected the downsize case of modernization. • Optimal system sizes regarding Net Present Value and Net Present Value Ratio do not coincide. • Up to 683 MW h/y of chemical energy savings for optimal heat exchanger size. • Higher profitability for the larger heat exchanger cases: paybacks below 3.65 years. - Abstract: Drying of digested sewage sludge, as an important alternative to sludge disposal at dumping sites, should comply with the requirements of high energy efficiency as well as economic feasibility. The technical and economic optimization analysis of installing a waste process heat recovery unit in a medium-temperature belt dryer operated in a municipal waste water treatment plant was carried out. Inlet capacity of the plant is 1.83 Mg of wet sludge per hour. The post-process air was indicated as a source of waste heat and the configuration of a heat recovery system was proposed. The main objective of the research was to find the optimal size of a chosen type of waste heat recovery heat exchanger for preheating ambient air to the process. The maximization of Net Present Value, and, alternatively, also Net Present Value Ratio were selected for the objective function of the optimization procedure. Simulation of yearly operation of waste heat exchanger was made for a range of different heat exchanging areas (101–270 m"2) regarding given parameters of a post-process air and different temperatures of ambient air. Energy performance of the modernization was evaluated and economic indices were calculated for each of the analyzed cases. The location of the maximum of optimization function was found and the calculations show higher profitability of the cases with larger waste heat exchanger. It can be concluded that the location of optimum of the objective function is very sensitive to the price of natural gas supplied to the

  20. Thermodynamic analysis and performance assessment of an integrated heat pump system for district heating applications

    International Nuclear Information System (INIS)

    Soltani, Reza; Dincer, Ibrahim; Rosen, Marc A.

    2015-01-01

    A Rankine cycle-driven heat pump system is modeled for district heating applications with superheated steam and hot water as products. Energy and exergy analyses are performed, followed by parametric studies to determine the effects of varying operating conditions and environmental parameters on the system performance. The district heating section is observed to be the most inefficient part of system, exhibiting a relative irreversibility of almost 65%, followed by the steam evaporator and the condenser, with relative irreversibilities of about 18% and 9%, respectively. The ambient temperature is observed to have a significant influence on the overall system exergy destruction. As the ambient temperature decreases, the system exergy efficiency increases. The electricity generated can increase the system exergy efficiency at the expense of a high refrigerant mass flow rate, mainly due to the fact that the available heat source is low quality waste heat. For instance, by adding 2 MW of excess electricity on top of the targeted 6 MW of product heat, the refrigerant mass flow rate increases from 12 kg/s (only heat) to 78 kg/s (heat and electricity), while the production of 8 MW of product heat (same total output, but in form of heat) requires a refrigerant mass flow rate of only 16 kg/s. - Highlights: • A new integrated heat pump system is developed for district heating applications. • An analysis and assessment study is undertaken through exergy analysis methodology. • A comparative efficiency evaluation is performed for practical applications. • A parametric study is conducted to investigate how varying operating conditions and state properties affect energy and exergy efficiencies.

  1. Design analysis of supplemental heating systems. Final report

    International Nuclear Information System (INIS)

    1981-09-01

    The first objective of the study was to formulate an R and D plan for tokamak supplemental heating based upon an evaluation and the potential of each heating technique. The second objective was to develop conceptual designs for reactor level heating systems. The two techniques selected for the second studies were icrh and negative beams

  2. High performance passive solar heating system with heat pipe energy transfer

    NARCIS (Netherlands)

    Wit, de M.H.; Hensen, J.L.M.; Dijk, van H.A.L.; Brink, van den G.J.; Galen, van E; Ouden, den C.

    1984-01-01

    The aim of the project is to develop a passive solar heating system with a higher efficiency (regarding accumulation and transfer of solar heat into dwellings) than convential concrete thermal storage walls and with restricted extra costs for manufacturing the system. This is to be achieved by the

  3. Annual simulations of heat pump systems with vertical ground heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Bernier, M.A.; Randriamiarinjatovo, D. [Ecole Polytechnique, Montreal, PQ (Canada). Dept. de Genie Mecanique

    2001-06-01

    The recent increased popularity in ground-coupled heat pump (GCHP) systems is due to their energy saving potential. However, in order for a GCHP to operate efficiently, they must be sized correctly. This paper presents a method to perform annual simulations of GCHP systems to optimize the length of the ground heat exchanger and provide annual energy consumption data. A computer program has been developed to simulate the building load, heat pump and the ground heat exchanger, the three most distinct parts of the system. The coupled governing equations of these three models are solved simultaneously until a converged solution is obtained at each time step. The simulations are performed using the Engineering Equation Solver (EES). This program has proven to be useful in balancing ground heat exchanger length against heat pump energy consumption.15 refs., 9 figs.

  4. Performance of Space Heating in a Modern Energy System

    DEFF Research Database (Denmark)

    Elmegaard, Brian

    2011-01-01

    In the paper we study the performance of a number of heat supply technologies. The background of the study is the changes in the Danish energy systems over the last three decades which have caused integration of large shares of combined heat and power (CHP), renewable fuels and wind power....... These changes mean that there is a significant integration of electricity and heat supply in the system and that several technologies may be beneficial. In particular, heat pumps are under consideration and are often considered to be renewable energy. We study how to distribute fuel and emissions to the heat...... supply. We find that heat supply is low-efficient seen from an exergy viewpoint, between 1% and 26% utilization. As exergy is a quantification of primary energy, we conclude that far better utilization of primary energy is possible. We also find that combined heat and power and domestic heat pumps...

  5. Self-Regulating Freezable Heat Exchanger and Radiator, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — At present, both the astronaut's metabolic heat and that produced by the Portable Life Support System are rejected to space by a sublimator that consumes up to 8...

  6. Parametric optimization and heat transfer analysis of a dual loop ORC (organic Rankine cycle) system for CNG engine waste heat recovery

    International Nuclear Information System (INIS)

    Yang, Fubin; Zhang, Hongguang; Yu, Zhibin; Wang, Enhua; Meng, Fanxiao; Liu, Hongda; Wang, Jingfu

    2017-01-01

    In this study, a dual loop ORC (organic Rankine cycle) system is adopted to recover exhaust energy, waste heat from the coolant system, and intercooler heat rejection of a six-cylinder CNG (compressed natural gas) engine. The thermodynamic, heat transfer, and optimization models for the dual loop ORC system are established. On the basis of the waste heat characteristics of the CNG engine over the whole operating range, a GA (genetic algorithm) is used to solve the Pareto solution for the thermodynamic and heat transfer performances to maximize net power output and minimize heat transfer area. Combined with optimization results, the optimal parameter regions of the dual loop ORC system are determined under various operating conditions. Then, the variation in the heat transfer area with the operating conditions of the CNG engine is analyzed. The results show that the optimal evaporation pressure and superheat degree of the HT (high temperature) cycle are mainly influenced by the operating conditions of the CNG engine. The optimal evaporation pressure and superheat degree of the HT cycle over the whole operating range are within 2.5–2.9 MPa and 0.43–12.35 K, respectively. The optimal condensation temperature of the HT cycle, evaporation and condensation temperatures of the LT (low temperature) cycle, and exhaust temperature at the outlet of evaporator 1 are kept nearly constant under various operating conditions of the CNG engine. The thermal efficiency of the dual loop ORC system is within the range of 8.79%–10.17%. The dual loop ORC system achieves the maximum net power output of 23.62 kW under the engine rated condition. In addition, the operating conditions of the CNG engine and the operating parameters of the dual loop ORC system significantly influence the heat transfer areas for each heat exchanger. - Highlights: • A dual loop ORC system is adopted to recover the waste heat of a CNG engine. • Parametric optimization and heat transfer analysis are

  7. Heat-Pipe-Associated Localized Thermoelectric Power Generation System

    Science.gov (United States)

    Kim, Pan-Jo; Rhi, Seok-Ho; Lee, Kye-Bock; Hwang, Hyun-Chang; Lee, Ji-Su; Jang, Ju-Chan; Lee, Wook-Hyun; Lee, Ki-Woo

    2014-06-01

    The present study focused on how to improve the maximum power output of a thermoelectric generator (TEG) system and move heat to any suitable space using a TEG associated with a loop thermosyphon (loop-type heat pipe). An experimental study was carried out to investigate the power output, the temperature difference of the thermoelectric module (TEM), and the heat transfer performance associated with the characteristic of the researched heat pipe. Currently, internal combustion engines lose more than 35% of their fuel energy as recyclable heat in the exhaust gas, but it is not easy to recycle waste heat using TEGs because of the limited space in vehicles. There are various advantages to use of TEGs over other power sources, such as the absence of moving parts, a long lifetime, and a compact system configuration. The present study presents a novel TEG concept to transfer heat from the heat source to the sink. This technology can transfer waste heat to any location. This simple and novel design for a TEG can be applied to future hybrid cars. The present TEG system with a heat pipe can transfer heat and generate power of around 1.8 V with T TEM = 58°C. The heat transfer performance of a loop-type heat pipe with various working fluids was investigated, with water at high heat flux (90 W) and 0.05% TiO2 nanofluid at low heat flux (30 W to 70 W) showing the best performance in terms of power generation. The heat pipe can transfer the heat to any location where the TEM is installed.

  8. Simulation of embedded heat exchangers of solar aided ground source heat pump system

    Institute of Scientific and Technical Information of China (English)

    王芳; 郑茂余; 邵俊鹏; 李忠建

    2008-01-01

    Aimed at unbalance of soil temperature field of ground source heat pump system, solar aided energy storage system was established. In solar assisted ground-source heat pump (SAGSHP) system with soil storage, solar energy collected in three seasons was stored in the soil by vertical U type soil exchangers. The heat abstracted by the ground-source heat pump and collected by the solar collector was employed to heating. Some of the soil heat exchangers were used to store solar energy in the soil so as to be used in next winter after this heating period; and the others were used to extract cooling energy directly in the soil by circulation pump for air conditioning in summer. After that solar energy began to be stored in the soil and ended before heating period. Three dimensional dynamic numerical simulations were built for soil and soil heat exchanger through finite element method. Simulation was done in different strata month by month. Variation and restoration of soil temperature were studied. Economy and reliability of long term SAGSHP system were revealed. It can be seen that soil temperature is about 3 ℃ higher than the original one after one year’s running. It is beneficial for the system to operate for long period.

  9. Heat pumps in urban space heating systems: Energy and environmental aspects

    International Nuclear Information System (INIS)

    Carlini, M.; Impero Abenavoli, R.; Rome Univ. La Sapienza

    1991-01-01

    A statistical survey is conducted of air pollution in the city of Rome (Italy) due to conventional building space heating systems burning fossil fuels. The survey identifies the annual consumption of the different fuels and the relative amounts of the various pollutants released into the atmosphere by the heating plants, e.g., sulfur and nitrogen oxides, carbon monoxide, etc. Comparisons are then made between the ratios of urban heating plant air pollutants produced per tonne of fuel employed and those for ENEL (Italian National Electricity Board) coal, oil and natural gas fired power plants, in order to demonstrate the better environmental performances of the utility operated energy plants. The building space heating system energy consumption and pollution data are then used in a cost benefit analysis favouring the retrofitting of conventional heating systems with heat pump systems to obtain substantial reductions in energy consumption, heating bills and urban air pollution. The use of readily available, competitively priced and low polluting (in comparison with fuel oil and coal) methane as the energy source for space heating purposes is recommended. The paper also notes the versatility of the heat pump systems in that they could also be used for summer air conditioning

  10. Verification on reliability of heat exchanger for primary cooling system

    International Nuclear Information System (INIS)

    Koike, Sumio; Gorai, Shigeru; Onoue, Ryuji; Ohtsuka, Kaoru

    2010-07-01

    Prior to the JMTR refurbishment, verification on reliability of the heat exchangers for primary cooling system was carried out to investigate an integrity of continuously use component. From a result of the significant corrosion, decrease of tube thickness, crack were not observed on the heat exchangers, and integrity of heat exchangers were confirmed. In the long terms usage of the heat exchangers, the maintenance based on periodical inspection and a long-term maintenance plan is scheduled. (author)

  11. Heat exchangers in heavy water reactor systems

    International Nuclear Information System (INIS)

    Mehta, S.K.

    1988-01-01

    Important features of some major heat exchange components of pressurized heavy water reactors and DHRUVA research reactor are presented. Design considerations and nuclear service classifications are discussed

  12. Supercritical heat transfer phenomena in nuclear system

    International Nuclear Information System (INIS)

    Seo, Kyoung Woo; Kim, Moo Hwan; Anderson, Mark H.; Corradini, Michael L.

    2005-01-01

    A supercritical water (SCW) power cycle has been considered as one of the viable candidates for advanced fission reactor designs. However, the dramatic variation of thermo-physical properties with a modest change of temperature near the pseudo-critical point make existing heat transfer correlations such as the Dittus-Boelter correlation not suitably accurate to calculate the heat transfer in supercritical fluid. Several other correlations have also been suggested but none of them are able to predict the heat transfer over a parameter range, needed for reactor thermal-hydraulics simulation and design. This has prompted additional research to understand the characteristic of supercritical fluid heat transfer

  13. Vapor Compression and Thermoelectric Heat Pump Heat Exchangers for a Condensate Distillation System: Design and Experiment

    Science.gov (United States)

    Erickson, Lisa R.; Ungar, Eugene K.

    2013-01-01

    Maximizing the reuse of wastewater while minimizing the use of consumables is critical in long duration space exploration. One of the more promising methods of reclaiming urine is the distillation/condensation process used in the cascade distillation system (CDS). This system accepts a mixture of urine and toxic stabilizing agents, heats it to vaporize the water and condenses and cools the resulting water vapor. The CDS wastewater flow requires heating and its condensate flow requires cooling. Performing the heating and cooling processes separately requires two separate units, each of which would require large amounts of electrical power. By heating the wastewater and cooling the condensate in a single heat pump unit, mass, volume, and power efficiencies can be obtained. The present work describes and compares two competing heat pump methodologies that meet the needs of the CDS: 1) a series of mini compressor vapor compression cycles and 2) a thermoelectric heat exchanger. In the paper, the system level requirements are outlined, the designs of the two heat pumps are described in detail, and the results of heat pump performance tests are provided. A summary is provided of the heat pump mass, volume and power trades and a selection recommendation is made.

  14. A heating system for piglets in farrowing house using waste heat from biogas engine

    Directory of Open Access Journals (Sweden)

    Payungsak Junyusen

    2008-12-01

    Full Text Available The aim of this study is to design and test a heating system for piglets in farrowing house by utilising the waste heat from a biogas engine as a heat source. The study was separated into three parts: the study on the biogas combined heat and power plant, the investigation on the properties of the heat panel, and the installation and testing of the heating system. From the experiment, the condition producing 60 kW of electrical power was a proper one, in which electrical efficiency and specific fuel consumption were 14% and 1.22 m3/kWh respectively. Generating both electricity and heat increased the overall efficiency to 37.7% and decreased the specific fuel consumption to 0.45 m3/kWh. The heat panel, which was made of a plastic material, had a thermal conductivity of 0.58 W/mC and the maximum compressive force and operating pressure of 8.1 kN and 0.35 bar respectively. The surface temperature of the panel was dependent on the inlet water temperature. When hot water of 44C was supplied into the farrowing house with room temperature of 26C, the average surface temperature was 33C. The developed heating system could provide heat for 4.3 farrowing houses. The payback period of this project was 2.5 years.

  15. Simulation of a heat pump system for total heat recovery from flue gas

    International Nuclear Information System (INIS)

    Wei, Maolin; Yuan, Weixing; Song, Zhijia; Fu, Lin; Zhang, Shigang

    2015-01-01

    This paper introduces an approach of using an open-cycle absorption heat pump (OAHP) for recovering waste heat from the flue gas of a gas boiler with a system model. And equivalent energy efficiency is used to evaluate two other heat recovery systems that integrate an electric compression heat pump (EHP) or an absorption heat pump (AHP) with a boiler. The key factors influencing the systems are evaluated. The OAHP system efficiency is improved by 11% compared to the base case. And the OAHP system is more efficient than the AHP or the EHP systems, especially when the solution mass flow rate is only a little less than the cold water mass flow rate. The energy efficiency comparison is supplemented with a simplified economic analysis. The results indicate that the OAHP system is the best choice for the current prices of electricity and natural gas in Beijing. - Highlights: • An OAHP system is analyzed to improve heat recovery from natural gas flue gas. • OAHP system models are presented and analyzed. • The key factors influencing the OAHP systems are analyzed. • The OAHP system is most efficient for most cases compared with other systems. • The OAHP system is more economic than other systems

  16. BUYING BEHAVIOUR RELATED TO HEATING SYSTEMS IN GERMANY

    OpenAIRE

    Decker, Thomas; Zapilko, Marina; Menrad, Klaus

    2010-01-01

    The decision for buying a heating system is a long-term one, as many different aspects have an influence on this choice which were analysed in a Germany-wide, written survey. The respondents (only owners of a private house) had to answer questions about their attitude towards e.g. economics, convenience or ecological aspects related to heating systems and the respective combustibles. Using a multinomial logistic regression model the choice of the heating system is mainly explained by ecologic...

  17. Thaw flow control for liquid heat transport systems

    Science.gov (United States)

    Kirpich, Aaron S.

    1989-01-01

    In a liquid metal heat transport system including a source of thaw heat for use in a space reactor power system, the thaw flow throttle or control comprises a fluid passage having forward and reverse flow sections and a partition having a plurality of bleed holes therein to enable fluid flow between the forward and reverse sections. The flow throttle is positioned in the system relatively far from the source of thaw heat.

  18. A modeling approach for district heating systems with focus on transient heat transfer in pipe networks

    DEFF Research Database (Denmark)

    Mohammadi, Soma; Bojesen, Carsten

    2015-01-01

    the temperature in DH systems. The main focus is on modeling transient heat transfer in pipe networks regarding the time delays between the heat supply unit and the consumers, the heat loss in the pipe networks and the consumers’ dynamic heat loads. A pseudo-dynamic approach is adopted and also the implicit...... district heating networks [DHN] characteristics. This paper is presenting a new developed model, which reflects the thermo-dynamic behavior of DHN. It is designed for tree network topologies. The purpose of the model is to serve as a basis for applying a variety of scenarios towards lowering...... finite element method is applied to simulate transient temperature changes in pipe networks. The model is calculating time series data related to supply temperature to the DHN from heat production units, heat loads and return temperature related to each consumer to calculate dynamic temperature changes...

  19. "Science" Rejects Postmodernism.

    Science.gov (United States)

    St. Pierre, Elizabeth Adams

    2002-01-01

    The National Research Council report, "Scientific Research in Education," claims to present an inclusive view of sciences in responding to federal attempts to legislate educational research. This article asserts that it narrowly defines science as positivism and methodology as quantitative, rejecting postmodernism and omitting other theories. Uses…

  20. Innovative system for delivery of low temperature district heating

    Directory of Open Access Journals (Sweden)

    Anton Ivanov Ianakiev

    2017-01-01

    Full Text Available An innovative Low Temperature District Heating (LTDH local network is developed in Nottingham, supported by REMOURBAN project, part of the H2020 Smart City and Community Lighthouse scheme. It was proposed that a branch emanating from the return pipe of the of the existing district heating system in Nottingham would be created to use low temperature heating for the first time in UK. The development is aimed to extract wasted (unused heat from existing district heating system and make it more efficient and profitable. Four maisonette blocks of 94 low-raised flats, at Nottingham demo site of the REMOURBAN project will be connected to this new LTDH system. The scheme will provide a primary supply of heat and hot water at approximately 50oC to 60oC. Innovated solutions have been put forward to overcome certain barriers, such as legionella related risks and peak loads during extreme heating seasons and occasional maintenance.

  1. Contribution of domestic heating systems to smart grid control

    DEFF Research Database (Denmark)

    Tahersima, Fatemeh; Stoustrup, Jakob; Meybodi, Soroush Afkhami

    2011-01-01

    How and to what extent, domestic heating systems can be helpful in regaining power balance in a smart grid, is the question to be answered in this paper. Our case study is an under-floor heating system supplied with a geothermal heat pump which is driven by electrical power from the grid. The idea...... is to deviate power consumption of the heat pump from its optimal value, in order to compensate power imbalances in the grid. Heating systems could be forced to consume energy, i.e. storing it in heat buffers when there is a power surplus in the grid; and be prevented from using power, in case of power shortage....... We have investigated how much power imbalance could be compensated, provided that a certain, yet user adjustable, level of residents' thermal comfort is satisfied. It is shown that the large heat capacity of the concrete floor alleviates undesired temperature fluctuations. Therefore, incorporating...

  2. Retrofitting Combined Space and Water Heating Systems: Laboratory Tests

    Energy Technology Data Exchange (ETDEWEB)

    Schoenbauer, B.; Bohac, D.; Huelman, P.; Olson, R.; Hewitt, M.

    2012-10-01

    Better insulated and tighter homes can often use a single heating plant for both space and domestic water heating. These systems, called dual integrated appliances (DIA) or combination systems, can operate at high efficiency and eliminate combustion safety issues associated by using a condensing, sealed combustion heating plant. Funds were received to install 400 DIAs in Minnesota low-income homes. The NorthernSTAR DIA laboratory was created to identify proper system components, designs, operating parameters, and installation procedures to assure high efficiency of field installed systems. Tests verified that heating loads up to 57,000 Btu/hr can be achieved with acceptable return water temperatures and supply air temperatures.

  3. Retrofitting Combined Space and Water Heating Systems. Laboratory Tests

    Energy Technology Data Exchange (ETDEWEB)

    Schoenbauer, B. [NorthernStar Building America Partnership, St. Paul, MN (United States); Bohac, D. [NorthernStar Building America Partnership, St. Paul, MN (United States); Huelman, P. [NorthernStar Building America Partnership, St. Paul, MN (United States); Olsen, R. [NorthernStar Building America Partnership, St. Paul, MN (United States); Hewett, M. [NorthernStar Building America Partnership, St. Paul, MN (United States)

    2012-10-01

    Better insulated and tighter homes can often use a single heating plant for both space and domestic water heating. These systems, called dual integrated appliances (DIA) or combination systems, can operate at high efficiency and eliminate combustion safety issues associated by using a condensing, sealed combustion heating plant. Funds were received to install 400 DIAs in Minnesota low-income homes. The NorthernSTAR DIA laboratory was created to identify proper system components, designs, operating parameters, and installation procedures to assure high efficiency of field installed systems. Tests verified that heating loads up to 57,000 Btu/hr can be achieved with acceptable return water temperatures and supply air temperatures.

  4. 40 CFR 63.1409 - Heat exchange system provisions.

    Science.gov (United States)

    2010-07-01

    ... detect leaks. (2)(i) For recirculating heat exchange systems (cooling tower systems), the monitoring of...-through heat exchange systems, the monitoring of speciated HAP or total HAP refers to the HAP listed in... operator shall maintain, at all times, the monitoring plan that is currently in use. The current plan shall...

  5. Installation package for a solar heating and hot water system

    Science.gov (United States)

    1978-01-01

    Development and installation of two commercial solar heating and hot water systems are reported. The systems consist of the following subsystems: collector, storage, transport, hot water, auxiliary energy and controls. General guidelines are provided which may be utilized in development of detailed installation plans and specifications. In addition, operation, maintenance and repair of a solar heating and hot water system instructions are included.

  6. Comprehensive thermodynamic analysis of a renewable energy sourced hybrid heating system combined with latent heat storage

    International Nuclear Information System (INIS)

    Utlu, Zafer; Aydın, Devrim; Kıncay, Olcay

    2014-01-01

    Highlights: • An experimental thermal investigation of hybrid renewable heating system is presented. • Analyses were done by using real data obtained from a prototype structure. • Exergy efficiency of system components investigated during discharging period are close to each other as 32%. • The average input energy and exergy rates to the LHS were 0.770 and 0.027 kW. • Overall total energy and exergy efficiencies of LHS calculated as 72% and 28.4%. - Abstract: In this study an experimental thermal investigation of hybrid renewable heating system is presented. Latent heat storage stores energy, gained by solar collectors and supplies medium temperature heat to heat pump both day time also night time while solar energy is unavailable. In addition to this an accumulation tank exists in the system as sensible heat storage. It provides supply–demand balance with storing excess high temperature heat. Analyses were done according to thermodynamic’s first and second laws by using real data obtained from a prototype structure, built as part of a project. Results show that high percent of heat loses took place in heat pump with 1.83 kW where accumulator-wall heating cycle followed it with 0.42 kW. Contrarily highest break-down of exergy loses occur accumulator-wall heating cycle with 0.28 kW. Averagely 2.42 kW exergy destruction took place in whole system during the experiment. Solar collectors and heat pump are the promising components in terms of exergy destruction with 1.15 kW and 1.09 kW respectively. Exergy efficiency of system components, investigated during discharging period are in a close approximately of 32%. However, efficiency of solar collectors and charging of latent heat storage are 2.3% and 7% which are relatively low. Average overall total energy and exergy efficiencies of latent heat storage calculated as 72% and 28.4% respectively. Discharging energy efficiency of latent heat storage is the highest through all system components. Also heat

  7. Thermodynamic analysis on an instantaneous water heating system of shower wastewater source heat pump

    Directory of Open Access Journals (Sweden)

    Yuguo Wu

    2018-09-01

    Full Text Available Water reuse and desalination systems are energy intensive processes, and their increasing use is leading energy consumption within water systems to be an increasingly important issue. Shower wastewater contains large amounts of heat, so there is an opportunity to recover energy from shower water to offset energy consumption elsewhere in water systems. This paper found ways to increase the output of hot water and lower the energy consumption by establishing a thermodynamic model of an instantaneous wastewater source heat pump. The system proved to be very effective, the heating COP (coefficient of performance can reach 3.3 even in the winter. Under the conditions of limited heat transfer area, reducing the suction pressure of a compressor is a more feasible way to increase the hot water output to meet the needs of users rather than increasing the discharge pressure. Besides, increasing the heat transfer area of the evaporator is a more effective option. When the heat transfer area of evaporator varies from 0.5 to 1.0 square meters, a notable change is that the heating COP increases from 3.283 to 3.936. The heating COP in a system with a recuperator can reach 5.672, almost double that compared to the original systems.

  8. Design and analysis of heat recovery system in bioprocess plant

    International Nuclear Information System (INIS)

    Anastasovski, Aleksandar; Rašković, Predrag; Guzović, Zvonimir

    2015-01-01

    Highlights: • Heat integration of a bioprocess plant is studied. • Bioprocess plant produces yeast and ethyl-alcohol. • The design of a heat recovery system is performed by batch pinch analysis. • Direct and indirect heat integration approaches are used in process design. • The heat recovery system without a heat storage opportunity is more profitable. - Abstract: The paper deals with the heat integration of a bioprocess plant which produces yeast and ethyl-alcohol. The referent plant is considered to be a multiproduct batch plant which operates in a semi-continuous mode. The design of a heat recovery system is performed by batch pinch analysis and by the use of the Time slice model. The results obtained by direct and indirect heat integration approaches are presented in the form of cost-optimal heat exchanger networks and evaluated by different thermodynamic and economic indicators. They signify that the heat recovery system without a heat storage opportunity can be considered to be a more profitable solution for the energy efficiency increase in a plant

  9. Conventional heating systems is heating with geothermal water, v. 15(60)

    International Nuclear Information System (INIS)

    Hadzhimishev, Dimitar; Gashteovski, Ljupcho; Shami, Jotso

    2007-01-01

    The Geothermal Energy (GE) is a new renewable energy source with many advantages and specifics. Present mainly application of GE is in agriculture. In Geothermal System Kochani the GE uses for district heating and industrial uses also. There are many problems to solve before using the geothermal energy for district heating: direct application feasibility for heating rooms and industrial using existing heating installation system (90/70°C); the level of heating needs covering without installation reconstruction; techno-economical justification of this reconstruction ; covering of pike heating needs. The answers of these enigmas you have in this written effort. The results were practically justified in about ten object in Kochani. (Author)

  10. Conventional heating systems is heating with geothermal water, v. 15(59)

    International Nuclear Information System (INIS)

    Hadzhimishev, Dimitar; Gashteovski, Ljupcho; Shami, Jotso

    2007-01-01

    The Geothermal Energy (GE) is a new renewable energy source with many advantages and specifics. Present mainly application of GE is in agriculture. In Geothermal System Kochani the GE uses for district heating and industrial uses also. There are many problems to solve before using the geothermal energy for district heating: direct application feasibility for heating rooms and industrial using existing heating installation system (90/70°C); the level of heating needs covering without installation reconstruction; techno-economical justification of this reconstruction ; covering of pike heating needs. The answers of these enigmas you have in this written effort. The results were practically justified in about ten object in Kochani. (Author)

  11. Comparative technical-economic analysis of the low temperature heating systems

    International Nuclear Information System (INIS)

    Sharevski, Vasko; Sharevski, Milan

    1994-01-01

    A method for comparative technical-economic analysis between low temperature heating systems and heating systems with fossil fuel boiler plant, heat pump heating system and electrical heating systems is presented. The single and combined heating systems are analyzed. The technical-economic priority application of the heating system is determined according to the prices of the low temperature heat energy, fossil fuel heat energy, electrical energy, as well as to the coefficient of the annual use of the installed heating capacity, investment expenses, structure of the combined heating system and coefficient of performances of the heat pump. The combined heating system, composed with a low temperature heating subsystem, which is used to cover the base heat demands, and a oil boiler plant heating subsystem, for the top heat demands, have technical-economic justification and wide range of priority application, in comparison with single heating systems. (author)

  12. Magnetocaloric heat pump device, a heating or cooling system and a magnetocaloric heat pump assembly

    DEFF Research Database (Denmark)

    2014-01-01

    The invention provides a magnetocaloric heat pump device, comprising a magnetocaloric bed; a magnetic field source, the magnetocaloric bed and the magnetic field source being arranged to move relative to each other so as to generate a magnetocaloric refrigeration cycle within the heat pump, wherein...

  13. Experimental research of heat recuperators in ventilation systems on the basis of heat pipes

    Directory of Open Access Journals (Sweden)

    Matveev Andrey

    2017-01-01

    Full Text Available The paper presents the results of experimental studies of heat pipes and their thermo-technical characteristics (heat power, conductivity, heat transfer resistance, heat-transfer coefficient, temperature level and differential, etc.. The theoretical foundations and the experimental methods of the research of ammonia heat pipes made of aluminum section АS – КRА 7.5 – R1 (made of the alloy AD - 31 are explained. The paper includes the analysis of the thermo-technical characteristics of heat pipes as promising highly efficient heat transfer devices, which may be used as the basic elements of heat exchangers - heat recuperators for exhaust ventilation air, capable of providing energy-saving technologies in ventilation systems for housing and public utilities and for various branches of industry. The thermo-technical characteristics of heat pipes (HP as the basic elements of a decentralized supply-extract ventilation system (DSEVS and energy-saving technologies are analyzed. As shown in the test report of the ammonia horizontal HP made of the section АS-КRА 7,5-R1-120, this pipe ensures safe operation under various loads.

  14. The heat recovery with heat transfer methods from solar photovoltaic systems

    International Nuclear Information System (INIS)

    Özakın, A. N.; Karsli, S.; Kaya, F.; Güllüce, H.

    2016-01-01

    Although there are many fluctuations in energy prices, they seems like rising day by day. Thus energy recovery systems have increasingly trend. Photovoltaic systems converts solar radiation directly into electrical energy thanks to semiconductors. But due to the nature of semiconductors, whole of solar energy cannot turn into electrical energy and the remaining energy turns into waste heat. The aim of this research is evaluate this waste heat energy by air cooling system. So, the energy efficiency of the system will be increased using appropriate heat transfer technologies such as fin, turbulator etc. (paper)

  15. Exergy Analysis of a Ground-Coupled Heat Pump Heating System with Different Terminals

    Directory of Open Access Journals (Sweden)

    Xiao Chen

    2015-04-01

    Full Text Available In order to evaluate and improve the performance of a ground-coupled heat pump (GCHP heating system with radiant floors as terminals, an exergy analysis based on test results is performed in this study. The system is divided into four subsystems, and the exergy loss and exergy efficiency of each subsystem are calculated using the expressions derived based on exergy balance equations. The average values of the measured parameters are used for the exergy analysis. The analysis results show that the two largest exergy losses occur in the heat pump and terminals, with losses of 55.3% and 22.06%, respectively, and the lowest exergy efficiency occurs in the ground heat exchange system. Therefore, GCHP system designers should pay close attention to the selection of heat pumps and terminals, especially in the design of ground heat exchange systems. Compared with the scenario system in which fan coil units (FCUs are substituted for the radiant floors, the adoption of radiant floors can result in a decrease of 12% in heating load, an increase of 3.24% in exergy efficiency of terminals and an increase of 1.18% in total exergy efficiency of the system. The results may point out the direction and ways of optimizing GCHP systems.

  16. [Carbon monoxide poisoning by a heating system].

    Science.gov (United States)

    Dietz, Eric; Gehl, Axel; Friedrich, Peter; Kappus, Stefan; Petter, Franz; Maurer, Klaus; Püschel, Klaus

    2016-01-01

    A case of accidental carbon monoxide poisoning in several occupants of two neighboring residential buildings in Hamburg-Harburg (Germany) caused by a defective gas central heating system is described. Because of leaks in one of the residential buildings and the directly adjacent wall of the neighboring house, the gas could spread and accumulated in both residential buildings, which resulted in a highly dangerous situation. Exposure to the toxic gas caused mild to severe intoxication in 15 persons. Three victims died still at the site of the accident. Measures to protect the occupants were taken only with a great delay. As symptoms were unspecific, it was not realized that the various alarms given by persons involved in the accident were related to the same cause. In order to take appropriate measures in time it is indispensible to recognize, assess and check potential risks, which can be done by using carbon monoxide warning devices and performing immediate COHb measurements with special pulse oximeters on site. Moreover, the COHb content in the blood should be routinely determined in all patients admitted to an emergency department with unspecific symptoms.

  17. Simultaneous power generation and heat recovery using a heat pipe assisted thermoelectric generator system

    International Nuclear Information System (INIS)

    Remeli, Muhammad Fairuz; Tan, Lippong; Date, Abhijit; Singh, Baljit; Akbarzadeh, Aliakbar

    2015-01-01

    Highlights: • A new passive power cogeneration system using industrial waste heat was introduced. • Heat pipes and thermoelectrics were used for recovering waste heat and electricity. • Theoretical model predicted the 2 kW test rig could recover 1.345 kW thermal power. • 10.39 W electrical power was produced equivalent to 0.77% conversion efficiency. - Abstract: This research explores a new method of recovering waste heat and electricity using a combination of heat pipes and thermoelectric generators (HP-TEG). The HP-TEG system consists of Bismuth Telluride (Bi 2 Te 3 ) based thermoelectric generators (TEGs), which are sandwiched between two finned heat pipes to achieve a temperature gradient across the TEG for thermoelectricity generation. A theoretical model was developed to predict the waste heat recovery and electricity conversion performances of the HP-TEG system under different parametric conditions. The modelling results show that the HP-TEG system has the capability of recovering 1.345 kW of waste heat and generating 10.39 W of electrical power using 8 installed TEGs. An experimental test bench for the HP-TEG system is under development and will be discussed in this paper

  18. Possibilities of heat energy recovery from greywater systems

    Science.gov (United States)

    Niewitecka, Kaja

    2018-02-01

    Waste water contains a large amount of heat energy which is irretrievably lost, so it is worth thinking about the possibilities of its recovery. It is estimated that in a residential building with full sanitary fittings, about 70% of the total tap water supplied is discharged as greywater and could be reused. The subject of the work is the opportunity to reuse waste water as an alternative source of heat for buildings. For this purpose, the design of heat exchangers used in the process of greywater heat recovery in indoor sewage systems, public buildings as well as in industrial plants has been reviewed. The possibility of recovering heat from waste water transported in outdoor sewage systems was also taken into consideration. An exemplary waste water heat recovery system was proposed, and the amount of heat that could be obtained using a greywater heat recovery system in a residential building was presented. The work shows that greywater heat recovery systems allow for significant savings in preheating hot tap water, and the rate of cost reimbursement depends on the purpose of the building and the type of installation. At the same time, the work shows that one should adjust the construction solutions of heat exchangers and indoor installations in buildings to the quality of the medium flowing, which is greywater.

  19. The Convenience Benefits of the District Heating System over Individual Heating Systems in Korean Households

    Directory of Open Access Journals (Sweden)

    Hyo-Jin Kim

    2017-08-01

    Full Text Available Koreans usually prefer the district heating system (DHS to the individual heating system (IHS because DHS can give them convenience and safety within their living environment. The Korean government thus plans to expand the DHS and requires information about the value that consumers place on the DHS over the IHS, which has not been dealt with in academic literature. This paper attempts to investigate Korean households’ willingness to pay (WTP for DHS over IHS, for residential heat (RH. To this end, the authors apply the dichotomous choice contingent valuation to assessing additional WTP for DHS using a survey of 1000 randomly selected households living in buildings with IHS. A mixture model is applied to deal with the zero WTP responses. The WTP distribution is specified as a mixture of two distributions, one with a point mass at zero and the other with full support on the positive half of the real line. The results show that the mean additional WTP for DHS-based RH over IHS-based RH is estimated to be KRW 5775 (USD 5.4 per Gcal. This value can be interpreted as the consumer’s convenience benefits of DHS over IHS, and amounts to approximately 6.0% of the average price: KRW 96,510 (USD 90.4 per Gcal in 2013, for IHS-based RH. This information is useful for evaluating changes to the method used for supplying RH from IHS to DHS.

  20. Fluctuation relation for heat exchange in Markovian open quantum systems

    Science.gov (United States)

    Ramezani, M.; Golshani, M.; Rezakhani, A. T.

    2018-04-01

    A fluctuation relation for the heat exchange of an open quantum system under a thermalizing Markovian dynamics is derived. We show that the probability that the system absorbs an amount of heat from its bath, at a given time interval, divided by the probability of the reverse process (releasing the same amount of heat to the bath) is given by an exponential factor which depends on the amount of heat and the difference between the temperatures of the system and the bath. Interestingly, this relation is akin to the standard form of the fluctuation relation (for forward-backward dynamics). We also argue that the probability of the violation of the second law of thermodynamics in the form of the Clausius statement (i.e., net heat transfer from a cold system to its hot bath) drops exponentially with both the amount of heat and the temperature differences of the baths.

  1. Low Temperature District Heating for Future Energy Systems

    DEFF Research Database (Denmark)

    Ford, Rufus; Pietruschka, Dirk; Sipilä, Kari

    participants being VTT Technical Research Centre of Finland (VTT), Technical University of Denmark (DTU), Norwegian University of Science and Technology (NTNU), Stuttgart Technology University of Applied Sciences (HFT) and SSE Enterprise in United Kingdom. The demonstration cases described in the report......This report titled “Case studies and demonstrations” is the subtask D report of the IEA DHC|CHP Annex TS1 project “Low Temperature District Heating for Future Energy Systems” carried out between 2013 and 2016. The project was led by Fraunhofer Institute for Building Physics (IBP) with the other...... include examples on low temperature district heating systems, solar heating in a district heating system, heat pump based heat supply and energy storages for both peak load management and for seasonal heat storage. Some demonstrations have been implemented while others are at planning phase...

  2. Heat transfer and mechanical interactions in fusion nuclear systems

    International Nuclear Information System (INIS)

    Nygren, R.E.

    1984-01-01

    This general review of design issues in heat transfer and mechanical interactions of the first wall, blanket and shield systems of tokamak and mirror fusion reactors begins with a brief introduction to fusion nuclear systems. The design issues are summarized in tables and the following examples are described to illustrate these concerns: the surface heating of limiters, heat transfer from solid breeders, MHD effects in liquid metal blankets, mechanical loads from electromagnetic transients and remote maintenance

  3. Energetic and financial evaluation of solar assisted heat pump space heating systems

    International Nuclear Information System (INIS)

    Bellos, Evangelos; Tzivanidis, Christos; Moschos, Konstantinos; Antonopoulos, Kimon A.

    2016-01-01

    Highlights: • Four solar heating systems are presented in this work. • Various combinations between solar collectors and heat pumps are presented. • The systems are compared energetically and financially. • The use of PV and an air source heat pump is the best choice financially. • The use of PVT with a water source heat pump is the best solution energetically. - Abstract: Using solar energy for space heating purposes consists an alternative way for substituting fossil fuel and grid electricity consumption. In this study, four solar assisted heat pump heating systems are designed, simulated and evaluated energetically and financially in order to determine the most attractive solution. The use of PV collectors with air source heat pump is compared to the use of FPC, PVT and FPC with PV coupled with a water source heat pump. A sensitivity analysis for the electricity cost is conducted because of the great variety of this parameter over the last years. The final results proved that for electricity cost up to 0.23 €/kW h the use of PV coupled with an air source heat pump is the most sustainable solution financially, while for higher electricity prices the coupling of PVT with an water source heat pump is the best choice. For the present electricity price of 0.2 €/kW h, 20 m"2 of PV is able to drive the air source heat pump with a yearly solar coverage of 67% leading to the most sustainable solution. Taking into account energetic aspects, the use of PVT leads to extremely low grid electricity consumption, fact that makes this technology the most environmental friendly.

  4. Wind power integration with heat pumps, heat storages, and electric vehicles - Energy systems analysis and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Hedegaard, K.

    2013-09-15

    This PhD investigates to which extent heat pumps, heat storages, and electric vehicles can support the integration of wind power. Considering the gaps in existing research, the main focus is put on individual heat pumps in the residential sector (one-family houses) and the possibilities for flexible operation, using the heat storage options available. Several energy systems analyses are performed using the energy system models, Balmorel, developed at the former TSO, ElkraftSystem, and, EnergyPLAN, developed at Aalborg University. The Danish energy system towards 2030, with wind power penetrations of up to 60 %, is used as a case study in most of the analyses. Both models have been developed further, resulting in an improved representation of individual heat pumps and heat storages. An extensive model add-on for Balmorel renders it possible to optimise investment and operation of individual heat pumps and different types of heat storages, in integration with the energy system. Total costs of the energy system are minimised in the optimisation. The add-on incorporates thermal building dynamics and covers various different heat storage options: intelligent heat storage in the building structure for houses with radiator heating and floor heating, respectively, heat accumulation tanks on the space heating circuit, as well as hot water tanks. In EnergyPLAN, some of the heat storage options have been modelled in a technical optimisation that minimises fuel consumption of the energy system and utilises as much wind power as possible. The energy systems analyses reveal that in terms of supporting wind power integration, the installation of individual heat pumps is an important step, while adding heat storages to the heat pumps is less influential. When equipping the heat pumps with heat storages, only moderate system benefits can be gained. Hereof, the main system benefit is that the need for peak/reserve capacity investments can be reduced through peak load shaving; in

  5. External costs and taxes in heat supply systems

    International Nuclear Information System (INIS)

    Karlsson, Aasa; Gustavsson, Leif

    2003-01-01

    A systems approach was used to compare different heating systems from a consumer perspective. The whole energy system was considered from natural resources to the required energy services. District heating, electric heat pumps, electric boilers, natural-gas-, oil- or pellet-fired local boilers were considered when supplying heat to a detached house. The district heat production included wood-chip-fired and natural-gas-fired cogeneration plants. Electricity other than cogenerated electricity was produced in wood-chip- and natural-gas-fired stand-alone power plants. The analysis includes four tax scenarios, as well as the external cost of environmental and health damage arising from energy conversion emission based on the ExternE study of the European Commission. The most cost-efficient systems were the natural-gas and oil boiler systems, followed by the heat pump and district heating systems, when the external cost and taxes were excluded. When including the external costs of CO 2 emission, the wood-fuel-based systems were much more cost efficient than the fossil-fuel-based systems, also when CO 2 capture and storage were applied. The external costs are, however, highly uncertain. Taxes steer towards lowering energy use and lowering CO 2 emission if they are levied solely on all the fossil-fuel-related emission and fuel use in the systems. If consumer electricity and heat taxes are used, the taxes have an impact on the total cost, regardless of the fuel used, thereby benefiting fuel-based local heating systems. The heat pump systems were the least affected by taxes, due to their high energy efficiency. The electric boiler systems were the least cost-efficient systems, also when the external cost and taxes were included

  6. Heat-pump-centered integrated community energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Schaetzle, W.J.; Brett, C.E.; Seppanen, M.S.

    1979-12-01

    The heat-pump-centered integrated community energy system (HP-ICES) supplies district heating and cooling using heat pumps and a thermal energy storage system which is provided by nature in underground porous formations filled with water, i.e., aquifers. The energy is transported by a two-pipe system, one for warm water and one for cool water, between the aquifers and the controlled environments. Each energy module contains the controlled environments, an aquifer, wells for access to the aquifer, the two pipe water distribution system and water source heat pumps. The heat pumps upgrade the energy in the distribution system for use in the controlled environments. Economically, the system shows improvement on both energy usage and capital costs. The system saves over 60% of the energy required for resistance heating; saves over 30% of the energy required for most air-source heat pumps and saves over 60% of the energy required for gas, coal, or oil heating, when comparing to energy input required at the power plant for heat pump usage. The proposed system has been analyzed as demonstration projects for a downtown portion of Louisville, Kentucky, and a section of Fort Rucker, Alabama. The downtown Louisville demonstration project is tied directly to major buildings while the Fort Rucker demonstration project is tied to a dispersed subdivision of homes. The Louisville project shows a payback of approximately 3 y, while Fort Rucker is approximately 30 y. The primary difference is that at Fort Rucker new heat pumps are charged to the system. In Louisville, either new construction requiring heating and cooling systems or existing chillers are utilized. (LCL)

  7. Experimental investigations on solar heating/heat pump systems for single family houses

    DEFF Research Database (Denmark)

    Andersen, Elsa; Perers, Bengt

    In the period 2013-2017 the project “Experimental investigations on solar heat pump systems for single family houses” is carried out at Department of Civil Engineering, Technical University of Denmark. The aim of this project is to increase the knowledge of the heat and mass transfer in the combi...

  8. Thermophysical and heat transfer properties of phase change material candidate for waste heat transportation system

    Science.gov (United States)

    Kaizawa, Akihide; Maruoka, Nobuhiro; Kawai, Atsushi; Kamano, Hiroomi; Jozuka, Tetsuji; Senda, Takeshi; Akiyama, Tomohiro

    2008-05-01

    A waste heat transportation system trans-heat (TH) system is quite attractive that uses the latent heat of a phase change material (PCM). The purpose of this paper is to study the thermophysical properties of various sugars and sodium acetate trihydrate (SAT) as PCMs for a practical TH system and the heat transfer property between PCM selected and heat transfer oil, by using differential scanning calorimetry (DSC), thermogravimetry-differential thermal analysis (TG-DTA) and a heat storage tube. As a result, erythritol, with a large latent heat of 344 kJ/kg at melting point of 117°C, high decomposition point of 160°C and excellent chemical stability under repeated phase change cycles was found to be the best PCM among them for the practical TH system. In the heat release experiments between liquid erythritol and flowing cold oil, we observed foaming phenomena of encapsulated oil, in which oil droplet was coated by solidification of PCM.

  9. Optimization of Temperature Schedule Parameters on Heat Supply in Power-and-Heat Supply Systems

    Directory of Open Access Journals (Sweden)

    V. A. Sednin

    2009-01-01

    Full Text Available The paper considers problems concerning optimization of a temperature schedule in the district heating systems with steam-turbine thermal power stations having average initial steam parameters. It has been shown in the paper that upkeeping of an optimum network water temperature permits to increase an energy efficiency of heat supply due to additional systematic saving of fuel. 

  10. Heat exchanger modeling and identification for control of waste heat recovery systems in diesel engines

    NARCIS (Netherlands)

    Feru, E.; Willems, F.P.T.; Rojer, C.; Jager, B. de; Steinbuch, M.

    2013-01-01

    To meet future CO2 emission targets, Waste Heat Recovery systems have recently attracted much attention for automotive applications, especially for long haul trucks. This paper focuses on the development of a dynamic counter-flow heat exchanger model for control purposes. The model captures the

  11. Agent-based modelling of heating system adoption in Norway

    Energy Technology Data Exchange (ETDEWEB)

    Sopha, Bertha Maya; Kloeckner, Christian A.; Hertwich, Edgar G.

    2010-07-01

    Full text: This paper introduces agent-based modelling as a methodological approach to understand the effect of decision making mechanism on the adoption of heating systems in Norway. The model is used as an experimental/learning tool to design possible interventions, not for prediction. The intended users of the model are therefore policy designers. Primary heating system adoptions of electric heating, heat pump and wood pellet heating were selected. Random topology was chosen to represent social network among households. Agents were households with certain location, number of peers, current adopted heating system, employed decision strategy, and degree of social influence in decision making. The overall framework of decision-making integrated theories from different disciplines; customer behavior theory, behavioral economics, theory of planned behavior, and diffusion of innovation, in order to capture possible decision making processes in households. A mail survey of 270 Norwegian households conducted in 2008 was designed specifically for acquiring data for the simulation. The model represents real geographic area of households and simulates the overall fraction of adopted heating system under study. The model was calibrated with historical data from Statistics Norway (SSB). Interventions with respects to total cost, norms, indoor air quality, reliability, supply security, required work, could be explored using the model. For instance, the model demonstrates that a considerable total cost (investment and operating cost) increase of electric heating and heat pump, rather than a reduction of wood pellet heating's total cost, are required to initiate and speed up wood pellet adoption. (Author)

  12. Experiments on novel solar heating and cooling system

    International Nuclear Information System (INIS)

    Wang Yiping; Cui Yong; Zhu Li; Han Lijun

    2008-01-01

    Solar heating and nocturnal radiant cooling techniques are united to produce a novel solar heating and cooling system. The radiant panel with both heating and cooling functions can be used as structural materials for the building envelope, which realizes true building integrated utilization of solar energy. Based on the natural circulation principle, the operation status can be changed automatically between the heating cycle and the cooling cycle. System performances under different climate conditions using different covers on the radiant panel are studied. The results show that the novel solar heating and cooling system has good performance of heating and cooling. For the no cover system, the daily average heat collecting efficiency is 52% with the maximum efficiency of 73%, while at night, the cooling capacity is about 47 W/m 2 on a sunny day. On a cloudy day, the daily average heat collecting efficiency is 47% with the maximum of 84%, while the cooling capacity is about 33 W/m 2 . As a polycarbonate (PC) panel or polyethylene film are used as covers, the maximum heat collecting efficiencies are 75% and 72% and the daily average heat collecting efficiencies are 61% and 58%, while the cooling capacities are 50 W/m 2 and 36 W/m 2 , respectively

  13. Optimized Heat Pipe Backup Cooling System Tested with a Stirling Convertor

    Science.gov (United States)

    Schwendeman, Carl L.; Tarau, Calin; Schifer, Nicholas A.; Anderson, William G.; Garner, Scott

    2016-01-01

    In a Stirling Radioisotope Power System (RPS), heat must be continuously removed from the General Purpose Heat Source (GPHS) modules to maintain the modules and surrounding insulation at acceptable temperatures. The Stirling convertor normally provides this cooling. If the Stirling convertor stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS at the cost of an early termination of the mission. An alkali-metal variable conductance heat pipe (VCHP) can be used to passively allow multiple stops and restarts of the Stirling convertor by bypassing the heat during stops. In a previous NASA Small Business Innovation Research (SBIR) Program, Advanced Cooling Technologies, Inc. (ACT) developed a series of sodium VCHPs as backup cooling systems for the Stirling RPS. In 2012, one of these VCHPs was successfully tested at NASA Glenn Research Center with a Stirling convertor as an Advanced Stirling Radioisotope Generator (ASRG) backup cooling system. The prototype; however, was not optimized and did not reflect the final heat rejection path. ACT through further funding has developed a semioptimized prototype with the finalized heat path for testing at Glenn with a Stirling convertor. The semioptimized system features a two-phase radiator and is significantly smaller and lighter than the prior prototype to reflect a higher level of flight readiness. The VCHP is designed to activate and remove heat from the GPHS during stoppage with a small temperature increase from the nominal vapor temperature. This small temperature increase from nominal is low enough to avoid risking standard ASRG operation and spoiling of the multilayer insulation (MLI). The VCHP passively allows the Stirling convertor to be turned off multiple times during a mission with potentially unlimited off durations. Having the ability to turn the Stirling off allows for the Stirling to be reset and reduces vibrations on the platform during sensitive measurements or

  14. Action against Kruemmel rejected

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    In its verdict dated September 2nd, 1976 - 10 A 211/74 -, the administrative court of Schleswig-Holstein at Schleswig has rejected with costs the action of a plaintiff resident in Hessen concerning the contestation of the 2nd partial licence for the erection of a nuclear power station at Kruemmel near Hamburg. The verdict is not subject to appeal. Furthermore, the administrative court of Schleswig-Holstein at Schleswig, in its verdict dated September 2nd, 1976 - 10 A 214/74 - has rejected with costs the actions of eight plaintiffs living in Hamburg and surroundings, concerning the contestation of the 1st, 2nd and 3rd partial licence for the erection of a nuclear power station at Kruemmel near Hamburg. An appeal against this verdict has been lodged at the higher administrative court at Lueneburg. The main gounds for the two judgments are given in full text. (orig./HP) [de

  15. A Systems Biology Approach to Heat Stress, Heat Injury and Heat Stroke

    Science.gov (United States)

    2015-01-01

    stroke [3, 11, 12], leading to severe encephalopathy , rhabdomyolysis, acute renal failure, acute respiratory distress syndrome, myocardial injury...heart, kidney, and liver failure are increased by 40% in Service members with a history of heat stroke [5, 6]. Indeed, there is an urgent need for...other organs at high risk for injury, such as liver and kidney [24, 25]. 2.1 Utility of the computational model Molecular indicators of heat

  16. Analysis of the location for peak heating in CHP based combined district heating systems

    International Nuclear Information System (INIS)

    Wang, Haichao; Lahdelma, Risto; Wang, Xin; Jiao, Wenling; Zhu, Chuanzhi; Zou, Pinghua

    2015-01-01

    Combined heat and power (CHP) is the main technology for providing the base load of district heating in China. However, CHP is not efficient for providing the peak load; instead, a peak boiler with high efficiency could be used to compensate the peak load. This paper studies how the location of the peak boiler can affect the energy efficiency and economic performance of such CHP based combined district heating system. Firstly, the connection mode and the control strategy for different peak heating locations are analyzed. Then the effect of the peak boiler's location on the initial investment of the network and the cost for distributing heat is studied. The objective is to place the peak boiler in a location where the overall costs are the smallest. Following this rule, the results indicate that the peak boiler should be located at the CHP plant if that allows using cheaper ‘self-use electricity’ in CHP for distributing the heat. However, if the market electricity price is used everywhere, or if energy efficiency is more emphasized, the location of the peak boiler should be closer to the users with dense heat loads. - Highlights: • Location for peak heating in the CHP based combined DH system is studied. • Regulation or control strategies for combined DH are summarized. • The heat load duration curve for combined DH is demonstrated. • Network design for combined DH with peak boiler outside of the CHP is analyzed

  17. Characterization of a mini-channel heat exchanger for a heat pump system

    International Nuclear Information System (INIS)

    Arteconi, A; Giuliani, G; Tartuferi, M; Polonara, F

    2014-01-01

    In this paper a mini-channel aluminum heat exchanger used in a reversible heat pump is presented. Mini-channel finned heat exchangers are getting more and more interest for refrigeration systems, especially when compactness and low refrigerant charge are desired. Purpose of this paper was to characterize the mini-channel heat exchanger used as evaporator in terms of heat transfer performance and to study the refrigerant distribution in the manifold. The heat exchanger characterization was performed experimentally by means of a test rig built up for this purpose. It is composed of an air-to-air heat pump, air channels for the external and internal air circulation arranged in a closed loop, measurement sensors and an acquisition system. The overall heat transfer capacity was assessed. Moreover, in order to characterize the flow field of the refrigerant in the manifold of the heat exchanger, a numerical investigation of the fluid flow by means of CFD was performed. It was meant to evaluate the goodness of the present design and to identify possible solutions for the future improvement of the manifold design.

  18. Performance of a Heating Block System Designed for Studying the Heat Resistance of Bacteria in Foods

    Science.gov (United States)

    Kou, Xiao-xi; Li, Rui; Hou, Li-xia; Huang, Zhi; Ling, Bo; Wang, Shao-jin

    2016-01-01

    Knowledge of bacteria’s heat resistance is essential for developing effective thermal treatments. Choosing an appropriate test method is important to accurately determine bacteria’s heat resistances. Although being a major factor to influence the thermo-tolerance of bacteria, the heating rate in samples cannot be controlled in water or oil bath methods due to main dependence on sample’s thermal properties. A heating block system (HBS) was designed to regulate the heating rates in liquid, semi-solid and solid foods using a temperature controller. Distilled water, apple juice, mashed potato, almond powder and beef were selected to evaluate the HBS’s performance by experiment and computer simulation. The results showed that the heating rates of 1, 5 and 10 °C/min with final set-point temperatures and holding times could be easily and precisely achieved in five selected food materials. A good agreement in sample central temperature profiles was obtained under various heating rates between experiment and simulation. The experimental and simulated results showed that the HBS could provide a sufficiently uniform heating environment in food samples. The effect of heating rate on bacterial thermal resistance was evaluated with the HBS. The system may hold potential applications for rapid and accurate assessments of bacteria’s thermo-tolerances. PMID:27465120

  19. 14 CFR 121.342 - Pitot heat indication systems.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Pitot heat indication systems. 121.342... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Instrument and Equipment Requirements § 121.342 Pitot... a flight instrument pitot heating system unless the airplane is also equipped with an operable pitot...

  20. Prototype solar heating and cooling systems including potable hot water

    Science.gov (United States)

    1978-01-01

    Progress is reviewed in the development, delivery, and support of two prototype solar heating and cooling systems including potable hot water. The system consisted of the following subsystems: collector, auxiliary heating, potable hot water, storage, control, transport, and government-furnished site data acquisition.

  1. Optimal design of solar water heating systems | Alemu | Zede Journal

    African Journals Online (AJOL)

    Solar water heating systems are usually designed using simplified equation of annual efficiency of the heating system from solar radiation incident on the collector during the year and empirical values of annual efficiency. The pe1formance of the preliminary design is predicted by using either/chart method or by translate it ...

  2. Performance study of heat-pipe solar photovoltaic/thermal heat pump system

    International Nuclear Information System (INIS)

    Chen, Hongbing; Zhang, Lei; Jie, Pengfei; Xiong, Yaxuan; Xu, Peng; Zhai, Huixing

    2017-01-01

    Highlights: • The testing device of HPS PV/T heat pump system was established by a finished product of PV panel. • A detailed mathematical model of heat pump was established to investigate the performance of each component. • The dynamic and static method was combined to solve the mathematical model of HPS PV/T heat pump system. • The HPS PV/T heat pump system was optimized by the mathematical model. • The influence of six factors on the performance of HPS PV/T heat pump system was analyzed. - Abstract: A heat-pipe solar (HPS) photovoltaic/thermal (PV/T) heat pump system, combining HPS PV/T collector with heat pump, is proposed in this paper. The HPS PV/T collector integrates heat pipes with PV panel, which can simultaneously generate electricity and thermal energy. The extracted heat from HPS PV/T collector can be used by heat pump, and then the photoelectric conversion efficiency is substantially improved because of the low temperature of PV cells. A mathematical model of the system is established in this paper. The model consists of a dynamic distributed parameter model of the HPS PV/T collection system and a quasi-steady state distributed parameter model of the heat pump. The mathematical model is validated by testing data, and the dynamic performance of the HPS PV/T heat pump system is discussed based on the validated model. Using the mathematical model, a reasonable accuracy in predicting the system’s dynamic performance with a relative error within ±15.0% can be obtained. The capacity of heat pump and the number of HPS collectors are optimized to improve the system performance based on the mathematical model. Six working modes are proposed and discussed to investigate the effect of solar radiation, ambient temperature, supply water temperature in condenser, PV packing factor, heat pipe pitch and PV backboard absorptivity on system performance by the validated model. It is found that the increase of solar radiation, ambient temperature and PV

  3. Energy savings for solar heating systems; Solvarmeanlaegs energibesparelser

    Energy Technology Data Exchange (ETDEWEB)

    Furbo, S.; Fan, J.

    2011-01-15

    Energy savings for a number of new solar heating systems in one family houses have been determined by means of information on the energy consumption of the houses before and after installation of the solar heating systems. The investigated solar heating systems are marketed by Velux Danmark A/S, Sonnnenkraft Scandinavia A/S and Batec Solvarme A/S. Solar domestic hot water systems as well as solar combi systems are included in the investigations The houses have different auxiliary energy supply systems: Natural gas boilers, oil fired burners, electrical heating and district heating. Some of the houses have a second auxiliary energy supply system. The collector areas vary from 1.83 m{sup 2} to 9.28 m{sup 2}. Some of the solar heating systems are based on energy units with a new integrated natural gas boiler and a heat storage for the solar heating system. The existing energy systems in the houses are for most of the houses used as the auxiliary energy systems for the solar heating systems. The yearly energy savings for the houses where the only change is the installation of the solar heating system vary from 300 kWh per m{sup 2} solar collector to 1300 kWh per m{sup 2} solar collector. The average yearly energy savings is about 670 kWh per m{sup 2} solar collector for these solar heating systems. The energy savings per m{sup 2} solar collector are not influenced by the solar heating system type, the company marketing the system, the auxiliary energy supply system, the collector area, the collector tilt, the collector azimuth, the energy consumption of the house or the location of the house. The yearly energy savings for the houses with solar heating systems based on energy units including a new natural gas boiler vary from 790 kWh per m{sup 2} solar collector to 2090 kWh per m{sup 2} solar collector. The average yearly energy savings is about 1520 kWh per m{sup 2} solar collector for these solar heating systems. The energy savings per m{sup 2} solar collector for

  4. After heat removing system of a nuclear reactor

    International Nuclear Information System (INIS)

    Hayashi, Takao; Yamada, Masao; Ohashi, Kazutaka.

    1994-01-01

    In a variable conductance heat pipe of an after heat removing system, an evaporation portion and a condensator are connected by a steam diffusing path for an operation fluid and a liquid condensate recycling path. Further, incondensible gases are sealed at the inside together with the operation fluid, and a gas reservoir for the incondensible gases is disposed at the downstream of a condensation portion. If heat input is applied to the evaporation portion of the heat pipe, the incondensible gases are separated to form a boundary between both of them. When the amount of heat applied is small, the incondensible gases partially seal the condensation portion to form a local condensation insensitive portion, so that a heat conductance can be suppressed low. On the other hand, as the amount of heat inputted is increased, the incondensible gases are compressed, the heat conduction area of the condensation portion is increased and a heat conductance is increased to conduct self-control so as to increase heat transfer performance of the heat pipe. Then, the liquid condensate is recycled to the evaporation portion by spontaneous dripping of the condensate itself without wick, thereby enabling to conduct automatic switching so as to increase the heat dissipation amount to maximum. (N.H.)

  5. Developing a Procedure for Segmenting Meshed Heat Networks of Heat Supply Systems without Outflows

    Science.gov (United States)

    Tokarev, V. V.

    2018-06-01

    The heat supply systems of cities have, as a rule, a ring structure with the possibility of redistributing the flows. Despite the fact that a ring structure is more reliable than a radial one, the operators of heat networks prefer to use them in normal modes according to the scheme without overflows of the heat carrier between the heat mains. With such a scheme, it is easier to adjust the networks and to detect and locate faults in them. The article proposes a formulation of the heat network segmenting problem. The problem is set in terms of optimization with the heat supply system's excessive hydraulic power used as the optimization criterion. The heat supply system computer model has a hierarchically interconnected multilevel structure. Since iterative calculations are only carried out for the level of trunk heat networks, decomposing the entire system into levels allows the dimensionality of the solved subproblems to be reduced by an order of magnitude. An attempt to solve the problem by fully enumerating possible segmentation versions does not seem to be feasible for systems of really existing sizes. The article suggests a procedure for searching rational segmentation of heat supply networks with limiting the search to versions of dividing the system into segments near the flow convergence nodes with subsequent refining of the solution. The refinement is performed in two stages according to the total excess hydraulic power criterion. At the first stage, the loads are redistributed among the sources. After that, the heat networks are divided into independent fragments, and the possibility of increasing the excess hydraulic power in the obtained fragments is checked by shifting the division places inside a fragment. The proposed procedure has been approbated taking as an example a municipal heat supply system involving six heat mains fed from a common source, 24 loops within the feeding mains plane, and more than 5000 consumers. Application of the proposed

  6. Ten questions about radiant heating and cooling systems

    DEFF Research Database (Denmark)

    Rhee, Kyu-Nam; Olesen, Bjarne W.; Kim, Kwang Woo

    2017-01-01

    studies on RHC systems in terms of comfort, heat transfer analysis, energy simulation, control strategy, system configurations and so on. Many studies have demonstrated that the RHC system is a good solution to improve indoor environmental quality while reducing building energy consumption for heating......Radiant heating and cooling (RHC) systems are being increasingly applied not only in residential but also in non-residential buildings such as commercial buildings, education facilities, and even large scale buildings such as airport terminals. Furthermore, with the combined ventilation system used...

  7. Study of an active wall solar heating system

    International Nuclear Information System (INIS)

    Kassem, Talal

    2006-01-01

    An active wall solar heating system was built and tested. In the same time a compatible computer program has been according to set the recommended dimensions for the solar collectors where (F-Chart) method used to set the ratio of monthly solar sharing average for the examined heating system. Some parameters, such as collectors' areas, its tilt angle and near earth reflecting were experimentally investigated, affecting the executed active solar heating system performance. The study explain the ability of using this system which is simple, Low coast and high performance in heating residential and public buildings and heating water with ratio of yearly solar sharing achieves the needed saving of using this system.(Author)

  8. Increase of COP for heat transformer in water purification systems. Part I - Increasing heat source temperature

    International Nuclear Information System (INIS)

    Siqueiros, J.; Romero, R.J.

    2007-01-01

    The integration of a water purification system in a heat transformer allows a fraction of heat obtained by the heat transformer to be recycled, increasing the heat source temperature. Consequently, the evaporator and generator temperatures are also increased. For any operating conditions, keeping the condenser and absorber temperatures and also the heat load to the evaporator and generator, a higher value of COP is obtained when only the evaporator and generator temperatures are increased. Simulation with proven software compares the performance of the modeling of an absorption heat transformer for water purification (AHTWP) operating with water/lithium bromide, as the working fluid-absorbent pair. Plots of enthalpy-based coefficients of performance (COP ET ) and the increase in the coefficient of performance (COP) are shown against absorber temperature for several thermodynamic operating conditions. The results showed that proposed (AHTWP) system is capable of increasing the original value of COP ET more than 120%, by recycling part of the energy from a water purification system. The proposed system allows to increase COP values from any experimental data for water purification or any other distillation system integrated to a heat transformer, regardless of the actual COP value and any working fluid-absorbent pair

  9. Solar heating and cooling technical data and systems analysis

    Science.gov (United States)

    Christensen, D. L.

    1977-01-01

    The research activities described herein were concentrated on the areas of economics, heating and cooling systems, architectural design, materials characteristics, climatic conditions, educational information packages, and evaluation of solar energy systems and components.

  10. Preliminary design package for prototype solar heating system

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-01

    A summary is given of the preliminary analysis and design activity on solar heating systems. The analysis was made without site specific ata other than weather; therefore, the results indicate performance expected under these special conditions. Major items in this report include systeem candidates, design approaches, trade studies and other special data required to evaluate the preliminary analysis and design. The program calls for the development and delivery of eight prototype solar heating and coolin systems for installation and operational test. Two-heating and six heating and cooling units will be delivered for Single Family Residences (SFR), Multi-Family Residences (MFR) and commercial applications.

  11. Design of a Heat Pump Assisted Solar Thermal System

    OpenAIRE

    Krockenberger, Kyle G.; DeGrove, John M.; Hutzel, William J.; Foreman, J. Christopher

    2014-01-01

    This paper outlines the design of an active solar thermal loop system that will be integrated with an air source heat pump hot water heater to provide highly efficient heating of a water/propylene glycol mixture. This system design uses solar energy when available, but reverts to the heat pump at night or during cloudy weather. This new design will be used for hydronic heating in the Applied Energy Laboratory, a teaching laboratory at Purdue University, but it is more generally applicable for...

  12. An Integrated Control System for Heating and Indoor Climate Applications

    DEFF Research Database (Denmark)

    Tahersima, Fatemeh

    2012-01-01

    which geothermal heat pump, solar driven heat pumps and the other types are categorized as renewable or renewable energy sources. In the present study, we investigated modeling and control of hydronic heat emitters integrated with a ground-source heat pump. Optimization of the system performance...... in terms of energy efficiency, associated energy cost and occupants’ thermal comfort is the main objective to be fulfilled via design of an integrated controller. We also proposed control strategies to manage energy consumption of the building to turn domestic heat demands into a flexible load in the smart...... in order to maximize the heat pump’s efficiency and by this means reduce the power consumption of the heat pump. The hypothesis is that such an optimal point coincides with saturation of at least one of the subsystems control valves. The idea is implemented experimentally using simple PI and on...

  13. Simulation Models to Size and Retrofit District Heating Systems

    Directory of Open Access Journals (Sweden)

    Kevin Sartor

    2017-12-01

    Full Text Available District heating networks are considered as convenient systems to supply heat to consumers while reducing CO 2 emissions and increasing renewable energies use. However, to make them as profitable as possible, they have to be developed, operated and sized carefully. In order to cope with these objectives, simulation tools are required to analyze several configuration schemes and control methods. Indeed, the most common problems are heat losses, the electric pump consumption and the peak heat demand while ensuring the comfort of the users. In this contribution, a dynamic simulation model of all the components of the network is described. It is dedicated to assess some energetic, environmental and economic indicators. Finally, the methodology is used on an existing application test case namely the district heating network of the University of Liège to study the pump control and minimize the district heating network heat losses.

  14. Conversion to biofuel based heating systems - local environmental effects

    International Nuclear Information System (INIS)

    Jonsson, Anna

    2003-01-01

    One of the most serious environmental problems today is the global warming, i.e.climate changes caused by emissions of greenhouse gases. The greenhouse gases originate from combustion of fossil fuels and changes the atmospheric composition. As a result of the climate change, the Swedish government has decided to make a changeover of the Swedish energy system. This involves an increase of the supply of electricity and heating from renewable energy sources and a decrease in the amount electricity used for heating, as well as a more efficient use of the existing electricity system. Today, a rather large amount electricity is used for heating in Sweden. Furthermore, nuclear power will be phased out by the year 2010 in Sweden. Bio fuels are a renewable energy source and a conceivable alternative to the use of fossil fuels. Therefore, an increase of bio fuels will be seen the coming years. Bio fuels have a lot of environmental advantages, mainly for the global environment, but might also cause negative impacts such as depletion of the soils where the biomass is grown and local deterioration of the air quality where the bio fuels are combusted. These negative impacts are a result of the use of wrong techniques and a lack of knowledge and these factors have to be improved if the increase of the use of bio fuels is to be made effectively. The aim of this master thesis is to evaluate the possibilities for heating with bio fuel based systems in housing areas in the municipalities of Trollhaettan, Ulricehamn and Goetene in Vaestra Goetalands County in the South West of Sweden and to investigate which environmental and health effects are caused by the conversion of heating systems. The objective is to use the case studies as examples on preferable bio fuel based heating systems in different areas, and to what environmental impact this conversion of heating systems might cause. The housing areas for this study have been chosen on the basis of present heating system, one area

  15. Investigation of Characteristics of Passive Heat Removal System Based on the Assembled Heat Transfer Tube

    Directory of Open Access Journals (Sweden)

    Xiangcheng Wu

    2016-12-01

    Full Text Available To get an insight into the operating characteristics of the passive residual heat removal system of molten salt reactors, a two-phase natural circulation test facility was constructed. The system consists of a boiling loop absorbing the heat from the drain tank, a condensing loop consuming the heat, and a steam drum. A steady-state experiment was carried out, in which the thimble temperature ranged from 450°C to 700°C and the system pressure was controlled at levels below 150 kPa. When reaching a steady state, the system was operated under saturated conditions. Some important parameters, including heat power, system resistance, and water level in the steam drum and water tank were investigated. The experimental results showed that the natural circulation system is feasible in removing the decay heat, even though some fluctuations may occur in the operation. The uneven temperature distribution in the water tank may be inevitable because convection occurs on the outside of the condensing tube besides boiling with decreasing the decay power. The instabilities in the natural circulation loop are sensitive to heat flux and system resistance rather than the water level in the steam drum and water tank. RELAP5 code shows reasonable results compared with experimental data.

  16. Investigation of characteristics of passive heat removal system based on the assembled heat transfer tube

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xiang Cheng; Yan, Changqi; Meng, Zhao Ming; Chen, Kailun; Song, Shao Chuang; Yang, Zong Hao; Yu, Jie [Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University, Harbin (China)

    2016-12-15

    To get an insight into the operating characteristics of the passive residual heat removal system of molten salt reactors, a two-phase natural circulation test facility was constructed. The system consists of a boiling loop absorbing the heat from the drain tank, a condensing loop consuming the heat, and a steam drum. A steady-state experiment was carried out, in which the thimble temperature ranged from 450 .deg. C to 700 .deg. C and the system pressure was controlled at levels below 150 kPa. When reaching a steady state, the system was operated under saturated conditions. Some important parameters, including heat power, system resistance, and water level in the steam drum and water tank were investigated. The experimental results showed that the natural circulation system is feasible in removing the decay heat, even though some fluctuations may occur in the operation. The uneven temperature distribution in the water tank may be inevitable because convection occurs on the outside of the condensing tube besides boiling with decreasing the decay power. The instabilities in the natural circulation loop are sensitive to heat flux and system resistance rather than the water level in the steam drum and water tank. RELAP5 code shows reasonable results compared with experimental data.

  17. Solar-assisted heat pump system for cost-effective space heating and cooling

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, J W; Kush, E A; Metz, P D

    1978-03-01

    The use of heat pumps for the utilization of solar energy is studied. Two requirements for a cost-effective system are identified: (1) a special heat pump whose coefficient of performance continues to rise with source temperature over the entire range appropriate for solar assist, and (2) a low-cost collection and storage subsystem able to supply solar energy to the heat pump efficiently at low temperatures. Programs leading to the development of these components are discussed. A solar assisted heat pump system using these components is simulated via a computer, and the results of the simulation are used as the basis for a cost comparison of the proposed system with other solar and conventional systems.

  18. Two-component air heating system. Final report. Zweikomponenten-Luftheizungs-System. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Radtke, W; Thiel, D

    1986-01-01

    The two-component heating system consists of a combination of air-based floor heating and direct air heating, with ventilation and extraction and heat recovery. The direct airflow consists exclusively of heated outside air, the amount corresponding to the building's external air intake requirement. The control system comprises a two-step sequential control of the air throughput of the direct air heating system and of the air distribution for the floor heating airflow. A special heating switch makes it possible to switch off the direct air heating system separately, and to select rapid warm-up. The way in which the new heating system works has been tested in a pilot set-up and proven by comprehensive measurements. In addition, a simulation model was produced which gave substantial confirmation of the measurements. (orig.) With 9 refs., 37 tabs., 63 figs.

  19. Heat pipes. (Latest citations from the NTIS bibliographic database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    The bibliography contains citations concerning the theory, design, fabrication, testing, and operation of heat pipes. Applications include heat rejection devices in spacecraft, use in passive solar heating systems and warm air furnaces, and electronic circuit cooling. Heat recovery operations, and materials considerations are also discussed.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  20. Building integration of concentrating solar systems for heating applications

    International Nuclear Information System (INIS)

    Tsoutsou, Sapfo; Infante Ferreira, Carlos; Krieg, Jan; Ezzahiri, Mohamed

    2014-01-01

    A new solar collection system integrated on the façade of a building is investigated for Dutch climate conditions. The solar collection system includes a solar façade, a receiver tube and 10 Fresnel lenses. The Fresnel lenses Fresnel lenses considered were linear, non-imaging, line – focused with a system tracking the position of the sun that ensures vertical incidence of the direct solar radiation on the lenses. For the heating system a double-effect absorption heat pump, which requires high temperature of the heating fluid, was used, working with water and lithium-bromide as refrigerant and solution respectively. The Fresnel lens system is connected with the absorption heat pump through a thermal energy storage tank which accumulates the heat from the Fresnel lens system to provide it to the high pressure generator of the absorption heat pump. - Highlights: • The integration of Fresnel lenses in solar thermal building façades is investigated. • Using building integrated Fresnel lenses, 43% heating energy can be saved. • Energy savings in Mediterranean countries are significantly larger. • The absorption heat pump could make great contribution to energy savings for Dutch climate conditions

  1. Rejection index for pressure tubes

    International Nuclear Information System (INIS)

    Mitchell, A.B.; Meneley, D.

    1989-10-01

    The objective of the present study was to establish a set of criteria (or Rejection Index) which could be used to decide whether a zirconium-2 1/2 w/o niobium pressure tube in a CANDU reactor should be removed from service due to in-service degradation. A critique of key issues associated with establishing a realistic rejection index was prepared. Areas of uncertainty in available information were identified and recommendations for further analysis and laboratory testing made. A Rejection Index based on the following limits has been recommended: 1) Limits related to design intent and normal operation: any garter spring must remain within the tolerance band specified for its design location; the annulus gas system must normally be operated in a circulating mode with a procedure in place for purging to prevent accumulation of deuterium. It must remain sensitive to leaks into any part of the systems; and pressure tube dimensions and distortions must be limited to maintain the fuel channels within the original design intent; 2) Limits related to defect tolerance: adequate time margins between occurrence of a leaking crack and unstable failure must be demonstrated for all fuel channels; long lap-type flaws are unacceptable; crack-like defects of any size are unacceptable; and score marks, frat marks and other defects with contoured profiles must fall below certain depth, length and stress intensity limits; and 3) Limits related to property degradation: at operating temperature each pressure tube must be demonstrated to have a critical length in excess of a stipulated value; the maximum equivalent hydrogen level in any pressure tube should not exceed a limit which should be defined taking into account the known history of that tube; the maximum equivalent hydrogen level in any rolled joint should not exceed a limit which is presently recommended as 200 ppm equivalent hydrogen; and the maximum diametral creep strain should be limited to less than 5%

  2. Theoretical energy and exergy analyses of solar assisted heat pump space heating system

    Directory of Open Access Journals (Sweden)

    Atmaca Ibrahim

    2014-01-01

    Full Text Available Due to use of alternative energy sources and energy efficient operation, heat pumps come into prominence in recent years. Especially in solar-assisted heat pumps, sizing the required system is difficult and arduous task in order to provide optimum working conditions. Therefore, in this study solar assisted indirect expanded heat pump space heating system is simulated and the results of the simulation are compared with available experimental data in the literature in order to present reliability of the model. Solar radiation values in the selected region are estimated with the simulation. The case study is applied and simulation results are given for Antalya, Turkey. Collector type and storage tank capacity effects on the consumed power of the compressor, COP of the heat pump and the overall system are estimated with the simulation, depending on the radiation data, collector surface area and the heating capacity of the space. Exergy analysis is also performed with the simulation and irreversibility, improvement potentials and exergy efficiencies of the heat pump and system components are estimated.

  3. Simulation of Hybrid Photovoltaic Solar Assisted Loop Heat Pipe/Heat Pump System

    Directory of Open Access Journals (Sweden)

    Nannan Dai

    2017-02-01

    Full Text Available A hybrid photovoltaic solar assisted loop heat pipe/heat pump (PV-SALHP/HP water heater system has been developed and numerically studied. The system is the combination of loop heat pipe (LHP mode and heat pump (HP mode, and the two modes can be run separately or compositely according to the weather conditions. The performances of independent heat pump (HP mode and hybrid loop heat pipe/heat pump (LHP/HP mode were simulated and compared. Simulation results showed that on typical sunny days in spring or autumn, using LHP/HP mode could save 40.6% power consumption than HP mode. In addition, the optimal switchover from LHP mode to HP mode was analyzed in different weather conditions for energy saving and the all-year round operating performances of the system were also simulated. The simulation results showed that hybrid LHP/HP mode should be utilized to save electricity on sunny days from March to November and the system can rely on LHP mode alone without any power consumption in July and August. When solar radiation and ambient temperature are low in winter, HP mode should be used

  4. Advanced Supermarket Refrigeration/Heat Recovery Systems. Country Report, Denmark

    DEFF Research Database (Denmark)

    Knudsen, Hans-Jørgen Høgaard; Christensen, K. G.

    Annex 26 is the first international project under the IEA Heat Pump Programme that links refrigeration and heat pump technology. Recovering heat from advanced supermarket refrigeration systems for space and water heating seems obvious and is beneficial for owners and operators. Because the great...... number of supermarkets that offer frozen and chilled food and further growth of this sector may be expected, the amount of energy used for refrigeration is enormous and will likely increase in the near future. Annex 26 analysed several advanced supermarket refrigeration systems and came to remarkable...... conclusions as far energy conservation and TEWI reduction is concerned. The conclusion justify that advanced supermarket systems with heat recovery should receive great attention and support. And there is still further research needed in several areas. The Annex also included a thorough system analyses...

  5. Optimizing the Heat Exchanger Network of a Steam Reforming System

    DEFF Research Database (Denmark)

    Nielsen, Mads Pagh; Korsgaard, Anders Risum; Kær, Søren Knudsen

    2004-01-01

    Proton Exchange Membrane (PEM) based combined heat and power production systems are highly integrated energy systems. They may include a hydrogen production system and fuel cell stacks along with post combustion units optionally coupled with gas turbines. The considered system is based on a natural...... stationary numerical system model was used and process integration techniques for optimizing the heat exchanger network for the reforming unit are proposed. Objective is to minimize the system cost. Keywords: Fuel cells; Steam Reforming; Heat Exchanger Network (HEN) Synthesis; MINLP....... gas steam reformer along with gas purification reactors to generate clean hydrogen suited for a PEM stack. The temperatures in the various reactors in the fuel processing system vary from around 1000°C to the stack temperature at 80°C. Furthermore, external heating must be supplied to the endothermic...

  6. Hybrid Ventilation with Innovative Heat Recovery—A System Analysis

    Directory of Open Access Journals (Sweden)

    Bengt Hellström

    2013-02-01

    Full Text Available One of the most important factors when low energy houses are built is to have good heat recovery on the ventilation system. However, standard ventilation units use a considerable amount of electricity. This article discusses the consequences on a system level of using hybrid ventilation with heat recovery. The simulation program TRNSYS was used in order to investigate a ventilation system with heat recovery. The system also includes a ground source storage and waste water heat recovery system. The result of the analysis shows that the annual energy gain from ground source storage is limited. However, this is partly a consequence of the fact that the well functioning hybrid ventilation system leaves little room for improvements. The analysis shows that the hybrid ventilation system has potential to be an attractive solution for low energy buildings with a very low need for electrical energy.

  7. Commercial high efficiency dehumidification systems using heat pipes

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    An improved heat pipe design using separately connected two-section one-way flow heat pipes with internal microgrooves instead of wicks is described. This design is now commercially available for use to increase the dehumidification capacity of air conditioning systems. The design also includes a method of introducing fresh air into buildings while recovering heat and controlling the humidity of the incoming air. Included are applications and case studies, load calculations and technical data, and installation, operation, and maintenance information.

  8. Solar-assisted heat pump – A sustainable system for low-temperature water heating applications

    International Nuclear Information System (INIS)

    Chaturvedi, S.K.; Gagrani, V.D.; Abdel-Salam, T.M.

    2014-01-01

    Highlights: • DX-SAHP water heaters systems are economical as well as energy conserving. • The economic analysis is performed using the life cycle cost (LCC) analysis. • LCC can be optimized with respect to the collector area at a specific temperature. • For high load temperature range a two stage heat pump system is more appropriate. - Abstract: Direct expansion solar assisted heat pump systems (DX-SAHP) have been widely used in many applications including water heating. In the DX-SAHP systems the solar collector and the heat pump evaporator are integrated into a single unit in order to transfer the solar energy to the refrigerant. The present work is aimed at studying the use of the DX-SAHP for low temperature water heating applications. The novel aspect of this paper involves a detailed long-term thermo-economic analysis of the energy conservation potential and economic viability of these systems. The thermal performance is simulated using a computer program that incorporates location dependent radiation, collector, economic, heat pump and load data. The economic analysis is performed using the life cycle cost (LCC) method. Results indicate that the DX-SAHP water heaters systems when compared to the conventional electrical water heaters are both economical as well as energy conserving. The analysis also reveals that the minimum value of the system life cycle cost is achieved at optimal values of the solar collector area as well as the compressor displacement capacity. Since the cost of SAHP system presents a barrier to mass scale commercialization, the results of the present study indicating that the SAHP life cycle cost can be minimized by optimizing the collector area would certainly be helpful in lowering, if not eliminating, the economic barrier to these systems. Also, at load temperatures higher than 70 °C, the performance of the single stage heat pump degrades to the extent that its cost and efficiency advantages over the electric only system are

  9. Environmental effluents from waste heat rejection

    International Nuclear Information System (INIS)

    Becker, C.D.; Thatcher, T.O.

    1974-01-01

    The occurrence of chemicals in the cooling water discharge from nuclear power plants is discussed. Chemicals associated with nuclear power plants are tabulated. In one table they are classified under the following headings: corrosion and scale inhibitors; corrosion products; cleaning and neutralizing compounds; and biocides. In a second table they are classified as follows: acids; acrolein; arsenates and arsenites; ammonia, amines, and related compounds; boron; carbonates; chlorine and bromine; chlorinated and phenylated phenols; chromates; cyanurates and cyanides; hydrazine compounds; hydroxides; metals and their salts; nitrites and nitrates; potassium compounds; phosphates; silicates; and sulfates and sulfides. (U.S.)

  10. Meeting of Specialists on the Reliability of Decay Heat Removal Systems for Fast Reactors. Summary Report

    International Nuclear Information System (INIS)

    1975-10-01

    The Specialists Meeting on Reliability of Decay Heat Removal Systems proposed for Fast Reactors was sponsored by the UKAEA Safety & Reliability Directorate and held at Harwell between 28th April and 1st May, 1975. The meeting was attended by delegates from six countries - (USA, Federal Republic of Germany, France, Japan, USSR and the UK). A list of participants is included in an Appendix to this report. The subject matter of the meeting was concerned with the degree to which the ability to maintain decay heat removal from a fast reactor after shutdown in normal and abnormal circumstances could be guaranteed by design provisions and substantiated by reliability analysis techniques, operational testing etc. Consideration of conditions prevailing after a hypothetical core melt down incident were not included in the subject matter. The deliberations of the meeting were focussed at each working session on a defined theme and its dependant topics as shown in the detailed Agenda included in this report. Although provision had been made in the Agenda for a limited amount of discussion of the decay heat rejection problems of Gas Cooled Fast Reactors, delegates had no contributions to offer on this subject. During each session a Recording Secretary prepared a summary of the main points made by national delegates and of the resulting recommendations and conclusions. These draft summaries were made available to delegates during subsequent sessions of the meeting and approved by them for inclusion in the Summary, General Conclusions and Recommendations provided under Table of Contents (item 3 and 4)

  11. Modeling rejection immunity

    Directory of Open Access Journals (Sweden)

    Gaetano Andrea De

    2012-05-01

    Full Text Available Abstract Background Transplantation is often the only way to treat a number of diseases leading to organ failure. To overcome rejection towards the transplanted organ (graft, immunosuppression therapies are used, which have considerable side-effects and expose patients to opportunistic infections. The development of a model to complement the physician’s experience in specifying therapeutic regimens is therefore desirable. The present work proposes an Ordinary Differential Equations model accounting for immune cell proliferation in response to the sudden entry of graft antigens, through different activation mechanisms. The model considers the effect of a single immunosuppressive medication (e.g. cyclosporine, subject to first-order linear kinetics and acting by modifying, in a saturable concentration-dependent fashion, the proliferation coefficient. The latter has been determined experimentally. All other model parameter values have been set so as to reproduce reported state variable time-courses, and to maintain consistency with one another and with the experimentally derived proliferation coefficient. Results The proposed model substantially simplifies the chain of events potentially leading to organ rejection. It is however able to simulate quantitatively the time course of graft-related antigen and competent immunoreactive cell populations, showing the long-term alternative outcomes of rejection, tolerance or tolerance at a reduced functional tissue mass. In particular, the model shows that it may be difficult to attain tolerance at full tissue mass with acceptably low doses of a single immunosuppressant, in accord with clinical experience. Conclusions The introduced model is mathematically consistent with known physiology and can reproduce variations in immune status and allograft survival after transplantation. The model can be adapted to represent different therapeutic schemes and may offer useful indications for the optimization of

  12. Indoor temperatures for calculating room heat loss and heating capacity of radiant heating systems combined with mechanical ventilation systems

    DEFF Research Database (Denmark)

    Wu, Xiaozhou; Olesen, Bjarne W.; Fang, Lei

    2016-01-01

    change rates on the indoor temperatures were performed using the proposed model. When heated surface temperatures and air change rates were from 21.0 to 29.0 degrees C and from 0.5 to 4.0 h-1, the indoor temperatures for calculating the transmission heat loss and ventilation heat loss were between 20...

  13. The development of a solar residential heating and cooling system

    Science.gov (United States)

    1975-01-01

    The MSFC solar heating and cooling facility was assembled to demonstrate the engineering feasibility of utilizing solar energy for heating and cooling buildings, to provide an engineering evaluation of the total system and the key subsystems, and to investigate areas of possible improvement in design and efficiency. The basic solar heating and cooling system utilizes a flat plate solar energy collector, a large water tank for thermal energy storage, heat exchangers for space heating, and an absorption cycle air conditioner for space cooling. A complete description of all systems is given. Development activities for this test system included assembly, checkout, operation, modification, and data analysis, all of which are discussed. Selected data analyses for the first 15 weeks of testing are included, findings associated with energy storage and the energy storage system are outlined, and conclusions resulting from test findings are provided. An evaluation of the data for summer operation indicates that the current system is capable of supplying an average of 50 percent of the thermal energy required to drive the air conditioner. Preliminary evaluation of data collected for operation in the heating mode during the winter indicates that nearly 100 percent of the thermal energy required for heating can be supplied by the system.

  14. Heating and Domestic Hot Water Systems in Buildings Supplied by Low-Temperature District Heating

    DEFF Research Database (Denmark)

    Brand, Marek

    solutions simply redirect the bypassed water back to the DH network without additional cooling, but bypassed water can instead be redirected to floor heating in the bathroom to be further cooled and thus reduce heat loss from the DH network while improving comfort for occupants and still ensure fast DHW...... increased risk of Legionella if the DH substation and DHW system are designed for the low-temperature supply conditions. To ensure the fast provision of DHW during non-heating periods, the supply service pipe should be kept warm, preferably with the bypass solution redirecting the bypass flow to bathroom...... temperature. To accord with the literature, the modelling of internal heat gains reflected the improved efficiency of equipment by reduction of value from 5W/m2 to 4.2W/m2, also modelled as intermittent heat gains based on a realistic week schedule. Furthermore, the indoor set-point temperature was increased...

  15. Heat receivers for solar dynamic space power systems

    Science.gov (United States)

    Perez-Davis, Marla Esther

    A review of state-of-the-art technology is presented and discussed for phase change materials. Some of the advanced solar dynamic designs developed as part of the Advanced Heat Receiver Conceptual Design Study performed for LeRC are discussed. The heat receivers are analyzed and several recommendations are proposed, including two new concepts. The first concept evaluated the effect of tube geometries inside the heat receiver. It was found that a triangular configuration would provide better heat transfer to the working fluid, although not necessarily with a reduction in receiver size. A sensible heat receiver considered in this study uses vapor grown graphite fiber-carbon (VGCF/C) composite as the thermal storage media and was designed for a 7 kW Brayton engine. The proposed heat receiver stores the required energy to power the system during eclipse in the VGCF/C composite. The heat receiver analysis was conducted through the Systems Improved Numerical Differencing Analyzer and Fluid Integrator (SINDA) software package. The proposed heat receiver compares well with other latent and advanced sensible heat receivers while avoiding the problems associated with latent heat storage salts and liquid metal heat pipes. The weight and size of the system can be optimized by changes in geometry and technology advances for this new material. In addition to the new concepts, the effect of atomic oxygen on several materials is reviewed. A test was conducted for atomic oxygen attack on boron nitride, which experienced a negligible mass loss when exposed to an atomic oxygen fluence of 5 x 10 exp 21 atoms/sq cm. This material could be used to substitute the graphite aperture plate of the heat receiver.

  16. Heat pump evaluation for Space Station ATCS evolution

    Science.gov (United States)

    Ames, Brian E.; Petete, Patricia A.

    1991-01-01

    A preliminary feasibility assessment of the application of a vapor compression heat pump to the Active Thermal Control System (ATCS) of SSF is presented. This paper focuses on the methodology of raising the surface temperature of the radiators for improved heat rejection. Some of the effects of the vapor compression cycle on SSF examined include heat pump integration into ATCS, constraints on the heat pump operating parameters, and heat pump performance enhancements.

  17. Lower hybrid heating system for an ignition tokamak

    International Nuclear Information System (INIS)

    Brooks, J.; Harkness, S.; Jung, J.; Misra, B.; Moretti, A.; Norem, J.; Stevens, H.

    1978-01-01

    We have attempted to design a complete Lower Hybrid Resonance Heating System (LHRH) that could be used for TFTR, TNS, EPR, or a reactor. In addition to plasma physics constraints, we have considered those imposed by neutron radiation, surface heating of waveguides, sputtering, multipactoring, vacuum systems, materials, window design, engineering, maintenance and assembly. The system uses a Lallia--Brambilla grill which is fed by a number of waveguides entering the reactor by means of a labyrinth

  18. Annual investigation of vertical type ground source heat pump system performance on a wall heating and cooling system in Istanbul

    Energy Technology Data Exchange (ETDEWEB)

    Akbulut, U.; Yoru, Y.; Kincay, O. [Department of Mechanical Engineering, Yildiz Technical University (Turkey)], email: akbulutugur@yahoo.com, email: yilmazyoru@gmail.com, email: okincay@yildiz.edu.tr

    2011-07-01

    Wall heating and cooling systems (WHCS) are equipped with heating serpentines or panels for water circulation. These systems operate in a low temperature range so they are preferable to other, conventional systems. Furthermore, when these systems are connected to a ground source heat pump (GSHP) system, energy performance and thermal comfort are further enhanced. The purpose of this paper is to report the results of an annual inspection done on a vertical type ground-coupled heat pump systems (V-GSHP) WHCS in Istanbul and present the results. The performance data from the Yildiz Renewable Energy House at Davutpasa Campus of Yildiz Technical University, Istanbul, Turkey, during the year 2010 were collected and analyzed. The conclusions drawn from the inspection and analysis were listed in this paper. Using renewable energy sources effectively will bring both economic and environmental benefits and it is hoped that the use of these energy efficient WHCS systems will become widespread.

  19. Prototype thermochemical heat storage with open reactor system

    NARCIS (Netherlands)

    Zondag, H.A.; Kikkert, B.; Smeding, S.F.; Boer, de R.; Bakker, M.

    2013-01-01

    Thermochemical (TC) heat storage is an interesting technology for future seasonal storage of solar heat in the built environment. This technology enables high thermal energy storage densities and low energy storage losses. A small-scale laboratory prototype TC storage system has been realized at

  20. On-line corrosion monitoring in geothermal district heating systems

    DEFF Research Database (Denmark)

    Richter, S.; Hilbert, Lisbeth Rischel; Thorarinsdottir, R.I.

    2006-01-01

    General corrosion rates in the geothermal district heating systems in Iceland are generally low, of the magnitude 1 lm/y. The reason is high pH (9.5), low-conductivity (200 lm/y) and negligible dissolved oxygen. The geothermal hot water is either used directly from source or to heat up cold ground...

  1. Ash reduction system using electrically heated particulate matter filter

    Science.gov (United States)

    Gonze, Eugene V [Pinckney, MI; Paratore, Jr., Michael J; He, Yongsheng [Sterling Heights, MI

    2011-08-16

    A control system for reducing ash comprises a temperature estimator module that estimates a temperature of an electrically heated particulate matter (PM) filter. A temperature and position estimator module estimates a position and temperature of an oxidation wave within the electrically heated PM filter. An ash reduction control module adjusts at least one of exhaust flow, fuel and oxygen levels in the electrically heated PM filter to adjust a position of the oxidation wave within the electrically heated PM filter based on the oxidation wave temperature and position.

  2. Heat Transfer Modelling of Glass Media within TPV Systems

    Science.gov (United States)

    Bauer, Thomas; Forbes, Ian; Penlington, Roger; Pearsall, Nicola

    2004-11-01

    Understanding and optimisation of heat transfer, and in particular radiative heat transfer in terms of spectral, angular and spatial radiation distributions is important to achieve high system efficiencies and high electrical power densities for thermophtovoltaics (TPV). This work reviews heat transfer models and uses the Discrete Ordinates method. Firstly one-dimensional heat transfer in fused silica (quartz glass) shields was examined for the common arrangement, radiator-air-glass-air-PV cell. It has been concluded that an alternative arrangement radiator-glass-air-PV cell with increased thickness of fused silica should have advantages in terms of improved transmission of convertible radiation and enhanced suppression of non-convertible radiation.

  3. Dynamic performance of a novel solar photovoltaic/loop-heat-pipe heat pump system

    International Nuclear Information System (INIS)

    Zhang, Xingxing; Zhao, Xudong; Shen, Jingchun; Xu, Jihuan; Yu, Xiaotong

    2014-01-01

    Highlights: • A transient model was developed to predict dynamic performance of new PV/LHP system. • The model accuracy was validated by experiment giving less than 9% in error. • The new system had basic and advanced performance coefficients of 5.51 and 8.71. • The new system had a COP 1.5–4 times that for conventional heat pump systems. • The new system had higher exergetic efficiency than PV and solar collector systems. - Abstract: Objective of the paper is to present an investigation into the dynamic performance of a novel solar photovoltaic/loop-heat-pipe (PV/LHP) heat pump system for potential use in space heating or hot water generation. The methods used include theoretical computer simulation, experimental verification, analysis and comparison. The fundamental equations governing the transient processes of solar transmission, heat transfer, fluid flow and photovoltaic (PV) power generation were appropriately integrated to address the energy balances occurring in different parts of the system, e.g., glazing cover, PV cells, fin sheet, loop heat pipe, heat pump cycle and water tank. A dedicated computer model was developed to resolve the above grouping equations and consequently predict the system’s dynamic performance. An experimental rig was constructed and operated under the real weather conditions for over one week in Shanghai to evaluate the system living performance, which was undertaken by measurement of various operational parameters, e.g., solar radiation, photovoltaic power generation, temperatures and heat pump compressor consumption. On the basis of the first- (energetic) and second- (exergetic) thermodynamic laws, an overall evaluation approach was proposed and applied to conduct both quantitative and qualitative analysis of the PV/LHP module’s efficiency, which involved use of the basic thermal performance coefficient (COP th ) and the advanced performance coefficient (COP PV/T ) of such a system. Moreover, a simple comparison

  4. Match properties of heat transfer and coupled heat and mass transfer processes in air-conditioning system

    International Nuclear Information System (INIS)

    Zhang Tao; Liu Xiaohua; Zhang Lun; Jiang Yi

    2012-01-01

    Highlights: ► Investigates match properties of heat or mass transfer processes in HVAC system. ► Losses are caused by limited transfer ability, flow and parameter mismatching. ► Condition of flow matching is the same heat capacity of the fluids. ► Parameter matching is only reached along the saturation line in air–water system. ► Analytical solutions of heat and mass transfer resistance are derived. - Abstract: Sensible heat exchangers and coupled heat and mass transfer devices between humid air and water/desiccant are commonly used devices in air-conditioning systems. This paper focuses on the match properties of sensible heat transfer processes and coupled heat and mass transfer processes in an effort to understand the reasons for performance limitations in order to optimize system performance. Limited heat transfer capability and flow mismatching resulted in heat resistance of the sensible heat transfer process. Losses occurred during the heat and mass transfer processes due to limited transfer capability, flow mismatching, and parameter mismatching. Flow matching was achieved when the heat capacities of the fluids were identical, and parameter matching could only be reached along the saturation line in air–water systems or the iso-concentration line in air–desiccant systems. Analytical solutions of heat transfer resistance and mass transfer resistance were then derived. The heat and mass transfer process close to the saturation line is recommended, and heating sprayed water resulted in better humidification performance than heating inlet air in the air humidifier.

  5. Flue gas recovery system for natural gas combined heat and power plant with distributed peak-shaving heat pumps

    International Nuclear Information System (INIS)

    Zhao, Xiling; Fu, Lin; Wang, Xiaoyin; Sun, Tao; Wang, Jingyi; Zhang, Shigang

    2017-01-01

    Highlights: • A flue gas recovery system with distributed peak-shaving heat pumps is proposed. • The system can improve network transmission and distribution capacity. • The system is advantageous in energy saving, emission reduction and economic benefits. - Abstract: District heating systems use distributed heat pump peak-shaving technology to adjust heat in secondary networks of substations. This technology simultaneously adjusts the heat of the secondary network and reduces the return-water temperature of the primary network by using the heat pump principle. When optimized, low temperature return-water is able to recycle more waste heat, thereby further improving the heating efficiency of the system. This paper introduces a flue gas recovery system for a natural gas combined heat and power plant with distributed peak-shaving heat pumps. A pilot system comprising a set of two 9F gas-steam combined cycle-back pressure heating units was used to analyse the system configuration and key parameters. The proposed system improved the network transmission and distribution capacity, increased heating capacity, and reduced heating energy consumption without compromising heating safety issues. As such, the proposed system is advantageous in terms of energy saving, emission reduction, and economic benefits.

  6. Minimizing temperature instability of heat recovery hot water system utilizing optimized thermal energy storage

    Science.gov (United States)

    Suamir, I. N.; Sukadana, I. B. P.; Arsana, M. E.

    2018-01-01

    One energy-saving technology that starts gaining attractive for hotel industry application in Indonesia is the utilization of waste heat of a central air conditioning system to heat water for domestic hot water supply system. Implementing the technology for such application at a hotel was found that hot water capacity generated from the heat recovery system could satisfy domestic hot water demand of the hotel. The gas boilers installed in order to back up the system have never been used. The hot water supply, however, was found to be instable with hot water supply temperature fluctuated ranging from 45 °C to 62 °C. The temperature fluctuations reaches 17 °C, which is considered instable and can reduce hot water usage comfort level. This research is aimed to optimize the thermal energy storage in order to minimize the temperature instability of heat recovery hot water supply system. The research is a case study approach based on cooling and hot water demands of a hotel in Jakarta-Indonesia that has applied water cooled chillers with heat recovery systems. The hotel operation with 329 guest rooms and 8 function rooms showed that hot water production in the heat recovery system completed with 5 m3 thermal energy storage (TES) could not hold the hot water supply temperature constantly. The variations of the cooling demand and hot water demands day by day were identified. It was found that there was significant mismatched of available time (hours) between cooling demand which is directly correlated to the hot water production from the heat recovery system and hot water usage. The available TES system could not store heat rejected from the condenser of the chiller during cooling demand peak time between 14.00 and 18.00 hours. The extra heat from the heat recovery system consequently increases the temperature of hot water up to 62 °C. It is about 12 K above 50 °C the requirement hot water temperature of the hotel. In contrast, the TES could not deliver proper

  7. Horizontal Heat Exchanger Design and Analysis for Passive Heat Removal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Vierow, Karen

    2005-08-29

    This report describes a three-year project to investigate the major factors of horizontal heat exchanger performance in passive containment heat removal from a light water reactor following a design basis accident LOCA (Loss of Coolant Accident). The heat exchanger studied in this work may be used in advanced and innovative reactors, in which passive heat removal systems are adopted to improve safety and reliability The application of horizontal tube-bundle condensers to passive containment heat removal is new. In order to show the feasibility of horizontal heat exchangers for passive containment cooling, the following aspects were investigated: 1. the condensation heat transfer characteristics when the incoming fluid contains noncondensable gases 2. the effectiveness of condensate draining in the horizontal orientation 3. the conditions that may lead to unstable condenser operation or highly degraded performance 4. multi-tube behavior with the associated secondary-side effects This project consisted of two experimental investigations and analytical model development for incorporation into industry safety codes such as TRAC and RELAP. A physical understanding of the flow and heat transfer phenomena was obtained and reflected in the analysis models. Two gradute students (one funded by the program) and seven undergraduate students obtained research experience as a part of this program.

  8. Hyperbolic heat conduction, effective temperature, and third law for nonequilibrium systems with heat flux

    Science.gov (United States)

    Sobolev, S. L.

    2018-02-01

    Some analogies between different nonequilibrium heat conduction models, particularly random walk, the discrete variable model, and the Boltzmann transport equation with the single relaxation time approximation, have been discussed. We show that, under an assumption of a finite value of the heat carrier velocity, these models lead to the hyperbolic heat conduction equation and the modified Fourier law with relaxation term. Corresponding effective temperature and entropy have been introduced and analyzed. It has been demonstrated that the effective temperature, defined as a geometric mean of the kinetic temperatures of the heat carriers moving in opposite directions, acts as a criterion for thermalization and is a nonlinear function of the kinetic temperature and heat flux. It is shown that, under highly nonequilibrium conditions when the heat flux tends to its maximum possible value, the effective temperature, heat capacity, and local entropy go to zero even at a nonzero equilibrium temperature. This provides a possible generalization of the third law to nonequilibrium situations. Analogies and differences between the proposed effective temperature and some other definitions of a temperature in nonequilibrium state, particularly for active systems, disordered semiconductors under electric field, and adiabatic gas flow, have been shown and discussed. Illustrative examples of the behavior of the effective temperature and entropy during nonequilibrium heat conduction in a monatomic gas and a strong shockwave have been analyzed.

  9. Active charge, passive discharge floor space heating system

    Energy Technology Data Exchange (ETDEWEB)

    Salt, H.; Mahoney, K.J.

    1987-01-01

    This space heating system has a rockbed beneath and in contact with the floor of a dwelling, which is heated by radiation and convection from the floor. The ability of the heating system to maintain comfort conditions with no additional energy input is discussed and it is shown that the system is more suitable for use in mild climates than severe ones. Experimental work on horizontal air flow rockbeds is reported and shows that shallow beds can be designed in the same way as vertical air flow beds. The influence of natural convection on the effective thermal conductivity of the experimental rockbeds is reported.

  10. Passive heat removal system with injector-condenser

    Energy Technology Data Exchange (ETDEWEB)

    Soplenkov, K I [All-Russian Inst. of Nuclear Power Plant Operation, Electrogorsk Research and Engineering Centre of Nuclear Power Safety (Russian Federation)

    1996-12-01

    The system described in this paper is a passive system for decay heat removal from WWERs. It operates off the secondary side of the steam generators (SG). Steam is taken from the SG to operate a passive injector pump which causes secondary fluid to be pumped through a heat exchanger. Variants pass either water or steam from the SG through the heat exchanger. There is a passive initiation scheme. The programme for experimental and theoretical validation of the system is described. (author). 8 figs.

  11. Energy source completion for geothermal district heating systems

    International Nuclear Information System (INIS)

    Popovski, Kiril

    2000-01-01

    Geothermal district heating systems differs from the others mainly in the part of energy source completion and its connection to the heat distribution systems rather known problem. Even rather known problematic in the countries where geothermal energy is in wide application, new appearances of mistakes are always present due to the fact that necessary literature is difficult to be found. Essentials of the geothermal well completion and connection of geothermal source to the district heating distribution system are summarized in the paper and several examples of geothermal projects in flow are presented. (Author)

  12. Design aspects of commercial open-loop heat pump systems

    Energy Technology Data Exchange (ETDEWEB)

    Rafferty, Kevin

    2000-01-01

    Open loop (or groundwater heat pump systems are the oldest of the ground-source systems. Common design variations include direct (groundwater used directly in the heat pump units), indirect (building loop isolated with a plate heat exchanger), and standing column (water produced and returned to the same well). Direct systems are typically limited to the smallest applications. Standing column systems are employed in hard rock geology sites where it is not possible to produce sufficient water for a conventional system. Due to its greater potential application, this paper reviews key design aspects of the indirect approach. The general design procedure is reviewed, identification of optimum groundwater flow, heat exchanger selection guidelines, well pump control, disposal options, well spacing, piping connections and related issues.

  13. Design Aspects of Commerical Open-Loop Heat Pump Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rafferty, Kevin

    2001-03-01

    Open loop (or groundwater heat pump systems are the oldest of the ground-source systems. Common design variations include direct (groundwater used directly in the heat pump units), indirect (building loop isolated with a plate heat exchanger), and standing column (water produced and returned to the same well). Direct systems are typically limited to the smallest applications. Standing column systems are employed in hard rock geology sites where it is not possible to produce sufficient water for a conventional system. Due to its greater potential application, this paper reviews key design aspects of the indirect approach. The general design procedure is reviewed, identification of optimum groundwater flow, heat exchanger selection guidelines, well pump control, disposal options, well spacing, piping connections and related issues.

  14. Green certificate system for heating - principal and practical challenges

    International Nuclear Information System (INIS)

    Eldegard, Tom

    2002-01-01

    A certificate system with an obligation to buying is a very relevant instrument in energy policy in order to stimulate the implementation of new renewable energy sources. This solution is widely supported; it is being institutionalized in many countries, especially in Europe and in the electricity sector, and the heating sector is soon to follow. This report discusses the broad lines of a possible green certificate system for the heating sector in Norway and concludes that it is might well be linked with a similar system for the electricity sector. For Norway, an isolated certificate system for the electricity sector would not be cost-effective. This is because this system would emphasize relatively expensive renewable electric energy rather than utilizing the large potential for replacing the electric heating of buildings with much cheaper renewable heat

  15. Borehole heat exchangers: Longterm operational characteristics of a decentral geothermal heating system

    International Nuclear Information System (INIS)

    Rybach, L.; Eugster, W.J.; Hopkirk, R.J.; Kaelin, B.

    1992-01-01

    The heat pump-coupled borehole heat exchanger (BHE) is an efficient and small geothermal energy system for supplying heat typically to a single dwelling house. The long-term performance characteristics have been investigated by computer simulations. The numerical models were validated by measurements at instrumented BHE facilities. The results show the development of a new thermal equilibrium state after the first few years of BHE operation. The thermal influence is limited to the first few meters of the ground surrounding the BHE. The BHE could be scaled up in order to be installed in deep 'failed' holes (e.g. dry geothermal or hydrocarbon exploration holes)

  16. Image rejects in general direct digital radiography

    International Nuclear Information System (INIS)

    Hofmann, Bjørn; Rosanowsky, Tine Blomberg; Jensen, Camilla; Wah, Kenneth Hong Ching

    2015-01-01

    The number of rejected images is an indicator of image quality and unnecessary imaging at a radiology department. Image reject analysis was frequent in the film era, but comparably few and small studies have been published after converting to digital radiography. One reason may be a belief that rejects have been eliminated with digitalization. To measure the extension of deleted images in direct digital radiography (DR), in order to assess the rates of rejects and unnecessary imaging and to analyze reasons for deletions, in order to improve the radiological services. All exposed images at two direct digital laboratories at a hospital in Norway were reviewed in January 2014. Type of examination, number of exposed images, and number of deleted images were registered. Each deleted image was analyzed separately and the reason for deleting the image was recorded. Out of 5417 exposed images, 596 were deleted, giving a deletion rate of 11%. A total of 51.3% were deleted due to positioning errors and 31.0% due to error in centering. The examinations with the highest percentage of deleted images were the knee, hip, and ankle, 20.6%, 18.5%, and 13.8% respectively. The reject rate is at least as high as the deletion rate and is comparable with previous film-based imaging systems. The reasons for rejection are quite different in digital systems. This falsifies the hypothesis that digitalization would eliminates rejects. A deleted image does not contribute to diagnostics, and therefore is an unnecessary image. Hence, the high rates of deleted images have implications for management, training, education, as well as for quality

  17. Image rejects in general direct digital radiography.

    Science.gov (United States)

    Hofmann, Bjørn; Rosanowsky, Tine Blomberg; Jensen, Camilla; Wah, Kenneth Hong Ching

    2015-10-01

    The number of rejected images is an indicator of image quality and unnecessary imaging at a radiology department. Image reject analysis was frequent in the film era, but comparably few and small studies have been published after converting to digital radiography. One reason may be a belief that rejects have been eliminated with digitalization. To measure the extension of deleted images in direct digital radiography (DR), in order to assess the rates of rejects and unnecessary imaging and to analyze reasons for deletions, in order to improve the radiological services. All exposed images at two direct digital laboratories at a hospital in Norway were reviewed in January 2014. Type of examination, number of exposed images, and number of deleted images were registered. Each deleted image was analyzed separately and the reason for deleting the image was recorded. Out of 5417 exposed images, 596 were deleted, giving a deletion rate of 11%. A total of 51.3% were deleted due to positioning errors and 31.0% due to error in centering. The examinations with the highest percentage of deleted images were the knee, hip, and ankle, 20.6%, 18.5%, and 13.8% respectively. The reject rate is at least as high as the deletion rate and is comparable with previous film-based imaging systems. The reasons for rejection are quite different in digital systems. This falsifies the hypothesis that digitalization would eliminates rejects. A deleted image does not contribute to diagnostics, and therefore is an unnecessary image. Hence, the high rates of deleted images have implications for management, training, education, as well as for quality.

  18. Flexibility of a combined heat and power system with thermal energy storage for district heating

    International Nuclear Information System (INIS)

    Nuytten, Thomas; Claessens, Bert; Paredis, Kristof; Van Bael, Johan; Six, Daan

    2013-01-01

    Highlights: ► A generic model for flexibility assessment of thermal systems is proposed. ► The model is applied to a combined heat and power system with thermal energy storage. ► A centrally located storage offers more flexibility compared to individual units. ► Increasing the flexibility requires both a more powerful CHP and a larger buffer. - Abstract: The trend towards an increased importance of distributed (renewable) energy resources characterized by intermittent operation redefines the energy landscape. The stochastic nature of the energy systems on the supply side requires increased flexibility at the demand side. We present a model that determines the theoretical maximum of flexibility of a combined heat and power system coupled to a thermal energy storage solution that can be either centralized or decentralized. Conventional central heating, to meet the heat demand at peak moments, is also available. The implications of both storage concepts are evaluated in a reference district. The amount of flexibility created in the district heating system is determined by the approach of the system through delayed or forced operation mode. It is found that the distinction between the implementation of the thermal energy storage as a central unit or as a collection of local units, has a dramatic effect on the amount of available flexibility

  19. Effect of heat recovery water heater system on the performance of residential split air conditioner using hydrocarbon refrigerant (HCR22)

    Science.gov (United States)

    Aziz, A.; Thalal; Amri, I.; Herisiswanto; Mainil, A. K.

    2017-09-01

    This This paper presents the performance of residential split air conditioner (RSAC) using hydrocarbon refrigerant (HCR22) as the effect on the use of heat recovery water heater system (HRWHS). In this study, RSAC was modified with addition of dummy condenser (trombone coil type) as heat recovery water heater system (HRWHS). This HRWHS is installed between a compressor and a condenser by absorbing a part of condenser waste heat. The results show that RSAC with HRWHS is adequate to generate hot water with the temperature range about 46.58˚C - 48.81˚C when compared to without HRWHS and the use of dummy condenser does not give significant effect to the split air conditioner performance. When the use of HRWHS, the refrigerant charge has increase about 19.05%, the compressor power consumption has slightly increase about 1.42% where cooling capacity almost the same with slightly different about 0.39%. The condenser heat rejection is lower about 2.68% and the COP has slightly increased about 1.05% when compared to without HRWHS. The use of HRWHS provide free hot water, it means there is energy saving for heating water without negative impact to the system performance of RSAC.

  20. Radiative heat transfer in low-dimensional systems -- microscopic mode

    Science.gov (United States)

    Woods, Lilia; Phan, Anh; Drosdoff, David

    2013-03-01

    Radiative heat transfer between objects can increase dramatically at sub-wavelength scales. Exploring ways to modulate such transport between nano-systems is a key issue from fundamental and applied points of view. We advance the theoretical understanding of radiative heat transfer between nano-objects by introducing a microscopic model, which takes into account the individual atoms and their atomic polarizabilities. This approach is especially useful to investigate nano-objects with various geometries and give a detailed description of the heat transfer distribution. We employ this model to study the heat exchange in graphene nanoribbon/substrate systems. Our results for the distance separations, substrates, and presence of extended or localized defects enable making predictions for tailoring the radiative heat transfer at the nanoscale. Financial support from the Department of Energy under Contract No. DE-FG02-06ER46297 is acknowledged.

  1. Passive ventilation systems with heat recovery and night cooling

    DEFF Research Database (Denmark)

    Hviid, Christian Anker; Svendsen, Svend

    2008-01-01

    with little energy consumption and with satisfying indoor climate. The concept is based on using passive measures like stack and wind driven ventilation, effective night cooling and low pressure loss heat recovery using two fluid coupled water-to-air heat exchangers developed at the Technical University......In building design the requirements for energy consumption for ventilation, heating and cooling and the requirements for increasingly better indoor climate are two opposing factors. This paper presents the schematic layout and simulation results of an innovative multifunc-tional ventilation concept...... of Denmark. Through building integration in high performance offices the system is optimized to incorporate multiple functions like heating, cooling and ventilation, thus saving the expenses of separate cooling and heating systems. The simulation results are derived using the state-of-the-art building...

  2. ISI system for MONJU primary heat transfer system (PHTS)

    International Nuclear Information System (INIS)

    Tagawa, Akihiro; Narisawa, Masataka; Ueda, Masashi; Yamashita, Takuya

    2007-01-01

    This paper describes the development of a new inspection robot for the in-service inspection (ISI) of the heat transfer system of the FBR MONJU. The inspection is carried out using a tire type for volumetric tests at elevated temperature (Atmosphere 55 degree C, Piping Surface 80 degree C) and irradiation dose condition (Dose Rate 10mSv/h, Piping Surface Dose Rate 15mSv/h). The inspection robot which took in a new tire type ultrasonic testing sensor and a new control method was developed. Detection goals that signal to noise ratio by over 2 for 50% thickness defect of wall were attained as a result of the functional test. (author)

  3. Heat Transfer Phenomena in Concentrating Solar Power Systems.

    Energy Technology Data Exchange (ETDEWEB)

    Armijo, Kenneth Miguel; Shinde, Subhash L.

    2016-11-01

    Concentrating solar power (CSP) utilizes solar thermal energy to drive a thermal power cycle for the generation of electricity. CSP systems are facilitated as large, centralized power plants , such as power towers and trough systems, to take advantage of ec onomies of scale through dispatchable thermal energy storage, which is a principle advantage over other energy generation systems . Additionally, the combination of large solar concentration ratios with high solar conversion efficiencies provides a strong o pportunity of employment of specific power cycles such as the Brayton gas cycle that utilizes super critical fluids such as supercritical carbon dioxide (s CO 2 ) , compared to other sola r - fossil hybrid power plants. A comprehensive thermal - fluids examination is provided by this work of various heat transfer phenomena evident in CSP technologies. These include sub - systems and heat transfer fundamental phenomena evident within CSP systems , which include s receivers, heat transfer fluids (HTFs), thermal storage me dia and system designs , thermodynamic power block systems/components, as well as high - temperature materials. This work provides literature reviews, trade studies, and phenomenological comparisons of heat transfer media (HTM) and components and systems, all for promotion of high performance and efficient CSP systems. In addition, f urther investigations are also conducted that provide advanced heat transfer modeling approaches for gas - particle receiver systems , as well as performance/efficiency enhancement re commendations, particularly for solarized supercritical power systems .

  4. Corneal Graft Rejection: Incidence and Risk Factors

    Directory of Open Access Journals (Sweden)

    Alireza Baradaran-Rafii

    2008-12-01

    Full Text Available

    PURPOSE: To determine the incidence and risk factors of late corneal graft rejection after penetrating keratoplasty (PKP. METHODS: Records of all patients who had undergone PKP from 2002 to 2004 without immunosuppressive therapy other than systemic steroids and with at least one year of follow up were reviewed. The role of possible risk factors such as demographic factors, other host factors, donor factors, indications for PKP as well as type of rejection were evaluated. RESULTS: During the study period, 295 PKPs were performed on 286 patients (176 male, 110 female. Mean age at the time of keratoplasty was 38±20 (range, 40 days to 90 years and mean follow up period was 20±10 (range 12-43 months. Graft rejection occurred in 94 eyes (31.8% at an average of 7.3±6 months (range, 20 days to 39 months after PKP. The most common type of rejection was endothelial (20.7%. Corneal vascularization, regrafting, anterior synechiae, irritating sutures, active inflammation, additional anterior segment procedures, history of trauma, uncontrolled glaucoma, prior graft rejection, recurrence of herpetic infection and eccentric grafting increased the rate of rejection. Patient age, donor size and bilateral transplantation had no significant influence on graft rejection. CONCLUSION: Significant risk factors for corneal graft rejection include

  5. Performance of Radiant Heating Systems of Low-Energy Buildings

    Science.gov (United States)

    Sarbu, Ioan; Mirza, Matei; Crasmareanu, Emanuel

    2017-10-01

    After the introduction of plastic piping, the application of water-based radiant heating with pipes embedded in room surfaces (i.e., floors, walls, and ceilings), has significantly increased worldwide. Additionally, interest and growth in radiant heating and cooling systems have increased in recent years because they have been demonstrated to be energy efficient in comparison to all-air distribution systems. This paper briefly describes the heat distribution systems in buildings, focusing on the radiant panels (floor, wall, ceiling, and floor-ceiling). Main objective of this study is the performance investigation of different types of low-temperature heating systems with different methods. Additionally, a comparative analysis of the energy, environmental, and economic performances of floor, wall, ceiling, and floor-ceiling heating using numerical simulation with Transient Systems Simulation (TRNSYS) software is performed. This study showed that the floor-ceiling heating system has the best performance in terms of the lowest energy consumption, operation cost, CO2 emission, and the nominal boiler power. The comparison of the room operative air temperatures and the set-point operative air temperature indicates also that all radiant panel systems provide satisfactory results without significant deviations.

  6. Predicting the Heat Consumption in District Heating Systems using Meteorological Forecasts

    DEFF Research Database (Denmark)

    Nielsen, Henrik Aalborg, orlov 31.07.2008; Madsen, Henrik

    that meteorological forecasts are available on-line. Such a service has recently been introduced by the Danish Meteorological Institute. However, actual meteorological forecasts has not been available for the work described here. Assuming the climate to be known the mean absolute relative prediction error for 72 hour......Methods for on-line prediction of heat consumption in district heating systems hour by hour for horizons up to 72 hours are considered in this report. Data from the district heating system Vestegnens Kraftvarmeselskab I/S is used in the investigation. During the development it has been assumed......, this is somewhat contrary to practice. The work presented is a demonstration of the value of the so called gray box approach where theoretical knowledge about the system under consideration is combined with information from measurements performed on the system in order to obtain a mathematical description...

  7. Convective heat and mass transfer in rotating disk systems

    CERN Document Server

    Shevchuk, Igor V

    2009-01-01

    The book describes results of investigations of a series of convective heat and mass transfer problems in rotating-disk systems. Methodology used included integral methods, self-similar and approximate analytical solutions, as well as CFD.

  8. In situ conversion process utilizing a closed loop heating system

    Science.gov (United States)

    Sandberg, Chester Ledlie [Palo Alto, CA; Fowler, Thomas David [Houston, TX; Vinegar, Harold J [Bellaire, TX; Schoeber, Willen Jan Antoon Henri

    2009-08-18

    An in situ conversion system for producing hydrocarbons from a subsurface formation is described. The system includes a plurality of u-shaped wellbores in the formation. Piping is positioned in at least two of the u-shaped wellbores. A fluid circulation system is coupled to the piping. The fluid circulation system is configured to circulate hot heat transfer fluid through at least a portion of the piping to form at least one heated portion of the formation. An electrical power supply is configured to provide electrical current to at least a portion of the piping located below an overburden in the formation to resistively heat at least a portion of the piping. Heat transfers from the piping to the formation.

  9. Multiquadrant Subtenon Triamcinolone Injection for Acute Corneal Graft Rejection: A Case Report

    Directory of Open Access Journals (Sweden)

    Sunali Goyal

    2017-05-01

    Full Text Available Background: We report a case of reversal of an acute corneal graft rejection following multiquadrant subtenon triamcinolone injection. Case Presentation: A 19-year-old woman who had acute corneal graft rejection failed to show resolution of the graft rejection after standard treatment with systemic, intravenous, and topical steroids. The graft rejection, however, responded to injection of triamcinolone in multiple subtenon quadrants. Conclusions: For corneal graft rejection, multiquadrant subtenon triamcinolone injections may be a safe adjunct to systemic treatment.

  10. Heat Loss Evaluation of the SMART-ITL Primary System

    International Nuclear Information System (INIS)

    Ryu, Sung Uk; Bae, Hwang; Kim, Dong Eok; Park, Keun Tae; Park, Hyun Sik; Yi, Sung Jae

    2013-01-01

    It is considered that the heat loss rate is one of the critical factors affecting the transient behavior of an integral effect test facility. This paper presents the experimental results of the heat loss rate for the primary system of a SMART-ITL (System-Integrated Modular Advanced ReacTor-Integral Test Loop) facility including the pressurizer (PZR). To evaluate the heat loss rate of the primary system, two different approaches were pursued, i. e., integral and differential approaches. The integral approach is a constant temperature method which controls the core and PZR powers at a desired temperature condition and the differential approach is a natural cooling-down measurement method that lasts for a long period of time. In the present work, the heat losses derived from integral and differential approaches were acquired for the primary system of the SMART-ITL. The results obtained by the two approaches were very similar. In addition, an empirical correlation with respect to the difference between the wall temperature and the ambient temperature was proposed to represent the heat loss characteristics of the SMART-ITL facility. The estimated heat losses could be used to estimate the heat loss during the tests and code simulations

  11. The Automation Control System Design of Walking Beam Heating Furnace

    OpenAIRE

    Hong-Yu LIU; Jun-Qing LIU; Jun-Jie XI

    2014-01-01

    Combining the transformation project of certain strip steel rolling production line, the techniques process of walking beam heating furnace was elaborated in this paper. The practical application of LOS-T18-2ZC1 laser detector was elaborated. The network communication model of walking beam heating furnace control system was designed. The realization method of production process automation control was elaborated. The entire automation control system allocation picture and PLC power distributio...

  12. Solar heating system installed at Jackson, Tennessee. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-10-01

    The solar energy heating system installed at the Coca-Cola Bottling Works in Jackson, Tennessee is described. The system consists of 9480 square feet of Owens-Illinois evacuated tubular solar collectors with attached specular cylindrical reflectors and will provide space heating for the 70,000 square foot production building in the winter, and hot water for the bottle washing equipment the remainder of the year. Component specifications and engineering drawings are included. (WHK)

  13. High Temperature Radiators for Electric Propulsion Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The VASIMR propulsion system uses a high temperature Loop Heat Pipe (LHP) radiator to reject heat from the helicon section. The current baseline radiator uses...

  14. Effect of variable heat input on the heat transfer characteristics in an Organic Rankine Cycle system

    Directory of Open Access Journals (Sweden)

    Aboaltabooq Mahdi Hatf Kadhum

    2016-01-01

    Full Text Available This paper analyzes the heat transfer characteristics of an ORC evaporator applied on a diesel engine using measured data from experimental work such as flue gas mass flow rate and flue gas temperature. A mathematical model was developed with regard to the preheater, boiler and the superheater zones of a counter flow evaporator. Each of these zones has been subdivided into a number of cells. The hot source of the ORC cycle was modeled. The study involves the variable heat input's dependence on the ORC system's heat transfer characteristics, with especial emphasis on the evaporator. The results show that the refrigerant's heat transfer coefficient has a higher value for a 100% load from the diesel engine, and decreases with the load decrease. Also, on the exhaust gas side, the heat transfer coefficient decreases with the decrease of the load. The refrigerant's heat transfer coefficient increased normally with the evaporator's tube length in the preheater zone, and then increases rapidly in the boiler zone, followed by a decrease in the superheater zone. The exhaust gases’ heat transfer coefficient increased with the evaporator’ tube length in all zones. The results were compared with result by other authors and were found to be in agreement.

  15. “Walczak’s Pipes” in the Greenhouse Heating System

    Directory of Open Access Journals (Sweden)

    Kazimierz Rutkowski

    2016-01-01

    Full Text Available Diversified heating circuits inertia is particularly important by high variability of external conditions were the greenhouse is often overheated or large heat losses are noted. To meet these needs a new generation of heating pipes were used. They are hexagram-shaped pipes called “Walczak’s pipe”. Tubes of such shape have several times smaller volume in comparison with traditional heating pipes of the same outer diameter and higher stiffness. The preliminary assessment of the “Walczak’s pipe” installed in the greenhouse is highly positive. Compared with the traditional system it enables better heat management. In the first research stage, the thermal efficiency was defined in different ambient conditions at selected flow parameters and various water temperatures. With regard to the accepted flow values, it is notable that “Walczak’s pipe” has greater thermal efficiency per unit of power comparing with traditional tube. During the study, there was also a thermographic analysis of pipes’ surface performed and the heat flow distribution was determined. Analyzing the temperature distribution on the “Walczak’s pipe” remarkable are the areas with higher values ​​comparing with standard tube. It can be concluded that in the heating system with “Walczak’s pipe” energy transferred by radiation increases. This is particularly advantageous solution to use in greenhouses. It allows to obtain a higher leafs temperature with respect to the ambient temperature (vegetation heating. This parameter has a beneficial effect on the vegetative growth of cultivated plants.

  16. Research on Heat Exchange Process in Aircraft Air Conditioning System

    Science.gov (United States)

    Chichindaev, A. V.

    2017-11-01

    Using of heat-exchanger-condenser in the air conditioning system of the airplane Tu-204 (Boeing, Airbus, Superjet 100, MS-21, etc.) for cooling the compressed air by the cold air with negative temperature exiting the turbine results in a number of operational problems. Mainly it’s frosting of the heat exchange surface, which is the cause of live-section channels frosting, resistance increasing and airflow in the system decreasing. The purpose of this work is to analyse the known freeze-up-fighting methods for heat-exchanger-condenser, description of the features of anti-icing protection and offering solutions to this problem. For the problem of optimizing the design of heat exchangers in this work used generalized criterion that describes the ratio of thermal resistances of cold and hot sections, which include: the ratio of the initial values of heat transfer agents flow state; heat exchange surface finning coefficients; factors which describes the ratio of operating parameters and finning area. By controlling the ratio of the thermal resistances can be obtained the desired temperature of the heat exchange surface, which would prevent freezing. The work presents the results of a numerical study of the effect of different combinations of regime and geometrical factors changes on reduction of the heat-exchanger-condenser freezing surface area, including using of variable ratio of thermal resistances.

  17. Heating control system for nuclear reactor

    International Nuclear Information System (INIS)

    Shinohara, Kaoru.

    1981-01-01

    Purpose: To automatically control reactor heating while keeping the condition of temperature rising rate by determining the deviations based on the reactor water temperature, the aimed temperature and the aimed temperature rising rate and operating control rods. Constitution: Actual temperature in the reactor is measured by a temperature detector and compared with a value from a setter to determine the temperature deviation. While on the other hand, the rising rate for the measured temperature is calculated in a differentiator and compared with a value from a setter to determine the deviation, which is passed through an integrator to calculate the deviation for the temperature rising rate. The signals for the temperature deviation and the temperature rising rate deviation are selected in a lower value preference circuit and the operation amount for the control rod is judged in a control rod operation judging section depending on the deviation amount. The control rod to be operated is determined in a sequence control section for the selection of control rod. The control rod selected and the direction of the operation are displayed on a display and the selected control rod is automatically driven by a control rod drives to thereby carry our reactor heating. (Furukawa, Y.)

  18. Impact of detector efficiency and energy resolution on gamma-ray background rejection in mobile spectroscopy and imaging systems

    Energy Technology Data Exchange (ETDEWEB)

    Aucott, Timothy J., E-mail: Timothy.Aucott@SRS.gov [Lawrence Berkeley National Laboratory, Nuclear Science Division, Berkeley, CA (United States); Bandstra, Mark S. [Lawrence Berkeley National Laboratory, Nuclear Science Division, Berkeley, CA (United States); Negut, Victor; Curtis, Joseph C. [University of California, Berkeley, Department of Nuclear Engineering, Berkeley, CA (United States); Meyer, Ross E.; Chivers, Daniel H. [Lawrence Berkeley National Laboratory, Nuclear Science Division, Berkeley, CA (United States); Vetter, Kai [University of California, Berkeley, Department of Nuclear Engineering, Berkeley, CA (United States); Lawrence Berkeley National Laboratory, Nuclear Science Division, Berkeley, CA (United States)

    2015-07-21

    The presence of gamma-ray background significantly reduces detection sensitivity when searching for radioactive sources in the field, and the systematic variability in the background will limit the size and energy resolution of systems that can be used effectively. An extensive survey of the background was performed using both sodium iodide and high-purity germanium. By using a bivariate negative binomial model for the measured counts, these measurements can be resampled to simulate the performance of a detector array of arbitrary size and resolution. The response of the system as it moved past a stationary source was modeled for spectroscopic and coded aperture imaging algorithms and used for source injection into the background. The performance of both techniques is shown for various sizes and resolutions, as well as the relative performance for sodium iodide and germanium. It was found that at smaller detector sizes or better energy resolution, spectroscopy has higher detection sensitivity than imaging, while imaging is better suited to larger or poorer resolution detectors.

  19. Neural Networks and Their Applications in Noise - Information Storage and Retrieval Systems, and in the Rejection of Narrow-Band Interference in Direct Sequence Spread Spectrum Receivers.

    Science.gov (United States)

    Bijjani, Richard

    1990-01-01

    The introduction of neural network models has created new algorithms and application opportunities in parallel signal processing. Here, an M-ary extension of the Hopfield model is presented and is shown to have a substantially higher error correction capability, when compared to the Hopfield model. A digital image processing experiment is successfully conducted to illustrate the new model, and a holographic implementation is proposed. The use of neural networks and of linear combination filters are investigated in connection with the problem of user identification in code division multiple access systems. A multi-layer back-propagation perceptron model is then presented as a means of detecting a wideband signal in the presence of narrowband jammers and additive white Gaussian noise. The performance of the neural network is compared to that of the estimation type filter that uses a least mean squared adaptive filter, in terms of the interference rejection capability, the bit error rate and the overall robustness of the system. The nonlinear neural network filter is found to offer a faster convergence rate and an overall better performance over the LMS Widrow-Hoff filter.

  20. Solar systems and heat pumps in operation in Carinthia: results 1994 - 1997

    International Nuclear Information System (INIS)

    Faninger, G.

    1998-04-01

    Solar systems and heat pumps in operation in Carinthia: results 1994 - 1997. Test results from solar systems for swimming pool heating, hot water preparation and space heating as well as heat pumps for hot water preparation, space heating and heat recovery will be reported and assessed collectively. (author)