WorldWideScience

Sample records for heat receiver aperture

  1. Apertures

    CERN Document Server

    Hansen, R C

    2014-01-01

    Microwave Scanning Antennas, Volume I: Apertures is a comprehensive account of phased arrays, multiple beam arrays, time domain and synthetic apertures, and adaptive antennas. Advances in continuous apertures and near field theory are discussed. Low noise and monopulse apertures, optical scanners, and large radomes are also covered, along with radio astronomy instruments and associated theory.Comprised of five chapters, this volume begins with an overview of aperture theory as well as aperture distributions and near field theory. The second and third chapters deal with mechanically steered and

  2. Multi-aperture digital coherent combining for free-space optical communication receivers.

    Science.gov (United States)

    Geisler, David J; Yarnall, Timothy M; Stevens, Mark L; Schieler, Curt M; Robinson, Bryan S; Hamilton, Scott A

    2016-06-13

    Space-to-ground optical communication systems can benefit from reducing the size, weight, and power profiles of space terminals. One way of reducing the required power-aperture product on a space platform is to implement effective, but costly, single-aperture ground terminals with large collection areas. In contrast, we present a ground terminal receiver architecture in which many small less-expensive apertures are efficiently combined to create a large effective aperture while maintaining excellent receiver sensitivity. This is accomplished via coherent detection behind each aperture followed by digitization. The digitized signals are then combined in a digital signal processing chain. Experimental results demonstrate lossless coherent combining of four lasercom signals, at power levels below 0.1 photons/bit/aperture.

  3. Heat receivers for solar dynamic space power systems

    Science.gov (United States)

    Perez-Davis, Marla Esther

    A review of state-of-the-art technology is presented and discussed for phase change materials. Some of the advanced solar dynamic designs developed as part of the Advanced Heat Receiver Conceptual Design Study performed for LeRC are discussed. The heat receivers are analyzed and several recommendations are proposed, including two new concepts. The first concept evaluated the effect of tube geometries inside the heat receiver. It was found that a triangular configuration would provide better heat transfer to the working fluid, although not necessarily with a reduction in receiver size. A sensible heat receiver considered in this study uses vapor grown graphite fiber-carbon (VGCF/C) composite as the thermal storage media and was designed for a 7 kW Brayton engine. The proposed heat receiver stores the required energy to power the system during eclipse in the VGCF/C composite. The heat receiver analysis was conducted through the Systems Improved Numerical Differencing Analyzer and Fluid Integrator (SINDA) software package. The proposed heat receiver compares well with other latent and advanced sensible heat receivers while avoiding the problems associated with latent heat storage salts and liquid metal heat pipes. The weight and size of the system can be optimized by changes in geometry and technology advances for this new material. In addition to the new concepts, the effect of atomic oxygen on several materials is reviewed. A test was conducted for atomic oxygen attack on boron nitride, which experienced a negligible mass loss when exposed to an atomic oxygen fluence of 5 x 10 exp 21 atoms/sq cm. This material could be used to substitute the graphite aperture plate of the heat receiver.

  4. Heat receiving plates in thermonuclear device

    International Nuclear Information System (INIS)

    Kitamura, Kazunori.

    1988-01-01

    Purpose: To obtain a heat receiving plate structure capable of withstanding sputtering wear and retaining the thermal deformation and residual stress low upon junction and available at a reduced cost. Constitution: Junction structures between heat sinks and armours are the same as usual, whereas high melting armour (for example, made of tungsten) are used at the portion on a heat receiving plate where the thermal load and particle load are higher while materials having a heat expansion coefficient similar to that of the heat sink (stainless steel) are used at the portion where the thermal load and particle load are lower on a heat receiving plate depending on the thermal load and particle load distribution. This can reduce the thermal deformation for the entire divertor heat receiving plate to obtain a heat receiving plate of a good surface dimensional accuracy. (Takahashi, M.)

  5. High thermal load receiving heat plate

    International Nuclear Information System (INIS)

    Shibutani, Jun-ichi; Shibayama, Kazuhito; Yamamoto, Keiichi; Uchida, Takaho.

    1993-01-01

    The present invention concerns a high thermal load heat receiving plate such as a divertor plate of a thermonuclear device. The high thermal load heat receiving plate of the present invention has a cooling performance capable of suppressing the temperature of an armour tile to less than a threshold value of the material against high thermal loads applied from plasmas. Spiral polygonal pipes are inserted in cooling pipes at a portion receiving high thermal loads in the high temperature load heat receiving plate of the present invention. Both ends of the polygonal pipes are sealed by lids. An area of the flow channel in the cooling pipes is thus reduced. Heat conductivity on the cooling surface of the cooling pipes is increased in the high thermal load heat receiving plate having such a structure. Accordingly, temperature elevation of the armour tile can be suppressed. (I.S.)

  6. Large Aperture "Photon Bucket" Optical Receiver Performance in High Background Environments

    Science.gov (United States)

    Vilnrotter, Victor A.; Hoppe, D.

    2011-01-01

    The potential development of large aperture groundbased "photon bucket" optical receivers for deep space communications, with acceptable performance even when pointing close to the sun, is receiving considerable attention. Sunlight scattered by the atmosphere becomes significant at micron wavelengths when pointing to a few degrees from the sun, even with the narrowest bandwidth optical filters. In addition, high quality optical apertures in the 10-30 meter range are costly and difficult to build with accurate surfaces to ensure narrow fields-of-view (FOV). One approach currently under consideration is to polish the aluminum reflector panels of large 34-meter microwave antennas to high reflectance, and accept the relatively large FOV generated by state-of-the-art polished aluminum panels with rms surface accuracies on the order of a few microns, corresponding to several-hundred micro-radian FOV, hence generating centimeter-diameter focused spots at the Cassegrain focus of 34-meter antennas. Assuming pulse-position modulation (PPM) and Poisson-distributed photon-counting detection, a "polished panel" photon-bucket receiver with large FOV will collect hundreds of background photons per PPM slot, along with comparable signal photons due to its large aperture. It is demonstrated that communications performance in terms of PPM symbol-error probability in high-background high-signal environments depends more strongly on signal than on background photons, implying that large increases in background energy can be compensated by a disproportionally small increase in signal energy. This surprising result suggests that large optical apertures with relatively poor surface quality may nevertheless provide acceptable performance for deep-space optical communications, potentially enabling the construction of cost-effective hybrid RF/optical receivers in the future.

  7. Thermal State-of-Charge in Solar Heat Receivers

    Science.gov (United States)

    Hall, Carsie, A., III; Glakpe, Emmanuel K.; Cannon, Joseph N.; Kerslake, Thomas W.

    1998-01-01

    A theoretical framework is developed to determine the so-called thermal state-of-charge (SOC) in solar heat receivers employing encapsulated phase change materials (PCMS) that undergo cyclic melting and freezing. The present problem is relevant to space solar dynamic power systems that would typically operate in low-Earth-orbit (LEO). The solar heat receiver is integrated into a closed-cycle Brayton engine that produces electric power during sunlight and eclipse periods of the orbit cycle. The concepts of available power and virtual source temperature, both on a finite-time basis, are used as the basis for determining the SOC. Analytic expressions for the available power crossing the aperture plane of the receiver, available power stored in the receiver, and available power delivered to the working fluid are derived, all of which are related to the SOC through measurable parameters. Lower and upper bounds on the SOC are proposed in order to delineate absolute limiting cases for a range of input parameters (orbital, geometric, etc.). SOC characterization is also performed in the subcooled, two-phase, and superheat regimes. Finally, a previously-developed physical and numerical model of the solar heat receiver component of NASA Lewis Research Center's Ground Test Demonstration (GTD) system is used in order to predict the SOC as a function of measurable parameters.

  8. Transmit/Receive Spatial Smoothing with Improved Effective Array Aperture for Angle and Mutual Coupling Estimation in Bistatic MIMO Radar

    Directory of Open Access Journals (Sweden)

    Haomiao Liu

    2016-01-01

    Full Text Available We proposed a transmit/receive spatial smoothing with improved effective aperture approach for angle and mutual coupling estimation in bistatic MIMO radar. Firstly, the noise in each channel is restrained, by exploiting its independency, in both the spatial domain and temporal domain. Then the augmented transmit and receive spatial smoothing matrices with improved effective aperture are obtained, by exploiting the Vandermonde structure of steering vector with uniform linear array. The DOD and DOA can be estimated by utilizing the unitary ESPRIT algorithm. Finally, the mutual coupling coefficients of both the transmitter and the receiver can be figured out with the estimated angles of DOD and DOA. Numerical examples are presented to verify the effectiveness of the proposed method.

  9. A heat receiver design for solar dynamic space power systems

    Science.gov (United States)

    Baker, Karl W.; Dustin, Miles O.; Crane, Roger

    1990-01-01

    An advanced heat pipe receiver designed for a solar dynamic space power system is described. The power system consists of a solar concentrator, solar heat receiver, Stirling heat engine, linear alternator and waste heat radiator. The solar concentrator focuses the sun's energy into a heat receiver. The engine and alternator convert a portion of this energy to electric power and the remaining heat is rejected by a waste heat radiator. Primary liquid metal heat pipes transport heat energy to the Stirling engine. Thermal energy storage allows this power system to operate during the shade portion of an orbit. Lithium fluoride/calcium fluoride eutectic is the thermal energy storage material. Thermal energy storage canisters are attached to the midsection of each heat pipe. The primary heat pipes pass through a secondary vapor cavity heat pipe near the engine and receiver interface. The secondary vapor cavity heat pipe serves three important functions. First, it smooths out hot spots in the solar cavity and provides even distribution of heat to the engine. Second, the event of a heat pipe failure, the secondary heat pipe cavity can efficiently transfer heat from other operating primary heat pipes to the engine heat exchanger of the defunct heat pipe. Third, the secondary heat pipe vapor cavity reduces temperature drops caused by heat flow into the engine. This unique design provides a high level of reliability and performance.

  10. Design of a cavity heat pipe receiver experiment

    Science.gov (United States)

    Schneider, Michael G.; Brege, Mark H.; Greenlee, William J.

    1992-01-01

    A cavity heat pipe experiment has been designed to test the critical issues involved with incorporating thermal energy storage canisters into a heat pipe. The experiment is a replication of the operation of a heat receiver for a Brayton solar dynamic power cycle. The heat receiver is composed of a cylindrical receptor surface and an annular heat pipe with thermal energy storage canisters and gaseous working fluid heat exchanger tubes surrounding it. Hardware for the cavity heat pipe experiment will consist of a sector of the heat pipe, complete with gas tube and thermal energy storage canisters. Thermal cycling tests will be performed on the heat pipe sector to simulate the normal energy charge/discharge cycle of the receiver in a spacecraft application.

  11. Multi-Aperture Digital Coherent Combining for Free-Space Optical Communication Receivers

    Science.gov (United States)

    2016-04-21

    emulated by a cascade of fiber beam splitters . Fig. 4(a) depicts the transmitter, which consisted of two cascaded Mach- Zehnder modulators (MZMs) that...Sons, Inc., Hoboken, New Jersey, 2006). 5. D. O. Caplan, "Laser communication transmitter and receiver design ," J. Opt. Fiber. Commun. 4(4-5), 225...and A. E. Willner, eds. (Elsevier, 2013). 7. S. B. Alexander, Optical Communication Receiver Design (SPIE, 1997). 8. D. M. Boroson, "A survey of

  12. Estimation of catchment averaged sensible heat fluxes using a large aperture scintillometer

    Directory of Open Access Journals (Sweden)

    Samain Bruno

    2012-05-01

    Full Text Available Evapotranspiration rates at the catchment scale are very difficult to quantify. One possible manner to continuously observe this variable could be the estimation of sensible heat fluxes (H across large distances (in the order of kilometers using a large aperture scintillometer (LAS, and inverting these observations into evapotranspiration rates, under the assumption that the LAS observations are representative for the entire catchment. The objective of this paper is to assess whether measured sensible heat fluxes from a LAS over a long distance (9.5 km can be assumed to be valid for a 102.3 km2 heterogeneous catchment. Therefore, a fully process-based water and energy balance model with a spatial resolution of 50 m has been thoroughly calibrated and validated for the Bellebeek catchmentin Belgium. A footprint analysis has been performed. In general, the sensible heat fluxes from the LAS compared well with the modeled sensible heat fluxes within the footprint. Moreover, as the modeled Hwithin the footprint has been found to be almost equal to the modeled catchment averaged H, it can be concluded that the scintillometer measurements over a distance of 9.5 km and an effective heightof 68 m are representative for the entire catchment.

  13. FFT analysis of sensible-heat solar-dynamic receivers

    Science.gov (United States)

    Lund, Kurt O.

    The use of solar dynamic receivers with sensible energy storage in single-phase materials is considered. The feasibility of single-phase designs with weight and thermal performance comparable to existing two-phase designs is addressed. Linearized heat transfer equations are formulated for the receiver heat storage, representing the periodic input solar flux as the sum of steady and oscillating distributions. The steady component is solved analytically to produce the desired receiver steady outlet gas temperature, and the FFT algorithm is applied to the oscillating components to obtain the amplitudes and mode shapes of the oscillating solid and gas temperatures. The results indicate that sensible-heat receiver designs with performance comparable to state-of-the-art two-phase receivers are available.

  14. Direct Heat-Flux Measurement System (MDF) for Solar central Receiver Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Ballestrin, J.

    2001-07-01

    A direct flux measurement system, MDF, has been designed, constructed and mounted on top of the SSPS-CRS tower at the Plataforma Solar de Almeria (PSA) in addition to an indirect flux measurement system based on a CCD camera. It's one of the main future objectives to compare systematically both measurements of the concentrated solar power, increasing in this way the confidence in the estimate of this quantity. Today everything is prepared to perform the direct flux measurement on the aperture of solar receivers: calorimeter array, data acquisition system and software. the geometry of the receiver determines the operation and analysis procedures to obtain the indecent power onto the defined area. The study of previous experiences with direct flux measurement systems ha been useful to define a new simpler and more accurate system. A description of each component of the MDF system is included, focusing on the heat-flux sensors or calorimeters, which enables these measurements to be done in a few seconds without water-cooling. The incident solar power and the spatial flux distribution on the aperture of the volumetric receiver Hitrec II are supplied by the above-mentioned MDF system. The first results obtained during the evaluation of this solar receiver are presented including a sunrise-sunset test. All these measurements have been concentrated in one coefficient that describes the global behavior of the Solar Power Plant. (Author) 18 refs.

  15. Heat loss investigation from spherical cavity receiver of solar concentrator

    Energy Technology Data Exchange (ETDEWEB)

    Shewale, V. C. [Dept. of Mechanical Engineering, NDMVPS KBT College of Engineering, Nashik (India); Dongarwar, P. R. [Dept. of Mechanical Engineering, College of Military Engineering, Pune (India); Gawande, R. P. [Dept. of Mechanical Engineering, B.D.C.O.E. Wardha, Nagpur University, NagpurI (India)

    2016-11-15

    The heat losses are mainly affects on the performance of cavity receiver of solar concentrator. In this paper, the experimental and numerical study is carried out for different heat losses from spherical cavity receiver of 0.385 m cavity diameter and 0.154 m opening diameter. The total and convection losses are studied experimentally to no wind and wind conditions for the temperature range of 150 °C to 300 °C at 0°, 30°, 45°, 60° and 90° inclination angle of cavity receiver. The experimental set up mainly consists of copper tube material cavity receiver wrapped with nichrome heating coil to heat the cavity and insulated with glasswool insulation. The numerical analysis was carried out with Fluent Computational fluid dynamics (CFD) software, to study connective heat losses for no wind condition only. The numerical results are compared with experimental results and found good agreement with maximum deviation of 12 %. The effect of inclination angle of cavity receiver on total losses and convection losses shows that as the inclination angle increases from 0o to 90o, both losses decreased due to decreased in convective zone into the cavity receiver. The effect of operating temperature of cavity shows that as the temperature of cavity receiver increases, the total and convective losses goes on increasing. The effect of external wind at 2 m/s and 4 m/s in two directions (side-on wind and head-on wind) is also studied experimentally for total and convective heat losses. The result shows that the heat losses are higher for head-on wind condition compared to side-on wind and no wind condition at all inclination angle of cavity receiver. The present results are also compared to the convective losses obtained from the correlations of Stine and Mcdonald and M. Prakash. The convective loss from these correlations shows nearest prediction to both experimental and numerical results.

  16. Heat loss investigation from spherical cavity receiver of solar concentrator

    International Nuclear Information System (INIS)

    Shewale, V. C.; Dongarwar, P. R.; Gawande, R. P.

    2016-01-01

    The heat losses are mainly affects on the performance of cavity receiver of solar concentrator. In this paper, the experimental and numerical study is carried out for different heat losses from spherical cavity receiver of 0.385 m cavity diameter and 0.154 m opening diameter. The total and convection losses are studied experimentally to no wind and wind conditions for the temperature range of 150 °C to 300 °C at 0°, 30°, 45°, 60° and 90° inclination angle of cavity receiver. The experimental set up mainly consists of copper tube material cavity receiver wrapped with nichrome heating coil to heat the cavity and insulated with glasswool insulation. The numerical analysis was carried out with Fluent Computational fluid dynamics (CFD) software, to study connective heat losses for no wind condition only. The numerical results are compared with experimental results and found good agreement with maximum deviation of 12 %. The effect of inclination angle of cavity receiver on total losses and convection losses shows that as the inclination angle increases from 0o to 90o, both losses decreased due to decreased in convective zone into the cavity receiver. The effect of operating temperature of cavity shows that as the temperature of cavity receiver increases, the total and convective losses goes on increasing. The effect of external wind at 2 m/s and 4 m/s in two directions (side-on wind and head-on wind) is also studied experimentally for total and convective heat losses. The result shows that the heat losses are higher for head-on wind condition compared to side-on wind and no wind condition at all inclination angle of cavity receiver. The present results are also compared to the convective losses obtained from the correlations of Stine and Mcdonald and M. Prakash. The convective loss from these correlations shows nearest prediction to both experimental and numerical results

  17. Heat transfer analysis of parabolic trough solar receiver

    International Nuclear Information System (INIS)

    Padilla, Ricardo Vasquez; Demirkaya, Gokmen; Goswami, D. Yogi; Stefanakos, Elias; Rahman, Muhammad M.

    2011-01-01

    Highlights: → In this paper a detailed one dimensional numerical heat transfer analysis of a PTC is performed. → The receiver and envelope were divided into several segments and mass and energy balance were applied in each segment. → Improvements either in the heat transfer correlations or radiative heat transfer analysis are presented. → The proposed heat transfer model was validated with experimental data obtained from Sandia National Laboratory. → Our results showed a better agreement with experimental data compared to other models. -- Abstract: Solar Parabolic Trough Collectors (PTCs) are currently used for the production of electricity and applications with relatively higher temperatures. A heat transfer fluid circulates through a metal tube (receiver) with an external selective surface that absorbs solar radiation reflected from the mirror surfaces of the PTC. In order to reduce the heat losses, the receiver is covered by an envelope and the enclosure is usually kept under vacuum pressure. The heat transfer and optical analysis of the PTC is essential to optimize and understand its performance under different operating conditions. In this paper a detailed one dimensional numerical heat transfer analysis of a PTC is performed. The receiver and envelope were divided into several segments and mass and energy balance were applied in each segment. Improvements either in the heat transfer correlations or radiative heat transfer analysis are presented as well. The partial differential equations were discretized and the nonlinear algebraic equations were solved simultaneously. Finally, to validate the numerical results, the model was compared with experimental data obtained from Sandia National Laboratory (SNL) and other one dimensional heat transfer models. Our results showed a better agreement with experimental data compared to other models.

  18. Performance Evaluation of Large Aperture 'Polished Panel' Optical Receivers Based on Experimental Data

    Science.gov (United States)

    Vilnrotter, Victor

    2013-01-01

    Recent interest in hybrid RF/Optical communications has led to the development and installation of a "polished-panel" optical receiver evaluation assembly on the 34-meter research antenna at Deep-Space Station 13 (DSS-13) at NASA's Goldstone Communications Complex. The test setup consists of a custom aluminum panel polished to optical smoothness, and a large-sensor CCD camera designed to image the point-spread function (PSF) generated by the polished aluminum panel. Extensive data has been obtained via realtime tracking and imaging of planets and stars at DSS-13. Both "on-source" and "off-source" data were recorded at various elevations, enabling the development of realistic simulations and analytic models to help determine the performance of future deep-space communications systems operating with on-off keying (OOK) or pulse-position-modulated (PPM) signaling formats with photon-counting detection, and compared with the ultimate quantum bound on detection performance for these modulations. Experimentally determined PSFs were scaled to provide realistic signal-distributions across a photon-counting detector array when a pulse is received, and uncoded as well as block-coded performance analyzed and evaluated for a well-known class of block codes.

  19. Full-size solar dynamic heat receiver thermal-vacuum tests

    Science.gov (United States)

    Sedgwick, L. M.; Kaufmann, K. J.; Mclallin, K. L.; Kerslake, T. W.

    1991-01-01

    The testing of a full-size, 102 kW, solar dynamic heat receiver utilizing high-temperature thermal energy storage is described. The purpose of the test program was to quantify receiver thermodynamic performance, operating temperatures, and thermal response to changes in environmental and power module interface boundary conditions. The heat receiver was tested in a vacuum chamber with liquid nitrogen cold shrouds and an aperture cold plate to partly simulate a low-Earth-orbit environment. The cavity of the receiver was heated by an infrared quartz lamp heater with 30 independently controllable zones to allow axially and circumferentially varied flux distributions. A closed-Brayton cycle engine simulator conditioned a helium-xenon gas mixture to specific interface conditions to simulate the various operational modes of the solar dynamic power module on the Space Station Freedom. Inlet gas temperature, pressure, and flow rate were independently varied. A total of 58 simulated orbital cycles, each 94 minutes in duration, was completed during the test period.

  20. Ground test program for a full-size solar dynamic heat receiver

    Science.gov (United States)

    Sedgwick, L. M.; Kaufmann, K. J.; Mclallin, K. L.; Kerslake, T. W.

    1991-01-01

    Test hardware, facilities, and procedures were developed to conduct ground testing of a full-size, solar dynamic heat receiver in a partially simulated, low earth orbit environment. The heat receiver was designed to supply 102 kW of thermal energy to a helium and xenon gas mixture continuously over a 94 minute orbit, including up to 36 minutes of eclipse. The purpose of the test program was to quantify the receiver thermodynamic performance, its operating temperatures, and thermal response to changes in environmental and power module interface boundary conditions. The heat receiver was tested in a vacuum chamber using liquid nitrogen cold shrouds and an aperture cold plate. Special test equipment was designed to provide the required ranges in interface boundary conditions that typify those expected or required for operation as part of the solar dynamic power module on the Space Station Freedom. The support hardware includes an infrared quartz lamp heater with 30 independently controllable zones and a closed-Brayton cycle engine simulator to circulate and condition the helium-xenon gas mixture. The test article, test support hardware, facilities, and instrumentation developed to conduct the ground test program are all described.

  1. Long-Term Heating to Improve Receiver Performance

    Energy Technology Data Exchange (ETDEWEB)

    Glatzmaier, Greg C.; Cable, Robert; Newmarker, Marc

    2017-06-27

    The buildup of hydrogen in the heat transfer fluid (HTF) that circulates through components of parabolic trough power plants decreases receiver thermal efficiency, and ultimately, it decreases plant performance and electricity output. The generation and occurrence of hydrogen in the HTF provides the driving force for hydrogen to permeate from the HTF through the absorber tube wall and into the receiver annulus. Getters adsorb hydrogen from the annulus volume until they saturate and are no longer able to maintain low hydrogen pressure. The increase in hydrogen pressure within the annulus significantly degrades thermal performance of the receiver and decreases overall power-plant efficiency. NREL and Acciona Energy North America (Acciona) are developing a method to control the levels of dissolved hydrogen in the circulating HTF. The basic approach is to remove hydrogen from the expansion tanks of the HTF subsystem at a rate that maintains hydrogen in the circulating HTF to a target level. Full-plant steady-state models developed by the National Renewable Energy Laboratory (NREL) predict that if hydrogen is removed from the HTF within the expansion tanks, the HTF that circulates through the collector field remains essentially free of hydrogen until the HTF returns to the power block in the hot headers. One of the key findings of our modeling is the prediction that hydrogen will reverse-permeate out of the receiver annulus if dissolved hydrogen in the HTF is kept sufficiently low. To test this prediction, we performed extended heating of an in-service receiver that initially had high levels of hydrogen in its annulus. The heating was performed using NREL's receiver test stand. Results of our testing showed that receiver heat loss steadily decreased with daily heating, resulting in a corresponding improvement in receiver thermal efficiency.

  2. Free convective heat loss from cavity-type solar furnace; Solar receiver kara no shizen tairyu ni yoru netsusonshitsu

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, I; Ito, N [Meiji University, Tokyo (Japan)

    1996-10-27

    Free convective heat loss from solar heat receivers was studied, using three laboratory model receivers (different in depth L and aperture diameter d) heated by electric heaters. Most of the heat produced by heaters was transmitted to the air inside. The cylindrical vessel walls were fully insulated against heat. Heat loss being supposed to result mainly from transfer by free convection, the experiment results were edited by use of Nusselt number Nu and Rayley number Ra. Relations between Nu(D/d){sup m1} and Ra(L/D){sup m2} were plotted in a chart. Here, D is the receiver inner diameter, and m1 and m2 are constants that can be determined by computation. Tests points were provided approximately lineally, irrespective of D, L, or receiver inclination. Air currents were found to produce one or more swirls inside, thanks to the current visualization technique, when the receiver inclination was not sharper than 120{degree} (except 0{degree}). The number of swirls increased as the inner wall temperature rose. This kind of behavior of air currents directly affects the degree of heat loss. 9 refs., 4 figs.

  3. Efficiency improvement of a concentrated solar receiver for water heating system using porous medium

    Science.gov (United States)

    Prasartkaew, Boonrit

    2018-01-01

    This experimental study aims at investigating on the performance of a high temperature solar water heating system. To approach the high temperature, a porous-medium concentrated solar collector equipped with a focused solar heliostat were proposed. The proposed system comprised of two parts: a 0.7x0.7-m2 porous medium receiver, was installed on a 3-m tower, and a focused multi-flat-mirror solar heliostat with 25-m2 aperture area. The porous medium used in this study was the metal swarf or metal waste from lathing process. To know how the system efficiency could be improved by using such porous medium, the proposed system with- and without-porous medium were tested and the comparative study was performed. The experimental results show that, using porous medium for enhancing the heat transfer mechanism, the system thermal efficiency was increased about 25%. It can be concluded that the efficiency of the proposed system can be substantially improved by using the porous medium.

  4. Enhanced heat transfer performances of molten salt receiver with spirally grooved pipe

    International Nuclear Information System (INIS)

    Lu, Jianfeng; Ding, Jing; Yu, Tao; Shen, Xiangyang

    2015-01-01

    The enhanced heat transfer performances of solar receiver with spirally grooved pipe were theoretically investigated. The physical model of heat absorption process was proposed using the general heat transfer correlation of molten salt in smooth and spirally grooved pipe. According to the calculation results, the convective heat transfer inside the receiver can remarkably enhance the heat absorption process, and the absorption efficiency increased with the flow velocity and groove height, while the wall temperature dropped. As the groove height increased, the heat losses of convection and radiation dropped with the decrease of wall temperature, and the average absorption efficiency of the heat receiver can be increased. Compared with the heat receiver with smooth pipe, the heat absorption efficiency of heat receiver with spirally grooved pipe e/d = 0.0475 can rise for 0.7%, and the maximum bulk fluid temperature can be increased for 31.1 °C. As a conclusion, spirally grooved pipe can be a very effective way for heat absorption enhancement of solar receiver, and it can also increase the operating temperature of molten salt. - Highlights: • Spirally grooved tube is a very effective way for solar receiver enhancement. • Heat absorption model of receiver is proposed with general heat transfer correlation. • Spirally groove tube increases absorption efficiency and reduces wall temperature. • Operating temperature of molten salt remarkably increases with groove height. • Heat absorption performance is promoted for first and second thermodynamics laws

  5. A Numerical Study on the Heat Transfer Characteristics of a Solar Thermal Receiver with High-temperature Heat Pipes

    International Nuclear Information System (INIS)

    Park, Young Hark; Jung, Eui Guk; Boo, Joon Hong

    2007-01-01

    A numerical analysis was conducted to predict the heat transfer characteristics of a solar receiver which is subject to very high heat fluxes and temperatures for solar thermal applications. The concentration ratio of the solar receiver ranges from 200 to 1000 and the concentrated heat is required to be transported to a certain distance for specific applications. The study deals with a solar receiver incorporating high-temperature sodium heat pipe as well as typical one that employs a molten-salt circulation loop. The isothermal characteristics in the receiver section is of major concern. The diameter of the solar thermal receiver was 120 mm and the length was 400 mm. For the molten-salt circulation type receiver, 48 axial channels of the same dimensions were attached to the outer wall of the receiver with even spacing in the circumferential direction. The molten salt fed through the channels by forced convection using a special pump. For the heat pipe receiver, the channels are changed to high-temperature sodium heat pipes. Commercial softwares were employed to deal with the radiative heat transfer inside the receiver cavity and the convection heat transfer along the channels. The numerical results are compared and analyzed from the view point of high-temperature solar receiver

  6. Ideal heat transfer conditions for tubular solar receivers with different design constraints

    Science.gov (United States)

    Kim, Jin-Soo; Potter, Daniel; Gardner, Wilson; Too, Yen Chean Soo; Padilla, Ricardo Vasquez

    2017-06-01

    The optimum heat transfer condition for a tubular type solar receiver was investigated for various receiver pipe size, heat transfer fluid, and design requirement and constraint(s). Heat transfer of a single plain receiver pipe exposed to concentrated solar energy was modelled along the flow path of the heat transfer fluid. Three different working fluids, molten salt, sodium, and supercritical carbon dioxide (sCO2) were considered in the case studies with different design conditions. The optimized ideal heat transfer condition was identified through fast iterative heat transfer calculations solving for all relevant radiation, conduction and convection heat transfers throughout the entire discretized tubular receiver. The ideal condition giving the best performance was obtained by finding the highest acceptable solar energy flux optimally distributed to meet different constraint(s), such as maximum allowable material temperature of receiver, maximum allowable film temperature of heat transfer fluid, and maximum allowable stress of receiver pipe material. The level of fluid side turbulence (represented by pressure drop in this study) was also optimized to give the highest net power production. As the outcome of the study gives information on the most ideal heat transfer condition, it can be used as a useful guideline for optimal design of a real receiver and solar field in a combined manner. The ideal heat transfer condition is especially important for high temperature tubular receivers (e.g. for supplying heat to high efficiency Brayton cycle turbines) where the system design and performance is tightly constrained by the receiver pipe material strength.

  7. Monitoring sensible heat flux over urban areas in a high-altitude city using Large Aperture Scintillometer and Eddy Covariance

    Science.gov (United States)

    Du, Junping; Timmermans, Wim J.; Ma, Yaoming; Su, Bob; Pema, Tsering

    2017-04-01

    Urbanization leads to modifications of surface energy balance which governs the momentum, heat and mass transfer between urban canopy layer and the atmosphere, thus impacts dynamic processes in the urban ABL and ultimately influence the local, regional and even global climate. It is essential to obtain accurate urban ABL observations to enhance our understanding of land-atmosphere interaction process over the urban area and help to improve the prediction ability of numerical model. However, up to now, there are rarely observations in high latitude cities. In one of the highest cities in the world, Lhasa, Eddy Covariance (EC) measurements have been ongoing since 10 August 2016 and a Large Aperture Scintillometer (LAS) started to work on 12 November 2016, in addition to a UHI network which has been running since 2012. Taking advantage of these observations, this poster will estimate and analyze the surface energy balance in the winter of 2016 in Lhasa, with an emphasis on sensible heat flux. An analytical footprint model and the radiative surface temperature retrieved from Landsat 8 will be employed to compare EC and LAS measurements.

  8. Heat pipe solar receiver with thermal energy storage

    Science.gov (United States)

    Zimmerman, W. F.

    1981-01-01

    An HPSR Stirling engine generator system featuring latent heat thermal energy storge, excellent thermal stability and self regulating, effective thermal transport at low system delta T is described. The system was supported by component technology testing of heat pipes and of thermal storage and energy transport models which define the expected performance of the system. Preliminary and detailed design efforts were completed and manufacturing of HPSR components has begun.

  9. Wind effects on convective heat loss from a cavity receiver for a parabolic concentrating solar collector

    Energy Technology Data Exchange (ETDEWEB)

    Ma, R.Y. [California State Polytechnic Univ., Pomoma, CA (United States). Dept. of Mechanical Engineering

    1993-09-01

    Tests were performed to determine the convective heat loss characteristics of a cavity receiver for a parabolid dish concentrating solar collector for various tilt angles and wind speeds of 0-24 mph. Natural (no wind) convective heat loss from the receiver is the highest for a horizontal receiver orientation and negligible with the reveler facing straight down. Convection from the receiver is substantially increased by the presence of side-on wind for all receiver tilt angles. For head-on wind, convective heat loss with the receiver facing straight down is approximately the same as that for side-on wind. Overall it was found that for wind speeds of 20--24 mph, convective heat loss from the receiver can be as much as three times that occurring without wind.

  10. Test bench HEATREC for heat loss measurement on solar receiver tubes

    Science.gov (United States)

    Márquez, José M.; López-Martín, Rafael; Valenzuela, Loreto; Zarza, Eduardo

    2016-05-01

    In Solar Thermal Electricity (STE) plants the thermal energy of solar radiation is absorbed by solar receiver tubes (HCEs) and it is transferred to a heat transfer fluid. Therefore, heat losses of receiver tubes have a direct influence on STE plants efficiency. A new test bench called HEATREC has been developed by Plataforma Solar de Almería (PSA) in order to determinate the heat losses of receiver tubes under laboratory conditions. The innovation of this test bench consists in the possibility to determine heat losses under controlled vacuum.

  11. Numerical investigations on coupled heat transfer and synthetical performance of a pressurized volumetric receiver with MCRT–FVM method

    International Nuclear Information System (INIS)

    Cheng, Z.D.; He, Y.L.; Cui, F.Q.

    2013-01-01

    This paper presents an axisymmetric steady-state computational fluid dynamics model and further studies on the complex coupled heat transfer combined radiation–convection–conduction in the pressurized volumetric receiver (PVR), by combining the Finite Volume Method (FVM) and the Monte Carlo Ray-Trace (MCRT) method. Based on this, effects of geometric parameters of the compound parabolic concentrator (CPC) and properties of the porous absorber on synthetical characteristics and performance of the photo-thermal conversion process in the PVR are further analyzed and discussed detailedly. It is found that the solar flux density distributions are always very heterogeneous with large nonuniformities, and the variation trends of the corresponding temperature distributions are very similar to these but with much lower order of magnitude. The CPC shape determined by the CPC exit aperture has much larger effects on synthetical characteristics and performance of the PVR than that of the CPC entry aperture with a constant acceptance angle. And a suitable or optimal thickness of the porous absorber could be determined by examining where the drastic decreasing trends occur at the curves of variations of synthetical characteristics and performance with the porosity. - Highlights: ► An axisymmetric steady-state CFD model of PVR is presented with MCRT–FVM method. ► The complex coupled heat transfer and synthetical performance of the PVR are studied. ► The effects of geometric parameters and porous properties are analyzed and discussed. ► Solar flux and temperature in PVR are very heterogeneous with large nonuniformities. ► An optimal absorber thickness can be determined by examining the effects of porosity.

  12. The flow distribution in the parallel tubes of the cavity receiver under variable heat flux

    International Nuclear Information System (INIS)

    Hao, Yun; Wang, Yueshe; Hu, Tian

    2016-01-01

    Highlights: • An experimental loop is built to find the flow distribution in the parallel tubes. • With the concentration of heat flux, two-phase flow makes distribution more uneven. • The total flow rate is chosen appropriately for a wider heat flux distribution. • A suitable system pressure is essential for the optimization of flow distribution. - Abstract: As an optical component of tower solar thermal power station, the heliostat mirror reflects sunlight to one point of the heated surface in the solar cavity receiver, called as one-point focusing system. The radiation heat flux concentrated in the cavity receiver is always non-uniform temporally and spatially, which may lead to extremely local over-heat on the receiver evaporation panels. In this paper, an electrical heated evaporating experimental loop, including five parallel vertical tubes, is set up to evaluate the hydrodynamic characteristics of evaporation panels in a solar cavity receiver under various non-uniform heat flux. The influence of the heat flux concentration ratio, total flow rate, and system pressure on the flow distribution of parallel tubes is discussed. It is found that the flow distribution becomes significantly worse with the increase of heat flux and concentration ratio; and as the system pressure decreased, the flow distribution is improved. It is extremely important to obtain these interesting findings for the safe and stable operation of solar cavity receiver, and can also provide valuable references for the design and optimization of operating parameters solar tower power station system.

  13. Water jacket for solid particle solar receiver

    Science.gov (United States)

    Wasyluk, David T.

    2018-03-20

    A solar receiver includes: water jacket panels each having a light-receiving side and a back side with a watertight sealed plenum defined in-between; light apertures passing through the watertight sealed plenums to receive light from the light-receiving sides of the water jacket panels; a heat transfer medium gap defined between the back sides of the water jacket panels and a cylindrical back plate; and light channeling tubes optically coupled with the light apertures and extending into the heat transfer medium gap. In some embodiments ends of the light apertures at the light receiving side of the water jacket panel are welded together to define at least a portion of the light-receiving side. A cylindrical solar receiver may be constructed using a plurality of such water jacket panels arranged with their light-receiving sides facing outward.

  14. Development of an integrated heat pipe-thermal storage system for a solar receiver

    Science.gov (United States)

    Keddy, E. S.; Sena, J. T.; Merrigan, M. A.; Heidenreich, G.; Johnson, S.

    1987-07-01

    The Organic Rankine Cycle (ORC) Solar Dynamic Power System (SDPS) is one of the candidates for Space Station prime power application. In the low Earth orbit of the Space Station approximately 34 minutes of the 94-minute orbital period is spent in eclipse with no solar energy input to the power system. For this period the SDPS will use thermal energy storage (TES) material to provide a constant power output. An integrated heat-pipe thermal storage receiver system is being developed as part of the ORC-SDPS solar receiver. This system incorporates potassium heat pipe elements to absorb and transfer the solar energy within the receiver cavity. The heat pipes contain the TES canisters within the potassium vapor space with the toluene heater tube used as the condenser region of the heat pipe. During the insolation period of the Earth orbit, solar energy is delivered to the heat pipe in the ORC-SDPS receiver cavity. The heat pipe transforms the non-uniform solar flux incident in the heat pipe surface within the receiver cavity to an essentially uniform flux at the potassium vapor condensation interface in the heat pipe. During solar insolation, part of the thermal energy is delivered to the heater tube and the balance is stored in the TES units. During the eclipse period of the orbit, the balance stored in the TES units is transferred by the potassium vapor to the toluene heater tube.

  15. Development of an integrated heat pipe-thermal storage system for a solar receiver

    Science.gov (United States)

    Keddy, E. S.; Sena, J. T.; Merrigan, M. A.; Heidenreich, G.; Johnson, S.

    1987-01-01

    The Organic Rankine Cycle (ORC) Solar Dynamic Power System (SDPS) is one of the candidates for Space Station prime power application. In the low Earth orbit of the Space Station approximately 34 minutes of the 94-minute orbital period is spent in eclipse with no solar energy input to the power system. For this period the SDPS will use thermal energy storage (TES) material to provide a constant power output. An integrated heat-pipe thermal storage receiver system is being developed as part of the ORC-SDPS solar receiver. This system incorporates potassium heat pipe elements to absorb and transfer the solar energy within the receiver cavity. The heat pipes contain the TES canisters within the potassium vapor space with the toluene heater tube used as the condenser region of the heat pipe. During the insolation period of the Earth orbit, solar energy is delivered to the heat pipe in the ORC-SDPS receiver cavity. The heat pipe transforms the non-uniform solar flux incident in the heat pipe surface within the receiver cavity to an essentially uniform flux at the potassium vapor condensation interface in the heat pipe. During solar insolation, part of the thermal energy is delivered to the heater tube and the balance is stored in the TES units. During the eclipse period of the orbit, the balance stored in the TES units is transferred by the potassium vapor to the toluene heater tube.

  16. Experimental and numerical analysis of convective heat losses from spherical cavity receiver of solar concentrator

    Directory of Open Access Journals (Sweden)

    Shewale Vinod C.

    2017-01-01

    Full Text Available Spherical cavity receiver of solar concentrator is made up of Cu tubing material having cavity diameter 385 mm to analyze the different heat losses such as conduction, convection and radiation. As the convection loss plays major role in heat loss analysis of cavity receiver, the experimental analysis is carried out to study convective heat loss for the temperature range of 55-75°C at 0°, 15°, 30°, 45°, 60°, and 90° inclination angle of downward facing cavity receiver. The numerical analysis is carried out to study convective heat loss for the low temperature range (55-75°C as well as high temperature range (150-300 °C for no wind condition only. The experimental set-up mainly consists of spherical cavity receiver which is insulated with glass wool insulation to reduce the heat losses from outside surface. The numerical analysis is carried out by using CFD software and the results are compared with the experimental results and found good agreement. The result shows that the convective loss increases with decrease in cavity inclination angle and decreases with decrease in mean cavity receiver temperature. The maximum losses are obtained at 0° inclination angle and the minimum losses are obtained at 90° inclination angle of cavity due to increase in stagnation zone in to the cavity from 0° to 90° inclination. The Nusselt number correlation is developed for the low temperature range 55-75°C based on the experimental data. The analysis is also carried out to study the effect of wind speed and wind direction on convective heat losses. The convective heat losses are studied for two wind speeds (3 m/s and 5 m/s and four wind directions [α is 0° (Side-on wind, 30°, 60°, and 90° (head-on wind]. It is found that the convective heat losses for both wind speed are higher than the losses obtained by no wind test. The highest heat losses are found for wind direction α is 60° with respect to receiver stand and lowest heat losses are found

  17. Available online Efficiency potential of indirectly heated solar reforming with different types of solar air receivers

    International Nuclear Information System (INIS)

    Storch, Henrik von; Roeb, Martin; Stadler, Hannes; Sattler, Christian; Hoffschmidt, Bernhard

    2016-01-01

    Highlights: • A process for indirectly heated solar reforming of natural gas with air as heat transfer fluid is proposed. • Different solar receivers are modeled and implemented into the reforming process. • The overall efficiency of the process with different solar receivers is determined. • Optimum solar receiver characteristics for application in a solar reforming process are determined. - Abstract: In solar reforming, the heating value of natural gas is increased by utilization of concentrated solar radiation. Hence, it is a process for storing solar energy in a stable and transportable form that also permits further conversion into liquid fuels like methanol. This process has the potential to significantly decrease the natural gas consumption and the associated CO_2-emissions of methanol production with only few open questions to be addressed prior to commercialization. In the medium and long term, it has the potential to generate methanol as an environmentally friendly fuel for both transport as well as flexible electricity production in combined cycle gas turbines, when biogas is used as reactant. In a previous study the high potential of indirectly heated solar reforming with solar air receivers was shown; however, the efficiency is limited when using state of the art open volumetric receivers. Therefore, different types of air receivers are implemented into an indirectly heated solar reforming process and the overall efficiency potential is assessed in the present study. The implemented receivers are an open volumetric cavity receiver, a closed volumetric cavity receiver and a tubular cavity receiver. The open volumetric cavity receiver and tubular cavity receiver achieve the best results due to their capability of operating efficiently at temperatures well above 700 °C. For these receivers peak efficiencies up to 29% and 27% respectively are predicted. As the utilization of an open volumetric cavity receiver constitutes an open heat transfer

  18. Effect of Wind Flow on Convective Heat Losses from Scheffler Solar Concentrator Receivers

    Science.gov (United States)

    Nene, Anita Arvind; Ramachandran, S.; Suyambazhahan, S.

    2018-05-01

    Receiver is an important element of solar concentrator system. In a Scheffler concentrator, solar rays get concentrated at focus of parabolic dish. While radiation losses are more predictable and calculable since strongly related to receiver temperature, convective looses are difficult to estimate in view of additional factors such as wind flow direction, speed, receiver geometry, prior to current work. Experimental investigation was carried out on two geometries of receiver namely cylindrical and conical with 2.7 m2 Scheffler to find optimum condition of tilt to provide best efficiency. Experimental results showed that as compared to cylindrical receiver, conical receiver gave maximum efficiency at 45° tilt angle. However effect of additional factors like wind speed, wind direction on especially convective losses could not be separately seen. The current work was undertaken to investigate further the same two geometries using computation fluid dynamics using FLUENT to compute convective losses considering all variables such at tilt angle of receiver, wind velocity and wind direction. For cylindrical receiver, directional heat transfer coefficient (HTC) is remarkably high to tilt condition meaning this geometry is critical to tilt leading to higher convective heat losses. For conical receiver, directional average HTC is remarkably less to tilt condition leading to lower convective heat loss.

  19. An integrated heat pipe-thermal storage design for a solar receiver

    Science.gov (United States)

    Keddy, E.; Sena, J. T.; Woloshun, K.; Merrigan, M. A.; Heidenreich, G.

    Light-weight heat pipe wall elements that incorporate a thermal storage subassembly within the vapor space are being developed as part of the Organic Rankine Cycle Solar Dynamic Power System (ORC-SDPS) receiver for the Space Station application. The operating temperature of the heat pipe elements is in the 770 to 810 K range with a design power throughput of 4.8 kW per pipe. The total heat pipe length is 1.9 M. The Rankine cycle boiler heat transfer surfaces are positioned within the heat pipe vapor space, providing a relatively constant temperature input to the vaporizer. The heat pipe design employs axial arteries and distribution wicked thermal storage units with potassium as the working fluid. Performance predictions for this configuration have been conducted and the design characterized as a function of artery geometry, distribution wick thickness, porosity, pore size, and permeability.

  20. Research on high-temperature heat receiver in concentrated solar radiation system

    Directory of Open Access Journals (Sweden)

    Estera Przenzak

    2017-01-01

    Full Text Available The article presents the results of experimental and computer simulations studies of the high temperature heat receiver working in the concentrated solar radiation system. In order to study the radiation absorption process and heat exchange, the two types of computer simulations were carried out. The first one was used to find the best location for absorber in the concentrating installation. Ray Tracing Monte Carlo (RTMC method in Trace Pro software was used to perform the optical simulations. The results of these simulations were presented in the form of the solar radiation distribution map and chart. The data obtained in RTMC simulations were used as a second type boundary conditions for Computational Fluid Dynamics (CFD simulations. These studies were used to optimize the internal geometry of the receiver and also to select the most effective flow parameters of the working medium. In order to validate the computer simulations, high temperature heat receiver was tested in experimental conditions. The article presents the results of experimental measurements in the form of temperature, radiation intensity and power graphs. The tests were performed for varied flow rate and receiver location. The experimental and computer simulation studies presented in this article allowed to optimize the configuration of concentrating and heat receiving system.

  1. A high temperature ceramic heat exchanger element for a solar thermal receiver

    Science.gov (United States)

    Strumpf, H. J.; Kotchick, D. M.; Coombs, M. G.

    1982-01-01

    The development of a high-temperature ceramic heat exchanger element to be integrated into a solar receiver producing heated air was studied. A number of conceptual designs were developed for heat exchanger elements of differing configuration. These were evaluated with respect to thermal performance, pressure drop, structural integrity, and fabricability. The final design selection identified a finned ceramic shell as the most favorable concept. The shell is surrounded by a larger metallic shell. The flanges of the two shells are sealed to provide a leak-tight pressure vessel. The ceramic shell is to be fabricated by a innovative combination of slip casting the receiver walls and precision casting the heat transfer finned plates. The fins are bonded to the shell during firing. The unit is sized to produce 2150 F air at 2.7 atm pressure, with a pressure drop of about 2 percent of the inlet pressure. This size is compatible with a solar collector providing a receiver input of 85 kw(th). Fabrication of a one-half scale demonstrator ceramic receiver was completed.

  2. High-temperature ceramic heat exchanger element for a solar thermal receiver

    Science.gov (United States)

    Strumpf, H. J.; Kotchick, D. M.; Coombs, M. G.

    1982-01-01

    A study was performed by AiResearch Manufacturing Company, a division of The Garrett Corporation, on the development a high-temperature ceramic heat exchanger element to be integrated into a solar receiver producing heated air. A number of conceptual designs were developed for heat exchanger elements of differing configuration. These were evaluated with respect to thermal performance, pressure drop, structural integrity, and fabricability. The final design selection identified a finned ceramic shell as the most favorable concept. The shell is surrounded by a larger metallic shell. The flanges of the two shells are sealed to provide a leak-tight pressure vessel. The ceramic shell is to be fabricated by an innovative combination of slip casting the receiver walls and precision casting the heat transfer finned plates. The fins are bonded to the shell during firing. The unit is sized to produce 2150 F ar at 2.7 atm pressure, with a pressure drop of about 2 percent of the inlet pressure. This size is compatible with a solar collector providing a receiver input of 85 kw(th). Fabrication of a one-half scale demonstrator ceramic receiver has been completed.

  3. Synthetic Aperture Sequential Beamforming

    DEFF Research Database (Denmark)

    Kortbek, Jacob; Jensen, Jørgen Arendt; Gammelmark, Kim Løkke

    2008-01-01

    A synthetic aperture focusing (SAF) technique denoted Synthetic Aperture Sequential Beamforming (SASB) suitable for 2D and 3D imaging is presented. The technique differ from prior art of SAF in the sense that SAF is performed on pre-beamformed data contrary to channel data. The objective is to im......A synthetic aperture focusing (SAF) technique denoted Synthetic Aperture Sequential Beamforming (SASB) suitable for 2D and 3D imaging is presented. The technique differ from prior art of SAF in the sense that SAF is performed on pre-beamformed data contrary to channel data. The objective...... is to improve and obtain a more range independent lateral resolution compared to conventional dynamic receive focusing (DRF) without compromising frame rate. SASB is a two-stage procedure using two separate beamformers. First a set of Bmode image lines using a single focal point in both transmit and receive...... is stored. The second stage applies the focused image lines from the first stage as input data. The SASB method has been investigated using simulations in Field II and by off-line processing of data acquired with a commercial scanner. The performance of SASB with a static image object is compared with DRF...

  4. 3D numerical simulation on heat transfer performance of a cylindrical liquid immersion solar receiver

    International Nuclear Information System (INIS)

    Xiang Haijun; Wang Yiping; Zhu Li; Han Xinyue; Sun Yong; Zhao Zhengjian

    2012-01-01

    Highlights: ► Establishment of a three-dimensional numerical simulation model of a cylindrical liquid immersion solar receiver. ► Determination of model parameters and validation of the model by using the real-collected data. ► Optimization of liquid flow rate and fin’s structure for better heat transfer performance. - Abstract: Liquid immersion cooling for a cylindrical solar receiver in a dish concentrator photovoltaic system has been experimentally verified to be a promising method of removing surplus heat from densely packed solar cells. In the present study, a three-dimensional (3D) numerical simulation model of the prototype was established for better understanding the mechanism of the direct-contact heat transfer process. With the selection of standard k–ε turbulent model, the detailed simulation results of velocity field and temperature characteristics were obtained. The heat transfer performance of two structural modules (bare module and finned module) under actual weather conditions was simulated. It was found that the predicted temperature distribution of the two structural modules at the axial and lateral direction was in good agreement with the experimental data. Based on the validated simulation model, the influence of liquid flow rate and module geometric parameters on the cell temperature was then investigated. The simulated results indicated that the cell module with fin height of 4 mm and fin number of 11 has the best heat transfer performance and will be used in further works.

  5. Power and Efficiency Analysis of a Solar Central Receiver Combined Cycle Plant with a Small Particle Heat Exchanger Receiver

    Science.gov (United States)

    Virgen, Matthew Miguel

    Two significant goals in solar plant operation are lower cost and higher efficiencies. To achieve those goals, a combined cycle gas turbine (CCGT) system, which uses the hot gas turbine exhaust to produce superheated steam for a bottoming Rankine cycle by way of a heat recovery steam generator (HRSG), is investigated in this work. Building off of a previous gas turbine model created at the Combustion and Solar Energy Laboratory at SDSU, here are added the HRSG and steam turbine model, which had to handle significant change in the mass flow and temperature of air exiting the gas turbine due to varying solar input. A wide range of cases were run to explore options for maximizing both power and efficiency from the proposed CSP CCGT plant. Variable guide vanes (VGVs) were found in the earlier model to be an effective tool in providing operational flexibility to address the variable nature of solar input. Combined cycle efficiencies in the range of 50% were found to result from this plant configuration. However, a combustor inlet temperature (CIT) limit leads to two distinct Modes of operation, with a sharp drop in both plant efficiency and power occurring when the air flow through the receiver exceeded the CIT limit. This drawback can be partially addressed through strategic use of the VGVs. Since system response is fully established for the relevant range of solar input and variable guide vane angles, the System Advisor Model (SAM) from NREL can be used to find what the actual expected solar input would be over the course of the day, and plan accordingly. While the SAM software is not yet equipped to model a Brayton cycle cavity receiver, appropriate approximations were made in order to produce a suitable heliostat field to fit this system. Since the SPHER uses carbon nano-particles as the solar absorbers, questions of particle longevity and how the particles might affect the flame behavior in the combustor were addressed using the chemical kinetics software Chemkin

  6. Influence of Mean Rooftop-Level Estimation Method on Sensible Heat Flux Retrieved from a Large-Aperture Scintillometer Over a City Centre

    Science.gov (United States)

    Zieliński, Mariusz; Fortuniak, Krzysztof; Pawlak, Włodzimierz; Siedlecki, Mariusz

    2017-08-01

    The sensible heat flux ( H) is determined using large-aperture scintillometer (LAS) measurements over a city centre for eight different computation scenarios. The scenarios are based on different approaches of the mean rooftop-level (zH) estimation for the LAS path. Here, zH is determined separately for wind directions perpendicular (two zones) and parallel (one zone) to the optical beam to reflect the variation in topography and building height on both sides of the LAS path. Two methods of zH estimation are analyzed: (1) average building profiles; (2) weighted-average building height within a 250 m radius from points located every 50 m along the optical beam, or the centre of a certain zone (in the case of a wind direction perpendicular to the path). The sensible heat flux is computed separately using the friction velocity determined with the eddy-covariance method and the iterative procedure. The sensitivity of the sensible heat flux and the extent of the scintillometer source area to different computation scenarios are analyzed. Differences reaching up to 7% between heat fluxes computed with different scenarios were found. The mean rooftop-level estimation method has a smaller influence on the sensible heat flux (-4 to 5%) than the area used for the zH computation (-5 to 7%). For the source-area extent, the discrepancies between respective scenarios reached a similar magnitude. The results demonstrate the value of the approach in which zH is estimated separately for wind directions parallel and perpendicular to the LAS optical beam.

  7. Aperture averaging in strong oceanic turbulence

    Science.gov (United States)

    Gökçe, Muhsin Caner; Baykal, Yahya

    2018-04-01

    Receiver aperture averaging technique is employed in underwater wireless optical communication (UWOC) systems to mitigate the effects of oceanic turbulence, thus to improve the system performance. The irradiance flux variance is a measure of the intensity fluctuations on a lens of the receiver aperture. Using the modified Rytov theory which uses the small-scale and large-scale spatial filters, and our previously presented expression that shows the atmospheric structure constant in terms of oceanic turbulence parameters, we evaluate the irradiance flux variance and the aperture averaging factor of a spherical wave in strong oceanic turbulence. Irradiance flux variance variations are examined versus the oceanic turbulence parameters and the receiver aperture diameter are examined in strong oceanic turbulence. Also, the effect of the receiver aperture diameter on the aperture averaging factor is presented in strong oceanic turbulence.

  8. Influence of void ratio on thermal performance of heat pipe receiver

    International Nuclear Information System (INIS)

    Gui Xiaohong; Tang Dawei; Liang Shiqiang; Lin Bin; Yuan Xiugan

    2012-01-01

    Highlights: ► The temperature gradient increases significantly and the utility ratio of PCM decreases obviously as void ratio increases. ► Void cavity influences the process of phase change greatly. ► PCM melts slowly during sunlight periods and freezes slowly during eclipse periods as void ratio increases. ► The temperature gradient of PCM zone is very significant with the effect of void cavity. - Abstract: In this paper, influence of void ratio on thermal performance of heat pipe receiver under microgravity is numerically simulated. Accordingly, mathematical model is set up. Numerical method is offered. The temperature field of Phase Change Material (PCM) canister is shown. Numerical results are compared with numerical ones of National Aeronautics and Space Administration (NASA). Numerical results show that the temperature gradient increases significantly and the utility ratio of PCM decreases obviously as void ratio increases. Void cavity influences the process of phase change greatly. PCM melts slowly during sunlight periods and freezes slowly during eclipse periods as void ratio increases. The thermal resistance of void cavity is much bigger than that of PCM canister wall. Void cavity prevents the heat transfer between PCM zone and canister wall. The temperature gradient of PCM zone is very significant with the effect of void cavity. So the thermal stress of heat pipe receiver may increase, and the lifetime may decrease as void ratio increases.

  9. Aperture area measurement facility

    Data.gov (United States)

    Federal Laboratory Consortium — NIST has established an absolute aperture area measurement facility for circular and near-circular apertures use in radiometric instruments. The facility consists of...

  10. Heat transfer analysis of porous media receiver with different transport and thermophysical models using mixture as feeding gas

    International Nuclear Information System (INIS)

    Wang, Fuqiang; Tan, Jianyu; Wang, Zhiqiang

    2014-01-01

    Highlights: • Using local thermal non-equilibrium model to solve heat transfer of porous media. • CH 4 /H 2 O mixture is adopted as feeding gas of porous media receiver. • Radiative transfer equation between porous strut is solved by Rosseland approximation. • Transport and thermophysical models not included in Fluent are programmed by UDFs. • Variations of model on thermal performance of porous media receiver are studied. - Abstract: The local thermal non-equilibrium model is adopted to solve the steady state heat and mass transfer problems of porous media solar receiver. The fluid entrance surface is subjected to concentrated solar radiation, and CH 4 /H 2 O mixture is adopted as feeding gas. The radiative heat transfer equation between porous strut is solved by Rosseland approximation. The impacts of variation in transport and thermophysical characteristics model of gas mixture on thermal performance of porous media receiver are investigated. The transport and thermophysical characteristics models which are not included in software Fluent are programmed by user defined functions (UDFs). The numerical results indicate that models of momentum source term for porous media receiver have significant impact on pressure drop and static pressure distribution, and the radiative heat transfer cannot be omitted during the thermal performance analysis of porous media receiver

  11. Terahertz Heterodyne Receiver with an Electron-Heating Mixer and a Heterodyne Based on the Quantum-Cascade Laser

    Science.gov (United States)

    Seliverstov, S. V.; Anfertyev, V. A.; Tretyakov, I. V.; Ozheredov, I. A.; Solyankin, P. M.; Revin, L. S.; Vaks, V. L.; Rusova, A. A.; Goltsman, G. N.; Shkurinov, A. P.

    2017-12-01

    We study characteristics of the laboratory prototype of a terahertz heterodyne receiver with an electron-heating mixer and a heterodyne based on the quantum-cascade laser. The results obtained demonstrate the possibility to use this receiver as a basis for creation of a high-sensitivity terahertz spectrometer, which can be used in many basic and practical applications. A significant advantage of this receiver will be the possibility of placing the mixer and heterodyne in the same cryostat, which will reduce the device dimensions considerably. The obtained experimental results are analyzed, and methods of optimizing the parameters of the receiver are proposed.

  12. A line-of-sight electron cyclotron emission receiver for electron cyclotron resonance heating feedback control of tearing modes

    DEFF Research Database (Denmark)

    Oosterbeek, J.W.; Bürger, A.; Westerhof, E.

    2008-01-01

    An electron cyclotron emission (ECE) receiver inside the electron cyclotron resonance heating (ECRH) transmission line has been brought into operation. The ECE is extracted by placing a quartz plate acting as a Fabry-Perot interferometer under an angle inside the electron cyclotron wave (ECW) bea...

  13. Thermal tolerances of fish from a reservoir receiving heated effluent from a nuclear reactor

    International Nuclear Information System (INIS)

    Holland, W.E.; Smith, M.H.; Gibbons, J.W.; Brown, D.H.

    1974-01-01

    The heat tolerances of bluegill (Lepomis macrochirus) subjected to heated effluent from a nuclear reactor was compared with those of bluegill living at normal temperatures. Three of the four study areas were located in the Par Pond reservoir system on the Savannah River Plant near Aiken, South Carolina. Results shown that at least one species of warm-water fish can adjust to elevated aquatic temperatures in a natural environment by becoming more tolerant. (U.S.)

  14. Heat loss from an open cavity

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, C.G. [California State Polytechnic Univ., Pomona, CA (United States). Coll. of Engineering

    1995-12-01

    Cavity type receivers are used extensively in concentrating solar thermal energy collecting systems. The Solar Total Energy Project (STEP) in Shenandoah, Georgia is a large scale field test for the collection of solar thermal energy. The STEP experiment consists of a large field array of solar collectors used to supplement the process steam, cooling and other electrical power requirements of an adjacent knitwear manufacturing facility. The purpose of the tests, conducted for this study, was to isolate and quantify the radiative, conductive, and convective components of total heat loss, and to determine the effects of operating temperature, receiver angle, and aperture size on cavity heat loss. An analytical model for radiative heat loss was developed and compared with two other methods used to determine radiative heat loss. A proposed convective heat loss correlation, including effects of aperture size, receiver operating temperature, and receiver angle is presented. The resulting data is a source to evaluate the STEP measurements.

  15. Mastering Apple Aperture

    CERN Document Server

    Fitzgerald, Thomas

    2013-01-01

    Written in a conversational style, the author will share his knowledge on advanced Aperture topics with detailed discussions of advanced topics, the theory behind some of those topics and lots of hints and tips for ways to improve your workflow.Photographer's who have a basic understanding of Aperture

  16. Heat Loss Testing of Schott's 2008 PTR70 Parabolic Trough Receiver

    Energy Technology Data Exchange (ETDEWEB)

    Burkholder, Frank [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kutscher, Chuck [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2009-05-01

    Two Schott 2008 model year PTR70 HCEs were tested on NREL's heat loss test stand from 100 - 500 deg C in 50 deg C increments. Absorber emittance was determined from the laboratory testing so that the performance of the HCEs could be modeled in a parabolic trough collector. Collector/HCE simulation results for many different field operation conditions were used to create heat loss correlationcoefficients for Excelergy and SAM. SAM estimates that the decreased emittance of the 2008 PTR70 will decrease the LCOE for parabolic trough power plants by 0.5 cents/kWh and increase the electricity generated by 5% relative to previous PTR70s. These conclusions assume that the 2008 PTR70 is supplied at the same cost and with the same optical performance as earlier PTR70 models.

  17. Solar energy apparatus with apertured shield

    Science.gov (United States)

    Collings, Roger J. (Inventor); Bannon, David G. (Inventor)

    1989-01-01

    A protective apertured shield for use about an inlet to a solar apparatus which includesd a cavity receiver for absorbing concentrated solar energy. A rigid support truss assembly is fixed to the periphery of the inlet and projects radially inwardly therefrom to define a generally central aperture area through which solar radiation can pass into the cavity receiver. A non-structural, laminated blanket is spread over the rigid support truss in such a manner as to define an outer surface area and an inner surface area diverging radially outwardly from the central aperture area toward the periphery of the inlet. The outer surface area faces away from the inlet and the inner surface area faces toward the cavity receiver. The laminated blanket includes at least one layer of material, such as ceramic fiber fabric, having high infra-red emittance and low solar absorption properties, and another layer, such as metallic foil, of low infra-red emittance properties.

  18. APT: Aperture Photometry Tool

    Science.gov (United States)

    Laher, Russ

    2012-08-01

    Aperture Photometry Tool (APT) is software for astronomers and students interested in manually exploring the photometric qualities of astronomical images. It has a graphical user interface (GUI) which allows the image data associated with aperture photometry calculations for point and extended sources to be visualized and, therefore, more effectively analyzed. Mouse-clicking on a source in the displayed image draws a circular or elliptical aperture and sky annulus around the source and computes the source intensity and its uncertainty, along with several commonly used measures of the local sky background and its variability. The results are displayed and can be optionally saved to an aperture-photometry-table file and plotted on graphs in various ways using functions available in the software. APT is geared toward processing sources in a small number of images and is not suitable for bulk processing a large number of images, unlike other aperture photometry packages (e.g., SExtractor). However, APT does have a convenient source-list tool that enables calculations for a large number of detections in a given image. The source-list tool can be run either in automatic mode to generate an aperture photometry table quickly or in manual mode to permit inspection and adjustment of the calculation for each individual detection. APT displays a variety of useful graphs, including image histogram, and aperture slices, source scatter plot, sky scatter plot, sky histogram, radial profile, curve of growth, and aperture-photometry-table scatter plots and histograms. APT has functions for customizing calculations, including outlier rejection, pixel “picking” and “zapping,” and a selection of source and sky models. The radial-profile-interpolation source model, accessed via the radial-profile-plot panel, allows recovery of source intensity from pixels with missing data and can be especially beneficial in crowded fields.

  19. Detailed IR aperture measurements

    CERN Document Server

    Bruce, Roderik; Garcia Morales, Hector; Giovannozzi, Massimo; Hermes, Pascal Dominik; Mirarchi, Daniele; Quaranta, Elena; Redaelli, Stefano; Rossi, Carlo; Skowronski, Piotr Krzysztof; Wretborn, Sven Joel; CERN. Geneva. ATS Department

    2016-01-01

    MD 1673 was carried out on October 5 2016, in order to investigate in more detail the available aperture in the LHC high-luminosity insertions at 6.5 TeV and β∗=40 cm. Previous aperture measurements in 2016 during commissioning had shown that the available aperture is at the edge of protection, and that the aperture bottleneck at β∗=40 cm in certain cases is found in the separation plane instead of in the crossing plane. Furthermore, the bottlenecks were consistently found in close to the upstream end of Q3 on the side of the incoming beam, and not in Q2 on the outgoing beam as expected from calculations. Therefore, this MD aimed at measuring IR1 and IR5 separately (at 6.5 TeV and β∗=40 cm, for 185 µrad half crossing angle), to further localize the bottlenecks longitudinally using newly installed BLMs, investigate the difference in aperture between Q2 and Q3, and to see if any aperture can be gained using special orbit bumps.

  20. Thermal front propagation in variable aperture fracture–matrix system

    Indian Academy of Sciences (India)

    Abstract. A numerical study on the effect of complex fracture aperture geometry .... have revealed that natural porous media exhibit self-similarity up to a certain scale (Feder 1988) ...... Handbook of terrestrial heat-flow density determination.

  1. Synthetic Aperture Beamformation using the GPU

    DEFF Research Database (Denmark)

    Hansen, Jens Munk; Schaa, Dana; Jensen, Jørgen Arendt

    2011-01-01

    A synthetic aperture ultrasound beamformer is implemented for a GPU using the OpenCL framework. The implementation supports beamformation of either RF signals or complex baseband signals. Transmit and receive apodization can be either parametric or dynamic using a fixed F-number, a reference...

  2. Aperture Photometry Tool

    Science.gov (United States)

    Laher, Russ R.; Gorjian, Varoujan; Rebull, Luisa M.; Masci, Frank J.; Fowler, John W.; Helou, George; Kulkarni, Shrinivas R.; Law, Nicholas M.

    2012-07-01

    Aperture Photometry Tool (APT) is software for astronomers and students interested in manually exploring the photometric qualities of astronomical images. It is a graphical user interface (GUI) designed to allow the image data associated with aperture photometry calculations for point and extended sources to be visualized and, therefore, more effectively analyzed. The finely tuned layout of the GUI, along with judicious use of color-coding and alerting, is intended to give maximal user utility and convenience. Simply mouse-clicking on a source in the displayed image will instantly draw a circular or elliptical aperture and sky annulus around the source and will compute the source intensity and its uncertainty, along with several commonly used measures of the local sky background and its variability. The results are displayed and can be optionally saved to an aperture-photometry-table file and plotted on graphs in various ways using functions available in the software. APT is geared toward processing sources in a small number of images and is not suitable for bulk processing a large number of images, unlike other aperture photometry packages (e.g., SExtractor). However, APT does have a convenient source-list tool that enables calculations for a large number of detections in a given image. The source-list tool can be run either in automatic mode to generate an aperture photometry table quickly or in manual mode to permit inspection and adjustment of the calculation for each individual detection. APT displays a variety of useful graphs with just the push of a button, including image histogram, x and y aperture slices, source scatter plot, sky scatter plot, sky histogram, radial profile, curve of growth, and aperture-photometry-table scatter plots and histograms. APT has many functions for customizing the calculations, including outlier rejection, pixel “picking” and “zapping,” and a selection of source and sky models. The radial-profile-interpolation source

  3. The LHC dynamic aperture

    CERN Document Server

    Koutchouk, Jean-Pierre

    1999-01-01

    In 1996, the expected field errors in the dipoles and quadrupoles yielded a long-term dynamic aperture of some 8sigma at injection. The target was set to 12sigma to account for the limitations of our model (imperfections and dynamics). From scaling laws and tracking, a specification for the field imperfections yielding the target dynamic aperture was deduced. The gap between specification and expected errors is being bridged by i) an improvement of the dipole field quality, ii) a balance between geometric and persistent current errors, iii) additional correction circuits (a3 ,b4 ). With the goal in view, the emphasis has now turned to the sensitivity of the dynamic aperture to the optical parameters.The distortion of the dynamics at the lower amplitudes effectively reached by the particles is minimized by optimizing the distribution of the betatron phase advance. At collision energy, the dynamic aperture is limited by the field imperfections of the low-beta triplets, enhanced by the crossing angle. With corre...

  4. Experimental and numerical investigation of the aperture size effect on the efficient solar energy harvesting for solar thermochemical applications

    International Nuclear Information System (INIS)

    Sarwar, J.; Georgakis, G.; Kouloulias, K.; Kakosimos, K.E.

    2015-01-01

    Highlights: • Experimental results on thermal analysis of a solar cavity for variable apertures. • Development of an optical model for energy transfer from light source to the cavity. • Development of a coupled ray tracing and heat transfer model for the cavity. • Validation of both the models with experimental measurements. • Use of the models to study new cases like the efficiency of the variable apertures. - Abstract: In this paper, experimental and numerical work have been undertaken to investigate the steady state temperatures throughout the day of a cylindrical solar receiver when using fixed and variable size apertures. A high flux solar simulator, consisting of a 7 kW xenon short arc lamp, is employed as a light source. The sunlight intensity variations at early morning (06:30), morning (07:15) and noon (12:00) time of a reference day are imitated by changing the input current to the lamp. Experiments have been performed with different aperture diameters across selected irradiance levels to imitate sunlight variations. An optical model is developed to simulate incident flux distribution and the output is compared with the experimental measurements for validation. A finite volume algorithm is developed, based on a coupled Monte Carlo heat transfer model, to calculate the steady state temperatures in the receiver. Experimental and numerical temperatures are compared and an excellent agreement with an average temperature difference of ±0.2%, is observed. The optimum aperture size varies with the change in irradiance intensity and therefore the time of day. Simulations for a 30 kW light source show that the daily steady state temperature differential for fixed apertures of 8–10 cm is 170–190 K. Variable apertures reduce power consumption by half when compared to fixed apertures. Variable apertures maintain steady state temperatures of 1000 K, 1100 K and 1200 K by consuming 26.8 kW day, 33.2 kW day and 26.9 kW day, respectively

  5. Survey of coded aperture imaging

    International Nuclear Information System (INIS)

    Barrett, H.H.

    1975-01-01

    The basic principle and limitations of coded aperture imaging for x-ray and gamma cameras are discussed. Current trends include (1) use of time varying apertures, (2) use of ''dilute'' apertures with transmission much less than 50%, and (3) attempts to derive transverse tomographic sections, unblurred by other planes, from coded images

  6. Congenital pyriform aperture stenosis

    International Nuclear Information System (INIS)

    Osovsky, Micky; Aizer-Danon, Anat; Horev, Gadi; Sirota, Lea

    2007-01-01

    Nasal airway obstruction is a potentially life-threatening condition in the newborn. Neonates are obligatory nasal breathers. The pyriform aperture is the narrowest, most anterior bony portion of the nasal airway, and a decrease in its cross-sectional area will significantly increase nasal airway resistance. Congenital nasal pyriform aperture stenosis (CNPAS) is a rare, unusual form of nasal obstruction. It should be considered in the differential diagnosis of any neonate or infant with signs and symptoms of upper airway compromise. It is important to differentiate this level of obstruction from the more common posterior choanal stenosis or atresia. CNPAS presents with symptoms of nasal airway obstruction, which are often characterized by episodic apnea and cyclical cyanosis. (orig.)

  7. Integrated electrochromic aperture diaphragm

    Science.gov (United States)

    Deutschmann, T.; Oesterschulze, E.

    2014-05-01

    In the last years, the triumphal march of handheld electronics with integrated cameras has opened amazing fields for small high performing optical systems. For this purpose miniaturized iris apertures are of practical importance because they are essential to control both the dynamic range of the imaging system and the depth of focus. Therefore, we invented a micro optical iris based on an electrochromic (EC) material. This material changes its absorption in response to an applied voltage. A coaxial arrangement of annular rings of the EC material is used to establish an iris aperture without need of any mechanical moving parts. The advantages of this device do not only arise from the space-saving design with a thickness of the device layer of 50μm. But it also benefits from low power consumption. In fact, its transmission state is stable in an open circuit, phrased memory effect. Only changes of the absorption require a voltage of up to 2 V. In contrast to mechanical iris apertures the absorption may be controlled on an analog scale offering the opportunity for apodization. These properties make our device the ideal candidate for battery powered and space-saving systems. We present optical measurements concerning control of the transmitted intensity and depth of focus, and studies dealing with switching times, light scattering, and stability. While the EC polymer used in this study still has limitations concerning color and contrast, the presented device features all functions of an iris aperture. In contrast to conventional devices it offers some special features. Owing to the variable chemistry of the EC material, its spectral response may be adjusted to certain applications like color filtering in different spectral regimes (UV, optical range, infrared). Furthermore, all segments may be switched individually to establish functions like spatial Fourier filtering or lateral tunable intensity filters.

  8. The chaotic dynamical aperture

    International Nuclear Information System (INIS)

    Lee, S.Y.; Tepikian, S.

    1985-01-01

    Nonlinear magnetic forces become more important for particles in the modern large accelerators. These nonlinear elements are introduced either intentionally to control beam dynamics or by uncontrollable random errors. Equations of motion in the nonlinear Hamiltonian are usually non-integrable. Because of the nonlinear part of the Hamiltonian, the tune diagram of accelerators is a jungle. Nonlinear magnet multipoles are important in keeping the accelerator operation point in the safe quarter of the hostile jungle of resonant tunes. Indeed, all the modern accelerator design have taken advantages of nonlinear mechanics. On the other hand, the effect of the uncontrollable random multipoles should be evaluated carefully. A powerful method of studying the effect of these nonlinear multipoles is using a particle tracking calculation, where a group of test particles are tracing through these magnetic multipoles in the accelerator hundreds to millions of turns in order to test the dynamical aperture of the machine. These methods are extremely useful in the design of a large accelerator such as SSC, LEP, HERA and RHIC. These calculations unfortunately take tremendous amount of computing time. In this paper, we try to apply the existing method in the nonlinear dynamics to study the possible alternative solution. When the Hamiltonian motion becomes chaotic, the tune of the machine becomes undefined. The aperture related to the chaotic orbit can be identified as chaotic dynamical aperture. We review the method of determining chaotic orbit and apply the method to nonlinear problems in accelerator physics. We then discuss the scaling properties and effect of random sextupoles

  9. Synthetic Aperture Ultrasound Imaging

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Nikolov, Svetoslav; Gammelmark, Kim Løkke

    2006-01-01

    The paper describes the use of synthetic aperture (SA) imaging in medical ultrasound. SA imaging is a radical break with today's commercial systems, where the image is acquired sequentially one image line at a time. This puts a strict limit on the frame rate and the possibility of acquiring...... a sufficient amount of data for high precision flow estimation. These constrictions can be lifted by employing SA imaging. Here data is acquired simultaneously from all directions over a number of emissions, and the full image can be reconstructed from this data. The talk will demonstrate the many benefits...

  10. Tibial valgus aperture osteotomy

    International Nuclear Information System (INIS)

    De los Rios G, Adolfo Leon; Saavedra Abadia, Adolfo Leon; Palacios, Julio

    2005-01-01

    This study is based on work carried out a The knee clinic at the arthroscopic surgery unit of the Institute of osteo-articular diseases, Imbanaco Medical Centre, The University Hospital of the Valle (Cali-Colombia) and The Fractures Clinic Ltd. (Palmira-Valle). This is a descriptive study, which demonstrates very positive outcomes for aperture osteotomy, without detracting from the importance of, and the progress made in uni-compartmental and total joint articular replacements of the knee. 10 patients were treated with a highs tibial open osteotomy between November 1988 and December 2002: 3 had post-traumatic deformities, without arthrosic alterations; 1 had pseudo-arthrosis caused by a failed corrective procedure; 1 had complex instability of the knee with osseous varus; 6 had a degenerative lesion of the medial meniscus with medial condral alterations. Follow-up was form 12 to 54 months. Treatment involved a tibial valgus aperture osteotomy and osteo-synthesis. Evaluation was carried out using the International Knee Documentation Committee (IKDC) scale, the For Special Surgery and The Knee Society Score

  11. Tissue Harmonic Synthetic Aperture Imaging

    DEFF Research Database (Denmark)

    Rasmussen, Joachim

    The main purpose of this PhD project is to develop an ultrasonic method for tissue harmonic synthetic aperture imaging. The motivation is to advance the field of synthetic aperture imaging in ultrasound, which has shown great potentials in the clinic. Suggestions for synthetic aperture tissue...... system complexity compared to conventional synthetic aperture techniques. In this project, SASB is sought combined with a pulse inversion technique for 2nd harmonic tissue harmonic imaging. The advantages in tissue harmonic imaging (THI) are expected to further improve the image quality of SASB...

  12. Synthetic Aperture Compound Imaging

    DEFF Research Database (Denmark)

    Hansen, Jens Munk

    and the limiting factor is the amount of memory IO resources available. An equally high demand for memory throughput is found in the computer gaming industry, where a large part of the processing takes place on the graphics processing unit (GPU). Using the GPU, a framework for synthetic aperture imaging......Medical ultrasound imaging is used for many purposes, e.g. for localizing and classifying cysts, lesions, and other processes. Almost any mass is first observed using B-mode imaging and later classified using e.g. color flow, strain, or attenuation imaging. It is therefore important that the B......-mode images have high contrast. Like all imaging modalities, ultrasound is subject to a number of inherent artifacts that compromise image quality. The most prominent artifact is the degradation by coherent wave interference, known as “speckle”, which gives a granular appearance to an otherwise homogeneous...

  13. Transionospheric synthetic aperture imaging

    CERN Document Server

    Gilman, Mikhail; Tsynkov, Semyon

    2017-01-01

    This landmark monograph presents the most recent mathematical developments in the analysis of ionospheric distortions of SAR images and offers innovative new strategies for their mitigation. As a prerequisite to addressing these topics, the book also discusses the radar ambiguity theory as it applies to synthetic aperture imaging and the propagation of radio waves through the ionospheric plasma, including the anisotropic and turbulent cases. In addition, it covers a host of related subjects, such as the mathematical modeling of extended radar targets (as opposed to point-wise targets) and the scattering of radio waves off those targets, as well as the theoretical analysis of the start-stop approximation, which is used routinely in SAR signal processing but often without proper justification. The mathematics in this volume is clean and rigorous – no assumptions are hidden or ambiguously stated. The resulting work is truly interdisciplinary, providing both a comprehensive and thorough exposition of the field,...

  14. Range Compressed Holographic Aperture Ladar

    Science.gov (United States)

    2017-06-01

    entropy saturation behavior of the estimator is analytically described. Simultaneous range-compression and aperture synthesis is experimentally...4 2.1 Circular and Inverse -Circular HAL...2.3 Single Aperture, Multi-λ Imaging ...................................................................................... 14 2.4 Simultaneous Range

  15. Coded aperture tomography revisited

    International Nuclear Information System (INIS)

    Bizais, Y.; Rowe, R.W.; Zubal, I.G.; Bennett, G.W.; Brill, A.B.

    1983-01-01

    Coded aperture (CA) Tomography never achieved wide spread use in Nuclear Medicine, except for the degenerate case of Seven Pinhole tomagraphy (7PHT). However it enjoys several attractive features (high sensitivity and tomographic ability with a statis detector). On the other hand, resolution is usually poor especially along the depth axis and the reconstructed volume is rather limited. Arguments are presented justifying the position that CA tomography can be useful for imaging time-varying 3D structures, if its major drawbacks (poor longitudinal resolution and difficulty in quantification) are overcome. Poor results obtained with 7PHT can be explained by both a very limited angular range sampled and a crude modelling of the image formation process. Therefore improvements can be expected by the use of a dual-detector system, along with a better understanding of its sampling properties and the use of more powerful reconstruction algorithms. Non overlapping multipinhole plates, because they do not involve a decoding procedure, should be considered first for practical applications. Use of real CA should be considered for cases in which non overlapping multipinhole plates do not lead to satisfactory solutions. We have been and currently are carrying out theoretical and experimental works, in order to define the factors which limit CA imaging and to propose satisfactory solutions for Dynamic Emission Tomography

  16. Aperture modulated arc therapy

    International Nuclear Information System (INIS)

    Crooks, S M; Wu, Xiaodong; Takita, C; Watzich, M; Xing Lei

    2003-01-01

    We show that it is possible to translate an intensity modulated radiation therapy (IMRT) treatment plan and deliver it as a single arc. This technique is referred to in this paper as aperture modulation arc therapy (AMAT). During this arc, the MLC leaves do not conform to the projection of the target PTV and the machine output of the accelerator has a constant value. Dose was calculated using the CORVUS 4.0 IMRT system, which uses a pencil beam dose algorithm, and treatments were delivered using a Varian 2100C/D Clinac. Results are presented for a head and neck and a prostate case, showing the equivalence of the IMRT and the translated AMAT delivery. For a prostate AMAT delivery, coronal plane film dose for the IMRT and AMAT deliveries agreed within 7.19 ± 6.62%. For a meningioma the coronal plane dose distributions were similar to a value of 4.6 ± 6.62%. Dose to the isocentre was measured as being within 2% of the planned value in both cases

  17. Proposal of a fluid flow layout to improve the heat transfer in the active absorber surface of solar central cavity receivers

    International Nuclear Information System (INIS)

    Montes, M.J.; Rovira, A.; Martínez-Val, J.M.; Ramos, A.

    2012-01-01

    The main objective of concentrated solar power is to increase the thermal energy of a fluid, for the fluid to be used, for example, in a power cycle to generate electricity. Such applications present the requirement of appropriately designing the receiver active absorber surface, as the incident radiation flux can be very high. Besides that, the solar image in the receiver is not uniform, so conventional boilers designs are not well suited for these purposes. That point is particularly critical in solar central receivers systems (CRS), where concentrated solar flux is usually above 500 kW/m 2 , causing thermal and mechanical stress in the absorber panels. This paper analyzes a new thermofluidynamic design of a solar central receiver, which optimizes the heat transfer in the absorber surface. This conceptual receiver presents the following characteristics: the fluid flow pattern is designed according to the radiation flux map symmetry, so more uniform fluid temperatures at the receiver outlet are achieved; the heat transfer irreversibilities are reduced by circulating the fluid from the lower temperature region to the higher temperature region of the absorber surface; the width of each pass is adjusted to the solar flux gradient, to get lower temperature differences between the side tubes of the same pass; and the cooling requirement is ensured by means of adjusting the fluid flow velocity per tube, taking into account the pressure drop. This conceptual scheme has been applied to the particular case of a molten salt single cavity receiver, although the configuration proposed is suitable for other receiver designs and working fluids. - Highlights: ► The solar receiver design proposed optimizes heat transfer in the absorber surface. ► The fluid flow pattern is designed according to the solar flux map symmetry at noon. ► The fluid circulates from the lower to the higher temperature regions. ► The width of each pass is adjusted to the solar flux gradient.

  18. Large aperture optical switching devices

    International Nuclear Information System (INIS)

    Goldhar, J.; Henesian, M.A.

    1983-01-01

    We have developed a new approach to constructing large aperture optical switches for next generation inertial confinement fusion lasers. A transparent plasma electrode formed in low pressure ionized gas acts as a conductive coating to allow the uniform charging of the optical faces of an electro-optic material. In this manner large electric fields can be applied longitudinally to large aperture, high aspect ratio Pockels cells. We propose a four-electrode geometry to create the necessary high conductivity plasma sheets, and have demonstrated fast (less than 10 nsec) switching in a 5x5 cm aperture KD*P Pockels cell with such a design. Detaid modelling of Pockels cell performance with plasma electrodes has been carried out for 15 and 30 cm aperture designs

  19. Parameter Optimization of Multi-Element Synthetic Aperture Imaging Systems

    Directory of Open Access Journals (Sweden)

    Vera Behar

    2007-03-01

    Full Text Available In conventional ultrasound imaging systems with phased arrays, the further improvement of lateral resolution requires enlarging of the number of array elements that in turn increases both, the complexity and the cost, of imaging systems. Multi-element synthetic aperture focusing (MSAF systems are a very good alternative to conventional systems with phased arrays. The benefit of the synthetic aperture is in reduction of the system complexity, cost and acquisition time. In a MSAF system considered in the paper, a group of elements transmit and receive signals simultaneously, and the transmit beam is defocused to emulate a single element response. The echo received at each element of a receive sub-aperture is recorded in the computer memory. The process of transmission/reception is repeated for all positions of a transmit sub-aperture. All the data recordings associated with each corresponding pair "transmit-receive sub-aperture" are then focused synthetically producing a low-resolution image. The final high-resolution image is formed by summing of the all low-resolution images associated with transmit/receive sub-apertures. A problem of parameter optimization of a MSAF system is considered in this paper. The quality of imaging (lateral resolution and contrast is expressed in terms of the beam characteristics - beam width and side lobe level. The comparison between the MSAF system described in the paper and an equivalent conventional phased array system shows that the MSAF system acquires images of equivalent quality much faster using only a small part of the power per image.

  20. A clinical trial comparing the responses of animal tumors receiving heat sensitizing drugs prior to whole body hyperthermia

    International Nuclear Information System (INIS)

    Klein, M.K.; Forsyth, K.; Dewhirst, M.W.; Fuller, D.J.M.

    1984-01-01

    Whole body hyperthermia (WBH) has rarely been found effective in inducing complete tumor responses. Recent in vitro studies showing that heat sensitizion is possible have renewed interest in this field. In this protocol, WBH is induced via a commercially available inductive device and maintained at 42 0 C for thirty minutes. The heat sensitizing drugs, difluoromethylornithine (DFMO) methylglyoxal bis (guanylhydrazone) (MGBG) are administered 48 hours before, in accordance with in vitro studies. Goals of the study include evaluation of normal tissue toxicity and tumor response. Two normal dogs were treated to study acute toxicities before inception of the clinical trial. The gastrointestinal and hematopoietic systems were used to monitor toxicities using systems review and serial bloodwork. These studies and preliminary clinical results of observed tumor regression in dogs with lymphomas are discussed. Consistent changes in all patients included elevations in liver enzymes, creatine phosphokinase (CPK), and white blood cell counts, as well as, decreases in platelet counts. All changes were transient and clinical signs were not associated with them. Tumor volume reductions from 25% to 74% have been documented

  1. An air-based corrugated cavity-receiver for solar parabolic trough concentrators

    International Nuclear Information System (INIS)

    Bader, Roman; Pedretti, Andrea; Barbato, Maurizio; Steinfeld, Aldo

    2015-01-01

    Highlights: • We analyze a novel tubular cavity-receiver for solar parabolic trough collectors. • Four-fold solar concentration ratio is reached compared to conventional receivers. • Efficient operation at up to 500 °C is possible. • The pumping power requirement is found to be acceptably low. - Abstract: A tubular cavity-receiver that uses air as the heat transfer fluid is evaluated numerically using a validated heat transfer model. The receiver is designed for use on a large-span (9 m net concentrator aperture width) solar parabolic trough concentrator. Through the combination of a parabolic primary concentrator with a nonimaging secondary concentrator, the collector reaches a solar concentration ratio of 97.5. Four different receiver configurations are considered, with smooth or V-corrugated absorber tube and single- or double-glazed aperture window. The collector’s performance is characterized by its optical efficiency and heat loss. The optical efficiency is determined with the Monte Carlo ray-tracing method. Radiative heat exchange inside the receiver is calculated with the net radiation method. The 2D steady-state energy equation, which couples conductive, convective, and radiative heat transfer, is solved for the solid domains of the receiver cross-section, using finite-volume techniques. Simulations for Sevilla/Spain at the summer solstice at solar noon (direct normal solar irradiance: 847 W m −2 , solar incidence angle: 13.9°) yield collector efficiencies between 60% and 65% at a heat transfer fluid temperature of 125 °C and between 37% and 42% at 500 °C, depending on the receiver configuration. The optical losses amount to more than 30% of the incident solar radiation and constitute the largest source of energy loss. For a 200 m long collector module operated between 300 and 500 °C, the isentropic pumping power required to pump the HTF through the receiver is between 11 and 17 kW

  2. Synthetic aperture ultrasound Fourier beamformation using virtual sources

    DEFF Research Database (Denmark)

    Moghimirad, Elahe; Villagómez Hoyos, Carlos Armando; Mahloojifar, Ali

    2016-01-01

    An efficient Fourier beamformation algorithm is presented for multistatic synthetic aperture ultrasound imaging using virtual sources (FBV). The concept is based on the frequency domain wavenumber algorithm from radar and sonar and is extended to a multi-element transmit/receive configuration using...

  3. A comparative Thermal Analysis of conventional parabolic receiver tube and Cavity model tube in a Solar Parabolic Concentrator

    Science.gov (United States)

    Arumugam, S.; Ramakrishna, P.; Sangavi, S.

    2018-02-01

    Improvements in heating technology with solar energy is gaining focus, especially solar parabolic collectors. Solar heating in conventional parabolic collectors is done with the help of radiation concentration on receiver tubes. Conventional receiver tubes are open to atmosphere and loose heat by ambient air currents. In order to reduce the convection losses and also to improve the aperture area, we designed a tube with cavity. This study is a comparative performance behaviour of conventional tube and cavity model tube. The performance formulae were derived for the cavity model based on conventional model. Reduction in overall heat loss coefficient was observed for cavity model, though collector heat removal factor and collector efficiency were nearly same for both models. Improvement in efficiency was also observed in the cavity model’s performance. The approach towards the design of a cavity model tube as the receiver tube in solar parabolic collectors gave improved results and proved as a good consideration.

  4. Indoor exposure to particles emitted by biomass-burning heating systems and evaluation of dose and lung cancer risk received by population.

    Science.gov (United States)

    Stabile, L; Buonanno, G; Avino, P; Frattolillo, A; Guerriero, E

    2018-04-01

    Homes represent a critical microenvironment in terms of air quality due to the proximity to main particle sources and the lack of proper ventilation systems. Biomass-fed heating systems are still extensively used worldwide, then likely emitting a significant amount of particles in indoor environments. Nonetheless, research on biomass emissions are limited to their effects on outdoor air quality then not properly investigating the emission in indoor environments. To this purpose, the present paper aims to evaluate the exposure to different airborne particle metrics (including both sub- and super-micron particles) and attached carcinogenic compounds in dwellings where three different heating systems were used: open fireplaces, closed fireplaces and pellet stoves. Measurements in terms of particle number, lung-deposited surface area, and PM fraction concentrations were measured during the biomass combustion activities, moreover, PM 10 samples were collected and chemically analyzed to obtain mass fractions of carcinogenic compounds attached onto particles. Airborne particle doses received by people exposed in such environments were evaluated as well as their excess lung cancer risk. Most probable surface area extra-doses received by people exposed to open fireplaces on hourly basis (56 mm 2  h -1 ) resulted one order of magnitude larger than those experienced for exposure to closed fireplaces and pellet stoves. Lifetime extra risk of Italian people exposed to the heating systems under investigation were larger than the acceptable lifetime risk (10 -5 ): in particular, the risk due to the open fireplace (8.8 × 10 -3 ) was non-negligible when compared to the overall lung cancer risk of typical Italian population. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Three dimensional fracture aperture and porosity distribution using computerized tomography

    Science.gov (United States)

    Wenning, Q.; Madonna, C.; Joss, L.; Pini, R.

    2017-12-01

    A wide range of geologic processes and geo-engineered applications are governed by coupled hydromechanical properties in the subsurface. In geothermal energy reservoirs, quantifying the rate of heat transfer is directly linked with the transport properties of fractures, underscoring the importance of fracture aperture characterization for achieving optimal heat production. In this context, coupled core-flooding experiments with non-invasive imaging techniques (e.g., X-Ray Computed Tomography - X-Ray CT) provide a powerful method to make observations of these properties under representative geologic conditions. This study focuses on quantifying fracture aperture distribution in a fractured westerly granite core by using a recently developed calibration-free method [Huo et al., 2016]. Porosity is also estimated with the X-ray saturation technique using helium and krypton gases as saturating fluids, chosen for their high transmissibility and high CT contrast [e.g., Vega et al., 2014]. The westerly granite sample (diameter: 5 cm, length: 10 cm) with a single through-going rough-walled fracture was mounted in a high-pressure aluminum core-holder and placed inside a medical CT scanner for imaging. During scanning the pore fluid pressure was undrained and constant, and the confining pressure was regulated to have the desired effective pressure (0.5, 5, 7 and 10 MPa) under loading and unloading conditions. 3D reconstructions of the sample have been prepared in terms of fracture aperture and porosity at a maximum resolution of (0.24×0.24×1) mm3. Fracture aperture maps obtained independently using helium and krypton for the whole core depict a similar heterogeneous aperture field, which is also dependent on confining pressure. Estimates of the average hydraulic aperture from CT scans are in quantitative agreement with results from fluid flow experiments. However, the latter lack of the level of observational detail achieved through imaging, which further evidence the

  6. Metrology measurements for large-aperture VPH gratings

    Science.gov (United States)

    Zheng, Jessica R.; Gers, Luke; Heijmans, Jeroen

    2013-09-01

    The High Efficiency and Resolution Multi Element Spectrograph (HERMES) for the Australian Astronomical Observatory (AAO) uses four large aperture, high angle of incidence volume phase holographic gratings (VPHG) for high resolution `Galactic archaeology' spectroscopy. The large clear aperture, the high diffraction efficiency, the line frequency homogeneity, and mosaic alignment made manufacturing and testing challenging. We developed new metrology systems at the AAO to verify the performance of these VPH gratings. The measured diffraction efficiencies and line frequency of the VPH gratings received so far meet the vendor's provided data. The wavefront quality for the Blue VPH grating is good but the Green and Red VPH gratings need to be post polishing.

  7. Imaging with Synthetic Aperture Radar

    CERN Document Server

    Massonnet, Didier

    2008-01-01

    Describing a field that has been transformed by the recent availability of data from a new generation of space and airborne systems, the authors offer a synthetic geometrical approach to the description of synthetic aperture radar, one that addresses physicists, radar specialists, as well as experts in image processing.  

  8. Solar thermal energy receiver

    Science.gov (United States)

    Baker, Karl W. (Inventor); Dustin, Miles O. (Inventor)

    1992-01-01

    A plurality of heat pipes in a shell receive concentrated solar energy and transfer the energy to a heat activated system. To provide for even distribution of the energy despite uneven impingement of solar energy on the heat pipes, absence of solar energy at times, or failure of one or more of the heat pipes, energy storage means are disposed on the heat pipes which extend through a heat pipe thermal coupling means into the heat activated device. To enhance energy transfer to the heat activated device, the heat pipe coupling cavity means may be provided with extensions into the device. For use with a Stirling engine having passages for working gas, heat transfer members may be positioned to contact the gas and the heat pipes. The shell may be divided into sections by transverse walls. To prevent cavity working fluid from collecting in the extensions, a porous body is positioned in the cavity.

  9. Aperture measurements with AC dipole

    CERN Document Server

    Fuster Martinez, Nuria; Dilly, Joschua Werner; Nevay, Laurence James; Bruce, Roderik; Tomas Garcia, Rogelio; Redaelli, Stefano; Persson, Tobias Hakan Bjorn; CERN. Geneva. ATS Department

    2018-01-01

    During the MDs performed on the 15th of September and 29th of November 2017, we measured the LHC global aperture at injection with a new AC dipole method as well as using the Transverse Damper (ADT) blow-up method used during the 2017 LHC commissioning for benchmarking. In this note, the MD procedure is presented as well as the analysis of the comparison between the two methods. The possible benefits of the new method are discussed.

  10. Optimization of Spatiotemporal Apertures in Channel Sounding

    DEFF Research Database (Denmark)

    Pedersen, Troels; Pedersen, Claus; Yin, Xuefeng

    2008-01-01

    a spatiotemporal model which can describe parallel as well as switched sounding systems. The proposed model is applicable for arbitrary layouts of the spatial arrays. To simplify the derivations we investigate the special case of linear spatial arrays. However, the results obtained for linear arrays can......In this paper we investigate the impact of the spatio-temporal aperture of a channel sounding system equipped with antenna arrays at the transmitter and receiver on the accuracy of joint estimation of Doppler frequency and bi-direction. The contribution of this work is three-fold. Firstly, we state...... be generalized to arbitrary arrays. Secondly, we give the necessary and sufficient conditions for a spatio-temporal array to yield the minimum Cramér-Rao lower bound in the single-path case and Bayesian Cramér-Rao Lower Bound in the multipath case. The obtained conditions amount to an orthogonality condition...

  11. Tissue Harmonic Synthetic Aperture Ultrasound Imaging

    DEFF Research Database (Denmark)

    Hemmsen, Martin Christian; Rasmussen, Joachim; Jensen, Jørgen Arendt

    2014-01-01

    Synthetic aperture sequential beamforming (SASB) and tissue har- monic imaging (THI) are combined to improve the image quality of medical ultrasound imaging. The technique is evaluated in a compar- ative study against dynamic receive focusing (DRF). The objective is to investigate if SASB combined...... with THI improves the image qual- ity compared to DRF-THI. The major benet of SASB is a reduced bandwidth between the probe and processing unit. A BK Medical 2202 Ultraview ultrasound scanner was used to acquire beamformed RF data for oine evaluation. The acquisition was made interleaved between methods......, and data were recorded with and without pulse inversion for tissue harmonic imaging. Data were acquired using a Sound Technol- ogy 192 element convex array transducer from both a wire phantom and a tissue mimicking phantom to investigate spatial resolution and pen- etration. In-vivo scans were also...

  12. Tracking heat flux sensors for concentrating solar applications

    Science.gov (United States)

    Andraka, Charles E; Diver, Jr., Richard B

    2013-06-11

    Innovative tracking heat flux sensors located at or near the solar collector's focus for centering the concentrated image on a receiver assembly. With flux sensors mounted near a receiver's aperture, the flux gradient near the focus of a dish or trough collector can be used to precisely position the focused solar flux on the receiver. The heat flux sensors comprise two closely-coupled thermocouple junctions with opposing electrical polarity that are separated by a thermal resistor. This arrangement creates an electrical signal proportional to heat flux intensity, and largely independent of temperature. The sensors are thermally grounded to allow a temperature difference to develop across the thermal resistor, and are cooled by a heat sink to maintain an acceptable operating temperature.

  13. The efficiency of an open-cavity tubular solar receiver for a small-scale solar thermal Brayton cycle

    International Nuclear Information System (INIS)

    Le Roux, W.G.; Bello-Ochende, T.; Meyer, J.P.

    2014-01-01

    Highlights: • Results show efficiencies of a low-cost stainless steel tubular cavity receiver. • Optimum ratio of 0.0035 is found for receiver aperture area to concentrator area. • Smaller receiver tube and higher mass flow rate increase receiver efficiency. • Larger tube and smaller mass flow rate increase second law efficiency. • Large-tube receiver performs better in the small-scale solar thermal Brayton cycle. - Abstract: The first law and second law efficiencies are determined for a stainless steel closed-tube open rectangular cavity solar receiver. It is to be used in a small-scale solar thermal Brayton cycle using a micro-turbine with low compressor pressure ratios. There are many different variables at play to model the air temperature increase of the air running through such a receiver. These variables include concentrator shape, concentrator diameter, concentrator rim angle, concentrator reflectivity, concentrator optical error, solar tracking error, receiver aperture area, receiver material, effect of wind, receiver tube diameter, inlet temperature and mass flow rate through the receiver. All these variables are considered in this paper. The Brayton cycle requires very high receiver surface temperatures in order to be successful. These high temperatures, however, have many disadvantages in terms of heat loss from the receiver, especially radiation heat loss. With the help of ray-tracing software, SolTrace, and receiver modelling techniques, an optimum receiver-to-concentrator-area ratio of A′ ≈ 0.0035 was found for a concentrator with 45° rim angle, 10 mrad optical error and 1° tracking error. A method to determine the temperature profile and net heat transfer rate along the length of the receiver tube is presented. Receiver efficiencies are shown in terms of mass flow rate, receiver tube diameter, pressure drop, maximum receiver surface temperature and inlet temperature of the working fluid. For a 4.8 m diameter parabolic dish, the

  14. High Efficiency, Low Cost Parabolic Dish System for Cogeneration of Electricity and Heat

    Science.gov (United States)

    Chayet, Haim; Lozovsky, Ilan; Kost, Ori; Loeckenhoff, Ruediger; Rasch, Klaus-Dieter

    2010-10-01

    Highly efficient combined heat and power generating system based on CPV technology using unique dish design consisting of multiple simple flat mirrors mounted on a plastic parabolic surface. The dish of total aperture area of 11 m2 focuses 10.3 kWp onto a heat and electricity generating receiver. The receiver comprises a water cooled, dense triple junction cell array of 176 cm2 aperture area. A unique arrangement of the cells compensates for the non-uniformity of the reflected flux. Depending on the flow rate, the temperature of the hot water can be adjusted to suit from temperatures for domestic use, to temperatures suited for process heat. The output of 2.3 kWp electrical and 5.5 kWp thermal power from one dish system represent 20 to 21% electrical and 50% thermal conversion efficiency adding to 70% overall system efficiency.

  15. Synthetic Aperture Vector Flow Imaging

    DEFF Research Database (Denmark)

    Villagómez Hoyos, Carlos Armando

    The main objective of this project was to continue the development of a synthetic aperture vector flow estimator. This type of estimator is capable of overcoming two of the major limitations in conventional ultrasound systems: 1) the inability to scan large region of interest with high temporal......, this thesis showed that novel information can be obtained with vector velocity methods providing quantitative estimates of blood flow and insight into the complexity of the hemodynamics dynamics. This could give the clinician a new tool in assessment and treatment of a broad range of diseases....

  16. Slit aperture technique for mammography

    International Nuclear Information System (INIS)

    Friedrich, M.

    1984-01-01

    Following a discussion of various principles used in the elimination of scatter, the prototype of a simple slit aperture mammography apparatus is described (modified Mammomat, Siemens). The main advantage of this technique compared with grid mammography is a halving of the radiation dose for identical image quality, using an identical film system. The technical requirements (heavy duty tube, new generator) are, however, considerable. If the film-screen systems currently in use are to remain the common systems for the future, then the development of a multi-lamellar slit diaphragm technique carries much promise for mammography. (orig.) [de

  17. Polarizing aperture stereoscopic cinema camera

    Science.gov (United States)

    Lipton, Lenny

    2012-07-01

    The art of stereoscopic cinematography has been held back because of the lack of a convenient way to reduce the stereo camera lenses' interaxial to less than the distance between the eyes. This article describes a unified stereoscopic camera and lens design that allows for varying the interaxial separation to small values using a unique electro-optical polarizing aperture design for imaging left and right perspective views onto a large single digital sensor, the size of the standard 35 mm frame, with the means to select left and right image information. Even with the added stereoscopic capability, the appearance of existing camera bodies will be unaltered.

  18. Low aperture magnetic elements measurements

    International Nuclear Information System (INIS)

    Aleksandrov, V.A.; Mikhajlichenko, A.A.; Parkhomchuk, V.V.; Seryj, A.A.; Shil'tsev, V.D.

    1991-01-01

    Two new methods of magnetic field measurements in low aperture elements are discussed. The first method uses thin magnetoresistive bismuth wire and the second-strained wire with AC. Principles of measuring used in the last technique are different from well known SLAC method of vibrating wire. Results of testing 0.38 T/mm quadrupole and VLEPP final focus test 3 T/mm lens are presented. Brief comparing of the lens axis determination precision of these methods is also discussed. 4 refs.; 8 figs

  19. 5cm aperture dipole studies

    International Nuclear Information System (INIS)

    McInturff, A.D.; Bossert, R.; Carson, J.; Fisk, H.E.; Hanft, R.; Kuchnir, M.; Lundy, R.; Mantech, P.; Strait, J.

    1986-01-01

    The results obtained during the evolution of the design, construction, and testing program of the design ''B'' dipole are presented here. Design ''B'' is one of the original three competing designs for the Superconducting Super Collider ''SSC'' arc dipoles. The final design parameters were as follows: air cored (less than a few percent of the magnetic field derived from any iron present), aluminum collared, two layered winding, 5.5T maximum operating field, and a 5 cm cold aperture. There have been fourteen 64 cm long 5 cm aperture model dipoles cold tested (at 4.3K and less) in this program so far. There was a half length full size (6m) mechanical analog (M-10) built and tested to check the cryostat's mechanical design under ramping and quench conditions. Several deviations from the ''Tevatron'' dipole fabrication technique were incorporated, for example the use of aluminum collars instead of stainless steel. The winding technique variations explored were ''dry welding,'' a technique with the cable covered with Kapton insulation only and ''wet winding'' where the Kapton was covered with a light coat of ''B'' stage epoxy. Test data include quench currents, field quality (Fourier multipole co-efficients), coil magnetization, conductor current performance, and coil loading. Quench current, loss per cycle, and harmonics were measured as a function of the magnitude and rate of change of the magnetic field, and helium bath temperature

  20. Hand aperture patterns in prehension.

    Science.gov (United States)

    Bongers, Raoul M; Zaal, Frank T J M; Jeannerod, Marc

    2012-06-01

    Although variations in the standard prehensile pattern can be found in the literature, these alternative patterns have never been studied systematically. This was the goal of the current paper. Ten participants picked up objects with a pincer grip. Objects (3, 5, or 7cm in diameter) were placed at 30, 60, 90, or 120cm from the hands' starting location. Usually the hand was opened gradually to a maximum immediately followed by hand closing, called the standard hand opening pattern. In the alternative opening patterns the hand opening was bumpy, or the hand aperture stayed at a plateau before closing started. Two participants in particular delayed the start of grasping with respect to start of reaching, with the delay time increasing with object distance. For larger object distances and smaller object sizes, the bumpy and plateau hand opening patterns were used more often. We tentatively concluded that the alternative hand opening patterns extended the hand opening phase, to arrive at the appropriate hand aperture at the appropriate time to close the hand for grasping the object. Variations in hand opening patterns deserve attention because this might lead to new insights into the coordination of reaching and grasping. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Synthetic tracked aperture ultrasound imaging: design, simulation, and experimental evaluation.

    Science.gov (United States)

    Zhang, Haichong K; Cheng, Alexis; Bottenus, Nick; Guo, Xiaoyu; Trahey, Gregg E; Boctor, Emad M

    2016-04-01

    Ultrasonography is a widely used imaging modality to visualize anatomical structures due to its low cost and ease of use; however, it is challenging to acquire acceptable image quality in deep tissue. Synthetic aperture (SA) is a technique used to increase image resolution by synthesizing information from multiple subapertures, but the resolution improvement is limited by the physical size of the array transducer. With a large F-number, it is difficult to achieve high resolution in deep regions without extending the effective aperture size. We propose a method to extend the available aperture size for SA-called synthetic tracked aperture ultrasound (STRATUS) imaging-by sweeping an ultrasound transducer while tracking its orientation and location. Tracking information of the ultrasound probe is used to synthesize the signals received at different positions. Considering the practical implementation, we estimated the effect of tracking and ultrasound calibration error to the quality of the final beamformed image through simulation. In addition, to experimentally validate this approach, a 6 degree-of-freedom robot arm was used as a mechanical tracker to hold an ultrasound transducer and to apply in-plane lateral translational motion. Results indicate that STRATUS imaging with robotic tracking has the potential to improve ultrasound image quality.

  2. Books Received

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Books Received. Articles in Resonance – Journal of Science Education. Volume 1 Issue 1 January 1996 pp 118-118 Books Received. Books Received · More Details Fulltext PDF. Volume 1 Issue 2 February 1996 pp 120-120 Books Received. Books Received.

  3. Fast decoding algorithms for geometric coded apertures

    International Nuclear Information System (INIS)

    Byard, Kevin

    2015-01-01

    Fast decoding algorithms are described for the class of coded aperture designs known as geometric coded apertures which were introduced by Gourlay and Stephen. When compared to the direct decoding method, the algorithms significantly reduce the number of calculations required when performing the decoding for these apertures and hence speed up the decoding process. Experimental tests confirm the efficacy of these fast algorithms, demonstrating a speed up of approximately two to three orders of magnitude over direct decoding.

  4. Ion mobility spectrometer with virtual aperture grid

    Science.gov (United States)

    Pfeifer, Kent B.; Rumpf, Arthur N.

    2010-11-23

    An ion mobility spectrometer does not require a physical aperture grid to prevent premature ion detector response. The last electrodes adjacent to the ion collector (typically the last four or five) have an electrode pitch that is less than the width of the ion swarm and each of the adjacent electrodes is connected to a source of free charge, thereby providing a virtual aperture grid at the end of the drift region that shields the ion collector from the mirror current of the approaching ion swarm. The virtual aperture grid is less complex in assembly and function and is less sensitive to vibrations than the physical aperture grid.

  5. An analysis of beamed wireless power transfer in the Fresnel zone using a dynamic, metasurface aperture

    Science.gov (United States)

    Smith, David R.; Gowda, Vinay R.; Yurduseven, Okan; Larouche, Stéphane; Lipworth, Guy; Urzhumov, Yaroslav; Reynolds, Matthew S.

    2017-01-01

    Wireless power transfer (WPT) has been an active topic of research, with a number of WPT schemes implemented in the near-field (coupling) and far-field (radiation) regimes. Here, we consider a beamed WPT scheme based on a dynamically reconfigurable source aperture transferring power to receiving devices within the Fresnel region. In this context, the dynamic aperture resembles a reconfigurable lens capable of focusing power to a well-defined spot, whose dimension can be related to a point spread function. The necessary amplitude and phase distribution of the field imposed over the aperture can be determined in a holographic sense, by interfering a hypothetical point source located at the receiver location with a plane wave at the aperture location. While conventional technologies, such as phased arrays, can achieve the required control over phase and amplitude, they typically do so at a high cost; alternatively, metasurface apertures can achieve dynamic focusing with potentially lower cost. We present an initial tradeoff analysis of the Fresnel region WPT concept assuming a metasurface aperture, relating the key parameters such as spot size, aperture size, wavelength, and focal distance, as well as reviewing system considerations such as the availability of sources and power transfer efficiency. We find that approximate design formulas derived from the Gaussian optics approximation provide useful estimates of system performance, including transfer efficiency and coverage volume. The accuracy of these formulas is confirmed through numerical studies.

  6. Particle-in-Cell Modeling of Magnetized Argon Plasma Flow Through Small Mechanical Apertures

    Energy Technology Data Exchange (ETDEWEB)

    Adam B. Sefkow and Samuel A. Cohen

    2009-04-09

    Motivated by observations of supersonic argon-ion flow generated by linear helicon-heated plasma devices, a three-dimensional particle-in-cell (PIC) code is used to study whether stationary electrostatic layers form near mechanical apertures intersecting the flow of magnetized plasma. By self-consistently evaluating the temporal evolution of the plasma in the vicinity of the aperture, the PIC simulations characterize the roles of the imposed aperture and applied magnetic field on ion acceleration. The PIC model includes ionization of a background neutral-argon population by thermal and superthermal electrons, the latter found upstream of the aperture. Near the aperture, a transition from a collisional to a collisionless regime occurs. Perturbations of density and potential, with mm wavelengths and consistent with ion acoustic waves, propagate axially. An ion acceleration region of length ~ 200-300 λD,e forms at the location of the aperture and is found to be an electrostatic double layer, with axially-separated regions of net positive and negative charge. Reducing the aperture diameter or increasing its length increases the double layer strength.

  7. Particle-in-Cell Modeling of Magnetized Argon Plasma Flow Through Small Mechanical Apertures

    International Nuclear Information System (INIS)

    Sefkow, Adam B.; Cohen, Samuel A.

    2009-01-01

    Motivated by observations of supersonic argon-ion flow generated by linear helicon-heated plasma devices, a three-dimensional particle-in-cell (PIC) code is used to study whether stationary electrostatic layers form near mechanical apertures intersecting the flow of magnetized plasma. By self-consistently evaluating the temporal evolution of the plasma in the vicinity of the aperture, the PIC simulations characterize the roles of the imposed aperture and applied magnetic field on ion acceleration. The PIC model includes ionization of a background neutral-argon population by thermal and superthermal electrons, the latter found upstream of the aperture. Near the aperture, a transition from a collisional to a collisionless regime occurs. Perturbations of density and potential, with mm wavelengths and consistent with ion acoustic waves, propagate axially. An ion acceleration region of length ∼ 200-300 λ D,e forms at the location of the aperture and is found to be an electrostatic double layer, with axially-separated regions of net positive and negative charge. Reducing the aperture diameter or increasing its length increases the double layer strength

  8. Synthetic aperture radar: principles and applications

    International Nuclear Information System (INIS)

    Khan, N.A.; Yahya, K.M.

    2003-01-01

    In this paper an introduction to synthetic aperture radar is presented. Synthetic aperture radar is a relatively new remote sensing platform and the technology has matured a lot in the last two decades. This paper introduces the concepts behind SAR principles as well as the major areas where this new technology has shown additional information. (author)

  9. Frequency division transmission imaging and synthetic aperture reconstruction

    DEFF Research Database (Denmark)

    Gran, Fredrik; Jensen, Jørgen Arendt

    2006-01-01

    In synthetic transmit aperture imaging only a few transducer elements are used in every transmission, which limits the signal-to-noise ratio (SNR). The penetration depth can be increased by using all transmitters in every transmission. In this paper, a method for exciting all transmitters in every...... corresponding to the excitation waveforms, the different transmitters can be decoded at the receiver. The matched filter of a specific waveform will allow information only from this waveform to pass through, thereby separating it from the other waveforms. This means that all transmitters can be used in every...... transmission, and the information from the different transmitters can be separated instantaneously. Compared to traditional synthetic transmit aperture (STA) imaging, in which the different transmitters are excited sequentially, more energy is transmitted in every transmission, and a better signal...

  10. Realization of a video-rate distributed aperture millimeter-wave imaging system using optical upconversion

    Science.gov (United States)

    Schuetz, Christopher; Martin, Richard; Dillon, Thomas; Yao, Peng; Mackrides, Daniel; Harrity, Charles; Zablocki, Alicia; Shreve, Kevin; Bonnett, James; Curt, Petersen; Prather, Dennis

    2013-05-01

    Passive imaging using millimeter waves (mmWs) has many advantages and applications in the defense and security markets. All terrestrial bodies emit mmW radiation and these wavelengths are able to penetrate smoke, fog/clouds/marine layers, and even clothing. One primary obstacle to imaging in this spectrum is that longer wavelengths require larger apertures to achieve the resolutions desired for many applications. Accordingly, lens-based focal plane systems and scanning systems tend to require large aperture optics, which increase the achievable size and weight of such systems to beyond what can be supported by many applications. To overcome this limitation, a distributed aperture detection scheme is used in which the effective aperture size can be increased without the associated volumetric increase in imager size. This distributed aperture system is realized through conversion of the received mmW energy into sidebands on an optical carrier. This conversion serves, in essence, to scale the mmW sparse aperture array signals onto a complementary optical array. The side bands are subsequently stripped from the optical carrier and recombined to provide a real time snapshot of the mmW signal. Using this technique, we have constructed a real-time, video-rate imager operating at 75 GHz. A distributed aperture consisting of 220 upconversion channels is used to realize 2.5k pixels with passive sensitivity. Details of the construction and operation of this imager as well as field testing results will be presented herein.

  11. Equipment and methods for synthetic aperture anatomic and flow imaging

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Nikolov, Svetoslav; Misaridis, Thanassis

    2002-01-01

    Conventional ultrasound imaging is done by sequentially probing in each image direction. The frame rate is, thus, limited by the speed of sound and the number of lines necessary to form an image. This is especially limiting in flow imaging, since multiple lines are used for flow estimation. Another...... problem is that each receiving transducer element must be connected to a receiver, which makes the expansion of the number of receive channels expensive. Synthetic aperture (SA) imaging is a radical change from the sequential image formation. Here ultrasound is emitted in all directions and the image...... is formed in all directions simultaneously over a number of acquisitions. SA images can therefore be perfectly focused in both transmit and receive for all depths, thus significantly improving image quality. A further advantage is that very fast imaging can be done, since only a few emissions are needed...

  12. Aperture meter for the Large Hadron Collider

    International Nuclear Information System (INIS)

    Mueller, G.J.; Fuchsberger, K.; Redaelli, S.

    2012-01-01

    The control of the high intensity beams of the CERN Large Hadron Collider (LHC) is particular challenging and requires a good modeling of the machine and monitoring of various machine parameters. During operation it is crucial to ensure a minimal distance between the beam edge and the aperture of sensitive equipment, e.g. the superconducting magnets, which in all cases must be in the shadow of the collimator's that protect the machine. Possible dangerous situations must be detected as soon as possible. In order to provide the operator with information about the current machine bottlenecks an aperture meter application was developed based on the LHC online modeling tool-chain. The calculation of available free aperture takes into account the best available optics and aperture model as well as the relevant beam measurements. This paper describes the design and integration of this application into the control environment and presents results of the usage in daily operation and from validation measurements. (authors)

  13. Solar energy receiver

    Science.gov (United States)

    Schwartz, Jacob

    1978-01-01

    An improved long-life design for solar energy receivers provides for greatly reduced thermally induced stress and permits the utilization of less expensive heat exchanger materials while maintaining receiver efficiencies in excess of 85% without undue expenditure of energy to circulate the working fluid. In one embodiment, the flow index for the receiver is first set as close as practical to a value such that the Graetz number yields the optimal heat transfer coefficient per unit of pumping energy, in this case, 6. The convective index for the receiver is then set as closely as practical to two times the flow index so as to obtain optimal efficiency per unit mass of material.

  14. Beam aperture modifier design with acoustic metasurfaces

    Science.gov (United States)

    Tang, Weipeng; Ren, Chunyu

    2017-10-01

    In this paper, we present a design concept of acoustic beam aperture modifier using two metasurface-based planar lenses. By appropriately designing the phase gradient profile along the metasurface, we obtain a class of acoustic convex lenses and concave lenses, which can focus the incoming plane waves and collimate the converging waves, respectively. On the basis of the high converging and diverging capability of these lenses, two kinds of lens combination scheme, including the convex-concave type and convex-convex type, are proposed to tune up the incoming beam aperture as needed. To be specific, the aperture of the acoustic beam can be shrunk or expanded through adjusting the phase gradient of the pair of lenses and the spacing between them. These lenses and the corresponding aperture modifiers are constructed by the stacking ultrathin labyrinthine structures, which are obtained by the geometry optimization procedure and exhibit high transmission coefficient and a full range of phase shift. The simulation results demonstrate the effectiveness of our proposed beam aperture modifiers. Due to the flexibility in aperture controlling and the simplicity in fabrication, the proposed modifiers have promising potential in applications, such as acoustic imaging, nondestructive evaluation, and communication.

  15. Diversity receiver

    NARCIS (Netherlands)

    2005-01-01

    The invention is directed to the reception of high rate radio signals (for example DVB-T signals) while the receiver is moving at a high speed (for example in or with a car). Two or more antennas (12, 16) are closely spaced and arranged behind each other in the direction of motion (v) for receiving

  16. Calibration of the TUD Ku-band Synthetic Aperture Radiometer

    DEFF Research Database (Denmark)

    Laursen, Brian; Skou, Niels

    1995-01-01

    The TUD Synthetic Aperture Radiometer is a 2-channel demonstration model that can simulate a thinned aperture radiometer having an unfilled aperture consisting of several small antenna elements. Aperture synthesis obtained by interferometric measurements using the antenna elements in pairs, follo...

  17. Directional synthetic aperture flow imaging

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Nikolov, Svetoslav

    2004-01-01

    emissions using a number of defocused elements and a linear frequency modulated pulse (chirp) to improve the signal-to-noise ratio. The received signals are dynamically focused along the flow direction and these signals are used in a cross-correlation estimator for finding the velocity magnitude. The flow...... elements in each emission. A 20 us chirp was used during emission. The RF data were subsequently beamformed off-line and stationary echo canceling was performed. The 60 degrees flow with a peak velocity of 0.15 m/s was determined using 16 groups of 8 emissions and the relative standard deviation was 0...

  18. Class of near-perfect coded apertures

    International Nuclear Information System (INIS)

    Cannon, T.M.; Fenimore, E.E.

    1978-01-01

    The encoding/decoding method produces artifacts, which even in the absence of quantum noise, restrict the quality of the reconstructed image. This is true of most correlation-type methods. If the decoding procedure is of the deconvolution variety, small terms in the transfer function of the aperture can lead to excessive noise in the reconstructed image. The authors propose to circumvent both of these problems by use of a uniformly redundant array (URA) as the coded aperture in conjunction with a special correlation decoding method. The correlation of the decoding array with the aperture results in a delta function with deterministically zero sidelobes. It is shown that the reconstructed image in the URA system contains virtually uniform noise regardless of the structure in the original source. Therefore, the improvement over a single pinhole camera will be relatively larger for the brighter points in the source than for the low intensity points. 12 refs

  19. Limited aperture effects on ultrasonic image reconstruction

    International Nuclear Information System (INIS)

    Kogan, V.G.; Rose, J.H.

    1985-01-01

    In the inverse Born approximation the shape of a weak scatterer can be determined from a knowledge of the backscattered ultrasonic amplitude for all directions of incidence and all frequencies. Two questions are considered. First, what information on the scatterer shape is preserved and what is degraded if the scattering data are available only within a limited set of incident directions (limited aperture). This problem is addressed for a spherical weakly scattering uniform flaw. It is shown that the problem of a general uniform ellipsoidal flaw can be reduced to the spherical case by a scale transformation; however, the apertures in these two cases must be related by the same transformation. Second, limited aperture and finite bandwidth Born inversions were performed for strongly scattering flaws (voids and cracks) using numerically generated scattering amplitudes. These inversions were then compared with the weak scattering analytic results, which show many common features

  20. Synthetic aperture tissue and flow ultrasound imaging

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav

    imaging applied to medical ultrasound. It is divided into two major parts: tissue and blood flow imaging. Tissue imaging using synthetic aperture algorithms has been investigated for about two decades, but has not been implemented in medical scanners yet. Among the other reasons, the conventional scanning...... and beamformation methods are adequate for the imaging modalities in clinical use - the B-mode imaging of tissue structures, and the color mapping of blood flow. The acquisition time, however, is too long, and these methods fail to perform real-time three-dimensional scans. The synthetic transmit aperture......, on the other hand, can create a Bmode image with as little as 2 emissions, thus significantly speeding-up the scan procedure. The first part of the dissertation describes the synthetic aperture tissue imaging. It starts with an overview of the efforts previously made by other research groups. A classification...

  1. Study on characteristics of the aperture-averaging factor of atmospheric scintillation in terrestrial optical wireless communication

    Science.gov (United States)

    Shen, Hong; Liu, Wen-xing; Zhou, Xue-yun; Zhou, Li-ling; Yu, Long-Kun

    2018-02-01

    In order to thoroughly understand the characteristics of the aperture-averaging effect of atmospheric scintillation in terrestrial optical wireless communication and provide references for engineering design and performance evaluation of the optics system employed in the atmosphere, we have theoretically deduced the generally analytic expression of the aperture-averaging factor of atmospheric scintillation, and numerically investigated characteristics of the apertureaveraging factor under different propagation conditions. The limitations of the current commonly used approximate calculation formula of aperture-averaging factor have been discussed, and the results showed that the current calculation formula is not applicable for the small receiving aperture under non-uniform turbulence link. Numerical calculation has showed that aperture-averaging factor of atmospheric scintillation presented an exponential decline model for the small receiving aperture under non-uniform turbulent link, and the general expression of the model was given. This model has certain guiding significance for evaluating the aperture-averaging effect in the terrestrial optical wireless communication.

  2. Review of the blast pressure, heat, and radiation dose of an atomic bomb received by survivors with ophthalmological disturbances. [In Japanese

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, S

    1962-12-01

    Radiation damage to the eyes of subjects exposed to the atomic bomb in Hiroshima is surveyed. Acute radiation sicknes was found even in those who were exposed to a dose of only 70 to 80 r. Severe burns were observed among those who had been outdoors as far as 2100 m from the hypocenter. Cataract was found in those who received large irradiation doses (2685 to 3040 r) and the cataracts progress very slowly.

  3. Fast decoding algorithms for coded aperture systems

    International Nuclear Information System (INIS)

    Byard, Kevin

    2014-01-01

    Fast decoding algorithms are described for a number of established coded aperture systems. The fast decoding algorithms for all these systems offer significant reductions in the number of calculations required when reconstructing images formed by a coded aperture system and hence require less computation time to produce the images. The algorithms may therefore be of use in applications that require fast image reconstruction, such as near real-time nuclear medicine and location of hazardous radioactive spillage. Experimental tests confirm the efficacy of the fast decoding techniques

  4. Aperture and optics–measurements and conclusions

    CERN Document Server

    Redaelli, S; Bruce, R; Buffat, X; Giovannozzi, M; Lamont, M; Miyamoto, R; Müller, G; Tomás, R; Vanbavinckhove, G; Wenninger, J

    2012-01-01

    In 2011, the LHC has delivered collisions with different optics configurations in the four interaction points, at an operating energy of 3.5 TeV. The performance has been pushed during the year until a final configuration with 3 IPs squeezed to 1 m was achieved. Correspondingly, the machine aperture has been measured in the different configurations at injection and at top energy, to ensure a safe operation in all conditions of $\\beta^*$ and crossing angle configuration. In this paper, the 2011 commissioning experience of LHC optics is reviewed and the results of aperture measurements are presented. Measurement requirements for 2012 and possible improvements are also discussed.

  5. Synthetic aperture radar capabilities in development

    Energy Technology Data Exchange (ETDEWEB)

    Miller, M. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    The Imaging and Detection Program (IDP) within the Laser Program is currently developing an X-band Synthetic Aperture Radar (SAR) to support the Joint US/UK Radar Ocean Imaging Program. The radar system will be mounted in the program`s Airborne Experimental Test-Bed (AETB), where the initial mission is to image ocean surfaces and better understand the physics of low grazing angle backscatter. The Synthetic Aperture Radar presentation will discuss its overall functionality and a brief discussion on the AETB`s capabilities. Vital subsystems including radar, computer, navigation, antenna stabilization, and SAR focusing algorithms will be examined in more detail.

  6. Multi-antenna synthetic aperture radar

    CERN Document Server

    Wang, Wen-Qin

    2013-01-01

    Synthetic aperture radar (SAR) is a well-known remote sensing technique, but conventional single-antenna SAR is inherently limited by the minimum antenna area constraint. Although there are still technical issues to overcome, multi-antenna SAR offers many benefits, from improved system gain to increased degrees-of-freedom and system flexibility. Multi-Antenna Synthetic Aperture Radar explores the potential and challenges of using multi-antenna SAR in microwave remote sensing applications. These applications include high-resolution imaging, wide-swath remote sensing, ground moving target indica

  7. Electromagnetic field scattering by a triangular aperture.

    Science.gov (United States)

    Harrison, R E; Hyman, E

    1979-03-15

    The multiple Laplace transform has been applied to analysis and computation of scattering by a double triangular aperture. Results are obtained which match far-field intensity distributions observed in experiments. Arbitrary polarization components, as well as in-phase and quadrature-phase components, may be determined, in the transform domain, as a continuous function of distance from near to far-field for any orientation, aperture, and transformable waveform. Numerical results are obtained by application of numerical multiple inversions of the fully transformed solution.

  8. Engineering for high heat loads on ALS [Advanced Light Source] beamlines

    International Nuclear Information System (INIS)

    DiGennaro, R.; Swain, T.

    1989-08-01

    This paper discussed general thermal engineering problems and specific categories of thermal design issues for high photon flux beam lines at the LBL Advanced Light Source: thermal distortion of optical surfaces and elevated temperatures of thermal absorbers receiving synchrotron radiation. A generic design for water-cooled heat absorbers is described for use with ALS photon shutters, beam defining apertures, and heat absorbing masks. Also, results of in- situ measurements of thermal distortion of a water-cooled mirror in a synchrotron radiation beam line are compared with calculated performance estimates. 17 refs., 2 figs

  9. Calibration of circular aperture area using vision probe at inmetro

    Directory of Open Access Journals (Sweden)

    Costa Pedro Bastos

    2016-01-01

    Full Text Available Circular aperture areas are standards of high importance for the realization of photometric and radiometric measurements, where the accuracy of these measures is related to the accuracy of the circular aperture area calibrations. In order to attend the requirement for traceability was developed in Brazilian metrology institute, a methodology for circular aperture area measurement as requirements from the radiometric and photometric measurements. In the developed methodology apertures are measured by non-contact measurement through images of the aperture edges captured by a camera. These images are processed using computer vision techniques and then the values of the circular aperture area are determined.

  10. Segmented heat exchanger

    Science.gov (United States)

    Baldwin, Darryl Dean; Willi, Martin Leo; Fiveland, Scott Byron; Timmons, Kristine Ann

    2010-12-14

    A segmented heat exchanger system for transferring heat energy from an exhaust fluid to a working fluid. The heat exchanger system may include a first heat exchanger for receiving incoming working fluid and the exhaust fluid. The working fluid and exhaust fluid may travel through at least a portion of the first heat exchanger in a parallel flow configuration. In addition, the heat exchanger system may include a second heat exchanger for receiving working fluid from the first heat exchanger and exhaust fluid from a third heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the second heat exchanger in a counter flow configuration. Furthermore, the heat exchanger system may include a third heat exchanger for receiving working fluid from the second heat exchanger and exhaust fluid from the first heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the third heat exchanger in a parallel flow configuration.

  11. Dynamic Aperture Studies for SPEAR 3

    International Nuclear Information System (INIS)

    Nosochkov, Yuri

    1999-01-01

    The SSRL is investigating an accelerator upgrade project to replace the present 130 nm.rad FODO lattice with an 18 nm.rad double bend achromat lattice: SPEAR 3. In this paper, we review the methods used to maximize the SPEAR 3 dynamic aperture including optimization of linear optics, betatron tune, chromaticity and coupling correction, and effects of machine errors and insertion devices

  12. Diffraction contrast imaging using virtual apertures

    International Nuclear Information System (INIS)

    Gammer, Christoph; Burak Ozdol, V.; Liebscher, Christian H.; Minor, Andrew M.

    2015-01-01

    Two methods on how to obtain the full diffraction information from a sample region and the associated reconstruction of images or diffraction patterns using virtual apertures are demonstrated. In a STEM-based approach, diffraction patterns are recorded for each beam position using a small probe convergence angle. Similarly, a tilt series of TEM dark-field images is acquired. The resulting datasets allow the reconstruction of either electron diffraction patterns, or bright-, dark- or annular dark-field images using virtual apertures. The experimental procedures of both methods are presented in the paper and are applied to a precipitation strengthened and creep deformed ferritic alloy with a complex microstructure. The reconstructed virtual images are compared with conventional TEM images. The major advantage is that arbitrarily shaped virtual apertures generated with image processing software can be designed without facing any physical limitations. In addition, any virtual detector that is specifically designed according to the underlying crystal structure can be created to optimize image contrast. - Highlights: • A dataset containing all structural information of a given position is recorded. • The dataset allows reconstruction of virtual diffraction patterns or images. • Specific virtual apertures are designed to image precipitates in a complex alloy. • Virtual diffraction patterns from arbitrarily small regions can be established. • Using STEM diffraction to record the dataset is more efficient than TEM dark-field

  13. Dynamic metamaterial aperture for microwave imaging

    International Nuclear Information System (INIS)

    Sleasman, Timothy; Imani, Mohammadreza F.; Gollub, Jonah N.; Smith, David R.

    2015-01-01

    We present a dynamic metamaterial aperture for use in computational imaging schemes at microwave frequencies. The aperture consists of an array of complementary, resonant metamaterial elements patterned into the upper conductor of a microstrip line. Each metamaterial element contains two diodes connected to an external control circuit such that the resonance of the metamaterial element can be damped by application of a bias voltage. Through applying different voltages to the control circuit, select subsets of the elements can be switched on to create unique radiation patterns that illuminate the scene. Spatial information of an imaging domain can thus be encoded onto this set of radiation patterns, or measurements, which can be processed to reconstruct the targets in the scene using compressive sensing algorithms. We discuss the design and operation of a metamaterial imaging system and demonstrate reconstructed images with a 10:1 compression ratio. Dynamic metamaterial apertures can potentially be of benefit in microwave or millimeter wave systems such as those used in security screening and through-wall imaging. In addition, feature-specific or adaptive imaging can be facilitated through the use of the dynamic aperture

  14. Optimization of Synthetic Aperture Image Quality

    DEFF Research Database (Denmark)

    Moshavegh, Ramin; Jensen, Jonas; Villagómez Hoyos, Carlos Armando

    2016-01-01

    Synthetic Aperture (SA) imaging produces high-quality images and velocity estimates of both slow and fast flow at high frame rates. However, grating lobe artifacts can appear both in transmission and reception. These affect the image quality and the frame rate. Therefore optimization of parameter...

  15. Dynamic metamaterial aperture for microwave imaging

    Energy Technology Data Exchange (ETDEWEB)

    Sleasman, Timothy; Imani, Mohammadreza F.; Gollub, Jonah N.; Smith, David R. [Center for Metamaterials and Integrated Plasmonics, Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina, 27708 (United States)

    2015-11-16

    We present a dynamic metamaterial aperture for use in computational imaging schemes at microwave frequencies. The aperture consists of an array of complementary, resonant metamaterial elements patterned into the upper conductor of a microstrip line. Each metamaterial element contains two diodes connected to an external control circuit such that the resonance of the metamaterial element can be damped by application of a bias voltage. Through applying different voltages to the control circuit, select subsets of the elements can be switched on to create unique radiation patterns that illuminate the scene. Spatial information of an imaging domain can thus be encoded onto this set of radiation patterns, or measurements, which can be processed to reconstruct the targets in the scene using compressive sensing algorithms. We discuss the design and operation of a metamaterial imaging system and demonstrate reconstructed images with a 10:1 compression ratio. Dynamic metamaterial apertures can potentially be of benefit in microwave or millimeter wave systems such as those used in security screening and through-wall imaging. In addition, feature-specific or adaptive imaging can be facilitated through the use of the dynamic aperture.

  16. Parametric Transverse Patterns in Broad Aperture Lasers

    DEFF Research Database (Denmark)

    Grigorieva, E.V.; Kashchenko, S.A.; Mosekilde, Erik

    1998-01-01

    Parametrically generated optical patterns are investigated for finite and large-scale transverse aperture lasers. Standing and rotating patterns as well as periodic and chaotic pattern alternations are described in the framework of the amplitude equation formalism. Sensitive dependence...... on the geometrical size of the system is demonstrated even in the case of large-scale systems....

  17. Sonar path correction in synthetic aperture processing

    NARCIS (Netherlands)

    Groen, J.; Hansen, R.E.; Sabel, J.C.

    2003-01-01

    In the next generation of mine hunting sonars, in particular on Autonomous Underwater Vehicles (AUVs), Synthetic Aperture Sonar (SAS) will play an important role. The benefit of SAS is to increase resolution and signal-tonoise ratio by coherent processing of successive pings. A challenge in SAS is

  18. Wind energy applications of synthetic aperture radar

    DEFF Research Database (Denmark)

    Badger, Merete

    Synthetic aperture radars (SAR), mounted on satellites or aircraft, have proven useful for ocean wind mapping. Wind speeds at the height 10 m may be retrieved from measurements of radar backscatter using empirical model functions. The resulting windfields are valuable in offshore wind energy plan...

  19. MD2725: 16L2 aperture measurement

    CERN Document Server

    Mirarchi, Daniele; Rossi, Roberto; CERN. Geneva. ATS Department

    2018-01-01

    Dumps induced by sudden increase of losses in the half-cell 16L2 have been a serious machine limitation during the 2017 run. The aim of this MD was to perform local aperture measurements in order to assess differences after the beam screen regeneration, compared to first measurements in 2017.

  20. Comparisons of coded aperture imaging using various apertures and decoding methods

    International Nuclear Information System (INIS)

    Chang, L.T.; Macdonald, B.; Perez-Mendez, V.

    1976-07-01

    The utility of coded aperture γ camera imaging of radioisotope distributions in Nuclear Medicine is in its ability to give depth information about a three dimensional source. We have calculated imaging with Fresnel zone plate and multiple pinhole apertures to produce coded shadows and reconstruction of these shadows using correlation, Fresnel diffraction, and Fourier transform deconvolution. Comparisons of the coded apertures and decoding methods are made by evaluating their point response functions both for in-focus and out-of-focus image planes. Background averages and standard deviations were calculated. In some cases, background subtraction was made using combinations of two complementary apertures. Results using deconvolution reconstruction for finite numbers of events are also given

  1. Preliminary study of synthetic aperture tissue harmonic imaging on in-vivo data

    DEFF Research Database (Denmark)

    Rasmussen, Joachim Hee; Hemmsen, Martin Christian; Sloth Madsen, Signe

    2013-01-01

    . Results from the image quality study show, that in the current configuration on the UltraView system, where no transmit apodization was applied, SASB-THI and DRF-THI produced equally good images. It is expected that given the use of transmit apodization, SASB-THI could be further improved.......A method for synthetic aperture tissue harmonic imaging is investigated. It combines synthetic aperture sequential beamforming (SASB) with tissue harmonic imaging (THI) to produce an increased and more uniform spatial resolution and improved side lobe reduction compared to conventional B......-mode imaging. Synthetic aperture sequential beamforming tissue harmonic imaging (SASB-THI) was implemented on a commercially available BK 2202 Pro Focus UltraView ultrasound system and compared to dynamic receive focused tissue harmonic imaging (DRF-THI) in clinical scans. The scan sequence...

  2. Ships as salient objects in synthetic aperture radar imaginary

    CSIR Research Space (South Africa)

    Schwegmann, Colin P

    2016-07-01

    Full Text Available The widespread access to Synthetic Aperture Radar data has created a need for more precise ship extraction, specifically in low-to-medium resolution imagery. While Synthetic Aperture Radar pixel resolution is improving for a large swaths...

  3. Fast-neutron, coded-aperture imager

    Science.gov (United States)

    Woolf, Richard S.; Phlips, Bernard F.; Hutcheson, Anthony L.; Wulf, Eric A.

    2015-06-01

    This work discusses a large-scale, coded-aperture imager for fast neutrons, building off a proof-of concept instrument developed at the U.S. Naval Research Laboratory (NRL). The Space Science Division at the NRL has a heritage of developing large-scale, mobile systems, using coded-aperture imaging, for long-range γ-ray detection and localization. The fast-neutron, coded-aperture imaging instrument, designed for a mobile unit (20 ft. ISO container), consists of a 32-element array of 15 cm×15 cm×15 cm liquid scintillation detectors (EJ-309) mounted behind a 12×12 pseudorandom coded aperture. The elements of the aperture are composed of 15 cm×15 cm×10 cm blocks of high-density polyethylene (HDPE). The arrangement of the aperture elements produces a shadow pattern on the detector array behind the mask. By measuring of the number of neutron counts per masked and unmasked detector, and with knowledge of the mask pattern, a source image can be deconvolved to obtain a 2-d location. The number of neutrons per detector was obtained by processing the fast signal from each PMT in flash digitizing electronics. Digital pulse shape discrimination (PSD) was performed to filter out the fast-neutron signal from the γ background. The prototype instrument was tested at an indoor facility at the NRL with a 1.8-μCi and 13-μCi 252Cf neutron/γ source at three standoff distances of 9, 15 and 26 m (maximum allowed in the facility) over a 15-min integration time. The imaging and detection capabilities of the instrument were tested by moving the source in half- and one-pixel increments across the image plane. We show a representative sample of the results obtained at one-pixel increments for a standoff distance of 9 m. The 1.8-μCi source was not detected at the 26-m standoff. In order to increase the sensitivity of the instrument, we reduced the fastneutron background by shielding the top, sides and back of the detector array with 10-cm-thick HDPE. This shielding configuration led

  4. Dual aperture dipole magnet with second harmonic component

    Science.gov (United States)

    Praeg, Walter F.

    1985-01-01

    An improved dual aperture dipole electromagnet includes a second-harmonic frequency magnetic guide field winding which surrounds first harmonic frequency magnetic guide field windings associated with each aperture. The second harmonic winding and the first harmonic windings cooperate to produce resultant magnetic waveforms in the apertures which have extended acceleration and shortened reset portions of electromagnet operation.

  5. Fractal characteristics of fracture roughness and aperture data

    International Nuclear Information System (INIS)

    Kumar, S.; Boernge, J.

    1991-05-01

    In this study mathematical expressions are developed for the characteristics of apertures between rough surfaces. It has shown that the correlation between the opposite surfaces influences the aperture properties and different models are presented for these different surface correlations. Fracture and apertures profiles measured from intact fractures are evaluated and it is found that they qualitatively follow the mathematically predicted trends

  6. Dynamic Aperture Studies for SPEAR 3

    International Nuclear Information System (INIS)

    Corbett, William

    1998-01-01

    The Stanford Synchrotron Radiation Laboratory is investigating an accelerator upgrade project that would replace the present 130 nm rad FODO lattice with an 18 nm rad double bend achromat (DBA) lattice: SPEAR 3. The low emittance design yields a high brightness beam, but the stronger focusing in the DBA lattice increases chromaticity and beam sensitivity to machine errors. To ensure efficient injection and long Touschek lifetime, an optimization of the design lattice and dynamic aperture has been performed. In this paper, we review the methods used to maximize the SPEAR 3 dynamic aperture including necessary optics modifications, choice of tune and phase advance, optimization of sextupole and coupling correction, and modeling effects of machine errors, wigglers and lattice periodicity

  7. Dynamic aperture studies for SPEAR 3

    International Nuclear Information System (INIS)

    Nosochkov, Y.; Corbett, J.

    1999-01-01

    The Stanford Synchrotron Radiation Laboratory is investigating an accelerator upgrade project that would replace the present 130 nm·rad FODO lattice with an 18 nm·rad double bend achromat (DBA) lattice: SPEAR 3. The low emittance design yields a high brightness beam, but the stronger focusing in the DBA lattice increases chromaticity and beam sensitivity to machine errors. To ensure efficient injection and long Touschek lifetime, an optimization of the design lattice and dynamic aperture has been performed. In this paper, we review the methods used to maximize the SPEAR 3 dynamic aperture including necessary optics modifications, choice of tune and phase advance, optimization of sextupole and coupling correction, and modeling effects of machine errors, wigglers and lattice periodicity

  8. High frame rate synthetic aperture duplex imaging

    DEFF Research Database (Denmark)

    Stuart, Matthias Bo; Tomov, Borislav Gueorguiev; Pihl, Michael Johannes

    2013-01-01

    aperture flow imaging as demonstrated in this paper. Synthetic aperture, directional beamforming, and cross-correlation are used to produce B-mode and vector velocity images at high frame rates. The frame rate equals the effective pulse repetition frequency of each imaging mode. Emissions for making the B...... estimation is −1.8% and the relative standard deviation 5.4%. The approach can thus estimate both high and low velocities with equal accuracy and thereby makes it possible to present vector flow images with a high dynamic range. Measurements are made using the SARUS research scanner, a linear array......Conventional color flow images are limited in velocity range and can either show the high velocities in systole or be optimized for the lower diastolic velocities. The full dynamics of the flow is, thus, hard to visualize. The dynamic range can be significantly increased by employing synthetic...

  9. Penumbral imaging with multi-penumbral-apertures and its heuristic reconstruction for nuclear reaction region diagnostics

    International Nuclear Information System (INIS)

    Ueda, Tatsuki; Fujioka, Shinsuke; Nishimura, Hiroaki; Nozaki, Shinya; Chen Yenwei

    2010-01-01

    Imaging of nuclear reaction region is important to clarify heating mechanism in a fast-ignition plasma. The nuclear reaction region can be identified by hard x-ray and neutron images, which are emanated from the heated region. We proposed a novel penumbral imaging that is suitable for imaging quanta having strong penetrating power, such as hard x ray and neutron. Using multiple penumbral apertures arranged with M-sequence leads to two orders of magnitude higher detection efficiency than that with a single aperture. In addition, a heuristic method was introduced to a image reconstruction procedure for reducing artifacts caused by noise in a penumbral image. A proof-of-principle experiment indicates that the proposed imaging is superior to the conventional one.

  10. Fabrication and Analysis of 150 mm Aperture Nb$_{3}$Sn LARP MQXF Coils

    CERN Document Server

    Holik, E F; Anerella, M; Bossert, R; Cavanna, E; Cheng, D; Dietderich, D R; Ferracin, P; Ghosh, A K; Izquierdo Bermudez, S; Krave, S; Nobrega, A; Perez, J C; Pong, I; Rochepault; Sabbi, G L; Schmalzle, J; Yu, M

    2016-01-01

    The US LHC Accelerator Research Program (LARP) and CERN are combining efforts for the HiLumi-LHC upgrade to design and fabricate 150 mm aperture, interaction region quadrupoles with a nominal gradient of 130 T/m using Nb$_{3}$Sn. To successfully produce the necessary long MQXF triplets, the HiLumi-LHC collaboration is systematically reducing risk and design modification by heavily relying upon the experience gained from the successful 120 mm aperture LARP HQ program. First generation MQXF short (MQXFS) coils were predominately a scaling up of the HQ quadrupole design allowing comparable cable expansion during Nb$_{3}$Sn formation heat treatment and increased insulation fraction for electrical robustness. A total of 13 first generation MQXFS coils were fabricated between LARP and CERN. Systematic differences in coil size, coil alignment symmetry, and coil length contraction during heat treatment are observed and likely due to slight variances in tooling and insulation/cable systems. Analysis of coil cross sect...

  11. Analysis of compound parabolic concentrators and aperture averaging to mitigate fading on free-space optical links

    Science.gov (United States)

    Wasiczko, Linda M.; Smolyaninov, Igor I.; Davis, Christopher C.

    2004-01-01

    Free space optics (FSO) is one solution to the bandwidth bottleneck resulting from increased demand for broadband access. It is well known that atmospheric turbulence distorts the wavefront of a laser beam propagating through the atmosphere. This research investigates methods of reducing the effects of intensity scintillation and beam wander on the performance of free space optical communication systems, by characterizing system enhancement using either aperture averaging techniques or nonimaging optics. Compound Parabolic Concentrators, nonimaging optics made famous by Winston and Welford, are inexpensive elements that may be easily integrated into intensity modulation-direct detection receivers to reduce fading caused by beam wander and spot breakup in the focal plane. Aperture averaging provides a methodology to show the improvement of a given receiver aperture diameter in averaging out the optical scintillations over the received wavefront.

  12. Class of near-perfect coded apertures

    International Nuclear Information System (INIS)

    Cannon, T.M.; Fenimore, E.E.

    1977-01-01

    Coded aperture imaging of gamma ray sources has long promised an improvement in the sensitivity of various detector systems. The promise has remained largely unfulfilled, however, for either one of two reasons. First, the encoding/decoding method produces artifacts, which even in the absence of quantum noise, restrict the quality of the reconstructed image. This is true of most correlation-type methods. Second, if the decoding procedure is of the deconvolution variety, small terms in the transfer function of the aperture can lead to excessive noise in the reconstructed image. It is proposed to circumvent both of these problems by use of a uniformly redundant array (URA) as the coded aperture in conjunction with a special correlation decoding method. It is shown that the reconstructed image in the URA system contains virtually uniform noise regardless of the structure in the original source. Therefore, the improvement over a single pinhole camera will be relatively larger for the brighter points in the source than for the low intensity points. In the case of a large detector background noise the URA will always do much better than the single pinhole regardless of the structure of the object. In the case of a low detector background noise, the improvement of the URA over the single pinhole will have a lower limit of approximately (1/2f)/sup 1 / 2 / where f is the fraction of the field of view which is uniformly filled by the object

  13. Large-aperture hybrid photo-detector

    International Nuclear Information System (INIS)

    Kawai, Y.; Nakayama, H.; Kusaka, A.; Kakuno, H.; Abe, T.; Iwasaki, M.; Aihara, H.; Tanaka, M.; Shiozawa, M.; Kyushima, H.; Suyama, M.

    2007-01-01

    We have developed the first complete large-aperture (13-inch diameter) hybrid photo-detector (HPD). The withstanding voltage problem has been overcome and we were able to attain an HPD operating voltage of +20 kV. Adoption of our newly developed backside illumination avalanche diode (AD) was also critical in successfully countering the additional problem of an increase in AD leakage after the activation process. We observed single photon signal timing jitter of under 450 ps in FWHM, electron transit time of ∼12 ns, and clear pulse height separation up to several photoelectron peaks, all greatly superior to the performance of any conventional large-aperture photomultiplier tubes (PMTs). In addition, our HPD has a much simpler structure than conventional large-aperture PMTs, which simplifies mass production and lowers manufacturing cost. We believe that these attributes position our HPD as the most suitable photo-detector for the next generation mega-ton class water-Cherenkov detector, which is expected to be more than 20x larger than the Super-Kamiokande (SK) detector

  14. Biomineral repair of abalone shell apertures.

    Science.gov (United States)

    Cusack, Maggie; Guo, Dujiao; Chung, Peter; Kamenos, Nicholas A

    2013-08-01

    The shell of the gastropod mollusc, abalone, is comprised of nacre with an outer prismatic layer that is composed of either calcite or aragonite or both, depending on the species. A striking characteristic of the abalone shell is the row of apertures along the dorsal margin. As the organism and shell grow, new apertures are formed and the preceding ones are filled in. Detailed investigations, using electron backscatter diffraction, of the infill in three species of abalone: Haliotis asinina, Haliotis gigantea and Haliotis rufescens reveals that, like the shell, the infill is composed mainly of nacre with an outer prismatic layer. The infill prismatic layer has identical mineralogy as the original shell prismatic layer. In H. asinina and H. gigantea, the prismatic layer of the shell and infill are made of aragonite while in H. rufescens both are composed of calcite. Abalone builds the infill material with the same high level of biological control, replicating the structure, mineralogy and crystallographic orientation as for the shell. The infill of abalone apertures presents us with insight into what is, effectively, shell repair. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Parameters for HL-LHC aperture calculations and comparison with aperture measurements

    CERN Document Server

    Bruce, R; Fartoukh, S; Giovannozzi, M; Redaelli, S; Tomas, R; Wenninger, J

    2014-01-01

    When β∗ is squeezed to smaller values in the LHC, the beam size in the inner triplet increases so that the aperture risks to be exposed to unwanted beam losses. A 2D calculation model was used during the design stage to study the aperture margins, both there and at other potential bottlenecks. Based on assumptions on orbit and optics errors, as well as mechanical tolerances, it gives the available aperture in units of the RMS beam size, which can be compared with what can be protected by the collimation system. During the LHC Run I in 2010-2013, several of the error tolerances have been found smaller than the design assumptions. Furthermore, the aperture has been measured with beam several times and the results are compatible with a very well aligned machine, with results close to the design values. In this report, we therefore review the assumptions in the model and propose an updated set of input parameters to be used for aperture calculations at top energy in HL-LHC. The new parameter set is based on th...

  16. Filled aperture concepts for the Terrestrial Planet Finder

    Science.gov (United States)

    Ridgway, Stephen T.

    2003-02-01

    Filled aperture telescopes can deliver a real, high Strehl image which is well suited for discrimination of faint planets in the vicinity of bright stars and against an extended exo-zodiacal light. A filled aperture offers a rich variety of PSF control and diffraction suppression techniques. Filled apertures are under consideration for a wide spectral range, including visible and thermal-IR, each of which offers a significant selection of biomarker molecular bands. A filled aperture visible TPF may be simpler in several respects than a thermal-IR nuller. The required aperture size (or baseline) is much smaller, and no cryogenic systems are required. A filled aperture TPF would look and act like a normal telescope - vendors and users alike would be comfortable with its design and operation. Filled aperture telescopes pose significant challenges in production of large primary mirrors, and in very stringent wavefront requirements. Stability of the wavefront control, and hence of the PSF, is a major issue for filled aperture systems. Several groups have concluded that these and other issues can be resolved, and that filled aperture options are competitive for a TPF precursor and/or for the full TPF mission. Ball, Boeing-SVS and TRW have recently returned architecture reviews on filled aperture TPF concepts. In this paper, I will review some of the major considerations underlying these filled aperture concepts, and suggest key issues in a TPF Buyers Guide.

  17. Fast-neutron, coded-aperture imager

    International Nuclear Information System (INIS)

    Woolf, Richard S.; Phlips, Bernard F.; Hutcheson, Anthony L.; Wulf, Eric A.

    2015-01-01

    This work discusses a large-scale, coded-aperture imager for fast neutrons, building off a proof-of concept instrument developed at the U.S. Naval Research Laboratory (NRL). The Space Science Division at the NRL has a heritage of developing large-scale, mobile systems, using coded-aperture imaging, for long-range γ-ray detection and localization. The fast-neutron, coded-aperture imaging instrument, designed for a mobile unit (20 ft. ISO container), consists of a 32-element array of 15 cm×15 cm×15 cm liquid scintillation detectors (EJ-309) mounted behind a 12×12 pseudorandom coded aperture. The elements of the aperture are composed of 15 cm×15 cm×10 cm blocks of high-density polyethylene (HDPE). The arrangement of the aperture elements produces a shadow pattern on the detector array behind the mask. By measuring of the number of neutron counts per masked and unmasked detector, and with knowledge of the mask pattern, a source image can be deconvolved to obtain a 2-d location. The number of neutrons per detector was obtained by processing the fast signal from each PMT in flash digitizing electronics. Digital pulse shape discrimination (PSD) was performed to filter out the fast-neutron signal from the γ background. The prototype instrument was tested at an indoor facility at the NRL with a 1.8-μCi and 13-μCi 252Cf neutron/γ source at three standoff distances of 9, 15 and 26 m (maximum allowed in the facility) over a 15-min integration time. The imaging and detection capabilities of the instrument were tested by moving the source in half- and one-pixel increments across the image plane. We show a representative sample of the results obtained at one-pixel increments for a standoff distance of 9 m. The 1.8-μCi source was not detected at the 26-m standoff. In order to increase the sensitivity of the instrument, we reduced the fastneutron background by shielding the top, sides and back of the detector array with 10-cm-thick HDPE. This shielding configuration led

  18. Fast-neutron, coded-aperture imager

    Energy Technology Data Exchange (ETDEWEB)

    Woolf, Richard S., E-mail: richard.woolf@nrl.navy.mil; Phlips, Bernard F., E-mail: bernard.phlips@nrl.navy.mil; Hutcheson, Anthony L., E-mail: anthony.hutcheson@nrl.navy.mil; Wulf, Eric A., E-mail: eric.wulf@nrl.navy.mil

    2015-06-01

    This work discusses a large-scale, coded-aperture imager for fast neutrons, building off a proof-of concept instrument developed at the U.S. Naval Research Laboratory (NRL). The Space Science Division at the NRL has a heritage of developing large-scale, mobile systems, using coded-aperture imaging, for long-range γ-ray detection and localization. The fast-neutron, coded-aperture imaging instrument, designed for a mobile unit (20 ft. ISO container), consists of a 32-element array of 15 cm×15 cm×15 cm liquid scintillation detectors (EJ-309) mounted behind a 12×12 pseudorandom coded aperture. The elements of the aperture are composed of 15 cm×15 cm×10 cm blocks of high-density polyethylene (HDPE). The arrangement of the aperture elements produces a shadow pattern on the detector array behind the mask. By measuring of the number of neutron counts per masked and unmasked detector, and with knowledge of the mask pattern, a source image can be deconvolved to obtain a 2-d location. The number of neutrons per detector was obtained by processing the fast signal from each PMT in flash digitizing electronics. Digital pulse shape discrimination (PSD) was performed to filter out the fast-neutron signal from the γ background. The prototype instrument was tested at an indoor facility at the NRL with a 1.8-μCi and 13-μCi 252Cf neutron/γ source at three standoff distances of 9, 15 and 26 m (maximum allowed in the facility) over a 15-min integration time. The imaging and detection capabilities of the instrument were tested by moving the source in half- and one-pixel increments across the image plane. We show a representative sample of the results obtained at one-pixel increments for a standoff distance of 9 m. The 1.8-μCi source was not detected at the 26-m standoff. In order to increase the sensitivity of the instrument, we reduced the fastneutron background by shielding the top, sides and back of the detector array with 10-cm-thick HDPE. This shielding configuration led

  19. NST: Thermal Modeling for a Large Aperture Solar Telescope

    Science.gov (United States)

    Coulter, Roy

    2011-05-01

    Late in the 1990s the Dutch Open Telescope demonstrated that internal seeing in open, large aperture solar telescopes can be controlled by flushing air across the primary mirror and other telescope structures exposed to sunlight. In that system natural wind provides a uniform air temperature throughout the imaging volume, while efficiently sweeping heated air away from the optics and mechanical structure. Big Bear Solar Observatory's New Solar Telescope (NST) was designed to realize that same performance in an enclosed system by using both natural wind through the dome and forced air circulation around the primary mirror to provide the uniform air temperatures required within the telescope volume. The NST is housed in a conventional, ventilated dome with a circular opening, in place of the standard dome slit, that allows sunlight to fall only on an aperture stop and the primary mirror. The primary mirror is housed deep inside a cylindrical cell with only minimal openings in the side at the level of the mirror. To date, the forced air and cooling systems designed for the NST primary mirror have not been implemented, yet the telescope regularly produces solar images indicative of the absence of mirror seeing. Computational Fluid Dynamics (CFD) analysis of the NST primary mirror system along with measurements of air flows within the dome, around the telescope structure, and internal to the mirror cell are used to explain the origin of this seemingly incongruent result. The CFD analysis is also extended to hypothetical systems of various scales. We will discuss the results of these investigations.

  20. More Efficient Solar Thermal-Energy Receiver

    Science.gov (United States)

    Dustin, M. O.

    1987-01-01

    Thermal stresses and reradiation reduced. Improved design for solar thermal-energy receiver overcomes three major deficiencies of solar dynamic receivers described in literature. Concentrator and receiver part of solar-thermal-energy system. Receiver divided into radiation section and storage section. Concentrated solar radiation falls on boiling ends of heat pipes, which transmit heat to thermal-energy-storage medium. Receiver used in number of applications to produce thermal energy directly for use or to store thermal energy for subsequent use in heat engine.

  1. Exergetic and Thermoeconomic Analyses of Solar Air Heating Processes Using a Parabolic Trough Collector

    Directory of Open Access Journals (Sweden)

    Miguel Ángel Hernández-Román

    2014-08-01

    Full Text Available This paper presents a theoretical and practical analysis of the application of the thermoeconomic method. A furnace for heating air is evaluated using the methodology. The furnace works with solar energy, received from a parabolic trough collector and with electricity supplied by an electric power utility. The methodology evaluates the process by the first and second law of thermodynamics as the first step then the cost analysis is applied for getting the thermoeconomic cost. For this study, the climatic conditions of the city of Queretaro (Mexico are considered. Two periods were taken into account: from July 2006 to June 2007 and on 6 January 2011. The prototype, located at CICATA-IPN, Qro, was analyzed in two different scenarios i.e., with 100% of electricity and 100% of solar energy. The results showed that thermoeconomic costs for the heating process with electricity, inside the chamber, are less than those using solar heating. This may be ascribed to the high cost of the materials, fittings, and manufacturing of the solar equipment. Also, the influence of the mass flow, aperture area, length and diameter of the receiver of the solar prototype is a parameter for increasing the efficiency of the prototype in addition to the price of manufacturing. The optimum design parameters are: length is 3 to 5 m, mass flow rate is 0.03 kg/s, diameter of the receiver is around 10 to 30 mm and aperture area is 3 m2.

  2. A new approach to dynamic aperture problems

    International Nuclear Information System (INIS)

    Schonfeld, J.F.

    1986-01-01

    We develop the theory of a passive magnetic system intended to suppress nonlinear orbit distortion in high-energy proton storage rings. The system is designed to immediately reduce 'Collins distortion functions,' which describe the size of nonlinear orbit distortion in first-order perturbation theory. Such a scheme could permit one significantly to decrease the physical aperture of a storage ring over most - but not necessarily all -of its length. This work was motivated by design needs of the proposed Superconducting Super Collider (SSC). (author)

  3. Sea Ice Movements from Synthetic Aperture Radar

    Science.gov (United States)

    1981-12-01

    correlating these components. B-l8 These correlations are also plotted in figure l1. 5.3.3.2 AUlications of the space correlation. The spatial...aperture radar. To appear in J. of Geophys. Res. Hastings, A. D. Jr., 1971. Surface climate of the Arctic Basin. Report ETL- TR-71-5, Earth Sciences Division...Administration Grant NA50-AA-D-00015, which was funded in part by the Global Atmospheric Research Program and the Office of Climate Dynarics, Divisic

  4. Parametric Beamformer for Synthetic Aperture Ultrasound Imaging

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav; Tomov, Borislav Gueorguiev; Jensen, Jørgen Arendt

    2006-01-01

    . The beamformer consists of a number of identical beamforming blocks, each processing data from several channels and producing part of the image. A number of these blocks can be accommodated in a modern field-programmable gate array device (FPGA), and a whole synthetic aperture system can be implemented using...... with 255 levels. A beamforming block uses input data from 4 elements and produces a set of 10 lines. Linear interpolation is used to implement sub-sample delays. The VHDL code for the beamformer has been synthesized for a Xilinx V4FX100 speed grade 11 FPGA, where it can operate at a maximum clock frequency...

  5. Clinical evaluation of Synthetic Aperture Sequential Beamforming and Tissue Harmonic Imaging

    DEFF Research Database (Denmark)

    Brandt, Andreas Hjelm; Hemmsen, Martin Christian; Hansen, Peter Møller

    2014-01-01

    This study determines if the data reduction achieved by the combination Synthetic Aperture Sequential Beamforming (SASB) and Tissue Harmonic Imaging (THI) affects image quality. SASB-THI was evaluated against the combination of Dynamic Received Focusing and Tissue Harmonic Imaging (DRF-THI). A BK...... equally good image quality although a data reduction of 64 times is achieved with SASB-THI.......This study determines if the data reduction achieved by the combination Synthetic Aperture Sequential Beamforming (SASB) and Tissue Harmonic Imaging (THI) affects image quality. SASB-THI was evaluated against the combination of Dynamic Received Focusing and Tissue Harmonic Imaging (DRF-THI). A BK...... liver pathology were scanned to set a clinical condition, where ultrasonography is often performed. A total of 114 sequences were recorded and evaluated by five radiologists. The evaluators were blinded to the imaging technique, and each sequence was shown twice with different left-right positioning...

  6. Aperture averaging and BER for Gaussian beam in underwater oceanic turbulence

    Science.gov (United States)

    Gökçe, Muhsin Caner; Baykal, Yahya

    2018-03-01

    In an underwater wireless optical communication (UWOC) link, power fluctuations over finite-sized collecting lens are investigated for a horizontally propagating Gaussian beam wave. The power scintillation index, also known as the irradiance flux variance, for the received irradiance is evaluated in weak oceanic turbulence by using the Rytov method. This lets us further quantify the associated performance indicators, namely, the aperture averaging factor and the average bit-error rate (). The effects on the UWOC link performance of the oceanic turbulence parameters, i.e., the rate of dissipation of kinetic energy per unit mass of fluid, the rate of dissipation of mean-squared temperature, Kolmogorov microscale, the ratio of temperature to salinity contributions to the refractive index spectrum as well as system parameters, i.e., the receiver aperture diameter, Gaussian source size, laser wavelength and the link distance are investigated.

  7. Large-Aperture Membrane Active Phased-Array Antennas

    Science.gov (United States)

    Karasik, Boris; McGrath, William; Leduc, Henry

    2009-01-01

    Large-aperture phased-array microwave antennas supported by membranes are being developed for use in spaceborne interferometric synthetic aperture radar systems. There may also be terrestrial uses for such antennas supported on stationary membranes, large balloons, and blimps. These antennas are expected to have areal mass densities of about 2 kg/sq m, satisfying a need for lightweight alternatives to conventional rigid phased-array antennas, which have typical areal mass densities between 8 and 15 kg/sq m. The differences in areal mass densities translate to substantial differences in total mass in contemplated applications involving aperture areas as large as 400 sq m. A membrane phased-array antenna includes patch antenna elements in a repeating pattern. All previously reported membrane antennas were passive antennas; this is the first active membrane antenna that includes transmitting/receiving (T/R) electronic circuits as integral parts. Other integral parts of the antenna include a network of radio-frequency (RF) feed lines (more specifically, a corporate feed network) and of bias and control lines, all in the form of flexible copper strip conductors on flexible polymeric membranes. Each unit cell of a prototype antenna (see Figure 1) contains a patch antenna element and a compact T/R module that is compatible with flexible membrane circuitry. There are two membrane layers separated by a 12.7-mm air gap. Each membrane layer is made from a commercially available flexible circuit material that, as supplied, comprises a 127-micron-thick polyimide dielectric layer clad on both sides with 17.5-micron-thick copper layers. The copper layers are patterned into RF, bias, and control conductors. The T/R module is located on the back side of the ground plane and is RF-coupled to the patch element via a slot. The T/R module is a hybrid multilayer module assembled and packaged independently and attached to the membrane array. At the time of reporting the information for

  8. A concentrated solar cavity absorber with direct heat transfer through recirculating metallic particles

    Energy Technology Data Exchange (ETDEWEB)

    Sarker, M. R. I., E-mail: islamrabiul@yahoo.com; Saha, Manabendra, E-mail: manabendra.saha@adelaide.edu.au, E-mail: manab04me@gmail.com; Beg, R. A. [Department of Mechanical Engineering, Rajshahi University of Engineering and Technology, Rajshahi-6204 (Bangladesh)

    2016-07-12

    A recirculating flow solar particle cavity absorber (receiver) is modeled to investigate the flow behavior and heat transfer characteristics of a novel developing concept. It features a continuous recirculating flow of non-reacting metallic particles (black silicon carbide) with air which are used as a thermal enhancement medium. The aim of the present study is to numerically investigate the thermal behavior and flow characteristics of the proposed concept. The proposed solar particle receiver is modeled using two phase discrete particle model (DPM), RNG k-flow model and discrete ordinate (DO) radiation model. Numerical analysis is carried out considering a solar receiver with only air and the mixture of non-reacting particles and air as a heat transfer as well as heat carrying medium. The parametric investigation is conducted considering the incident solar flux on the receiver aperture and changing air flow rate and recirculation rate inside the receiver. A stand-alone feature of the recirculating flow solar particle receiver concept is that the particles are directly exposed to concentrated solar radiation monotonously through recirculating flow inside the receiver and results in efficient irradiation absorption and convective heat transfer to air that help to achieve high temperature air and consequently increase in thermal efficiency. This paper presents, results from the developed concept and highlights its flow behavior and potential to enhance the heat transfer from metallic particles to air by maximizing heat carrying capacity of the heat transfer medium. The imposed milestones for the present system will be helpful to understand the radiation absorption mechanism of the particles in a recirculating flow based receiver, the thermal transport between the particles, the air and the cavity, and the fluid dynamics of the air and particle in the cavity.

  9. Coded aperture optimization using Monte Carlo simulations

    International Nuclear Information System (INIS)

    Martineau, A.; Rocchisani, J.M.; Moretti, J.L.

    2010-01-01

    Coded apertures using Uniformly Redundant Arrays (URA) have been unsuccessfully evaluated for two-dimensional and three-dimensional imaging in Nuclear Medicine. The images reconstructed from coded projections contain artifacts and suffer from poor spatial resolution in the longitudinal direction. We introduce a Maximum-Likelihood Expectation-Maximization (MLEM) algorithm for three-dimensional coded aperture imaging which uses a projection matrix calculated by Monte Carlo simulations. The aim of the algorithm is to reduce artifacts and improve the three-dimensional spatial resolution in the reconstructed images. Firstly, we present the validation of GATE (Geant4 Application for Emission Tomography) for Monte Carlo simulations of a coded mask installed on a clinical gamma camera. The coded mask modelling was validated by comparison between experimental and simulated data in terms of energy spectra, sensitivity and spatial resolution. In the second part of the study, we use the validated model to calculate the projection matrix with Monte Carlo simulations. A three-dimensional thyroid phantom study was performed to compare the performance of the three-dimensional MLEM reconstruction with conventional correlation method. The results indicate that the artifacts are reduced and three-dimensional spatial resolution is improved with the Monte Carlo-based MLEM reconstruction.

  10. Beam focusing by aperture displacement in multiampere ion sources

    International Nuclear Information System (INIS)

    Stewart, L.D.; Kim, J.; Matsuda, S.

    1975-05-01

    Results are given of an experimental study of beam focusing by aperture displacement (Δx) in duoPIGatron ion sources. Measurements with a single aperture, accel-decel electrode geometry show that the beam deflection angle is linear with Δx/z for the round aperture and with Δx/z* 2 for the slit aperture where z and z* are respectively the extraction gap distance and the effective gap distance. Applying the result of the single aperture study to the multiaperture, duoPIGatron sources, it was possible to increase the neutral beam injection power to the ORMAK plasma by approximately 40 percent. Also presented are discussion and comparison of other work on the effect of aperture displacement on beam deflection. (U.S.)

  11. Measurements of pore-scale flow through apertures

    Energy Technology Data Exchange (ETDEWEB)

    Chojnicki, Kirsten [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    Pore-scale aperture effects on flow in pore networks was studied in the laboratory to provide a parameterization for use in transport models. Four cases were considered: regular and irregular pillar/pore alignment with and without an aperture. The velocity field of each case was measured and simulated, providing quantitatively comparable results. Two aperture effect parameterizations were considered: permeability and transmission. Permeability values varied by an order of magnitude between the cases with and without apertures. However, transmission did not correlate with permeability. Despite having much greater permeability the regular aperture case permitted less transmission than the regular case. Moreover, both irregular cases had greater transmission than the regular cases, a difference not supported by the permeabilities. Overall, these findings suggest that pore-scale aperture effects on flow though a pore-network may not be adequately captured by properties such as permeability for applications that are interested in determining particle transport volume and timing.

  12. Simulations of Aperture Synthesis Imaging Radar for the EISCAT_3D Project

    Science.gov (United States)

    La Hoz, C.; Belyey, V.

    2012-12-01

    EISCAT_3D is a project to build the next generation of incoherent scatter radars endowed with multiple 3-dimensional capabilities that will replace the current EISCAT radars in Northern Scandinavia. Aperture Synthesis Imaging Radar (ASIR) is one of the technologies adopted by the EISCAT_3D project to endow it with imaging capabilities in 3-dimensions that includes sub-beam resolution. Complemented by pulse compression, it will provide 3-dimensional images of certain types of incoherent scatter radar targets resolved to about 100 metres at 100 km range, depending on the signal-to-noise ratio. This ability will open new research opportunities to map small structures associated with non-homogeneous, unstable processes such as aurora, summer and winter polar radar echoes (PMSE and PMWE), Natural Enhanced Ion Acoustic Lines (NEIALs), structures excited by HF ionospheric heating, meteors, space debris, and others. To demonstrate the feasibility of the antenna configurations and the imaging inversion algorithms a simulation of synthetic incoherent scattering data has been performed. The simulation algorithm incorporates the ability to control the background plasma parameters with non-homogeneous, non-stationary components over an extended 3-dimensional space. Control over the positions of a number of separated receiving antennas, their signal-to-noise-ratios and arriving phases allows realistic simulation of a multi-baseline interferometric imaging radar system. The resulting simulated data is fed into various inversion algorithms. This simulation package is a powerful tool to evaluate various antenna configurations and inversion algorithms. Results applied to realistic design alternatives of EISCAT_3D will be described.

  13. Field measurements for low-aperture magnetic elements

    International Nuclear Information System (INIS)

    Mikhajlichenko, A.A.

    1989-01-01

    The method of the field measurements with help of bismuth wire in low aperture magnetic elements is revised. The quadrupole with permanent magnets was tested. It has aperture diameter about 4 mm and length 40 mm. Gradient about 38 kOe/cm was measured. The accuracy of the magnetic axis position definition is better than 1 μm. This method is a good kandidate for linear colider low aperture magnetic elements measurements. 7 refs.; 6 figs

  14. Extended Aperture Photometry of K2 RR Lyrae stars

    Directory of Open Access Journals (Sweden)

    Plachy Emese

    2017-01-01

    Full Text Available We present the method of the Extended Aperture Photometry (EAP that we applied on K2 RR Lyrae stars. Our aim is to minimize the instrumental variations of attitude control maneuvers by using apertures that cover the positional changes in the field of view thus contain the stars during the whole observation. We present example light curves that we compared to the light curves from the K2 Systematics Correction (K2SC pipeline applied on the automated Single Aperture Photometry (SAP and on the Pre-search Data Conditioning Simple Aperture Photometry (PDCSAP data.

  15. Extended Aperture Photometry of K2 RR Lyrae stars

    Science.gov (United States)

    Plachy, Emese; Klagyivik, Péter; Molnár, László; Sódor, Ádám; Szabó, Róbert

    2017-10-01

    We present the method of the Extended Aperture Photometry (EAP) that we applied on K2 RR Lyrae stars. Our aim is to minimize the instrumental variations of attitude control maneuvers by using apertures that cover the positional changes in the field of view thus contain the stars during the whole observation. We present example light curves that we compared to the light curves from the K2 Systematics Correction (K2SC) pipeline applied on the automated Single Aperture Photometry (SAP) and on the Pre-search Data Conditioning Simple Aperture Photometry (PDCSAP) data.

  16. Solar advanced internal film receiver

    International Nuclear Information System (INIS)

    Torre Cabezas, M. de la

    1990-01-01

    In a Solar Central Internal Film Receiver, the heat absorbing fluid (a molten nitrate salt) flows in a thin film down over the non illuminated side of an absorber panel. Since the molten salt working fluid is not contained in complicated tube manifolds, the receiver design is simples than a conventional tube type-receiver resulting in a lower cost and a more reliable receiver. The Internal Film Receiver can be considered as an alternative to the Direct Absorption Receiver, in the event that the current problems of the last one can not be solved. It also describes here the test facility which will be used for its solar test, and the test plans foreseen. (Author) 17 refs

  17. Clinical evaluation of synthetic aperture sequential beamforming

    DEFF Research Database (Denmark)

    Hansen, Peter Møller; Hemmsen, Martin Christian; Lange, Theis

    2012-01-01

    In this study clinically relevant ultrasound images generated with synthetic aperture sequential beamforming (SASB) is compared to images generated with a conventional technique. The advantage of SASB is the ability to produce high resolution ultrasound images with a high frame rate and at the same...... time massively reduce the amount of generated data. SASB was implemented in a system consisting of a conventional ultrasound scanner connected to a PC via a research interface. This setup enables simultaneous recording with both SASB and conventional technique. Eighteen volunteers were ultrasound...... scanned abdominally, and 84 sequence pairs were recorded. Each sequence pair consists of two simultaneous recordings of the same anatomical location with SASB and conventional B-mode imaging. The images were evaluated in terms of spatial resolution, contrast, unwanted artifacts, and penetration depth...

  18. Defocus morphing in real aperture images.

    Science.gov (United States)

    Chaudhuri, Subhasis

    2005-11-01

    A new concept called defocus morphing in real aperture images is introduced. View morphing is an existing example of shape-preserving image morphing based on the motion cue. It is proved that images can also be morphed based on the depth-related defocus cue. This illustrates that the morphing operation is not necessarily a geometric process alone; one can also perform a photometry-based morphing wherein the shape information is implicitly buried in the image intensity field. A theoretical understanding of the defocus morphing process is presented. It is shown mathematically that, given two observations of a three-dimensional scene for different camera parameter settings, we can obtain a virtual observation for any camera parameter setting through a simple nonlinear combination of these observations.

  19. Common aperture multispectral spotter camera: Spectro XR

    Science.gov (United States)

    Petrushevsky, Vladimir; Freiman, Dov; Diamant, Idan; Giladi, Shira; Leibovich, Maor

    2017-10-01

    The Spectro XRTM is an advanced color/NIR/SWIR/MWIR 16'' payload recently developed by Elbit Systems / ELOP. The payload's primary sensor is a spotter camera with common 7'' aperture. The sensor suite includes also MWIR zoom, EO zoom, laser designator or rangefinder, laser pointer / illuminator and laser spot tracker. Rigid structure, vibration damping and 4-axes gimbals enable high level of line-of-sight stabilization. The payload's list of features include multi-target video tracker, precise boresight, strap-on IMU, embedded moving map, geodetic calculations suite, and image fusion. The paper describes main technical characteristics of the spotter camera. Visible-quality, all-metal front catadioptric telescope maintains optical performance in wide range of environmental conditions. High-efficiency coatings separate the incoming light into EO, SWIR and MWIR band channels. Both EO and SWIR bands have dual FOV and 3 spectral filters each. Several variants of focal plane array formats are supported. The common aperture design facilitates superior DRI performance in EO and SWIR, in comparison to the conventionally configured payloads. Special spectral calibration and color correction extend the effective range of color imaging. An advanced CMOS FPA and low F-number of the optics facilitate low light performance. SWIR band provides further atmospheric penetration, as well as see-spot capability at especially long ranges, due to asynchronous pulse detection. MWIR band has good sharpness in the entire field-of-view and (with full HD FPA) delivers amount of detail far exceeding one of VGA-equipped FLIRs. The Spectro XR offers level of performance typically associated with larger and heavier payloads.

  20. Design considerations for a large aperture high field superconducting dipole

    International Nuclear Information System (INIS)

    Harfoush, F.; Ankenbrandt, C.; Harrison, M.; Kerby, J.; Koepke, K.; Mantsch, P.; Nicol, T.; Riddiford, A.; Theilacker, J.

    1989-03-01

    The final phase of the Fermilab upgrade proposal calls for a new ring of superconducting magnets to be placed in the existing Main Accelerator tunnel. The goal of this design study is to specify a high field dipole (HFD) that is capable of supporting fixed target operation (ramping, resonant extraction) at a field of 6.6T (1.5 Tev) and colliding beam physics at 8.0T (1.8 Tev). The magnetic field quality at high field is set by the large amplitude orbits associated with resonant extraction. The field quality must therefore be at least as good as the existing Tevatron magnets which fulfill these criteria. The high fields and large aperture of this magnet result in large forces on the coil and collar assemblies. Therefore, the cold mass design must be able to sustain these forces while providing sufficient cooling to the coils during 4.2 K fixed target operation, and a minimum heat load during 1.8 K collider operation. The design work is still in progress but a cosine-theta, cold-iron dipole with a 70mm inner diameter coil has been tentatively adopted. This report presents details on the conductor and cable parameters, coil cross-section, projected manufacturing tolerances, iron yoke design, and cold mass assembly. 4 refs., 5 figs., 1 tab

  1. Design Challenges for a Wide-Aperture Insertion Quadrupole Magnet

    CERN Document Server

    Russenschuck, S; Perez, J C; Ramos, D; Fessia, P; Karppinen, M; Kirby, G; Sahner, T; Schwerg, N

    2011-01-01

    The design and development of a superconducting (Nb-Ti) quadrupole with 120 mm aperture, for an upgrade of the LHC insertion region, faces challenges arising from the LHC beam optics requirements and the heat-deposition. The first triggered extensive studies of coil alternatives with four and six coil-blocks in view of field quality and operation margins. The latter requires more porous insulation schemes for both the cables and the ground-plane. This in turn necessitates extensive heatpropagation and quench-velocity studies, as well as more efficient quench heaters. The engineering design of the magnet includes innovative features such as self-locking collars, which will enable the collaring to be performed with the coils on a horizontal assembly bench, a spring-loaded and collapsible assembly mandrel, tuning-shims for field quality, porous collaring-shoes, and coil end-spacer design based on differential geometry methods. The project also initiated code extensions in the quench-simulation and CAD/CAM module...

  2. Design considerations for a large aperture high field superconducting dipole

    Energy Technology Data Exchange (ETDEWEB)

    Harfoush, F.; Ankenbrandt, C.; Harrison, M.; Kerby, J.; Koepke, K.; Mantsch, P.; Nicol, T.; Riddiford, A.; Theilacker, J.

    1989-03-01

    The final phase of the Fermilab upgrade proposal calls for a new ring of superconducting magnets to be placed in the existing Main Accelerator tunnel. The goal of this design study is to specify a high field dipole (HFD) that is capable of supporting fixed target operation (ramping, resonant extraction) at a field of 6.6T (1.5 Tev) and colliding beam physics at 8.0T (1.8 Tev). The magnetic field quality at high field is set by the large amplitude orbits associated with resonant extraction. The field quality must therefore be at least as good as the existing Tevatron magnets which fulfill these criteria. The high fields and large aperture of this magnet result in large forces on the coil and collar assemblies. Therefore, the cold mass design must be able to sustain these forces while providing sufficient cooling to the coils during 4.2 K fixed target operation, and a minimum heat load during 1.8 K collider operation. The design work is still in progress but a cosine-theta, cold-iron dipole with a 70mm inner diameter coil has been tentatively adopted. This report presents details on the conductor and cable parameters, coil cross-section, projected manufacturing tolerances, iron yoke design, and cold mass assembly. 4 refs., 5 figs., 1 tab.

  3. Dual polarized, heat spreading rectenna

    Science.gov (United States)

    Epp, Larry W. (Inventor); Khan, Abdur R. (Inventor); Smith, R. Peter (Inventor); Smith, Hugh K. (Inventor)

    1999-01-01

    An aperture coupled patch splits energy from two different polarization components to different locations to spread heat. In addition, there is no physical electrical connection between the slot, patch and circuitry. The circuitry is located under a ground plane which shields against harmonic radiation back to the RF source.

  4. Synthetic aperture design for increased SAR image rate

    Science.gov (United States)

    Bielek, Timothy P [Albuquerque, NM; Thompson, Douglas G [Albuqerque, NM; Walker, Bruce C [Albuquerque, NM

    2009-03-03

    High resolution SAR images of a target scene at near video rates can be produced by using overlapped, but nevertheless, full-size synthetic apertures. The SAR images, which respectively correspond to the apertures, can be analyzed in sequence to permit detection of movement in the target scene.

  5. Microfabricated high-bandpass foucault aperture for electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Glaeser, Robert; Cambie, Rossana; Jin, Jian

    2014-08-26

    A variant of the Foucault (knife-edge) aperture is disclosed that is designed to provide single-sideband (SSB) contrast at low spatial frequencies but retain conventional double-sideband (DSB) contrast at high spatial frequencies in transmission electron microscopy. The aperture includes a plate with an inner open area, a support extending from the plate at an edge of the open area, a half-circle feature mounted on the support and located at the center of the aperture open area. The radius of the half-circle portion of reciprocal space that is blocked by the aperture can be varied to suit the needs of electron microscopy investigation. The aperture is fabricated from conductive material which is preferably non-oxidizing, such as gold, for example.

  6. System Architecture of an Experimental Synthetic Aperture Real-Time Ultrasound System

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Hansen, Martin; Tomov, Borislav Gueorguiev

    2007-01-01

    is done using a parametric beam former. Code synthesized for a Xilinx V4FX100 speed grade 11 FPGA can operate at a maximum clock frequency of 167.8 MHz producing 1 billion I and Q samples/second sufficient for real time SA imaging. The system is currently in production, and all boards have been laid out......Synthetic Aperture (SA) ultrasound imaging has many advantages in terms of flexibility and accuracy. One of the major drawbacks is, however, that no system exists, which can implement SA imaging in real time due to the very high number of calculations amounting to roughly 1 billion complex focused...... samples per second per receive channel. Real time imaging is a key aspect in ultrasound, and to truly demonstrate the many advantages of SA imaging, a system usable in the clinic should be made. The paper describes a system capable of real time SA B-mode and vector flow imaging. The Synthetic Aperture...

  7. Performance Evaluation of a Synthetic Aperture Real-Time Ultrasound System

    DEFF Research Database (Denmark)

    Stuart, Matthias Bo; Tomov, Borislav Gueorguiev; Jensen, Jørgen Arendt

    2011-01-01

    This paper evaluates the signal-to-noise ratio, the time stability, and the phase difference of the sampling in the experimental ultrasound scanner SARUS: A synthetic aperture, real-time ultrasound system. SARUS has 1024 independent transmit and receive channels and is capable of handling 2D probes...... arrays (FPGAs) making it very flexible and allowing implementation of other real-time ultrasound processing methods in the future. For conventional B-mode imaging, a penetration depth around 7 cm for a 7 MHz transducer is obtained (signal-tonoise ratio of 0 dB), which is comparable to commercial...... for 3D ultrasound imaging. It samples at 12 bits per sample and has a sampling rate of 70 MHz with the possibility of decimating the sampling frequency at the input. SARUS is capable of advanced real-time computations such as synthetic aperture imaging. The system is built using fieldprogrammable gate...

  8. Simulation Study of Real Time 3-D Synthetic Aperture Sequential Beamforming for Ultrasound Imaging

    DEFF Research Database (Denmark)

    Hemmsen, Martin Christian; Rasmussen, Morten Fischer; Stuart, Matthias Bo

    2014-01-01

    in the main system. The real-time imaging capability is achieved using a synthetic aperture beamforming technique, utilizing the transmit events to generate a set of virtual elements that in combination can generate an image. The two core capabilities in combination is named Synthetic Aperture Sequential......This paper presents a new beamforming method for real-time three-dimensional (3-D) ultrasound imaging using a 2-D matrix transducer. To obtain images with sufficient resolution and contrast, several thousand elements are needed. The proposed method reduces the required channel count from...... Beamforming (SASB). Simulations are performed to evaluate the image quality of the presented method in comparison to Parallel beamforming utilizing 16 receive beamformers. As indicators for image quality the detail resolution and Cystic resolution are determined for a set of scatterers at a depth of 90mm...

  9. Directional synthetic aperture flow imaging using a dual stage beamformer approach

    DEFF Research Database (Denmark)

    Li, Ye; Jensen, Jørgen Arendt

    2011-01-01

    . The new method has been studied using the Field II simulations and experimental flow rig measurements. A linear array transducer with 7 MHz center frequency is used, and 64 elements are active to transmit and receive signals. The data is processed in two stages. The first stage has a fixed focus point......A new method for directional synthetic aperture flow imaging using a dual stage beamformer approach is presented. The velocity estimation is angle independent and the amount of calculations is reduced compared to full synthetic aperture, but still maintains all the advantages at the same time....... In the second stage, focal points are considered as virtual sources and data is beamformed along the flow direction. Then the velocities are estimated by finding the spatial shift between two signals. In the experimental measurements the angle between the transmit beam and flow vessel was 70 and a laminar flow...

  10. Heat Stroke

    DEFF Research Database (Denmark)

    Mørch, Sofie Søndergaard; Andersen, Johnny Dohn Holmgren; Bestle, Morten Heiberg

    2017-01-01

    not diagnosed until several days after admittance; hence treatment with cooling was delayed. Both patients were admitted to the intensive care unit, where they were treated with an external cooling device and received treatment for complications. Both cases ended fatally. As global warming continues, more heat......Heat stroke is an acute, life-threatening emergency characterized clinically by elevated body temperature and central nervous system dysfunction. Early recognition and treatment including aggressive cooling and management of life-threatening systemic complications are essential to reduce morbidity...... and mortality. This case report describes two Danish patients diagnosed with heat stroke syndrome during a heat wave in the summer of 2014. Both patients were morbidly obese and had several predisposing illnesses. However since heat stroke is a rare condition in areas with temperate climate, they were...

  11. 47 CFR 25.134 - Licensing provisions of Very Small Aperture Terminal (VSAT) and C-band Small Aperture Terminal...

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Licensing provisions of Very Small Aperture Terminal (VSAT) and C-band Small Aperture Terminal (CSAT) networks. 25.134 Section 25.134 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS...

  12. X-ray lenses with large aperture

    International Nuclear Information System (INIS)

    Simon, Markus

    2010-01-01

    Up to now, most X-ray imaging setups are based on absorption contrast imaging. There is a demand for focused X-rays in many X-ray analysis applications, either to increase the resolution of an imaging system, or, to reduce the time effort of an experiment through higher photon flux. For photon energies higher than 15 keV refractive X-ray optics are more efficient in comparison to non-refractive X-ray optics. The aim of this work was to develop X-ray lenses with large apertures and high transparency. By increasing the number of refracting surfaces while removing unnecessary lens material such lenses have been developed. Utilizing this approach the overall beam deflection angle is large with respect to the lens material it propagates through and so the transparency of the lens is increased. Within this work, X-ray lenses consisting of several thousands of prisms with an edge length in the range of micrometers have been developed and fabricated by deep X-ray lithography. Deep X-ray lithography enables high precision microstrucures with smooth sidewalls and large aspect ratios. The aperture of high-transparency X-ray lenses made this way is greater than 1 mm. They are suitable for photon energies in the range of 8 keV to 24 keV and offer a focal width of smaller than 10 μm at a transparency of around 40%. Furthermore, rolled X-ray lenses have been developed, that are made out of a microstructured polyimide film, which is cut according to the requirements regarding focal length and photon energy. The microstructured film is fabricated by molding, using an anisotropically etched silicon wafer as molding tool. Its mean roughness is in the range of nanometers. The film features prismatic structures, its surface topology is similar to an asparagus field. The measured diameter of the point focus was 18 μm to 31 μm, the calculated opticla efficiency was 37%. Future work will concentrate on increasing the aspect ratio of Prism Lenses and on increasing the rolling accuracy

  13. Electronic warfare receivers and receiving systems

    CERN Document Server

    Poisel, Richard A

    2014-01-01

    Receivers systems are considered the core of electronic warfare (EW) intercept systems. Without them, the fundamental purpose of such systems is null and void. This book considers the major elements that make up receiver systems and the receivers that go in them.This resource provides system design engineers with techniques for design and development of EW receivers for modern modulations (spread spectrum) in addition to receivers for older, common modulation formats. Each major module in these receivers is considered in detail. Design information is included as well as performance tradeoffs o

  14. Measurement of the optical fiber numeric aperture exposed to thermal and radiation aging

    Science.gov (United States)

    Vanderka, Ales; Bednarek, Lukas; Hajek, Lukas; Latal, Jan; Poboril, Radek; Zavodny, Petr; Vasinek, Vladimir

    2016-12-01

    This paper deals with the aging of optical fibers influenced by temperature and radiation. There are analyzed changes in the structure of the optical fiber, related to the propagation of light in the fiber structure. In this case for numerical aperture. For experimental measurement was used MM fiber OM1 with core diameter 62.5 μm, cladding diameter 125 μm in 2.8 mm secondary coating. Aging of the optical fiber was achieved with dry heat and radiation. For this purpose, we were using a temperature chamber with a stable temperature of 105 °C where the cables after two months. Cables were then irradiated with gamma radiation 60Co in doses of 1.5 kGy and then 60 kGy. These conditions simulated 50 years aging process of optical cables. According to European Standard EN 60793-1-43:2015 was created the automatic device for angular scan working with LabVIEW software interface. Numerical aperture was tested at a wavelength of 850 nm, with an output power 1 mW. Scanning angle was set to 50° with step 0.25°. Numerical aperture was calculated from the position where power has fallen from maximal power at e2 power. The measurement of each sample was performed 10 hours after thermal and radiation aging. The samples were subsequently tested after six months from the last irradiation. In conclusion, the results of the experiment were analyzed and compared.

  15. Motion measurement for synthetic aperture radar

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-01-01

    Synthetic Aperture Radar (SAR) measures radar soundings from a set of locations typically along the flight path of a radar platform vehicle. Optimal focusing requires precise knowledge of the sounding source locations in 3-D space with respect to the target scene. Even data driven focusing techniques (i.e. autofocus) requires some degree of initial fidelity in the measurements of the motion of the radar. These requirements may be quite stringent especially for fine resolution, long ranges, and low velocities. The principal instrument for measuring motion is typically an Inertial Measurement Unit (IMU), but these instruments have inherent limi ted precision and accuracy. The question is %22How good does an IMU need to be for a SAR across its performance space?%22 This report analytically relates IMU specifications to parametric requirements for SAR. - 4 - Acknowledgements Th e preparation of this report is the result of a n unfunded research and development activity . Although this report is an independent effort, it draws heavily from limited - release documentation generated under a CRADA with General Atomics - Aeronautical System, Inc. (GA - ASI), and under the Joint DoD/DOE Munitions Program Memorandum of Understanding. Sandia National Laboratories is a multi - program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of En ergy's National Nuclear Security Administration under contract AC04-94AL85000.

  16. PTBS segmentation scheme for synthetic aperture radar

    Science.gov (United States)

    Friedland, Noah S.; Rothwell, Brian J.

    1995-07-01

    The Image Understanding Group at Martin Marietta Technologies in Denver, Colorado has developed a model-based synthetic aperture radar (SAR) automatic target recognition (ATR) system using an integrated resource architecture (IRA). IRA, an adaptive Markov random field (MRF) environment, utilizes information from image, model, and neighborhood resources to create a discrete, 2D feature-based world description (FBWD). The IRA FBWD features are peak, target, background and shadow (PTBS). These features have been shown to be very useful for target discrimination. The FBWD is used to accrue evidence over a model hypothesis set. This paper presents the PTBS segmentation process utilizing two IRA resources. The image resource (IR) provides generic (the physics of image formation) and specific (the given image input) information. The neighborhood resource (NR) provides domain knowledge of localized FBWD site behaviors. A simulated annealing optimization algorithm is used to construct a `most likely' PTBS state. Results on simulated imagery illustrate the power of this technique to correctly segment PTBS features, even when vehicle signatures are immersed in heavy background clutter. These segmentations also suppress sidelobe effects and delineate shadows.

  17. Imaging with rotating slit apertures and rotating collimators

    International Nuclear Information System (INIS)

    Gindi, G.R.; Arendt, J.; Barrett, H.H.; Chiu, M.Y.; Ervin, A.; Giles, C.L.; Kujoory, M.A.; Miller, E.L.; Simpson, R.G.

    1982-01-01

    The statistical quality of conventional nuclear medical imagery is limited by the small signal collect through low-efficiency conventional apertures. Coded-aperture imaging overcomes this by employing a two-step process in which the object is first efficiently detected as an ''encoded'' form which does not resemble the object, and then filtered (or ''decoded'') to form an image. We present here the imaging properties of a class of time-modulated coded apertures which, unlike most coded apertures, encode projections of the object rather than the object itself. These coded apertures can reconstruct a volume object nontomographically, tomographically (one plane focused), or three-dimensionally. We describe a new decoding algorithm that reconstructs the object from its planar projections. Results of noise calculations are given, and the noise performance of these coded-aperture systems is compared to that of conventional counterparts. A hybrid slit-pinhole system which combines the imaging advantages of a rotating slit and a pinhole is described. A new scintillation detector which accurately measures the position of an event in one dimension only is presented, and its use in our coded-aperture system is outlined. Finally, results of imaging test objects and animals are given

  18. Imaging with rotating slit apertures and rotating collimators

    International Nuclear Information System (INIS)

    Gindi, G.R.; Arendt, J.; Barrett, H.H.; Chiu, M.Y.; Ervin, A.; Giles, C.L.; Kujoory, M.A.; Miller, E.L.; Simpson, R.G.

    1982-01-01

    The statistical quality of conventional nuclear medical imagery is limited by the small signal collected through low-efficiency conventional apertures. Coded-aperture imaging overcomes this by employing a two-step process in which the object is first efficiently detected as an encoded form which does not resemble the object, and then filtered (or decoded) to form an image. We present here the imaging properties of a class of time-modulated coded apertures which, unlike most coded apertures, encode projections of the object rather than the object itself. These coded apertures can reconstruct a volume object nontomographically, tomographically (one plane focused), or three-dimensionally. We describe a new decoding algorithm that reconstructs the object from its planar projections. Results of noise calculations are given, and the noise performance of these coded-aperture systems is compared to that of conventional counterparts. A hybrid slit-pinhole system which combines the imaging advantages of a rotating slit and a pinhole is described. A new scintillation detector which accurately measures the position of an event in one dimension only is presented, and its use in our coded-aperture system is outlined. Finally, results of imaging test objects and animals are given

  19. Optical antenna for a visible light communications receiver

    Science.gov (United States)

    Valencia-Estrada, Juan Camilo; García-Márquez, Jorge; Topsu, Suat; Chassagne, Luc

    2018-01-01

    Visible Light Communications (VLC) receivers adapted to be used in high transmission rates will eventually use either, high aperture lenses or non-linear optical elements capable of converting light arriving to the receiver into an electric signal. The high aperture lens case, reveals a challenge from an optical designers point-of-view. As a matter of fact, the lens must collect a wide aperture intensity flux using a limited aperture as its use is intended to portable devices. This last also limits both, lens thickness and its focal length. Here, we show a first design to be adapted to a VLC receiver that take these constraints into account. This paper describes a method to design catadioptric and monolithic lenses to be used as an optical collector of light entering from a near point light source as a spherical fan L with a wide acceptance angle α° and high efficiency. These lenses can be mass produced and therefore one can find many practical applications in VLC equipped devices. We show a first design for a near light source without magnification, and second one with a detector's magnification in a meridional section. We utilize rigorous geometric optics, vector analysis and ordinary differential equations.

  20. Dynamic Aperture Measurements at the Advanced Light Source

    International Nuclear Information System (INIS)

    Decking, W.; Robin, D.

    1999-01-01

    A large dynamic aperture for a storage ring is of importance for long lifetimes and a high injection efficiency. Measurements of the dynamic aperture of the third generation synchrotron light source Advanced Light Source (ALS) using beam excitation with kicker magnets are presented. The experiments were done for various accelerator conditions, allowing us to investigate the influence of different working points, chromaticities, insertion devices, etc.. The results are compared both with tracking calculations and a simple model for the dynamic aperture yielding good agreements. This gives us confidence in the predictability of the nonlinear accelerator model. This is especially important for future ALS upgrades as well as new storage ring designs

  1. Electromagnetic Formation Flight (EMFF) for Sparse Aperture Arrays

    Science.gov (United States)

    Kwon, Daniel W.; Miller, David W.; Sedwick, Raymond J.

    2004-01-01

    Traditional methods of actuating spacecraft in sparse aperture arrays use propellant as a reaction mass. For formation flying systems, propellant becomes a critical consumable which can be quickly exhausted while maintaining relative orientation. Additional problems posed by propellant include optical contamination, plume impingement, thermal emission, and vibration excitation. For these missions where control of relative degrees of freedom is important, we consider using a system of electromagnets, in concert with reaction wheels, to replace the consumables. Electromagnetic Formation Flight sparse apertures, powered by solar energy, are designed differently from traditional propulsion systems, which are based on V. This paper investigates the design of sparse apertures both inside and outside the Earth's gravity field.

  2. MD1405: Demonstration of forced dynamic aperture measurements at injection

    CERN Document Server

    Carlier, Felix Simon; Persson, Tobias Hakan Bjorn; Tomas Garcia, Rogelio; CERN. Geneva. ATS Department

    2017-01-01

    Accurate measurements of dynamic aperture become more important for the LHC as it advances into increasingly nonlinear regimes of operations, as well as for the High Luminosity LHC where machine nonlinearities will have a significantly larger impact. Direct dynamic aperture measurements at top energy in the LHC are challenging, and conventional single kick methods are not viable. Dynamic aperture measurements under forced oscillation of AC dipoles have been proposed as s possible alternative observable. A first demonstration of forced DA measurements at injections energy is presented.

  3. Complementary bowtie aperture for localizing and enhancing optical magnetic field

    Science.gov (United States)

    Zhou, Nan; Kinzel, Edward C.; Xu, Xianfan

    2011-08-01

    Nanoscale bowtie antenna and bowtie aperture antenna have been shown to generate strongly enhanced and localized electric fields below the diffraction limit in the optical frequency range. According to Babinet's principle, their complements will be efficient for concentrating and enhancing magnetic fields. In this Letter, we discuss the enhancement of magnetic field intensity of nanoscale complementary bowtie aperture as well as complementary bowtie aperture antenna, or diabolo nanoantenna. We show that the complementary bowtie antenna resonates at a smaller wavelength and thus is more suitable for applications near visible wavelengths. The near-field magnetic intensity can be further enhanced by the addition of groove structures that scatter surface plasmon.

  4. High-contrast imaging with an arbitrary aperture: Active compensation of aperture discontinuities

    International Nuclear Information System (INIS)

    Pueyo, Laurent; Norman, Colin

    2013-01-01

    We present a new method to achieve high-contrast images using segmented and/or on-axis telescopes. Our approach relies on using two sequential deformable mirrors (DMs) to compensate for the large amplitude excursions in the telescope aperture due to secondary support structures and/or segment gaps. In this configuration the parameter landscape of DM surfaces that yield high-contrast point-spread functions is not linear, and nonlinear methods are needed to find the true minimum in the optimization topology. We solve the highly nonlinear Monge-Ampere equation that is the fundamental equation describing the physics of phase-induced amplitude modulation. We determine the optimum configuration for our two sequential DM system and show that high-throughput and high-contrast solutions can be achieved using realistic surface deformations that are accessible using existing technologies. We name this process Active Compensation of Aperture Discontinuities (ACAD). We show that for geometries similar to the James Webb Space Telescope, ACAD can attain at least 10 –7 in contrast and an order of magnitude higher for both the future extremely large telescopes and on-axis architectures reminiscent of the Hubble Space Telescope. We show that the converging nonlinear mappings resulting from our DM shapes actually damp near-field diffraction artifacts in the vicinity of the discontinuities. Thus, ACAD actually lowers the chromatic ringing due to diffraction by segment gaps and struts while not amplifying the diffraction at the aperture edges beyond the Fresnel regime. This outer Fresnel ringing can be mitigated by properly designing the optical system. Consequently, ACAD is a true broadband solution to the problem of high-contrast imaging with segmented and/or on-axis apertures. We finally show that once the nonlinear solution is found, fine tuning with linear methods used in wavefront control can be applied to further contrast by another order of magnitude. Generally speaking, the

  5. Heating in toroidal plasmas

    International Nuclear Information System (INIS)

    Knoepfel, H.; Mazzitelli, G.

    1984-01-01

    The article is a rather detailed report on the highlights in the area of the ''Heating in toroidal plasmas'', as derived from the presentations and discussions at the international symposium with the same name, held in Rome, March 1984. The symposium covered both the physics (experiments and theory) and technology of toroidal fusion plasma heating. Both large fusion devices (either already in operation or near completion) requiring auxiliary heating systems at the level of tens of megawatts, as well as physics of their heating processes and their induced side effects (as studied on smaller devices), received attention. Substantial progress was reported on the broad front of auxiliary plasma heating and Ohmic heating. The presentation of the main conclusions of the symposium is divided under the following topics: neutral-beam heating, Alfven wave heating, ion cyclotron heating, lower hybrid heating, RF current drive, electron cyclotron heating, Ohmic heating and special contributions

  6. The LASS [Larger Aperture Superconducting Solenoid] spectrometer

    International Nuclear Information System (INIS)

    Aston, D.; Awaji, N.; Barnett, B.

    1986-04-01

    LASS is the acronym for the Large Aperture Superconducting Solenoid spectrometer which is located in an rf-separated hadron beam at the Stanford Linear Accelerator Center. This spectrometer was constructed in order to perform high statistics studies of multiparticle final states produced in hadron reactions. Such reactions are frequently characterized by events having complicated topologies and/or relatively high particle multiplicity. Their detailed study requires a spectrometer which can provide good resolution in momentum and position over almost the entire solid angle subtended by the production point. In addition, good final state particle identification must be available so that separation of the many kinematically-overlapping final states can be achieved. Precise analyses of the individual reaction channels require high statistics, so that the spectrometer must be capable of high data-taking rates in order that such samples can be acquired in a reasonable running time. Finally, the spectrometer must be complemented by a sophisticated off-line analysis package which efficiently finds tracks, recognizes and fits event topologies and correctly associates the available particle identification information. This, together with complicated programs which perform specific analysis tasks such as partial wave analysis, requires a great deal of software effort allied to a very large computing capacity. This paper describes the construction and performance of the LASS spectrometer, which is an attempt to realize the features just discussed. The configuration of the spectrometer corresponds to the data-taking on K + and K - interactions in hydrogen at 11 GeV/c which took place in 1981 and 1982. This constitutes a major upgrade of the configuration used to acquire lower statistics data on 11 GeV/c K - p interactions during 1977 and 1978, which is also described briefly

  7. RADARSAT-1 synthetic aperture radar analysis

    Energy Technology Data Exchange (ETDEWEB)

    Simecek-Beatty, D. [National Oceanic and Atmospheric Adminstration, National Ocean Service, Seattle, WA (United States). Office of Response and Restoration; Pichel, W.G. [National Oceanic and Atmospheric Administration, National Environmental Satellite, Data and Information Service, Camp Springs, MD (United States). Office of Research and Applications

    2006-07-01

    The M/V Selendang Ayu grounded off Unalaska Island in Alaska on December 8, 2004, and spilled over 1270 m{sup 3} of oil and an unknown quantity of soybeans. The freighter grounded nearshore in a high-wave energy zone along a remote and rugged coastline, a terrain which can cause difficulties for remote sensors in detecting oil slicks. In addition, guano, kelp beds, whale and fish sperm, and releases from fishing activities generated biogenic films on the sea surface that had a signature similar to that of petroleum films. RADARSAT-1 synthetic aperture radar (SAR) imagery was used as part of the response effort to assist in the pollution monitoring effort. This paper described the methodology and results of the RADARSAT-1 analysis. Detailed information on the spill response was reported daily, and provided an opportunity to compare field observations with RADARSAT-1 SAR imagery. Observers recorded observations onto electronic maps during 35 aerial surveillance flights. Fifty-seven incident reports describing the vessel status were also used for comparison. Using screening criteria for the favorable wind and wave conditions, 37 images were available for viewing the wreck, and 22 images were acceptable for oil slick viewing. Image analysis for the wreck suggested that the sensor has the resolution and capability to monitor a grounded freighter. Visual inspection of the images showed that SAR can capture changes in vessel status, such as the gradual sinking of the bow. However, SAR's oil slick detection capability was disappointing due to the significant number of biogenic films in the nearshore areas of Alaska. It was concluded that future work should concentrate on developing a ranking system to indicate analysis confidence that a particular image does in fact contain a petroleum pocket. 25 refs., 2 tabs., 10 figs.

  8. The LASS (Larger Aperture Superconducting Solenoid) spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Aston, D.; Awaji, N.; Barnett, B.; Bienz, T.; Bierce, R.; Bird, F.; Bird, L.; Blockus, D.; Carnegie, R.K.; Chien, C.Y.

    1986-04-01

    LASS is the acronym for the Large Aperture Superconducting Solenoid spectrometer which is located in an rf-separated hadron beam at the Stanford Linear Accelerator Center. This spectrometer was constructed in order to perform high statistics studies of multiparticle final states produced in hadron reactions. Such reactions are frequently characterized by events having complicated topologies and/or relatively high particle multiplicity. Their detailed study requires a spectrometer which can provide good resolution in momentum and position over almost the entire solid angle subtended by the production point. In addition, good final state particle identification must be available so that separation of the many kinematically-overlapping final states can be achieved. Precise analyses of the individual reaction channels require high statistics, so that the spectrometer must be capable of high data-taking rates in order that such samples can be acquired in a reasonable running time. Finally, the spectrometer must be complemented by a sophisticated off-line analysis package which efficiently finds tracks, recognizes and fits event topologies and correctly associates the available particle identification information. This, together with complicated programs which perform specific analysis tasks such as partial wave analysis, requires a great deal of software effort allied to a very large computing capacity. This paper describes the construction and performance of the LASS spectrometer, which is an attempt to realize the features just discussed. The configuration of the spectrometer corresponds to the data-taking on K and K interactions in hydrogen at 11 GeV/c which took place in 1981 and 1982. This constitutes a major upgrade of the configuration used to acquire lower statistics data on 11 GeV/c K p interactions during 1977 and 1978, which is also described briefly.

  9. Mathematical Problems in Synthetic Aperture Radar

    Science.gov (United States)

    Klein, Jens

    2010-10-01

    This thesis is concerned with problems related to Synthetic Aperture Radar (SAR). The thesis is structured as follows: The first chapter explains what SAR is, and the physical and mathematical background is illuminated. The following chapter points out a problem with a divergent integral in a common approach and proposes an improvement. Numerical comparisons are shown that indicate that the improvements allow for a superior image quality. Thereafter the problem of limited data is analyzed. In a realistic SAR-measurement the data gathered from the electromagnetic waves reflected from the surface can only be collected from a limited area. However the reconstruction formula requires data from an infinite distance. The chapter gives an analysis of the artifacts which can obscure the reconstructed images due to this problem. Additionally, some numerical examples are shown that point to the severity of the problem. In chapter 4 the fact that data is available only from a limited area is used to propose a new inversion formula. This inversion formula has the potential to make it easier to suppress artifacts due to limited data and, depending on the application, can be refined to a fast reconstruction formula. In the penultimate chapter a solution to the problem of left-right ambiguity is presented. This problem exists since the invention of SAR and is caused by the geometry of the measurements. This leads to the fact that only symmetric images can be obtained. With the solution from this chapter it is possible to reconstruct not only the even part of the reflectivity function, but also the odd part, thus making it possible to reconstruct asymmetric images. Numerical simulations are shown to demonstrate that this solution is not affected by stability problems as other approaches have been. The final chapter develops some continuative ideas that could be pursued in the future.

  10. Three-Dimensional Terahertz Coded-Aperture Imaging Based on Single Input Multiple Output Technology

    Directory of Open Access Journals (Sweden)

    Shuo Chen

    2018-01-01

    Full Text Available As a promising radar imaging technique, terahertz coded-aperture imaging (TCAI can achieve high-resolution, forward-looking, and staring imaging by producing spatiotemporal independent signals with coded apertures. In this paper, we propose a three-dimensional (3D TCAI architecture based on single input multiple output (SIMO technology, which can reduce the coding and sampling times sharply. The coded aperture applied in the proposed TCAI architecture loads either purposive or random phase modulation factor. In the transmitting process, the purposive phase modulation factor drives the terahertz beam to scan the divided 3D imaging cells. In the receiving process, the random phase modulation factor is adopted to modulate the terahertz wave to be spatiotemporally independent for high resolution. Considering human-scale targets, images of each 3D imaging cell are reconstructed one by one to decompose the global computational complexity, and then are synthesized together to obtain the complete high-resolution image. As for each imaging cell, the multi-resolution imaging method helps to reduce the computational burden on a large-scale reference-signal matrix. The experimental results demonstrate that the proposed architecture can achieve high-resolution imaging with much less time for 3D targets and has great potential in applications such as security screening, nondestructive detection, medical diagnosis, etc.

  11. Preliminary study of synthetic aperture tissue harmonic imaging on in-vivo data

    Science.gov (United States)

    Rasmussen, Joachim H.; Hemmsen, Martin C.; Madsen, Signe S.; Hansen, Peter M.; Nielsen, Michael B.; Jensen, Jørgen A.

    2013-03-01

    A method for synthetic aperture tissue harmonic imaging is investigated. It combines synthetic aperture sequen- tial beamforming (SASB) with tissue harmonic imaging (THI) to produce an increased and more uniform spatial resolution and improved side lobe reduction compared to conventional B-mode imaging. Synthetic aperture sequential beamforming tissue harmonic imaging (SASB-THI) was implemented on a commercially available BK 2202 Pro Focus UltraView ultrasound system and compared to dynamic receive focused tissue harmonic imag- ing (DRF-THI) in clinical scans. The scan sequence that was implemented on the UltraView system acquires both SASB-THI and DRF-THI simultaneously. Twenty-four simultaneously acquired video sequences of in-vivo abdominal SASB-THI and DRF-THI scans on 3 volunteers of 4 different sections of liver and kidney tissues were created. Videos of the in-vivo scans were presented in double blinded studies to two radiologists for image quality performance scoring. Limitations to the systems transmit stage prevented user defined transmit apodization to be applied. Field II simulations showed that side lobes in SASB could be improved by using Hanning transmit apodization. Results from the image quality study show, that in the current configuration on the UltraView system, where no transmit apodization was applied, SASB-THI and DRF-THI produced equally good images. It is expected that given the use of transmit apodization, SASB-THI could be further improved.

  12. Autofocus algorithm for synthetic aperture radar imaging with large curvilinear apertures

    Science.gov (United States)

    Bleszynski, E.; Bleszynski, M.; Jaroszewicz, T.

    2013-05-01

    An approach to autofocusing for large curved synthetic aperture radar (SAR) apertures is presented. Its essential feature is that phase corrections are being extracted not directly from SAR images, but rather from reconstructed SAR phase-history data representing windowed patches of the scene, of sizes sufficiently small to allow the linearization of the forward- and back-projection formulae. The algorithm processes data associated with each patch independently and in two steps. The first step employs a phase-gradient-type method in which phase correction compensating (possibly rapid) trajectory perturbations are estimated from the reconstructed phase history for the dominant scattering point on the patch. The second step uses phase-gradient-corrected data and extracts the absolute phase value, removing in this way phase ambiguities and reducing possible imperfections of the first stage, and providing the distances between the sensor and the scattering point with accuracy comparable to the wavelength. The features of the proposed autofocusing method are illustrated in its applications to intentionally corrupted small-scene 2006 Gotcha data. The examples include the extraction of absolute phases (ranges) for selected prominent point targets. They are then used to focus the scene and determine relative target-target distances.

  13. Highly uniform parallel microfabrication using a large numerical aperture system

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zi-Yu; Su, Ya-Hui, E-mail: ustcsyh@ahu.edu.cn, E-mail: dongwu@ustc.edu.cn [School of Electrical Engineering and Automation, Anhui University, Hefei 230601 (China); Zhang, Chen-Chu; Hu, Yan-Lei; Wang, Chao-Wei; Li, Jia-Wen; Chu, Jia-Ru; Wu, Dong, E-mail: ustcsyh@ahu.edu.cn, E-mail: dongwu@ustc.edu.cn [CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026 (China)

    2016-07-11

    In this letter, we report an improved algorithm to produce accurate phase patterns for generating highly uniform diffraction-limited multifocal arrays in a large numerical aperture objective system. It is shown that based on the original diffraction integral, the uniformity of the diffraction-limited focal arrays can be improved from ∼75% to >97%, owing to the critical consideration of the aperture function and apodization effect associated with a large numerical aperture objective. The experimental results, e.g., 3 × 3 arrays of square and triangle, seven microlens arrays with high uniformity, further verify the advantage of the improved algorithm. This algorithm enables the laser parallel processing technology to realize uniform microstructures and functional devices in the microfabrication system with a large numerical aperture objective.

  14. The development of deep learning in synthetic aperture radar imagery

    CSIR Research Space (South Africa)

    Schwegmann, Colin P

    2017-05-01

    Full Text Available sensing techniques but comes at the price of additional complexities. To adequately cope with these, researchers have begun to employ advanced machine learning techniques known as deep learning to Synthetic Aperture Radar data. Deep learning represents...

  15. Ambiguity Of Doppler Centroid In Synthetic-Aperture Radar

    Science.gov (United States)

    Chang, Chi-Yung; Curlander, John C.

    1991-01-01

    Paper discusses performances of two algorithms for resolution of ambiguity in estimated Doppler centroid frequency of echoes in synthetic-aperture radar. One based on range-cross-correlation technique, other based on multiple-pulse-repetition-frequency technique.

  16. Ultra-Lightweight Large Aperture Support Structures, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Ultra-lightweight membranes may prove to be very attractive for large aperture systems, but their value will be fully realized only if they are mated with equally...

  17. Foamed Antenna Support for Very Large Apertures, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed Phase I program will demonstrate the feasibility of the in-space production of large aperture antenna structures. The use of a novel open cell foam,...

  18. Stellwagen Bank National Marine Sanctuary - Synthetic Aperture Radar (SAR) Imagery

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This geodatabase contains Synthetic Aperture Radar images (SAR), which consist of a fine resolution (12.5-50m), two-dimensional radar backscatter map of the...

  19. Scaling Laws for Dynamic Aperture due to Chromatic Sextupoles

    CERN Document Server

    Scandale, Walter

    1997-01-01

    Scaling laws for the dynamic aperture due to chromatic sextupoles are investigated. The problem is addressed in a simplified lattice model containing 4 N identical cells and one linear betatron phase shifter to break the overall cell-lattice symmetry. Two families of chromatic sextupoles are used to compensate the natural chromaticity. Analytical formulae for the dynamic apertur as a function of the number of cells and of the cell length are found and confirmed through computer tracking.

  20. Transmission of high-power electron beams through small apertures

    International Nuclear Information System (INIS)

    Tschalär, C.; Alarcon, R.; Balascuta, S.; Benson, S.V.; Bertozzi, W.; Boyce, J.R.; Cowan, R.; Douglas, D.; Evtushenko, P.; Fisher, P.; Ihloff, E.; Kalantarians, N.; Kelleher, A.; Legg, R.; Milner, R.G.; Neil, G.R.; Ou, L.; Schmookler, B.; Tennant, C.; Williams, G.P.

    2013-01-01

    Tests were performed to pass a 100 MeV, 430 kWatt c.w. electron beam from the energy-recovery linac at the Jefferson Laboratory's FEL facility through a set of small apertures in a 127 mm long aluminum block. Beam transmission losses of 3 p.p.m. through a 2 mm diameter aperture were maintained during a 7 h continuous run

  1. Phase Centers of Subapertures in a Tapered Aperture Array.

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin W. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Bickel, Douglas L. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-11-01

    Antenna apertures that are tapered for sidelobe control can also be parsed into subapertures for Direction of Arrival (DOA) measurements. However, the aperture tapering complicates phase center location for the subapertures, knowledge of which is critical for proper DOA calculation. In addition, tapering affects subaperture gains, making gain dependent on subaperture position. Techniques are presented to calculate subaperture phase center locations, and algorithms are given for equalizing subapertures’ gains. Sidelobe characteristics and mitigation are also discussed.

  2. Apodised aperture using rotation of plane of polarization

    International Nuclear Information System (INIS)

    Simmons, W.W.; Leppelmeier, G.W.; Johnson, B.C.

    1975-01-01

    An apodised aperture based on the rotation of plane of polarization producing desirable characteristics on a transmitted light beam such as beam profiling in high flux laser amplifier chains is described. The apodised aperture is made with a lossless element by using one or more polarizers and/or analyzers and magneto-optical Faraday means for selectively rotating the plane of polarized radiation over the cross section to effect the desired apodisation

  3. Dish/stirling hybrid-receiver

    Science.gov (United States)

    Mehos, Mark S.; Anselmo, Kenneth M.; Moreno, James B.; Andraka, Charles E.; Rawlinson, K. Scott; Corey, John; Bohn, Mark S.

    2002-01-01

    A hybrid high-temperature solar receiver is provided which comprises a solar heat-pipe-receiver including a front dome having a solar absorber surface for receiving concentrated solar energy, a heat pipe wick, a rear dome, a sidewall joining the front and the rear dome, and a vapor and a return liquid tube connecting to an engine, and a fossil fuel fired combustion system in radial integration with the sidewall for simultaneous operation with the solar heat pipe receiver, the combustion system comprising an air and fuel pre-mixer, an outer cooling jacket for tangentially introducing and cooling the mixture, a recuperator for preheating the mixture, a burner plenum having an inner and an outer wall, a porous cylindrical metal matrix burner firing radially inward facing a sodium vapor sink, the mixture ignited downstream of the matrix forming combustion products, an exhaust plenum, a fossil-fuel heat-input surface having an outer surface covered with a pin-fin array, the combustion products flowing through the array to give up additional heat to the receiver, and an inner surface covered with an extension of the heat-pipe wick, a pin-fin shroud sealed to the burner and exhaust plenums, an end seal, a flue-gas diversion tube and a flue-gas valve for use at off-design conditions to limit the temperature of the pre-heated air and fuel mixture, preventing pre-ignition.

  4. Preliminary In-Vivo Evaluation of Convex Array Synthetic Aperture Imaging

    DEFF Research Database (Denmark)

    Pedersen, Morten Høgholm; Gammelmark, Kim; Jensen, Jørgen Arendt

    2004-01-01

    of STA imaging in comparison to conventional imaging. The purpose is to evaluate whether STA imaging is feasible in-vivo. and whether the image quality obtained is comparable to traditional scanned imaging in terms of penetration depth, spatial resolution, contrast resolution, and artifacts. Acquisition...... was done using our RASMUS research scanner and a 5.5 MHz convex array transducer. STA imaging applies spherical wave emulation using multi-element subapertures and a 20 mus linear FM signal as excitation pulse. For conventional imaging a 64 element aperture was used in transmit and receive with a 1.5 cycle...

  5. Method for In-vivo Synthetic Aperture B-flow Imaging

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    2004-01-01

    . The signal received by the 64 elements closets to the en-fission are sampled at 40 MHz and 12 bits at a pulse repetition frequency of 3 kHz. A full second of data is acquired from a healthy 29 years old male volunteer from the carotid artery. The data is beamformed, combined, and echo canceled off-line. High-pass......B-flow techniques introduced in commercial scanners have been useful is visualizing places of flow. The method is relatively independent of flow angle and can give a good perception of vessel location and turbulence. This paper introduces a technique for making a synthetic aperture B-flow system...

  6. Solar receiver with integrated optics

    Science.gov (United States)

    Jiang, Lun; Winston, Roland

    2012-10-01

    The current challenge for PV/Thermal (PV/T) systems is the reduction of radiation heat loss. Compared to solar thermal selective coating, the solar cells cannot be used as an efficient thermal absorber due to their large emissivity of the encapsulation material. Many commercial PV/T products therefore require a high concentration (more than 10x) to reach an acceptable thermal efficiency for their receivers. Such a concentration system inevitably has to track or semi-track, which induces additional cost and collects only the direct radiation from the sun. We propose a new PV/T design using a vacuum encapsulated thin film cell to solve this problem. The proposed design also collects the diffuse sun light efficiently by using an external compound parabolic concentrator (XCPC). Since the transparent electrode (TCO) of thin film cell is inherently transparent in visible light and reflective beyond infrared, this design uses this layer instead of the conventional solar cell encapsulation as the outmost heat loss surface. By integrating such a vacuum design with a tube shaped absorber, we reduce the complexity of conducting the heat energy and electricity out of the device. A low concentration standalone non-tracking solar collector is proposed in this paper. We also analyzed the thermosyphon system configuration using heat transfer and ray tracing models. The economics of such a receiver are presented.

  7. Transport of Particle Swarms Through Variable Aperture Fractures

    Science.gov (United States)

    Boomsma, E.; Pyrak-Nolte, L. J.

    2012-12-01

    Particle transport through fractured rock is a key concern with the increased use of micro- and nano-size particles in consumer products as well as from other activities in the sub- and near surface (e.g. mining, industrial waste, hydraulic fracturing, etc.). While particle transport is often studied as the transport of emulsions or dispersions, particles may also enter the subsurface from leaks or seepage that lead to particle swarms. Swarms are drop-like collections of millions of colloidal-sized particles that exhibit a number of unique characteristics when compared to dispersions and emulsions. Any contaminant or engineered particle that forms a swarm can be transported farther, faster, and more cohesively in fractures than would be expected from a traditional dispersion model. In this study, the effects of several variable aperture fractures on colloidal swarm cohesiveness and evolution were studied as a swarm fell under gravity and interacted with the fracture walls. Transparent acrylic was used to fabricate synthetic fracture samples with (1) a uniform aperture, (2) a converging region followed by a uniform region (funnel shaped), (3) a uniform region followed by a diverging region (inverted funnel), and (4) a cast of a an induced fracture from a carbonate rock. All of the samples consisted of two blocks that measured 100 x 100 x 50 mm. The minimum separation between these blocks determined the nominal aperture (0.5 mm to 20 mm). During experiments a fracture was fully submerged in water and swarms were released into it. The swarms consisted of a dilute suspension of 3 micron polystyrene fluorescent beads (1% by mass) with an initial volume of 5μL. The swarms were illuminated with a green (525 nm) LED array and imaged optically with a CCD camera. The variation in fracture aperture controlled swarm behavior. Diverging apertures caused a sudden loss of confinement that resulted in a rapid change in the swarm's shape as well as a sharp increase in its velocity

  8. Oil Slick Characterization Using Synthetic Aperture Radar

    Science.gov (United States)

    Jones, C. E.; Breivik, O.; Brekke, C.; Skrunes, S.; Holt, B.

    2015-12-01

    Oil spills are a hazard worldwide with potential of causing high impact disasters, and require an active oil spill response capability to protect personnel, the ecosystem, and the energy supply. As the amount of oil in traditionally accessible reserves decline, there will be increasing oil extraction from the Arctic and deep-water wells, both new sources with high risk and high cost for monitoring and response. Although radar has long been used for mapping the spatial extent of oil slicks, it is only since the Deepwater Horizon spill that synthetic aperture radar (SAR) has been shown capable of characterizing oil properties within a slick, and therefore useful for directing response to the recoverable thicker slicks or emulsions. Here we discuss a 2015 Norwegian oil-on-water spill experiment in which emulsions of known quantity and water-to-oil ratio along with a look-alike slick of plant oil were released in the North Sea and imaged with polarimetric SAR (PolSAR) by NASA's UAVSAR instrument for several hours following release. During the experiment, extensive in situ measurements were made from ship or aircraft with meteorological instruments, released drift buoys, and optical/IR imagers. The experiment was designed to provide validation data for development of a physical model relating polarization-dependent electromagnetic scattering to the dielectric properties of oil mixed with ocean water, which is the basis for oil characterization with SAR. Data were acquired with X-, C-, and L-band satellite-based SARs to enable multi-frequency comparison of characterization capabilities. In addition, the data are used to develop methods to differentiate mineral slicks from biogenic look-alikes, and to better understand slick weathering and dispersion. The results will provide a basis for modeling oil-in-ice spills, currently a high priority for nations involved in Arctic oil exploration. Here we discuss the Norwegian experiment, the validation data, and the results of

  9. Wind energy applications of synthetic aperture radar

    Energy Technology Data Exchange (ETDEWEB)

    Bruun Christiansen, M.

    2006-11-15

    Synthetic aperture radars (SAR), mounted on satellites or aircraft, have proven useful for ocean wind mapping. Wind speeds at the height 10 m may be retrieved from measurements of radar backscatter using empirical model functions. The resulting wind fields are valuable in offshore wind energy planning as a supplement to on site measurements, which are costly and sparse, and model wind fields, which are not fully validated. Two applications of SAR measurements in offshore wind energy planning are addressed here: the study of wind farm wake effects and the potential of using SAR winds in offshore wind resource assessment. Firstly, wind wakes behind two large offshore wind farms in Denmark Horns Rev and Nysted are identified. A region of reduced wind speed is found downstream of both wind farms from the SAR wind fields. The wake extent and magnitude depends on the wind speed, the atmospheric stability, and the fraction of turbines operating. Wind farm wake effects are detected up to 20 km downwind of the last turbine. This distance is longer than predicted by state-of-the art wake models. Wake losses are typically 10-20% near the wind farms. Secondly, the potential of using SAR wind maps in offshore wind resource assessment is investigated. The resource assessment is made through Weibull fitting to frequency observations of wind speed and requires at least 100 satellite observations per year for a given site of interest. Predictions of the energy density are very sensitive to the wind speed and the highest possible accuracy on SAR wind retrievals is therefore sought. A 1.1 m s{sup -1} deviation on the mean wind speed is found through comparison with mast measurements at Horns Rev. The accuracy on mean wind speeds and energy densities found from satellite measurements varies with different empirical model functions. Additional uncertainties are introduced by the infrequent satellite sampling at fixed times of the day. The accuracy on satellite based wind resource

  10. Central receiver solar thermal power system, Phase 1. CDRL Item 2. Pilot plant preliminary design report. Volume V. Thermal storage subsystem. [Sensible heat storage using Caloria HT43 and mixture of gravel and sand

    Energy Technology Data Exchange (ETDEWEB)

    Hallet, Jr., R. W.; Gervais, R. L.

    1977-10-01

    The proposed 100-MWe Commercial Plant Thermal Storage System (TSS) employs sensible heat storage using dual liquid and solid media for the heat storage in each of four tanks, with the thermocline principle applied to provide high-temperature, extractable energy independent of the total energy stored. The 10-MW Pilot Plant employs a similar system except uses only a single tank. The high-temperature organic fluid Caloria HT43 and a rock mixture of river gravel and No. 6 silica sand were selected for heat storage in both systems. The system design, installation, performance testing, safety characteristics, and specifications are described in detail. (WHK)

  11. Receiver Test Selection Criteria

    Science.gov (United States)

    2015-03-12

    The DOT requests that GPS manufacturers submit receivers for test in the following TWG categories: - Aviation (non-certified), cellular, general location/navigation, high precision, timing, networks, and space-based receivers - Each receiver should b...

  12. An Array of Optical Receivers for Deep-Space Communications

    Science.gov (United States)

    Vilnrotter, Chi-Wung; Srinivasan, Meera; Andrews, Kenneth

    2007-01-01

    An array of small optical receivers is proposed as an alternative to a single large optical receiver for high-data-rate communications in NASA s Deep Space Network (DSN). Because the telescope for a single receiver capable of satisfying DSN requirements must be greater than 10 m in diameter, the design, building, and testing of the telescope would be very difficult and expensive. The proposed array would utilize commercially available telescopes of 1-m or smaller diameter and, therefore, could be developed and verified with considerably less difficulty and expense. The essential difference between a single-aperture optical-communications receiver and an optical-array receiver is that a single-aperture receiver focuses all of the light energy it collects onto the surface of an optical detector, whereas an array receiver focuses portions of the total collected energy onto separate detectors, optically detects each fractional energy component, then combines the electrical signal from the array of detector outputs to form the observable, or "decision statistic," used to decode the transmitted data. A conceptual block diagram identifying the key components of the optical-array receiver suitable for deep-space telemetry reception is shown in the figure. The most conspicuous feature of the receiver is the large number of small- to medium-size telescopes, with individual apertures and number of telescopes selected to make up the desired total collecting area. This array of telescopes is envisioned to be fully computer- controlled via the user interface and prediction-driven to achieve rough pointing and tracking of the desired spacecraft. Fine-pointing and tracking functions then take over to keep each telescope pointed toward the source, despite imperfect pointing predictions, telescope-drive errors, and vibration caused by wind.

  13. Large Aperture, Scanning, L-Band SAR

    Science.gov (United States)

    Moussessian, Alina; DelCastillo, Linda; Bach, Vinh; Grando, Maurio; Quijano, Ubaldo; Smith, Phil; Zawadzki, Mark

    2011-01-01

    We have developed the first L-band membrane-based active phased array. The antenna is a 16x16 element patch array with dimensions of 2.3mx2.6m. The array uses membrane-compatible Transmit/Receive (T/R) modules for electronic beam steering. We will discuss the antenna design, the fabrication of this large array, the T/R module development, the signal distribution approach and the measured results of the array

  14. ASTRID© - Advanced Solar Tubular ReceIver Design: A powerful tool for receiver design and optimization

    Science.gov (United States)

    Frantz, Cathy; Fritsch, Andreas; Uhlig, Ralf

    2017-06-01

    In solar tower power plants the receiver is one of the critical components. It converts the solar radiation into heat and must withstand high heat flux densities and high daily or even hourly gradients (due to passage of clouds). For this reason, the challenge during receiver design is to find a reasonable compromise between receiver efficiency, reliability, lifetime and cost. There is a strong interaction between the heliostat field, the receiver and the heat transfer fluid. Therefore, a proper receiver design needs to consider these components within the receiver optimization. There are several design and optimization tools for receivers, but most of them focus only on the receiver, ignoring the heliostat field and other parts of the plant. During the last years DLR developed the ASTRIDcode for tubular receiver concept simulation. The code comprises both a high and a low-detail model. The low-detail model utilizes a number of simplifications which allow the user to screen a high number of receiver concepts for optimization purposes. The high-detail model uses a FE model and is able to compute local absorber and salt temperatures with high accuracy. One key strength of the ASTRIDcode is its interface to a ray tracing software which simulates a realistic heat flux distributions on the receiver surface. The results generated by the ASTRIDcode have been validated by CFD simulations and measurement data.

  15. Layout of heating units for solar-heated gas turbine systems with paraboloid collectors. Die Auslegung von Erhitzern Solar beheizter Gasturbinenanlagen mit Paraboloidkollektoren

    Energy Technology Data Exchange (ETDEWEB)

    Seifert, P

    1983-07-04

    Solar energy is converted in a gas turbine plant, with solar radiation collected in a parabolic collector and reflected into a hollow receiver. The receiver, which is rigidly connected to the collector, consists of a conical bottom part and a cylindrical upper part. The highly focussed radiation enters through the aperture of the conus. The cool, compressed working fluid of the gas turbine flows through pipes arranged in front of the cylindrical inner wall. The distribution of the radiation was studied as well as the resulting receiver wall temperature, radiation losses and useful heat absorbed by the working fluid. Temperature distributions and three-dimensional fields of thermal stresses were calculated. The influence of geometric and thermodynamic parameters on the stresses inside the pipes was studied in consideration of thermal stresses and stresses due to working fluid pressure. The findings will help to optimize the heating surface load, material utilisation, and efficiency of the receiver. The interdependences between receiver characteristics and gas turbine operation are explained.

  16. Adjustable liquid aperture to eliminate undesirable light in holographic projection.

    Science.gov (United States)

    Wang, Di; Liu, Chao; Li, Lei; Zhou, Xin; Wang, Qiong-Hua

    2016-02-08

    In this paper, we propose an adjustable liquid aperture to eliminate the undesirable light in a holographic projection. The aperture is based on hydrodynamic actuation. A chamber is formed with a cylindrical tube. A black droplet is filled in the sidewall of the cylinder tube and the outside space is the transparent oil which is immiscible with the black droplet. An ultrathin glass sheet is attached on the bottom substrate of the device and a black shading film is secured to the central area of the glass sheet. By changing the volume of the black droplet, the black droplet will move to the middle or sidewall due to hydrodynamic actuation, so the device can be used as an adjustable aperture. A divergent spherical wave and a solid lens are used to separate the focus planes of the reconstructed image and diffraction beams induced by the liquid crystal on silicon in the holographic projection. Then the aperture is used to eliminate the diffraction beams by adjusting the size of the liquid aperture and the holographic projection does not have undesirable light.

  17. Aperture referral in dioptric systems with stigmatic elements

    Directory of Open Access Journals (Sweden)

    W. F. Harris

    2012-12-01

    Full Text Available A previous paper develops the general theory of aperture referral in linear optics and shows how several ostensibly distinct concepts, including the blur patch on the retina, the effective corneal patch, the projective field and the field of view, are now unified as particular applications of the general theory.  The theory allows for astigmatism and heterocentricity.  Symplecticity and the generality of the approach, however, make it difficult to gain insight and mean that the material is not accessible to readers unfamiliar with matrices and linear algebra. The purpose of this paper is to examine whatis, perhaps, the most important special case, that in which astigmatism is ignored.  Symplecticity and, hence, the mathematics become greatly simplified. The mathematics reduces largely to elementary vector algebra and, in some places, simple scalar algebra and yet retains the mathematical form of the general approach.  As a result the paper allows insight into and provides a stepping stone to the general theory.  Under referral an aperture under-goes simple scalar magnification and transverse translation.  The paper pays particular attention to referral to transverse planes in the neighbourhood of a focal point where the magnification may be positive, zero or negative.  Circular apertures are treated as special cases of elliptical apertures and the meaning of referred apertures of negative radius is explained briefly. (S Afr Optom 2012 71(1 3-11

  18. Permeability and dispersivity of variable-aperture fracture systems

    International Nuclear Information System (INIS)

    Tsang, Y.W.; Tsang, C.F.

    1990-01-01

    A number of recent experiments have pointed out the need of including the effects of aperture variation within each fracture in predicting flow and transport properties of fractured media. This paper introduces a new approach in which medium properties, such as the permeability to flow and dispersivity in tracer transport, are correlated to only three statistical parameters describing the fracture aperture probability distribution and the aperture spatial correlation. We demonstrate how saturated permeability and relative permeabilities for flow, as well as dispersion for solute transport in fractures may be calculated. We are in the process of examining the applicability of these concepts to field problems. Results from the evaluation and analysis of the recent Stripa-3D field data are presented. 13 refs., 10 figs

  19. Variable aperture-based ptychographical iterative engine method.

    Science.gov (United States)

    Sun, Aihui; Kong, Yan; Meng, Xin; He, Xiaoliang; Du, Ruijun; Jiang, Zhilong; Liu, Fei; Xue, Liang; Wang, Shouyu; Liu, Cheng

    2018-02-01

    A variable aperture-based ptychographical iterative engine (vaPIE) is demonstrated both numerically and experimentally to reconstruct the sample phase and amplitude rapidly. By adjusting the size of a tiny aperture under the illumination of a parallel light beam to change the illumination on the sample step by step and recording the corresponding diffraction patterns sequentially, both the sample phase and amplitude can be faithfully reconstructed with a modified ptychographical iterative engine (PIE) algorithm. Since many fewer diffraction patterns are required than in common PIE and the shape, the size, and the position of the aperture need not to be known exactly, this proposed vaPIE method remarkably reduces the data acquisition time and makes PIE less dependent on the mechanical accuracy of the translation stage; therefore, the proposed technique can be potentially applied for various scientific researches. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  20. Variable aperture-based ptychographical iterative engine method

    Science.gov (United States)

    Sun, Aihui; Kong, Yan; Meng, Xin; He, Xiaoliang; Du, Ruijun; Jiang, Zhilong; Liu, Fei; Xue, Liang; Wang, Shouyu; Liu, Cheng

    2018-02-01

    A variable aperture-based ptychographical iterative engine (vaPIE) is demonstrated both numerically and experimentally to reconstruct the sample phase and amplitude rapidly. By adjusting the size of a tiny aperture under the illumination of a parallel light beam to change the illumination on the sample step by step and recording the corresponding diffraction patterns sequentially, both the sample phase and amplitude can be faithfully reconstructed with a modified ptychographical iterative engine (PIE) algorithm. Since many fewer diffraction patterns are required than in common PIE and the shape, the size, and the position of the aperture need not to be known exactly, this proposed vaPIE method remarkably reduces the data acquisition time and makes PIE less dependent on the mechanical accuracy of the translation stage; therefore, the proposed technique can be potentially applied for various scientific researches.

  1. Synthetic aperture integration (SAI) algorithm for SAR imaging

    Science.gov (United States)

    Chambers, David H; Mast, Jeffrey E; Paglieroni, David W; Beer, N. Reginald

    2013-07-09

    A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the imaging and detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across the surface and that travels down the surface. The imaging and detection system pre-processes the return signal to suppress certain undesirable effects. The imaging and detection system then generates synthetic aperture radar images from real aperture radar images generated from the pre-processed return signal. The imaging and detection system then post-processes the synthetic aperture radar images to improve detection of subsurface objects. The imaging and detection system identifies peaks in the energy levels of the post-processed image frame, which indicates the presence of a subsurface object.

  2. Central obscuration effects on optical synthetic aperture imaging

    Science.gov (United States)

    Wang, Xue-wen; Luo, Xiao; Zheng, Li-gong; Zhang, Xue-jun

    2014-02-01

    Due to the central obscuration problem exists in most optical synthetic aperture systems, it is necessary to analyze its effects on their image performance. Based on the incoherent diffraction limited imaging theory, a Golay-3 type synthetic aperture system was used to study the central obscuration effects on the point spread function (PSF) and the modulation transfer function (MTF). It was found that the central obscuration does not affect the width of the central peak of the PSF and the cutoff spatial frequency of the MTF, but attenuate the first sidelobe of the PSF and the midfrequency of the MTF. The imaging simulation of a Golay-3 type synthetic aperture system with central obscuration proved this conclusion. At last, a Wiener Filter restoration algorithm was used to restore the image of this system, the images were obviously better.

  3. The roles of frequency and aperture in linac accelerator design

    International Nuclear Information System (INIS)

    Farkas, Z.D.

    1989-01-01

    Expressions for accelerating structure parameters, including those that determine the peak and average power inputs required to attain a given gradient, are given as functions of aperture to wavelength ratio for a 2π/3 mode disk-loaded guide. The value of the wavelength to aperture ratio varies over a large range, corresponding to group velocities that vary from nearly zero to nearly the speed of light. The parameters exhibit proper asymptotic behavior in both limits. These parameters are benchmark values to which parameters for other modes and for other structure shapes can be compared. For example, it will be shown that the increased peak surface field to accelerating field ratio due to increased aperture to wavelength ratio can be reduced by shaping the iris profile. Structure shapes are varied not only to show possible improvement of structure parameters, but also to improve ease of mechanical fabrication and temperature control. 4 refs., 7 figs., 1 tab

  4. Dynamic aperture and transverse proton diffusion in HERA

    International Nuclear Information System (INIS)

    Zimmermann, F.

    1994-04-01

    The dynamic aperture caused by persistent-current nonlinear field errors is an important concern in the design of superconducting hadron storage rings. The HERA proton ring is the second superconducting accelerator in operation. In this lecture note, its measured dynamic aperture is compared with that inferred from comprehensive trackig studies. To understand the difference between prediction and measurement, a semi-analytical method is developed for evaluating transverse diffusion rates due to various processes, such as modulational diffusion or sweeping diffusion this analysis makes use of parameters for high-order resonances in the transverse phase space, which are obtained by normal-form algorithms using differential-algebra software. This semi-analytical results are consistent wit the measurements, and suggest that the actual dynamic aperture is caused by an interplay of tune modulation and nonlinear magnetic fields

  5. X-ray lenses with large aperture; Roentgenlinsen mit grosser Apertur

    Energy Technology Data Exchange (ETDEWEB)

    Simon, Markus

    2010-07-01

    Up to now, most X-ray imaging setups are based on absorption contrast imaging. There is a demand for focused X-rays in many X-ray analysis applications, either to increase the resolution of an imaging system, or, to reduce the time effort of an experiment through higher photon flux. For photon energies higher than 15 keV refractive X-ray optics are more efficient in comparison to non-refractive X-ray optics. The aim of this work was to develop X-ray lenses with large apertures and high transparency. By increasing the number of refracting surfaces while removing unnecessary lens material such lenses have been developed. Utilizing this approach the overall beam deflection angle is large with respect to the lens material it propagates through and so the transparency of the lens is increased. Within this work, X-ray lenses consisting of several thousands of prisms with an edge length in the range of micrometers have been developed and fabricated by deep X-ray lithography. Deep X-ray lithography enables high precision microstrucures with smooth sidewalls and large aspect ratios. The aperture of high-transparency X-ray lenses made this way is greater than 1 mm. They are suitable for photon energies in the range of 8 keV to 24 keV and offer a focal width of smaller than 10 {mu}m at a transparency of around 40%. Furthermore, rolled X-ray lenses have been developed, that are made out of a microstructured polyimide film, which is cut according to the requirements regarding focal length and photon energy. The microstructured film is fabricated by molding, using an anisotropically etched silicon wafer as molding tool. Its mean roughness is in the range of nanometers. The film features prismatic structures, its surface topology is similar to an asparagus field. The measured diameter of the point focus was 18 {mu}m to 31 {mu}m, the calculated opticla efficiency was 37%. Future work will concentrate on increasing the aspect ratio of Prism Lenses and on increasing the rolling

  6. Analytical estimation of the dynamic apertures of circular accelerators

    International Nuclear Information System (INIS)

    Gao, J.

    2000-02-01

    By considering delta function sextupole, octupole, and deca-pole perturbations and using difference action-angle variable equations, we find some useful analytical formulae for the estimation of the dynamic apertures of circular accelerators due to single sextupole, single octupole, single deca-pole (single 2 m pole in general). Their combined effects are derived based on the Chirikov criterion of the onset of stochastic motions. Comparisons with numerical simulations are made, and the agreement is quite satisfactory. These formulae have been applied to determine the beam-beam limited dynamic aperture in a circular collider. (author)

  7. Synthetic Aperture Sequential Beamformation applied to medical imaging

    DEFF Research Database (Denmark)

    Hemmsen, Martin Christian; Hansen, Jens Munk; Jensen, Jørgen Arendt

    2012-01-01

    Synthetic Aperture Sequential Beamforming (SASB) is applied to medical ultrasound imaging using a multi element convex array transducer. The main motivation for SASB is to apply synthetic aperture techniques without the need for storing RF-data for a number of elements and hereby devise a system...... with a reduced system complexity. Using a 192 element, 3.5 MHz, λ-pitch transducer, it is demonstrated using tissue-phantom and wire-phantom measurements, how the speckle size and the detail resolution is improved compared to conventional imaging....

  8. Preliminary In-vivo Results For Spatially Coded Synthetic Transmit Aperture Ultrasound Based On Frequency Division

    DEFF Research Database (Denmark)

    Gran, Fredrik; Hansen, Kristoffer Lindskov; Jensen, Jørgen Arendt

    2006-01-01

    This paper investigates the possibility of using spatial coding based on frequency division for in-vivo synthetic transmit aperture (STA) ultrasound imaging. When using spatial encoding for STA, it is possible to use several transmitters simultaneously and separate the signals at the receiver....... This increases the maximum transmit power compared to conventional STA, where only one transmitter can be active. The signal-to-noise-ratio can therefore he increased and better penetration can be obtained. For frequency division, the coding is achieved by designing a number of transmit waveforms with disjoint...... spectral support, spanning the passband of the ultrasound transducer. The signals can therefore he separated at the receiver using matched filtering. The method is tested using a commercial linear array transducer with a center frequency of 9 MHz and 68% fractional bandwidth. In this paper, the transmit...

  9. Heat pump augmentation of nuclear process heat

    International Nuclear Information System (INIS)

    Koutz, S.L.

    1986-01-01

    A system is described for increasing the temperature of a working fluid heated by a nuclear reactor. The system consists of: a high temperature gas cooled nuclear reactor having a core and a primary cooling loop through which a coolant is circulated so as to undergo an increase in temperature, a closed secondary loop having a working fluid therein, the cooling and secondary loops having cooperative association with an intermediate heat exchanger adapted to effect transfer of heat from the coolant to the working fluid as the working fluid passes through the intermediate heat exchanger, a heat pump connected in the secondary loop and including a turbine and a compressor through which the working fluid passes so that the working fluid undergoes an increase in temperature as it passes through the compressor, a process loop including a process chamber adapted to receive a process fluid therein, the process chamber being connected in circuit with the secondary loop so as to receive the working fluid from the compressor and transfer heat from the working fluid to the process fluid, a heat exchanger for heating the working fluid connected to the process loop for receiving heat therefrom and for transferring heat to the secondary loop prior to the working fluid passing through the compressor, the secondary loop being operative to pass the working fluid from the process chamber to the turbine so as to effect driving relation thereof, a steam generator operatively associated with the secondary loop so as to receive the working fluid from the turbine, and a steam loop having a feedwater supply and connected in circuit with the steam generator so that feedwater passing through the steam loop is heated by the steam generator, the steam loop being connected in circuit with the process chamber and adapted to pass steam to the process chamber with the process fluid

  10. A flexible WLAN receiver

    NARCIS (Netherlands)

    Schiphorst, Roelof; Hoeksema, F.W.; Slump, Cornelis H.

    2003-01-01

    Flexible radio receivers are also called Software Defined Radios (SDRs) [1], [2]. The focus of our SDR project [3] is on designing the front end, from antenna to demodulation in bits, of a °exible, multi-standard WLAN receiver. We try to combine an instance of a (G)FSK receiver (Bluetooth) with an

  11. Comparison of PSF maxima and minima of multiple annuli coded aperture (MACA) and complementary multiple annuli coded aperture (CMACA) systems

    Science.gov (United States)

    Ratnam, Challa; Lakshmana Rao, Vadlamudi; Lachaa Goud, Sivagouni

    2006-10-01

    In the present paper, and a series of papers to follow, the Fourier analytical properties of multiple annuli coded aperture (MACA) and complementary multiple annuli coded aperture (CMACA) systems are investigated. First, the transmission function for MACA and CMACA is derived using Fourier methods and, based on the Fresnel-Kirchoff diffraction theory, the formulae for the point spread function are formulated. The PSF maxima and minima are calculated for both the MACA and CMACA systems. The dependence of these properties on the number of zones is studied and reported in this paper.

  12. Comparison of PSF maxima and minima of multiple annuli coded aperture (MACA) and complementary multiple annuli coded aperture (CMACA) systems

    International Nuclear Information System (INIS)

    Ratnam, Challa; Rao, Vadlamudi Lakshmana; Goud, Sivagouni Lachaa

    2006-01-01

    In the present paper, and a series of papers to follow, the Fourier analytical properties of multiple annuli coded aperture (MACA) and complementary multiple annuli coded aperture (CMACA) systems are investigated. First, the transmission function for MACA and CMACA is derived using Fourier methods and, based on the Fresnel-Kirchoff diffraction theory, the formulae for the point spread function are formulated. The PSF maxima and minima are calculated for both the MACA and CMACA systems. The dependence of these properties on the number of zones is studied and reported in this paper

  13. Study on the radiation flux and temperature distributions of the concentrator-receiver system in a solar dish/Stirling power facility

    International Nuclear Information System (INIS)

    Li Zhigang; Tang Dawei; Du Jinglong; Li Tie

    2011-01-01

    Uniform heater temperature and high optical-thermal efficiency are crucial for the reliable and economical operation of a Solar Dish/Stirling engine facility. The Monte-Carlo ray-tracing method is utilized to predict the radiation flux distributions of the concentrator-receiver system. The ray-tracing method is first validated by experiment, then the radiation flux profiles on the solar receiver surface for faceted real concentrator and ideal paraboloidal concentrator, irradiated by Xe-arc lamps and real sun, for different aperture positions and receiver shapes are analyzed, respectively. The resulted radiation flux profiles are subsequently transferred to a CFD code as boundary conditions to numerically simulate the fluid flow and conjugate heat transfer in the receiver cavity by coupling the radiation, natural convection and heat conduction together, and the CFD method is also validated through experiment. The results indicate that a faceted concentrator in combination with a solar simulator composed of 12 Xe-arc lamps is advantageous to drive the solar Stirling engine for all-weather indoor tests. Based on the simulation results, a solar receiver-Stirling heater configuration is designed to achieve a considerably uniform temperature distribution on the heater head tubes while maintaining a high efficiency of 60.7%. - Highlights: → Radiation flux in Dish/Stirling system is analyzed by validated ray-tracing method. → Temperature field on the solar receiver is analyzed by a validated CFD method. → Effects of Xe-arc lamp solar simulator and faceted real concentrator are analyzed. → Effects of different receiver positions and receiver shapes are investigated. → A Stirling heater configuration is presented with uniform temperature field.

  14. Highly Sensitive Optical Receivers

    CERN Document Server

    Schneider, Kerstin

    2006-01-01

    Highly Sensitive Optical Receivers primarily treats the circuit design of optical receivers with external photodiodes. Continuous-mode and burst-mode receivers are compared. The monograph first summarizes the basics of III/V photodetectors, transistor and noise models, bit-error rate, sensitivity and analog circuit design, thus enabling readers to understand the circuits described in the main part of the book. In order to cover the topic comprehensively, detailed descriptions of receivers for optical data communication in general and, in particular, optical burst-mode receivers in deep-sub-µm CMOS are presented. Numerous detailed and elaborate illustrations facilitate better understanding.

  15. Terahertz near-field imaging using subwavelength plasmonic apertures and a quantum cascade laser source.

    Science.gov (United States)

    Baragwanath, Adam J; Freeman, Joshua R; Gallant, Andrew J; Zeitler, J Axel; Beere, Harvey E; Ritchie, David A; Chamberlain, J Martyn

    2011-07-01

    The first demonstration, to our knowledge, of near-field imaging using subwavelength plasmonic apertures with a terahertz quantum cascade laser source is presented. "Bull's-eye" apertures, featuring subwavelength circular apertures flanked by periodic annular corrugations were created using a novel fabrication method. A fivefold increase in intensity was observed for plasmonic apertures over plain apertures of the same diameter. Detailed studies of the transmitted beam profiles were undertaken for apertures with both planarized and corrugated exit facets, with the former producing spatially uniform intensity profiles and subwavelength spatial resolution. Finally, a proof-of-concept imaging experiment is presented, where an inhomogeneous pharmaceutical drug coating is investigated.

  16. Large aperture components for solid state laser fusion systems

    International Nuclear Information System (INIS)

    Simmons, W.W.

    1978-01-01

    Solid state lasers for fusion experiments must reliably deliver maximum power to small (approximately .5 mm) targets from stand-off focal distances of 1 m or more. This requirement places stringent limits upon the optical quality, resistance to damage, and overall performance of the several major components--amplifiers, Faraday isolators, spatial filters--in each amplifier train. Component development centers about achieving (1) highest functional material figure of merit, (2) best optical quality, and (3) maximum resistance to optical damage. Specific examples of the performance of large aperture components will be presented within the context of the Argus and Shiva laser systems, which are presently operational at Lawrence Livermore Laboratory. Shiva comprises twenty amplifiers, each of 20 cm output clear aperture. Terawatt beams from these amplifiers are focused through two opposed, nested clusters of f/6 lenses onto such targets. Design requirements upon the larger aperture Nova laser components, up to 35 cm in clear aperture, will also be discussed; these pose a significant challenge to the optical industry

  17. Towards Inverse Synthetic Aperture Radar (ISAR) for small sea vessels

    CSIR Research Space (South Africa)

    Abdul Gaffar, MY

    2006-12-01

    Full Text Available Aperture Radar (ISAR) for Small Sea Vessels M.Y. Abdul Gaffar Council for Scientific and Industrial Research University of Cape Town Slide 2 © CSIR 2006 www.csir.co.za What is ISAR? • Technique that produces cross range...

  18. Millimeter-wave Imaging Systems with Aperture Synthesis Techniques

    DEFF Research Database (Denmark)

    Löffler, Torsten; Krozer, Viktor; Zhurbenko, Vitaliy

    2010-01-01

    The paper describes development of a millimetre-wave imaging system using multi-element aperture filling techniques [1]. Such imaging systems are increasingly demonstrated for security applications and in particular standoff imaging of persons and bonding flaw and defect detection [2]. The major ...

  19. In Vivo Evaluation of Synthetic Aperture Sequential Beamforming

    DEFF Research Database (Denmark)

    Hemmsen, Martin Christian; Hansen, Peter Møller; Lange, Theis

    2012-01-01

    Ultrasound in vivo imaging using synthetic aperture sequential beamformation (SASB) is compared with conventional imaging in a double blinded study using side-by-side comparisons. The objective is to evaluate if the image quality in terms of penetration depth, spatial resolution, contrast...

  20. In-vivo evaluation of convex array synthetic aperture imaging

    DEFF Research Database (Denmark)

    Pedersen, Morten Høgholm; Gammelmark, Kim Løkke; Jensen, Jørgen Arendt

    2007-01-01

    This paper presents an in-vivo study of synthetic transmit aperture (STA) imaging in comparison to conventional imaging, evaluating whether STA imaging is feasible in-vivo, and whether the image quality obtained is comparable to traditional scanned imaging in terms of penetration depth, spatial...

  1. Velocity estimation using synthetic aperture imaging [blood flow

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav; Jensen, Jørgen Arendt

    2001-01-01

    Presented an approach for synthetic aperture blood flow ultrasound imaging. Estimates with a low bias and standard deviation can be obtained with as few as eight emissions. The performance of the new estimator is verified using both simulations and measurements. The results demonstrate that a fully...

  2. Aperture Valve for the Mars Organic Molecule Analyzer (MOMA)

    Science.gov (United States)

    Hakun, Claef F.; Engler, Charles D.; Barber, Willie E.; Canham, John S.

    2014-01-01

    NASA's participation in the multi-nation ExoMars 2018 Rover mission includes a critical astrobiology Mass Spectrometer Instrument on the Rover called the Mars Organic Molecule Analyzer (MOMA). The Aperture Valve is a critical electromechanical valve used by the Mass Spectrometer to facilitate the transfer of ions from Martian soil to the Mass Spectrometer for analysis. The MOMA Aperture Valve development program will be discussed in terms of the Initial valve design and subsequent improvements that resulted from prototype testing. The Initial Aperture Valve concept seemed promising, based on calculations and perceived merits. However, performance results of this design were disappointing, due to delamination of TiN and DLC coatings applied to the Titanium base metals, causing debris from the coatings to seize the valve. While peer reviews and design trade studies are important forums to vet a concept design, results from testing should not be underestimated.Despite the lack of development progress to meet requirements, valuable information from weakness discovered in the Initial Valve design was used to develop a second, more robust Aperture valve. Based on a check-ball design, the ETU flight valve design resulted in significantly less surface area to create the seal. Moreover, PVD coatings were eliminated in favor of hardened, nonmagnetic corrosion resistant alloys. Test results were impressive, with the valve achieving five orders of magnitude better sealing leak rate over end of life requirements. Cycle life was equally impressive, achieving 280,000 cycles without failure.

  3. Simulation of an aperture-based antihydrogen gravity experiment

    Directory of Open Access Journals (Sweden)

    C. A. Ordonez

    2012-03-01

    Full Text Available A Monte Carlo simulation is presented of an experiment that could potentially determine whether antihydrogen accelerates vertically up or down as a result of earth's gravity. The experiment would rely on methods developed by existing antihydrogen research collaborations and would employ a Penning trap for the production of antihydrogen within a uniform magnetic field. The axis of symmetry of the cylindrical trap wall would be oriented horizontally, and an axisymmetric aperture (with an inner radius that is smaller than the cylindrical trap wall radius would be present a short distance away from the antihydrogen production region. Antihydrogen annihilations that occur along the cylindrical trap wall would be detected by the experiment. The distribution of annihilations along the wall would vary near the aperture, because some antihydrogen that would otherwise annihilate at the wall would instead annihilate on the aperture. That is, a shadow region forms behind the aperture, and the distribution of annihilations near the boundary of the shadow region is not azimuthally symmetric when the effect of gravity is significant. The Monte Carlo simulation is used together with analytical modeling to determine conditions under which the annihilation distribution would indicate the direction of the acceleration of antihydrogen due to gravity.

  4. Development of procedures for programmable proximity aperture lithography

    Energy Technology Data Exchange (ETDEWEB)

    Whitlow, H.J., E-mail: harry.whitlow@he-arc.ch [Institut des Microtechnologies Appliquées Arc, Haute Ecole Arc Ingénierie, Eplatures-Grise 17, CH-2300 La Chaux-de-Fonds (Switzerland); Department of Physics, University of Jyväskylä, P.O. Box 35 (YFL), FI-40014 Jyväskylä (Finland); Gorelick, S. [VTT Technical Research Centre of Finland, P.O. Box 1000, Tietotie 3, Espoo, FI-02044 VTT (Finland); Puttaraksa, N. [Department of Physics, University of Jyväskylä, P.O. Box 35 (YFL), FI-40014 Jyväskylä (Finland); Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Napari, M.; Hokkanen, M.J.; Norarat, R. [Department of Physics, University of Jyväskylä, P.O. Box 35 (YFL), FI-40014 Jyväskylä (Finland)

    2013-07-01

    Programmable proximity aperture lithography (PPAL) with MeV ions has been used in Jyväskylä and Chiang Mai universities for a number of years. Here we describe a number of innovations and procedures that have been incorporated into the LabView-based software. The basic operation involves the coordination of the beam blanker and five motor-actuated translators with high accuracy, close to the minimum step size with proper anti-collision algorithms. By using special approaches, such writing calibration patterns, linearisation of position and careful backlash correction the absolute accuracy of the aperture size and position, can be improved beyond the standard afforded by the repeatability of the translator end-point switches. Another area of consideration has been the fluence control procedures. These involve control of the uniformity of the beam where different approaches for fluence measurement such as simultaneous aperture current and the ion current passing through the aperture using a Faraday cup are used. Microfluidic patterns may contain many elements that make-up mixing sections, reaction chambers, separation columns and fluid reservoirs. To facilitate conception and planning we have implemented a .svg file interpreter, that allows the use of scalable vector graphics files produced by standard drawing software for generation of patterns made up of rectangular elements.

  5. Optimization of Dynamic Aperture of PEP-X Baseline Design

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Min-Huey; /SLAC; Cai, Yunhai; /SLAC; Nosochkov, Yuri; /SLAC

    2010-08-23

    SLAC is developing a long-range plan to transfer the evolving scientific programs at SSRL from the SPEAR3 light source to a much higher performing photon source. Storage ring design is one of the possibilities that would be housed in the 2.2-km PEP-II tunnel. The design goal of PEPX storage ring is to approach an optimal light source design with horizontal emittance less than 100 pm and vertical emittance of 8 pm to reach the diffraction limit of 1-{angstrom} x-ray. The low emittance design requires a lattice with strong focusing leading to high natural chromaticity and therefore to strong sextupoles. The latter caused reduction of dynamic aperture. The dynamic aperture requirement for horizontal injection at injection point is about 10 mm. In order to achieve the desired dynamic aperture the transverse non-linearity of PEP-X is studied. The program LEGO is used to simulate the particle motion. The technique of frequency map is used to analyze the nonlinear behavior. The effect of the non-linearity is tried to minimize at the given constrains of limited space. The details and results of dynamic aperture optimization are discussed in this paper.

  6. Wind retrieval from synthetic aperture radar - an overview

    DEFF Research Database (Denmark)

    Dagestad, Knut-Frode; Horstmann, Jochen; Mouche, Alexis

    2013-01-01

    This paper represents a consensus on the state-of-the-art in wind retrieval using synthetic aperture radar (SAR), after the SEASAR 2012 workshop “Advances in SAR Oceanography” hosted by the European Space Agency (ESA) and the Norwegian Space Centre in Tromsø, Norway 18–22 June 2012. We document...

  7. Optimization of Dynamic Aperture of PEP-X Baseline Design

    International Nuclear Information System (INIS)

    Wang, Min-Huey

    2010-01-01

    SLAC is developing a long-range plan to transfer the evolving scientific programs at SSRL from the SPEAR3 light source to a much higher performing photon source. Storage ring design is one of the possibilities that would be housed in the 2.2-km PEP-II tunnel. The design goal of PEPX storage ring is to approach an optimal light source design with horizontal emittance less than 100 pm and vertical emittance of 8 pm to reach the diffraction limit of 1-(angstrom) x-ray. The low emittance design requires a lattice with strong focusing leading to high natural chromaticity and therefore to strong sextupoles. The latter caused reduction of dynamic aperture. The dynamic aperture requirement for horizontal injection at injection point is about 10 mm. In order to achieve the desired dynamic aperture the transverse non-linearity of PEP-X is studied. The program LEGO is used to simulate the particle motion. The technique of frequency map is used to analyze the nonlinear behavior. The effect of the non-linearity is tried to minimize at the given constrains of limited space. The details and results of dynamic aperture optimization are discussed in this paper.

  8. Does the transition to chaos determine the dynamic aperture

    International Nuclear Information System (INIS)

    Jowett, J.M.

    1986-06-01

    We review the important notion of the dynamic aperture of a storage ring with emphasis on its relation to general ideas of dynamical instability, notably the transition to chaos. Practical approaches to the problem are compared. We suggest a somewhat novel quantitative guide to the old problem of choosing machine tunes based on a heuristic blend of KAM theory and resonance selection rules

  9. Maximum nondiffracting propagation distance of aperture-truncated Airy beams

    Science.gov (United States)

    Chu, Xingchun; Zhao, Shanghong; Fang, Yingwu

    2018-05-01

    Airy beams have called attention of many researchers due to their non-diffracting, self-healing and transverse accelerating properties. A key issue in research of Airy beams and its applications is how to evaluate their nondiffracting propagation distance. In this paper, the critical transverse extent of physically realizable Airy beams is analyzed under the local spatial frequency methodology. The maximum nondiffracting propagation distance of aperture-truncated Airy beams is formulated and analyzed based on their local spatial frequency. The validity of the formula is verified by comparing the maximum nondiffracting propagation distance of an aperture-truncated ideal Airy beam, aperture-truncated exponentially decaying Airy beam and exponentially decaying Airy beam. Results show that the formula can be used to evaluate accurately the maximum nondiffracting propagation distance of an aperture-truncated ideal Airy beam. Therefore, it can guide us to select appropriate parameters to generate Airy beams with long nondiffracting propagation distance that have potential application in the fields of laser weapons or optical communications.

  10. Fourier beamformation of multistatic synthetic aperture ultrasound imaging

    DEFF Research Database (Denmark)

    Moghimirad, Elahe; Villagómez Hoyos, Carlos Armando; Mahloojifar, Ali

    2015-01-01

    A new Fourier beamformation (FB) algorithm is presented for multistatic synthetic aperture ultrasound imaging. It can reduce the number of computations by a factor of 20 compared to conventional Delay-and-Sum (DAS) beamformers. The concept is based on the wavenumber algorithm from radar and sonar...

  11. Multielement Synthetic Transmit Aperture Imaging Using Temporal Encoding

    DEFF Research Database (Denmark)

    Gammelmark, Kim; Jensen, Jørgen Arendt

    2003-01-01

    A new method to increase the signal-to-noise ratio (SNR) of synthetic transmit aperture imaging is investigated. The approach utilizes multiple elements to emulate a spherical wave, and the conventional short excitation pulse is replaced by a linear frequency-modulated (FM) signal. The approach i...

  12. Synthetic aperture flow imaging using dual stage beamforming

    DEFF Research Database (Denmark)

    Li, Ye; Jensen, Jørgen Arendt

    2013-01-01

    A method for synthetic aperture flow imaging using dual stage beamforming has been developed. The main motivation is to increase the frame rate and still maintain a beamforming quality sufficient for flow estimation that is possible to implement in a commercial scanner. This method can generate...

  13. Theoretical and numerical treatment of diffraction through a circular aperture

    NARCIS (Netherlands)

    Bouwkamp, C.J.

    1970-01-01

    The three-dimensional diffraction of a scalar plane wave through a circular aperture in an infinite plane screen is analyzed and numerically computed for the case of normal incidence. A modified Babinet's principle is formulated, and this is used to find the diffraction of sound by an acoustically

  14. A circular aperture array for ultrasonic tomography and quantitative NDE

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, S A

    1998-08-01

    The main topics of this thesis are ultrasonic tomography and ultrasonic determination of elastic stiffness constants. Both issues are based on a synthetic array with transducer elements distributed uniformly along a circular aperture, i.e., a circular aperture array. The issues are treated both theoretically and experimentally by broadband pulse techniques. Ultrasonic tomography, UCT, from a circular aperture is a relatively new imaging technique in Non-destructive Evaluation (NDE) to acquire cross sectional images in bulk materials. A filtered back-projection algorithm is used to reconstruct images in four different experiments and results of attenuation, velocity and reflection tomograms in Plexiglas of AlSi-alloy cylinders are presented. Two kinds of ultrasonic tomography are introduced: bistatic and monostatic imaging. Both techniques are verified experimentally by Plexiglas cylinders. Different reconstruction artifacts are discussed and theoretical resolution constraints are discussed for various configurations of the circular aperture array. The monostatic technique is used in volumetric imaging. In the experimental verification artificial and real discontinuities in a cylindrical AlSi-alloy are compared with similar discontinuities in a Plexiglas specimen. Finally, some limitations to UCT are discussed. The circular aperture array is used to determine five independent elastic stiffness constants of a unidirectional glass/PET (Poly Ethylene Teraphtalate) laminate. Energy flux propagation and attenuation of ultrasonic waves are considered and velocity surfaces are calculated for different planes of interest. Relations between elastic stiffness constants and engineering constants (i.e., Young`s moduli, shear moduli and Poisson`s ratios) are discussed for an orthotropic composite. Six micromechanical theories are reviewed, and expressions predicting the elastic engineering constants are evaluated. The micromechanical predicted elastic stiffness constants for the

  15. MEGARA Optics: Sub-aperture Stitching Interferometry for Large Surfaces

    Science.gov (United States)

    Aguirre-Aguirre, Daniel; Carrasco, Esperanza; Izazaga-Pérez, Rafael; Páez, Gonzalo; Granados-Agustín, Fermín; Percino-Zacarías, Elizabeth; Gil de Paz, Armando; Gallego, Jesús; Iglesias-Páramo, Jorge; Villalobos-Mendoza, Brenda

    2018-04-01

    In this work, we present a detailed analysis of sub-aperture interferogram stitching software to test circular and elliptical clear apertures with diameters and long axes up to 272 and 180 mm, respectively, from the Multi-Espectrógrafo en GTC de Alta Resolución para Astronomía (MEGARA). MEGARA is a new spectrograph for the Gran Telescopio Canarias (GTC). It offers a resolution between 6000 and 20000 via the use of volume phase holographic gratings. It has an integral field unit and a set of robots for multi-object spectroscopy at the telescope focal plane. The output end of the fibers forms the spectrograph pseudo-slit. The fixed geometry of the collimator and camera configuration requires prisms in addition to the flat windows of the volume phase holographic gratings. There are 73 optical elements of large aperture and high precision manufactured in Mexico at the Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE) and the Centro de Investigaciones en Óptica (CIO). The principle of stitching interferometry is to divide the surface being tested into overlapping small sections, which allows an easier analysis (Kim & Wyant 1981). This capability is ideal for non-contact tests for unique and large optics as required by astronomical instruments. We show that the results obtained with our sub-aperture stitching algorithm were consistent with other methods that analyze the entire aperture. We used this method to analyze the 24 MEGARA prisms that could not be tested otherwise. The instrument has been successfully commissioned at GTC in all the spectral configurations. The fulfillment of the irregularity specifications was one of the necessary conditions to comply with the spectral requirements.

  16. Application of Ruze Equation for Inflatable Aperture Antennas

    Science.gov (United States)

    Welch, Bryan W.

    2008-01-01

    Inflatable aperture reflector antennas are an emerging technology that NASA is investigating for potential uses in science and exploration missions. As inflatable aperture antennas have not been proven fully qualified for space missions, they must be characterized properly so that the behavior of the antennas can be known in advance. To properly characterize the inflatable aperture antenna, testing must be performed in a relevant environment, such as a vacuum chamber. Since the capability of having a radiofrequency (RF) test facility inside a vacuum chamber did not exist at NASA Glenn Research Center, a different methodology had to be utilized. The proposal to test an inflatable aperture antenna in a vacuum chamber entailed performing a photogrammetry study of the antenna surface by using laser ranging measurements. A root-mean-square (rms) error term was derived from the photogrammetry study to calculate the antenna surface loss as described by the Ruze equation. However, initial testing showed that problems existed in using the Ruze equation to calculate the loss due to errors on the antenna surface. This study utilized RF measurements obtained in a near-field antenna range and photogrammetry data taken from a laser range scanner to compare the expected performance of the test antenna (via the Ruze equation) with the actual RF patterns and directivity measurements. Results showed that the Ruze equation overstated the degradation in the directivity calculation. Therefore, when the photogrammetry study is performed on the test antennas in the vacuum chamber, a more complex equation must be used in light of the fact that the Ruze theory overstates the loss in directivity for inflatable aperture reflector antennas.

  17. Design and construction of a large aperture, quadrupole electromagnet prototype for ILSE

    International Nuclear Information System (INIS)

    Stuart, M.; Faltens, A.; Fawley, W.M.; Peters, C.; Vella, M.C.

    1995-04-01

    We are currently constructing a prototype quadrupole electromagnet for the proposed Induction Linac Systems Experiment (ILSE) at LBL. ILSE will address many physi and engineering issues relevant to the design of a heavy-ion fusion driver accelerator. The pulsed electromagnet has two layers of current windings and will produce a field gradient exceeding 25 T/m at a repetition rate of 1 Hz steady-state. In this paper, we discuss how the interaction of various concerns such as maximum dynamic aperture, short lattice period, field quality, iron yoke weight, heat transfer, and voltage standoff have led to our particular design choices. We also present 2- and 3-D numerical calculations concerning field topography and the results of transport simulations of space-charge dominated ion beams with ILSE parameters

  18. EISCAT Aperture Synthesis Imaging (EASI _3D) for the EISCAT_3D Project

    Science.gov (United States)

    La Hoz, Cesar; Belyey, Vasyl

    2012-07-01

    Aperture Synthesis Imaging Radar (ASIR) is one of the technologies adopted by the EISCAT_3D project to endow it with imaging capabilities in 3-dimensions that includes sub-beam resolution. Complemented by pulse compression, it will provide 3-dimensional images of certain types of incoherent scatter radar targets resolved to about 100 metres at 100 km range, depending on the signal-to-noise ratio. This ability will open new research opportunities to map small structures associated with non-homogeneous, unstable processes such as aurora, summer and winter polar radar echoes (PMSE and PMWE), Natural Enhanced Ion Acoustic Lines (NEIALs), structures excited by HF ionospheric heating, meteors, space debris, and others. The underlying physico-mathematical principles of the technique are the same as the technique employed in radioastronomy to image stellar objects; both require sophisticated inversion techniques to obtain reliable images.

  19. Manufacture of heat exchangers

    International Nuclear Information System (INIS)

    Burton, J.E.; Tombs, R.W.T.

    1980-01-01

    A tube bundle for use in a heat exchanger has a series of spaced parallel tubes supported by tube plates and is manufactured by depositing welding material around the end of each tube, machining the deposited material to form an annular flange around the end of the tube and welding the flange into apertures in the tube plate. Preferably the tubes have a length which is slightly less than the distance between the outer surfaces of the tube plates and the deposited material is deposited so that it overlaps and protects the end surfaces of the tubes. A plug may be inserted in the bore of the tubes during the welding material deposition which, as described, is effected by manual metal arc welding. One use of heat exchangers incorporating a tube bundle manufactured as above is in apparatus for reducing the volume of, and recovering nitric acid from, radioactive effluents from a nuclear reprocessing plant. (author)

  20. Thermodynamic analysis of an organic rankine cycle using a tubular solar cavity receiver

    International Nuclear Information System (INIS)

    Loni, R.; Kasaeian, A.B.; Mahian, O.; Sahin, A.Z.

    2016-01-01

    Highlights: • A non-regenerative Organic Rankine Cycle has been analyzed. • R113, R601, R11, R141b, Ethanol and Methanol were used as the working fluid. • A parabolic dish concentrator with a square prismatic cavity receiver was used. • Thermal efficiency, second law efficiency, and net power output were analyzed. - Abstract: In this study, a non-regenerative Organic Rankine Cycle (ORC) has been thermodynamically analyzed under superheated conditions, constant evaporator pressure of 2.5 MPa, and condenser temperature of 300 K. R113, R601, R11, R141b, Ethanol and Methanol were employed as the working fluid. A parabolic dish concentrator with a square prismatic tubular cavity receiver was used as the heat source of the ORC system. The effects of the tube diameter, the cavity depth, and the solar irradiation on the thermodynamic performance of the selected working fluid were investigated. Some thermodynamic parameters were analyzed in this study. These thermodynamic parameters included the thermal efficiency, second law efficiency, total irreversibility, availability ratio, mass flow rate, and net power output. The results showed that, among the selected working fluids, methanol had the highest thermal efficiency, net power output, second law efficiency, and availability ratio in the range of turbine inlet temperature (TIT) considered. On the other hand, methanol had the smallest total irreversibility in the same range of TIT. The results showed also that mass flow rate and consequently the net power output increased for higher solar irradiation, smaller tube diameter, and for the case of cubical cavity receiver (i.e. cavity depth h equal to the receiver aperture side length a).

  1. PAU-SA: A Synthetic Aperture Interferometric Radiometer Test Bed for Potential Improvements in Future Missions

    Directory of Open Access Journals (Sweden)

    Merce Vall-llosera

    2012-06-01

    Full Text Available The Soil Moisture and Ocean Salinity (SMOS mission is an Earth Explorer Opportunity mission from the European Space Agency (ESA. Its goal is to produce global maps of soil moisture and ocean salinity using the Microwave Imaging Radiometer by Aperture Synthesis (MIRAS. The purpose of the Passive Advanced Unit Synthetic Aperture (PAU-SA instrument is to study and test some potential improvements that could eventually be implemented in future missions using interferometric radiometers such as the Geoestacionary Atmosferic Sounder (GAS, the Precipitation and All-weather Temperature and Humidity (PATH and the Geostationary Interferometric Microwave Sounder (GIMS. Both MIRAS and PAU-SA are Y-shaped arrays with uniformly distributed antennas, but the receiver topology and the processing unit are quite different. The purpose of this work is to identify the elements in the MIRAS’s design susceptible of improvement and apply them in the PAU-SA instrument demonstrator, to test them in view of these future interferometric radiometer missions.

  2. Delphi Accounts Receivable Module -

    Data.gov (United States)

    Department of Transportation — Delphi accounts receivable module contains the following data elements, but are not limited to customer information, cash receipts, line of accounting details, bill...

  3. Modular assembly of a photovoltaic solar energy receiver

    Science.gov (United States)

    Graven, Robert M.; Gorski, Anthony J.; Schertz, William W.; Graae, Johan E. A.

    1978-01-01

    There is provided a modular assembly of a solar energy concentrator having a photovoltaic energy receiver with passive cooling. Solar cell means are fixedly coupled to a radiant energy concentrator. Tension means bias a large area heat sink against the cell thereby allowing the cell to expand or contract with respect to the heat sink due to differential heat expansion.

  4. Far-field divergence of a vectorial plane wave diffracted by a circular aperture from the vectorial structure

    International Nuclear Information System (INIS)

    Zhou Guo-Quan

    2011-01-01

    Based on the vectorial structure of an electromagnetic wave, the analytical and concise expressions for the TE and TM terms of a vectorial plane wave diffracted by a circular aperture are derived in the far-field. The expressions of the energy flux distributions of the TE term, the TM term and the diffracted plane wave are also presented. The ratios of the power of the TE and TM terms to that of the diffracted plane wave are examined in the far-field. In addition, the far-field divergence angles of the TE term, the TM term and the diffracted plane wave, which are related to the energy flux distribution, are investigated. The different energy flux distributions of the TE and TM terms result in the discrepancy of their divergence angles. The influences of the linearly polarized angle and the radius of the circular aperture on the far-field divergence angles of the TE term, the TM term and the diffracted plane wave are discussed in detail. This research may promote the recognition of the optical propagation through a circular aperture. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  5. Heat pumps: heat recovery

    Energy Technology Data Exchange (ETDEWEB)

    Pielke, R

    1976-01-01

    The author firstly explains in a general manner the functioning of the heat pump. Following a brief look at the future heat demand and the possibilities of covering it, the various methods of obtaining energy (making use of solar energy, ground heat, and others) and the practical applications (office heating, swimming pool heating etc.) are explained. The author still sees considerable difficulties in using the heat pump at present on a large scale. Firstly there is not enough maintenance personnel available, secondly the electricity supply undertakings cannot provide the necessary electricity on a wide basis without considerable investments. Other possibilities to save energy or to use waste energy are at present easier and more economical to realize. Recuperative and regenerative systems are described.

  6. A future large-aperture UVOIR space observatory: reference designs

    Science.gov (United States)

    Rioux, Norman; Thronson, Harley; Feinberg, Lee; Stahl, H. Philip; Redding, Dave; Jones, Andrew; Sturm, James; Collins, Christine; Liu, Alice

    2015-09-01

    Our joint NASA GSFC/JPL/MSFC/STScI study team has used community-provided science goals to derive mission needs, requirements, and candidate mission architectures for a future large-aperture, non-cryogenic UVOIR space observatory. We describe the feasibility assessment of system thermal and dynamic stability for supporting coronagraphy. The observatory is in a Sun-Earth L2 orbit providing a stable thermal environment and excellent field of regard. Reference designs include a 36-segment 9.2 m aperture telescope that stows within a five meter diameter launch vehicle fairing. Performance needs developed under the study are traceable to a variety of reference designs including options for a monolithic primary mirror.

  7. Results from the Coded Aperture Neutron Imaging System (CANIS)

    International Nuclear Information System (INIS)

    Brubaker, Erik; Steele, John T.; Brennan, James S.; Hilton, Nathan R.; Marleau, Peter

    2010-01-01

    Because of their penetrating power, energetic neutrons and gamma rays (∼1 MeV) offer the best possibility of detecting highly shielded or distant special nuclear material (SNM). Of these, fast neutrons offer the greatest advantage due to their very low and well understood natural background. We are investigating a new approach to fast-neutron imaging- a coded aperture neutron imaging system (CANIS). Coded aperture neutron imaging should offer a highly efficient solution for improved detection speed, range, and sensitivity. We have demonstrated fast neutron and gamma ray imaging with several different configurations of coded masks patterns and detectors including an 'active' mask that is composed of neutron detectors. Here we describe our prototype detector and present some initial results from laboratory tests and demonstrations.

  8. Results from the coded aperture neutron imaging system

    International Nuclear Information System (INIS)

    Brubaker, Erik; Steele, John T.; Brennan, James S.; Marleau, Peter

    2010-01-01

    Because of their penetrating power, energetic neutrons and gamma rays (∼1 MeV) offer the best possibility of detecting highly shielded or distant special nuclear material (SNM). Of these, fast neutrons offer the greatest advantage due to their very low and well understood natural background. We are investigating a new approach to fast-neutron imaging - a coded aperture neutron imaging system (CANIS). Coded aperture neutron imaging should offer a highly efficient solution for improved detection speed, range, and sensitivity. We have demonstrated fast neutron and gamma ray imaging with several different configurations of coded masks patterns and detectors including an 'active' mask that is composed of neutron detectors. Here we describe our prototype detector and present some initial results from laboratory tests and demonstrations.

  9. Adaptive aperture for Geiger mode avalanche photodiode flash ladar systems

    Science.gov (United States)

    Wang, Liang; Han, Shaokun; Xia, Wenze; Lei, Jieyu

    2018-02-01

    Although the Geiger-mode avalanche photodiode (GM-APD) flash ladar system offers the advantages of high sensitivity and simple construction, its detection performance is influenced not only by the incoming signal-to-noise ratio but also by the absolute number of noise photons. In this paper, we deduce a hyperbolic approximation to estimate the noise-photon number from the false-firing percentage in a GM-APD flash ladar system under dark conditions. By using this hyperbolic approximation function, we introduce a method to adapt the aperture to reduce the number of incoming background-noise photons. Finally, the simulation results show that the adaptive-aperture method decreases the false probability in all cases, increases the detection probability provided that the signal exceeds the noise, and decreases the average ranging error per frame.

  10. Scintillator Based Coded-Aperture Imaging for Neutron Detection

    International Nuclear Information System (INIS)

    Hayes, Sean-C.; Gamage, Kelum-A-A.

    2013-06-01

    In this paper we are going to assess the variations of neutron images using a series of Monte Carlo simulations. We are going to study neutron images of the same neutron source with different source locations, using a scintillator based coded-aperture system. The Monte Carlo simulations have been conducted making use of the EJ-426 neutron scintillator detector. This type of detector has a low sensitivity to gamma rays and is therefore of particular use in a system with a source that emits a mixed radiation field. From the use of different source locations, several neutron images have been produced, compared both qualitatively and quantitatively for each case. This allows conclusions to be drawn on how suited the scintillator based coded-aperture neutron imaging system is to detecting various neutron source locations. This type of neutron imaging system can be easily used to identify and locate nuclear materials precisely. (authors)

  11. Dynamic Aperture Optimization for Low Emittance Light Sources

    CERN Document Server

    Kramer, Stephen L

    2005-01-01

    State of the art low emittance light source lattices, require small bend angle dipole magnets and strong quadrupoles. This in turn creates large chromaticity and small value of dispersion in the lattice. To counter the high chromaticity strong sextupoles are required which limit the dynamic aperture. Traditional methods for expanding the dynamic aperture use harmonic sextupoles to counter the tune shift with amplitude. This has been successful up to now, but is non-deterministic and limited as the sextupole strength increases, driving higher order nonlinearities. We have taken a different approach that makes use of the tune flexibility of a TBA lattice to minimize the lowest order nonlinearities, freeing the harmonic sextupoles to counter the higher order nonlinearities. This procedure is being used to improve the nonlinear dynamics of the NSLS-II lattice.

  12. Random mask optimization for fast neutron coded aperture imaging

    Energy Technology Data Exchange (ETDEWEB)

    McMillan, Kyle [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Univ. of California, Los Angeles, CA (United States); Marleau, Peter [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Brubaker, Erik [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2015-05-01

    In coded aperture imaging, one of the most important factors determining the quality of reconstructed images is the choice of mask/aperture pattern. In many applications, uniformly redundant arrays (URAs) are widely accepted as the optimal mask pattern. Under ideal conditions, thin and highly opaque masks, URA patterns are mathematically constructed to provide artifact-free reconstruction however, the number of URAs for a chosen number of mask elements is limited and when highly penetrating particles such as fast neutrons and high-energy gamma-rays are being imaged, the optimum is seldom achieved. In this case more robust mask patterns that provide better reconstructed image quality may exist. Through the use of heuristic optimization methods and maximum likelihood expectation maximization (MLEM) image reconstruction, we show that for both point and extended neutron sources a random mask pattern can be optimized to provide better image quality than that of a URA.

  13. LHC β*-reach MD: aperture measurements at small β*

    CERN Document Server

    Fuster Martinez, Nuria; Redaelli, Stefano; CERN. Geneva. ATS Department

    2017-01-01

    During this MD, performed on the 25th of July 2017, we measured the LHC aperture at top energy for β*=30 cm using the Transverse Damper (ADT) blow-up method. These measurements are part of the standard commissioning of an optics and have been performed in order to provide early on inputs for a possible change of β* later in 2017, as envisaged previously to fully profit from the additional margins introduced by the rematched phase advance between dump kickers and the TCTs (Target Collimator Tertiary). In addition to the aperture measurements, two other commissioning important tests were performed: loss maps for the nominal TCTs settings and an asynchronous dump validation with tighter TCT gaps.

  14. Evaluation of coded aperture radiation detectors using a Bayesian approach

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Kyle, E-mail: mille856@andrew.cmu.edu [Auton Lab, The Robotics Institute, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213 (United States); Huggins, Peter [Auton Lab, The Robotics Institute, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213 (United States); Labov, Simon; Nelson, Karl [Lawrence Livermore National Laboratory, Livermore, CA (United States); Dubrawski, Artur [Auton Lab, The Robotics Institute, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213 (United States)

    2016-12-11

    We investigate tradeoffs arising from the use of coded aperture gamma-ray spectrometry to detect and localize sources of harmful radiation in the presence of noisy background. Using an example application scenario of area monitoring and search, we empirically evaluate weakly supervised spectral, spatial, and hybrid spatio-spectral algorithms for scoring individual observations, and two alternative methods of fusing evidence obtained from multiple observations. Results of our experiments confirm the intuition that directional information provided by spectrometers masked with coded aperture enables gains in source localization accuracy, but at the expense of reduced probability of detection. Losses in detection performance can however be to a substantial extent reclaimed by using our new spatial and spatio-spectral scoring methods which rely on realistic assumptions regarding masking and its impact on measured photon distributions.

  15. A variable suppressed aperture and Faraday cup system

    International Nuclear Information System (INIS)

    Price, H.G.; Charlesworth, T.R.

    1979-02-01

    The injection system of the NSF accelerator within the high voltage enclosure is illustrated. The optics calls for a waist close to the entrance of the 500 kV accelerator tube. This waist will be the initial diagnostic point on the injection path for determining ion source performance and transmission through the later system. This will be made by determining the beam current after a preliminary mass analysis by the 30 0 magnet. To provide this diagnostic and to enable a waist to be formed at this point, a variable aperture and Faraday cup system is required. The Faraday cup will measure the beam transmitted by the aperture. Maximisation of this beam by adjustment of the preceding optical elements will ensure the waist in the beam at that point. (author)

  16. Coding aperture applied to X-ray imaging

    International Nuclear Information System (INIS)

    Brunol, J.; Sauneuf, R.; Gex, J.P.

    1980-05-01

    We present some X-ray images of grids and plasmas. These images were obtained by using a single circular slit (annular code) as coding aperture and a computer decoding process. The experimental resolution is better than 10μm and it is expected to be in the order of 2 or 3 μm with the same code and an improved decoding process

  17. Granular flow through an aperture: influence of the packing fraction

    OpenAIRE

    Alejandra Aguirre , Maria; De Schant , Rosario; Géminard , Jean-Christophe

    2014-01-01

    For the last 50 years, the flow of a granular material through an aperture has been intensely studied in gravity-driven vertical systems (e.g. silos and hoppers). Nevertheless, in many industrial applications, grains are horizontally transported at constant velocity, lying on conveyor belts or floating on the surface of flowing liquids. Unlike fluid flows, that are controlled by the pressure, granular flow is not sensitive to the local pressure but rather to the local velocity of the grains a...

  18. Implementation of real-time duplex synthetic aperture ultrasonography

    DEFF Research Database (Denmark)

    Hemmsen, Martin Christian; Larsen, Lee; Kjeldsen, Thomas

    2015-01-01

    This paper presents a real-time duplex synthetic aperture imaging system, implemented on a commercially available tablet. This includes real-time wireless reception of ultrasound signals and GPU processing for B-mode and Color Flow Imaging (CFM). The objective of the work is to investigate the im...... and that the required bandwidth between the probe and processing unit is within the current Wi-Fi standards....

  19. Inverse synthetic aperture radar imaging principles, algorithms and applications

    CERN Document Server

    Chen , Victor C

    2014-01-01

    Inverse Synthetic Aperture Radar Imaging: Principles, Algorithms and Applications is based on the latest research on ISAR imaging of moving targets and non-cooperative target recognition (NCTR). With a focus on the advances and applications, this book will provide readers with a working knowledge on various algorithms of ISAR imaging of targets and implementation with MATLAB. These MATLAB algorithms will prove useful in order to visualize and manipulate some simulated ISAR images.

  20. Maximally flat radiation patterns of a circular aperture

    Science.gov (United States)

    Minkovich, B. M.; Mints, M. Ia.

    1989-08-01

    The paper presents an explicit solution to the problems of maximizing the area utilization coefficient and of obtaining the best approximation (on the average) of a sectorial Pi-shaped radiation pattern of an antenna with a circular aperture when Butterworth conditions are imposed on the approximating pattern with the aim of flattening it. Constraints on the choice of admissible minimum and maximum antenna dimensions are determined which make possible the synthesis of maximally flat patterns with small sidelobes.

  1. The LAGO (Large Aperture GRB Observatory) in Peru

    Science.gov (United States)

    Tueros-Cuadros, E.; Otiniano, L.; Chirinos, J.; Soncco, C.; Guevara-Day, W.

    2012-07-01

    The Large Aperture GRBs Observatory is a continental-wide observatory devised to detect high energy (around 100 GeV) component of Gamma Ray Bursts (GRBs), by using the single particle technique in arrays of Water Cherenkov Detectors (WCDs) at high mountain sites of Argentina, Bolivia, Colombia, Guatemala, Mexico, Venezuela and Peru. Details of the instalation and operation of the detectors in Marcapomacocha in Peru at 4550 m.a.s.l. are given. The detector calibration method will also be shown.

  2. Large aperture harmonic conversion experiments at Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Linford, G.J.; Johnson, B.C.; Hildum, J.S.; G. J. Linford is now with Max-Planck-Institut fur Quantenoptik, D-8046 Garching, Federal Republic of Germany)

    1982-01-01

    Large aperture harmonic conversion experiments to 2ω (532 nm), 3ω (355 nm), and 4ω (266 nm) on the Argus laser at the Livermore National Laboratory are described. Harmonically converted energies of up to 346 J have been generated at external conversion efficiencies of 83%. A discussion of the harmonic conversion experiments and a brief summary of enhanced 2ω and 3ω inertial confinement fusion target performances are provided

  3. Large aperture harmonic conversion experiments at Lawrence Livermore National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Linford, G.J.; Johnson, B.C.; Hildum, J.S.; Martin, W.E.; Snyder, K.; Boyd, R.D.; Smith, W.L.; Vercimak, C.L.; Eimerle, D.; Hunt, J.T.

    1982-10-15

    Large aperture harmonic conversion experiments to 2..omega.. (532 nm), 3..omega.. (355 nm), and 4..omega.. (266 nm) on the Argus laser at the Livermore National Laboratory are described. Harmonically converted energies of up to 346 J have been generated at external conversion efficiencies of 83%. A discussion of the harmonic conversion experiments and a brief summary of enhanced 2..omega.. and 3..omega.. inertial confinement fusion target performances are provided.

  4. Applications of Adaptive Learning Controller to Synthetic Aperture Radar.

    Science.gov (United States)

    1985-02-01

    TERMS (Continue on retuerse if necessary and identify by block num ber) FIELD YGROUP SUB. GR. Adaptive control, aritificial intelligence , synthetic aetr1...application of Artificial Intelligence methods to Synthetic Aperture Radars (SARs) is investigated. It was shown that the neuron-like Adaptive Learning...wavelength Al SE!RI M RADAR DIVISION REFERENCES 1. Barto, A.G. and R.S. Sutton, Goal Seeking Components for Adaptive Intelligence : An Initial Assessment

  5. Digital filtering and reconstruction of coded aperture images

    International Nuclear Information System (INIS)

    Tobin, K.W. Jr.

    1987-01-01

    The real-time neutron radiography facility at the University of Virginia has been used for both transmission radiography and computed tomography. Recently, a coded aperture system has been developed to permit the extraction of three dimensional information from a low intensity field of radiation scattered by an extended object. Short wave-length radiations (e.g. neutrons) are not easily image because of the difficulties in achieving diffraction and refraction with a conventional lens imaging system. By using a coded aperture approach, an imaging system has been developed that records and reconstructs an object from an intensity distribution. This system has a signal-to-noise ratio that is proportional to the total open area of the aperture making it ideal for imaging with a limiting intensity radiation field. The main goal of this research was to develope and implement the digital methods and theory necessary for the reconstruction process. Several real-time video systems, attached to an Intellect-100 image processor, a DEC PDP-11 micro-computer, and a Convex-1 parallel processing mainframe were employed. This system, coupled with theoretical extensions and improvements, allowed for retrieval of information previously unobtainable by earlier optical methods. The effect of thermal noise, shot noise, and aperture related artifacts were examined so that new digital filtering techniques could be constructed and implemented. Results of image data filtering prior to and following the reconstruction process are reported. Improvements related to the different signal processing methods are emphasized. The application and advantages of this imaging technique to the field of non-destructive testing are also discussed

  6. Limits to Clutter Cancellation in Multi-Aperture GMTI Data

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bickel, Douglas L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-03-01

    Multi-aperture or multi-subaperture antennas are fundamental to Ground Moving Target Indicator (GMTI) radar systems in order to detect slow-moving targets with Doppler characteristics similar to clutter. Herein we examine the performance of several subaperture architectures for their clutter cancelling performance. Significantly, more antenna phase centers isn’t always better, and in fact is sometimes worse, for detecting targets.

  7. Dynamic Aperture Studies for the FCC-ee

    CERN Document Server

    Medina, L; Tomas, R; Zimmermann, F

    2015-01-01

    Dynamic aperture (DA) studies have been conducted on the latest Future Circular Collider – ee (FCC-ee) lattices as a function of momentum deviation.Two different schemes for the interaction region are used, which are connected to the main arcs: the crab waist approach, developed by BINP, and an update to the CERN design where the use of crab cavities is envisioned. The results presented show an improvement in the performance of both designs.

  8. Strategies used to walk through a moving aperture.

    Science.gov (United States)

    Cinelli, Michael E; Patla, Aftab E; Allard, Fran

    2008-05-01

    The objectives of the study were to determine what strategy (pursuit or interception) individuals used to pass through an oscillating target and to determine if individuals walked towards where they were looking. Kinematic and gaze behaviour data was collected from seven healthy female participants as they started at one of five different starting positions and walked 7 m towards an oscillating target. The target was a two-dimensional 70 cm aperture made by two-76 cm wide doors and oscillated between two end posts that were 300 cm apart. In order to quantify the objectives, target-heading angles [Fajen BR, Warren WH. Behavioral dynamics of steering, obstacle avoidance, and route selection. J Exp Psychol Hum Percept Perform 2003;29(2):343-62; Fajen BR, Warren WH. Visual guidance of intercepting a moving target on foot. Perception 2004;33:689-715] were calculated. Results showed that the participants used neither an interception nor a pursuit strategy to successfully pass through the moving aperture. The participants steered towards the middle of the pathway prior to passing through the middle of the aperture. A cross correlation between the horizontal gaze locations and the medial/lateral (M/L) location of the participants' center of mass (COM) was performed. The results from the cross correlation show that during the final 2s prior to crossing the aperture, the participants walked where they were looking. The findings from this study suggest that individuals simplify a task by decreasing the perceptual load until the final stages. In this way the final stages of this task were visually driven.

  9. Dynamic Aperture Studies for the LHC High Luminosity Lattice

    CERN Document Server

    De Maria, R; Giovannozzi, Massimo; Mcintosh, Eric; Cai, Y; Nosochkov, Y; Wang, M H

    2015-01-01

    Since quite some time, dynamic aperture studies have been undertaken with the aim of specifying the required field quality of the new magnets that will be installed in the LHC ring in the framework of the high-luminosity upgrade. In this paper the latest results concerning the specification work will be presented, taking into account both injection and collision energies and the field quality contribution from all the magnets in the newly designed interaction regions.

  10. Implementation of Tissue Harmonic Synthetic Aperture Imaging on a Commercial Ultrasound System

    DEFF Research Database (Denmark)

    Rasmussen, Joachim; Hemmsen, Martin Christian; Madsen, Signe Sloth

    2012-01-01

    at 80 mm and an F# of 3 is applied. For DRF imaging, default scanner settings are used, which are a focus at 85 mm and F# of 5.7 in transmit and a dynamic receive aperture with an F# of 0.8. In all cases a 2.14 MHz one-and-ahalf cycle excitation transmit waveform is used. A BK 8820e 192 element convex...... array transducer is used to conduct scans of wire phantoms. The -6 dB and -20 dB lateral resolution is measured for each wire in the phantom. Results show that the -6 dB lateral resolution for SASB-THI is as good as for DRF-THI except at the point of the virtual source. SASB-THI even shows 7% reduction...

  11. Modified retrieval algorithm for three types of precipitation distribution using x-band synthetic aperture radar

    Science.gov (United States)

    Xie, Yanan; Zhou, Mingliang; Pan, Dengke

    2017-10-01

    The forward-scattering model is introduced to describe the response of normalized radar cross section (NRCS) of precipitation with synthetic aperture radar (SAR). Since the distribution of near-surface rainfall is related to the rate of near-surface rainfall and horizontal distribution factor, a retrieval algorithm called modified regression empirical and model-oriented statistical (M-M) based on the volterra integration theory is proposed. Compared with the model-oriented statistical and volterra integration (MOSVI) algorithm, the biggest difference is that the M-M algorithm is based on the modified regression empirical algorithm rather than the linear regression formula to retrieve the value of near-surface rainfall rate. Half of the empirical parameters are reduced in the weighted integral work and a smaller average relative error is received while the rainfall rate is less than 100 mm/h. Therefore, the algorithm proposed in this paper can obtain high-precision rainfall information.

  12. Physics-Based Predictions for Coherent Change Detection Using X-Band Synthetic Aperture Radar

    Directory of Open Access Journals (Sweden)

    Mark Preiss

    2005-12-01

    Full Text Available A theoretical model is developed to describe the interferometric coherency between pairs of SAR images of rough soil surfaces. The model is derived using a dyadic form for surface reflectivity in the Kirchhoff approximation. This permits the combination of Kirchhoff theory and spotlight synthetic aperture radar (SAR image formation theory. The resulting model is used to describe the interferometric coherency between pairs of SAR images of rough soil surfaces. The theoretical model is applied to SAR images formed before and after surface changes observed by a repeat-pass SAR system. The change in surface associated with a tyre track following vehicle passage is modelled and SAR coherency estimates are obtained. Predicted coherency distributions for both the change and no-change scenarios are used to estimate receiver operator curves for the detection of the changes using a high-resolution, X-band SAR system.

  13. Soft apertures to shape high-power laser beams

    International Nuclear Information System (INIS)

    Lukishova, S.G.; Pashinin, P.P.; Batygov, S.K.; Terentiev, B.M.

    1989-01-01

    Soft or apodized apertures with smooth decreasing from center to edges transmission profiles are used in laser physics for beam shaping. This paper gives the results of the studies of four types of these units for UV, visible and IR lasers. They are made of glasses or crystals with the use of one of the following technologies: absorption induced by ionizing radiation; photodestruction of color centers or photooxidation of impurities ions; additive coloration; frustrated total internal reflection. The special feature of such apertures is their high optical damage resistance under the irradiation of single-pulse laser radiation. They are approximately 3-50 mm in diameter by the methods of making them give the possibility to create near-Gaussian and flat-top beams with dimensions less than 1 mm and larger than 200 mm. The results of using them in high-power single-pulse lasers are presented. Damage thresholds of these apertures in such types of lasers have been defined

  14. A panoramic coded aperture gamma camera for radioactive hotspots localization

    Science.gov (United States)

    Paradiso, V.; Amgarou, K.; Blanc De Lanaute, N.; Schoepff, V.; Amoyal, G.; Mahe, C.; Beltramello, O.; Liénard, E.

    2017-11-01

    A known disadvantage of the coded aperture imaging approach is its limited field-of-view (FOV), which often results insufficient when analysing complex dismantling scenes such as post-accidental scenarios, where multiple measurements are needed to fully characterize the scene. In order to overcome this limitation, a panoramic coded aperture γ-camera prototype has been developed. The system is based on a 1 mm thick CdTe detector directly bump-bonded to a Timepix readout chip, developed by the Medipix2 collaboration (256 × 256 pixels, 55 μm pitch, 14.08 × 14.08 mm2 sensitive area). A MURA pattern coded aperture is used, allowing for background subtraction without the use of heavy shielding. Such system is then combined with a USB color camera. The output of each measurement is a semi-spherical image covering a FOV of 360 degrees horizontally and 80 degrees vertically, rendered in spherical coordinates (θ,phi). The geometrical shapes of the radiation-emitting objects are preserved by first registering and stitching the optical images captured by the prototype, and applying, subsequently, the same transformations to their corresponding radiation images. Panoramic gamma images generated by using the technique proposed in this paper are described and discussed, along with the main experimental results obtained in laboratories campaigns.

  15. Coded aperture imaging system for nuclear fuel motion detection

    International Nuclear Information System (INIS)

    Stalker, K.T.; Kelly, J.G.

    1980-01-01

    A Coded Aperature Imaging System (CAIS) has been developed at Sandia National Laboratories to image the motion of nuclear fuel rods undergoing tests simulating accident conditions within a liquid metal fast breeder reactor. The tests require that the motion of the test fuel be monitored while it is immersed in a liquid sodium coolant precluding the use of normal optical means of imaging. However, using the fission gamma rays emitted by the fuel itself and coded aperture techniques, images with 1.5 mm radial and 5 mm axial resolution have been attained. Using an electro-optical detection system coupled to a high speed motion picture camera a time resolution of one millisecond can be achieved. This paper will discuss the application of coded aperture imaging to the problem, including the design of the one-dimensional Fresnel zone plate apertures used and the special problems arising from the reactor environment and use of high energy gamma ray photons to form the coded image. Also to be discussed will be the reconstruction techniques employed and the effect of various noise sources on system performance. Finally, some experimental results obtained using the system will be presented

  16. Coded aperture material motion detection system for the ACPR

    International Nuclear Information System (INIS)

    McArthur, D.A.; Kelly, J.G.

    1975-01-01

    Single LMFBR fuel pins are being irradiated in Sandia's Annular Core Pulsed Reactor (ACPR). In these experiments single fuel pins have been driven well into the melt and vaporization regions in transients with pulse widths of about 5 ms. The ACPR is being upgraded so that it can be used to irradiate bundles of seven LMFBR fuel pins. The coded aperture material motion detection system described is being developed for this upgraded ACPR, and has for its design goals 1 mm transverse resolution (i.e., in the axial and radial directions), depth resolution of a few cm, and time resolution of 0.1 ms. The target date for development of this system is fall 1977. The paper briefly reviews the properties of coded aperture imaging, describes one possible system for the ACPR upgrade, discusses experiments which have been performed to investigate the feasibility of such a system, and describes briefly the further work required to develop such a system. The type of coded aperture to be used has not yet been fixed, but a one-dimensional section of a Fresnel zone plate appears at this time to have significant advantages

  17. Optimized baffle and aperture placement in neutral beamlines

    International Nuclear Information System (INIS)

    Stone, R.; Duffy, T.; Vetrovec, J.

    1983-01-01

    Most neutral beamlines contain an iron-core ion-bending magnet that requires shielding between the end of the neutralizer and this magnet. This shielding allows the gas pressure to drop prior to the beam entering the magnet and therefore reduces beam losses in this drift region. We have found that the beam losses can be reduced even further by eliminating the iron-core magnet and the magnetic shielding altogether. The required bending field can be supplied by current coils without the iron poles. In addition, placement of the baffles and apertures can affect the cold gas entering the plasma region and the losses in the neutral beam due to re-ionization. In our study we varied the placement of the baffles, which determine the amount of pumping in each chamber, and the apertures, which determine the beam loss. Our results indicate that a baffle/aperture configuration can be set for either minimum cold gas into the plasma region or minimum beam losses, but not both

  18. Postoperative Irradiation of Gynecologic Malignancies: Improving Treatment Delivery Using Aperture-Based Intensity-Modulated Radiotherapy

    International Nuclear Information System (INIS)

    Nadeau, Sylvain; Bouchard, Myriam; Germain, Isabelle; Raymond, Paul-Emile; Beaulieu, Frederic; Beaulieu, Luc; Roy, Rene; Gingras, Luc

    2007-01-01

    Purpose: To evaluate dosimetric and treatment delivery advantages of aperture-based intensity-modulated radiotherapy (AB-IMRT) for the treatment of patients receiving whole pelvic radiotherapy for gynecologic malignancies. Methods and Materials: Nineteen patients undergoing pelvic radiotherapy after resection of endometrial cancers were selected. A 45-Gy dose was prescribed to the target volume delineated on a planning CT scan. An in-house inverse planning system, Ballista, was used to develop a treatment plan using aperture-based multileaf collimator segments. This approach was compared with conventional four-field, enlarged four-field, and static beamlet-based IMRT (BB-IMRT) techniques in terms of target coverage, dose-volume histogram statistics for surrounding normal tissues, and numbers of segments and monitor units (MU). Results: Three quarters (76.4%) of the planning target volume received the prescription dose with conventional four-field plans. With adequate target coverage, the Ballista plans significantly reduced the volume of bowel and bladder irradiated at the prescribed dose (p < 0.001), whereas the two approaches provided equivalent results for the rectum (p 0.5). On the other hand, AB-IMRT and BB-IMRT plans showed only small differences in dose-volume histogram statistics of unknown clinical impact, whereas Ballista plan delivery required on average 73% and 59% fewer segments and MU, respectively. Conclusion: With respect to conventional techniques, AB-IMRT for the treatment of gynecologic malignancies provides dosimetric advantages similar to those with BB-IMRT but with clear treatment delivery improvements

  19. Cryogenic microwave channelized receiver

    International Nuclear Information System (INIS)

    Rauscher, C.; Pond, J.M.; Tait, G.B.

    1996-01-01

    The channelized receiver being presented demonstrates the use of high temperature superconductor technology in a microwave system setting where superconductor, microwave-monolithic-integrated-circuit, and hybrid-integrated-circuit components are united in one package and cooled to liquid-nitrogen temperatures. The receiver consists of a superconducting X-band four-channel demultiplexer with 100-MHz-wide channels, four commercial monolithically integrated mixers, and four custom-designed hybrid-circuit detectors containing heterostructure ramp diodes. The composite receiver unit has been integrated into the payload of the second-phase NRL high temperature superconductor space experiment (HTSSE-II). Prior to payload assembly, the response characteristics of the receiver were measured as functions of frequency, temperature, and drive levels. The article describes the circuitry, discusses the key issues related to design and implementation, and summarizes the experimental results

  20. Alexandrite Lidar Receiver

    National Research Council Canada - National Science Library

    Wilkerson, Thomas

    2000-01-01

    ...". The chosen vendor, Orca Photonics, In. (Redmond, WA), in close collaboration with USU personnel, built a portable, computerized lidar system that not only is suitable as a receiver for a near IR alexandrite laser, but also contains an independent Nd...

  1. Receiver Gain Modulation Circuit

    Science.gov (United States)

    Jones, Hollis; Racette, Paul; Walker, David; Gu, Dazhen

    2011-01-01

    A receiver gain modulation circuit (RGMC) was developed that modulates the power gain of the output of a radiometer receiver with a test signal. As the radiometer receiver switches between calibration noise references, the test signal is mixed with the calibrated noise and thus produces an ensemble set of measurements from which ensemble statistical analysis can be used to extract statistical information about the test signal. The RGMC is an enabling technology of the ensemble detector. As a key component for achieving ensemble detection and analysis, the RGMC has broad aeronautical and space applications. The RGMC can be used to test and develop new calibration algorithms, for example, to detect gain anomalies, and/or correct for slow drifts that affect climate-quality measurements over an accelerated time scale. A generalized approach to analyzing radiometer system designs yields a mathematical treatment of noise reference measurements in calibration algorithms. By treating the measurements from the different noise references as ensemble samples of the receiver state, i.e. receiver gain, a quantitative description of the non-stationary properties of the underlying receiver fluctuations can be derived. Excellent agreement has been obtained between model calculations and radiometric measurements. The mathematical formulation is equivalent to modulating the gain of a stable receiver with an externally generated signal and is the basis for ensemble detection and analysis (EDA). The concept of generating ensemble data sets using an ensemble detector is similar to the ensemble data sets generated as part of ensemble empirical mode decomposition (EEMD) with exception of a key distinguishing factor. EEMD adds noise to the signal under study whereas EDA mixes the signal with calibrated noise. It is mixing with calibrated noise that permits the measurement of temporal-functional variability of uncertainty in the underlying process. The RGMC permits the evaluation of EDA by

  2. Enhanced transmission of transverse electric waves through periodic arrays of structured subwavelength apertures

    DEFF Research Database (Denmark)

    Xiao, Sanshui; Peng, Liang; Mortensen, Asger

    2010-01-01

    Transmission through sub-wavelength apertures in perfect metals is expected to be strongly suppressed. However, by structural engineering of the apertures, we numerically demonstrate that the transmission of transverse electric waves through periodic arrays of subwavelength apertures in a thin...... metallic film can be significantly enhanced. Based on equivalent circuit theory analysis, periodic arrays of square structured subwavelength apertures are obtained with a 1900-fold transmission enhancement factor when the side length a of the apertures is 10 times smaller than the wavelength (a/λ =0...

  3. Heat pipe heat storage performance

    Energy Technology Data Exchange (ETDEWEB)

    Caruso, A; Pasquetti, R [Univ. de Provence, Marseille (FR). Inst. Universitaire des Systemes; Grakovich, L P; Vasiliev, L L [A.V. Luikov Heat and Mass Transfer Inst. of the BSSR, Academy of Sciences, Minsk (BY)

    1989-01-01

    Heat storage offers essential thermal energy saving for heating. A ground heat store equipped with heat pipes connecting it with a heat source and to the user is considered in this paper. It has been shown that such a heat exchanging system along with a batch energy source meets, to a considerable extent, house heating requirements. (author).

  4. Influence of coma aberration on aperture averaged scintillations in oceanic turbulence

    Science.gov (United States)

    Luo, Yujuan; Ji, Xiaoling; Yu, Hong

    2018-01-01

    The influence of coma aberration on aperture averaged scintillations in oceanic turbulence is studied in detail by using the numerical simulation method. In general, in weak oceanic turbulence, the aperture averaged scintillation can be effectively suppressed by means of the coma aberration, and the aperture averaged scintillation decreases as the coma aberration coefficient increases. However, in moderate and strong oceanic turbulence the influence of coma aberration on aperture averaged scintillations can be ignored. In addition, the aperture averaged scintillation dominated by salinity-induced turbulence is larger than that dominated by temperature-induced turbulence. In particular, it is shown that for coma-aberrated Gaussian beams, the behavior of aperture averaged scintillation index is quite different from the behavior of point scintillation index, and the aperture averaged scintillation index is more suitable for characterizing scintillations in practice.

  5. Heat transfer

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Heat transfer. Heat conduction in solid slab. Convective heat transfer. Non-linear temperature. variation due to flow. HEAT FLUX AT SURFACE. conduction/diffusion.

  6. Heat Waves

    Science.gov (United States)

    Heat Waves Dangers we face during periods of very high temperatures include: Heat cramps: These are muscular pains and spasms due ... that the body is having trouble with the heat. If a heat wave is predicted or happening… - ...

  7. Heat Islands

    Science.gov (United States)

    EPA's Heat Island Effect Site provides information on heat islands, their impacts, mitigation strategies, related research, a directory of heat island reduction initiatives in U.S. communities, and EPA's Heat Island Reduction Program.

  8. 'Chaos' in superregenerative receivers

    International Nuclear Information System (INIS)

    Commercon, Jean-Claude; Badard, Robert

    2005-01-01

    The superregenerative principle has been known since the early 1920s. The circuit is extremely simple and extremely sensitive. Today, superheterodyne receivers generally supplant superregenerative receivers in most applications because there are several undesirable characteristics: poor selectivity, reradiation, etc. Superregenerative receivers undergo a revival in recent papers for wireless systems, where low cost and very low power consumption are relevant: house/building meters (such as water, energy, gas counter), personal computer environment (keyboard, mouse), etc. Another drawback is the noise level which is higher than that of a well-designed superheterodyne receiver; without an antenna input signal, the output of the receiver hears in an earphone as a waterfall noise; this sound principally is the inherent input noise amplified and detected by the circuit; however, when the input noise is negligible with respect of an antenna input signal, we are faced to an other source of 'noise' self-generated by the superregenerative working. The main objective of this paper concerns this self-generated noise coming from an exponential growing followed by a re-injection process for which the final state is a function of the phase of the input signal

  9. Quantifying multiscale porosity and fracture aperture distribution in granite cores using computed tomography

    Science.gov (United States)

    Wenning, Quinn; Madonna, Claudio; Joss, Lisa; Pini, Ronny

    2017-04-01

    Knowledge of porosity and fracture (aperture) distribution is key towards a sound description of fluid transport in low-permeability rocks. In the context of geothermal energy development, the ability to quantify the transport properties of fractures is needed to in turn quantify the rate of heat transfer, and, accordingly, to optimize the engineering design of the operation. In this context, core-flooding experiments coupled with non-invasive imaging techniques (e.g., X-Ray Computed Tomography - X-Ray CT) represent a powerful tool for making direct observations of these properties under representative geologic conditions. This study focuses on quantifying porosity and fracture aperture distribution in a fractured westerly granite core by using two recently developed experimental protocols. The latter include the use of a highly attenuating gas [Vega et al., 2014] and the application of the so-called missing CT attenuation method [Huo et al., 2016] to produce multidimensional maps of the pore space and of the fractures. Prior to the imaging experiments, the westerly granite core (diameter: 5 cm, length: 10 cm) was thermally shocked to induce micro-fractured pore space; this was followed by the application of the so-called Brazilian method to induce a macroscopic fracture along the length of the core. The sample was then mounted in a high-pressure aluminum core-holder, exposed to a confining pressure and placed inside a medical CT scanner for imaging. An initial compressive pressure cycle was performed to remove weak asperities and reduce the hysteretic behavior of the fracture with respect to effective pressure. The CT scans were acquired at room temperature and 0.5, 5, 7, and 10 MPa effective pressure under loading and unloading conditions. During scanning the pore fluid pressure was undrained and constant, and the confining pressure was regulated at the desired pressure with a high precision pump. Highly transmissible krypton and helium gases were used as

  10. Active control of passive acoustic fields: passive synthetic aperture/Doppler beamforming with data from an autonomous vehicle.

    Science.gov (United States)

    D'Spain, Gerald L; Terrill, Eric; Chadwell, C David; Smith, Jerome A; Lynch, Stephen D

    2006-12-01

    The maneuverability of autonomous underwater vehicles (AUVs) equipped with hull-mounted arrays provides the opportunity to actively modify received acoustic fields to optimize extraction of information. This paper uses ocean acoustic data collected by an AUV-mounted two-dimensional hydrophone array, with overall dimension one-tenth wavelength at 200-500 Hz, to demonstrate aspects of this control through vehicle motion. Source localization is performed using Doppler shifts measured at a set of receiver velocities by both single elements and a physical array. Results show that a source in the presence of a 10-dB higher-level interferer having exactly the same frequency content (as measured by a stationary receiver) is properly localized and that white-noise-constrained adaptive beamforming applied to the physical aperture data in combination with Doppler beamforming provides greater spatial resolution than physical-aperture-alone beamforming and significantly lower sidelobes than single element Doppler beamforming. A new broadband beamformer that adjusts for variations in vehicle velocity on a sample by sample basis is demonstrated with data collected during a high-acceleration maneuver. The importance of including the cost of energy expenditure in determining optimal vehicle motion is demonstrated through simulation, further illustrating how the vehicle characteristics are an integral part of the signal/array processing structure.

  11. An Analytical Approach for Performance Enhancement of FSO Communication System Using Array of Receivers in Adverse Weather Conditions

    Science.gov (United States)

    Nagpal, Shaina; Gupta, Amit

    2017-08-01

    Free Space Optics (FSO) link exploits the tremendous network capacity and is capable of offering wireless communications similar to communications through optical fibres. However, FSO link is extremely weather dependent and the major effect on FSO links is due to adverse weather conditions like fog and snow. In this paper, an FSO link is designed using an array of receivers. The disparity of the link for very high attenuation conditions due to fog and snow is analysed using aperture averaging technique. Further effect of aperture averaging technique is investigated by comparing the systems using aperture averaging technique with systems not using aperture averaging technique. The performance of proposed model of FSO link has been evaluated in terms of Q factor, bit error rate (BER) and eye diagram.

  12. Measured control characteristics of the half-cell 40mm aperture magnet string

    International Nuclear Information System (INIS)

    McInturff, A.; Flora, R.; Weisend, J.G. II; Wallis, D.B.; Dickey, C.E.

    1992-03-01

    The data presented here were obtained in the course of operating a five 40mm aperture dipole string. The eighty eight meter long string of dipoles was assembled to test the various proposed operational scenarios of the SSCL collider. As reported earlier, there had been a short control and system (data procurement) checkout run performed on an abbreviated two dipole string. The problems that were then uncovered with the exception of the high 20K shield heat load, were corrected. There has been over 5000 hours of running time on the system, 3000 hours on the five magnet string alone, and to date, no major problems or incidents have occurred. The quench (superconducting to normal transition) performance of the magnet string was excellent, with the exception of four premature quenches that occurred during power supply commissioning. The operational parameters were all found to be manageable or equal to or greater than design. The operational heat loads were within the budget with the exception of the 20K circuit which was a factor of three too high. The relative internal voltages of the magnets have been higher than previously measured in the shorter string by a significant amount. There will be a discussion of concerns and problems plus their possible solution. 6 refs

  13. Solar thermal central receivers

    International Nuclear Information System (INIS)

    Vant-Hull, L.L.

    1993-01-01

    Market issues, environmental impact, and technology issues related to the Solar Central Receiver concept are addressed. The rationale for selection of the preferred configuration and working fluid are presented as the result of a joint utility-industry analysis. A $30 million conversion of Solar One to an external molten salt receiver would provide the intermediate step to a commercial demonstration plant. The first plant in this series could produce electricity at 11.2 cents/kWhr and the seventh at 8.2 cents/kWhr, completely competitive with projected costs of new utility plants in 1992

  14. Wideband CMOS receivers

    CERN Document Server

    Oliveira, Luis

    2015-01-01

    This book demonstrates how to design a wideband receiver operating in current mode, in which the noise and non-linearity are reduced, implemented in a low cost single chip, using standard CMOS technology.  The authors present a solution to remove the transimpedance amplifier (TIA) block and connect directly the mixer’s output to a passive second-order continuous-time Σ∆ analog to digital converter (ADC), which operates in current-mode. These techniques enable the reduction of area, power consumption, and cost in modern CMOS receivers.

  15. Receiver gain function: the actual NMR receiver gain

    OpenAIRE

    Mo, Huaping; Harwood, John S.; Raftery, Daniel

    2010-01-01

    The observed NMR signal size depends on the receiver gain parameter. We propose a receiver gain function to characterize how much the raw FID is amplified by the receiver as a function of the receiver gain setting. Although the receiver is linear for a fixed gain setting, the actual gain of the receiver may differ from what the gain setting suggests. Nevertheless, for a given receiver, we demonstrate that the receiver gain function can be calibrated. Such a calibration enables accurate compar...

  16. Campus Projects Receiving "Earmarks."

    Science.gov (United States)

    Schonberger, Benjamin

    1991-01-01

    Specific campus projects that Congress has directed federal agencies to support this year at over 120 colleges and universities are listed. The agencies neither requested support nor sponsored merit-based competitions for the awards. In some cases, the institutions have a history of receiving special federal treatment. (MSE)

  17. Direct aperture optimization for IMRT using Monte Carlo generated beamlets

    International Nuclear Information System (INIS)

    Bergman, Alanah M.; Bush, Karl; Milette, Marie-Pierre; Popescu, I. Antoniu; Otto, Karl; Duzenli, Cheryl

    2006-01-01

    This work introduces an EGSnrc-based Monte Carlo (MC) beamlet does distribution matrix into a direct aperture optimization (DAO) algorithm for IMRT inverse planning. The technique is referred to as Monte Carlo-direct aperture optimization (MC-DAO). The goal is to assess if the combination of accurate Monte Carlo tissue inhomogeneity modeling and DAO inverse planning will improve the dose accuracy and treatment efficiency for treatment planning. Several authors have shown that the presence of small fields and/or inhomogeneous materials in IMRT treatment fields can cause dose calculation errors for algorithms that are unable to accurately model electronic disequilibrium. This issue may also affect the IMRT optimization process because the dose calculation algorithm may not properly model difficult geometries such as targets close to low-density regions (lung, air etc.). A clinical linear accelerator head is simulated using BEAMnrc (NRC, Canada). A novel in-house algorithm subdivides the resulting phase space into 2.5x5.0 mm 2 beamlets. Each beamlet is projected onto a patient-specific phantom. The beamlet dose contribution to each voxel in a structure-of-interest is calculated using DOSXYZnrc. The multileaf collimator (MLC) leaf positions are linked to the location of the beamlet does distributions. The MLC shapes are optimized using direct aperture optimization (DAO). A final Monte Carlo calculation with MLC modeling is used to compute the final dose distribution. Monte Carlo simulation can generate accurate beamlet dose distributions for traditionally difficult-to-calculate geometries, particularly for small fields crossing regions of tissue inhomogeneity. The introduction of DAO results in an additional improvement by increasing the treatment delivery efficiency. For the examples presented in this paper the reduction in the total number of monitor units to deliver is ∼33% compared to fluence-based optimization methods

  18. Assessment of large aperture scintillometry for large-area surface ...

    Indian Academy of Sciences (India)

    29

    1995), flat pastoral surfaces. (McAneny ... heat flux using net radiometer and soil heat flux plate, respectively and synchronized with ..... order to facilitates development of satellite based application for ET and drought monitoring, the .... daytime sensible heat flux and momentum fluxes;Boundary- Layer Meteorol.,68 357-373.

  19. Chinese very small aperture terminal system for ministries

    Science.gov (United States)

    Dan, Sen

    The objective and technologic approach of the Chinese very small aperture terminal (VSAT) system of data communications is described in this paper. The system is primarily designed for the management business of many governmental ministries and administrations. It consists of a centralized processing and switching facility and a number of groups of remote terminals. The network is constructed in a star configuration because of simplicity and the inherent nature of the management business. Either Intelsat of Chinese domestic communications satellite can be used for the space segment. The system performance has been verified by field trials. Some results of system analysis can be used for traffic design.

  20. Multi element synthetic aperture transmission using a frequency division approach

    DEFF Research Database (Denmark)

    Gran, Fredrik; Jensen, Jørgen Arendt

    2003-01-01

    transmitted into the tissue is low. This paper describes a novel method in which the available spectrum is divided into 2N overlapping subbands. This will assure a smooth broadband high resolution spectrum when combined. The signals are grouped into two subsets in which all signals are fully orthogonal...... can therefore be used for flow imaging, unlike with Hadamard and Golay coding. The frequency division approach increases the SNR by a factor of N2 compared to conventional pulsed synthetic aperture imaging, provided that N transmission centers are used. Simulations and phantom measurements...

  1. Motion compensated beamforming in synthetic aperture vector flow imaging

    DEFF Research Database (Denmark)

    Oddershede, Niels; Jensen, Jørgen Arendt

    2006-01-01

    . In this paper, these motion effects are considered. A number of Field II simulations of a single scatterer moving at different velocities are performed both for axial and lateral velocities from 0 to 1 m/s. Data are simulated at a pulse repetition frequency of 5 kHz. The signal-to-noise ratio (SNR....... Here the SNR is -10 dB compared to the stationary scatterer. A 2D motion compensation method for synthetic aperture vector flow imaging is proposed, where the former vector velocity estimate is used for compensating the beamforming of new data. This method is tested on data from an experimental flow...

  2. Optical Aperture Synthesis Object's Information Extracting Based on Wavelet Denoising

    International Nuclear Information System (INIS)

    Fan, W J; Lu, Y

    2006-01-01

    Wavelet denoising is studied to improve OAS(optical aperture synthesis) object's Fourier information extracting. Translation invariance wavelet denoising based on Donoho wavelet soft threshold denoising is researched to remove Pseudo-Gibbs in wavelet soft threshold image. OAS object's information extracting based on translation invariance wavelet denoising is studied. The study shows that wavelet threshold denoising can improve the precision and the repetition of object's information extracting from interferogram, and the translation invariance wavelet denoising information extracting is better than soft threshold wavelet denoising information extracting

  3. Apodized RFI filtering of synthetic aperture radar images

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin Walter

    2014-02-01

    Fine resolution Synthetic Aperture Radar (SAR) systems necessarily require wide bandwidths that often overlap spectrum utilized by other wireless services. These other emitters pose a source of Radio Frequency Interference (RFI) to the SAR echo signals that degrades SAR image quality. Filtering, or excising, the offending spectral contaminants will mitigate the interference, but at a cost of often degrading the SAR image in other ways, notably by raising offensive sidelobe levels. This report proposes borrowing an idea from nonlinear sidelobe apodization techniques to suppress interference without the attendant increase in sidelobe levels. The simple post-processing technique is termed Apodized RFI Filtering (ARF).

  4. Synthetic Aperture Sequential Beamforming implemented on multi-core platforms

    DEFF Research Database (Denmark)

    Kjeldsen, Thomas; Lassen, Lee; Hemmsen, Martin Christian

    2014-01-01

    This paper compares several computational ap- proaches to Synthetic Aperture Sequential Beamforming (SASB) targeting consumer level parallel processors such as multi-core CPUs and GPUs. The proposed implementations demonstrate that ultrasound imaging using SASB can be executed in real- time with ...... per second) on an Intel Core i7 2600 CPU with an AMD HD7850 and a NVIDIA GTX680 GPU. The fastest CPU and GPU implementations use 14% and 1.3% of the real-time budget of 62 ms/frame, respectively. The maximum achieved processing rate is 1265 frames/s....

  5. Kaleidoscope modes in large aperture Porro prism resonators

    CSIR Research Space (South Africa)

    Burger, L

    2008-08-01

    Full Text Available G == (3) and L aNF λ 2 = . (4) 0 20 40 60 80 100 120 140 160 180 200 0 10 20 30 40 50 60 70 80 90 Porro Angle cancer (degrees) N u m be r o f p et a ls N... ultimately results in the convergence of all starting fields to the petal–like patterns, as shown in Fig. 6 (see also Fig. 3 ‘large aperture mode’ movie). In the presence of gain and hence a limited build–up time, such a convergence would not necessarily...

  6. The COronal Solar Magnetism Observatory (COSMO) Large Aperture Coronagraph

    Science.gov (United States)

    Tomczyk, Steve; Gallagher, Dennis; Wu, Zhen; Zhang, Haiying; Nelson, Pete; Burkepile, Joan; Kolinksi, Don; Sutherland, Lee

    2013-04-01

    The COSMO is a facility dedicated to observing coronal and chromospheric magnetic fields. It will be located on a mountaintop in the Hawaiian Islands and will replace the current Mauna Loa Solar Observatory (MLSO). COSMO will provide unique observations of the global coronal magnetic fields and its environment to enhance the value of data collected by other observatories on the ground (e.g. SOLIS, BBO NST, Gregor, ATST, EST, Chinese Giant Solar Telescope, NLST, FASR) and in space (e.g. SDO, Hinode, SOHO, GOES, STEREO, Solar-C, Solar Probe+, Solar Orbiter). COSMO will employ a fleet of instruments to cover many aspects of measuring magnetic fields in the solar atmosphere. The dynamics and energy flow in the corona are dominated by magnetic fields. To understand the formation of CMEs, their relation to other forms of solar activity, and their progression out into the solar wind requires measurements of coronal magnetic fields. The large aperture coronagraph, the Chromospheric and Prominence Magnetometer and the K-Coronagraph form the COSMO instrument suite to measure magnetic fields and the polarization brightness of the low corona used to infer electron density. The large aperture coronagraph will employ a 1.5 meter fuse silica singlet lens, birefringent filters, and a spectropolarimeter to cover fields of view of up to 1 degree. It will observe the corona over a wide range of emission lines from 530.3 nm through 1083.0 nm allowing for magnetic field measurements over a wide range of coronal temperatures (e.g. FeXIV at 530.3 nm, Fe X at 637.4 nm, Fe XIII at 1074.7 and 1079.8 nm. These lines are faint and require the very large aperture. NCAR and NSF have provided funding to bring the large aperture coronagraph to a preliminary design review state by the end of 2013. As with all data from Mauna Loa, the data products from COSMO will be available to the community via the Mauna Loa website: http://mlso.hao.ucar.edu

  7. A fast autofocus algorithm for synthetic aperture radar processing

    DEFF Research Database (Denmark)

    Dall, Jørgen

    1992-01-01

    High-resolution synthetic aperture radar (SAR) imaging requires the motion of the radar platform to be known very accurately. Otherwise, phase errors are induced in the processing of the raw SAR data, and bad focusing results. In particular, a constant error in the measured along-track velocity o...... of magnitude lower than that of other algorithms providing comparable accuracies is presented. The algorithm has been tested on data from the Danish Airborne SAR, and the performance is compared with that of the traditional map drift algorithm...

  8. Monitoring coastal inundation with Synthetic Aperture Radar satellite data

    Science.gov (United States)

    Suzuoki, Yukihiro; Rangoonwala, Amina; Ramsey, Elijah W.

    2011-01-01

    Maps representing the presence and absence of surface inundation in the Louisiana coastal zone were created from available satellite scenes acquired by the Japanese Aerospace Exploration Agency's Advanced Land Observing Satellite and by the European Space Agency's Envisat from late 2006 through summer 2009. Detection of aboveground surface flooding relied on the well-documented and distinct signature of decreased backscatter in Synthetic Aperture Radar (SAR), which is indicative of inundated marsh in the Gulf of Mexico. Even though decreases in backscatter were distinctive, the multiplicity of possible interactions between changing flood depths and canopy height yielded complex SAR-based representations of the marshes.

  9. Synthetic aperture lidar as a future tool for earth observation

    Science.gov (United States)

    Turbide, Simon; Marchese, Linda; Terroux, Marc; Bergeron, Alain

    2017-11-01

    Synthetic aperture radar (SAR) is a tool of prime importance for Earth observation; it provides day and night capabilities in various weather conditions. State-of-the-art satellite SAR systems are a few meters in height and width and achieve resolutions of less than 1 m with revisit times on the order of days. Today's Earth observation needs demand higher resolution imaging together with timelier data collection within a compact low power consumption payload. Such needs are seen in Earth Observation applications such as disaster management of earthquakes, landslides, forest fires, floods and others. In these applications the availability of timely reliable information is critical to assess the extent of the disaster and to rapidly and safely deploy rescue teams. Synthetic aperture lidar (SAL) is based on the same basic principles as SAR. Both rely on the acquisition of multiple electromagnetic echoes to emulate a large antenna aperture providing the ability to produce high resolution images. However, in SAL, much shorter optical wavelengths (1.5 μm) are used instead of radar ones (wavelengths around 3 cm). Resolution being related to the wavelength, multiple orders of magnitude of improvement could be theoretically expected. Also, the sources, the detector, and the components are much smaller in optical domain than those for radar. The resulting system can thus be made compact opening the door to deployment onboard small satellites, airborne platforms and unmanned air vehicles. This has a strong impact on the time required to develop, deploy and use a payload. Moreover, in combination with airborne deployment, revisit times can be made much smaller and accessibility to the information can become almost in real-time. Over the last decades, studies from different groups have been done to validate the feasibility of a SAL system for 2D imagery and more recently for 3D static target imagery. In this paper, an overview of the advantages of this emerging technology will

  10. In-vivo synthetic aperture flow imaging in medical ultrasound

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav; Jensen, Jørgen Arendt

    2003-01-01

    A new method for acquiring flow images using synthetic aperture techniques in medical ultrasound is presented. The new approach makes it possible to have a continuous acquisition of flow data throughout the whole image simultaneously, and this can significantly improve blood velocity estimation.......2% and a mean relative bias of 3.4% using 24 pulse emissions at a flow angle of 45 degrees. The 24 emissions can be used for making a full-color flow map image. An in-vivo image of How in the carotid artery for a 29-year-old male also is presented. The full image is acquired using 24 emissions....

  11. Implementation of Synthetic Aperture Imaging in Medical Ultrasound

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Kortbek, Jacob; Nikolov, Svetoslav

    2010-01-01

    The main advantage of medical ultrasound imaging is its real time capability, which makes it possible to visualize dynamic structures in the human body. Real time synthetic aperture imaging puts very high demands on the hardware, which currently cannot be met. A method for reducing the number...... of calculations and still retain the many advantages of SA imaging is described. It consists of a dual stage beamformer, where the first can be a simple fixed focus analog beamformer and the second an ordinary digital ultrasound beamformer. The performance and constrictions of the approach is described....

  12. Design of a hybrid double-sideband/single-sideband (schlieren) objective aperture suitable for electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Buijsse, Bart; Laarhoven, Frank M.H.M. van [FEI Company, PO Box 80066, 5600 KA Eindhoven (Netherlands); Schmid, Andreas K.; Cambie, Rossana; Cabrini, Stefano; Jin, Jian [Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States); Glaeser, Robert M., E-mail: rmglaeser@lbl.gov [Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States)

    2011-12-15

    A novel design is described for an aperture that blocks a half-plane of the electron diffraction pattern out to a desired scattering angle, and then - except for a narrow support beam - transmits all of the scattered electrons beyond that angle. Our proposed tulip-shaped design is thus a hybrid between the single-sideband (ssb) aperture, which blocks a full half-plane of the diffraction pattern, and the conventional (i.e. fully open) double-sideband (dsb) aperture. The benefits of this hybrid design include the fact that such an aperture allows one to obtain high-contrast images of weak-phase objects with the objective lens set to Scherzer defocus. We further demonstrate that such apertures can be fabricated from thin-foil materials by milling with a focused ion beam (FIB), and that such apertures are fully compatible with the requirements of imaging out to a resolution of at least 0.34 nm. As is known from earlier work with single-sideband apertures, however, the edge of such an aperture can introduce unwanted, electrostatic phase shifts due to charging. The principal requirement for using such an aperture in a routine data-collection mode is thus to discover appropriate materials, protocols for fabrication and processing and conditions of use such that the hybrid aperture remains free of charging over long periods of time. -- Highlights: Black-Right-Pointing-Pointer New objective-aperture design is proposed for imaging weak-phase objects. Black-Right-Pointing-Pointer Design produces single-sideband contrast at low spatial frequencies. Black-Right-Pointing-Pointer Design also retains Scherzer-defocus phase contrast at higher resolution. Black-Right-Pointing-Pointer Proof-of-concept results are presented for microfabricated apertures. Black-Right-Pointing-Pointer Charging of such apertures during use remains an experimental challenge.

  13. Pre-HEAT: submillimeter site testing and astronomical spectra from Dome A, Antarctica

    Science.gov (United States)

    Kulesa, C. A.; Walker, C. K.; Schein, M.; Golish, D.; Tothill, N.; Siegel, P.; Weinreb, S.; Jones, G.; Bardin, J.; Jacobs, K.; Martin, C. L.; Storey, J.; Ashley, M.; Lawrence, J.; Luong-Van, D.; Everett, J.; Wang, L.; Feng, L.; Zhu, Z.; Yan, J.; Yang, J.; Zhang, X.-G.; Cui, X.; Yuan, X.; Hu, J.; Xu, Z.; Jiang, Z.; Yang, H.; Li, Y.; Sun, B.; Qin, W.; Shang, Z.

    2008-07-01

    Pre-HEAT is a 20 cm aperture submillimeter-wave telescope with a 660 GHz (450 micron) Schottky diode heterodyne receiver and digital FFT spectrometer for the Plateau Observatory (PLATO) developed by the University of New South Wales. In January 2008 it was deployed to Dome A, the summit of the Antarctic plateau, as part of a scientific traverse led by the Polar Research Institute of China and the Chinese Academy of Sciences. Dome A may be one of the best sites in the world for ground based Terahertz astronomy, based on the exceptionally cold, dry and stable conditions which prevail there. Pre-HEAT is measuring the 450 micron sky opacity at Dome A and mapping the Galactic Plane in the 13CO J=6-5 line, constituting the first submillimeter measurements from Dome A. It is field-testing many of the key technologies for its namesake -- a successor mission called HEAT: the High Elevation Antarctic Terahertz telescope. Exciting prospects for submillimeter astronomy from Dome A and the status of Pre-HEAT will be presented.

  14. Compact implementation of dynamic receive apodization in ultrasound scanners

    DEFF Research Database (Denmark)

    Tomov, Borislav Gueorguiev; Jensen, Jørgen Arendt

    2004-01-01

    The image quality in medical ultrasound scanners is determined by several factors, one of which is the ability of the receive beamformer to change the aperture weighting function with depth and beam angle. In digital beamformers, precise dynamic apodization can be achieved by representing the fun...... operate at 129.82 MHz and occupies 1.28 million gates. Simulated in Matlab, a 64-channel beamformer provides gray scale image with around 55 dB dynamic range. The beamformed data can also be used for flow estimation....

  15. Heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, E L; Eisenmann, G; Hahne, E [Stuttgart Univ. (TH) (F.R. Germany). Inst. fuer Thermodynamik und Waermetechnik

    1976-04-01

    A survey is presented on publications on design, heat transfer, form factors, free convection, evaporation processes, cooling towers, condensation, annular gap, cross-flowed cylinders, axial flow through a bundle of tubes, roughnesses, convective heat transfer, loss of pressure, radiative heat transfer, finned surfaces, spiral heat exchangers, curved pipes, regeneraters, heat pipes, heat carriers, scaling, heat recovery systems, materials selection, strength calculation, control, instabilities, automation of circuits, operational problems and optimization.

  16. Automated Polarimetry with Smaller Aperture Telescopes: The ROVOR Observatory

    Directory of Open Access Journals (Sweden)

    Joseph Moody

    2017-10-01

    Full Text Available To better understand possible blazar jet mechanisms and morphologies, brighter prototypical objects are regularly monitored for variability in optical broad-band light. If the monitoring filters are polarized, the position angles and polarization percentages can be measured and their evolution monitored over time. However, building up a statistically significant time base of polarization parameters requires the arduous task of monitoring sources for months or years to catch and follow interesting events such as flares. Fortunately, monitoring an object is easily done using remotely operated or robotic telescopes. The Remote Observatory for Variable Object Research (ROVOR is a small-aperture telescope that has monitored blazars in broad-band Johnson filters since 2009. Calibration data using a set of four plane-polarized filters suggest that it is suitable for polarimetric monitoring as well. We have successfully collected data on CTA 102 and are encouraged at the prospects of monitoring it and other similar objects. Long-term monitoring campaigns are a scientifically and educationally-effective use of underutilized smaller-aperture telescopes.

  17. Dynamic Aperture Extrapolation in Presence of Tune Modulation

    CERN Document Server

    Giovannozzi, Massimo; Todesco, Ezio

    1998-01-01

    In hadron colliders, such as the Large Hadron Collider (LHC) to be built at CERN, the long-term stability of the single-particle motion is mostly determined by the field-shape quality of the superconducting magnets. The mechanism of particle loss may be largely enhanced by modulation of betatron tunes, induced either by synchro-betatron coupling (via the residual uncorrected chromaticity), or by unavoidable power supply ripple. This harmful effect is investigated in a simple dynamical system model, the Henon map with modulated linear frequencies. Then, a realistic accelerator model describing the injection optics of the LHC lattice is analyzed. Orbital data obtained with long-term tracking simulations ($10^5$-$10^7$ turns) are post-processed to obtain the dynamic aperture. It turns out that the dynamic aperture can be interpolated using a simple mpirical formula, and it decays proportionally to a power of the inverse logarithm of the number of turns. Furthermore, the extrapolation of tracking data at $10^5$ t...

  18. Telescope aperture optimization for spacebased coherent wind lidar

    Science.gov (United States)

    Ge, Xian-ying; Zhu, Jun; Cao, Qipeng; Zhang, Yinchao; Yin, Huan; Dong, Xiaojing; Wang, Chao; Zhang, Yongchao; Zhang, Ning

    2015-08-01

    Many studies have indicated that the optimum measurement approach for winds from space is a pulsed coherent wind lidar, which is an active remote sensing tool with the characteristics that high spatial and temporal resolutions, real-time detection, high mobility, facilitated control and so on. Because of the significant eye safety, efficiency, size, and lifetime advantage, 2μm wavelength solid-state laser lidar systems have attracted much attention in spacebased wind lidar plans. In this paper, the theory of coherent detection is presented and a 2μm wavelength solid-state laser lidar system is introduced, then the ideal aperture is calculated from signal-to-noise(SNR) view at orbit 400km. However, considering real application, even if the lidar hardware is perfectly aligned, the directional jitter of laser beam, the attitude change of the lidar in the long round trip time of the light from the atmosphere and other factors can bring misalignment angle. So the influence of misalignment angle is considered and calculated, and the optimum telescope diameter(0.45m) is obtained as the misalignment angle is 4 μrad. By the analysis of the optimum aperture required for spacebased coherent wind lidar system, we try to present the design guidance for the telescope.

  19. Direct aperture deformation: An interfraction image guidance strategy

    International Nuclear Information System (INIS)

    Feng Yuanming; Castro-Pareja, Carlos; Shekhar, Raj; Yu, Cedric

    2006-01-01

    A new scheme, called direct aperture deformation (DAD), for online correction of interfraction geometric uncertainties under volumetric imaging guidance is presented. Using deformable image registration, the three-dimensional geometric transformation matrix can be derived that associates the planning image set and the images acquired on the day of treatment. Rather than replanning or moving the patient, we use the deformation matrix to morph the treatment apertures as a potential online correction method. A proof-of-principle study using an intensity-modulated radiation therapy plan for a prostate cancer patient was conducted. The method, procedure, and algorithm of DAD are described. The dose-volume histograms from the original plan, reoptimized plan, and rigid-body translation plan are compared with the ones from the DAD plan. The study showed the feasibility of the DAD as a general method for both target dislocation and deformation. As compared with using couch translation to move the patient, DAD is capable of correcting both target dislocation and deformations. As compared with reoptimization, online correction using the DAD scheme could be completed within a few minutes rather than tens of minutes and the speed gain would be at a very small cost of plan quality

  20. Multi-Aperture CMOS Sun Sensor for Microsatellite Attitude Determination

    Directory of Open Access Journals (Sweden)

    Michele Grassi

    2009-06-01

    Full Text Available This paper describes the high precision digital sun sensor under development at the University of Naples. The sensor determines the sun line orientation in the sensor frame from the measurement of the sun position on the focal plane. It exploits CMOS technology and an original optical head design with multiple apertures. This allows simultaneous multiple acquisitions of the sun as spots on the focal plane. The sensor can be operated either with a fixed or a variable number of sun spots, depending on the required field of view and sun-line measurement precision. Multiple acquisitions are averaged by using techniques which minimize the computational load to extract the sun line orientation with high precision. Accuracy and computational efficiency are also improved thanks to an original design of the calibration function relying on neural networks. Extensive test campaigns are carried out using a laboratory test facility reproducing sun spectrum, apparent size and distance, and variable illumination directions. Test results validate the sensor concept, confirming the precision improvement achievable with multiple apertures, and sensor operation with a variable number of sun spots. Specifically, the sensor provides accuracy and precision in the order of 1 arcmin and 1 arcsec, respectively.

  1. Super Unit Cells in Aperture-Based Metamaterials

    Directory of Open Access Journals (Sweden)

    Dragan Tanasković

    2015-01-01

    Full Text Available An important class of electromagnetic metamaterials are aperture-based metasurfaces. Examples include extraordinary optical transmission arrays and double fishnets with negative refractive index. We analyze a generalization of such metamaterials where a simple aperture is now replaced by a compound object formed by superposition of two or more primitive objects (e.g., rectangles, circles, and ellipses. Thus obtained “super unit cell” shows far richer behavior than the subobjects that comprise it. We show that nonlocalities introduced by overlapping simple subobjects can be used to produce large deviations of spectral dispersion even for small additive modifications of the basic geometry. Technologically, some super cells may be fabricated by simple spatial shifting of the existing photolithographic masks. In our investigation we applied analytical calculations and ab initio finite element modeling to prove the possibility to tailor the dispersion including resonances for plasmonic nanocomposites by adjusting the local geometry and exploiting localized interactions at a subwavelength level. Any desired form could be defined using simple primitive objects, making the situation a geometrical analog of the case of series expansion of a function. Thus an additional degree of tunability of metamaterials is obtained. The obtained designer structures can be applied in different fields like waveguiding and sensing.

  2. Medium-sized aperture camera for Earth observation

    Science.gov (United States)

    Kim, Eugene D.; Choi, Young-Wan; Kang, Myung-Seok; Kim, Ee-Eul; Yang, Ho-Soon; Rasheed, Ad. Aziz Ad.; Arshad, Ahmad Sabirin

    2017-11-01

    Satrec Initiative and ATSB have been developing a medium-sized aperture camera (MAC) for an earth observation payload on a small satellite. Developed as a push-broom type high-resolution camera, the camera has one panchromatic and four multispectral channels. The panchromatic channel has 2.5m, and multispectral channels have 5m of ground sampling distances at a nominal altitude of 685km. The 300mm-aperture Cassegrain telescope contains two aspheric mirrors and two spherical correction lenses. With a philosophy of building a simple and cost-effective camera, the mirrors incorporate no light-weighting, and the linear CCDs are mounted on a single PCB with no beam splitters. MAC is the main payload of RazakSAT to be launched in 2005. RazakSAT is a 180kg satellite including MAC, designed to provide high-resolution imagery of 20km swath width on a near equatorial orbit (NEqO). The mission objective is to demonstrate the capability of a high-resolution remote sensing satellite system on a near equatorial orbit. This paper describes the overview of the MAC and RarakSAT programmes, and presents the current development status of MAC focusing on key optical aspects of Qualification Model.

  3. A lattice with no transition and large dynamic aperture

    International Nuclear Information System (INIS)

    Guignard, G.

    1989-01-01

    In the case of a one-ring high-energy scheme for an advanced hadron facility, beam losses can be reduced if the ring lattice accomodates the beam from injection to maximum energy without crossing the transition. Since there is no synchrotron booster in such a scheme and the injection energy is relatively low, this requirement implies a negative compaction factor and an imaginary transition energy. This can be achieved by making the horizontal dispersion negative in some regions of the arcs so that the average value taken in the dipoles is globally also negative. Such a modulation of the dispersion may result in an increasing difficulty to obtain a large enough dynamic aperture in the presence of sextupoles. A careful optimization is therefore necessary and the possibility of modifying the linear lattice in order to include the requirements associated with chromaticity adjustments has to be studied. This paper summarizes the work done along this line and based on previous searches for a race track lattice that can be used in a hadron facility main ring. It describes an alternative lattice design, which tends to minimize the effects of the nonlinear aberrations introduced by sextupoles and to achieve a large dynamic aperture, keeping the betatron amplitudes as low as possible. 7 refs., 6 figs., 1 tab

  4. Aperture-based antihydrogen gravity experiment: Parallel plate geometry

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, J. R.; Hedlof, R. M.; Ordonez, C. A. [Department of Physics, University of North Texas, Denton, Texas 76203 (United States)

    2013-10-15

    An analytical model and a Monte Carlo simulation are presented of an experiment that could be used to determine the direction of the acceleration of antihydrogen due to gravity. The experiment would rely on methods developed by existing antihydrogen research collaborations. The configuration consists of two circular, parallel plates that have an axis of symmetry directed away from the center of the earth. The plates are separated by a small vertical distance, and include one or more pairs of circular barriers that protrude from the upper and lower plates, thereby forming an aperture between the plates. Antihydrogen annihilations that occur just beyond each barrier, within a “shadow” region, are asymmetric on the upper plate relative to the lower plate. The probability for such annihilations is determined for a point, line and spheroidal source of antihydrogen. The production of 100,000 antiatoms is predicted to be necessary for the aperture-based experiment to indicate the direction of free fall acceleration of antimatter, provided that antihydrogen is produced within a sufficiently small antiproton plasma at a temperature of 4 K.

  5. Correlated statistical uncertainties in coded-aperture imaging

    International Nuclear Information System (INIS)

    Fleenor, Matthew C.; Blackston, Matthew A.; Ziock, Klaus P.

    2015-01-01

    In nuclear security applications, coded-aperture imagers can provide a wealth of information regarding the attributes of both the radioactive and nonradioactive components of the objects being imaged. However, for optimum benefit to the community, spatial attributes need to be determined in a quantitative and statistically meaningful manner. To address a deficiency of quantifiable errors in coded-aperture imaging, we present uncertainty matrices containing covariance terms between image pixels for MURA mask patterns. We calculated these correlated uncertainties as functions of variation in mask rank, mask pattern over-sampling, and whether or not anti-mask data are included. Utilizing simulated point source data, we found that correlations arose when two or more image pixels were summed. Furthermore, we found that the presence of correlations was heightened by the process of over-sampling, while correlations were suppressed by the inclusion of anti-mask data and with increased mask rank. As an application of this result, we explored how statistics-based alarming is impacted in a radiological search scenario

  6. Study of Wide Swath Synthetic Aperture Ladar Imaging Techology

    Directory of Open Access Journals (Sweden)

    Zhang Keshu

    2017-02-01

    Full Text Available Combining synthetic-aperture imaging and coherent-light detection technology, the weak signal identification capacity of Synthetic Aperture Ladar (SAL reaches the photo level, and the image resolution exceeds the diffraction limit of the telescope to obtain high-resolution images irrespective to ranges. This paper introduces SAL, including the development path, technology characteristics, and the restriction of imaging swath. On the basis of this, we propose to integrate the SAL technology for extending its swath. By analyzing the scanning-operation mode and the signal model, the paper explicitly proposes that the former mode will be the developmental trend of the SAL technology. This paper also introduces the flight demonstrations of the SAL and the imaging results of remote targets, showing the potential of the SAL in long-range, high-resolution, and scanning-imaging applications. The technology and the theory of the scanning mode of SAL compensates for the defects related to the swath and operation efficiency of the current SAL. It provides scientific foundation for the SAL system applied in wide swath, high resolution earth observation, and the ISAL system applied in space-targets imaging.

  7. Aperture-based antihydrogen gravity experiment: Parallel plate geometry

    Science.gov (United States)

    Rocha, J. R.; Hedlof, R. M.; Ordonez, C. A.

    2013-10-01

    An analytical model and a Monte Carlo simulation are presented of an experiment that could be used to determine the direction of the acceleration of antihydrogen due to gravity. The experiment would rely on methods developed by existing antihydrogen research collaborations. The configuration consists of two circular, parallel plates that have an axis of symmetry directed away from the center of the earth. The plates are separated by a small vertical distance, and include one or more pairs of circular barriers that protrude from the upper and lower plates, thereby forming an aperture between the plates. Antihydrogen annihilations that occur just beyond each barrier, within a "shadow" region, are asymmetric on the upper plate relative to the lower plate. The probability for such annihilations is determined for a point, line and spheroidal source of antihydrogen. The production of 100,000 antiatoms is predicted to be necessary for the aperture-based experiment to indicate the direction of free fall acceleration of antimatter, provided that antihydrogen is produced within a sufficiently small antiproton plasma at a temperature of 4 K.

  8. Coded aperture subreflector array for high resolution radar imaging

    Science.gov (United States)

    Lynch, Jonathan J.; Herrault, Florian; Kona, Keerti; Virbila, Gabriel; McGuire, Chuck; Wetzel, Mike; Fung, Helen; Prophet, Eric

    2017-05-01

    HRL Laboratories has been developing a new approach for high resolution radar imaging on stationary platforms. High angular resolution is achieved by operating at 235 GHz and using a scalable tile phased array architecture that has the potential to realize thousands of elements at an affordable cost. HRL utilizes aperture coding techniques to minimize the size and complexity of the RF electronics needed for beamforming, and wafer level fabrication and integration allow tiles containing 1024 elements to be manufactured with reasonable costs. This paper describes the results of an initial feasibility study for HRL's Coded Aperture Subreflector Array (CASA) approach for a 1024 element micromachined antenna array with integrated single-bit phase shifters. Two candidate electronic device technologies were evaluated over the 170 - 260 GHz range, GaN HEMT transistors and GaAs Schottky diodes. Array structures utilizing silicon micromachining and die bonding were evaluated for etch and alignment accuracy. Finally, the overall array efficiency was estimated to be about 37% (not including spillover losses) using full wave array simulations and measured device performance, which is a reasonable value at 235 GHz. Based on the measured data we selected GaN HEMT devices operated passively with 0V drain bias due to their extremely low DC power dissipation.

  9. Stitching Type Large Aperture Depolarizer for Gas Monitoring Imaging Spectrometer

    Science.gov (United States)

    Liu, X.; Li, M.; An, N.; Zhang, T.; Cao, G.; Cheng, S.

    2018-04-01

    To increase the accuracy of radiation measurement for gas monitoring imaging spectrometer, it is necessary to achieve high levels of depolarization of the incoming beam. The preferred method in space instrument is to introduce the depolarizer into the optical system. It is a combination device of birefringence crystal wedges. Limited to the actual diameter of the crystal, the traditional depolarizer cannot be used in the large aperture imaging spectrometer (greater than 100 mm). In this paper, a stitching type depolarizer is presented. The design theory and numerical calculation model for dual babinet depolarizer were built. As required radiometric accuracies of the imaging spectrometer with 250 mm × 46 mm aperture, a stitching type dual babinet depolarizer was design in detail. Based on designing the optimum structural parmeters the tolerance of wedge angle refractive index, and central thickness were given. The analysis results show that the maximum residual polarization degree of output light from depolarizer is less than 2 %. The design requirements of polarization sensitivity is satisfied.

  10. Magnetic systems for wide-aperture neutron polarizers and analyzers

    Energy Technology Data Exchange (ETDEWEB)

    Gilev, A.G. [Neutron Research Department, Petersburg Nuclear Physics Institute, NRC “Kurchatov Institute”, Orlova Roscha, Gatchina, St. Petersburg 188300 (Russian Federation); Pleshanov, N.K., E-mail: pnk@pnpi.spb.ru [Neutron Research Department, Petersburg Nuclear Physics Institute, NRC “Kurchatov Institute”, Orlova Roscha, Gatchina, St. Petersburg 188300 (Russian Federation); Bazarov, B.A.; Bulkin, A.P.; Schebetov, A.F. [Neutron Research Department, Petersburg Nuclear Physics Institute, NRC “Kurchatov Institute”, Orlova Roscha, Gatchina, St. Petersburg 188300 (Russian Federation); Syromyatnikov, V.G. [Neutron Research Department, Petersburg Nuclear Physics Institute, NRC “Kurchatov Institute”, Orlova Roscha, Gatchina, St. Petersburg 188300 (Russian Federation); Physical Department, St. Petersburg State University, Ulyanovskaya, 1, Petrodvorets, St. Petersburg 198504 (Russian Federation); Tarnavich, V.V.; Ulyanov, V.A. [Neutron Research Department, Petersburg Nuclear Physics Institute, NRC “Kurchatov Institute”, Orlova Roscha, Gatchina, St. Petersburg 188300 (Russian Federation)

    2016-10-11

    Requirements on the field uniformity in neutron polarizers are analyzed in view of the fact that neutron polarizing coatings have been improved during the past decade. The design of magnetic systems that meet new requirements is optimized by numerical simulations. Magnetic systems for wide-aperture multichannel polarizers and analyzers are represented, including (a) the polarizer to be built at channel 4-4′ of the reactor PIK (Gatchina, Russia) for high-flux experiments with a 100×150 mm{sup 2} beam of polarized cold neutrons; (b) the fan analyzer covering a 150×100 mm{sup 2} window of the detector at the Magnetism Reflectometer (SNS, ORNL, USA); (c) the polarizer and (d) the fan analyzer covering a 220×110 mm{sup 2} window of the detector at the reflectometer NERO, which is transferred to PNPI (Russia) from HZG (Germany). Deviations of the field from the vertical did not exceed 2°. The polarizing efficiency of the analyzer at the Magnetism Reflectometer reached 99%, a record level for wide-aperture supermirror analyzers.

  11. Aperture-based antihydrogen gravity experiment: Parallel plate geometry

    Directory of Open Access Journals (Sweden)

    J. R. Rocha

    2013-10-01

    Full Text Available An analytical model and a Monte Carlo simulation are presented of an experiment that could be used to determine the direction of the acceleration of antihydrogen due to gravity. The experiment would rely on methods developed by existing antihydrogen research collaborations. The configuration consists of two circular, parallel plates that have an axis of symmetry directed away from the center of the earth. The plates are separated by a small vertical distance, and include one or more pairs of circular barriers that protrude from the upper and lower plates, thereby forming an aperture between the plates. Antihydrogen annihilations that occur just beyond each barrier, within a “shadow” region, are asymmetric on the upper plate relative to the lower plate. The probability for such annihilations is determined for a point, line and spheroidal source of antihydrogen. The production of 100,000 antiatoms is predicted to be necessary for the aperture-based experiment to indicate the direction of free fall acceleration of antimatter, provided that antihydrogen is produced within a sufficiently small antiproton plasma at a temperature of 4 K.

  12. STITCHING TYPE LARGE APERTURE DEPOLARIZER FOR GAS MONITORING IMAGING SPECTROMETER

    Directory of Open Access Journals (Sweden)

    X. Liu

    2018-04-01

    Full Text Available To increase the accuracy of radiation measurement for gas monitoring imaging spectrometer, it is necessary to achieve high levels of depolarization of the incoming beam. The preferred method in space instrument is to introduce the depolarizer into the optical system. It is a combination device of birefringence crystal wedges. Limited to the actual diameter of the crystal, the traditional depolarizer cannot be used in the large aperture imaging spectrometer (greater than 100 mm. In this paper, a stitching type depolarizer is presented. The design theory and numerical calculation model for dual babinet depolarizer were built. As required radiometric accuracies of the imaging spectrometer with 250 mm × 46 mm aperture, a stitching type dual babinet depolarizer was design in detail. Based on designing the optimum structural parmeters,the tolerance of wedge angle,refractive index, and central thickness were given. The analysis results show that the maximum residual polarization degree of output light from depolarizer is less than 2 %. The design requirements of polarization sensitivity is satisfied.

  13. Improved measurements of mean sea surface velocity in the Nordic Seas from synthetic aperture radar

    Science.gov (United States)

    Wergeland Hansen, Morten; Johnsen, Harald; Engen, Geir; Øie Nilsen, Jan Even

    2017-04-01

    The warm and saline surface Atlantic Water (AW) flowing into the Nordic Seas across the Greenland-Scotland ridge transports heat into the Arctic, maintaining the ice-free oceans and regulating sea-ice extent. The AW influences the region's relatively mild climate and is the northern branch of the global thermohaline overturning circulation. Heat loss in the Norwegian Sea is key for both heat transport and deep water formation. In general, the ocean currents in the Nordic Seas and the North Atlantic Ocean is a complex system of topographically steered barotropic and baroclinic currents of which the wind stress and its variability is a driver of major importance. The synthetic aperture radar (SAR) Doppler centroid shift has been demonstrated to contain geophysical information about sea surface wind, waves and current at an accuracy of 5 Hz and pixel spacing of 3.5 - 9 × 8 km2. This corresponds to a horizontal surface velocity of about 20 cm/s at 35° incidence angle. The ESA Prodex ISAR project aims to implement new and improved SAR Doppler shift processing routines to enable reprocessing of the wide swath acquisitions available from the Envisat ASAR archive (2002-2012) at higher resolution and better accuracy than previously obtained, allowing combined use with Sentinel-1 and Radarsat-2 retrievals to build timeseries of the sea surface velocity in the Nordic Seas. Estimation of the geophysical Doppler shift from new SAR Doppler centroid shift retrievals will be demonstrated, addressing key issues relating to geometric (satellite orbit and attitude) and electronic (antenna mis-pointing) contributions and corrections. Geophysical Doppler shift retrievals from one month of data in January 2010 and the inverted surface velocity in the Nordic Seas are then addressed and compared to other direct and indirect estimates of the upper ocean current, in particular those obtained in the ESA GlobCurrent project.

  14. Singer product apertures—A coded aperture system with a fast decoding algorithm

    International Nuclear Information System (INIS)

    Byard, Kevin; Shutler, Paul M.E.

    2017-01-01

    A new type of coded aperture configuration that enables fast decoding of the coded aperture shadowgram data is presented. Based on the products of incidence vectors generated from the Singer difference sets, we call these Singer product apertures. For a range of aperture dimensions, we compare experimentally the performance of three decoding methods: standard decoding, induction decoding and direct vector decoding. In all cases the induction and direct vector methods are several orders of magnitude faster than the standard method, with direct vector decoding being significantly faster than induction decoding. For apertures of the same dimensions the increase in speed offered by direct vector decoding over induction decoding is better for lower throughput apertures.

  15. Singer product apertures—A coded aperture system with a fast decoding algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Byard, Kevin, E-mail: kevin.byard@aut.ac.nz [School of Economics, Faculty of Business, Economics and Law, Auckland University of Technology, Auckland 1142 (New Zealand); Shutler, Paul M.E. [National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616 (Singapore)

    2017-06-01

    A new type of coded aperture configuration that enables fast decoding of the coded aperture shadowgram data is presented. Based on the products of incidence vectors generated from the Singer difference sets, we call these Singer product apertures. For a range of aperture dimensions, we compare experimentally the performance of three decoding methods: standard decoding, induction decoding and direct vector decoding. In all cases the induction and direct vector methods are several orders of magnitude faster than the standard method, with direct vector decoding being significantly faster than induction decoding. For apertures of the same dimensions the increase in speed offered by direct vector decoding over induction decoding is better for lower throughput apertures.

  16. Nonparaxial propagation and focusing properties of azimuthal-variant vector fields diffracted by an annular aperture.

    Science.gov (United States)

    Gu, Bing; Xu, Danfeng; Pan, Yang; Cui, Yiping

    2014-07-01

    Based on the vectorial Rayleigh-Sommerfeld integrals, the analytical expressions for azimuthal-variant vector fields diffracted by an annular aperture are presented. This helps us to investigate the propagation behaviors and the focusing properties of apertured azimuthal-variant vector fields under nonparaxial and paraxial approximations. The diffraction by a circular aperture, a circular disk, or propagation in free space can be treated as special cases of this general result. Simulation results show that the transverse intensity, longitudinal intensity, and far-field divergence angle of nonparaxially apertured azimuthal-variant vector fields depend strongly on the azimuthal index, the outer truncation parameter and the inner truncation parameter of the annular aperture, as well as the ratio of the waist width to the wavelength. Moreover, the multiple-ring-structured intensity pattern of the focused azimuthal-variant vector field, which originates from the diffraction effect caused by an annular aperture, is experimentally demonstrated.

  17. Pattern Synthesis of Dual-band Shared Aperture Interleaved Linear Antenna Arrays

    Directory of Open Access Journals (Sweden)

    H. Guo

    2014-09-01

    Full Text Available This paper presents an approach to improve the efficiency of an array aperture by interleaving two different arrays in the same aperture area. Two sub-arrays working at different frequencies are interleaved in the same linear aperture area. The available aperture area is efficiently used. The element positions of antenna array are optimized by using Invasive Weed Optimization (IWO to reduce the peak side lobe level (PSLL of the radiation pattern. To overcome the shortness of traditional methods which can only fulfill the design of shared aperture antenna array working at the same frequency, this method can achieve the design of dual-band antenna array with wide working frequency range. Simulation results show that the proposed method is feasible and efficient in the synthesis of dual-band shared aperture antenna array.

  18. Thermal characteristics of tubular receivers of solar radiation line concentrators

    International Nuclear Information System (INIS)

    Klychev, Sh.I.; Zakhidov, R.A.; Khuzhanov, R. et al.

    2013-01-01

    A stationary thermal model of an LCS-HR system is considered, taking into account the basic parameters of the problem: availability of a transparent screen, selectivity of the receiver, characteristics of the heat carrier and average concentration on the surface of the tubular receiver C"". Based on this model, an algorithm and program of numerical research of the thermal characteristics of the HR-temperature of heating and local and average coefficients of efficiency are developed. For possible concentrations, the selectivity of the receiver and the transparency of the screen in linear concentrators, the potential stationary heating temperatures, and the coefficients of efficiency for main three types of heat carriers - air, water, and liquid metal coolant are studied. The time of achieving stationary values by the temperatures of the heat carrier is estimated. (author)

  19. Translation symmetry of the Fraunhofer diffraction pattern from a polygonal aperture

    International Nuclear Information System (INIS)

    Vinogradov, I.R.; Tarlykov, V.A.

    1995-01-01

    The problem of observing the translation symmetry in the Fraunhofer diffraction pattern is treated. The objective of this study is to show that translation symmetry can be observed in the Fraunhofer diffraction pattern if the diffraction aperture can be represented in the form of a set of parallelogram apertures. It is shown that the diffraction field produced by such an aperture can be represented as a system of point sources modulated with an amplitude factor. 10 refs., 2 figs

  20. The Effect of Vibration Characteristics on the Atomization Rate in a Micro-Tapered Aperture Atomizer

    OpenAIRE

    Qiufeng Yan; Jianhui Zhang; Jun Huang; Ying Wang

    2018-01-01

    Because little is known about the atomization theory of a micro-tapered aperture atomizer, we investigated the vibration characteristics of this type of atomizer. The atomization mechanism of a micro-tapered aperture atomizer was described, and the atomization rate equation was deduced. As observed via microscopy, the angle of the micro-tapered aperture changes with the applied voltage, which proved the existence of a dynamic cone angle. The forward and reverse atomization rates were measured...

  1. Ghost image in enhanced self-heterodyne synthetic aperture imaging ladar

    Science.gov (United States)

    Zhang, Guo; Sun, Jianfeng; Zhou, Yu; Lu, Zhiyong; Li, Guangyuan; Xu, Mengmeng; Zhang, Bo; Lao, Chenzhe; He, Hongyu

    2018-03-01

    The enhanced self-heterodyne synthetic aperture imaging ladar (SAIL) self-heterodynes two polarization-orthogonal echo signals to eliminate the phase disturbance caused by atmospheric turbulence and mechanical trembling, uses heterodyne receiver instead of self-heterodyne receiver to improve signal-to-noise ratio. The principle and structure of the enhanced self-heterodyne SAIL are presented. The imaging process of enhanced self-heterodyne SAIL for distributed target is also analyzed. In enhanced self-heterodyne SAIL, the phases of two orthogonal-polarization beams are modulated by four cylindrical lenses in transmitter to improve resolutions in orthogonal direction and travel direction, which will generate ghost image. The generation process of ghost image in enhanced self-heterodyne SAIL is mathematically detailed, and a method of eliminating ghost image is also presented, which is significant for far-distance imaging. A number of experiments of enhanced self-heterodyne SAIL for distributed target are presented, these experimental results verify the theoretical analysis of enhanced self-heterodyne SAIL. The enhanced self-heterodyne SAIL has the capability to eliminate the influence from the atmospheric turbulence and mechanical trembling, has high advantage in detecting weak signals, and has promising application for far-distance ladar imaging.

  2. Digital Receiver Phase Meter

    Science.gov (United States)

    Marcin, Martin; Abramovici, Alexander

    2008-01-01

    The software of a commercially available digital radio receiver has been modified to make the receiver function as a two-channel low-noise phase meter. This phase meter is a prototype in the continuing development of a phase meter for a system in which radiofrequency (RF) signals in the two channels would be outputs of a spaceborne heterodyne laser interferometer for detecting gravitational waves. The frequencies of the signals could include a common Doppler-shift component of as much as 15 MHz. The phase meter is required to measure the relative phases of the signals in the two channels at a sampling rate of 10 Hz at a root power spectral density measurements in laser metrology of moving bodies. To illustrate part of the principle of operation of the phase meter, the figure includes a simplified block diagram of a basic singlechannel digital receiver. The input RF signal is first fed to the input terminal of an analog-to-digital converter (ADC). To prevent aliasing errors in the ADC, the sampling rate must be at least twice the input signal frequency. The sampling rate of the ADC is governed by a sampling clock, which also drives a digital local oscillator (DLO), which is a direct digital frequency synthesizer. The DLO produces samples of sine and cosine signals at a programmed tuning frequency. The sine and cosine samples are mixed with (that is, multiplied by) the samples from the ADC, then low-pass filtered to obtain in-phase (I) and quadrature (Q) signal components. A digital signal processor (DSP) computes the ratio between the Q and I components, computes the phase of the RF signal (relative to that of the DLO signal) as the arctangent of this ratio, and then averages successive such phase values over a time interval specified by the user.

  3. An experimental study of thermal characterization of parabolic trough receivers

    International Nuclear Information System (INIS)

    Lei, Dongqiang; Li, Qiang; Wang, Zhifeng; Li, Jian; Li, Jianbin

    2013-01-01

    Highlights: ► A new test stand of heat loss has been developed at IEECAS. ► A correlation between heat loss and absorber temperature is presented, 270 W/m 400 °C. ► The ratio of end loss in total heat loss increases with decreasing the temperature. ► The emittance test stand using a high vacuum system and vacuum gauge is built. ► Emittance first decreases, then rapidly increases with increasing the temperature. - Abstract: The receiver is a key component of the parabolic trough solar station. The receiver requires the most challenging technology and has a decisive influence on the thermal and economic performance of a power plant. The Institute of Electrical Engineering Chinese Academy Sciences (IEECAS) and Himin Solar Co., Ltd. (HSC) cooperated to develop solar receivers for the first 50 MW parabolic trough project in Inner Mongolia, China. This paper examines overall heat loss, end loss and thermal emittance of the coating of a newly designed receiver in order to evaluate its thermal characterization. A series of heat loss tests are conducted in a newly developed test stand following the steady state equilibrium method. The tests provide a correlation between heat loss and the absorber temperature. This paper presents a new testing method to accurately test the coating emittance. The method uses a receiver with a high vacuum system and a vacuum gauge to maintain continuous exhaust and high vacuum throughout the heat loss testing. A heat loss comparison between the receiver and other existing receivers provides a reference that enabled further optimization. Theoretical and experimental analysis examines the effects of end loss both with and without a heat insulator and a coil heater. The emittance curves of different coatings are acquired and the reasons for initial emittance decrease and then remarkable increase versus temperature are analyzed

  4. On-axis parallel ion speeds near mechanical and magnetic apertures in a helicon plasma device

    International Nuclear Information System (INIS)

    Sun Xuan; Cohen, S.A.; Scime, Earl E.; Miah, Mahmood

    2005-01-01

    Using laser-induced fluorescence, measurements of parallel ion velocities were made along the axis of a helicon-generated Ar plasma column whose radius was modified by spatially separated mechanical and magnetic apertures. Ion acceleration to supersonic speeds was observed 0.1-5 cm downstream of both aperture types, simultaneously generating two steady-state double layers (DLs) when both apertures were in place. The DL downstream of the mechanical aperture plate had a larger potential drop, Δφ DL =6-9 kT e , compared to the DL downstream of the magnetic aperture, Δφ DL ∼3 kT e . In the presheath region upstream of the mechanical aperture, the convective ion speed increased over a collisional distance; from stagnant at 4 cm from the aperture to the 1.4 times the sound speed at the aperture. The dependence of the free- and trapped-ion-velocity-distribution functions on the magnetic-field strength and mechanical-aperture electrical bias are also presented

  5. 11 T Twin-Aperture Nb$_3$Sn Dipole Development for LHC Upgrades

    CERN Document Server

    Zlobin, A V; Apollinari, G; Auchmann, B; Barzi, E; Izquierdo Bermudez, S; Bossert, R; Buehler, M; Chlachidze, G; DiMarco, J; Karppinen, M; Nobrega, F; Novitski, I; Rossi, L; Smekens, D; Tartaglia, M; Turrioni, D; Velev, Genadi

    2015-01-01

    FNAL and CERN are developing a twin-aperture 11 T Nb$_{3}$Sn dipole suitable for installation in the LHC. This paper describes the design and parameters of the 11 T dipole developed at FNAL for the LHC upgrades in both single-aperture and twin-aperture configurations, and presents details of the constructed dipole models. Results of studies of magnet quench performance, quench protection and magnetic measurements performed using short 1 m long coils in the dipole mirror and single-aperture configurations are reported and discussed.

  6. 11 T Twin-Aperture Nb$_3$Sn Dipole Development for LHC Upgrades

    Energy Technology Data Exchange (ETDEWEB)

    Zlobin, A. V. [Fermilab; Andreev, N. [Fermilab; Apollinari, G. [Fermilab; Auchmann, B. [CERN; Barzi, E. [Fermilab; Izquierdo Bermudez, S. [CERN; Bossert, R. [Fermilab; Buehler, M. [Fermilab; Chlachidze, G. [Fermilab; DiMarco, J. [Fermilab; Karppinen, M. [CERN; Nobrega, F. [Fermilab; Novitski, I. [CERN; Rossi, L. [CERN; Smekens, D. [CERN; Tartaglia, M. [Fermilab; Turrioni, D. [Fermilab; Velev, Genadi [Fermilab

    2015-01-01

    FNAL and CERN are developing a twin-aperture 11 T Nb3Sn dipole suitable for installation in the LHC. This paper describes the design and parameters of the 11 T dipole developed at FNAL for the LHC upgrades in both single-aperture and twin-aperture configurations, and presents details of the constructed dipole models. Results of studies of magnet quench performance, quench protection and magnetic measurements performed using short 1 m long coils in the dipole mirror and single-aperture configurations are reported and discussed.

  7. Plasmonic nanofocusing with a metallic pyramid and an integrated C-shaped aperture

    Science.gov (United States)

    Lindquist, Nathan C.; Johnson, Timothy W.; Nagpal, Prashant; Norris, David J.; Oh, Sang-Hyun

    2013-05-01

    We demonstrate the design, fabrication and characterization of a near-field plasmonic nanofocusing probe with a hybrid tip-plus-aperture design. By combining template stripping with focused ion beam lithography, a variety of aperture-based near-field probes can be fabricated with high optical performance. In particular, the combination of large transmission through a C-shaped aperture aligned to the sharp apex (<10 nm radius) of a template-stripped metallic pyramid allows the efficient delivery of light--via the C-shaped aperture--while providing a nanometric hotspot determined by the sharpness of the tip itself.

  8. Apparatus and method for deterministic control of surface figure during full aperture polishing

    Science.gov (United States)

    Suratwala, Tayyab Ishaq; Feit, Michael Dennis; Steele, William Augustus

    2013-11-19

    A polishing system configured to polish a lap includes a lap configured to contact a workpiece for polishing the workpiece; and a septum configured to contact the lap. The septum has an aperture formed therein. The radius of the aperture and radius the workpiece are substantially the same. The aperture and the workpiece have centers disposed at substantially the same radial distance from a center of the lap. The aperture is disposed along a first radial direction from the center of the lap, and the workpiece is disposed along a second radial direction from the center of the lap. The first and second radial directions may be opposite directions.

  9. Apparatus and method for deterministic control of surface figure during full aperture pad polishing

    Science.gov (United States)

    Suratwala, Tayyab Ishaq; Feit, Michael Douglas; Steele, William Augustus

    2017-10-10

    A polishing system configured to polish a lap includes a lap configured to contact a workpiece for polishing the workpiece; and a septum configured to contact the lap. The septum has an aperture formed therein. The radius of the aperture and radius the workpiece are substantially the same. The aperture and the workpiece have centers disposed at substantially the same radial distance from a center of the lap. The aperture is disposed along a first radial direction from the center of the lap, and the workpiece is disposed along a second radial direction from the center of the lap. The first and second radial directions may be opposite directions.

  10. Determination of the paraxial focal length using Zernike polynomials over different apertures

    Science.gov (United States)

    Binkele, Tobias; Hilbig, David; Henning, Thomas; Fleischmann, Friedrich

    2017-02-01

    The paraxial focal length is still the most important parameter in the design of a lens. As presented at the SPIE Optics + Photonics 2016, the measured focal length is a function of the aperture. The paraxial focal length can be found when the aperture approaches zero. In this work, we investigate the dependency of the Zernike polynomials on the aperture size with respect to 3D space. By this, conventional wavefront measurement systems that apply Zernike polynomial fitting (e.g. Shack-Hartmann-Sensor) can be used to determine the paraxial focal length, too. Since the Zernike polynomials are orthogonal over a unit circle, the aperture used in the measurement has to be normalized. By shrinking the aperture and keeping up with the normalization, the Zernike coefficients change. The relation between these changes and the paraxial focal length are investigated. The dependency of the focal length on the aperture size is derived analytically and evaluated by simulation and measurement of a strong focusing lens. The measurements are performed using experimental ray tracing and a Shack-Hartmann-Sensor. Using experimental ray tracing for the measurements, the aperture can be chosen easily. Regarding the measurements with the Shack-Hartmann- Sensor, the aperture size is fixed. Thus, the Zernike polynomials have to be adapted to use different aperture sizes by the proposed method. By doing this, the paraxial focal length can be determined from the measurements in both cases.

  11. High-contrast visible nulling coronagraph for segmented and arbitrary telescope apertures

    Science.gov (United States)

    Hicks, Brian A.; Lyon, Richard G.; Bolcar, Matthew R.; Clampin, Mark; Petrone, Peter

    2014-08-01

    Exoplanet coronagraphy will be driven by the telescope architectures available and thus the system designer must have available one or more suitable coronagraphic instrument choices that spans the set of telescope apertures, including filled (off-axis), obscured (e.g. with secondary mirror spiders and struts), segmented apertures, such as JWST, and interferometric apertures. In this work we present one such choice of coronagraph, known as the visible nulling coronagraph (VNC), that spans all four types of aperture and also employs differential sensing and control.

  12. Quench Performance of the First Twin-aperture 11 T Dipole for LHC upgrades

    CERN Document Server

    Zlobin, A V; Apollinari, G; Barzi, E; Chlachidze, G; Nobrega, A; Novitski, I; Stoynev, S; Turrioni, D; Auchmann, B; Izquierdo Bermudez, S; Karppinen, M; Rossi, L; Savary, F; Smekens, D

    2015-01-01

    FNAL and CERN are developing a twin-aperture 11 T Nb$_{3}$Sn dipole suitable for installation in the LHC. A single-aperture 2-m long dipole demonstrator and two 1-m long dipole models have been fabricated and tested at FNAL in 2012-2014. The two 1 m long collared coils were then assembled into the first twin-aperture Nb$_{3}$Sn demonstrator dipole and tested. Test results of this twin-aperture Nb$_{3}$Sn dipole model are reported and discussed.

  13. Heat Stress

    Science.gov (United States)

    ... Publications and Products Programs Contact NIOSH NIOSH HEAT STRESS Recommend on Facebook Tweet Share Compartir OSHA-NIOSH ... hot environments may be at risk of heat stress. Exposure to extreme heat can result in occupational ...

  14. Optimization of coronagraph design for segmented aperture telescopes

    Science.gov (United States)

    Jewell, Jeffrey; Ruane, Garreth; Shaklan, Stuart; Mawet, Dimitri; Redding, Dave

    2017-09-01

    The goal of directly imaging Earth-like planets in the habitable zone of other stars has motivated the design of coronagraphs for use with large segmented aperture space telescopes. In order to achieve an optimal trade-off between planet light throughput and diffracted starlight suppression, we consider coronagraphs comprised of a stage of phase control implemented with deformable mirrors (or other optical elements), pupil plane apodization masks (gray scale or complex valued), and focal plane masks (either amplitude only or complex-valued, including phase only such as the vector vortex coronagraph). The optimization of these optical elements, with the goal of achieving 10 or more orders of magnitude in the suppression of on-axis (starlight) diffracted light, represents a challenging non-convex optimization problem with a nonlinear dependence on control degrees of freedom. We develop a new algorithmic approach to the design optimization problem, which we call the "Auxiliary Field Optimization" (AFO) algorithm. The central idea of the algorithm is to embed the original optimization problem, for either phase or amplitude (apodization) in various planes of the coronagraph, into a problem containing additional degrees of freedom, specifically fictitious "auxiliary" electric fields which serve as targets to inform the variation of our phase or amplitude parameters leading to good feasible designs. We present the algorithm, discuss details of its numerical implementation, and prove convergence to local minima of the objective function (here taken to be the intensity of the on-axis source in a "dark hole" region in the science focal plane). Finally, we present results showing application of the algorithm to both unobscured off-axis and obscured on-axis segmented telescope aperture designs. The application of the AFO algorithm to the coronagraph design problem has produced solutions which are capable of directly imaging planets in the habitable zone, provided end

  15. Simultaneous beam sampling and aperture shape optimization for SPORT

    International Nuclear Information System (INIS)

    Zarepisheh, Masoud; Li, Ruijiang; Xing, Lei; Ye, Yinyu

    2015-01-01

    Purpose: Station parameter optimized radiation therapy (SPORT) was recently proposed to fully utilize the technical capability of emerging digital linear accelerators, in which the station parameters of a delivery system, such as aperture shape and weight, couch position/angle, gantry/collimator angle, can be optimized simultaneously. SPORT promises to deliver remarkable radiation dose distributions in an efficient manner, yet there exists no optimization algorithm for its implementation. The purpose of this work is to develop an algorithm to simultaneously optimize the beam sampling and aperture shapes. Methods: The authors build a mathematical model with the fundamental station point parameters as the decision variables. To solve the resulting large-scale optimization problem, the authors devise an effective algorithm by integrating three advanced optimization techniques: column generation, subgradient method, and pattern search. Column generation adds the most beneficial stations sequentially until the plan quality improvement saturates and provides a good starting point for the subsequent optimization. It also adds the new stations during the algorithm if beneficial. For each update resulted from column generation, the subgradient method improves the selected stations locally by reshaping the apertures and updating the beam angles toward a descent subgradient direction. The algorithm continues to improve the selected stations locally and globally by a pattern search algorithm to explore the part of search space not reachable by the subgradient method. By combining these three techniques together, all plausible combinations of station parameters are searched efficiently to yield the optimal solution. Results: A SPORT optimization framework with seamlessly integration of three complementary algorithms, column generation, subgradient method, and pattern search, was established. The proposed technique was applied to two previously treated clinical cases: a head and

  16. Simultaneous beam sampling and aperture shape optimization for SPORT

    Energy Technology Data Exchange (ETDEWEB)

    Zarepisheh, Masoud; Li, Ruijiang; Xing, Lei, E-mail: Lei@stanford.edu [Department of Radiation Oncology, Stanford University, Stanford, California 94305 (United States); Ye, Yinyu [Department of Management Science and Engineering, Stanford University, Stanford, California 94305 (United States)

    2015-02-15

    Purpose: Station parameter optimized radiation therapy (SPORT) was recently proposed to fully utilize the technical capability of emerging digital linear accelerators, in which the station parameters of a delivery system, such as aperture shape and weight, couch position/angle, gantry/collimator angle, can be optimized simultaneously. SPORT promises to deliver remarkable radiation dose distributions in an efficient manner, yet there exists no optimization algorithm for its implementation. The purpose of this work is to develop an algorithm to simultaneously optimize the beam sampling and aperture shapes. Methods: The authors build a mathematical model with the fundamental station point parameters as the decision variables. To solve the resulting large-scale optimization problem, the authors devise an effective algorithm by integrating three advanced optimization techniques: column generation, subgradient method, and pattern search. Column generation adds the most beneficial stations sequentially until the plan quality improvement saturates and provides a good starting point for the subsequent optimization. It also adds the new stations during the algorithm if beneficial. For each update resulted from column generation, the subgradient method improves the selected stations locally by reshaping the apertures and updating the beam angles toward a descent subgradient direction. The algorithm continues to improve the selected stations locally and globally by a pattern search algorithm to explore the part of search space not reachable by the subgradient method. By combining these three techniques together, all plausible combinations of station parameters are searched efficiently to yield the optimal solution. Results: A SPORT optimization framework with seamlessly integration of three complementary algorithms, column generation, subgradient method, and pattern search, was established. The proposed technique was applied to two previously treated clinical cases: a head and

  17. Simultaneous beam sampling and aperture shape optimization for SPORT.

    Science.gov (United States)

    Zarepisheh, Masoud; Li, Ruijiang; Ye, Yinyu; Xing, Lei

    2015-02-01

    Station parameter optimized radiation therapy (SPORT) was recently proposed to fully utilize the technical capability of emerging digital linear accelerators, in which the station parameters of a delivery system, such as aperture shape and weight, couch position/angle, gantry/collimator angle, can be optimized simultaneously. SPORT promises to deliver remarkable radiation dose distributions in an efficient manner, yet there exists no optimization algorithm for its implementation. The purpose of this work is to develop an algorithm to simultaneously optimize the beam sampling and aperture shapes. The authors build a mathematical model with the fundamental station point parameters as the decision variables. To solve the resulting large-scale optimization problem, the authors devise an effective algorithm by integrating three advanced optimization techniques: column generation, subgradient method, and pattern search. Column generation adds the most beneficial stations sequentially until the plan quality improvement saturates and provides a good starting point for the subsequent optimization. It also adds the new stations during the algorithm if beneficial. For each update resulted from column generation, the subgradient method improves the selected stations locally by reshaping the apertures and updating the beam angles toward a descent subgradient direction. The algorithm continues to improve the selected stations locally and globally by a pattern search algorithm to explore the part of search space not reachable by the subgradient method. By combining these three techniques together, all plausible combinations of station parameters are searched efficiently to yield the optimal solution. A SPORT optimization framework with seamlessly integration of three complementary algorithms, column generation, subgradient method, and pattern search, was established. The proposed technique was applied to two previously treated clinical cases: a head and neck and a prostate case

  18. Wideband Low Side Lobe Aperture Coupled Patch Phased Array Antennas

    Science.gov (United States)

    Poduval, Dhruva

    Low profile printed antenna arrays with wide bandwidth, high gain, and low Side Lobe Level (SLL) are in great demand for current and future commercial and military communication systems and radar. Aperture coupled patch antennas have been proposed to obtain wide impedance bandwidths in the past. Aperture coupling is preferred particularly for phased arrays because of their advantage of integration to other active devices and circuits, e.g. phase shifters, power amplifiers, low noise amplifiers, mixers etc. However, when designing such arrays, the interplay between array performance characteristics, such as gain, side lobe level, back lobe level, mutual coupling etc. must be understood and optimized under multiple design constraints, e.g. substrate material properties and thicknesses, element to element spacing, and feed lines and their orientation and arrangements with respect to the antenna elements. The focus of this thesis is to investigate, design, and develop an aperture coupled patch array with wide operating bandwidth (30%), high gain (17.5 dBi), low side lobe level (20 dB), and high Forward to Backward (F/B) ratio (21.8 dB). The target frequency range is 2.4 to 3 GHz given its wide application in WLAN, LTE (Long Term Evolution) and other communication systems. Notwithstanding that the design concept can very well be adapted at other frequencies. Specifically, a 16 element, 4 by 4 planar microstrip patch array is designed using HFSS and experimentally developed and tested. Starting from mutual coupling minimization a corporate feeding scheme is designed to achieve the needed performance. To reduce the SLL the corporate feeding network is redesigned to obtain a specific amplitude taper. Studies are conducted to determine the optimum location for a metallic reflector under the feed line to improve the F/B. An experimental prototype of the antenna was built and tested validating and demonstrating the performance levels expected from simulation predictions

  19. A reactor/receiver-concept for liquid-phase high-temperature processes

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt-Traub, H.; Hahm, T. [Dortmund Univ. (Germany). Dept. of Chemical Engineering

    1997-12-31

    Besides the conversion of solar light to electricity solar energy can be used directly in photo- and thermochemistry. In the temperature range from 1000 to 2000 K there is a high demand for industrial process heat offering a variety of possibilities for solar thermal applications. Especially in the field of liquid-phase high-temperature processes there are hardly no solar thermal applications which exceed the stage of laboratory experiments. It was therefore the aim of two projects financed by the AG Solar of North Rhine-Westphalia, Germany, to develop concepts for commercial scale solar thermal plants and to judge them economically and ecologically. Some general problems have to be overcome to realize a commercial scale solar thermal plant for liquid-phase processes. The concept developed consists of a heliostat field, a tower reflector and an open receiver with a closed reaction chamber. The feasibility of a solar thermal plant for high-temperature liquid-phase processes has been shown in principle. The projected plant consists of a 4400 m{sup 2} heliostat field, a tower plus reflecting mirrors with a total area of 220 m{sup 2} and an open receiver with a closed annular reaction zone. For temperatures below 1700 K the overall efficiency is high enough to yield energetic amortization times of less than 1 year. For a further improvement and a verification of the calculation a closer look at the reactor/receiver and its heat transfer processes is necessary. This is done by using a mixed strategy of experiments and simulation. First experiments were carried out with a semitransparent salt and an opaque metal. The first stage of the experiments will end during the next weeks and their results have to be compared with the simulation. The simulation will then be extended to transparent melts. The second stage of the experiments which include the reaction chamber will start in 1997. An improvement of the reactor might be achieved using nonimaging concentrators to further

  20. Pressure difference receiving ears

    DEFF Research Database (Denmark)

    Michelsen, Axel; Larsen, Ole Næsbye

    2007-01-01

    Directional sound receivers are useful for locating sound sources, and they can also partly compensate for the signal degradations caused by noise and reverberations. Ears may become inherently directional if sound can reach both surfaces of the eardrum. Attempts to understand the physics...... of the eardrum. The mere existence of sound transmission to the inner surface does not ensure a useful directional hearing, since a proper amplitude and phase relationship must exist between the sounds acting on the two surfaces of the eardrum. The gain of the sound pathway must match the amplitude and phase...... of the sounds at the outer surfaces of the eardrums, which are determined by diffraction and by the arrival time of the sound, that is by the size and shape of the animal and by the frequency of sound. Many users of hearing aids do not obtain a satisfactory improvement of their ability to localize sound sources...

  1. Wounding apertures: violence, affect and photography during and after apartheid

    Directory of Open Access Journals (Sweden)

    Kylie Thomas

    2012-01-01

    Full Text Available Between March and September 2012 there have been sixteen instances of 'necklacing' in the townships just outside of Cape Town. This article argues for understanding these events in relation to the violence of apartheid. It approaches the question of the meanings of the persistence of necklacing through an analysis of photographs of people who had been subject to vigilante violence in the 1980s. The article focuses on the work of Gille de Vlieg, a photographer who, during apartheid, was a member of the Black Sash and of the Afrapix photography collective. I read de Vlieg's photographs as a series of 'wounding apertures' that open a space for affective engagements with the violence of both the past and of the present. The importance of such engagements, the article argues, lies in what political philosopher Hannah Arendt has theorised as the constitutive relation between feeling, thinking and judging.

  2. Design of large aperture, low mass vacuum windows

    International Nuclear Information System (INIS)

    Leonhardt, W.J.; Mapes, M.

    1993-01-01

    Large vacuum vessels are employed downstream of fixed targets in High Energy Physics experiments to provide a long path for particles to traverse without interacting with air molecules. These vessels generally have a large aperture opening known as a vacuum window which employs a thin membrane to preserve the vacuum environment yet allows the particles to pass through with a minimal effect on them. Several large windows have been built using a composite of Kevlar/Mylar including circular windows to a diameter of 96.5 cm and rectangular windows up to 193 cm x 86 cm. This paper describes the design, fabrication, testing and operating experience with these windows and relates the actual performance to theoretical predictions

  3. Logarithmic Laplacian Prior Based Bayesian Inverse Synthetic Aperture Radar Imaging.

    Science.gov (United States)

    Zhang, Shuanghui; Liu, Yongxiang; Li, Xiang; Bi, Guoan

    2016-04-28

    This paper presents a novel Inverse Synthetic Aperture Radar Imaging (ISAR) algorithm based on a new sparse prior, known as the logarithmic Laplacian prior. The newly proposed logarithmic Laplacian prior has a narrower main lobe with higher tail values than the Laplacian prior, which helps to achieve performance improvement on sparse representation. The logarithmic Laplacian prior is used for ISAR imaging within the Bayesian framework to achieve better focused radar image. In the proposed method of ISAR imaging, the phase errors are jointly estimated based on the minimum entropy criterion to accomplish autofocusing. The maximum a posterior (MAP) estimation and the maximum likelihood estimation (MLE) are utilized to estimate the model parameters to avoid manually tuning process. Additionally, the fast Fourier Transform (FFT) and Hadamard product are used to minimize the required computational efficiency. Experimental results based on both simulated and measured data validate that the proposed algorithm outperforms the traditional sparse ISAR imaging algorithms in terms of resolution improvement and noise suppression.

  4. Development of a multispectral autoradiography using a coded aperture

    Science.gov (United States)

    Noto, Daisuke; Takeda, Tohoru; Wu, Jin; Lwin, Thet T.; Yu, Quanwen; Zeniya, Tsutomu; Yuasa, Tetsuya; Hiranaka, Yukio; Itai, Yuji; Akatsuka, Takao

    2000-11-01

    Autoradiography is a useful imaging technique to understand biological functions using tracers including radio isotopes (RI's). However, it is not easy to describe the distribution of different kinds of tracers simultaneously by conventional autoradiography using X-ray film or Imaging plate. Each tracer describes each corresponding biological function. Therefore, if we can simultaneously estimate distribution of different kinds of tracer materials, the multispectral autoradiography must be a quite powerful tool to better understand physiological mechanisms of organs. So we are developing a system using a solid state detector (SSD) with high energy- resolution. Here, we introduce an imaging technique with a coded aperture to get spatial and spectral information more efficiently. In this paper, the imaging principle is described, and its validity and fundamental property are discussed by both simulation and phantom experiments with RI's such as 201Tl, 99mTc, 67Ga, and 123I.

  5. Performance limits for maritime Inverse Synthetic Aperture Radar (ISAR)

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin Walter [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2013-11-01

    The performance of an Inverse Synthetic Aperture Radar (ISAR) system depends on a variety of factors, many which are interdependent in some manner. In this report we specifically examine ISAR as applied to maritime targets (e.g. ships). It is often difficult to get your arms around the problem of ascertaining achievable performance limits, and yet those limits exist and are dictated by physics. This report identifies and explores those limits, and how they depend on hardware system parameters and environmental conditions. Ultimately, this leads to a characterization of parameters that offer optimum performance for the overall ISAR system. While the information herein is not new to the literature, its collection into a single report hopes to offer some value in reducing the seek time.

  6. Dynamical Aperture Control in Accelerator Lattices With Multipole Potentials

    CERN Document Server

    Morozov, I

    2017-01-01

    We develop tools for symbolic representation of a non-linear accelerator model and analytical methods for description of non-linear dynamics. Information relevant to the dynamic aperture (DA) is then obtained from this model and can be used for indirect DA control or as a complement to direct numerical optimization. We apply two analytical methods and use multipole magnets to satisfy derived analytical constraints. The accelerator model is represented as a product of unperturbed and perturbed exponential operators with the exponent of the perturbed operator given as a power series in the perturbation parameter. Normal forms can be applied to this representation and the lattice parameters are used to control the normal form Hamiltonian and normal form transformation. Hamiltonian control is used to compute a control term or controlled operator. Lattice parameters are then fitted to satisfy the imposed control constraints. Theoretical results, as well as illustrative examples, are presented.

  7. Aperture Synthesis Methods and Applications to Optical Astronomy

    CERN Document Server

    Saha, Swapan Kumar

    2011-01-01

    Over the years long baseline optical interferometry has slowly gained in importance and today it is a powerful tool. This timely book sets out to highlight the basic principles of long baseline optical interferometry. The book addresses the fundamentals of stellar interferometry with emphasis on aperture synthesis using an array of telescopes particularly at optical/IR wavelengths. It discusses the fundamentals of electromagnetic fields, wave optics, interference, diffraction, and imaging at length. There is a chapter dedicated to radio and intensity interferometry corroborating with basic mathematical steps. The basic principle of optical interferometry and its requirements, its limitations and the technical challenges it poses, are also covered in depth. Assisted by illustrations and footnotes, the book examines the basic tricks of the trade, current trends and methods, and it points to the potential of true interferometry both from the ground and space.

  8. INTERFEROMETRIC SYNTHETIC APERTURE RADAR (INSAR TECHNOLOGY AND GEOMORPHOLOGY INTERPRETATION

    Directory of Open Access Journals (Sweden)

    M. Maghsoudi

    2013-09-01

    Full Text Available Geomorphology is briefly the study of landforms and their formative processes on the surface of the planet earth as human habitat. The landforms evolution and the formative processes can best be studied by technologies with main application in study of elevation. Interferometric Synthetic Aperture Radar (InSAR is the appropriate technology for this application. With phase differences calculations in radar waves, the results of this technology can extensively be interpreted for geomorphologic researches. The purpose of the study is to review the geomorphologic studies using InSAR and also the technical studies about InSAR with geomorphologic interpretations. This study states that the InSAR technology can be recommended to be employed as a fundamental for geomorphology researches.

  9. Comparison between different encoding schemes for synthetic aperture imaging

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav; Jensen, Jørgen Arendt

    2002-01-01

    and spatio-temporal encoding was investigated. Experiments on wire phantom in water were carried out to quantify the gain from the different encodings. The gain in SNR using an FM modulated pulse is 12 dB. The penetration depth of the images was studied using tissue mimicking phantom with frequency dependent......Synthetic transmit aperture ultrasound (STAU) imaging can create images with as low as 2 emissions, making it attractive for 3D real-time imaging. Two are the major problems to be solved: (1) complexity of the hardware involved, and (2) poor image quality due to low signal to noise ratio (SNR). We...... attenuation of 0.5 dB/(cm MHz). The combination of spatial and temporal encoding have highest penetration depth. Images to a depth of 110 mm, can successfully be made with contrast resolution comparable to that of a linear array image. The in-vivo scans show that the motion artifacts do not significantly...

  10. Low-redundancy linear arrays in mirrored interferometric aperture synthesis.

    Science.gov (United States)

    Zhu, Dong; Hu, Fei; Wu, Liang; Li, Jun; Lang, Liang

    2016-01-15

    Mirrored interferometric aperture synthesis (MIAS) is a novel interferometry that can improve spatial resolution compared with that of conventional IAS. In one-dimensional (1-D) MIAS, antenna array with low redundancy has the potential to achieve a high spatial resolution. This Letter presents a technique for the direct construction of low-redundancy linear arrays (LRLAs) in MIAS and derives two regular analytical patterns that can yield various LRLAs in short computation time. Moreover, for a better estimation of the observed scene, a bi-measurement method is proposed to handle the rank defect associated with the transmatrix of those LRLAs. The results of imaging simulation demonstrate the effectiveness of the proposed method.

  11. Dual-camera design for coded aperture snapshot spectral imaging.

    Science.gov (United States)

    Wang, Lizhi; Xiong, Zhiwei; Gao, Dahua; Shi, Guangming; Wu, Feng

    2015-02-01

    Coded aperture snapshot spectral imaging (CASSI) provides an efficient mechanism for recovering 3D spectral data from a single 2D measurement. However, since the reconstruction problem is severely underdetermined, the quality of recovered spectral data is usually limited. In this paper we propose a novel dual-camera design to improve the performance of CASSI while maintaining its snapshot advantage. Specifically, a beam splitter is placed in front of the objective lens of CASSI, which allows the same scene to be simultaneously captured by a grayscale camera. This uncoded grayscale measurement, in conjunction with the coded CASSI measurement, greatly eases the reconstruction problem and yields high-quality 3D spectral data. Both simulation and experimental results demonstrate the effectiveness of the proposed method.

  12. Rocking convex array used for 3D synthetic aperture focusing

    DEFF Research Database (Denmark)

    Andresen, Henrik; Nikolov, Svetoslav; Pedersen, M M

    2008-01-01

    Volumetric imaging can be performed using 1D arrays in combination with mechanical motion. Outside the elevation focus of the array, the resolution and contrast quickly degrade compared to the azimuth plane, because of the fixed transducer focus. The purpose of this paper is to use synthetic...... aperture focusing (SAF) for enhancing the elevation focusing for a convex rocking array, to obtain a more isotropic point spread function. This paper presents further development of the SAF method, which can be used with curved array combined with a rocking motion. The method uses a virtual source (VS...... Kretztechnik, Zipf, Austria). The array has an elevation focus at 60 mm of depth, and the angular rocking velocity is up to 140deg/s. The scan sequence uses an fprf of 4500 - 7000 Hz allowing up to 15 cm of penetration. The full width at half max (FWHM) and main-lobe to side-lobe ratio (MLSL) is used...

  13. Ultrasound beam transmission using a discretely orthogonal Gaussian aperture basis

    Science.gov (United States)

    Roberts, R. A.

    2018-04-01

    Work is reported on development of a computational model for ultrasound beam transmission at an arbitrary geometry transmission interface for generally anisotropic materials. The work addresses problems encountered when the fundamental assumptions of ray theory do not hold, thereby introducing errors into ray-theory-based transmission models. Specifically, problems occur when the asymptotic integral analysis underlying ray theory encounters multiple stationary phase points in close proximity, due to focusing caused by concavity on either the entry surface or a material slowness surface. The approach presented here projects integrands over both the transducer aperture and the entry surface beam footprint onto a Gaussian-derived basis set, thereby distributing the integral over a summation of second-order phase integrals which are amenable to single stationary phase point analysis. Significantly, convergence is assured provided a sufficiently fine distribution of basis functions is used.

  14. Alignment effects on a neutron imaging system using coded apertures

    International Nuclear Information System (INIS)

    Thfoin, Isabelle; Landoas, Olivier; Caillaud, Tony; Vincent, Maxime; Bourgade, Jean-Luc; Rosse, Bertrand; Disdier, Laurent; Sangster, Thomas C.; Glebov, Vladimir Yu.; Pien, Greg; Armstrong, William

    2010-01-01

    A high resolution neutron imaging system is being developed and tested on the OMEGA laser facility for inertial confinement fusion experiments. This diagnostic uses a coded imaging technique with a penumbral or an annular aperture. The sensitiveness of these techniques to misalignment was pointed out with both experiments and simulations. Results obtained during OMEGA shots are in good agreement with calculations performed with the Monte Carlo code GEANT4. Both techniques are sensitive to the relative position of the source in the field of view. The penumbral imaging technique then demonstrates to be less sensitive to misalignment compared to the ring. These results show the necessity to develop a neutron imaging diagnostic for megajoule class lasers taking into account our alignment capabilities on such facilities.

  15. Synthetic Aperture Flow Imaging Using a Dual Beamformer Approach

    DEFF Research Database (Denmark)

    Li, Ye

    Color flow mapping systems have become widely used in clinical applications. It provides an opportunity to visualize the velocity profile over a large region in the vessel, which makes it possible to diagnose, e.g., occlusion of veins, heart valve deficiencies, and other hemodynamic problems....... However, while the conventional ultrasound imaging of making color flow mapping provides useful information in many circumstances, the spatial velocity resolution and frame rate are limited. The entire velocity distribution consists of image lines from different directions, and each image line...... on the current commercial ultrasound scanner. The motivation for this project is to develop a method lowering the amount of calculations and still maintaining beamforming quality sufficient for flow estimation. Synthetic aperture using a dual beamformer approach is investigated using Field II simulations...

  16. Landau damping dynamic aperture and octupole in LHC

    CERN Document Server

    Gareyte, Jacques; Ruggiero, F

    1997-01-01

    Maximization of the dynamic aperture and Landau damping of the collective instabilities are partly conflicting requirements. On the one hand, the non-linearities of the lattice must be minimized at large oscillation amplitude to guarantee the stability of the single particle motion. On the other hand, a spread of the betatron frequencies is necessary to guarantee the stability of the collective motion of bunches of particles; this requires the introduction of non-linearities effective at small amplitudes. We show in this note that the `natural' spread of betatron tunes due to the field imperfections is inadequate or Landau damping. An octupole scheme is required to provide collective stability at high energy. At low energy it may be used to find the optimum between the correction of the octupolar field imperfections and Landau damping. The solution of the stability problem taking into account the two degrees of freedom of the transverse motion allows a significant saving in octupole strength: 144 octupoles wi...

  17. Large-aperture, high-damage-threshold optics for beamlet

    International Nuclear Information System (INIS)

    Campbell, J.H.; Atherton, L.J.; DeYoreo, J.J.; Kozlowski, M.R.; Maney, R.T.; Montesanti, R.C.; Sheehan, L.M.; Barker, C.E.

    1995-01-01

    Beamlet serves as a test bed for the proposed NIF laser design and components. Therefore, its optics are similar in size and quality to those proposed for the NIF. In general, the optics in the main laser cavity and transport section of Beamlet are larger and have higher damage thresholds than the optics manufactured for any of our previous laser systems. In addition, the quality of the Beamlet optical materials is higher, leading to better wavefront quality, higher optical transmission, and lower-intensity modulation of the output laser beam than, for example, that typically achieved on Nova. In this article, we discuss the properties and characteristics of the large-aperture optics used on Beamlet

  18. Segmented Aperture Interferometric Nulling Testbed (SAINT) II: component systems update

    Science.gov (United States)

    Hicks, Brian A.; Bolcar, Matthew R.; Helmbrecht, Michael A.; Petrone, Peter; Burke, Elliot; Corsetti, James; Dillon, Thomas; Lea, Andrew; Pellicori, Samuel; Sheets, Teresa; Shiri, Ron; Agolli, Jack; DeVries, John; Eberhardt, Andrew; McCabe, Tyler

    2017-09-01

    This work presents updates to the coronagraph and telescope components of the Segmented Aperture Interferometric Nulling Testbed (SAINT). The project pairs an actively-controlled macro-scale segmented mirror with the Visible Nulling Coronagraph (VNC) towards demonstrating capabilities for the future space observatories needed to directly detect and characterize a significant sample of Earth-sized worlds around nearby stars in the quest for identifying those which may be habitable and possibly harbor life. Efforts to improve the VNC wavefront control optics and mechanisms towards repeating narrowband results are described. A narrative is provided for the design of new optical components aimed at enabling broadband performance. Initial work with the hardware and software interface for controlling the segmented telescope mirror is also presented.

  19. Hybrid coded aperture and Compton imaging using an active mask

    International Nuclear Information System (INIS)

    Schultz, L.J.; Wallace, M.S.; Galassi, M.C.; Hoover, A.S.; Mocko, M.; Palmer, D.M.; Tornga, S.R.; Kippen, R.M.; Hynes, M.V.; Toolin, M.J.; Harris, B.; McElroy, J.E.; Wakeford, D.; Lanza, R.C.; Horn, B.K.P.; Wehe, D.K.

    2009-01-01

    The trimodal imager (TMI) images gamma-ray sources from a mobile platform using both coded aperture (CA) and Compton imaging (CI) modalities. In this paper we will discuss development and performance of image reconstruction algorithms for the TMI. In order to develop algorithms in parallel with detector hardware we are using a GEANT4 [J. Allison, K. Amako, J. Apostolakis, H. Araujo, P.A. Dubois, M. Asai, G. Barrand, R. Capra, S. Chauvie, R. Chytracek, G. Cirrone, G. Cooperman, G. Cosmo, G. Cuttone, G. Daquino, et al., IEEE Trans. Nucl. Sci. NS-53 (1) (2006) 270] based simulation package to produce realistic data sets for code development. The simulation code incorporates detailed detector modeling, contributions from natural background radiation, and validation of simulation results against measured data. Maximum likelihood algorithms for both imaging methods are discussed, as well as a hybrid imaging algorithm wherein CA and CI information is fused to generate a higher fidelity reconstruction.

  20. Offshore Wind Potential in South India from Synthetic Aperture Radar

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Bingöl, Ferhat; Badger, Merete

    are from Wide Swath Mode and each cover approximately 400 km by 400 km. The ocean wind speed maps are retrieved and processed at Risø DTU. The results show wind energy density from 200 W/m2 to 500 W/m2 at 10 m height above sea level. QuikSCAT ocean winds are included as background information on the 10......The offshore wind energy potential for pre-feasibility in South India in the area from 77° to 80° Eastern longitude and 7° to 10° Northern latitude is observed from a total of 164 ENVISAT Advanced Synthetic Aperture Radar (ASAR) satellite images during the years 2002 to 2011. All satellite scenes......-year mean and a general description of the winds and climate with monsoons in India is presented....

  1. Design studies of a depth encoding large aperture PET camera

    International Nuclear Information System (INIS)

    Moisan, C.; Rogers, J.G.; Buckley, K.R.; Ruth, T.J.; Stazyk, M.W.; Tsang, G.

    1994-10-01

    The feasibility of a wholebody PET tomograph with the capacity to correct for the parallax error induced by the Depth-Of-Interaction of γ-rays is assessed through simulation. The experimental energy, depth, and transverse position resolutions of BGO block detector candidates are the main inputs to a simulation that predicts the point source resolution of the Depth Encoding Large Aperture Camera (DELAC). The results indicate that a measured depth resolution of 7 mm (FWHM) is sufficient to correct a substantial part of the parallax error for a point source at the edge of the Field-Of-View. A search for the block specifications and camera ring radius that would optimize the spatial resolution and its uniformity across the Field-Of-View is also presented. (author). 10 refs., 1 tab., 5 figs

  2. YSAR: a compact low-cost synthetic aperture radar

    Science.gov (United States)

    Thompson, Douglas G.; Arnold, David V.; Long, David G.; Miner, Gayle F.; Karlinsey, Thomas W.; Robertson, Adam E.

    1997-09-01

    The Brigham Young University Synthetic Aperture Radar (YSAR) is a compact, inexpensive SAR system which can be flown on a small aircraft. The system has exhibited a resolution of approximately 0.8 m by 0.8 m in test flights in calm conditions. YSAR has been used to collect data over archeological sites in Israel. Using a relatively low frequency (2.1 GHz), we hope to be able to identify walls or other archeological features to assist in excavation. A large data set of radar and photographic data have been collected over sites at Tel Safi, Qumran, Tel Micnah, and the Zippori National Forest in Israel. We show sample images from the archeological data. We are currently working on improved autofocus algorithms for this data and are developing a small, low-cost interferometric SAR system (YINSAR) for operation from a small aircraft.

  3. Seamless Synthetic Aperture Radar Archive for Interferometry Analysis

    Science.gov (United States)

    Baker, S.; Baru, C.; Bryson, G.; Buechler, B.; Crosby, C.; Fielding, E.; Meertens, C.; Nicoll, J.; Youn, C.

    2014-11-01

    The NASA Advancing Collaborative Connections for Earth System Science (ACCESS) seamless synthetic aperture radar (SAR) archive (SSARA) project is a collaboration between UNAVCO, the Alaska Satellite Facility (ASF), the Jet Propulsion Laboratory (JPL), and OpenTopography at the San Diego Supercomputer Center (SDSC) to design and implement a seamless distributed access system for SAR data and derived interferometric SAR (InSAR) data products. A unified application programming interface (API) has been created to search the SAR archives at ASF and UNAVCO, 30 and 90-m SRTM DEM data available through OpenTopography, and tropospheric data from the NASA OSCAR project at JPL. The federated query service provides users a single access point to search for SAR granules, InSAR pairs, and corresponding DEM and tropospheric data products from the four archives, as well as the ability to search and download pre-processed InSAR products from ASF and UNAVCO.

  4. Design of large aperture, low mass vacuum windows

    International Nuclear Information System (INIS)

    Mapes, M.; Leonhardt, W.J.

    1993-01-01

    Large aperture, low mass, thin vacuum windows are required to minimize beam loss in the beam lines of particle accelerators as the products of nuclear collisions move from upstream targets to downstream detectors. This article describes the design, fabrication, testing, and operating experience of a large rectangular vacuum window, 122 cmx61 cm, and two circular windows of 91.4 and 96.5 cm diam. These window designs utilize a composite Kevlar 29 fabric and Mylar laminate as a window material with a typical combined thickness of 0.35 mm. Data for several material thicknesses are also presented. The windows are usually designed to withstand a pressure differential of two to three atmospheres to achieve the required factor of safety. These windows are typically used in the medium vacuum range of 10 -4 Torr. The equations used to predict the behavior of the window material will also be discussed

  5. Design of large aperture, low mass vacuum windows

    International Nuclear Information System (INIS)

    Leonhardt, W.J.; Mapes, M.

    1993-01-01

    Large vacuum vessels are employed downstream of fixed targets in High Energy Physics experiments to provide a long path for particles to transverse without interacting with air molecules. These vessels generally have a large aperture opening known as a open-quotes vacuum windowclose quotes which employs a thin membrane to preserve the vacuum environment yet allows the particles to pass through with a minimal effect on them. Several large windows have been built using a composite of Kevlar/Mylar including circular windows to a diameter of 96.5 cm and rectangular windows up to 193 cm x 86 cm. This paper describes the design, fabrication, testing and operating experience with these windows and relates the actual performance to theoretical predictions

  6. Offshore wind potential in South India from synthetic aperture radar

    Energy Technology Data Exchange (ETDEWEB)

    Hasager, C.B.; Bingoel, F.; Badger, M.; Karagali, I.; Sreevalsan, E.

    2011-10-15

    The offshore wind energy potential for pre-feasibility in South India in the area from 77 deg. to 80 deg. Eastern longitude and 7 deg. to 10 deg. Northern latitude is observed from a total of 164 ENVISAT Advanced Synthetic Aperture Radar (ASAR) satellite images during the years 2002 to 2011. All satellite scenes are from Wide Swath Mode and each cover approximately 400 km by 400 km. The ocean wind speed maps are retrieved and processed at Risoe DTU. The results show wind energy density from 200 W/m2 to 500 W/m2 at 10 m height above sea level. QuikSCAT ocean winds are included as background information on the 10-year mean and a general description of the winds and climate with monsoons in India is presented. (Author)

  7. The rapid terrain visualization interferometric synthetic aperture radar sensor

    Science.gov (United States)

    Graham, Robert H.; Bickel, Douglas L.; Hensley, William H.

    2003-11-01

    The Rapid Terrain Visualization interferometric synthetic aperture radar was designed and built at Sandia National Laboratories as part of an Advanced Concept Technology Demonstration (ACTD) to "demonstrate the technologies and infrastructure to meet the Army requirement for rapid generation of digital topographic data to support emerging crisis or contingencies." This sensor is currently being operated by Sandia National Laboratories for the Joint Precision Strike Demonstration (JPSD) Project Office to provide highly accurate digital elevation models (DEMs) for military and civilian customers, both inside and outside of the United States. The sensor achieves better than DTED Level IV position accuracy in near real-time. The system is being flown on a deHavilland DHC-7 Army aircraft. This paper outlines some of the technologies used in the design of the system, discusses the performance, and will discuss operational issues. In addition, we will show results from recent flight tests, including high accuracy maps taken of the San Diego area.

  8. In Vivo Real Time Volumetric Synthetic Aperture Ultrasound Imaging

    DEFF Research Database (Denmark)

    Bouzari, Hamed; Rasmussen, Morten Fischer; Brandt, Andreas Hjelm

    2015-01-01

    Synthetic aperture (SA) imaging can be used to achieve real-time volumetric ultrasound imaging using 2-D array transducers. The sensitivity of SA imaging is improved by maximizing the acoustic output, but one must consider the limitations of an ultrasound system, both technical and biological....... This paper investigates the in vivo applicability and sensitivity of volumetric SA imaging. Utilizing the transmit events to generate a set of virtual point sources, a frame rate of 25 Hz for a 90° x 90° field-of-view was achieved. Data were obtained using a 3.5 MHz 32 x 32 elements 2-D phased array...... transducer connected to the experimental scanner (SARUS). Proper scaling is applied to the excitation signal such that intensity levels are in compliance with the U.S. Food and Drug Administration regulations for in vivo ultrasound imaging. The measured Mechanical Index and spatial-peak- temporal...

  9. Quantitative model of transport-aperture coordination during reach-to-grasp movements.

    Science.gov (United States)

    Rand, Miya K; Shimansky, Y P; Hossain, Abul B M I; Stelmach, George E

    2008-06-01

    It has been found in our previous studies that the initiation of aperture closure during reach-to-grasp movements occurs when the hand distance to target crosses a threshold that is a function of peak aperture amplitude, hand velocity, and hand acceleration. Thus, a stable relationship between those four movement parameters is observed at the moment of aperture closure initiation. Based on the concept of optimal control of movements (Naslin 1969) and its application for reach-to-grasp movement regulation (Hoff and Arbib 1993), it was hypothesized that the mathematical equation expressing that relationship can be generalized to describe coordination between hand transport and finger aperture during the entire reach-to-grasp movement by adding aperture velocity and acceleration to the above four movement parameters. The present study examines whether this hypothesis is supported by the data obtained in experiments in which young adults performed reach-to-grasp movements in eight combinations of two reach-amplitude conditions and four movement-speed conditions. It was found that linear approximation of the mathematical model described the relationship among the six movement parameters for the entire aperture-closure phase with very high precision for each condition, thus supporting the hypothesis for that phase. Testing whether one mathematical model could approximate the data across all the experimental conditions revealed that it was possible to achieve the same high level of data-fitting precision only by including in the model two additional, condition-encoding parameters and using a nonlinear, artificial neural network-based approximator with two hidden layers comprising three and two neurons, respectively. This result indicates that transport-aperture coordination, as a specific relationship between the parameters of hand transport and finger aperture, significantly depends on the condition-encoding variables. The data from the aperture-opening phase also fit a

  10. Direct aperture optimization: A turnkey solution for step-and-shoot IMRT

    International Nuclear Information System (INIS)

    Shepard, D.M.; Earl, M.A.; Li, X.A.; Naqvi, S.; Yu, C.

    2002-01-01

    IMRT treatment plans for step-and-shoot delivery have traditionally been produced through the optimization of intensity distributions (or maps) for each beam angle. The optimization step is followed by the application of a leaf-sequencing algorithm that translates each intensity map into a set of deliverable aperture shapes. In this article, we introduce an automated planning system in which we bypass the traditional intensity optimization, and instead directly optimize the shapes and the weights of the apertures. We call this approach 'direct aperture optimization'. This technique allows the user to specify the maximum number of apertures per beam direction, and hence provides significant control over the complexity of the treatment delivery. This is possible because the machine dependent delivery constraints imposed by the MLC are enforced within the aperture optimization algorithm rather than in a separate leaf-sequencing step. The leaf settings and the aperture intensities are optimized simultaneously using a simulated annealing algorithm. We have tested direct aperture optimization on a variety of patient cases using the EGS4/BEAM Monte Carlo package for our dose calculation engine. The results demonstrate that direct aperture optimization can produce highly conformal step-and-shoot treatment plans using only three to five apertures per beam direction. As compared with traditional optimization strategies, our studies demonstrate that direct aperture optimization can result in a significant reduction in both the number of beam segments and the number of monitor units. Direct aperture optimization therefore produces highly efficient treatment deliveries that maintain the full dosimetric benefits of IMRT

  11. Factors affecting the performance of large-aperture microphone arrays

    Science.gov (United States)

    Silverman, Harvey F.; Patterson, William R.; Sachar, Joshua

    2002-05-01

    Large arrays of microphones have been proposed and studied as a possible means of acquiring data in offices, conference rooms, and auditoria without requiring close-talking microphones. When such an array essentially surrounds all possible sources, it is said to have a large aperture. Large-aperture arrays have attractive properties of spatial resolution and signal-to-noise enhancement. This paper presents a careful comparison of theoretical and measured performance for an array of 256 microphones using simple delay-and-sum beamforming. This is the largest currently functional, all digital-signal-processing array that we know of. The array is wall-mounted in the moderately adverse environment of a general-purpose laboratory (8 m×8 m×3 m). The room has a T60 reverberation time of 550 ms. Reverberation effects in this room severely impact the array's performance. However, the width of the main lobe remains comparable to that of a simplified prediction. Broadband spatial resolution shows a single central peak with 10 dB gain about 0.4 m in diameter at the -3 dB level. Away from that peak, the response is approximately flat over most of the room. Optimal weighting for signal-to-noise enhancement degrades the spatial resolution minimally. Experimentally, we verify that signal-to-noise gain is less than proportional to the square root of the number of microphones probably due to the partial correlation of the noise between channels, to variation of signal intensity with polar angle about the source, and to imperfect correlation of the signal over the array caused by reverberations. We show measurements of the relative importance of each effect in our environment.

  12. A High-Emissivity Blackbody with Large Aperture for Radiometric Calibration at Low-Temperature

    Science.gov (United States)

    Ko, Hsin-Yi; Wen, Bor-Jiunn; Tsa, Shu-Fei; Li, Guo-Wei

    2009-02-01

    A newly designed high-emissivity cylindrical blackbody source with a large diameter aperture (54 mm), an internal triangular-grooved surface, and concentric grooves on the bottom surface was immersed in a temperature-controlled, stirred-liquid bath. The stirred-liquid bath can be stabilized to better than 0.05°C at temperatures between 30 °C and 70 °C, with traceability to the ITS-90 through a platinum resistance thermometer (PRT) calibrated at the fixed points of indium, gallium, and the water triple point. The temperature uniformity of the blackbody from the bottom to the front of the cavity is better than 0.05 % of the operating temperature (in °C). The heat loss of the cavity is less than 0.03 % of the operating temperature as determined with a radiation thermometer by removing an insulating lid without the gas purge operating. Optical ray tracing with a Monte Carlo method (STEEP 3) indicated that the effective emissivity of this blackbody cavity is very close to unity. The size-of-source effect (SSE) of the radiation thermometer and the effective emissivity of the blackbody were considered in evaluating the uncertainty of the blackbody. The blackbody uncertainty budget and performance are described in this paper.

  13. Models and experimental results from the wide aperture Nb-Ti magnets for the LHC upgrade

    CERN Document Server

    Kirby, G.; Bajko, M.; Charrondiere, M.; Bourcey, N.; Datskov, V.I.; Fessia, P.; Feuvrier, J.; Galbraith, P.; Tabares, A. Garcia; Garcia-Perez, J.; Granieri, P.; Hagen, P.; Lorin, C.; Perez, J.C.; Russenschuck, S.; Sahner, T.; Segreti, M.; Todesco, E.; Willering, G.

    2013-01-01

    MQXC is a Nb-Ti quadrupole designed to meet the accelerator quality requirements needed for the phase-1 LHC upgrade, now superseded by the high luminosity upgrade foreseen in 2021. The 2-m-long model magnet was tested at room temperature and 1.9 K. The technology developed for this magnet is relevant for other magnets currently under development for the high-luminosity upgrade, namely D1 (at KEK) and the large aperture twin quadrupole Q4 (at CEA). In this paper we present MQXC test results, some of the specialized heat extraction features, spot heaters, temperature sensor mounting and voltage tap development for the special open cable insulation. We look at some problem solving with noisy signals, give an overview of electrical testing, look at how we calculate the coil resistance during at quench and show that the heaters are not working We describe the quench signals and its timing, the development of the quench heaters and give an explanation of an Excel quench calculation and its comparison including the ...

  14. The aperture synthesis imaging capability of the EISCAT_3D radars

    Science.gov (United States)

    La Hoz, Cesar; Belyey, Vasyl

    2010-05-01

    The built-in Aperture Synthesis Imaging Radar (ASIR) capabilities of the EISCAT_3D system, complemented with multiple beams and rapid beam scanning, is what will make the new radar truly three dimensional and justify its name. With the EISCAT_3D radars it will be possible to make investigations in 3-dimensions of several important phenomena such as Natural Enhanced Ion Acoustic Lines (NEIALs), Polar Mesospheric Summer and Winter Echoes (PMSE and PMWE), meteors, space debris, atmospheric waves and turbulence in the mesosphere, upper troposphere and possibly the lower stratosphere. Of particular interest and novelty is the measurement of the structure in electron density created by aurora that produce incoherent scatter. With scale sizes of the order of tens of meters, the imaging of these structures will be conditioned only by the signal to noise ratio which is expected to be high during some of these events, since the electron density can be significantly enhanced. The electron density inhomogeneities and plasma structures excited by artificial ionospheric heating could conceivable be resolved by the radars provided that their variation during the integration time is not great.

  15. Analysis of air return alternatives for CRS-type open volumetric receiver

    International Nuclear Information System (INIS)

    Marcos, Ma. Jesus; Romero, Manuel; Palero, Silvia

    2004-01-01

    Even though air-cooled receivers provide substantial benefits, such as low inertia and quick sun-following dispatchability, and the volumetric effect leads to designs with aperture areas similar to those used in molten salt or water/steam receivers, some concern persists regarding absorber durability, reduction of radiation losses and improvement of the air return ratio (ARR). The paper focuses on this last issue, since the ARR is a source of significant receiver losses in current designs. Today's scaled-up receivers claim values between 45 and 70% for ARR, which means, in terms of energy loss, between 5 and 15%. As a consequence of ARR and the radiation loss stemming from high working temperatures, open volumetric receivers efficiencies below 75% are reported at temperatures usable by the power block. Those values may be acceptable for a first demonstration plant, but are categorically not competitive for commercial schemes in which receiver efficiency should approach 90%. This paper discusses the impact of several geometrical properties of the absorber and air injection system used. The study was performed by CFD with the FLUENT code. The assessment considered such alternatives as modularity of the air return system (HITREC receiver concept), outer ring injection with air curtain effect or cavity aperture (with and without secondary concentrator). A detailed analysis reveals that some parts of the receiver aperture achieve an ARR above 90% at well-selected operating conditions, but average values hardly surpass 70%. Therefore, a careful design should keep in mind important variables such as the effects of receiver edge and lateral wind, as well as air injection angle

  16. Heat pumps

    CERN Document Server

    Macmichael, DBA

    1988-01-01

    A fully revised and extended account of the design, manufacture and use of heat pumps in both industrial and domestic applications. Topics covered include a detailed description of the various heat pump cycles, the components of a heat pump system - drive, compressor, heat exchangers etc., and the more practical considerations to be taken into account in their selection.

  17. Aperture Determination in the LHC Based on an Emittance Blowup Technique with Collimator Position Scan

    CERN Document Server

    Assmann, R W; del Carmen Alabau, M; Giovannozzi, M; Muller, GJ; Redaelli, S; Schmidt, F; Tomas, R; Wenninger, J; Wollmann, D

    2011-01-01

    A new method to determine the LHC aperture was proposed. The new component is a collimator scan technique that refers the globally measured aperture limit to the shadow of the primary collimator, expressed in sigmas of rms beam size. As a by-product the BLM response to beam loss is quantified. The method is described and LHC measurement results are presented.

  18. Electromagnetic and mechanical design of a 56 mm aperture mode dipole for the LHC

    International Nuclear Information System (INIS)

    Ahlbaeck, J.; Ikaeheimo, J.; Jaervi, J.

    1994-01-01

    The Large Hadron Collider (LHC) project is proposed as the future extension of the CERN accelerator complex. The LHC requires twin aperture superconducting dipoles of highest possible field to guide the proton beams in the existing LEP tunnel of 26.7 km circumference. This paper describes the electromagnetic and mechanical design of a 56 mm aperture model dipole for the LHC

  19. Coded aperture solution for improving the performance of traffic enforcement cameras

    Science.gov (United States)

    Masoudifar, Mina; Pourreza, Hamid Reza

    2016-10-01

    A coded aperture camera is proposed for automatic license plate recognition (ALPR) systems. It captures images using a noncircular aperture. The aperture pattern is designed for the rapid acquisition of high-resolution images while preserving high spatial frequencies of defocused regions. It is obtained by minimizing an objective function, which computes the expected value of perceptual deblurring error. The imaging conditions and camera sensor specifications are also considered in the proposed function. The designed aperture improves the depth of field (DoF) and subsequently ALPR performance. The captured images can be directly analyzed by the ALPR software up to a specific depth, which is 13 m in our case, though it is 11 m for the circular aperture. Moreover, since the deblurring results of images captured by our aperture yield fewer artifacts than those captured by the circular aperture, images can be first deblurred and then analyzed by the ALPR software. In this way, the DoF and recognition rate can be improved at the same time. Our case study shows that the proposed camera can improve the DoF up to 17 m while it is limited to 11 m in the conventional aperture.

  20. Large-aperture plasma-assisted deposition of inertial confinement fusion laser coatings.

    Science.gov (United States)

    Oliver, James B; Kupinski, Pete; Rigatti, Amy L; Schmid, Ansgar W; Lambropoulos, John C; Papernov, Semyon; Kozlov, Alexei; Spaulding, John; Sadowski, Daniel; Chrzan, Z Roman; Hand, Robert D; Gibson, Desmond R; Brinkley, Ian; Placido, Frank

    2011-03-20

    Plasma-assisted electron-beam evaporation leads to changes in the crystallinity, density, and stresses of thin films. A dual-source plasma system provides stress control of large-aperture, high-fluence coatings used in vacuum for substrates 1m in aperture.

  1. A novel approach to correct the coded aperture misalignment for fast neutron imaging

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, F. N.; Hu, H. S., E-mail: huasi-hu@mail.xjtu.edu.cn; Wang, D. M.; Jia, J. [School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Zhang, T. K. [Laser Fusion Research Center, CAEP, Mianyang, 621900 Sichuan (China); Jia, Q. G. [Institute of Applied Physics and Computational Mathematics, Beijing 100094 (China)

    2015-12-15

    Aperture alignment is crucial for the diagnosis of neutron imaging because it has significant impact on the coding imaging and the understanding of the neutron source. In our previous studies on the neutron imaging system with coded aperture for large field of view, “residual watermark,” certain extra information that overlies reconstructed image and has nothing to do with the source is discovered if the peak normalization is employed in genetic algorithms (GA) to reconstruct the source image. Some studies on basic properties of residual watermark indicate that the residual watermark can characterize coded aperture and can thus be used to determine the location of coded aperture relative to the system axis. In this paper, we have further analyzed the essential conditions for the existence of residual watermark and the requirements of the reconstruction algorithm for the emergence of residual watermark. A gamma coded imaging experiment has been performed to verify the existence of residual watermark. Based on the residual watermark, a correction method for the aperture misalignment has been studied. A multiple linear regression model of the position of coded aperture axis, the position of residual watermark center, and the gray barycenter of neutron source with twenty training samples has been set up. Using the regression model and verification samples, we have found the position of the coded aperture axis relative to the system axis with an accuracy of approximately 20 μm. Conclusively, a novel approach has been established to correct the coded aperture misalignment for fast neutron coded imaging.

  2. An examination of the number of required apertures for step-and-shoot IMRT

    International Nuclear Information System (INIS)

    Jiang, Z; Earl, M A; Zhang, G W; Yu, C X; Shepard, D M

    2005-01-01

    We have examined the degree to which step-and-shoot IMRT treatment plans can be simplified (using a small number of apertures) without sacrificing the dosimetric quality of the plans. A key element of this study was the use of direct aperture optimization (DAO), an inverse planning technique where all of the multi-leaf collimator constraints are incorporated into the optimization. For seven cases (1 phantom, 1 prostate, 3 head-and-neck and 2 lung), DAO was used to perform a series of optimizations where the number of apertures per beam direction varied from 1 to 15. In this work, we attempt to provide general guidelines for how many apertures per beam direction are sufficient for various clinical cases using DAO. Analysis of the optimized treatment plans reveals that for most cases, only modest improvements in the objective function and the corresponding DVHs are seen beyond 5 apertures per beam direction. However, for more complex cases, some dosimetric gain can be achieved by increasing the number of apertures per beam direction beyond 5. Even in these cases, however, only modest improvements are observed beyond 9 apertures per beam direction. In our clinical experience, 38 out of the first 40 patients treated using IMRT plans produced using DAO were treated with 9 or fewer apertures per beam direction. The results indicate that many step-and-shoot IMRT treatment plans delivered today are more complex than necessary and can be simplified without sacrificing plan quality

  3. Spaceborne L-band Radiometers: Push-broom or Synthetic Aperture?

    DEFF Research Database (Denmark)

    Skou, Niels

    2004-01-01

    L-band radiometers can measure ocean salinity and soil moisture from space. A synthetic aperture radiometer system, SMOS, is under development by ESA for launch in 2007. A real aperture push-broom system, Aquarius, has been approved by NASA for launch in 2008. Pros et cons of the two fundamentally...

  4. Thermal Model of a Dish Stirling Cavity-Receiver

    Directory of Open Access Journals (Sweden)

    Rubén Gil

    2015-01-01

    Full Text Available This paper presents a thermal model for a dish Stirling cavity based on the finite differences method. This model is a theoretical tool to optimize the cavity in terms of thermal efficiency. One of the main outcomes of this work is the evaluation of radiative exchange using the radiosity method; for that purpose, the view factors of all surfaces involved have been accurately calculated. Moreover, this model enables the variation of the cavity and receiver dimensions and the materials to determine the optimal cavity design. The tool has been used to study the cavity optimization regarding geometry parameters and material properties. Receiver absorptivity has been identified as the most influential property of the materials. The optimal aperture height depends on the minimum focal space.

  5. Thermal performance assessment of a large aperture concentrating collector in an industrial application in Chile

    Science.gov (United States)

    Murray, Clare; Pino, Alan; Cardemil, José Miguel; Escobar, Rodrigo

    2017-06-01

    The application of solar thermal energy to meet the heat demands of the food and beverage processing industry in Chile has huge potential. This paper presents an assessment of the first large aperture trough collector installed in Latin America. The collector preheats water for a boiler in a juice-concentrating factory, 100 km north of Santiago. An analysis of the system for a day in November indicates the system was not able to utilize the heat generated, resulting in rapid de- and refocusing of the collector and problems with sensor calibration. An analysis of a day in March indicates the tracking algorithm has not correctly aligned the collector with the sun's position. An investigation into the design document reveals that the meteorological data underestimates the actual irradiation values by 40%, resulting in an oversized system given the actual conditions. To increase the energy gain in the system it is proposed to increase the working pressure from the current value of 1.5bar to up to 5bar, which could increase the system utilization from 41% to 65% and reduce the dumped energy to near zero. The simulation results with actual weather data and a fixed inlet temperature indicate the annual solar fraction could increase from the design value of 8.1% to 31.8% with a working pressure of 5 bar. The plant presents multiple opportunities for improvement not only to the performance of the plant but also in the design and installation of solar thermal systems in Chile in the future.

  6. MHD natural convection in open inclined square cavity with a heated circular cylinder

    Science.gov (United States)

    Hosain, Sheikh Anwar; Alim, M. A.; Saha, Satrajit Kumar

    2017-06-01

    MHD natural convection in open cavity becomes very important in many scientific and engineering problems, because of it's application in the design of electronic devices, solar thermal receivers, uncovered flat plate solar collectors having rows of vertical strips, geothermal reservoirs, etc. Several experiments and numerical investigations have been presented for describing the phenomenon of natural convection in open cavity for two decades. MHD natural convection and fluid flow in a two-dimensional open inclined square cavity with a heated circular cylinder was considered. The opposite wall to the opening side of the cavity was first kept to constant heat flux q, at the same time the surrounding fluid interacting with the aperture was maintained to an ambient temperature T∞. The top and bottom wall was kept to low and high temperature respectively. The fluid with different Prandtl numbers. The properties of the fluid are assumed to be constant. As a result a buoyancy force is created inside the cavity due to temperature difference and natural convection is formed inside the cavity. The Computational Fluid Dynamics (CFD) code are used to discretize the solution domain and represent the numerical result to graphical form.. Triangular meshes are used to obtain the solution of the problem. The streamlines and isotherms are produced, heat transfer parameter Nu are obtained. The results are presented in graphical as well as tabular form. The results show that heat flux decreases for increasing inclination of the cavity and the heat flux is a increasing function of Prandtl number Pr and decreasing function of Hartmann number Ha. It is observed that fluid moves counterclockwise around the cylinder in the cavity. Various recirculations are formed around the cylinder. The almost all isotherm lines are concentrated at the right lower corner of the cavity. The object of this work is to develop a Mathematical model regarding the effect of MHD natural convection flow around

  7. CERN apprentice receives award

    CERN Multimedia

    2008-01-01

    Another CERN apprentice has received an award for the quality of his work. Stéphane Küng (centre), at the UIG ceremony last November, presided over by Geneva State Councillor Pierre-François Unger, Head of the Department of Economics and Health. Electronics technician Stéphane Küng was honoured in November by the Social Foundation of the Union Industrielle Genevoise (UIG) as one of Geneva’s eight best apprentices in the field of mechatronics. The 20-year-old Genevan obtained his Federal apprentice’s certificate (Certificat fédéral de capacité - CFC) in June 2007, achieving excellent marks in his written tests at the Centre d’Enseignement Professionnel Technique et Artisanal (CEPTA). Like more than 200 youngsters before him, Stéphane Küng spent part of his four-year sandwich course working at CERN, where he followed many practical training courses and gained valuable hands-on experience in various technical groups and labs. "It’ always very gr...

  8. Imaging examinations and diagnosis of children's ectopic uretal aperture (with a review of 68 cases)

    International Nuclear Information System (INIS)

    Zhai Jiankun; Liu Liwei

    2004-01-01

    Objective: To discuss the imaging findings and examination methods of ectopic uretal aperture in children. Methods: The clinical data, imaging methods and findings of 68 cases with ectopic uretal aperture were analyzed retrospectively. Results: In 44 cases ectopic uretal aperture were associated with duplex kidneys (DK), and in 24 cases ectopic uretal aperture were associated with dysplasia of kidneys. IVU could display direct or indirect signs of DK in all cases. While it could hardly display dysplastic kidney and ectopic uretal aperture. CT scans were performed in 8 patients, in which DK, dysplastic kidney and the draining ureters could be evaluated. Conclusion: Definitive diagnosis is made in most cases with the integrating the clinical information and IVU findings. However, CT scan is recommended in a few cases

  9. A functional probe with bowtie aperture and bull's eye structure for nanolithograph

    International Nuclear Information System (INIS)

    Wang Shuo; Wang Qiao; Guo Ying-Yan; Pan Shi; Li Xu-Feng

    2012-01-01

    The bowtie aperture surrounded by concentric gratings (the bull's eye structure) integrated on the near-field scanning optical microscopy (NSOM) probe (aluminum coated fiber tip) for nanolithography has been investigated using the finite-difference time domain (FDTD) method. By modifying the parameters of the bowtie aperture and the concentric gratings, a maximal field enhancement factor of 391.69 has been achieved, which is 18 times larger than that obtained from the single bowtie aperture. Additionally, the light spot depends on the gap size of the bowtie aperture and can be confined to sub-wavelength. The superiority of the combination of the bowtie aperture and the bull's eye structure is confirmed, and the mechanism for the electric field enhancement in this derived structure is analyzed

  10. A functional probe with bowtie aperture and bull's eye structure for nanolithograph

    Science.gov (United States)

    Wang, Shuo; Li, Xu-Feng; Wang, Qiao; Guo, Ying-Yan; Pan, Shi

    2012-10-01

    The bowtie aperture surrounded by concentric gratings (the bull's eye structure) integrated on the near-field scanning optical microscopy (NSOM) probe (aluminum coated fiber tip) for nanolithography has been investigated using the finite-difference time domain (FDTD) method. By modifying the parameters of the bowtie aperture and the concentric gratings, a maximal field enhancement factor of 391.69 has been achieved, which is 18 times larger than that obtained from the single bowtie aperture. Additionally, the light spot depends on the gap size of the bowtie aperture and can be confined to sub-wavelength. The superiority of the combination of the bowtie aperture and the bull's eye structure is confirmed, and the mechanism for the electric field enhancement in this derived structure is analyzed.

  11. First Beam Based Aperture Measurements in the Arcs of the CERN Large Hadron Collider

    CERN Document Server

    Redaelli, S; Calaga, R; Dehning, B; Giovannozzi, M; Roncarolo, F; Tomás, R

    2010-01-01

    The LHC injection tests performed in August and early September 2008 in preparation for the circulating beam operation provided the first opportunity to measure with beam the mechanical aperture in two LHC sectors (2-3 and 7- 8). The aperture was probed by exciting free oscillations and local orbit bumps of the injected beam trajectories. Intensities of a few 109 protons were used to remain safely below the quench limit of superconductingmagnets in case of beam losses. The methods used to measure the mechanical aperture, the available on-line tools, and beam measurements for both sectors are presented. Detailed comparisons with the expected results from the as-built aperture models are also presented. It is shown that the measurements results are in good agreement with the LHC design aperture.

  12. Statistical measurement of power spectrum density of large aperture optical component

    International Nuclear Information System (INIS)

    Xu Jiancheng; Xu Qiao; Chai Liqun

    2010-01-01

    According to the requirement of ICF, a method based on statistical theory has been proposed to measure the power spectrum density (PSD) of large aperture optical components. The method breaks the large-aperture wavefront into small regions, and obtains the PSD of the large-aperture wavefront by weighted averaging of the PSDs of the regions, where the weight factor is each region's area. Simulation and experiment demonstrate the effectiveness of the proposed method. They also show that, the obtained PSDs of the large-aperture wavefront by statistical method and sub-aperture stitching method fit well, when the number of small regions is no less than 8 x 8. The statistical method is not sensitive to translation stage's errors and environment instabilities, thus it is appropriate for PSD measurement during the process of optical fabrication. (authors)

  13. Acoustic Source Localization via Subspace Based Method Using Small Aperture MEMS Arrays

    Directory of Open Access Journals (Sweden)

    Xin Zhang

    2014-01-01

    Full Text Available Small aperture microphone arrays provide many advantages for portable devices and hearing aid equipment. In this paper, a subspace based localization method is proposed for acoustic source using small aperture arrays. The effects of array aperture on localization are analyzed by using array response (array manifold. Besides array aperture, the frequency of acoustic source and the variance of signal power are simulated to demonstrate how to optimize localization performance, which is carried out by introducing frequency error with the proposed method. The proposed method for 5 mm array aperture is validated by simulations and experiments with MEMS microphone arrays. Different types of acoustic sources can be localized with the highest precision of 6 degrees even in the presence of wind noise and other noises. Furthermore, the proposed method reduces the computational complexity compared with other methods.

  14. Design and simulation of a planar micro-optic free-space receiver

    Science.gov (United States)

    Nadler, Brett R.; Hallas, Justin M.; Karp, Jason H.; Ford, Joseph E.

    2017-11-01

    We propose a compact directional optical receiver for free-space communications, where a microlens array and micro-optic structures selectively couple light from a narrow incidence angle into a thin slab waveguide and then to an edge-mounted detector. A small lateral translation of the lenslet array controls the coupled input angle, enabling the receiver to select the transmitter source direction. We present the optical design and simulation of a 10mm x 10mm aperture receiver using a 30μm thick silicon waveguide able to couple up to 2.5Gbps modulated input to a 10mm x 30μm wide detector.

  15. Multi-parameter optimization design of parabolic trough solar receiver

    International Nuclear Information System (INIS)

    Guo, Jiangfeng; Huai, Xiulan

    2016-01-01

    Highlights: • The optimal condition can be obtained by multi-parameter optimization. • Exergy and thermal efficiencies are employed as objective function. • Exergy efficiency increases at the expense of heat losses. • The heat obtained by working fluid increases as thermal efficiency grows. - Abstract: The design parameters of parabolic trough solar receiver are interrelated and interact with one another, so the optimal performance of solar receiver cannot be obtained by the convectional single-parameter optimization. To overcome the shortcoming of single-parameter optimization, a multi-parameter optimization of parabolic trough solar receiver is employed based on genetic algorithm in the present work. When the thermal efficiency is taken as the objective function, the heat obtained by working fluid increases while the average temperature of working fluid and wall temperatures of solar receiver decrease. The average temperature of working fluid and the wall temperatures of solar receiver increase while the heat obtained by working fluid decreases generally by taking the exergy efficiency as an objective function. Assuming that the solar radiation intensity remains constant, the exergy obtained by working fluid increases by taking exergy efficiency as the objective function, which comes at the expense of heat losses of solar receiver.

  16. Study of the temperature rise induced by a focusing transducer with a wide aperture angle on biological tissue containing ribs

    International Nuclear Information System (INIS)

    Wang Xin; Lin Jiexing; Liu Xiaozhou; Liu Jiehui; Gong Xiufen

    2016-01-01

    We used the spheroidal beam equation to calculate the sound field created by focusing a transducer with a wide aperture angle to obtain the heat deposition, and then we used the Pennes bioheat equation to calculate the temperature field in biological tissue with ribs and to ascertain the effects of rib parameters on the temperature field. The results show that the location and the gap width between the ribs have a great influence on the axial and radial temperature rise of multilayer biological tissue. With a decreasing gap width, the location of the maximum temperature rise moves forward; as the ribs are closer to the transducer surface, the sound energy that passes through the gap between the ribs at the focus decreases, the maximum temperature rise decreases, and the location of the maximum temperature rise moves forward with the ribs. (paper)

  17. Rail-based Broadband Synthetic Aperture Ocean Measurement System

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Enables collection of broadband acoustic scattering databases where acoustic sources and receivers can be translated on a precise linear path under program...

  18. Aperture-Tolerant, Chemical-Based Methods to Reduce Channeling

    Energy Technology Data Exchange (ETDEWEB)

    Randall S. Seright

    2007-09-30

    This final technical progress report describes work performed from October 1, 2004, through May 16, 2007, for the project, 'Aperture-Tolerant, Chemical-Based Methods to Reduce Channeling'. We explored the potential of pore-filling gels for reducing excess water production from both fractured and unfractured production wells. Several gel formulations were identified that met the requirements--i.e., providing water residual resistance factors greater than 2,000 and ultimate oil residual resistance factors (F{sub rro}) of 2 or less. Significant oil throughput was required to achieve low F{sub rro} values, suggesting that gelant penetration into porous rock must be small (a few feet or less) for existing pore-filling gels to provide effective disproportionate permeability reduction. Compared with adsorbed polymers and weak gels, strong pore-filling gels can provide greater reliability and behavior that is insensitive to the initial rock permeability. Guidance is provided on where relative-permeability-modification/disproportionate-permeability-reduction treatments can be successfully applied for use in either oil or gas production wells. When properly designed and executed, these treatments can be successfully applied to a limited range of oilfield excessive-water-production problems. We examined whether gel rheology can explain behavior during extrusion through fractures. The rheology behavior of the gels tested showed a strong parallel to the results obtained from previous gel extrusion experiments. However, for a given aperture (fracture width or plate-plate separation), the pressure gradients measured during the gel extrusion experiments were much higher than anticipated from rheology measurements. Extensive experiments established that wall slip and first normal stress difference were not responsible for the pressure gradient discrepancy. To explain the discrepancy, we noted that the aperture for gel flow (for mobile gel wormholing through concentrated

  19. GNSS Software Receiver for UAVs

    DEFF Research Database (Denmark)

    Olesen, Daniel Madelung; Jakobsen, Jakob; von Benzon, Hans-Henrik

    2016-01-01

    This paper describes the current activities of GPS/GNSS Software receiver development at DTU Space. GNSS Software receivers have received a great deal of attention in the last two decades and numerous implementations have already been presented. DTU Space has just recently started development of ...... of our own GNSS software-receiver targeted for mini UAV applications, and we will in in this paper present our current progress and briefly discuss the benefits of Software Receivers in relation to our research interests....

  20. 2D Doppler backscattering using synthetic aperture microwave imaging of MAST edge plasmas

    Science.gov (United States)

    Thomas, D. A.; Brunner, K. J.; Freethy, S. J.; Huang, B. K.; Shevchenko, V. F.; Vann, R. G. L.

    2016-02-01

    Doppler backscattering (DBS) is already established as a powerful diagnostic; its extension to 2D enables imaging of turbulence characteristics from an extended region of the cut-off surface. The Synthetic Aperture Microwave Imaging (SAMI) diagnostic has conducted proof-of-principle 2D DBS experiments of MAST edge plasma. SAMI actively probes the plasma edge using a wide (±40° vertical and horizontal) and tuneable (10-34.5 GHz) beam. The Doppler backscattered signal is digitised in vector form using an array of eight Vivaldi PCB antennas. This allows the receiving array to be focused in any direction within the field of view simultaneously to an angular range of 6-24° FWHM at 10-34.5 GHz. This capability is unique to SAMI and is a novel way of conducting DBS experiments. In this paper the feasibility of conducting 2D DBS experiments is explored. Initial observations of phenomena previously measured by conventional DBS experiments are presented; such as momentum injection from neutral beams and an abrupt change in power and turbulence velocity coinciding with the onset of H-mode. In addition, being able to carry out 2D DBS imaging allows a measurement of magnetic pitch angle to be made; preliminary results are presented. Capabilities gained through steering a beam using a phased array and the limitations of this technique are discussed.

  1. The shallow structure of Solfatara Volcano, Italy, revealed by dense, wide-aperture seismic profiling.

    Science.gov (United States)

    Bruno, Pier Paolo G; Maraio, Stefano; Festa, Gaetano

    2017-12-12

    Two active-source, high-resolution seismic profiles were acquired in the Solfatara tuff cone in May and November 2014, with dense, wide-aperture arrays. Common Receiver Surface processing was crucial in improving signal-to-noise ratio and reflector continuity. These surveys provide, for the first time, high-resolution seismic images of the Solfatara crater, depicting a ~400 m deep asymmetrical crater filled by volcanoclastic sediments and rocks and carved within an overall non-reflective pre-eruptive basement showing features consistent with the emplacement of shallow intrusive bodies. Seismic reflection data were interpreted using the trace complex attributes and clearly display several steep and segmented collapse faults, generally having normal kinematics and dipping toward the crater centre. Fault/fracture planes are imaged as sudden amplitude drops that generate narrow low-similarity and high-dip attributes. Uprising fluids degassed by a magmatic source are the most probable cause of the small-scale amplitude reduction. Seismic data also support the interpretation of the shallow structure of the Solfatara crater as a maar. Our results provides a solid framework to constrain the near-surface geological interpretation of such a complex area, which improves our understanding of the temporal changes of the structure in relation with other geophysical and geochemical measurements.

  2. Synthetic Aperture Computation as the Head is Turned in Binaural Direction Finding

    Directory of Open Access Journals (Sweden)

    Duncan Tamsett

    2017-03-01

    Full Text Available Binaural systems measure instantaneous time/level differences between acoustic signals received at the ears to determine angles λ between the auditory axis and directions to acoustic sources. An angle λ locates a source on a small circle of colatitude (a lamda circle on a sphere symmetric about the auditory axis. As the head is turned while listening to a sound, acoustic energy over successive instantaneous lamda circles is integrated in a virtual/subconscious field of audition. The directions in azimuth and elevation to maxima in integrated acoustic energy, or to points of intersection of lamda circles, are the directions to acoustic sources. This process in a robotic system, or in nature in a neural implementation equivalent to it, delivers its solutions to the aurally informed worldview. The process is analogous to migration applied to seismic profiler data, and to that in synthetic aperture radar/sonar systems. A slanting auditory axis, e.g., possessed by species of owl, leads to the auditory axis sweeping the surface of a cone as the head is turned about a single axis. Thus, the plane in which the auditory axis turns continuously changes, enabling robustly unambiguous directions to acoustic sources to be determined.

  3. Functional avoidance of lung in plan optimization with an aperture-based inverse planning system

    International Nuclear Information System (INIS)

    St-Hilaire, Jason; Lavoie, Caroline; Dagnault, Anne; Beaulieu, Frederic; Morin, Francis; Beaulieu, Luc; Tremblay, Daniel

    2011-01-01

    Purpose: To implement SPECT-based optimization in an anatomy-based aperture inverse planning system for the functional avoidance of lung in thoracic irradiation. Material and methods: SPECT information has been introduced as a voxel-by-voxel modulation of lung importance factors proportionally to the local perfusion count. Fifteen cases of lung cancer have been retrospectively analyzed by generating angle-optimized non-coplanar plans, comparing a purely anatomical approach and our functional approach. Planning target volume coverage and lung sparing have been compared. Statistical significance was assessed by a Wilcoxon matched pairs test. Results: For similar target coverage, perfusion-weighted volume receiving 10 Gy was reduced by a median of 2.2% (p = 0.022) and mean perfusion-weighted lung dose, by a median of 0.9 Gy (p = 0.001). A separate analysis of patients with localized or non-uniform hypoperfusion could not show which would benefit more from SPECT-based treatment planning. Redirection of dose sometimes created overdosage regions in the target volume. Plans consisted of a similar number of segments and monitor units. Conclusions: Angle optimization and SPECT-based modulation of importance factors allowed for functional avoidance of the lung while preserving target coverage. The technique could be also applied to implement PET-based modulation inside the target volume, leading to a safer dose escalation.

  4. Synthetic Aperture Focusing Technique in Ultrasonic Inspection of Coarse Grained Materials

    Energy Technology Data Exchange (ETDEWEB)

    Stepinski, Tadeusz (Uppsala Univ., Signals and Systems, Box 528, SE-751 20 Uppsala (Sweden))

    2007-12-15

    Experience from the ultrasonic inspection of nuclear power plants has shown that large focused transducers are relatively effective in suppressing grain (structure) noise. Operation of a large focused transducer can be thought of as an integration (coherent summation) of individual beams reflected from the target and received by individual points at the transducer surface. Synthetic aperture focusing technique (SAFT), in its simplest version mimics an acoustic lens used for focusing beams at a desired point in the region of interest. Thus, SAFT should be able to suppress the grain noise in the similar way as the focused transducer does. This report presents the results of investigation of SAFT algorithms applied for post-processing of ultrasonic data acquired in inspection of coarse grained metals. The performance of SAFT in terms of its spatial (cross-range) resolution and grain noise suppression is studied. The evaluation is made based on the experimental data obtained from the ultrasonic inspection of test specimens with artificial defects (side drilled holes). SAFT algorithms for both contact and immersion mode are introduced and experimentally verified

  5. Heat pumps

    CERN Document Server

    Brodowicz, Kazimierz; Wyszynski, M L; Wyszynski

    2013-01-01

    Heat pumps and related technology are in widespread use in industrial processes and installations. This book presents a unified, comprehensive and systematic treatment of the design and operation of both compression and sorption heat pumps. Heat pump thermodynamics, the choice of working fluid and the characteristics of low temperature heat sources and their application to heat pumps are covered in detail.Economic aspects are discussed and the extensive use of the exergy concept in evaluating performance of heat pumps is a unique feature of the book. The thermodynamic and chemical properties o

  6. A fast 4D IMRT/VMAT planning method based on segment aperture morphing.

    Science.gov (United States)

    Klawikowski, Slade; Tai, An; Ates, Ozgur; Ahunbay, Ergun; Li, X Allen

    2018-04-01

    Four-dimensional volumetric modulated arc therapy (4D VMAT) and four-dimensional intensity-modulated radiotherapy (4D IMRT) are developing radiation therapy treatment strategies designed to maximize dose conformality, minimize normal tissue dose, and deliver the treatment as efficiently as possible. The patient's entire breathing cycle is captured through 4D imaging modalities and then separated into individual breathing phases for planning purposes. Optimizing multiphase VMAT and IMRT plans is computationally demanding and currently impractical for clinical application. The purpose of this study is to assess a new planning process decreasing the upfront computational time required to optimize multiphased treatment plans while maintaining good plan quality. Optimized VMAT and IMRT plans were created on the end-of-exhale (EOE) breathing phase of 10-phase 4D CT scans with planning tumor volume (PTV)-based targets. These single-phase optimized plans are analogous to single-phase gated treatment plans. The simulated tracked plans were created by deformably registering EOE contours to the remaining breathing phases, recalculating the optimized EOE plan onto the other individual phases and realigning the MLC's relative positions to the PTV border in each of the individual breathing phases using a segment aperture morphing (SAM) algorithm. Doses for each of the 10 phases were calculated with the treatment planning system and deformably transferred back onto the EOE phase and averaged with equal weighting simulating the actual delivered dose a patient would potentially receive in a tracked treatment plan. Plan DVH quality for the 10-phase 4D SAM plans were comparable with the individual EOE optimized treatment plans for the PTV structures as well as the organ at risk structures. SAM-based algorithms out performed simpler isocenter-shifted only approaches. SAM-based 4D planning greatly reduced plan computation time vs individually optimizing all 10 phases. In addition

  7. Coded aperture imaging of alpha source spatial distribution

    International Nuclear Information System (INIS)

    Talebitaher, Alireza; Shutler, Paul M.E.; Springham, Stuart V.; Rawat, Rajdeep S.; Lee, Paul

    2012-01-01

    The Coded Aperture Imaging (CAI) technique has been applied with CR-39 nuclear track detectors to image alpha particle source spatial distributions. The experimental setup comprised: a 226 Ra source of alpha particles, a laser-machined CAI mask, and CR-39 detectors, arranged inside a vacuum enclosure. Three different alpha particle source shapes were synthesized by using a linear translator to move the 226 Ra source within the vacuum enclosure. The coded mask pattern used is based on a Singer Cyclic Difference Set, with 400 pixels and 57 open square holes (representing ρ = 1/7 = 14.3% open fraction). After etching of the CR-39 detectors, the area, circularity, mean optical density and positions of all candidate tracks were measured by an automated scanning system. Appropriate criteria were used to select alpha particle tracks, and a decoding algorithm applied to the (x, y) data produced the de-coded image of the source. Signal to Noise Ratio (SNR) values obtained for alpha particle CAI images were found to be substantially better than those for corresponding pinhole images, although the CAI-SNR values were below the predictions of theoretical formulae. Monte Carlo simulations of CAI and pinhole imaging were performed in order to validate the theoretical SNR formulae and also our CAI decoding algorithm. There was found to be good agreement between the theoretical formulae and SNR values obtained from simulations. Possible reasons for the lower SNR obtained for the experimental CAI study are discussed.

  8. Granular flow through an aperture: Influence of the packing fraction

    Science.gov (United States)

    Aguirre, M. A.; De Schant, R.; Géminard, J.-C.

    2014-07-01

    For the last 50 years, the flow of a granular material through an aperture has been intensely studied in gravity-driven vertical systems (e.g., silos and hoppers). Nevertheless, in many industrial applications, grains are horizontally transported at constant velocity, lying on conveyor belts or floating on the surface of flowing liquids. Unlike fluid flows, that are controlled by the pressure, granular flow is not sensitive to the local pressure but rather to the local velocity of the grains at the outlet. We can also expect the flow rate to depend on the local density of the grains. Indeed, vertical systems are packed in dense configurations by gravity, but, in contrast, in horizontal systems the density can take a large range of values, potentially very small, which may significantly alter the flow rate. In the present article, we study, for different initial packing fractions, the discharge through an orifice of monodisperse grains driven at constant velocity by a horizontal conveyor belt. We report how, during the discharge, the packing fraction is modified by the presence of the outlet, and we analyze how changes in the packing fraction induce variations in the flow rate. We observe that variations of packing fraction do not affect the velocity of the grains at the outlet, and, therefore, we establish that flow-rate variations are directly related to changes in the packing fraction.

  9. New formulation for interferometric synthetic aperture radar for terrain mapping

    Science.gov (United States)

    Jakowatz, Charles V., Jr.; Wahl, Daniel E.; Eichel, Paul H.; Thompson, Paul A.

    1994-06-01

    The subject of interferometric synthetic aperture radar (IFSAR) for high-accuracy terrain elevation mapping continues to gain importance in the arena of radar signal processing. Applications to problems in precision terrain-aided guidance and automatic target recognition, as well as a variety of civil applications, are being studied by a number of researchers. Not unlike many other areas of SAR processing, the subject of IFSAR can, at first glance, appear to be somewhat mysterious. In this paper we show how the mathematics of IFSAR for terrain elevation mapping using a pair of spotlight mode SAR collections can be derived in a very straightforward manner. Here, we employ an approach that relies entirely on Fourier transforms, and utilizes no reference to range equations or Doppler concepts. The result is a simplified explanation of the fundamentals of interferometry, including an easily-seen link between image domain phase difference and terrain elevation height. The derivation builds upon previous work by the authors in which a framework for spotlight mode SAR image formation based on an analogy to 3D computerized axial tomography (CAT) was developed. After outlining the major steps in the mathematics, we show how a computer simulator which utilizes 3D Fourier transforms can be constructed that demonstrates all of the major aspects of IFSAR from spotlight mode collections.

  10. Synthetic aperture radar imaging simulator for pulse envelope evaluation

    Science.gov (United States)

    Balster, Eric J.; Scarpino, Frank A.; Kordik, Andrew M.; Hill, Kerry L.

    2017-10-01

    A simulator for spotlight synthetic aperture radar (SAR) image formation is presented. The simulator produces radar returns from a virtual radar positioned at an arbitrary distance and altitude. The radar returns are produced from a source image, where the return is a weighted summation of linear frequency-modulated (LFM) pulse signals delayed by the distance of each pixel in the image to the radar. The imagery is resampled into polar format to ensure consistent range profiles to the position of the radar. The SAR simulator provides a capability enabling the objective analysis of formed SAR imagery, comparing it to an original source image. This capability allows for analysis of various SAR signal processing techniques previously determined by impulse response function (IPF) analysis. The results suggest that IPF analysis provides results that may not be directly related to formed SAR image quality. Instead, the SAR simulator uses image quality metrics, such as peak signal-to-noise ratio (PSNR) and structured similarity index (SSIM), for formed SAR image quality analysis. To showcase the capability of the SAR simulator, it is used to investigate the performance of various envelopes applied to LFM pulses. A power-raised cosine window with a power p=0.35 and roll-off factor of β=0.15 is shown to maximize the quality of the formed SAR images by improving PSNR by 0.84 dB and SSIM by 0.06 from images formed utilizing a rectangular pulse, on average.

  11. Logarithmic Laplacian Prior Based Bayesian Inverse Synthetic Aperture Radar Imaging

    Directory of Open Access Journals (Sweden)

    Shuanghui Zhang

    2016-04-01

    Full Text Available This paper presents a novel Inverse Synthetic Aperture Radar Imaging (ISAR algorithm based on a new sparse prior, known as the logarithmic Laplacian prior. The newly proposed logarithmic Laplacian prior has a narrower main lobe with higher tail values than the Laplacian prior, which helps to achieve performance improvement on sparse representation. The logarithmic Laplacian prior is used for ISAR imaging within the Bayesian framework to achieve better focused radar image. In the proposed method of ISAR imaging, the phase errors are jointly estimated based on the minimum entropy criterion to accomplish autofocusing. The maximum a posterior (MAP estimation and the maximum likelihood estimation (MLE are utilized to estimate the model parameters to avoid manually tuning process. Additionally, the fast Fourier Transform (FFT and Hadamard product are used to minimize the required computational efficiency. Experimental results based on both simulated and measured data validate that the proposed algorithm outperforms the traditional sparse ISAR imaging algorithms in terms of resolution improvement and noise suppression.

  12. Mask design and fabrication in coded aperture imaging

    International Nuclear Information System (INIS)

    Shutler, Paul M.E.; Springham, Stuart V.; Talebitaher, Alireza

    2013-01-01

    We introduce the new concept of a row-spaced mask, where a number of blank rows are interposed between every pair of adjacent rows of holes of a conventional cyclic difference set based coded mask. At the cost of a small loss in signal-to-noise ratio, this can substantially reduce the number of holes required to image extended sources, at the same time increasing mask strength uniformly across the aperture, as well as making the mask automatically self-supporting. We also show that the Finger and Prince construction can be used to wrap any cyclic difference set onto a two-dimensional mask, regardless of the number of its pixels. We use this construction to validate by means of numerical simulations not only the performance of row-spaced masks, but also the pixel padding technique introduced by in ’t Zand. Finally, we provide a computer program CDSGEN.EXE which, on a fast modern computer and for any Singer set of practical size and open fraction, generates the corresponding pattern of holes in seconds

  13. Amplified spontaneous emission measurements on the Aurora large aperture module

    International Nuclear Information System (INIS)

    Oertel, J.A.; Czuchlewski, S.J.; Leland, W.T.; Turner, T.P.

    1990-01-01

    The large aperture module (LAM) of the Aurora KrF laser can be used to address a number of issues that relate to the scaling of KrF amplifiers to larger ICF systems. Perhaps foremost among these are the possible effects of amplified spontaneous emission (ASE) on laser performance. To assess this problem a 3-D computer code has been developed to model these ASE effects. The code uses an iterative procedure to arrive at a self-consistent steady state solution to the 3-D distribution of coherent and incoherent fluxes within the amplifier. Two-pass energy extraction, wall reflectivity, and nonuniform excitation are included in the model. The authors previously reported the effects of ASE on the small signal gains measured in the 1- x 1- x 2-m 3 LAM. The code also makes quantitative predictions of the ASE that should be generated in the amplifier. This paper indicates the radiance expected for a medium of uniform gain in terms of the (g - ν)L product and the parameter g/a. The quantity (g - ν)L is the product of the net gain and the path length along the direction of observation. The present experiments compare values of ASE measured at various locations around the LAM with the code predictions. The impact of ASE on amplifier output, is also discussed

  14. Full aperture backscatter diagnostic for the NIF laser facility (abstract)

    International Nuclear Information System (INIS)

    Sewall, Noel; Lewis, Izzy; Kirkwood, Robert; Moody, John; Celeste, John

    2001-01-01

    The current schemes for achieving ignition on the National Ignition Facility require efficient coupling of energy from 192 laser beams to the deuterium--tritium fuel capsule. Each laser beam must propagate through a long scalelength plasma region before being converted to x rays (indirect drive) or being absorbed on the capsule (direct drive). Laser-plasma instabilities such as stimulated Brillouin and stimulated Raman scattering (SBS and SRS) will scatter a fraction of the incident laser energy out of the target leading to an overall reduction in the coupling efficiency. It is important to measure the character of this scattered light in order to understand it and to develop methods for reducing it to acceptable levels. We are designing a system called the full aperature backscatter diagnostic with the capability to measure the time-dependent amplitude and spectral content of the light which is backscattered through the incident beam focusing optic. The backscattered light will be collected over about 85% of the full beam aperture and separated into the SBS wavelength band (348--354 nm) and the SRS wavelength band (400--700 nm). Spectrometers coupled to streak cameras will provide time-resolved spectra for both scattered light components. The scattered light amplitude will be measured with fast and slow diodes. The entire system will be routinely calibrated. Analysis of the data will provide important information for reducing scattered power, achieving power balance, and finally achieving ignition

  15. Quantitative emission tomography by coded aperture imaging in nuclear medicine

    International Nuclear Information System (INIS)

    Guilhem, J.B.

    1982-06-01

    The coded aperture imaging is applied to nuclear medicine, since ten years. However no satisfactory clinical results have been obtained thus for. The reason is that digital reconstruction methods which have been implemented, in particular the method which use deconvolution filtering are not appropriate for quantification. Indeed these methods which all based on the assumption of shift invariance of the coding procedure, which is contradictory to the geometrical recording conditions giving the best depth resolution, do not take into account gamma rays attenuation by tissues and in most cases give tomograms with artefacts from blurred structures. A method is proposed which has not these limitations and considers the reconstruction problem as the ill-conditioned problem of solving a Fredholm integral equation. The main advantage of this method lies in fact that the transmission kernel of the integral equation is obtained experimentally, and the approximate solution of this equation, close enough to the original 3-D radioactive object, can be obtained in spite of the ill-conditioned nature of the problem, by use of singular values decomposition (S. V. D.) of the kernel [fr

  16. Event localization in bulk scintillator crystals using coded apertures

    Energy Technology Data Exchange (ETDEWEB)

    Ziock, K.P. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Department of Physics and Astronomy, University of Tennessee, Knoxville, TN (United States); Braverman, J.B. [Department of Physics and Astronomy, University of Tennessee, Knoxville, TN (United States); Fabris, L.; Harrison, M.J.; Hornback, D.; Newby, J. [Oak Ridge National Laboratory, Oak Ridge, TN (United States)

    2015-06-01

    The localization of radiation interactions in bulk scintillators is generally limited by the size of the light distribution at the readout surface of the crystal/light-pipe system. By finding the centroid of the light spot, which is typically of order centimeters across, practical single-event localization is limited to ~2 mm/cm of crystal thickness. Similar resolution can also be achieved for the depth of interaction by measuring the size of the light spot. Through the use of near-field coded-aperture techniques applied to the scintillation light, light transport simulations show that for 3-cm-thick crystals, more than a five-fold improvement (millimeter spatial resolution) can be achieved both laterally and in event depth. At the core of the technique is the requirement to resolve the shadow from an optical mask placed in the scintillation light path between the crystal and the readout. In this paper, experimental results are presented that demonstrate the overall concept using a 1D shadow mask, a thin-scintillator crystal and a light pipe of varying thickness to emulate a 2.2-cm-thick crystal. Spatial resolutions of ~1 mm in both depth and transverse to the readout face are obtained over most of the crystal depth.

  17. Event localization in bulk scintillator crystals using coded apertures

    International Nuclear Information System (INIS)

    Ziock, K.P.; Braverman, J.B.; Fabris, L.; Harrison, M.J.; Hornback, D.; Newby, J.

    2015-01-01

    The localization of radiation interactions in bulk scintillators is generally limited by the size of the light distribution at the readout surface of the crystal/light-pipe system. By finding the centroid of the light spot, which is typically of order centimeters across, practical single-event localization is limited to ~2 mm/cm of crystal thickness. Similar resolution can also be achieved for the depth of interaction by measuring the size of the light spot. Through the use of near-field coded-aperture techniques applied to the scintillation light, light transport simulations show that for 3-cm-thick crystals, more than a five-fold improvement (millimeter spatial resolution) can be achieved both laterally and in event depth. At the core of the technique is the requirement to resolve the shadow from an optical mask placed in the scintillation light path between the crystal and the readout. In this paper, experimental results are presented that demonstrate the overall concept using a 1D shadow mask, a thin-scintillator crystal and a light pipe of varying thickness to emulate a 2.2-cm-thick crystal. Spatial resolutions of ~1 mm in both depth and transverse to the readout face are obtained over most of the crystal depth

  18. Feasibility of Using Synthetic Aperture Radar to Aid UAV Navigation.

    Science.gov (United States)

    Nitti, Davide O; Bovenga, Fabio; Chiaradia, Maria T; Greco, Mario; Pinelli, Gianpaolo

    2015-07-28

    This study explores the potential of Synthetic Aperture Radar (SAR) to aid Unmanned Aerial Vehicle (UAV) navigation when Inertial Navigation System (INS) measurements are not accurate enough to eliminate drifts from a planned trajectory. This problem can affect medium-altitude long-endurance (MALE) UAV class, which permits heavy and wide payloads (as required by SAR) and flights for thousands of kilometres accumulating large drifts. The basic idea is to infer position and attitude of an aerial platform by inspecting both amplitude and phase of SAR images acquired onboard. For the amplitude-based approach, the system navigation corrections are obtained by matching the actual coordinates of ground landmarks with those automatically extracted from the SAR image. When the use of SAR amplitude is unfeasible, the phase content can be exploited through SAR interferometry by using a reference Digital Terrain Model (DTM). A feasibility analysis was carried out to derive system requirements by exploring both radiometric and geometric parameters of the acquisition setting. We showed that MALE UAV, specific commercial navigation sensors and SAR systems, typical landmark position accuracy and classes, and available DTMs lead to estimated UAV coordinates with errors bounded within ±12 m, thus making feasible the proposed SAR-based backup system.

  19. Three-dimensional subsurface imaging synthetic aperture radar

    International Nuclear Information System (INIS)

    Moussally, G.J.

    1995-01-01

    The objective of this applied research and development project is to develop a system known as '3-D SISAR'. This system consists of a ground penetrating radar with software algorithms designed for the detection, location, and identification of buried objects in the underground hazardous waste environments found at DOE storage sites. Three-dimensional maps of the object locations will be produced which can assist the development of remediation strategies and the characterization of the digface during remediation operations. It is expected that the 3-D SISAR will also prove useful for monitoring hydrocarbon based contaminant migration after remediation. The underground imaging technique being developed under this contract utilizes a spotlight mode Synthetic Aperture Radar (SAR) approach which, due to its inherent stand-off capability, will permit the rapid survey of a site and achieve a high degree of productivity over large areas. When deployed from an airborne platform, the stand-off techniques is also seen as a way to overcome practical survey limitations encountered at vegetated sites

  20. Shape accuracy requirements on starshades for large and small apertures

    Science.gov (United States)

    Shaklan, Stuart B.; Marchen, Luis; Cady, Eric

    2017-09-01

    Starshades have been designed to work with large and small telescopes alike. With smaller telescopes, the targets tend to be brighter and closer to the Solar System, and their putative planetary systems span angles that require starshades with radii of 10-30 m at distances of 10s of Mm. With larger apertures, the light-collecting power enables studies of more numerous, fainter systems, requiring larger, more distant starshades with radii >50 m at distances of 100s of Mm. Characterization using infrared wavelengths requires even larger starshades. A mitigating approach is to observe planets between the petals, where one can observe regions closer to the star but with reduced throughput and increased instrument scatter. We compare the starshade shape requirements, including petal shape, petal positioning, and other key terms, for the WFIRST 26m starshade and the HABEX 72 m starshade concepts, over a range of working angles and telescope sizes. We also compare starshades having rippled and smooth edges and show that their performance is nearly identical.

  1. Smoothing-Based Relative Navigation and Coded Aperture Imaging

    Science.gov (United States)

    Saenz-Otero, Alvar; Liebe, Carl Christian; Hunter, Roger C.; Baker, Christopher

    2017-01-01

    This project will develop an efficient smoothing software for incremental estimation of the relative poses and velocities between multiple, small spacecraft in a formation, and a small, long range depth sensor based on coded aperture imaging that is capable of identifying other spacecraft in the formation. The smoothing algorithm will obtain the maximum a posteriori estimate of the relative poses between the spacecraft by using all available sensor information in the spacecraft formation.This algorithm will be portable between different satellite platforms that possess different sensor suites and computational capabilities, and will be adaptable in the case that one or more satellites in the formation become inoperable. It will obtain a solution that will approach an exact solution, as opposed to one with linearization approximation that is typical of filtering algorithms. Thus, the algorithms developed and demonstrated as part of this program will enhance the applicability of small spacecraft to multi-platform operations, such as precisely aligned constellations and fractionated satellite systems.

  2. Low mass large aperture vacuum window development at CEBAF

    International Nuclear Information System (INIS)

    Keppel, C.

    1995-01-01

    Large aperture low mass vacuum windows are being developed for the HMS (High Momentum Spectrometer) and SOS (Short Orbit Spectrometer) spectrometers in Hall C at CEBAF. Because multiple scattering degrades the performance of a spectrometer it is important that the volume be evacuated and that the entrance and exit windows be as low mass as possible. The material used for such windows must be thin and light enough so as to have minimum effect of the beam, and at the same time, be thick and strong enough to operate reliably and safely. To achieve these goals, composite vacuum windows have been constructed of a thin sheet of Mylar with a reinforcing fabric. Reinforcing fabrics such as Kevlar and Spectra are available with tensile strengths significantly greater than that of Mylar. A thin layer of Myler remains necessary since the fabrics cannot achieve any sort of vacuum seal. The design, fabrication, testing, and operating experience with such composite windows for the Hall C spectrometers will be discussed

  3. Genetic algorithm enhanced by machine learning in dynamic aperture optimization

    Science.gov (United States)

    Li, Yongjun; Cheng, Weixing; Yu, Li Hua; Rainer, Robert

    2018-05-01

    With the aid of machine learning techniques, the genetic algorithm has been enhanced and applied to the multi-objective optimization problem presented by the dynamic aperture of the National Synchrotron Light Source II (NSLS-II) Storage Ring. During the evolution processes employed by the genetic algorithm, the population is classified into different clusters in the search space. The clusters with top average fitness are given "elite" status. Intervention on the population is implemented by repopulating some potentially competitive candidates based on the experience learned from the accumulated data. These candidates replace randomly selected candidates among the original data pool. The average fitness of the population is therefore improved while diversity is not lost. Maintaining diversity ensures that the optimization is global rather than local. The quality of the population increases and produces more competitive descendants accelerating the evolution process significantly. When identifying the distribution of optimal candidates, they appear to be located in isolated islands within the search space. Some of these optimal candidates have been experimentally confirmed at the NSLS-II storage ring. The machine learning techniques that exploit the genetic algorithm can also be used in other population-based optimization problems such as particle swarm algorithm.

  4. Synthetic-aperture radar imaging through dispersive media

    International Nuclear Information System (INIS)

    Varslot, Trond; Morales, J Héctor; Cheney, Margaret

    2010-01-01

    In this paper we develop a method for synthetic-aperture radar (SAR) imaging through a dispersive medium. We consider the case when the sensor and scatterers are embedded in a known homogeneous dispersive material, the scene to be imaged lies on a known surface and the radar antenna flight path is an arbitrary but known smooth curve. The scattering is modeled using a linearized (Born) scalar model. We assume that the measurements are polluted with additive noise. Furthermore, we assume that we have prior knowledge about the power-spectral densities of the scene and the noise. This leads us to formulate the problem in a statistical framework. We develop a filtered-back-projection imaging algorithm in which we choose the filter according to the statistical properties of the scene and noise. We present numerical simulations for a case where the scene consists of point-like scatterers located on the ground, and demonstrate how the ability to resolve the targets depends on a quantity which we call the noise-to-target ratio. In our simulations, the dispersive material is modeled with the Fung–Ulaby equations for leafy vegetation. However, the method is also applicable to other dielectric materials where the dispersion is considered relevant in the frequency range of the transmitted signals

  5. Feasibility of Using Synthetic Aperture Radar to Aid UAV Navigation

    Directory of Open Access Journals (Sweden)

    Davide O. Nitti

    2015-07-01

    Full Text Available This study explores the potential of Synthetic Aperture Radar (SAR to aid Unmanned Aerial Vehicle (UAV navigation when Inertial Navigation System (INS measurements are not accurate enough to eliminate drifts from a planned trajectory. This problem can affect medium-altitude long-endurance (MALE UAV class, which permits heavy and wide payloads (as required by SAR and flights for thousands of kilometres accumulating large drifts. The basic idea is to infer position and attitude of an aerial platform by inspecting both amplitude and phase of SAR images acquired onboard. For the amplitude-based approach, the system navigation corrections are obtained by matching the actual coordinates of ground landmarks with those automatically extracted from the SAR image. When the use of SAR amplitude is unfeasible, the phase content can be exploited through SAR interferometry by using a reference Digital Terrain Model (DTM. A feasibility analysis was carried out to derive system requirements by exploring both radiometric and geometric parameters of the acquisition setting. We showed that MALE UAV, specific commercial navigation sensors and SAR systems, typical landmark position accuracy and classes, and available DTMs lead to estimated UAV coordinates with errors bounded within ±12 m, thus making feasible the proposed SAR-based backup system.

  6. Experiment in Onboard Synthetic Aperture Radar Data Processing

    Science.gov (United States)

    Holland, Matthew

    2011-01-01

    Single event upsets (SEUs) are a threat to any computing system running on hardware that has not been physically radiation hardened. In addition to mandating the use of performance-limited, hardened heritage equipment, prior techniques for dealing with the SEU problem often involved hardware-based error detection and correction (EDAC). With limited computing resources, software- based EDAC, or any more elaborate recovery methods, were often not feasible. Synthetic aperture radars (SARs), when operated in the space environment, are interesting due to their relevance to NASAs objectives, but problematic in the sense of producing prodigious amounts of raw data. Prior implementations of the SAR data processing algorithm have been too slow, too computationally intensive, and require too much application memory for onboard execution to be a realistic option when using the type of heritage processing technology described above. This standard C-language implementation of SAR data processing is distributed over many cores of a Tilera Multicore Processor, and employs novel Radiation Hardening by Software (RHBS) techniques designed to protect the component processes (one per core) and their shared application memory from the sort of SEUs expected in the space environment. The source code includes calls to Tilera APIs, and a specialized Tilera compiler is required to produce a Tilera executable. The compiled application reads input data describing the position and orientation of a radar platform, as well as its radar-burst data, over time and writes out processed data in a form that is useful for analysis of the radar observations.

  7. Synthetic Aperture Focusing Technique 3D-CAD-SAFT

    International Nuclear Information System (INIS)

    Schmitz, V.; Kroening, M.; Chakhlov, S.; Fischer, W.

    2000-01-01

    Till the 80's ultrasonic holography has been used as an analyzing technique, a procedure which has been replaced by the Synthetic Aperture Focusing Technique 'SAFT'. This technique has been applied on metallic components in different power plants, mostly on pipe systems on pressure vessels or on specimen made of composite or concrete material. SAFT exists in different versions, either in 2D or 3D, for plane or arbitrarily shaped surfaces, for pulse echo or pitch- and catch arrangements. The defect sizes ranged from 100 μm in turbine shafts till fractures of meters in research pressure vessels. The paper covers the latest results of the SAFT-reconstruction technique under Windows NT which has been guided by the experience obtained in the field. It contributes to the currently discussed question of the possible benefit using TOFD-techniques versus pulse echo techniques; the target has been a fatigue crack in a pipe segment which was investigated by different insonification angles, wave modes and probe arrangements. The results are evaluated with respect to signal-to-noise ratio improvement; problems of TOFD are demonstrated using an animation procedure which allows to walk through the weld in three orthogonal directions. A special example will be shown from a bore hole inspection of water power station valves where the reconstruction procedure follows the radial axial insonification planes. The multi-line SAFT images can be cut according to the situation of the crack position and orientation

  8. New approach for extraordinary transmission through an array of subwavelength apertures using thin ENNZ metamaterial liners.

    Science.gov (United States)

    Baladi, Elham; Pollock, Justin G; Iyer, Ashwin K

    2015-08-10

    Extraordinary transmission (ET) through a periodic array of subwavelength apertures on a perfect metallic screen has been studied extensively in recent years, and has largely been attributed to diffraction effects, for which the periodicity of the apertures, rather than their dimensions, dominates the response. The transmission properties of the apertures at resonance, on the other hand, are not typically considered 'extraordinary' because they may be explained using more conventional aperture-theoretical mechanisms. This work describes a novel approach for achieving ET in which subwavelength apertures are made to resonate by lining them using thin, epsilon-negative and near-zero (ENNZ) metamaterials. The use of ENNZ metamaterials has recently proven successful in miniaturizing circular waveguides by strongly reducing their natural cutoff frequencies, and the theory is adapted here for the design of subwavelength apertures in a metallic screen. We present simulations and proof-of-concept measurements at microwave frequencies that demonstrate ET for apertures measuring one-quarter of a wavelength in diameter and suggest the potential for even more dramatic miniaturization simply by engineering the ENNZ metamaterial dispersion. The results exhibit a fano-like profile whose frequency varies with the properties of the metamaterial liner, but is independent of period. It is suggested that similar behaviour can be obtained at optical frequencies, where ENNZ metamaterials may be realized using appropriately arranged chains of plasmonic nanoparticles.

  9. Self characterization of a coded aperture array for neutron source imaging

    Energy Technology Data Exchange (ETDEWEB)

    Volegov, P. L., E-mail: volegov@lanl.gov; Danly, C. R.; Guler, N.; Merrill, F. E.; Wilde, C. H. [Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States); Fittinghoff, D. N. [Livermore National Laboratory, Livermore, California 94550 (United States)

    2014-12-15

    The neutron imaging system at the National Ignition Facility (NIF) is an important diagnostic tool for measuring the two-dimensional size and shape of the neutrons produced in the burning deuterium-tritium plasma during the stagnation stage of inertial confinement fusion implosions. Since the neutron source is small (∼100 μm) and neutrons are deeply penetrating (>3 cm) in all materials, the apertures used to achieve the desired 10-μm resolution are 20-cm long, triangular tapers machined in gold foils. These gold foils are stacked to form an array of 20 apertures for pinhole imaging and three apertures for penumbral imaging. These apertures must be precisely aligned to accurately place the field of view of each aperture at the design location, or the location of the field of view for each aperture must be measured. In this paper we present a new technique that has been developed for the measurement and characterization of the precise location of each aperture in the array. We present the detailed algorithms used for this characterization and the results of reconstructed sources from inertial confinement fusion implosion experiments at NIF.

  10. Performance limits of ion extraction systems with non-circular apertures

    Energy Technology Data Exchange (ETDEWEB)

    Shagayda, A., E-mail: shagayda@gmail.com; Madeev, S. [Keldysh Research Centre, Onezhskaya, 8, 125438 Moscow (Russian Federation)

    2016-04-15

    A three-dimensional computer simulation is used to determine the perveance limitations of ion extraction systems with non-circular apertures. The objective of the study is to analyze the possibilities to improve mechanical strength of the ion optics made of carbon-carbon composite materials. Non-circular grid apertures are better suited to the physical structure of carbon-carbon composite materials, than conventionally used circular holes in a hexagonal pattern, because they allow a fewer number of cut fibers. However, the slit-type accelerating systems, usually regarded as the main alternative to the conventional ion optics, have an intolerably narrow range of operating perveance values at which there is no direct ion impingement on the acceleration grid. This paper presents results of comparative analysis of a number of different ion optical systems with non-circular apertures and conventional ion optical systems with circular apertures. It has been revealed that a relatively wide perveance range without direct ion impingement may be obtained with apertures shaped as a square with rounded corners. Numerical simulations show that this geometry may have equivalent perveance range as the traditional geometry with circular apertures while being more mechanically robust. In addition, such important characteristics, as the effective transparency for both the ions and the neutral atoms, the height of the potential barrier reflecting the downstream plasma electrons and the angular divergence of the beamlet also can be very close to these parameters for the optics with circular apertures.

  11. Performance limits of ion extraction systems with non-circular apertures.

    Science.gov (United States)

    Shagayda, A; Madeev, S

    2016-04-01

    A three-dimensional computer simulation is used to determine the perveance limitations of ion extraction systems with non-circular apertures. The objective of the study is to analyze the possibilities to improve mechanical strength of the ion optics made of carbon-carbon composite materials. Non-circular grid apertures are better suited to the physical structure of carbon-carbon composite materials, than conventionally used circular holes in a hexagonal pattern, because they allow a fewer number of cut fibers. However, the slit-type accelerating systems, usually regarded as the main alternative to the conventional ion optics, have an intolerably narrow range of operating perveance values at which there is no direct ion impingement on the acceleration grid. This paper presents results of comparative analysis of a number of different ion optical systems with non-circular apertures and conventional ion optical systems with circular apertures. It has been revealed that a relatively wide perveance range without direct ion impingement may be obtained with apertures shaped as a square with rounded corners. Numerical simulations show that this geometry may have equivalent perveance range as the traditional geometry with circular apertures while being more mechanically robust. In addition, such important characteristics, as the effective transparency for both the ions and the neutral atoms, the height of the potential barrier reflecting the downstream plasma electrons and the angular divergence of the beamlet also can be very close to these parameters for the optics with circular apertures.

  12. Performance limits of ion extraction systems with non-circular apertures

    Science.gov (United States)

    Shagayda, A.; Madeev, S.

    2016-04-01

    A three-dimensional computer simulation is used to determine the perveance limitations of ion extraction systems with non-circular apertures. The objective of the study is to analyze the possibilities to improve mechanical strength of the ion optics made of carbon-carbon composite materials. Non-circular grid apertures are better suited to the physical structure of carbon-carbon composite materials, than conventionally used circular holes in a hexagonal pattern, because they allow a fewer number of cut fibers. However, the slit-type accelerating systems, usually regarded as the main alternative to the conventional ion optics, have an intolerably narrow range of operating perveance values at which there is no direct ion impingement on the acceleration grid. This paper presents results of comparative analysis of a number of different ion optical systems with non-circular apertures and conventional ion optical systems with circular apertures. It has been revealed that a relatively wide perveance range without direct ion impingement may be obtained with apertures shaped as a square with rounded corners. Numerical simulations show that this geometry may have equivalent perveance range as the traditional geometry with circular apertures while being more mechanically robust. In addition, such important characteristics, as the effective transparency for both the ions and the neutral atoms, the height of the potential barrier reflecting the downstream plasma electrons and the angular divergence of the beamlet also can be very close to these parameters for the optics with circular apertures.

  13. Performance limits of ion extraction systems with non-circular apertures

    International Nuclear Information System (INIS)

    Shagayda, A.; Madeev, S.

    2016-01-01

    A three-dimensional computer simulation is used to determine the perveance limitations of ion extraction systems with non-circular apertures. The objective of the study is to analyze the possibilities to improve mechanical strength of the ion optics made of carbon-carbon composite materials. Non-circular grid apertures are better suited to the physical structure of carbon-carbon composite materials, than conventionally used circular holes in a hexagonal pattern, because they allow a fewer number of cut fibers. However, the slit-type accelerating systems, usually regarded as the main alternative to the conventional ion optics, have an intolerably narrow range of operating perveance values at which there is no direct ion impingement on the acceleration grid. This paper presents results of comparative analysis of a number of different ion optical systems with non-circular apertures and conventional ion optical systems with circular apertures. It has been revealed that a relatively wide perveance range without direct ion impingement may be obtained with apertures shaped as a square with rounded corners. Numerical simulations show that this geometry may have equivalent perveance range as the traditional geometry with circular apertures while being more mechanically robust. In addition, such important characteristics, as the effective transparency for both the ions and the neutral atoms, the height of the potential barrier reflecting the downstream plasma electrons and the angular divergence of the beamlet also can be very close to these parameters for the optics with circular apertures.

  14. Design and analysis of high-numerical-aperture beam shaping systems; Design und Analyse von Strahlformungssystemen hoher numerischer Apertur

    Energy Technology Data Exchange (ETDEWEB)

    Schweitzer, Hagen

    2009-11-24

    The generation of light tailored to measure stands today in the center of many innovative applications. A possibility of the flexible manipulation of light is the laser-beam shaping.Aim is thereby to transform the intensity profile of a laser beam to a wanted profile. The main topic of this thesis is the modeling and propagation of laser light in paraxial and non-paraxial beam-shaping systems as well as the optimization of these systems by means of a generalized projection algorithm. This algorithm is applied for the optimization by means of aspherical formula or polynomials point-by-point parametrized beam shaping surfaces. It is shown that during the optimization a regardment of diffraction, interference, and abberations is possible. The latter can not only be regarded, but directly used for the beam shaping. Finally it is shown that the aberrations of spherical catalogue lenses are already sufficient for some beam-shaping applications. The efficiency of the developed optimization algorithms is demonstrated both on paraxial and on non-paraxial beam-shaping examples with a numerical aperture of up to 0.62. Finally in the present thesis concepts for the achromatization and for the wave-length multiplexing are introduced, which are based on the application of diverse surfaces and materials with different dispersion. While the achromatization aims to make the optical function of a beam-shaping system wave-length independent, the wavelength multiplexing tries directly to realize different optical functions for diverse design wavelengths. [German] Die Erzeugung massgeschneiderten Lichts steht heute im Mittelpunkt vieler innovativer Anwendungen. Eine Moeglichkeit der flexiblen Manipulation von Licht ist die Laserstrahlformung. Ziel ist es dabei, das Intensitaetsprofil eines Laserstrahls in ein gewuenschtes Profil umzuformen. Schwerpunkt dieser Arbeit ist die Modellierung und Ausbreitung von Laserlicht in paraxialen und nicht-paraxialen Strahlformungssystemen sowie die

  15. Heat transfer

    International Nuclear Information System (INIS)

    Saad, M.A.

    1985-01-01

    Heat transfer takes place between material systems as a result of a temperature difference. The transmission process involves energy conversions governed by the first and second laws of thermodynamics. The heat transfer proceeds from a high-temperature region to a low-temperature region, and because of the finite thermal potential, there is an increase in entropy. Thermodynamics, however, is concerned with equilibrium states, which includes thermal equilibrium, irrespective of the time necessary to attain these equilibrium states. But heat transfer is a result of thermal nonequilibrium conditions, therefore, the laws of thermodynamics alone cannot describe completely the heat transfer process. In practice, most engineering problems are concerned with the rate of heat transfer rather than the quantity of heat being transferred. Resort then is directed to the particular laws governing the transfer of heat. There are three distinct modes of heat transfer: conduction, convection, and radiation. Although these modes are discussed separately, all three types may occur simultaneously

  16. SU-E-J-20: Adaptive Aperture Morphing for Online Correction for Prostate Cancer Radiotherapy

    International Nuclear Information System (INIS)

    Sandhu, R; Qin, A; Yan, D

    2014-01-01

    Purpose: Online adaptive aperture morphing is desirable over translational couch shifts to accommodate not only the target position variation but also anatomic changes (rotation, deformation, and relation of target to organ-atrisks). We proposed quick and reliable method for adapting segment aperture leaves for IMRT treatment of prostate. Methods: The proposed method consists of following steps: (1) delineate the contours of prostate, SV, bladder and rectum on kV-CBCT; (2) determine prostate displacement from the rigid body registration of the contoured prostate manifested on the reference CT and the CBCT; (3) adapt the MLC segment apertures obtained from the pre-treatment IMRT planning to accommodate the shifts as well as anatomic changes. The MLC aperture adaptive algorithm involves two steps; first move the whole aperture according to prostate translational/rotational shifts, and secondly fine-tune the aperture shape to maintain the spatial relationship between the planning target contour and the MLC aperture to the daily target contour. Feasibility of this method was evaluated retrospectively on a seven-field IMRT treatment of prostate cancer patient by comparing dose volume histograms of the original plan and the aperture-adjusted plan, with/without additional segments weight optimization (SWO), on two daily treatment CBCTs selected with relative large motion and rotation. Results: For first daily treatment, the prostate rotation was significant (12degree around lateral-axis). With apertureadjusted plan, the D95 to the target was improved 25% and rectum dose (D30, D40) was reduced 20% relative to original plan on daily volumes. For second treatment-fraction, (lateral shift = 6.7mm), after adjustment target D95 improved by 3% and bladder dose (D30, maximum dose) was reduced by 1%. For both cases, extra SWO did not provide significant improvement. Conclusion: The proposed method of adapting segment apertures is promising in treatment position correction

  17. SU-E-J-20: Adaptive Aperture Morphing for Online Correction for Prostate Cancer Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Sandhu, R; Qin, A; Yan, D [William Beaumont Hospital, Royal Oak, MI (United States)

    2014-06-01

    Purpose: Online adaptive aperture morphing is desirable over translational couch shifts to accommodate not only the target position variation but also anatomic changes (rotation, deformation, and relation of target to organ-atrisks). We proposed quick and reliable method for adapting segment aperture leaves for IMRT treatment of prostate. Methods: The proposed method consists of following steps: (1) delineate the contours of prostate, SV, bladder and rectum on kV-CBCT; (2) determine prostate displacement from the rigid body registration of the contoured prostate manifested on the reference CT and the CBCT; (3) adapt the MLC segment apertures obtained from the pre-treatment IMRT planning to accommodate the shifts as well as anatomic changes. The MLC aperture adaptive algorithm involves two steps; first move the whole aperture according to prostate translational/rotational shifts, and secondly fine-tune the aperture shape to maintain the spatial relationship between the planning target contour and the MLC aperture to the daily target contour. Feasibility of this method was evaluated retrospectively on a seven-field IMRT treatment of prostate cancer patient by comparing dose volume histograms of the original plan and the aperture-adjusted plan, with/without additional segments weight optimization (SWO), on two daily treatment CBCTs selected with relative large motion and rotation. Results: For first daily treatment, the prostate rotation was significant (12degree around lateral-axis). With apertureadjusted plan, the D95 to the target was improved 25% and rectum dose (D30, D40) was reduced 20% relative to original plan on daily volumes. For second treatment-fraction, (lateral shift = 6.7mm), after adjustment target D95 improved by 3% and bladder dose (D30, maximum dose) was reduced by 1%. For both cases, extra SWO did not provide significant improvement. Conclusion: The proposed method of adapting segment apertures is promising in treatment position correction

  18. Coded diffraction system in X-ray crystallography using a boolean phase coded aperture approximation

    Science.gov (United States)

    Pinilla, Samuel; Poveda, Juan; Arguello, Henry

    2018-03-01

    Phase retrieval is a problem present in many applications such as optics, astronomical imaging, computational biology and X-ray crystallography. Recent work has shown that the phase can be better recovered when the acquisition architecture includes a coded aperture, which modulates the signal before diffraction, such that the underlying signal is recovered from coded diffraction patterns. Moreover, this type of modulation effect, before the diffraction operation, can be obtained using a phase coded aperture, just after the sample under study. However, a practical implementation of a phase coded aperture in an X-ray application is not feasible, because it is computationally modeled as a matrix with complex entries which requires changing the phase of the diffracted beams. In fact, changing the phase implies finding a material that allows to deviate the direction of an X-ray beam, which can considerably increase the implementation costs. Hence, this paper describes a low cost coded X-ray diffraction system based on block-unblock coded apertures that enables phase reconstruction. The proposed system approximates the phase coded aperture with a block-unblock coded aperture by using the detour-phase method. Moreover, the SAXS/WAXS X-ray crystallography software was used to simulate the diffraction patterns of a real crystal structure called Rhombic Dodecahedron. Additionally, several simulations were carried out to analyze the performance of block-unblock approximations in recovering the phase, using the simulated diffraction patterns. Furthermore, the quality of the reconstructions was measured in terms of the Peak Signal to Noise Ratio (PSNR). Results show that the performance of the block-unblock phase coded apertures approximation decreases at most 12.5% compared with the phase coded apertures. Moreover, the quality of the reconstructions using the boolean approximations is up to 2.5 dB of PSNR less with respect to the phase coded aperture reconstructions.

  19. High temperature absorption compression heat pump for industrial waste heat

    DEFF Research Database (Denmark)

    Reinholdt, Lars; Horntvedt, B.; Nordtvedt, S. R.

    2016-01-01

    Heat pumps are currently receiving extensive interest because they may be able to support the integration of large shares of fluctuating electricity production based on renewable sources, and they have the potential for the utilization of low temperature waste heat from industry. In most industries......, the needed temperature levels often range from 100°C and up, but until now, it has been quite difficult to find heat pump technologies that reach this level, and thereby opening up the large-scale heat recovery in the industry. Absorption compression heat pumps can reach temperatures above 100°C......, and they have proved themselves a very efficient and reliable technology for applications that have large temperature changes on the heat sink and/or heat source. The concept of Carnot and Lorenz efficiency and its use in the analysis of system integration is shown. A 1.25 MW system having a Carnot efficiency...

  20. Heat exchanger

    Science.gov (United States)

    Daman, Ernest L.; McCallister, Robert A.

    1979-01-01

    A heat exchanger is provided having first and second fluid chambers for passing primary and secondary fluids. The chambers are spaced apart and have heat pipes extending from inside one chamber to inside the other chamber. A third chamber is provided for passing a purge fluid, and the heat pipe portion between the first and second chambers lies within the third chamber.