WorldWideScience

Sample records for heat pump compressor

  1. Cold Climate Heat Pumps Using Tandem Compressors

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Bo [ORNL; Abdelaziz, Omar [ORNL; Rice, C Keith [ORNL; Baxter, Van D [ORNL

    2016-01-01

    In cold climate zones, e.g. ASHRAE climate regions IV and V, conventional electric air-source heat pumps (ASHP) do not work well, due to high compressor discharge temperatures, large pressure ratios and inadequate heating capacities at low ambient temperatures. Consequently, significant use of auxiliary strip heating is required to meet the building heating load. We introduce innovative ASHP technologies as part of continuing efforts to eliminate auxiliary strip heat use and maximize heating COP with acceptable cost-effectiveness and reliability. These innovative ASHP were developed using tandem compressors, which are capable of augmenting heating capacity at low temperatures and maintain superior part-load operation efficiency at moderate temperatures. Two options of tandem compressors were studied; the first employs two identical, single-speed compressors, and the second employs two identical, vapor-injection compressors. The investigations were based on system modeling and laboratory evaluation. Both designs have successfully met the performance criteria. Laboratory evaluation showed that the tandem, single-speed compressor ASHP system is able to achieve heating COP = 4.2 at 47 F (8.3 C), COP = 2.9 at 17 F (-8.3 C), and 76% rated capacity and COP = 1.9 at -13 F (-25 C). This yields a HSPF = 11.0 (per AHRI 210/240). The tandem, vapor-injection ASHP is able to reach heating COP = 4.4 at 47 F, COP = 3.1 at 17 F, and 88% rated capacity and COP = 2.0 at -13 F. This yields a HSPF = 12.0. The system modeling and further laboratory evaluation are presented in the paper.

  2. Multi-Temperature Heat Pump with Cascade Compressor Connection

    Directory of Open Access Journals (Sweden)

    Sit M.L.

    2017-08-01

    Full Text Available The object of the study is a multifunctional heat pump with several evaporators and condensers designed for simultaneous provision of technological processes with heat and cold. The aim of the work is the development and study of the scheme for this type of heat pumps, which ensures minimum irreversibility in the "compressor-gas coolers" chain, without the use of adjustable ejectors installed after evaporators and used as flow mixers. The obtained technical solution ensures the stabilization of the heat pump coefficient of performance (COP and prescribed thermal regimes of heat exchangers at a variable flow rate of the refrigerant. The novelty of the elaboration is inclusion a compressor of the first stage with a serially connected intermediate heat exchanger and a control valve that are located before the compressor inlet of the second stage of the heat pump, which allows to establish a rational pressure after the first stage of the compressors. A scheme is proposed for regulating the temperature at the inlet of the first stage compressors by regulating the flow through the primary circuits of the recuperative heat exchangers. The first stage compressor control system allows providing the required modes of operation of the heat pump. It is established, because of the exergetic analysis of the sections of the hydraulic circuit of heat pump located between the evaporators and gas coolers that the reduction of irreversible losses in the heat pump is ensured due to the optimal choice of the superheat value of the gas after the evaporators.

  3. DEVELOPMENT OF A LINEAR COMPRESSOR FOR AIR CONDITIONERS AND HEAT PUMPS

    Science.gov (United States)

    The report discusses the design, building, testing, and delivering to the Environmental Protection Agency of a linear compressor for operation in a 3.0- ton (10.5 kW) residential air-conditioning and heat pumping system. The compressor design evolved from a linear resonant piston...

  4. Modelica-based modeling and simulation of a twin screw compressor for heat pump applications

    International Nuclear Information System (INIS)

    Chamoun, Marwan; Rulliere, Romuald; Haberschill, Philippe; Peureux, Jean-Louis

    2013-01-01

    A new twin screw compressor has been developed by SRM (Svenska Rotor Maskiner) for use in a new high temperature heat pump using water as refrigerant. This article presents a mathematical model of the thermodynamic process of compression in twin screw compressors. Using a special discretization method, a transient twin screw compressor model has been developed using Modelica in order to study the dry compression cycle of this machine at high temperature levels. The pressure and enthalpy evolution in the control volumes of the model are calculated as a function of the rotational angle of the male rotor using energy and continuity equations. In addition, associated processes encountered in real machines such as variable fluid leakages, water injection and heat losses are modeled and implemented in the main compressor model. A comparison is performed using the model developed, demonstrating the behavior of the compressor and the evolution of its different parameters in different configurations with and without water injection. This comparison shows the need for water injection to avoid compressor failure and improve its efficiency. -- Highlights: • Difficulties related to the compressor limit the development of a high temperature heat pump using water as refrigerant. • A new water vapor double screw compressor has been developed to overcome compression problems. • A dynamic model of this compressor has been developed and simulated using Modelica. • The behavior of the compressor has been identified all along the compression cycle and efficiencies have been calculated

  5. Finalize field testing of cold climate heat pump (CCHP) based on tandem vapor injection compressors

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Bo [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Baxter, Van D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Abdelaziz, Omar [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Rice, C. Keith [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-03-01

    This report describes the system diagram and control algorithm of a prototype air-source cold climate heat pump (CCHP) using tandem vapor injection (VI) compressors. The prototype was installed in Fairbanks, Alaska and underwent field testing starting in 09/2016. The field testing results of the past six months, including compressor run time fractions, measured COPs and heating capacities, etc., are presented as a function of the ambient temperature. Two lessons learned are also reported.

  6. Thermal characteristics of high-temperature R718 heat pumps with turbo compressor thermal vapor recompression

    International Nuclear Information System (INIS)

    Šarevski, Milan N.; Šarevski, Vasko N.

    2017-01-01

    Highlights: • High pressure ratio, high speed, transonic R718 centrifugal compressors. • High efficient industrial evaporators/concentrators with turbo thermal vapor recompression. • Utilization of waste heat from industrial thermal and processing systems. • R718 is an ideal refrigerant for the novel high-temperature industrial heat pumps. • Application of single-stage R718 centrifugal compressors. - Abstract: Characteristics of R718 centrifugal compressors are analyzed and range of their applications in industrial high-temperature heat pumps, district heating systems and geothermal green house heating systems are estimated. Implementation of turbo compressor thermal vapor recompression in industrial evaporating/concentrating plants for waste heat utilization results in a high energy efficiency and in other technical, economical and environmental benefits. A novel concept of turbo compression R718 heat pumps is proposed and an assessment of their thermal characteristics is presented for utilization of waste heat from industrial thermal plants and systems (boilers, furnaces, various technological and metallurgical cooling processes, etc.), and for applications in district heating and geothermal green house heating systems. R718 is an ideal refrigerant for the novel high-temperature turbo compression industrial heat pumps. Direct evaporation and condensation are advantages of the proposed system which lead to higher COP, and to simplification of the plant and lower cost.

  7. Heat pumps

    CERN Document Server

    Macmichael, DBA

    1988-01-01

    A fully revised and extended account of the design, manufacture and use of heat pumps in both industrial and domestic applications. Topics covered include a detailed description of the various heat pump cycles, the components of a heat pump system - drive, compressor, heat exchangers etc., and the more practical considerations to be taken into account in their selection.

  8. The mechanical design of a vapor compressor for a heat pump to be used in space

    Science.gov (United States)

    Berner, F.; Oesch, H.; Goetz, K.; Savage, C. J.

    1982-01-01

    A heat pump developed for use in Spacelab as a stand-alone refrigeration unit as well as within a fluid loop system is discussed. It will provide an active thermal control for payloads. Specifications for the heat pump were established: (1) heat removal rates at the source; (2) heat source temperatures from room temperature; (3) heat-sink fluid temperatures at condenser inlet; and (4) minimum power consumption. A reversed Carnot cycle heat pump using Freon 12 as working fluid incorporating a one-cylinder reciprocating compressor was selected. The maximum crankshaft speed was fixed relatively high at 100 rpm. The specified cooling rates then made it necessary to select a cylinder volume of 10 cu cm, which was obtained with a bore of 40 mm and a stroke of 8 mm.

  9. Experimental investigation of a direct driven radial compressor for domestic heat pumps

    Energy Technology Data Exchange (ETDEWEB)

    Schiffmann, J. [Fischer Engineering Solutions AG, Birkenweg 3, CH-3360 Herzogenbuchsee (Switzerland); Favrat, D. [Ecole Polytechnique Federale de Lausanne, EPFL STI IGM LENI, Station 9, CH-1015 Lausanne (Switzerland)

    2009-12-15

    The presence of oil in domestic heat pumps is an obstacle toward higher efficiency, particularly for enhanced surface evaporators and for advanced concepts based on two-stage cycles. Very compact direct driven radial compressors supported on oil-free bearings represent a promising alternative. This paper presents the derivation of the specifications, the choice for an appropriate refrigerant fluid and the design of a proof of concept prototype with the various tradeoffs between the impeller characteristics to follow the seasonal heat demand, the bearing and rotordynamics for a stable operation. Heat pump simulation results, the design of the impeller as well as the layout of the experimental facility and first experimental results are presented. An impeller with a tip diameter of 20 mm has been tested at rotational speeds of up to 210 krpm reaching pressure ratios in excess of 3.3 and efficiencies above 78%. The refrigerant chosen for this first experimental approach is HFC 134a. (author)

  10. Design, experimental investigation and multi-objective optimization of a small-scale radial compressor for heat pump applications

    Energy Technology Data Exchange (ETDEWEB)

    Schiffmann, J. [Fischer Engineering Solutions AG, Birkenweg 3, CH-3360 Herzogenbuchsee (Switzerland); Favrat, D. [Ecole Polytechnique Federale de Lausanne, EPFL STI IGM LENI, Station 9, CH-1015 Lausanne (Switzerland)

    2010-01-15

    The main driver for small scale turbomachinery in domestic heat pumps is the potential for reaching higher efficiencies than volumetric compressors currently used and the potential for making the compressor oil-free, bearing a considerable advantage in the design of advanced multi-stage heat pump cycles. An appropriate turbocompressor for driving domestic heat pumps with a high temperature lift requires the ability to operate on a wide range of pressure ratios and mass flows, confronting the designer with the necessity of a compromise between range and efficiency. The present publication shows a possible way to deal with that difficulty, by coupling an appropriate modeling tool to a multi-objective optimizer. The optimizer manages to fit the compressor design into the possible specifications field while keeping the high efficiency on a wide operational range. The 1D-tool used for the compressor stage modeling has been validated by experimentally testing an initial impeller design. The excellent experimental results, the agreement with the model and the linking of the model to a multi-objective optimizer will allow to design radial compressor stages managing to fit the wide operational range of domestic heat pumps while keeping the high efficiency level. (author)

  11. Screw compressors for applications in liquid chillers and heat pumps; Schraubenverdichter fuer Anwendungen in Fluessigkeitskuehlsaetzen und Waermepumpen

    Energy Technology Data Exchange (ETDEWEB)

    Grosse-Kracht, Rainer [Bitzer Kuehlmaschinenbau GmbH, Sindelfingen (Germany)

    2009-05-15

    The demands on compressors for liquid chillers and heat pumps are changing continuously, with energy efficiency becoming ever more of a key focus. Especially certification programs are rating part load conditions higher than full load conditions. Another aspect is the lowering of the condensing temperature in order to achieve an increase in efficiency. Bitzer offers three compressor series optimized for these requirements: The CSH series for air-cooled liquid chillers and heat pumps; the CSW series, developed on the basis of the CSH, for low condensing temperatures occurring in water-cooled systems; and the HS.VS with frequency inverter for high part load efficiencies. (orig.)

  12. Exergetic optimization of a key design parameter in heat pump systems with economizer coupled with scroll compressor

    International Nuclear Information System (INIS)

    Ma, Guoyuan; Li, Xianguo

    2007-01-01

    The heat pump system with economizer coupled with scroll compressor can extend effectively its operating ranges and provide a technological method to enable the heat pump to run steadily and efficiently in severe weather conditions. The intermediate pressure, namely the working pressure of the refrigerant in the economizer, is an essential design parameter and affects crucially the performances of the heat pump system. According to the exergetic model setup for the heat pump system based on the second law of thermodynamics, the influences of the intermediate pressure on the performances are comprehensively analyzed using experimental data of the heat pump prototype. It is found that the optimal relative intermediate pressure (RIP) is between 1.1 and 1.3

  13. Isobaric Expansion Engines: New Opportunities in Energy Conversion for Heat Engines, Pumps and Compressors

    Directory of Open Access Journals (Sweden)

    Maxim Glushenkov

    2018-01-01

    Full Text Available Isobaric expansion (IE engines are a very uncommon type of heat-to-mechanical-power converters, radically different from all well-known heat engines. Useful work is extracted during an isobaric expansion process, i.e., without a polytropic gas/vapour expansion accompanied by a pressure decrease typical of state-of-the-art piston engines, turbines, etc. This distinctive feature permits isobaric expansion machines to serve as very simple and inexpensive heat-driven pumps and compressors as well as heat-to-shaft-power converters with desired speed/torque. Commercial application of such machines, however, is scarce, mainly due to a low efficiency. This article aims to revive the long-known concept by proposing important modifications to make IE machines competitive and cost-effective alternatives to state-of-the-art heat conversion technologies. Experimental and theoretical results supporting the isobaric expansion technology are presented and promising potential applications, including emerging power generation methods, are discussed. It is shown that dense working fluids with high thermal expansion at high process temperature and low compressibility at low temperature make it possible to operate with reasonable thermal efficiencies at ultra-low heat source temperatures (70–100 °C. Regeneration/recuperation of heat can increase the efficiency notably and extend the area of application of these machines to higher heat source temperatures. For heat source temperatures of 200–600 °C, the efficiency of these machines can reach 20–50% thus making them a flexible, economical and energy efficient alternative to many today’s power generation technologies, first of all organic Rankine cycle (ORC.

  14. AUTOMATIC CONTROL SYSTEM OF THE DIFFERENCE BETWEEN DISCHARGE AND SUCTION PRESSURES OF THE HEAT PUMP STATION COMPRESSOR

    Directory of Open Access Journals (Sweden)

    Sit M.L.

    2009-04-01

    Full Text Available Possibility of realization is shown and the control system of a difference of pressure between an exit and an input of the compressor of the heat pump on carbon dioxide working at variable thermal load, and discharge and suction pressures by means of two control valves connected in series is developed. On an example a flow coefficient calculation procedure of control valves is shown.

  15. Regenerative adsorbent heat pump

    Science.gov (United States)

    Jones, Jack A. (Inventor)

    1991-01-01

    A regenerative adsorbent heat pump process and system is provided which can regenerate a high percentage of the sensible heat of the system and at least a portion of the heat of adsorption. A series of at least four compressors containing an adsorbent is provided. A large amount of heat is transferred from compressor to compressor so that heat is regenerated. The process and system are useful for air conditioning rooms, providing room heat in the winter or for hot water heating throughout the year, and, in general, for pumping heat from a lower temperature to a higher temperature.

  16. Experimental study of enhancing heating performance of the air-source heat pump by using a novel heat recovery device designed for reusing the energy of the compressor shell

    International Nuclear Information System (INIS)

    Huang, Bi; Jian, Qifei; Luo, Lizhong; Zhao, Jing

    2017-01-01

    Highlights: • A novel heat recovery device was designed and tested. • Aiming at avoiding liquid slugging in cold areas. • Recovery of the waste energy of compressor housing. • Refrigerant is heated with the energy recovered before it is sucked into the compressor. • Requires no extra power while the recovery system is operating. - Abstract: A novel heat recovery device designed to recover the heat that is released from the outer surface of heat pump compressors, and to enhance the performance of heat pumps in cold areas was made and tested in this study. The novel heat recovery device consists of three fundamental units: a heat absorption unit, a heat emission unit and heat pipes. An amount of work focused on recovering the heat of compressors through oil system, but few studies concentrated on the housing. The main advantage of the heat recovery device is no need for extra energy consumption for its only driving force is the temperature difference between the compressor shell and the working fluid inside the suction line. The experimental results were obtained from a series of tests with a R410A air-source heat pump. Effects of the device are analyzed with respect of the suction temperature, temperature distribution among the housing, input power and exergy destruction. Moreover, the impact on the heating capacity is also discussed. Further, direction for improvement is also given based on the analysis.

  17. Experimental Results and Model Calculations of a Hybrid Adsorption-Compression Heat Pump Based on a Roots Compressor and Silica Gel-Water Sorption

    Energy Technology Data Exchange (ETDEWEB)

    Van der Pal, M.; De Boer, R.; Wemmers, A.K.; Smeding, S.F.; Veldhuis, J.B.J.; Lycklama a Nijeholt, J.A.

    2013-10-15

    Thermally driven sorption systems can provide significant energy savings, especially in industrial applications. The driving temperature for operation of such systems limits the operating window and can be a barrier for market-introduction. By adding a compressor, the sorption cycle can be run using lower waste heat temperatures. ECN has recently started the development of such a hybrid heat pump. The final goal is to develop a hybrid heat pump for upgrading lower (<100C) temperature industrial waste heat to above pinch temperatures. The paper presents the first measurements and model calculations of a hybrid heat pump system using a water-silica gel system combined with a Roots type compressor. From the measurements can be seen that the effect of the compressor is dependent on where in the cycle it is placed. When placed between the evaporator and the sorption reactor, it has a considerable larger effect compared to the compressor placed between the sorption reactor and the condenser. The latter hardly improves the performance compared to purely heat-driven operation. This shows the importance of studying the interaction between all components of the system. The model, which shows reasonable correlation with the measurements, could proof to be a valuable tool to determine the optimal hybrid heat pump configuration.

  18. Experimental study on two-stage compression refrigeration/heat pump system with dual-cylinder rolling piston compressor

    International Nuclear Information System (INIS)

    Shuxue, Xu; Guoyuan, Ma

    2014-01-01

    A thermodynamically analytical model on the two-stage compression refrigeration/heat pump system with vapor injection was derived. The optimal volume ratio of the high-pressure cylinder to the low-pressure one has been discussed under both cooling and heating conditions. Based on the above research, the prototype was developed and its experimental setup established. A comprehensive experiments for the prototype have been conducted, and the results show that, compared with the single-stage compression heat pump system, the cooling capacity and cooling COP can increase 5%–15% and 10–12%, respectively. Also, the heating capacity with the evaporating temperature ranging from 0.3 to 3 °C is 92–95% of that under the rate condition with the evaporating temperature of 7 °C, and 58% when the evaporation temperature is between −28 °C and −24 °C. -- Highlights: • The volume ratio of the compressor is between 0.65 and 0.78 and the relative vapor injection mass ranges from 15% to 20%. • The cooling capacity and COP of the two-stage compression system can improve 5%–15% and 10%–12%. • The heating capacity can also be improved under low temperature condition

  19. The Grasso 5HP as a heat pump compressor for a dairy industry; De Grasso 5HP als warmtepompcompressor voor melkfabriek

    Energy Technology Data Exchange (ETDEWEB)

    Vermeer, H.; Gerritsen, J.; Unsworth, R. [Gea Grenco, Den Bosch (Netherlands)

    2011-12-15

    GEA Refrigeration has supplied a new cooling system with an additional stage heat pump to the milk factory Robert Wiseman for the pasteurisation of milk. The required condensation temperature of the additional stage heat pump is around 80C. The Grasso 5HP reciprocating compressor has a favorable energy consumption and can be used for this application. The limitation of this compressor, however, sets requirements to the design of the installation. [Dutch] Gea Refrigeration heeft een nieuwe koelinstallatie met extratrapwarmtepomp geleverd aan zuivelbedrijf Robert Wiseman ten behoeve van pasteuriseren van melk. De hiervoor benodigde condensatietemperatuur van de extratrapwarmtepomp bedraagt ongeveer 80C. De Grasso 5HP hogedrukzuigercompressor heeft een gunstig energiegebruik en kan voor deze toepassing ingezet worden. De begrenzing van het toepassingsgebied van deze compressor stelt echter eisen aan het ontwerp van de installatie.

  20. Two-stage turbo-compressor for heat pumps. Stage 1: Feasibility study; Compresseur radial pour pompe a chaleur bietagee. Phase 1: etude de faisabilite

    Energy Technology Data Exchange (ETDEWEB)

    Shiffmann, J; Molyneaux, A [Ofttech SA, Parc Scientifique de l' EPFL-C, Lausanne (Switzerland); Favrat, D; Marechal, F; Zehnder, M; Godat, J [Swiss Federal Institue of Technology (EPFL), Laboratoire d' energetique industrielle, Lausanne (Switzerland)

    2002-07-01

    This report describes the work performed by Ofttech SA, in collaboration with the Industrial Energy Laboratory (LENI) of the Swiss Federal Institute of Technology (EPFL) in Lausanne, investigating the feasibility of designing an oil-free turbo-compressor for domestic retrofit heat pump applications. The primary objective for a retrofit heat pump is that it produces heating water at 60 {sup o}C (with at least 10 {sup o}C temperature rise) with an external air temperature of -12 {sup o}C and can supply at least 10 kW. This would enable the air-water heat pump to directly replace oil or gas boilers. To enable a heat pump to produce the required hot water with a sufficient Coefficient of Performance (COP) a two-stage compressor is the most sensible technical solution currently available. This report shows how a turbo-compressor consisting of a single rotor with two centrifugal compressor wheels, running at variable speeds up to 240,000 rpm, can provide a unique solution with better predicted performance than existing solutions. This is possible by the use of bearings lubricated with gaseous refrigerant - excluding completely the need for oil in the system with its associated heat transfer, system, environmental and cost disadvantages. These bearings need radial clearances between 5 and 10 micrometers, leading to manufacturing tolerances in the order of magnitude of one micrometer. Various possible refrigerants are discussed with R134a being chosen for this study. Investigations performed by the company Asea Brown Boveri (ABB) are reported showing the possible design of the two small turbo-compressors resulting in wheels of less than 20 mm. The electric motor for this directly driven compressor together with the wheels and gas bearings will result in a complete rotor of less than 100 mm long - making it smaller, lighter and cheaper than existing compressors. The main conclusion is that the overall performance of this novel turbo-compressor when compared with the

  1. Nonazeotropic Heat Pump

    Science.gov (United States)

    Ealker, David H.; Deming, Glenn

    1991-01-01

    Heat pump collects heat from water circulating in heat-rejection loop, raises temperature of collected heat, and transfers collected heat to water in separate pipe. Includes sealed motor/compressor with cooling coils, evaporator, and condenser, all mounted in outer housing. Gradients of temperature in evaporator and condenser increase heat-transfer efficiency of vapor-compression cycle. Intended to recover relatively-low-temperature waste heat and use it to make hot water.

  2. The New S-RAM Air Variable Compressor/Expander for Heat Pump and Waste Heat to Power Application

    Energy Technology Data Exchange (ETDEWEB)

    Dehoff, Ryan R [ORNL; Jestings, Lee [S-RAM Dynamics; Conde, Ricardo [S-RAM Dynamics

    2016-05-23

    S-RAM Dynamics (S-RAM) has designed an innovative heat pump system targeted for commercial and industrial applications. This new heat pump system is more efficient than anything currently on the market and utilizes air as the refrigerant instead of hydrofluorocarbon (HFC) refrigerants, leading to lower operating costs, minimal environmental costs or concerns, and lower maintenance costs. The heat pumps will be manufactured in the United States. This project was aimed at determining the feasibility of utilizing additive manufacturing to make the heat exchanger device for the new heat pump system. ORNL and S-RAM Dynamics collaborated on determining the prototype performance and subsequently printing of the prototype using additive manufacturing. Complex heat exchanger designs were fabricated using the Arcam electron beam melting (EBM) powder bed technology using Ti-6Al-4V material. An ultrasonic welding system was utilized in order to remove the powder from the small openings of the heat exchanger. The majority of powder in the small chambers was removed, however, the amount of powder remaining in the heat exchanger was a function of geometry. Therefore, only certain geometries of heat exchangers could be fabricated. SRAM Dynamics evaluated a preliminary heat exchanger design. Although the results of the additive manufacturing of the heat exchanger were not optimum, a less complex geometry was demonstrated. A sleeve valve was used as a demonstration piece, as engine designs from S-RAM Dynamics require the engine to have a very high density. Preliminary designs of this geometry were successfully fabricated using the EBM technology.

  3. Heat pumps

    CERN Document Server

    Brodowicz, Kazimierz; Wyszynski, M L; Wyszynski

    2013-01-01

    Heat pumps and related technology are in widespread use in industrial processes and installations. This book presents a unified, comprehensive and systematic treatment of the design and operation of both compression and sorption heat pumps. Heat pump thermodynamics, the choice of working fluid and the characteristics of low temperature heat sources and their application to heat pumps are covered in detail.Economic aspects are discussed and the extensive use of the exergy concept in evaluating performance of heat pumps is a unique feature of the book. The thermodynamic and chemical properties o

  4. Radial compressor for a two-stage heat pump. Phase 2; Compresseur radial pour pompe a chaleur bi-etagee. Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    Schiffmann, J.; Favrat, D. [Federal Institute of Technology (EPFL), Industrial Energy Systems Laboratory (LENI), Lausanne (Switzerland); Molyneaux, A. [Ofttech SA, Lausanne (Switzerland)

    2005-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) reviews the results of the second phase of a project carried out at the Federal Institute of Technology in Lausanne, Switzerland, that involved the development of a two-stage heat pump that could replace conventional sources of domestic heating such as oil or gas-fired boilers. This report deals with the construction of a single-stage system to test the basic functions, aerodynamic bearings, drive and compressor and thus prove the correctness of the concept of the system. The results of the tests made are presented and discussed.

  5. Lunar Base Heat Pump

    Science.gov (United States)

    Walker, D.; Fischbach, D.; Tetreault, R.

    1996-01-01

    The objective of this project was to investigate the feasibility of constructing a heat pump suitable for use as a heat rejection device in applications such as a lunar base. In this situation, direct heat rejection through the use of radiators is not possible at a temperature suitable for lde support systems. Initial analysis of a heat pump of this type called for a temperature lift of approximately 378 deg. K, which is considerably higher than is commonly called for in HVAC and refrigeration applications where heat pumps are most often employed. Also because of the variation of the rejection temperature (from 100 to 381 deg. K), extreme flexibility in the configuration and operation of the heat pump is required. A three-stage compression cycle using a refrigerant such as CFC-11 or HCFC-123 was formulated with operation possible with one, two or three stages of compression. Also, to meet the redundancy requirements, compression was divided up over multiple compressors in each stage. A control scheme was devised that allowed these multiple compressors to be operated as required so that the heat pump could perform with variable heat loads and rejection conditions. A prototype heat pump was designed and constructed to investigate the key elements of the high-lift heat pump concept. Control software was written and implemented in the prototype to allow fully automatic operation. The heat pump was capable of operation over a wide range of rejection temperatures and cooling loads, while maintaining cooling water temperature well within the required specification of 40 deg. C +/- 1.7 deg. C. This performance was verified through testing.

  6. Dual source heat pump

    Science.gov (United States)

    Ecker, Amir L.; Pietsch, Joseph A.

    1982-01-01

    What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating the fluid in heat exchange relationship with a refrigerant fluid; at least two refrigerant heat exchangers, one for effecting heat exchange with the fluid and a second for effecting heat exchange between refrigerant and a heat exchange fluid and the ambient air; a compressor for efficiently compressing the refrigerant; at least one throttling valve for throttling liquid refrigerant; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and direction of flow of the refrigerant therethrough for selecting a particular mode of operation. The heat exchange fluid provides energy for defrosting the second heat exchanger when operating in the air source mode and also provides a alternate source of heat.

  7. Staged regenerative sorption heat pump

    Science.gov (United States)

    Jones, Jack A. (Inventor)

    1995-01-01

    A regenerative adsorbent heat pump process and system for cooling and heating a space. A sorbent is confined in a plurality of compressors of which at least four are first stage and at least four are second stage. The first stage operates over a first pressure region and the second stage over a second pressure region which is higher than the first. Sorbate from the first stage enters the second stage. The sorbate loop includes a condenser, expansion valve, evaporator and the compressors. A single sorbate loop can be employed for single-temperature-control such as air conditioning and heating. Two sorbate loops can be used for two-temperature-control as in a refrigerator and freezer. The evaporator temperatures control the freezer and refrigerator temperatures. Alternatively the refrigerator temperature can be cooled by the freezer with one sorbate loop. A heat transfer fluid is circulated in a closed loop which includes a radiator and the compressors. Low temperature heat is exhausted by the radiator. High temperature heat is added to the heat transfer fluid entering the compressors which are desorbing vapor. Heat is transferred from compressors which are sorbing vapor to the heat transfer fluid, and from the heat transfer fluid to the compressors which are desorbing vapor. Each compressor is subjected to the following phases, heating to its highest temperature, cooling down from its highest temperature, cooling to its lowest temperature, and warming up from its lowest temperature. The phases are repeated to complete a cycle and regenerate heat.

  8. Air cooled heat pumps with mono-screw compressors. A good alternative; Luchtgekoelde warmtepompen met mono-schroefcompressoren. Een goed alternatief

    Energy Technology Data Exchange (ETDEWEB)

    Meijer, W. [Daikin Airconditioning Netherlands, Rotterdam (Netherlands)

    2010-09-15

    Heat pumps are becoming increasingly popular. Often water/water heat pumps are used that are linked to heat/cold storage systems or another source system. The air-cooled alternatives are advancing in house construction and are also applied in small-scale utility and schools sometimes. In the larger utility projects and the industry, however, the air-cooled heat pump has not quite yet found its way, while it can be a good alternative for the heat/cold storage systems that are much more expensive to purchase. This is due to new compressor techniques. [Dutch] Warmtepompen worden steeds populairder. Veelal wordt gebruikgemaakt van water/water-warmtepompen, die gekoppeld worden aan een koude/warmte-opslagsysteem (KWO) of ander bronsysteem. De luchtgekoelde alternatieven zijn in de woningbouw in opmars en worden soms ook in kleinschalige utiliteit en scholen toegepast. In de grotere utiliteitsprojecten en industrie heeft de luchtgekoelde warmtepomp echter zijn weg nog niet echt gevonden, terwijl het een goed alternatief kan zijn voor de in aanschaf veel duurdere KWO-systemen. Dit mede dankzij nieuwe compressortechnieken.

  9. Magnetic Heat Pump Containing Flow Diverters

    Science.gov (United States)

    Howard, Frank S.

    1995-01-01

    Proposed magnetic heat pump contains flow diverters for suppression of undesired flows. If left unchecked, undesired flows mix substantial amounts of partially heated and partially cooled portions of working fluid, effectively causing leakage of heat from heated side to cooled side. By reducing leakage of heat, flow diverters increase energy efficiency of magnetic heat pump, potentially offering efficiency greater than compressor-driven refrigerator.

  10. 49 CFR 178.337-15 - Pumps and compressors.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Pumps and compressors. 178.337-15 Section 178.337... PACKAGINGS Specifications for Containers for Motor Vehicle Transportation § 178.337-15 Pumps and compressors. (a) Liquid pumps or gas compressors, if used, must be of suitable design, adequately protected...

  11. 49 CFR 178.338-17 - Pumps and compressors.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Pumps and compressors. 178.338-17 Section 178.338... PACKAGINGS Specifications for Containers for Motor Vehicle Transportation § 178.338-17 Pumps and compressors. (a) Liquid pumps and gas compressors, if used, must be of suitable design, adequately protected...

  12. Device for covering a string of pump-compressor pipes

    Energy Technology Data Exchange (ETDEWEB)

    Sharafutdinov, I.G.; Prokopov, O.I.; Rastorgyev, M.A.

    1982-01-01

    The invention refers to oil field equipment, and more specifically to devices for automatic coverage of the flow of gusher oil and gas wells during the development of a fire near the well. A device is described for covering the string of pump-compressor pipes which includes a housing with piston connected to the string of pump-compressor pipes, shoe, seat and assembly for fixing the piston in the upper position with heat-sensitive substance. It is distinguished by the fact that in order to improve reliability of its triggering when a fire develops, the assembly for fixing the piston is equipped with hydraulic cylinders whose rods are connected to the piston, and the heat sensitive substance is placed in the vessels whose cavities are connected to the above-piston cavities of the hydraulic cylinders and are connected by a common collector.

  13. Heat pump having improved defrost system

    Science.gov (United States)

    Chen, F.C.; Mei, V.C.; Murphy, R.W.

    1998-12-08

    A heat pump system includes, in an operable relationship for transferring heat between an exterior atmosphere and an interior atmosphere via a fluid refrigerant: a compressor; an interior heat exchanger; an exterior heat exchanger; an accumulator; and means for heating the accumulator in order to defrost the exterior heat exchanger. 2 figs.

  14. 46 CFR 154.534 - Cargo pumps and cargo compressors.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Cargo pumps and cargo compressors. 154.534 Section 154.534 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES... Equipment Cargo and Process Piping Systems § 154.534 Cargo pumps and cargo compressors. Cargo pumps and...

  15. Special compressor technology for a new generation of heat pumps for domestic applications. Free piston technology with zero-oil torsion drive; Speciale compressortechnologie voor een nieuwe generatie warmtepompen voor huishoudelijke toepassingen. Vrijezuigertechnologie met olieloze torsie-aandrijving

    Energy Technology Data Exchange (ETDEWEB)

    Wissink, E.B. [TNO, Apeldoorn (Netherlands)

    2013-02-15

    To meet the increasing demand for small high efficient domestic heat pumps with a good total cost of ownership performance, a next generation of heat pumps is required. This article is dealing with the development of a new compressor technology for domestic heat pumps. After identification of the main losses in mechanical driven low capacity heat pump cycles, it became clear that a concept with a (semi-)free piston compressor has the potency to improve the efficiency significantly. An evaluation showed that none of the existing free-piston designs meets essential requirements like low internal friction, small size integrated electromotor and hermetic design suitable for all refrigerants, including ammonia. Therefore TNO designed a complete new free piston compressor making use of the following two design philosophies: balancing mechanical forces by using symmetry and reducing motor size by use of transmission ratio based on elastic deformation and the peak shaving effect of the energy contents (kinetic and elastic) of the compressor running in a natural frequency mode. This paper describes the background, the design steps and the final design of the new torsion compressor technology [Dutch] Om aan de toenemende vraag naar kleine hoog-efficiente warmtepompen voor woningverwarming met een lage exploitatiekostprijs te voldoen, is een nieuwe generatie warmtepompen vereist. Dit artikel beschrijft de ontwikkeling van een nieuwe compressortechnologie voor huishoudelijke warmtepompen. Na het onderzoeken van de belangrijkste verliezen in mechanisch aangedreven warmtepompsystemen met een klein verwarmingsvermogen werd duidelijk dat een concept met een (semi-)vrijezuigercompressor de potentie heeft om de efficientie aanzienlijk te verbeteren.

  16. Heat pumps: heat recovery

    Energy Technology Data Exchange (ETDEWEB)

    Pielke, R

    1976-01-01

    The author firstly explains in a general manner the functioning of the heat pump. Following a brief look at the future heat demand and the possibilities of covering it, the various methods of obtaining energy (making use of solar energy, ground heat, and others) and the practical applications (office heating, swimming pool heating etc.) are explained. The author still sees considerable difficulties in using the heat pump at present on a large scale. Firstly there is not enough maintenance personnel available, secondly the electricity supply undertakings cannot provide the necessary electricity on a wide basis without considerable investments. Other possibilities to save energy or to use waste energy are at present easier and more economical to realize. Recuperative and regenerative systems are described.

  17. Heat pump technology

    CERN Document Server

    Von Cube, Hans Ludwig; Goodall, E G A

    2013-01-01

    Heat Pump Technology discusses the history, underlying concepts, usage, and advancements in the use of heat pumps. The book covers topics such as the applications and types of heat pumps; thermodynamic principles involved in heat pumps such as internal energy, enthalpy, and exergy; and natural heat sources and energy storage. Also discussed are topics such as the importance of the heat pump in the energy industry; heat pump designs and systems; the development of heat pumps over time; and examples of practical everyday uses of heat pumps. The text is recommended for those who would like to kno

  18. Heat cascading regenerative sorption heat pump

    Science.gov (United States)

    Jones, Jack A. (Inventor)

    1995-01-01

    A simple heat cascading regenerative sorption heat pump process with rejected or waste heat from a higher temperature chemisorption circuit (HTCC) powering a lower temperature physisorption circuit (LTPC) which provides a 30% total improvement over simple regenerative physisorption compression heat pumps when ammonia is both the chemisorbate and physisorbate, and a total improvement of 50% or more for LTPC having two pressure stages. The HTCC contains ammonia and a chemisorbent therefor contained in a plurality of canisters, a condenser-evaporator-radiator system, and a heater, operatively connected together. The LTPC contains ammonia and a physisorbent therefor contained in a plurality of compressors, a condenser-evaporator-radiator system, operatively connected together. A closed heat transfer circuit (CHTC) is provided which contains a flowing heat transfer liquid (FHTL) in thermal communication with each canister and each compressor for cascading heat from the HTCC to the LTPC. Heat is regenerated within the LTPC by transferring heat from one compressor to another. In one embodiment the regeneration is performed by another CHTC containing another FHTL in thermal communication with each compressor. In another embodiment the HTCC powers a lower temperature ammonia water absorption circuit (LTAWAC) which contains a generator-absorber system containing the absorbent, and a condenser-evaporator-radiator system, operatively connected together. The absorbent is water or an absorbent aqueous solution. A CHTC is provided which contains a FHTL in thermal communication with the generator for cascading heat from the HTCC to the LTAWAC. Heat is regenerated within the LTAWAC by transferring heat from the generator to the absorber. The chemical composition of the chemisorbent is different than the chemical composition of the physisorbent, and the absorbent. The chemical composition of the FHTL is different than the chemisorbent, the physisorbent, the absorbent, and ammonia.

  19. Heat pump augmentation of nuclear process heat

    International Nuclear Information System (INIS)

    Koutz, S.L.

    1986-01-01

    A system is described for increasing the temperature of a working fluid heated by a nuclear reactor. The system consists of: a high temperature gas cooled nuclear reactor having a core and a primary cooling loop through which a coolant is circulated so as to undergo an increase in temperature, a closed secondary loop having a working fluid therein, the cooling and secondary loops having cooperative association with an intermediate heat exchanger adapted to effect transfer of heat from the coolant to the working fluid as the working fluid passes through the intermediate heat exchanger, a heat pump connected in the secondary loop and including a turbine and a compressor through which the working fluid passes so that the working fluid undergoes an increase in temperature as it passes through the compressor, a process loop including a process chamber adapted to receive a process fluid therein, the process chamber being connected in circuit with the secondary loop so as to receive the working fluid from the compressor and transfer heat from the working fluid to the process fluid, a heat exchanger for heating the working fluid connected to the process loop for receiving heat therefrom and for transferring heat to the secondary loop prior to the working fluid passing through the compressor, the secondary loop being operative to pass the working fluid from the process chamber to the turbine so as to effect driving relation thereof, a steam generator operatively associated with the secondary loop so as to receive the working fluid from the turbine, and a steam loop having a feedwater supply and connected in circuit with the steam generator so that feedwater passing through the steam loop is heated by the steam generator, the steam loop being connected in circuit with the process chamber and adapted to pass steam to the process chamber with the process fluid

  20. Development of an electro-osmotic heat pump

    NARCIS (Netherlands)

    Stoel, J.P. van der; Oostendorp, P.A.

    1999-01-01

    The majority of heat pumps and refrigerators is driven by a mechanical compressor. Although they usually function very well, the search for new and in some cases better heat pumping concepts continues. One of the topics in this field is the development of an electro-osmotic heat pump. As each

  1. Rotary magnetic heat pump

    Science.gov (United States)

    Kirol, L.D.

    1987-02-11

    A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation. 5 figs.

  2. Advances in heat pump systems: A review

    International Nuclear Information System (INIS)

    Chua, K.J.; Chou, S.K.; Yang, W.M.

    2010-01-01

    Heat pump systems offer economical alternatives of recovering heat from different sources for use in various industrial, commercial and residential applications. As the cost of energy continues to rise, it becomes imperative to save energy and improve overall energy efficiency. In this light, the heat pump becomes a key component in an energy recovery system with great potential for energy saving. Improving heat pump performance, reliability, and its environmental impact has been an ongoing concern. Recent progresses in heat pump systems have centred upon advanced cycle designs for both heat- and work-actuated systems, improved cycle components (including choice of working fluid), and exploiting utilisation in a wider range of applications. For the heat pump to be an economical proposition, continuous efforts need to be devoted to improving its performance and reliability while discovering novel applications. Some recent research efforts have markedly improved the energy efficiency of heat pump. For example, the incorporation of a heat-driven ejector to the heat pump has improved system efficiency by more than 20%. Additionally, the development of better compressor technology has the potential to reduce energy consumption of heat pump systems by as much as 80%. The evolution of new hybrid systems has also enabled the heat pump to perform efficiently with wider applications. For example, incorporating a desiccant to a heat pump cycle allowed better humidity and temperature controls with achievable COP as high as 6. This review paper provides an update on recent developments in heat pump systems, and is intended to be a 'one-stop' archive of known practical heat pump solutions. The paper, broadly divided into three main sections, begins with a review of the various methods of enhancing the performance of heat pumps. This is followed by a review of the major hybrid heat pump systems suitable for application with various heat sources. Lastly, the paper presents novel

  3. Regenerative Hydride Heat Pump

    Science.gov (United States)

    Jones, Jack A.

    1992-01-01

    Hydride heat pump features regenerative heating and single circulation loop. Counterflow heat exchangers accommodate different temperatures of FeTi and LaNi4.7Al0.3 subloops. Heating scheme increases efficiency.

  4. Malone-brayton cycle engine/heat pump

    Science.gov (United States)

    Gilmour, Thomas A.

    1994-07-01

    A machine, such as a heat pump, and having an all liquid heat exchange fluid, operates over a more nearly ideal thermodynamic cycle by adjustment of the proportionality of the volumetric capacities of a compressor and an expander to approximate the proportionality of the densities of the liquid heat exchange fluid at the chosen working pressures. Preferred forms of a unit including both the compressor and the expander on a common shaft employs difference in axial lengths of rotary pumps of the gear or vane type to achieve the adjustment of volumetric capacity. Adjustment of the heat pump system for differing heat sink conditions preferably employs variable compression ratio pumps.

  5. Correct integration of compressors and expanders in above ambient heat exchanger networks

    International Nuclear Information System (INIS)

    Fu, Chao; Gundersen, Truls

    2016-01-01

    The Appropriate Placement concept (also referred to as Correct Integration) is fundamental in Pinch Analysis. The placement of reactors, distillation columns, evaporators, heat pumps and heat engines in heat exchanger networks is well established. The placement of pressure changing equipment such as compressors and expanders is complex and less discussed in literature. A major difficulty is that both heat and work (not only heat) are involved. The integration of compressors and expanders separately into heat exchanger networks was recently investigated. A set of theorems were proposed for assisting the design. The problem is even more complex when both compressors and expanders are to be integrated. An important concern is about the sequence of integration with compressors and expanders, i.e. should compressors or expanders be implemented first. This problem is studied and a new theorem is formulated related to the Correct Integration of both compressors and expanders in above ambient heat exchanger networks. The objective is to minimize exergy consumption for the integrated processes. A graphical design methodology is developed for the integration of compressors and expanders into heat exchanger networks above ambient temperature. - Highlights: • The correct integration of compressors and expanders in heat exchanger networks is studied. • A theorem is proposed for heat integration between compressors and expanders. • The total exergy consumption is minimized.

  6. Solar-powered Rankine heat pump for heating and cooling

    Science.gov (United States)

    Rousseau, J.

    1978-01-01

    The design, operation and performance of a familyy of solar heating and cooling systems are discussed. The systems feature a reversible heat pump operating with R-11 as the working fluid and using a motor-driven centrifugal compressor. In the cooling mode, solar energy provides the heat source for a Rankine power loop. The system is operational with heat source temperatures ranging from 155 to 220 F; the estimated coefficient of performance is 0.7. In the heating mode, the vapor-cycle heat pump processes solar energy collected at low temperatures (40 to 80 F). The speed of the compressor can be adjusted so that the heat pump capacity matches the load, allowing a seasonal coefficient of performance of about 8 to be attained.

  7. Development of a hybrid chemical/mechanical heat pump

    Science.gov (United States)

    Grzyll, Lawrence R.; Silvestri, John J.; Scaringe, Robert P.

    1991-01-01

    The authors present the current development status of a hybrid chemical/mechanical heat pump for low-lift applications. The heat pump provides electronics cooling by evaporating a pure refrigerant from an absorbent/refrigerant mixture in a generator/cold plate. The current development focused on evaluation of absorbent/refrigerant pairs, corrosion testing, pump and compressor design, and electronic cold plate design. Two cycle configurations were considered. The first configuration utilized a standard mechanical compressor and pump. The second cycle configuration investigated pumps and compressors with non-moving parts. An innovative generator/cold plate design is also presented. The development to date shows that this cycle has about the same performance as standard vapor compression heat pumps with standard refrigerants but may have some performance and reliability advantages over vapor compression heat pumps.

  8. Fuzzy multivariable control of domestic heat pumps

    International Nuclear Information System (INIS)

    Underwood, C.P.

    2015-01-01

    Poor control has been identified as one of the reasons why recent field trials of domestic heat pumps in the UK have produced disappointing results. Most of the technology in use today uses a thermostatically-controlled fixed speed compressor with a mechanical expansion device. This article investigates improved control of these heat pumps through the design and evaluation of a new multivariable fuzzy logic control system utilising a variable speed compressor drive with capacity control linked through to evaporator superheat control. A new dynamic thermal model of a domestic heat pump validated using experimental data forms the basis of the work. The proposed control system is evaluated using median and extreme daily heating demand profiles for a typical UK house compared with a basic thermostatically-controlled alternative. Results show good tracking of the heating temperature and superheat control variables, reduced cycling and an improvement in performance averaging 20%. - Highlights: • A new dynamic model of a domestic heat pump is developed and validated. • A new multivariable fuzzy logic heat pump control system is developed/reported. • The fuzzy controller regulates both plant capacity and evaporator superheat degree. • Thermal buffer storage is also considered as well as compressor cycling. • The new controller shows good variable tracking and a reduction in energy of 20%.

  9. Absorption heat pump system

    Science.gov (United States)

    Grossman, G.

    1982-06-16

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  10. Heat flows in piston compressors

    NARCIS (Netherlands)

    Lekic, U.; Kok, J.B.W.; van der Meer, T.H.; van Steenhoven, A.A.; Stoffels, G.G.M.

    2008-01-01

    Piston compressors are widely used in today's engineering applications. Among the most important applications is however the compression of thermal carrier gas in Rankine and Stirling refrigeration cycles. Fluids used in these cycles are commonly Ammonia and Helium. In order to improve the design

  11. Champagne Heat Pump

    Science.gov (United States)

    Jones, Jack A.

    2004-01-01

    The term champagne heat pump denotes a developmental heat pump that exploits a cycle of absorption and desorption of carbon dioxide in an alcohol or other organic liquid. Whereas most heat pumps in common use in the United States are energized by mechanical compression, the champagne heat pump is energized by heating. The concept of heat pumps based on other absorption cycles energized by heat has been understood for years, but some of these heat pumps are outlawed in many areas because of the potential hazards posed by leakage of working fluids. For example, in the case of the water/ammonia cycle, there are potential hazards of toxicity and flammability. The organic-liquid/carbon dioxide absorption/desorption cycle of the champagne heat pump is similar to the water/ammonia cycle, but carbon dioxide is nontoxic and environmentally benign, and one can choose an alcohol or other organic liquid that is also relatively nontoxic and environmentally benign. Two candidate nonalcohol organic liquids are isobutyl acetate and amyl acetate. Although alcohols and many other organic liquids are flammable, they present little or no flammability hazard in the champagne heat pump because only the nonflammable carbon dioxide component of the refrigerant mixture is circulated to the evaporator and condenser heat exchangers, which are the only components of the heat pump in direct contact with air in habitable spaces.

  12. Measured Performance of a Low Temperature Air Source Heat Pump

    Energy Technology Data Exchange (ETDEWEB)

    R.K. Johnson

    2013-09-01

    A 4-ton Low Temperature Heat Pump (LTHP) manufactured by Hallowell International was installed in a residence near New Haven, Connecticut and monitored over two winters of operation. After attending to some significant service issues, the heat pump operated as designed. This report should be considered a review of the dual compressor “boosted heat pump” technology. The Low Temperature Heat Pump system operates with four increasing levels of capacity (heat output) as the outdoor temperature drops.

  13. HEAT PUMP USING SUBSOIL WATERS AS LOW TEMPERATURE HEAT SOURCE

    Directory of Open Access Journals (Sweden)

    Denysova Alla

    2015-08-01

    Full Text Available One of the basic directions of perfection of heat supply systems is the tendency of transition to the low-temperature heating systems based on application of heat pump installations. We consider heat supply system with heat pump installations using subsoil waters. Numerical simulation of thermal processes in the elements of a single-stage and double-stage heat pump systems has been worked out. Values of depths of wells and their quantity, necessary for effective operation of the offered installations, and values of capacity of electric water pumps for subsoil waters unit are calculated. Capacity of compressor electric drive and coefficient of performance of heat pump for the conditions of the city of Odessa are presented.

  14. Indoor unit for electric heat pump

    Science.gov (United States)

    Draper, R.; Lackey, R.S.; Fagan, T.J. Jr.; Veyo, S.E.; Humphrey, J.R.

    1984-05-22

    An indoor unit for an electric heat pump is provided in modular form including a refrigeration module, an air mover module, and a resistance heat package module, the refrigeration module including all of the indoor refrigerant circuit components including the compressor in a space adjacent the heat exchanger, the modules being adapted to be connected to air flow communication in several different ways as shown to accommodate placement of the unit in various orientations. 9 figs.

  15. Energy efficient ammonia heat pump. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Madsen, Claus; Pijnenburg, B.; Schumann Grindorf, H. [Danish Technological Institute, Aarhus (Denmark); Christensen, Rolf [Alfa Laval, Lund (Sweden); Rasmussen, Bjarne D. [Grundfos, Bjerringbro (Denmark); Gram, S.; Fredborg Jakobsen, D. [Svedan Industri Koeleanlaeg, Greve (Denmark)

    2013-09-15

    The report describes the development of a highly effective ammonia heat pump. Heat pumps play an increasingly important role in the search for more effective use of energy in our society. Highly efficient heat pumps can contribute to reduced energy consumption and improved economy of the systems which they are a part of. An ammonia heat pump with high pressure reciprocating compressor and a novel split condenser was developed to prove potential for efficiency optimization. The split of the condenser in two parts can be utilized to obtain smaller temperature approaches and, thereby, improved heat pump efficiency at an equal heat exchanger area, when compared to the traditional solution with separate condenser and de-superheater. The split condenser design can also be exploited for heating a significant share of the total heating capacity to a temperature far above the condensing temperature. Furthermore, the prototype heat pump was equipped with a plate type evaporator combined with a U-turn separator with a minimum liquid height and a liquid pump with the purpose of creating optimum liquid circulation ratio for the highest possible heat transfer coefficients at the lowest possible pressure drop. The test results successfully confirmed the highest possible efficiency; a COP of 4.3 was obtained when heating water from 40 deg. C to 80 deg. C while operating with evaporating/condensing temperatures of +20 deg C/+73 deg C. (Author)

  16. Design manual. [High temperature heat pump for heat recovery system

    Energy Technology Data Exchange (ETDEWEB)

    Burch, T.E.; Chancellor, P.D.; Dyer, D.F.; Maples, G.

    1980-01-01

    The design and performance of a waste heat recovery system which utilizes a high temperature heat pump and which is intended for use in those industries incorporating indirect drying processes are described. It is estimated that use of this heat recovery system in the paper, pulp, and textile industries in the US could save 3.9 x 10/sup 14/ Btu/yr. Information is included on over all and component design for the heat pump system, comparison of prime movers for powering the compressor, control equipment, and system economics. (LCL)

  17. Resorption heat pump

    International Nuclear Information System (INIS)

    Vasiliev, L.L.; Mishkinis, D.A.; Antukh, A.A.; Kulakov, A.G.; Vasiliev, L.L.

    2004-01-01

    Resorption processes are based on at least two solid-sorption reactors application. The most favorable situation for the resorption heat pumps is the case, when the presence of a liquid phase is impossible. From simple case--two reactors with two salts to complicated system with two salts + active carbon fiber (fabric) and two branch of the heat pump acting out of phase to produce heat and cold simultaneously, this is the topic of this research program

  18. 垂直轴风力机直驱热泵压缩机匹配特性研究%Study on matching characteristics of vertical axis wind turbine direct-driven heat pump compressor/

    Institute of Scientific and Technical Information of China (English)

    赵斌; 马海鹏; 汪建文; 钟晓晖

    2017-01-01

    风能供热是多风寒冷地区,减少雾霾有效途径之一.针对垂直轴风力机直驱热泵压缩机系统,分析300W垂直轴风力机输出和开启式涡旋压缩机输入扭矩及功率特性,研究不同风速下垂直轴风力机与开启式涡旋压缩机特殊匹配特性.根据效率理论分析匹配特性,系统选型设计时垂直轴风力机输出功率应略高于压缩机所需输入功率,通过选择合理变速比,获得垂直轴风力机设计参数,实现系统按额定工况运行.为风能供热系统参数选型提供理论参考.%Wind energy heating was one of the effective ways to reduce haze in windy cold area.In view of the vertical axis wind turbines direct-drive heat pump compressor system,torque and power characteristics of the 300W vertical axis wind turbine output and opening scroll compressor input were analyzed.Special matching characteristics of opening scroll compressor was studied with the vertical axis wind turbines under different wind speed.In the selection design of the system,results showed that the efficiency of the device should be considered.The vertical axis wind turbine output power should be slightly higher than the compressor power input.Required vertical axis wind turbine design parameters could be obtained by selecting reasonable speed ratio,in order to make the system working in the rated conditions.Research results could lay theoretical basis for the parameter selection of wind energy heating system.

  19. Gas fired heat pumps

    International Nuclear Information System (INIS)

    Seifert, M.

    2006-01-01

    The condensing gas boiler is now state of the art and there is no more room for improvement in performance, technically speaking. The next logical step to improve the overall efficiency is to exploit ambient heat in combination with the primary source of energy, natural gas. That means using natural-gas driven heat pumps and gas-fired heat pumps. Based on this, the Swiss Gas Industry decided to set up a practical test programme enjoying a high priority. The aim of the project 'Gas-fired heat pump practical test' is to assess by field tests the characteristics and performance of the foreign serial heat pumps currently on the market and to prepare and promote the introduction on the market place of this sustainable natural-gas technology. (author)

  20. Heat pump system with selective space cooling

    Science.gov (United States)

    Pendergrass, J.C.

    1997-05-13

    A reversible heat pump provides multiple heating and cooling modes and includes a compressor, an evaporator and heat exchanger all interconnected and charged with refrigerant fluid. The heat exchanger includes tanks connected in series to the water supply and a condenser feed line with heat transfer sections connected in counterflow relationship. The heat pump has an accumulator and suction line for the refrigerant fluid upstream of the compressor. Sub-cool transfer tubes associated with the accumulator/suction line reclaim a portion of the heat from the heat exchanger. A reversing valve switches between heating/cooling modes. A first bypass is operative to direct the refrigerant fluid around the sub-cool transfer tubes in the space cooling only mode and during which an expansion valve is utilized upstream of the evaporator/indoor coil. A second bypass is provided around the expansion valve. A programmable microprocessor activates the first bypass in the cooling only mode and deactivates the second bypass, and vice-versa in the multiple heating modes for said heat exchanger. In the heating modes, the evaporator may include an auxiliary outdoor coil for direct supplemental heat dissipation into ambient air. In the multiple heating modes, the condensed refrigerant fluid is regulated by a flow control valve. 4 figs.

  1. Absorption heat pumps

    International Nuclear Information System (INIS)

    Formigoni, C.

    1998-01-01

    A brief description of the difference between a compression and an absorption heat pump is made, and the reasons why absorption systems have spread lately are given. Studies and projects recently started in the field of absorption heat pumps, as well as criteria usually followed in project development are described. An outline (performance targets, basic components) of a project on a water/air absorption heat pump, running on natural gas or LPG, is given. The project was developed by the Robur Group as an evolution of a water absorption refrigerator operating with a water/ammonia solution, which has been on the market for a long time and recently innovated. Finally, a list of the main energy and cost advantages deriving from the use of absorption heat pumps is made [it

  2. New and future heat pump technologies

    Science.gov (United States)

    Creswick, F. A.

    It is not possible to say for sure what future heat pumps will look like, but there are some interesting possibilities. In the next five years, we are likely to see US heat pumps with two kinds of innovations: capacity modulation and charge control. Capacity modulation will be accomplished by variable-speed compressor motors. The objective of charge control is to keep the refrigerant charge in the system where it belongs for best performance; there are probably many ways to accomplish this. Charge control will improve efficiency and durability; capacity modulation will further improve efficiency and comfort. The Stirling cycle heat pump has several interesting advantages, but it is farther out in time. At present, we don't know how to make it as efficient as the conventional vapor-compression heat pump. Electric utility people should be aware that major advances are being made in gas-fired heat pumps which could provide strong competition in the future. However, even a gas-fired heat pump has a substantial auxiliary electric power requirement. The resources needed to develop advanced heat pumps are substantial and foreign competition will be intense. It will be important for utilities, manufacturers, and the federal government to work in close cooperation.

  3. Heat pump planning handbook

    CERN Document Server

    Bonin, Jürgen

    2015-01-01

    The Heat Pump Planning Handbook contains practical information and guidance on the design, planning and selection of heat pump systems, allowing engineers, designers, architects and construction specialists to compare a number of different systems and options. Including detailed descriptions of components and their functions and reflecting the current state of technology this guide contains sample tasks and solutions as well as new model calculations and planning evaluations. Also economic factors and alternative energy sources are covered, which are essential at a time of rising heat costs. T

  4. Acoustical heat pumping engine

    Science.gov (United States)

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1983-08-16

    The disclosure is directed to an acoustical heat pumping engine without moving seals. A tubular housing holds a compressible fluid capable of supporting an acoustical standing wave. An acoustical driver is disposed at one end of the housing and the other end is capped. A second thermodynamic medium is disposed in the housing near to but spaced from the capped end. Heat is pumped along the second thermodynamic medium toward the capped end as a consequence both of the pressure oscillation due to the driver and imperfect thermal contact between the fluid and the second thermodynamic medium. 2 figs.

  5. Geothermal heat pump performance

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, Tonya L.; Lienau, Paul J.

    1995-01-01

    Geothermal heat pump systems are a promising new energy technology that has shown rapid increase in usage over the past ten years in the United States. These systems offer substantial benefits to customers and utilities in energy (kWh) and demand (kW) savings. The purpose of this study was to determine what existing monitored data was available mainly from electric utilities on heat pump performance, energy savings and demand reduction for residential, school, and commercial building applications. Information was developed on the status of electric utility marketing programs, barriers to market penetration, incentive programs, and benefits.

  6. Geothermal Heat Pump Performance

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, Tonya L.; Lienau, Paul J.

    1995-01-01

    Geothermal heat pump systems are a promising new energy technology that has shown rapid increase in usage over the past ten years in the United States. These systems offer substantial benefits to customers and utilities in energy (kWh) and demand (kW) savings. The purpose of this study was to determine what existing monitored data was available mainly from electric utilities on heat pump performance, energy savings and demand reduction for residential, school, and commercial building applications. Information was developed on the status of electric utility marketing programs, barriers to market penetration, incentive programs, and benefits.

  7. Centrifugal Compressor Unit-based Heat Energy Recovery at Compressor Stations

    Directory of Open Access Journals (Sweden)

    V. S. Shadrin

    2016-01-01

    Full Text Available About 95% of the electricity consumed by air compressor stations around the world, is transformed into thermal energy, which is making its considerable contribution to global warming. The present article dwells on the re-use (recovery of energy expended for air compression.The article presents the energy analysis of the process of compressing air from the point of view of compressor drive energy conversion into heat energy. The temperature level of excess heat energy has been estimated in terms of a potential to find the ways of recovery of generated heat. It is shown that the temperature level formed by thermal energy depends on the degree of air compression and the number of stages of the compressor.Analysis of technical characteristics of modern equipment from leading manufacturers, as well as projects of the latest air compressor stations have shown that there are two directions for the recovery of heat energy arising from the air compression: Resolving technological problems of compressor units. The use of the excess heat generation to meet the technology objectives of the enterprise. This article examines the schematic diagrams of compressor units to implement the idea of heat recovery compression to solve technological problems: Heating of the air in the suction line during operation of the compressor station in winter conditions. Using compression heat to regenerate the adsorbent in the dryer of compressed air.The article gives an equity assessment of considered solutions in the total amount of heat energy of compressor station. Presented in the present work, the analysis aims to outline the main vectors of technological solutions that reduce negative impacts of heat generation of compressor stations on the environment and creating the potential for reuse of energy, i.e. its recovery.

  8. Heat driven pulse pump

    Science.gov (United States)

    Benner, Steve M (Inventor); Martins, Mario S. (Inventor)

    2000-01-01

    A heat driven pulse pump includes a chamber having an inlet port, an outlet port, two check valves, a wick, and a heater. The chamber may include a plurality of grooves inside wall of the chamber. When heated within the chamber, a liquid to be pumped vaporizes and creates pressure head that expels the liquid through the outlet port. As liquid separating means, the wick, disposed within the chamber, is to allow, when saturated with the liquid, the passage of only liquid being forced by the pressure head in the chamber, preventing the vapor from exiting from the chamber through the outlet port. A plurality of grooves along the inside surface wall of the chamber can sustain the liquid, which is amount enough to produce vapor for the pressure head in the chamber. With only two simple moving parts, two check valves, the heat driven pulse pump can effectively function over the long lifetimes without maintenance or replacement. For continuous flow of the liquid to be pumped a plurality of pumps may be connected in parallel.

  9. Solar-powered turbocompressor heat pump system

    Science.gov (United States)

    Landerman, A.M.; Biancardi, F.R.; Melikian, G.; Meader, M.D.; Kepler, C.E.; Anderson, T.J.; Sitler, J.W.

    1982-08-12

    The turbocompressor comprises a power turbine and a compressor turbine having respective rotors and on a common shaft, rotatably supported by bearings. A first working fluid is supplied by a power loop and is expanded in the turbine. A second working fluid is compressed in the turbine and is circulated in a heat pump loop. A lubricant is mixed with the second working fluid but is excluded from the first working fluid. The bearings are cooled and lubricated by a system which circulates the second working fluid and the intermixed lubricant through the bearings. Such system includes a pump, a thermostatic expansion valve for expanding the working fluid into the space between the bearings, and a return conduit system for withdrawing the expanded working fluid after it passes through the bearings and for returning the working fluid to the evaporator. A shaft seal excludes the lubricant from the power turbine. The power loop includes a float operable by liquid working fluid in the condenser for controlling a recirculation valve so as to maintain a minimum liquid level in the condenser, while causing a feed pump to pump most of the working fluid into the vapor generator. The heat pump compressor loop includes a float in the condenser for operating and expansion valve to maintain a minimum liquid working fluid level in the condenser while causing most of the working fluid to be expanded into the evaporator.

  10. Vapor-Compression Heat Pumps for Operation Aboard Spacecraft

    Science.gov (United States)

    Ruemmele, Warren; Ungar, Eugene; Cornwell, John

    2006-01-01

    Vapor-compression heat pumps (including both refrigerators and heat pumps) of a proposed type would be capable of operating in microgravity and would be safe to use in enclosed environments like those of spacecraft. The designs of these pumps would incorporate modifications of, and additions to, vapor-compression cycles of heat pumps now used in normal Earth gravitation, in order to ensure efficiency and reliability during all phases of operation, including startup, shutdown, nominal continuous operation, and peak operation. Features of such a design might include any or all of the following: (1) Configuring the compressor, condenser, evaporator, valves, capillary tubes (if any), and controls to function in microgravitation; (2) Selection of a working fluid that satisfies thermodynamic requirements and is safe to use in a closed crew compartment; (3) Incorporation of a solenoid valve and/or a check valve to prevent influx of liquid to the compressor upon startup (such influx could damage the compressor); (4) Use of a diode heat pipe between the cold volume and the evaporator to limit the influx of liquid to the compressor upon startup; and (5) Use of a heated block to vaporize any liquid that arrives at the compressor inlet.

  11. Geothermal heat pump

    International Nuclear Information System (INIS)

    Bruno, R.; Tinti, F.

    2009-01-01

    In recent years, for several types of buildings and users, the choice of conditioning by heat pump and low enthalpy geothermal reservoir has been increasing in the Italian market. In fact, such systems are efficient in terms of energy and consumption, they can perform, even at the same time, both functions, heating and cooling and they are environmentally friendly, because they do not produce local emissions. This article will introduce the technology and will focus on critical points of a geothermal field design, from actual practice, to future perspectives for the geo exchanger improvement. Finally, the article presents a best practice case in Bologna district, with an economic analysis showing the convenience of a geothermal heat pump. Conclusions of the real benefits of these plants can be drawn: compared to a non-negligible initial cost, the investment has a pay-back period almost always acceptable, usually less than 10 years. [it

  12. Device for overlapping of a column of pump compressor pipes

    Energy Technology Data Exchange (ETDEWEB)

    Sharafutdinov, I.G.; Akhmerov, M.N.; Asadullin, Kh.F.; Prokopov, O.I.

    1980-02-16

    A device is proposed for automatic overlapping of pump compressor pipes of gushing petroleum and gas wells when losses occur near the well. The objective of the invention is to increase efficiency of the overlapping of the pipe column by recharging the device directly at the hole without disassembling the head equipment. This objective is achieved as follows. The device is equipped with elastic spacers located in the channels of a ring. They are mounted with the possibility of interaction with ball catches. A drawing and description of the device are given.

  13. A new Wankel-type compressor and vacuum pump

    Science.gov (United States)

    Garside, D. W.

    2017-08-01

    When the Wankel principles were first published in the early 1950s most of the initial work was aimed at developing a compressor . At that time many of the characteristics appeared to promise a superior machine than hitherto known. However, all the early designs resulted in a high value for the minimum clearance volume (CV) and this problem was never overcome. Knowledge now gained from the development and manufacture of the Wankel engine has enabled the evolution of a new compressor concept where the rotor flank, radially very close-fitting over its central area, provides gas sealing with the housing bore. The rotor has an increased radial clearance towards the apices which makes the machine practical to manufacture. The ‘nesting’ of the rotor flank with the housing bore at the end of the exhaust stroke results in an extremely small CV. This machine promises to possess an exceptional combination of all the attributes which are important in achieving high energy efficiency in positive-displacement compressors and vacuum pumps: - near-zero CV - low mechanical friction losses - low internal gas leakage (assisted via oil flooding) - high volumetric efficiency. In addition it is compact, lightweight, vibration-free, consists of few components, and can be built in any chamber size. The Paper discusses the features and characteristics of the design.

  14. Jet operated heat pump

    International Nuclear Information System (INIS)

    Collard, T.H.

    1982-01-01

    A jet pump system is shown that utilizes waste heat to provide heating and/or cooling. Waste heat diverted through a boiler causes a refrigerant to evaporate and expand for supersonic discharge through a nozzle thereby creating a vacuum in an evaporator coil. The vacuum draws the refrigerant in a gaseous state into a condensing section of a jet pump along with refrigerant from a reservoir in a subcooled liquid form. This causes condensation of the gas in a condensation section of the jet pump, while moving at constant velocity. The change in momentum of the fluid overcomes the system high side pressure. Some of the condensate is cooled by a subcooler. Refrigerant in a subcooled liquid state from the subcooler is fed back into the evaporator and the condensing section with an adequate supply being insured by the reservoir. The motive portion of the condensate is returned to the boiler sans subcooling. By proper valving start-up is insured, as well as the ability to switch from heating to cooling

  15. Heat pumps are a dream

    Energy Technology Data Exchange (ETDEWEB)

    1981-12-01

    The fact that heat pumps do not achieve what their manufacturers promise in costs efficiency has been realized by the market. In 1981 the sales of heat pumps decreased by 50% of the 1980 market. Public utilities give the reason as economic, since fuel oil is too cheap. The author refutes this argument and presents arguments against heat pumps.

  16. Development of a nonazeotropic heat pump for crew hygiene water heating

    Science.gov (United States)

    Walker, David H.; Deming, Glenn I.

    1991-01-01

    A heat pump system is currently under development to produce hot water for crew hygiene on future manned space missions. The heat pump uses waste heat sources and a nonazeotropic working fluid in a highly efficient cycle. The potential benefits include a reduction in peak power draw from 2 to 5 kW for electric cartridge heaters to just more than 100 W for the heat pump. As part of the heat pump development project, a unique high efficiency compressor was developed to maintain lubrication in a zero-gravity environment.

  17. Heat Pumps With Direct Expansion Solar Collectors

    Science.gov (United States)

    Ito, Sadasuke

    In this paper, the studies of heat pump systems using solar collectors as the evaporators, which have been done so far by reserchers, are reviwed. Usually, a solar collector without any cover is preferable to one with ac over because of the necessity of absorbing heat from the ambient air when the intensity of the solar energy on the collector is not enough. The performance of the collector depends on its area and the intensity of the convective heat transfer on the surface. Fins are fixed on the backside of the collector-surface or on the tube in which the refrigerant flows in order to increase the convective heat transfer. For the purpose of using a heat pump efficiently throughout year, a compressor with variable capacity is applied. The solar assisted heat pump can be used for air conditioning at night during the summer. Only a few groups of people have studied cooling by using solar assisted heat pump systems. In Japan, a kind of system for hot water supply has been produced commercially in a company and a kind of system for air conditioning has been installed in buildings commercially by another company.

  18. Modelling of Ammonia Heat Pump Desuperheaters

    DEFF Research Database (Denmark)

    Christensen, Stefan Wuust; Elmegaard, Brian; Markussen, Wiebke Brix

    2015-01-01

    This paper presents a study of modelling desuperheating in ammonia heat pumps. Focus is on the temperature profile of the superheated refrigerant. Typically, the surface area of a heat exchanger is estimated using the Log Mean Temperature Difference (LMTD) method. The assumption of this method...... is that the specific heat is constant throughout the temperature glide of the refrigerant in the heat exchanger. However, considering ammonia as refrigerant, the LMTD method does not give accurate results due to significant variations of the specific heat. By comparing the actual temperature profiles from a one....... The area of the heat exchanger can be increased or the condensation temperature can be raised to achieve the same temperature difference for the discretized model as for the LMTD. This would affect the compressor work, hence the COP of the system. Furthermore, for higher condenser pressure, and thus higher...

  19. History of heat pumps - Swiss contributions and international milestones

    Energy Technology Data Exchange (ETDEWEB)

    Zogg, M

    2008-05-15

    Compared to conventional boilers, heating by heat pumps cuts down fuel consumption and CO{sub 2} emissions to about 50%. Compared to electric resistance heating, the energy consumption is even reduced up to 80%. Therefore, the impressive market penetration growth of heat pumps will continue. Swiss pioneers were the first to realize functioning vapour recompression plants. The first European heat pumps were realized in Switzerland. To date it remains one of the heat pump champions. Swiss pioneering work in the development of borehole heat exchangers, sewage heat recovery, oil free piston compressors and turbo compressors is well known. The biggest heat pump ever built comes from Switzerland. Although there is a fairly comprehensive natural gas distribution grid, 75% of the new single-family homes built in Switzerland are currently heated by heat pumps. This paper presents some of the highlights of this success story focusing on Swiss developments and relating them to the international milestones. In order to indicate the direction in which the future development might go to, some recent Swiss research projects are presented as well. (author)

  20. Heating Performance Analysis of a Geothermal Heat Pump Working with Different Zeotropic and Azeotropic Mixtures

    OpenAIRE

    Robert Bedoić; Veljko Filipan

    2018-01-01

    The aim of the paper is to examine the possibility of application of the spreadsheet calculator and Reference Fluid Thermodynamic and Transport Properties database to a thermodynamic process. The heating process of a real soil-to-water heat pump, including heat transfer in the borehole heat exchanger has been analysed. How the changes of condensing temperature, at constant evaporating temperature, influence the following: heating capacity, compressor effective power, heat supplied to evaporat...

  1. Heat pump assisted drying of agricultural produce-an overview.

    Science.gov (United States)

    Patel, Krishna Kumar; Kar, Abhijit

    2012-04-01

    This review paper included the recent progress made in heat pump assisted drying, its principle, mechanism and efficiency, type and its application for drying of agricultural produce. Heat pump assisted drying provides a controllable drying environment (temperature and humidity) for better products quality at low energy consumption. It has remarkable future prospects and revolutionaries ability. The heat pump system consists of an expansion valve, two heat exchangers (evaporator and condenser), and a compressor, which are connected by using copper tubes. In this paper we also provided a review discussion on different type of heat pump assisted drying system ready for remarkable and commercial use in different type of food industries. Here we also have given some major advantage and disadvantage of heat pump assisted drying.

  2. Ammonia and Carbon Dioxide Heat Pumps for Heat Recovery in Industry

    OpenAIRE

    Brix, Wiebke; Christensen, Stefan W.; Markussen, Michael M.; Reinholdt, Lars; Elmegaard, Brian

    2012-01-01

    This paper presents a generic, numerical study of high temperature heat pumps for waste heat recovery in industry using ammonia and carbon dioxide as refrigerants. A study of compressors available on the market today, gives a possible application range of the heat pumps in terms of temperatures. Calculations of cycle performances are performed using a reference cycle for both ammonia and carbon dioxide as refrigerant. For each cycle a thorough sensitivity analysis reveals that the forward and...

  3. Lunar base heat pump, phase 1

    Science.gov (United States)

    Goldman, Jeffrey H.; Harvey, A.; Lovell, T.; Walker, David H.

    1994-01-01

    analyzed in ideal single and two-stage thermodynamic cycles. Top candidates were analyzed assuming realistic component limits and system pressure drops, and were evaluated for other considerations such as safety, environmental impact, and commercial availability. A maximum coefficient of performance (COP) of 56 percent of the Carnot ideal was achievable for a three-stage CFC-11 cycle operating under the flight conditions above. The program was completed by defining a control scheme and by researching and selecting the major components, compressor and heat exchangers, that could be used to implement the thermodynamic cycle selected. Special attention was paid to using similar technologies for the SIRF and flight heat pumps resulting in the commercially available equivalent of the flight unit. A package concept was generated for the components selected and mass and volume estimated.

  4. Dual-stroke heat pump field performance

    Science.gov (United States)

    Veyo, S. E.

    1984-11-01

    Two nearly identical proprototype systems, each employing a unique dual-stroke compressor, were built and tested. One was installed in an occupied residence in Jeannette, Pa. It has provided the heating and cooling required from that time to the present. The system has functioned without failure of any prototypical advanced components, although early field experience did suffer from deficiencies in the software for the breadboard micro processor control system. Analysis of field performance data indicates a heating performance factor (HSPF) of 8.13 Stu/Wa, and a cooling energy efficiency (SEER) of 8.35 Scu/Wh. Data indicate that the beat pump is oversized for the test house since the observed lower balance point is 3 F whereas 17 F La optimum. Oversizing coupled with the use of resistance heat ot maintain delivered air temperature warmer than 90 F results in the consumption of more resistance heat than expected, more unit cycling, and therefore lower than expected energy efficiency. Our analysis indicates that with optimal mixing the dual stroke heat pump will yield as HSFF 30% better than a single capacity heat pump representative of high efficiency units in the market place today for the observed weather profile.

  5. Solar assisted heat pump on air collectors: A simulation tool

    Energy Technology Data Exchange (ETDEWEB)

    Karagiorgas, Michalis; Galatis, Kostas; Tsagouri, Manolis [Department of Mechanical Engineering Educators, ASPETE, N. Iraklio, GR 14121 (Greece); Tsoutsos, Theocharis [Environmental Engineering Dept., Technical University of Crete, Technical University Campus, GR 73100, Chania (Greece); Botzios-Valaskakis, Aristotelis [Centre for Renewable Energy Sources (CRES), 19th km Marathon Ave., GR 19001, Pikermi (Greece)

    2010-01-15

    The heating system of the bioclimatic building of the Greek National Centre for Renewable Energy Sources (CRES) comprises two heating plants: the first one includes an air source heat pump, Solar Air Collectors (SACs) and a heat distribution system (comprising a fan coil unit network); the second one is, mainly, a geothermal heat pump unit to cover the ground floor thermal needs. The SAC configuration as well as the fraction of the building heating load covered by the heating plant are assessed in two operation modes; the direct (hot air from the collectors is supplied directly to the heated space) and the indirect mode (warm air from the SAC or its mixture with ambient air is not supplied directly to the heated space but indirectly into the evaporator of the air source heat pump). The technique of the indirect mode of heating aims at maximizing the efficiency of the SAC, saving electrical power consumed by the compressor of the heat pump, and therefore, at optimizing the coefficient of performance (COP) of the heat pump due to the increased intake of ambient thermal energy by means of the SAC. Results are given for three research objectives: assessment of the heat pump efficiency whether in direct or indirect heating mode; Assessment of the overall heating plant efficiency on a daily or hourly basis; Assessment of the credibility of the suggested simulation model TSAGAIR by comparing its results with the TRNSYS ones. (author)

  6. High temperature thermoacoustic heat pump

    Energy Technology Data Exchange (ETDEWEB)

    Tijani, H.; Spoelstra, S. [Energy research Centre of the Netherlands, 1755 ZG Petten (Netherlands)

    2012-06-15

    Thermoacoustic technology can provide new types of heat pumps that can be deployed in different applications. A thermoacoustic heat pumps can for example be applied in dwellings to generate cooling or heating. Typically, space and water heating makes up about 60% of domestics and offices energy consumption. The application of heat pumps can contribute to achieve energy savings and environmental benefits by reducing CO2 and NOx emissions. This paper presents the study of a laboratory scale thermoacoustic-Stirling heat pump operating between 10C and 80C which can be applied in domestics and offices. The heat pump is driven by a thermoacoustic-Stirling engine. The experimental results show that the heat pump pumps 250 W of heat at 60C at a drive ratio of 3.6% and 200 W at 80C at a drive ratio of 3.5 %. The performance for both cases is about 40% of the Carnot performance. The design, construction, and performance measurements of the heat pump will be presented and discussed.

  7. High Temperature Thermoacoustic Heat Pump

    Energy Technology Data Exchange (ETDEWEB)

    Tijani, H.; Spoelstra, S. [ECN Biomass and Energy Efficiency, Petten (Netherlands)

    2012-07-15

    Thermoacoustic technology can provide new types of heat pumps that can be deployed in different applications. Thermoacoustic heat pumps can for example be applied in dwellings to generate cooling or heating. Typically, space and water heating makes up about 60% of domestic and office energy consumption. The application of heat pumps can contribute to achieve energy savings and environmental benefits by reducing CO2 and NOx emissions. This paper presents the study of a laboratory scale thermoacoustic-Stirling heat pump operating between 10C and 80C which can be applied in domestics and offices. The heat pump is driven by a thermoacoustic-Stirling engine. The experimental results show that the heat pump pumps 250 W of heat at 60C at a drive ratio of 3.6 % and 200 W at 80C at a drive ratio of 3.5 %. The performance for both cases is about 40% of the Carnot performance. The design, construction, and performance measurements of the heat pump will be presented and discussed.

  8. Hydride heat pump with heat regenerator

    Science.gov (United States)

    Jones, Jack A. (Inventor)

    1991-01-01

    A regenerative hydride heat pump process and system is provided which can regenerate a high percentage of the sensible heat of the system. A series of at least four canisters containing a lower temperature performing hydride and a series of at least four canisters containing a higher temperature performing hydride is provided. Each canister contains a heat conductive passageway through which a heat transfer fluid is circulated so that sensible heat is regenerated. The process and system are useful for air conditioning rooms, providing room heat in the winter or for hot water heating throughout the year, and, in general, for pumping heat from a lower temperature to a higher temperature.

  9. Optimal installation of two heat pumps in a hotel

    Energy Technology Data Exchange (ETDEWEB)

    Groos, J

    1980-03-01

    In December 1979 a heat pump was brought into service in the hotel and restaurant 'Haus Baehner' in Niederfischbach. With the help of two heat pumps heat recovering measures are being achieved. Here it is a matter of water-to-water heat pumps, which work with, as the case may be, two compressors. These heat pumps are available in seven power categories between 8.2 and 63 kW rated power. The refrigerating circuit works with the safety-refrigerant R12 so that the removal of heat from a -15/sup 0/C medium is still possible. On the warm side, maximum temperatures up to 70/sup 0/C are possible.

  10. Heat pumps in district heating networks

    DEFF Research Database (Denmark)

    Ommen, Torben Schmidt; Markussen, Wiebke Brix; Elmegaard, Brian

    constraints limit the power plants. Efficient heat pumps can be used to decouple the constraints of electricity and heat production, while maintaining the high energy efficiency needed to match the politically agreed carbon emission goals. The requirements in terms of COP, location, capacity and economy...... and strategic planning in the energy sector. The paper presents a case study of optimal implementation of heat pumps in the present energy system of the Copenhagen area. By introduction of the correct capacity of heat pumps, a 1,6 % reduction in fuel consumption for electricity and heat production can...

  11. High temperature industrial heat pumps

    Energy Technology Data Exchange (ETDEWEB)

    Berghmans, J. (Louvain Univ., Heverlee (Belgium). Inst. Mechanica)

    1990-01-01

    The present report intends to describe the state of the art of high temperature industrial heat pumps. A description is given of present systems on the market. In addition the research and development efforts on this subject are described. Compression (open as well as closed cycle) systems, as well as absorption heat pumps (including transformers), are considered. This state of the art description is based upon literature studies performed by a team of researchers from the Katholieke Universiteit Leuven, Belgium. The research team also analysed the economics of heat pumps of different types under the present economic conditions. The heat pumps are compared with conventional heating systems. This analysis was performed in order to evaluate the present condition of the heat pump in the European industry.

  12. Heat Pumps in Subarctic Areas

    DEFF Research Database (Denmark)

    Atlason, Reynir Smari; Oddsson, Gudmundur Valur; Unnthorsson, Runar

    2017-01-01

    Geothermal heat pumps use the temperature difference between inside and outside areas to modify a refrigerant, either for heating or cooling. Doing so can lower the need for external heating energy for a household to some extent. The eventual impact depends on various factors, such as the external...... source for heating or cooling and the temperature difference. The use of geothermal heat pumps, and eventual benefits has not been studied in the context of frigid areas, such as in Iceland. In Iceland, only remote areas do not have access to district heating from geothermal energy where households may...... therefor benefit from using geothermal heat pumps. It is the intent of this study to explore the observed benefits of using geothermal heat pumps in Iceland, both financially and energetically. This study further elaborates on incentives provided by the Icelandic government. Real data was gathered from...

  13. Numerical simulation of magnetic heat pumps

    International Nuclear Information System (INIS)

    Smaili, A.; Masson, C.

    2002-01-01

    This article presents a numerical method for performance predictions of magnetic heat pump (MHP) devices. Such devices consist primarily of a magnetic regenerator (solid refrigerant media) and circulating fluid. Unlike conventional gas-cycles, MHP devices function according to thermomagnetic cycles which do not require neither compressor nor expander. In this paper, the flow field throughout the regenerator is described by continuity and unsteady incompressible Navier-Stokes equations. The heat transfer between fluid and solid is introduced by considering the corresponding energy equations. The proposed mathematical model has been solved using a control volume finite element method. The fully implicit scheme is used for time discretization. Simulation results including heating capacity and coefficient of performance are presented for a given MHP cycle. Mainly, the effects of cycle frequency, mass flow rate and the magnetic regenerator mass are investigated. (author)

  14. Comparison of heat transfer models for reciprocating compressor

    International Nuclear Information System (INIS)

    Tuhovcak, J.; Hejcik, J.; Jicha, M.

    2016-01-01

    Highlights: • Comparison of integral heat transfer models. • Influence of heat transfer model on volumetric and isentropic efficiency. • Various gases used as working fluid. - Abstract: One of the main factors affecting the efficiency of reciprocating compressor is heat transfer inside the cylinder. An analysis of heat transfer could be done using numerical models or integral correlations developed mainly from approaches used in combustion engines; however their accuracy is not completely verified due to the complicated experimental set up. The goal of this paper is to analyse the effect of heat transfer on compressor efficiency. Various integral correlations were compared for different compressor settings and fluids. CoolProp library was used in the code to obtain the properties of common coolants and gases. A comparison was done using the in-house code developed in Matlab, based on 1st Law of Thermodynamics.

  15. Operation and repair of compressors and pumps. Ekspluatatsiya i remont kompressorov i nasosov. Sprav. posobiye

    Energy Technology Data Exchange (ETDEWEB)

    Durov, V.S.; Chernyak, Ya.S.; Rakhmilevich, Z.Z.

    1980-01-01

    Information is given on the design, function and characteristics of the most widespread types of compressors and pumps (organization of their maintenance and repair, checking of their working ability, etc.) used in the petrochemical industry.

  16. Refrigeration system with a compressor-pump unit and a liquid-injection desuperheating line

    Science.gov (United States)

    Gaul, Christopher J.

    2001-01-01

    The refrigeration system includes a compressor-pump unit and/or a liquid-injection assembly. The refrigeration system is a vapor-compression refrigeration system that includes an expansion device, an evaporator, a compressor, a condenser, and a liquid pump between the condenser and the expansion device. The liquid pump improves efficiency of the refrigeration system by increasing the pressure of, thus subcooling, the liquid refrigerant delivered from the condenser to the expansion device. The liquid pump and the compressor are driven by a single driving device and, in this regard, are coupled to a single shaft of a driving device, such as a belt-drive, an engine, or an electric motor. While the driving device may be separately contained, in a preferred embodiment, the liquid pump, the compressor, and the driving device (i.e., an electric motor) are contained within a single sealable housing having pump and driving device cooling paths to subcool liquid refrigerant discharged from the liquid pump and to control the operating temperature of the driving device. In another aspect of the present invention, a liquid injection assembly is included in a refrigeration system to divert liquid refrigerant from the discharge of a liquid pressure amplification pump to a compressor discharge pathway within a compressor housing to desuperheat refrigerant vapor to the saturation point within the compressor housing. The liquid injection assembly includes a liquid injection pipe with a control valve to meter the volume of diverted liquid refrigerant. The liquid injection assembly may also include a feedback controller with a microprocessor responsive to a pressure sensor and a temperature sensor both positioned between the compressor to operate the control valve to maintain the refrigerant at or near saturation.

  17. Improved reliability of residential heat pumps; Foerbaettrad driftsaekerhet hos villavaermepumpar

    Energy Technology Data Exchange (ETDEWEB)

    Haglund Stignor, Caroline; Larsson, Kristin; Jensen, Sara; Larsson, Johan; Berg, Johan; Lidbom, Peter; Rolfsman, Lennart

    2012-07-01

    manufacturer and that he/she surveys parameters indicating if satisfying operating conditions are maintained. Another example that could improve the reliability is that the heat pump system is regularly checked by a professional heat pump service technician. Components with sometimes poor quality can for example be temperature sensors, valves and circulations pumps. Compressor failures are often due to the fact that the heat pump of some reason, operates too much outside or close to the usage limits for the compressor and are not necessarily due to poor quality of the component itself.

  18. Improved reliability of residential heat pumps; Foerbaettrad driftsaekerhet hos villavaermepumpar

    Energy Technology Data Exchange (ETDEWEB)

    Haglund Stignor, Caroline; Larsson, Kristin; Jensen, Sara; Larsson, Johan; Berg, Johan; Lidbom, Peter; Rolfsman, Lennart

    2012-07-01

    manufacturer and that he/she surveys parameters indicating if satisfying operating conditions are maintained. Another example that could improve the reliability is that the heat pump system is regularly checked by a professional heat pump service technician. Components with sometimes poor quality can for example be temperature sensors, valves and circulations pumps. Compressor failures are often due to the fact that the heat pump of some reason, operates too much outside or close to the usage limits for the compressor and are not necessarily due to poor quality of the component itself.

  19. Magnetic heat pump flow director

    Science.gov (United States)

    Howard, Frank S. (Inventor)

    1995-01-01

    A fluid flow director is disclosed. The director comprises a handle body and combed-teeth extending from one side of the body. The body can be formed of a clear plastic such as acrylic. The director can be used with heat exchangers such as a magnetic heat pump and can minimize the undesired mixing of fluid flows. The types of heat exchangers can encompass both heat pumps and refrigerators. The director can adjust the fluid flow of liquid or gas along desired flow directions. A method of applying the flow director within a magnetic heat pump application is also disclosed where the comb-teeth portions of the director are inserted into the fluid flow paths of the heat pump.

  20. Heat pumps in western Switzerland

    International Nuclear Information System (INIS)

    Freymond, A.

    2003-01-01

    The past ten years have seen an extraordinary expansion of heat-pump market figures in the western (French speaking) part of Switzerland. Today, more than 14,000 units are in operation. This corresponds to about 18% of all the machines installed in the whole country, compared to only 10 to 12% ten years ago. This success illustrates the considerable know-how accumulated by the leading trade and industry during these years. It is also due to the promotional program 'Energy 2000' of the Swiss Federal Department of Energy that included the heat pump as a renewable energy source. Already in 1986, the Swiss Federal Institute of Technology in Lausanne was equipped with a huge heat pump system comprising two electrically driven heat pumps of 3.5 MW thermal power each. The heat source is water drawn from the lake of Geneva at a depth of 70 meters. An annual coefficient of performance of 4.5 has been obtained since the commissioning of the plant. However, most heat pump installations are located in single-family dwellings. The preferred heat source is geothermal heat, using borehole heat exchangers and an intermediate heat transfer fluid. The average coefficient of performance of these installations has been increased from 2.5 in 1995 to 3.1 in 2002

  1. Seasonal performance evaluation of electric air-to-water heat pump systems

    International Nuclear Information System (INIS)

    Dongellini, Matteo; Naldi, Claudia; Morini, Gian Luca

    2015-01-01

    A numerical model for the calculation of the seasonal performance of different kinds of electric air-to-water heat pumps is presented. The model is based on the procedure suggested by the European standard EN 14825 and the Italian standard UNI/TS 11300-4, which specify the guidelines for calculation of the seasonal performance of heat pumps during the heating season (SCOP), the cooling season (SEER) and for the production of domestic hot water. In order to consider the variation of outdoor conditions the developed model employs the bin-method. Different procedures are proposed in the paper for the analysis of the seasonal performance of mono-compressor, multi-compressor and variable speed compressor air-to-water heat pumps. The numerical results show the influence of the effective operating mode of the heat pumps on the SCOP value and put in evidence the impact of the design rules on the seasonal energy consumption of these devices. The study also highlights the importance of the correct sizing of the heat pump in order to obtain high seasonal efficiency and it shows that, for a fixed thermal load, inverter-driven and multi-compressor heat pumps have to be slightly oversized with respect to mono-compressor ones in order to obtain for the same building the highest SCOP values. - Highlights: • A model for the prediction of seasonal performance of HPs has been developed. • The model considers mono-compressor, multi-compressor and inverter-driven HPs. • The procedure takes into account HPs performances at partial load. • Optimization of heat pump sizing depending on its control system.

  2. Cooling and heating performances of a CO2 heat pump with the variations of operating conditions

    International Nuclear Information System (INIS)

    Baek, Chang Hyun; Lee, Eung Chan; Kang, Hun; Kim, Yong Chan; Cho, Hong Hyun

    2008-01-01

    Since operating conditions are significantly different for heating and cooling mode operations in a CO 2 heat pump system, it is difficult to optimize the performance of the CO 2 cycle. In addition, the performance of a CO 2 heat pump is very sensitive to outdoor temperature and gascooler pressure. In this study, the cooling and heating performances of a variable speed CO 2 heat pump with a twin-rotary compressor were measured and analyzed with the variations of EEV opening and compressor frequency. As a result, the cooling and heating COPs were 2.3 and 3.0, respectively, when the EEV opening was 22%. When the optimal EEV openings for heating and cooling were 28% and 16%, the cooling and heating COPs increased by 3.3% and 3.9%, respectively, over the COPs at the EEV opening of 22%. Beside, the heating performance was more sensitive to EEV opening than the cooling performance. As the compressor speed decreased by 5 Hz, the cooling COP increased by 2%, while the heating COP decreased by 8%

  3. Heat pumping in nanomechanical systems.

    Science.gov (United States)

    Chamon, Claudio; Mucciolo, Eduardo R; Arrachea, Liliana; Capaz, Rodrigo B

    2011-04-01

    We propose using a phonon pumping mechanism to transfer heat from a cold to a hot body using a propagating modulation of the medium connecting the two bodies. This phonon pump can cool nanomechanical systems without the need for active feedback. We compute the lowest temperature that this refrigerator can achieve. © 2011 American Physical Society

  4. Heat pumping in nanomechanical systems

    OpenAIRE

    Chamon, Claudio; Mucciolo, Eduardo R.; Arrachea, Liliana; Capaz, Rodrigo B.

    2010-01-01

    We propose using a phonon pumping mechanism to transfer heat from a cold to a hot body using a propagating modulation of the medium connecting the two bodies. This phonon pump can cool nanomechanical systems without the need for active feedback. We compute the lowest temperature that this refrigerator can achieve.

  5. Ammonia and Carbon Dioxide Heat Pumps for Heat Recovery in Industry

    DEFF Research Database (Denmark)

    Brix, Wiebke; Christensen, Stefan W.; Markussen, Michael M.

    2012-01-01

    . Calculations of cycle performances are performed using a reference cycle for both ammonia and carbon dioxide as refrigerant. For each cycle a thorough sensitivity analysis reveals that the forward and return temperatures of the heat sink (condenser or gas cooler) of the heat pump are most important......This paper presents a generic, numerical study of high temperature heat pumps for waste heat recovery in industry using ammonia and carbon dioxide as refrigerants. A study of compressors available on the market today, gives a possible application range of the heat pumps in terms of temperatures...... conclusion is that ammonia heat pumps are best at heat sink inlet temperatures above 28°C and CO2 is best below 24°C, independent of other parameters....

  6. Heat pumps at the maltings

    Energy Technology Data Exchange (ETDEWEB)

    1987-11-01

    Heat pumps have halved the energy costs of producing finished malt at two of the country's maltsters. The fuel-fired kilning processes described are now performed by heat pumps with considerable energy and production benefits at the maltings of J.P. Simpson and Co. (Alnwick) Ltd, in Tivetshall St Margaret, Norfolk, and of Munton and Fison Plc of Stowmarket, Suffolk. The heat pump system installed at the Station Malting of J.P. Simpson was devised by the Electricity Council Research Centre at Capenhurst near Chester. Energy cost benefits of Pound 6,000 a month are being realised at Simpsons, but there is the added benefit that the system has been designed to provide conditioned air to the germination cycle to ensure that the correct temperature is maintained throughout the year. At the Cedars factory of Munton and Fison, heat pumps were used on a trial basis for plant micropropagation and for a fish farming unit.

  7. Improving the Efficiency of the Heat Pump Control System of Carbon Di-oxide Heat Pump with Several Evaporators and Gas Coolers

    OpenAIRE

    Sit, M.L.; Juravliov, A.A.; Sit, B.M.; Timchenko, D.

    2016-01-01

    The problem of coordination of the values of the refrigerant flow through the evaporators and gas coolers of the heat pump for the simultaneous production of heat and cold is studied. The compensation of the variations of the total flow through the evaporators is implemented using the variation of the capacity of the compressor and a corresponding change in flow through the auxiliary gas cooler of the heat pump. Control system of this gas cooler is constructed using the invariance principle o...

  8. Automation of heating system with heat pump

    OpenAIRE

    Ferdin, Gašper

    2016-01-01

    Because of high prices of energy, we are upgrading our heating systems with newer, more fuel efficient heating devices. Each new device has its own control system, which operates independently from other devices in a heating system. With a relatively low investment costs in automation, we can group devices in one central control system and increase the energy efficiency of a heating system. In this project, we show how to connect an oil furnace, a sanitary heat pump, solar panels and a heat p...

  9. Residential CO{sub 2} heat pump system for combined space heating and hot water heating

    Energy Technology Data Exchange (ETDEWEB)

    Stene, Joern

    2004-02-01

    the inlet water temperature for the Dh preheating gas cooler unit. The lower the inlet temperature, the higher the Cop. The CO{sub 2} system will therefore achieve the highest COP at low city water temperatures, and when there is negligible mixing and minimum conductive heat transfer between the hot and cold water in the DHW tank during the tapping and charging periods. (5) The COP for the integrated CO{sub 2} heat pump is generally more sensitive to variations in the compressor efficiency than that of conventional brine/water-to-water heat pump systems. It is therefore of particular importance to apply a high-efficiency compressor. (6) At each operating mode and temperature programme, there will be an optimum gas cooler (high-side) pressure that leads to a maximum COP for the integrated CO{sub 2} heat pump. However, at moderate DHW temperatures, the heat pump can be operated at constant high-side pressure in all heating modes with only a minor reduction in the COP. This is favourable, since it simplifies the operation of the system and reduces the first cost. (7) During operation in the combined heating mode, the COP for the integrated CO{sub 2} heat pump may be higher than in the DHW heating mode due to similar temperature approaches at the cold outlet of the gas coolers and lower optimum high-side pressure. The higher the DHW temperature, the larger the COP difference for the operating modes. (8) The integrated CO{sub 2} heat pump system will be more complex than the state-of-the art residential heat pump systems due to the requirement for a tripartite gas cooler, extra valves and tubing for by-pass of fluids, an inverter controlled pump in the DHW circuit as well as an especially designed DHW storage tank. The application of optimum high-side pressure control will further increase the technical and operational complexity of the system. (9) Conductive heat transfer between the DHW and the cold city water in the storage tank during the tapping and charging periods

  10. Compressor with pump recycling for isotopic separation through gaseous scattering

    International Nuclear Information System (INIS)

    Plotkowiak, J.; Quillevere, H.A.

    1984-01-01

    A compressor which compresses a principal flow at low pressure and recompresses a secondary flow at medium pressure to deliver a common flow at high pressure is disclosed. The compressor includes, in addition to compression devices for the principal flow, static devices forming an induction nozzle housed in the scatterer and devices to introduce therein the secondary flow, the principal flow constituting the drive flow

  11. Effectiveness of a heat exchanger in a heat pump clothes dryer

    Science.gov (United States)

    Nasution, A. H.; Sembiring, P. G.; Ambarita, H.

    2018-02-01

    This paper deals with study on a heat pump clothes dryer coupled with a heat exchanger. The objective is to explore the effects of the heat exchanger on the performance of the heat pump dryer. The heat pump dryer consists of a vapor compression cycle and integrated with a drying room with volume 1 m3. The power of compressor is 800 Watt and the refrigerant of the cycle is R22. The heat exchanger is a flat plate type with dimensions of 400 mm × 400 mm × 400 mm. The results show the present of the heat exchanger increase the performance of the heat pump dryer. In the present experiment the COP, TP and SMER increase 15.11%, 4.81% and 58.62%, respectively. This is because the heat exchanger provides a better drying condition in the drying room with higher temperature and lower relative humidity in comparison with heat pump dryer without heat exchanger. The effectiveness of the heat exchanger is also high, it is above 50%. It is suggested to install a heat exchanger in a heat pump dryer.

  12. FOREWORD: 6th International Conference on Pumps and Fans with Compressors and Wind Turbines (ICPF2013)

    Science.gov (United States)

    Wu, Yulin; Wang, Zhengwei; Yuan, Shouqi; Shi, Weidong; Liu, Shuhong; Luo, Xingqi; Wang, Fujun

    2013-12-01

    The 6th International Conference on Pumps and Fans with Compressors and Wind Turbines (ICPF 2013) was held in Beijing, China, 19-22 September 2013, which was jointly organized by Tsinghua University and Jiangsu University. The co-organizers were Zhejiang University, Zhejiang Sci-Tech University, The State Key Laboratory of Hydroscience and Engineering, The State Key Laboratory of Automotive Safety and Energy and Beijing International Science and Technology Cooperation Base for CO2 Utilization and Reduction. The sponsor of the conference was Concepts NREC. The First International Conference on Pumps and Systems (May 1992), the Second International Conference on Pumps and Fans (October 1995), the Third International Conference on Pumps and Fans (October 1998), and the Fourth International Conference on Pumps and Fans (26-29 August 2002) were all held in Beijing and were organized by the late famous Chinese professor on fluid machinery and engineering, Professor Zuyan Mei of Tsinghua University. The conference was interrupted by the death of Professor Mei in 2003. In order to commemorate Professor Mei, the organizing committee of ICPF decided to continue organizing the conference series. The Fifth Conference on Pumps and Systems (2010 ICPF) took place in Hangzhou, Zhejiang Province, China, 18-21 October 2010, and it was jointly organized by Zhejiang University and Tsinghua University. With the development of renewable energy and new energy in China and in the world, some small types of compressor and some types of pump, as well as wind turbines are developing very fast; therefore the ICPF2013 conference included compressors and wind turbines. The theme of the conference was the application of renewable energy of pumps, compressors, fans and blowers. The content of the conference was the basic study, design and experimental study of compressors, fans, blowers and pumps; the CFD application on pumps and fans, their transient behavior, unsteady flows and multi-phase flow

  13. Efficiency of the heat pump cooperating with various heat sources in monovalent and bivalent systems

    Energy Technology Data Exchange (ETDEWEB)

    Kurpaska, S.; Latala, H. [Krakow Univ. of Agriculture, Krakow (Poland). Inst. of Agricultural Engineering and Computer Science

    2010-07-01

    This paper reported on a study that tested the efficiency of compressor heat pumps cooperating with various types of lower heat sources such as horizontal ground heat exchangers, vertical exchangers and sources operating in the bivalent system. The system for receiving energy consisted of a traditional heating system and liquid-air exchangers. The study identified a strong relationship between the heating efficiency of the analysed systems and temperature inside the structure. The study showed that the bivalent system was fully capable of meeting a heat requirement of about 1 MJ -2.

  14. Absorption-heat-pump system

    Science.gov (United States)

    Grossman, G.; Perez-Blanco, H.

    1983-06-16

    An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.

  15. Multistage quantum absorption heat pumps.

    Science.gov (United States)

    Correa, Luis A

    2014-04-01

    It is well known that heat pumps, while being all limited by the same basic thermodynamic laws, may find realization on systems as "small" and "quantum" as a three-level maser. In order to quantitatively assess how the performance of these devices scales with their size, we design generalized N-dimensional ideal heat pumps by merging N-2 elementary three-level stages. We set them to operate in the absorption chiller mode between given hot and cold baths and study their maximum achievable cooling power and the corresponding efficiency as a function of N. While the efficiency at maximum power is roughly size-independent, the power itself slightly increases with the dimension, quickly saturating to a constant. Thus, interestingly, scaling up autonomous quantum heat pumps does not render a significant enhancement beyond the optimal double-stage configuration.

  16. A regenerative elastocaloric heat pump

    DEFF Research Database (Denmark)

    Engelbrecht, Kurt; Eriksen, Dan; Dallolio, Stefano

    2016-01-01

    A large fraction of global energy use is for refrigeration and air-conditioning, which could be decarbonized if efficient renewable energy technologies could be found. Vapour-compression technology remains the most widely used system to move heat up the temperature scale after more than 100 years...... a regenerative elastocaloric heat pump that exhibits a temperature span of 15.3 K on the water side with a corresponding specific heating power up to 800 W kg−1 and maximum COP (coefficient-of-performance) values of up to 7. The efficiency and specific heating power of this device exceeds those of other devices...... based on caloric effects. These results open up the possibility of using the elastocaloric effect in various cooling and heat-pumping applications....

  17. Heating great residential units with combustion-motor heat pumps

    Energy Technology Data Exchange (ETDEWEB)

    Vossen, W

    1982-10-01

    Economic usage of combustion-motor heat pumps requires: reliable technology and delivery of the heat pump; design and operation. The heat pump must be integrated perfectly into the heating system. This contributions is based on a three-year operational experience with over 150 heat pumps used mainly in residential and administrative buildings (plus commercial buildings, swimming pools, sport centres etc.). These are heat pumps operating on the compression principle with natural gas, liquid gas, or fuel oil.

  18. The Oak Ridge Heat Pump Models: I. A Steady-State Computer Design Model of Air-to-Air Heat Pumps

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, S.K. Rice, C.K.

    1999-12-10

    The ORNL Heat Pump Design Model is a FORTRAN-IV computer program to predict the steady-state performance of conventional, vapor compression, electrically-driven, air-to-air heat pumps in both heating and cooling modes. This model is intended to serve as an analytical design tool for use by heat pump manufacturers, consulting engineers, research institutions, and universities in studies directed toward the improvement of heat pump performance. The Heat Pump Design Model allows the user to specify: system operating conditions, compressor characteristics, refrigerant flow control devices, fin-and-tube heat exchanger parameters, fan and indoor duct characteristics, and any of ten refrigerants. The model will compute: system capacity and COP (or EER), compressor and fan motor power consumptions, coil outlet air dry- and wet-bulb temperatures, air- and refrigerant-side pressure drops, a summary of the refrigerant-side states throughout the cycle, and overall compressor efficiencies and heat exchanger effectiveness. This report provides thorough documentation of how to use and/or modify the model. This is a revision of an earlier report containing miscellaneous corrections and information on availability and distribution of the model--including an interactive version.

  19. Numerical simulation and experimental investigation on suction heating of a BOG compressor

    International Nuclear Information System (INIS)

    Jia, Xiaohan; Zhao, Bin; Feng, Jianmei; Zheng, Sulu; Peng, Xueyuan

    2016-01-01

    Highlights: • An investigation focusing on suction heating of a BOG compressor is carried out. • There is frost on the cylinder cover as the compressor at lower suction temperature. • The suction and discharge flow rate decrease with rising suction temperature. • The volumetric efficiency has a maximum value with increasing suction temperature. • The temperature coefficient increased with suction temperature or rotational speed. - Abstract: One of the key components of a liquefied natural gas (LNG) receiving terminal is the boil-off gas (BOG) compressor, which is used to pump out the BOG from the LNG storage tank to ensure safety in the transportation and receiving systems. Owing to the ultra-low suction temperature, the heat exchange between the intake gas and the cylinder, piston, and cylinder cover cannot be ignored as in normal conditions. This paper presents an investigation focusing on suction heating of the BOG compressor. A finite element model with dynamic mesh was established to simulate the suction process. At the same time, a performance test rig was built to study the characteristics of the BOG compressor under low suction temperature conditions and verify the numerical model. Consequently, the results of the simulation were in good agreement with experimental results. Both results implied that the temperature of cylinder surface increased starting from the cylinder cover to the crankcase. In addition, at lower suction temperature, the temperature difference between various points on the cylinder surface and cylinder cover was much larger than that at higher suction temperature. With increasing suction temperature, the temperature coefficient increased markedly, and the difference between gas temperatures at the beginning and end of the suction process, as well as the compressor flow rate, decreased significantly; however, the volumetric efficiency increased first and then decreased. Furthermore, the temperature coefficient clearly increased

  20. Heating Performance Analysis of a Geothermal Heat Pump Working with Different Zeotropic and Azeotropic Mixtures

    Directory of Open Access Journals (Sweden)

    Robert Bedoić

    2018-06-01

    Full Text Available The aim of the paper is to examine the possibility of application of the spreadsheet calculator and Reference Fluid Thermodynamic and Transport Properties database to a thermodynamic process. The heating process of a real soil-to-water heat pump, including heat transfer in the borehole heat exchanger has been analysed. How the changes of condensing temperature, at constant evaporating temperature, influence the following: heating capacity, compressor effective power, heat supplied to evaporator, compression discharge temperature and coefficient of performance, are investigated. Also, the energy characteristics of a heat pump using different refrigerants for the same heating capacity and the same temperature regime are compared. The following refrigerants are considered: two zeotropic mixtures, R407C and R409A, a mixture with some zeotropic characteristics, R410A, and an azeotropic mixture, R507A.

  1. Recent evolutions of refrigerating machineries and heat pumps; Evolutions recentes des machines a froid et thermopompes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    This book of proceedings reports on 10 papers (or series of transparencies) concerning some recent developments about refrigerating machineries and heat pumps as used in space heating, air-conditioning and industrial refrigeration. Various aspects are developed: thermodynamic cycles, thermal performances, dimensioning, modeling, refrigerants substitution, design of flanged exchangers, compressors etc.. (J.S.)

  2. Recent evolutions of refrigerating machineries and heat pumps; Evolutions recentes des machines a froid et thermopompes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    This book of proceedings reports on 10 papers (or series of transparencies) concerning some recent developments about refrigerating machineries and heat pumps as used in space heating, air-conditioning and industrial refrigeration. Various aspects are developed: thermodynamic cycles, thermal performances, dimensioning, modeling, refrigerants substitution, design of flanged exchangers, compressors etc.. (J.S.)

  3. Improving the Efficiency of the Heat Pump Control System of Carbon Dioxide Heat Pump with Several Evaporators and Gas Coolers

    Directory of Open Access Journals (Sweden)

    Sit M.L.

    2016-12-01

    Full Text Available The problem of coordination of the values of the refrigerant flow through the evaporators and gas coolers of the heat pump for the simultaneous production of heat and cold is studied. The compensation of the variations of the total flow through the evaporators is implemented using the variation of the capacity of the compressor and a corresponding change in flow through the auxiliary gas cooler of the heat pump. Control system of this gas cooler is constructed using the invariance principle of the output value (outlet temperature of the heated agent with respect to perturbations on the control channel (the refrigerant flow through the gas cooler. Principle of dual-channel compensation of the disturbance and advancing signal on input of control valve of the refrigerant through the gas cooler is ensured. Due to proposed solution, the intensity of the disturbances on the flow of refrigerant is reduced. Due to proposed technical solution power consumed by the heat pump compressor drive under transients is decreased.

  4. Carbon Dioxide Absorption Heat Pump

    Science.gov (United States)

    Jones, Jack A. (Inventor)

    2002-01-01

    A carbon dioxide absorption heat pump cycle is disclosed using a high pressure stage and a super-critical cooling stage to provide a non-toxic system. Using carbon dioxide gas as the working fluid in the system, the present invention desorbs the CO2 from an absorbent and cools the gas in the super-critical state to deliver heat thereby. The cooled CO2 gas is then expanded thereby providing cooling and is returned to an absorber for further cycling. Strategic use of heat exchangers can increase the efficiency and performance of the system.

  5. CENTRIFUGAL COMPRESSOR EFFICIENCY CALCULATION WITH HEAT TRANSFER

    Directory of Open Access Journals (Sweden)

    Valeriu Dragan

    2017-12-01

    and manner under which the efficiency itself is calculated. The paper  presents a more robust approach to measuring efficiency, regardless of the heat transfer within the turbomachinery itself. Possible applications of the study may range from cold-start regime simulation to the optimization of inter-cooling setup or even flow angle control without mechanically actuated OGV

  6. Measured Performance of a Low Temperature Air Source Heat Pump

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, R. K. [Johnson Research LLC, Pueblo West, CO (United States)

    2013-09-01

    A 4-ton Low Temperature Heat Pump (LTHP) manufactured by Hallowell International was installed in a residence near New Haven, Connecticut and monitored over two winters of operation. After attending to some significant service issues, the heat pump operated as designed. This report should be considered a review of the dual compressor 'boosted heat pump' technology. The Low Temperature Heat Pumpsystem operates with four increasing levels of capacity (heat output) as the outdoor temperature drops. The system was shown to select capacity correctly, supplying the appropriate amount of heat to the house across the full range of outdoor temperatures. The system's Coefficient of Performance (Seasonal COP, or SCOP) over two entire winters was calculated, based on measured data, to be 3.29over the first winter and 2.68 over the second winter. A second seasonal efficiency calculation by a different method yielded a SCOP of 2.78 for the first winter and 2.83 for the second winter. This second seasonal efficiency calculation was determined by comparing measured heat pump energy use to the in situ energy use with resistance heat alone. This method is the ratio of the slopes of thedaily energy use load lines.

  7. Experimental and simulation study on the plate absorber for hybrid heat pump system

    Energy Technology Data Exchange (ETDEWEB)

    An, Seung Sun; Jung, Chung Woo; Kang, Yong Tae [Kyung Hee University, Yongin (Korea, Republic of); Kim, Min Sung; Park, Seong Ryong [KIER, Daejeon (Korea, Republic of); Kang, Chae Dong [Chonbuk National University, Jeonju (Korea, Republic of)

    2013-12-15

    This research conducts an experiment for a hybrid heat pump system, using ammonia-water as a working fluid, to obtain a hot water of about 80 .deg. C. The hybrid heat pump system is the combination of vapor compression cycle and absorption cycle to improve the performance of the heat pump system. The hybrid heat pump system uses a low temperature heat source of about 50 .deg. C from the industrial waste heat. The system consists of absorber, desorber, solution heat exchanger, oil heat exchanger, rectifier, compressor and a solution pump. Parametric analysis is carried out experimentally and numerically for the key parameters such as the capacity of the absorber, the internal pressure change. From the present experimental study, it is found that the maximum hot water temperature is obtained to be 79.33 .deg. C.

  8. A simplified heat pump model for use in solar plus heat pump system simulation studies

    DEFF Research Database (Denmark)

    Perers, Bengt; Andersen, Elsa; Nordman, Roger

    2012-01-01

    Solar plus heat pump systems are often very complex in design, with sometimes special heat pump arrangements and control. Therefore detailed heat pump models can give very slow system simulations and still not so accurate results compared to real heat pump performance in a system. The idea here...

  9. Geothermal Heat Pump Benchmarking Report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1997-01-17

    A benchmarking study was conducted on behalf of the Department of Energy to determine the critical factors in successful utility geothermal heat pump programs. A Successful program is one that has achieved significant market penetration. Successfully marketing geothermal heat pumps has presented some major challenges to the utility industry. However, select utilities have developed programs that generate significant GHP sales. This benchmarking study concludes that there are three factors critical to the success of utility GHP marking programs: (1) Top management marketing commitment; (2) An understanding of the fundamentals of marketing and business development; and (3) An aggressive competitive posture. To generate significant GHP sales, competitive market forces must by used. However, because utilities have functioned only in a regulated arena, these companies and their leaders are unschooled in competitive business practices. Therefore, a lack of experience coupled with an intrinsically non-competitive culture yields an industry environment that impedes the generation of significant GHP sales in many, but not all, utilities.

  10. Vapor Compression and Thermoelectric Heat Pump Heat Exchangers for a Condensate Distillation System: Design and Experiment

    Science.gov (United States)

    Erickson, Lisa R.; Ungar, Eugene K.

    2013-01-01

    Maximizing the reuse of wastewater while minimizing the use of consumables is critical in long duration space exploration. One of the more promising methods of reclaiming urine is the distillation/condensation process used in the cascade distillation system (CDS). This system accepts a mixture of urine and toxic stabilizing agents, heats it to vaporize the water and condenses and cools the resulting water vapor. The CDS wastewater flow requires heating and its condensate flow requires cooling. Performing the heating and cooling processes separately requires two separate units, each of which would require large amounts of electrical power. By heating the wastewater and cooling the condensate in a single heat pump unit, mass, volume, and power efficiencies can be obtained. The present work describes and compares two competing heat pump methodologies that meet the needs of the CDS: 1) a series of mini compressor vapor compression cycles and 2) a thermoelectric heat exchanger. In the paper, the system level requirements are outlined, the designs of the two heat pumps are described in detail, and the results of heat pump performance tests are provided. A summary is provided of the heat pump mass, volume and power trades and a selection recommendation is made.

  11. Industrial heat pumps for high temperatures - a pilot project; Industrielle varmepumper for hoeje temperaturer - et forprojekt

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, M. [Dansk Energi Analyse A/S, Frederiksberg (Denmark); Weel, M.; Mikkelsen, J. [Weel and Sandvig, Kgs. Lyngby (Denmark)

    2012-03-15

    This project investigates the possibility of using mass produced and inexpensive turbo compressor technology for heat pumping in the industry. The compressors are designed for the compression of air and used by the automotive industry in connection with turbo-chargers. The heat pumps are primarily intended to use water as the working medium, which in addition to having no environmental loads, is suitable for the heat pumping at temperatures above about 60 deg. C and up to about 200 deg. C, a temperature level which is considerably higher than what has previously been observed covered with heat pumping. In this project, a Danish-produced high-speed gear (Rotrex) is used, which has just been developed to said compressor technology. In cooperation with Rotrex, the modifications relevant to a standard unit were analyzed and assessed. The project identified some areas of industry where heat pumping using this technology is considered to be attractive. A pilot plant operating with steam in a total of 12 hours is demonstrated. In more than 3 hours, the pilot plant was coupled so that it delivered useful heat supply to the evaporator. The plant has during the tests worked satisfactorily, and there is no evidence of problems with leaks in the compressor shaft sealings, neither in relation to the leakage of oil or steam, which was one of the central issues to clarify with the demonstration. In the limited testing period no problems were detected that could not be immediately resolved, i.e. the transmission in the form of a belt drive with high speed from the engine to the friction gear. In the determination of the performance of the compressor during the trial operation with steam as a working medium, it is shown that the conversion efficiency are within the expected range when taking into account the uncertainties in the measurements and the calculation method. In the experiment, no measurement of steam flow through the compressor was made, because of a greatly reduced

  12. A regenerative elastocaloric heat pump

    Science.gov (United States)

    Tušek, Jaka; Engelbrecht, Kurt; Eriksen, Dan; Dall'Olio, Stefano; Tušek, Janez; Pryds, Nini

    2016-10-01

    A large fraction of global energy use is for refrigeration and air-conditioning, which could be decarbonized if efficient renewable energy technologies could be found. Vapour-compression technology remains the most widely used system to move heat up the temperature scale after more than 100 years; however, caloric-based technologies (those using the magnetocaloric, electrocaloric, barocaloric or elastocaloric effect) have recently shown a significant potential as alternatives to replace this technology due to high efficiency and the use of green solid-state refrigerants. Here, we report a regenerative elastocaloric heat pump that exhibits a temperature span of 15.3 K on the water side with a corresponding specific heating power up to 800 W kg-1 and maximum COP (coefficient-of-performance) values of up to 7. The efficiency and specific heating power of this device exceeds those of other devices based on caloric effects. These results open up the possibility of using the elastocaloric effect in various cooling and heat-pumping applications.

  13. A solar assisted heat-pump dryer and water heater

    International Nuclear Information System (INIS)

    Hawlader, M.N.A.; Chou, S.K.; Jahangeer, K.A.; Rahman, S.M.A.

    2006-01-01

    Growing concern about the depletion of conventional energy resources has provided impetus for considerable research and development in the area of alternative energy sources. A solar assisted heat pump dryer and water heater found to be one of the solutions while exploring for alternative energy sources. The heat pump system is used for drying and water heating applications with the major share of the energy derived from the sun and the ambient. The solar assisted heat pump dryer and water heater has been designed, fabricated and tested. The performance of the system has been investigated under the meteorological conditions of Singapore. The system consists of a variable speed reciprocating compressor, evaporator-collector, storage tank, air cooled condenser, auxiliary heater, blower, dryer, dehumidifier, and air collector. The drying medium used is air and the drying chamber is configured to carry out batch drying of good grains. A water tank connected in series with the air cooled condenser delivers hot water for domestic applications. The water tank also ensures complete condensation of the refrigerant vapour. A simulation program is developed using Fortran language to evaluate the performance of the system and the influence of different variables. The performance indices considered to evaluate the performance of the system are: Solar Fraction (SF), Coefficient of Performance (COP) and Specific Moisture Extraction Rate (SMER). A COP value of 7.5 for a compressor speed of 1800 rpm was observed. Maximum collector efficiencies of 0.86 and 0.81 have been found for evaporator-collector and air collector, respectively. A value of the SMER of 0.79 has been obtained for a load of 20 kg and a compressor speed of 1200 rpm

  14. Geothermal source heat pump performance for a greenhouse heating system: an experimental study

    Directory of Open Access Journals (Sweden)

    Alexandros Sotirios Anifantis

    2016-09-01

    Full Text Available Greenhouses play a significant function in the modern agriculture economy even if require great amount of energy for heating systems. An interesting solution to alleviate the energy costs and environmental problems may be represented by the use of geothermal energy. The aim of this paper, based on measured experimental data, such as the inside greenhouse temperature and the heat pump performance (input and output temperatures of the working fluid, electric consumption, was the evaluation of the suitability of low enthalpy geothermal heat sources for agricultural needs such as greenhouses heating. The study was carried out at the experimental farm of the University of Bari, where a greenhouse was arranged with a heating system connected to a ground-source heat pump (GSHP, which had to cover the thermal energy request. The experimental results of this survey highlight the capability of the geothermal heat source to ensue thermal conditions suitable for cultivation in greenhouses even if the compressor inside the heat pump have operated continuously in a fluctuating state without ever reaching the steady condition. Probably, to increase the performance of the heat pump and then its coefficient of performance within GSHP systems for heating greenhouses, it is important to analyse and maximise the power conductivity of the greenhouse heating system, before to design an expensive borehole ground exchanger. Nevertheless, according to the experimental data obtained, the GSHP systems are effective, efficient and environmental friendly and may be useful to supply the heating energy demand of greenhouses.

  15. Fuel savings with conventional hot water space heating systems by incorporating a natural gas powered heat pump. Preliminary project: Development of heat pump technology

    Science.gov (United States)

    Vanheyden, L.; Evertz, E.

    1980-12-01

    Compression type air/water heat pumps were developed for domestic heating systems rated at 20 to 150 kW. The heat pump is driven either by a reciprocating piston or rotary piston engine modified to operate on natural gas. Particular features of natural gas engines as prime movers, such as waste heat recovery and variable speed, are stressed. Two systems suitable for heat pump operation were selected from among five different mass produced car engines and were modified to incorporate reciprocating piston compressor pairs. The refrigerants used are R 12 and R 22. Test rig data transferred to field conditions show that the fuel consumption of conventional boilers can be reduced by 50% and more by the installation of engine driven heat pumps. Pilot heat pumps based on a 1,600 cc reciprocating piston engine were built for heating four two-family houses. Pilot pump operation confirms test rig findings. The service life of rotary piston and reciprocating piston engines was investigated. The tests reveal characteristic curves for reciprocating piston engines and include exhaust composition measurements.

  16. Geothermal heat pumps - Trends and comparisons

    Energy Technology Data Exchange (ETDEWEB)

    Lund, John W

    1989-01-01

    Heat pumps are used where geothermal water or ground temperatures are only slightly above normal, generally 50 to 90 deg. F. Conventional geothermal heating (and cooling) systems are not economically efficient at these temperatures. Heat pumps, at these temperatures, can provide space heating and cooling, and with a desuperheater, domestic hot water. Two basic heat pump systems are available, air-source and water- or ground-source. Water- and ground-coupled heat pumps, referred to as geothermal heat pumps (GHP), have several advantages over air-source heat pumps. These are: (1) they consume about 33% less annual energy, (2) they tap the earth or groundwater, a more stable energy source than air, (3) they do not require supplemental heat during extreme high or low outside temperatures, (4) they use less refrigerant (freon), and (5) they have a simpler design and consequently less maintenance.

  17. Numerical routine for magnetic heat pump cascading

    DEFF Research Database (Denmark)

    Filonenko, Konstantin; Lei, Tian; Engelbrecht, Kurt

    Heat pumps use low-temperature heat absorbed from the energy source to create temperature gradient (TG) across the energy sink. Magnetic heat pumps (MHP) can perform this function through operating active magnetic regeneration (AMR) cycle. For building heating, TGs of up to a few K might...

  18. The influence of heat sink temperature on the seasonal efficiency of shallow geothermal heat pumps

    Science.gov (United States)

    Pełka, Grzegorz; Luboń, Wojciech; Sowiżdżał, Anna; Malik, Daniel

    2017-11-01

    Geothermal heat pumps, also known as ground source heat pumps (GSHP), are the most efficient heating and cooling technology utilized nowadays. In the AGH-UST Educational and Research Laboratory of Renewable Energy Sources and Energy Saving in Miękinia, shallow geothermal heat is utilized for heating. In the article, the seasonal efficiency of two geothermal heat pump systems are described during the 2014/2015 heating season, defined as the period between 1st October 2014 and 30th April 2015. The first system has 10.9 kW heating capacity (according to European Standard EN 14511 B0W35) and extracts heat from three vertical geothermal loops at a depth of 80m each. During the heating season, tests warmed up the buffer to 40°C. The second system has a 17.03 kW heating capacity and extracts heat from three vertical geothermal loops at a depth of 100 m each, and the temperature of the buffer was 50°C. During the entire heating season, the water temperatures of the buffers was constant. Seasonal performance factors were calculated, defined as the quotient of heat delivered by a heat pump to the system and the sum of electricity consumed by the compressor, source pump, sink pump and controller of heat pumps. The measurements and calculations give the following results: - The first system was supplied with 13 857 kWh/a of heat and consumed 3 388 kWh/a electricity. The SPF was 4.09 and the average temperature of outlet water from heat pump was 40.8°C, and the average temperature of brine flows into the evaporator was 3.7 °C; - The second system was supplied with 12 545 kWh/a of heat and consumed 3 874 kWh/a electricity. The SPF was 3.24 and the average temperature of outlet water from heat pump was 51.6°C, and the average temperature of brine flows into the evaporator was 5.3°C. To summarize, the data shown above presents the real SPF of the two systems. It will be significant in helping to predict the SPF of objects which will be equipped with ground source heat pumps.

  19. Experimental Study on Compression/Absorption High-Temperature Hybrid Heat Pump with Natural Refrigerant Mixture

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji Young; Park, Seong Ryong; Baik, Young Jin; Chang, Ki Chang; Ra, Ho Sang; Kim, Min Sung [Korea Institute of Energy Research, Daejeon (Korea, Republic of); Kim, Yong Chan [Korea University, Seoul (Korea, Republic of)

    2011-12-15

    This research concerns the development of a compression/absorption high-temperature hybrid heat pump that uses a natural refrigerant mixture. Heat pumps based on the compression/absorption cycle offer various advantages over conventional heat pumps based on the vapor compression cycle, such as large temperature glide, temperature lift, flexible operating range, and capacity control. In this study, a lab-scale prototype hybrid heat pump was constructed with a two-stage compressor, absorber, desorber, desuperheater, solution heat exchanger, solution pump, liquid/vapor separator, and rectifier as the main components. The hybrid heat pump system operated at 10-kW-class heating capacity producing hot water whose temperature was more than 90 .deg. C when the heat source and sink temperatures were 50 .deg. C. Experiments with various NH{sub 3}/H{sub 2}O mass fractions and compressor/pump circulation ratios were performed on the system. From the study, the system performance was optimized at a specific NH{sub 3} concentration.

  20. WEXA: exergy analysis for increasing the efficiency of air/water heat pumps - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Gasser, L.; Wellig, B.; Hilfiker, K.

    2008-04-15

    This comprehensive final report for the Swiss Federal Office of Energy (SFOE) presents the results of a study at the made by the Engineering and Architecture department at the Lucerne University of Applied Sciences and Arts. The subject of the WEXA study (Waermepumpen-Exergie-Analyse - heat pump exergy analysis) is the analysis of the operation of air/water heat-pumps using exergy analysis methods. The basic thermodynamics of heating systems using heat-pumps is discussed. The exergy analyses and exergy balances for the various components and processes of an air/water heat-pump are presented and discussed. Comparisons are presented for heat-pumps with on/off and continuous control systems for their compressors and fans. The paper is concluded with a collection of appendices on the subject.

  1. Theoretical analysis of the dynamic interactions of vapor compression heat pumps

    Energy Technology Data Exchange (ETDEWEB)

    MacArthur, J W

    1984-01-01

    A detailed mathematical model of vapor compression heat pumps is described. Model derivations of the various heat pump components are given. The component models include the condenser, evaporator, accumulator, expansion device, and compressor. Details of the modeling techniques are presented, as is the solution methodology. Preliminary simulation results are also illustrated. The model developed predicts the spatial values of temperature and enthalpy as functions of time for the two heat exchangers. The temperatures and enthalpies in the accumulator, compressor and expansion device are modeled in lumped-parameter fashion. Pressure responses are determined by using continuity satisfying models for both the condenser and evaporator. The discussion of the solution methodology describes the combined implicit/explicit integration formulation that is used to solve the governing equations. The summary provides a list of future work anticipated in the area of dynamic heat pump modeling.

  2. Flexible and stable heat energy recovery from municipal wastewater treatment plants using a fixed-inverter hybrid heat pump system

    International Nuclear Information System (INIS)

    Chae, Kyu-Jung; Ren, Xianghao

    2016-01-01

    Highlights: • Specially designed fixed-inverter hybrid heat pump system was developed. • Hybrid operation performed better at part loads than single inverter operation. • The applied heat pump can work stably over a wide range of heat load variations. • Heat energy potential of treated effluent was better than influent. • The heat pump’s COP from the field test was 4.06 for heating and 3.64 for cooling. - Abstract: Among many options to improve energy self-sufficiency in sewage treatment plants, heat extraction using a heat pump holds great promise, since wastewater contains considerable amounts of thermal energy. The actual heat energy demand at municipal wastewater treatment plants (WWTPs) varies widely with time; however, the heat pumps typically installed in WWTPs are of the on/off controlled fixed-speed type, thus mostly run intermittently at severe part-load conditions with poor efficiency. To solve this mismatch, a specially designed, fixed-inverter hybrid heat pump system incorporating a fixed-speed compressor and an inverter-driven, variable-speed compressor was developed and tested in a real WWTP. In this hybrid configuration, to improve load response and energy efficiency, the base-heat load was covered by the fixed-speed compressor consuming relatively less energy than the variable-speed type at nominal power, and the remaining varying load was handled by the inverter compressor which exhibits a high load-match function while consuming relatively greater energy. The heat pump system developed reliably extracted heat from the treated effluent as a heat source for heating and cooling purposes throughout the year, and actively responded to the load changes with a high measured coefficient of performance (COP) of 4.06 for heating and 3.64 for cooling. Moreover, this hybrid operation yielded a performance up to 15.04% better on part loads than the single inverter operation, suggesting its effectiveness for improving annual energy saving when

  3. ENERGY SUPPLY OF COMMERTIAL GREENHOUSE WITH THE GAS DRIVEN HEAT PUMP part II

    Directory of Open Access Journals (Sweden)

    Sit M.L.

    2013-12-01

    Full Text Available In this article a scheme of connection of heat exchanger for utilization of heat of flue gases to evaporator is proposed. In proposed scheme is ensured the minimum power of ventilator for air’s feeding to the evaporator of heat pump and compensation of pulsations of temperature of flue gases and pressure of ventilator. It is shown how to optimize parameters of heat exchanger in conditions of minimum of dissipation of energy with utilization of value of entransy. It is elaborated a scheme of coordinated control system of hydraulic transmissions, that transfers power on compressor of heat pump and electrical generator.

  4. Smart Grid enabled heat pumps

    DEFF Research Database (Denmark)

    Carmo, Carolina; Detlefsen, Nina; Nielsen, Mads Pagh

    2014-01-01

    The transition towards a 100 % fossil-free energy system, while achieving extreme penetration levels of intermittent wind and solar power in electricity generation, requires demand-side technologies that are smart (intermittency-friendly) and efficient. The integration of Smart Grid enabling...... with an empirical study in order to achieve a number of recommendations with respect to technology concepts and control strategies that would allow residential vapor-compression heat pumps to support large-scale integration of intermittent renewables. The analysis is based on data gathered over a period of up to 3...

  5. Magnetocaloric heat pump device, a heating or cooling system and a magnetocaloric heat pump assembly

    DEFF Research Database (Denmark)

    2014-01-01

    The invention provides a magnetocaloric heat pump device, comprising a magnetocaloric bed; a magnetic field source, the magnetocaloric bed and the magnetic field source being arranged to move relative to each other so as to generate a magnetocaloric refrigeration cycle within the heat pump, wherein...

  6. Theoretical energy and exergy analyses of solar assisted heat pump space heating system

    Directory of Open Access Journals (Sweden)

    Atmaca Ibrahim

    2014-01-01

    Full Text Available Due to use of alternative energy sources and energy efficient operation, heat pumps come into prominence in recent years. Especially in solar-assisted heat pumps, sizing the required system is difficult and arduous task in order to provide optimum working conditions. Therefore, in this study solar assisted indirect expanded heat pump space heating system is simulated and the results of the simulation are compared with available experimental data in the literature in order to present reliability of the model. Solar radiation values in the selected region are estimated with the simulation. The case study is applied and simulation results are given for Antalya, Turkey. Collector type and storage tank capacity effects on the consumed power of the compressor, COP of the heat pump and the overall system are estimated with the simulation, depending on the radiation data, collector surface area and the heating capacity of the space. Exergy analysis is also performed with the simulation and irreversibility, improvement potentials and exergy efficiencies of the heat pump and system components are estimated.

  7. Ground Source Heat Pump in Heating System with Electronics Monitoring

    Directory of Open Access Journals (Sweden)

    NEAMŢU Ovidiu

    2013-10-01

    Full Text Available The monitoring system is implemented for a ground coupled heat pump in heating/ system. The borehole heat exchangers – which are 150 m long - are filled with a mixture of water and ethilene glycol calledbrine. Metering and monitoring energy consumption is achieved for: heat pump, circulation pumps, additional electrical heating, hot air ventilation systems, control systems with sensors: analog and smart sensors. Instantaneous values are stored in a local computer.

  8. A review on opportunities for the development of heat pump drying systems in South Africa

    Directory of Open Access Journals (Sweden)

    Thomas Kivevele

    2014-05-01

    Full Text Available Recently, it has been discovered that heat pump drying is an efficient method of drying for drying industries. Heat pumps deliver more heat during the drying process than the work input to the compressor. Heat pump drying is a more advanced method than the traditional South African industrial and agricultural drying methods, such as direct/indirect sunlight, wood burning, fossil fuel burning, electrical heating and diesel engine heating. Heat pump dryers provide high energy efficiency with controllable temperature, air flow and air humidity and have significant energy-saving potential. In the last decade the market for heat pump systems for water heating and space cooling/heating has grown in South Africa, but the development of heat pumps for industrial and agricultural drying is very slow. As a result of high increases in fossil fuel prices and electricity in South Africa, as well as the problem of CO2 emissions, green energy, energy saving and energy efficiency are imperative. The development of heat pump drying systems in South Africa is an efficient way to solve energy problems in drying applications as this technology is still in its infancy. We review studies on heat pump drying and compare the methods therein with the most common methods of drying in South Africa.

  9. ENERGY STAR Certified Geothermal Heat Pumps

    Science.gov (United States)

    Certified models meet all ENERGY STAR requirements as listed in the Version 3.0 ENERGY STAR Program Requirements for Geothermal Heat Pumps that are effective as of January 1, 2012. A detailed listing of key efficiency criteria are available at http://www.energystar.gov/index.cfm?c=geo_heat.pr_crit_geo_heat_pumps

  10. Experimental Investigation on The Electromagnetic Clutch Water pump and Pneumatic Compressor for Improving the Efficiency of an Engine

    Science.gov (United States)

    Kumarasubramanian, R.; Xavier, Goldwin; Nishanthi, W. Mary; Rajasekar, R.

    2017-05-01

    Considering the fuel crises today many work and research were conducted to reduce the fuel consumption of the internal combustion engine. The fuel consumption of an internal combustion engine can be relatively reduced by use of the electromagnetic clutch water pump and pneumatic compressor. Normally in an engine, the water pump is driven by the crankshaft, with an aid of belt, for the circulation of the water for the cooling process. The circulation of coolant is resisted by the thermostat valve, while the temperature inside the coolant jacket of the engine is below 375K the thermostat is closed only above 375K it tends to open. But water pump run continuously even when thermostat is closed. In pneumatic braking system, pneumatic or air compressor purpose is to compress the air and stored into the storage tank for the brake operation. When the air pressure of the storage tanks gets increases above its storage capacity pressure is regulated by governor, by passing them to atmosphere. Such unnecessary work of this water pump and air compressor can be minimized by use of the electromagnetic clutch water pump and air compressor. The European Driving Cycle is used to evaluate the performance of this water pump and air compressor when used in an engine. The result shows that the fuel economy of the engine while using electromagnetic water pump and pneumatic compressor were improved by 8.0% compared with conventional types which already exist. The application of these electromagnetic water pump and pneumatic compressor are expected to contribute for the improvement of engine performance because of their effect in reduction of the rate of fuel consumption.

  11. A review of magnetic heat pump technology

    International Nuclear Information System (INIS)

    Barclay, J.A.

    1990-01-01

    The area of technology classified as heat pumps generally refers to refrigerators, heat pumps and heat engines. This review is restricted to the literature on magnetic refrigerators and magnetic heat pumps which are referred to interchangeably. Significant progress has been made on the development of engineering prototypes of cryogenic, nonregenerative magnetic refrigerators utilizing conductive heat transfer in the 0.1 K to 20 K temperature range. Advances have also been made in analysis of regenerative magnetic refrigerators and heat pumps utilizing the active magnetic regeneration (AMR) concept. Units based on AMR are being modeled, designed and/or built to operate in various temperature ranges including 1.8-4.5 K, 4-15 K, 15-85 K, and 270-320 K. The near room temperature units have been scaled to 50 kW as both refrigerators and heat pumps. The progress of magnetic refrigeration over the last three years is summarized and discussed

  12. Heat pump heating with heat pumps driven by combustion engines or turbines

    Energy Technology Data Exchange (ETDEWEB)

    Hein, K

    1977-01-27

    The heat pump described is driven by a gas Otto cycle engine, or a gas- or light- or heavy-oil fired Diesel engine. The claim refers to the use of waste heat of the engines by feeding into the input circuit of the heat pump. In addition, a drive by an electrical motor-generator or power production can be selected at times of peak load in the electrical supply network.

  13. Natural refrigerants. Future heat pumps for district heating; Naturliga koeldmedier. Framtida vaermepumpar foer fjaerrvaerme

    Energy Technology Data Exchange (ETDEWEB)

    Ingvarsson, Paul; Steen Ronnermark, Ingela [Fortum Teknik och Miljoe AB, Stockholm (Sweden); Eriksson, Marcus [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Chemical Engineering and Environmental Science

    2004-01-01

    International work on refrigerants is aiming at phasing out HFC. The solution might be natural refrigerants. Within 15-20 years, when present heat pumps for district heating in Sweden are likely not in service any longer, it might still be good economy to install new heat pumps since only the machines need to be replaced. This report describes the possibilities to use natural refrigerants. A first screening resulted in further study on some hydrocarbons, ammonia and carbon dioxide. Water was considered to require too large volumes. In present plants it is practically not possible to use any natural refrigerants, partly because the compressors are not adapted. In new plants the situation is different. Today it is technically possible to install new heat pumps in the studied size, 15 MW{sub th}, using ammonia or hydrocarbons as refrigerant. But likely it is very difficult to get permits from authorities since the refrigerants are toxic or highly flammable. There is substantial international research on using carbon dioxide, and this refrigerant is also used in some applications. Carbon dioxide is used at high pressure and in a trans-critical process. Surprisingly, it turned out that one compressor manufacturer considers it possible to supply a heat pump for district heating within 5 years. This development has taken place in Russia, mainly for domestic use. Thus, within 15 to 20 years there will probably exist a technique where carbon dioxide is used. However, more development is needed. Additionally, low district heating return temperatures are also needed to get an acceptable COP. The investment cost for a heat pump installation is considered to be approx. 30 % higher when using ammonia or propane compared to using R134a. When using carbon dioxide there is in the longer run potential to get lower cost than for R134a. The COPs are almost identical if the systems are properly designed. In the carbon dioxide case the COP is somewhat lower, but has a potential for

  14. Experimental analysis of direct-expansion ground-coupled heat pump systems

    Science.gov (United States)

    Mei, V. C.; Baxter, V. D.

    1991-09-01

    Direct-expansion ground-coil-coupled (DXGC) heat pump systems have certain energy efficiency advantages over conventional ground-coupled heat pump (GCHP) systems. Principal among these advantages are that the secondary heat transfer fluid heat exchanger and circulating pump are eliminated. While the DXGC concept can produce higher efficiencies, it also produces more system design and environmental problems (e.g., compressor starting, oil return, possible ground pollution, and more refrigerant charging). Furthermore, general design guidelines for DXGC systems are not well documented. A two-pronged approach was adopted for this study: (1) a literature survey, and (2) a laboratory study of a DXGC heat pump system with R-22 as the refrigerant, for both heating and cooling mode tests done in parallel and series tube connections. The results of each task are described in this paper. A set of general design guidelines was derived from the test results and is also presented.

  15. Coabsorbent and thermal recovery compression heat pumping technologies

    CERN Document Server

    Staicovici, Mihail-Dan

    2014-01-01

    This book introduces two of the most exciting heat pumping technologies, the coabsorbent and the thermal recovery (mechanical vapor) compression, characterized by a high potential in primary energy savings and environmental protection. New cycles with potential applications of nontruncated, truncated, hybrid truncated, and multi-effect coabsorbent types are introduced in this work.   Thermal-to-work recovery compression (TWRC) is the first of two particular methods explored here, including how superheat is converted into work, which diminishes the compressor work input. In the second method, thermal-to-thermal recovery compression (TTRC), the superheat is converted into useful cooling and/or heating, and added to the cycle output effect via the coabsorbent technology. These and other methods of discharge gas superheat recovery are analyzed for single-, two-, three-, and multi-stage compression cooling and heating, ammonia and ammonia-water cycles, and the effectiveness results are given.  The author presen...

  16. Investigation of ammonia/water hybrid absorption/compression heat pumps for heat supply temperatures above 100 °C

    DEFF Research Database (Denmark)

    Jensen, Jonas Kjær; Reinholdt, Lars; Markussen, Wiebke Brix

    2014-01-01

    The hybrid absorption/compression heat pump (HACHP) using ammonia-water as working fluid is a promising technology for development of a high temperature industrial heat pump. This is due to two properties inherent to the use of zeotropic mixtures: non-isothermal phase change and reduced vapour...... using these components. A technically and economically feasible solution is defined as one that satisfies constraints on the coefficient of performance (COP), low and high pressure, compressor discharge temperature and volumetric heat capacity. The ammonia mass fraction of the rich solution...

  17. Pumped two-phase heat transfer loop

    Science.gov (United States)

    Edelstein, Fred

    1988-01-01

    A pumped loop two-phase heat transfer system, operating at a nearly constant temperature throughout, includes several independently operating grooved capillary heat exchanger plates supplied with working fluid through independent flow modulation valves connected to a liquid supply line, a vapor line for collecting vapor from the heat exchangers, a condenser between the vapor and the liquid lines, and a fluid circulating pump between the condenser and the heat exchangers.

  18. Small heat pumps using ammonia, phase 3; Kleinwaermepumpe mit Ammoniak, Phase 3: Fluegelzellenverdichter mit Economizer und Schraubenverdichter

    Energy Technology Data Exchange (ETDEWEB)

    Geisser, E.; Kopp, Th.

    2003-07-01

    This comprehensive final report for the Swiss Federal Office of Energy (SFOE) presents the results of research done in the third phase of a research project that investigated components for small heat pump systems that use ammonia as a working fluid. The report includes a summary of the findings of the first two phases of the project and goes on to describe tests done with rotary vane and scroll compressors. The aims of the project are discussed and the work done is listed chronologically. The construction and the components of the test installation are described in detail. Also, the heat pump testing facilities at the University of Applied Science in Rapperswil, Switzerland, are described. The results of the measurements made for various temperature gradients are presented in detail and commented on; also, the various types of compressor tested and other heat pump compressors are compared.

  19. Nonlinear Aspects of Heat Pump Utilization

    Directory of Open Access Journals (Sweden)

    R. Najman

    2010-01-01

    Full Text Available This work attempts to answer the question: How much can we believe that the coefficient of performance provided by the manufacturer is correct, when a heat pump is required to face the real load coming from changes of temperature? The paper summarizes some basics of heat pump theory and describes the results of numerical models.

  20. Standard monitoring system for domestic heat pumps

    NARCIS (Netherlands)

    Geelen, C.P.J.M.; Oostendorp, P.A.

    1999-01-01

    In the years to come many domestic heat pump systems are to be installed in the Netherlands. The Dutch agency for energy and environment, NOVEM, and the association of energy utility companies, EnergieNed, give high priority to the monitoring of heat pump systems. The results of the projects,

  1. Industrial Heat Pump for a High Temperature District Heating Application

    DEFF Research Database (Denmark)

    Poulsen, Claus Nørgaard

    by excess thermal energy from thermal solar panels. An industrial heat pump system using the natural refrigerant ammonia, is extracting the thermal energy from the storage when needed, and produce hot water at 85°C, for the district heating grid. The heat pump also acts as contributor to electricity grid...

  2. D-Zero HVAC Heat Pump Controls

    International Nuclear Information System (INIS)

    Markley, Dan

    2004-01-01

    This engineering note documents the integration of Dzero Heat Pump 1 through Heat Pump 15 into the cryo/gas process control system commonly referred to as the cryo control system. Heat pumps 1 through 15 control the ambient air temperature on the 3rd, 5th, and 6th floor office areas at Dzero. The entire Johnson HVAC control system was replaced with a Siemens control system in 1999 leaving behind the 15 heat pumps with stand-alone Johnson controllers. Now, these 15 heat pump Johnson controllers are being replaced with small stand alone Beckhoff BC9000 controllers. The Beckhoff BC9000 controllers are network able into the existing Intellution control system. The Beckhoff BC9000 controllers use the cryo private Ethernet network and an OPC driver to get data into the Intellution SCADA node databases. The BC9000 is also programmed over this same Ethernet network.

  3. Scavenged body heat powered infusion pump

    International Nuclear Information System (INIS)

    Bell, Alexander; Ehringer, William D; McNamara, Shamus

    2013-01-01

    An infusion pump powered by body heat is investigated in this paper, with the goal of addressing the needs of dermal wound healing. The infusion pump incorporates a Knudsen gas pump, a type of thermally driven pump, to pneumatic push the pharmaceutical agent from a reservoir. Two designs are considered: an integrated pump and reservoir, and a design with cascaded pump and reservoir. Thermal models are developed for both pumps, and the simulations agree well with the experimental results. The integrated pump and reservoir design uses hydrophobic materials to prevent a flow from occurring unless the infusion pump is placed on a human body. Flow rates in the µL min −1 range for the integrated pump and reservoir, and approximately 70 µL min −1 for the cascaded pump were obtained. The dynamic behavior of the cascaded pump is described based on the thermal models. Multiple copies of the cascaded pump are easily made in series or parallel, to increase either the pressure or the flow rate. The flow rate of multiple pumps in series does not change, and the pressure of multiple pumps in parallel does not change. (paper)

  4. Performance evaluation of an integrated automotive air conditioning and heat pump system

    International Nuclear Information System (INIS)

    Hosoz, M.; Direk, M.

    2006-01-01

    This study deals with the performance characteristics of an R134a automotive air conditioning system capable of operating as an air-to-air heat pump using ambient air as a heat source. For this aim, an experimental analysis has been performed on a plant made up of original components from an automobile air conditioning system and some extra equipment employed to operate the system in the reverse direction. The system has been tested in the air conditioning and heat pump modes by varying the compressor speed and air temperatures at the inlets of the indoor and outdoor coils. Evaluation of the data gathered in steady state test runs has shown the effects of the operating conditions on the capacity, coefficient of performance, compressor discharge temperature and the rate of exergy destroyed by each component of the system for both operation modes. It has been observed that the heat pump operation provides adequate heating only in mild weather conditions, and the heating capacity drops sharply with decreasing outdoor temperature. However, compared with the air conditioning operation, the heat pump operation usually yields a higher coefficient of performance and a lower rate of exergy destruction per unit capacity. It is also possible to improve the heating mode performance of the system by redesigning the indoor coil, using another refrigerant with a higher heat rejection rate in the condenser and employing a better heat source such as the engine coolant or exhaust gases

  5. Research highlights : study of the noise generated by heat pumps in residential areas

    International Nuclear Information System (INIS)

    Rousseau, J.

    2000-01-01

    Rising energy costs and aggressive marketing played a major role in the substantial increase in the number of domestic heat pumps installed. As a rule, heat pumps are connected to the heating and ventilation systems on the outside of the house. Whether the heat pump is equipped with an integrated compressor or not, it creates noise. The noise is generated by the powerful fan designed to cool all the coils, and also by the compressor itself and the circulation of the refrigerant gas. Some municipalities received so many complaints on this topic that they are considering adopting noise bylaws. The first objective of the research undertaken by Canada Mortgage and Housing Corporation on heat pumps in residential areas was to analyze the noise pollution mode of commonly used heat pumps. A study of a simple noise reduction device was performed, and the extent to which it should be used. Finally, there had to be no reduction of the thermal capacities of the pumps. Phase 1 of the study took place between May and August 1990, in the area of Quebec City. A total of 125 heat pumps were identified. The four major manufacturers were Trane, Carrier, York, and Lennox. Initial sound pressure levels measurements were made at one metre from the unit, for 80 such units, respecting the ratio by brands in the sample of 125. A detailed global noise measurement determined the sound power of each pump. A detailed muffler feasibility study was then conducted, using a Trane heat pump. The results of the study indicated that heat pumps were a major source of continuous noise in low and mid-density areas. It was discovered that a noise attenuation device could always be built around heat pumps, which needed to be installed as close as possible to the casing of the heat pump. It is not possible to design a device to fit each and every heat pump, the design is specific to the dimensions and characteristics of each model of heat pump. The thermal performance of the pumps will not be affected by

  6. Experimental Analysis of Variable Capacity Heat Pump Systems equipped with a liquid-cooled frequency inverter

    OpenAIRE

    Ebraheem, Thair

    2013-01-01

    Using an inverter-driven compressor in variable capacity heat pump systems has a main drawback, which is the extra loss in the inverter. The present experimental study aims to recover the inverter losses by using brine-cooled and water-cooled inverters, thereby improving the total efficiency of the heat pump system. In order to achieve this goal, a test rig with the air-cooled, water-cooled and brine-cooled inverters is designed and built, and a comparative analysis of the recovered heat, inv...

  7. Impact of Seasonal Heat Accumulation on Operation of Geothermal Heat Pump System with Vertical Ground Heat Exchanger

    Science.gov (United States)

    Timofeev, D. V.; Malyavina, E. G.

    2017-11-01

    The subject of the investigation was to find out the influence of heat pump operation in summer on its function in winter. For this purpose a mathematical model of a ground coupled heat pump system has been developed and programmed. The mathematical model of a system ground heat exchanger uses the finite difference method to describe the heat transfer in soil and the analytical method to specify the heat transfer in the U-tubes heat exchanger. The thermal diffusivity by the heat transfer in the soil changes during gradual freezing of the pore moisture and thus slows soil freezing. The mathematical model of a heat pump includes the description of a scroll compressor and the simplified descriptions of the evaporator and condenser. The analysis showed that heating during the cold season and cooling in the warm season affect the average heat transfer medium temperature in the soil loop in the winter season. It has been also showed that the degree of this effect depends on the clay content in the soil.

  8. Numerical routine for magnetic heat pump cascading

    DEFF Research Database (Denmark)

    Filonenko, Konstantin; Lei, Tian; Engelbrecht, Kurt

    Heat pumps use low-temperature heat absorbed from the energy source to create temperature gradient (TG) across the energy sink. Magnetic heat pumps (MHP) can perform this function through operating active magnetic regeneration (AMR) cycle. For building heating, TGs of up to a few K might...... and 3 K. Changing the number of MHPs, we optimized input parameters to achieve maximum heating powers. We have found that both maximum heating power and COP decrease together with number of heat pumps, but the TGs and the temperature span can be largely increased. References [1] M. Tahavori et al., “A...... be necessary, which is hardly achievable with a single MHP and such techniques as cascading are required. Series and parallel cascading increase the AMR span and heating power, respectively, but do not change TG. Therefore, the intermediate type of cascading was proposed with individual MHPs separately...

  9. Concentration of saline produced water from coalbed methane gas wells in multiple-effect evaporator using waste heat from the gas compressor and compressor drive engine

    International Nuclear Information System (INIS)

    Sadler, L.Y.; George, O.

    1995-01-01

    The use of heat of compression from the gas compressor and waste heat from the diesel compressor drive engine in a triple-effect feed forward evaporator was studied as a means of concentrating saline produced water to facilitate its disposal. The saline water, trapped in deeply buried coal seams, must be continuously pumped from coalbed natural gas wells so that the gas can desorb from the coal and make its way to the wellbore. Unlike conventional natural gas which is associated with petroleum and usually reaches the wellhead at high pressure, coalbed natural gas reaches the wellhead at low pressure, usually around 101 kPa (1 atm), and must be compressed near the well site for injection into gas transmission pipelines. The water concentration process was simulated for a typical 3.93 m 3 /s (500 MCF/h), at standard conditions (101 kPa, 289K), at the gas production field in the Warrior Coal Basin of Alabama, but has application to the coalbed gas fields being brought into production throughout the world. It was demonstrated that this process can be considered for concentrating saline water produced with natural gas in cases where the gas must be compressed near the wellhead for transportation to market. 9 refs., 1 fig., 2 tabs

  10. Operability test procedure for 241-U compressed air system and heat pump

    International Nuclear Information System (INIS)

    Freeman, R.D.

    1994-01-01

    The 241-U-701 compressed air system supplies instrument quality compressed air to Tank Farm 241-U. The supply piping to the 241-U Tank Farm is not included in the modification. Modifications to the 241-U-701 compressed air system include installation of a 15 HP Reciprocating Air Compressor, Ingersoll-Rand Model 10T3NLM-E15; an air dryer, Hankinson, Model DH-45; and miscellaneous system equipment and piping (valves, filters, etc.) to meet the design. A newly installed heat pump allows the compressor to operate within an enclosed relatively dust free atmosphere and keeps the compressor room within a standard acceptable temperature range, which makes possible efficient compressor operation, reduces maintenance, and maximizes compressor operating life. This document is an Operability Test Procedure (OTP) which will further verify (in addition to the Acceptance Test Procedure) that the 241-U-701 compressed air system and heat pump operate within their intended design parameters. The activities defined in this OTP will be performed to ensure the performance of the new compressed air system will be adequate, reliable and efficient. Completion of this OTP and sign off of the OTP Acceptance of Test Results is necessary for turnover of the compressed air system from Engineering to Operations

  11. Solid state radiative heat pump

    Science.gov (United States)

    Berdahl, P.H.

    1984-09-28

    A solid state radiative heat pump operable at room temperature (300 K) utilizes a semiconductor having a gap energy in the range of 0.03-0.25 eV and operated reversibly to produce an excess or deficit of change carriers as compared equilibrium. In one form of the invention an infrared semiconductor photodiode is used, with forward or reverse bias, to emit an excess or deficit of infrared radiation. In another form of the invention, a homogenous semiconductor is subjected to orthogonal magnetic and electric fields to emit an excess or deficit of infrared radiation. Three methods of enhancing transmission of radiation the active surface of the semiconductor are disclosed. In one method, an anti-refection layer is coated into the active surface of the semiconductor, the anti-reflection layer having an index of refraction equal to the square root of that of the semiconductor. In the second method, a passive layer is speaced trom the active surface of the semiconductor by a submicron vacuum gap, the passive layer having an index of refractive equal to that of the semiconductor. In the third method, a coupler with a paraboloid reflecting surface surface is in contact with the active surface of the semiconductor, the coupler having an index of refraction about the same as that of the semiconductor.

  12. Heat-pump tumble dryers; Waermepumpen-Tumbler

    Energy Technology Data Exchange (ETDEWEB)

    Bluemig, N.; Gatter, R.

    2004-07-01

    Commonly available tumble dryers with air-vented or condenser systems in combination with electrical heating have a high specific energy consumption and never fulfil the requirements for Energy Label Class A (<= 0.55 kWh/kg.). The development of a tumbler with a heat pump system has enabled a reduction of almost 50% in the specific energy consumption. In addition to ecological aspects, this means that a significant reduction in energy costs is achieved as well as a beneficial effect on room climate. Other considerations taken into account in the development of the 6.5 kg tumbler were: (i) Compact modular design; integration of the heat pump in the appliance casing; (ii) Long operating life without clogging-up of the heat exchanger by fluff; (iii) Stable process throughout the drying in ambient temperatures of up to 35 {sup o}C. Process stability in particular presented a tough challenge. The solution came in the form of an additional booster condenser that prevents overheating of the compressor towards the end of the process when only negligible amounts of energy are being carried away as a result of the low residual moisture in the laundry. It proved possible to reduce the specific power consumption to less than 0.4 kWh/kg and the leak rate to less 30 %. Thanks to the compact, modular design, the heat pump could be integrated in a housing which has the same size as a conventional 6.5 kg dryer. Clogging-up of the heat exchanger surfaces with fluff was prevented by a multi-stage cascade filtration system. With this heat pump dryer it has been possible for the very first time to develop to series production and launch an appliance in the up to 6.5 kg category that not only fulfils the requirements of Energy Label Class A but also offers a serious alternative to conventional tumble dryers thanks to its compact design, operating safety and ease of operation. Future development opportunities lie in more cost-effective production of the heat pump module, shortening of

  13. Development of Axial Compressor Heat-Extraction Capability for Thermal Management Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — ATA Engineering, Inc. (ATA) proposes a small business innovation research (SBIR) program for a novel compressor heat-extraction development program in response to...

  14. Electricity Market Optimization of Heat Pump Portfolio

    DEFF Research Database (Denmark)

    Biegel, Benjamin; Andersen, Palle; Pedersen, Tom S.

    2013-01-01

    We consider a portfolio of domestic heat pumps controlled by an aggregator. The aggregator is able to adjust the consumption of the heat pumps without affecting the comfort in the houses and uses this ability to shift the main consumption to hours with low electricity prices. Further......, the aggregator is able to place upward and downward regulating bids in the regulating power market based on the consumption flexibility. A simulation is carried out based on data from a Danish domestic heat pump project, historical spot prices, regulating power prices, and spot price predictions. The simulations...

  15. Geothermal heat-pump systems of heat supply

    International Nuclear Information System (INIS)

    Vasil'ev, G.P.

    2004-01-01

    The data on the multilayer operation of the objects, located in the climatic conditions of the central area of Russia and equipped with the geothermal heat-pumping systems of the heat supply are presented. The results of the analytical studies on evaluating the geothermal heat-pumping systems of the heat supply integration efficiency into the structure of the energy supply system, prevailing in the country, are presented [ru

  16. Transient Analysis of a Magnetic Heat Pump

    Science.gov (United States)

    Schroeder, E. A.

    1985-01-01

    An experimental heat pump that uses a rare earth element as the refrigerant is modeled using NASTRAN. The refrigerant is a ferromagnetic metal whose temperature rises when a magnetic field is applied and falls when the magnetic field is removed. The heat pump is used as a refrigerator to remove heat from a reservoir and discharge it through a heat exchanger. In the NASTRAN model the components modeled are represented by one-dimensional ROD elements. Heat flow in the solids and fluid are analyzed. The problem is mildly nonlinear since the heat capacity of the refrigerant is temperature-dependent. One simulation run consists of a series of transient analyses, each representing one stroke of the heat pump. An auxiliary program was written that uses the results of one NASTRAN analysis to generate data for the next NASTRAN analysis.

  17. Performance analysis of air source heat pump system for office building

    Energy Technology Data Exchange (ETDEWEB)

    Han, Dong Won; KIm, Yong Chan [Korea University, Seoul (Korea, Republic of); Chang, Young Soo [School of Mechanical System Engineering, Kookmin University, Seoul (Korea, Republic of)

    2016-11-15

    In this study, the performance of an air source heat pump system installed in a commercial building is analyzed using the developed heat pump performance model and building load simulation data of several regions in Korea. The performance test of an air source heat pump system with a variable speed compressor is tested to develop model that considers changes in the performance characteristics of the heat pump system under various operating conditions. The heat pump system is installed in an environmental chamber, and the experimental equipment is set up according to the manufacturer' specifications as well as the AHRI 1230 test specifications. The performance test conditions of the heat pump system are selected using a central composite design method, in which 29 points for each cooling and heating mode are selected. The developed performance model based on experimental data predicts experimental values with an error of ±5 %. Building cooling and heating loads in three regions in Korea are analyzed using TRNSYS software, which includes standard building and weather data from Seoul, Daejeon and Busan in Korea. The effects of outdoor air temperature and part load ratio on the performance and regional monthly average power consumption of the heat pump system are analyzed.

  18. Modeling of scroll compressors - Improvements

    Energy Technology Data Exchange (ETDEWEB)

    Duprez, Marie-Eve; Dumont, Eric; Frere, Marc [Thermodynamics Department, Universite de Mons - Faculte Polytechnique, 31 bd Dolez, 7000 Mons (Belgium)

    2010-06-15

    This paper presents an improvement of the scroll compressors model previously published by. This improved model allows the calculation of refrigerant mass flow rate, power consumption and heat flow rate that would be released at the condenser of a heat pump equipped with the compressor, from the knowledge of operating conditions and parameters. Both basic and improved models have been tested on scroll compressors using different refrigerants. This study has been limited to compressors with a maximum electrical power of 14 kW and for evaporation temperatures ranging from -40 to 15 C and condensation temperatures from 10 to 75 C. The average discrepancies on mass flow rate, power consumption and heat flow rate are respectively 0.50%, 0.93% and 3.49%. Using a global parameter determination (based on several refrigerants data), this model can predict the behavior of a compressor with another fluid for which no manufacturer data are available. (author)

  19. Dynamically balanced, hydraulically driven compressor/pump apparatus for resonant free piston Stirling engines

    Science.gov (United States)

    Corey, John A.

    1984-05-29

    A compressor, pump, or alternator apparatus is designed for use with a resonant free piston Stirling engine so as to isolate apparatus fluid from the periodically pressurized working fluid of the Stirling engine. The apparatus housing has a first side closed by a power coupling flexible diaphragm (the engine working member) and a second side closed by a flexible diaphragm gas spring. A reciprocally movable piston is disposed in a transverse cylinder in the housing and moves substantially at right angles relative to the flexible diaphragms. An incompressible fluid fills the housing which is divided into two separate chambers by suitable ports. One chamber provides fluid coupling between the power diaphragm of the RFPSE and the piston and the second chamber provides fluid coupling between the gas spring diaphragm and the opposite side of the piston. The working members of a gas compressor, pump, or alternator are driven by the piston. Sealing and wearing parts of the apparatus are mounted at the external ends of the transverse cylinder in a double acting arrangement for accessibility. An annular counterweight is mounted externally of the reciprocally movable piston and is driven by incompressible fluid coupling in a direction opposite to the piston so as to damp out transverse vibrations.

  20. Developing a Magnetocaloric Domestic Heat Pump

    DEFF Research Database (Denmark)

    Bahl, Christian R.H.

    2014-01-01

    beverage coolers, A/Cs for cars and electronics cooling. Devices for heating have not been extensively demonstrated. Here we consider a promising application of magnetocaloric heat pumps for domestic heating. The task of designing and building such a device is a multidisciplinary one encompassing materials...

  1. Heat pumps in combined heat and power systems

    DEFF Research Database (Denmark)

    Ommen, Torben Schmidt; Markussen, Wiebke Brix; Elmegaard, Brian

    2014-01-01

    Heat pumps have previously been proposed as a way to integrate higher amounts of renewable energy in DH (district heating) networks by integrating, e.g., wind power. The paper identifies and compares five generic configurations of heat pumps in DH systems. The operational performance...... of the considered cases. When considering a case where the heat pump is located at a CHP (combined heat and power) plant, a configuration that increases the DH return temperature proposes the lowest operation cost, as low as 12 EUR MWh-1 for a 90 °C e 40 °C DH network. Considering the volumetric heating capacity......, a third configuration is superior in all cases. Finally, the three most promising heat pump configurations are integrated in a modified PQ-diagram of the CHP plant. Each show individual advantages, and for two, also disadvantages in order to achieve flexible operation....

  2. Absorption heat pump for space applications

    Science.gov (United States)

    Nguyen, Tuan; Simon, William E.; Warrier, Gopinath R.; Woramontri, Woranun

    1993-01-01

    In the first part, the performance of the Absorption Heat Pump (AHP) with water-sulfuric acid and water-magnesium chloride as two new refrigerant-absorbent fluid pairs was investigated. A model was proposed for the analysis of the new working pairs in a heat pump system, subject to different temperature lifts. Computer codes were developed to calculate the Coefficient of Performance (COP) of the system with the thermodynamic properties of the working fluids obtained from the literature. The study shows the potential of water-sulfuric acid as a satisfactory replacement for water-lithium bromide in the targeted temperature range. The performance of the AHP using water-magnesium chloride as refrigerant-absorbent pair does not compare well with those obtained using water-lithium bromide. The second part concentrated on the design and testing of a simple ElectroHydrodynamic (EHD) Pump. A theoretical design model based on continuum electromechanics was analyzed to predict the performance characteristics of the EHD pump to circulate the fluid in the absorption heat pump. A numerical method of solving the governing equations was established to predict the velocity profile, pressure - flow rate relationship and efficiency of the pump. The predicted operational characteristics of the EHD pump is comparable to that of turbomachinery hardware; however, the overall efficiency of the electromagnetic pump is much lower. An experimental investigation to verify the numerical results was conducted. The pressure - flow rate performance characteristics and overall efficiency of the pump obtained experimentally agree well with the theoretical model.

  3. DEVELOPMENT OF A HIGH PERFORMANCE COLD CLIMATE HEAT PUMP

    Energy Technology Data Exchange (ETDEWEB)

    Horton, W. Travis [Purdue University; Groll, Eckhard A. [Purdue University; Braun, James E. [Purdue University

    2014-06-01

    The primary goals of the proposed project were to develop, test, and evaluate a high performance and cost-effective vapor compression air-source heat pump for use in cold climate regions. Vapor compression heat pumps are a proven technology, and have been used for many years to meet heating requirements for buildings in residential, commercial, and industrial applications. However, in climate regions that experience very low outdoor ambient temperatures both the heating capacity and coefficient of performance (COP) of traditional air-source vapor compression heat pumps drops dramatically with a decrease in the outdoor air temperature. The efficiency of heat pumping equipment has improved substantially over the past 20 years; however, the efficiencies of the highest rated equipment on the market are approaching practical limits that cannot be surpassed without modifications to the basic cycle and possibly the use of additional hardware. In this report, three technologies to improve the efficiency of vapor compression systems are described. These are a) vapor injected compression, b) oil flooded compression and c) hybrid flow control of the evaporator. Compressor prototypes for both, oil flooded and vapor injected compression were developed by Emerson Climate Technologies. For the oil flooded compressor, the oil injection port location was optimized and an internal oil separator was added using several design iterations. After initial testing at Emerson Climate Technologies, further testing was done at Purdue University, and compressor models were developed. These models were then integrated into a system model to determine the achievable improvement of seasonal energy efficiency (SEER) for Minneapolis (Minnesota) climate. For the oil flooded compression, a 34% improvement in seasonal energy efficiency was found while a 21% improvement in seasonal energy efficiency ratio was found for the vapor injected compression. It was found that one benefit of both tested

  4. Residual heat removal pump retrofit program

    International Nuclear Information System (INIS)

    Dudiak, J.G.; McKenna, J.M.

    1990-01-01

    Residual Heat Removal (RHR) pumps installed in pressurized water reactor power plants are used to provide the removal of decay heat from the reactor and to provide low head safety injection in the event of loss of coolant in the reactor coolant system. These pumps are subjected to rather severe temperature and pressure transients, therefore, the majority of pumps installed in the RHR service are vertical pumps with a single stage impeller. RHR pumps have traditionally been a significant maintenance item for many utilities. The close-coupled pump design requires disassembly of the casing cover from the lower pump casing while performing these routine maintenance tasks. The casing separation requires the loosening of numerous highly torqued studs. Once the casing is separated, the impeller is dropped from the motor shaft to allow removal of the mechanical seal and casing cover from the motor shaft. Galling of the impeller to the motor shaft is not uncommon. The RHR pump internals are radioactive and the separation of the pump casing to perform routine maintenance exposes the maintenance personnel to high radiation levels. The handling of the impeller also exposes the maintenance personnel to high radiation levels. This paper introduces a design modification developed to convert the close-coupled RHR pumps to a coupled configuration

  5. Thermoeconomic comparison of industrial heat pumps

    DEFF Research Database (Denmark)

    Ommen, Torben Schmidt; Markussen, Christen Malte; Reinholdt, L.

    2011-01-01

    Four natural working fluids in various heat pump cycles are expected to cover the heating range between 50oC and 150°C. The different thermodynamic cycles are the Condensing Vapour, Transcritical and Compression/Absorption. As the considered technologies have significant differences in application......, limitations and design, a generic comparison is used. To establish the optimal individual temperature range of operation, a thermoeconomic evaluation is performed, with heat price as the decision parameter. Each individual heat pump is favourable in specific temperature intervals, which will vary according...... to the temperature lift between sink and source. At temperature lifts below 30°C the entire temperature range is covered. Exceeding this temperature lift, the range of sink temperatures is not completely covered above 125°C. Three of the heat pumps prove very cost competitive when compared to heating with natural...

  6. ENERGY STAR Certified Geothermal Heat Pumps

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 3.1 ENERGY STAR Program Requirements for Geothermal Heat Pumps that are effective as of...

  7. Hot Topics! Heat Pumps and Geothermal Energy

    Science.gov (United States)

    Roman, Harry T.

    2009-01-01

    The recent rapid rises in the cost of energy has significantly increased interest in alternative energy sources. The author discusses the underlying principles of heat pumps and geothermal energy. Related activities for technology education students are included.

  8. Electric heat-pumps in residential buildings

    Energy Technology Data Exchange (ETDEWEB)

    1983-03-01

    Since the end of 1979 every other day an electrically operated heat-pump has started operation in Berlin (West). Pros and cons of heat-pumps are a much discussed subject. But what is the opinion of the user. As it is not known the BEWAG carried out a written customer inquiry in the summer 1982. The aim of the inquiry was to improve the advisory service by means of the answers obtained, to obtain information about the reliability or liability to defects of the heat pump, the mechanism they operate on and to know how big the oil substitution potential is. Customer satisfaction with the heat pumps was a further point of interest.

  9. Solar-assisted heat pump – A sustainable system for low-temperature water heating applications

    International Nuclear Information System (INIS)

    Chaturvedi, S.K.; Gagrani, V.D.; Abdel-Salam, T.M.

    2014-01-01

    Highlights: • DX-SAHP water heaters systems are economical as well as energy conserving. • The economic analysis is performed using the life cycle cost (LCC) analysis. • LCC can be optimized with respect to the collector area at a specific temperature. • For high load temperature range a two stage heat pump system is more appropriate. - Abstract: Direct expansion solar assisted heat pump systems (DX-SAHP) have been widely used in many applications including water heating. In the DX-SAHP systems the solar collector and the heat pump evaporator are integrated into a single unit in order to transfer the solar energy to the refrigerant. The present work is aimed at studying the use of the DX-SAHP for low temperature water heating applications. The novel aspect of this paper involves a detailed long-term thermo-economic analysis of the energy conservation potential and economic viability of these systems. The thermal performance is simulated using a computer program that incorporates location dependent radiation, collector, economic, heat pump and load data. The economic analysis is performed using the life cycle cost (LCC) method. Results indicate that the DX-SAHP water heaters systems when compared to the conventional electrical water heaters are both economical as well as energy conserving. The analysis also reveals that the minimum value of the system life cycle cost is achieved at optimal values of the solar collector area as well as the compressor displacement capacity. Since the cost of SAHP system presents a barrier to mass scale commercialization, the results of the present study indicating that the SAHP life cycle cost can be minimized by optimizing the collector area would certainly be helpful in lowering, if not eliminating, the economic barrier to these systems. Also, at load temperatures higher than 70 °C, the performance of the single stage heat pump degrades to the extent that its cost and efficiency advantages over the electric only system are

  10. Two simple models of classical heat pumps.

    Science.gov (United States)

    Marathe, Rahul; Jayannavar, A M; Dhar, Abhishek

    2007-03-01

    Motivated by recent studies of models of particle and heat quantum pumps, we study similar simple classical models and examine the possibility of heat pumping. Unlike many of the usual ratchet models of molecular engines, the models we study do not have particle transport. We consider a two-spin system and a coupled oscillator system which exchange heat with multiple heat reservoirs and which are acted upon by periodic forces. The simplicity of our models allows accurate numerical and exact solutions and unambiguous interpretation of results. We demonstrate that while both our models seem to be built on similar principles, one is able to function as a heat pump (or engine) while the other is not.

  11. Capillary pumped loop body heat exchanger

    Science.gov (United States)

    Swanson, Theodore D. (Inventor); Wren, deceased, Paul (Inventor)

    1998-01-01

    A capillary pumped loop for transferring heat from one body part to another body part, the capillary pumped loop comprising a capillary evaporator for vaporizing a liquid refrigerant by absorbing heat from a warm body part, a condenser for turning a vaporized refrigerant into a liquid by transferring heat from the vaporized liquid to a cool body part, a first tube section connecting an output port of the capillary evaporator to an input of the condenser, and a second tube section connecting an output of the condenser to an input port of the capillary evaporator. A wick may be provided within the condenser. A pump may be provided between the second tube section and the input port of the capillary evaporator. Additionally, an esternal heat source or heat sink may be utilized.

  12. Experimental Research of a Water-Source Heat Pump Water Heater System

    Directory of Open Access Journals (Sweden)

    Zhongchao Zhao

    2018-05-01

    Full Text Available The heat pump water heater (HPWH, as a portion of the eco-friendly technologies using renewable energy, has been applied for years in developed countries. Air-source heat pump water heaters and solar-assisted heat pump water heaters have been widely applied and have become more and more popular because of their comparatively higher energy efficiency and environmental protection. Besides use of the above resources, the heat pump water heater system can also adequately utilize an available water source. In order to study the thermal performance of the water-source heat pump water heater (WSHPWH system, an experimental prototype using the cyclic heating mode was established. The heating performance of the water-source heat pump water heater system, which was affected by the difference between evaporator water fluxes, was investigated. The water temperature unfavorably exceeded 55 °C when the experimental prototype was used for heating; otherwise, the compressor discharge pressure was close to the maximum discharge temperature, which resulted in system instability. The evaporator water flux allowed this system to function satisfactorily. It is necessary to reduce the exergy loss of the condenser to improve the energy utilization of the system.

  13. Self-optimizing control of air-source heat pump with multivariable extremum seeking

    International Nuclear Information System (INIS)

    Dong, Liujia; Li, Yaoyu; Mu, Baojie; Xiao, Yan

    2015-01-01

    The air-source heat pump (ASHP) is widely adopted for cooling and heating of residential and commercial buildings. The performance of ASHP can be controlled by several operating variables, such as compressor capacity, condenser fan speed, evaporator fan speed and suction superheat. In practice, the system characteristics can be varied significantly by the variations in ambient condition, operation setpoint, internal thermal load and equipment degradation, which makes it difficult to obtain accurate plant models. As consequence, the model based control strategies for ASHP could limit the achievable energy efficiency. Model-free self-optimizing control strategies are thus more preferable. In this study, a multi-input extremum seeking control (ESC) scheme is proposed for both heating and cooling operation of ASHP. The zone temperature is assumed to be regulated by the compressor capacity, while the expansion valve opening is used to regulate the suction superheat at the given setpoint. The total power consumption of the compressor, the condenser fan and the evaporator fan is measured as input to the ESC, while the ESC controls the evaporator fan speed, the condenser fan speed and the suction superheat setpoint. The proposed scheme is evaluated with a Modelica based dynamic simulation model of ASHP under both cooling and heating modes of operation. Simulation results show the effectiveness of the proposed scheme to achieve the maximum achievable efficiency in a nearly model-free manner. - Highlights: • Multi-input ESC. • Air-source heat pump. • Cooling and heating. • Modelica based model

  14. Optimization of heat pump system in indoor swimming pool using particle swarm algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Wen-Shing; Kung, Chung-Kuan [Department of Energy and Refrigerating Air-Conditioning Engineering, National Taipei University of Technology, 1, Section 3, Chung-Hsiao East Road, Taipei (China)

    2008-09-15

    When it comes to indoor swimming pool facilities, a large amount of energy is required to heat up low-temperature outdoor air before it is being introduced indoors to maintain indoor humidity. Since water is evaporated from the pool surface, the exhausted air contains more water and specific enthalpy. In response to this indoor air, heat pump is generally used in heat recovery for indoor swimming pools. To reduce the cost in energy consumption, this paper utilizes particle swarm algorithm to optimize the design of heat pump system. The optimized parameters include continuous parameters and discrete parameters. The former consists of outdoor air mass flow and heat conductance of heat exchangers; the latter comprises compressor type and boiler type. In a case study, life cycle energy cost is considered as an objective function. In this regard, the optimized outdoor air flow and the optimized design for heating system can be deduced by using particle swarm algorithm. (author)

  15. High temperature absorption compression heat pump for industrial waste heat

    DEFF Research Database (Denmark)

    Reinholdt, Lars; Horntvedt, B.; Nordtvedt, S. R.

    2016-01-01

    Heat pumps are currently receiving extensive interest because they may be able to support the integration of large shares of fluctuating electricity production based on renewable sources, and they have the potential for the utilization of low temperature waste heat from industry. In most industries......, the needed temperature levels often range from 100°C and up, but until now, it has been quite difficult to find heat pump technologies that reach this level, and thereby opening up the large-scale heat recovery in the industry. Absorption compression heat pumps can reach temperatures above 100°C......, and they have proved themselves a very efficient and reliable technology for applications that have large temperature changes on the heat sink and/or heat source. The concept of Carnot and Lorenz efficiency and its use in the analysis of system integration is shown. A 1.25 MW system having a Carnot efficiency...

  16. Capillary-Condenser-Pumped Heat-Transfer Loop

    Science.gov (United States)

    Silverstein, Calvin C.

    1989-01-01

    Heat being transferred supplies operating power. Capillary-condenser-pumped heat-transfer loop similar to heat pipe and to capillary-evaporator-pumped heat-transfer loop in that heat-transfer fluid pumped by evaporation and condensation of fluid at heat source and sink, respectively. Capillary condenser pump combined with capillary evaporator pump to form heat exchanger circulating heat-transfer fluids in both loops. Transport of heat more nearly isothermal. Thermal stress in loop reduced, and less external surface area needed in condenser section for rejection of heat to heat sink.

  17. Model of a thermal energy storage device integrated into a solar assisted heat pump system for space heating

    International Nuclear Information System (INIS)

    Badescu, Viorel

    2003-01-01

    Details about modelling a sensible heat thermal energy storage (TES) device integrated into a space heating system are given. The two main operating modes are described. Solar air heaters provide thermal energy for driving a vapor compression heat pump. The TES unit ensures a more efficient usage of the collected solar energy. The TES operation is modeled by using two non-linear coupled partial differential equations for the temperature of the storage medium and heat transfer fluid, respectively. Preliminary results show that smaller TES units provide a higher heat flux to the heat pump vaporiser. This makes the small TES unit discharge more rapidly during time periods with higher thermal loads. The larger TES units provide heat during longer time periods, even if the heat flux they supply is generally smaller. The maximum heat flux is extracted from the TES unit during the morning. Both the heat pump COP and exergy efficiency decrease when the TES unit length increases. Also, the monthly thermal energy stored by the TES unit and the monthly energy necessary to drive the heat pump compressor are increased by increasing the TES unit length

  18. Vapor Compression and Thermoelectric Heat Pumps for a Cascade Distillation Subsystem: Design and Experiment

    Science.gov (United States)

    Erickson, Lisa R.; Ungar, Eugene K.

    2012-01-01

    Humans on a spacecraft require significant amounts of water for drinking, food, hydration, and hygiene. Maximizing the reuse of wastewater while minimizing the use of consumables is critical for long duration space exploration. One of the more promising consumable-free methods of reclaiming wastewater is the distillation/condensation process used in the Cascade Distillation Subsystem (CDS). The CDS heats wastewater to the point of vaporization then condenses and cools the resulting water vapor. The CDS wastewater flow requires heating for evaporation and the product water flow requires cooling for condensation. Performing the heating and cooling processes separately would require two separate units, each of which would demand large amounts of electrical power. Mass, volume, and power efficiencies can be obtained by heating the wastewater and cooling the condensate in a single heat pump unit. The present work describes and compares two competing heat pump methodologies that meet the needs of the CDS: 1) a series of mini compressor vapor compression cycles and 2) a thermoelectric heat exchanger. In the paper, the CDS system level requirements are outlined, the designs of the two heat pumps are described in detail, and the results of heat pump analysis and performance tests are provided. The mass, volume, and power requirement for each heat pump option is compared and the advantages and disadvantages of each system are listed.

  19. Residential Cold Climate Heat Pump (CCHP) w/Variable Speed Technology

    Energy Technology Data Exchange (ETDEWEB)

    Messmer, Craig S. [Unico, Inc., Arnold, MO (United States)

    2016-09-30

    This report summarizes the results of a three year program awarded to Unico, Inc. to commercialize a residential cold climate heat pump. Several designs were investigated. Compressors were selected using analysis from Oakridge National Laboratories followed by prototype construction and lab testing in a specially built environmental chamber capable of reaching -30°F. The initial design utilized two variable speed compressors in series with very good capacity results and acceptable efficiency at very cold temperatures. The design was then modified to reduce cost and complexity by redesigning the system using three dual-stage compressors: two in parallel followed by one in series. Extensive testing found significant challenge with oil management, reliability, weight and cost which prevented the system from being fully commercialized. Further analysis of other conceptual designs indicated that these challenges could be overcome in the future.

  20. Heat Radiators for Electromagnetic Pumps

    Science.gov (United States)

    Campana, R. J.

    1986-01-01

    Report proposes use of carbon/carbon composite radiators in electromagnetic coolant pumps of nuclear reactors on spacecraft. Carbon/carbon composite materials function well at temperatures in excess of 2,200 K. Aluminum has melting temperature of only 880 K.

  1. A review on adsorption heat pump: Problems and solutions

    OpenAIRE

    Demir, Hasan; Mobedi, Moghtada; Ülkü, Semra

    2008-01-01

    Adsorption heat pumps have considerably sparked attentions in recent years. The present paper covers the working principle of adsorption heat pumps, recent studies on advanced cycles, developments in adsorbent-adsorbate pairs and design of adsorbent beds. The adsorbent-adsorbate pair features for in order to be employed in the adsorption heat pumps are described. The adsorption heat pumps are compared with the vapor compression and absorption heat pumps. The problems and troubles of adsorptio...

  2. Seminar on heat pump research and applications: proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Steele, R.V. Jr. (ed.)

    1984-11-01

    This volume is a compilation of papers prepared by speakers at a seminar on heat pumps. The seminar was organized by the Electric Power Research Institute (EPRI) in cooperation with Louisiana Power and Light Company and New Orleans Public Service, Inc. The seminar's purpose was to inform utility managers and engineers of the most recent developments in residential heat pump technology and applications. Statements by invited panelists on the outlook for heat pump technology are also included. The speakers, who represented key organizations in the heat pump area, including utilities, industry associations, manufacturers, independent research institutes, government, and EPRI, addressed the following topics: status of heat pump research and development, heat pump testing and rating; field monitoring of heat pumps; heat pump water heaters; heat pump reliability; and marketing programs for pumps. All papers, total of sixteen have been processed for inclusion in the Energy Data Base.

  3. Environmental and energy efficiency evaluation of residential gas and heat pump heating

    International Nuclear Information System (INIS)

    Ganji, A.R.

    1993-01-01

    Energy efficiency and source air pollutant emission factors of gas heaters, gas engine heat pumps, and electric heat pumps for domestic heating have been evaluated and compared. The analysis shows that with the present state of technology, gas engine heat pumps have the highest energy efficiency followed by electric heat pumps and then gas heaters. Electric heat pumps produce more than twice as much NO x , and comparable CO 2 and CO per unit of useful heating energy compared to natural gas heaters. CO production per unit of useful heating energy from gas engine heat pumps without any emission control is substantially higher than electric heat pumps and natural gas heaters. NO x production per unit of useful heating energy from natural gas engine heat pumps (using lean burn technology) without any emission control is about the same as effective NO x production from electric heat pumps. Gas engine heat pumps produce about one-half CO 2 compared to electric heat pumps

  4. FY 1988 Report on research and development of super heat pump energy accumulation system. Part 1; 1988 nendo super heat pump energy shuseki system no kenkyu kaihatsu seika hokokusho. 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-11-01

    Summarized in detail herein are the 1988 R and D results of the super high performance compression heat pumps and elementary equipment/media, for R and D of the super heat pump energy accumulation system. For R and D of the heat pumps, the R and D efforts are directed to manufacture, on a trial basis, and installation of the bench plant, and preparation of the basic plan for the pilot system for the highly efficient type (for heating only); to researches on the screw compressor, bench plant operation, heat exchanger, and so on for the highly efficient type (for cooling and heating); to development of the compressor with which a screw type expander is integrated at the low-temperature side, evaporator and so on, test runs of the bench plant, researches on the control methods, and so on for the high temperature type (utilization low temperature heat source); and to manufacture, on a trial basis, of the high-speed reciprocating compressor and steam supercharger, and tests for demonstrating their performance for the high temperature type (utilizing high temperature heat source). For R and D of the elementary equipment and working fluids, the R and D efforts are directed to the evaporator and EHD condenser for the mixed working fluids, heat exchanger, working fluids (alcohol-based and nonalcohol-based), and so on. (NEDO)

  5. A numerical study on the oil retention of R410A and PVE oil mixture in multi heat pump system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hak Soo; Kim, Min Soo [Seoul National University, Seoul (Korea, Republic of)

    2016-04-15

    Predicting an amount of discharged oil from a compressor is necessary to charge the compressor with proper amount of oil. The amount of discharged oil can be predicted by calculating the oil retention amount in each component of a heat pump system. This study suggests a method for calculating the oil retention amount in a heat pump system. In addition, flow pattern of refrigerant and oil mixture in horizontal gas line of refrigerant was ascertained by flow visualization. The oil retention amounts in each component of multi heat pump system were calculated with respect to mass flux of refrigerant, Oil circulation ratio (OCR), length of horizontal and vertical lines. Oil retention amounts in horizontal and vertical gas lines of refrigerant were significant. To validate the model for gas lines of refrigerant, comparison between predicted and experimental oil retention amounts was conducted, and mean absolute percentage error was 15.0%.

  6. Pre study. Prototype of CO2 heat pump system for heating and cooling of a larger building

    International Nuclear Information System (INIS)

    Stene, Joern; Jakobsen, Arne

    2006-03-01

    The activities concerning CO 2 heat pumps during NTNU-SINTEF's strategic research program SMARTBYGG (2002-2006) has lead to an increased interest in planning, building, installing and testing a prototype CO 2 heat pump for heating and cooling of a larger building. In cooperation with Statsbygg and Naeringslivets Idefond a p restudy was initiated in 2005, with the main aim to carry out a set of defined activities, preparing the ground for the realization of a prototype. The following subjects are treated in the p restudy: a technological assessment of the CO 2 heat pumps, a technological assessment of the interaction between the CO 2 heat pump and the secondary systems, a study of the possibilities regarding suitable CO 2 components including compressors, heat exchangers, valves etc., and a presentation of Teknotherm AS (Halden), a Norwegian industrial partner that can project, build and maintain a CO 2 heat pump prototype. During the project period Statsbygg has not found a suitable building where a prototype can be installed. It is recommended that further work is made on the realization of a CO 2 prototype plant by setting up a main project (ml)

  7. Technical and Economic Working Domains of Industrial Heat Pumps: Part 1 - Vapour Compression Heat Pumps

    DEFF Research Database (Denmark)

    Ommen, Torben Schmidt; Jensen, Jonas Kjær; Markussen, Wiebke Brix

    2014-01-01

    A large amount of operational and economic constraints limit the applicability of heat pumps operated with natural working fluids. The limitations are highly dependent on the integration of heat source and sink streams. An evaluation of feasible operating conditions is carried out considering...... the constraints of available refrigeration equipment and a requirement of a positive Net Present Value of the investment. The considered sink outlet temperature range is from 40 °C to 140 °C, but for the heat pumps considered in this paper, the upper limit is 100 °C. Five heat pumps are studied. For each set...... of heat sink and source temperatures the optimal solution is determined. At low sink temperature glide R717 heat pumps show best performance, while at higher sink glide transcritical R744 may become important. In a second paper, the results of the VCHP are compared to a similar study considering...

  8. Simulation of a high efficiency multi-bed adsorption heat pump

    International Nuclear Information System (INIS)

    TeGrotenhuis, W.E.; Humble, P.H.; Sweeney, J.B.

    2012-01-01

    Attaining high energy efficiency with adsorption heat pumps is challenging due to thermodynamic losses that occur when the sorbent beds are thermally cycled without effective heat recuperation. The multi-bed concept described here enables high efficiency by effectively transferring heat from beds being cooled to beds being heated. A simplified lumped-parameter model and detailed finite element analysis are used to simulate a sorption compressor, which is used to project the overall heat pump coefficient of performance. Results are presented for ammonia refrigerant and a nano-structured monolithic carbon sorbent specifically modified for the application. The effects of bed geometry and number of beds on system performance are explored, and the majority of the performance benefit is obtained with four beds. Results indicate that a COP of 1.24 based on heat input is feasible at AHRI standard test conditions for residential HVAC equipment. When compared on a basis of primary energy input, performance equivalent to SEER 13 or 14 are theoretically attainable with this system. - Highlights: ► A multi-bed concept for adsorption heat pumps is capable of high efficiency. ► Modeling is used to simulate sorption compressor and overall heat pump performance. ► Results are presented for ammonia refrigerant and a nano-structured monolithic carbon sorbent. ► The majority of the efficiency benefit is obtained with four beds. ► Predicted COP as high as 1.24 for cooling is comparable to SEER 13 or 14 for electric heat pumps.

  9. Performance comparison of air-source heat pump water heater with different expansion devices

    International Nuclear Information System (INIS)

    Peng, Jing-Wei; Li, Hui; Zhang, Chun-Lu

    2016-01-01

    Highlights: • An air-source heat pump water heater model was developed and validated. • System performance with EEV, capillary tube or short tube orifice were compared. • Short tube orifice is more suitable for heat pump water heater than capillary tube. - Abstract: Air source heat pump water heater (ASHPWH) is designed to work under wide operating conditions. Therefore, both the system and components require higher reliability and stability than ordinary heat pump air-conditioning systems. In this paper, a quasi-steady-state system model of ASHPWH using electronic expansion valve (EEV), capillary tube or short tube orifice as expansion device is developed and validated by a prototype using R134a and scroll compressor, by which the system performance is evaluated and compared at varying water temperature and different ambient temperature. Flow characteristics of those three expansion devices in ASHPWH are comparatively analyzed. Results show that the EEV throttling system performs best. Compared with capillary tube, flow characteristics of short tube orifice are closer to that of EEV and therefore more suitable for ASHPWH. Reliability concern of liquid carryover to the compressor in the system using short tube orifice is investigated as well. Higher superheat or less system refrigerant charge could help mitigate the risk.

  10. Aggregated Control of Domestic Heat Pumps

    DEFF Research Database (Denmark)

    Nielsen, Kirsten M.; Andersen, Palle; Pedersen, Tom S.

    2013-01-01

    A challenge in Denmark in the near future is to balance the electrical grid due to a large increase in the renewable energy production mainly from wind turbines. In this work an aggregated control system using heat pumps in single family houses to help balancing the grid is investigated....... The control system is able to adjust the consumptions of the heat pump without affecting the comfort in the houses and uses this ability to shift the total consumption to hours with high wind energy production....

  11. Study on tariffs for heat pumps

    International Nuclear Information System (INIS)

    Dieleman, M.; Hellemans, J.G.; Bouvy, E.J.; Van de Molen, B.A.

    1996-07-01

    An overview is given of the impact of electricity prices on the economic feasibility of electrical heat pumps for the residential sector, utility buildings, horticulture, and the industry in the Netherlands. The financial feasibility is calculated for three scenarios: low (present situation in the Netherlands), medium (short-term situation, 1998-2000, and more favtoable compared to the low scenario) and high (even more favorable conditions for the expected future situation after the year 2000 in case of a large-scale application of heat pumps). 25 figs., 25 tabs., 10 appendices, 46 refs

  12. Design of serially connected district heating heat pumps utilising a geothermal heat source

    DEFF Research Database (Denmark)

    Jensen, Jonas Kjær; Ommen, Torben Schmidt; Markussen, Wiebke Brix

    2017-01-01

    The design of two heat pumps (HP), connected in series, was investigated for operation in the district heating (DH) network of the Greater Copenhagen area, Denmark. The installation was dimensioned to supply 7.2 MW of heat at a temperature of 85 °C. The heat pumps utilise a geothermal heat source...

  13. Modelling of fluid flow and heat transfer in a reciprocating compressor

    Science.gov (United States)

    Tuhovcak, J.; Hejcik, J.; Jicha, M.

    2015-08-01

    Efficiency of reciprocating compressor is strongly dependent on several parameters. The most important are valve behaviour and heat transfer. Valves affect the flow through the suction and discharge line. Heat flow from the walls to working fluid increases the work of the cycle. Understanding of these phenomena inside the compressor is a necessary step in the development process. Commercial CFD tools offer wide range of opportunities how to simulate the flow inside the reciprocating compressor nowadays, however they are too demanding in terms of computational time and mesh creation. Several approaches using various correlation equation exist to describe the heat transfer inside the cylinder, however none of them was validated by measurements due to the complicated settings. The goal of this paper is to show a comparison between these correlations using in-house code based on energy balance through the cycle.

  14. Geothermal energy. Ground source heat pumps

    International Nuclear Information System (INIS)

    2009-01-01

    Geothermal energy can be harnessed in 2 different ways: electricity or heat generation. The combined net electrical geothermal power of the European Union countries reached 719.3 MWe in 2008 (4.8 MW up on 2007) for 868.1 MWe of installed capacity. Gross electrical production contracted slightly in 2008 (down 1% on the 2007 level) and stood at 5809.5 GWh in 2008. Italy has a overwhelming position with a production of 5520.3 GWh. Geothermal heat production concerning aquifers whose temperature is 30-150 C. degrees generally at a depth of 1-3 km is called low- and medium-enthalpy energy. 18 of the 27 EU members use low- and medium-enthalpy energy totaling 2560.0 MWth of installed capacity that yielded 689.2 ktoe in 2008 and 3 countries Hungary, Italy and France totaling 480.3 ktoe. Very low-enthalpy energy concerns the exploitation of shallow geothermal resources using geothermal heat pumps. In 2008, 114452 ground heat pumps were sold in Europe. At the end of 2008, the installed capacity was 8955.4 MWth (16.5% up on 2007 level, it represented 785206 pumps. Over one million ground heat pumps are expected to be operating in 2010 in Europe. (A.C.)

  15. Performance of a solar augmented heat pump

    Science.gov (United States)

    Bedinger, A. F. G.; Tomlinson, J. J.; Reid, R. L.; Chaffin, D. J.

    Performance of a residential size solar augmented heat pump is reported for the 1979-1980 heating season. The facility located in Knoxville, Tennessee, has a measured heat load coefficient of 339.5 watt/C (644 BTU/hr- F). The solar augmented heat pump system consists of 7.4 cu m of one inch diameter crushed limestone. The heat pump is a nominal 8.8 KW (2 1/2 ton) high efficiency unit. The system includes electric resistance heaters to give the option of adding thermal energy to the pebble bed storage during utility off-peak periods, thus offering considerable load management capability. A 15 KW electric resistance duct heater is used to add thermal energy to the pebble bin as required during off-peak periods. Hourly thermal performance and on site weather data was taken for the period November 1, 1979, to April 13, 1980. Thermal performance data consists of heat flow summations for all modes of the system, pebble bed temperatures, and space temperature. Weather data consists of dry bulb temperature, dew point temperature, total global insolation (in the plane of the collector), and wind speed and direction. An error analysis was performed and the least accurate of the measurements was determined to be the heat flow at 5%. Solar system thermal performance factor was measured to be 8.77. The heat pump thermal performance factor was 1.64. Total system seasonal performance factor was measured to be 1.66. Using a modified version of TRNSYS, the thermal performance of this system was simulated. When simulation results were compared with data collected onsite, the predicted heat flow and power consumption generally were within experimental accuracy.

  16. Economic optimization of heat pump-assisted distillation columns in methanol-water separation

    International Nuclear Information System (INIS)

    Shahandeh, Hossein; Jafari, Mina; Kasiri, Norollah; Ivakpour, Javad

    2015-01-01

    Finding efficient alternative to CDiC (Conventional Distillation Column) for methanol-water separation has been an attractive field of study in literature. In this work, five heat pump-assisted schemes are proposed and compared to each other to find the optimal one; (1) VRC (Vapor Recompression Column), (2) external HIDiC (Heat-Integrated Distillation Column), (3) intensified HIDiC with feed preheater, (4) double compressor intensified HIDiC-1, and (5) double compressor intensified HIDiC-2. GA (Genetic Algorithm) is then implemented for optimization of the schemes when TAC (Total Annual Cost) is its objective function. During optimization, two new variables are added for using only appropriate amount of the overhead stream in VRC and double compressor intensified HIDiCs, and another new binary variable is also used for considering feed preheating. Although TAC of the intensified HIDiC with feed preheater is found higher than CDiC by 25.0%, all optimal VRC, external HIDiC, double compressor intensified HIDiCs schemes are reached lower optimal TAC by 3.1%, 27.2%, 24.4%, and 34.2%. Introduced for the first time, the optimal scheme is the double compressor intensified HIDiC-2 with 34.2% TAC saving, 70.4% TEC (Total Energy Consumption) reduction with payback period of 3.30 years. - Highlights: • Study of an industrial distillation unit in methanol-water separation. • Optimization of different heat pump-assisted distillation columns. • Implementation of genetic algorithm during optimization. • Economic and thermodynamic comparisons of optimal results with the industrial case

  17. Practical and efficient magnetic heat pump

    Science.gov (United States)

    Brown, G. V.

    1978-01-01

    Method for pumping heat magnetically at room temperature is more economical than existing refrigeration systems. Method uses natural magneto-thermal effect of gadolinium metal to establish temperature gradient across length of tube. Regenerative cyclic process in which gadolinium sample is magnetized and gives off heat at one end of tube, and then is demagnetized at other end to absorb heat has established temperature gradients of 144 degrees F in experiments near room temperature. Other materials with large magnetothermal effects can be used below room temperature. Possible commercial applications include freeze-drying and food processing, cold storage, and heating and cooling of buildings, plants, and ships.

  18. Thermodynamic analysis on an instantaneous water heating system of shower wastewater source heat pump

    Directory of Open Access Journals (Sweden)

    Yuguo Wu

    2018-09-01

    Full Text Available Water reuse and desalination systems are energy intensive processes, and their increasing use is leading energy consumption within water systems to be an increasingly important issue. Shower wastewater contains large amounts of heat, so there is an opportunity to recover energy from shower water to offset energy consumption elsewhere in water systems. This paper found ways to increase the output of hot water and lower the energy consumption by establishing a thermodynamic model of an instantaneous wastewater source heat pump. The system proved to be very effective, the heating COP (coefficient of performance can reach 3.3 even in the winter. Under the conditions of limited heat transfer area, reducing the suction pressure of a compressor is a more feasible way to increase the hot water output to meet the needs of users rather than increasing the discharge pressure. Besides, increasing the heat transfer area of the evaporator is a more effective option. When the heat transfer area of evaporator varies from 0.5 to 1.0 square meters, a notable change is that the heating COP increases from 3.283 to 3.936. The heating COP in a system with a recuperator can reach 5.672, almost double that compared to the original systems.

  19. Heat Pumps in CHP Systems

    DEFF Research Database (Denmark)

    Ommen, Torben Schmidt

    that three configurations are particular advantageous, whereas the two remaining configurations result in system performance close to or below what may be expected from an electric heater. One of the three advantageous configurations is required to be positioned at the location of the heat demand, whereas...... the two remaining can be located at positions with availability of high temperature sources by utilising the DH network to distribute the heat. A large amount of operational and economic constraints limit the applicability of HPs operated with natural working fluids, which may be the only feasible choice...... representation allows infeasible production. Using MIP or NLP optimisation, the number of operation hours and the total production of heat from HPs are significantly increased, as the HPs may be used to shave the load patterns of CHP units in significantly constrained energy systems. A MIP energy system model...

  20. Combined system of solar heating and cooling using heat pump

    International Nuclear Information System (INIS)

    Zakhidov, R.A.; Anarbaev, A.I.

    2014-01-01

    The heating and cooling systems of apartment buildings based on combined solar heat-pump equipment has been considered and the procedure of calculating its parameters has been worked out. A technical-economic analysis has been performed and compared with the boiler-setting version. (author)

  1. Dimensioning of Boreholes for Geothermal Heat Pumps

    Directory of Open Access Journals (Sweden)

    Ryška Jiøí

    2004-09-01

    Full Text Available The paper deals with determination of borehole depths for geothermal heat pumps. Basic formulae are stated for heat convection in rocks. Software EED 2.0 was used for calculation of borehole depth depending on different entering parameters. The crucial parameter is thermal conductivity of rocks. The thermal conductivity could be very variable for the same kind of rock. Therefore its in-situ determination by means of formation thermal conductivity testing is briefly described.

  2. Manually operated elastomer heat pump

    Science.gov (United States)

    Hutchinson, W. D.

    1970-01-01

    Device consisting of a rotating mechanism, a frame with multiple wide bands of rubber, and a fluid bath, demonstrates the feasibility of a human operated device capable of cooling or producing heat. This invention utilizes the basic thermodynamic properties of natural rubber.

  3. Heat pump evaluation for Space Station ATCS evolution

    Science.gov (United States)

    Ames, Brian E.; Petete, Patricia A.

    1991-01-01

    A preliminary feasibility assessment of the application of a vapor compression heat pump to the Active Thermal Control System (ATCS) of SSF is presented. This paper focuses on the methodology of raising the surface temperature of the radiators for improved heat rejection. Some of the effects of the vapor compression cycle on SSF examined include heat pump integration into ATCS, constraints on the heat pump operating parameters, and heat pump performance enhancements.

  4. Necessity for usage of geothermal heat pump

    International Nuclear Information System (INIS)

    Dimitrov, Konstantin; Armenski, Slave; Gacevski, Marijan

    2004-01-01

    Every day we are witnesses of constantly rapid increase of consumption of Electric energy in R. of Macedonia as so as in the other countries in all the world. This rapid increase of consumption of Electric energy independent of a lot of electrical units, which are applying in human life like: homes, administration and publication objects, as well as in industry. All of this conditions make us to thinking how is possible more rational consumption of electric energy in all areas in human life. One of the possible manners to reduce the consumption of electrical energy for heating and cooling is to use geothermal heat pumps. In this paper will be proposed geothermal heat pump, which is going to use the heat of earth by vertical and horizontal cupper pipe heat exchanger with data from-GHP (Geothermal Heat Pump) NORDIC, factory in Canada. Also, it will be examined all parameters and done comparison with already existing ones. It is analyzed comparison of GHP with other energy units and what it means for rational consumption of electric energy, economic saving and ecology saving. (Author)

  5. Multi-Function Gas Fired Heat Pump

    Energy Technology Data Exchange (ETDEWEB)

    Mehdizadeh Momen, Ayyoub [ORNL; Abu-Heiba, Ahmad [ORNL; Vineyard, Edward Allan [ORNL

    2015-11-01

    The aim of this project was to design a residential fuel fired heat pump and further improve efficiency in collaboration with an industry partner – Southwest Gas, the developer of the Nextaire commercial rooftop fuel-fired heat pump. Work started in late 2010. After extensive search for suitable engines, one manufactured by Marathon was selected. Several prototypes were designed and built over the following four years. Design changes were focused on lowering the cost of components and the cost of manufacturing. The design evolved to a final one that yielded the lowest cost. The final design also incorporates noise and vibration reduction measures that were verified to be effective through a customer survey. ETL certification is currently (as of November 2015) underway. Southwest Gas is currently in talks with GTI to reach an agreement through which GTI will assess the commercial viability and potential of the heat pump. Southwest Gas is searching for investors to manufacture the heat pump and introduce it to the market.

  6. Thermodynamic analysis of chemical heat pumps

    International Nuclear Information System (INIS)

    Obermeier, Jonas; Müller, Karsten; Arlt, Wolfgang

    2015-01-01

    Thermal energy storages and heat pump units represent an important part of high efficient renewable energy systems. By using thermally driven, reversible chemical reactions a combination of thermal energy storage and heat pump can be realized. The influences of thermophysical properties of the involved components on the efficiency of a heat pump cycle is analysed and the relevance of the thermodynamic driving force is worked out. In general, the behaviour of energetic and exergetic efficiency is contrary. In a real cycle, higher enthalpies of reaction decrease the energetic efficiency but increase the exergetic efficiency. Higher enthalpies of reaction allow for lower offsets from equilibrium state for a default thermodynamic driving force of the reaction. - Highlights: • A comprehensive efficiency analysis of gas-solid heat pumps is proposed. • Link between thermodynamic driving force and equilibrium drop is shown. • Calculation of the equilibrium drop based on thermochemical properties. • Reaction equilibria of the decomposition reaction of salt hydrates. • Contrary behavior of energetic and exergetic efficiency

  7. FY 1986 Report on research and development of super heat pump energy accumulation system. Part 1. Development of elementary techniques; 1986 nendo super heat pump energy shuseki system no kenkyu kaihatsu seika hokokusho. 1. Yoso gijutsu no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1987-04-01

    Summarized in detail herein are R and D results of the super high performance heat pumps and elementary equipment and working fluids, for R and D of the super heat pump energy accumulation system. For R and D of the super high performance compression heat pumps, the R and D efforts are directed to development of new working fluids, high-performance heat exchangers, closed motors and so on for the highly efficient type (for heating only); to researches on mixed coolants, high-efficiency screw compressors and so on for the highly efficient type (for cooling and heating); to development of tooth shape of the screw compression section, surveys on thermal stability of the working fluids for heating and so on for the high temperature type (utilizing low temperature heat source); and to R and D of the high-speed reciprocating compressors and steam superchargers for the high temperature type (utilizing high temperature heat source). For R and D of the elementary equipment and working fluids, researches are conducted on evaporators for mixed working fluids, condensers utilizing the EHD effect, stainless steel plate fin type heat exchangers, heat exchangers for the chemical heat accumulation unit, and so on. The R and D efforts are also directed to the working fluids (alcohol-based and nonalcohol-based). (NEDO)

  8. Proceedings: Meeting customer needs with heat pumps, 1991

    International Nuclear Information System (INIS)

    1992-12-01

    Electric heat pumps provide a growing number of residential and commercial customers with space heating and cooling as well as humidity control and water heating. Industrial customers use heat pump technology for energy-efficient, economical process heating and cooling. Heat pumps help utilities meet environmental protection needs and satisfy their load-shape objectives. The 1991 conference was held in Dallas on October 15--18, featuring 60 speakers representing electric utilities, consulting organizations, sponsoring organizations, and heat pump manufacturers. The speakers presented the latest information about heat pump markets, technologies, applications, trade ally programs, and relevant issues. Participants engaged in detailed discussions in ''breakout'' and parallel sessions and viewed more than 30 exhibits of heat pumps, software, and other products and services supporting heat pump installations and service. Electric utilities have the greatest vested interest in the sale of electric heat pumps and thus have responsibility to ensure quality installations through well-trained technicians, authoritative and accurate technical information, and wellinformed design professionals. The electric heat pump is an excellent tool for the electric utility industry's response to environmental and efficiency challenges as well as to competition from other fuel sources. Manufacturers are continually introducing new products and making research results available to meet these challenges. Industrial process heat pumps offer customers the ability to supply heat to process at a lower cost than heat supplied by primary-fuel-fired boilers. From the utility perspective these heat pumps offer an opportunity for a new electric year-round application

  9. Magnetic heat pumping near room temperature

    Science.gov (United States)

    Brown, G. V.

    1976-01-01

    It is shown that magnetic heat pumping can be made practical at room temperature by using a ferromagnetic material with a Curie point at or near operating temperature and an appropriate regenerative thermodynamic cycle. Measurements are performed which show that gadolinium is a resonable working material and it is found that the application of a 7-T magnetic field to gadolinium at the Curie point (293 K) causes a heat release of 4 kJ/kg under isothermal conditions or a temperature rise of 14 K under adiabatic conditions. A regeneration technique can be used to lift the load of the lattice and electronic heat capacities off the magnetic system in order to span a reasonable temperature difference and to pump as much entropy per cycle as possible

  10. On the development of high temperature ammonia-water hybrid absorption-compression heat pumps

    DEFF Research Database (Denmark)

    Jensen, Jonas Kjær; Markussen, Wiebke Brix; Reinholdt, Lars

    2015-01-01

    Ammonia-water hybrid absorption-compression heat pumps (HACHP) are a promising technology for development of ecient high temperature industrial heat pumps. Using 28 bar components HACHPs up to 100 °C are commercially available. Components developed for 50 bar and 140 bar show that these pressure...... limits may be possible to exceed if needed for actual applications. Feasible heat supply temperatures using these component limits are investigated. A feasible solution is defined as one that satisfies constraints on the COP, low and high pressure, compressor discharge temperature, vapour water content...... and volumetric heat capacity. The ammonia mass fraction and the liquid circulation ratio both influence these constraining parameters. The paper investigates feasible combinations of these parameters through the use of a numerical model. 28 bar components allow temperatures up to 111 °C, 50 bar up to 129°C...

  11. The impacts of groundwater heat pumps on urban shallow ...

    African Journals Online (AJOL)

    DR TONUKARI NYEROVWO

    2011-07-25

    Jul 25, 2011 ... In order to assess the impacts of groundwater heat pumps on urban shallow groundwater ... thermal transfer systems that use the ground water as a ... Abbreviations: GWHPs, Groundwater heat pumps; GHGs, ... Areas (Mm2).

  12. Heat pump dryers theory, design and industrial applications

    CERN Document Server

    Alves-Filho, Odilio

    2015-01-01

    Explore the Social, Technological, and Economic Impact of Heat Pump Drying Heat pump drying is a green technology that aligns with current energy, quality, and environmental concerns, and when compared to conventional drying, delivers similar quality at a lower cost. Heat Pump Dryers: Theory, Design and Industrial Applications details the progression of heat pump drying-from pioneering research and demonstration work to an applied technology-and establishes principles and theories that can aid in the successful design and application of heat pump dryers. Based on the author's personal experience, this book compares heat pump dryers and conventional dryers in terms of performance, quality, removal rate, energy utilization, and the environmental effect of both drying processes. It includes detailed descriptions and layouts of heat pump dryers, outlines the principles of operation, and explains the equations, diagrams, and procedures used to form the basis for heat pump dryer dimensioning and design. The author ...

  13. Global design of a reversible air/water heat pump with variable power for the residential sector; Conception globale d'une pompe a chaleur air/eau inversable a puissance variable pour le secteur residentiel

    Energy Technology Data Exchange (ETDEWEB)

    Flach-Malaspina, N.

    2004-10-15

    Variable power is one of the means to improve the seasonal energy efficiency of heat pump space heating systems. The dual compressors technology is energetically efficient and is available in Europe. The main results of this work are: 1 - the identification of the origin of cycling losses in heating and cooling mode of existing mono-compressor air/water systems. The standby consumption of the heat pump is the only element which can efficiently contribute to reduce the energy losses at partial load. 2 - The quantification of the energy gains by adapting the dual compressors technology to a prototype of reference heat pump. 3 - A dynamic model of calculation of the seasonal coefficient of performance has been developed. 4 - The optimization of compressors operation and of the unfreezing system has permitted to increase the seasonal coefficient of performance from 14.7% to 18.6% with respect to the outdoor temperature. To carry out this study, design, experimental and modeling works have been done. The design of a heat pump fitted with two compressors has required the development of a new partial load testing bench. The several experimental and standardized tests have permitted to characterize an existing heat pump and a dual compressor heat pump whatever the operation mode and the outdoor climate. The dynamical model obtained has permitted to optimize the energy efficiency of the system thanks to a better management of the unfreezing system and to a proper regulation of the compressors. Some ways of improvement concern the dimensioning of compressors and the management of exchangers flow rates for an additional improvement of seasonal coefficients of performance. (J.S.)

  14. An analytical method for defining the pump`s power optimum of a water-to-water heat pump heating system using COP

    Directory of Open Access Journals (Sweden)

    Nyers Jozsef

    2017-01-01

    Full Text Available This paper analyzes the energy efficiency of the heat pump and the complete heat pump heating system. Essentially, the maximum of the coefficient of performance of the heat pump and the heat pump heating system are investigated and determined by applying a new analytical optimization procedure. The analyzed physical system consists of the water-to-water heat pump, circulation and well pump. In the analytical optimization procedure the "first derivative equal to zero" mathematical method is applied. The objective function is the coefficient of performance of the heat pump, and the heat pump heating system. By using the analytical optimization procedure and the objective function, as the result, the local and the total energy optimum conditions with respect to the mass flow rate of hot and cold water i. e. the power of circulation or well pump are defined.

  15. Simulation of a solar assisted combined heat pump – Organic rankine cycle system

    International Nuclear Information System (INIS)

    Schimpf, Stefan; Span, Roland

    2015-01-01

    Highlights: • Addition of an ORC to a solar thermal and ground source heat pump system. • Reverse operation of the scroll compressor in ORC mode. • Annual simulations for application in a single-family house at three locations. • By introducing the ORC the net electricity demand is reduced by 1–9%. • Over the lifetime of the system savings can cover additional investments. - Abstract: A novel solar thermal and ground source heat pump system that harnesses the excess heat of the collectors during summer by an Organic Rankine Cycle (ORC) is simulated. For the ORC the heat pump process is reversed. In this case the scroll compressor of the heat pump runs as a scroll expander and the working fluid is condensed in the ground heat exchanger. Compared to a conventional solar thermal system the only additional investments for the combined system are a pump, valves and upgraded controls. The goal of the study is to simulate and optimize such a system. A brief overview of the applied models and the evolutionary algorithm for the optimization is given. A system with 12 m 2 of flat plate collectors installed in a single family house is simulated for the locations Ankara, Denver and Bochum. The ORC benefits add up to 20–140 kW h/a, which reduces the net electricity demand of the system by 1–9%. Overall 180–520 € are saved over a period of 20 years, which can be enough to cover the additional investments

  16. Survey of residential heat pump owner experience in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Unsoy, J

    1985-11-11

    Heat pump owners in 7 Canadian cities were surveyed to establish installation costs, repair costs and frequencies, and customer satisfaction with heat pump systems as a function of region, installing contractor, manufacturer, model, year of installation and system type. The following summarizes the major findings of the study. Most Canadian heat pumps are retrofit installations in existing homes. The majority of these heat pumps have either supplemented or replaced an oil furnace. The average age of heat pumps is 2.5 years. The median size of heat pumps installed is 2.5 tons. The three most popular brands by order of prevalence are York, Carrier and General Electric. Only about one-fifth of heat pump owners have purchased service contracts. Two-thirds of the heat pumps have never needed repairs. Eighty-three percent of heat pump owners have never incurred any repair costs; and of those that have, about half spent $100 or less. The most frequent repair problems are refrigerant leaks followed by relays and controls. Corrective actions average about 0.3 per unit year. The owners' evaluation of comfort from their heat pump is generally favourable. About 12% of the owners find the outdoor unit noisy and 10% feel maintenance costs are at a disadvantage. Overall, only 7% of heat pump owners indicated that they would not install a heat pump in their next house. Most heat pump owners are satisfied with their heat pump brand and installer. Owners with systems installed in newer homes are more satisfied with their heat pumps than those who have installed heat pumps in older homes. 3 figs., 93 tabs.

  17. Optimal usage of low temperature heat sources to supply district heating by heat pumps

    DEFF Research Database (Denmark)

    Pieper, Henrik; Ommen, Torben Schmidt; Markussen, Wiebke Brix

    2017-01-01

    This paper presents a theoretical study on the optimal usage of different low temperature heat sources to supply district heating by heat pumps. The study is based on data for the Copenhagen region. The heat sources were prioritized based on the coefficient of performance calculated for each hour...... and the covered demand of each heat source as well as required peak unit capacity. The results showed that heat pumps using different heat sources yield better performance than a heat pump based on a single one. The performance was influenced by the composition of the different heat sources. It was found that 78......% groundwater, 22% seawater and 0% air resulted in highest COP of 3.33 for the given heat demand. Furthermore, the implementation of rule based short term storage made peak units redundant. The variation in base load capacity showed that heat pumps utilizing the analyzed heat sources could perform very...

  18. Gas Fride Heat Pumps : The Present and Future

    Science.gov (United States)

    Kurosawa, Shigekichi; Ogura, Masao

    In japan techniques for saving energy is an important goal since energy resources such as oil and nuclear power are limited. Recently gas fired absorption heat pumps and gas engine driven heat pumps have been installed in facilifies such as hotels, swimming pools and offices. In this article recent techniques, applications and future aspects for gas fired heat pumps are explained.

  19. Dynamic performance of a novel solar photovoltaic/loop-heat-pipe heat pump system

    International Nuclear Information System (INIS)

    Zhang, Xingxing; Zhao, Xudong; Shen, Jingchun; Xu, Jihuan; Yu, Xiaotong

    2014-01-01

    Highlights: • A transient model was developed to predict dynamic performance of new PV/LHP system. • The model accuracy was validated by experiment giving less than 9% in error. • The new system had basic and advanced performance coefficients of 5.51 and 8.71. • The new system had a COP 1.5–4 times that for conventional heat pump systems. • The new system had higher exergetic efficiency than PV and solar collector systems. - Abstract: Objective of the paper is to present an investigation into the dynamic performance of a novel solar photovoltaic/loop-heat-pipe (PV/LHP) heat pump system for potential use in space heating or hot water generation. The methods used include theoretical computer simulation, experimental verification, analysis and comparison. The fundamental equations governing the transient processes of solar transmission, heat transfer, fluid flow and photovoltaic (PV) power generation were appropriately integrated to address the energy balances occurring in different parts of the system, e.g., glazing cover, PV cells, fin sheet, loop heat pipe, heat pump cycle and water tank. A dedicated computer model was developed to resolve the above grouping equations and consequently predict the system’s dynamic performance. An experimental rig was constructed and operated under the real weather conditions for over one week in Shanghai to evaluate the system living performance, which was undertaken by measurement of various operational parameters, e.g., solar radiation, photovoltaic power generation, temperatures and heat pump compressor consumption. On the basis of the first- (energetic) and second- (exergetic) thermodynamic laws, an overall evaluation approach was proposed and applied to conduct both quantitative and qualitative analysis of the PV/LHP module’s efficiency, which involved use of the basic thermal performance coefficient (COP th ) and the advanced performance coefficient (COP PV/T ) of such a system. Moreover, a simple comparison

  20. Refrigerant charge management in a heat pump water heater

    Science.gov (United States)

    Chen, Jie; Hampton, Justin W.

    2014-06-24

    Heat pumps that heat or cool a space and that also heat water, refrigerant management systems for such heat pumps, methods of managing refrigerant charge, and methods for heating and cooling a space and heating water. Various embodiments deliver refrigerant gas to a heat exchanger that is not needed for transferring heat, drive liquid refrigerant out of that heat exchanger, isolate that heat exchanger against additional refrigerant flowing into it, and operate the heat pump while the heat exchanger is isolated. The heat exchanger can be isolated by closing an electronic expansion valve, actuating a refrigerant management valve, or both. Refrigerant charge can be controlled or adjusted by controlling how much liquid refrigerant is driven from the heat exchanger, by letting refrigerant back into the heat exchanger, or both. Heat pumps can be operated in different modes of operation, and segments of refrigerant conduit can be interconnected with various components.

  1. Experimental performance analysis and optimization of a direct expansion solar-assisted heat pump water heater

    International Nuclear Information System (INIS)

    Li, Y.W.; Wang, R.Z.; Wu, J.Y.; Xu, Y.X.

    2007-01-01

    In this study, a direct expansion solar-assisted heat pump water heater (DX-SAHPWH) with rated input power 750 W was tested and analyzed. Through experimental research in spring and thermodynamics analysis about the system performance, some suggestions for the system optimization are proposed. Then, a small-type DX-SAHPWH with rated input power 400 W was built, tested and analyzed. Through exergy analysis for each component of DX-SAHPWH (A) and (B), it can be seen that the highest exergy loss occurs in the compressor and collector/evaporator, followed by the condenser and expansion valve, respectively. Furthermore, some methods are suggested to improve the performance of each component, especially the collector/evaporator. A methodology for the design optimization of the collector/evaporator was introduced and applied. In order to maintain a proper matching between the heat pumping capacity of the compressor and the evaporative capacity of the collector/evaporator under widely varying ambient conditions, the electronic expansion valve and variable frequency compressor are suggested to be utilized for the DX-SAHPWH

  2. Development of advanced heat pump (2). Prelimirary test of two-stage compression heat pump. Koseino onreinetsu kyokyu heat pump system no kaihatsu. Dai 2 ho 2dan attsusyuku system shisakuki no yobi jikken kekka

    Energy Technology Data Exchange (ETDEWEB)

    Iwatsubo, Tetsushiro; Saikawa, Michinori; Hamamatsu, Teruhide

    1988-03-01

    A heat pump driven by electricity is one of the excellent electricity utilization systems and is promoted to be widely used. An advanced heat pump has been investigated to enlarge its applications in the field of hot water supply for domestic use which will be competitive with city gas and air conditioning in large scale buildings. An experimental unit with two-stage compression system was designed, which has the multi-function of air conditioning and hot water supply, and the trial system was fabricated. In the design, followings were considered; cooperative operations of two compressors by inverter driving, the temperature conditions of both the air for the air conditioning and the heat source, additional setting of the intermediate heat exchanger. The test operation was carried out with checking the start up procedure, the control sequence and so on. The probability of five operation modes: cooling, heating, hot water supply, cooling/hot water supply, and heating/hot water supply, were confirmed. In the mode of heating/hot water supply the hot water temperature was increased to 65/sup 0/C, the excellent performance in hot water supply was demonstrated. (21 figs, 8 tabs, 1 photo, 5 refs)

  3. From a magnet to a heat pump

    DEFF Research Database (Denmark)

    Navickaité, Kristina; Neves Bez, Henrique; Engelbrecht, Kurt

    2016-01-01

    The magnetocaloric effect (MCE) is the thermal response of a magnetic material to an applied magnetic field. Magnetic cooling is a promising alternative to conventional vapor compression technology in near room temperature applications and has experienced significant developments over the last five...... years. Although further improvements are necessary before the technology can be commercialized. Researchers were mainly focused on the development of materials and optimization of a flow system in order to increase the efficiency of magnetic heat pumps. The project, presented in this paper, is devoted...... to the improvement of heat pump and cooling technologies through simple tests of prospective regenerator designs. A brief literature review and expected results are presented in the paper. It is mainly focused on MCE technologies and provides a brief introduction to the magnetic cooling as an alternative...

  4. Affordable Hybrid Heat Pump Clothes Dryer

    Energy Technology Data Exchange (ETDEWEB)

    TeGrotenhuis, Ward E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Butterfield, Andrew [Jabil, St. Petersburg, FL (United States); Caldwell, Dustin D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Crook, Alexander [Jabil, St. Petersburg, FL (United States)

    2016-06-30

    This project was successful in demonstrating the feasibility of a step change in residential clothes dryer energy efficiency by demonstrating heat pump technology capable of 50% energy savings over conventional standard-size electric dryers with comparable drying times. A prototype system was designed from off-the-shelf components that can meet the project’s efficiency goals and are affordable. An experimental prototype system was built based on the design that reached 50% energy savings. Improvements have been identified that will reduce drying times of over 60 minutes to reach the goal of 40 minutes. Nevertheless, the prototype represents a step change in efficiency over heat pump dryers recently introduced to the U.S. market, with 30% improvement in energy efficiency at comparable drying times.

  5. Advanced heat pumps and their economic aspects. The case for super heat pump

    International Nuclear Information System (INIS)

    Yabe, Akira; Akiya, Takaji

    1996-01-01

    The results of the economic evaluation of the Super Heat Pump Energy Accumulation System project in Japan are reviewed. It is reported that although the initial costs of super heat pumps are higher than those of conventional systems, the calculated operating costs of a unit thermal energy produced by a super heat pump is reduced considerably. All the various system concepts with thermal/chemical storage were evaluated economically with the exception of the high temperature thermal storage systems using salt ammonia complexes and solvation. These latter systems were not further developed as pilot plants. It is advocated to accelerate the introduction of super heat pumps by facilitating their market introduction. Actual clathrate chemical storage systems have shown that the annual costs are comparable to those of an ice storage system. Clathrate systems will find their way in the market. It is concluded that most of the super heat pump systems and clathrate storage systems will be economic in the future. A big challenge however still exists in further improving the cost effectiveness of heat storage in tanks by reducing their size dramatically (to 1/10th)

  6. Field Monitoring Protocol. Heat Pump Water Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Sparn, B. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Earle, L. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Christensen, D. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Maguire, J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wilson, E. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hancock, C. E. [Mountain Energy Partnership, Longmont, CO (United States)

    2013-02-01

    This document provides a standard field monitoring protocol for evaluating the installed performance of Heat Pump Water Heaters in residential buildings. The report is organized to be consistent with the chronology of field test planning and execution. Research questions are identified first, followed by a discussion of analysis methods, and then the details of measuring the required information are laid out. A field validation of the protocol at a house near the NREL campus is included for reference.

  7. Field Monitoring Protocol: Heat Pump Water Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Sparn, B.; Earle, L.; Christensen, D.; Maguire, J.; Wilson, E.; Hancock, E.

    2013-02-01

    This document provides a standard field monitoring protocol for evaluating the installed performance of Heat Pump Water Heaters in residential buildings. The report is organized to be consistent with the chronology of field test planning and execution. Research questions are identified first, followed by a discussion of analysis methods, and then the details of measuring the required information are laid out. A field validation of the protocol at a house near the NREL campus is included for reference.

  8. Heat pump processes induced by laser radiation

    Science.gov (United States)

    Garbuny, M.; Henningsen, T.

    1980-01-01

    A carbon dioxide laser system was constructed for the demonstration of heat pump processes induced by laser radiation. The system consisted of a frequency doubling stage, a gas reaction cell with its vacuum and high purity gas supply system, and provisions to measure the temperature changes by pressure, or alternatively, by density changes. The theoretical considerations for the choice of designs and components are dicussed.

  9. Binary blend of carbon dioxide and fluoro ethane as working fluid in transcritical heat pump systems

    Directory of Open Access Journals (Sweden)

    Zhang Xian-Ping

    2015-01-01

    Full Text Available As an eco-friendly working fluid, carbon dioxide or R744 is expected to substitute for the existing working fluids used in heat pump systems. It is, however, challenged by the much higher heat rejection pressure in transcritical cycle compared with the traditional subcritical cycle using freons. There exists a worldwide tendency to utilize blend refrigerants as alternatives. Therefore, a new binary blend R744/R161 in this research is proposed in order to decrease the heat rejection pressure. Meanwhile, on mixing R744 with R161, the flammability and explosivity of R161 can be suppressed because of the extinguishing effect of R744. A transcritical thermodynamic model is developed, and then the system performances of heat pump using R744/R161 blend are investigated and compared with those of pure R744 system under the same operation conditions. The variations of heat rejection pressure, heating coefficient of performance, unit volumetric heating capacity, discharge temperature of compressor and the mass fraction of R744/R161 are researched. The results show that R744/R161 mixture can reduce the heat rejection pressure of transcritical heat pump system.

  10. A binary mixture operated heat pump

    International Nuclear Information System (INIS)

    Hihara, E.; Saito, T.

    1991-01-01

    This paper evaluates the performance of possible binary mixtures as working fluids in high- temperature heat pump applications. The binary mixtures, which are potential alternatives of fully halogenated hydrocarbons, include HCFC142b/HCFC22, HFC152a/HCFC22, HFC134a/HCFC22. The performance of the mixtures is estimated by a thermodynamic model and a practical model in which the heat transfer is considered in heat exchangers. One of the advantages of binary mixtures is a higher coefficient of performance, which is caused by the small temperature difference between the heat-sink/-source fluid and the refrigerant. The mixture HCFC142b/HCFC22 is promising from the stand point of thermodynamic performance

  11. High efficient ammonia heat pump system for industrial process water using the ISEC concept. Part 2

    DEFF Research Database (Denmark)

    Olesen, Martin F.; Madsen, Claus; Olsen, Lars

    2014-01-01

    The Isolated System Energy Charging (ISEC) concept allows for a high efficiency of a heat pump system for hot water production. The ISEC concept consists of two water storage tanks, one charged and one discharged. The charged tank is used for the industrial process, while the discharged tank...... is charging. The charging of the tank is done by recirculating water through the condenser and thereby gradually heating the water. The modelling of the system is described in Part I [1]. In this part, Part II, an experimental test setup of the tank system is reported, the results are presented and further...... modelling of the heat pump and tank system is performed (in continuation of Part I). The modelling is extended to include the system performance with different natural refrigerants and the influence of different types of compressors....

  12. Research and development of an air-cycle heat-pump water heater. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Dieckmann, J.T.; Erickson, A.J.; Harvey, A.C.; Toscano, W.M.

    1979-10-01

    A prototype reverse Brayton air cycle heat pump water heater has been designed and built for residential applications. The system consists of a compressor/expander, an air-water heat exchanger, an electric motor, a water circulation pump, a thermostat, and fluid management controls. The prototype development program consisted of a market analysis, design study, and development testing. A potential residential market for the new high-efficiency water heater of approximately 480,000 units/y was identified. The retail and installation cost of this water heater is estimated to be between $500 and $600 which is approximately $300 more than a conventional electric water heater. The average payback per unit is less than 3-1/2 y and the average recurring energy cost savings after the payback period is approximately $105/y at the average seasonal coefficient of performance (COP) of 1.7. As part of the design effort, a thermodynamic parametric analysis was performed on the water heater system. It was determined that to obtain a coefficient of performance of 1.7, the isentropic efficiency of both the compressor and the expander must be at least 85%. The selected mechanical configuration is described. The water heater has a diameter of 25 in. and a height of 73 in. The results of the development testing of the prototype water heater system showed: the electrical motor maximum efficiency of 78%; the compressor isentropic efficiency is 95 to 119% and the volumetric efficiency is approximately 85%; the expander isentropic efficiency is approximately 58% and the volumetric efficiency is 92%; a significant heat transfer loss of approximately 16% occurred in the expander; and the prototype heat pump system COP is 1.26 which is less than the design goal of at least 1.7. Future development work is recommended.

  13. A simulation study on the operating performance of a solar-air source heat pump water heater

    International Nuclear Information System (INIS)

    Xu Guoying; Zhang Xiaosong; Deng Shiming

    2006-01-01

    A simulation study on the operating performance of a new type of solar-air source heat pump water heater (SAS-HPWH) has been presented. The SAS-HPWH used a specially designed flat-plate heat collector/evaporator with spiral-finned tubes to obtain energy from both solar irradiation and ambient air for hot water heating. Using the meteorological data in Nanjing, China, the simulation results based on 150 L water heating capacity showed that such a SAS-HPWH can heat water up to 55 deg. C efficiently under various weather conditions all year around. In this simulation study, the influences of solar radiation, ambient temperature and compressor capacity on the performance of the SAS-HPWH were analyzed. In order to improve the overall operating performance, the use of a variable-capacity compressor has been proposed

  14. Development and testing of mini heat pump for low-energy houses. Final report; Udvikling og test af minivarmepumpe til lavenergihuse. Slutrapport

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, Per Henrik; Madsen, Claus; Frederiksen, Klaus; Andreasen, Marcin Blazniak (Teknologisk Institut, Koele- og Varmepumpeteknik, Taastrup (Denmark))

    2010-11-15

    New residential houses are better insulated, and this reduces the need for heat during the winter period. In addition to this many new houses have floor heating systems. This combination is favourable for small heat pumps which can produce heat to central water systems with low water temperatures in the area 25 to 35 C. 4 prototypes of mini heat pumps of the brine/water type was build and tested in the refrigeration laboratory at the Danish Technological Institute (DTI). The prototypes are using a variable speed compressor (Danfoss SLV12) which originally is developed for plug-in supermarket cabinets. The heating capacity of the prototypes can vary between 1.0 and 2.1 kW. The refrigerant charge is 150 grams of R290 (propane). Two prototypes are charged with 375 grams of R134a. Tests were conducted following EN14511 at 0/+35 C and COP was measured to between 3.2 and 3.6 depending of the compressor speed and the type of plate heat exchangers used. This is quite good for such small machines. One of the prototypes was installed in the Energy Flex House which is a new highly insulated test house build at the DTI. The house was equipped with two heat pumps: 1. An exhaust air heat pump taking energy from exhaust air and producing hot tap water and heating the intake air; 2. A mini heat pump for floor heating taking energy from ground source outside the house. A family with four persons lives in the house. During the cold winter 2009/2010 the mini heat pump showed good performance and the COP varies between 2.0 and 4.0. The lower value was caused by a fault in the floor heating hoses, which made it necessary to increase the temperature of the central heating water, which decreased the efficiency of the heat pump during the coldest winter period. The floor heating system has been repaired, and a new prototype heat pump with a slightly bigger compressor has been installed for the heating season 2010/2011. A heat pump manufacturer is now producing this combination of exhaust

  15. Design and operation of gas-heated thermal pumping units

    Energy Technology Data Exchange (ETDEWEB)

    Rostek, H A [Ruhrgas A.G., Essen (Germany, F.R.)

    1979-03-01

    The first gas heat pump systems have been operated since spring 1977. These are applied in living houses, school, swimming pools, and sport places and administration buildings. The heating performance of these systems is 150-3800 kW. Two of these systems, one in a swimming pool and one in a house for several families are operating, each of them for one heating period. The operational experiences with these gas heat pumps are reported on, basing on measurement results. The experience gathered from the operation of gas heat pumps systems is applied to the planning of other plants. The development of a standardized gas heat pump-series is emphasized.

  16. Gas heat pump installation at Paderborn

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    A gas heat pump installation at the swimming pool and sport center in Paderborn, developed by Ruhrgas A.G. has a heat capacity of 4650 kW, the largest up to this time and recovers heat from ground water under the sport center, shower, and swimming pool effluent, and air exhausted from the swimming pool to provide 182% of the energy obtained from the natural gas alone. This compares with an 80% efficiency for a conventional boiler fired with natural gas. Natural gas consumption by the sport center has been reduced from 1.2 million m/sup 3/ y to 520,000 m/sup 3//y, a 56% savings. Three identical units each have an eight-cylinder, four-cycle, 253 kW-gas engine.

  17. Refrigeration system having standing wave compressor

    Science.gov (United States)

    Lucas, Timothy S.

    1992-01-01

    A compression-evaporation refrigeration system, wherein gaseous compression of the refrigerant is provided by a standing wave compressor. The standing wave compressor is modified so as to provide a separate subcooling system for the refrigerant, so that efficiency losses due to flashing are reduced. Subcooling occurs when heat exchange is provided between the refrigerant and a heat pumping surface, which is exposed to the standing acoustic wave within the standing wave compressor. A variable capacity and variable discharge pressure for the standing wave compressor is provided. A control circuit simultaneously varies the capacity and discharge pressure in response to changing operating conditions, thereby maintaining the minimum discharge pressure needed for condensation to occur at any time. Thus, the power consumption of the standing wave compressor is reduced and system efficiency is improved.

  18. Low-Cost Gas Heat Pump for Building Space Heating

    Energy Technology Data Exchange (ETDEWEB)

    Garrabrant, Michael [Stone Mountain Technologies, Inc., Johnson City, TN (United States); Keinath, Christopher [Stone Mountain Technologies, Inc., Johnson City, TN (United States)

    2016-10-11

    Gas-fired residential space heating in the U.S is predominantly supplied by furnaces and boilers. These technologies have been approaching their thermodynamic limit over the past 30 years and improvements for high efficiency units have approached a point of diminishing return. Electric heat pumps are growing in popularity but their heating performance at low ambient temperatures is poor. The development of a low-cost gas absorption heat pump would offer a significant improvement to current furnaces and boilers, and in heating dominated climate zones when compared to electric heat pumps. Gas absorption heat pumps (GAHP) exceed the traditional limit of thermal efficiency encountered by typical furnaces and boilers, and maintain high levels of performance at low ambient temperatures. The project team designed and demonstrated two low-cost packaged prototype GAHP space heating systems during the course of this investigation. Led by Stone Mountain Technologies Inc. (SMTI), with support from A.O. Smith, and the Gas Technology Institute (GTI), the cross-functional team completed research and development tasks including cycle modeling, 8× scaling of a compact solution pump, combustion system development, breadboard evaluation, fabrication of two packaged prototype units, third party testing of the first prototype, and the evaluation of cost and energy savings compared to high and minimum efficiency gas options. Over the course of the project and with the fabrication of two Alpha prototypes it was shown that this technology met or exceeded most of the stated project targets. At ambient temperatures of 47, 35, 17 and -13°F the prototypes achieved gas based coefficients of performance of 1.50, 1.44, 1.37, and 1.17, respectively. Both units operated with parasitic loads well below the 750 watt target with the second Alpha prototype operating 75-100 watts below the first Alpha prototype. Modulation of the units at 4:1 was achieved with the project goal of 2:1 modulation

  19. Crawl space assisted heat pump. [using stored ground heat

    Science.gov (United States)

    Ternes, M. P.

    1980-01-01

    A variety of experiments and simulations, currently being designed or underway, to determine the feasibility of conditioning the source air of an air to air heat pump using stored ground heat or cool to produce higher seasonal COP's and net energy savings are discussed. The ground would condition ambient air as it is drawn through the crawl space of a house. Tests designed to evaluate the feasibility of the concept, to determine the amount of heat or cool available from the ground, to study the effect of the system on the heating and cooling loads of the house, to study possible mechanisms which could enhance heat flow through the ground, and to determine if diurnal temperature swings are necessary to achieve successful system performance are described.

  20. Heat Pump Efficiencies simulated in Aspen HYSYS and Aspen Plus

    OpenAIRE

    Øi, Lars Erik; Tirados, Irene Yuste

    2015-01-01

    Heat pump technology provides an efficient and sustainable solution for both heating and cooling. A traditional heat pump can be defined as a mechanical-compression cycle refrigeration system powered by electricity. Traditional refrigerants used in heat pumps are ammonia or chlorinated and fluorinated hydrocarbons. Because many of these chlorofluorohydrocarbons (CFC??) are ozone-depleting components, evaluation of more environmentally friendly refrigerants like pure hydrocarbons is important....

  1. Optimization of heat pump using fuzzy logic and genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Sahin, Arzu Sencan [Sueleyman Demirel University, Technology Faculty, Isparta (Turkey); Kilic, Bayram; Kilic, Ulas [Bucak Emin Guelmez Vocational School, Mehmet Akif Ersoy University, Bucak (Turkey)

    2011-12-15

    Heat pumps offer economical alternatives of recovering heat from different sources for use in various industrial, commercial and residential applications. In this study, single-stage air-source vapor compression heat pump system has been optimized using genetic algorithm (GA) and fuzzy logic (FL). The necessary thermodynamic properties for optimization were calculated by FL. Thermodynamic properties obtained with FL were compared with actual results. Then, the optimum working conditions of heat pump system were determined by the GA. (orig.)

  2. Heat Analysis of Liquid piston Compressor for Hydrogen Applications

    DEFF Research Database (Denmark)

    Kermani, Nasrin Arjomand; Rokni, Masoud

    2014-01-01

    A new hydrogen compression technology using liquid as the compression piston is investigated from heat transfer point of view. A thermodynamic model, simulating a single compression stroke, is developed to investigate the heat transfer phenomena inside the compression chamber. The model is develo......A new hydrogen compression technology using liquid as the compression piston is investigated from heat transfer point of view. A thermodynamic model, simulating a single compression stroke, is developed to investigate the heat transfer phenomena inside the compression chamber. The model...

  3. HEAT PUMP STATION WITH CARBON DIOXIDE AS A WORKING FLUID ENERGY EFFICIENCY GROWTH IN COMBINED DISTRICT HEATING SYSTEM DUE TO ITS CONTROL SYSTEM OPTIMIZATION

    Directory of Open Access Journals (Sweden)

    Sit B.M.

    2008-04-01

    Full Text Available A diagram of the heat pump station (HPS for the central heat supply station of the district heating system, which gets the power from the CHP plant is examined. A block diagram of the control of the system and compressor pressure control system are examined. The description of the control laws of evaporator at the variable heat load of the HPS and control laws of the gas cooler taking into account the goal of achieving the maximum of COP of HPS is shown as well.

  4. Heat transfer analysis of liquid piston compressor for hydrogen applications

    DEFF Research Database (Denmark)

    Kermani, Nasrin Arjomand; Rokni, Masoud

    2015-01-01

    A hydrogen compression technology using liquid as the compression piston is investigated from heat transfer point of view. A thermodynamic model, simulating a single compression stroke, is developed to investigate the heat transfer phenomena inside the compression chamber. The model is developed...... and through the walls, is investigated and compared with the adiabatic case. The results show that depending on heat transfer correlation, the hydrogen temperature reduces slightly between 0.2% and 0.4% compared to the adiabatic case, at 500bar, due to the large wall resistance and small contact area...... at the interface. Moreover, the results of the sensitivity analysis illustrates that increasing the total heat transfer coefficients at the interface and the wall, together with compression time, play key roles in reducing the hydrogen temperature. Increasing the total heat transfer coefficient at the interface...

  5. Double-effect absorption heat pump, phase 3

    Science.gov (United States)

    Cook, F. B.; Cremean, S. P.; Jatana, S. C.; Johnson, R. A.; Malcosky, N. D.

    1987-06-01

    The RD&D program has resulted in design, development and testing of a packaged prototype double-effect generator cycle absorption gas heat pump for the residential and small commercial markets. The 3RT heat pump prototype has demonstrated a COPc of 0.82 and a COPh of 1.65 at ARI rating conditions. The heat pump prototype includes a solid state control system with built-in diagnostics. The absorbent/refrigerant solution thermophysical properties were completely characterized. Commercially available materials of construction were identified for all heat pump components. A corrosion inhibitor was identified and tested in both static and dynamic environments. The safety of the heat pump was analyzed by using two analytical approaches. Pioneer Engineering estimated the factory standard cost to produce the 3RT heat pump at $1,700 at a quantity of 50,000 units/year. One United States patent was allowed covering the heat pump technology, and two divisional applications and three Continuation-in-Park Applications were filed with the U.S.P.T.O. Corresponding patent coverage was applied for in Canada, the EEC, Australia, and Japan. Testing of the prototype heat pump is continuing, as are life tests of multiple pump concepts amd long-term dynamic corrosion tests. Continued development and commercialization of gas absorption heat pumps based on the technology are recommended.

  6. Demand flexibility from residential heat pump

    DEFF Research Database (Denmark)

    Bhattarai, Bishnu Prasad; Bak-Jensen, Birgitte; Pillai, Jayakrishnan Radhakrishna

    2014-01-01

    Demand response (DR) is considered as a potentially effective tool to compensate generation intermittency imposed by renewable sources. Further, DR can instigate to offer optimum asset utilization and to avoid or delay the need for new infrastructure investment. Being a sizable load together...... with high thermal time constant, heat pumps (HP) can offer a great deal of flexibility in the future intelligent grids especially to compensate fluctuating generation. However, the HP flexibility is highly dependent on thermal demand profile, namely hot water and space heating demand. This paper proposes...... price based scheduling followed by a demand dispatch based central control and a local voltage based adaptive control, to realize HP demand flexibility. Two-step control architecture, namely local primary control encompassed by the central coordinative control, is proposed to implement...

  7. A comparison of the heat and mechanical energy of a heat-pump wind turbine system

    Energy Technology Data Exchange (ETDEWEB)

    Aybek, A.; Arslan, S.; Yildiz, E.; Atik, K. [University of Kahramanmaras (Turkey). Dept. of Agricultural Machinery

    2000-07-01

    While a variety of applications of wind energy have been studied in Turkey, no significant efforts have been made to utilize heat pumps for heat generation. The use of heat pumps in wind energy systems is worth considering because of the high efficiency of heat production. In this study, a directly coupled wind turbine-heat pump system was designed, constructed, and tested. Measurements determined the mechanical energy of the rotors of the wind turbine and the heat energy generated by the heat pump driven by the rotor shaft. Based on the comparisons between the power generated by the heat pump and the power of the Savonius rotors, it was found that the heat energy gained by the heat pump was four times greater than the mechanical energy obtained from the turbine. It was suggested that heat pumps could be efficiently used in wind energy systems. (Author)

  8. Maldistribution in airewater heat pump evaporators. Part 1: Effects on evaporator, heat pump and system level

    DEFF Research Database (Denmark)

    Mader, Gunda; Palm, Björn; Elmegaard, Brian

    2015-01-01

    This paper presents an approach to quantify the effect of evaporator maldistribution onoperating costs of air-water heat pumps. In the proposed simulation model maldistributionis induced by two parameters describing refrigerant phase and air flow distribution.Annual operating costs are calculated...

  9. Ground source heat pump performance in case of high humidity soil and yearly balanced heat transfer

    International Nuclear Information System (INIS)

    Schibuola, Luigi; Tambani, Chiara; Zarrella, Angelo; Scarpa, Massimiliano

    2013-01-01

    Highlights: • GSHPs are simulated in case of humid soil and yearly balanced heat transfer. • Humid soil and yearly balanced heat transfer imply higher compactness of GSHPs. • Resulting GSHPs are compared with other traditional and innovative HVAC systems. • GSHPs score best, especially in case of inverter-driven compressors. - Abstract: Ground source heat pump (GSHP) systems are spreading also in Southern Europe, due to their high energy efficiency both in heating and in cooling mode. Moreover, they are particularly suitable in historical cities because of difficulties in the integration of heating/cooling systems into buildings subjected to historical preservation regulations. In these cases, GSHP systems, especially the ones provided with borehole heat exchangers, are a suitable solution instead of gas boilers, air-cooled chillers or cooling towers. In humid soils, GSHP systems are even more interesting because of their enhanced performance due to higher values of soil thermal conductivity and capacity. In this paper, GSHP systems operating under these boundary conditions are analyzed through a specific case study set in Venice and related to the restoration of an historical building. With this analysis the relevant influences of soil thermal conductivity and yearly balanced heat transfer in the design of the borehole field are shown. In particular, the paper shows the possibility to achieve higher compactness of the borehole field footprint area when yearly balanced heat transfer in the borehole field is expected. Then, the second set of results contained in the paper shows how GSHP systems designed for high humidity soils and yearly balanced heat loads at the ground side, even if characterized by a compact footprint area, may still ensure better performance than other available and more common technologies such as boilers, air-cooled chillers, chillers coupled with cooling towers and heat pumps and chillers coupled with lagoon water. As a consequence

  10. Analysis on the heating performance of a gas engine driven air to water heat pump based on a steady-state model

    International Nuclear Information System (INIS)

    Zhang, R.R.; Lu, X.S.; Li, S.Z.; Lin, W.S.; Gu, A.Z.

    2005-01-01

    In this study, the heating performance of a gas engine driven air to water heat pump was analyzed using a steady state model. The thermodynamic model of a natural gas engine is identified by the experimental data and the compressor model is created by several empirical equations. The heat exchanger models are developed by the theory of heat balance. The system model is validated by comparing the experimental and simulation data, which shows good agreement. To understand the heating characteristic in detail, the performance of the system is analyzed in a wide range of operating conditions, and especially the effect of engine waste heat on the heating performance is discussed. The results show that engine waste heat can provide about 1/3 of the total heating capacity in this gas engine driven air to water heat pump. The performance of the engine, heat pump and integral system are analyzed under variations of engine speed and ambient temperature. It shows that engine speed has remarkable effects on both the engine and heat pump, but ambient temperature has little influence on the engine's performance. The system and component performances in variable speed operating conditions is also discussed at the end of the paper

  11. Modeling and dynamic control simulation of unitary gas engine heat pump

    International Nuclear Information System (INIS)

    Zhao Yang; Haibo Zhao; Zheng Fang

    2007-01-01

    Based on the dynamic model of the gas engine heat pump (GEHP) system, an intelligent control simulation is presented to research the dynamic characteristics of the system in the heating operation. The GEHP system simulation model consists of eight models for its components including a natural gas engine, a compressor, a condenser, an expansion valve, an evaporator, a cylinder jacket heat exchanger, an exhaust gas heat exchanger and an auxiliary heater. The intelligent control model is composed of the prediction controller model and the combined controller model. The Runge-Kutta Fehlberg fourth-fifth order algorithms are used to solve the differential equations. The results show that the model is very effective in analyzing the effects of the control system, and the steady state accuracy of the intelligent control scheme is higher than that of the fuzzy controller

  12. Current and future employment of the heat pumps

    International Nuclear Information System (INIS)

    Cassitto, L.

    2001-01-01

    Heat pumps, mainly the compression type, grant high energy savings together with environment protection because of the free low temperature energy from environment or wasted heat they use. Their large employment depends on the appreciation of the above properties that are will be done. To grant economic savings on using heat pumps, electric energy and natural gas should have fixed and predictable prices [it

  13. Modelling of Split Condenser Heat Pump: Optimization and Exergy Analysis

    DEFF Research Database (Denmark)

    Christensen, Stefan Wuust; Elmegaard, Brian; Markussen, Wiebke Brix

    2017-01-01

    This paper presents a numerical study of a split condenser heat pump (SCHP). The SCHP setup differs from a traditional heat pump (THP) setup in the way that two separate water streams on the secondary side of the condenser are heated in parallel to different temperature levels, whereas only one...

  14. Heat pumps in field test; Waermepumpen im Feldtest

    Energy Technology Data Exchange (ETDEWEB)

    Becker, R. [Fraunhofer-Institut fuer Solare Energiesysteme (ISE), Freiburg im Breisgau (Germany); Miara, M.; Russ, C.

    2007-09-15

    The Fraunhofer ISE has launched two field tests of newly installed heat pumps in 2006. Both deal with the measurement of a high number of heat pump units under real conditions in small houses. Values of volume flows, temperatures, heat quantity and electricity consumption are collected and daily saved and analysed at the Fraunhofer ISE. (orig.)

  15. Heat pump applications in Dutch flower bulb farms

    NARCIS (Netherlands)

    Wit, J.B. de

    1999-01-01

    Increasing numbers of flower bulb fanns in the Netherlands are using heat pumps for conditioning bulbs. The main advantage of the (electric) heat pump is that it combines all conditioning steps (drying, cooling and heating) in one device. Another advantage is that it makes process control simple and

  16. Geothermal heat pumps - gaining ground in the UK and worldwide

    International Nuclear Information System (INIS)

    Curtis, Robin

    2001-01-01

    This 2001 edition of the guide to UK renewable energy companies examines the geothermal heat pump sector, and discusses the technology involved, installations of geothermal heat pumps, the activity in the UK market with increased interest in UK geothermal heat pump products from abroad, and developments in the building sector. The UK government's increased support for the industry including its sponsorship of the Affordable Warmth programme, and the future potential of ground source systems are discussed

  17. Experimental Study of a Novel Direct-Expansion Variable Frequency Finned Solar/Air-Assisted Heat Pump Water Heater

    Directory of Open Access Journals (Sweden)

    Jing Qin

    2018-01-01

    Full Text Available A novel direct expansion variable frequency finned solar/air-assisted heat pump water heater was fabricated and tested in the enthalpy difference lab with a solar simulator. A solar/air source evaporator-collector with an automatic lifting glass cover plate was installed on the system. The system could be operated in three modes, namely, air, solar, and dual modes. The effects of the ambient temperature, solar irradiation, compressor frequency, and operating mode on the performance of this system were studied in this paper. The experimental results show that the ambient temperature, solar irradiation, and operating mode almost have no effect on the energy consumption of the compressor. When the ambient temperature and the solar irradiation were increased, the COP was found to increase with decreasing heating time. Also, when the compressor frequency was increased, an increase in the energy consumption of the compressor and the heat gain of the evaporator were noted with a decrease in the heating time.

  18. Fiscal 1993 investigational report on heat pump heat storage technology; 1993 nendo heat pump chikunetsu gijutsu ni kansuru chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-03-01

    This project is for an investigation into the heat pump (HP) use heat storage technology, with the aim of clarifying the present status of HP heat storage technology, the utilization status, and the developmental trend of technology and of contributing to the spread of heat energy effective use using HP heat storage technology and to the promotion of the technical development. Accordingly, the evaluation of the following was made: sensible heat (SH), latent heat (LH), chemical heat storage technology (CH), and heat storage technology (HS). Investigations were made on the sensible heat use heat storage technology of water, brine, stone, soil, etc. in terms of SH; the phase change sensible heat use heat storage technology of ice, hydrate salt, paraffins, etc. in terms of LH; hydration, hydroxide, 2-propanol pyrolysis, adsorption of silica gel, zeolite and water, and heat storage technology using metal hydride, etc. in terms of CH. In terms of HS, the following were studied and evaluated from the study results of the heat storage system in which HP is applied to the sensible heat and latent heat type heat storage technology: contribution to the power load levelling and the reduction of heat source capacity, heat recovery and the use of unused energy, improvement of the system efficiency by combining HP and heat storage technology. 24 refs., 242 figs., 56 tabs.

  19. Development and application of soil coupled heat pump

    Science.gov (United States)

    Liu, Lu

    2017-05-01

    Soil coupled heat pump technology is a new clean heating mode, is the world's most energy efficient heating one of the ways. And because of the use of renewable geothermal resources with high heating performance so more and more people's attention. Although the use of soil-coupled heat pumps has been in use for more than 50 years (the first application in the United States), the market penetration of this technology is still in its infancy. This paper will focus on the development, characteristics and application of the coupled heat pump.

  20. Wind power integration in Aalborg Municipality using compression heat pumps and geothermal absorption heat pumps

    DEFF Research Database (Denmark)

    Østergaard, Poul Alberg

    2013-01-01

    -temperature geothermal resources. The analyses have also demonstrated that the municipality will still rely heavily on surrounding areas for electric load balancing assistance. With a departure in a previously elaborated 100% renewable energy scenario, this article investigates how absorption heat pumps (AHP......Aalborg Municipality, Denmark is investigating ways of switching to 100% renewable energy supply over the next 40 years. Analyses so far have demonstrated a potential for such a transition through energy savings, district heating (DH) and the use of locally available biomass, wind power and low......) and compression heat pumps (HP) for the supply of DH impact the integration of wind power. Hourly scenario-analyses made using the EnergyPLAN model reveal a boiler production and electricity excess which is higher with AHPs than with HPs whereas condensing mode power generation is increased by the application...

  1. Residential heat pumps in the future Danish energy system

    DEFF Research Database (Denmark)

    Petrovic, Stefan; Karlsson, Kenneth Bernard

    2016-01-01

    for politically agreed targets which include: at least 50% of electricity consumption from wind power starting from 2020, fossil fuel free heat and power sector from 2035 and 100% renewable energy system starting from 2050. Residential heat pumps supply around 25% of total residential heating demand after 2035......Denmark is striving towards 100% renewable energy system in 2050. Residential heat pumps are expected to be a part of that system.We propose two novel approaches to improve the representation of residential heat pumps: Coefficients of performance (COPs) are modelled as dependent on air and ground...... temperature while installation of ground-source heat pumps is constrained by available ground area. In this study, TIMES-DK model is utilised to test the effects of improved modelling of residential heat pumps on the Danish energy system until 2050.The analysis of the Danish energy system was done...

  2. Combined refrigeration / heat pump installation at the St. Jakob Arena in Basle; Kombinierte Kaelte- / Waermepumpen- Verdichter-Anlage in der Eissporthalle St. Jakob ARENA, 4142 Muenchenstein, Basel

    Energy Technology Data Exchange (ETDEWEB)

    Frey, P. [P. Frey and Partner, Beratende Ingenieure und Planer, Wilen bei Wil (Switzerland); Bertozzi, L. [Ingenieurbuero Bertozzi, Ingenieurbuero fuer Haustechnik, Chur (Switzerland)

    2003-07-01

    This intermediate report for the Swiss Federal Office of Energy describes the combined refrigeration and heat-pump unit in use at the new 'St. Jakob Arena' ice-sport-centre near Basle, Switzerland, which includes an indoor ice-rink. The centre has been equipped with an ammonia-based refrigeration system with two reciprocating compressors, which can be run in parallel or as part of a 2-stage-process. The two modes of operation are described. In the 'parallel' operating mode, both compressors are used for cold production only. In the '2-stage' operating mode, one compressor acts as the lower stage for cold production an the second as the upper stage for heat production using the rejected heat from condenser of the first stage as a heat source. Data is presented on the system's performance during the first operational season of the installation.

  3. Operational Performance Characterization of a Heat Pump System Utilizing Recycled Water as Heat Sink and Heat Source in a Cool and Dry Climate

    Directory of Open Access Journals (Sweden)

    Piljae Im

    2018-01-01

    Full Text Available The wastewater leaving from homes and businesses contains abundant low-grade energy, which can be utilized through heat pump technology to heat and cool buildings. Although the energy in the wastewater has been successfully utilized to condition buildings in other countries, it is barely utilized in the United States, until recently. In 2013, the Denver Museum of Nature & Science at Denver, the United States implemented a unique heat pump system that utilizes recycled wastewater from a municipal water system to cool and heat its 13,000 m2 new addition. This recycled water heat pump (RWHP system uses seven 105 kW (cooling capacity modular water-to-water heat pumps (WWHPs. Each WWHP uses R-410A refrigerant, has two compressors, and can independently provide either 52 °C hot water (HW or 7 °C chilled water (CHW to the building. This paper presents performance characterization results of this RWHP system based on the measured data from December 2014 through August 2015. The annual energy consumption of the RWHP system was also calculated and compared with that of a baseline Heating, Ventilation, and Air Conditioning (HVAC system which meets the minimum energy efficiencies that are allowed by American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE 90.1-2013. The performance analysis results indicate that recycled water temperatures were favorable for effective operation of heat pumps. As a result, on an annual basis, the RWHP system avoided 50% of source energy consumption (resulting from reduction in natural gas consumption although electricity consumption was increased slightly, reduced CO2 emissions by 41%, and saved 34% in energy costs as compared with the baseline system.

  4. Development of two-stage compression heat pump for hot water supply in commercial use. Establishment of design method for water and air heat source system; Gyomuyo nidan asshukushiki kyuto heat pump no kaihatsu. Suinetguen oyobi kuki netsugen sytem no sekkei hoho no kakuritsu

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, H; Hashimoto, K; Saikawa, M; Iwatsubo, T; Mimaki, T [Central Research Institute of Electric Power Industry, Tokyo (Japan)

    1996-07-01

    The two-stage compression cascade heating heat pump cycle was devised for hot water supply in business use such as hotel and store use which allows hot water supply less in primary energy consumption than gas boilers, and higher in temperature than conventional heat pumps. This cycle heats water in cascade manner by two-stage compression using two compressors in both low- and high-stage refrigerant circuits, and two condensers different in condensation temperature (intermediate heat exchanger and condenser) to achieve higher hot water temperature and higher COP. For cost reduction, the new system design method was established which is possible to cope with conventional compressors such as screw and scroll ones with different theoretical suction volume for every one. System design parameters such as thermal output and COP of hot water supply were largely affected by theoretical suction volume ratio of low- and high-stage compressors dependent on combination of the compressors, and refrigerant condensing temperature in an intermediate heat exchanger as proper parameter. 4 refs., 17 figs., 13 tabs.

  5. Performance of a Solar Heating System with Photovoltaic Thermal Hybrid Collectors and Heat Pump

    DEFF Research Database (Denmark)

    Dannemand, Mark; Furbo, Simon; Perers, Bengt

    2017-01-01

    . When the solar collectors are unable to supply the heat demand an auxiliary heat source is used. Heat pumps can generate this heat. Liquid/water heat pumps have better performance than air/water heat pumps in cold climates but requires installation of a tubing system for the cold side of the heat pump....... The tubes are typically placed in the ground, requires a significant land area and increase the installation cost. A new system design of a solar heating system with two storage tanks and a liquid/water heat pump is presented. The system consists of PVT collectors that generate both heat and electricity......The energy consumption in buildings accounts for a large part of the World’s CO2 emissions. Much energy is used for appliances, domestic hot water preparation and space heating. In solar heating systems, heat is captured by solar collectors when the sun is shining and used for heating purposes...

  6. Modeling and Optimization of a CoolingTower-Assisted Heat Pump System

    Directory of Open Access Journals (Sweden)

    Xiaoqing Wei

    2017-05-01

    Full Text Available To minimize the total energy consumption of a cooling tower-assisted heat pump (CTAHP system in cooling mode, a model-based control strategy with hybrid optimization algorithm for the system is presented in this paper. An existing experimental device, which mainly contains a closed wet cooling tower with counter flow construction, a condenser water loop and a water-to-water heat pump unit, is selected as the study object. Theoretical and empirical models of the related components and their interactions are developed. The four variables, viz. desired cooling load, ambient wet-bulb temperature, temperature and flow rate of chilled water at the inlet of evaporator, are set to independent variables. The system power consumption can be minimized by optimizing input powers of cooling tower fan, spray water pump, condenser water pump and compressor. The optimal input power of spray water pump is determined experimentally. Implemented on MATLAB, a hybrid optimization algorithm, which combines the Limited memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS algorithm with the greedy diffusion search (GDS algorithm, is incorporated to solve the minimization problem of energy consumption and predict the system’s optimal set-points under quasi-steady-state conditions. The integrated simulation tool is validated against experimental data. The results obtained demonstrate the proposed operation strategy is reliable, and can save energy by 20.8% as compared to an uncontrolled system under certain testing conditions.

  7. Air-source heat pump carbon footprints: HFC impacts and comparison to other heat sources

    International Nuclear Information System (INIS)

    Johnson, Eric P.

    2011-01-01

    European governments see that heat pumps could reduce carbon emissions in space- and hot-water heating. EU's Renewable Energy Directive designates heat pumps as renewable - eligible for various subsidies - if their carbon footprints are below an implied, average threshold. This threshold omits carbon generated by manufacture and emission of a heat-pump's fluorocarbon refrigerant. It also omits the footprint of the heat pump's hardware. To see if these omissions are significant, this study calculated carbon footprints of representative, residential heat pumps in the UK. Three findings emerged. First, in relation to power generation, which accounts for most of a heat-pump's greenhouse-gas emissions, fluorocarbons add another 20% to the footprint. Second, at UK efficiencies a heat-pump footprint (in kg CO 2 e emitted per kWh delivered) is comparable or higher than footprints of gaseous fuels used in heating. It is lower than the footprint of heating oil and far lower than the footprints of solid fuels. Third, production and disposal of a heat pump's hardware is relatively insignificant, accounting for only 2-3% of the overall heat-pump footprint. Sensitivities to the results were assessed: key factors are footprint of electricity generation, F-gas composition and leak rates and type of wall construction. - Research highlights: → Refrigerant emissions add 20% to a UK air-source heat pump's carbon footprint. → This contribution is so far ignored by regulations. → UK heat pump footprints are comparable to those of gaseous fuels.

  8. Optimal Ground Source Heat Pump System Design

    Energy Technology Data Exchange (ETDEWEB)

    Ozbek, Metin [Environ Holdings Inc., Princeton, NJ (United States); Yavuzturk, Cy [Univ. of Hartford, West Hartford, CT (United States); Pinder, George [Univ. of Vermont, Burlington, VT (United States)

    2015-04-01

    Despite the facts that GSHPs first gained popularity as early as the 1940’s and they can achieve 30 to 60 percent in energy savings and carbon emission reductions relative to conventional HVAC systems, the use of geothermal energy in the U.S. has been less than 1 percent of the total energy consumption. The key barriers preventing this technically-mature technology from reaching its full commercial potential have been its high installation cost and limited consumer knowledge and trust in GSHP systems to deliver the technology in a cost-effective manner in the market place. Led by ENVIRON, with support from University Hartford and University of Vermont, the team developed and tested a software-based a decision making tool (‘OptGSHP’) for the least-cost design of ground-source heat pump (‘GSHP’) systems. OptGSHP combines state of the art optimization algorithms with GSHP-specific HVAC and groundwater flow and heat transport simulation. The particular strength of OptGSHP is in integrating heat transport due to groundwater flow into the design, which most of the GSHP designs do not get credit for and therefore are overdesigned.

  9. Experimental Study on Optimization of Absorber Configuration in Compression/Absorption Heat Pump with NH{sub 3}/H{sub 2}O Mixture

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji Young; Kim, Min Sung; Baik, Young Jin; Park, Seong Ryong; Chang, Ki Chang; Ra, Ho Sang [Korea Institute of Energy Research, Daejeon (Korea, Republic of); Kim, Yong Chan [Korea University, Seoul (Korea, Republic of)

    2011-03-15

    This research aims to develop a compression/absorption hybrid heat pump system using an NH{sub 3}/H{sub 2}O as working fluid. The heat pump cycle is based on a combination of compression and absorption cycles. The cycle consists of two-stage compressors, absorbers, a de superheater, solution heat exchangers, a solution pump, a rectifier, and a liquid/vapor separator. The compression/absorption hybrid heat pump was designed to produce hot water above 90 .deg. C using high-temperature glide during a two-phase heat transfer. Distinct characteristics of the nonlinear temperature profile should be considered to maximize the performance of the absorber. In this study, the performance of the absorber was investigated depending on the capacity, shape, and arrangement of the plate heat exchangers with regard to the concentration and distribution at the inlet of the absorber.

  10. Ground-source heat pump barometer

    International Nuclear Information System (INIS)

    Anon.

    2011-01-01

    In Europe the ground-source heat pump market contracted for the second year running by 2.9% between 2009 and 2010. Around 103.000 units were sold in 2010, taking the number of installed units over one million. The 3 European countries with the most sales are Sweden (31953 units, +16%), Germany (25516 units, -13%) and France (12250 units, -21%). The drop in sales is generally due to market contraction on the current recession but some specificities exist: for instance the insufficient training of the installers has led to under-performance and to a bad image of this energy in France. The Swedish and German manufacturers are in a very strong position and are increasing their market share in the main European markets. (A.C.)

  11. Computer simulation of heat pump application in distillation towers

    International Nuclear Information System (INIS)

    Pedram, B.; Kharrat, R.

    2000-01-01

    Distillation columns rank among the largest industrial energy users today. Almost 30-60% of the total energy demand in the chemical and petrochemical industry is needed to heat distillation columns. Hence, researchers decided to optimize energy consumption to make its application more efficient. One of the recommended way is to use heat pumps. Several works have been reported in the literature in which comparisons of energy consumption between conventional and heat pump distillation for two or three component systems have been investigated. However, the concluded results are not sufficient. In this work, a case study was considered in which different heat pump configurations were applied and the optimum configuration was selected. The cost of each configuration was found to be depending on the cold temperature approach of the heat pump. Therefore, an optimum value was found for each configuration. In addition, the cost of the heat pump was found to be sensitive to the compression and condensation of the process fluid

  12. Heat pumps combined with cold storage; Warmtepompen gecombineerd met koudeopslag

    Energy Technology Data Exchange (ETDEWEB)

    Van Ingen, M.A. [Techniplan Adviseurs, Rotterdam (Netherlands)

    1999-09-01

    The architects of the new Nike head office building in Hilversum, Netherlands, opted for a heat pump combined with a cold storage system. The most efficient design was found to be a single central location for the production of heat and cold, with distribution lines to each of the five buildings. The cold storage system provides direct cooling and indirect heating: the heat pump raises the low-temperature heat from the cold storage to a usable temperature (augmented by district heating when necessary). In addition, the heat pump generates cold as a by-product in winter, which can be stored in the sources system and utilised during the following summer. The heat pump can also be used for cooling, for peak load supply and for any short-term storage requirement in emergencies

  13. Herbs drying using a heat pump dryer

    Energy Technology Data Exchange (ETDEWEB)

    Fatouh, M.; Metwally, M.N.; Helali, A.B.; Shedid, M.H. [Department of Mechanical Power Engineering, Faculty of Engineering at El Mattaria, Helwan University, P.O. Box 11718, Masaken El-Helmia, Cairo (Egypt)

    2006-09-15

    In the present work, a heat pump assisted dryer is designed and constructed to investigate the drying characteristics of various herbs experimentally. R134a is used as a working fluid in the heat pump circuit during the experimental work. Experiments have been conducted on Jew's mallow, spearmint and parsley. The effects of herb size, stem presence, surface load, drying air temperature and air velocity on the drying characteristics of Jew's mallow have been predicted. Experimental results show that a high surface load of 28kg/m{sup 2} yields the smallest drying rate, while the drying air with temperature of 55{sup o}C and velocity of 2.7m/s achieves the largest drying rate. A maximum dryer productivity of about 5.4kg/m{sup 2}h is obtained at the air temperature of 55{sup o}C, air velocity of 2.7m/s and dryer surface load of 28kg/m{sup 2}. It was found that small size herbs without stem need low specific energy consumption and low drying time. Comparison of the drying characteristics of different herbs revealed that parsley requires the lowest specific energy consumption (3684kJ/kg{sub H{sub 2}O}) followed by spearmint (3982kJ/kg{sub H{sub 2}O}) and Jew's mallow (4029kJ/kg{sub H{sub 2}O}). Finally, dryer productivity has been correlated in terms of surface load, drying air velocity and drying air temperature. (author)

  14. Design of an isopropanol–acetone–hydrogen chemical heat pump with exothermic reactors in series

    International Nuclear Information System (INIS)

    Xu, Min; Duan, Yanjun; Xin, Fang; Huai, Xiulan; Li, Xunfeng

    2014-01-01

    The isopropanol–acetone–hydrogen chemical heat pump system with a series of exothermic reactors in which the reaction temperatures decrease successively is proposed. This system shows the better energy performances as compared with the traditional system with a single exothermic reactor, especially when the higher upgraded temperature is need. At the same amounts of the heat released, the work input of the compressor and the heater are both reduced notably. The results indicate that the advantages of the IAH-CHP system with exothermic reactors in series are obvious. - Highlights: • We propose the IAH-CHP system with exothermic reactors in series. • The COP and exergy efficiency of the system increase by 7.6% and 10.3% respectively. • The work input of the system is reduced notably at the same quantity of heat released

  15. An experimental study of trans-critical CO2 water–water heat pump using compact tube-in-tube heat exchangers

    International Nuclear Information System (INIS)

    Jiang, Yuntao; Ma, Yitai; Li, Minxia; Fu, Lin

    2013-01-01

    Highlights: • Thermodynamic analyses of transcritical CO 2 cycle with and without IHX are provided. • A transcritical CO 2 heat pump system adopts compact tube-in-tube heat exchangers. • Experiment results of systems with and without IHX have been analyzed and compared. • IHX can improve the performance of the transcritical CO 2 heat pump system. - Abstract: A transcritical CO 2 water–water heat pump system is introduced in this study, which employs compact tube-in-tube evaporator and gas cooler. Its primary test standards and operating conditions are introduced. Under test conditions, experiments have been carried out with compression cycles with and without internal heat exchanger (IHX). Experiment results have been analyzed and compared, showing that IHX can improve the coefficient of performance of the system. The analyses are done mainly on the variations of outlet CO 2 temperature of the gas cooler, compressor discharge pressure, compressor lubricant temperature, hot water mass flow rate, etc. When the inlet water temperature of the gas cooler is 15 °C, 20 °C, 25 °C respectively, the hot water temperature ranges from 45 °C to 70 °C, the relative COP h (coefficient of performance when heating) change index (RCI COP ) of the heat pump system with IHX is about 3.5–8% higher than that without IHX. The relative capacity change index (RCI Q ) of the heat pump system with IHX is about 5–10% higher than that without IHX. Temperature of CO 2 increases at the outlet of the gas cooler when the outlet water temperature of the gas cooler increases. Lowering the outlet CO 2 temperature of the gas cooler is an important way to improve the performance of the system

  16. Combined cycles for pipeline compressor drives using heat

    International Nuclear Information System (INIS)

    Malewski, W.F.; Holldorff, G.M.

    1979-01-01

    Combined cycles for pipeline-booster stations using waste heat from gas turbines exhaust can improve the overall efficiency of such stations remarkably. Several working fluids are suitable. Due to existing criteria for selecting a working medium under mentioned conditions, water, ammonia, propane and butane can be considered as practical working fluids. The investigations have shown that: (1) ammonia is advantageous at low exhaust gas and ambient temperatures, (2) water is most effective at high exhaust gas and ambient temperatures, and (3), additionally, hydrocarbons are suitable in a medium range for exhaust gas and condensing temperatures. Not only thermodynamic but also operational features have to be considered. There is not one optimum working fluid but a best one suitable according to the prevailing site conditions

  17. Dynamic Performance of the Standalone Wind Power Driven Heat Pump

    OpenAIRE

    H. Li; P.E. Campana; S. Berretta; Y. Tan; J. Yan

    2016-01-01

    Reducing energy consumption and increasing use of renewable energyin the building sector arecrucial to the mitigation of climate change. Wind power driven heat pumps have been considered as a sustainable measure to supply heat for detached houses, especially those that even don’t have access to the grid. This work is to investigate the dynamic performance of a heat pump system directly driven by a wind turbine. The heat demand of a detached single family house was simulated in details. Accord...

  18. Multifamily Heat Pump Water Heater Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Hoeschele, M. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Weitzel, E. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States)

    2013-11-22

    Although heat pump water heaters (HPWHs) have gained significant attention in recent years as a high efficiency electric water heating solution for single family homes, central HPWHs for commercial or multi-family applications are not as well documented in terms of measured performance and cost effectiveness. To evaluate this technology, the Alliance for Residential Building Innovation team monitored the performance of a 10.5 ton central HPWH installed on a student apartment building at the West Village Zero Net Energy Community in Davis, California. Monitoring data collected over a 16 month period were then used to validate a TRNSYS simulation model. The TRNSYS model was then used to project performance in different climates using local electric rates. Results of the study indicate that after some initial commissioning issues, the HPWH operated reliably with an annual average efficiency of 2.12 (Coefficient of Performance). The observed efficiency was lower than the unit's rated efficiency, primarily due to the fact that the system rarely operated under steady-state conditions. Changes in the system configuration, storage tank sizing, and control settings would likely improve the observed field efficiency. Modeling results suggest significant energy savings relative to electric storage water heating systems (typical annual efficiencies around 0.90) providing for typical simple paybacks of six to ten years without any incentives. The economics versus gas water heating are currently much more challenging given the current low natural gas prices in much of the country. Increased market size for this technology would benefit cost effectiveness and spur greater technology innovation.

  19. Multifamily Heat Pump Water Heater Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Hoeschele, M. [Davis Energy Group, Davis, CA (United States). Alliance for Residential Building Innovation; Weitzel, E. [Davis Energy Group, Davis, CA (United States). Alliance for Residential Building Innovation

    2017-03-03

    Although heat pump water heaters (HPWHs) have gained significant attention in recent years as a high efficiency electric water heating solution for single family homes, central HPWHs for commercial or multi-family applications are not as well documented in terms of measured performance and cost effectiveness. To evaluate this technology, the Alliance for Residential Building Innovation team monitored the performance of a 10.5 ton central HPWH installed on a student apartment building at the West Village Zero Net Energy Community in Davis, California. Monitoring data collected over a 16 month period were then used to validate a TRNSYS simulation model. The TRNSYS model was then used to project performance in different climates using local electric rates. Results of the study indicate that after some initial commissioning issues, the HPWH operated reliably with an annual average efficiency of 2.12 (Coefficient of Performance). The observed efficiency was lower than the unit's rated efficiency, primarily due to the fact that the system rarely operated under steady-state conditions. Changes in the system configuration, storage tank sizing, and control settings would likely improve the observed field efficiency. Modeling results suggest significant energy savings relative to electric storage water heating systems (typical annual efficiencies around 0.90) providing for typical simple paybacks of six to ten years without any incentives. The economics versus gas water heating are currently much more challenging given the current low natural gas prices in much of the country. Increased market size for this technology would benefit cost effectiveness and spur greater technology innovation.

  20. Multifamily Heat Pump Water Heater Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Hoeschele, M. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Weitzel, E. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States)

    2017-03-01

    Although heat pump water heaters (HPWHs) have gained significant attention in recent years as a high efficiency electric water heating solution for single family homes, central HPWHs for commercial or multi-family applications are not as well documented in terms of measured performance and cost effectiveness. To evaluate this technology, the Alliance for Residential Building Innovation team monitored the performance of a 10.5 ton central HPWH installed on a student apartment building at the West Village Zero Net Energy Community in Davis, California. Monitoring data collected over a 16 month period were then used to validate a TRNSYS simulation model. The TRNSYS model was then used to project performance in different climates using local electric rates. Results of the study indicate that after some initial commissioning issues, the HPWH operated reliably with an annual average efficiency of 2.12 (Coefficient of Performance). The observed efficiency was lower than the unit's rated efficiency, primarily due to the fact that the system rarely operated under steady-state conditions. Changes in the system configuration, storage tank sizing, and control settings would likely improve the observed field efficiency. Modeling results suggest significant energy savings relative to electric storage water heating systems (typical annual efficiencies around 0.90) providing for typical simple paybacks of six to ten years without any incentives. The economics versus gas water heating are currently much more challenging given the current low natural gas prices in much of the country. Increased market size for this technology would benefit cost effectiveness and spur greater technology innovation.

  1. Computational Simulation of a Water-Cooled Heat Pump

    Science.gov (United States)

    Bozarth, Duane

    2008-01-01

    A Fortran-language computer program for simulating the operation of a water-cooled vapor-compression heat pump in any orientation with respect to gravity has been developed by modifying a prior general-purpose heat-pump design code used at Oak Ridge National Laboratory (ORNL).

  2. Corrosion protection of steel in ammonia/water heat pumps

    Science.gov (United States)

    Mansfeld, Florian B.; Sun, Zhaoli

    2003-10-14

    Corrosion of steel surfaces in a heat pump is inhibited by adding a rare earth metal salt to the heat pump's ammonia/water working fluid. In preferred embodiments, the rare earth metal salt includes cerium, and the steel surfaces are cerated to enhance the corrosion-inhibiting effects.

  3. Research of waste heat energy efficiency for absorption heat pump recycling thermal power plant circulating water

    Science.gov (United States)

    Zhang, Li; Zhang, Yu; Zhou, Liansheng; E, Zhijun; Wang, Kun; Wang, Ziyue; Li, Guohao; Qu, Bin

    2018-02-01

    The waste heat energy efficiency for absorption heat pump recycling thermal power plant circulating water has been analyzed. After the operation of heat pump, the influences on power generation and heat generation of unit were taken into account. In the light of the characteristics of heat pump in different operation stages, the energy efficiency of heat pump was evaluated comprehensively on both sides of benefits belonging to electricity and benefits belonging to heat, which adopted the method of contrast test. Thus, the reference of energy efficiency for same type projects was provided.

  4. Financial viability study using a heat pump as an alternative to support solar collector for water heating in Southeastern Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Reis, Roberts Vinicius de Melo; Oliveira, Raphael Nunes; Machado, Luiz; Koury, Ricardo Nassau N. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. of Mechanical Engineering], E-mails: robertsreis@ufmg.br, luizm@demec.ufmg.br, koury@ufmg.br

    2010-07-01

    Along with related greenhouse effect environmental issues, constant problems changes in oil prices,make the use of solar energy an important renewable energy source. Brazil is a country which is privilege, considering the high rates of solar irradiation present throughout most of the entire national territory. Nevertheless, during certain times of the year, a solar energy deficit, leads solar systems to require electrical resistance support. The use of electrical resistance represents 23.5% of electric energy consumption and it presents a low residential energy efficiency. The purpose of this work is conducting a study of Brazilian States in the Southeastern region regarding the financial viability of replacing a resistive system combined with the use of solar collector and a heat pump. One such heat pump has been designed, constructed and tested experimentally. The average performance coefficient is equal to 2.10, a low value due to the use of a hermetic reciprocating compressor. Despite this low-moderate price coefficient of acquisition and installation of a heat pump, a return on investment in from 2.1 to 2.7 years can be expected. Whereas the equipment has a useful life of about 20 years, this period of return on investment is interesting. (author)

  5. Mapping of potential heat sources for heat pumps for district heating in Denmark

    International Nuclear Information System (INIS)

    Lund, Rasmus; Persson, Urban

    2016-01-01

    The ambitious policy in Denmark on having a 100% renewable energy supply in 2050 requires radical changes to the energy systems to avoid an extensive and unsustainable use of biomass resources. Currently, wind power is being expanded and the increasing supply of electricity is slowly pushing the CHP (combined heat and power) plants out of operation, reducing the energy efficiency of the DH (district heating) supply. Here, large heat pumps for district heating is a frequently mentioned solution as a flexible demand for electricity and an energy efficient heat producer. The idea is to make heat pump use a low temperature waste or ambient heat source, but it has so far been very unclear which heat sources are actually available for this purpose. In this study eight categories of heat sources are analysed for the case of Denmark and included in a detailed spatial analysis where the identified heat sources are put in relation to the district heating areas and the corresponding demands. The analysis shows that potential heat sources are present near almost all district heating areas and that sea water most likely will have to play a substantial role as a heat source in future energy systems in Denmark. - Highlights: • The availability of heat sources for heat pumps in Denmark are mapped and quantified. • A novel methodology for assessment of low temperature industrial excess heat is presented. • There are heat sources available for 99% of district heating networks in Denmark. • The concentration of heat sources is generally bigger around bigger cities than smaller. • Ambient temperature heat sources will be more needed in district heating of big cities.

  6. Hermetically Sealed Compressor

    Science.gov (United States)

    Holtzapple, Mark T.

    1994-01-01

    Proposed hermetically sealed pump compresses fluid to pressure up to 4,000 atm (400 MPa). Pump employs linear electric motor instead of rotary motor to avoid need for leakage-prone rotary seals. In addition, linear-motor-powered pump would not require packings to seal its piston. Concept thus eliminates major cause of friction and wear. Pump is double-ended diaphragm-type compressor. All moving parts sealed within compressor housing.

  7. Experimental study on energy performance of clean air heat pump

    DEFF Research Database (Denmark)

    Fang, Lei; Nie, Jinzhe; Olesen, Bjarne W.

    2014-01-01

    An innovative clean air heat pump (CAHP) was designed and developed based on the air purification capacity of regenerative silica gel rotor. The clean air heat pump integrated air purification, dehumidification and cooling in one unit. A prototype of the clean air heat pump was developed...... to investigate its energy performance. Energy consumption of the prototype of CAHP was measured in laboratory at different climate conditions including mild-cold, mildhot and extremely hot and humid climates. The energy saving potential of the clean air heat pump compared to a conventional ventilation and air......-conditioning system was calculated. The experimental results showed that the clean air heat pump saved substantial amount of energy compared to the conventional system. For example, the CAHP can save up to 59% of electricity in Copenhagen, up to 40% of electricity in Milan and up to 30% of electricity in Colombo...

  8. Heat pumps in Denmark - From ugly duckling to white swan

    DEFF Research Database (Denmark)

    Nyborg, Sophie; Røpke, Inge

    2015-01-01

    Over the last 10 years, the smart grid and heat pumps have increasingly gained attention in Denmark as an integral part of the low carbon transition of the energy system. The main reason being that the smart grid enables the integration of large amounts of intermittent wind energy...... into the electricity system via, among other things, intelligent interoperation with domestic heat pumps, which consume the 'green' electricity. Unfortunately, recent years' sales of heat pumps have been disappointing. Several studies have investigated the 'dissemination potential' of heat pumps in Denmark, primarily...... through conventional market research approaches. However, there is clearly a lack of studies that take a more socio-technical approach to understanding how technologies such as the heat pump develop and how they come to have a place in society as a result of contingent, emergent and complex historical...

  9. A novel design method for ground source heat pump

    Directory of Open Access Journals (Sweden)

    Dong Xing-Jie

    2014-01-01

    Full Text Available This paper proposes a novel design method for ground source heat pump. The ground source heat pump operation is controllable by using several parameters, such as the total meters of buried pipe, the space between wells, the thermal properties of soil, thermal resistance of the well, the initial temperature of soil, and annual dynamic load. By studying the effect of well number and well space, we conclude that with the increase of the well number, the inlet and outlet water temperatures decrease in summer and increase in winter, which enhance the efficiency of ground source heat pump. The well space slightly affects the water temperatures, but it affects the soil temperature to some extent. Also the ground source heat pump operations matching with cooling tower are investigated to achieve the thermal balance. This method greatly facilitates ground source heat pump design.

  10. Absorption Cycle Heat Pump Model for Control Design

    DEFF Research Database (Denmark)

    Vinther, Kasper; Just Nielsen, Rene; Nielsen, Kirsten Mølgaard

    2015-01-01

    Heat pumps have recently received increasing interest due to green energy initiatives and increasing energy prices. In this paper, a nonlinear dynamic model of a single-effect LiBr-water absorption cycle heat pump is derived for simulation and control design purposes. The model is based on an act......Heat pumps have recently received increasing interest due to green energy initiatives and increasing energy prices. In this paper, a nonlinear dynamic model of a single-effect LiBr-water absorption cycle heat pump is derived for simulation and control design purposes. The model is based...... to operational data and different scenarios are simulated to investigate the operational stability of the heat pump. Finally, this paper provides suggestions and examples of derivation of lower order linear models for control design. © Copyright IEEE - All rights reserved....

  11. Design capability of CANDU heat transport pump shafts against cracking

    International Nuclear Information System (INIS)

    Kumar, A.N.; Sheikh, Z.B.; Padgett, A.

    1993-01-01

    During 1986 three different Light Water Reactors (LWR's) in the U.S. reported either a cracked or fractured shaft on one or more of their reactor coolant (RC) pumps. The RC pumps for all these stations were supplied by Byron Jackson (BJ) Pump Company. A majority of CANDU heat transport (HT) pumps (equivalent of RC pumps) are supplied by BJ Pump Company and are similar in design to RC pumps. Hence the failure of these RC pumps in the U.S. utilities caused concern regarding the relevance of these failures to the BJ supplied CANDU HT pumps (HTP). This paper presents the results of AECL assessment to establish the capability of the HT pump shaft against cracking. Two methods were used for assessment: (a) detailed comparative design review of the HTP and RCP shafts; (b) semi-empirical analysis of the HTP shafts. The results of the AECL assessment showed significant differences in detailed design, materials, assembly and fits of various components and the control of operating parameters between the HT and RC pumps. It was concluded that because of these differences the failures similar to RC pump shafts are not likely to appear in HT pump shafts. This conclusion is further reinforced by about 140,000 hours of operating history of the longest running HT pump of comparable size to RC Pumps, without failures

  12. Study on the simulation of heat pump heating and cooling systems to hospital building

    International Nuclear Information System (INIS)

    Choi, Young Don; Han, Seong Ho; Cho, Sung Hwan; Kim, Du Sung; Um, Chul Jun

    2008-01-01

    In Korea, air source heat pump system is less efficient than conventional heat source facilities, because the air temperature in winter season is so low that COP of air source heat pump system drops below 3.0. Therefore, the study on the application of heat pump heating and cooling systems is crucial for the efficient popularization of heat pump. In this work, we present the dynamic analysis of energy consumption for the large hospital building by heat resistance-capacitance method. The system simulation of water storage air source heat pump is additionally performed by changing sizes and locations of the hospital building. The computed results show that energy cost of water storage air source heat pump is low, so it is more economical than absorption chiller and heater

  13. The performance test of a modified miniature rotary compressor in upright and inverted modes subjected to microgravity

    International Nuclear Information System (INIS)

    Ma, Rui; Wu, Yu-ting; Du, Chun-xu; Chen, Xia; Zhang, De-lou; Ma, Chong-fang

    2016-01-01

    Highlights: • A miniature rotary compressor by ASPEN company was modified. • The modified compressor can be employed in microgravity. • Performance of upright compressor is superior to inverted mode in most cases. • Performance curves of system with inverted compressor are obtained. • Experimental results of compressor inverted and upright are compared. - Abstract: Vapor compression heat pump is a new concept of thermal control system and refrigerator for future space use. Compressor is a key component in the vapor compression heat pump. Development of compressor capable of operating in both microgravity (10 E-6 g) and lunar (1/6 g) environments is urgently needed for space thermal control systems based on heat pump technique. In this paper, a miniature rotary compressor by ASPEN company was modified to realize acceptable compressor lubrication and oil circulation in microgravity environments. An experimental system was built up to check the performance of the modified compressor subjected to microgravity. A performances comparison of inverted compressor with upright one was made. The influences of operating parameters such as refrigerant charge, cooling water temperature as well as compressor speed on the performances of vapor compression heat pump were investigated. The results show that the modified miniature rotary compressor in inverted mode can operate stably in a long period, which indicates that the modified compressor can be employed in microgravity environments. Compressor discharge temperature increased or decreased while COP changed more obviously with cooling water temperature and speed in microgravity. In most cases, performance of the upright compressor is superior to that of the inverted one. But when the compressor speed is from 1500 rpm to 2500 rpm or the coolant temperature is between 20 and 25 degrees, the performance of inverted compressor is better. The highest discharge temperature of the inverted compressor can be as high

  14. Study of an innovative ejector heat pump-boosted district heating system

    International Nuclear Information System (INIS)

    Zhang, Bo; Wang, Yuanchao; Kang, Lisha; Lv, Jinsheng

    2013-01-01

    An Ejector heat pump-boosted District Heating (EDH) system is proposed to improve the heating capacity of existing district heating systems with Combined Heat and Power (CHP). In the EDH, two ejector heat pumps are installed: a primary heat pump (HP 1 ) at the heating station and a secondary heat pump (HP 2 ) at the heating substation. With the EDH, the low-grade waste heat from circulating cooling water in the CHP is recycled and the temperature difference between the water supply and the return of the primary heating network is increased. A thermodynamic model was provided. An experimental study was carried out for both HP 1 and HP 2 to verify the predicting performance. The results show that the COP of HP 1 can reach 1.5–1.9, and the return water temperature of the primary heating network could be decreased to 35 °C with HP 2 . A typical case study for the EDH was analyzed. -- Highlights: • An ejector heat pump-boosted district heating (EDH) is proposed. • The 1st ejector heat pump in EDH recycles heat from cooling water of the CHP. • The 2nd ejector heat pump in EDH boosts the thermal energy utilization of the primary heating network. • Modeling and experimental studies are presented

  15. Techno-economic evaluation of a solar assisted combined heat pump – Organic Rankine Cycle system

    International Nuclear Information System (INIS)

    Schimpf, Stefan; Span, Roland

    2015-01-01

    Highlights: • Addition of an ORC to a solar thermal and ground source heat pump system. • Additional investments comprise only 400 € for a single-family house unit. • Recharging the ground during ORC has negligible impact on the COP of the HP. • Economics studied for application in Bochum, Denver and Ankara; only small benefits. • Use of isobutane instead of R134a would increase the profit of the ORC system. - Abstract: The economic feasibility of the addition of an ORC to a combined solar system coupled to a ground-source heat pump is discussed. The ORC prevents the stagnation of the solar loop and reverses the heat pump cycle. The working fluid is evaporated in the condenser of the heat pump, expanded in the scroll compressor, which becomes a scroll expander, and condensed in the brine heat exchanger. The only additional investments for the ORC system comprise a pump, valves and upgraded controls and are estimated to be 400 € for a single-family-house unit. Flat-plate collectors are the preferred collector type as the higher collector efficiency of evacuated tube collectors does not outweigh the higher costs. The thermal recharging of the ground during ORC has a negligible impact on the COP of the heat pump. However, the recharging leads to less deep boreholes compared to a conventional system. Because of the low investments for the ORC, even small reductions in borehole depth make a significant contribution to the economic feasibility of the system. The addition of the ORC overall generates a small profit of 155 € at Ankara and 74 € at Denver for a rocky soil and a thermally enhanced grout. On the contrary, the conventional solar combisystem coupled to a ground source heat pump was found to be economically unreasonable at all locations. The working fluid isobutane is interesting for future applications because of the lower global warming potential and the smaller saturation pressures compared to R134a. The latter allow for the installation of a

  16. Upscaling a district heating system based on biogas cogeneration and heat pumps

    NARCIS (Netherlands)

    van Leeuwen, Richard Pieter; Fink, J.; Smit, Gerardus Johannes Maria; de Wit, Jan B.

    2015-01-01

    The energy supply of the Meppel district Nieuwveense landen is based on biogas cogeneration, district heating, and ground source heat pumps. A centrally located combined heat and power engine (CHP) converts biogas from the municipal wastewater treatment facility into electricity for heat pumps and

  17. Controlling the heating mode of heat pumps with the TRIANA three step methodology

    NARCIS (Netherlands)

    Toersche, Hermen; Bakker, Vincent; Molderink, Albert; Nykamp, Stefan; Hurink, Johann L.; Smit, Gerardus Johannes Maria

    2012-01-01

    Heat pump based heating systems are increasingly becoming an economic and efficient alternative for domestic gas heating systems. Concentrations of heat pump installations do consume large amounts of electricity, causing significant grid distribution and stability issues when the diversity factor is

  18. Technical and economic working domains of industrial heat pumps: Part 2 - ammonia-water hybrid absorption-compression heat pumps

    DEFF Research Database (Denmark)

    Jensen, Jonas Kjær; Ommen, Torben Schmidt; Markussen, Wiebke Brix

    2015-01-01

    The ammonia-water hybrid absorption-compression heat pump (HACHP) has been proposed as a relevant technology for industrial heat supply, especially for high sink temperatures and high temperature glides in the sink and source. This is due to the reduced vapour pressure and the non-isothermal phase...... change of the zeotropic mixture, ammonia-water. To evaluate to which extent these advantages can be translated into feasible heat pump solutions, the working domain of the HACHP is investigated based on technical and economic constraints. The HACHP working domain is compared to that of the best available...... vapour compression heat pump with natural working fluids. This shows that the HACHP increases the temperature lifts and heat supply temperatures that are feasible to produce with a heat pump. The HACHP is shown to be capable of delivering heat supply temperatures as high as 150 °C and temperature lifts...

  19. Technical and Economic Working Domains of Industrial Heat Pumps: Part 2 - Ammonia-Water Hybrid Absorption-Compression Heat Pumps

    DEFF Research Database (Denmark)

    Jensen, Jonas Kjær; Ommen, Torben Schmidt; Markussen, Wiebke Brix

    2014-01-01

    The ammonia-water hybrid absorption-compression heat pump (HACHP) is a relevant technology for industrial heat supply, especially for high sink temperatures and high temperature glides in the sink and source. This is due to the reduced vapour pressure and the non-isothermal phase change...... of the zeotropic mixture, ammonia-water. To evaluate to which extent these advantages can be translated into feasible heat pump solutions, the working domain of the HACHP is investigated based on technical and economic constraints. The HACHP working domain is compared to that of the best possible vapour...... compression heat pump with natural working fluids. This shows that the HACHP increases the temperature lifts and heat supply temperatures that are feasible to produce with a heat pump. The HACHP is shown to be capable of delivering heat supply temperatures as high as 140 XC and temperature lifts up to 60 K...

  20. Investigations and model validation of a ground-coupled heat pump for the combination with solar collectors

    International Nuclear Information System (INIS)

    Pärisch, Peter; Mercker, Oliver; Warmuth, Jonas; Tepe, Rainer; Bertram, Erik; Rockendorf, Gunter

    2014-01-01

    The operation of ground-coupled heat pumps in combination with solar collectors requires comprising knowledge of the heat pump behavior under non-standard conditions. Especially higher temperatures and varying flow rates in comparison to non-solar systems have to be taken into account. Furthermore the dynamic behavior becomes more important. At ISFH, steady-state and dynamic tests of a typical brine/water heat pump have been carried out in order to analyze its behavior under varying operation conditions. It has been shown, that rising source temperatures do only significantly increase the coefficient of performance (COP), if the source temperature is below 10–20 °C, depending on the temperature lift between source and sink. The flow rate, which has been varied both on the source and the sink side, only showed a minor influence on the exergetic efficiency. Additionally a heat pump model for TRNSYS has been validated under non-standard conditions. The results are assessed by means of TRNSYS simulations. -- Highlights: • A brine/water heat pump was tested under steady-state and transient conditions. • Decline of exergetic efficiency at low temperature lifts, no influence of flow rate. • Expected improvement by reciprocating compressor and electronic expansion valve for solar assisted heat source. • A TRNSYS black box model (YUM) was validated and a flow rate correction was proven • The start-up behavior is a very important parameter for system simulations

  1. High ratio recirculating gas compressor

    Science.gov (United States)

    Weinbrecht, J.F.

    1989-08-22

    A high ratio positive displacement recirculating rotary compressor is disclosed. The compressor includes an integral heat exchanger and recirculation conduits for returning cooled, high pressure discharge gas to the compressor housing to reducing heating of the compressor and enable higher pressure ratios to be sustained. The compressor features a recirculation system which results in continuous and uninterrupted flow of recirculation gas to the compressor with no direct leakage to either the discharge port or the intake port of the compressor, resulting in a capability of higher sustained pressure ratios without overheating of the compressor. 10 figs.

  2. Dual capacity reciprocating compressor

    Science.gov (United States)

    Wolfe, Robert W.

    1984-01-01

    A multi-cylinder compressor 10 particularly useful in connection with northern climate heat pumps and in which different capacities are available in accordance with reversing motor 16 rotation is provided with an eccentric cam 38 on a crank pin 34 under a fraction of the connecting rods, and arranged for rotation upon the crank pin between opposite positions 180.degree. apart so that with cam rotation on the crank pin such that the crank throw is at its normal maximum value all pistons pump at full capacity, and with rotation of the crank shaft in the opposite direction the cam moves to a circumferential position on the crank pin such that the overall crank throw is zero. Pistons 24 whose connecting rods 30 ride on a crank pin 36 without a cam pump their normal rate with either crank rotational direction. Thus a small clearance volume is provided for any piston that moves when in either capacity mode of operation.

  3. Capillary Pumped Heat Transfer (CHT) Experiment

    Science.gov (United States)

    Hallinan, Kevin P.; Allen, J. S.

    1998-01-01

    The operation of Capillary Pumped Loops (CPL's) in low gravity has generally been unable to match ground-based performance. The reason for this poorer performance has been elusive. In order to investigate the behavior of a CPL in low-gravity, an idealized, glass CPL experiment was constructed. This experiment, known as the Capillary-driven Heat Transfer (CHT) experiment, was flown on board the Space Shuttle Columbia in July 1997 during the Microgravity Science Laboratory mission. During the conduct of the CHT experiment an unexpected failure mode was observed. This failure mode was a result of liquid collecting and then eventually bridging the vapor return line. With the vapor return line blocked, the condensate was unable to return to the evaporator and dry-out subsequently followed. The mechanism for this collection and bridging has been associated with long wavelength instabilities of the liquid film forming in the vapor return line. Analysis has shown that vapor line blockage in present generation CPL devices is inevitable. Additionally, previous low-gravity CPL tests have reported the presence of relatively low frequency pressure oscillations during erratic system performance. Analysis reveals that these pressure oscillations are in part a result of long wavelength instabilities present in the evaporator pores, which likewise lead to liquid bridging and vapor entrapment in the porous media. Subsequent evaporation to the trapped vapor increases the vapor pressure. Eventually the vapor pressure causes ejection of the bridged liquid. Recoil stresses depress the meniscus, the vapor pressure rapidly increases, and the heated surface cools. The process then repeats with regularity.

  4. Computer simulation of steady-state performance of air-to-air heat pumps

    Energy Technology Data Exchange (ETDEWEB)

    Ellison, R D; Creswick, F A

    1978-03-01

    A computer model by which the performance of air-to-air heat pumps can be simulated is described. The intended use of the model is to evaluate analytically the improvements in performance that can be effected by various component improvements. The model is based on a trio of independent simulation programs originated at the Massachusetts Institute of Technology Heat Transfer Laboratory. The three programs have been combined so that user intervention and decision making between major steps of the simulation are unnecessary. The program was further modified by substituting a new compressor model and adding a capillary tube model, both of which are described. Performance predicted by the computer model is shown to be in reasonable agreement with performance data observed in our laboratory. Planned modifications by which the utility of the computer model can be enhanced in the future are described. User instructions and a FORTRAN listing of the program are included.

  5. Upgrading primary heat transport pump seals

    International Nuclear Information System (INIS)

    Graham, T.; Metcalfe, R.; Rhodes, D.; McInnes, D.

    1995-01-01

    Changes in the operating environment at the Bruce-A Nuclear Generating Station created the need for an upgraded Primary Heat Transport Pump (PHTP) seal. In particular, the requirement for low pressure running during more frequent start-ups exposed a weakness of the CAN2 seal and reduced its reliability. The primary concern at Bruce-A was the rotation of the CAN2 No. 2 stators in their holders. The introduction of low pressure running exacerbated this problem, giving rapid wear of the stator back face, overheating, and thermocracking. In addition, the resulting increase in friction between the stator and its holder increased stationary-side hysteresis and thereby changed the seal characteristic to the point where interseal pressure oscillations became prevalent. The resultant increased hysteresis also led to hard rubbing of the seal faces during temperature transients. An upgraded seal was required for improved reliability to avoid forced outages and to reduce maintenance costs. This paper describes this upgraded 'replacement seal' and its performance history. In spite of the 'teething' problems detailed in this paper, there have been no forced outages due to the replacement seal, and in the words of a seal maintenance worker at Bruce-A, 'it allows me to go home and sleep at night instead of worrying about seal failures.' (author)

  6. 7. heat pump forum. Lectures; 7. Forum Waermepumpe. Vortraege

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    Within the 7th heat pump forum of the German Federal Association for heat pumps e.V. (Berlin, Federal Republic of Germany) between 22nd and 23rd March, 2009, at the Ellington Hotel in Berlin, the following lectures were held: (1) Potentials of the near-surface geothermics in Germany (H. Gassner); (2) Significance of renewable energy sources after the Bundestag election (D. Schuetz); (3) European draft laws in survey: EE regulation, EPBD, EuP (M. Ferber); (4) My personal experiences with heat pumps (G. Nuesslein); (5) European energy policy with relevance to the German heating market (A. Luecke); (6) Do we economize sustainable? - Reactions of companies on the challenge of a sustainable development (C. Berg); (7) Utilize the crisis now - the economic chances of a sustainable energy supply (C. Kemfert); (8) EE regulation: Status quo. Report of the National Renewable Eneregy Action Plan (NREAP) (K. Freier); (9) A legal evaluation of the EE regulation for the energy market (T. Mueller); (10) MAP funding guidelines (U. Sattler); (11) Utilization of renewable energies for heat generation - Experiences of the housing industry (I. Vogler); (12) Combination o the central near-heat supply and decentral drinking water heating in multi-storey new buildings (M.-J. Mucke); (13) Eddicient contracting for heat pumps (A. Kaemmerer); (14) Eco-Design - EU-guidelines and their effects on the heat pump (M. Roffe-Vidal); (15) The quality seal for heat pumps in the Swiss promotion policy (R. Phillips); (16) Enhancement of the significance of the EHPA quality seal in Europe (K. Ochsner); (17) Chances and benefit of export initiatives for the heat pump industry (C. Wittig); (18) The heat pump market in Ireland (P. Murphy); (19) Quantum heat pumps in double capacitors (M. Enzensperger); (20) First CO{sub 2}-free football stadium worldwide thanks to heat pumps (A. Poehlmann); (21) The heat pump in turnkey solid-construction house (C. Schmidt); (22) Instruments of quality requirement and

  7. Exergoeconomic analysis of a solar assisted ground-source heat pump greenhouse heating system

    International Nuclear Information System (INIS)

    Ozgener, Onder; Hepbasli, Arif

    2005-01-01

    EXCEM analysis may prove useful to investigators in engineering and other disciplines due to the methodology are being based on the quantities exergy, cost, energy and mass. The main objective of the present study is to investigate between capital costs and thermodynamic losses for devices in solar assisted ground-source heat pump greenhouse heating system (SAGSHPGHS) with a 50 m vertical 32 mm nominal diameter U-bend ground heat exchanger. This system was designed and installed at the Solar Energy Institute, Ege University, Izmir, Turkey. Thermodynamic loss rate-to-capital cost ratios are used to show that, for components and the overall system, a systematic correlation appears to exist between capital cost and exergy loss (total or internal), but not between capital cost and energy loss or external exergy loss. This correlation may imply that devices in successful air conditioning are configured so as to achieve an overall optimal design, by appropriately balancing the thermodynamic (exergy-based) and economic characteristics of the overall system and its devices. The results may, (i) provide useful insights into the relations between thermodynamics and economics, both in general and for SAGSHPGHS (ii) help demonstrate the merits of second-law analysis. It is observed from the results that the maximum exergy destructions in the system particularly occur due to the electrical, mechanical and isentropic efficiencies and emphasize the need for paying close attention to the selection of this type of equipment, since components of inferior performance can considerably reduce the overall performance of the system. In conjunction with this, the total exergy losses values are obtained to be from 0.010 kW to 0.480 kW for the system. As expected, the largest energy and exergy losses occur in the greenhouse and compressor. The ratio of thermodynamic loss rate to capital cost values are obtained for a range from 0.035 to 1.125

  8. Thermal performance analysis of a direct-expansion solar-assisted heat pump water heater

    International Nuclear Information System (INIS)

    Kong, X.Q.; Zhang, D.; Li, Y.; Yang, Q.M.

    2011-01-01

    A direct-expansion solar-assisted heat pump water heater (DX-SAHPWH) is described, which can supply hot water for domestic use during the whole year. The system mainly employs a bare flat-plate collector/evaporator with a surface area of 4.2 m 2 , an electrical rotary-type hermetic compressor, a hot water tank with the volume of 150 L and a thermostatic expansion valve. R-22 is used as working fluid in the system. A simulation model based on lumped and distributed parameter approach is developed to predict the thermal performance of the system. Given the structure parameters, meteorological parameters, time step and final water temperature, the numerical model can output operational parameters, such as heat capacity, system COP and collector efficiency. Comparisons between the simulation results and the experimental measurements show that the model is able to give satisfactory predictions. The effect of various parameters, including solar radiation, ambient temperature, wind speed and compressor speed, has been analyzed on the thermal performance of the system. -- Highlights: ► A direct-expansion solar-assisted heat pump water heater (DX-SAHPWH) is described. ► A simulation model based on lumped and distributed parameter approach is developed to predict the thermal performance of the system. ► The numerical model can output operational parameters, such as heat capacity, system COP and collector efficiency. ► Comparisons between the simulation results and the experimental measurements show that the model is able to give satisfactory predictions. ► The effect of various parameters has been analyzed on the thermal performance of the system.

  9. Heat pump used in milk pasteurization: an energy analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ozyurt, O.; Comakli, O.; Yilmaz, M. [Ataturk Univ., Erzurum (Turkey). Dept. of Mechanical Engineering; Karsli, S. [Ataturk Univ., Erzurum (Turkey). Vocational School of Higher Education

    2004-07-01

    This study investigates the applicability of heat pumps to milk pasteurization for cheese production and to compare the results with classical pasteurization systems. The experiments are conducted in a liquid-to-liquid vapour compression heat pump system and a milk-to-milk plate heat exchanger is used as an economizer. The experiments are also conducted in a double jacket boiler system and a plate pasteurization system, which are classical milk pasteurization systems. The results for the three systems are compared and the advantages/disadvantages of using heat pump for milk pasteurization instead of classical systems are determined. It is found that the heat pump consumes less energy than the other two classical systems. (Author)

  10. US heat pump research and development projects, 1976-1986

    Energy Technology Data Exchange (ETDEWEB)

    Zimmerman, K.H.

    1987-04-01

    This document, which is an updated version of US Heat Pump Research and Development Projects, published in August 1982 by the US Department of Energy, is a compilation of one-page summaries and publication and patent information for 233 individual research and development projects on heat pumps covering the years 1976 through 1986. The majority of the projects refer to heat pumps in space-conditioning applications. The document is intended to include information on all projects in the United States for which results are publicly available. Ten different indexes are included to aid the reader in locating specific projects.

  11. Assessment of Japanese variable speed heat pump technology

    Energy Technology Data Exchange (ETDEWEB)

    Ushimaru, Kenji

    1988-01-01

    An analysis of critical component technologies and design methodologies for Japanese variable speed heat pumps are presented. The market for variable speed heat pumps in Japan is predominantly residential split-type, between the fractional to 2.5 ton capacity range. Approximately 1.1 million residential inverter-driven heat pumps were sold in 1987. Based on the market trends, component technology and several advanced features are described. Similarities and differences between Japanese and US system design methodologies are discussed. Finally, the outlook for future technology trends is briefly described. 8 refs., 6 figs., 1 tab.

  12. Virtual Refrigerant Mass Flow and Power Sensors for Variable-Speed Compressors

    OpenAIRE

    Kim, Woohyun; Braun, James E.

    2012-01-01

    The use of variable-speed compressors in heat pumps and air conditioners has increased in recent years in order to improve comfort and energy efficiency. At the same time, there is a trend towards embedding more sensors in this type of equipment to facilitate real-time energy monitoring and diagnostics. Although compressor mass flow rate and power consumption are useful indices for performance monitoring and diagnostics, they are expensive to measure. The virtual variable-speed compressor sen...

  13. Energy performance and consumption for biogas heat pump air conditioner

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhenjun [Architectural Engineering College, Qingdao Agricultural University, 266109 (China); Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101 (China); Tianjin University, Tianjin, 300072 (China); Wu, Huaizhi; Wu, Meiling [Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101 (China); Tianjin University, Tianjin, 300072 (China)

    2010-12-15

    Biogas engine-driven heat pump air conditioner is a new-style system which includes biogas engine-driven heat pump, primary heat exchanger, second heat exchanger, sprayed room and fans, pumps, etc. In summertime, the air can be reheated by the waste heat water from the biogas engine in the system, while the air can be reheated and humidified by the waste heat water in winter. Reducing or displacing electrical heating requirements can achieve the great opportunity for significant energy savings. This paper, therefore, aims to improve the energy performance of the AC system by using the waste heat from the biogas engine. The mathematic model was used to research the BHPAC. Explicitly, we investigated the influence of various factors including the outdoor air temperature and humidity in summer and winter. Results show that the biogas engine-driven heat pump air conditioner can save more energy than the electrical power heat pump. In summer, the minimum for percentage of primary energy saving for BHPAC is over 25%. With the outdoor air dry-bulb temperature and the relative humidity rises, the saving energy percentage rises. In winter, the minimum for percentage of primary energy saving for BHPAC is 37%. The more the outdoor air relative humidity of the outdoor air decreases, the more the BHPAC saves energy. It is proved that the system which is a highly actively fully utilizing energy technology has good partial load characteristic and good effects of energy saving. (author)

  14. News from heat-pump research - Large-scale heat pumps, components, heat pumps and solar heating; News aus der Waermepumpen-Forschung - Gross-Waermepumpen, Komponenten, Waermepumpe und Solar

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-06-15

    These proceedings summarise the presentations made at the 16{sup th} annual meeting held by the Swiss Federal Office of Energy's Heat Pump Research Program in Burgdorf, Switzerland. The proceedings include contributions on large-scale heat pumps, components and the activities of the heat pump promotion society. A summary of targets and trends in energy research in general is presented and an overview of the heat pump market in 2009 and future perspectives is given. International work within the framework of the International Energy Agency's heat pump group is reviewed, including solar - heat pump combinations. Field-monitoring and the analysis of large-scale heat pumps are discussed and the importance of the use of correct concepts in such installations is stressed. Large-scale heat pumps with carbon dioxide as working fluid are looked at, as are output-regulated air/water heat pumps. Efficient system solutions with heat pumps used both to heat and to cool are discussed. Deep geothermal probes and the potential offered by geothermal probes using carbon dioxide as a working fluid are discussed. The proceedings are rounded off with a list of useful addresses.

  15. Heat-pump-centered integrated community energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Schaetzle, W.J.; Brett, C.E.; Seppanen, M.S.

    1979-12-01

    The heat-pump-centered integrated community energy system (HP-ICES) supplies district heating and cooling using heat pumps and a thermal energy storage system which is provided by nature in underground porous formations filled with water, i.e., aquifers. The energy is transported by a two-pipe system, one for warm water and one for cool water, between the aquifers and the controlled environments. Each energy module contains the controlled environments, an aquifer, wells for access to the aquifer, the two pipe water distribution system and water source heat pumps. The heat pumps upgrade the energy in the distribution system for use in the controlled environments. Economically, the system shows improvement on both energy usage and capital costs. The system saves over 60% of the energy required for resistance heating; saves over 30% of the energy required for most air-source heat pumps and saves over 60% of the energy required for gas, coal, or oil heating, when comparing to energy input required at the power plant for heat pump usage. The proposed system has been analyzed as demonstration projects for a downtown portion of Louisville, Kentucky, and a section of Fort Rucker, Alabama. The downtown Louisville demonstration project is tied directly to major buildings while the Fort Rucker demonstration project is tied to a dispersed subdivision of homes. The Louisville project shows a payback of approximately 3 y, while Fort Rucker is approximately 30 y. The primary difference is that at Fort Rucker new heat pumps are charged to the system. In Louisville, either new construction requiring heating and cooling systems or existing chillers are utilized. (LCL)

  16. Low Temperature District Heating Consumer Unit with Micro Heat Pump for Domestic Hot Water Preparation

    DEFF Research Database (Denmark)

    Zvingilaite, Erika; Ommen, Torben Schmidt; Elmegaard, Brian

    2012-01-01

    In this paper we present and analyse the feasibility of a district heating (DH) consumer unit with micro heat pump for domestic hot water (DHW) preparation in a low temperature (40 °C) DH network. We propose a micro booster heat pump of high efficiency (COP equal to 5,3) in a consumer DH unit...... in order to boost the temperature of the district heating water for heating the DHW. The paper presents the main designs of the suggested system and different alternative micro booster heat pump concepts. Energy efficiency and thermodynamic performance of these concepts are calculated and compared....... The results show that the proposed system has the highest efficiency. Furthermore, we compare thermodynamic and economic performance of the suggested heat pump-based concept with different solutions, using electric water heater. The micro booster heat pump system has the highest annualised investment (390 EUR...

  17. Geothermal Heat Pump Profitability in Energy Services

    Energy Technology Data Exchange (ETDEWEB)

    None

    1997-11-01

    If geothermal heat pumps (GHPs) are to make a significant mark in the market, we believe that it will be through energy service pricing contracts offered by retailcos. The benefits of GHPs are ideally suited to energy service pricing (ESP) contractual arrangements; however, few retailcos are thoroughly familiar with the benefits of GHPs. Many of the same barriers that have prevented GHPs from reaching their full potential in the current market environment remain in place for retailcos. A lack of awareness, concerns over the actual efficiencies of GHPs, perceptions of extremely high first costs, unknown records for maintenance costs, etc. have all contributed to limited adoption of GHP technology. These same factors are of concern to retailcos as they contemplate long term customer contracts. The central focus of this project was the creation of models, using actual GHP operating data and the experience of seasoned professionals, to simulate the financial performance of GHPs in long-term ESP contracts versus the outcome using alternative equipment. We have chosen two case studies, which may be most indicative of target markets in the competitive marketplace: A new 37,000 square foot office building in Toronto, Ontario; we also modeled a similar building under the weather conditions of Orlando, Florida. An aggregated residential energy services project using the mass conversion of over 4,000 residential units at Ft. Polk, Louisiana. Our method of analyses involved estimating equipment and energy costs for both the base case and the GHP buildings. These costs are input in to a cash flow analysis financial model which calculates an after-tax cost for the base and GHP case. For each case study customers were assumed to receive a 5% savings over their base case utility bill. A sensitivity analysis was then conducted to determine how key variables affect the attractiveness of a GHP investment.

  18. Overall conductance and heat transfer area minimization of refrigerators and heat pumps with finite heat reservoirs

    International Nuclear Information System (INIS)

    Sarkar, J.; Bhattacharyya, Souvik

    2007-01-01

    In the present study, the overall conductance and the overall heat transfer area per unit capacity of refrigeration and heat pump systems have been minimized analytically considering both internal and external irreversibilities with variable temperature (finite capacity) heat reservoirs. Hot and cold side refrigerant temperatures, conductance and heat transfer area ratios have been optimized to attain this goal. The results have been verified with the more elaborate numerical optimization results obtained for ammonia based vapour compression refrigeration and heat pump systems working with variable temperature reservoirs. It is observed that the analytical results for optimum refrigerant temperatures, minimum overall conductance and heat transfer area deviate marginally from the numerically optimized results (within 1%), if one assumes a constant heat rejection temperature. The deviation of minimum overall conductance and heat transfer area is more (about 20%), if one considers both the desuperheating and condensation regions separately. However, in the absence of complex and elaborate numerical models, the simple analytical results obtained here can be used as reasonably accurate preliminary guidelines for optimization of refrigeration and heat pump systems

  19. Model predictive control to Maintain ATES balance using heat pump

    NARCIS (Netherlands)

    Hoving, J.; Boxem, G.; Zeiler, W.

    2017-01-01

    A rapidly growing amount of sustainable office buildings in the Netherlands is using an Aquifer Thermal Energy Storage (ATES) system. An ATES system uses a well pump to extract cold groundwater for cooling with the use of a heat pump if necessary. An essential condition for optimal ATES operation is

  20. Flue gas condensing with heat pump; Roekgaskondensering med vaermepump

    Energy Technology Data Exchange (ETDEWEB)

    Axby, Fredrik; Pettersson, Camilla [Carl Bro Energikonsult AB, Malmoe (Sweden)

    2004-11-01

    Flue gas condensing is often both a technically and economically efficient method to increase the thermal efficiency in a plant using fuels with high moisture and/or high hydrogen content. The temperature of the return water in district heating systems in Sweden is normally 50 deg C, which gives quite high efficiency for a flue gas condenser. The flue gas after the flue gas condenser still contains energy that to some extent can be recovered by a combustion air humidifier or a heat pump. The object of this project is to technically and economically analyse flue gas condensing with heat pump. The aim is that plant owners get basic data to evaluate if a coupling between a flue gas condenser and a heat pump could be of interest for their plant. With a heat pump the district heating water can be 'sub cooled' to increase the heat recover in the flue gas condenser and thereby increase the total efficiency. The project is set up as a case study of three different plants that represent different types of technologies and sizes; Aabyverket in Oerebro, Amagerforbraending in Copenhagen and Staffanstorp district heating central. In this report a system with a partial flow through the condenser of the heat pump is studied. For each plant one case with the smallest heat pump and a total optimization regarding total efficiency and cost for investment has been calculated. In addition to the optimizations sensitivity analyzes has been done of the following parameters: Moisture in fuel; Type of heat pump; Temperature of the return water in the district heating system; and, Size of plant. The calculations shows that the total efficiency increases with about 6 % by the installation of the heat pump at a temperature of the return water in the district heating system of 50 deg C at Aabyverket. The cost for production of heat is just below 210 kr/MWh and the straight time for pay-off is 5,4 years at 250 kr/MWh in heat credit and at 300 kr/MWh in basic price for electricity. The

  1. Low grade waste heat recovery using heat pumps and power cycles

    International Nuclear Information System (INIS)

    Bor, D.M. van de; Infante Ferreira, C.A.; Kiss, Anton A.

    2015-01-01

    Thermal energy represents a large part of the global energy usage and about 43% of this energy is used for industrial applications. Large amounts are lost via exhaust gases, liquid streams and cooling water while the share of low temperature waste heat is the largest. Heat pumps upgrading waste heat to process heat and cooling and power cycles converting waste heat to electricity can make a strong impact in the related industries. The potential of several alternative technologies, either for the upgrading of low temperature waste heat such as compression-resorption, vapor compression and trans-critical heat pumps, or for the conversion of this waste heat by using organic Rankine, Kalina and trilateral cycle engines, are investigated with regards to energetic and economic performance by making use of thermodynamic models. This study focuses on temperature levels of 45–60 °C as at this temperature range large amounts of heat are rejected to the environment but also investigates the temperature levels for which power cycles become competitive. The heat pumps deliver 2.5–11 times more energy value than the power cycles in this low temperature range at equal waste heat input. Heat engines become competitive with heat pumps at waste heat temperatures at 100 °C and above. - Highlights: • Application of heat pump technology for heating and cooling. • Compression resorption heat pumps operating with large glides approaching 100 K. • Compression-resorption heat pumps with wet compression. • Potential to convert Industrial waste heat to power or high grade heat. • Comparison between low temperature power cycles and heat pumps

  2. Experimental performance analysis on a direct-expansion solar-assisted heat pump water heater

    International Nuclear Information System (INIS)

    Li, Y.W.; Wang, R.Z.; Wu, J.Y.; Xu, Y.X.

    2007-01-01

    A direct expansion solar assisted heat pump water heater (DX-SAHPWH) experimental set-up is introduced and analyzed. This DX-SAHPWH system mainly consists of 4.20 m 2 direct expansion type collector/evaporator, R-22 rotary-type hermetic compressor with rated input power 0.75 kW, 150 L water tank with immersed 60 m serpentine copper coil and external balance type thermostatic expansion valve. The experimental research under typical spring climate in Shanghai showed that the COP of the DX-SAHPWH system can reach 6.61 when the average temperature of 150 L water is heated from 13.4 deg. C to 50.5 deg. C in 94 min with average ambient temperature 20.6 deg. C and average solar radiation intensity 955 W/m 2 . And the COP of the DX-SAHPWH system is 3.11 even if at a rainy night with average ambient temperature 17.1 deg. C. The seasonal average value of the COP and the collector efficiency was measured as 5.25 and 1.08, respectively. Through exergy analysis for each component of the DX-SAHPWH system, it can be calculated that the highest exergy loss occurs in the compressor, followed by collector/evaporator, condenser and expansion valve, respectively. Further more, some methods are suggested to improve the thermal performance of each component and the whole DX-SAHPWH system

  3. Solar assisted heat pumps: A possible wave of the future

    Science.gov (United States)

    Smetana, F. O.

    1976-01-01

    With the higher costs of electric power and the widespread interest to use solar energy to reduce the national dependence on fossil fuels, heat pumps are examined to determine their suitability for use with solar energy systems.

  4. Natural working fluids for solar-boosted heat pumps

    Energy Technology Data Exchange (ETDEWEB)

    Chaichana, C.; Lu Aye [University of Melbourne, Victoria (Australia). International Technologies Centre, Department of Civil and Environmental Engineering; Charters, W.W.S. [University of Melbourne, Victoria (Australia). Department of Mechanical and Manufacturing Engineering

    2003-09-01

    The option of using natural working fluids as a substitute of R-22 for solar-boosted heat pumps depends not only upon thermal performance and hazardous rating but also on potential impacts on the environment. This paper presents the comparative assessment of natural working fluids with R-22 in terms of their characteristics and thermophysical properties, and thermal performance. Some justification is given for using natural working fluids in a solar boosted heat pump water heater. The results show that R-744 is not suitable for solar-boosted heat pumps because of its low critical temperature and high operational pressures. On the other hand, R-717 seems to be a more appropriate substitute in terms of operational parameters and overall performance. However, major changes in the heat pumps are required. R-290 and R-1270 are identified as candidates for direct drop-in substitutes for R-22. (author)

  5. ATES/heat pump simulations performed with ATESSS code

    Science.gov (United States)

    Vail, L. W.

    1989-01-01

    Modifications to the Aquifer Thermal Energy Storage System Simulator (ATESSS) allow simulation of aquifer thermal energy storage (ATES)/heat pump systems. The heat pump algorithm requires a coefficient of performance (COP) relationship of the form: COP = COP sub base + alpha (T sub ref minus T sub base). Initial applications of the modified ATES code to synthetic building load data for two sizes of buildings in two U.S. cities showed insignificant performance advantage of a series ATES heat pump system over a conventional groundwater heat pump system. The addition of algorithms for a cooling tower and solar array improved performance slightly. Small values of alpha in the COP relationship are the principal reason for the limited improvement in system performance. Future studies at Pacific Northwest Laboratory (PNL) are planned to investigate methods to increase system performance using alternative system configurations and operations scenarios.

  6. Miniature Centrifugal Compressor

    Science.gov (United States)

    Sixsmith, Herbert

    1989-01-01

    Miniature turbocompressor designed for reliability and long life. Cryogenic system includes compressor, turboexpander, and heat exchanger provides 5 W of refrigeration at 70 K from 150 W input power. Design speed of machine 510,000 rpm. Compressor has gas-lubricated journal bearings and magnetic thrust bearing. When compressor runs no bearing contact and no wear.

  7. Heat pumps; Synergy of high efficiency and low carbon electricity

    Energy Technology Data Exchange (ETDEWEB)

    Koike, Akio

    2010-09-15

    Heat pump is attracting wide attention for its high efficiency to utilize inexhaustible and renewable ambient heat in the environment. With its rapid innovation and efficiency improvement, this technology has a huge potential to reduce CO2 emissions by replacing currently widespread fossil fuel combustion systems to meet various heat demands from the residential, commercial and industrial sectors. Barriers to deployment such as low public awareness and a relatively long pay-back period do exist, so it is strongly recommended that each country implement policies to promote heat pumps as a renewable energy option and an effective method to combat global warming.

  8. Design of a Heat Pump Assisted Solar Thermal System

    OpenAIRE

    Krockenberger, Kyle G.; DeGrove, John M.; Hutzel, William J.; Foreman, J. Christopher

    2014-01-01

    This paper outlines the design of an active solar thermal loop system that will be integrated with an air source heat pump hot water heater to provide highly efficient heating of a water/propylene glycol mixture. This system design uses solar energy when available, but reverts to the heat pump at night or during cloudy weather. This new design will be used for hydronic heating in the Applied Energy Laboratory, a teaching laboratory at Purdue University, but it is more generally applicable for...

  9. Feasibility analysis of heat pump dryer to dry hawthorn cake

    Energy Technology Data Exchange (ETDEWEB)

    Wang, D.C., E-mail: wdechang@163.com [College of Electromechanical Engineering, Qingdao University, Qingdao 266071 (China); Zhang, G.; Han, Y.P.; Zhang, J.P.; Tian, X.L. [College of Electromechanical Engineering, Qingdao University, Qingdao 266071 (China)

    2011-08-15

    Highlights: {yields} A heat pump dryer (HPD) is effectively proposed to dry hawthorn cake-likely materials. {yields} Low drying temperature and high COP of heat pump are obtained in drying beginning. {yields} HPD is more effective, economic than a traditional hot air dryer. {yields} Feasibility of the HPD is also validated by the operation economy estimation. - Abstract: A heat pump dryer (HPD) would be an economic, environmentally friendly, hygienic drying machine used to dry some food, such as hawthorn cakes. Based on the production process of the hawthorn cake, a HPD is proposed and its basic principle is introduced. The experimental drying curves of the hawthorn cake using the heat pump drying method and the traditional hot air drying method are compared and analyzed. The drying process of hawthorn cakes is similar to that of the other drying materials. The higher drying temperature causes a faster drying process. But in the initial stage of the heat pump drying process, the water content of the hawthorn cake is not sensitive to the drying temperature, so a lower drying air temperature can be available in order to get a higher coefficient of performance (COP) of the heat pump (HP). The experimental results and the economic analysis indicate that the HPD is feasibly used to dry hawthorn cakes.

  10. Feasibility analysis of heat pump dryer to dry hawthorn cake

    International Nuclear Information System (INIS)

    Wang, D.C.; Zhang, G.; Han, Y.P.; Zhang, J.P.; Tian, X.L.

    2011-01-01

    Highlights: → A heat pump dryer (HPD) is effectively proposed to dry hawthorn cake-likely materials. → Low drying temperature and high COP of heat pump are obtained in drying beginning. → HPD is more effective, economic than a traditional hot air dryer. → Feasibility of the HPD is also validated by the operation economy estimation. - Abstract: A heat pump dryer (HPD) would be an economic, environmentally friendly, hygienic drying machine used to dry some food, such as hawthorn cakes. Based on the production process of the hawthorn cake, a HPD is proposed and its basic principle is introduced. The experimental drying curves of the hawthorn cake using the heat pump drying method and the traditional hot air drying method are compared and analyzed. The drying process of hawthorn cakes is similar to that of the other drying materials. The higher drying temperature causes a faster drying process. But in the initial stage of the heat pump drying process, the water content of the hawthorn cake is not sensitive to the drying temperature, so a lower drying air temperature can be available in order to get a higher coefficient of performance (COP) of the heat pump (HP). The experimental results and the economic analysis indicate that the HPD is feasibly used to dry hawthorn cakes.

  11. Repetitive 1 Hz fast-heating fusion driver HAMA pumped by diode pumped solid state laser

    International Nuclear Information System (INIS)

    Mori, Yoshitaka; Sekine, Takashi; Komeda, Osamu

    2014-01-01

    We describe a repetitive fast-heating fusion driver called HAMA pumped by Diode Pumped Solid State Laser (DPSSL) to realize the counter irradiation of sequential implosion and heating laser beams. HAMA was designed to activate DPSSL for inertial confinement fusion (ICF) research and to realize a unified ICF machine for power plants. The details of a four-beam alignment scheme and the results of the counter irradiation of stainless plates are shown. (author)

  12. Development of a gas fired Vuilleumier heat pump for residential heating

    DEFF Research Database (Denmark)

    Carlsen, Henrik

    1989-01-01

    A natural gas-driven heat pump based on the Vuilleumier principle has been developed for use in single-family houses. The pump has a heat output of 7.5 kW at a coefficient of performance of 1.62 based on the lower heat content of the gas fuel. The heat pump uses helium as working fluid at 20 MPa...... mean pressure, and it is designed as a semihermetic unit. A crank mechanism distinguished by very small loads on the piston rings was developed. The advantages and disadvantages of the Vuilleumier principle for heat-driven heat pumps are discussed. Results of the extensive experimental work...... are presented. A new 20 kW Vuilleumier heat pump is briefly described...

  13. TWO-STAGE HEAT PUMPS FOR ENERGY SAVING TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    A. E. Denysova

    2017-09-01

    Full Text Available The problem of energy saving becomes one of the most important in power engineering. It is caused by exhaustion of world reserves in hydrocarbon fuel, such as gas, oil and coal representing sources of traditional heat supply. Conventional sources have essential shortcomings: low power, ecological and economic efficiencies, that can be eliminated by using alternative methods of power supply, like the considered one: low-temperature natural heat of ground waters of on the basis of heat pump installations application. The heat supply system considered provides an effective use of two stages heat pump installation operating as heat source at ground waters during the lowest ambient temperature period. Proposed is a calculation method of heat pump installations on the basis of groundwater energy. Calculated are the values of electric energy consumption by the compressors’ drive, and the heat supply system transformation coefficient µ for a low-potential source of heat from ground waters allowing to estimate high efficiency of two stages heat pump installations.

  14. General thermodynamic performance of irreversible absorption heat pump

    International Nuclear Information System (INIS)

    Zhao Xiling; Fu Lin; Zhang Shigang

    2011-01-01

    The absorption heat pump (AHP) was studied with thermodynamics. A four reservoirs model of absorption heat pump was established considering the heat resistance, heat leak and the internal irreversibility. The reasonable working regions, the performance effects of irreversibility, heat leak and the correlation of four components were studied. When studying the effects of internal irreversibility, two internal irreversibility parameters (I he for generator-absorber assembly and I re for evaporator-condenser assembly) were introduced to distinguish the different effects. When studying the heat transfer relations of four components, a universal relationship between the main parameters were deduced. The results which have more realized meaning show that, the reduction of the friction, heat loss, and internal dissipations of the evaporator-condenser assembly are more important than its reduction of generator-absorber assembly, and lessening the heat leak of generator are more important than its reduction of other components to improve the AHP performance.

  15. Performances of four magnetic heat-pump cycles

    International Nuclear Information System (INIS)

    Chen, F.C.; Murphy, R.W.; Mel, V.C.; Chen, G.L.

    1990-01-01

    Magnetic heat pumps have been successfully used for refrigeration applications at near absolute-zero-degree temperatures. In these applications, a temperature lift of a few degrees in a cryogenic environment is sufficient and can be easily achieved by a simple magnetic heat-pump cycle. To extend magnetic heat pumping to other temperature ranges and other types of applications in which the temperature lift is more than just a few degrees requires more involved cycle processes. This paper investigates the characteristics of a few better-known thermomagnetic heat-pump cycles (Carnot, Ericsson, Stirling, and regenerative) in extended ranges of temperature lift. The regenerative cycle is the most efficient one. For gadolinium operating between 0 and 7 T (Tesla) in a heat pump cycle with a heat-rejection temperature of 320 K, our analysis predicted a 42% loss in coefficient of performance at 260 K cooling temperature, and a 15% loss in capacity at 232 K cooling temperature for the constant-field cycle as compared with the ideal regenerative cycle. Such substantial penalties indicate that the potential irreversibilities from this one source (the additional heat transfer that would be needed for the constant-field vs. the ideal regenerative cycle) may adversely affect the viability of certain proposed MHP concepts if the relevant loss mechanisms are not adequately addressed

  16. Flexibility of Large-Scale Solar Heating Plant with Heat Pump and Thermal Energy Storage

    DEFF Research Database (Denmark)

    Luc, Katarzyna Marta; Heller, Alfred; Rode, Carsten

    2017-01-01

    to decrease biomass use in a district heating system. The paper focuses on the renewable energy-based district heating system in Marstal, Denmark, with heat produced in central solar heating plant, wood pellet boiler, heat pump and bio-oil boiler. The plant has been the object of research and developments...

  17. Mold Heating and Cooling Pump Package Operator Interface Controls Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Josh A. Salmond

    2009-08-07

    The modernization of the Mold Heating and Cooling Pump Package Operator Interface (MHC PP OI) consisted of upgrading the antiquated single board computer with a proprietary operating system to off-the-shelf hardware and off-the-shelf software with customizable software options. The pump package is the machine interface between a central heating and cooling system that pumps heat transfer fluid through an injection or compression mold base on a local plastic molding machine. The operator interface provides the intelligent means of controlling this pumping process. Strict temperature control of a mold allows the production of high quality parts with tight tolerances and low residual stresses. The products fabricated are used on multiple programs.

  18. THERMAL POWER LOSS COMPENSATION IN THE PRODUCTION OF COOKED AND DRIED GRAINS WITH HEAT PUMPS USING

    Directory of Open Access Journals (Sweden)

    S. A. Shevtsov

    2015-01-01

    Full Text Available Using scientificand practical experience and analysis of recent innovative activity on modernization of food concentrates production, a new variant of the energy-efficient processing of cereal crops using superheated steam and direct involvement in the cooking and drying process waste energy using the vapor compression heat pump was suggested. A method for production of cereal concentrates, which is realized using microprocessor control of technological parameters. According to the information on the processes of cereals washing, cooking, drying and cooling microprocessor provides regime parameters control under the restrictions due to both yield of cooked and dried cereal of high quality and economic feasibility. At the same time the amount of moisture is continuously determined in the recirculation loop formed by the evaporation from the cereals in the drying process. To implement the proposed method of cooked and dried cereals production it is offered to use refrigerationand compressor unit operating in a heat pump mode. The refrigerant to be used is khladon 12V1 CF2ClBr with a boiling point in the evaporator of 4°C and the condensing temperature of 153.7 °C. The use of the heat pump in the heat supply system of cooked and dried cereals production instead of electric heaters will reduce power costs by 1.72 times. The proposed method for the production and control of technological parameters in the field of the product acceptable technological properties will provide high quality cooked and dried cereals; an increase in thermal efficiency by making full use of the waste heat of superheated steam; the reduction of specific energy consumption by 25-30 %; the creation of waste-free and environmentally friendly technologies for cereal production.

  19. A generic pump/compressor design for circulation of cryogenic fluids

    International Nuclear Information System (INIS)

    Jasinski, T.; Honkonen, S.C.; Sixsmith, H.; Stacy, W.D.

    1986-01-01

    This paper describes the development of a second-generation centrifugal circulator for cryogenic fluids. The circulator is designed to operate over a wide range of flow rate and pressure rise and can be used for the pumping of liquid and compression of vapor at temperatures down to liquid helium (4 K). The machine incorporates self-acting gas journal bearings, a permanent magnet axial thrust bearing, and a variable speed induction motor drive to provide for reliable, maintenance-free operation. The paper provides design details of the pump. Calculated performance characteristics are also presented along with a general discussion regarding limitations of the present system

  20. Performance of a residential heat pump operating in the cooling mode with single faults imposed

    International Nuclear Information System (INIS)

    Kim, Minsung; Payne, W. Vance; Domanski, Piotr A.; Yoon, Seok Ho; Hermes, Christian J.L.

    2009-01-01

    The system behavior of a R410A residential unitary split heat pump operating in the cooling mode was investigated. Seven artificial faults were implemented: compressor/reversing valve leakage, improper outdoor air flow, improper indoor air flow, liquid line restriction, refrigerant undercharge, refrigerant overcharge, and presence of non-condensable gas in the refrigerant. This study monitored eight fault detection features and identified the most sensitive features for each fault. The effect of the various fault levels on energy efficiency ratio (EER) was also estimated. Since the studied system employed a thermostatic expansion valve (TXV) as an expansion device, it could adapt to some faults making the fault less detectable. The distinctiveness of the fault depended on the TXV status (fully open or not)

  1. Heat Pump Water Heater Ducting Strategies with Encapsulated Attics in Climate Zones 2 and 4

    Energy Technology Data Exchange (ETDEWEB)

    Sweet, M. L. [Southface Energy Inst., Upper Marlboro, MD (United States); Francisco, A.; Roberts, S. G.

    2016-05-01

    The focus of this study is on the performance of HPWHs with several different duct configurations and their effects on whole building heating, cooling, and moisture loads. A.O. Smith 60 gallon Voltex (PHPT-60) heat pump water heaters (HPWHs) were included at two project sites and ducted to or located within spray foamed encapsulated attics. The effect of ducting a HPWH's air stream does not diminish its efficiency if the ducting does not reduce intake air temperature, which expands HPWH application to confined areas. Exhaust ducts should be insulated to avoid condensation on the exterior, however this imposes a risk of condensation occurring in the duct's interior near the HPWH due to large variation of temperatures between the compressor and the duct and the presence of bulk moisture around the condenser. The HPWH's air conditioning impact on HVAC equipment loads is minimal when the intake and exhaust air streams are connected to a sealed attic and not the living space. A HPWH is not suitable as a replacement dehumidifier in sealed attics as peak moisture loads were observed to only be reduced if the heat pump operated during the morning. It appears that the intake air temperature and humidity was the most dominant variable affecting HPWH performance. Different ducting strategies such as exhaust duct only, intake duct only, and exhaust and intake ducting did not have any effect on HPWH performance.

  2. New use of ammonia in heat pumps; Nouvelle utilisation de l`ammoniac en pompe a chaleur

    Energy Technology Data Exchange (ETDEWEB)

    Hivet, B.; Ducruet, C. [Electricite de France, 77 - Moret sur Loing (France). Direction des Etudes et Recherches

    1996-12-31

    According to simple thermodynamic criteria and to pollution regulations, ammonia and HFC 134a are the only refrigerating fluids that can be used in heat pumps. Ammonia is particularly performing at high condensation temperatures. However, its use has become possible thanks to the use of industrial refrigerating compressors with a maximum operation pressure of 40 bars. Test results confirm the interesting thermal performances of this fluid. A comparison with the HFC 134a refrigerant indicates that ammonia leads to equal or better coefficients of performance for higher volume powers. Two applications taken in the agriculture and food industries are presented. (J.S.)

  3. Simulation in transient regime of a heat pump with closed-loop and on-off control

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, J.V.C. [Duke Univ., Durham, NC (United States). Dept. of Mechanical Engineering and Materials Science; Parise, J.A.R. [Pontificia Univ. Catolica do Rio de Janeiro, RJ (Brazil). Dept. de Engenharia Mecanica

    1995-05-01

    The present work introduces a mathematical model for a heat pump with a variable-speed compressor, driven by a d.c. servomotor, operating either in closed loop by a power law control action or by the traditional on-off basis. The resulting differential and algebraic equations are integrated in time for a specified period of simulation in both designs. The results show that the closed-loop system presents significant savings in energy consumption when compared with the on-off system, under the same environmental conditions. (author)

  4. Irreversible absorption heat-pump and its optimal performance

    International Nuclear Information System (INIS)

    Chen Lingen; Qin Xiaoyong; Sun Fengrui; Wu Chih

    2005-01-01

    On the basis of an endoreversible absorption heat-pump cycle, a generalized irreversible four-heat-reservoir absorption heat-pump cycle model is established by taking account of the heat resistances, heat leak and irreversibilities due to the internal dissipation of the working substance. The heat transfer between the heat reservoir and the working substance is assumed to obey the linear (Newtonian) heat-transfer law, and the overall heat-transfer surface area of the four heat-exchangers is assumed to be constant. The fundamental optimal relations between the coefficient of performance (COP) and the heating-load, the maximum COP and the corresponding heating-load, the maximum heating load and the corresponding COP, as well as the optimal temperatures of the working substance and the optimal heat-transfer surface areas of the four heat-exchangers are derived by using finite-time thermodynamics. Moreover, the effects of the cycle parameters on the characteristics of the cycle are studied by numerical examples

  5. FY 1991 Report on research and development of super heat pump energy accumulation system. Part 1. Construction and operation of the prototype system (researches on elementary techniques and construction and operation of the pilot system); Super heat pump energy shuseki system no kenkyu kaiahtsu 1981 nendo seika hokokusho. 1. System shisaku unten kenkyu (yoso gijutsu no kenkyu / pilot system no shisaku unten kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-05-01

    Summarized herein are R and D results of the super high performance heat pumps and elementary equipment, for R and D of the super heat pump energy accumulation system. For R and D of the super high performance compression heat pumps, the R and D efforts are directed to tests and evaluation of the pilot plant for the highly efficient type (for heating only), which produce the results of COP exceeding the target of 8; to tests of the anti-corrosion measures for the aluminum heat exchangers for the highly efficient type (for cooling and heating), by which the effective inhibitors are selected. The hybrid systems of the super high performance compression heat pumps and chemical heat storage are also studied in detail. The R and D efforts are directed to construction and operation of the hybrid heat pump system to collect underground heat for the high temperature type (utilizing low temperature heat source), which produce the results of confirming possibility of efficient heat collection for extended periods; and to improvement, construction on a trial basis and operation of the high-speed reciprocating compressors and steam superchargers for the high temperature type (utilizing high temperature heat source). For R and D of the elementary equipment, tests and evaluation are conducted for the EHD heat exchangers which use R123 as the new working fluid. (NEDO)

  6. Experimental evaluation of a heat pump for the water-supply heating of a public swimming pool

    International Nuclear Information System (INIS)

    López, R; Vaca, M; Terres, H; Lizardi, A; Morales, J; Chávez, S

    2017-01-01

    In this work the analysis of the thermodynamic behavior of heat pumps (HP) which supply the energy needed in the public pool at the Aquatic Center of Azcapotzalco was performed. There are 18 installed HP’s but only those needed to provide the energy required are alternately activated. The evaluation was conducted during May and June of 2015. We selected one of the HP to implement temperature and pressure gauges at the inlet and outlet of the compressor. The measurements were made every day at three times, 6:30, 13:00 and 18:00 hours. In a period of 24 hours, 1 000 L evaporated, there was no variation registered overnight, since the pool was covered with plastic to avoid loss of the fluid. The heat pump provided 150 kW to maintain the water temperature at the right level of operation, namely 28 °C. The coefficients of performance (COP) of the HP were 6.39 at 6:30, 7.42 at 13:00 and 7:32 at 18:00 hrs., values which are very close to the one provided by the manufacturer. (paper)

  7. Experimental evaluation of a heat pump for the water-supply heating of a public swimming pool

    Science.gov (United States)

    López, R.; Vaca, M.; Terres, H.; Lizardi, A.; Morales, J.; Chávez, S.

    2017-01-01

    In this work the analysis of the thermodynamic behavior of heat pumps (HP) which supply the energy needed in the public pool at the Aquatic Center of Azcapotzalco was performed. There are 18 installed HP’s but only those needed to provide the energy required are alternately activated. The evaluation was conducted during May and June of 2015. We selected one of the HP to implement temperature and pressure gauges at the inlet and outlet of the compressor. The measurements were made every day at three times, 6:30, 13:00 and 18:00 hours. In a period of 24 hours, 1 000 L evaporated, there was no variation registered overnight, since the pool was covered with plastic to avoid loss of the fluid. The heat pump provided 150 kW to maintain the water temperature at the right level of operation, namely 28 °C. The coefficients of performance (COP) of the HP were 6.39 at 6:30, 7.42 at 13:00 and 7:32 at 18:00 hrs., values which are very close to the one provided by the manufacturer.

  8. Residual heat removal pump and low pressure safety injection pump retrofit program

    International Nuclear Information System (INIS)

    Dudiak, J.G.; McKenna, J.M.

    1992-01-01

    Residual Heat Removal (RHR) and low pressure safety injection (LPSI) pumps installed in pressurized water-to-reactor power plants are used to provide low-head safety injection in the event of loss of coolant in the reactor coolant system. Because these pumps are subjected to rather severe temperature and pressure transients, the majority of pumps installed in the RHR service are vertical pumps with a single stage impeller. Typically the pump impeller is mounted on an extended motor shaft (close-coupled configuration) and a mechanical seal is employed at the pump end of the shaft. Traditionally RHR and LPSI pumps have been a significant maintenance item for many utilities. Periodic mechanical seal of motor bearing replacement often is considered routine maintenance. The closed-coupled pump design requires disassembly of the casing cover from the lower pump casing while performing these routine maintenance tasks. This paper introduces a design modification developed to convert the close-coupled RHR and LPSI pumps to a coupled configuration

  9. Energy Management of a Hybrid-Power Gas Engine-Driven Heat Pump

    Directory of Open Access Journals (Sweden)

    Qingkun Meng

    2015-10-01

    Full Text Available The hybrid-power gas engine-driven heat pump (HPGHP combines hybrid power technology with a gas engine heat pump. The engine in the power system is capable of operating constantly with high thermal efficiency and low emissions during different operating modes. In this paper, the mathematical models of various components is established, including the engine thermal efficiency map and the motor efficiency map. The comprehensive charging/discharging efficiency model and energy management optimization strategy model which is proposed to maximize the efficiency of instantaneous HPGHP system are established. Then, different charging/discharging torque limits are obtained. Finally, a novel gas engine economical zone control strategy which combined with the SOC of battery in real time is put forward. The main operating parameters of HPGHP system under energy management are simulated by Matlab/Simulink and validated by experimental data, such as engine and motor operating torque, fuel consumption rate and comprehensive efficiency, etc. The results show that during 3600 s’ run-time, the SOC value of battery packs varies between 0.58 and 0.705, the fuel consumption rate reaches minimum values of approximately 291.3 g/(kW h when the compressor speed is nearly 1550 rpm in mode D, the engine thermal efficiency and comprehensive efficiency reach maximum values of approximately 0.2727 and 0.2648 when the compressor speed is 1575 rpm and 1475 rpm, respectively, in mode D. In general, the motor efficiency can be maintained above 0.85 in either mode.

  10. Current status and prospect of electric heat pump

    Energy Technology Data Exchange (ETDEWEB)

    Kuroda, Shoichi

    1988-02-01

    Due to the advent of an age of high energy cost, technological developments of heat pumps have progressed and especially those for the industrial use are significant. As for housing, improvement of heating capacity was persued and improvement of the starting-up characteristics and consumption rate became possible. Consequently, the usage of the pump was expanded from a dedicated cooling apparatus to a cooling and heating apparatus and efforts of making it smaller, lighter and with less noise have been made fruitfully. Furthermore, a heat pump type room air conditioner for cold areas, a multi-functional type heat pump system which is consolidated into a single unit capable to supply hot water and dry clothes in a bath room, etc. and other packaged air conditioners have been introduced showing the diversified usages. On the other hand, as for the industrial use, for the purpose of improvement of energy utilization efficiency, heat pumps are used for shortening processing hours, improving quality of products and improving yield. As for energy saving, they are used for drying coating of golf balls, horticulture in the facilities, and hydroponics, etc.. (6 figs, 6 tabs)

  11. Pump/heat exchanger assembly for pool-type reactor

    International Nuclear Information System (INIS)

    Nathenson, R.D.; Slepian, R.M.

    1989-01-01

    This patent describes a heat exchanger and pump assembly for transferring thermal energy from a heated, first electrically conductive fluid to a pumped, second electrically conductive fluid and for transferring internal energy from the pumped, second electrically conductive fluid to the first electrically conductive fluid, the assembly adapted to be disposed within a pool of the first electrically conductive fluid and comprising: a heat exchanger comprising means for defining a first annularly shaped cavity for receiving a flow of the second electrically conductive fluid and a plurality of tubes disposed within the cavity, whereby the second electrically conductive fluid in the cavity is heated, each of the tubes having an input and an output end. The input ends being disposed at the top of the heat exchanger for receiving from the pool a flow of the first electrically conductive fluid therein. The output ends being disposed at the bottom of and free of the cavity defining means for discharging the first electrically conductive fluid directly into the pool; a pump disposed beneath the heat exchanger and comprised of a plurality of flow couplers disposed in a circular array, each flow coupler comprised of a pump duct for receiving the first electrically conductive fluid and a generator duct for receiving the second electrically conductive fluid

  12. Field Performance of Heat Pump Water Heaters in the Northeast

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, Carl [Consortium for Advanced Residential Buildings, Norwalk, CT (United States); Puttagunta, Srikanth [Consortium for Advanced Residential Buildings, Norwalk, CT (United States)

    2016-02-01

    Heat pump water heaters (HPWHs) are finally entering the mainstream residential water heater market. Potential catalysts are increased consumer demand for higher energy efficiency electric water heating and a new Federal water heating standard that effectively mandates use of HPWHs for electric storage water heaters with nominal capacities greater than 55 gallons. When compared to electric resistance water heating, the energy and cost savings potential of HPWHs is tremendous. Converting all electric resistance water heaters to HPWHs could save American consumers 7.8 billion dollars annually ($182 per household) in water heating operating costs and cut annual residential source energy consumption for water heating by 0.70 quads.

  13. Linear programming control of a group of heat pumps

    NARCIS (Netherlands)

    Fink, J.; van Leeuwen, Richard Pieter; Hurink, Johann L.; Smit, Gerardus Johannes Maria

    2015-01-01

    For a new district in the Dutch city Meppel, a hybrid energy concept is developed based on bio-gas co-generation. The generated electricity is used to power domestic heat pumps which supply thermal energy for domestic hot water and space heating demand of households. In this paper, we investigate

  14. Exergetic efficiency optimization for an irreversible heat pump ...

    Indian Academy of Sciences (India)

    This paper deals with the performance analysis and optimization for irreversible heat pumps working on reversed Brayton cycle with constant-temperature heat reservoirs by taking exergetic efficiency as the optimization objective combining exergy concept with finite-time thermodynamics (FTT). Exergetic efficiency is ...

  15. Heat pumps for sport facilities and indoor swimming pools

    Energy Technology Data Exchange (ETDEWEB)

    Koehler, H [Sulzer-Escher Wyss G.m.b.H., Lindau (Germany, F.R.)

    1979-05-01

    An unprejudiced assessment of the energy situation would seem to make it advisable to make use of any given possibility to reduce the consumption of energy. The use of heat pumps, especially in conjunction with heat recovery, is one way to achieve this aim. The author describes two such installations and mentions their layout and load ratings.

  16. Heating and cooling with ground-loop heat pumps; Heizen und Kuehlen mit erdgekoppelten Waermepumpen

    Energy Technology Data Exchange (ETDEWEB)

    Afjei, Th.; Dott, R. [Institut Energie am Bau, Fachhochschule Nordwestschweiz (FHNW), Muttenz (Switzerland); Huber, A. [Huber Energietechnik AG, Zuerich (Switzerland)

    2007-08-15

    This final report for the Swiss Federal Office of Energy (SFOE) presents the results of the SFOE-project 'Heating and cooling with ground coupled heat pumps' in which the benefits and costs of a heat pump heating and cooling system with a borehole heat exchanger were examined. In particular the dimensioning of the hydraulic system, control concept and user behaviour are dealt with. The results of the simulations of thermal building behaviour with MATLAB/SIMULINK, CARNOT, and EWS are discussed. The results of parameter studies carried out, including varying shading, cooling characteristic curves, temperature differences in the heat exchanger and the dead time between heating and cooling mode are discussed. These showed that a simple system with heat pump and borehole heat exchanger for heating or preparation of domestic hot water as well as for passive cooling proved to be the best choice.

  17. Wind power integration using individual heat pumps – Analysis of different heat storage options

    DEFF Research Database (Denmark)

    Hedegaard, Karsten; Mathiesen, Brian Vad; Lund, Henrik

    2012-01-01

    Significant installations of individual heat pumps are expected in future energy systems due to their economic competitiveness. This case study of the Danish energy system in 2020 with 50% wind power shows that individual heat pumps and heat storages can contribute to the integration of wind power....... Heat accumulation tanks and passive heat storage in the construction are investigated as two alternative storage options in terms of their ability to increase wind power utilisation and to provide cost-effective fuel savings. Results show that passive heat storage can enable equivalent to larger...... reductions in excess electricity production and fuel consumption than heat accumulation tanks. Moreover, passive heat storage is found to be significantly more cost-effective than heat accumulation tanks. In terms of reducing fuel consumption of the energy system, the installation of heat pumps is the most...

  18. Design aspects of commercial open-loop heat pump systems

    Energy Technology Data Exchange (ETDEWEB)

    Rafferty, Kevin

    2000-01-01

    Open loop (or groundwater heat pump systems are the oldest of the ground-source systems. Common design variations include direct (groundwater used directly in the heat pump units), indirect (building loop isolated with a plate heat exchanger), and standing column (water produced and returned to the same well). Direct systems are typically limited to the smallest applications. Standing column systems are employed in hard rock geology sites where it is not possible to produce sufficient water for a conventional system. Due to its greater potential application, this paper reviews key design aspects of the indirect approach. The general design procedure is reviewed, identification of optimum groundwater flow, heat exchanger selection guidelines, well pump control, disposal options, well spacing, piping connections and related issues.

  19. Design Aspects of Commerical Open-Loop Heat Pump Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rafferty, Kevin

    2001-03-01

    Open loop (or groundwater heat pump systems are the oldest of the ground-source systems. Common design variations include direct (groundwater used directly in the heat pump units), indirect (building loop isolated with a plate heat exchanger), and standing column (water produced and returned to the same well). Direct systems are typically limited to the smallest applications. Standing column systems are employed in hard rock geology sites where it is not possible to produce sufficient water for a conventional system. Due to its greater potential application, this paper reviews key design aspects of the indirect approach. The general design procedure is reviewed, identification of optimum groundwater flow, heat exchanger selection guidelines, well pump control, disposal options, well spacing, piping connections and related issues.

  20. Ground-Coupling with Water Source Heat Pumps

    Energy Technology Data Exchange (ETDEWEB)

    Kavanaugh, S.

    0001-01-01

    Ground-coupled heat pumps (GCHPs) have been receiving increasing attention in recent years. In areas where the technology has been properly applied, they are the system of choice because of their reliability, high level of comfort, low demand, and low operating costs. Initially these systems were most popular in rural, residential applications where heating requirements were the primary consideration. However, recent improvements in heat pumps units and installation procedures have expanded the market to urban and commercial applications. This paper discusses some of the current activity in the commercial sector. The basic system and nomenclature are discussed. Several variations for commercial buildings are presented along with examples of systems in operation. Several advantages and disadvantages are listed. Operating and installation costs are briefly discussed. Finally, the GCHP is presented as an alternative that is able to counter much of the criticism leveled by the natural gas industry toward conventional heat pumps.

  1. Ground-Coupling with Water Source Heat Pumps

    Energy Technology Data Exchange (ETDEWEB)

    Kavanaugh, S

    0000-12-30

    Ground-coupled heat pumps (GCHPs) have been receiving increasing attention in recent years. In areas where the technology has been properly applied, they are the system of choice because of their reliability, high level of comfort, low demand, and low operating costs. Initially these systems were most popular in rural, residential applications where heating requirements were the primary consideration. However, recent improvements in heat pumps units and installation procedures have expanded the market to urban and commercial applications. This paper discusses some of the current activity in the commercial sector. The basic system and nomenclature are discussed. Several variations for commercial buildings are presented along with examples of systems in operation. Several advantages and disadvantages are listed. Operating and installation costs are briefly discussed. Finally, the GCHP is presented as an alternative that is able to counter much of the criticism leveled by the natural gas industry toward conventional heat pumps.

  2. Heat pumps for geothermal applications: availability and performance. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Reistad, G.M.; Means, P.

    1980-05-01

    A study of the performance and availability of water-source heat pumps was carried out. The primary purposes were to obtain the necessary basic information required for proper evaluation of the role of water-source heat pumps in geothermal energy utilization and/or to identify the research needed to provide this information. The Search of Relevant Literature considers the historical background, applications, achieved and projected performance evaluations and performance improvement techniques. The commercial water-source heat pump industry is considered in regard to both the present and projected availability and performance of units. Performance evaluations are made for units that use standard components but are redesigned for use in geothermal heating.

  3. Performance analysis on solar-water compound source heat pump for radiant floor heating system

    Institute of Scientific and Technical Information of China (English)

    曲世林; 马飞; 仇安兵

    2009-01-01

    A solar-water compound source heat pump for radiant floor heating (SWHP-RFH) experimental system was introduced and analyzed. The SWHP-RFH system mainly consists of 11.44 m2 vacuum tube solar collector,1 000 L water tank assisted 3 kW electrical heater,a water source heat pump,the radiant floor heating system with cross-linked polyethylene (PE-X) of diameter 20 mm,temperature controller and solar testing system. The SWHP-RFH system was tested from December to February during the heating season in Beijing,China under different operation situations. The test parameters include the outdoor air temperature,solar radiation intensity,indoor air temperature,radiation floor average surface temperature,average surface temperature of the building envelope,the inlet and outlet temperatures of solar collector,the temperature of water tank,the heat medium temperatures of heat pump condenser side and evaporator side,and the power consumption includes the water source heat pump system,the solar source heat pump system,the auxiliary heater and the radiant floor heating systems etc. The experimental results were used to calculate the collector efficiency,heat pump dynamic coefficient of performance (COP),total energy consumption and seasonal heating performance during the heating season. The results indicate that the performance of the compound source heat pump system is better than that of the air source heat pump system. Furthermore,some methods are suggested to improve the thermal performance of each component and the whole SWHP-RFH system.

  4. Determination of Ground Heat Exchangers Temperature Field in Geothermal Heat Pumps

    Science.gov (United States)

    Zhurmilova, I.; Shtym, A.

    2017-11-01

    For the heating and cooling supply of buildings and constructions geothermal heat pumps using low-potential ground energy are applied by means of ground exchangers. The process of heat transfer in a system of ground exchangers is a phenomenon of complex heat transfer. The paper presents a mathematical modeling of heat exchange processes, the temperature fields are built which are necessary for the determination of the ground array that ensures an adequate supply of low potential energy excluding the freezing of soil around the pipes in the ground heat exchangers and guaranteeing a reliable operation of geothermal heat pumps.

  5. Ground Source Heat Pumps vs. Conventional HVAC: A Comparison of Economic and Environmental Costs

    Science.gov (United States)

    2009-03-26

    of systems are surface water heat pumps (SWHPs), ground water heat pumps (GWHPs), and ground coupled heat pumps ( GCHPs ) (Kavanaugh & Rafferty, 1997...Kavanaugh & Rafferty, 1997). Ground Coupled Heat Pumps (Closed-Loop Ground Source Heat Pumps) GCHPs , otherwise known as closed-loop GSHPs, are the...Significant confusion has arisen through the use of GCHP and closed-loop GSHP terminology. Closed-loop GSHP is the preferred nomenclature for this

  6. Mini-Split Heat Pumps Multifamily Retrofit Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Dentz, Jordan [ARIES Collaborative, New York, NY (United States); Podorson, David [ARIES Collaborative, New York, NY (United States); Varshney, Kapil [ARIES Collaborative, New York, NY (United States)

    2014-05-01

    Mini-split heat pumps can provide space heating and cooling in many climates and are relatively affordable. These and other features make them potentially suitable for retrofitting into multifamily buildings in cold climates to replace electric resistance heating or other outmoded heating systems. This report investigates the suitability of mini-split heat pumps for multifamily retrofits. Various technical and regulatory barriers are discussed and modeling was performed to compare long-term costs of substituting mini-splits for a variety of other heating and cooling options. A number of utility programs have retrofit mini-splits in both single family and multifamily residences. Two such multifamily programs are discussed in detail.

  7. Heat transfer analysis of underground U-type heat exchanger of ground source heat pump system.

    Science.gov (United States)

    Pei, Guihong; Zhang, Liyin

    2016-01-01

    Ground source heat pumps is a building energy conservation technique. The underground buried pipe heat exchanging system of a ground source heat pump (GSHP) is the basis for the normal operation of an entire heat pump system. Computational-fluid-dynamics (CFD) numerical simulation software, ANSYS-FLUENT17.0 have been performed the calculations under the working conditions of a continuous and intermittent operation over 7 days on a GSHP with a single-well, single-U and double-U heat exchanger and the impact of single-U and double-U buried heat pipes on the surrounding rock-soil temperature field and the impact of intermittent operation and continuous operation on the outlet water temperature. The influence on the rock-soil temperature is approximately 13 % higher for the double-U heat exchanger than that of the single-U heat exchanger. The extracted energy of the intermittent operation is 36.44 kw·h higher than that of the continuous mode, although the running time is lower than that of continuous mode, over the course of 7 days. The thermal interference loss and quantity of heat exchanged for unit well depths at steady-state condition of 2.5 De, 3 De, 4 De, 4.5 De, 5 De, 5.5 De and 6 De of sidetube spacing are detailed in this work. The simulation results of seven working conditions are compared. It is recommended that the side-tube spacing of double-U underground pipes shall be greater than or equal to five times of outer diameter (borehole diameter: 180 mm).

  8. Energetic and financial evaluation of solar assisted heat pump space heating systems

    International Nuclear Information System (INIS)

    Bellos, Evangelos; Tzivanidis, Christos; Moschos, Konstantinos; Antonopoulos, Kimon A.

    2016-01-01

    Highlights: • Four solar heating systems are presented in this work. • Various combinations between solar collectors and heat pumps are presented. • The systems are compared energetically and financially. • The use of PV and an air source heat pump is the best choice financially. • The use of PVT with a water source heat pump is the best solution energetically. - Abstract: Using solar energy for space heating purposes consists an alternative way for substituting fossil fuel and grid electricity consumption. In this study, four solar assisted heat pump heating systems are designed, simulated and evaluated energetically and financially in order to determine the most attractive solution. The use of PV collectors with air source heat pump is compared to the use of FPC, PVT and FPC with PV coupled with a water source heat pump. A sensitivity analysis for the electricity cost is conducted because of the great variety of this parameter over the last years. The final results proved that for electricity cost up to 0.23 €/kW h the use of PV coupled with an air source heat pump is the most sustainable solution financially, while for higher electricity prices the coupling of PVT with an water source heat pump is the best choice. For the present electricity price of 0.2 €/kW h, 20 m"2 of PV is able to drive the air source heat pump with a yearly solar coverage of 67% leading to the most sustainable solution. Taking into account energetic aspects, the use of PVT leads to extremely low grid electricity consumption, fact that makes this technology the most environmental friendly.

  9. Thermal energy storage using thermo-chemical heat pump

    International Nuclear Information System (INIS)

    Hamdan, M.A.; Rossides, S.D.; Haj Khalil, R.

    2013-01-01

    Highlights: ► Understanding of the performance of thermo chemical heat pump. ► Tool for storing thermal energy. ► Parameters that affect the amount of thermal stored energy. ► Lithium chloride has better effect on storing thermal energy. - Abstract: A theoretical study was performed to investigate the potential of storing thermal energy using a heat pump which is a thermo-chemical storage system consisting of water as sorbet, and sodium chloride as the sorbent. The effect of different parameters namely; the amount of vaporized water from the evaporator, the system initial temperature and the type of salt on the increase in temperature of the salt was investigated and hence on the performance of the thermo chemical heat pump. It was found that the performance of the heat pump improves with the initial system temperature, with the amount of water vaporized and with the water remaining in the system. Finally it was also found that lithium chloride salt has higher effect on the performance of the heat pump that of sodium chloride.

  10. A thermoeconomic model of a photovoltaic heat pump

    International Nuclear Information System (INIS)

    Mastrullo, R.; Renno, C.

    2010-01-01

    In this paper the model of a heat pump whose evaporator operates as a photovoltaic collector, is studied. The energy balance equations have been used for some heat pump components, and for each layer of the photovoltaic evaporator: covering glaze, photovoltaic modules, thermal absorber plate, refrigerant tube and insulator. The model has been solved by means of a program using proper simplifications. The system input is represented by the solar radiation intensity and the environment temperature, that influence the output electric power of the photovoltaic modules and the evaporation power. The model results have been obtained referring to the photovoltaic evaporator and the plant operating as heat pump, in terms of the photovoltaic evaporator layers temperatures, the refrigerant fluid properties values in the cycle fundamental points, the thermal and mechanical powers, the efficiencies that characterize the plant performances from the energy, exergy and economic point of view. This study allows to realize a thermoeconomic comparison between a photovoltaic heat pump and a traditional heat pump under the same working conditions.

  11. Heat pumps barometer - EurObserv'ER - September 2015

    International Nuclear Information System (INIS)

    2015-09-01

    Heat pumps have moved up the ranks of renewable energy - producing heating technologies since the mid-2000's. The EU Member States' individual market trends are characterised by the technologies used and their heating and cooling needs. More than 1.7 million systems were sold in the European Union in 2014. According to EurObserv'ER, several market factors were responsible for sales dipping slightly below their 2013 level of just under 2 million

  12. Technical and economic working domains of industrial heat pumps: Part 1 - single stage vapour compression heat pumps

    DEFF Research Database (Denmark)

    Ommen, Torben Schmidt; Jensen, Jonas Kjær; Markussen, Wiebke Brix

    2015-01-01

    A large amount of operational and economic constraints limit the applicability of heat pumps operated with natural working fluids. The limitations are highly dependent on the integration of heat source and sink streams. An evaluation of feasible operating conditions was carried out considering......, the transcritical R744 expands the working domain for low sink outlet temperatures....

  13. Hydrodynamical tests with an original PWR heat removal pump

    International Nuclear Information System (INIS)

    Wietstock, P.

    1984-01-01

    GKSS-Forschungszentrum performes hydrodynamical tests with an original PWR heat removal pump to analyse the influences of fluid parameters on the capacity and cavitation behavior of the pump in order to get further improvements of the quantification of the reached safety-level. It can be concluded, that in case of the tested heat removal pump the additional loads during transition from cavitation free operation into fully cavitation for the investigated operation point with 980 m 3 /h will be smaller than the alteration of loads during passing through the total characteristic. The results from cavitation tests for other operation points indicate, that this very important consequence especially for accident operation will be valid for the total specified pump flow area. (orig.)

  14. Chemical heat pump and chemical energy storage system

    Science.gov (United States)

    Clark, Edward C.; Huxtable, Douglas D.

    1985-08-06

    A chemical heat pump and storage system employs sulfuric acid and water. In one form, the system includes a generator and condenser, an evaporator and absorber, aqueous acid solution storage and water storage. During a charging cycle, heat is provided to the generator from a heat source to concentrate the acid solution while heat is removed from the condenser to condense the water vapor produced in the generator. Water is then stored in the storage tank. Heat is thus stored in the form of chemical energy in the concentrated acid. The heat removed from the water vapor can be supplied to a heat load of proper temperature or can be rejected. During a discharge cycle, water in the evaporator is supplied with heat to generate water vapor, which is transmitted to the absorber where it is condensed and absorbed into the concentrated acid. Both heats of dilution and condensation of water are removed from the thus diluted acid. During the discharge cycle the system functions as a heat pump in which heat is added to the system at a low temperature and removed from the system at a high temperature. The diluted acid is stored in an acid storage tank or is routed directly to the generator for reconcentration. The generator, condenser, evaporator, and absorber all are operated under pressure conditions specified by the desired temperature levels for a given application. The storage tanks, however, can be maintained at or near ambient pressure conditions. In another form, the heat pump system is employed to provide usable heat from waste process heat by upgrading the temperature of the waste heat.

  15. Heat sources for heat pumps in the energetic and economic comparison

    International Nuclear Information System (INIS)

    Bockelmann, Franziska; Fisch, M. Norbert; Schlosser, Mathias; Peter, Markus

    2016-01-01

    Because of the growing application of heat pumps also the number of potentially usable low-temperature heat sources and corresponding heat exchangers for heat-pump systems present in the market increases. Thereby products like energy fences, high-power piles, ore ice reservoir come into applications without any knowledge ab out their power or the cost-profit ratio. The optimized lay-out of the coupling to the building are however essential conditions in order to reach an energy-efficient and durable operation of the facilities. The research project ''future heat pump'' sponsored by the BMWi is dedicated to the energetic and economic evaluation of heat sources for heat pumps. In this connection a pre-check-tool for the preliminary selection of low-temperature heat sources and connected, suitable heat-exchange systems is developed and their actual status of development presented. The holistic, comparing consideration of the different heat sources and heat-exchanger systems is related among others to the power numbers of the heat pumps, the entry and withdrawal services of the heat-exchangers, and the general performance of the systems. Additionally an estimation of economic and ecologic aspects (investment and operation costs, CO_2 emissions) is made. Aim is the determination of the plausibility of applications and essential boundary conditions of single source systems. For the qualitative comparison in a project-accompanying monitoring different facilities and source systems are measurement-technically comprehended.

  16. Miniature reciprocating heat pumps and engines

    Science.gov (United States)

    Thiesen, Jack H. (Inventor); Willen, Gary S. (Inventor); Mohling, Robert A. (Inventor)

    2003-01-01

    The present invention discloses a miniature thermodynamic device that can be constructed using standard micro-fabrication techniques. The device can be used to provide cooling, generate power, compress gases, pump fluids and reduce pressure below ambient (operate as a vacuum pump). Embodiments of the invention relating to the production of a cooling effect and the generation of electrical power, change the thermodynamic state of the system by extracting energy from a pressurized fluid. Energy extraction is attained using an expansion process, which is as nearly isentropic as possible for the appropriately chosen fluid. An isentropic expansion occurs when a compressed gas does work to expand, and in the disclosed embodiments, the gas does work by overcoming either an electrostatic or a magnetic force.

  17. Combined cold compressor/ejector helium refrigerator cycle

    International Nuclear Information System (INIS)

    Schlafke, A.P.; Brown, D.P.; Wu, K.C.

    1984-01-01

    This chapter demonstrates how the use of a cold compressor in series with an ejector is an effective way to produce the desired low pressure in a helium refrigeration system. The cold compressor is tentatively located at the low pressure side below the J-T heat exchanger. The ejector is the first stage and the cold compressor is the second stage of the two-stage pumping system. A centrifugal, oil-bearing type compressor was installed on the R and D refrigerator at the Brookhaven National Laboratory. It is determined that the combined cold compressor and ejector system produces a lower temperature on the same load or more cooling at the same temperature compared with a system which uses an ejector alone. Results of the test showed a gain of 20%

  18. Performance Analysis of a Thermoelectric Solar Collector Integrated with a Heat Pump

    Science.gov (United States)

    Lertsatitthanakorn, C.; Jamradloedluk, J.; Rungsiyopas, M.; Therdyothin, A.; Soponronnarit, S.

    2013-07-01

    A novel heat pump system is proposed. A thermoelectric solar collector was coupled to a solar-assisted heat pump (TESC-HP) to work as an evaporator. The cooling effect of the system's refrigerant allowed the cold side of the system's thermoelectric modules to work at lower temperature, improving the conversion efficiency. The TESC-HP system mainly consisted of transparent glass, an air gap, an absorber plate that acted as a direct expansion-type collector/evaporator, an R-134a piston-type hermetic compressor, a water-cooled plate-type condenser, thermoelectric modules, and a water storage tank. Test results indicated that the TESC-HP has better coefficient of performance (COP) and conversion efficiency than the separate units. For the meteorological conditions in Mahasarakham, the COP of the TESC-HP system can reach 5.48 when the average temperature of 100 L of water is increased from 28°C to 40°C in 60 min with average ambient temperature of 32.5°C and average solar intensity of 815 W/m2, whereas the conversion efficiency of the TE power generator was around 2.03%.

  19. Novel Long Stroke Reciprocating Compressor for Energy Efficient Jaggery Making

    Science.gov (United States)

    Rane, M. V.; Uphade, D. B.

    2017-08-01

    Novel Long Stroke Reciprocating Compressor is analysed for jaggery making while avoiding burning of bagasse for concentrating juice. Heat of evaporated water vapour along with small compressor work is recycled to enable boiling of juice. Condensate formed during heating of juice is pure water, as oil-less compressor is used. Superheat of compressor is suppressed by flow of superheated vapours through condensate. It limits heating surface temperature and avoids caramelization of sugar. Thereby improves quality of jaggery and eliminates need to use chemicals for colour improvement. Stroke to bore ratio is 0.6 to 1.2 in conventional reciprocating drives. Long stroke in reciprocating compressors enhances heat dissipation to surrounding by providing large surface area and increases isentropic efficiency by reducing compressor outlet temperature. Longer stroke increases inlet and exit valve operation timings, which reduces inertial effects substantially. Thereby allowing use of sturdier valves. This enables handling liquid along with vapour in compressors. Thereby supressing the superheat and reducing compressor power input. Longer stroke increases stroke to clearance ratios which increases volumetric efficiency and ability of compressor to compress through higher pressure ratios efficiently. Stress-strain simulation is performed in SolidWorks for gear drive. Long Stroke Reciprocating Compressor is developed at Heat Pump Laboratory, stroke/bore 292 mm/32 mm. It is operated and tested successfully at different speeds for operational stability of components. Theoretical volumetric efficiency is 93.9% at pressure ratio 2.0. Specific energy consumption is 108.3 kWhe/m3 separated water, considering free run power.

  20. Comparative analysis of heat pump and biomass boiler for small detached house heating

    Directory of Open Access Journals (Sweden)

    Olkowski Tomasz

    2017-01-01

    Full Text Available The purpose of the work is to answer the question - which of the two selected heat sources is more economically beneficial for small detached house: heat pump or biomass boiler fuelled with wood-pellets? The comparative analysis of these sources was carried out to discuss the issue. First, cost of both, equipment and operation of selected heat systems were analysed. Additionally, CO2 emission levels associated with these heat systems were determined. The comparative analysis of the costs of both considered heat systems showed that equipment cost of heat pump system is considerably bigger than the cost of biomass boiler system. The comparison of annual operation costs showed that heat pump operation cost is slightly lower than operation cost of biomass boiler. The analysis of above results shows that lower operation cost of heat pump in comparison with biomass boiler cost lets qualify heat pump as more economically justified only after 38 years of work. For both analysed devices, CO2 emission levels were determined. The considerations take into account the fact that heat pump consumes electricity. It is mostly generated through combustion of coal in Poland. The results show that in Poland biomass boiler can be described as not only more economically justified system but also as considerably more ecological.

  1. Comparative analysis of heat pump and biomass boiler for small detached house heating

    Science.gov (United States)

    Olkowski, Tomasz; Lipiński, Seweryn; Olędzka, Aneta

    2017-10-01

    The purpose of the work is to answer the question - which of the two selected heat sources is more economically beneficial for small detached house: heat pump or biomass boiler fuelled with wood-pellets? The comparative analysis of these sources was carried out to discuss the issue. First, cost of both, equipment and operation of selected heat systems were analysed. Additionally, CO2 emission levels associated with these heat systems were determined. The comparative analysis of the costs of both considered heat systems showed that equipment cost of heat pump system is considerably bigger than the cost of biomass boiler system. The comparison of annual operation costs showed that heat pump operation cost is slightly lower than operation cost of biomass boiler. The analysis of above results shows that lower operation cost of heat pump in comparison with biomass boiler cost lets qualify heat pump as more economically justified only after 38 years of work. For both analysed devices, CO2 emission levels were determined. The considerations take into account the fact that heat pump consumes electricity. It is mostly generated through combustion of coal in Poland. The results show that in Poland biomass boiler can be described as not only more economically justified system but also as considerably more ecological.

  2. Liquid ring vacuum pumps, compressors and systems conventional and hermetic design

    CERN Document Server

    Bannwarth, Helmut

    2006-01-01

    Based on the very successful German editions, this English version has been thoroughly updated and revised to reflect the developments of the last years and the latest innovations in the field.Throughout, the author makes excellent use of real-life examples and highly praised didactics to disseminate his expert knowledge needed by vacuum technology users and engineers in their daily work at industrial plants, as consultants or in design offices. He covers in detail the most modern liquid ring pumps, with chapters dedicated to maintenance, explosion prevention and general procedures for saf

  3. Hourly simulation of a Ground-Coupled Heat Pump system

    Science.gov (United States)

    Naldi, C.; Zanchini, E.

    2017-01-01

    In this paper, we present a MATLAB code for the hourly simulation of a whole Ground-Coupled Heat Pump (GCHP) system, based on the g-functions previously obtained by Zanchini and Lazzari. The code applies both to on-off heat pumps and to inverter-driven ones. It is employed to analyse the effects of the inverter and of the total length of the Borehole Heat Exchanger (BHE) field on the mean seasonal COP (SCOP) and on the mean seasonal EER (SEER) of a GCHP system designed for a residential house with 6 apartments in Bologna, North-Center Italy, with dominant heating loads. A BHE field with 3 in line boreholes is considered, with length of each BHE either 75 m or 105 m. The results show that the increase of the BHE length yields a SCOP enhancement of about 7%, while the SEER remains nearly unchanged. The replacement of the on-off heat pump by an inverter-driven one yields a SCOP enhancement of about 30% and a SEER enhancement of about 50%. The results demonstrate the importance of employing inverter-driven heat pumps for GCHP systems.

  4. Hybrid Geothermal Heat Pumps for Cooling Telecommunications Data Centers

    Energy Technology Data Exchange (ETDEWEB)

    Beckers, Koenraad J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zurmuhl, David P. [Cornell University; Lukawski, Maciej Z. [Cornell University; Aguirre, Gloria A. [Cornell University; Schnaars, George P. [Cornell University; Anderson, C. Lindsay [Cornell University; Tester, Jefferson W. [Cornell University

    2018-02-14

    The technical and economic performance of geothermal heat pump (GHP) systems supplying year-round cooling to representative small data centers with cooling loads less than 500 kWth were analyzed and compared to air-source heat pumps (ASHPs). A numerical model was developed in TRNSYS software to simulate the operation of air-source and geothermal heat pumps with and without supplementary air cooled heat exchangers - dry coolers (DCs). The model was validated using data measured at an experimental geothermal system installed in Ithaca, NY, USA. The coefficient of performance (COP) and cooling capacity of the GHPs were calculated over a 20-year lifetime and compared to the performance of ASHPs. The total cost of ownership (TCO) of each of the cooling systems was calculated to assess its economic performance. Both the length of the geothermal borehole heat exchangers (BHEs) and the dry cooler temperature set point were optimized to minimize the TCO of the geothermal systems. Lastly, a preliminary analysis of the performance of geothermal heat pumps for cooling dominated systems was performed for other locations including Dallas, TX, Sacramento, CA, and Minneapolis, MN.

  5. Analysis of Decentralized Control for Absorption Cycle Heat Pumps

    DEFF Research Database (Denmark)

    Vinther, Kasper; Just Nielsen, Rene; Nielsen, Kirsten Mølgaard

    2015-01-01

    Email Print Request Permissions This paper investigates decentralized control structures for absorption cycle heat pumps and a dynamic nonlinear model of a single-effect LiBr-water absorption system is used as case study. The model has four controllable inputs, which can be used to stabilize...... the operation of the heat pump under different load conditions. Different feasible input-output pairings are analyzed by computation of relative gain array matrices and scaled condition numbers, which indicate the best pairing choice and the potential of each input-output set. Further, it is possible...... to minimize the effect of cross couplings and improve stability with the right pairing of input and output. Simulation of selected candidate input-output pairings demonstrate that decentralized control can provide stable operation of the heat pump....

  6. Current status of ground-source heat pumps in China

    International Nuclear Information System (INIS)

    Yang Wei; Zhou Jin; Xu Wei; Zhang Guoqiang

    2010-01-01

    As a renewable energy technology, the ground-source heat pump (GSHP) technologies have increasingly attracted world-wide attention due to their advantages of energy efficiency and environmental friendliness. This paper presents Chinese research and application on GSHP followed by descriptions of patents. The policies related to GSHP are also introduced and analyzed. With the support of Chinese government, several new heat transfer models and two new GSHP systems (named pumping and recharging well (PRW) and integrated soil cold storage and ground-source heat pump (ISCS and GSHP) system) have been developed by Chinese researchers. The applications of GSHP systems have been growing rapidly since the beginning of the 21st century with financial incentives and supportive government policies. However, there are still several challenges for the application of GSHP systems in large scale. This paper raises relevant suggestions for overcoming the existing and potential obstacles. In addition, the developing and applying prospects of GSHP systems in China are also discussed.

  7. Experimental studies on a ground coupled heat pump with solar thermal collectors for space heating

    International Nuclear Information System (INIS)

    Xi, Chen; Hongxing, Yang; Lin, Lu; Jinggang, Wang; Wei, Liu

    2011-01-01

    This paper presents experimental studies on a solar-assisted ground coupled heat pump (SAGCHP) system for space heating. The system was installed at the Hebei Academy of Sciences in Shijiazhuang (lat. N38 o 03', long. E114 o 26'), China. Solar collectors are in series connection with the borehole array through plate heat exchangers. Four operation modes of the system were investigated throughout the coldest period in winter (Dec 5th to Dec 27th). The heat pump performance, borehole temperature distributions and solar colleting characteristics of the SAGCHP system are analyzed and compared when the system worked in continuous or intermittent modes with or without solar-assisted heating. The SAGCHP system is proved to perform space heating with high energy efficiency and satisfactory solar fraction, which is a promising substitute for the conventional heating systems. It is also recommended to use the collected solar thermal energy as an alternative source for the heat pump instead of recharging boreholes for heat storage because of the enormous heat capacity of the earth. -- Highlights: → We study four working modes of a solar-assisted ground coupled heat pump. → The heating performance is in direct relation with the borehole temperature. → Solar-assisted heating elevates borehole temperature and system performance. → The system shows higher efficiency over traditional heating systems in cold areas. → Solar heat is not suggested for high temperature seasonal storage.

  8. Comparison of LCA results of low temperature heat plant using electric heat pump, absorption heat pump and gas-fired boiler

    International Nuclear Information System (INIS)

    Nitkiewicz, Anna; Sekret, Robert

    2014-01-01

    Highlights: • Usage of geothermal heat pump can bring environmental benefits. • The lowest environmental impact for whole life cycle is obtained for absorption heat pump. • The value of heat pump COP has a significant influence on environmental impact. • In case of coal based power generation the damage to human health is significant. - Abstract: This study compares the life cycle impacts of three heating plant systems which differ in their source of energy and the type of system. The following heating systems are considered: electric water-water heat pump, absorption water-water heat pump and natural gas fired boiler. The heat source for heat pump systems is low temperature geothermal source with temperature below 20 °C and spontaneous outflow 24 m 3 /h. It is assumed that the heat pumps and boiler are working in monovalent system. The analysis was carried out for heat networks temperature characteristic at 50/40 °C which is changing with outdoor temperature during heating season. The environmental life cycle impact is evaluated within life cycle assessment methodological framework. The method used for life cycle assessment is eco-indicator ‘99. The functional unit is defined as heating plant system with given amount of heat to be delivered to meet local heat demand in assumed average season. The data describing heating plant system is derived from literature and energy analysis of these systems. The data describing the preceding life cycle phases: extraction of raw materials and fuels, production of heating devices and their transportation is taken from Ecoinvent 2.0 life cycle inventory database. The results were analyzed on three levels of indicators: single score indicator, damage category indicators and impact category indicator. The indicators were calculated for characterization, normalization and weighting phases as well. SimaPro 7.3.2 is the software used to model the systems’ life cycle. The study shows that heating plants using a low

  9. Improving the performance of booster heat pumps using zeotropic mixtures

    DEFF Research Database (Denmark)

    Zühlsdorf, B.; Meesenburg, W.; Ommen, T. S.

    2018-01-01

    Abstract This study demonstrated an increase in the thermodynamic performance of a booster heat pump, which was achieved by choosing the working fluid among pure and mixed fluids. The booster heat pump was integrated in an ultra-low-temperature district heating network with a forward temperature...... of 40 °C to produce domestic hot water, by heating part of the forward stream to 60 °C, while cooling the remaining part to the return temperature of 25 °C. The screening of working fluids considered 18 pure working fluids and all possible binary mixtures of these fluids. The most promising solutions...... heat supply system while being economically competitive to pure fluids....

  10. Pump/heat exchanger assembly for pool-type reactor

    International Nuclear Information System (INIS)

    Nathenson, R.D.; Slepian, R.M.

    1987-01-01

    A heat exchanger and pump assembly comprising a heat exchanger including a housing for defining an annularly shaped cavity and supporting therein a plurality of heat transfer tubes. A pump is disposed beneath the heat exchanger and is comprised of a plurality of flow couplers disposed in a circular array. Each flow coupler is comprised of a pump duct for receiving a first electrically conductive fluid, i.e. the primary liquid metal, from a pool thereof, and a generator duct for receiving a second electrically conductive fluid, i.e. the intermediate liquid metal. The primary liquid metal is introduced from the reactor pool into the top, inlet ends of the tubes, flowing downward therethrough to be discharged from the tubes' bottom ends directly into the reactor pool. The primary liquid metal is variously introduced into the pump ducts directly from the reactor pool, either from the bottom or top end of the flow coupler. The intermediate fluid introduced into the generator ducts via the inlet duct and inlet plenum and after leaving the generator ducts passes through the annular cavity of the exchanger to cool the primary liquid in the tubes. The annular magnetic field of the pump is produced by a circular array of electromagnets having hollow windings cooled by a flow of the intermediate metal. (author)

  11. Determination of the oil distribution in a hermetic compressor using numerical simulation

    Science.gov (United States)

    Posch, S.; Hopfgartner, J.; Berger, E.; Zuber, B.; Almbauer, R.; Schöllauf, P.

    2017-08-01

    In addition to the reduction of friction the oil in a hermetic compressor is very important for the transfer of heat from hot parts to the compressor shell. The simulation of the oil distribution in a hermetic reciprocating compressor for refrigeration application is shown in the present work. Using the commercial Computational Fluid Dynamics (CFD) software ANSYS Fluent, the oil flow inside the compressor shell from the oil pump outlet to the oil sump is calculated. A comprehensive overview of the used models and the boundary conditions is given. After reaching steady-state conditions the oil covered surfaces are analysed concerning heat transfer coefficients. The gained heat transfer coefficients are used as input parameters for a thermal model of a hermetic compressor. An increase in accuracy of the thermal model with the simulated heat transfer coefficients compared to values from literature is shown by model validation with experimental data.

  12. Performance of commercially available solar and heat pump water heaters

    International Nuclear Information System (INIS)

    Lloyd, C.R.; Kerr, A.S.D.

    2008-01-01

    Many countries are using policy incentives to encourage the adoption of energy-efficient hot water heating as a means of reducing greenhouse gas emissions. Such policies rely heavily on assumed performance factors for such systems. In-situ performance data for solar and heat pump hot water systems, however, are not copious in the literature. Otago University has been testing some systems available in New Zealand for a number of years. The results obtained are compared to international studies of in-situ performance of solar hot water systems and heat pump hot water systems, by converting the results from the international studies into a single index suitable for both solar and heat pump systems (COP). Variability in the international data is investigated as well as comparisons to model results. The conclusions suggest that there is not too much difference in performance between solar systems that have a permanently connected electric boost backup and heat pump systems over a wide range of environmental temperatures. The energy payback time was also calculated for electric boost solar flat plate systems as a function of both COP and hot water usage for a given value of embodied energy. The calculations generally bode well for solar systems but ensuring adequate system performance is paramount. In addition, such systems generally favour high usage rates to obtain good energy payback times

  13. The economics of supplying the supplementary heat in a closed loop water source heat pump system

    International Nuclear Information System (INIS)

    Johnson, R.P.; Bartkus, V.E.; Singh, J.B.

    1993-01-01

    The paper describes the details of a research and demonstration project that will be completed in August 1992 at a healthcare facility in northeastern Pennsylvania. The purpose of the project is to compare the economics of several methods of supplying the supplementary heating in a facility served by a closed loop water source heat pump system. The systems being tested include a storage hot water tank with electric resistance heaters and three air source heat pumps that have the ability to supply the same heat during on-peak hours as well as off-peak hours. The paper compares the projected operating costs of the following: (1) Gas boiler supplying the supplementary heat. (2) Stored hot water supplying the supplementary heat which is generated and stored during off-peak hours using resistance heat on PP ampersand L's offpeak rate. (3) Stored hot water supplying the supplementary heat generated during off-peak hours using the air source heat pumps on PP ampersand L's off-peak rate. (4) Hot water generated by the air source heat pumps supplying the supplementary loop heating on PP ampersand L's general service and time-of-day electric rates. It is generally known in the HVAC industry that a closed loop water source heat pump system can provide one of the most efficient means of space conditioning to a building with high internal gains by transferring the excess heat available in one part of the building to another part of the building where it may be needed for heating. The following flow diagram depicts the relationship of the air source heat pumps with the storage tanks and the building closed water loop

  14. Optimal heat rejection pressure in transcritical carbon dioxide air conditioning and heat pump systems

    DEFF Research Database (Denmark)

    Liao, Shengming; Jakobsen, Arne

    1998-01-01

    Due to the urgent need for environmentally benign refrigerants, the use of the natural substance carbon dioxide in refrigeration systems has gained more and more attention. In systems such as automobile air-conditioners and heat pumps, owing to the relatively high heat rejection temperatures, the...... dioxide air conditioning or heat pump systems and for intelligent controlling such systems.......Due to the urgent need for environmentally benign refrigerants, the use of the natural substance carbon dioxide in refrigeration systems has gained more and more attention. In systems such as automobile air-conditioners and heat pumps, owing to the relatively high heat rejection temperatures......, the cycles using carbon dioxide as refrigerant will have to operate in the transcritical area. In a transcritical carbon dioxide system, there is an optimal heat rejection pressure that gives a maximum COP. In this paper, it is shown that the value of this optimal heat rejection pressure mainly depends...

  15. Investigation of Heat Pump Operation Strategies with Thermal Storage in Heating Conditions

    Directory of Open Access Journals (Sweden)

    Wangsik Jung

    2017-12-01

    Full Text Available A heat pump with thermal storage system is a system that operates a heat pump during nighttime using inexpensive electricity; during this time, the generated thermal energy is stored in a thermal storage tank. The stored thermal energy is used by the heat pump during daytime. Based on a model of a dual latent thermal storage tank and a heat pump, this study conducts control simulations using both conventional and advanced methods for heating in a building. Conventional methods include the thermal storage priority method and the heat pump priority method, while advanced approaches include the region control method and the dynamic programming method. The heating load required for an office building is identified using TRNSYS (Transient system simulation, used for simulations of various control methods. The thermal storage priority method shows a low coefficient of performance (COP, while the heat pump priority method leads to high electricity costs due to the low use of thermal storage. In contrast, electricity costs are lower for the region control method, which operates using the optimal part load ratio of the heat pump, and for dynamic programming, which operates the system by following the minimum cost path. According to simulation results for the winter season, the electricity costs using the dynamic programming method are 17% and 9% lower than those of the heat pump priority and thermal storage priority methods, respectively. The region control method shows results similar to the dynamic programming method with respect to electricity costs. In conclusion, advanced control methods are proven to have advantages over conventional methods in terms of power consumption and electricity costs.

  16. Heat pumps and heat exchangers in cow and pig houses in the Nordic countries. Utilization potentials

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, S [Statens Jordbrugstekniske Forsoeg, Horsens, Denmark

    1985-01-01

    An assessment is made of how many heat pumps it may be possible to establish in animal buildings in the Danish, Swedish, Norwegian, Finnish, and Icelandic agriculture. This assessment is based on the present livestock structure. Furthermore information is given of the yearly oil conservation that theoretically can be obtained, provided heat pumps and heat exchangers are installed every where with a sufficient livestock basis. The largest energy conservation can be obtained by heat recovery in cow- and pig houses and by heat exchangers in production of piglets.

  17. Optimal Placement of A Heat Pump in An Integrated Power and Heat Energy System

    DEFF Research Database (Denmark)

    Klyapovskiy, Sergey; You, Shi; Bindner, Henrik W.

    2017-01-01

    With the present trend towards Smart Grids and Smart Energy Systems it is important to look for the opportunities for integrated development between different energy sectors, such as electricity, heating, gas and transportation. This paper investigates the problem of optimal placement of a heat...... pump – a component that links electric and heating utilities together. The system used to demonstrate the integrated planning approach has two neighboring 10kV feeders and several distribution substations with loads that require central heating from the heat pump. The optimal location is found...

  18. Heat pumps: planning, optimisation, operation and maintenance; Waermepumpen. Planung - Optimierung - Betrieb - Wartung

    Energy Technology Data Exchange (ETDEWEB)

    Kunz, P. [Kunz-Beratungen, Dietlikon (Switzerland); Afjei, T. [Fachhochschule Nordwestschweiz, Institut fuer Energie am Bau, Muttenz (Switzerland); Betschart, W.; Prochaska, V. [Hochschule Luzern, Technik und Architektur, Horw (Switzerland); Hubacher, P. [Hubacher Engineering, Engelburg (Switzerland); Loehrer, R. [Scheco AG, Winterthur (Switzerland); Mueller, A. [Mueller und Pletscher AG, Winterthur (Switzerland)

    2008-01-15

    This handbook issued by the Swiss Federal Office of Energy (SFOE) in co-operation with a trade publication takes a look at the planning, optimisation, operation and maintenance of heat pumps. First of all, the basics of heat pump technology, heat pump components and refrigerants are discussed. Then, heat sources and heat distribution are looked at, followed by chapters on the integration of heat pumps into heating systems and noise protection topics. The definition of projects, commissioning and operation of heat pump systems are then discussed. Examples of installations round off the handbook.

  19. Performance Optimization of Irreversible Air Heat Pumps Considering Size Effect

    Science.gov (United States)

    Bi, Yuehong; Chen, Lingen; Ding, Zemin; Sun, Fengrui

    2018-06-01

    Considering the size of an irreversible air heat pump (AHP), heating load density (HLD) is taken as thermodynamic optimization objective by using finite-time thermodynamics. Based on an irreversible AHP with infinite reservoir thermal-capacitance rate model, the expression of HLD of AHP is put forward. The HLD optimization processes are studied analytically and numerically, which consist of two aspects: (1) to choose pressure ratio; (2) to distribute heat-exchanger inventory. Heat reservoir temperatures, heat transfer performance of heat exchangers as well as irreversibility during compression and expansion processes are important factors influencing on the performance of an irreversible AHP, which are characterized with temperature ratio, heat exchanger inventory as well as isentropic efficiencies, respectively. Those impacts of parameters on the maximum HLD are thoroughly studied. The research results show that HLD optimization can make the size of the AHP system smaller and improve the compactness of system.

  20. Nanoscale magnetic heat pumps and engines

    NARCIS (Netherlands)

    Bauer, G.E.W.; Bretzel, S.; Brataas, A.; Tserkovnyak, Y.

    2010-01-01

    We present the linear-response matrix for a sliding domain wall in a rotatable magnetic nanowire, which is driven out of equilibrium by temperature and voltage bias, mechanical torque, and magnetic field. An expression for heat-current-induced domain-wall motion is derived. Application of Onsager’s

  1. Process Integration Study of Cache Valley Cheese Plant [Advanced Industrial Heat Pump Applications and Evaluations

    Energy Technology Data Exchange (ETDEWEB)

    Eastwood, A.

    1991-10-01

    This work has carried out in two phases: Phase 1; identification of opportunities for heat pumps in industrial applications and Phase 2; evaluation of heat pumps in industrial applications. In Phase 1, pinch analysis was applied to several industrial sites to identify the best opportunities for heat pumping and other forms of heat integration. In Phase 2, more detailed analyses were undertaken, including the evaluation of a heat pump installed as a recommendation of Phase 1.

  2. TWO-PHASE EJECTOR of CARBON DIOXIDE HEAT PUMP CALCULUS

    Directory of Open Access Journals (Sweden)

    Sit B.M.

    2010-12-01

    Full Text Available It is presented the calculus of the two-phase ejector for carbon dioxide heat pump. The method of calculus is based on the method elaborated by S.M. Kandil, W.E. Lear, S.A. Sherif, and is modified taking into account entrainment ratio as the input for the calculus.

  3. Geothermal Heat Pumps Score High Marks in Schools.

    Science.gov (United States)

    National Renewable Energy Lab (DOE).

    Geothermal heat pumps (GHPs) are showing their value in providing lower operating and maintenance costs, energy efficiency, and superior classroom comfort. This document describes what GHPs are and the benefits a school can garner after installing a GHP system. Three case studies are provided that illustrate these benefits. Finally, the Department…

  4. TESTING OF REFRIGERANT MIXTURES IN RESIDENTIAL HEAT PUMPS

    Science.gov (United States)

    The report gives results of an investigation of four possibilities for replacing Hydrochlorofluorocarbon-22 (HCFC-22) with the non-ozone-depleting new refrigerants R-407D and R-407C in residential heat pumps. The first and simplest scenario was a retrofit with no hardware modific...

  5. Laboratory Performance Evaluation of Residential Integrated Heat Pump Water Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Sparn, B.; Hudon, K.; Christensen, D.

    2014-06-01

    This paper explores the laboratory performance of five integrated Heat Pump Water Heaters (HPWHs) across a wide range of operating conditions representative of U.S. climate regions. HPWHs are expected to provide significant energy savings in certain climate zones when compared to typical electric resistance water heaters. Results show that this technology is a viable option in most climates, but differences in control schemes and design features impact the performance of the units tested. Tests were conducted to map heat pump performance across the operating range and to determine the logic used to control the heat pump and the backup electric heaters. Other tests performed include two unique draw profile tests, reduced air flow performance tests and the standard DOE rating tests. The results from all these tests are presented here for all five units tested. The results of these tests will be used to improve the EnergyPlus heat pump water heater for use in BEopt™ whole-house building simulations.

  6. Laboratory Performance Evaluation of Residential Integrated Heat Pump Water Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Sparn, B.; Hudon, K.; Christensen, D.

    2014-06-01

    This paper explores the laboratory performance of five integrated Heat Pump Water Heaters (HPWHs) across a wide range of operating conditions representative of US climate regions. HPWHs are expected to provide significant energy savings in certain climate zones when compared to typical electric resistance water heaters. Results show that this technology is a viable option in most climates, but differences in control schemes and design features impact the performance of the units tested. Tests were conducted to map heat pump performance across the operating range and to determine the logic used to control the heat pump and the backup electric heaters. Other tests performed include two unique draw profile tests, reduced air flow performance tests and the standard DOE rating tests. The results from all these tests are presented here for all five units tested. The results of these tests will be used to improve the EnergyPlus heat pump water heater for use in BEopt(tm) whole-house building simulations.

  7. Advanced heat pump for the recovery of volatile organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    Emissions of Volatile Organic Compounds (VOC) from stationary industrial and commercial sources represent a substantial portion of the total US VOC emissions. The Toxic-Release Inventory'' of The US Environmental Protection Agency estimates this to be at about 3 billion pounds per year (1987 estimates). The majority of these VOC emissions are from coating processes, cleaning processes, polymer production, fuel production and distribution, foam blowing,refrigerant production, and wood products production. The US Department of Energy's (DOE) interest in the recovery of VOC stems from the energy embodied in the recovered solvents and the energy required to dispose of them in an environmentally acceptable manner. This Phase I report documents 3M's work in close working relationship with its subcontractor Nuclear Consulting Services (Nucon) for the preliminary conceptual design of an advanced Brayton cycle heat pump for the recovery of VOC. Nucon designed Brayton cycle heat pump for the recovery of methyl ethyl ketone and toluene from coating operations at 3M Weatherford, OK, was used as a base line for the work under cooperative agreement between 3M and ODE. See appendix A and reference (4) by Kovach of Nucon. This cooperative agreement report evaluates and compares an advanced Brayton cycle heat pump for solvent recovery with other competing technologies for solvent recovery and reuse. This advanced Brayton cycle heat pump is simple (very few components), highly reliable (off the shelf components), energy efficient and economically priced.

  8. Rock bed storage with heat pump. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Remmers, H.E.; Mills, G.L.

    1979-05-01

    The study, Rock Bed Storage with Heat Pump, established the feasibility of mating a heat pump to a rock bed storage to effect optimal performance at the lowest cost in single family residences. The operating characteristics of off-the-shelf components of heat pump/rock bed storage systems were studied, and the results were used to formulate configurations of representative systems. These systems were modeled and subsequently analyzed using the TRNSYS computer program and a life cycle cost analysis program called LCCA. A detailed load model of a baseline house was formulated as part of the TRNSYS analysis. Results of the analysis involved the development of a technique to confine the range of heat pump/rock bed storage systems to those systems which are economical for a specific location and set of economic conditions. Additionally, the results included a comparison of the detailed load model with simple UA models such as the ASHRAE bin method. Several modifications and additions were made to the TRNSYS and LCCA computer programs during the course of the study.

  9. An energy and cost analysis of residential heat pumps in northern climates

    Science.gov (United States)

    Martin, J. K.; Oneal, D. L.

    1980-04-01

    Lack of natural gas and high oil prices, combined with the large energy costs of electric resistance heat have forced renewed attention to the heat pump in colder climates. The diversity in heating energy use and cost effectiveness of forty-one currently retailed heat pumps in three northern cities, Boston, Denver, and Minneapolis, were examined. Heat pump heating energy use and annualized life cycle costs were compared with other forms of space heating equipment in those same cities.

  10. Experimental study of a photovoltaic solar-assisted heat-pump/heat-pipe system

    International Nuclear Information System (INIS)

    Fu, H.D.; Pei, G.; Ji, J.; Long, H.; Zhang, T.; Chow, T.T.

    2012-01-01

    A practical design for a heat pump with heat-pipe photovoltaic/thermal (PV/T) collectors is presented. The hybrid system is called the photovoltaic solar-assisted heat-pump/heat-pipe (PV-SAHP/HP) system. To focus on both actual demand and energy savings, the PV-SAHP/HP system was designed to be capable of operating in three different modes, namely, the heat-pipe, solar-assisted heat pump, and air-source heat-pump modes. Based on solar radiation, the system operates in an optimal mode. A series of experiments were conducted in Hong Kong to study the performance of the system when operating in the heat-pipe and the solar-assisted heat-pump modes. Moreover, energy and exergy analyses were used to investigate the total PV/T performance of the system. - Highlights: ► A novel PV-SAHP/HP system with three different operating modes was proposed. ► Performance of the PV-SAHP/HP system was studied experimentally. ► A optimal operating mode of the PV-SAHP/HP system was suggested in this paper.

  11. WASTE HEAT RECOVERY IN HEAT PUMP SYSTEMS: SOLUTION TO REDUCE GLOBAL WARMING

    Directory of Open Access Journals (Sweden)

    Y. Baradey

    2015-11-01

    Full Text Available Energy conversion technologies, where waste heat recovery systems are included, have received significant attention in recent years due to reasons that include depletion of fossil fuel, increasing oil prices, changes in climatic conditions, and global warming. For low temperature applications, there are many sources of thermal waste heat, and several recovery systems and potential useful applications have been proposed by researchers [1-4]. In addition, many types of equipment are used to recover waste thermal energy from different systems at low, medium, and high temperature applications, such as heat exchangers, waste heat recovery boiler, thermo-electric generators, and recuperators. In this paper, the focus is on waste heat recovery from air conditioners, and an efficient application of these energy resources. Integration of solar energy with heat pump technologies and major factors that affect the feasibility of heat recovery systems have been studied and reviewed as well. KEYWORDS: waste heat recovery; heat pump.

  12. Thermal analysis of hybrid single-phase, two-phase and heat pump thermal control system (TCS) for future spacecraft

    International Nuclear Information System (INIS)

    Lee, S.H.; Mudawar, I.; Hasan, Mohammad M.

    2016-01-01

    Highlights: • Hybrid Thermal Control System (H-TCS) is proposed for future spacecraft. • Thermodynamic performance of H-TCS is examined for different space missions. • Operational modes including single-phase, two-phase and heat pump are explored. • R134a is deemed most appropriate working fluid. - Abstract: An urgent need presently exists to develop a new class of versatile spacecraft capable of conducting different types of missions and enduring varying gravitational and temperature environments, including Lunar, Martian and Near Earth Object (NEOs). This study concerns the spacecraft's Thermal Control System (TCS), which tackles heat acquisition, especially from crew and avionics, heat transport, and ultimate heat rejection by radiation. The primary goal of the study is to explore the design and thermal performance of a Hybrid Thermal Control System (H-TCS) that would satisfy the diverse thermal requirements of the different space missions. The H-TCS must endure both ‘cold’ and ‘hot’ environments, reduce weight and size, and enhance thermodynamic performance. Four different operational modes are considered: single-phase, two-phase, basic heat pump and heat pump with liquid-side, suction-side heat exchanger. A thermodynamic trade study is conducted for six different working fluids to assess important performance parameters including mass flow rate of the working fluid, maximum pressure, radiator area, compressor/pump work, and coefficient of performance (COP). R134a is determined to be most suitable based on its ability to provide a balanced compromise between reducing flow rate and maintaining low system pressure, and a moderate coefficient of performance (COP); this fluid is also both nontoxic and nonflammable, and features zero ozone depletion potential (ODP) and low global warming potential (GWP). It is shown how specific mission stages dictate which mode of operation is most suitable, and this information is used to size the radiator for the

  13. Annual simulations of heat pump systems with vertical ground heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Bernier, M.A.; Randriamiarinjatovo, D. [Ecole Polytechnique, Montreal, PQ (Canada). Dept. de Genie Mecanique

    2001-06-01

    The recent increased popularity in ground-coupled heat pump (GCHP) systems is due to their energy saving potential. However, in order for a GCHP to operate efficiently, they must be sized correctly. This paper presents a method to perform annual simulations of GCHP systems to optimize the length of the ground heat exchanger and provide annual energy consumption data. A computer program has been developed to simulate the building load, heat pump and the ground heat exchanger, the three most distinct parts of the system. The coupled governing equations of these three models are solved simultaneously until a converged solution is obtained at each time step. The simulations are performed using the Engineering Equation Solver (EES). This program has proven to be useful in balancing ground heat exchanger length against heat pump energy consumption.15 refs., 9 figs.

  14. Solar-assisted heat pump system for cost-effective space heating and cooling

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, J W; Kush, E A; Metz, P D

    1978-03-01

    The use of heat pumps for the utilization of solar energy is studied. Two requirements for a cost-effective system are identified: (1) a special heat pump whose coefficient of performance continues to rise with source temperature over the entire range appropriate for solar assist, and (2) a low-cost collection and storage subsystem able to supply solar energy to the heat pump efficiently at low temperatures. Programs leading to the development of these components are discussed. A solar assisted heat pump system using these components is simulated via a computer, and the results of the simulation are used as the basis for a cost comparison of the proposed system with other solar and conventional systems.

  15. Solar systems and heat pumps in operation in Carinthia: results 1994 - 1997

    International Nuclear Information System (INIS)

    Faninger, G.

    1998-04-01

    Solar systems and heat pumps in operation in Carinthia: results 1994 - 1997. Test results from solar systems for swimming pool heating, hot water preparation and space heating as well as heat pumps for hot water preparation, space heating and heat recovery will be reported and assessed collectively. (author)

  16. Pressure field study of the Tevatron cold compressors

    International Nuclear Information System (INIS)

    Klebaner, A.L.; Martinez, A.; Soyars, W.M.; Theilacker, J.C.; Fermilab

    2003-01-01

    The Fermilab Tevatron cryogenic system utilizes high-speed centrifugal cold compressors, manufactured by Ishikawajima-Harima Heavy Industries Co. Ltd. (IHI), for high-energy operations [1]. The compressor is designed to pump 60 g/sec of 3.6 K saturated helium vapor at a pressure ratio of 2.8, with an off-design range of 40 to 70 g/sec. Operating speeds are between 40 and 95 krpm, with a speed of 80 krpm at the design point. Different heat loads and magnet quench performance of each of the twenty-four satellite refrigerators dictates different process pressure and flow rates of the cold compressors. Reducing the process flow rate can cause the centrifugal cold compressor to stop pumping and subsequently surge. Tests have been conducted at the Cryogenic Test Facility at Fermilab to map the pressure field and appropriate efficiency of the IHI hydrodynamic cold compressor. The information allows tuning of each of the twenty-four Tevatron satellite refrigerators to avoid cold compressor operation near the surge and choke lines. A new impeller has also been tested. The Tevatron cold compressor pressure field and efficiency data with the new impeller are presented in this paper

  17. Pressure Field Study of the Tevatron Cold Compressors

    International Nuclear Information System (INIS)

    Klebaner, A.L.; Martinez, A.; Soyars, W.M.; Theilacker, J.C.

    2004-01-01

    The Fermilab Tevatron cryogenic system utilizes high-speed centrifugal cold compressors, manufactured by Ishikawajima-Harima Heavy Industries Co. Ltd. (IHI), for high-energy operations. The compressor is designed to pump 60 g/sec of 3.6 K saturated helium vapor at a pressure ratio of 2.8, with an off-design range of 40 to 70 g/sec. Operating speeds are between 40,000 and 95,000 rpm, with a speed of 80,000 rpm at the design point. Different heat loads and magnet quench performance of each of the twenty-four satellite refrigerators dictates different process pressure and flow rates of the cold compressors. Reducing the process flow rate can cause the centrifugal cold compressor to stop pumping and subsequently surge. Tests have been conducted at the Cryogenic Test Facility at Fermilab to map the pressure field and appropriate efficiency of the IHI hydrodynamic cold compressor. The information allows tuning of each of the twenty-four Tevatron satellite refrigerators to avoid cold compressor operation near the surge and choke lines. A new impeller has also been tested. The Tevatron cold compressor pressure field and efficiency data with the new impeller are presented in this paper

  18. Experimental validation of a theoretical model for a direct-expansion solar-assisted heat pump applied to heating

    International Nuclear Information System (INIS)

    Moreno-Rodriguez, A.; Garcia-Hernando, N.; González-Gil, A.; Izquierdo, M.

    2013-01-01

    This paper discusses the experimental validation of a theoretical model that determines the operating parameters of a DXSAHP (direct-expansion solar-assisted heat pump) applied to heating. For this application, the model took into account the variable condensing temperature, and it was developed from the following environmental variables: outdoor temperature, solar radiation and wind. The experimental data were obtained from a prototype installed at the University Carlos III, which is located south of Madrid. The prototype uses a solar collector with a total area of 5.6 m 2 , a compressor with a rated capacity of 1100 W, a thermostatic expansion valve and fan-coil units as indoor terminals. The monitoring results were analyzed for several typical days in the climatic zone where the machine was located to understand the equipment's seasonal behavior. The experimental coefficient of the performance varies between 1.9 and 2.7, and the equipment behavior in extreme outdoor conditions has also been known to determine the thermal demand that can be compensated for. - Highlights: • The study aims to present an experimental validation of a theoretical model. • The experimental COP can vary between 1.9 and 2.7 (max. condensation temperature 59 °C). • A “dragging term” relates condensation and evaporation temperature. • The operating parameters respond to the solar radiation. The COP may increase up to 25%

  19. Thermodynamic analysis of vapor compression heat pump cycle for tap water heating and development of CO_2 heat pump water heater for residential use

    International Nuclear Information System (INIS)

    Saikawa, Michiyuki; Koyama, Shigeru

    2016-01-01

    Highlights: • The ideal vapor compression cycle for tap water heating and its COP were defined. • It was verified theoretically that CO_2 achieves the highest COP for tap water heating. • The prototype of CO_2 heat pump water heater for residential use was developed. • Further COP improvement of CO_2 heat pump water heater was estimated. - Abstract: The ideal vapor compression cycle for tap water heating and its coefficient of performance (COP) have been studied theoretically at first. The ideal cycle is defined as the cycle whose high temperature heat source varies temperature with constant specific heat and other processes are same as the reverse Carnot cycle. The COP upper limit of single stage compression heat pump cycle for tap water heating with various refrigerants such as fluorocarbons and natural refrigerants was calculated. The refrigerant which achieves the highest COP for supplying hot water is CO_2. Next, the prototype of CO_2 heat pump water heater for residential use has been developed. Its outline and experimental results are described. Finally its further possibility of COP improvement has been studied. The COP considered a limit from a technical point of view was estimated about 6.0 at the Japanese shoulder season (spring and autumn) test condition of heating water from 17 °C to 65 °C at 16 °C heat source air temperature (dry bulb)/12 °C (wet bulb).

  20. Optimizing a Small Ammonia Heat Pump with Accumulator Tank for Space and Hot Tap Water Heating

    OpenAIRE

    Lalovs, Arturs

    2015-01-01

    The heat pump market offers a wide variety of different residential heat pumps where most of them utilize refrigerant R-410A which has high global warming potential. Considering the fact that global policy starts to focus on issues related to energy efficiency and harmful impact to the environment, it is necessary to investigate over new refrigerants. As an alternative solution is to utilize natural refrigerants, such as ammonia, which has almost zero glob...

  1. Pressure heat pumping in the orifice pulse-tube refrigerator

    International Nuclear Information System (INIS)

    Boer, P.C.T. de

    1996-01-01

    The mechanism by which heat is pumped as a result of pressure changes in an orifice pulse-tube refrigerator (OPTR) is analyzed thermodynamically. The thermodynamic cycle considered consists of four steps: (1) the pressure is increased by a factor π 1 due to motion of a piston in the heat exchanger at the warm end of the regenerator; (2) the pressure is decreased by a factor π 2 due to leakage out of the orifice; (3) the pressure is further decreased due to motion of the piston back to its original position; (4) the pressure is increased to its value at the start of the cycle due to leakage through the orifice back into the pulse tube. The regenerator and the heat exchangers are taken to be perfect. The pressure is assumed to be uniform during the entire cycle. The temperature profiles of the gas in the pulse tube after each step are derived analytically. Knowledge of the temperature at which gas enters the cold heat exchanger during steps 3 and 4 provides the heat removed per cycle from this exchanger. Knowledge of the pressure as a function of piston position provides the work done per cycle by the piston. The pressure heat pumping mechanism considered is effective only in the presence of a regenerator. Detailed results are presented for the heat removed per cycle, for the coefficient of performance, and for the refrigeration efficiency as a function of the compression ratio π 1 and the expansion ratio π 2 . Results are also given for the influence on performance of the ratio of specific heats. The results obtained are compared with corresponding results for the basic pulse-tube refrigerator (BPTR) operating by surface heat pumping

  2. Performance of a hybrid chemical/mechanical heat pump

    Science.gov (United States)

    Silvestri, John J.; Scaringe, Robert P.; Grzyll, Lawrence R.

    1990-01-01

    The authors present the design and preliminary results of the performance of a hybrid chemical/mechanical, low-lift (20 C) heat pump. Studies have indicated that this heat pump has several advantages over the traditional single fluid vapor compression (reverse Rankine) heat pump. Included in these benefits are: 1) increased COPc due to the approximation of the cycle to the Lorenz cycle and due to the availability of the heat of solution, along with the heat of vaporization, to provide cooling; and 2) ease of variation in system cooling capacity by changing the fluid composition. The system performance is predicted for a variety of refrigerant-absorbent pairs. Cooling capacity is determined for systems operating with ammonia as the refrigerant and lithium nitrate and sodium thiocyanate as the absorbents and also with water as the refrigerant and magnesium chloride, potassium hydroxide, lithium bromide, sodium hydroxide, and sulfuric acid as the absorbents. Early indications have shown that the systems operating with water as the refrigerant operate at 2-4 times the capacity of the ammonia-refrigerant-based systems. Using existing working fluids in the proposed innovative design, a coefficient-of-performance improvement of 21 percent is possible when compared to the best vapor compression systems analyzed.

  3. Transient Characteristics of Free Piston Vuilleurnier Cycle Heat Pumps

    Science.gov (United States)

    Matsue, Junji; Fujimoto, Norioki; Shirai, Hiroyuki

    A dynamic analysis of a free piston Vuilleumier cycle heat pump was performed using a time-stepping integration method to investigate transient characteristics under power controlling. The nonlinear relationship between displacement and force for pistons was taken into account for the motion of reciprocating components. The force for pistons is mainly caused by the pressure change of working gas varying with piston displacements; moreover nonlinear viscous dissipative force due to the oscillating flow of working gas in heat exchangers and discontinuous damping force caused by solid friction at piston seals and rod seals are included. The displacements of pistons and pressure changes in the Vuilleumier cycle heat pump were integrated by an ideal isothermal thermodynamic relationship. It was assumed that the flow friction was proportional to the kinematic pressure of working gas, and that the solid friction at the seals was due to the functions of the working gas pressure and the tension of seal springs. In order to investigate the transient characteristics of a proposed free piston Vuilleumier cycle heat pump machine when hot-side working gas temperatures and alternate force were changed, some calculations were performed and discussed. These calculation results make clear transient characteristics at starting and power controlling. It was further found that only a small amount of starter power is required in particular conditions. During controlling, the machine becomes unstable when there is ar elatively large reduction in cooling or heating power. Therefore, an auxiliary device is additionally needed to obtain stable operation, such as al inear motor.

  4. New insight into regenerated air heat pump cycle

    International Nuclear Information System (INIS)

    Zhang, Chun-Lu; Yuan, Han; Cao, Xiang

    2015-01-01

    Regenerated air (reverse Brayton) cycle has unique potentials in heat pump applications compared to conventional vapor-compression cycles. To better understand the regenerated air heat pump cycle characteristics, a thermodynamic model with new equivalent parameters was developed in this paper. Equivalent temperature ratio and equivalent isentropic efficiency of expander were introduced to represent the effect of regenerator, which made the regenerated air cycle in the same mathematical expressions as the basic air cycle and created an easy way to prove some important features that regenerated air cycle inherits from the basic one. Moreover, we proved in theory that the regenerator does not always improve the air cycle efficiency. Larger temperature ratio and lower effectiveness of regenerator could make the regenerated air cycle even worse than the basic air cycle. Lastly, we found that only under certain conditions the cycle could get remarkable benefits from a well-sized regenerator. These results would enable further study of the regenerated air cycle from a different perspective. - Highlights: • A thermodynamic model for regenerated air heat pump cycle was developed. • Equivalent temperature ratio and equivalent expander efficiency were introduced. • We proved regenerated air cycle can make heating capacity in line with heating load. • We proved the regenerator does not always improve the air cycle efficiency.

  5. A simulation-based analysis of variable flow pumping in ground source heat pump systems with different types of borehole heat exchangers: A case study

    International Nuclear Information System (INIS)

    Zarrella, Angelo; Emmi, Giuseppe; De Carli, Michele

    2017-01-01

    Highlights: • The work focuses on the variable flow in ground source heat pump systems. • The constant and variable speed circulation pumps in the ground loop are compared. • The constant temperature difference control across the heat pump is studied. • The variable flow affects the energy performance of the heat pump. • The constant temperature difference control offers an attractive energy saving. - Abstract: A simulation model of ground source heat pump systems has been used to investigate to what extent a variable flow of the heat-carrier fluid of the ground loop affects the energy efficiency of the entire system. The model contemporaneously considers the borehole heat exchangers, the heat pump, the building load, and the control strategies for the circulation pumps of the ground loop. A constant speed of the circulation pumps of the ground loop was compared with a variable flow controlled by means of a constant temperature difference across the heat pump on the ground side considering the load profile of an office building located in North Italy. The analysis was carried out for a single U-tube, double U-tube and coaxial pipe heat exchangers. The control strategies adopted to manage the flow rate of the heat-carrier fluid of the ground loop affect both the heat exchange rate of the borehole field and the heat pump’s long-term energy efficiency. The simulations show considerable differences in the system’s seasonal energy efficiency. The constant speed of the circulation pumps leads to the best results as far as the heat pump’s energy performance was concerned, but this advantage was lost because of the greater amount of electrical energy used by the circulation pumps; this, of course, affects the energy efficiency of the entire system. The optimal solution appears then to be a constant temperature difference in the heat-carrier fluid across the heat pump.

  6. Geothermal heat pumps, a booming technology in North America; Geothermal Heat Pumps - der Boom der oberflaechennahen Geothermie in Nordamerika

    Energy Technology Data Exchange (ETDEWEB)

    Sanner, B [Giessen Univ. (Germany). Inst. fuer Angewandte Geowissenschaften

    1997-12-01

    Over the last years, the interest in and the use of ground-source heat pumps has substantially increased in North America. In a market dominated by space cooling heat pumps can show clearly their advantages. This paper describes the development in Canada and USA, gives examples of the technologies used and presents some large plants. The differences to the Central European situation are discussed. Also mentioned are the various activities in market penetration, which peaked in the foundation of the `Geothermal Heat Pump Consortium` in Washington in 1994. (orig.) [Deutsch] In den letzten Jahren hat das Interesse an und der Einsatz von erdgekoppelten Waermepumpen in Nordamerika stark zugenommen. In einem von der Raumkuehlung dominierten Markt koennen Waermepumpen ihre Vorteile voll ausspielen. Der Beitrag beschreibt die Entwicklung in Kanada und den USA, stellt Beispiele der eingesetzten Technik vor und geht auf einige Grossanlagen ein. Ausserdem werden die Unterschiede zu der Situation in Mitteleuropa herausgearbeitet und die verschiedenen Aktivitaeten zu `Markt Penetration` behandelt, die 1994 in die Gruendung des `Geothermal Heat Pump Consortiums` in Washington muendeten. (orig.)

  7. Advanced control for ground source heat pump systems

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Patrick [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gehl, Anthony C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Liu, Xiaobing [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-09-01

    Ground source heat pumps (GSHP), also known as geothermal heat pumps (GHP), are proven advanced HVAC systems that utilize clean and renewable geothermal energy, as well as the massive thermal storage capacity of the ground, to provide space conditioning and water heating for both residential and commercial buildings. GSHPs have higher energy efficiencies than conventional HVAC systems. It is estimated, if GSHPs achieve a 10% market share in the US, in each year, 0.6 Quad Btu primary energy consumption can be saved and 36 million tons carbon emissions can be avoided (Liu et al. 2017). However, the current market share of GSHPs is less than 1%. The foremost barrier preventing wider adoption of GSHPs is their high installation costs. To enable wider adoption of GSHPs, the costeffectiveness of GSHP applications must be improved.

  8. Using Heat Pump Energy Storages in the Power Grid

    DEFF Research Database (Denmark)

    Pedersen, Tom S.; Andersen, Palle; Nielsen, Kirsten M.

    2011-01-01

    The extensive growth of installed wind energy plants lead to increasing balancing problems in the power grid due to the nature of wind fields and diurnal variations in consumption. One way to overcome these problems is to move consumption to times where wind power otherwise cause overproduction...... and large fluctuations in prices. The paper presents a method which takes advantage of heat capacity in single-family houses using heat pumps which are anticipated to be installed in large numbers in Denmark in next decade. This type of heating gives a large time constant and it is shown possible to move...

  9. Heat-pump cool storage in a clathrate of freon

    Science.gov (United States)

    Tomlinson, J. J.

    Presented are the analytical description and assessment of a unique heat pump/storage system in which the conventional evaporator of the vapor compression cycle is replaced by a highly efficient direct contract crystallizer. The thermal storage technique requires the formation of a refrigerant gas hydrate (a clathrate) and exploits an enthalpy of reaction comparable to the heat of fusion of ice. Additional system operational benefits include cool storage at the favorable temperatures of 4 to 7 C (40 to 45 F), and highly efficient heat transfer ates afforded by he direct contact mechanism. In addition, the experimental approach underway at ORNL to study such a system is discussed.

  10. Performance study of heat-pipe solar photovoltaic/thermal heat pump system

    International Nuclear Information System (INIS)

    Chen, Hongbing; Zhang, Lei; Jie, Pengfei; Xiong, Yaxuan; Xu, Peng; Zhai, Huixing

    2017-01-01

    Highlights: • The testing device of HPS PV/T heat pump system was established by a finished product of PV panel. • A detailed mathematical model of heat pump was established to investigate the performance of each component. • The dynamic and static method was combined to solve the mathematical model of HPS PV/T heat pump system. • The HPS PV/T heat pump system was optimized by the mathematical model. • The influence of six factors on the performance of HPS PV/T heat pump system was analyzed. - Abstract: A heat-pipe solar (HPS) photovoltaic/thermal (PV/T) heat pump system, combining HPS PV/T collector with heat pump, is proposed in this paper. The HPS PV/T collector integrates heat pipes with PV panel, which can simultaneously generate electricity and thermal energy. The extracted heat from HPS PV/T collector can be used by heat pump, and then the photoelectric conversion efficiency is substantially improved because of the low temperature of PV cells. A mathematical model of the system is established in this paper. The model consists of a dynamic distributed parameter model of the HPS PV/T collection system and a quasi-steady state distributed parameter model of the heat pump. The mathematical model is validated by testing data, and the dynamic performance of the HPS PV/T heat pump system is discussed based on the validated model. Using the mathematical model, a reasonable accuracy in predicting the system’s dynamic performance with a relative error within ±15.0% can be obtained. The capacity of heat pump and the number of HPS collectors are optimized to improve the system performance based on the mathematical model. Six working modes are proposed and discussed to investigate the effect of solar radiation, ambient temperature, supply water temperature in condenser, PV packing factor, heat pipe pitch and PV backboard absorptivity on system performance by the validated model. It is found that the increase of solar radiation, ambient temperature and PV

  11. Inventory of existing heat pump projects and the use of solar energy for heat pumps in the Dutch house construction sector

    International Nuclear Information System (INIS)

    1997-01-01

    The aim of the title inventory is to learn from the experiences with heat pump projects in the Netherlands. Descriptions are given of practical experiences with heat pump applications in the last 15 years in the housing sector. Possible and feasible heat pump system concepts are analyzed and energy balances and energy consumption are calculated. Special attention is paid to the use of solar energy in combination with electric (compression) heat pumps. One of the most important bottlenecks is the method and availability of heat extraction: the choice for the different options is determined by investment costs, permission, regulations, and local conditions. 14 refs., 4 appendices

  12. Heat pump using dual heat sources of air and water. Performance in cooling mode; Mizu kuki ryonetsugen heat pump no kenkyu. Reibo unten ni okeru seino

    Energy Technology Data Exchange (ETDEWEB)

    Ito, S; Miura, N [Kanagawa Institute of Technology, Kanagawa (Japan); Uchikawa, Y [Kubota Corp., Osaka (Japan)

    1997-11-25

    When a heat pump is used for cooling purpose, it is possible to utilize different kinds of waste water as high-heat sources. However, these heat sources would have their temperatures vary with seasons and time in a day. Therefore, a discussion was given on performance of a heat pump when water and air heat sources are used for condensers during cooling operation independently, in series and in parallel, respectively. The air condenser shows an equivalent COP as compared with the water condenser when air temperature is lower by about 8 degC than water temperature. At the same heat source temperature, the COP for the water condenser indicated a value higher by about 0.6 than the case of the air condenser. A method to use condensers in parallel experiences little contribution from the air heat source, and performance of the heat pump decreases below the case of using the water heat source independently when the air heat source temperature becomes higher than that of the water heat source. In the case of series use in which a water condenser is installed in front and an air condenser in rear, its effect is exhibited when temperature in the air heat source is lower than that in the water heat source. Better performance was shown than in operating the water heat source independently. 2 refs., 9 figs.

  13. Organic Rankine Cycle for Residual Heat to Power Conversion in Natural Gas Compressor Station. Part I: Modelling and Optimisation Framework

    Science.gov (United States)

    Chaczykowski, Maciej

    2016-06-01

    Basic organic Rankine cycle (ORC), and two variants of regenerative ORC have been considered for the recovery of exhaust heat from natural gas compressor station. The modelling framework for ORC systems has been presented and the optimisation of the systems was carried out with turbine power output as the variable to be maximized. The determination of ORC system design parameters was accomplished by means of the genetic algorithm. The study was aimed at estimating the thermodynamic potential of different ORC configurations with several working fluids employed. The first part of this paper describes the ORC equipment models which are employed to build a NLP formulation to tackle design problems representative for waste energy recovery on gas turbines driving natural gas pipeline compressors.

  14. Discussion on application of water source heat pump technology to uranium mines

    International Nuclear Information System (INIS)

    An Qiang

    2011-01-01

    Application of water source heat pump units in recovering waste heat from uranium mines is discussed, and several forms of waste heat recovery are introduced. The problems in the application of water source heat pump technology are analyzed. Analysis results show that the water source heat pump technology has broad application prospects in uranium mines, and it is a way to exchange existing structure of heat and cold sources in uranium mines. (authors)

  15. Experimental Research of a Water-Source Heat Pump Water Heater System

    OpenAIRE

    Zhongchao Zhao; Yanrui Zhang; Haojun Mi; Yimeng Zhou; Yong Zhang

    2018-01-01

    The heat pump water heater (HPWH), as a portion of the eco-friendly technologies using renewable energy, has been applied for years in developed countries. Air-source heat pump water heaters and solar-assisted heat pump water heaters have been widely applied and have become more and more popular because of their comparatively higher energy efficiency and environmental protection. Besides use of the above resources, the heat pump water heater system can also adequately utilize an available wat...

  16. Experimental performance of R432A to replace R22 in residential air-conditioners and heat pumps

    International Nuclear Information System (INIS)

    Park, Ki-Jung; Shim, Yun-Bo; Jung, Dongsoo

    2009-01-01

    In this study, thermodynamic performance of R432A and HCFC22 is measured in a heat pump bench tester under both air-conditioning and heat pumping conditions. R432A has no ozone depletion potential and very low greenhouse warming potential of less than 5. R432A also offers a similar vapor pressure to HCFC22 for 'drop-in' replacement. Test results showed that the coefficient of performance and capacity of R432A are 8.5-8.7% and 1.9-6.4% higher than those of HCFC22 for both conditions. The compressor discharge temperature of R432A is 14.1-17.3 deg. C lower than that of HCFC22 while the amount of charge for R432A is 50% lower than that of HCFC22 due to its low density. Overall, R432A is a good long term 'drop-in' environmentally friendly alternative to replace HCFC22 in residential air-conditioners and heat pumps due to its excellent thermodynamic and environmental properties

  17. Performance of R433A for replacing HCFC22 used in residential air-conditioners and heat pumps

    International Nuclear Information System (INIS)

    Park, Ki-Jung; Shim, Yun-Bo; Jung, Dongsoo

    2008-01-01

    In this study, thermodynamic performance of R433A and HCFC22 is measured in a heat pump bench tester under air-conditioning and heat pumping conditions. R433A has no ozone depletion potential and very low greenhouse warming potential of less than 5. R433A also offers a similar vapor pressure to HCFC22 for possible 'drop-in' replacement. Test results showed that the coefficient of performance of R433A is 4.9-7.6% higher than that of HCFC22 while the capacity of R433A is 1.0-5.5% lower than that of HCFC22 for both conditions. The compressor discharge temperature of R433A is 22.6-27.9 deg. C lower than that of HCFC22 while the amount of charge for R433A is 57.0-57.7% lower than that of HCFC22 due to its low density. Overall, R433A is a good long term environmentally friendly alternative to replace HCFC22 in residential air-conditioners and heat pumps due to its excellent thermodynamic and environmental properties with minor adjustments

  18. Exergy, Economic and Environmental Analyses of Gas Turbine Inlet Air Cooling with a Heat Pump Using a Novel System Configuration

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Majdi Yazdi

    2015-10-01

    Full Text Available Gas turbines incur a loss of output power during hot seasons due to high ambient air temperatures, and input air cooling systems are often used to partly offset this problem. Here, results are reported for an investigation of the utilization of a heat pump to cool the inlet air of a gas turbine compressor. The analyses are carried out for two climates: the city of Yazd, Iran, which has a hot, arid climate, and Tehran, Iran, which has a temperate climate. The heat pump input power is obtained from the gas turbine. The following parameters are determined, with and without the heat pump: net output power, first and second law efficiencies, quantities and costs of environmental pollutants, entropy generation and power generation. The results suggest that, by using the air-inlet cooling system, the mean output power increases during hot seasons by 11.5% and 10% for Yazd and Tehran, respectively, and that the costs of power generation (including pollution costs decrease by 11% and 10% for Yazd and Tehran, respectively. Also, the rate of generation of pollutants such as NOx and CO decrease by about 10% for Yazd and 35% for Tehran, while the average annual entropy generation rate increases by 9% for Yazd and 7% for Tehran, through air-inlet cooling. The average increase of the system first law efficiency is 2% and of the system second law efficiency is 1.5% with the inlet-air cooling system.

  19. Simulation of embedded heat exchangers of solar aided ground source heat pump system

    Institute of Scientific and Technical Information of China (English)

    王芳; 郑茂余; 邵俊鹏; 李忠建

    2008-01-01

    Aimed at unbalance of soil temperature field of ground source heat pump system, solar aided energy storage system was established. In solar assisted ground-source heat pump (SAGSHP) system with soil storage, solar energy collected in three seasons was stored in the soil by vertical U type soil exchangers. The heat abstracted by the ground-source heat pump and collected by the solar collector was employed to heating. Some of the soil heat exchangers were used to store solar energy in the soil so as to be used in next winter after this heating period; and the others were used to extract cooling energy directly in the soil by circulation pump for air conditioning in summer. After that solar energy began to be stored in the soil and ended before heating period. Three dimensional dynamic numerical simulations were built for soil and soil heat exchanger through finite element method. Simulation was done in different strata month by month. Variation and restoration of soil temperature were studied. Economy and reliability of long term SAGSHP system were revealed. It can be seen that soil temperature is about 3 ℃ higher than the original one after one year’s running. It is beneficial for the system to operate for long period.

  20. EFFICIENCY OF THE USE OF HEAT PUMPS ON THE CHP PLANTS

    Directory of Open Access Journals (Sweden)

    Juravleov A.A.

    2007-04-01

    Full Text Available The work is dedicated to the calculus of the efficiency of the use of heat pumps on the CHP plants. There are presented the interdependences between the pay-back period and NPV of heat pump and the price of 1 kWt of thermal power of heat pump and of the tariff of electricity.

  1. In the Loop : A look at Manitoba's geothermal heat pump industry

    International Nuclear Information System (INIS)

    2002-03-01

    This booklet outlines the position of Manitoba's heat pump market with the objective of promoting the widespread use of geothermal heat pumps in the province. It makes reference to the size of the market, customer satisfaction with heat pumps, and opinion of key players in the industry regarding the heat pump market. The information in this booklet is drawn on market research and lessons learned in Europe and the United States. In October 2001, a group of key stakeholders in Manitoba's heat pump market attended an industry working meeting to address the issues of market barriers, market enablers and market hot buttons. Market barriers include the high cost of geothermal heat pumps, lack of consumer awareness, lack of consistent standards, and public perception that heat pumps are not reliable. Market enablers include the low and stable operating costs of geothermal heat pumps, high level of comfort, high quality and reliability of geothermal heat pumps, and financial incentives under Manitoba Hydro's Power Smart Commercial Construction Program. Market hot buttons include lowering the cost of geothermal heat pumps, improving industry performance, increasing consumer awareness, and forming a Manitoba Geothermal Trade Association. Approximately 2,500 heat pump systems have been installed in Manitoba. In 2001, heat pump sales in Manitoba grew 40 per cent. 1 tab., 6 figs

  2. 77 FR 8178 - Test Procedures for Central Air Conditioners and Heat Pumps: Public Meeting

    Science.gov (United States)

    2012-02-14

    .... EERE-2010-BT-TP-0038] Test Procedures for Central Air Conditioners and Heat Pumps: Public Meeting... methodologies and gather comments on testing residential central air conditioners and heat pumps designed to use... residential central air conditioners and heat pumps that are single phase with rated cooling capacities less...

  3. 75 FR 14368 - Energy Conservation Standards for Residential Central Air Conditioners and Heat Pumps: Public...

    Science.gov (United States)

    2010-03-25

    ... Conservation Standards for Residential Central Air Conditioners and Heat Pumps: Public Meeting and Availability... conservation standards for residential central air conditioners and heat pumps; the analytical framework..., Mailstop EE-2J, Public Meeting for Residential Central Air Conditioners and Heat Pumps, EERE-2008-BT- STD...

  4. Performance variations of river water source heat pump system according to heat exchanger capacity variations

    International Nuclear Information System (INIS)

    Park, Seong Ryong; Baik, Young Jin; Lee, Young Soo; Kim, Hee Hwan

    2003-01-01

    The utilization of unused energy is important because it can afford to offer a chance to increase energy efficiency of a heat pump system. One of the promising unused energy sources is river water. It can be used as a heat source in both heating and cooling effectively with its superior features as a secondary working fluids. In this study, the performance of a 5HP heat pump system using river water as a heat source is investigated by both experiment and simulation. According to system simulation results, performance improvement of condenser seems more effective than that of evaporator for better COPH. The serial connection is also preferred among several methods to improve plate type heat exchanger performance. The experimental results show that the hot water of 50∼60 .deg. C can be acquired from water heat source of 5∼9 .deg. C with COPH of 2.7∼3.5

  5. Application of heat pump by using the earth temperature gradient for winter heating and summer cooling

    International Nuclear Information System (INIS)

    Gacevski, Marijan; Tanev, Pepi

    2003-01-01

    Because of the rapid technique development as well as modern human life, in order to satisfy the energy needs it is necessary to use a new apparatus and devices. In this manner, the electric power consumption, especially for heating and cooling, rapidly increases. One of the possible ways to reduce the consumption of electric energy for heating and cooling is that, to use heat pumps. In this paper a heat pump that uses the heat of the earth by a horizontal polyethylene pipe heat exchanger is proposed. Also, all parameters are examined and comparison with already existing ones is done. The heat gradient of the earth in spite of saving electrical energy is analyzed as well. (Original)

  6. Earliest Deadline Control of a Group of Heat Pumps with a Single Energy Source

    NARCIS (Netherlands)

    Fink, J.; van Leeuwen, Richard Pieter

    2016-01-01

    In this paper, we develop and investigate the optimal control of a group of 104 heat pumps and a central Combined Heat and Power unit (CHP). The heat pumps supply space heating and domestic hot water to households. Each house has a buffer for domestic hot water and a floor heating system for space

  7. Generator-absorber-heat exchange heat transfer apparatus and method and use thereof in a heat pump

    Science.gov (United States)

    Phillips, B.A.; Zawacki, T.S.

    1998-07-21

    Numerous embodiments and related methods for generator-absorber heat exchange (GAX) are disclosed, particularly for absorption heat pump systems. Such embodiments and related methods use, as the heat transfer medium, the working fluid of the absorption system taken from the generator at a location where the working fluid has a rich liquor concentration. 5 figs.

  8. Combined heat pump for sanitary hot water and space heating with CO{sub 2} as refrigerant; Kombineret brugsvands- og rumvarmepumpe med CO{sub 2} som koelemiddel

    Energy Technology Data Exchange (ETDEWEB)

    Schoen Poulsen, C. [Teknologisk Institut (Denmark)

    2006-05-19

    This project report describes the implementation of the Danish project called 'Combined heat pump for sanitary hot water and space heating with CO{sub 2} as refrigerant'. In the course of the project, a combined heat pump has been developed for heating sanitary hot water and producing domestic space heating. The project shows that CO2 has excellent properties in systems where a high temperature is desired on the gas cooler side and that it is possible to combine the production of sanitary hot water with the production of domestic space heating. During the project, a number of system solutions have been analysed and at the end of the project a prototype was built. It was tested in the laboratory according to a current Dutch standard for heat pumps for sanitary hot water. The prototype was constructed without the space heat part which solely has been analysed according to calculations. The reason is that there currently are no applicable European standards for the testing of combined systems and as the total efficiency of the system mainly depends on the temperature out of the gas cooler it was decided not to spend resources on the construction of the combined system in the prototype version of the unit. Instead, a number of proposals have been submitted to how the system with a space heat section could be constructed. The main components used in the prototype (compressor, exchangers, valve, control and tank) are all partly commercially available and therefore focus has been on the system construction. During the project, a number of CFD calculations have been carried out on the gas cooler in the hot water tank and the results show how important it is that the gas cooler is designed and placed correctly. The laboratory tests carried out on the unit show that the COP of the heat pump plant in connection with sanitary hot water tapping (according to Dutch standard) is 1.4 1.5 which is not immediately satisfactory. But when it is considered that the unit is a

  9. Exergy metrication of radiant panel heating and cooling with heat pumps

    International Nuclear Information System (INIS)

    Kilkis, Birol

    2012-01-01

    Highlights: ► Rational Exergy Management Model analytically relates heat pumps and radiant panels. ► Heat pumps driven by wind energy perform better with radiantpanels. ► Better CO 2 mitigation is possible with wind turbine, heat pump, radiant panel combination. ► Energy savings and thermo-mechanical performance are directly linked to CO 2 emissions. - Abstract: Radiant panels are known to be energy efficient sensible heating and cooling systems and a suitable fit for low-exergy buildings. This paper points out the little known fact that this may not necessarily be true unless their low-exergy demand is matched with low-exergy waste and alternative energy resources. In order to further investigate and metricate this condition and shed more light on this issue for different types of energy resources and energy conversion systems coupled to radiant panels, a new engineering metric was developed. Using this metric, which is based on the Rational Exergy Management Model, true potential and benefits of radiant panels coupled to ground-source heat pumps were analyzed. Results provide a new perspective in identifying the actual benefits of heat pump technology in curbing CO 2 emissions and also refer to IEA Annex 49 findings for low-exergy buildings. Case studies regarding different scenarios are compared with a base case, which comprises a radiant panel system connected to a natural gas-fired condensing boiler in heating and a grid power-driven chiller in cooling. Results show that there is a substantial CO 2 emission reduction potential if radiant panels are optimally operated with ground-source heat pumps driven by renewable energy sources, or optimally matched with combined heat and power systems, preferably running on alternative fuels.

  10. Combined heat and power considered as a virtual steam cycle heat pump

    International Nuclear Information System (INIS)

    Lowe, Robert

    2011-01-01

    The first aim of this paper is to shed light on the thermodynamic reasons for the practical pursuit of low temperature operation by engineers involved in the design and the operation of combined heat and power (CHP) and district heating (DH) systems. The paper shows that the steam cycle of a combined heat and power generator is thermodynamically equivalent to a conventional steam cycle generator plus an additional virtual steam cycle heat pump. This apparently novel conceptualisation leads directly to (i) the observed sensitivity of coefficient of performance of CHP to supply and return temperatures in associated DH systems, and (ii) the conclusion that the performance of CHP will tend to be significantly higher than real heat pumps operating at similar temperatures. The second aim, which is pursued more qualitatively, is to show that the thermodynamic performance advantages of CHP are consistent with the goal of deep, long-term decarbonisation of industrialised economies. As an example, estimates are presented, which suggest that CHP based on combined-cycle gas turbines with carbon capture and storage has the potential to reduce the carbon intensity of delivered heat by a factor of ∼30, compared with a base case of natural gas-fired condensing boilers. - Highlights: → Large-scale CHP systems are thermodynamically equivalent to virtual steam cycle heat pumps. → COPs of such virtual heat pumps are necessarily better than the Carnot limit for real heat pumps. → COPs can approach 9 for plant matched to district heating systems with flow temperatures of 90 deg. C. → CHP combined with CCGT and CCS can reduce the carbon intensity of delivered heat ∼30-fold.

  11. Experimental investigations on solar heating/heat pump systems for single family houses

    DEFF Research Database (Denmark)

    Andersen, Elsa; Perers, Bengt

    In the period 2013-2017 the project “Experimental investigations on solar heat pump systems for single family houses” is carried out at Department of Civil Engineering, Technical University of Denmark. The aim of this project is to increase the knowledge of the heat and mass transfer in the combi...

  12. Heating of the solar chromosphere by ionization pumping

    Science.gov (United States)

    Lindsey, C. A.

    1981-01-01

    A new theory is proposed to explain the heating of the solar chromosphere, and possibly the corona, by the dissipation of hydrodynamic compression waves. The basis of the dissipative mechanism, here referred to as ionization pumping, is hysteresis caused by irreversible relaxation of the chromospheric medium to ionization equilibrium following pressure perturbations. In the middle chromosphere, where hydrogen is partially ionized, it is shown that ionization pumping will cause strong dissipation of waves whose periods are 200s or less. This could cause heating of the chromosphere sufficient to compensate for the radiative losses. The mechanism retains a high efficiency for waves of arbitrarily small amplitude and, thus, can be more efficient than shock dissipation for small perturbations in pressure. The formation of shocks therefore is not required for the dissipation of waves whose periods are several minutes or less.

  13. Heating of the solar chromosphere by ionization pumping

    International Nuclear Information System (INIS)

    Lindsey, C.A.

    1981-01-01

    A new theory is proposed to explain the heating of the solar chromosphere, and possibly the corona, by the dissipation of hydrodynamic compression waves. The basis of the disspative mechanism, here referred to as ''ionization pumping,'' is hysteresis caused by irresversible relaxation of the chromospheric medium to ionization equilibrium following pressure perturbations. In the middle chromosphere, where hydrogen is partially ionized, it is shown that ionization pumping will cause strong dissipation of waves whose periods are approx.200 s or less. This could cause heating of the chromosphere sufficient to compensate for the radiative losses. The mechanism retains a high efficiency for waves of arbitrarily small amplitude and, thus, can be more efficient than shock dissipation for small perturbations in pressure. The formation of shocks therefore is not required for the dissipation of waves whose periods are several minutes or less

  14. Next-generation heat pump systems in residential buildings and commercial premises; Naesta generations vaermepumpssystem i bostaeder och lokaler

    Energy Technology Data Exchange (ETDEWEB)

    Haglund Stignor, Caroline; Lindahl, Markus; Alsbjer, Markus; Nordman, Roger; Rolfsman, Lennart; Axell, Monica

    2009-07-01

    Summarising, the following conclusions can be drawn from this work. - Installation of a heat pump system is a very efficient way of reducing a building's energy demand without making any greater changes to the building's climate screen, and can therefore assist Sweden's achievement of its energy efficiency improvement targets. - A new generation of cost-effective smaller heat pumps is needed for installation in new detached houses or those being renovated and upgraded. - There also seems to be an excellent market potential for heat pumps that are larger than has previously been common: there should be good prospects for selling them for use in apartment buildings and in commercial or similar premises. - Heat pump installations are particularly competitive in applications where there are simultaneous heating and cooling demands in the property, and also in those cases where heating is required for most of the year and cooling for some other part of the year. If these suggested system arrangements are to be fully realised, there will be a need for further research in certain cases. Particularly, there is a need for research and development of more efficient pumps, fans and speed-controlled compressors in order to get such products on to the market. Performance measurements and follow-up of real systems are needed in order to obtain a clear picture of the efficiency of both present-day and proposed systems. This knowledge is essential for further development of systems, not only for residential buildings but also, even more importantly, for commercial and similar premises. Actual heating and cooling requirements in different types of non-residential premises need to be known more accurately in order to decide how systems should be controlled in order to minimise total energy use. Much indicates that future detached houses will be more energy-efficient, which could have the undesirable result of greater use of direct electric heating, as the investment

  15. Environomic multi-objective optimisation of a district heating network considering centralized and decentralized heat pumps

    International Nuclear Information System (INIS)

    Molyneaux, A.; Leyland, G.; Favrat, D.

    2010-01-01

    Concern for the environment has been steadily growing in recent years, and it is becoming more common to include environmental impact and pollution costs in the design problem along with construction, investment and operating costs. To economically respond to the global environmental problems ahead, progress must be made both on more sustainable technologies and on the design methodology, which needs to adopt a more holistic approach. Heat pumps and, in particular systems integrating heat pumps and cogeneration units, offer a significant potential for greenhouse gas reduction. This paper illustrates the application of a multi-objective and multi-modal evolutionary algorithm to facilitate the design and planning of a district heating network based on a combination of centralized and decentralized heat pumps combined with on-site cogeneration. Comparisons are made with an earlier study based on a single objective environomic optimisation of the same overall model.

  16. Mushroom drying with solar assisted heat pump system

    International Nuclear Information System (INIS)

    Şevik, Seyfi; Aktaş, Mustafa; Doğan, Hikmet; Koçak, Saim

    2013-01-01

    Highlights: • Experimental investigation of a simple and cost effective solar assisted heat pump system. • Developing of a computer program for a drying system with different scenarios by using PLC. • Obtained less energy input with high coefficients of performance of system and more quality products. • Determination of mushroom drying properties such as moisture content, moisture ratio and drying ratio. - Abstract: In this study, a simple and cost effective solar assisted heat pump system (SAHP) with flat plate collectors and a water source heat pump has been proposed. Mushroom drying was examined experimentally in the drying system. Solar energy (SE) system and heat pump (HP) system can be used separately or together. A computer program has been developed for the system. Drying air temperature, relative humidity, weight of product values, etc. were monitored and controlled with different scenarios by using PLC. This system is cheap, good quality and sustainable and it is modeled for good quality product and increased efficiency. Thus, products could be dried with less energy input and more controlled conditions. Mushrooms were dried at 45 °C and 55 °C drying air temperature and 310 kg/h mass flow rate. Mushrooms were dried from initial moisture content 13.24 g water/g dry matter (dry basis) to final moisture content 0.07 g water/g dry matter (dry basis). Mushrooms were dried by using HP system, SE system and SAHP system respectively at 250–220 min, at 270–165 min and at 230–190 min. The coefficients of performance of system (COP) are calculated in a range from 2.1 to 3.1 with respect to the results of experiments. The energy utilization ratios (EURs) were found to vary between 0.42 and 0.66. Specific moisture extraction rate (SMER) values were found to vary between 0.26 and 0.92 kg/kW h

  17. Effect Of Geothermal Heat Pump On Carbon Dioxide Emissions

    Directory of Open Access Journals (Sweden)

    Ahmed F. Atwan

    2015-08-01

    Full Text Available In this research the calculations of carbon dioxide emissions CO2 in summer May to September 150 day and winter seasons December to February 90 day were performed by using the coefficient of performance for each air and ground source heat pump. The place of study case take relative to solar path in to account and the study case was three halls men women and surgery halls in Al-Musayyib hospital in Babylon.

  18. Performance analysis of diesel engine heat pump incorporated with heat recovery

    International Nuclear Information System (INIS)

    Shah, N.N.; Huang, M.J.; Hewitt, N.J.

    2016-01-01

    Highlights: • Diesel engine heat pump with heat recovery. • Water-to-water source heat pump based on R134a. • Possibility for different flow temperature for heat distribution system. • Possible retrofit application in off-gas or weak electricity network area. • Potential to diversify use of fossil fuel, primary energy and CO_2 emission savings. - Abstract: This paper presents experimental study of diesel engine heat pump (DEHP) system to find potential as retrofit technology in off-gas or weak electricity network area to replace existing gas/oil/electric heating system in domestic sector. Test set-up of diesel engine driven water-to-water heat pump system was built which included heat recovery arrangement from the engine coolant & exhaust gas. The system was designed to meet typical house heating demand in Northern Ireland. Performance of DEHP was evaluated to meet house-heating demand at different flow temperature (35, 45, 55 & 65 °C), a typical requirement of underfloor space heating, medium/high temperature radiators and domestic hot water. The performance was evaluated against four-evaporator water inlet temperature (0, 5, 10 & 15 °C) and at three different engine speed 1600, 2000 & 2400 rpm. Experiment results were analysed in terms of heating/cooling capacity, heat recovery, total heat output, primary energy ratio (PER), isentropic efficiency, etc. Test results showed that DEHP is able to meet house-heating demand with help of heat recovery with reduced system size. Heat recovery contributed in a range of 22–39% in total heat output. It is possible to achieve high flow temperature in a range of 74 °C with help of heat recovery. Overall system PER varied in a range of 0.93–1.33. Speed increment and flow temperature has significant impact on heat recovery, total heat output and PER. A case scenario with different flow temperature to match house-heating demand has been presented to show working potential with different heat distribution system

  19. The role of large‐scale heat pumps for short term integration of renewable energy

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; Blarke, Morten; Hansen, Kenneth

    2011-01-01

    technologies is focusing on natural working fluid hydrocarbons, ammonia, and carbon dioxide. Large-scale heat pumps are crucial for integrating 50% wind power as anticipated to be installed in Denmark in 2020, along with other measures. Also in the longer term heat pumps can contribute to the minimization...... savings with increased wind power and may additionally lead to economic savings in the range of 1,500-1,700 MDKK in total in the period until 2020. Furthermore, the energy system efficiency may be increased due to large heat pumps replacing boiler production. Finally data sheets for large-scale ammonium......In this report the role of large-scale heat pumps in a future energy system with increased renewable energy is presented. The main concepts for large heat pumps in district heating systems are outlined along with the development for heat pump refrigerants. The development of future heat pump...

  20. Energetic Efficiency Evaluation by Using GroundWater Heat Pumps

    Directory of Open Access Journals (Sweden)

    Tokar Adriana

    2012-09-01

    Full Text Available Romania has significant energy potential from renewable sources, but the potential used is much lower due to technical and functional disadvantages, to economic efficiency, the cost elements and environmental limitations. However, efforts are being made to integrate renewable energy in the national energy system. To promote and encourage private investments for renewable energy utilization, programs have been created in order to access funds needed to implement these technologies. Assessment of such investments was carried out from technical and economical point of view, by analyzing a heat pump using as heat source the solar energy from the ground.

  1. Heat pumps barometer - EurObserv'ER 2016

    International Nuclear Information System (INIS)

    2016-01-01

    The heat pump (HP) sector had an excellent year in 2015. Appliance sales taking all heating and cooling market technologies into account, increased by 20% from 2212898 units in 2014 to 2655331 units in 2015. The emerging trend over the past few years specific to the HP segment for water-borne systems is that air-source HPs are clearly gaining market shares to the detriment of the ground-source HP market, while reversible HPs using air as their vector are taking advantage of record temperatures that have given a boost to the cooling market

  2. Ground-source heat pump systems in Norway

    International Nuclear Information System (INIS)

    Stene, Joern

    2007-01-01

    The Norwegian ground source heat pump (GSHP) market is reviewed. Boreholes in bedrock are of growing interest for residential systems and of growing interest for larger systems with thermal recharging or thermal energy storage. Ground water is limited to areas where the water has acceptable purity. Challenges and important boundary conditions include 1) high quality GSHP system requires engineering expertise, 2) new building codes and EU directive 'energy performance of buildings.'(2006), and 3) hydronic floor heating systems in 50 percent of new residences (author) (ml)

  3. Ground-source heat pump case studies and utility programs

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, P.J.; Boyd, T.L.; Rogers, R.L.

    1995-04-01

    Ground-source heat pump systems are one of the promising new energy technologies that has shown rapid increase in usage over the past ten years in the United States. These systems offer substantial benefits to consumers and utilities in energy (kWh) and demand (kW) savings. The purpose of this study was to determine what existing monitored data was available mainly from electric utilities on heat pump performance, energy savings and demand reduction for residential, school and commercial building applications. In order to verify the performance, information was collected for 253 case studies from mainly utilities throughout the United States. The case studies were compiled into a database. The database was organized into general information, system information, ground system information, system performance, and additional information. Information was developed on the status of demand-side management of ground-source heat pump programs for about 60 electric utility and rural electric cooperatives on marketing, incentive programs, barriers to market penetration, number units installed in service area, and benefits.

  4. Measurement of heat pump processes induced by laser radiation

    Science.gov (United States)

    Garbuny, M.; Henningsen, T.

    1983-01-01

    A series of experiments was performed in which a suitably tuned CO2 laser, frequency doubled by a Tl3AsSe37 crystal, was brought into resonance with a P-line or two R-lines in the fundamental vibration spectrum of CO. Cooling or heating produced by absorption in CO was measured in a gas-thermometer arrangement. P-line cooling and R-line heating could be demonstrated, measured, and compared. The experiments were continued with CO mixed with N2 added in partial pressures from 9 to 200 Torr. It was found that an efficient collisional resonance energy transfer from CO to N2 existed which increased the cooling effects by one to two orders of magnitude over those in pure CO. Temperature reductions in the order of tens of degrees Kelvin were obtained by a single pulse in the core of the irradiated volume. These measurements followed predicted values rather closely, and it is expected that increase of pulse energies and durations will enhance the heat pump effects. The experiments confirm the feasibility of quasi-isentropic engines which convert laser power into work without the need for heat rejection. Of more immediate potential interest is the possibility of remotely powered heat pumps for cryogenic use, such applications are discussed to the extent possible at the present stage.

  5. INTENSIFICATION OF HEAT TRANSFER FROM THE IC CHIP TO THE HEAT SINK THROUGH THE USE OF NANOFILM THERMOELECTRIC HEAT PUMP

    Directory of Open Access Journals (Sweden)

    T. A. Ismailov

    2014-01-01

    Full Text Available The article considers the to enhance the efficiency the thermoelectric heat pump by making the branches of semiconductor p- and n-type as nanofilms and creating conditions for the emergence of additional thermoeffect between the hot and cold junctions of dissimilar metals that will create a more efficient heat pumps with small dimensions.

  6. Heat pumps: Technology and economics. (Latest citations from the NTIS bibliographic database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    The bibliography contains citations concerning the design, construction, and assessment of heat pumps. Absorption, chemical, ground-source, and gas-source heat pumps and systems are reviewed. Cost-benefit analyses, comparative evaluations, and maintenance costs of heat pump systems are presented. Applications in space heating and waste heat recovery are examined. (Contains 50-250 citations and includes a subject term index and title list.)

  7. Building Space Heating with a Solar-Assisted Heat Pump Using Roof-Integrated Solar Collectors

    Directory of Open Access Journals (Sweden)

    Zhiyong Yang

    2011-03-01

    Full Text Available A solar assisted heat pump (SAHP system was designed by using a roof-integrated solar collector as the evaporator, and then it was demonstrated to provide space heating for a villa in Tianjin, China. A building energy simulation tool was used to predict the space heating load and a three dimensional theoretical model was established to analyze the heat collection performance of the solar roof collector. A floor radiant heating unit was used to decrease the energy demand. The measurement results during the winter test period show that the system can provide a comfortable living space in winter, when the room temperature averaged 18.9 °C. The average COP of the heat pump system is 2.97 and with a maximum around 4.16.

  8. Simulation of Hybrid Photovoltaic Solar Assisted Loop Heat Pipe/Heat Pump System

    Directory of Open Access Journals (Sweden)

    Nannan Dai

    2017-02-01

    Full Text Available A hybrid photovoltaic solar assisted loop heat pipe/heat pump (PV-SALHP/HP water heater system has been developed and numerically studied. The system is the combination of loop heat pipe (LHP mode and heat pump (HP mode, and the two modes can be run separately or compositely according to the weather conditions. The performances of independent heat pump (HP mode and hybrid loop heat pipe/heat pump (LHP/HP mode were simulated and compared. Simulation results showed that on typical sunny days in spring or autumn, using LHP/HP mode could save 40.6% power consumption than HP mode. In addition, the optimal switchover from LHP mode to HP mode was analyzed in different weather conditions for energy saving and the all-year round operating performances of the system were also simulated. The simulation results showed that hybrid LHP/HP mode should be utilized to save electricity on sunny days from March to November and the system can rely on LHP mode alone without any power consumption in July and August. When solar radiation and ambient temperature are low in winter, HP mode should be used

  9. Performance analysis of a novel heat pump type air conditioner coupled with a liquid dehumidification/humidification cycle

    International Nuclear Information System (INIS)

    Cai, Dehua; Qiu, Chengbo; Zhang, Jiazheng; Liu, Yue; Liang, Xiao; He, Guogeng

    2017-01-01

    Graphical abstract: Cycle performance of a small scale heat pump type air conditioner coupled with a liquid desiccant/humidification cycle has been theoretically and experimentally evaluated by the present study. The liquid desiccant and humidification cycle is driven by the exhaust heat of the compressor. LDAC not only greatly improves the indoor air quality by controlling the humidity and temperature independently, but also decrease the electrical energy consumption of the traditional air conditioner. Parametric analysis on cycle performance of the present cycle based on both theoretical and experimental methods are carried out. - Highlights: • Hybrid cycle consists of refrigeration cycle and liquid desiccant cycle is proposed. • Liquid desiccant cycle is driven by the compressor exhaust heat. • Theoretical and experimental studies on cycle performance are provided. • Energy consumption decreases about 22.64% compared with the conventional one. - Abstract: In recent years, liquid desiccant air-conditioning system (LDAC) has shown a great potential alternative to the conventional vapor compression systems. LDAC not only greatly improves the indoor air quality by controlling the humidity and temperature independently, but also deceases the electrical energy consumption of the conventional air conditioner. In this work, the liquid desiccant and humidification cycle is driven by the exhaust heat of the compressor. Cycle performance of a small-scale heat pump type air conditioner coupled with a liquid desiccant/humidification cycle has been theoretically and experimentally evaluated by the present study. Parametric analysis on cycle performance of the present cycle is carried out through both theoretical and experimental methods, and lithium chloride aqueous solution is used as the working fluid of the solution cycle. The thermodynamic analysis results show that while the evaporating temperature of the present cycle increases to 15 °C, the energy consumption

  10. Assessment of R290 as a possible alternative to R22 in direct expansion solar assisted heat pumps

    Directory of Open Access Journals (Sweden)

    Paradeshi Lokesh

    2017-01-01

    Full Text Available In this paper, the energy performance of a direct expansion solar assisted heat pump has been experimentally assessed with R290 as an alternative to R22 to meet the requirements of Kigali agreement. The experiments have been performed at Calicut climatic conditions (latitude of 11.15° N, longitude of 75.49° E during the winter climates of 2016. The performance parameters such as, compressor power consumption, condenser heating capacity, energy performance ratio, and solar energy input ratio were evaluated for energy performance comparison. The results showed that, R290 has 6.8% higher energy performance ratio when compared to R22, with 11% reduction in compressor power consumption. Moreover, R290 has negligible global warming impact and zero ozone depletion potential when compared to R22. The effect of wind speed, collector area, ambient temperature, and solar insolation on the system performance found to be with an average value of 0.85%, 12%, 2.5%, and 4.5% for the selected refrigerants, respectively.

  11. Compounding Of Ac Compressor Using Waste Heat Recovery From Exhaust Gas

    Directory of Open Access Journals (Sweden)

    Bheshma Yogendra Kiran

    2015-08-01

    Full Text Available This project works on the theme of turbocharger in which a low pressure high speed turbine is placed in the exhaust gas manifold. The exhaust gas from the engine is made to rotate the turbine where the thermal power of exhaust gas is converted into rotary motion through turbine. This rotary motion from turbine is given to the turbocharger compressor which compresses the refrigerant vapor. So through this air conditioning effect is obtained without loss of any crankshaft. The kinetic energy extracted from the turbine is used to run the AC compressor by planetary gear train.

  12. Gradient heating protocol for a diode-pumped alkali laser

    Science.gov (United States)

    Cai, He; Wang, You; Han, Juhong; Yu, Hang; Rong, Kepeng; Wang, Shunyan; An, Guofei; Wang, Hongyuan; Zhang, Wei; Wu, Peng; Yu, Qiang

    2018-06-01

    A diode-pumped alkali laser (DPAL) has gained rapid development in the recent years. Until now, the structure with single heater has been widely utilized to adjust the temperature of an alkali vapor cell in most of the literatures about DPALs. However, for an end-pumped DPAL using single heater, most pump energy is absorbed by the gain media near the entrance cell window because of the large absorption cross section of atomic alkali. As a result, the temperature in the pumping area around the entrance window will go up rapidly, especially in a case of high pumping density. The temperature rise would bring about some negative influences such as thermal effects and variations in population density. In addition, light scattering and window contamination aroused by the chemical reaction between the alkali vapor and the buffer gas will also affect the output performance of a DPAL system. To find a solution to these problems, we propose a gradient heating approach in which several heaters are tandem-set along the optical axis to anneal an alkali vapor cell. The temperature at the entrance window is adjusted to be lower than that of the other side. By using this novel scheme, one can not only achieve a homogeneous absorption of the pump energy along the cell axis, but also decrease the possibility of the window damage in a DPAL configuration. The theoretical simulation of the laser output features has been carried out for a configuration of multiple heaters. Additionally, the DPAL output performance under different gradient temperatures is also discussed in this paper. The conclusions might be helpful for development of a high-powered and high-beam-quality DPAL.

  13. Wind power integration with heat pumps, heat storages, and electric vehicles - Energy systems analysis and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Hedegaard, K.

    2013-09-15

    This PhD investigates to which extent heat pumps, heat storages, and electric vehicles can support the integration of wind power. Considering the gaps in existing research, the main focus is put on individual heat pumps in the residential sector (one-family houses) and the possibilities for flexible operation, using the heat storage options available. Several energy systems analyses are performed using the energy system models, Balmorel, developed at the former TSO, ElkraftSystem, and, EnergyPLAN, developed at Aalborg University. The Danish energy system towards 2030, with wind power penetrations of up to 60 %, is used as a case study in most of the analyses. Both models have been developed further, resulting in an improved representation of individual heat pumps and heat storages. An extensive model add-on for Balmorel renders it possible to optimise investment and operation of individual heat pumps and different types of heat storages, in integration with the energy system. Total costs of the energy system are minimised in the optimisation. The add-on incorporates thermal building dynamics and covers various different heat storage options: intelligent heat storage in the building structure for houses with radiator heating and floor heating, respectively, heat accumulation tanks on the space heating circuit, as well as hot water tanks. In EnergyPLAN, some of the heat storage options have been modelled in a technical optimisation that minimises fuel consumption of the energy system and utilises as much wind power as possible. The energy systems analyses reveal that in terms of supporting wind power integration, the installation of individual heat pumps is an important step, while adding heat storages to the heat pumps is less influential. When equipping the heat pumps with heat storages, only moderate system benefits can be gained. Hereof, the main system benefit is that the need for peak/reserve capacity investments can be reduced through peak load shaving; in

  14. Modelling of Thermal Behavior of Borehole Heat Exchangers of Geothermal Heat Pump Heating Systems

    Directory of Open Access Journals (Sweden)

    Gornov V.F.

    2016-01-01

    Full Text Available This article reports results of comparing the accuracy of the software package “INSOLAR.GSHP.12”, modeling non-steady thermal behavior of geothermal heat pump heating systems (GHCS and of the similar model “conventional” using finite difference methods for solving spatial non-steady problems of heat conductivity. The software package is based on the method of formulating mathematical models of thermal behavior of ground low-grade heat collection systems developed by INSOLAR group of companies. Equations of mathematical model of spatial non-steady thermal behavior of ground mass of low-grade heat collection system obtained by the developed method have been solved analytically that significantly reduced computing time spent by the software complex “INSOLAR.GSHP.12” for calculations. The method allows to turn aside difficulties associated with information uncertainty of mathematical models of the ground thermal behavior and approximation of external factors affecting the ground. Use of experimentally obtained information about the ground natural thermal behavior in the software package allows to partially take into account the whole complex of factors (such as availability of groundwater, their velocity and thermal behavior, structure and arrangement of ground layers, the Earth’s thermal background, precipitation, phase transformations of moisture in the pore space, and more, significantly influencing the formation of thermal behavior of the ground mass of a low-grade geothermal heat collection system. Numerical experiments presented in the article confirmed the high convergence of the results obtained through the software package “INSOLAR.GSHP.12” with solutions obtained by conventional finite-difference methods.

  15. Report on an investigation into heat pumps in China in fiscal 1995; 1995 nendo Chugoku ni okeru heat pump system ni kansuru chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    The paper surveyed the present status, the status of spread, and the technical development of the technology of heat pumps for residential and industrial uses in China. Main examples of installation of heat pumps are cited below: steam drive absorption type refrigerators in Beijing; sea water heat source turbo heat pumps in Qingdao; hot water drive absorption type refrigerators in Beijing; oil-fueled absorption type water cooling and heating appliances in Beijing; ice latent heat storage airconditioning systems using electrically-driven screw chiller in Beijing; temperature rising systems using electrically-driven heat pump of the solar energy utilization warm water swimming pool in Guangdong Province; cooling water supply using waste heat utilization absorption type refrigerator of the alcohol plant in Shandong Province; timber drying systems using electrically-driven heat pump, and marine product cultivation systems in Quangdong Province; distillation systems using steam turbine heat pump in Jiangxi Province. The demand for heat pumps is expected to be 20 million units under the 9th 5-year plan, and the development of equipment is thought to go toward promotion of energy conservation, low noise, multi-type or multi-functional air conditioning equipment, and computer use. 137 figs., 40 tabs.

  16. Compact interior heat exchangers for CO{sub 2} mobile heat pumping systems

    Energy Technology Data Exchange (ETDEWEB)

    Hafner, Armin

    2003-07-01

    The natural refrigerant carbon dioxide (CO{sub 2}) offers new possibilities for design of flexible, efficient and environmentally safe mobile heat pumping systems. As high-efficient car engines with less waste heat are developed, extra heating of the passenger compartment is needed in the cold season. A reversible transcritical CO{sub 2} system with gliding temperature heat rejection can give high air delivery temperature which results in rapid heating of the passenger compartment and rapid defogging or defrosting of windows. When operated in cooling mode, the efficiency of transcritical CO{sub 2} systems is higher compared to common (HFC) air conditioning systems, at most dominant operating conditions. Several issues were identified for the design of compact interior heat exchangers for automotive reversible CO{sub 2} heat pumping systems. Among theses issues are: (1) Refrigerant flow distribution, (2) Heat exchanger fluid flow circuiting, (3) Air temperature uniformity downstream of the heat exchanger, (4) Minimization of temperature approach, (5) Windshield flash fogging due to retained water inside the heat exchanger, (6) Internal beat conduction in heating mode operation, and (7) Refrigerant side pressure drop In order to provide a basis for understanding these issues, the author developed a calculation model and set up a test facility and investigated different prototype heat exchangers experimentally.

  17. Study on hybrid ground-coupled heat pump systems

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Man; Hongxing, Yang [Renewable Energy Research Group, The Hong Kong Polytechnic University, Hong Kong (China); Zhaohong, Fang [School of Thermal Energy Engineering, Shandong Architecture University, Jinan (China)

    2008-07-01

    Although ground-coupled heat pump (GCHP) systems are becoming attractive air-conditioning systems in some regions, the significant drawback for their wider application is the high initial cost. Besides, more energy is rejected into ground by the GCHP system installed in cooling-dominated buildings than the energy extracted from ground on an annual basis and this imbalance can result in the degradation of system performance. One of the available options that can resolve these problems is to apply the hybrid ground-coupled heat pump (HGCHP) systems, with supplemental heat rejecters for rejecting extra thermal energy when they are installed in cooling-dominated buildings. This paper presents a practical hourly simulation model of the HGCHP system by modeling the heat transfer of its main components. The computer program developed on this hourly simulation model can be used to calculate the operating data of the HGCHP system according to the building load. The design methods and running control strategies of the HGCHP system for a sample building are investigated. The simulation results show that proper HGCHP system can effectively reduce both the initial cost and the operating cost of an air-conditioning system compared with the traditional GCHP system used in cooling-dominated buildings. (author)

  18. Influence of individual heat pumps on wind power integration – Energy system investments and operation

    International Nuclear Information System (INIS)

    Hedegaard, Karsten; Münster, Marie

    2013-01-01

    Highlights: • Individual heat pumps can significantly support the integration of wind power. • The heat pumps significantly reduce fuel consumption, CO 2 emissions, and costs. • Heat storages for the heat pumps can provide only moderate system benefits. • Main benefit of flexible heat pump operation is a lower peak/reserve capacity need. • Socio-economic feasibility only identified for some heat storages to some extent. - Abstract: Individual heat pumps are expected to constitute a significant electricity demand in future energy systems. This demand becomes flexible if investing in complementing heat storage capabilities. In this study, we analyse how the heat pumps can influence the integration of wind power by applying an energy system model that optimises both investments and operation, and covers various heat storage options. The Danish energy system by 2030 with around 50–60% wind power is used as a case study. Results show that the heat pumps, even without flexible operation, can contribute significantly to facilitating larger wind power investments and reducing system costs, fuel consumption, and CO 2 emissions. Investments in heat storages can provide only moderate system benefits in these respects. The main benefit of the flexible heat pump operation is a reduced need for peak/reserve capacity, which is also crucial for the feasibility of the heat storages. Socio-economic feasibility is identified for control equipment enabling intelligent heat storage in the building structure and in existing hot water tanks. In contrast, investments in new heat accumulation tanks are not found competitive

  19. The market penetration of solar and heat pump systems in Austria 1991

    International Nuclear Information System (INIS)

    Faninger, G.

    1992-02-01

    The market penetration of solar and heat pump systems in Austria in 1991 shows a high interest for solar systems as well as for swimming-pool heating as for domestic hot-water preparation and also an increase in the field of heat pumps especially for space heating. (author)

  20. Magnetic pumping as a source of particle heating

    Science.gov (United States)

    Lichko, Emily; Egedal, Jan; Daughton, William; Kasper, Justin

    2017-10-01

    Magnetic pumping is a means of heating plasmas for both fusion and astrophysical applications. In this study a magnetic pumping model is developed as a possible explanation for the heating and the generation of power-law distribution functions observed in the solar wind plasma. In most previous studies turbulent energy is only dissipated at microscopic kinetic scales. In contrast, magnetic pumping energizes the particles through the largest scale turbulent fluctuations, thus bypassing the energy cascade. Kinetic simulations are applied to verify these analytic predictions. Previous results for the one-dimensional model, as well as initial results for a two-dimensional model which includes the effects of trapped and passing particles are presented. Preliminary results of the presence of this mechanism in the bow shock region, using spacecraft data from the Magnetospheric Multiscale mission, are presented as well. This research was conducted with support from National Defense Science and Engineering Graduate (NDSEG) Fellowship, 32 CFR 168, as well as from NSF Award 1404166 and NASA award NNX15AJ73G.