WorldWideScience

Sample records for heat program fy1991

  1. Photovoltaic Subcontract Program, FY 1991

    1992-03-01

    This report summarizes the fiscal year (FY) 1991 (October 1, 1990, through September 30, 1991) progress of the subcontracted photovoltaic (PV) research and development (R D) performed under the Photovoltaic Advanced Research and Development Project at the National Renewable Energy Laboratory (NREL) -- formerly the Solar Energy Research Institute (SERI). The mission of the national PV program is to develop PV technology for large-scale generation of economically competitive electric power in the United States. The technical sections of the report cover the main areas of the subcontract program: the Amorphous Silicon Research Project, Polycrystalline Thin Films, Crystalline Silicon Materials Research, High-Efficiency Concepts, the New Ideas Program, the University Participation Program, and the Photovoltaic Manufacturing Technology (PVMaT) project. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1991, and future research directions.

  2. Radon Research Program, FY 1991

    1992-03-01

    The scientific information being sought in this program encompasses research designed to determine radon availability and transport outdoors, modeling transport into and within buildings, physics and chemistry of radon and radon progeny, dose response relationships, lung cancer risk, and mechanisms of radon carcinogenesis. The main goal of the DOE/OHER Radon Research Program is to develop information to reduce these uncertainties and thereby provide an improved health risk estimate of exposure to radon and its progeny as well as to provide information useful in radon control strategies. Results generated under the Program were highlighted in a National Research Council report on radon dosimetry. The study concluded that the risk of radon exposure is 30% less in homes than in mines. This program summary of book describes the OHER FY-1991 Radon Research Program. It is the fifth in an annual series of program books designed to provide scientific and research information to the public and to other government agencies on the DOE Radon Research Program

  3. Annual Report: Photovoltaic Subcontract Program FY 1991

    Summers, K. A. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    1992-03-01

    This report summarizes the fiscal year (FY) 1991 (October 1, 1990, through September 30, 1991) progress of the subcontracted photovoltaic (PV) research and development (R&D) performed under the Photovoltaic Advanced Research and Development Project at the National Renewable Energy Laboratory (NREL)-formerly the Solar Energy Research Institute (SERI). The mission of the national PV program is to develop PV technology for large-scale generation of economically competitive electric power in the United States. The technical sections of the report cover the main areas of the subcontract program: the Amorphous Silicon Research Project, Polycrystalline Thin Films, Crystalline Silicon Materials Research, High Efficiency Concepts, the New Ideas Program, the University Participation Program, and the Photovoltaic Manufacturing Technology (PVMaT) project. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1991, and future research directions.

  4. MHD program plan, FY 1991

    1990-10-01

    The current magnetohydrodynamic MHD program being implemented is a result of a consensus established in public meetings held by the Department of Energy in 1984. The public meetings were followed by the formulation of a June 1984 Coal-Fired MHD Preliminary Transition and Program Plan. This plan focused on demonstrating the proof-of-concept (POC) of coal-fired MHD electric power plants by the early 1990s. MHD test data indicate that while there are no fundamental technical barriers impeding the development of MHD power plants, technical risk remains. To reduce the technical risk three key subsystems (topping cycle, bottoming cycle, and seed regeneration) are being assembled and tested separately. The program does not require fabrication of a complete superconducting magnet, but rather the development and testing of superconductor cables. The topping cycle system test objectives can be achieved using a conventional iron core magnet system already in place at a DOE facility. Systems engineering-derived requirements and analytical modeling to support scale-up and component design guide the program. In response to environmental, economic, engineering, and utility acceptance requirements, design choices and operating modes are tested and refined to provide technical specifications for meeting commercial criteria. These engineering activities are supported by comprehensive and continuing systems analyses to establish realistic technical requirements and cost data. Essential elements of the current program are to: develop technical and environmental data for the integrated MHD topping cycle and bottoming cycle systems through POC testing (1000 and 4000 hours, respectively); design, construct, and operate a POC seed regeneration system capable of processing spent seed materials from the MHD bottoming cycle; prepare conceptual designs for a site specific MHD retrofit plant; and continue supporting research necessary for system testing.

  5. Integral Fast Reactor Program annual progress report, FY 1991

    1992-06-01

    This report summarizes highlights of the technical progress made in the Integral Fast Reactor (IFR) Program in FY 1991. Technical accomplishments are presented in the following areas of the IFR technology development activities: (1) metal fuel performance, (2) pyroprocess development, (3) safety experiments and analyses, (4) core design development, (5) fuel cycle demonstration, and (6) LMR technology R ampersand D

  6. Photovoltaic Subcontract Program, FY 1991. Annual report, [October 1, 1990--September 30, 1991

    1992-03-01

    This report summarizes the fiscal year (FY) 1991 (October 1, 1990, through September 30, 1991) progress of the subcontracted photovoltaic (PV) research and development (R&D) performed under the Photovoltaic Advanced Research and Development Project at the National Renewable Energy Laboratory (NREL) -- formerly the Solar Energy Research Institute (SERI). The mission of the national PV program is to develop PV technology for large-scale generation of economically competitive electric power in the United States. The technical sections of the report cover the main areas of the subcontract program: the Amorphous Silicon Research Project, Polycrystalline Thin Films, Crystalline Silicon Materials Research, High-Efficiency Concepts, the New Ideas Program, the University Participation Program, and the Photovoltaic Manufacturing Technology (PVMaT) project. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1991, and future research directions.

  7. Active Sites Environmental Monitoring Program: Mid-FY 1991 report

    Ashwood, T.L.; Wickliff, D.S.; Morrissey, C.M.

    1991-10-01

    This report summarizes the activities of the Active Sites Environmental Monitoring Program (ASEMP) from October 1990 through March 1991. The ASEMP was established in 1989 by Solid Waste Operations and the Environmental Sciences Division to provide early detection and performance monitoring at active low-level radioactive waste (LLW) disposal sites in Solid Waste Storage Area (SWSA) 6 and transuranic (TRU) waste storage sites in SWSA 5 as required by chapters II and III of US Department of Energy Order 5820.2A. Monitoring results continue to demonstrate the no LLW is being leached from the storage vaults on the tumulus pads. Loading of vaults on Tumulus II began during this reporting period and 115 vaults had been loaded by the end of March 1991.

  8. Microbial Enhanced Oil Recovery and Wettability Research Program. Annual report, FY 1991

    Bala, G.A.; Barrett, K.B.; Eastman, S.L.; Herd, M.D.; Jackson, J.D.; Robertson, E.P.; Thomas, C.P.

    1993-09-01

    This report covers research results for fiscal year 1991 for the Microbial Enhanced Oil Recovery (MEOR) and Wettability Research Program conducted by EG&G Idaho, Inc. at the Idaho National Engineering Laboratory ONEL) for the US Department of Energy Idaho Field Office (DOE-ID). The program is funded by the Assistant Secretary of Fossil Energy, and managed by DOE-ID and the Bartlesville Project Office (BPO). The objectives of this multi-year program are to develop MEOR systems for application to reservoirs containing medium to heavy crude oils and to design and implement an industry cost-shared field demonstration project of the developed technology. An understanding of the controlling mechanisms will first be developed through the use of laboratory scale testing to determine the ability of microbially mediated processes to recover oil under reservoir conditions and to develop the design criteria for scale-up to the field. Concurrently with this work, the isolation and characterization of microbial species collected from various locations including target oil field environments is underway to develop more effective oil recovery systems for specific applications. Research focus includes the study of biogenic product and formation souring processes including mitigation and prevention. Souring research performed in FY 1991 also included the development of microsensor probe technology for the detection of total sulfide in collaboration with the Montana State University Center for Interfacial Microbial Process Engineering (CIMPE). Wettability research is a multi-year collaborative effort with the New Mexico Petroleum Recovery Research Center (NMPRRC) at the New Mexico institute of Mining and Technology, Socorro, NM to evaluate reservoir wettability and its effects on oil recovery. Results from the wettability research will be applied to determine if alteration of wettability is a significant contributing mechanism for MEOR systems.

  9. Laboratory directed research and development. FY 1991 program activities: Summary report

    1991-11-15

    The purposes of Argonne`s Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel concepts, enhance the Laboratory`s R&D capabilities, and further the development of its strategic initiatives. Among the aims of the projects supported by the Program are establishment of engineering ``proof-of-principle``; development of an instrumental prototype, method, or system; or discovery in fundamental science. Several of these project are closely associated with major strategic thrusts of the Laboratory as described in Argonne`s Five Year Institutional Plan, although the scientific implications of the achieved results extend well beyond Laboratory plans and objectives. The projects supported by the Program are distributed across the major programmatic areas at Argonne. Areas of emphasis are (1) advanced accelerator and detector technology, (2) x-ray techniques in biological and physical sciences, (3) advanced reactor technology, (4) materials science, computational science, biological sciences and environmental sciences. Individual reports summarizing the purpose, approach, and results of projects are presented.

  10. Hydrogen Energy Coordinating Committee annual report: Summary of DOE hydrogen programs for FY 1991

    1991-07-01

    The HECC was established over 13 years ago to ensure that the many varied aspects of hydrogen technology within the Department are coordinated. Each year the committee brings together technical representative within the Department to coordinate activities, share research results and discuss future priorities and directions. This FY 1990 summary is the thirteenth consecutive yearly report. It provides an overview of the hydrogen-related programs of the DOE offices represented in the HECC for the fiscal year. For the purposes of this report, the research projects within each division have been organized into two categories: Fuels-related Research and Non-fuels-related Research. An historical summary of the hydrogen budgets of the several divisions is given. Total DOE funding in FY 1990 was $6.8 million for fuels-related research and $32.9 million for non-fuels-related research. The individual program elements are described in the body of this report, and more specific program information can be found in the Technology Summary Forms in Appendix A

  11. Savannah River Site Interim Waste Management Program Plan FY 1991--1992

    Chavis, D.M.

    1992-05-01

    The primary purpose of the Waste Management Program Plan is to provide an annual report of how Waste Management's operations are conducted, what facilities are being used to manage wastes, what forces are acting to change current waste management systems, and what plans are in store for the coming fiscal year. In addition, this document projects activities for several years beyond the coming fiscal year in order to adequately plan for safe handling, storage, and disposal of radioactive wastes generated at the Savannah River Site and for developing technology for improved management of wastes. In this document, work descriptions and milestone schedules are current as of December 1991.

  12. Savannah River Site Interim Waste Management Program Plan FY 1991--1992

    Chavis, D.M.

    1992-05-01

    The primary purpose of the Waste Management Program Plan is to provide an annual report of how Waste Management`s operations are conducted, what facilities are being used to manage wastes, what forces are acting to change current waste management systems, and what plans are in store for the coming fiscal year. In addition, this document projects activities for several years beyond the coming fiscal year in order to adequately plan for safe handling, storage, and disposal of radioactive wastes generated at the Savannah River Site and for developing technology for improved management of wastes. In this document, work descriptions and milestone schedules are current as of December 1991.

  13. Savannah River Site Interim Waste Management Program Plan FY 1991--1992

    Chavis, D.M.

    1992-05-01

    The primary purpose of the Waste Management Program Plan is to provide an annual report of how Waste Management's operations are conducted, what facilities are being used to manage wastes, what forces are acting to change current waste management systems, and what plans are in store for the coming fiscal year. In addition, this document projects activities for several years beyond the coming fiscal year in order to adequately plan for safe handling, storage, and disposal of radioactive wastes generated at the Savannah River Site and for developing technology for improved management of wastes. In this document, work descriptions and milestone schedules are current as of December 1991

  14. Department of the Navy FY 1990/FY 1991 Biennial Budget Estimates. Military Construction and Family Housing Program FY 1990. Justification Data Submitted to Congress

    1989-01-01

    properly configured for optimum space use, are inadequate, overcrowded, and cannot acca -modate all the children who need child care. Comeercial child... F6 -4 l’mestic Leasing Fiscal Year Summary: PY 1988 - The domestic leasing program consists of 1,324 units requiring funding of 09,551.0. runding in

  15. FY 1991 scientific and technical reports, articles, papers, and presentations

    Turner, Joyce E. (Compiler)

    1991-01-01

    Formal NASA technical reports, papers published in technical journals, and presentations by MSFC personnel in FY 1991 are presented. Papers of MSFC contractors are also included. The information in this report may be of value to the scientific and engineering community in determining what information has been published and what is available.

  16. Accelerator Technology Division annual report, FY 1991

    1992-04-01

    This report discusses the following programs: The Ground Test Accelerator Program; APLE Free-Electron Laser Program; Accelerator Transmutation of Waste; JAERI, OMEGA Project, and Intense Neutron Source for Materials Testing; Advanced Free-Electron Laser Initiative; Superconducting Super Collider; The High-Power Microwave Program; Φ Factory Collaboration; Neutral Particle Beam Power System Highlights; Accelerator Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Accelerator Design and Engineering; Radio-Frequency Technology; Free-Electron Laser Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operations

  17. Annual report, Basic Sciences Branch, FY 1991

    1993-04-01

    This report summarizes the progress of the Basic Sciences Branch of the National Renewable Energy Laboratory (NREL) from October 1, 1990, through September 30, 1991. Seven technical sections of the report cover these main areas of NREL`s in-house research: Semiconductor Crystal Growth, Amorphous Silicon Research, Polycrystalline Thin Films, III-V High-Efficiency Photovoltaic Cells, Solid-State Theory, Solid-State Spectroscopy, and Superconductivity. Each section explains the purpose and major accomplishments of the work in the context of the US Department of Energy`s National Photovoltaic Research Program plans.

  18. Annual report, Basic Sciences Branch, FY 1991

    1993-04-01

    This report summarizes the progress of the Basic Sciences Branch of the National Renewable Energy Laboratory (NREL) from October 1, 1990, through September 30, 1991. Seven technical sections of the report cover these main areas of NREL's in-house research: Semiconductor Crystal Growth, Amorphous Silicon Research, Polycrystalline Thin Films, III-V High-Efficiency Photovoltaic Cells, Solid-State Theory, Solid-State Spectroscopy, and Superconductivity. Each section explains the purpose and major accomplishments of the work in the context of the US Department of Energy's National Photovoltaic Research Program plans.

  19. NRC safety research in support of regulation, FY 1991

    1992-04-01

    This report, the seventh in a series of annual reports, was prepared in response to congressional inquiries concerning how nuclear regulatory research is used. It summarizes the accomplishments of the Office of Nuclear Regulatory Research during FY 1991. The goal of this office is to ensure that safety-related research provides the technical bases for rulemaking and for related decisions in support of NRC licensing and inspection activities. This research is necessary to make certain that the regulations that are imposed on licensees provide an adequate margin of safety so as to protect the health and safety of the public. This report describes both the direct contributions to scientific and technical knowledge with regard to nuclear safety and their regulatory applications

  20. FY 1991 report on the bituminous coal liquefaction section; 1991 nendo rekiseitan ekikabukai hokokusho

    NONE

    1992-03-01

    The paper reported activities of the bituminous coal liquefaction section in FY 1991. In the 1st bituminous coal liquefaction section meeting, report/discussion were made on the outline of the plan on the FY 1991 research using pilot plant and the support study of pilot plant. In the 2nd section meeting, report was made on 'How the development of coal liquefaction technology should be in the 21st century,' a report made by the joint section of bituminous coal/brown coal liquefaction. In the 3rd section meeting, report/discussion were made on the state of progress of the FY 1991 R and D and results. In the study using the bituminous coal liquefaction pilot plant, report was made on the outline of construction of a 150t/d pilot plant, study on the acquisition of material balance, analytical study of the data on liquefaction tower, testing survey on properties of coal slurry, and testing survey on slurry preheating furnace. In the support study of pilot plant, report was made on the study using 1t/d PUS, study on the development of the optimum coal refining technology and improvement in the distillate distribution, study of conditions for coal liquefaction and study of solvent hydrogenation catalyst. (NEDO)

  1. FY 1991 Report on research and development of super heat pump energy accumulation system. Construction and operation of the prototype system (Researches on systematization); 1981 nendo super heat pump energy shuseki system kenkyu kaihatsu seika hokokusho. System shisaku unten kenkyu (system ka kenkyu)

    NONE

    1982-03-01

    This research and development program includes the conceptual designs of and simulation studies on the super heat pump energy accumulation systems, to realize 30,000 kW-class commercial-scale plant. The district air conditioning and hot water supply by the plant of the above size are studied for the domestic area, including houses, office buildings, commercial facilities, and accommodations. The results indicate that the system has both merits and demerits, and should be further investigated for improvement. The merits include reduced power consumption by the heat pump, because of its high efficiency, reduction in the running cost, and increased ratio of late-night power, and the demerits include increased power consumption by the pumps for the heat source, increased initial costs of the facilities, and increased space-related cost. The industrial plants studied for application of the super heat pump energy accumulation system are those for production of corn starch, distilled sake and diary products. The other items studied include analysis/evaluation of economic distance for carrying heat source water, and improvement of simulator functions. (NEDO)

  2. A plan for administrative computing at ANL FY1991 through FY1993

    Caruthers, L.E. (ed.); O' Brien, D.E.; Bretscher, M.E.; Hischier, R.C.; Moore, N.J.; Slade, R.G.

    1990-10-01

    In July of 1988, Argonne National Laboratory management approved the restructuring of Computing Services into the Computing and Telecommunications Division, part of the Physical Research area of the Laboratory. One major area of the Computing and Telecommunications Division is Management Information Systems (MIS). A significant aspect of Management Information Systems' work is the development of proposals for new and enhanced administrative computing systems based on an analysis of informational needs. This document represent the outcome of the planning process for FY1991 through FY1993. The introduction of the FY1991 through FY1993 Long-Range Plan assesses the state of administrative computing at ANL and the implications of FY1991 funding recommendations. It includes a history of MIS planning for administrative data processing. This document discusses the strategy and goals which are an important part of administrative data processing plans for the Laboratory. It also describes the management guidelines established by the Administrative Data Processing Oversight Committee for the proposal and implementation of administrative computing systems. Summaries of the proposals for new or enhanced administrative computing systems presented by individual divisions or departments with assistance of Management Information Systems, to the Administrative Data Processing Oversight Committee are given. The detailed tables in this paper give information on how much the resources to develop and implement a given systems will cost its users. The tables include development costs, computing/operations costs, software and hardware costs, and efforts costs. They include both systems funded by Laboratory General Expense and systems funded by the users themselves.

  3. Analytical Chemistry Laboratory progress report for FY 1991

    Green, D.W.; Heinrich, R.R.; Graczyk, D.G.; Lindahl, P.C.; Boparai, A.S.

    1991-12-01

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year 1991 (October 1990 through September 1991). This is the eighth annual report for the ACL. The Analytical Chemistry Laboratory is a full-cost-recovery service center, with the primary mission of providing a broad range of analytical chemistry support services to the scientific and engineering programs at ANL. In addition, the ACL conducts a research program in analytical chemistry, works on instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems, from routine standard analyses to unique problems that require significant development of methods and techniques.

  4. Energy Resources Performance Report, FY 1991 and FY 1992.

    United States. Bonneville Power Administration.

    1993-07-01

    Once the Federal Columbia River Power System provided all the power our customers needed and surplus energy, which we sold to others. However, we planned for the time when the surplus would disappear. With our customers, we developed centralized, region-wide conservation programs to conserve energy and build the knowledge and ability to save more energy when needed. We began to look at conservation as a resource, comparing it with supply-side alternatives. Much was accomplished. In Bonneville`s service area in the 1980s, our customers acquired 300 average megawatts (aMW) of conservation savings. How? By weatherizing about 240,000 homes, by making aluminum plants, other industrial plants and commercial buildings more efficient, and also by encouraging states to adopt energy-efficient building codes. Now, our energy surplus is gone. Our customers need energy, and in a hurry. While we plan how much energy will be needed, when and by which customers, we must concurrently accelerate our efforts to acquire resources. Our 1990 Resource Program launched a strategy to do just that, starting in 1991 and 1992, with continuing activities in 1993--1995. The goals and plans of the 1990 Resource Program are still being implemented.

  5. FY 1991 report on the Coal Gasification Committee; 1991 nendo sekitan gasuka iinkai hokokusho

    NONE

    1992-03-01

    The paper reported activities of the Coal Gasification Committee, gasification power generation section and gasification technology section in FY 1991. The 1st Coal Gasification Committee Meeting was held on July 16,1991, and report/discussion were made about an outline of the FY 1991 research plan on the development of coal gasification technology. The 2nd Meeting was held on March 12, 1992, and report/discussion were made about activities of each section meeting and the progress of the development of coal gasification technology. In the section meeting of coal gasification power generation, report/discussion were made about the progress and study object of the development of entrained bed coal gasification power plant and support study for the development of the plant. In the 1st section meeting of coal gasification technology, as to the developmental plan on coal utilization hydrogen production technology, report/discussion were made about design/construction/operational study of pilot plant and support study for pilot plant (study using small equipment, study of trial manufacture of plant use equipment/materials). In the 2nd section meeting, report/discussion were made about the results of the development of coal utilization hydrogen production technology. (NEDO)

  6. FY 1991 Task plans for the Hanford Environmental Dose Reconstruction Project

    1991-04-01

    The purpose of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate radiation doses from Hanford Site operations since 1944 to populations and individuals. The objectives of work in Fiscal Year (FY) 1991 are to analyze data and models used in Phase 1 and restructure the models to increase accuracy and reduce uncertainty in dose estimation capability. Databases will be expanded and efforts will begin to determine the appropriate scope (space, time, radionuclides, pathways and individuals/population groups) and accuracy (level of uncertainty in dose estimates) for the project. Project scope and accuracy requirements, once defined, can be translated into additional model and data requirements later in the project. Task plans for FY 1991 have been prepared based on activities approved by the Technical Steering Panel (TSP) in October 1990 and mid-year revisions discussed at the TSP planning/budget workshop in February 1991. The activities can be divided into two broad categories: (1) model and data development and evaluation, (2) project, technical and communication support. 3 figs., 1 tab

  7. FY 1991 Report on research and development of super heat pump energy accumulation system. Part 1. Construction and operation of the prototype system (researches on elementary techniques and construction and operation of the pilot system); Super heat pump energy shuseki system no kenkyu kaiahtsu 1981 nendo seika hokokusho. 1. System shisaku unten kenkyu (yoso gijutsu no kenkyu / pilot system no shisaku unten kenkyu)

    NONE

    1982-05-01

    Summarized herein are R and D results of the super high performance heat pumps and elementary equipment, for R and D of the super heat pump energy accumulation system. For R and D of the super high performance compression heat pumps, the R and D efforts are directed to tests and evaluation of the pilot plant for the highly efficient type (for heating only), which produce the results of COP exceeding the target of 8; to tests of the anti-corrosion measures for the aluminum heat exchangers for the highly efficient type (for cooling and heating), by which the effective inhibitors are selected. The hybrid systems of the super high performance compression heat pumps and chemical heat storage are also studied in detail. The R and D efforts are directed to construction and operation of the hybrid heat pump system to collect underground heat for the high temperature type (utilizing low temperature heat source), which produce the results of confirming possibility of efficient heat collection for extended periods; and to improvement, construction on a trial basis and operation of the high-speed reciprocating compressors and steam superchargers for the high temperature type (utilizing high temperature heat source). For R and D of the elementary equipment, tests and evaluation are conducted for the EHD heat exchangers which use R123 as the new working fluid. (NEDO)

  8. FY 1991 Report on research and development of super heat pump energy accumulation system. Part 2. Construction and operation of the prototype system (researches on elementary techniques and construction and operation of the pilot system); Super heat pump energy shuseki system no kenkyu kaihatsu 1991 nendo seika hokokusho. 2. System shisaku unten kenkyu (yoso gijutsu no kenkyu / pilot system no shisaku unten kenkyu)

    NONE

    1982-05-01

    Summarized herein are R and D results of the researches on the chemical heat storage systems, plant simulation techniques and combined systems, and international technical exchanges, for R and D of the super heat pump energy accumulation system. For the high temperature heat storage type (utilizing ammonia complexes), the initial research targets are almost attained, as a result of the designs of a chemical heat storage unit having heat storage capacity of 1,000 kWh. For the high temperature heat storage type (utilizing hydration reactions), a 25 Mcal-scale pilot partial test unit is operated, to study applicability of the practical materials and other operation-related themes. For the low temperature heat storage type (utilizing hydration reactions by solute mixing), a pilot system is operated, to attain heat recovery of 75% or more, heat storage density of 30 kcal/kg or more, and output temperature of 7 degrees C. For the low temperature heat storage type (utilizing clathrates), the evaluation tests by a pilot plant produce heat recovery of 93.2% and heat storage density of 32.0 kcal/kg. In addition, the R and D efforts are directed to, e.g., researches on plant simulation techniques and combined systems. (NEDO)

  9. FY 1991 project plan for the Hanford Environmental Dose Reconstruction Project, Phase 2

    1991-02-01

    Phase 1 of the Hanford Environmental Dose Reconstruction Project was designed to develop and demonstrate a method for estimating radiation doses people may have received from Hanford Site operations since 1944. The method researchers developed relied on a variety of measured and reconstructed data as input to a modular computer model that generates dose estimates and their uncertainties. As part of Phase 1, researchers used the reconstructed data and computer model to calculate preliminary dose estimates for populations in a limited geographical area and time period. Phase 2, now under way, is designed to evaluate the Phase 1 data and model and improve them to calculate more accurate and precise dose estimates. Phase 2 will also be used to obtain preliminary estimates of two categories of doses: for Native American tribes and for individuals included in the pilot phase of the Hanford Thyroid Disease Study (HTDS). TSP Directive 90-1 required HEDR staff to develop Phase 2 task plans for TSP approval. Draft task plans for Phase 2 were submitted to the TSP at the October 11--12, 1990 public meeting, and, after discussions of each activity and associated budget needs, the TSP directed HEDR staff to proceed with a slate of specific project activities for FY 1991 of Phase 2. This project plan contains detailed information about those activities. Phase 2 is expected to last 15--18 months. In mid-FY 1991, project activities and budget will be reevaluated to determine whether technical needs or priorities have changed. Separate from, but related to, this project plan, will be an integrated plan for the remainder of the project. HEDR staff will work with the TSP to map out a strategy that clearly describes ''end products'' for the project and the work necessary to complete them. This level of planning will provide a framework within which project decisions in Phases 2, 3, and 4 can be made

  10. FY 1991 Report on the results of the research and development of the processing technologies for creating advanced functions. Development of the technologies for preventing corrosion of oil production systems; 1991 nendo senshin kino soshutsu kako gijutsu no kenkyu kaihatsu seika hokokusho. Sekiyu seisan system fushoku boshi gijutsu kaihatsu

    NONE

    1992-03-01

    The research and development project has been started to develop the technologies for superhigh-purity separation/processing; controlling ultrafine crystal particles, including creating composites by the aid of a plasma laser; synthesizing highly functional organic materials; and supporting these technologies, for creating functions, e.g., advanced sensing functions, highly functional electromagnetic characteristics, and corrosion resistance, heat resistance and high strength. The R and D program for the technologies for superhigh-purity separation/processing covers development of highly corrosion-resistant, high-sensitivity gas sensors and highly functional thin oxide film sensors. The R and D program for controlling ultrafine crystal particles covers the researches on the technologies for creating inclined structures by the ion composite vapor-phase process, and the technologies for producing composites by the aid of a plasma laser. The R and D program for the organic material synthesis technologies includes researches on the technologies for controlling higher structures in a molecular beam composite reaction field, and on the technologies for synthesizing materials in a photon composite reaction field and in an interfacial composite reaction field. The R and D program for the supporting technologies includes the researches on the technologies for diagnosing a composite reaction field by the laser-aided ionization method. In the FY 1991, which is essentially the first year for the project, the efforts are directed to designs and construction of the required facilities, and preliminary tests. (NEDO)

  11. Carbon dioxide and climate. [Appendix includes names and addresses of the Principal Investigators for the research projects funded in FY1991

    1991-10-01

    Global climate change is a serious environmental concern, and the US has developed An Action Agenda'' to deal with it. At the heart of the US effort is the US Global Change Research Program (USGCRP), which has been developed by the Committee on Earth and Environmental Sciences (CEES) of the Federal Coordinating Council for Sciences, Engineering, and Technology (FCCSET). The USGCRP will provide the scientific basis for sound policy making on the climate-change issue. The DOE contribution to the USGCRP is the Carbon Dioxide Research Program, which now places particular emphasis on the rapid improvement of the capability to predict global and regional climate change. DOE's Carbon Dioxide Research Program has been addressing the carbon dioxide-climate change connection for more than twelve years and has provided a solid scientific foundation for the USGCRP. The expansion of the DOE effort reflects the increased attention that the Department has placed on the issue and is reflected in the National Energy Strategy (NES) that was released in 1991. This Program Summary describes projects funded by the Carbon Dioxide Research Program during FY 1991 and gives a brief overview of objectives, organization, and accomplishments. The Environmental Sciences Division of the Office of Health and Environmental Research, Office of Energy Research supports a Carbon Dioxide Research Program to determine the scientific linkage between the rise of greenhouse gases in the atmosphere, especially carbon dioxide, and climate and vegetation change. One facet is the Core CO{sub 2} Program, a pioneering program that DOE established more than 10 years ago to understand and predict the ways that fossil-fuel burning could affect atmospheric CO{sub 2} concentration, global climate, and the Earth's biosphere. Major research areas are: global carbon cycle; climate detection and models of climate change; vegetation research; resource analysis; and, information and integration.

  12. Department of the Navy FY 1990/FY 1991 Biennial Budget Estimates. Military Construction and Family Housing Program FY 1991. Justification Data Submitted to Congress

    1989-01-01

    environmental review process as indicated by the County Traffic Engineers for safe and secure transport of ordnance as well as the chosen alternative...from other appropriations: None. PRVOSEDITION$ MAY SE USED ITRALDD DE 7 PG NO.DD • 391C UNTIL XHAUSTEDP N. S.PRRMELMN . CATGOR OO 7..POETNMER U JC...service. IMPACT IF NOT PROVIDED: Activity must rely r.n truck refuelers which are not Capable of handling the demand. Time delays, logisticA and safety

  13. FY 1991 Report on research and development of super heat pump energy accumulation system. Material for explanation (Construction and operation of the prototype system - researches on elementary techniques and construction and operation of the pilot system); Super heat pump energy shuseki system no kenkyu kaihatsu 1991 nendo seika hokokusho. Setsumei shiryo (system shisaku unten kenkyu (yoso gijutsu no kenkyu / pilot system no shisaku unten kenkyu))

    NONE

    1982-05-01

    Summarized herein are R and D results of the researches on the super heat pump energy accumulation system, obtained from FY 1985 to 1991. For R and D of the super high performance compression heat pumps, the R and D results of the elementary techniques and bench and pilot plant operation are summarized for the highly efficient type (for heating) and highly efficient type (for cooling and heating), and high temperature type (utilizing high temperature heat source) and high temperature type (utilizing low temperature heat source). Described are patent application list, designated know-hows, and conclusions. For the elementary equipment and working fluids, the R and D results are summarized for the evaporators for mixed solvents, EHD condensers, and working fluids (alcohol-based fluids and application characteristics of new fluids) and working fluids (nonalcohol-based fluids and basic properties of new fluids). For the chemical heat storage techniques, the R and D results are summarized for the high temperature heat storage type (utilizing metathesis reactions, ammonia complexes and hydration reactions), and low temperature heat storage type (utilizing clathrates, hydration by solute mixing and solvation). (NEDO)

  14. FY 1991 Report on the results of the research and development of silicon-based high-molecular-weight materials; 1991 nendo keisokei kobunshi zairyo no kenkyu kaihatsu seika hokokusho

    NONE

    1992-03-01

    The research and development project has been started to establish the basic technologies for molecular designs, synthesis, material production and evaluation of silicon-based high-molecular-weight materials expected to exhibit excellent characteristics, e.g., electro-optical functions, resistance to heat, flame retardance and mechanical properties. The efforts in FY 1991, the first year for the 10-year project, are mainly directed to the surveys on the R and D trends, both domestic and foreign, to clarify the relationship between the structures and functions/properties. The R and D projects followed include the technologies for synthesizing (1) electroconductive silicon-based high-molecular-weight materials, (2) novel silicon-based high-molecular-weight materials capable of drawing circuits, (3) novel, light-emitting silicon-based high-molecular-weight materials and (4) silicon-based opto-electric conversion materials for the electro-optical functional high-molecular-weight materials; and (1) synthesis of high-molecular-weight structural materials of sea island structure, (2) technologies for forming inter-penetrating type structures (IPN), (3) development of composite structural materials of organometallic complex and silicon-based high-molecular-weight material, and (4) development of silicon-based high-molecular-weight materials of ring structure for the high-molecular-weight structural materials. (NEDO)

  15. Expenditures for Resources in School Library Media Centers, FY 1991-92.

    Miller, Marilyn L.; Shontz, Marilyn

    1993-01-01

    The sixth in a series of "School Library Journal" reports on trends in school library expenditures for program development shows that commitment to the teaching and motivating of reading is in conflict with fascination with technology and that access to books is being seriously curtailed by the deteriorating state of school library collections.…

  16. University of Illinois at Urbana-Champaign, Materials Research Laboratory progress report for FY 1991

    1991-10-01

    The Materials Research Laboratory at the University of Illinois is an interdisciplinary laboratory operated in the College of Engineering. Its focus is the science of materials and it supports research in the areas of condensed matter physics, solid state chemistry, and materials science. This report addresses topics such as: an MRL overview; budget; general programmatic and institutional issues; new programs; research summaries for metallurgy, ceramics, solid state physics, and materials chemistry

  17. University of Illinois at Urbana-Champaign, Materials Research Laboratory progress report for FY 1991

    1991-10-01

    The Materials Research Laboratory at the University of Illinois is an interdisciplinary laboratory operated in the College of Engineering. Its focus is the science of materials and it supports research in the areas of condensed matter physics, solid state chemistry, and materials science. This report addresses topics such as: an MRL overview; budget; general programmatic and institutional issues; new programs; research summaries for metallurgy, ceramics, solid state physics, and materials chemistry.

  18. Division of Energy Biosciences annual report and summaries of FY 1991 activities

    1991-09-01

    As a component of the Department of Energy, the Energy Biosciences (EB) program of the Office of Basic Energy Sciences supports long-term research aimed at addressing energy-related problems utilizing biological systems. There are three main components of the EB program. The first, Primary Biological Energy Conversion, concentrates on research on plant and microbial photosynthesis, but also deals with plant growth control, stress reactions, and interaction with pathogens. The second, Bioconversion of Products, concentrates on utilization of the products of primary energy conversion. Specific examples include biosynthesis of potential fuels or chemicals, biodegradation of lignocellulose into potentially useful compounds, plant/microbe symbiosis, microbial methanogenesis and fermentation. The third main component of the EB program involves providing the basic research infrastructure to support future discoveries. The emphasis here is on investigation of basic genetic mechanisms, both in novel systems and extensively studied systems such as maize; development of critical databases, techniques, and instrumentation; and support of training in areas that are important but underpopulated. Brief descriptions of currently supported research projects are provided. 186 refs., 1 tab

  19. LBL/JSU/AGMUS science consortium annual report, FY 1991--1992

    1992-12-31

    In 1983, a formal Memorandum of Understanding joined the Ana G. Mendez University System (AGMUS), Jackson State University (JSU), and the Lawrence Berkeley Laboratory (LBL) in a consortium designed to advance the science and technology programs of JSU and AGMUS. This is the first such collaboration between a Hispanic university system, a historically Black university, and a national laboratory. The goals of this alliance are basic and direct: to develop and effect a long-term, comprehensive program that will enable the campuses of AGMUS and JSU to provide a broad, high-quality offering in the natural and computer sciences, to increase the number of minority students entering these fields, and to contribute to scientific knowledge and the federal government`s science mission through research. This report documents the progress toward these goals and includes individual success stories. The LBL/JSU/AGMUS Science Consortium has developed plans for utilizing its program successes to help other institutions to adopt or adapt those elements of the model that have produced the greatest results. Within the five-year plan formulated in 1990 are eight major components, each with defining elements and goals. These elements have become the components of the Science Consortium`s current plan for expansion and propagation.

  20. Division of Energy Biosciences annual report and summaries of FY 1991 activities

    1991-09-01

    As a component of the Department of Energy, the Energy Biosciences (EB) program of the Office of Basic Energy Sciences supports long-term research aimed at addressing energy-related problems utilizing biological systems. There are three main components of the EB program. The first, Primary Biological Energy Conversion, concentrates on research on plant and microbial photosynthesis, but also deals with plant growth control, stress reactions, and interaction with pathogens. The second, Bioconversion of Products, concentrates on utilization of the products of primary energy conversion. Specific examples include biosynthesis of potential fuels or chemicals, biodegradation of lignocellulose into potentially useful compounds, plant/microbe symbiosis, microbial methanogenesis and fermentation. The third main component of the EB program involves providing the basic research infrastructure to support future discoveries. The emphasis here is on investigation of basic genetic mechanisms, both in novel systems and extensively studied systems such as maize; development of critical databases, techniques, and instrumentation; and support of training in areas that are important but underpopulated. Brief descriptions of currently supported research projects are provided. 186 refs., 1 tab (MHB)

  1. Nuclear thermal propulsion technology: Results of an interagency panel in FY 1991

    Clark, J.S.; Mcdaniel, P.; Howe, S.; Helms, I.; Stanley, M.

    1993-04-01

    NASA LeRC was selected to lead nuclear propulsion technology development for NASA. Also participating in the project are NASA MSFC and JPL. The U.S. Department of Energy will develop nuclear technology and will conduct nuclear component, subsystem, and system testing at appropriate DOE test facilities. NASA program management is the responsibility of NASA/RP. The project includes both nuclear electric propulsion (NEP) and nuclear thermal propulsion (NTP) technology development. This report summarizes the efforts of an interagency panel that evaluated NTP technology in 1991. Other panels were also at work in 1991 on other aspects of nuclear propulsion, and the six panels worked closely together. The charters for the other panels and some of their results are also discussed. Important collaborative efforts with other panels are highlighted. The interagency (NASA/DOE/DOD) NTP Technology Panel worked in 1991 to evaluate nuclear thermal propulsion concepts on a consistent basis. Additionally, the panel worked to continue technology development project planning for a joint project in nuclear propulsion for the Space Exploration Initiative (SEI). Five meetings of the panel were held in 1991 to continue the planning for technology development of nuclear thermal propulsion systems. The state-of-the-art of the NTP technologies was reviewed in some detail. The major technologies identified were as follows: fuels, coatings, and other reactor technologies; materials; instrumentation, controls, health monitoring and management, and associated technologies; nozzles; and feed system technology, including turbopump assemblies

  2. FY 1991 report on the results of the contract R and D of the human sense measuring application technology. 3. R and D of a technology to present the mock environment; 1991 nendo ningen kankaku keisoku oyo gijutsu no kenkyu kaihatsu seika hokokusho. 3. Mogi kankyo teiji gijutsu no kenkyu kaihatsu

    NONE

    1992-03-01

    As a part of the R and D of a technology to present the mock environment, the following R and D were conducted: (1) method to estimate thermal amenity by life scene of worker; (2) radiation model contributing to improvement of working environment; (3) methods to measure/evaluate/improve the combined environment of working environment/living environment at power plants. In (1), the following were carried out: development of equipment to present thermal environment by life scene and by human body part; measurement of thermal environment; measurement of physiological reaction; measurement of mental reaction; construction of human body thermal model. In (2), the target of the R and D is to develop artificial solar radiation equipment by which the outdoor natural radiation environment can be simulated. The targeted reproduced wave length area of photovoltaic unit model is 400-20,000nm. Therefore, in FY 1991, the selection of photovoltaic unit model parts was experimentally confirmed. The sheet exothermic body of the solar heat reproducing wall heater model was experimentally evaluated to study applicability. In (3), the paper took up 'a study on a method to present/evaluate/improve the composite environment,' and made a basic study on a method to measure/evaluate air transmission sound/solid transmission sound/low-frequency sound. (NEDO)

  3. FY 1991 report on the results of the contract R and D of the human sense measuring application technology. 3. R and D of a technology to present the mock environment; 1991 nendo ningen kankaku keisoku oyo gijutsu no kenkyu kaihatsu seika hokokusho. 3. Mogi kankyo teiji gijutsu no kenkyu kaihatsu

    NONE

    1992-03-01

    As a part of the R and D of a technology to present the mock environment, the following R and D were conducted: (1) method to estimate thermal amenity by life scene of worker; (2) radiation model contributing to improvement of working environment; (3) methods to measure/evaluate/improve the combined environment of working environment/living environment at power plants. In (1), the following were carried out: development of equipment to present thermal environment by life scene and by human body part; measurement of thermal environment; measurement of physiological reaction; measurement of mental reaction; construction of human body thermal model. In (2), the target of the R and D is to develop artificial solar radiation equipment by which the outdoor natural radiation environment can be simulated. The targeted reproduced wave length area of photovoltaic unit model is 400-20,000nm. Therefore, in FY 1991, the selection of photovoltaic unit model parts was experimentally confirmed. The sheet exothermic body of the solar heat reproducing wall heater model was experimentally evaluated to study applicability. In (3), the paper took up 'a study on a method to present/evaluate/improve the composite environment,' and made a basic study on a method to measure/evaluate air transmission sound/solid transmission sound/low-frequency sound. (NEDO)

  4. Heat simulation via Scilab programming

    Hasan, Mohammad Khatim; Sulaiman, Jumat; Karim, Samsul Arifin Abdul

    2014-07-01

    This paper discussed the used of an open source sofware called Scilab to develop a heat simulator. In this paper, heat equation was used to simulate heat behavior in an object. The simulator was developed using finite difference method. Numerical experiment output show that Scilab can produce a good heat behavior simulation with marvellous visual output with only developing simple computer code.

  5. State heating oil and propane program

    1991-01-01

    The following is a report of New Hampshire's participation in the State Heating Oil and Propane Program (SHOPS) for the 1990--91 heating season. The program is a joint effort between participating states and the Department of Energy (DOE), Energy Information Administration (EYE) to collect retail price data for heating oil and propane through phone surveys of 25 oil and 20 propane retailers in New Hampshire. SHOPS is funded through matching grants from DOE and the participating state. (VC)

  6. No. 2 heating oil/propane program

    McBrien, J.

    1991-06-01

    During the 1990/91 heating season, the Massachusetts Division of Energy Resources (DOER) participated in a joint data collection program between several state energy offices and the federal Department of Energy's (DOE) Energy Information Administration (EIA). The purpose of the program was to collect and monitor retail and wholesale heating oil and propane prices and inventories from October 1990 through March 1991. This final report begins with an overview of the unique events which had an impact on the reporting period. Next, the report summarizes the results from the residential heating oil and propane price surveys conducted by DOER over the 1990/91 heating season. The report also incorporates the wholesale heating oil and propane prices and inventories collected by the EIA and distributed to the states

  7. No. 2 heating oil/propane program

    McBrien, J.

    1991-06-01

    During the 1990/91 heating season, the Massachusetts Division of Energy Resources (DOER) participated in a joint data collection program between several state energy offices and the federal Department of Energy's (DOE) Energy Information Administration (EIA). The purpose of the program was to collect and monitor retail and wholesale heating oil and propane prices and inventories from October 1990 through March 1991. This final report begins with an overview of the unique events which had an impact on the reporting period. Next, the report summarizes the results from the residential heating oil and propane price surveys conducted by DOER over the 1990/91 heating season. The report also incorporates the wholesale heating oil and propane prices and inventories collected by the EIA and distributed to the states.

  8. Program Computes Flows Of Fluids And Heat

    Cullimore, Brent; Ring, Steven; Welch, Mark

    1993-01-01

    SINDA'85/FLUINT incorporates lumped-parameter-network and one-dimensional-flow mathematical models. System enables analysis of mutual influences of thermal and flow phenomena. Offers two finite-difference numerical solution techniques: forward-difference explicit approximation and Crank-Nicholson approximation. Enables simulation of nonuniform heating and facilitates mathematical modeling of thin-walled heat exchangers. Ability to model nonequilibrium behavior within two-phase volumes included. Recent changes in program improve modeling of real evaporator pumps and other capillary-assist evaporators. Written in FORTRAN 77.

  9. FY 1991 report on the results of the contract R and D of the human sense measuring application technology. 1. Outline; 1991 nendo ningen kankaku keisoku oyo gijutsuno kenkyu kaihatsu seika hokokusho. 1. Soron

    NONE

    1992-03-01

    For the purpose of designing/manufacturing products such as comfortable clothes in which human senses are reflected and the living/working environment in which people feel little stress, the aim of the R and D is to establish a human sense application technology in which various human senses are reflected in design/manufacture of products. The structure of this report is as follows: In Volumes 2, 3 and 4, the research results by research item were summarized. In Volume 1, the research results of each of the research institutes described in Volumes 2, 3 and 4 were summarized. In Volume 1, Outline, the R and D made during I and II terms and the schedule, the results of the FY 1991 target, plan and activity of each of the research institutes. In Volume 2, R and D of the physiological effect measuring technology, the details of research activities of each of research institutes which belong to this section meeting, and the activities related to the physiological effect measuring technology. In Volume 3, the details of research activities of each of research institutes which belong to the section meeting for the R and D of technology to present the mock environment. In Volume 4, the details of research activities of each of the research institutes which belong to the section meeting of the R and D of correlation/evaluation technology. (NEDO)

  10. FY 1991 Report on the results of the research and development of the processing technologies for creating advanced functions; 1991 nendo senshin kino soshutsu kako gijutsu no kenkyu kaihatsu seika hokokusho

    NONE

    1992-03-01

    This project is aimed at development of the technologies for materials to be used in a living body, which is required to be compatible with a living body, durable and mechanically strong, wherein a metallic structure surface is coated with multi-layered film with metallic composition continuously changing to ceramic composition to have inclined functions. First, a titanium base is coated with a film of inclined functions, comprising ultrafine particles of alumina and titanium, and then with a film of hydroxyapatite, to form the artificial root of tooth. The forming/processing process comprises preparation (forming) of the titanium base, preparation of the ultrafine particles of titanium and alumina separately, mixing these two types of ultrafine particles in a state of aerosol, sintering of the mixture, and coating the sinter with hydroxyapatite. The base is coated with layers of aerosol mixtures with ultrafine metal particle content continuously changing from the metal to alumina, to form the film of inclined functions. The FY 1991 efforts are directed to development of the technologies for producing aerosol of the ultrafine ceramic particles utilizing the technologies for dry process of dispersing the agglomerated particles and rf plasma. (NEDO)

  11. FY 1991 report on the development of wood-waste/agri-waste pyrolytic gasification technology and utilization technology of gas product; 1991 nendo mokushitsukei haikibutsu no netsubunkai gas ka gijutsu to seisei gas no riyo gijutsu kaihatsu hokokusho

    NONE

    1992-03-01

    It is urgently necessary for the Philippines, which has no promising energy source to replace imported oil and lacks hard currencies, to reduce dependence on oil. The country, consisting of a number of islands, has faced many difficulties in construction of large-scale power transmission grids covering wide areas, which greatly retard development of local industries and dissemination of electricity. Therefore, great expectations have been placed on the techniques this project plans to develop for utilization of wastes as the energy source. This 5-year project (FY 1990 to 1994) is aimed at joint research and development of (thermal decomposition/gasification and power generation system) for transforming large quantities of wood-wastes/agri-wastes left unutilized into electric power, in which thermal decomposition/gasification of the wastes is combined with gas engine/power generator systems, and thereby to establish the systems suitable for the developing country. The major R and D results obtained in FY 1991 as the second year include on-the-spot surveys, tests for validating elementary techniques, designs and fabrication of part of the demonstration plant, and invitation of Philippine researchers to Japan. (NEDO)

  12. FY 1991 Research and development project for large-scale industrial technologies. Report on results of R and D of superhigh technological machining systems; 1991 nendo chosentan kako system no kenkyu kaihatsu seika hokokusho. Chosentan kako system no kenkyu kaihatsu

    NONE

    1992-03-01

    Described herein are the FY 1991 results of the R and D project aimed at establishment of superprecision machining technologies for developing machining technologies and nano-technologies aided by excited beams. The researches on the superprecision machining technologies involve design and development, on a trial basis, of the totally static pressure type positioning device, for which automatically controlling drawing is adopted to improve its rigidity. The researches on the surface modification technologies aided by ion beams involve scanning the ion beams onto the metallic plate to be provided around the glass substrate. The results indicate that the secondary electrons generated can be used to control charge-up. In addition, part of a 30cm square glass substrate is modified by implantation of the spot type ions of high current density, and the modified portion is used to produce a thin-film silicon transistor. The researches on superhigh-technological machining standard measurement involve improvement of precision of the system aided by a dye laser, which attains a precision of 0 to 30nm in a 0.1m measurement range. (NEDO)

  13. SOLTECH 92 proceedings: Solar Process Heat Program

    1992-03-01

    This document is a limited Proceedings, documenting the presentations given at the symposia conducted by the US Department of Energy's (DOE) Solar Industrial Program and Solar Thermal Electrical Program at SOLTECH92. The SOLTECH92 national solar energy conference was held in Albuquerque, New Mexico during the period February 17--20, 1992. The National Renewable Energy Laboratory manages the Solar Industrial Program; Sandia National Laboratories (Albuquerque) manages the Solar Thermal Electric Program. The symposia sessions were as follows: (1) Solar Industrial Program and Solar Thermal Electric Program Overviews, (2) Solar Process Heat Applications, (3) Solar Decontamination of Water and Soil; (4) Solar Building Technologies, (5) Solar Thermal Electric Systems, (6) PV Applications and Technologies. For each presentation given in these symposia, these Proceedings provide a one- to two-page abstract and copies of the viewgraphs and/or 35mm slides utilized by the speaker. Some speakers provided additional materials in the interest of completeness. The materials presented in this document were not subjected to a peer review process.

  14. CASKETSS-HEAT: a finite difference computer program for nonlinear heat conduction problems

    Ikushima, Takeshi

    1988-12-01

    A heat conduction program CASKETSS-HEAT has been developed. CASKETSS-HEAT is a finite difference computer program used for the solution of multi-dimensional nonlinear heat conduction problems. Main features of CASKETSS-HEAT are as follows. (1) One, two and three-dimensional geometries for heat conduction calculation are available. (2) Convection and radiation heat transfer of boundry can be specified. (3) Phase change and chemical change can be treated. (4) Finned surface heat transfer can be treated easily. (5) Data memory allocation in the program is variable according to problem size. (6) The program is a compatible heat transfer analysis program to the stress analysis program SAP4 and SAP5. (7) Pre- and post-processing for input data generation and graphic representation of calculation results are available. In the paper, brief illustration of calculation method, input data and sample calculation are presented. (author)

  15. Project quality assurance plan for research and development services provided by Oak Ridge National Laboratory in support of the Hanford Grout Disposal Program

    Spence, R.D.; Gilliam, T.M.

    1991-11-01

    This Project Quality Assurance Plan (PQAP) is being published to provide the sponsor with referenceable documentation for work conducted in support of the Hanford WHC Grout Disposal Program. This plan, which meets NQA-1 requirements, is being applied to work performed at Oak Ridge National Laboratory (ORNL) during FY 1991 in support of this program. It should also be noted that with minor revisions, this plan should be applicable to other projects involving research and development that must comply with NQA-1 requirements

  16. Project quality assurance plan for research and development services provided by Oak Ridge National Laboratory in support of the Hanford Grout Disposal Program

    Spence, R.D.; Gilliam, T.M.

    1991-11-01

    This Project Quality Assurance Plan (PQAP) is being published to provide the sponsor with referenceable documentation for work conducted in support of the Hanford WHC Grout Disposal Program. This plan, which meets NQA-1 requirements, is being applied to work performed at Oak Ridge National Laboratory (ORNL) during FY 1991 in support of this program. It should also be noted that with minor revisions, this plan should be applicable to other projects involving research and development that must comply with NQA-1 requirements.

  17. FY 1991 report on the survey of geothermal development promotion. Attached data. Electromagnetic exploration (High accuracy MT method) (No.38 - West area of Mt. Aso); Chinetsu kaihatsu sokushin chosa chijo chosa hokokusho futai shiryo. 1991 nendo chinetsu kaihatsu sokushin chosa - Denji tansa (Koseido MT ho) hokokusho (No.38 Asosan seibu chiiki - Tenpu shiryo)

    NONE

    1991-12-01

    As a part of the survey of geothermal development promotion in FY 1991, electromagnetic exploration by the high accuracy MT method was conducted to acquire the information on the geothermal structure in the west area of Mt. Aso, Kumamoto Prefecture. The detailed data were arranged as the data attached to the report on the electromagnetic exploration. As the attached data, included were the results of the 1D analysis (measuring/analysis {rho}a-F chart, analytic structure drawing), results of the 1D analysis (numerical list of the apparent resistivity analytic value and inverse analytic value) and numerical list of the apparent resistivity measured value. (NEDO)

  18. Tank waste remediation system heat stress control program report, 1995

    Carls, D.R.

    1995-01-01

    Protecting employees from heat stress within tank farms during the summer months is challenging. Work constraints typically experienced in tank farms complicate the measures taken to protect employees from heat stress. TWRS-Industrial Hygiene (IH) has endeavored to control heat stress injuries by anticipating, recognizing, evaluating and controlling the factors which lead or contribute to heat stress in Tank Farms. The TWRS Heat Stress Control Program covers such areas as: employee and PIC training, communication of daily heat stress alerts to tank farm personnel, setting work/rest regimens, and the use of engineering and personal protective controls when applicable. The program has increased worker awareness of heat stress and prevention, established provisions for worker rest periods, increased drinking water availability to help ensure worker hydration, and allowed for the increased use of other protective controls to combat heat stress. The TWRS Heat Stress Control Program is the cornerstone for controlling heat stress among tank farm employees. The program has made great strides since it's inception during the summer of 1994. Some improvements can still be made to enhance the program for the summer of 1996, such as: (1) procurement and use of personal heat stress monitoring equipment to ensure appropriate application of administrative controls, (2) decrease the need for use of containment tents and anti-contamination clothing, and (3) providing a wider variety of engineering and personal protective controls for heat stress prevention

  19. Three-dimensional gyrokinetic particle-in-cell simulation of plasmas on a massively parallel computer: Final report on LDRD Core Competency Project, FY 1991--FY 1993

    Byers, J.A.; Williams, T.J.; Cohen, B.I.; Dimits, A.M.

    1994-01-01

    One of the programs of the Magnetic fusion Energy (MFE) Theory and computations Program is studying the anomalous transport of thermal energy across the field lines in the core of a tokamak. We use the method of gyrokinetic particle-in-cell simulation in this study. For this LDRD project we employed massively parallel processing, new algorithms, and new algorithms, and new formal techniques to improve this research. Specifically, we sought to take steps toward: researching experimentally-relevant parameters in our simulations, learning parallel computing to have as a resource for our group, and achieving a 100 x speedup over our starting-point Cray2 simulation code's performance

  20. Supporting Data FY 1991 Amended Budget Estimate Submitted to Congress - January 1990: Descriptive Summaries of the Research Development Test and Evaluation Army Appropriation

    1990-01-01

    Cont D492 Space Technology Integration - 0 - 3941 4101 Cont Cont PE TOTAL 6871 7878 9334 *FY 1989 work accomplished under PE #0602784A/AH71 and PE... D492 - Space Technology Integiation: Restructured and aggregated previously separate space program activities into D492 beginning in FY 1990. FY 1988

  1. FY 1991 Report on the results of the research and development of photo-reactive materials; 1991 nendo hikari hanno zairyo no kenkyu kaihatsu seika hokokusho

    NONE

    1992-03-01

    This project is aimed at establishment of the basic technologies for photo-reactive materials capable of, e.g., superhigh-density, superhigh-resolution display using photo-functions to control structures and associated conditions of the molecules. More concretely, the efforts are directed to realization of the technologies for multiplexing, sensitivity-response and material stability, applicable to superhigh-density recording by photochromic and photo-chemical burning (PHB) materials. For the photochromic materials, the long-chain alkyl derivatives of photochromic compounds, e.g., spiropyran and fulgide, are formed into thin films by the LB method, in order to develop organic, superhigh-density recording devices by controlling their associated conditions, and controlling of the photochromism reactions in the films is studied. Those studied for the PHB materials include improvement of heat resistance of the materials, development of quinone-based materials and improvement of their degree of multiplexing, and development of porphyrin-based materials and of technologies for structuring them. The comprehensive survey/research activities include extraction of the problems involved in the themes mainly related to the committee activities, and related technologies. (NEDO)

  2. Department of the Air Force Supporting Data for FY 1991 Budget Estimates Submitted to Congress January 1990. Descriptive Summaries, Research, Development, Test and Evaluation

    1990-05-16

    Advanced Tactical Air Reconnaissance System ( ATARS ) and a ground portion called the Joint Services Imagery Processing System (JSIPS). The program’s primary...objective is the upgrade of USAF, USN, and USMC tactical penetrating reconnaissance systems. The USAF portion of ATARS consists of Project 3201...20,942 Cont TBD 2302 Structures 11,796 11,294 11,974 Cont TBD 2303 Chemistry 25,383 24,303 25,768 Cont TBD 2304 Mathematics 21,763 20,836 22,093 Cont

  3. Evaluating Program about Performance of Circular Sodium Heat Pipe

    Kwak, Jae Sik; Kim, Hee Reyoung

    2014-01-01

    The superior heat transfer capability, structural simplicity, relatively inexpensive, insensitivity to the gravitational field, silence and reliability are some of its outstanding features. We study about heat transfer equation of heat pipe and program predicting performance which is considering geometrical shape of heat pipe by the related heat transfer equation of heat pipe. The operating temperature is 450 .deg. C - 950 .deg. C, working fluid is sodium, material for container is stainless steel, and type of wick is sintered metal. As a result of evaluating program about performance of circular sodium heat pipe based on MATLAB code, express correlation between radius and LHR, correlation between heat transfer length and LHR, correlation between wick and LHR, correlation between operating temperature and LHR. Generally radius values of heat pipe are proportional to LHR because of increase of mass flow which is main factor of heat flow. Heat transfer length values of heat pipe are inversely proportional to LHR and slightly inversely proportional to heat rate. Pore size is proportional to LHR. Although increase of pore size decrease capillary pressure, decrease more pressure drop in liquid phase. As a result, mass flow and heat rate are increase. But we have to do additional consideration about pore size and voidage in the aspect of safety and production technique

  4. Evaluating Program about Performance of Circular Sodium Heat Pipe

    Kwak, Jae Sik; Kim, Hee Reyoung [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2014-10-15

    The superior heat transfer capability, structural simplicity, relatively inexpensive, insensitivity to the gravitational field, silence and reliability are some of its outstanding features. We study about heat transfer equation of heat pipe and program predicting performance which is considering geometrical shape of heat pipe by the related heat transfer equation of heat pipe. The operating temperature is 450 .deg. C - 950 .deg. C, working fluid is sodium, material for container is stainless steel, and type of wick is sintered metal. As a result of evaluating program about performance of circular sodium heat pipe based on MATLAB code, express correlation between radius and LHR, correlation between heat transfer length and LHR, correlation between wick and LHR, correlation between operating temperature and LHR. Generally radius values of heat pipe are proportional to LHR because of increase of mass flow which is main factor of heat flow. Heat transfer length values of heat pipe are inversely proportional to LHR and slightly inversely proportional to heat rate. Pore size is proportional to LHR. Although increase of pore size decrease capillary pressure, decrease more pressure drop in liquid phase. As a result, mass flow and heat rate are increase. But we have to do additional consideration about pore size and voidage in the aspect of safety and production technique.

  5. Department of the Navy Supporting Data for Fiscal Year 1984 Budget Estimates Descriptive Summaries Submitted to Congress January 1983. Research, Development, Test and Evaluation, Navy. Book 2. Tactical Programs

    1983-01-01

    Production Releass for the Army, OPv and At, Force is in ty 1991. Production of 602 uitcrcft for the Marine Corps and May) will be completed :n tY 1998 ...Fy 1965 3. Operational Test and Evaluation (USKO) Secoad Quartet FY 1998 4. First USEC delivery Third Quarter FY 1991 5. USA/USAF/USN Delivery First...vehicular mounted loler power unite. (U) Project C0075. Tactical Mot Tranprt Vehicles: This program is to provide the optimum mix of tactical motor

  6. Annual Research Progress Report, FY 1991

    1991-09-30

    Knowledge , Health Care .... 84 89/102 0 Factors Determining Peak Bone Mass and Subsequent Bone Loss .......................... 85 89/103 0 Transient...submitted for publication April 1991. (C) Spezia PM, et al: Femur Fractures in Alpine Skiers . J Sports Medicine, submitted for publication, February...TX, November 1991. (C) Spezia P, et al: Femur Fractures in Alpine Skiers . Presented: Barnard Competition, March 1991. Spezia P, et al: Femur Fractures

  7. Overview PWR-Blowdown Heat Transfer Separate-Effects Program

    White, J.D.

    1978-01-01

    The ORNL Pressurized Water Reactor Blowdown Heat Transfer Program (PWR-BDHT) is a separate-effects experimental study of thermal-hydraulic phenomena occurring during the first 20 sec of a hypothetical LOCA. Specific objectives include the determination, for a wide range of parameters, of time to CHF and the following variables for both pre- and post-CHF: heat fluxes, ΔT (temperature difference between pin surface and fluid), heat transfer coefficients, and local fluid properties. A summary of the most interesting results from the program obtained during the past year is presented. These results are in the area of: (1) RELAP verification, (2) electric pin calibration, (3) time to critical heat flux (CHF), (4) heat transfer coefficient comparisons, and (5) nuclear fuel pin simulation

  8. High-heat tank safety issue resolution program plan

    Wang, O.S.

    1993-12-01

    The purpose of this program plan is to provide a guide for selecting corrective actions that will mitigate and/or remediate the high-heat waste tank safety issue for single-shell tank (SST) 241-C-106. This program plan also outlines the logic for selecting approaches and tasks to mitigate and resolve the high-heat safety issue. The identified safety issue for high-heat tank 241-C-106 involves the potential release of nuclear waste to the environment as the result of heat-induced structural damage to the tank's concrete, if forced cooling is interrupted for extended periods. Currently, forced ventilation with added water to promote thermal conductivity and evaporation cooling is used to cool the waste. At this time, the only viable solution identified to resolve this safety issue is the removal of heat generating waste in the tank. This solution is being aggressively pursued as the permanent solution to this safety issue and also to support the present waste retrieval plan. Tank 241-C-106 has been selected as the first SST for retrieval. The program plan has three parts. The first part establishes program objectives and defines safety issues, drivers, and resolution criteria and strategy. The second part evaluates the high-heat safety issue and its mitigation and remediation methods and alternatives according to resolution logic. The third part identifies major tasks and alternatives for mitigation and resolution of the safety issue. Selected tasks and best-estimate schedules are also summarized in the program plan

  9. Geothermal Direct Heat Applications Program Summary

    None

    1981-09-25

    Because of the undefined risk in the development and use of geothermal energy as a thermal energy source, the Department of Energy Division of Geothermal Energy solicited competitive proposals for field experiments in the direct use of geothermal energy. Twenty-two proposals were selected for cost-shared funding with one additional project co-funded by the State of New Mexico. As expected, the critical parameter was developing a viable resource. So far, of the twenty resources drilled, fourteen have proved to be useful resources. These are: Boise, Idaho; Elko heating Company in Nevada; Pagosa Springs, Colorado; Philip School, Philip, South Dakota; St. Mary's Hospital, Pierre, South Dakota; Utah Roses near Salt Lake City; Utah State Prison, Utah; Warm Springs State Hospital, Montana; T-H-S Hospital, Marlin, Texas; Aquafarms International in the Cochella Valley, California; Klamath County YMCA and Klamath Falls in Oregon; Susanville, California and Monroe, utah. Monroe's 164 F and 600 gpm peak flow was inadequate for the planned project, but is expected to be used in a private development. Three wells encountered a resource insufficient for an economical project. These were Madison County at Rexburg, Idaho; Ore-Ida Foods at Ontario, Oregon and Holly Sugar at Brawley, California. Three projects have yet to confirm their resource. The Navarro College well in Corsicana, Texas is being tested; the Reno, Moana, Nevada well is being drilled and the El Centro, California well is scheduled to be drilled in January 1982. The agribusiness project at Kelly Hot Springs was terminated because a significant archeological find was encountered at the proposed site. The Diamond Ring Ranch in South Dakota, and the additional project, Carrie Tingley Hospital in Truth or Consequences, New Mexico both used existing wells. The projects that encountered viable resources have proceeded to design, construct, and in the most advanced projects, to operate geothermal systems for

  10. Residual heat removal pump retrofit program

    Dudiak, J.G.; McKenna, J.M.

    1990-01-01

    Residual Heat Removal (RHR) pumps installed in pressurized water reactor power plants are used to provide the removal of decay heat from the reactor and to provide low head safety injection in the event of loss of coolant in the reactor coolant system. These pumps are subjected to rather severe temperature and pressure transients, therefore, the majority of pumps installed in the RHR service are vertical pumps with a single stage impeller. RHR pumps have traditionally been a significant maintenance item for many utilities. The close-coupled pump design requires disassembly of the casing cover from the lower pump casing while performing these routine maintenance tasks. The casing separation requires the loosening of numerous highly torqued studs. Once the casing is separated, the impeller is dropped from the motor shaft to allow removal of the mechanical seal and casing cover from the motor shaft. Galling of the impeller to the motor shaft is not uncommon. The RHR pump internals are radioactive and the separation of the pump casing to perform routine maintenance exposes the maintenance personnel to high radiation levels. The handling of the impeller also exposes the maintenance personnel to high radiation levels. This paper introduces a design modification developed to convert the close-coupled RHR pumps to a coupled configuration

  11. VHTR engineering design study: intermediate heat exchanger program. Final report

    1976-11-01

    The work reported is the result of a follow-on program to earlier Very High Temperature Reactor (VHTR) studies. The primary use of the VHTR is to provide heat for various industrial processes, such as hydrocarbon reforming and coal gasification. For many processes the use of an intermediate heat transfer barrier between the reactor coolant and the process is desirable; for some processes it is mandatory. Various intermediate heat exchanger (IHX) concepts for the VHTR were investigated with respect to safety, cost, and engineering design considerations. The reference processes chosen were steam-hydrocarbon reforming, with emphasis on the chemical heat pipe, and steam gasification of coal. The study investigates the critically important area of heat transfer between the reactor coolant, helium, and the various chemical processes

  12. Iowa state heating oil and propane program: 1996--1997 winter heating season. Final report

    1997-05-01

    The objective of the Iowa State Heating Oil and Propane Program is to develop a state-level, company-specific data collection effort so that retail price information on fuel oil and propane is collected by the staff of the Iowa Department of Natural Resources during the winter heating season. The second objective is to provide specific volume and retail price information to the US Department of Energy's (DOE's) Energy Information Administration on No. 2 heating oil and propane on a semi-monthly basis. This report summarizes the results of the residential No. 2 distillate fuel (home heating oil) and liquefied petroleum gas (propane) price survey over the 1996--1997 winter heating season in Iowa. The Iowa Department of Natural Resources conducted the survey under a cooperative financial assistance grant with the DOE Energy Information Administration (EIA)

  13. Programmed heating of coke ovens for increased coke size

    Jenkins, D.R.; Mahoney, M.R. [University of Newcastle, Callaghan, NSW (Australia)

    2010-11-15

    Large, uniform sized coke is desirable for blast furnace use. It has previously been shown that the coke oven flue temperature in the first few hours of coking is a key determinant of coke size. In this paper, the authors present a new programmed heating approach, which is called pulsed heating, aiming to increase coke mean size at a given average flue temperature. The approach takes into account the charging sequence in coke oven batteries and the authors demonstrate how existing operating practice can be modified in batteries with suitable heating systems to achieve the desired heating programme. A mathematical model of fissure formation provides a prediction of the increase in coke mean size using pulsed heating, compared with standard heating. Pilot scale experiments have also been performed to validate the modelling approach. The results of the modelling indicate that the mean coke size can be increased by several millimetres in some cases, although results from the pilot scale show that pulsed heating increases coke size, but by a smaller amount than that predicted by the model. The potential advantages and limitations of pulsed heating are discussed, as well as opportunities for further investigation of the approach.

  14. An application program for fission product decay heat calculations

    Pham, Ngoc Son; Katakura, Jun-ichi

    2007-10-01

    The precise knowledge of decay heat is one of the most important factors in safety design and operation of nuclear power facilities. Furthermore, decay heat data also play an important role in design of fuel discharges, fuel storage and transport flasks, and in spent fuel management and processing. In this study, a new application program, called DHP (Decay Heat Power program), has been developed for exact decay heat summation calculations, uncertainty analysis, and for determination of the individual contribution of each fission product. The analytical methods were applied in the program without any simplification or approximation, in which all of linear and non-linear decay chains, and 12 decay modes, including ground state and meta-stable states, are automatically identified, and processed by using a decay data library and a fission yield data file, both in ENDF/B-VI format. The window interface of the program is designed with optional properties which is very easy for users to run the code. (author)

  15. Fast temperature programming in gas chromatography using resistive heating

    Dallüge, J.; Ou-Aissa, R.; Vreuls, J.J.; Brinkman, U.A.T.; Veraart, J.R.

    1999-01-01

    The features of a resistive-heated capillary column for fast temperature-programmed gas chromatography (GC) have been evaluated. Experiments were carried out using a commercial available EZ Flash GC, an assembly which can be used to upgrade existing gas chromatographs. The capillary column is placed

  16. International Energy Agency Solar Heating and Cooling Program

    Brooks, A. J.

    This trip was undertaken to participate in and represent the United States Industry at the International Energy Agency (IEA) Solar Heating and Cooling Program (SHCP) Task 14 Workshop. The meeting took place at the A1 Bani Hotel in Rome Italy.

  17. Heat exchanger performance analysis programs for the personal computer

    Putman, R.E.

    1992-01-01

    Numerous utility industry heat exchange calculations are repetitive and thus lend themselves to being performed on a Personal Computer. These programs may be regarded as engineering tools which, when put together, can form a Toolbox. However, the practicing Results Engineer in the utility industry desires not only programs that are robust as well as easy to use but can also be used both on desktop and laptop PC's. The latter also offer the opportunity to take the computer into the plant or control room, and use it there to process test or operating data right on the spot. Most programs evolve through the needs which arise in the course of day-to-day work. This paper describes several of the more useful programs of this type and outlines some of the guidelines to be followed when designing personal computer programs for use by the practicing Results Engineer

  18. Low Cost High Performance Generator Technology Program. Volume 5. Heat pipe topical, appendices

    1975-07-01

    Work performed by Dynatherm Corporation for Teledyne Isotopes during a program entitled ''Heat Pipe Fabrication, Associated Technical Support and Reporting'' is reported. The program was initiated on November 29, 1972; the main objectives were accomplished with the delivery of the heat pipes for the HPG. Life testing of selected heat pipe specimens is continuing to and beyond the present date. The program consisted of the following tasks: Heat Pipe Development of Process Definition; Prototype Heat Pipes for Fin Segment Test; HPG Heat Pipe Fabrication and Testing; Controlled Heat Pipe Life Test; and Heat Pipe Film Coefficient Determination

  19. Ground-source heat pump case studies and utility programs

    Lienau, P.J.; Boyd, T.L.; Rogers, R.L.

    1995-04-01

    Ground-source heat pump systems are one of the promising new energy technologies that has shown rapid increase in usage over the past ten years in the United States. These systems offer substantial benefits to consumers and utilities in energy (kWh) and demand (kW) savings. The purpose of this study was to determine what existing monitored data was available mainly from electric utilities on heat pump performance, energy savings and demand reduction for residential, school and commercial building applications. In order to verify the performance, information was collected for 253 case studies from mainly utilities throughout the United States. The case studies were compiled into a database. The database was organized into general information, system information, ground system information, system performance, and additional information. Information was developed on the status of demand-side management of ground-source heat pump programs for about 60 electric utility and rural electric cooperatives on marketing, incentive programs, barriers to market penetration, number units installed in service area, and benefits.

  20. Advanced Materials Development Program: Ceramic Technology for Advanced Heat Engines program plan, 1983--1993

    1990-07-01

    The purpose of the Ceramic Technology for Advanced Heat Engines (CTAHE) Project is the development of an industrial technology base capable of providing reliable and cost-effective high temperature ceramic components for application in advanced heat engines. There is a deliberate emphasis on industrial'' in the purpose statement. The project is intended to support the US ceramic and engine industries by providing the needed ceramic materials technology. The heat engine programs have goals of component development and proof-of-concept. The CTAHE Project is aimed at developing generic basic ceramic technology and does not involve specific engine designs and components. The materials research and development efforts in the CTAHE Project are focused on the needs and general requirements of the advanced gas turbine and low heat rejection diesel engines. The CTAHE Project supports the DOE Office of Transportation Systems' heat engine programs, Advanced Turbine Technology Applications (ATTAP) and Heavy Duty Transport (HDT) by providing the basic technology required for development of reliable and cost-effective ceramic components. The heat engine programs provide the iterative component design, fabrication, and test development logic. 103 refs., 18 figs., 11 tabs.

  1. FY 1991 report on the results of the demonstration test on the methanol conversion at oil-fired power plant. Feasibility study of a new system for the stabilized supply of fuel use methanol; 1991 nendo sekiyu karyoku hatsudensho metanoru tenkan tou jissho shiken. Nenryo you metanoru kyokyu antei ka no tameno shin system no kanosei chosa hokokusho

    NONE

    1992-03-01

    As a part of the project on the demonstration test on the methanol conversion at oil-fired power plant, feasibility study was made of a new system for methanol production by using abundant hydraulic power energy overseas and by combining water electrolysis and coal gasification technology, and the FY 1991 results were summarized. As a result of the survey, the following were selected as water electrolysis facilities: high efficiency/high current density/simplification system and solid polyelectrolyte electrolysis system with a high purity of hydrogen gas. As the coal gasifier, the oxygen blown furnace was selected which has a high carbon utilization factor, is able to gasify coal at high pressure, has no unnecessary N{sub 2}, and is being used in the integrated coal gasification combined cycle power system. As methanol synthesis facilities, the MGC/MHI method super converter was selected. Assuming the output of hydroelectric power generation to be 4,000MW, conceptual design of the optimum system was made. The methanol cost was estimated under the conditions written below: cost of hydroelectric power generation at site: 2-5 yen/kWh, coal unit price at site: 5,000-6,000 yen/t, transportation distance: 5,000-10,000 km. (NEDO)

  2. FY 1991 report on the results of the development of the entrained bed coal gasification power plant. Part 1. Element study/investigational study of technology/study of the integrated coal gasification combined cycle power system; 1991 nendo seika hokokusho. Funryusho sekitan gaska hatsuden plant kaihatsu - Sono 1. Youso kenkyu hen, gijutsu chosa hen, sekitan gaska fukugo hatsuden system kento hen

    NONE

    1993-01-01

    For the purpose of establishing the technology of integrated coal gasification combined cycle power generation, the following were conducted: element study of a 200t/d entrained bed coal gasification pilot plant, survey of technology of the coal gasification power generation, study of the practical scale IGCC, etc. The FY 1991 results were summarized. In the gasification test using 2t/d furnace equipment, evaluation test on the test coal for pilot plant was made. In the study of gas turbine combustor for demonstration machine use, measuring duct was fabricated for measurement of combustion gas temperature/pressure, etc. In the simulational study of the total system of combined cycle power generation, review/modification of part of the simulation model and detailing of the model were conducted by comparison with the data on pilot plant operation. In the technology study, joint technology conferences were held for discussions between Japan and Australia, Japan and the U.S., and Japan and Canada. As to the practical scale IGCC, the initially planned output capacity and thermal efficiency were studied based on the knowledge/information obtained through the R and D on the 200t/d pilot plant. (NEDO)

  3. FY 1991 Research and development project for large-scale industrial technologies. Report on results of R and D of superhigh technological machining systems (Development of advanced machining devices for power-generating members); 1991 nendo chosentan kako system no kenkyu kaihatsu seika hokokusho. Hatsuden shisetsuyo buzai kodo kako sochi kaihatsu

    NONE

    1992-03-01

    Described herein are the FY 1991 results of the R and D project aimed at establishment of superprecision machining technologies for developing machining technologies and nano-technologies aided by excited beams. For increasing the excimer laser output, the discharge-exciting technologies necessary for designing the 2kW laser as the final target are established. The service life tests are started to demonstrate the member service life of 10{sup 9} shots or more. For development of the technologies for large-current composite ion beams, the plant is constructed to attain the final targets (100keV, 2A, width: 500mm or more). The currents reaching the substrate are developed to have 2.8mA with the Ar ion and 2.9mA with the Ca ion by, e.g., developing the ion sources and improving functions of the ion beam controlling systems. Researches on the surface modification technologies for producing the superhigh-quality metallic surfaces involve composite ion implantation and providing the modified layer of Ti-B-based hard compound. Corrosion rate of the modified titanium surface in a boiling sulfuric acid solution is reduced from 300mm/year to around 0.13mm/year. (NEDO)

  4. FY 1991 report on the survey of geothermal development promotion. Electromagnetic exploration (High accuracy MT method) (No.38 - West area of Mt. Aso); Chinetsu kaihatsu sokushin chosa chijo chosa hokokusho futai shiryo. 1991 nendo chinetsu kaihatsu sokushin chosa - Denji tansa (Koseido MT ho) hokokusho (No.38 Asosan seibu chiiki)

    NONE

    1991-12-01

    As a part of the survey of geothermal development promotion in FY 1991, electromagnetic exploration by the high accuracy MT method was conducted to acquire the information on the geothermal structure in the west area of Mt. Aso, Kumamoto Prefecture. The electromagnetic exploration was made in the area of about 65km{sup 2} at 52 measuring points for 3 measuring components in the magnetic field/2 measuring components in the electric field at 20 measuring frequencies or more in the range of 0.01Hz-20kHz for 4 hours or more. As a result of the survey, the resistivity structure indicated a 3-layer structure inside the Aso caldera. It was thought that the lowest layer was correspondent to the geological basement (Pre-tertiary system). As to the resistivity discontinuous lines extracted from sudden changes in depth distribution and resistivity distribution of the resistivity basement, those in NS direction are conspicuous and those in EW direction also exist inside the caldera. Around the part where these resistivity discontinuous lines of both NS and EW systems cross each other inside the caldera, the Yunoya hot spring and Tarutama hot spring which indicate the geothermal manifestation are located, and acid alteration zones were seen on the earth's surface in the periphery. (NEDO)

  5. FY 1999 report on the research and development project of industrial scientific technology - quantum functional devices. Systematical arrangement of the development technology (FY 1991 - 1999); 1999 nendo ryoshika kino soshi no kenkyu kaihatsu. Kaihatsu sareta gijutsu no keitoteki seiri (1991 nendo kara 1999 nendo)

    NONE

    2000-03-01

    The FY 1991 to 1999 R and D results of quantum functional devices are systematically summarized. The basic action of the MIM-based single electron tunneling devices is succeeded for the first time in the world. The quantum fine-wire device transistor is realized. The surface tunnel transistor is proposed, application to action demonstration and memories is suggested, and possibility of applicability to multi-value logic circuits is suggested. The multi-emitter RHET is developed to have one device provided with memory and multi-input logic functions, and increase integration 10 times. The TSR quantum dot HEMT memory is developed on a trial basis, to demonstrate 150 K action. The principle of a tera-bit class high-capacity memory is demonstrated using the InAs dot memory. Integration of the quantum band-bonded multi-functional device is described. Possibility is demonstrated for the Si insulation film tunnel device multi-value memory, working on the principle of tunneling between bands via the Si insulation film. The integrated quantum dot functional memory and polariton switch are also described. The single electron logic circuit works for the first time in the world. The integrated CMOS/SET device, which uses high driving force of CMOS, is proposed. (NEDO)

  6. SOLTECH 92 proceedings: Solar Process Heat Program. Volume 1

    1992-03-01

    This document is a limited Proceedings, documenting the presentations given at the symposia conducted by the US Department of Energy`s (DOE) Solar Industrial Program and Solar Thermal Electrical Program at SOLTECH92. The SOLTECH92 national solar energy conference was held in Albuquerque, New Mexico during the period February 17--20, 1992. The National Renewable Energy Laboratory manages the Solar Industrial Program; Sandia National Laboratories (Albuquerque) manages the Solar Thermal Electric Program. The symposia sessions were as follows: (1) Solar Industrial Program and Solar Thermal Electric Program Overviews, (2) Solar Process Heat Applications, (3) Solar Decontamination of Water and Soil; (4) Solar Building Technologies, (5) Solar Thermal Electric Systems, (6) PV Applications and Technologies. For each presentation given in these symposia, these Proceedings provide a one- to two-page abstract and copies of the viewgraphs and/or 35mm slides utilized by the speaker. Some speakers provided additional materials in the interest of completeness. The materials presented in this document were not subjected to a peer review process.

  7. SOLTECH 1992 proceedings: Solar Process Heat Program, volume 1

    1992-03-01

    This document is a limited Proceedings, documenting the presentations given at the symposia conducted by the U.S. Department of Energy's (DOE) Solar Industrial Program and Solar Thermal Electrical Program at SOLTECH92. The SOLTECH92 national solar energy conference was held in Albuquerque, New Mexico during the period February 17-20, 1992. The National Renewable Energy Laboratory manages the Solar Industrial Program; Sandia National Laboratories (Albuquerque) manages the Solar Thermal Electric Program. The symposia sessions were as follows: (1) Solar Industrial Program and Solar Thermal Electric Program Overviews, (2) Solar Process Heat Applications, (3) Solar Decontamination of Water and Soil, (4) Solar Building Technologies, (5) Solar Thermal Electric Systems, and (6) Photovoltaic (PV) Applications and Technologies. For each presentation given in these symposia, these Proceedings provide a one- to two-page abstract and copies of the viewgraphs and/or 35 mm slides utilized by the speaker. Some speakers provided additional materials in the interest of completeness. The materials presented in this document were not subjected to a peer review process.

  8. PWR-blowdown heat transfer separate effects program

    Thomas, D.G.

    1976-01-01

    The ORNL Pressurized-Water Reactor Blowdown Heat Transfer (PWR-BDHT) Program is an experimental separate-effects study of the relations among the principal variables that can alter the rate of blowdown, the presence of flow reversal and rereversal, time delay to critical heat flux, the rate at which dryout progresses, and similar time-related functions that are important to LOCA analysis. Primary test results are obtained from the Thermal-Hydraulic Test Facility (THTF). Supporting experiments are carried out in several additional test loops - the Forced Convection Test Facility (FCTF), an air-water loop, a transient steam-water loop, and a low-temperature water mockup of the THTF heater rod bundle. The studies to date are described

  9. Responding to the Effects of Extreme Heat: Baltimore City's Code Red Program.

    Martin, Jennifer L

    2016-01-01

    Heat response plans are becoming increasingly more common as US cities prepare for heat waves and other effects of climate change. Standard elements of heat response plans exist, but plans vary depending on geographic location and distribution of vulnerable populations. Because heat events vary over time and affect populations differently based on vulnerability, it is difficult to compare heat response plans and evaluate responses to heat events. This article provides an overview of the Baltimore City heat response plan, the Code Red program, and discusses the city's response to the 2012 Ohio Valley/Mid Atlantic Derecho, a complex heat event. Challenges with and strategies for evaluating the program are reviewed and shared.

  10. State heating oil and propane program: 1995-96 heating season. Final report

    1996-01-01

    This is a summary report of the New Hampshire Governor's Office of Energy and Community Services (ECS) participation in the State Heating Oil and Propane Program (SHOPP) for the 1995/96 heating season. SHOPP is a cooperative effort, linking energy offices in East Coast and Midwest states, with the Department of Energy (DOE), Energy Information Administration (EIA) for the purpose of collecting retail price data for heating oil and propane. The program funded by the participating state with a matching grant from DOE. EIA provides ECS with a list of oil and propane retailers that serve customers in New Hampshire. In turn ECS conduct phone surveys twice per month from October through March to determine the average retail price for each fuel. Data collected by ECS is entered into the Petroleum Electronic Data Reporting Option (PEDRO) and transmitted via modem to EIA. The results of the state retail price surveys along with wholesale prices, supply, production and stock levels for oil, and propane are published by EIA in the Weekly Petroleum Status Report. Data is also published electronically via the internet or through the Electronic Publication System

  11. Heat source component development program, October 1977--February 1978

    1978-03-01

    The General Purpose Heat Source (GPHS) is being developed by Los Alamos Scientific Laboratory (LASL) for the Department of Energy (DOE) Division of Nuclear Research and Application (DNRA). The first mission scheduled for the GPHS is the NASA Out-of-Ecliptic Flight in January, 1983. During the current reporting period (October--December, 1977, January--February, 1978), activities in this task were conducted as follows: (1) documentation of results of the reentry thermal, ablation, and thermal stress analyses of the conceptual designs; (2) identification and completion of modifications to the thermal and ablation models used to determine the performance response of the heat source modules during reentry; (3) initiation of modifications to the thermal stress model used to determine the performance response of heat source modules during reentry; (4) completion and documentation of the surface chemistry experiments; (5) initiation and completion of activities in support of LASL to define test plans for the trial design phase of the GPHS development program; (6) participation in the GPHS design review meeting held at DOE/Germantown, Maryland, December 19--20, 1977; and (7) initiation of the thermal analysis of Trial Design 1.1

  12. Subseabed Disposal Program In-Situ Heat Transfer Experiment (ISHTE)

    Percival, C.M.

    1983-05-01

    A heat transfer experiment is being developed in support of the Subseabed Disposal Program. The primary objectives of this experiment are: to provide information on the in situ response of seabed sediment to localized heating; to provide an opportunity to evaluate theoretical models of the response and to observe any unanticipated phenomena which may occur; and to develop and demonstrate the technology necessary to perform waste isolation oriented experiments on the seafloor at depths up to 6000 m. As presently envisaged, the heat transfer experiment will be conducted at a location in the central North Pacific though it could be performed anywhere that the ocean bottom is of the type deemed suitable for the disposal of nuclear waste material. The experiment will be conducted of the seafloor from a recoverable space-frame platform at a depth of approximately 6000 m. A 400-W isotopic heat source will be implanted in the illite sediment and the subsequent response of the sediment to the induced thermal field evaluated. After remote initiation of the experiment, a permanent record of the data obtained will be recorded on board the platform, with selected information transmitted to a surface vessel by acoustic telemetry. The experiment will be operational for one year, after which the entire platform will be recovered. Current plans call for the deployment of the experiment in 1986. Specific activities which will be pursued during the course of the experiment include: measurement of the thermal field; determination of the effective thermal conductivity of the sediment; measurement of pore pressure; evaluation of radionuclide migration processes; pore water sampling; sediment chemistry studies; sediment shear strength measurements; and coring operations in the immediate vicinity of the experiment for postexperiment analysis

  13. Development program on HTTR heat application systems at JAERI

    Ogawa, M.; Inagaki, Y.; Nishihara, T.; Shimizu, S.; Shiozawa, S.; Miyamoto, Y.

    2000-01-01

    The High Temperature Engineering Test Reactor (HTTR), which is a Japanese High Temperature Gas-cooled Reactor (HTGR) with 30 MW thermal output at 950 deg. C of the coolant outlet temperature, was constructed at Oarai Research Establishment of Japan Atomic Energy Research Institute (JAERI). The HTTR has attained the first criticality on November 1998. In JAERI, a hydrogen production system was selected as a heat utilization system of the HTTR. The development program on the HTTR hydrogen production system consists of two parts: one is to establish technologies connecting the hydrogen production system with the HTTR, the other is to establish technologies producing hydrogen from water by using nuclear heat. Finally, hydrogen can be produced from water by using nuclear heat supplied by the HTTR. In the hydrogen production system connected to the HTTR at first, JAERI selected a steam reforming process because its technology had matured. The HTTR hydrogen production system adopting the steam reforming process is being designed to produce hydrogen of about 3800 Nm 3 /hr by using nuclear heat (10MW, 905 deg. C) supplied from the HTTR. The safety principle and criteria are also being investigated for the HTTR hydrogen production system. A facility for an out-of-pile test prior to the demonstration test with the HTTR hydrogen production system is under manufacturing to carry out tests of safety, controllability and performance. The out-of-pile test facility simulates key components downstream an intermediate heat exchanger of the HTTR hydrogen production system on a scale of 1 to 30. The tests will be started in 2001 and continued for 4 years or longer. In parallel to the tests, a hydrogen/tritium permeation test and a corrosion test of a catalyst tube of a steam reformer are being carried out to obtain data necessary for the design of the HTTR hydrogen production system. A kind of thermochemical method called IS process is under studying to produce hydrogen from water by

  14. Program listing for heat-pump seasonal-performance model (SPM). [CNHSPM

    1982-06-30

    The computer program CNHSPM is listed which predicts heat pump seasonal energy consumption (including defrost, cyclic degradation, and supplementary heat) using steady state rating point performance and binned weather data. (LEW)

  15. Quality assurance program plan for FRG sealed isotopic heat sources project (C-229)

    Tanke, J.M.

    1997-01-01

    This QAPP implements the Quality Assurance Program Plan for the FRG Sealed Isotopic Heat Sources Project (C-229). The heat source will be relocated from the 324 Building and placed in interim storage at the Central Waste Complex (CWC)

  16. Development of CANDU 6 Primary Heat Transport System Modeling Program

    Seo, Hyung-beom; Kim, Sung-min; Park, Joong-woo; Kim, Kwang-su; Ko, Dae-hack; Han, Bong-seob

    2007-01-01

    NUCIRC is a steady-state thermal-hydraulic code used for design and performance analyses of CANDU Heat Transport System. The code is used to build PHT model in Wolsong NPP and to calculate channel flow distribution. Wolsong NPP has to calculate channel flow distribution and quality of coolant at the ROH header after every outage by OPP (Operating Policy and Principal). PHT modeling work is time consuming which need a lot of operation experience and specialty. It is very difficult to build PHT model as plant operator in two weeks which is obligate for plant operation after every outage. That is why Wolsong NPP develop NUMODEL (NUcirc MODELing) with many-years experience and a know-how of using NUCIRC code. NUMODEL is computer program which is used to create PHT model based on utilizing NUCIRC code

  17. Development of heat transfer calculation program for finned-tune heat exchanger of multi-burner boiler

    Jang, Sae Byul; Kim, Jong Jin; Ahn, Joon

    2009-01-01

    We develop a heat exchanger modules for a multi-burner boiler. The heat exchanger module is kind of a Heat Recovery Steam Generator (HRSG). This heat recovery system has 8 heat exchanger modules. The 1st module consists of 27 bare tubes due to high temperature exhaust gas and the others consist of 27 finned tubes. The maximum steam pressure of each module is 1 MPa and tested steam pressure is 0.7 MPa. In order to test these heat exchanger modules, we make a 0.5 t/h flue tube boiler (LNG, 40 Nm 3 /h). We tested the heat exchanger module with changing the position of each heat exchanger module. We measured the inlet and outlet temperature of each heat exchanger module and calculated the heat exchange rate. Based on test results, we develop a heat transfer calculation program to predict flue gas. Calculation results show that temperature and temperature difference between measured and calculated flue gas exit temperature is less than 20 .deg. C when flue gas inlet temperature is 620 .deg. C.

  18. Oil and gas leasing/production program

    Heimberger, M.L.

    1992-01-01

    As the Congress declared in the Outer Continental Shelf Lands Act the natural gas and oil production from the Outer Continental Shelf constitutes an important part of the Nation's domestic energy supply. Federal offshore minerals are administered within the Department of the Interior by the Minerals Management Service (MMS), which provides access to potential new sources of natural gas and oil offshore by conducting lease sales. Each year, on or before March 31, the MMS presents to Congress a fiscal year annual report on the Federal offshore natural gas and oil leasing and production program. In FY 1991, this program was the third largest producer of non-tax revenue for the US Treasury, contributing more than $3 billion. This report presents Federal offshore leasing, sales, production, and exploration activities, and environmental monitoring activities

  19. Hydride heat pump. Volume I. Users manual for HYCSOS system design program. [HYCSOS code

    Gorman, R.; Moritz, P.

    1978-05-01

    A method for the design and costing of a metal hydride heat pump for residential use and a computer program, HYCSOS, which automates that method are described. The system analyzed is one in which a metal hydride heat pump can provide space heating and space cooling powered by energy from solar collectors and electric power generated from solar energy. The principles and basic design of the system are presented, and the computer program is described giving detailed design and performance equations used in the program. The operation of the program is explained, and a sample run is presented. This computer program is part of an effort to design, cost, and evaluate a hydride heat pump for residential use. The computer program is written in standard Fortran IV and was run on a CDC Cyber 74 and Cyber 174 computer. A listing of the program is included as an appendix. This report is Volume 1 of a two-volume document.

  20. User's Manual for SPECTROM-41: a Finite-Element Heat Transfer Program

    Svalstad, D.K.

    1983-06-01

    This User's Manual addresses SPECTROM-41: A Finite Element Heat Transfer Computer Program. The user is introduced to the program's capabilities and operation, with required user input outlined in detail. Example problems are included to illustrate the use of the various program features, and included to illustrate the use of the various program features, and analytical solutions are presented for four of the examples to provide a measure of program accuracy. Past and ongoing comparative benchmark analyses are highlighted to provide the user with an indication of how SPECTROM-41 predictions compare with other available heat transfer programs

  1. Linear programming control of a group of heat pumps

    Fink, J.; van Leeuwen, Richard Pieter; Hurink, Johann L.; Smit, Gerardus Johannes Maria

    2015-01-01

    For a new district in the Dutch city Meppel, a hybrid energy concept is developed based on bio-gas co-generation. The generated electricity is used to power domestic heat pumps which supply thermal energy for domestic hot water and space heating demand of households. In this paper, we investigate

  2. Microcomputer based program for predicting heat transfer under reactor accident conditions. Volume I

    Cheng, S.C.; Groeneveld, D.C.; Leung, L.K.H.; Wong, Y.L.; Nguyen, C.

    1987-07-01

    A microcomputer based program called Heat Transfer Prediction Software (HTPS) has been developed. It calculates the heat transfer for the tube and bundle geometries for steady state and transient conditions. This program is capable of providing the best estimated of the hot pin temperatures during slow transients for 37- and 28-element CANDU type fuel bundles. The program is designed for an IBM-PC AT/XT (or IBM-PC compatible computer) equipped with a Math Co-processor. The following input parameters are required: pressure, mass flux, hydraulic diameter, and quality. For the steady state case, the critical heat flux (CHF), the critical heat flux temperature, the minimum film boiling temperature, and the minimum film boiling heat flux are the primary outputs. With either the surface heat flux or wall temperature specified, the program determines the heat transfer regime and calculates the surface heat flux, wall temperatures and heat transfer coefficient. For the slow transient case, the pressure, mass flux, quality, and volumetric heat generation rate are the time dependent input parameters required to calculate the hot pin sheath temperatures and surface heat fluxes. A simple routine for generating properties has been developed for light water to support the above program. It contains correlations that have been verified for pressures ranging from 0.6kPa to 30 MPa, and temperatures up to 1100 degrees Celcius. The thermodynamic and transport properties that can be generated from this routine are: density, specific volume, enthalpy, specific heat capacity, conductivity, viscosity, surface tension and Prandtl number for saturated liquid, saturated vapour, subcooled liquid for superheated vapour. A software for predicting flow regime has also been developed. It determines the flow pattern at specific flow conditions, and provides a correction factor for calculating the CHF during partially stratified horizontal flow. The technical bases for the program and its

  3. Microcomputer based program for predicting heat transfer under reactor accident conditions. Volume II

    Cheng, S.C.; Groeneveld, D.C.; Leung, L.K.H.; Wong, Y.L.; Nguyen, C.

    1987-07-01

    A microcomputer based program called Heat Transfer Prediction Software (HTPS) has been developed. It calculates the heat transfer for tube and bundle geometries for steady state and transient conditions. This program is capable of providing the best estimated of the hot pin temperatures during slow transients for 37- and 28-element CANDU type fuel bundles. The program is designed for an IBM-PC AT/XT (or IBM-PC compatible computer) equipped with a Math Co-processor. The following input parameters are required: pressure, mass flux, hydraulic diameter, and quality. For the steady state case, the critical heat flux (CHF), the critical heat flux temperature, the minimum film boiling temperature, and the minimum film boiling heat flux are the primary outputs. With either the surface heat flux or wall temperature specified, the program determines the heat transfer regime and calculates the surface heat flux, wall temperature and heat transfer coefficient. For the slow transient case, the pressure, mass flux, quality, and volumetric heat generation rate are the time dependent input parameters are required to calculate the hot pin sheath temperatures and surface heat fluxes. A simple routine for generating properties has been developed for light water to support the above program. It contains correlations that have been verified for pressures ranging from 0.6kPa to 30 MPa, and temperatures up to 1100 degrees Celcius. The thermodynamic and transport properties that can be generated from this routine are: density, specific volume, enthalpy, specific heat capacity, conductivity, viscosity, surface tension and Prandtle number for saturated liquid, saturated vapour, subcooled liquid of superheated vapour. A software for predicting flow regime has also been developed. It determines the flow pattern at specific flow conditions, and provides a correction factor for calculating the CHF during partially stratified horizontal flow. The technical bases for the program and its structure

  4. The Thermos program for nuclear reactors specialized in district heating

    Lerouge, B.

    1976-01-01

    Many studies have been made in France on the use of nuclear heat for district heating. After a brief account of the problems raised by the use of thermal waste from big nuclear power stations, the quantitative and qualitative needs of heating networks are analyzed and the Thermos project described. This is a very robust reactor of the pool type, with an output of 100MW, supplying low-pressure water at 100 deg C. The advantages from the aspects of safety and economy are described, and the present state of the project and its possible developments summarized [fr

  5. HEPAP Subpanel on the US High Energy Physics Research Program for the 1990's

    1990-04-01

    The entire community of high energy physicists looks expectantly to the Superconducting Super Collider (SSC) era. The SSC is the highest priority in the US high energy physics (HEP) program, and physics at the SSC will increasingly become its focus. In this report, the High Energy Physics Advisory Panel (HEPAP) Subpanel on the US High Energy Physics Research Program for the 1990's examines how the National HEP program can go forward vigorously in the period of preparation for the SSC. The Subpanel concluded early that a viable and productive physics research program in the next decade on a range of promising fronts is essential for this field to continue to attract and educate scientists of great creativity. The Subpanel found that such a program requires both exploiting existing opportunities and undertaking some new initiatives. The recommendations are based on the ''constant budget scenario,'' which the Subpanel interprets as averaging the FY 1991 budget level over the next decade

  6. Laser application of heat pipe technology in energy related programs

    Carbone, R.J.

    1975-01-01

    The design and operating parameters for a heat pipe laser utilizing metal vapors are proposed. The laser would be applied to laser induced fusion, laser induced chemistry, laser isotope separation, and power transport using optical beams. (U.S.)

  7. Heat stress management program improving worker health and operational effectiveness: a case study.

    Huss, Rosalyn G; Skelton, Scott B; Alvis, Kimberly L; Shane, Leigh A

    2013-03-01

    Heat stress monitoring is a vital component of an effective health and safety program when employees work in exceptionally warm environments. Workers at hazardous waste sites often wear personal protective equipment (PPE), which increases the body heat stress load. No specific Occupational Safety and Health Administration (OSHA) regulations address heat stress; however, OSHA does provide several guidance documents to assist employers in addressing this serious workplace health hazard. This article describes a heat stress and surveillance plan implemented at a hazardous waste site as part of the overall health and safety program. The PPE requirement for work at this site, coupled with extreme environmental temperatures, made heat stress a significant concern. Occupational health nurses and industrial hygienists developed a monitoring program for heat stress designed to prevent the occurrence of significant heat-related illness in site workers. The program included worker education on the signs of heat-related illness and continuous physiologic monitoring to detect early signs of heat-related health problems. Biological monitoring data were collected before workers entered the exclusion zone and on exiting the zone following decontamination. Sixty-six site workers were monitored throughout site remediation. More than 1,700 biological monitoring data points were recorded. Outcomes included improved worker health and safety, and increased operational effectiveness. Copyright 2013, SLACK Incorporated.

  8. Easy-to-use application programs for decay heat and delayed neutron calculations on personal computers

    Oyamatsu, Kazuhiro [Nagoya Univ. (Japan)

    1998-03-01

    Application programs for personal computers are developed to calculate the decay heat power and delayed neutron activity from fission products. The main programs can be used in any computers from personal computers to main frames because their sources are written in Fortran. These programs have user friendly interfaces to be used easily not only for research activities but also for educational purposes. (author)

  9. COYOTE: a finite element computer program for nonlinear heat conduction problems

    Gartling, D.K.

    1978-06-01

    COYOTE is a finite element computer program designed for the solution of two-dimensional, nonlinear heat conduction problems. The theoretical and mathematical basis used to develop the code is described. Program capabilities and complete user instructions are presented. Several example problems are described in detail to demonstrate the use of the program

  10. Number 2 heating oil/propane program. Final report, 1991/92

    McBrien, J.

    1992-06-01

    During the 1991--92 heating season, the Massachusetts Division of Energy Resources (DOER) participated in a joint data collection program between several state energy offices and the federal Department of Energy`s (DOE) Energy Information Administration (EIA). The purpose of the program was to collect and monitor retail and wholesale heating oil and propane prices and inventories from October, 1991 through March, 1992. This final report begins with an overview of the unique events which had an impact on the reporting period. Next, the report summarizes the results from the residential heating oil and propane price surveys conducted by DOER over the 1991--1992 heating season. The report also incorporates the wholesale heating oil and propane prices and inventories collected by the EIA and distributed to the states. Finally, the report outlines DOER`s use of the data and responses to the events which unfolded during the 1991--1992 heating season.

  11. Safety Test Program Summary SNAP 19 Pioneer Heat Source Safety Program

    None,

    1971-07-01

    Sixteen heat source assemblies have been tested in support of the SNAP 19 Pioneer Safety Test Program. Seven were subjected to simulated reentry heating in various plasma arc facilities followed by impact on earth or granite. Six assemblies were tested under abort accident conditions of overpressure, shrapnel impact, and solid and liquid propellant fires. Three capsules were hot impacted under Transit capsule impact conditions to verify comparability of test results between the two similar capsule designs, thus utilizing both Pioneer and Transit Safety Test results to support the Safety Analysis Report for Pioneer. The tests have shown the fuel is contained under all nominal accident environments with the exception of minor capsule cracks under severe impact and solid fire environments. No catastrophic capsule failures occurred in this test which would release large quantities of fuel. In no test was fuel visible to the eye following impact or fire. Breached capsules were defined as those which exhibit thoria contamination on its surface following a test, or one which exhibited visible cracks in the post test metallographic analyses.

  12. Recovery Act: Tennessee Energy Efficient Schools Initiative Ground Source Heat Pump Program

    Townsend, Terry [Townsend Engineering, Inc., Davenport, IA (United States); Slusher, Scott [Townsend Engineering, Inc., Davenport, IA (United States)

    2017-04-24

    The Tennessee Energy Efficient Schools Initiative (EESI) Hybrid-Water Source Heat Pump (HY-GSHP) Program sought to provide installation costs and operation costs for different Hybrid water source heat pump systems’ configurations so that other State of Tennessee School Districts will have a resource for comparison purposes if considering a geothermal system.

  13. Evaluation of Enova's heating programs; Evaluering av Enovas varmeprogrammer

    Rasmussen, Ingeborg; Grorud, Christian; Heldal, Nicolai; Trong, Maj Dang

    2006-07-01

    An evaluation of Enova's heating program is presented. The central point was to evaluate to which degree Enova's heating program had resulted in increased supply of renewable energy for heating purposes to the Norwegian energy system. Main results are presented in part 1, chapter 1 to 5, while the facts and analyses behind the evaluation are presented in part 2, chapter I to VII. The main conclusion is that the program seen as one has had triggering effect on the market. The program has thus provided results in the form of increased supply of heating energy. Because of the project limitations and the lack of systematically documented baselines in the procedures, there are insecurities connected to the exact data registered. This makes quantification of the results difficult (ml)

  14. CACHE: an extended BASIC program which computes the performance of shell and tube heat exchangers

    Tallackson, J.R.

    1976-03-01

    An extended BASIC program, CACHE, has been written to calculate steady state heat exchange rates in the core auxiliary heat exchangers, (CAHE), designed to remove afterheat from High-Temperature Gas-Cooled Reactors (HTGR). Computationally, these are unbaffled counterflow shell and tube heat exchangers. The computational method is straightforward. The exchanger is subdivided into a user-selected number of lengthwise segments; heat exchange in each segment is calculated in sequence and summed. The program takes the temperature dependencies of all thermal conductivities, viscosities and heat capacities into account providing these are expressed algebraically. CACHE is easily adapted to compute steady state heat exchange rates in any unbaffled counterflow exchanger. As now used, CACHE calculates heat removal by liquid weight from high-temperature helium and helium mixed with nitrogen, oxygen and carbon monoxide. A second program, FULTN, is described. FULTN computes the geometrical parameters required as input to CACHE. As reported herein, FULTN computes the internal dimensions of the Fulton Station CAHE. The two programs are chained to operate as one. Complete user information is supplied. The basic equations, variable lists, annotated program lists, and sample outputs with explanatory notes are included

  15. Action Program for Implementing Heat Savings in Greater Copenhagen

    Nørgaard, Jørgen; Karlsson, Kenneth; Engell, Thomas

    1998-01-01

    This main report summarized the content of the three sub-report of the project, including the background for the project, the potentails for saving heat and the barriers for implementing these savings. Afterwards the report define the geographical area considered, as well as the present situation...

  16. Spent fuel dissolution studies FY 1991 to 1994

    Gray, W.J.; Wilson, C.N.

    1995-12-01

    Dissolution and transport as a result of groundwater flow are generally accepted as the primary mechanisms by which radionuclides from spent fuel placed in a geologic repository could be released to the biosphere. To help provide a source term for performance assessment calculations, dissolution studies on spent fuel and unirradiated uranium oxides have been conducted over the past few years at Pacific Northwest National Laboratory (PNNL) in support of the Yucca Mountain Site Characterization Project. This report describes work for fiscal years 1991 through 1994. The objectives of these studies and the associated conclusions, which were based on the limited number of tests conducted so far, are described in the following subsections

  17. Oak Ridge National Laboratory Institutional Plan, FY 1991--FY 1996

    1991-02-01

    The Oak Ridge National Laboratory -- one of DOE's major multiprogram laboratories -- focuses its resources on energy research and development (R D). To be able to meet these R D challenges, the Laboratory must achieve excellence in its operations relative to environmental, safety, and health (ES H) protection and to restore its aging facility infrastructure. ORNL's missions are carried out in compliance with all applicable ES H regulations. The Laboratory conducts applied R D in energy technologies -- in conservation; fission; magnetic fusion; health and environmental protection; waste management; renewable resources; and fossil energy. Experimental and theoretical research is undertaken to investigate fundamental problems in physical, chemical, materials, computational, biomedical, earth, and environmental sciences; to advance scientific knowledge; and to support energy technology R D. ORNL designs, builds, and operates unique research facilities for the benefit of university, industrial, and national laboratory researchers. The Laboratory serves as a catalyst in bringing national and international research elements together for important scientific and technical collaborations. ORNL helps to prepare the scientific and technical work force of the future by offering innovative and varied learning and R D experiences at the Laboratory for students and faculty from preschool level through postdoctoral candidates. The transfer of science and technology to US industries and universities is an integral component of ORNL's R D missions. ORNL also undertakes research and development for non-DOE sponsors when such work is synergistic with DOE mission. 66 figs., 55 tabs.

  18. Carbon Dioxide Information Analysis Center: FY 1991 activities

    Cushman, R.M.; Stoss, F.W.

    1992-06-01

    During the course of a fiscal year, Oak Ridge National Laboratory`s Carbon Dioxide Information Analysis Center (CDIAC) distributes thousands of specially publications-numeric data packages (NDPs), computer model packages (CMPs), technical reports, public communication publications, newsletters, article reprints, and reference books-in response to requests for information related to global environmental issues, primarily those pertaining to climate change. CDIAC`s staff also provides technical responses to specific inquiries related to carbon dioxide (CO{sub 2}), other trace gases, and climate. Hundreds of referrals to other researchers, policy analysts, information specialists, or organizations are also facilitated by CDIAC`s staff. This report provides an account of the activities accomplished by CDIAC during the period October 1, 1990 to September 30, 1991. An organizational overview of CDIAC and its staff is supplemented by a detailed description of inquiries received and CDIAC`s response to those inquiries. An analysis and description of the preparation and distribution of numeric data packages, computer model packages, technical reports, newsletters, factsheets, specially publications, and reprints is provided. Comments and descriptions of CDIAC`s information management systems, professional networking, and special bilateral agreements are also described.

  19. Carbon Dioxide Information Analysis Center: FY 1991 activities

    Cushman, R.M.; Stoss, F.W.

    1992-06-01

    During the course of a fiscal year, Oak Ridge National Laboratory's Carbon Dioxide Information Analysis Center (CDIAC) distributes thousands of specially publications-numeric data packages (NDPs), computer model packages (CMPs), technical reports, public communication publications, newsletters, article reprints, and reference books-in response to requests for information related to global environmental issues, primarily those pertaining to climate change. CDIAC's staff also provides technical responses to specific inquiries related to carbon dioxide (CO{sub 2}), other trace gases, and climate. Hundreds of referrals to other researchers, policy analysts, information specialists, or organizations are also facilitated by CDIAC's staff. This report provides an account of the activities accomplished by CDIAC during the period October 1, 1990 to September 30, 1991. An organizational overview of CDIAC and its staff is supplemented by a detailed description of inquiries received and CDIAC's response to those inquiries. An analysis and description of the preparation and distribution of numeric data packages, computer model packages, technical reports, newsletters, factsheets, specially publications, and reprints is provided. Comments and descriptions of CDIAC's information management systems, professional networking, and special bilateral agreements are also described.

  20. Oak Ridge National Laboratory Institutional Plan, FY 1991--FY 1996

    1991-02-01

    The Oak Ridge National Laboratory -- one of DOE's major multiprogram laboratories -- focuses its resources on energy research and development (R ampersand D). To be able to meet these R ampersand D challenges, the Laboratory must achieve excellence in its operations relative to environmental, safety, and health (ES ampersand H) protection and to restore its aging facility infrastructure. ORNL's missions are carried out in compliance with all applicable ES ampersand H regulations. The Laboratory conducts applied R ampersand D in energy technologies -- in conservation; fission; magnetic fusion; health and environmental protection; waste management; renewable resources; and fossil energy. Experimental and theoretical research is undertaken to investigate fundamental problems in physical, chemical, materials, computational, biomedical, earth, and environmental sciences; to advance scientific knowledge; and to support energy technology R ampersand D. ORNL designs, builds, and operates unique research facilities for the benefit of university, industrial, and national laboratory researchers. The Laboratory serves as a catalyst in bringing national and international research elements together for important scientific and technical collaborations. ORNL helps to prepare the scientific and technical work force of the future by offering innovative and varied learning and R ampersand D experiences at the Laboratory for students and faculty from preschool level through postdoctoral candidates. The transfer of science and technology to US industries and universities is an integral component of ORNL's R ampersand D missions. ORNL also undertakes research and development for non-DOE sponsors when such work is synergistic with DOE mission. 66 figs., 55 tabs

  1. Advanced Neutron Source (ANS) Project Progress report, FY 1991

    Campbell, J.H.; Selby, D.L.; Harrington, R.M.; Thompson, P.B.

    1992-01-01

    This report discusses the following about the Advanced Neutron Source: Project Management; Research and Development; Fuel Development; Corrosion Loop Tests and Analyses; Thermal-Hydraulic Loop Tests; Reactor Control and Shutdown Concepts; Critical and Subcritical Experiments; Material Data, Structural Tests, and Analysis; Cold-Source Development; Beam Tube, Guide, and Instrument Development; Hot-Source Development; Neutron Transport and Shielding; I ampersand C Research and Development; Design; and Safety

  2. Individual and Public-Program Adaptation: Coping with Heat Waves in Five Cities in Canada

    Mustapha Alhassan

    2011-12-01

    Full Text Available Heat Alert and Response Systems (HARS are currently undergoing testing and implementation in Canada. These programs seek to reduce the adverse health effects of heat waves on human health by issuing weather forecasts and warnings, informing individuals about possible protections from excessive heat, and providing such protections to vulnerable subpopulations and individuals at risk. For these programs to be designed effectively, it is important to know how individuals perceive the heat, what their experience with heat-related illness is, how they protect themselves from excessive heat, and how they acquire information about such protections. In September 2010, we conducted a survey of households in 5 cities in Canada to study these issues. At the time of the survey, these cities had not implemented heat outreach and response systems. The study results indicate that individuals’ recollections of recent heat wave events were generally accurate. About 21% of the sample reported feeling unwell during the most recent heat spell, but these illnesses were generally minor. Only in 25 cases out of 243, these illnesses were confirmed or diagnosed by a health care professional. The rate at which our respondents reported heat-related illnesses was higher among those with cardiovascular and respiratory illnesses, was higher among younger respondents and bore no relationship with the availability of air conditioning at home. Most of the respondents indicated that they would not dismiss themselves as “not at risk” and that they would cope with excessive heat by staying in air conditioned environments and keeping well hydrated. Despite the absence of heat outreach and education programs in their city, our respondents at least a rough idea of how to take care of themselves. The presence of air conditioning and knowledge of cooling centers is location-specific, which provides opportunities for targeting HARS interventions.

  3. Individual and public-program adaptation: coping with heat waves in five cities in Canada.

    Alberini, Anna; Gans, Will; Alhassan, Mustapha

    2011-12-01

    Heat Alert and Response Systems (HARS) are currently undergoing testing and implementation in Canada. These programs seek to reduce the adverse health effects of heat waves on human health by issuing weather forecasts and warnings, informing individuals about possible protections from excessive heat, and providing such protections to vulnerable subpopulations and individuals at risk. For these programs to be designed effectively, it is important to know how individuals perceive the heat, what their experience with heat-related illness is, how they protect themselves from excessive heat, and how they acquire information about such protections. In September 2010, we conducted a survey of households in 5 cities in Canada to study these issues. At the time of the survey, these cities had not implemented heat outreach and response systems. The study results indicate that individuals' recollections of recent heat wave events were generally accurate. About 21% of the sample reported feeling unwell during the most recent heat spell, but these illnesses were generally minor. Only in 25 cases out of 243, these illnesses were confirmed or diagnosed by a health care professional. The rate at which our respondents reported heat-related illnesses was higher among those with cardiovascular and respiratory illnesses, was higher among younger respondents and bore no relationship with the availability of air conditioning at home. Most of the respondents indicated that they would not dismiss themselves as "not at risk" and that they would cope with excessive heat by staying in air conditioned environments and keeping well hydrated. Despite the absence of heat outreach and education programs in their city, our respondents at least a rough idea of how to take care of themselves. The presence of air conditioning and knowledge of cooling centers is location-specific, which provides opportunities for targeting HARS interventions.

  4. TRUMP3-JR: a finite difference computer program for nonlinear heat conduction problems

    Ikushima, Takeshi

    1984-02-01

    Computer program TRUMP3-JR is a revised version of TRUMP3 which is a finite difference computer program used for the solution of multi-dimensional nonlinear heat conduction problems. Pre- and post-processings for input data generation and graphical representations of calculation results of TRUMP3 are avaiable in TRUMP3-JR. The calculation equations, program descriptions and user's instruction are presented. A sample problem is described to demonstrate the use of the program. (author)

  5. Development of Thermal Design Program for an Electronic Telecommunication System Using Heat Sink

    Lee, Jung Hwan; Kim, Jong Man; Chun, Ji Hwan; Bae, Chul Ho; Suh, Myung Won

    2007-01-01

    The purpose of this study is to investigate the cooling performance of heat sinks for an electronic telecommunication system by adequate natural convection. Heat generation rates of electronic components and the temperature distributions of heat sinks and surrounding air are analyzed experimentally and numerically. In order to perform the heat transfer analysis for the thermal design of telecommunication system, a program is developed. The program used the graphic user interface environment to determine the arrangement of heat sources, interior fan capacity, and heat sink configuration. The simulation results showed that the heat sinks were able to achieve a cooling capacity of up to 230W at the maximum temperature difference of 19 .deg. C. To verify the results from the numerical simulation, an experiment was conducted under the same condition as the numerical simulation, and their results were compared. The design program gave good prediction of the effects of various parameters involved in the design of a heat sinks for an electronic telecommunication system

  6. Orion Heat Shield Manufacturing Producibility Improvements for the EM-1 Flight Test Program

    Koenig, William J.; Stewart, Michael; Harris, Richard F.

    2018-01-01

    This paper describes how the ORION program is incorporating improvements in the heat shield design and manufacturing processes reducing programmatic risk and ensuring crew safety in support of NASA's Exploration missions. The approach for the EFT-1 heat shield utilized a low risk Apollo heritage design and manufacturing process using an Avcoat TPS ablator with a honeycomb substrate to provide a one piece heat shield to meet the mission re-entry heating environments. The EM-1 mission will have additional flight systems installed to fly to the moon and return to Earth. Heat shield design and producibility improvements have been incorporated in the EM-1 vehicle to meet deep space mission requirements. The design continues to use the Avcoat material, but in a block configuration to enable improvements in consistant and repeatable application processes using tile bonding experience developed on the Space Shuttle Transportation System Program.

  7. No. 2 heating oil/propane program. Final report, 1992/93

    McBrien, J.

    1993-05-01

    During the 1992--93 heating season, the Massachusetts Division Energy Resources (DOER) participated in a joint data collection program between several state energy offices and the federal Department of Energy`s (DOE) Energy Information Administration (EIA). The purpose of the program was to collect and monitor retail and wholesale heating oil and propane prices and inventories from October, 1992 through March, 1993. This final report begins with an overview of the unique events which had an impact on the petroleum markets prior to and during the reporting period. Next, the report summarizes the results from residential heating oil and propane price surveys conducted by DOER over the 1992--93 heating season. The report also incorporates the wholesale heating oil and propane prices and inventories collected by the EIA and distributed to the states. Finally, the report outlines DOER`s use of the data.

  8. No. 2 heating oil/propane program. Final report, 1990/91

    McBrien, J.

    1991-06-01

    During the 1990/91 heating season, the Massachusetts Division of Energy Resources (DOER) participated in a joint data collection program between several state energy offices and the federal Department of Energy`s (DOE) Energy Information Administration (EIA). The purpose of the program was to collect and monitor retail and wholesale heating oil and propane prices and inventories from October 1990 through March 1991. This final report begins with an overview of the unique events which had an impact on the reporting period. Next, the report summarizes the results from the residential heating oil and propane price surveys conducted by DOER over the 1990/91 heating season. The report also incorporates the wholesale heating oil and propane prices and inventories collected by the EIA and distributed to the states.

  9. Gas flow environmental and heat transfer nonrotating 3D program

    Geil, T.; Steinhoff, J.

    1983-01-01

    A complete set of benchmark quality data for the flow and heat transfer within a large rectangular turning duct is being compiled. These data will be used to evaluate and verify three dimensional internal viscous flow models and computational codes. The analytical objective is to select such a computational code and define the capabilities of this code to predict the experimental results. Details of the proper code operation will be defined and improvements to the code modeling capabilities will be formulated.

  10. State heating oil and propane program. Final report, 1996--1997

    Hunton, G.

    1997-01-01

    The following is a summary report of the New Hampshire Governor's Office of Energy and Community Services (ECS) participation in the State Heating Oil and Propane Program (SHOPP) for the 1996-97 heating season. SHOPP is a cooperative effort, linking energy offices in East Coast and Midwest states, with the Department of Energy (DOE), Energy Information Administration (EIA) for the purpose of collecting retail price data for heating oil and propane. The program funded by the participating state with a matching grant from DOE. SHOPP was initiated in response to congressional inquires into supply difficulties and price spikes of heating oil and propane associated with the winter of 1989/90. This is important to New Hampshire because heating oil controls over 55% of the residential heating market statewide. Propane controls 10% of the heating market statewide and is widely used in rural areas where Natural GAs is not available. Lower installation cost, convenience, lower operating costs compared to electricity and its perception as a clean heating fuel has increased the popularity of propane in New Hampshire and should continue to do so in the future. Any disruption in supply of these heating fuels to New Hampshire could cause prices to skyrocket and leave many residents in the cold

  11. Thermoelectric Waste Heat Recovery Program for Passenger Vehicles

    Jovovic, Vladimir [Gentherm Incorporated, Azusa, CA (United States)

    2015-12-31

    Gentherm began work in October 2011 to develop a Thermoelectric Waste Energy Recovery System for passenger vehicle applications. Partners in this program were BMW and Tenneco. Tenneco, in the role of TIER 1 supplier, developed the system-level packaging of the thermoelectric power generator. As the OEM, BMW Group demonstrated the TEG system in their vehicle in the final program phase. Gentherm demonstrated the performance of the TEG in medium duty and heavy duty vehicles. Technology developed and demonstrated in this program showed potential to reduce fuel consumption in medium and heavy duty vehicles. In light duty vehicles it showed more modest potential.

  12. 77 FR 10373 - Greenhouse Gas Reporting Program: Electronics Manufacturing: Revisions to Heat Transfer Fluid...

    2012-02-22

    ... Greenhouse Gas Reporting Program: Electronics Manufacturing: Revisions to Heat Transfer Fluid Provisions... technical revisions to the electronics manufacturing source category of the Greenhouse Gas Reporting Rule... final rule will also be available through the WWW on the EPA's Greenhouse Gas Reporting Program Web site...

  13. WAD, a program to calculate the heat produced by alpha decay

    Jarvis, R.G.; Bretzlaff, C.I.

    1982-09-01

    The FORTRAN program WAD (Watts from Alpha Decay) deals with the alpha and beta decay chains to be encountered in advanced fuel cycles for CANDU reactors. The data library covers all necessary alpha-emitting and beta-emitting nuclides and the program calculates the heat produced by alpha decay. Any permissible chain can be constructed very simply

  14. No. 2 heating oil/propane program 1994--1995. Final report

    McBrien, J.

    1995-05-01

    During the 1994--95 heating season, the Massachusetts Division of Energy Resources (DOER) participated in a joint data collection program between several state energy offices and the federal Department of Energy's (DOE) Energy Information Administration (EIA). The purpose of the program was to collect and monitor retail and wholesale heating oil and propane prices and inventories from October 1994 through March 1995. This program augmented the existing Massachusetts data collection system and served several important functions. The information helped the federal and state governments respond to consumer, congressional and media inquiries regarding No. 2 oil and propane. The information also provided policy decision-makers with timely, accurate and consistent data to monitor current heating oil and propane markets and develop appropriate state responses when necessary. In addition, the communication network between states and the DOE was strengthened through this program. This final report begins with an overview of the unique events that had an impact on the petroleum markets prior to and during the reporting period. Next, the report summarizes the results from residential heating oil and propane price surveys conducted by DOER over the 1994--95 heating season. The report also incorporates the wholesale heating oil and propane prices and inventories collected by EIA and distributed to the states. Finally, the report outlines DOER's use of the data

  15. ANL Technical Support Program for DOE Environmental Restoration and Waste Management

    Bates, J.K.; Bradley, C.R.; Buck, E.C.; Cunnane, J.C.; Dietz, N.L.; Ebert, W.L.; Emery, J.W.; Feng, X.; Gerding, T.J.; Gong, M.; Hoh, J.C.; Mazer, J.J.; Wronkiewicz, D.J.; Bourcier, W.L.; Morgan, L.E.; Nielsen, J.K.; Steward, S.A.; Ewing, R.C.; Wang, L.M.; Han, W.T.; Tomozawa, M.

    1992-03-01

    This report provides an overview of progress during FY 1991 for the Technical Support Program that is part of the ANL Technology Support Activity for DOE, Environmental Restoration and Waste Management (EM). The purpose is to evaluate, before hot start-up of the Defenses Waste Processing Facility (DWPF) and the West Valley Demonstration Project (WVDP), factors that are likely to affect glass reaction in an unsaturated environment typical of what may be expected for the candidate Yucca Mountain repository site. Specific goals for the testing program include the following: (1) to review and evaluate available information on parameters that will be important in establishing the long-term performance of glass in a repository environment; (2) to perform testing to further quantify the effects of important variables where there are deficiencies in the available data; and (3) to initiate long-term testing that will bound glass performance under a range of conditions applicable to repository disposal

  16. High-heat tank safety issue resolution program plan. Revision 2

    Wang, O.S.

    1994-12-01

    The purpose of this program plan is to provide a guide for selecting corrective actions that will mitigate and/or remediate the high-heat waste tank safety issue for single-shell tank 241-C-106. The heat source of approximately 110,000 Btu/hr is the radioactive decay of the stored waste material (primarily 90 Sr) inadvertently transferred into the tank in the later 1960s. Currently, forced ventilation, with added water to promote thermal conductivity and evaporation cooling, is used for heat removal. The method is very effective and economical. At this time, the only viable solution identified to permanently resolve this safety issue is the removal of heat-generating waste in the tank. This solution is being aggressively pursued as the only remediation method to this safety issue, and tank 241-C-106 has been selected as the first single-shell tank for retrieval. The current cooling method and other alternatives are addressed in this program as means to mitigate this safety issue before retrieval. This program plan has three parts. The first part establishes program objectives and defines safety issue, drivers, and resolution criteria and strategy. The second part evaluates the high-heat safety issue and its mitigation and remediation methods and other alternatives according to resolution logic. The third part identifies major tasks and alternatives for mitigation and resolution of the safety issue. A table of best-estimate schedules for the key tasks is also included in this program plan

  17. COMPUTER PROGRAM FOR CALCULATION MICROCHANNEL HEAT EXCHANGERS FOR AIR CONDITIONING SYSTEMS

    Olga V. Olshevska

    2016-08-01

    Full Text Available Creating a computer program to calculate microchannel air condensers to reduce design time and carrying out variant calculations. Software packages for thermophysical properties of the working substance and the coolant, the correlation equation for calculating heat transfer, aerodynamics and hydrodynamics, the thermodynamic equations for the irreversible losses and their minimization in the heat exchanger were used in the process of creating. Borland Delphi 7 is used for creating software package.

  18. Recovery Act: Finite Volume Based Computer Program for Ground Source Heat Pump Systems

    James A Menart, Professor

    2013-02-22

    This report is a compilation of the work that has been done on the grant DE-EE0002805 entitled Finite Volume Based Computer Program for Ground Source Heat Pump Systems. The goal of this project was to develop a detailed computer simulation tool for GSHP (ground source heat pump) heating and cooling systems. Two such tools were developed as part of this DOE (Department of Energy) grant; the first is a two-dimensional computer program called GEO2D and the second is a three-dimensional computer program called GEO3D. Both of these simulation tools provide an extensive array of results to the user. A unique aspect of both these simulation tools is the complete temperature profile information calculated and presented. Complete temperature profiles throughout the ground, casing, tube wall, and fluid are provided as a function of time. The fluid temperatures from and to the heat pump, as a function of time, are also provided. In addition to temperature information, detailed heat rate information at several locations as a function of time is determined. Heat rates between the heat pump and the building indoor environment, between the working fluid and the heat pump, and between the working fluid and the ground are computed. The heat rates between the ground and the working fluid are calculated as a function time and position along the ground loop. The heating and cooling loads of the building being fitted with a GSHP are determined with the computer program developed by DOE called ENERGYPLUS. Lastly COP (coefficient of performance) results as a function of time are provided. Both the two-dimensional and three-dimensional computer programs developed as part of this work are based upon a detailed finite volume solution of the energy equation for the ground and ground loop. Real heat pump characteristics are entered into the program and used to model the heat pump performance. Thus these computer tools simulate the coupled performance of the ground loop and the heat pump. The

  19. Finite Volume Based Computer Program for Ground Source Heat Pump System

    Menart, James A. [Wright State University

    2013-02-22

    This report is a compilation of the work that has been done on the grant DE-EE0002805 entitled ?Finite Volume Based Computer Program for Ground Source Heat Pump Systems.? The goal of this project was to develop a detailed computer simulation tool for GSHP (ground source heat pump) heating and cooling systems. Two such tools were developed as part of this DOE (Department of Energy) grant; the first is a two-dimensional computer program called GEO2D and the second is a three-dimensional computer program called GEO3D. Both of these simulation tools provide an extensive array of results to the user. A unique aspect of both these simulation tools is the complete temperature profile information calculated and presented. Complete temperature profiles throughout the ground, casing, tube wall, and fluid are provided as a function of time. The fluid temperatures from and to the heat pump, as a function of time, are also provided. In addition to temperature information, detailed heat rate information at several locations as a function of time is determined. Heat rates between the heat pump and the building indoor environment, between the working fluid and the heat pump, and between the working fluid and the ground are computed. The heat rates between the ground and the working fluid are calculated as a function time and position along the ground loop. The heating and cooling loads of the building being fitted with a GSHP are determined with the computer program developed by DOE called ENERGYPLUS. Lastly COP (coefficient of performance) results as a function of time are provided. Both the two-dimensional and three-dimensional computer programs developed as part of this work are based upon a detailed finite volume solution of the energy equation for the ground and ground loop. Real heat pump characteristics are entered into the program and used to model the heat pump performance. Thus these computer tools simulate the coupled performance of the ground loop and the heat pump

  20. D0 HVAC System Heat Pump Controller Programming, Networking, and Operating Information

    Anderson, B.

    1999-01-01

    The purpose of this engineering note is to provide the necessary information to setup, program, and network the Electronic Systems USA Heat Pump Controller with the LON network card and Intellution Fix32 to operate properly within the HVAC system at D-Zero. The heat pump controllers are used for local temperature control of the office environments on the fifth and six floors of D-Zero. Heat pump units 1-6 are located in the ceiling of the sixth floor. Heat pump units 7-12 are found in the fifth floor ceiling. Heat pump unit 13 is in the Southeast corner of the fifth floor. Prior to installation the heat pump controller must be properly prepared to operate correctly in the HVAC system. Each heat pump unit must contain firmware (software) version 1.31 to operate properly on the network. Controllers with version 1.30 will not be able to communicate over the LON network. The manufacturer can only update the firmware version. Before installation a series of heat pump setpoints must be manually set using the Intelligent Stat. Connect the Intelligent Stat via the serial cable or wired connection.

  1. Development program for the high-temperature nuclear process heat system

    Jiacoletti, R.J.

    1975-09-01

    A comprehensive development program plan for a high-temperature nuclear process heat system with a very high temperature gas-cooled reactor heat source is presented. The system would provide an interim substitute for fossil-fired sources and ultimately the vehicle for the production of substitute and synthetic fuels to replace petroleum and natural gas. The dwindling domestic reserves of petroleum and natural gas dictate major increases in the utilization of coal and nuclear sources to meet the national energy demand. The nuclear process heat system has significant potential in a unique combination of the two sources that is environmentally and economically attractive and technically sound: the production of synthetic fuels from coal. In the longer term, it could be the key component in hydrogen production from water processes that offer a substitute fuel and chemical feedstock free of dependence on fossil-fuel reserves. The proposed development program is threefold: a process studies program, a demonstration plant program, and a supportive research and development program. Optional development scenarios are presented and evaluated, and a selection is proposed and qualified. The interdependence of the three major program elements is examined, but particular emphasis is placed on the supportive research and development activities. A detailed description of proposed activities in the supportive research and development program with tentative costs and schedules is presented as an appendix with an assessment of current status and planning

  2. Apparatus for dynamic measurement of gases released from materials heated under programmed temperature-time control

    Early, J.W.; Abernathey, R.M.

    1982-04-01

    This apparatus, a prototype of one being constructed for hotcell examination of irradiated nuclear materials, measures dynamic release rates and integrated volumes of individual gases from materials heated under controlled temperature-time programs. It consists of an inductively heated vacuum furnace connected to a quadrupole mass spectrometer. A computerized control system with data acquisition provides scanning rates down to 1s and on-line tabular and graphic displays. Heating rates are up to 1300 0 C/min to a maximum temperature of 2000 0 C. The measurement range is about 10 -6 to 10 -2 torr-liter/s for H 2 , CH 4 , H 2 O, N 2 , and CO and 10 -8 to 10 -2 torr-liter/s for He, Kr, and Xe. Applications are described for measurements of Kr and Xe in mixed oxide fuel, various gases in UO 2 pellets, and He in 238 PuO 2 power and heat sources

  3. Heat Islands

    EPA's Heat Island Effect Site provides information on heat islands, their impacts, mitigation strategies, related research, a directory of heat island reduction initiatives in U.S. communities, and EPA's Heat Island Reduction Program.

  4. Investigation on natural convection decay heat removal for the EFR status of the program

    Hofmann, F [Kernforschungszentrum Karlsruhe (Germany); Essig, C [Siemens AG, Bergisch Gladbach (Germany); Georgeoura, S [AEA Reactor Service, Dounreay (United Kingdom); Tenchine, D [CEA Grenoble (France)

    1993-02-01

    The European Research and Development (R+D) Program on decay heat removal by natural convection for the European Fast Reactor (EFR) covers the calculational methods and the model experiments performed for code validation. The studies concentrate on important physical effects of the cooling modes within the primary system and the direct reactor cooling circuits and include reactor experiments. (author)

  5. 76 FR 63211 - Energy Efficiency Program: Test Procedures for Residential Water Heaters, Direct Heating...

    2011-10-12

    ... DEPARTMENT OF ENERGY 10 CFR Part 430 [Docket Number EERE-2011-BT-TP-0042] RIN 1904-AC53 Energy Efficiency Program: Test Procedures for Residential Water Heaters, Direct Heating Equipment, and Pool Heaters AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION: Request for...

  6. Investigation on natural convection decay heat removal for the EFR: Status of the program

    Hoffmann, H; Weinberg, D [Kernforschungszentrum Karlsruhe GmbH, IATF, Karlsruhe (Germany); Webster, R [AEA Reactor Services, Dounreay (United Kingdom)

    1991-07-01

    The European Research and Development Program on decay heat removal by natural convection for the European Fast Reactor (EFR) covers the calculational methods and the model experiments performed for code validation. The studies concentrate on important physical effects of the cooling modes withinthe primary system and the direct reactor cooling circuits and include fundamental tests as well as reactor experiments. (author)

  7. Investigation on natural convection decay heat removal for the EFR status of the program

    Hofmann, F.; Essig, C; Georgeoura, S.; Tenchine, D.

    1993-01-01

    The European Research and Development (R+D) Program on decay heat removal by natural convection for the European Fast Reactor (EFR) covers the calculational methods and the model experiments performed for code validation. The studies concentrate on important physical effects of the cooling modes within the primary system and the direct reactor cooling circuits and include reactor experiments. (author)

  8. NREL Photovoltaic Program FY 1996 Annual Report

    1997-08-01

    This report summarizes the in-house and subcontract research and development (R&D) activities under the National Renewable Energy Laboratory (NREL) Photovoltaics (PV) Program from October 1, 1995 through September 30, 1996 (fiscal year [FY] 1996). The NREL PV Program is part of the U.S. Department of Energy's (DOE) National Photovoltaics Program, as described in the DOE Photovoltaics Program Plan, FY 1991 - FY 1995. The mission of the DOE National Photovoltaics Program is to: "Work in partnership with U.S. industry to develop and deploy photovoltaic technology for generating economically competitive electric power, making photovoltaics an important contributor to the nation's and the world's energy use and environmental improvement. The two primary goals of the national program are to (1) maintain the U.S. PV industry's world leadership in research and technology development and (2) help the U.S. industry remain a major, profitable force in the world market. The NREL PV Program provides leadership and support to the national program toward achieving its mission and goals.

  9. Technical support to the Nuclear Regulatory Commission for the boiling water reactor blowdown heat transfer program

    Rice, R.E.

    1976-09-01

    Results are presented of studies conducted by Aerojet Nuclear Company (ANC) in FY 1975 to support the Nuclear Regulatory Commission (NRC) on the boiling water reactor blowdown heat transfer (BWR-BDHT) program. The support provided by ANC is that of an independent assessor of the program to ensure that the data obtained are adequate for verification of analytical models used for predicting reactor response to a postulated loss-of-coolant accident. The support included reviews of program plans, objectives, measurements, and actual data. Additional activity included analysis of experimental system performance and evaluation of the RELAP4 computer code as applied to the experiments

  10. REITP3-Hazard evaluation program for heat release based on thermochemical calculation

    Akutsu, Yoshiaki.; Tamura, Masamitsu. [The University of Tokyo, Tokyo (Japan). School of Engineering; Kawakatsu, Yuichi. [Oji Paper Corp., Tokyo (Japan); Wada, Yuji. [National Institute for Resources and Environment, Tsukuba (Japan); Yoshida, Tadao. [Hosei University, Tokyo (Japan). College of Engineering

    1999-06-30

    REITP3-A hazard evaluation program for heat release besed on thermochemical calculation has been developed by modifying REITP2 (Revised Estimation of Incompatibility from Thermochemical Properties{sup 2)}. The main modifications are as follows. (1) Reactants are retrieved from the database by chemical formula. (2) As products are listed in an external file, the addition of products and change in order of production can be easily conducted. (3) Part of the program has been changed by considering its use on a personal computer or workstation. These modifications will promote the usefulness of the program for energy hazard evaluation. (author)

  11. State heating oil and propane program. Final report, 1992--1993

    Rizzolo, D.R.

    1997-01-01

    In cooperation with the United States Department of Energy (USDOE), Energy Information Administration (EIA) the New Jersey Department of Environmental Protection and Energy (DEPE), Office of Energy participated in an ongoing program to monitor retail prices of no. 2 heating oil and propane in New Jersey. According to program instructions, we conducted price surveys on a semi-monthly basis to obtain the necessary information from retail fuel merchants and propane dealers identified by the EIA. According to program instructions and at the discretion of the USDOE, we conducted four additional propane surveys on January 11 and 25, and April 5 and 19, 1993. The heating oil surveys began on October 5, 1992 and ended on March 15, 1993. The propane surveys began on October 5, 1992 and ended on April 19, 1993. We submitted data collected as of specified report dates to the EIA, within two working days of those dates

  12. Wave heating and the U.S. magnetic fusion energy program

    Staten, H.S.

    1985-01-01

    The U.S. Government's support of the fusion program is predicated upon the long-term need for the fusion option in our energy future, as well as the near-term benefits associated with developments on the frontier of science and high technology. As a long-term energy option, magnetic fusion energy has the potential to provide an inexpensive, vast, and secure fuel reserve, to be environmentally clean and safe. It has many potential uses, which include production of central station electricity, fuel for fission reactors, synthetic fuels, and process heat for such applications as desalination of sea water. This paper presents an overview of the U.S. Government program for magnetic fusion energy. The goal and objectives of the U.S. program are reviewed followed by a summary of plasma experiments presently under way and the application of wave heating to these experiments

  13. Impacts of the Weatherization Assistance Program in fuel-oil heated houses

    Levins, W.P.; Ternes, M.P.

    1994-10-01

    In 1990, the US Department of Energy (DOE) initiated a national evaluation of its lowincome Weatherization Assistance Program. This report, which is one of five parts of that evaluation, evaluates the energy savings and cost-effectiveness of the Program as it had been applied to single-family houses heated primarily by fuel-oil. The study was based upon a representative sample (41 local weatherization agencies, 222 weatherized and 115 control houses) from the nine northeastern states during 1991 and 1992 program years. Dwelling-specific and agency-level data on measures installed, costs, and service delivery procedures were collected from the sampled agencies. Space-heating fuel-oil consumption, indoor temperature, and outdoor temperature were monitored at each house. Dwelling characteristics, air-leakage measurements, space-heating system steady-state efficiency measurements, safety inspections, and occupant questionnaires were also collected or performed at each monitored house. We estimate that the Program weatherized a total of 23,400 single-family fuel-oil heated houses in the nine northeastern states during program years 1991 and 1992. Annual fuel-oil savings were calculated using regression techniques to normalize the savings to standard weather conditions. For the northeast region, annual net fuel-oil savings averaged 160 gallons per house, or 17.7% of pre-weatherization consumption. Although indoor temperatures changed in individual houses following weatherization, there was no average change and no significant difference as compared to the control houses; thus, there was no overall indoor temperature takeback effect influencing fuel-oil savings. The weatherization work was performed cost effectively in these houses from the Program perspective, which included both installation costs and overhead and management costs but did not include non-energy benefits (such as employment and environmental).

  14. Data gathering in support of phase O program for waste heat utilization from nuclear enrichment facilities, Ohio

    1978-01-01

    The gathering of demographic, community development, and economic data for the region impacted by the Pikeville (Ohio) Nuclear Enrichment Facility is described. These data are to be used for establishing possible community uses, e.g., space heating, domestic water heating, and industrial uses, of waste heat from the facility. It was concluded that although the economic feasibility of such waste heat utilization remains to be proven, the community would cooperate in a feasibility demonstration program

  15. Heat source component development program. Report for July--December 1978

    Foster, E.L. Jr.

    1979-01-01

    This is the seventh of a series of reports describing the results of several analytical and experimental programs being conducted at Battelle-Columbus Laboratories to develop components for advanced radioisotope heat source applications. The heat sources will for the most part be used in advanced static and dynamic power conversion systems. Battelle's support of LASL during the current reporting period has been to determine the operational and reentry response of selected heat source trial designs, and their thermal response to a space shuttle solid propellant fire environment. Thermal, ablation, and thermal stress analyses were conducted using two-dimensional modeling techniques previously employed for the analysis of the earlier trial design versions, and modified in part to improve the modeling accuracy. Further modifications were made to improve the modeling accuracy as described herein. Thermal, ablation, and thermal stress analyses were then conducted for the trial design selected by LASL/DOE for more detailed studies using three-dimensional modeling techniques

  16. TRIP: a finite element computer program for the solution of convection heat transfer problems

    Slagter, W.; Roodbergen, H.A.

    1976-01-01

    The theory and use of the finite element code TRIP are described. The code calculates temperature distributions in three-dimensional continua subjected to convection heat transfer. A variational principle for transport phenomena is applied to solve the convection heat transfer problem with temperature and heat flux boundary conditions. The finite element discretization technique is used to reduce the continuous spatial solution into a finite number of unknowns. The method is developed in detail to determine temperature distributions in coolant passages of fuel rod bundles which are idealized by hexahedral elements. The development of the TRIP code is discussed and the listing of the program is given in FORTRAN IV. An example is given to illustrate the validity and practicality of the method

  17. The cryogenic cooling program in high-heat-load optics at the Advanced Photon Source

    Rogers, C.S.

    1993-07-01

    This paper describes some of the aspects of the cryogenic optics program at the Advanced Photon Source (APS). A liquid-nitrogen-cooled, high-vacuum, double crystal monochromator is being fabricated at Argonne National Laboratory (ANL). A pumping system capable of delivering a variable flow rate of up to 10 gallons per minute of pressurized liquid nitrogen and removing 5 kilowatts of x-ray power is also being constructed. This specialized pumping system and monochromator will be used to test the viability of cryogenically cooled, high-heat-load synchrotron optics. It has been determined that heat transfer enhancement will be required for optics used with APS insertion devices. An analysis of a porous-matrix-enhanced monochromator crystal is presented. For the particular case investigated, a heat transfer enhancement factor of 5 to 6 was calculated

  18. The NASA-Lewis/ERDA Solar Heating and Cooling Technology Program

    Couch, J. P.; Bloomfield, H. S.

    1975-01-01

    The NASA Lewis Research Center plans to carry out a major role in the ERDA Solar Heating and Cooling Program. This role would be to create and test the enabling technology for future solar heating, cooling, and combined heating/cooling systems. The major objectives of the project are to achieve reduction in solar energy system costs, while maintaining adequate performance, reliability, life, and maintenance characteristics. The project approach is to move progressively through component, subsystem, and then system technology advancement phases in parallel with continuing manufacturing cost assessment studies. This approach will be accomplished principally by contract with industry to develop advanced components and subsystems. This advanced hardware will be tested to establish 'technology readiness' both under controlled laboratory conditions and under real sun conditions.

  19. ALPHA - The long-term passive decay heat removal and aerosol retention program

    Guentay, S.; Varadi, G.; Dreier, J.

    1996-01-01

    The Paul Scherrer Institute initiated the major new experimental and analytical program ALPHA in 1990. The program is aimed at understanding the long-term decay heat removal and aerosol questions for the next generation of Passive Light Water Reactors. The ALPHA project currently includes four major items: the large-scale, integral system behaviour test facility PANDA, which will be used to examine multidimensional effects of the SBWR decay heat removal system; an investigation of the thermal hydraulics of natural convection and mixing in pools and large volumes (LINX); a separate-effects study of aerosols transport and deposition in plenum and tubes (AIDA); while finally, data from the PANDA facility and supporting separate effects tests will be used to develop and qualify models and provide validation of relevant system codes. The paper briefly reviews the above four topics and current status of the experimental facilities. (author). 3 refs, 12 figs

  20. A research program: The investigation of heat transfer and fluid flow at low pressure

    El-Genk, Mohamed S.; Philbin, Jeffrey S.; Foushee, Fabian C.

    1986-01-01

    This paper gives an overview of a multiyear joint research program being conducted at the University of New Mexico (UNM) with support from Sandia National Laboratories and GA Technologies. This research focuses on heat removal and fluid dynamics in flow regimes characterized by low pressure and low Reynolds number. The program was motivated by a desire to characterize and analyze cooling in a broad class of TRIGA-type reactors under: a) typical operating conditions, b) anticipated, new operating regimes, and c) postulated accident conditions. It has also provided experimental verification of analytical tools used in design analysis. The paper includes descriptions of the UNM thermal-hydraulics test facility and the experimental test sections. During the first two years experiments were conducted using single, electrically heated rod in water and air annuli. This configuration provides an observable and serviceable simulation of a fuel rod and its coolant channel. (author)

  1. ALPHA - The long-term passive decay heat removal and aerosol retention program

    Guentay, S; Varadi, G; Dreier, J [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1996-12-01

    The Paul Scherrer Institute initiated the major new experimental and analytical program ALPHA in 1990. The program is aimed at understanding the long-term decay heat removal and aerosol questions for the next generation of Passive Light Water Reactors. The ALPHA project currently includes four major items: the large-scale, integral system behaviour test facility PANDA, which will be used to examine multidimensional effects of the SBWR decay heat removal system; an investigation of the thermal hydraulics of natural convection and mixing in pools and large volumes (LINX); a separate-effects study of aerosols transport and deposition in plenum and tubes (AIDA); while finally, data from the PANDA facility and supporting separate effects tests will be used to develop and qualify models and provide validation of relevant system codes. The paper briefly reviews the above four topics and current status of the experimental facilities. (author). 3 refs, 12 figs.

  2. General-purpose heat source project and space nuclear safety and fuels program. Progress report

    Maraman, W.J.

    1979-12-01

    This formal monthly report covers the studies related to the use of 238 PuO 2 in radioisotopic power systems carried out for the Advanced Nuclear Systems and Projects Division of the Los Alamos Scientific Laboratory. The two programs involved are general-purpose heat source development and space nuclear safety and fuels. Most of the studies discussed hear are of a continuing nature. Results and conclusions described may change as the work continues

  3. State heating oil and propane program 1994--1995. Final report

    Rizzolo, D.R.

    1997-01-01

    In cooperation with the United States Department of Energy (USDOE), Energy Information Administration (EIA), the Board of Public Utilities (BPU), Division of Energy Planning and Conservation participated in an ongoing program to monitor retail prices of No. 2 heating oil and propane in New Jersey. According to program instructions, they conducted twelve price surveys on a semi-monthly basis to obtain the necessary price information from retail fuel merchants and propane dealers identified by the EIA. The surveys began on October 3, 1994 and ended on March 20, 1995. The authors submitted data collected as of specified report dates to the EIA, within two working days of those dates

  4. Practical examples of how knowledge management is addressed in Point Lepreau heat transport ageing management programs

    Slade, J.; Gendron, T.; Greenlaw, G.

    2009-01-01

    In the mid-1990s, New Brunswick Power Nuclear implemented a Management System Process Model at the Point Lepreau Generating Station that provides the basic elements of a knowledge management program. As noted by the IAEA, the challenge facing the nuclear industry now is to make improvements in knowledge management in areas that are more difficult to implement. Two of these areas are: increasing the value of existing knowledge, and converting tacit knowledge to explicit knowledge (knowledge acquisition). This paper describes some practical examples of knowledge management improvements in the Point Lepreau heat transport system ageing management program. (author)

  5. Impacts of the Weatherization Assistance Program in Fuel-Oil Heated Houses

    Levins, W.P.

    1994-01-01

    In 1990, the U.S. Department of Energy (DOE) initiated a national evaluation of its low-income Weatherization Assistance Program. This report, which is one of five parts of that evaluation, evaluates the energy savings and cost-effectiveness of the Program as it had been applied to single-family houses heated primarily by fuel-oil. The study was based upon a representative sample (41 local weatherization agencies, 222 weatherized and 115 control houses) from the nine northeastern states during 1991 and 1992 program years. Dwelling-specific and agency-level data on measures installed, costs, and service delivery procedures were collected from the sampled agencies. Space-heating fuel-oil consumption, indoor temperature, and outdoor temperature were monitored at each house. Dwelling characteristics, air-leakage measurements, space-heating system steady-state efficiency measurements, safety inspections, and occupant questionnaires were also collected or performed at each monitored house. We estimate that the Program weatherized a total of 23,400 single-family fuel-oil heated houses in the nine northeastern states during program years 1991 and 1992. Annual fuel-oil savings were calculated using regression techniques to normalize the savings to standard weather conditions. For the northeast region, annual net fuel-oil savings averaged 160 gallons per house, or 17.7% of pre-weatherization consumption. Although indoor temperatures changed in individual houses following weatherization, there was no average change and no significant difference as compared to the control houses; thus, there was no overall indoor temperature takeback effect influencing fuel-oil savings. The weatherization work was performed cost effectively in these houses from the Program perspective, which included both installation costs and overhead and management costs but did not include non-energy benefits (such as employment and environmental). Total average costs were $1819 per house ($1192 for

  6. Nye County, Nevada 1992 nuclear waste repository program: Program overview. Final report

    1998-01-01

    The purpose of this document is to provide an overview of the Nye County FY92 Nuclear Waste Repository Program (Program). Funds to pay for Program costs will come from the Federal Nuclear Waste Fund, which was established under the Nuclear Waste Policy Act of 1982 (NWPA). In early 1983, the Yucca Mountain was identified as a potentially suitable site for the nation's first geologic repository for spent reactor fuel and high-level radioactive waste. Later that year, the Nye County Board of County Commissioners (Board) established the capability to monitor the Federal effort to implement the NWPA and evaluate the potential impacts of repository-related activities on Nye County. Over the last eight years, the County's program has grown in complexity and cost in order to address DOE's evolving site characterization studies, and prepare for the potential for facility construction and operation. Changes were necessary as well, in response to Congress's redirection of the repository program specified in the amendments, to the NWPA approved in 1987. In early FY 1991, the County formally established a project office to plan and implement its program of work. The Repository Project Office's (RPO) mission and functions are provided in Section 2.0. The RPO organization structure is described in Section 3.0

  7. Ground test program for a full-size solar dynamic heat receiver

    Sedgwick, L. M.; Kaufmann, K. J.; Mclallin, K. L.; Kerslake, T. W.

    1991-01-01

    Test hardware, facilities, and procedures were developed to conduct ground testing of a full-size, solar dynamic heat receiver in a partially simulated, low earth orbit environment. The heat receiver was designed to supply 102 kW of thermal energy to a helium and xenon gas mixture continuously over a 94 minute orbit, including up to 36 minutes of eclipse. The purpose of the test program was to quantify the receiver thermodynamic performance, its operating temperatures, and thermal response to changes in environmental and power module interface boundary conditions. The heat receiver was tested in a vacuum chamber using liquid nitrogen cold shrouds and an aperture cold plate. Special test equipment was designed to provide the required ranges in interface boundary conditions that typify those expected or required for operation as part of the solar dynamic power module on the Space Station Freedom. The support hardware includes an infrared quartz lamp heater with 30 independently controllable zones and a closed-Brayton cycle engine simulator to circulate and condition the helium-xenon gas mixture. The test article, test support hardware, facilities, and instrumentation developed to conduct the ground test program are all described.

  8. State heating oil and propane program. Final report, 1993--1994

    Rizzolo, D.R.

    1997-01-01

    In cooperation with the United States Department of Energy (USDOE), Energy Information Administration (EIA), the New Jersey Department of Environmental Protection and Energy (DEPE), Office of Energy participated in an ongoing program to monitor retail prices of no. 2 heating oil and propane in New Jersey. According to program instructions, we conducted twelve price surveys on a semi-monthly basis to obtain the necessary information from retail fuel merchants and propane dealers identified by the EIA. According to program instructions and at the discretion of the USDOE, we conducted three additional propane surveys on January 31 and February 14 and 28, 1994. The surveys began on October 4, 1993 and ended on March 21, 1994. We submitted data collected as of specified report dates to the EIA, within two working days of those dates

  9. Heat Stress

    ... Publications and Products Programs Contact NIOSH NIOSH HEAT STRESS Recommend on Facebook Tweet Share Compartir OSHA-NIOSH ... hot environments may be at risk of heat stress. Exposure to extreme heat can result in occupational ...

  10. HTGR process heat program design and analysis. Final report, FY-79

    1979-12-01

    This report summarizes the results of concept design studies at General Atomic Company during FY-79 for an 842-MW(t) Very High Temperature Reactor (VHTR) utilizing an intermediate helium heat transfer loop to provide thermal energy for the production of hydrogen or reducing gas (H 2 + CO) by steam-reforming of a light hydrocarbon. Basic carbon sources may be coal, residual oil, or oil shale. The report summarizes conceptual design tasks conducted on the prestressed concrete reactor vessel, thermal barrier, intermediate heat exchanger, reformer, and steam generator. The substantial completion of first generation programming for a performance/optimization code and the preparation of a topical safety report and other safety evaluation studies are reported. The completion of balance of plant criteria specifications and a balance of plant cost estimate is also reported

  11. HTGR process heat program design and analysis. Semiannual progress report, October 1, 1979-March 28, 1980

    1980-10-01

    This report summarizes the results of concept design studies implemented at General Atomic Company (GA) during the first half of FY-80. The studies relate to a plant design for an 842-MW(t) High-Temperature Gas-Cooled Reactor utilizing an intermediate helium heat transfer loop to provide high temperature thermal energy for the production of hydrogen or synthesis gas (H 2 + CO) by steam-reforming a light hydrocarbon. Basic carbon sources may be coal, residual oil, or oil shale. Work tasks conducted during this period included the 842-MW(t) plant concept design and cost estimate for an 850 0 C reactor outlet temperature. An assessment of the main-loop cooling shutdown system is reported. Major component cost models were prepared and programmed into the Process Heat Reactor Evaluation and Design (PHRED) code

  12. A mixed-integer nonlinear programming approach to the optimal design of heat network in a polygeneration energy system

    Zhang, Jianyun; Liu, Pei; Zhou, Zhe; Ma, Linwei; Li, Zheng; Ni, Weidou

    2014-01-01

    Highlights: • Integration of heat streams with HRSG in a polygeneration system is studied. • A mixed-integer nonlinear programming model is proposed to optimize heat network. • Operating parameters and heat network configuration are optimized simultaneously. • The optimized heat network highly depends on the HRSG type and model specification. - Abstract: A large number of heat flows at various temperature and pressure levels exist in a polygeneration plant which co-produces electricity and chemical products. Integration of these external heat flows in a heat recovery steam generator (HRSG) has great potential to further enhance energy efficiency of such a plant; however, it is a challenging problem arising from the large design space of heat exchanger network. In this paper, a mixed-integer nonlinear programming model is developed for the design optimization of a HRSG with consideration of all alternative matches between the HRSG and external heat flows. This model is applied to four polygeneration cases with different HRSG types, and results indicate that the optimized heat network mainly depends on the HRSG type and the model specification

  13. NAMMU: finite element program for coupled heat and groundwater flow problems

    Rae, J.; Robinson, P.C.

    1979-11-01

    NAMMU is a computer program which will calculate the evolution in time of coupled water and heat flow in a porous medium. It is intended to be used primarily for modelling studies of underground nuclear waste repositories. NAMMU is based on the Galerkin-Finite-element method and has self-adjusting time stepping. The present version is written for 2-dimensional cartesian or cylindrical coordinate systems. It has been checked against two calculations from the KBS study and an exact solution by Hodgkinson for a very idealised repository design. (author)

  14. Programmatic environmental assessment of the DOE Solar Agricultural and Industrial Process Heat Program

    1979-06-01

    The program's potential environmental impacts are evaluated to ensure that environmental issues are considered at the earliest meaningful point in the decision-making process. The existing environment is studied for the following: grain drying; crop drying; livestock shelter heating; food processing; textile products; lumber and wood products; paper products; chemicals; petroleum refining; stone, clay, and glass products; and primary metals industries. Environmental impacts of the proposed action on the following are studied: air quality, water quality, ecosystems, health and safety, land use, esthetics, and social and institutional impacts. (MHR)

  15. State heating oil and propane program. Final report, 1995--1996

    Rizzolo, D.R.

    1997-01-01

    This reports documents the 1995-1996 United States Department of Energy (USDOE) program to monitor No. 2 heating oil and propane prices. Data reported encompass states that are heavily dependent on these products. Twelve surveys were conducted semimonthly to obtain the necessary price information from retail fuel merchants and propane dealers. Surveys began on October 2, 1995 and ended on March 18, 1996. Responses were analyzed to avoid questionable prices. Tables and graphs included in the report reflect the general activity of the prices furnished during the surveys. 3 figs., 2 tabs

  16. General-purpose heat source project and space nuclear safety fuels program. Progress report, February 1980

    Maraman, W.J.

    1980-05-01

    This formal monthly report covers the studies related to the use of 238 PuO 2 in radioisotopic power systems carried out for the Advanced Nuclear Systems and Projects Division of the Los Alamos Scientific Laboratory. The two programs involved are: General-Purpose Heat Source Development and Space Nuclear Safety and Fuels. Most of the studies discussed here are of a continuing nature. Results and conclusions described may change as the work continues. Published reference to the results cited in this report should not be made without the explicit permission of the person in charge of the work

  17. Heat source component development program. Quarterly report for April--June 1977

    Foster, E.L. Jr. (comp.)

    1977-07-01

    This is the third in a series of quarterly reports describing the results of several experimental programs being conducted at Battelle-Columbus to develop components for advanced radioisotope heat source applications. The heat sources will for the most part be used in advanced static and dynamic power conversion systems. The specific component development efforts which are described include: improved selective and nonselective vents for helium release from the fuel containment; an improved reentry member and an improved impact member, singly and combined. The unitized reentry-impact member (RIM) is under development to be used as a bifunctional ablator. The development of a unitized reentry-impact member (RIM) has been stopped and the efforts are being redirected to the evaluation of materials that could be used in the near term for the module housing of the General Purpose Heat Source (GPHS). This redirection will be particularly felt in the selection of (improved) materials for reentry analysis and in the experimental evaluation of materials in impact tests. Finally thermochemical supporting studies are reported.

  18. General-Purpose Heat Source Development: Safety Test Program. Postimpact evaluation, Design Iteration Test 3

    Schonfeld, F.W.; George, T.G.

    1984-07-01

    The General-Purpose Heat Source(GPHS) provides power for space missions by transmitting the heat of 238 PuO 2 decay to thermoelectric elements. Because of the inevitable return of certain aborted missions, the heat source must be designed and constructed to survive both re-entry and Earth impact. The Design Iteration Test (DIT) series is part of an ongoing test program. In the third test (DIT-3), a full GPHS module was impacted at 58 m/s and 930 0 C. The module impacted the target at an angle of 30 0 to the pole of the large faces. The four capsules used in DIT-3 survived impact with minimal deformation; no internal cracks other than in the regions indicated by Savannah River Plant (SRP) preimpact nondestructive testing were observed in any of the capsules. The 30 0 impact orientation used in DIT-3 was considerably less severe than the flat-on impact utilized in DIT-1 and DIT-2. The four capsules used in DIT-1 survived, while two of the capsules used in DIT-2 breached; a small quantity (approx. = 50 μg) of 238 PuO 2 was released from the capsules breached in the DIT-2 impact. All of the capsules used in DIT-1 and DIT-2 were severely deformed and contained large internal cracks. Postimpact analyses of the DIT-3 test components are described, with emphasis on weld structure and the behavior of defects identified by SRP nondestructive testing

  19. Thermal models of buildings. Determination of temperatures, heating and cooling loads. Theories, models and computer programs

    Kaellblad, K

    1998-05-01

    The need to estimate indoor temperatures, heating or cooling load and energy requirements for buildings arises in many stages of a buildings life cycle, e.g. at the early layout stage, during the design of a building and for energy retrofitting planning. Other purposes are to meet the authorities requirements given in building codes. All these situations require good calculation methods. The main purpose of this report is to present the authors work with problems related to thermal models and calculation methods for determination of temperatures and heating or cooling loads in buildings. Thus the major part of the report deals with treatment of solar radiation in glazing systems, shading of solar and sky radiation and the computer program JULOTTA used to simulate the thermal behavior of rooms and buildings. Other parts of thermal models of buildings are more briefly discussed and included in order to give an overview of existing problems and available solutions. A brief presentation of how thermal models can be built up is also given and it is a hope that the report can be useful as an introduction to this part of building physics as well as during development of calculation methods and computer programs. The report may also serve as a help for the users of energy related programs. Independent of which method or program a user choose to work with it is his or her own responsibility to understand the limits of the tool, else wrong conclusions may be drawn from the results 52 refs, 22 figs, 4 tabs

  20. User's guide to HEATRAN: a computer program for three-dimensional transient fluid-flow and heat-transfer analysis

    Wong, C.N.C.; Cheng, S.K.; Todreas, N.E.

    1982-01-01

    This report provides the HEATRAN user with programming and input information. HEATRAN is a computer program which is written to analyze the transient three dimensional single phase incompressible fluid flow and heat transfer problem. In this report, the programming information is given first. This information includes details concerning the code and structure. The description of the required input variables is presented next. Following the input description, the sample problems are described and HEATRAN's results are presented

  1. Invert 1.0: A program for solving the nonlinear inverse heat conduction problem for one-dimensional solids

    Snider, D.M.

    1981-02-01

    INVERT 1.0 is a digital computer program written in FORTRAN IV which calculates the surface heat flux of a one-dimensional solid using an interior-measured temperature and a physical description of the solid. By using two interior-measured temperatures, INVERT 1.0 can provide a solution for the heat flux at two surfaces, the heat flux at a boundary and the time dependent power, or the heat flux at a boundary and the time varying thermal conductivity of a material composing the solid. The analytical solution to inversion problem is described for the one-dimensional cylinder, sphere, or rectangular slab. The program structure, input instructions, and sample problems demonstrating the accuracy of the solution technique are included

  2. Research program for plasma confinement and heating in ELMO bumpy torus devices

    Dandl, R.A.; Dory, R.A.; Eason, H.O.

    1975-06-01

    A sequence of experimental devices and related research activities which leads progressively toward an attractive full-scale reactor is described. The implementation of the steps in this sequence hinges on the development of microwave power sources, with high specific power levels, at millimeter wavelengths. Two proposed steps in this sequence are described. The first step proposed here, denoted EBT-S, requires increasing the EBT magnetic field to permit microwave heating at 18 and 28 GHz, as compared to the present 10.6 and 18-GHz configuration. A three-fold increase in plasma density, some increase in the temperatures, and an opportunity to test the validity of the transport models presently used to predict the plasma parameters are anticipated. This step will provide important operating experience with the 28-GHz power supplies, which are prototype tubes for millimeter sources at 120 GHz In the second step a new superconducting bumpy torus, EBT-II, would be fabricated to permit microwave heating at 90 and 120 GHz. This device would be designed to produce plasma densities and temperatures comparable to those of present-day tokamaks. This report reviews the experimental and theoretical research on EBT that has been carried out to date or formulated for the near future, and provides a status report as well as a research program plan. (U.S.)

  3. SHARDA - a program for sample heat, activity, reactivity and dose analysis

    Shukla, V.K.; Bajpai, Anil

    1985-01-01

    A computer program SHARDA (Sample Heat, Activity, Reactivity and Dose Analysis) has been developed for safety evaluation of Pile Irradiation Request (PIR) for various nonfissile materials in the research reactor CIRUS. The code can also be used, with minor modifications, for PIR safety evaluations for the research reactor DHRUVA, now being commissioned. Most of the data needed for such analysis like isotopic abundances, their various nuclear cross-sections, gamma radiation and shielding data have been built in the code for all nonfissile naturally occuring elements. The PIR safety evaluations can be readily carried out using this code for any sample in elemental, compound or mixture form irradiated in any location of the reactor. This report describes the calculational model and the input/output details of the code. Some earlier irradiations carried out in CIRUS have been analysed using this code and the results have been compared with available operational measurements. (author)

  4. Mathematical programming model for heat exchanger design through optimization of partial objectives

    Onishi, Viviani C.; Ravagnani, Mauro A.S.S.; Caballero, José A.

    2013-01-01

    Highlights: • Rigorous design of shell-and-tube heat exchangers according to TEMA standards. • Division of the problem into sets of equations that are easier to solve. • Selected heuristic objective functions based on the physical behavior of the problem. • Sequential optimization approach to avoid solutions stuck in local minimum. • The results obtained with this model improved the values reported in the literature. - Abstract: Mathematical programming can be used for the optimal design of shell-and-tube heat exchangers (STHEs). This paper proposes a mixed integer non-linear programming (MINLP) model for the design of STHEs, following rigorously the standards of the Tubular Exchanger Manufacturers Association (TEMA). Bell–Delaware Method is used for the shell-side calculations. This approach produces a large and non-convex model that cannot be solved to global optimality with the current state of the art solvers. Notwithstanding, it is proposed to perform a sequential optimization approach of partial objective targets through the division of the problem into sets of related equations that are easier to solve. For each one of these problems a heuristic objective function is selected based on the physical behavior of the problem. The global optimal solution of the original problem cannot be ensured even in the case in which each of the sub-problems is solved to global optimality, but at least a very good solution is always guaranteed. Three cases extracted from the literature were studied. The results showed that in all cases the values obtained using the proposed MINLP model containing multiple objective functions improved the values presented in the literature

  5. General-purpose heat source project and space nuclear safety and fuels program. Progress report

    Maraman, W.J.

    1980-02-01

    Studies related to the use of 238 PuO 2 in radioisotopic power systems carried out for the Advanced Nuclear Systems and Projects Division of LASL are presented. The three programs involved are: general-purpose heat source development; space nuclear safety; and fuels program. Three impact tests were conducted to evaluate the effects of a high temperature reentry pulse and the use of CBCF on impact performance. Additionally, two 238 PuO 2 pellets were encapsulated in Ir-0.3% W for impact testing. Results of the clad development test and vent testing are noted. Results of the environmental tests are summarized. Progress on the Stirling isotope power systems test and the status of the improved MHW tests are indicated. The examination of the impact failure of the iridium shell of MHFT-65 at a fuel pass-through continued. A test plan was written for vibration testing of the assembled light-weight radioisotopic heater unit. Progress on fuel processing is reported

  6. Mobile Energy Laboratory energy-efficiency testing programs

    Parker, G B; Currie, J W

    1992-03-01

    This report summarizes energy-efficiency testing activities applying the Mobile Energy Laboratory (MEL) testing capabilities during the third and fourth quarters of fiscal year (FY) 1991. The MELs, developed by the US Department of Energy (DOE) Federal Energy Management Program (FEMP), are administered by Pacific Northwest Laboratory (PNL) and the Naval Energy and Environmental Support Activity (NEESA) for energy testing and energy conservation program support functions at federal facilities. The using agencies principally fund MEL applications, while DOE/FEMP funds program administration and capability enhancement activities. This report fulfills the requirements established in Section 8 of the MEL Use Plan (PNL-6861) for semi-annual reporting on energy-efficiency testing activities using the MEL capabilities. The MEL Use Committee, formally established in 1989, developed the MEL Use Plan and meets semi-annually to establish priorities for energy-efficient testing applications using the MEL capabilities. The MEL Use Committee is composed of one representative each of the US Department of Energy, US Army, US Air Force, US Navy, and other federal agencies.

  7. Mobile Energy Laboratory energy-efficiency testing programs

    Parker, G.B.; Currie, J.W.

    1992-03-01

    This report summarizes energy-efficiency testing activities applying the Mobile Energy Laboratory (MEL) testing capabilities during the third and fourth quarters of fiscal year (FY) 1991. The MELs, developed by the US Department of Energy (DOE) Federal Energy Management Program (FEMP), are administered by Pacific Northwest Laboratory (PNL) and the Naval Energy and Environmental Support Activity (NEESA) for energy testing and energy conservation program support functions at federal facilities. The using agencies principally fund MEL applications, while DOE/FEMP funds program administration and capability enhancement activities. This report fulfills the requirements established in Section 8 of the MEL Use Plan (PNL-6861) for semi-annual reporting on energy-efficiency testing activities using the MEL capabilities. The MEL Use Committee, formally established in 1989, developed the MEL Use Plan and meets semi-annually to establish priorities for energy-efficient testing applications using the MEL capabilities. The MEL Use Committee is composed of one representative each of the US Department of Energy, US Army, US Air Force, US Navy, and other federal agencies

  8. WinSim: A simple simulation program for evaluating the influence of windows on heating demand and risk of overheating

    Schultz, Jørgen Munthe; Svendsen, Sv Aa Højgaard

    1998-01-01

    A two-node model of a room has been implemented in a computer program, WinSim, devel-oped for evaluation of thermal performance of windows in new buildings and in case of retro-fitting. The program calculates the annual heating demand and the number of hours with in-door temperatures higher than...... a user defined limit. WinSim is characterised by the limited amount of required input data. Guide-lines for calculation of the effective thermal capacity of the room is given, and results obtained with WinSim have been compared to results from an advanced building simulation program. Good agreement has...... been found between the two programs with respect to calculated annual heating demand and energy savings due to win-dow exchange, and also the calculated number of hours with overtemperature is similar. Based on the limited examples used for the comparison it can be concluded that WinSim is well suited...

  9. Columbia River Basin Fish and Wildlife Program Annual Implementation Work Plan for fiscal year 1992

    1991-09-01

    The Columbia River Basin Fish and Wildlife Program Annual Implementation Work Plan (AIWP) for Fiscal Year (FY) 1992 presents Bonneville Power Administration's (BPA) plans for implementing the Columbia River Basin Fish and Wildlife Program (Program) in FY 1992. The AIWP focuses on individual Action Items found in the 1987 Program for which BPA has determined that it has authority and responsibility to implement. Each of the entries in the AIWP includes objectives, background, progress to date in achieving the objectives, and a summary of plans for implementation in FY 1992. Most Action Items are implemented through one or more BPA-funded projects. Each Action Item entry is followed by a list of completed, ongoing, and planned projects, along with objectives, results, schedules, and milestones for each project. In October 1988, BPA and the Columbia Basin Fish and Wildlife Authority (CBFWA) initiated a collaborative and cooperative Implementation Planning Process (IPP). The IPP provided opportunities in FY 1991 for the fish and wildlife agencies. Tribes, and other interested parties to be involved in planning FY 1992 Program implementation. This planing process contributed to the development of this year's AIWP. The joint BPA/CBFWA IPP is expected to continue in FY 1992. The FY 1992 AIWP emphasizes continuation of 143 ongoing, or projected ongoing Program projects, tasks, or task orders, most of which involve protection, mitigation, or enhancement of anadromous fishery resources. The FY 1992 AIWP also contains 10 new Program projects or tasks that are planned to start in FY 1992

  10. Heat-flow and lateral seismic-velocity heterogeneities near Deep Sea Drilling Project-Ocean Drilling Program Site 504

    Lowell, Robert P.; Stephen, Ralph A.

    1991-11-01

    Both conductive heat-flow and seismic-velocity data contain information relating to the permeability of the oceanic crust. Deep Sea Drilling Project-Ocean Drilling Program Site 504 is the only place where both detailed heat-flow and seismic-velocity field studies have been conducted at the same scale. In this paper we examine the correlation between heat flow and lateral heterogeneities in seismic velocity near Site 504. Observed heterogeneities in seismic velocity, which are thought to be related to variations in crack density in the upper 500 m of the basaltic crust, show little correlation with the heat-flow pattern. This lack of correlation highlights some of the current difficulties in using seismic-velocity data to infer details of spatial variations in permeability that are significant in controlling hydrothermal circulation.

  11. Modeling of Compressible Flow with Friction and Heat Transfer Using the Generalized Fluid System Simulation Program (GFSSP)

    Bandyopadhyay, Alak; Majumdar, Alok

    2007-01-01

    The present paper describes the verification and validation of a quasi one-dimensional pressure based finite volume algorithm, implemented in Generalized Fluid System Simulation Program (GFSSP), for predicting compressible flow with friction, heat transfer and area change. The numerical predictions were compared with two classical solutions of compressible flow, i.e. Fanno and Rayleigh flow. Fanno flow provides an analytical solution of compressible flow in a long slender pipe where incoming subsonic flow can be choked due to friction. On the other hand, Raleigh flow provides analytical solution of frictionless compressible flow with heat transfer where incoming subsonic flow can be choked at the outlet boundary with heat addition to the control volume. Nonuniform grid distribution improves the accuracy of numerical prediction. A benchmark numerical solution of compressible flow in a converging-diverging nozzle with friction and heat transfer has been developed to verify GFSSP's numerical predictions. The numerical predictions compare favorably in all cases.

  12. Molecular programs induced by heat acclimation confer neuroprotection against TBI and hypoxic insults via cross-tolerance mechanisms

    Michal eHorowitz

    2015-07-01

    Full Text Available Neuroprotection following prolonged exposure to high ambient temperatures (heat acclimation HA develops via altered molecular programs such as cross-tolerance (Heat Acclimation -Neuroprotection Cross-Tolerance -HANCT. The mechanisms underlying cross-tolerance depend on enhanced on-demand protective pathways evolving during acclimation. The protection achieved is long lasting and limits the need for de novo recruitment of cytoprotective pathways upon exposure to novel stressors. Using mouse and rat acclimated phenotypes, we will focus on the impact of heat acclimation on Angiotensin II-AT2 receptors in neurogenesis and on HIF-1 as key mediators in spontaneous recovery and HANCT after traumatic brain injury (TBI. The neuroprotective consequences of heat acclimation on NMDA and AMPA receptors will be discussed using the global hypoxia model. A behavioral-molecular link will be crystallized. The differences between HANCT and consensus preconditioning will be reviewed.

  13. Biomass Supply Planning for Combined Heat and Power Plants using Stochastic Programming

    Guericke, Daniela; Blanco, Ignacio; Morales González, Juan Miguel

    method using stochastic optimization to support the biomass supply planning for combined heat and power plants. Our two-phase approach combines mid-term decisions about biomass supply contracts with the short-term decisions regarding the optimal market participation of the producer to ensure......During the last years, the consumption of biomass to produce power and heat has increased due to the new carbon neutral policies. Nowadays, many district heating systems operate their combined heat and power (CHP) plants using different types of biomass instead of fossil fuel, especially to produce......, and heat demand and electricity prices vary drastically during the planning period. Furthermore, the optimal operation of combined heat and power plants has to consider the existing synergies between the power and heating systems while always fulfilling the heat demand of the system. We propose a solution...

  14. MINIVER: Miniature version of real/ideal gas aero-heating and ablation computer program

    Hendler, D. R.

    1976-01-01

    Computer code is used to determine heat transfer multiplication factors, special flow field simulation techniques, different heat transfer methods, different transition criteria, crossflow simulation, and more efficient thin skin thickness optimization procedure.

  15. 76 FR 71835 - Energy Conservation Program: Energy Conservation Standards for Direct Heating Equipment

    2011-11-18

    ..., Public Meeting Transcript, No. 14 at pp. 94-95) The Air- conditioning, Heating, and Refrigeration... realistic simulation of a wood burning fire in a wood burning fireplace, not to provide heat. (R.H. Peterson...

  16. Integration of the time-dependent heat equation in the fuel rod performance program IAMBUS

    West, G.

    1982-01-01

    An iterative numerical method for integration of the time-dependent heat equation is described. No presuppositions are made for the dependency of the thermal conductivity and heat capacity on space, time and temperature. (orig.) [de

  17. Algorithms and programs for solution of static and dynamic characteristics of counterflow heat exchangers with dissociating coolant

    Nitej, N.V.; Sharovarov, G.A.

    1982-01-01

    The method of estimation of counterflow heat exchanger characteristics is presented. Mathematical description of the processes is presented by the mass, energy and pulse conservation equations for both coolants and energy conservation equation for the wall which devides them. In the presence of chemical reactions the system is supplemented by equations, characterizing the kinetics of their progress. The methods of numerical solution of static and dynamic problems have been chosen, and the computer programs on the Fortran language have been developed. The schemes of solution of both problems are so constructed, that the conservation equations are placed in the main program, and such characteristics of the coolants as properties, heat transfer and friction coefficients, the mechanism of chemical reaction are concentrated in the subprogram unit. This allows to create the single method of solution with the flow of single-phase and two-phase coolants of abovecritical and supercritical paramters. The evaluation results of three heat exchangers are given: with heating of N 2 O 4 gas phase by heat of flue gas; with cooling of N 2 O 4 supercritical parameters by water; regenerator on N 2 O 4

  18. Biological and Environmental Research Program at Oak Ridge National Laboratory, FY 1992--1994

    1992-01-01

    This report is the 1992--1994 Program Director's Overview Report for Oak Ridge National Laboratory's (ORNL's) Biological and Environmental Research (BER) Program, and as such it addresses KP-funded work at ORNL conducted during FY 1991 and in progress during FY 1992; it also serves as a planning document for the remainder of FY 1992 through FY 1994. Non-BER funded work at ORNL relevant to the mission of OHER is also discussed. The second section of the report describes ORNL facilities and resources used by the BER program. The third section addresses research management practices at ORNL. The fourth, fifth, and sixth sections address BER-funded research in progress, program accomplishments and research highlights, and program orientation for the remainder of FY 1992 through FY 1994, respectively. Work for non-BER sponsors is described in the seventh section, followed by a discussion of significant near and long-term issues facing BER work at ORNL in the eighth section. The last section provides a statistical summary of BER research at ORNL. Appendices supplement the above topics with additional detail

  19. Biological and Environmental Research Program at Oak Ridge National Laboratory, FY 1992--1994

    1992-01-01

    This report is the 1992--1994 Program Director's Overview Report for Oak Ridge National Laboratory's (ORNL's) Biological and Environmental Research (BER) Program, and as such it addresses KP-funded work at ORNL conducted during FY 1991 and in progress during FY 1992; it also serves as a planning document for the remainder of FY 1992 through FY 1994. Non-BER funded work at ORNL relevant to the mission of OHER is also discussed. The second section of the report describes ORNL facilities and resources used by the BER program. The third section addresses research management practices at ORNL. The fourth, fifth, and sixth sections address BER-funded research in progress, program accomplishments and research highlights, and program orientation for the remainder of FY 1992 through FY 1994, respectively. Work for non-BER sponsors is described in the seventh section, followed by a discussion of significant near and long-term issues facing BER work at ORNL in the eighth section. The last section provides a statistical summary of BER research at ORNL. Appendices supplement the above topics with additional detail.

  20. Ferrocyanide safety program: Heat load and thermal characteristics determination for selected tanks

    McLaren, J.M.; Cash, R.J.

    1993-11-01

    An analysis was conducted to determine the heat loads, conductivities, and heat distributions of waste tanks 241-BY-105, -106, -108, -110, -111, and 241-C-109 at the Hanford Site. The heat distribution of tank 241-BY-111 was determined to be homogeneously distributed throughout the sludge contained in the tank. All of the other tanks, with the exception of 241-C-109, showed evidence of a heat-producing layer at the bottom of the tanks. No evidence of a heat-producing layer in a position above the bottom was found. The thermal conductivities were determined to be within the ranges found by previous laboratory and computer analysis. The heat loads of the tanks were found to be below 2.81 kW (9,600 Btu/hr)

  1. In-core program for on line measurements of neutron, photon and nuclear heating parameters inside Jules Horowitz MTR reactor

    Lyoussi, A.; Reynard-Carette, C.

    2014-01-01

    Accurate on-line measurements of key parameters inside experimental channels of Material Testing Reactor are necessary to dimension the irradiation devices and consequently to conduct smart experiments on fuels and materials under suitable conditions. In particular the quantification of nuclear heating, a relevant parameter to reach adapted thermal conditions, has to be improved. These works focus on an important collaborative program between CEA and Aix-Marseille University called INCORE (Instrumentation for Nuclear radiations and Calorimetry On-line in Reactor) dedicated to the development of a new measurement methodology to quantify both nuclear heating and accurate radiation flux levels (neutrons and photons). The methodology, which is based on experiments carried out under irradiation conditions with a multi-sensor device (ionization chamber, fission chamber, gamma thermometer, calorimeter, SPND, SPGD) as well as works performed out-of nuclear/radiative environment on a reference sensor used to measure nuclear heating (calorimeter), is presented (authors)

  2. Project description: ORNL PWR blowdown heat transfer separate-effects program, Thermal-Hydraulic Test Facility (THTF)

    1976-02-01

    The ORNL Pressurized-Water Reactor Blowdown Heat Transfer (PWR-BDHT) Program is an experimental separate-effects study of the relations among the principal variables that can alter the rate of blowdown, the presence of flow reversal and rereversal, time delay to critical heat flux, the rate at which dryout progresses, and similar time-related functions that are important to LOCA analysis. Primary test results will be obtained from the Thermal-Hydraulic Test Facility (THTF), a large nonnuclear pressurized-water loop that incorporates a 49-rod electrically heated bundle. Supporting experiments will be carried out in two additional test loops - the Forced Convection Test Facility (FCTF), a small high-pressure facility in which single heater rods can be tested in annular geometry; and an air-water loop which is used to evaluate two-phase flow-measuring instrumentation

  3. COXPRO-II: a computer program for calculating radiation and conduction heat transfer in irradiated fuel assemblies

    Rhodes, C.A.

    1984-12-01

    This report describes the computer program COXPRO-II, which was written for performing thermal analyses of irradiated fuel assemblies in a gaseous environment with no forced cooling. The heat transfer modes within the fuel pin bundle are radiation exchange among fuel pin surfaces and conduction by the stagnant gas. The array of parallel cylindrical fuel pins may be enclosed by a metal wrapper or shroud. Heat is dissipated from the outer surface of the fuel pin assembly by radiation and convection. Both equilateral triangle and square fuel pin arrays can be analyzed. Steady-state and unsteady-state conditions are included. Temperatures predicted by the COXPRO-II code have been validated by comparing them with experimental measurements. Temperature predictions compare favorably to temperature measurements in pressurized water reactor (PWR) and liquid-metal fast breeder reactor (LMFBR) simulated, electrically heated fuel assemblies. Also, temperature comparisons are made on an actual irradiated Fast-Flux Test Facility (FFTF) LMFBR fuel assembly

  4. 78 FR 63410 - Energy Conservation Program for Consumer Products: Test Procedures for Direct Heating Equipment...

    2013-10-24

    ... test procedures for direct heating equipment and pool heaters established under the Energy Policy and... U.S.C. 6293(e)(2)) The current energy conservation standards for direct heating equipment and pool... DEPARTMENT OF ENERGY 10 CFR Part 430 [Docket Number EERE-2013-BT-TP-0004] RIN 1904-AC94 Energy...

  5. In-Space technology experiments program. A high efficiency thermal interface (using condensation heat transfer) between a 2-phase fluid loop and heatpipe radiator: Experiment definition phase

    Pohner, John A.; Dempsey, Brian P.; Herold, Leroy M.

    1990-01-01

    Space Station elements and advanced military spacecraft will require rejection of tens of kilowatts of waste heat. Large space radiators and two-phase heat transport loops will be required. To minimize radiator size and weight, it is critical to minimize the temperature drop between the heat source and sink. Under an Air Force contract, a unique, high-performance heat exchanger is developed for coupling the radiator to the transport loop. Since fluid flow through the heat exchanger is driven by capillary forces which are easily dominated by gravity forces in ground testing, it is necessary to perform microgravity thermal testing to verify the design. This contract consists of an experiment definition phase leading to a preliminary design and cost estimate for a shuttle-based flight experiment of this heat exchanger design. This program will utilize modified hardware from a ground test program for the heat exchanger.

  6. PWR blowdown heat transfer separate-effects program: thermal-hydraulic test facility experimental data report for test 104

    Leon, D.M.; White, M.D.; Moore, P.A.; Hedrick, R.A.

    1978-01-01

    Reduced instrument responses are presented for Thermal-Hydraulic Test Facility (THTF) test 104, which is part of the ORNL Pressurized-Water Reactor (PWR) Blowdown Heat Transfer Separate-Effects Program. The objective of the program is to investigate the thermal-hydraulic phenomenon governing the energy transfer and transport processes that occur during a loss-of-coolant accident in the PWR system. Test 104 was conducted to obtain CHF in bundle 1 under blowdown conditions. The primary purpose of this report is to make the reduced instrument responses during test 104 available

  7. Analysis of removal of residual decay heat from interim storage facilities by means of the CFD program FLUENT

    Stratmann, W.; Hages, P.

    2004-01-01

    Within the scope of nuclear licensing procedures of on-site interim storage facilities for dual purpose casks it is necessary, among other things, to provide proof of sufficient removal of the residual decay heat emitted by the casks. The results of the analyses performed for this purpose define e.g. the boundary conditions for further thermal analyses regarding the permissible cask component temperatures or the maximum permissible temperatures of the fuel cladding tubes of the fuel elements stored in the casks. Up to now, for the centralized interim storage facilities in Germany such analyses were performed on the basis of experimental investigations using scaled-down storage geometries. In the engineering phase of the Lingen on-site interim storage facility, proof was furnished for the first time using the CFD (computational fluid dynamics) program FLUENT. The program FLUENT is an internationally recognized and comprehensively verified program for the calculation of flow and heat transport processes. Starting from a brief discussion of modeling and the different boundary conditions of the computation, this contribution presents various results regarding the temperatures of air, cask surfaces and storage facility components, the mass flows through the storage facility and the heat transfer at the cask surface. The interface point to the cask-specific analyses is defined to be the cask surface

  8. SODHA. A data program for minimizing the cost function of a solar farm with storage connected to a district heating system

    Haakansson, R; Rolandsson, S

    1982-05-03

    SODHA is a program for minimizing the investment needed for a solar plant supplying a district heating system. The plant consists of a solar farm, storage and a heat exchanger connected to a district heating network. By using SODHA it is possible to optimize solar collector area storage volume, insulation thickness and magnitude of heat exchanger. The calculation gives the best estimated configuration of the system, within given margins and specified regulation principles. The program can be used for an arbitrary period, e.g. one season (year). This work is financed by NE, the National Swedish Board for Energy Source Development.

  9. Programming voltage reduction in phase change memory cells with tungsten trioxide bottom heating layer/electrode

    Rao Feng; Song Zhitang; Gong Yuefeng; Wu Liangcai; Feng Songlin; Chen, Bomy

    2008-01-01

    A phase change memory cell with tungsten trioxide bottom heating layer/electrode is investigated. The crystalline tungsten trioxide heating layer promotes the temperature rise in the Ge 2 Sb 2 Te 5 layer which causes the reduction in the reset voltage compared to a conventional phase change memory cell. Theoretical thermal simulation and calculation for the reset process are applied to understand the thermal effect of the tungsten trioxide heating layer/electrode. The improvement in thermal efficiency of the PCM cell mainly originates from the low thermal conductivity of the crystalline tungsten trioxide material.

  10. Stochastic Programming for Fuel Supply Planning of Combined Heat and Power Plants

    Guericke, Daniela; Blanco, Ignacio; Morales González, Juan Miguel

    The consumption of biomass to produce power and heat has increased due to the carbon neutral policies. Combined heat and power (CHP) plants often combine biomass with other fuels, e.g., natural gas. The negotiation process for supply contracts involves many uncertainties due to the long planning...... horizon. The demand for biomass is uncertain, and heat demand and electricity prices vary during the planning period. We propose a method using stochastic optimization to support the biomass and natural gas supply planning for CHP plants including short-term decisions for optimal market participation....

  11. FY 1991 report on the results of the development of an entrained bed coal gasification power plant. Part 3. Adjustment of the operation test of pilot plant (2/2); 1991 nendo seika hokokusho. Funryusho sekitan gaska hatsuden plant kaihatsu - Sono 3. Pilot plant unten shiken chosei hen (2/2)

    NONE

    1993-01-01

    The adjustment was made of the operation test of the 200 t/d entrained bed coal gasification pilot plant that was constructed with the aim of establishing technology of the integrated coal gasification combined cycle power generation, and the results were reported. As to the adjustment of the operation test of gas turbine facilities, the following were conducted: tests 1 and 2 on light-oil firing characteristics, test on coal gas ignition, tests on fuel change/gas firing, test on fuel change. And, 12 cases of troubles, the causes and measures against them were reported. Relating to the adjustment of the operation test of actual pressure/actual size combustor testing facilities, tests on hot air device/air heating device and tests 1-3 on light-oil firing were carried out, and 7 cases of troubles, the causes and measures against them were reported. Concerning the adjustment of the operation test of safety environment facilities, tests were made of RUN 3-6, RUN 7 (1 and 2), RUN 8 (1-4) and RUN 9 (1-3), and 20 cases of troubles, the causes and measures against them were reported. As to the adjustment of the operation test of electric/control facilities, items of improvement were reported of gasifier facilities, gas refining facilities, gas turbine facilities, actual pressure/actual size combustor testing facilities, safety environment facilities and total control facilities. (NEDO)

  12. Study on high quality spectral materials for emitted soft X-ray. Special study on inorganic materials between FY 1991 and FY 1995; Hoshako nan X sen`yo bunko zairyo no kohinshitsuka ni kansuru kenkyu. 1991 nendo - 1995 nendo muki zaishitsu tokubetsu kenkyu

    NONE

    1996-11-28

    This is No.93 report of National Institute for Research in Inorganic Materials. Single crystal growth of YB66 was investigated to develop the single crystal of YB66 as a spectral material for synchrotron emitted soft X-ray. The emitted light is white light including from visible radiation to hard X-ray. Usually, it is used as homogeneous light through spectra. There are K-absorption edges of Mg and Si in the region ranging from 1 to 2 keV, which is significant for material science. There has been no proper spectral elemental device for application of the emitted spectra. The YB66 is the most suitable for this purpose. For the single crystal growth of high crystalline YB66, high frequency indirect heating floating method has been developed. For the growth furnace, a mechanism has been developed, by which pressurized gas atmosphere can be sealed with magnetic fluid. At the same time, the growth axis can be driven in high accuracy. From evaluation of the elemental device, energy resolution of 0.5{times}10{sup -3} was obtained as expected. By using this spectral device, accurate measurements of XAFS and EXAFS can be conducted with excellent operability for K-absorption edges of Mg and Si. 15 refs., 54 figs., 1 tab.

  13. Environmental Assessment for the Bison School District Heating Plant Project, Institutional Conservation Program (ICP)

    1995-01-01

    This environmental assessment analyzes the environmental impacts of replacing the Bison, South Dakota School District's elementary school and high school heating system consisting of oil-fired boilers and supporting control system and piping

  14. Heat source component development program. Report for period March 1978--June 1978

    1978-07-01

    The General Purpose Heat Source (GPHS) is a radioisotope heat source being developed by LASL. The first intended application for the GPHS is the Solar Polar mission scheduled for 1983. Battelle's support of LASL during the current reporting period is reported. The specific efforts include: (1) analysis of trial designs with emphasis on comparison of performances of trial designs 1 and 2 and their modifications; and (2) helium vent development with emphasis on fabrication and qualification testing of platinum and iridium nonselective vents

  15. Mobile Energy Laboratory energy-efficiency testing programs. Semiannual report, April 1, 1991--September 30, 1991

    Parker, G. B.; Currie, J. W.

    1992-03-01

    This report summarizes energy-efficiency testing activities applying the Mobile Energy Laboratory (MEL) testing capabilities during the third and fourth quarters of fiscal year (FY) 1991. The MELs, developed by the US Department of Energy (DOE) Federal Energy Management Program (FEMP), are administered by Pacific Northwest Laboratory (PNL) and the Naval Energy and Environmental Support Activity (NEESA) for energy testing and energy conservation program support functions at federal facilities. The using agencies principally fund MEL applications, while DOE/FEMP funds program administration and capability enhancement activities. This report fulfills the requirements established in Section 8 of the MEL Use Plan (PNL-6861) for semi-annual reporting on energy-efficiency testing activities using the MEL capabilities. The MEL Use Committee, formally established in 1989, developed the MEL Use Plan and meets semi-annually to establish priorities for energy-efficient testing applications using the MEL capabilities. The MEL Use Committee is composed of one representative each of the US Department of Energy, US Army, US Air Force, US Navy, and other federal agencies.

  16. Design for energy efficiency: Energy efficient industrialized housing research program. Progress report

    Kellett, R.; Berg, R.; Paz, A.; Brown, G.Z.

    1991-03-01

    Since 1989, the U.S. Department of Energy has sponsored the Energy Efficient Industrialized Housing research program (EEIH) to improve the energy efficiency of industrialized housing. Two research centers share responsibility for this program: The Center for Housing Innovation at the University of Oregon and the Florida Solar Energy Center, a research institute of the University of Central Florida. Additional funding is provided through the participation of private industry, state governments and utilities. The program is guided by a steering committee comprised of industry and government representatives. This report summarizes Fiscal Year (FY) 1990 activities and progress, and proposed activities for FY 1991 in Task 2.1 Design for Energy Efficiency. This task establishes a vision of energy conservation opportunities in critical regions, market segments, climate zones and manufacturing strategies significant to industrialized housing in the 21st Century. In early FY 1990, four problem statements were developed to define future housing demand scenarios inclusive of issues of energy efficiency, housing design and manufacturing. Literature surveys were completed to assess seven areas of influence for industrialized housing and energy conservation in the future. Fifty-five future trends were identified in computing and design process; manufacturing process; construction materials, components and systems; energy and environment; demographic context; economic context; and planning policy and regulatory context.

  17. Overview report of RAMONA-NEPTUN program on passive decay heat removal

    Weinberg, D.; Rust, K.; Hoffmann, H.

    1996-03-01

    The design of the advanced sodium-cooled European Fast Reactor provides a safety graded decay heat removal concept which ensures the coolability of the primary system by natural convection when forced cooling is lost. The findings of the RAMONA and NEPTUN experiments indicate that the decay heat can be safely removed by natural convection. The operation of the decay heat exchangers being installed in the upper plenum causes the formation of a thermal stratification associated with a pronounced temperature gradient. The vertical extent of the stratification and the qualitity of the gradient are depending on the fact whether a permeable or an impermeable shell covers the above core structure. A delayed startup time of the decay heat exchangers leads only to a slight increase of the temperatures in the upper plenum. A complete failure of half of the decay heat exchangers causes a higher temperature level in the primary system, but does not alter the global temperature distribution. The transient development of the temperatures is faster going on in a three-loop model than in a four-loop model due to the lower amount of heat stored in the compacter primary vessel. If no coolant reaches the core inlet side via the intermediate heat exchangers, the core remains coolable. In this case, cold water of the upper plenum penetrates into the subassemblies (thermosyphon effects) and the interwrapper spaces existing in the NEPTUN core. The core coolability from above is feasible without any difficulty though the temperatures increase to a minor degree at the top end of the core. The thermal hydraulic computer code FLUTAN was applied for the 3D numerical simulation of the majority of the steady state RAMONA and NEPTUN tests as well as for selected transient RAMONA tests. (orig./HP) [de

  18. Validation of photon-heating calculations in irradiation reactor with the experimental AMMON program and the CARMEN device

    Lemaire, Matthieu

    2015-01-01

    document and was handled with a four-prong work plan. The first part consisted in quantifying the calculation bias due to the neutron-transport and photon-production evaluated data of the European nuclear-data JEFF3.1.1 library. To this aim, the experimental AMMON program, conducted at CEA Cadarache (Reactor Studies Department) from 2010 to 2013 in the zero-power experimental EOLE reactor, provided experimental photon-heating values (obtained with calibrated TLD- and OSLD-type dosimeters) in JHR-representative core configurations. The interpretation of these measurements relies on a calculation scheme mainly based on the Monte Carlo TRIPOLI-4 code developed by CEA. This code notably allows one to determine photon-heating by means of a 4-particle calculation transport (absorbed-dose calculation with neutron, photon, electron and positron transport). Heating due to prompt photons, delayed fission gammas and due to neutron activation of AMMON core structures was calculated this way and compared to measured values to yield the bias due to JEFF3.1.1 nuclear data on photon-heating calculation in the AMMON core. After the analysis of AMMON measurements, a study of the representativeness of the AMMON core with regards to the JHR is tackled in the second part. The objective of this study is to determine to what extent nuclear-data biases on AMMON photon-heating calculations can be applied to JHR photon-heating calculations. Thus, the closeness between AMMON and JHR was checked in terms of geometry and physics while the respective shares of prompt and delayed photon heating to total photon heating were quantified in the JHR. Eventually, this study allowed us to define the biases and uncertainties relevant for JHR photon-heating calculations with the JEFF3.1.1 library. The third part of this work is dedicated to the determination of photon-heating calculation biases linked to the approximations of calculation schemes. Firstly, photon-heating calculation/calculation comparisons with

  19. Environmental restoration and waste management: Robotics technology development program: Robotics 5-year program plan

    1991-01-01

    This plan covers robotics Research, Development, Demonstration, Testing, activities in the Program for the next five years. These activities range from bench-scale R ampersand D to fullscale hot demonstrations at DOE sites. This plan outlines applications of existing technology to near-term needs, the development and application of enhanced technology for longer-term needs, and an initiation of advanced technology development to meet those needs beyond the five-year plan. The objective of the Robotic Technology Development (RTDP) is to develop and apply robotics technologies that will enable Environmental Restoration and Waste Management operations at DOE sites to be safer, faster and cheaper. Five priority DOE sites were visited in March 1990 to identify needs for robotics technology in ER ampersand WM operations. This 5-Year Program Plan for the RTDP detailed annual plans for robotics technology development based on identified needs. This 5-Year Program Plan discusses the overall approach to be adopted by the RTDP to aggressively develop robotics technology and contains discussions of the Program Management Plan, Site Visit and Needs Summary, Approach to Needs-Directed Technical Development, Application-Specific Technical Development, and Cross-Cutting and Advanced Technology. Integrating application-specific ER ampersand WM needs, the current state of robotics technology, and the potential benefits (in terms of faster, safer, and cheaper) of new technology, the Plan develops application-specific road maps for robotics RDDT ampersand E for the period FY 1991 through FY 1995. In addition, the Plan identifies areas where longer-term research in robotics will have a high payoff in the 5- to 20-year time frame. 12 figs

  20. Computer program MCAP-TOSS calculates steady-state fluid dynamics of coolant in parallel channels and temperature distribution in surrounding heat-generating solid

    Lee, A. Y.

    1967-01-01

    Computer program calculates the steady state fluid distribution, temperature rise, and pressure drop of a coolant, the material temperature distribution of a heat generating solid, and the heat flux distributions at the fluid-solid interfaces. It performs the necessary iterations automatically within the computer, in one machine run.

  1. 76 FR 43941 - Energy Conservation Program: Energy Conservation Standards for Direct Heating Equipment

    2011-07-22

    ... included the HPBA membership directory, Air-Conditioning, Heating, and Refrigeration Institute (AHRI.... Summary of the Proposed Rule II. History of the Energy Conservation Standards Rulemaking and Current... notice. DOE's rationale is presented in further detail immediately below. II. History of the Energy...

  2. Environmental Assessment and FONSI for the Bison School District Heating Plant Project (Institutional Conservation Program [ICP]).

    Department of Energy, Washington, DC.

    This paper examines the environmental impacts of replacing the Bison, South Dakota School District's elementary and high school heating system consisting of oil-fired boilers, and supporting electrical components with a new coal-fired boiler and supporting control system piping. Various alternative systems are also examined, including purchasing a…

  3. An overview of heat exchanger technology in the Canadian nuclear program

    Carlucci, L.N.; Dalrymple, D.G.; Ko, P.L.; Pathania, R.; Pettigrew, M.I.; Scott, D.A.

    1981-06-01

    This paper provides an overview of the Canadian approach to the reliability and serviceability of heat exchange equipment used in nuclear power stations and heavy water plants. Current work in vibration and fretting predictions, thermal-hydraulic analyses, and corrosion research is described. Procedures developed for in-service inspection, in situ tube replacment and chemical cleaning of corrosion products are also outlined

  4. RALOC Mod 1/81: Program description of RALOC version by the structural heat model HECU

    Pham, V.T.

    1984-01-01

    In the version RALOC-Mod 1/81 an expanded heat transfer model and structure heat model is included. This feature allows for a realistic simulation of the thermodynamic and fluiddynamic characteristics of the containment atmosphere. Steel and concrete substructures with a plain or rotational symmetry can be represented. The treat transfer calculations for the structures are problem oriented, taking into account, the time- and space dependencies. The influence of the heat transfer on the gas transport (in particular convection) in the reactor vessel is demonstrated by the numerical calculations. In contrast to the calculations without a simulation of the heat storage effects of the container structures showing a widely homogenious hydrogen distribution, the results on the basis of the HECU-model give an inhomogenious distribution during the first 8 to 12 days. However these results are only examples for the application of the RALOC-Mod 1/81 -code, which have not been intended to contribute to the discussion of hydrogen distributions in a PWR-type reactor. (orig./GL) [de

  5. Failure analysis of beryllium tile assembles following high heat flux testing for the ITER program

    Odegard, B.C. Jr.; Cadden, C. H.; Yang, N. Y. C.

    2000-01-01

    The following document describes the processing, testing and post-test analysis of two Be-Cu assemblies that have successfully met the heat load requirements for the first wall and dome sections for the ITER (International Thermonuclear Experimental Reactor) fusion reactor. Several different joint assemblies were evaluated in support of a manufacturing technology investigation aimed at diffusion bonding or brazing a beryllium armor tile to a copper alloy heat sink for fusion reactor applications. Judicious selection of materials and coatings for these assemblies was essential to eliminate or minimize interactions with the highly reactive beryllium armor material. A thin titanium layer was used as a diffusion barrier to isolate the copper heat sink from the beryllium armor. To reduce residual stresses produced by differences in the expansion coefficients between the beryllium and copper, a compliant layer of aluminum or aluminum-beryllium (AlBeMet-150) was used. Aluminum was chosen because it does not chemically react with, and exhibits limited volubility in, beryllium. Two bonding processes were used to produce the assemblies. The primary process was a diffusion bonding technique. In this case, undesirable metallurgical reactions were minimized by keeping the materials in a solid state throughout the fabrication cycle. The other process employed an aluminum-silicon layer as a brazing filler material. In both cases, a hot isostatic press (HIP) furnace was used in conjunction with vacuum-canned assemblies in order to minimize oxidation and provide sufficient pressure on the assemblies for full metal-to-metal contact and subsequent bonding. The two final assemblies were subjected to a suite of tests including: tensile tests and electron and optical metallography. Finally, high heat flux testing was conducted at the electron beam testing system (EBTS) at Sandia National Laboratories, New Mexico. Here, test mockups were fabricated and subjected to normal heat loads to

  6. Studies of radiant heat transfer problems by the MOXY-program

    Wennerberg, D.; Thiede, M.

    1988-01-01

    MOXY is a program for calculation of transients at LOCA in a BWR. The program has been enlarged for application to 9 x 9 bundles (earlier only 7 x 7 - and 8 x 8 geometries). The report presents the results of five runs, two cases for 8 x 8 -bundle and three for 9 x 9 bundle. Comparison is made with estimates made by other, similar programs. (O.S.)

  7. Geothermal direct heat program: roundup technical conference proceedings. Volume II. Bibliography of publications. State-coupled geothermal resource assessment program

    Ruscetta, C.A. (ed.)

    1982-07-01

    Lists of publications are presented for the Geothermal Resource Assessment Program for the Utah Earth Science Laboratory and the following states: Alaska, Arizona, California, Colorado, Hawaii, Idaho, Kansas, Montana, Nebraska, Nevada, New Mexico, New York, North Dakota, Oregon, Texas, Utah, and Washington.

  8. General-purpose heat source project and space nuclear safety and fuels program. Progress reportt, January 1980

    Maraman, W.J.

    1980-04-01

    This formal monthly report covers the studies related to the use of 238 PuO 2 in radioisotopic power systems carried out for the Advanced Nuclear Systems and Projects Division of the Los Alamos Scientific Laboratory. The two programs involved are the general-purpose heat source development and space nuclear safety and fuels. Most of the studies discussed here are of a continuing nature. Results and conclusions described may change as the work continues. Published reference to the results cited in this report should not be made without the explicit permission of the person in charge of the work

  9. 24 CFR 200.950 - Building product standards and certification program for solar water heating system.

    2010-04-01

    ... PROGRAMS Minimum Property Standards § 200.950 Building product standards and certification program for...) concerning labeling of a product, the administrator's validation mark and the manufacturer's certification of... 24 Housing and Urban Development 2 2010-04-01 2010-04-01 false Building product standards and...

  10. TRIENNIAL LACTATION SYMPOSIUM/BOLFA: Late gestation heat stress of dairy cattle programs dam and daughter milk production.

    Dahl, G E; Tao, S; Laporta, J

    2017-12-01

    Anticipated increases in the world population to 9 billion people will lead to increased demand for food. Dairy products represent one of the most sustainable animal sources of food protein because ruminants can utilize byproduct and forage feeds unsuitable for human consumption. Continued improvements in productivity will depend on deeper understanding of the biology of lactation, including developmental programming of tissues critical to that process. Although prenatal programming of postnatal phenotype is well documented for growth, behavior, and disease, there may also be instances of "programming" that last for a specific physiological stage (e.g., lactation). We distinguish between these 2 terms by the use of developmental programming to describe a permanent effect, whereas the more general term is used to describe nonpermanent impacts on the mammary gland. Despite this complexity, here we review the evidence that exposure to elevated temperature and humidity during late gestation can program reduced yields in the subsequent lactation, largely through effects at the mammary gland. Furthermore, we provide emerging evidence that adult capacity for milk synthesis can be programmed in the calf that dam is carrying by events during fetal life occurring 2 yr before. Specifically, calves born to dams that are heat stressed for the final 6 wk of gestation produce 19% less milk in lactation relative to calves from dams provided with evaporative cooling. Importantly, the increased milk yield in animals derived from dams under evaporative cooling occurred without a greater decline in BW that accompanies negative energy balance during early lactation. Therefore, the increase in milk production suggests an increase in the efficiency of conversion of feed to milk. These data indicate that a brief period of heat stress late in development reduces the physiological efficiency of the cow in a coordinated manner to result in a substantial decline in productivity. It is likely

  11. PWR blowdown heat transfer separate-effects program: Thermal-Hydraulic Test Facility experimental data report for test 100

    White, M.D.; Hedrick, R.A.

    1977-01-01

    Reduced instrument responses are presented for Thermal-Hydraulic Test Facility (THTF) test 100, which is part of the ORNL Pressurized-Water-Reactor (PWR) Blowdown Heat Transfer Separate-Effects Program. The objective of the program is to investigate the thermal-hydraulic phenomenon governing the energy transfer and transport processes that occur during a loss-of-coolant accident in a PWR system. Test 100 was conducted to investigate the response of heater rod bundle 1 and instrumented spool pieces with flow homogenizing screens to a double-ended rupture with equal break areas at the test section inlet and outlet. The primary purpose of this report is to make the reduced instrument responses during test 100 available. The responses are presented in graphical form in engineering units and have been analyzed only to the extent necessary to assure reasonableness and consistency

  12. PWR Blowdown Heat Transfer Separate-Effects Program. Thermal-Hydraulic Test Facility experimental data report for test 166S

    Clemons, V.D.; White, M.D.; Hedrick, R.A.

    1978-01-01

    Reduced instrument responses are presented for Thermal-Hydraulic Test Facility (THTF) test 166S, which is part of the ORNL Pressurized-Water Reactor (PWR) Blowdown Heat Transfer Separate-Effects Program. The objective of the program is to investigate the thermal-hydraulic phenomenon governing the energy transfer and transport processes that occur during a loss-of-coolant accident in a PWR system. Test 166S was conducted to obtain thermal-hydraulic and CHF information in THTF bundle 1 with an intact hot leg. The primary purpose of this report is to make the reduced instrument responses during tests 166S available. These are presented in graphical form in engineering units and have been analyzed only to the extent necessary to ensure reasonableness and consistency

  13. Gas-heating alternatives to the residential electric heat pump. Gas Appliance Technology Center 1987 program. Topical report for Work Area 1.1, October 1989-March 1990

    Haas, C.

    1990-05-01

    The characteristics of electric heat pumps are described. Options are defined and assessed for utilizing gas heating in conjunction with existing residential electric heat pumps. These options include gas heat introduced into the refrigeration circuit, a flue gas-heated tube bank in the air supply duct, and a hot-water-to-air coil in the supply duct. Economics are presented for conversion of a residence's total space and water heating from electric to gas in New York City and Atlanta. Potential marketing strategies are discussed, and potential gas sales volumes from conversions are estimated. The study concludes that the use of gas water heating coupled with a hydronic coil in the supply ductwork from the air handler is the most advantageous option for the gas industry

  14. Nuclear budget for FY1991 up 3.6% to 409.7 billion yen

    Anon.

    1991-01-01

    A total of yen409.7 billion was approved for the Governmental nuclear energy draft budget for fiscal 1991 on December 28, as the Cabinet gave its approval. The total, the highest ever, was divided into yen182.6 billion for the general account and yen227.1 billion for the special account for power resources development, representing a 3.6% increase over the ongoing fiscal year's level of yen395.5 billion. The draft budget will be examined for approval of the Diet session by the end of March. The nuclear energy budget devoted to research and development projects governed by the Science and Technology Agency amounts yen306.4 billion, up 3.5% exceeding yen300 billion for the first time. The nuclear budget for the Ministry of International Trade and Industry is yen98.1 billion, up 3.5%. For the other ministries, including the Ministry of Foreign Affairs, yen5.1 billion was allotted to nuclear energy-related projects. The Government had decided to raise the unit cost of the power plant siting promotion subsidies in the special account for power resources development by 25% --- from yen600/kw to yen750/kw --- in order to support the siting of plants. Consequently, the power resources siting account of the special accounts for both STA and MITI showed high levels of growth rates: 6.3% and 7.5%, respectively. (N.K.)

  15. FY 1991--FY 1995 Information Technology Resources Long-Range Plan

    1989-12-01

    The Department of Energy has consolidated its plans for Information Systems, Computing Resources, and Telecommunications into a single document, the Information Technology Resources Long-Range Plan. The consolidation was done as a joint effort by the Office of ADP Management and the Office of Computer Services and Telecommunications Management under the Deputy Assistant Secretary for Administration, Information, and Facilities Management. This Plan is the product of a long-range planning process used to project both future information technology requirements and the resources necessary to meet those requirements. It encompasses the plans of the various organizational components within the Department and its management and operating contractors over the next 5 fiscal years, 1991 through 1995.

  16. Long-range research plan. FY 1987-FY 1991. Volume 3

    1986-08-01

    The Long-Range Research Plan (LRRP) was prepared by the Office of Nuclear Regulatory Research (RES) to assist the NRC in coordinating its long-range research planning with the short-range budget cycles. The LRRP lays out programmatic approaches for research to help resolve regulatory issues. The plan will be updated annually. It covers: operating reactor inspection, maintenance, and repair; equipment qualification; seismic research; reactor operations and risk; thermal-hydraulic transients; severe accidents; radiation protection and health effects; and waste management

  17. FY 1990/FY 1991 Biennial Budget Descriptive Summaries for the Strategic Defense Initiative Organization

    1989-01-01

    reduction in cryccooler size. o (U) Develop the first diamond ME_2 with monocrystalline , semiconductor quality thin-film diamcnd. o (U) Develop Atomic Layer...stiffness and dynamic response. A lightweight thermal radiator panel will also be fabricated and tested. Fabrication of tubes and sheets in gauges...FY 91 o Precision Gimbal Test IQ FY 91 C Cx:mlete Deveic..ent of Integrated Structures Model 2Q FY 91 c Light’weight Ccmpcsitas Radiator Panel Demo 2Q

  18. Deemed Savings Estimates for Legacy Air Conditioning and WaterHeating Direct Load Control Programs in PJM Region

    Goldman, Charles

    2007-03-01

    During 2005 and 2006, the PJM Interconnection (PJM) Load Analysis Subcommittee (LAS) examined ways to reduce the costs and improve the effectiveness of its existing measurement and verification (M&V) protocols for Direct Load Control (DLC) programs. The current M&V protocol requires that a PURPA-compliant Load Research study be conducted every five years for each Load-Serving Entity (LSE). The current M&V protocol is expensive to implement and administer particularly for mature load control programs, some of which are marginally cost-effective. There was growing evidence that some LSEs were mothballing or dropping their DLC programs in lieu of incurring the expense associated with the M&V. This project had several objectives: (1) examine the potential for developing deemed savings estimates acceptable to PJM for legacy air conditioning and water heating DLC programs, and (2) explore the development of a collaborative, regional, consensus-based approach for conducting monitoring and verification of load reductions for emerging load management technologies for customers that do not have interval metering capability.

  19. General-Purpose Heat Source Safety Verification Test program: Edge-on flyer plate tests

    George, T.G.

    1987-03-01

    The radioisotope thermoelectric generator (RTG) that will supply power for the Galileo and Ulysses space missions contains 18 General-Purpose Heat Source (GPHS) modules. The GPHS modules provide power by transmitting the heat of 238 Pu α-decay to an array of thermoelectric elements. Each module contains four 238 PuO 2 -fueled clads and generates 250 W(t). Because the possibility of a launch vehicle explosion always exists, and because such an explosion could generate a field of high-energy fragments, the fueled clads within each GPHS module must survive fragment impact. The edge-on flyer plate tests were included in the Safety Verification Test series to provide information on the module/clad response to the impact of high-energy plate fragments. The test results indicate that the edge-on impact of a 3.2-mm-thick, aluminum-alloy (2219-T87) plate traveling at 915 m/s causes the complete release of fuel from capsules contained within a bare GPHS module, and that the threshold velocity sufficient to cause the breach of a bare, simulant-fueled clad impacted by a 3.5-mm-thick, aluminum-alloy (5052-T0) plate is approximately 140 m/s

  20. Explosion overpressure test series: General-Purpose Heat Source development: Safety Verification Test program

    Cull, T.A.; George, T.G.; Pavone, D.

    1986-09-01

    The General-Purpose Heat Source (GPHS) is a modular, radioisotope heat source that will be used in radioisotope thermoelectric generators (RTGs) to supply electric power for space missions. The first two uses will be the NASA Galileo and the ESA Ulysses missions. The RTG for these missions will contain 18 GPHS modules, each of which contains four 238 PuO 2 -fueled clads and generates 250 W/sub (t)/. A series of Safety Verification Tests (SVTs) was conducted to assess the ability of the GPHS modules to contain the plutonia in accident environments. Because a launch pad or postlaunch explosion of the Space Transportation System vehicle (space shuttle) is a conceivable accident, the SVT plan included a series of tests that simulated the overpressure exposure the RTG and GPHS modules could experience in such an event. Results of these tests, in which we used depleted UO 2 as a fuel simulant, suggest that exposure to overpressures as high as 15.2 MPa (2200 psi), without subsequent impact, does not result in a release of fuel

  1. A variant of the dynamic programming algorithm for unit commitment of combined heat and power systems

    Rong, Aiying; Hakonen, Henri; Lahdelma, Risto

    2008-01-01

    introduce in this paper the DP-RSC1 algorithm, which is a variant of the dynamic programming (DP) algorithm based on linear relaxation of the ON/OFF states of the units and sequential commitment of units one by one. The time complexity of DP-RSC1 is proportional to the number of generating units...

  2. Treatment of the decay heat production in the reactor dynamics program TINTE

    Gerwin, H.; Scherer, W.

    1993-07-01

    The TINTE code system deals with the nuclear and the thermal transient behaviour of the primary circuit of an HTGR taking into consideration the mutual feedback effects in two-dimensional r-z-geometry. An update of the treatment of delayed heat production is presented. It is based on the German norm DIN 25485, the rules of which had to be adjusted for use in a dynamics code. For the description of the fuel element power history a substitute-histogram has been constructed from local burnup and optionally from information about shuffling of the fuel balls. As an example the depressurisation accident of a MODUL-HTR is calculated. The results obtained are very similiar to others previously reported. (orig./HP) [de

  3. Summary of results from sodium-heated steam generator test program

    McDonald, J S

    1975-07-01

    A 28 MWt sodium-heated steam generator test unit developed and fabricated by Atomics International was operated in the Sodium Component Test Installation. The SCTI is located at the Liquid Metal Engineering Center which is operated for the Atomic Energy Commission by Atomics International, Reviewed in this paper are the results of the test operations and the findings of the post-test examination of the module. Testing was performed to assure the mechanical integrity of the unit over a wide range of simulated plant operating conditions and to develop a variety of performance data. Specific tests conducted included preheat, vibration, startup-shutdown, pressurization, steady state and parametric performance mapping, endurance, simulated leak injection, low- flow stability and simulated plant transients. (author)

  4. Army Solid State Laser Program: Design, Operation, and Mission Analysis for a Heat-Capacity Laser

    Dane, C B; Flath, L; Rotter, M; Fochs, S; Brase, J; Bretney, K

    2001-01-01

    Solid-state lasers have held great promise for the generation of high-average-power, high-quality output beams for a number of decades. However, the inherent difficulty of scaling the active solid-state gain media while continuing to provide efficient cooling has limited demonstrated powers to 10X the diffraction limit. Challenges posed by optical distortions and depolarization arising from internal temperature gradients in the gain medium of a continuously cooled system are only increased for laser designs that would attempt to deliver the high average power in the form of high energy pulses (>25J) from a single coherent optical aperture. Although demonstrated phase-locking of multiple laser apertures may hold significant promise for the future scaling of solid-state laser systems,1 the continuing need for additional technical development and innovation coupled with the anticipated complexity of these systems effectively limits this approach for near-term multi-kW laser operation outside of a laboratory setting. We have developed and demonstrated a new operational mode for solid-state laser systems in which the cooling of the gain medium is separated in time from the lasing cycle. In ''heat-capacity'' operation, no cooling takes place during lasing. The gain medium is pumped very uniformly and the waste heat from the excitation process is stored in the solid-state gain medium. By depositing the heat on time scales that are short compared to thermal diffusion across the optical aperture, very high average power operation is possible while maintaining low optical distortions. After a lasing cycle, aggressive cooling can then take place in the absence of lasing, limited only by the fracture limit of the solid-state medium. This mode of operation is ideally suited for applications that require 1-30s engagements at very high average power. If necessary, multiple laser apertures can provide continuous operation. Land Combat mission analysis of a stressing air defense

  5. Plasma-Materials Interactions (PMI) and High-Heat-Flux (HHF) component research and development in the US Fusion Program

    Conn, R.W.

    1986-10-01

    Plasma particle and high heat fluxes to in-vessel components such as divertors, limiters, RF launchers, halo plasma scrapers, direct converters, and wall armor, and to the vacuum chamber itself, represent central technical issues for fusion experiments and reactors. This is well recognized and accepted. It is also well recognized that the conditions at the plasma boundary can directly influence core plasma confinement. This has been seen most dramatically, on the positive side, in the discovery of the H-mode using divertors in tokamaks. It is also reflected in the attention devoted worldwide to the problems of impurity control. Nowadays, impurities are controlled by wall conditioning, special discharge cleaning techniques, special coatings such as carbonization, the use of low-Z materials for limiters and armor, a careful tailoring of heat loads, and in some machines, through the use of divertors. All programs, all experiments, and all designers are now keenly aware that PMI and HHF issues are key to the successful performance of their machines. In this brief report we present general issues in Section 2, critical issues in Section 3, existing US PMI/HHF experiments and facilities in Section 4, US International Cooperative PMI/HHF activities in Section 5, and conclude with a discussion on major tasks in PMI/HHF in Section 6

  6. Development of a Program for Predicting Flow Instability in a Once-through Sodium-Heated Steam Generator (III)

    Kim, Eui Kwang; Yoon, Jung; Kim, Jong Bum; Jeong, Jiyoung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Two-phase flow systems can be subjected to several types of instability problems. Density-wave oscillation is the most common and important type of instability in boiling channels. Such instability gives difficulties in predictions of system performance and system control, and component failure due to thermal fatigue. A computer program developed for predicting two-phase flow instability in a steam generator heated by liquid sodium was presented in the previous works. Limit cycle was predicted even in a fixed node system. The amplitude of inlet flow rate is larger than that of outlet flow rate. The amplitude of phase change location oscillation within boiling-to-vapor boundary node is larger than that of liquid-to-boiling boundary node. Sodium and steam temperature are invariant at tube exit.

  7. Thermal transport properties of helium, helium--air mixtures, water, and tubing steel used in the CACHE program to compute HTGR auxiliary heat exchanger performance

    Tallackson, J.R.

    1976-02-01

    A description is presented of the thermal transport properties of the materials involved in digital computer calculations of heat transfer rates by the core auxiliary heat exchangers in large HTGR nuclear steam supply systems. These materials are pure helium, mixtures of helium with common gases having molecular weights in the range of 28 to 32, alloy steel tubing, and water. For use in programmed computations the viscosity, thermal conductivity, and specific heat are represented primarily by equations augmented by curves and tabulations. Materials supporting the development and selection of the property equations are included

  8. HIGHTEX: a computer program for the steady-state simulation of steam-methane reformers used in a nuclear process heat plant

    Tadokoro, Yoshihiro; Seya, Toko

    1977-08-01

    This report describes a computational model and the input procedure of HIGHTEX, a computer program for steady-state simulation of the steam-methane reformers used in a nuclear process heat plant. The HIGHTEX program simulates rapidly a single reformer tube, and treats the reactant single-phase in the two-dimensional catalyst bed. Output of the computer program is radial distributions of temperature and reaction products in the catalyst-packed bed, pressure loss of the packed bed, stress in the reformer tube, hydrogen permeation rate through the reformer tube, heat rate of reaction, and heat-transfer rate between helium and process gas. The running time (cpu) for a 9m-long bayonet type reformer tube is 12 min with FACOM-230/75. (auth.)

  9. General-Purpose Heat Source development: Safety Verification Test Program. Bullet/fragment test series

    George, T.G.; Tate, R.E.; Axler, K.M.

    1985-05-01

    The radioisotope thermoelectric generator (RTG) that will provide power for space missions contains 18 General-Purpose Heat Source (GPHS) modules. Each module contains four /sup 238/PuO/sub 2/-fueled clads and generates 250 W/sub (t)/. Because a launch-pad or post-launch explosion is always possible, we need to determine the ability of GPHS fueled clads within a module to survive fragment impact. The bullet/fragment test series, part of the Safety Verification Test Plan, was designed to provide information on clad response to impact by a compact, high-energy, aluminum-alloy fragment and to establish a threshold value of fragment energy required to breach the iridium cladding. Test results show that a velocity of 555 m/s (1820 ft/s) with an 18-g bullet is at or near the threshold value of fragment velocity that will cause a clad breach. Results also show that an exothermic Ir/Al reaction occurs if aluminum and hot iridium are in contact, a contact that is possible and most damaging to the clad within a narrow velocity range. The observed reactions between the iridium and the aluminum were studied in the laboratory and are reported in the Appendix.

  10. Heat transfer and fluid flow research relevant to India's nuclear power program

    Mehta, S.K.; Venkatraj, V.

    1988-01-01

    The Indian Nuclear Power Programme envisages three important stages viz., installation of thermal reactors, fast reactors and utilization of Thorium. By the year 2000 AD, it is proposed to have an installed total capacity of nuclear power of about 10,000 MWe. Starting from the present installed capacity of 1330 MWe, the additional contribution will be mainly made by thermal power reactors of the Pressurized Heavy Water type (PHWR). Apart from the reactors presently under construction about 12 numbers of 235 MWe units are planned to be constructed, which will be based on the standardized design of the reactors at Narora Atomic Power Project (NAPP). In addition, 10 units of 500 MWe capacity each, the design for which is currently under progress, will also be installed. The design, construction and operating agency is the Nuclear Power Board (NPB), while the Bhabha Atomic Research Centre (BARC) is responsible for the research and development work required. In addition to the programme on thermal power reactors, a thermal research reactor (DHRUVA) of 100 MWth capacity has been designed, constructed and has been commissioned. Some of the important heat transfer and fluid flow research problems relevant to the Indian nuclear power and research reactors are discussed in this paper

  11. Residual heat removal pump and low pressure safety injection pump retrofit program

    Dudiak, J.G.; McKenna, J.M.

    1992-01-01

    Residual Heat Removal (RHR) and low pressure safety injection (LPSI) pumps installed in pressurized water-to-reactor power plants are used to provide low-head safety injection in the event of loss of coolant in the reactor coolant system. Because these pumps are subjected to rather severe temperature and pressure transients, the majority of pumps installed in the RHR service are vertical pumps with a single stage impeller. Typically the pump impeller is mounted on an extended motor shaft (close-coupled configuration) and a mechanical seal is employed at the pump end of the shaft. Traditionally RHR and LPSI pumps have been a significant maintenance item for many utilities. Periodic mechanical seal of motor bearing replacement often is considered routine maintenance. The closed-coupled pump design requires disassembly of the casing cover from the lower pump casing while performing these routine maintenance tasks. This paper introduces a design modification developed to convert the close-coupled RHR and LPSI pumps to a coupled configuration

  12. Development of whole core thermal-hydraulic analysis program ACT. 3. Coupling core module with primary heat transport system module

    Ohtaka, Masahiko; Ohshima, Hiroyuki

    1998-10-01

    A whole core thermal-hydraulic analysis program ACT is being developed for the purpose of evaluating detailed in-core thermal hydraulic phenomena of fast reactors including inter-wrapper flow under various reactor operation conditions. In this work, the core module as a main part of the ACT developed last year, which simulates thermal-hydraulics in the subassemblies and the inter-subassembly gaps, was coupled with an one dimensional plant system thermal-hydraulic analysis code LEDHER to simulate transients in the primary heat transport system and to give appropriate boundary conditions to the core model. The effective algorithm to couple these two calculation modules was developed, which required minimum modification of them. In order to couple these two calculation modules on the computing system, parallel computing technique using PVM (Parallel Virtual Machine) programming environment was applied. The code system was applied to analyze an out-of-pile sodium experiment simulating core with 7 subassemblies under transient condition for code verification. It was confirmed that the analytical results show a similar tendency of experimental results. (author)

  13. Evaluation of fission-product gases in program GAPCON series and FREG-3 to estimate the gap heat transfer coefficient

    Ohki, Naohisa; Harayama, Yasuo; Takeda, Tsuneo; Izumi, Fumio.

    1977-12-01

    In safety evaluation of a fuel rod, estimation of the stored energy in the fuel rod is indispensable. For this estimation, the temperature distribution in the fuel rod is calculated. Most important in determination of the temperature distribution is the gap heat transfer coefficient (gap conductance) between pellet surface and cladding inner surface. Under fuel rod operating condition, the mixed gas in the gap is composed of He, Xe and Kr. He is initial seald gas. Xe and Kr are fission-product gases, of which the quantities depend on the fuel burn-up. In program GAPCON series (GAPCON and GAPCON-THERMAL-1 and -2) and FREG-3, these quantities are given as a function of the irradiation time, power rating and neutron flux in estimation of the thermal conductivity of the mixed gas. The methods of calculating the quantities of Xe and Kr in the programs have been examined. Input of the neutron flux which influences F.P. gas production rates is better than the determination from the fuel-rod power rating. (auth.)

  14. Topology optimization of induction heating model using sequential linear programming based on move limit with adaptive relaxation

    Masuda, Hiroshi; Kanda, Yutaro; Okamoto, Yoshifumi; Hirono, Kazuki; Hoshino, Reona; Wakao, Shinji; Tsuburaya, Tomonori

    2017-12-01

    It is very important to design electrical machineries with high efficiency from the point of view of saving energy. Therefore, topology optimization (TO) is occasionally used as a design method for improving the performance of electrical machinery under the reasonable constraints. Because TO can achieve a design with much higher degree of freedom in terms of structure, there is a possibility for deriving the novel structure which would be quite different from the conventional structure. In this paper, topology optimization using sequential linear programming using move limit based on adaptive relaxation is applied to two models. The magnetic shielding, in which there are many local minima, is firstly employed as firstly benchmarking for the performance evaluation among several mathematical programming methods. Secondly, induction heating model is defined in 2-D axisymmetric field. In this model, the magnetic energy stored in the magnetic body is maximized under the constraint on the volume of magnetic body. Furthermore, the influence of the location of the design domain on the solutions is investigated.

  15. Cryogenic heat transfer

    Barron, Randall F

    2016-01-01

    Cryogenic Heat Transfer, Second Edition continues to address specific heat transfer problems that occur in the cryogenic temperature range where there are distinct differences from conventional heat transfer problems. This updated version examines the use of computer-aided design in cryogenic engineering and emphasizes commonly used computer programs to address modern cryogenic heat transfer problems. It introduces additional topics in cryogenic heat transfer that include latent heat expressions; lumped-capacity transient heat transfer; thermal stresses; Laplace transform solutions; oscillating flow heat transfer, and computer-aided heat exchanger design. It also includes new examples and homework problems throughout the book, and provides ample references for further study.

  16. Heat shock instructs hESCs to exit from the self-renewal program through negative regulation of OCT4 by SAPK/JNK and HSF1 pathway.

    Byun, Kyunghee; Kim, Taek-Kyun; Oh, Jeehyun; Bayarsaikhan, Enkhjargal; Kim, Daesik; Lee, Min Young; Pack, Chan-Gi; Hwang, Daehee; Lee, Bonghee

    2013-11-01

    Environmental factors affect self-renewal of stem cells by modulating the components of self-renewal networks. Heat shock, an environmental factor, induces heat shock factors (HSFs), which up-regulate stress response-related genes. However, the link of heat shock to self-renewal of stem cells has not been elucidated yet. Here, we present the direct link of heat shock to a core stem cell regulator, OCT4, in the self-renewal network through SAPK/JNK and HSF1 pathway. We first showed that heat shock initiated differentiation of human embryonic stem cells (hESCs). Gene expression analysis revealed that heat shock increased the expression of many genes involved in cellular processes related to differentiation of stem cells. We then examined the effects of HSFs induced by heat shock on core self-renewal factors. Among HSFs, heat shock induced mainly HSF1 in hESCs. The HSF1 repressed the expression of OCT4, leading to the differentiation of hESCs and the above differentiation-related gene expression change. We further examined the effects of the upstream MAP (mitogen-activated protein) kinases of HSF1 on the repression of OCT4 expression by HSF1. Among the MAP kinases, SAPK/JNK controlled predominantly the repression of the OCT4 expression by HSF1. The direct link of heat shock to the core self-renewal regulator through SAPK/JNK and HSF1 provides a fundamental basis for understanding the effect of heat and other stresses involving activation of HSF1 on the self-renewal program and further controlling differentiation of hESCs in a broad spectrum of stem cell applications using these stresses. © 2013.

  17. Sun Safety at Work Canada: a multiple case-study protocol to develop sun safety and heat protection programs and policies for outdoor workers.

    Kramer, Desre M; Tenkate, Thomas; Strahlendorf, Peter; Kushner, Rivka; Gardner, Audrey; Holness, D Linn

    2015-07-10

    CAREX Canada has identified solar ultraviolet radiation (UV) as the second most prominent carcinogenic exposure in Canada, and over 75 % of Canadian outdoor workers fall within the highest exposure category. Heat stress also presents an important public health issue, particularly for outdoor workers. The most serious form of heat stress is heat stroke, which can cause irreversible damage to the heart, lungs, kidneys, and liver. Although the need for sun and heat protection has been identified, there is no Canada-wide heat and sun safety program for outdoor workers. Further, no prevention programs have addressed both skin cancer prevention and heat stress in an integrated approach. The aim of this partnered study is to evaluate whether a multi-implementation, multi-evaluation approach can help develop sustainable workplace-specific programs, policies, and procedures to increase the use of UV safety and heat protection. This 2-year study is a theory-driven, multi-site, non-randomized study design with a cross-case analysis of 13 workplaces across four provinces in Canada. The first phase of the study includes the development of workplace-specific programs with the support of the intensive engagement of knowledge brokers. There will be a three-points-in-time evaluation with process and impact components involving the occupational health and safety (OHS) director, management, and workers with the goal of measuring changes in workplace policies, procedures, and practices. It will use mixed methods involving semi-structured key informant interviews, focus groups, surveys, site observations, and UV dosimetry assessment. Using the findings from phase I, in phase 2, a web-based, interactive, intervention planning tool for workplaces will be developed, as will the intensive engagement of intermediaries such as industry decision-makers to link to policymakers about the importance of heat and sun safety for outdoor workers. Solar UV and heat are both health and safety hazards

  18. Evaluation of the support schemes of The District Heating Program during the period 2008 to 2011; Evaluering av stoetteprogrammene for fjernvarme i perioden 2008 til 2011

    Lindland, Odd Ivar; Johansen, Staale; Holstad, Jon; Vennes, Wenche; Kallset, Eirik

    2012-11-01

    The District Heating Program as they are designed today, are evaluated after four years of operation, to see if the program works as intended and meet the goals that were set up at the start of 2008. It is also seen in the evaluation of the development of district heating market in the period, to see if there are trends and changes in the regulatory framework that makes it appropriate to make changes to the programs. Users 'perception of the program and the programs' direct and indirect influence on the development of district heating market is also considered. The PricewaterhouseCoopers AS (PwC) has carried out the evaluation, commissioned by Enova. PwC has conducted Internet-based surveys and interviewed actors in various roles within the district. PwC concluded that the goals that were set at the input of the program period is reached. Energy results were higher than expected, while there is a trend that Enova have to pay more and more for the projects. The number of applications and projects has remained fairly stable, while projects have been smaller in size and extent. (eb)

  19. Intermittent heating of buildings

    Kohonen, K

    1983-02-01

    Conditions for intermittent heating of buildings are considered both theoretically and experimentally. Thermal behaviour of buildings adn rooms in intermittent heating is simulated by a program based on the convective heat balance equation and by simplified RC-models. The preheat times and the heating energy savings compared with continuous heating are presented for typical lightweight, mediumweight and heavyweight classroom and office modules. Formulaes for estimating the oversizing of the radiator network, the maximum heat output of heat exchangers in district heating and the efficiency of heating boilers in intermittent heating are presented. The preheat times and heating energy savings with different heating control systems are determined also experimentally in eight existing buildings. In addition some principles for the planning and application of intermittent heating systems are suggested.

  20. A mixed integer linear programming model for integrating thermodynamic cycles for waste heat exploitation in process sites

    Oluleye, Gbemi; Smith, Robin

    2016-01-01

    Highlights: • MILP model developed for integration of waste heat recovery technologies in process sites. • Five thermodynamic cycles considered for exploitation of industrial waste heat. • Temperature and quantity of multiple waste heat sources considered. • Interactions with the site utility system considered. • Industrial case study presented to illustrate application of the proposed methodology. - Abstract: Thermodynamic cycles such as organic Rankine cycles, absorption chillers, absorption heat pumps, absorption heat transformers, and mechanical heat pumps are able to utilize wasted thermal energy in process sites for the generation of electrical power, chilling and heat at a higher temperature. In this work, a novel systematic framework is presented for optimal integration of these technologies in process sites. The framework is also used to assess the best design approach for integrating waste heat recovery technologies in process sites, i.e. stand-alone integration or a systems-oriented integration. The developed framework allows for: (1) selection of one or more waste heat sources (taking into account the temperatures and thermal energy content), (2) selection of one or more technology options and working fluids, (3) selection of end-uses of recovered energy, (4) exploitation of interactions with the existing site utility system and (5) the potential for heat recovery via heat exchange is also explored. The methodology is applied to an industrial case study. Results indicate a systems-oriented design approach reduces waste heat by 24%; fuel consumption by 54% and CO_2 emissions by 53% with a 2 year payback, and stand-alone design approach reduces waste heat by 12%; fuel consumption by 29% and CO_2 emissions by 20.5% with a 4 year payback. Therefore, benefits from waste heat utilization increase when interactions between the existing site utility system and the waste heat recovery technologies are explored simultaneously. The case study also shows

  1. Geothermal direct-heat utilization assistance. Quarterly project progress report, July 1996--September 1996. Federal Assistance Program

    Lienau, P.

    1996-11-01

    This report summarizes geothermal technical assistance, R&D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the fourth quarter of FY-96. It describes 152 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, equipment, economics and resources. Research activities are summarized on greenhouse peaking. Outreach activities include the publication of a geothermal direct use Bulletin, dissemination of information, geothermal library, technical papers and seminars, and progress monitor reports on geothermal resources and utilization.

  2. Diagnostic instrumentation development program for the heat recovery/seed recovery system of the open-cycle, coal-fired magnetohydrodynamic power plant

    Murphree, D.L.; Cook, R.L.; Bauman, L.E.

    1981-01-01

    Highly efficient and environmentally acceptable, the coal-fired MHD power plant is an attractive facility for producing electricity. The design of its downstream system, however, presents technological risks which must be corrected if such a plant is to be commercially viable before the end of the century. The heat recovery/seed recovery system (HRSR) at its present stage is vulnerable to corrosion on the gas side of the radiant furnace, the secondary superheater, and the intermediate temperature air heater. Slagging and fouling of the heat transfer surface have yet to be eliminated. Gas chemistry, radiant heat transfer, and particulate removal are other problematic areas which are being researched in a DOE development program whose test activities at three facilities are contributing to an MHD/HRSR data base. In addition, a 20 MWt system to study HRSR design, is being now assembled in Tennessee

  3. Development and application of a specially designed heating system for temperature-programmed high-performance liquid chromatography using subcritical water as the mobile phase.

    Teutenberg, T; Goetze, H-J; Tuerk, J; Ploeger, J; Kiffmeyer, T K; Schmidt, K G; Kohorst, W gr; Rohe, T; Jansen, H-D; Weber, H

    2006-05-05

    A specially designed heating system for temperature-programmed HPLC was developed based on experimental measurements of eluent temperature inside a stainless steel capillary using a very thin thermocouple. The heating system can be operated at temperatures up to 225 degrees C and consists of a preheating, a column heating and a cooling unit. Fast cycle times after a temperature gradient can be realized by an internal silicone oil bath which cools down the preheating and column heating unit. Long-term thermal stability of a polybutadiene-coated zirconium dioxide column has been evaluated using a tubular oven in which the column was placed. The packing material was stable after 50h of operation at 185 degrees C. A mixture containing four steroids was separated at ambient conditions using a mobile phase of 25% acetonitrile:75% deionized water and a mobile phase of pure deionized water at 185 degrees C using the specially designed heating system and the PBD column. Analysis time could be drastically reduced from 17 min at ambient conditions and a flow rate of 1 mL/min to only 1.2 min at 185 degrees C and a flow rate of 5 mL/min. At these extreme conditions, no thermal mismatch was observed and peaks were not distorted, thus underlining the performance of the developed heating system. Temperature programming was performed by separating cytostatic and antibiotic drugs with a temperature gradient using only water as the mobile phase. In contrast to an isocratic elution of this mixture at room temperature, overall analysis time could be reduced two-fold from 20 to 10 min.

  4. Geothermal direct-heat utilization assistance: Federal assistance program. Quarterly project progress report, October--December 1995

    NONE

    1996-02-01

    The report summarizes geothermal technical assistance, R&D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the first quarter of FY-96. It describes 90 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, equipment and resources. Research activities are summarized on low-temperature resource assessment, geothermal district heating system cost evaluation and silica waste utilization project. Outreach activities include the publication of a geothermal direct use Bulletin, dissemination of information, geothermal library, technical papers and seminars, development of a webpage, and progress monitor reports on geothermal resources and utilization.

  5. Geothermal direct-heat utilization assistance. Federal Assistance Program quarterly project progress report, April 1--June 30, 1998

    NONE

    1998-07-01

    This report summarizes geothermal technical assistance, R and D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the third quarter of FY98 (April--June, 1998). It describes 231 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with included requests for general information including material for high school and university students, and material on geothermal heat pumps, resource and well data, spacing heating and cooling, greenhouses, aquaculture, equipment, district heating, resorts and spas, industrial applications, snow melting and electric power. Research activities include work on model construction specifications for line shaft submersible pumps and plate heat exchangers, and a comprehensive aquaculture developers package. A brochure on Geothermal Energy in Klamath County was developed for state and local tourism use. Outreach activities include the publication of the Quarterly Bulletin (Vol. 19, No. 2) with articles on research at the Geo-Heat Center, sustainability of geothermal resources, injection well drilling in Boise, ID and a greenhouse project in the Azores. Other outreach activities include dissemination of information mainly through mailings of publications, tours of local geothermal uses, geothermal library acquisitions and use, participation in workshops, short courses and technical meetings by the staff, and progress monitor reports on geothermal activities.

  6. Critical heat flux experiments in a circular tube with heavy water and light water. (AWBA Development Program)

    Williams, C.L.; Beus, S.G.

    1980-05-01

    Experiments were performed to establish the critical heat flux (CHF) characteristics of heavy water and light water. Testing was performed with the up-flow of heavy and of light water within a 0.3744 inch inside diameter circular tube with 72.3 inches of heated length. Comparisons were made between heavy water and light water critical heat flux levels for the same local equilibrium quality at CHF, operating pressure, and nominal mass velocity. Results showed that heavy water CHF values were, on the average, 8 percent below the light water CHF values

  7. Theory and design of heat exchanger : Double pipe and heat exchanger in abnormal condition

    Min, Ui Dong

    1996-02-01

    This book introduces theory and design of heat exchanger, which includes HTRI program, multiple tube heat exchanger external heating, theory of heat transfer, basis of design of heat exchanger, two-phase flow, condensation, boiling, material of heat exchanger, double pipe heat exchanger like hand calculation, heat exchanger in abnormal condition such as Jackets Vessel, and Coiled Vessel, design and summary of steam tracing.

  8. CORTAP: a coupled neutron kinetics-heat transfer digital computer program for the dynamic simulation of the high temperature gas cooled reactor core

    Cleveland, J.C.

    1977-01-01

    CORTAP (Core Transient Analysis Program) was developed to predict the dynamic behavior of the High Temperature Gas Cooled Reactor (HTGR) core under normal operational transients and postulated accident conditions. CORTAP is used both as a stand-alone component simulation and as part of the HTGR nuclear steam supply (NSS) system simulation code ORTAP. The core thermal neutronic response is determined by solving the heat transfer equations for the fuel, moderator and coolant in an average powered region of the reactor core. The space independent neutron kinetics equations are coupled to the heat transfer equations through a rapidly converging iterative technique. The code has the capability to determine conservative fuel, moderator, and coolant temperatures in the ''hot'' fuel region. For transients involving a reactor trip, the core heat generation rate is determined from an expression for decay heat following a scram. Nonlinear effects introduced by temperature dependent fuel, moderator, and coolant properties are included in the model. CORTAP predictions will be compared with dynamic test results obtained from the Fort St. Vrain reactor owned by Public Service of Colorado, and, based on these comparisons, appropriate improvements will be made in CORTAP

  9. General-purpose heat source: Research and development program, radioisotope thermoelectric generator/thin fragment impact test

    Reimus, M.A.H.; Hinckley, J.E.

    1996-11-01

    The general-purpose heat source provides power for space missions by transmitting the heat of 238 Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). Because the potential for a launch abort or return from orbit exists for any space mission, the heat source response to credible accident scenarios is being evaluated. This test was designed to provide information on the response of a loaded RTG to impact by a fragment similar to the type of fragment produced by breakup of the spacecraft propulsion module system. The results of this test indicated that impact by a thin aluminum fragment traveling at 306 m/s may result in significant damage to the converter housing, failure of one fueled clad, and release of a small quantity of fuel

  10. Steady natural convection heat transfer experiments in a horizontal annulus for the United States Spent Fuel Shipping Cask Technology Program

    Boyd, R.D.

    1981-04-01

    This experimental study deals with the measurement of the heat transfer across a horizontal annulus which is formed by an inner hexagonal cylinder and an outer concentric circular cylinder. The geometry simulates, in two dimensions, a liquid metal fast breeder reactor radioactive fuel subassembly inside a shipping container. This geometry is also similar to a radioactive fuel pin inside a horizontal reactor subassembly. The objective of the experiments is to measure the local and mean heat transfer at the surface of the inner hexagonal cylinder

  11. Proceeding of JSPS-CAS Core University Program seminar on production and control of high performance plasmas with advanced plasma heating and diagnostic systems

    Gao Xiang; Morita, Shigeru

    2011-02-01

    The JSPS-CAS Core University Program (CUP) seminar on 'Production and control of high performance plasmas with advanced plasma heating and diagnostic systems' took place in Guilin Bravo Hotel, Guilin, China, 1-4 November 2010. This seminar was organized in the framework of CUP in the field of plasma and nuclear fusion. Two special talks and 46 oral talks were presented in the seminar including 36 Chinese, 18 Japanese and 4 Korean attendees. Production and control of high performance plasmas is a crucial issue for realizing an advanced nuclear fusion reactor in addition to developments of advanced plasma heating and diagnostics. This seminar was motivated along the issues. Results in the field of fusion experiments obtained through CUP activities during recent two years were summarized. Possible direction of future collaboration and further encouragement of scientific activity of younger scientists were also discussed in this seminar with future experimental plans in both countries. (author)

  12. Proceeding of JSPS-CAS core university program seminar on production and control of high performance plasmas with advanced plasma heating and diagnostic systems

    Gao Xiang; Morita, Shigeru

    2009-01-01

    The JSPS-CAS Core University Program (CUP) seminar on 'Production and control of high performance plasmas with advanced plasma heating and diagnostic systems' took place in Shiner hotel, Lijiang, China, 4-7 November 2008. This seminar was organized in the framework of CUP in the field of plasma and nuclear fusion. One special talk and 34 oral talks were presented in the seminar including 16 Japanese attendees. Production and control of high performance plasmas is a crucial issue for realizing an advanced nuclear fusion reactor in addition to developments of advanced plasma heating and diagnostics. This seminar was motivated along the issues. Results obtained from CUP activities during recent four years were summarized. Several crucial issues to be resolved near future were also extracted in this seminar. The 31 of the papers are indexed individually. (J.P.N.)

  13. Heat shock protein 70 inhibits shrinkage-induced programmed cell death via mechanisms independent of effects on cell volume-regulatory membrane transport proteins

    Nylandsted, J; Jäättelä, M; Hoffmann, E K

    2004-01-01

    Cell shrinkage is a ubiquitous feature of programmed cell death (PCD), but whether it is an obligatory signalling event in PCD is unclear. Heat shock protein 70 (Hsp70) potently counteracts PCD in many cells, by mechanisms that are incompletely understood. In the present investigation, we found...... that severe hypertonic stress greatly diminished the viability of murine fibrosarcoma cells (WEHI-902) and immortalized murine embryonic fibroblasts (iMEFs). This effect was attenuated markedly by Hsp70 over-expression. To determine whether the protective effect of Hsp70 was mediated via an effect on volume...... regulatory ion transport, we compared regulatory volume decrease (RVD) and increase (RVI) in control WEHI-902 cells and after increasing Hsp70 levels by heat shock or over-expression (WEHI-912). Hsp70 levels affected neither RVD, RVI nor the relative contributions of the Na(+)/H(+)-exchanger (NHE1) and Na...

  14. Heat pumps: heat recovery

    Pielke, R

    1976-01-01

    The author firstly explains in a general manner the functioning of the heat pump. Following a brief look at the future heat demand and the possibilities of covering it, the various methods of obtaining energy (making use of solar energy, ground heat, and others) and the practical applications (office heating, swimming pool heating etc.) are explained. The author still sees considerable difficulties in using the heat pump at present on a large scale. Firstly there is not enough maintenance personnel available, secondly the electricity supply undertakings cannot provide the necessary electricity on a wide basis without considerable investments. Other possibilities to save energy or to use waste energy are at present easier and more economical to realize. Recuperative and regenerative systems are described.

  15. Computer program for stresses and buckling of heated composite-stiffened panels and other structures (BUCLASP 3)

    Viswanathan, A. V.; Tamekuni, M.; Tripp, L. L.

    1974-01-01

    General-purpose program is intended for thermal stress and instability analyses of structures such as axially-stiffened curved panels. Two types of instability analyses can be effected by program: (1) thermal buckling with temperature variation as specified and (2) buckling due to in-plane biaxial loading.

  16. Heat transfer simulation and retort program adjustment for thermal processing of wheat based Haleem in semi-rigid aluminum containers.

    Vatankhah, Hamed; Zamindar, Nafiseh; Shahedi Baghekhandan, Mohammad

    2015-10-01

    A mixed computational strategy was used to simulate and optimize the thermal processing of Haleem, an ancient eastern food, in semi-rigid aluminum containers. Average temperature values of the experiments showed no significant difference (α = 0.05) in contrast to the predicted temperatures at the same positions. According to the model, the slowest heating zone was located in geometrical center of the container. The container geometrical center F0 was estimated to be 23.8 min. A 19 min processing time interval decrease in holding time of the treatment was estimated to optimize the heating operation since the preferred F0 of some starch or meat based fluid foods is about 4.8-7.5 min.

  17. Promotional study for joint implementation program. Energy conservation and efficiency improvement for district heating system in Tashkent, Uzbekistan

    NONE

    2000-03-01

    For the purpose of reducing greenhouse effect gas emissions, a study was carried out for repair/improvement of the district heating system in Tashkent City, the Republic of Uzbekistan. In the project, the following were studied: heightening of electrical insulation of the total pipeline, improvement in efficient utilization of heat energy in the thermal plant. As to the existing pipeline, heat loss is improved by 0-5% by changing it to electrical insulation pipe. In relation to the thermal plant, studied were cogeneration facility A using three 4MW gas turbines and combined cycle cogeneration facility B using two 40MW gas turbines. As a result, the amount of energy saving was 11,370 toe/y in pipeline, 12,750 toe/y in facility A and 69,000 toe/y in facility B. Further, the reduction amount of greenhouse effect gas emissions was 27,200t-CO2/y in pipeline, 30,500t-CO2/y in facility A and 164,900t-CO2/y in facility B. (NEDO)

  18. Heat pipe heat storage performance

    Caruso, A; Pasquetti, R [Univ. de Provence, Marseille (FR). Inst. Universitaire des Systemes; Grakovich, L P; Vasiliev, L L [A.V. Luikov Heat and Mass Transfer Inst. of the BSSR, Academy of Sciences, Minsk (BY)

    1989-01-01

    Heat storage offers essential thermal energy saving for heating. A ground heat store equipped with heat pipes connecting it with a heat source and to the user is considered in this paper. It has been shown that such a heat exchanging system along with a batch energy source meets, to a considerable extent, house heating requirements. (author).

  19. Heat transfer

    First page Back Continue Last page Overview Graphics. Heat transfer. Heat conduction in solid slab. Convective heat transfer. Non-linear temperature. variation due to flow. HEAT FLUX AT SURFACE. conduction/diffusion.

  20. Heat Waves

    Heat Waves Dangers we face during periods of very high temperatures include: Heat cramps: These are muscular pains and spasms due ... that the body is having trouble with the heat. If a heat wave is predicted or happening… - ...

  1. Prime Contract Awards by State or Country, Place and Contractor. Part 13 (New London, Ohio - Westerly, Rhode Island), FY1991

    1991-01-01

    C .4uO > NMX jInI n-4 r- -4 >0a0 0a 0 X 11 M -4 it 000C000 00 000C>-4 0. on n0000 - -1 4D to "c0200 00O c > : Q 10 1(0 -4 I1 r- -q a)on Coo -4 r𔃼m00...o004 inn = In0 N -a 1 a (-4 gao LCao Wo LA4 0*v 0 Z2o0o000 ix N N. " 0 I (a0-4 N t I0) C.0C -JOC) Woo 4 -444 q0 0 1- Nr EU a (04 N aJO WOO 0.4 woo

  2. Prime Contract Awards by State or Country, Place and Contractor. Part 3 (Lodi, California - Saint Helena, California), FY1991

    1991-01-01

    8217 00𔃻) 0- .-4-4-4-𔃾 0D01l CN a xZI-Zx a 1.- 00 P- CD gao -s4Nnm-4 LIn n cn C’.j C1 00 NI (0 a 9xU0I- a C. 00 0 -0 0C 000C>-4 00 4 0 0 0D 0-4 * L LAJ4...0) .1 2(0(0-i Of Nf I(Do0N NO 4) < 0 -4 -C 04 - 4 -N 1 0N a 1- 16- 24 C.) 0 - IL I JINI I(0 Naci S 0 0 I-40) 2 0 I (0 C N I0N NC 1- m- C 1-1 1.- 0 I...7.1൰ .C. CIANNN F-- A-4 -4-4 -4 L--4 -4 M -A W-4 it w 0 (0.-I #I <(0 0(0 (0) "-00 00000 000000 coc o 0 ɘ) 0) ) 0)m0) 4D a) M 0( 11 U. I M0-4 aI - jIni

  3. Slurry growth, gas retention, and flammable gas generation by Hanford radioactive waste tanks: Synthetic waste studies, FY 1991

    Bryan, S.A.; Pederson, L.R.; Ryan, J.L.; Scheele, R.D.; Tingey, J.M.

    1992-08-01

    Of 177 high-level waste storage tanks on the Hanford Site, 23 have been placed on a safety watch list because they are suspected of producing flammable gases in flammable or explosive concentrate. One tankin particular, Tank 241-SY-101 (Tank 101-SY), has exhibited slow increases in waste volume followed by a rapid decrease accompanied by venting of large quantities of gases. The purpose of this study is to help determine the processes by which flammable gases are produced, retained, and eventually released from Tank 101-SY. Waste composition data for single- and double-shell waste tanks on the flammable gas watch listare critically reviewed. The results of laboratory studies using synthetic double-shell wastes are summarized, including physical and chemical properties of crusts that are formed, the stoichiometry and rate ofgas generation, and mechanisms responsible for formation of a floating crust

  4. Dollar Summary of Prime Contract Awards by State, County, Contractor, and Place. Part 1 (American Samoa - Hawaii), FY1991

    1991-01-01

    nA LL IL L 0"<L Ii 6 <Z4 44 44 I. 4.- 4t- W Q 444Ŕ x4 4 4 D- F6 (aIw -- O W J W oj "W M W o W Z ~ J < D_ W: 6-I 0.X 00"w LMoj 00 - 00 0 0 0 000 00...8217) 0 acca 4L In 0,O I (a 1CL I.- 00 I00 400 0 ma0 -A U (04z (no4- O(" 0 44t (<x--w a L a-z I> z---o 000 0)0 N Z O M " " -Jh c F.-< W< 000 0< Iw-Q-< w o

  5. Prime Contract Awards by State or Country, Place and Contractor. Part 7 (Lake Park, Georgia - New Haven, Indiana), FY1991

    1991-01-01

    o5-- .100 0-t- I 0 03 U -4 1IO 0-4 a WN .-l-4 00 00 0 z o ម 000040 OCOCOCOO In U.I0-4 Wirn un acca 00 C, 0 -jo U Cl4 -4 N tA’-4.4-4-4-404- .0 IH0-4 H...0ua0 s <M 04 NOP t-a4 t’) -44011 11 11 11 c 4100 06 -Cc VI a N.C I 0 F6 4-CI 4) In 0 ) M 40 -4 4’ 6 < 04 6n 4N 3n MO 0- 30 0 C-4 CIO’ NOO 6) MM (’.4...r- 0c (,jc) m c))c) (0(ot--r-. (01,w- 440 e4 W W-4 -4-4W 00O(-4- 4CV) ONC -4664 64-4) 6 6𔃾N 4CMI) <X f, 6 U-hI Wl N --40) 0- 0 V0)- 4 *V- t 0 -4 . f6

  6. Understanding our genetic inheritance: The US Human Genome Project, The first five years FY 1991--1995

    None

    1990-04-01

    The Human Genome Initiative is a worldwide research effort with the goal of analyzing the structure of human DNA and determining the location of the estimated 100,000 human genes. In parallel with this effort, the DNA of a set of model organisms will be studied to provide the comparative information necessary for understanding the functioning of the human genome. The information generated by the human genome project is expected to be the source book for biomedical science in the 21st century and will by of immense benefit to the field of medicine. It will help us to understand and eventually treat many of the more than 4000 genetic diseases that affect mankind, as well as the many multifactorial diseases in which genetic predisposition plays an important role. A centrally coordinated project focused on specific objectives is believed to be the most efficient and least expensive way of obtaining this information. The basic data produced will be collected in electronic databases that will make the information readily accessible on convenient form to all who need it. This report describes the plans for the U.S. human genome project and updates those originally prepared by the Office of Technology Assessment (OTA) and the National Research Council (NRC) in 1988. In the intervening two years, improvements in technology for almost every aspect of genomics research have taken place. As a result, more specific goals can now be set for the project.

  7. User's guide to HEATRAN: a computer program for three-dimensional transient fluid-flow and heat-transfer analysis

    Wong, C.N.C.; Cheng, S.K.; Todreas, N.E.

    1982-01-01

    A 3-D distributed parameter code, HEATRAN, has been developed to calculate detailed velocity and temperature fields in the coolant and cladding temperature distribution in a wire-wrapped rod assembly. The code structure is discussed and the input description is presented. The program listings and sample problems of HEATRAN's several versions are included in the Appendices

  8. Resorption heat pump

    Vasiliev, L.L.; Mishkinis, D.A.; Antukh, A.A.; Kulakov, A.G.; Vasiliev, L.L.

    2004-01-01

    Resorption processes are based on at least two solid-sorption reactors application. The most favorable situation for the resorption heat pumps is the case, when the presence of a liquid phase is impossible. From simple case--two reactors with two salts to complicated system with two salts + active carbon fiber (fabric) and two branch of the heat pump acting out of phase to produce heat and cold simultaneously, this is the topic of this research program

  9. Heat exchangers

    Schmidt, E L; Eisenmann, G; Hahne, E [Stuttgart Univ. (TH) (F.R. Germany). Inst. fuer Thermodynamik und Waermetechnik

    1976-04-01

    A survey is presented on publications on design, heat transfer, form factors, free convection, evaporation processes, cooling towers, condensation, annular gap, cross-flowed cylinders, axial flow through a bundle of tubes, roughnesses, convective heat transfer, loss of pressure, radiative heat transfer, finned surfaces, spiral heat exchangers, curved pipes, regeneraters, heat pipes, heat carriers, scaling, heat recovery systems, materials selection, strength calculation, control, instabilities, automation of circuits, operational problems and optimization.

  10. Heat tracing with flexible metal hoses. New calculation program for reliable and economic design; Begleitheizung mit flexiblen Metallschlaeuchen. Neues Berechnungsprogramm fuer zuverlaessige und wirtschaftliche Auslegung

    Seeger, B. [Witzenmann GmbH, Pforzheim (Germany)

    2003-07-01

    Heat tracing does not only allow the transport of chocolate through pipe systems; particularly in chemical plants it ensures a stable viscosity of the transported media or protects it from freezing. By using flexible metal hoses instead of rigid copper or stainless steel pipes, the installation costs can be reduced considerably. Until now, no verified fundamental design principles or calculation programs for heat tracing with metal hoses were available. However, these are essential for a reliable and economical operation, as well as for a minimisation of the investment costs. Based on extensive field and laboratory measurements, a dedicated calculation model has now been established and verified. (orig.) [German] Begleitheizungen ermoeglichen nicht nur bei Schokolade den Transport durch Rohrleitungen. Vor allem in chemischen Anlagen erhalten sie die Viskositaet der transportierten Medien oder schuetzen gegen Einfrieren. Durch Verwendung von flexiblen Metallschlaeuchen anstelle von Glattrohren aus Kupfer oder Edelstahl laesst sich der Montageaufwand betraechtlich reduzieren. Fuer diese Metallschlauch-Begleitheizungen gab es bisher keine verifizierten Auslegungsgrundlagen oder Berechnungsprogramme. Fuer eine zuverlaessigen und wirtschaftlichen Betrieb sowie eine Minimierung der Investitionskosten sind diese jedoch unerlaesslich. Nun wurde auf der Basis umfangreicher Betriebs- und Labormessungen ein Berechnungsmodell erstellt und verifiziert. (orig.)

  11. Computational program to design heat pumps by compression (ciclo 1.0); Programa computacional para diseno de bombas de calor por compresion (ciclo 1.0)

    De Alba Rosano, Mauricio [CIE, UNAM, Temixco, Morelos (Mexico)

    2000-07-01

    A new computational program has been developed in order to design single stage compression heat pumps. This software, named CICLO 1.0 allows the design of water-water, water-air, air-water and air-air heat pumps, for industrial and residential applications. CICLO 1.0 simulates three types of compressors: reciprocating, screw and scroll. Also has a data base created with REFPROP software which includes eleven refrigerants. The condenser and evaporator simulation includes global conductance (UA) determination, and when one or both are shell and tube's type, this software shows the even number of tube passes by shell. The software determines the best compressor and refrigerant setup taking the COP as a parameter; in order to obtain this, is necessary to know the inlet/outlet conditions of the fluid to be heated, the inlet conditions of the fluid that gives heat, and the electric motor efficiency that drives the compressor. The afforded results by CICLO 1.0 are: operation conditions from compression cycle, that means, pressures and temperatures at the inlet/outlet from every heat pump component are determined: as well as refrigerant mass flux, COP, power required by compressor, volumetric and isentropic efficiencies, heat exchangers global conductance and more data. CICLO 1.0 has been executed with heat pump data that nowadays are operating, and the results from the simulation have been very similar each other with data reported from operational facilities. [Spanish] Se ha desarrollado un nuevo programa computacional para el diseno de bombas de calor por compresion de vapor de una sola etapa. Este programa, CICLO 1.0, permite el diseno de bombas de calor de tipo: agua-agua, agua-aire, aire-agua y aire-aire, que se utilicen para aplicaciones industriales, de servicios y residenciales. CICLO 1.0 simula tres tipos de compresores: reciprocante, de tornillo y scroll: cuenta con una base de datos de refrigerantes creada con el programa REFPROP la cual incluye once

  12. A dynamic regrouping based sequential dynamic programming algorithm for unit commitment of combined heat and power systems

    Rong, Aiying; Hakonen, Henri; Lahdelma, Risto

    2009-01-01

    efficiency of the plants. We introduce in this paper the DRDP-RSC algorithm, which is a dynamic regrouping based dynamic programming (DP) algorithm based on linear relaxation of the ON/OFF states of the units, sequential commitment of units in small groups. Relaxed states of the plants are used to reduce...... the dimension of the UC problem and dynamic regrouping is used to improve the solution quality. Numerical results based on real-life data sets show that this algorithm is efficient and optimal or near-optimal solutions with very small optimality gap are obtained....

  13. Gene expression programming approach for the estimation of moisture ratio in herbal plants drying with vacuum heat pump dryer

    Dikmen, Erkan; Ayaz, Mahir; Gül, Doğan; Şahin, Arzu Şencan

    2017-07-01

    The determination of drying behavior of herbal plants is a complex process. In this study, gene expression programming (GEP) model was used to determine drying behavior of herbal plants as fresh sweet basil, parsley and dill leaves. Time and drying temperatures are input parameters for the estimation of moisture ratio of herbal plants. The results of the GEP model are compared with experimental drying data. The statistical values as mean absolute percentage error, root-mean-squared error and R-square are used to calculate the difference between values predicted by the GEP model and the values actually observed from the experimental study. It was found that the results of the GEP model and experimental study are in moderately well agreement. The results have shown that the GEP model can be considered as an efficient modelling technique for the prediction of moisture ratio of herbal plants.

  14. Swiss energy research program on heat-pumps, combined heat and power and refrigeration for 2008-2011; Energieforschungsprogramm. Waermepumpen, Waerme-Kraft-Kopplung, Kaelte fuer die Jahre 2008-2011

    Kopp, T. [Hochschule fuer Technik HSR, Rapperswil (Switzerland); Eckmanns, A. [Swiss Federal Office of Energy (OFEN), Berne (Switzerland)

    2009-07-15

    This report published by the Swiss Federal Office of Energy (SFOE) takes a look at the research programme on heat-pumps, combined heat and power and refrigeration for the years 2008 - 2011. Work proposed for the years 2008 - 2011 involves the following topics: Improvement of components and the thermodynamic cycles of heat pumps and refrigeration plants as well as the improvements in the efficiency of cogeneration plants and the reduction of emission of pollutants. Also, the overall optimisation of total systems is to be examined. Highly-efficient systems for sanitary hot water production are to be looked at, as are miniaturisation and new solutions for the installation of heating and cooling systems with heat pumps. Also the development of environmental-friendly working fluids for heat pumps and refrigeration plants is planned. Pilot and demonstration projects are also to be supported in all areas.

  15. BUCLASP 3: A computer program for stresses and buckling of heated composite stiffened panels and other structures, user's manual

    Tripp, L. L.; Tamekuni, M.; Viswanathan, A. V.

    1973-01-01

    The use of the computer program BUCLASP3 is described. The code is intended for thermal stress and instability analyses of structures such as unidirectionally stiffened panels. There are two types of instability analyses that can be effected by PAINT; (1) thermal buckling, and (2) buckling due to a specified inplane biaxial loading. Any structure that has a constant cross section in one direction, that may be idealized as an assemblage of beam elements and laminated flat and curved plate strip-elements can be analyzed. The two parallel ends of the panel must be simply supported, whereas arbitrary elastic boundary conditions may be imposed along any one or both external longitudinal side. Any variation in the temperature rise (from ambient) through the cross section of a panel is considered in the analyses but it must be assumed that in the longitudinal direction the temperature field is constant. Load distributions for the externally applied inplane biaxial loads are similar in nature to the permissible temperature field.

  16. Heat pipe development

    Bienart, W. B.

    1973-01-01

    The objective of this program was to investigate analytically and experimentally the performance of heat pipes with composite wicks--specifically, those having pedestal arteries and screwthread circumferential grooves. An analytical model was developed to describe the effects of screwthreads and screen secondary wicks on the transport capability of the artery. The model describes the hydrodynamics of the circumferential flow in triangular grooves with azimuthally varying capillary menisci and liquid cross-sections. Normalized results were obtained which give the influence of evaporator heat flux on the axial heat transport capability of the arterial wick. In order to evaluate the priming behavior of composite wicks under actual load conditions, an 'inverted' glass heat pipe was designed and constructed. The results obtained from the analysis and from the tests with the glass heat pipe were applied to the OAO-C Level 5 heat pipe, and an improved correlation between predicted and measured evaporator and transport performance were obtained.

  17. Programming

    Jackson, M.A.

    1982-01-01

    The programmer's task is often taken to be the construction of algorithms, expressed in hierarchical structures of procedures: this view underlies the majority of traditional programming languages, such as Fortran. A different view is appropriate to a wide class of problem, perhaps including some problems in High Energy Physics. The programmer's task is regarded as having three main stages: first, an explicit model is constructed of the reality with which the program is concerned; second, this model is elaborated to produce the required program outputs; third, the resulting program is transformed to run efficiently in the execution environment. The first two stages deal in network structures of sequential processes; only the third is concerned with procedure hierarchies. (orig.)

  18. Programming

    Jackson, M A

    1982-01-01

    The programmer's task is often taken to be the construction of algorithms, expressed in hierarchical structures of procedures: this view underlies the majority of traditional programming languages, such as Fortran. A different view is appropriate to a wide class of problem, perhaps including some problems in High Energy Physics. The programmer's task is regarded as having three main stages: first, an explicit model is constructed of the reality with which the program is concerned; second, thi...

  19. Support to the elaboration of the engineering of detail, configuration and programming of the control system of heat removal of the TRIGA Mark III reactor

    Diaz G, C. A.

    2016-01-01

    Nowadays, the peaceful and responsible use of nuclear energy in Mexico is of great importance and contributes to economic, social, scientist and technologic development in the country, highlighting the Instituto Nacional de Investigaciones Nucleares (ININ) and the Nuclear Power Plant of Laguna Verde as one of the most important dependences. Among the main facilities and laboratories of ININ is the Nuclear Research Reactor TRIGA Mark III, this is a pool type reactor with mobile core, cooled and moderated by light water and a flow of 1013 n/cm"2/sec. Due to the technological obsolescence is a growing problem that threatens the information, operation and/or efficacy of elements of control and safety systems of the reactor, these must be changed each time more frequently. In the modernization of reactor was used a Modicon M340 programmable logic control (PLC) and a Twido PLC for the control of heat removal system (Primary Cooling System (PCS) and Secondary Cooling System (SCS) respectively), this because the PLC has proven to be safe and effective devices, addition to reduce the wiring elements and increase the possibilities of performance and design of the digital control console. This document shows and describes the elements of heat removal system (PCS and SCS), and the signals and signal types that such items send or received by the PLC, likewise, is indicated the methodology used to develop the applications for the control of the Primary Cooling System and Secondary Cooling System, beginning with the PLC design, the development of PLC plans and the control logic, and finally, the simulation and debugging of applications on Unity Pro and Twido Suite. All this in compliance with the safety standards to nuclear research reactors (NS-R-4), the rules of industrial programming (IEC 61131-3), and the reactor operating limits postulated in the safety report and the software assurance system used in the ININ. (Author)

  20. Heat pumps

    Macmichael, DBA

    1988-01-01

    A fully revised and extended account of the design, manufacture and use of heat pumps in both industrial and domestic applications. Topics covered include a detailed description of the various heat pump cycles, the components of a heat pump system - drive, compressor, heat exchangers etc., and the more practical considerations to be taken into account in their selection.

  1. Heat pumps

    Brodowicz, Kazimierz; Wyszynski, M L; Wyszynski

    2013-01-01

    Heat pumps and related technology are in widespread use in industrial processes and installations. This book presents a unified, comprehensive and systematic treatment of the design and operation of both compression and sorption heat pumps. Heat pump thermodynamics, the choice of working fluid and the characteristics of low temperature heat sources and their application to heat pumps are covered in detail.Economic aspects are discussed and the extensive use of the exergy concept in evaluating performance of heat pumps is a unique feature of the book. The thermodynamic and chemical properties o

  2. Heat transfer

    Saad, M.A.

    1985-01-01

    Heat transfer takes place between material systems as a result of a temperature difference. The transmission process involves energy conversions governed by the first and second laws of thermodynamics. The heat transfer proceeds from a high-temperature region to a low-temperature region, and because of the finite thermal potential, there is an increase in entropy. Thermodynamics, however, is concerned with equilibrium states, which includes thermal equilibrium, irrespective of the time necessary to attain these equilibrium states. But heat transfer is a result of thermal nonequilibrium conditions, therefore, the laws of thermodynamics alone cannot describe completely the heat transfer process. In practice, most engineering problems are concerned with the rate of heat transfer rather than the quantity of heat being transferred. Resort then is directed to the particular laws governing the transfer of heat. There are three distinct modes of heat transfer: conduction, convection, and radiation. Although these modes are discussed separately, all three types may occur simultaneously

  3. Heat exchanger

    Daman, Ernest L.; McCallister, Robert A.

    1979-01-01

    A heat exchanger is provided having first and second fluid chambers for passing primary and secondary fluids. The chambers are spaced apart and have heat pipes extending from inside one chamber to inside the other chamber. A third chamber is provided for passing a purge fluid, and the heat pipe portion between the first and second chambers lies within the third chamber.

  4. High-performance heat pipes for heat recovery applications

    Saaski, E. W.; Hartl, J. H.

    1980-01-01

    Methods to improve the performance of reflux heat pipes for heat recovery applications were examined both analytically and experimentally. Various models for the estimation of reflux heat pipe transport capacity were surveyed in the literature and compared with experimental data. A high transport capacity reflux heat pipe was developed that provides up to a factor of 10 capacity improvement over conventional open tube designs; analytical models were developed for this device and incorporated into a computer program HPIPE. Good agreement of the model predictions with data for R-11 and benzene reflux heat pipes was obtained.

  5. Geothermal heat pump performance

    Boyd, Tonya L.; Lienau, Paul J.

    1995-01-01

    Geothermal heat pump systems are a promising new energy technology that has shown rapid increase in usage over the past ten years in the United States. These systems offer substantial benefits to customers and utilities in energy (kWh) and demand (kW) savings. The purpose of this study was to determine what existing monitored data was available mainly from electric utilities on heat pump performance, energy savings and demand reduction for residential, school, and commercial building applications. Information was developed on the status of electric utility marketing programs, barriers to market penetration, incentive programs, and benefits.

  6. Geothermal Heat Pump Performance

    Boyd, Tonya L.; Lienau, Paul J.

    1995-01-01

    Geothermal heat pump systems are a promising new energy technology that has shown rapid increase in usage over the past ten years in the United States. These systems offer substantial benefits to customers and utilities in energy (kWh) and demand (kW) savings. The purpose of this study was to determine what existing monitored data was available mainly from electric utilities on heat pump performance, energy savings and demand reduction for residential, school, and commercial building applications. Information was developed on the status of electric utility marketing programs, barriers to market penetration, incentive programs, and benefits.

  7. District heat production by means of a heat-pump operated by natural gas. Draft design of a 1 MW heat pump operated by a gas engine. Project sponsored by energy research program 1981 of the Danish Ministry of Energy. Fjernvarmeproduktion med naturgasdrevet varmepumpe. Skitseprojektering af 1 MW gasmotordrevet varmepumpe. Udfoert under Energiministeriets energiforskningsprogram 1981

    Evald, A.

    1982-01-01

    The aim of this project is an investigation of the technical and economic aspects of using natural gas in a gas engine driven heat pump for heat production in district heating nets and large housing blocks. The gas engine is a turbocharged spark-ignition gas engine with a performance of 35%. The heat produced by the engine in cylinderjackets, exhaust gas etc. is utilized in the heating system. The engine drives a screw-, piston- or turbocompressor heat pump, applicated with a heat exchanger for liquid refrigerant from the condenser and an economizer for flashing off vapour at an intermediate pressure. Waste water, seawater, ground water or even outdoor air can be used as heat source for the evaporator. The COP for the heat pump is calculated to 3.1 to 3.3 under normal operating conditions. For the total system containing gas engine and heat pump, the primary energy ratio - defined as the ratio of heat production to heat of combustion of the gas - is calculated to be 1.61 to 1.66. The size of the plant is 1 MW heat production. The economy seems to be reasonable good with a payback period of 4 years and a payout period of 5 years wich should be compared with the expected life time of 15 years for the plant. The projected plant shows several advantages as regards the environmental considerations compared with heat production in a boiler based on oil or coal.

  8. Heat pipe

    Triggs, G.W.; Lightowlers, R.J.; Robinson, D.; Rice, G.

    1986-01-01

    A heat pipe for use in stabilising a specimen container for irradiation of specimens at substantially constant temperature within a liquid metal cooled fast reactor, comprises an evaporator section, a condenser section, an adiabatic section therebetween, and a gas reservoir, and contains a vapourisable substance such as sodium. The heat pipe further includes a three layer wick structure comprising an outer relatively fine mesh layer, a coarse intermediate layer and a fine mesh inner layer for promoting unimpeded return of condensate to the evaporation section of the heat pipe while enhancing heat transfer with the heat pipe wall and reducing entrainment of the condensate by the upwardly rising vapour. (author)

  9. Effect of short- and long-term heat stress on the conception risk of dairy cows under natural service and artificial insemination breeding programs.

    Schüller, L-K; Burfeind, O; Heuwieser, W

    2016-04-01

    The objectives of this retrospective study were to examine the effect of heat stress on natural service and artificial insemination (AI) breeding methods. We investigated the influence of short- and long-term heat stress on the conception risk (CR) of dairy cows bred by natural service or by AI with frozen-thawed or fresh semen. In addition, the relationship between breeding method and parity was determined. Cows bred by AI with frozen-thawed semen exposed to long-term heat stress (mean temperature-humidity index ≥73 in the period 21d before breeding) were 63% less likely to get pregnant compared with cows not exposed to heat stress. Cows bred by AI with fresh semen were 80% less likely to get pregnant during periods of short-term heat stress than during periods without heat stress. Furthermore, multiparous cows bred by AI with frozen-thawed or fresh semen were 22 and 67% less likely to get pregnant, respectively, than primiparous cows. No influence of heat stress or parity was noted on the CR of cows bred by natural service. The present study indicates that the likelihood of dairy cows becoming pregnant is reduced by short- and long-term heat stress depending on the type of semen employed. In particular, CR of cows inseminated with fresh semen is negatively affected by short-term heat stress and CR of cows inseminated with frozen-thawed semen is negatively affected by long-term heat stress. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. Plasma heating r and d assessment

    Jassby, D.L.; Berkner, K.H.; Colestock, P.L.; Freeman, R.L.; Haselton, H.H.; Hosea, J.C.; Rome, J.A.; Scharer, J.E.; Sheffield, J.; Stewart, L.D.

    1979-11-01

    The purpose of this report is to compare the heating requirements of INTOR with the present state-of-the-art of tokamak plasma heating technology and demonstrated heating performance, and also with the technology expected by 1983-84 according to development and testing programs in place. This comparison results in a set of recommendations for a heating technology development program for the 1980s

  11. Heat exchanger

    Leigh, D.G.

    1976-01-01

    The arrangement described relates particularly to heat exchangers for use in fast reactor power plants, in which heat is extracted from the reactor core by primary liquid metal coolant and is then transferred to secondary liquid metal coolant by means of intermediate heat exchangers. One of the main requirements of such a system, if used in a pool type fast reactor, is that the pressure drop on the primary coolant side must be kept to a minimum consistent with the maintenance of a limited dynamic head in the pool vessel. The intermediate heat exchanger must also be compact enough to be accommodated in the reactor vessel, and the heat exchanger tubes must be available for inspection and the detection and plugging of leaks. If, however, the heat exchanger is located outside the reactor vessel, as in the case of a loop system reactor, a higher pressure drop on the primary coolant side is acceptable, and space restriction is less severe. An object of the arrangement described is to provide a method of heat exchange and a heat exchanger to meet these problems. A further object is to provide a method that ensures that excessive temperature variations are not imposed on welded tube joints by sudden changes in the primary coolant flow path. Full constructional details are given. (U.K.)

  12. Direct Heat

    Lienau, P J

    1990-01-01

    Potential resources and applications of earth heat in the form of geothermal energy are large. United States direct uses amount to 2,100 MWt thermal and worldwide 8,850 MWt above a reference temperature of 35 degrees Celsius. Space and district heating are the major direct uses of geothermal energy. Equipment employed in direct use projects is of standard manufacture and includes downhole and circulation pumps, transmission and distribution pipelines, heat exchangers and convectors, heat pumps and chillers. Direct uses of earth heat discussed are space and district heating, greenhouse heating and fish farming, process and industrial applications. The economic feasibility of direct use projects is governed by site specific factors such as location of user and resource, resource quality, system load factor and load density, as well as financing. Examples are presented of district heating in Klamath Falls, and Elko. Further developments of direct uses of geothermal energy will depend on matching user needs to the resource, and improving load factors and load density.

  13. Plasma heating

    Wilhelm, R.

    1989-01-01

    Successful plasma heating is essential in present fusion experiments, for the demonstration of DpT burn in future devices and finally for the fusion reactor itself. This paper discusses the common heating systems with respect to their present performance and their applicability to future fusion devices. The comparative discussion is oriented to the various function of heating, which are: - plasma heating to fusion-relevant parameters and to ignition in future machines, -non-inductive, steady-pstate current drive, - plasma profile control, -neutral gas breakdown and plasma build-up. In view of these different functions, the potential of neutral beam injection (NBI) and the various schemes of wave heating (ECRH, LH, ICRH and Alven wave heating) is analyzed in more detail. The analysis includes assessments of the present physical and technical state of these heating methods, and makes suggestions for future developments and about outstanding problems. Specific attention is given to the still critical problem of efficient current drive, especially with respect to further extrapolation towards an economically operating tokamak reactor. Remarks on issues such as reliability, maintenance and economy conclude this comparative overview on plasma heating systems. (author). 43 refs.; 13 figs.; 3 tabs

  14. Heat pipe turbine vane cooling

    Langston, L.; Faghri, A. [Univ. of Connecticut, Storrs, CT (United States)

    1995-10-01

    The applicability of using heat pipe principles to cool gas turbine vanes is addressed in this beginning program. This innovative concept involves fitting out the vane interior as a heat pipe and extending the vane into an adjacent heat sink, thus transferring the vane incident heat transfer through the heat pipe to heat sink. This design provides an extremely high heat transfer rate and an uniform temperature along the vane due to the internal change of phase of the heat pipe working fluid. Furthermore, this technology can also eliminate hot spots at the vane leading and trailing edges and increase the vane life by preventing thermal fatigue cracking. There is also the possibility of requiring no bleed air from the compressor, and therefore eliminating engine performance losses resulting from the diversion of compressor discharge air. Significant improvement in gas turbine performance can be achieved by using heat pipe technology in place of conventional air cooled vanes. A detailed numerical analysis of a heat pipe vane will be made and an experimental model will be designed in the first year of this new program.

  15. Heat Stroke

    Mørch, Sofie Søndergaard; Andersen, Johnny Dohn Holmgren; Bestle, Morten Heiberg

    2017-01-01

    not diagnosed until several days after admittance; hence treatment with cooling was delayed. Both patients were admitted to the intensive care unit, where they were treated with an external cooling device and received treatment for complications. Both cases ended fatally. As global warming continues, more heat......Heat stroke is an acute, life-threatening emergency characterized clinically by elevated body temperature and central nervous system dysfunction. Early recognition and treatment including aggressive cooling and management of life-threatening systemic complications are essential to reduce morbidity...... and mortality. This case report describes two Danish patients diagnosed with heat stroke syndrome during a heat wave in the summer of 2014. Both patients were morbidly obese and had several predisposing illnesses. However since heat stroke is a rare condition in areas with temperate climate, they were...

  16. Extension and improvement of Central Station District heating budget period 1 and 2, Krakow Clean Fossil Fuels and Energy Efficiency Program. Final report

    NONE

    1997-07-01

    Project aim was to reduce pollution levels in the City of Krakow through the retirement of coal-fired (hand and mechanically-stoked) boiler houses. This was achieved by identifying attractive candidates and connecting them to the Krakow district heating system, thus permitting them to eliminate boiler operations. Because coal is less costly than district hot water, the district heating company Miejskie Przedsiebiorstwo Energetyki Cieplnej S.A., henceforth identified as MPEC, needed to provide potential customers with incentives for purchasing district heat. These incentives consisted of offerings which MPEC made to the prospective client. The offerings presented the economic and environmental benefits to district heating tie-in and also could include conservation studies of the facilities, so that consumption of energy could be reduced and the cost impact on operations mitigated. Because some of the targeted boiler houses were large, the capacity of the district heating network required enhancement at strategic locations. Consequently, project construction work included both enhancement to the district piping network as well as facility tie-ins. The process of securing new customers necessitated the strengthening of MPEC`s competitive position in Krakow`s energy marketplace, which in turn required improvements in marketing, customer service, strategic planning, and project management. Learning how US utilities address these challenges became an integral segment of the project`s scope.

  17. Construction of computational program of aging in insulating materials for searching reversed sequential test conditions to give damage equivalent to simultaneous exposure of heat and radiation

    Fuse, Norikazu; Homma, Hiroya; Okamoto, Tatsuki

    2013-01-01

    Two consecutive numerical calculations on degradation of polymeric insulations under thermal and radiation environment are carried out to simulate so-called reversal sequential acceleration test. The aim of the calculation is to search testing conditions which provide material damage equivalent to the case of simultaneous exposure of heat and radiation. At least following four parameters are needed to be considered in the sequential method; dose rate and exposure time in radiation, as well as temperature and aging time in heating. The present paper discusses the handling of these parameters and shows some trial calculation results. (author)

  18. Refrigeration waste heat recovery

    1983-03-01

    UK Super A Stores was built in 1972 and is part of a small indoor shopping complex linked together by a heated mall. The store has a public floor area of approximately 1,232 m{sup 2} (13,261 ft.{sup 2}) and sells the usual variety of food produce including a large selection of frozen foods. There are five lengths of refrigerated display cabinets with a total area of approximately 78 m{sup 2}. There are also some frozen food storage rooms at the back of the store. This report provides a description of a waste heat recovery system within a medium sized food store. It details how the waste heat that is produced by the conventional frozen food display cabinets, can be reused by the store's space heating system. Recommended uses for this waste heat include: diverting to the loading bays which would make the reheat coil unnecessary, diverting to the front of the shop, and heating the adjacent shopping mall. The CREDA (Conservation and Renewable Energy Demonstration Assistance) program contributed $17,444 towards the total project cost of $30,444. The project was initiated by the store owner, who is now realizing a lower annual fuel consumption, with the resulting financial savings. 11 figs., 1 tab.

  19. Heat pipes

    Dunn, Peter D

    1994-01-01

    It is approximately 10 years since the Third Edition of Heat Pipes was published and the text is now established as the standard work on the subject. This new edition has been extensively updated, with revisions to most chapters. The introduction of new working fluids and extended life test data have been taken into account in chapter 3. A number of new types of heat pipes have become popular, and others have proved less effective. This is reflected in the contents of chapter 5. Heat pipes are employed in a wide range of applications, including electronics cooling, diecasting and injection mo

  20. Heat conduction

    Grigull, U.; Sandner, H.

    1984-01-01

    Included are discussions of rates of heat transfer by conduction, the effects of varying and changing properties, thermal explosions, distributed heat sources, moving heat sources, and non-steady three-dimensional conduction processes. Throughout, the importance of thinking both numerically and symbolically is stressed, as this is essential to the development of the intuitive understanding of numerical values needed for successful designing. Extensive tables of thermophysical properties, including thermal conductivity and diffusivity, are presented. Also included are exact and approximate solutions to many of the problems that arise in practical situations

  1. Process heat recovery: hot prospects

    1982-03-01

    By updating established technologies to recover heat at higher temperatures and under more corrosive conditions, British industry could recover six to eight million tons of coal equivalent that it currently wastes. Organic liquids in organic Rankine cycle (ORC) engines and simpler designs than steam turbines can increase efficiency. They also eliminate the need for vacuum pumps and permit the use of air cooling. Cooperative government-private industry research programs are exploring the use of ORC engines. Other heat-recovery projects include a Scottish paper mill, a metal decorating and printing plant, a falling-cloud heat exchanger, and heat-pipe development. 4 figures, 1 table. (DCK)

  2. Simultaneousness of room heating and ventilation air heating

    Mathisen, Hans Martin

    2006-01-01

    The report is part of NTNU-SINTEF's Smart Buildings program, Smart Energy Efficient Buildings (2002-2006), subprogram 3.1 Heating, ventilation and cooling systems. An important part of this subprogram is the development and implementation of heating distribution systems with low return temperature. A comparison has been made of the simultaneousness of room heating and ventilation air heating in six buildings. Existing measuring data with hourly measurements of effect requirements for the different purposes have been employed. Based on the measuring data the relation between the requirements for room heating and ventilation is estimated. A 'fictitious' return temperature has also been estimated. The result shows a significant variation between the buildings. For all there are short periods where the efficiency need for room heating and ventilation is equal (ml)

  3. Power and Thermal Technologies for Air and Space-Scientific Research Program. Delivery Order 0017: Study of Microchip Power Module Materials Using Mini-Channel Heat Exchanger

    2009-12-01

    at the mid-point of the channels. In fabricating the heat exchanger, a method of attaching the inlet and exit flow tubes (stainless- steel 625 ) to...and the inlet/exit tubing. The mixing chambers ( Inconel 600) were machined as two pieces which were later welded together to make one chamber. The

  4. District heating

    Hansen, L.

    1993-01-01

    The environmental risks and uncertainties of a high-energy future are disturbing and give rise to several reservations concerning the use of fossil fuels. A number of technologies will help to reduce atmospheric pollution. In Denmark special importance is attached to the following: Energy conservation. Efficient energy conversion. Renewable energy sources. District heating, combined production of heat and power. Many agree that district heating (DH), produced by the traditional heat-only plant, and combined heat and power (CHP) have enormous potential when considering thermal efficiency and lowered environmental impacts: The basic technology of each is proven, it would be relatively simple to satisfy a substantial part of the energy demand, and their high efficiencies mean reduced pollution including greenhouse gas emissions. This is especially important in high population density areas - the obviously preferred sites for such energy generation. Compared with individual heating DH can provide a community with an operationally efficient and most often also an economically competitive heat supply. This is particularly true under the circumstances where the DH system is supplied from CHP plants. Their use results in very substantial improvements in overall efficiency. Further environmental improvements arise from the reduced air pollution obtainable in reasonably large CHP plants equipped with flue gas cleaning to remove particles, sulphur dioxide, and nitrogen acids. As a consequence of these considerations, DH plays an important role in fulfilling the space and water heating demand in many countries. This is especially the case in Denmark where this technology is utilised to a very great extent. Indeed, DH is one of the reasons why Denmark has relatively good air quality in the cities. (au)

  5. Heat Transfer Basics and Practice

    Böckh, Peter

    2012-01-01

    The book provides an easy way to understand the fundamentals of heat transfer. The reader will acquire the ability to design and analyze heat exchangers. Without extensive derivation of the fundamentals, the latest correlations for heat transfer coefficients and their application are discussed. The following topics are presented - Steady state and transient heat conduction - Free and forced convection - Finned surfaces - Condensation and boiling - Radiation - Heat exchanger design - Problem-solving After introducing the basic terminology, the reader is made familiar with the different mechanisms of heat transfer. Their practical application is demonstrated in examples, which are available in the Internet as MathCad files for further use. Tables of material properties and formulas for their use in programs are included in the appendix. This book will serve as a valuable resource for both students and engineers in the industry. The author’s experience indicates that students, after 40 lectures and exercises ...

  6. Large Scale Solar Heating

    Heller, Alfred

    2001-01-01

    The main objective of the research was to evaluate large-scale solar heating connected to district heating (CSDHP), to build up a simulation tool and to demonstrate the application of the simulation tool for design studies and on a local energy planning case. The evaluation was mainly carried out...... model is designed and validated on the Marstal case. Applying the Danish Reference Year, a design tool is presented. The simulation tool is used for proposals for application of alternative designs, including high-performance solar collector types (trough solar collectors, vaccum pipe collectors......). Simulation programs are proposed as control supporting tool for daily operation and performance prediction of central solar heating plants. Finaly the CSHP technolgy is put into persepctive with respect to alternatives and a short discussion on the barries and breakthrough of the technology are given....

  7. ENERGY STAR Certified Geothermal Heat Pumps

    Certified models meet all ENERGY STAR requirements as listed in the Version 3.0 ENERGY STAR Program Requirements for Geothermal Heat Pumps that are effective as of January 1, 2012. A detailed listing of key efficiency criteria are available at http://www.energystar.gov/index.cfm?c=geo_heat.pr_crit_geo_heat_pumps

  8. Avaliacão de programas de aquecimento para espectrometria de absorção atômica com atomizacão eletrotérmica em filamento de tungstênio Evaluation of heating programs for electrothermal atomic absorption spectrometry using a tungsten coil

    Pedro V. Oliveira

    2000-10-01

    Full Text Available A tungsten coil atomizer was used to investigate the effect of heating programs with constant or variable drying temperatures on the atomization of Al, Cd, Cr and Pb. The variation of the surface temperature in the tungsten coil furnace can occur during each heating step due to the design of the power supply, that may apply constant voltages during a programmed time. For volatile elements (Cd, losses in sensitivity were observed when the program with a variable temperature was used. On the other hand, these effects are negligible for less volatile elements (Al and Cr and any tested program, in different acidic media, could be used without appreciable changes in sensitivities. The results allow the establishment of proper heating programs for elements with different thermochemical behavior in the tungsten coil atomizer.

  9. Water resources research program. Volume I. Measurements of physical phenomena related to power plant waste heat discharges: Lake Michigan, 1973--1974

    Tokar, J.V.; Zivi, S.M.; Frigo, A.A.; Van Loon, L.S.; Frye, D.E.; Tome, C.

    1975-03-01

    Methodology developed for the prediction of the temporal and spatial extent of thermal plumes resulting from heated discharges as a function of environmental and power plant design and operating conditions is described. Plume temperature measurements acquired from the Point Beach and Zion Nuclear Power Plants, both located on Lake Michigan, during the past several years show the effects of two-unit operation at the plant site. The Zion plant, in contrast to the shoreline surface discharge of the Point Beach station, has offshore submerged outfalls. Measuring techniques discussed include: fluorescent dye studies of the magnitude of lateral and vertical turbulent transport in plume dispersal; simultaneous aerial infrared scanning and in situ boat measurements for thermal plume mapping; a study of the dynamic characteristics of heated discharges; and a review of data from a two-year study of nearshore ambient currents at the Point Beach plant. (U.S.)

  10. Heat pumps in western Switzerland

    Freymond, A.

    2003-01-01

    The past ten years have seen an extraordinary expansion of heat-pump market figures in the western (French speaking) part of Switzerland. Today, more than 14,000 units are in operation. This corresponds to about 18% of all the machines installed in the whole country, compared to only 10 to 12% ten years ago. This success illustrates the considerable know-how accumulated by the leading trade and industry during these years. It is also due to the promotional program 'Energy 2000' of the Swiss Federal Department of Energy that included the heat pump as a renewable energy source. Already in 1986, the Swiss Federal Institute of Technology in Lausanne was equipped with a huge heat pump system comprising two electrically driven heat pumps of 3.5 MW thermal power each. The heat source is water drawn from the lake of Geneva at a depth of 70 meters. An annual coefficient of performance of 4.5 has been obtained since the commissioning of the plant. However, most heat pump installations are located in single-family dwellings. The preferred heat source is geothermal heat, using borehole heat exchangers and an intermediate heat transfer fluid. The average coefficient of performance of these installations has been increased from 2.5 in 1995 to 3.1 in 2002

  11. Review: heat pipe heat exchangers at IROST

    E. Azad

    2012-01-01

    The use of the heat pipe as a component in a heat recovery device has gained worldwide acceptance. Heat pipes are passive, highly reliable and offer high heat transfer rates. This study summarizes the investigation of different types of heat pipe heat recovery systems (HPHRSs). The studies are classified on the basis of the type of the HPHRS. This research is based on 30 years of experience on heat pipe and heat recovery systems that are presented in this study. Copyright , Oxford University ...

  12. Heat pipes and heat pipe exchangers for heat recovery systems

    Vasiliev, L L; Grakovich, L P; Kiselev, V G; Kurustalev, D K; Matveev, Yu

    1984-01-01

    Heat pipes and heat pipe exchangers are of great importance in power engineering as a means of recovering waste heat of industrial enterprises, solar energy, geothermal waters and deep soil. Heat pipes are highly effective heat transfer units for transferring thermal energy over large distance (tens of meters) with low temperature drops. Their heat transfer characteristics and reliable working for more than 10-15 yr permit the design of new systems with higher heat engineering parameters.

  13. Program of low emissions elimination and power recovery by the Krakow heat and power plant for the city of Krakow and its residents

    Drezewski, J.; Kasprzyk, T. [Krakow Heat and Power Plant, Cracow (Poland)

    1995-12-31

    For over three years the Krakow Heat and Power Plant S.A. (ECK SA) has been implementing its strategy of adapting to operation and growth in the market economy. The accomplishment and results of these efforts are presented. The social and economic conditions prevailing during the transformation from a centrally controlled economy to a market economy have changed the realities and regulations that restricted the availability of energy carriers. The continual shortages and restrictions on supplies of gas, electricity, heat and even solids fuels (coke) that occurred in previous years have been replaced by a surplus. That is why many investment planning decisions have had to be revised. A sharp increase in energy carrier prices has required detailed analyses and viability studies to be made before final investment decisions are made. The choice of fuel and heating methods has begun to be dictated by the market and the economy, and not by rationing and administrative decisions. Clearly, a free market in energy generation and distribution has come into existence in the Krakow urban area. In general, these trends will produce a situation in which the fixed cost (depreciation, repairs, payroll) incurred by manufacturers and distributors will be apportioned among a smaller number of power units (MW), thus increasing the capacity price (fixed payment).

  14. Unwanted heat

    Benka, M.

    2006-01-01

    The number of small heating plants using biomass is growing. According to TREND's information, Hrinovska energeticka, is the only one that controls the whole supplier chain in cooperation with its parent company in Bratislava. Starting with the collection and processing of wood chips by burning, heat production and heat distribution to the end user. This gives the company better control over costs and consequently its own prices. Last year, the engineering company, Hrinovske storjarne, decided to focus only on its core business and sold its heating plant, Hrinovske tepelne hospodarstvo, to Intech Slovakia and changed the company name to Hrinovska energeticka. Local companies and inhabitants were concerned that the new owner would increase prices. But the company publicly declared and kept promises that the heat price for households would remain at 500 Slovak crowns/gigajoule (13.33 EUR/gigajoule ), one of the lowest prices in Slovakia. This year the prices increased slightly to 570 Slovak crowns (15.2 EUR). 'We needed - even at the cost of lower profit - to satisfy our customers so that we would not lose them. We used this time for transition to biomass. This will allow us to freeze our prices in the coming years,' explained the statutory representative of the company, Ivan Dudak. (authors)

  15. Heat Pipes

    1990-01-01

    Bobs Candies, Inc. produces some 24 million pounds of candy a year, much of it 'Christmas candy.' To meet Christmas demand, it must produce year-round. Thousands of cases of candy must be stored a good part of the year in two huge warehouses. The candy is very sensitive to temperature. The warehouses must be maintained at temperatures of 78-80 degrees Fahrenheit with relative humidities of 38- 42 percent. Such precise climate control of enormous buildings can be very expensive. In 1985, energy costs for the single warehouse ran to more than 57,000 for the year. NASA and the Florida Solar Energy Center (FSEC) were adapting heat pipe technology to control humidity in building environments. The heat pipes handle the jobs of precooling and reheating without using energy. The company contacted a FSEC systems engineer and from that contact eventually emerged a cooperative test project to install a heat pipe system at Bobs' warehouses, operate it for a period of time to determine accurately the cost benefits, and gather data applicable to development of future heat pipe systems. Installation was completed in mid-1987 and data collection is still in progress. In 1989, total energy cost for two warehouses, with the heat pipes complementing the air conditioning system was 28,706, and that figures out to a cost reduction.

  16. Heat exchanger restart evaluation

    Morrison, J.M.; Hirst, C.W.; Lentz, T.F.

    1992-01-01

    On December 24, 1991, the K-Reactor was in the shutdown mode with full AC process water flow and full cooling water flow. Safety rod testing was being performed as part of the power ascension testing program. The results of cooling water samples indicated tritium concentrations higher than allowable. Further sampling and testing confirmed a Process Water System to Cooling Water System leak in heat exchanger 4A (HX 4A). The heat exchanger was isolated and the plant shutdown. Heat exchanger 4A was removed from the plant and moved to C-Area prior to performing examinations and diagnostic testing. This included locating and identifying the leaking tube or tubes, eddy current examination of the leaking tube and a number of adjacent tubes, visually inspecting the leaking tube from both the inside as well as the area surrounding the identified tube. The leaking tube was removed and examined metallurgically to determine the failure mechanism. In addition ten other tubes that either exhibited eddy current indications or would represent a baseline condition were removed from heat exchanger 4A for metallurgical examination. Additional analysis and review of heat exchanger leakage history was performed to determine if there are any patterns which can be used for predictive purposes. Compensatory actions have been taken to improve the sensitivity and response time to any future events of this type. The results of these actions are summary herein

  17. Heat exchanger restart evaluation

    Morrison, J.M.; Hirst, C.W.; Lentz, T.F.

    1992-01-01

    On December 24, 1991, the K-Reactor was in the shutdown mode with full AC process water flow and full cooling water flow. Safety rod testing was being performed as part of the power ascension testing program. The results of cooling water samples indicated tritium concentrations higher than allowable. Further sampling and testing confirmed a Process Water System to Cooling Water System leak in heat exchanger 4A (HX 4A). The heat exchanger was isolated and the plant shutdown. Heat exchanger 4kA was removed from the plant and moved to C-Area prior to performing examinations and diagnostic testing. This included locating and identifying the leaking tube or tubes, eddy current examination of the leaking tube and a number of adjacent tubes, visually inspecting the leaking tube from both the inside as well as the area surrounding the failure mechanism. In addition ten other tubes that either exhibited eddy current indications or would represent a baseline condition were removed from heat exchanger 4A for metallurgical examination. Additional analysis and review of heat exchanger leakage history was performed to determine if there are any patterns which can be used for predictive purposes. Compensatory actions have been taken to improve the sensitivity and response time to any future events of this type. The results of these actions are summarized herein

  18. Heat exchanger restart evaluation

    Morrison, J.M.; Hirst, C.W.; Lentz, T.F.

    1992-01-01

    On December 24, 1991, the K-Reactor was in the shutdown mode with full AC process water flow and full cooling water flow. Safety rod testing was being performed as part of the power ascension testing program. The results of cooling water samples indicated tritium concentrations higher than allowable. Further sampling and testing confirmed a Process Water System to Cooling Water System leak in heat exchanger 4A (HX 4A). The heat exchanger was isolated and the plant shutdown. Heat exchanger 4A was removed from the plant and moved to C-Area prior to performing examinations and diagnostic testing. This included locating and identifying the leaking tube or tubes, eddy current examination of the leaking tube and a number of adjacent tubes, visually inspecting the leaking tube from both the inside as well as the area surrounding the identified tube. The leaking tube was removed and examined metallurgically to determine the failure mechanism. In addition ten other tubes that either exhibited eddy current indications or would represent a baseline condition were removed from heat exchanger 4A for metallurgical examination. Additional analysis and review of heat exchanger leakage history was performed to determine if there are any patterns which can be used for predictive purposes. Compensatory actions have been taken to improve the sensitivity and response time to any future events of this type. The results of these actions are summarized

  19. Auxiliary Heat Exchanger Flow Distribution Test

    Kaufman, J.S.; Bressler, M.M.

    1983-01-01

    The Auxiliary Heat Exchanger Flow Distribution Test was the first part of a test program to develop a water-cooled (tube-side), compact heat exchanger for removing heat from the circulating gas in a high-temperature gas-cooled reactor (HTGR). Measurements of velocity and pressure were made with various shell side inlet and outlet configurations. A flow configuration was developed which provides acceptable velocity distribution throughout the heat exchanger without adding excessive pressure drop

  20. Monopole heat

    Turner, M.S.

    1983-01-01

    Upper bounds on the flux of monopoles incident on the Earth with velocity -5 c(10 16 GeV m -1 ) and on the flux of monopoles incident on Jupiter with velocity -3 c(10 16 GeV m -1 ), are derived. Monopoles moving this slowly lose sufficient energy to be stopped, and then catalyse nucleon decay, releasing heat. The limits are obtained by requiring the rate of energy release from nucleon decay to be less than the measured amount of heat flowing out from the surface of the planet. (U.K.)

  1. Heat exchanger

    Drury, C.R.

    1988-01-01

    A heat exchanger having primary and secondary conduits in heat-exchanging relationship is described comprising: at least one serpentine tube having parallel sections connected by reverse bends, the serpentine tube constituting one of the conduits; a group of open-ended tubes disposed adjacent to the parallel sections, the open-ended tubes constituting the other of the conduits, and forming a continuous mass of contacting tubes extending between and surrounding the serpentine tube sections; and means securing the mass of tubes together to form a predetermined cross-section of the entirety of the mass of open-ended tubes and tube sections

  2. Heat Convection

    Jiji, Latif M.

    Professor Jiji's broad teaching experience lead him to select the topics for this book to provide a firm foundation for convection heat transfer with emphasis on fundamentals, physical phenomena, and mathematical modelling of a wide range of engineering applications. Reflecting recent developments, this textbook is the first to include an introduction to the challenging topic of microchannels. The strong pedagogic potential of Heat Convection is enhanced by the follow ing ancillary materials: (1) Power Point lectures, (2) Problem Solutions, (3) Homework Facilitator, and, (4) Summary of Sections and Chapters.

  3. Evaluating the Productivity of VA, NIH, and AHRQ Health Services Research Career Development Awardees.

    Finney, John W; Amundson, Erin O; Bi, Xiaoyu; Cucciare, Michael A; Eisen, Seth A; Finlay, Andrea K; Halvorson, Max A; Hayashi, Ko; Owens, Douglas K; Maisel, Natalya C; Timko, Christine; Weitlauf, Julie C; Cronkite, Ruth C

    2016-04-01

    To evaluate the academic advancement and productivity of Department of Veterans Affairs Health Services Research and Development (HSR&D) Career Development Award (CDA) program recipients, National Institutes of Health (NIH) K awardees in health services research (HSR), and Agency for Healthcare Research and Quality (AHRQ) K awardees. In all, 219 HSR&D CDA recipients from fiscal year (FY) 1991 through FY2010; 154 NIH K01, K08, and K23 awardees FY1991-FY2010; and 69 AHRQ K01 and K08 awardees FY2000-FY2010 were included. Most data were obtained from curricula vitae. Academic advancement, publications, grants, recognition, and mentoring were compared after adjusting for years since award, and personal characteristics, training, and productivity prior to the award. No significant differences emerged in covariate-adjusted tenure-track academic rank, number of grants as primary investigator (PI), major journal articles as first/sole author, Hirsch h-index scores, likelihood of a journal editorship position or membership in a major granting review panel, or mentoring postgraduate researchers between the HSR&D CDA and NIH K awardees from FY1991-FY2010, or among the three groups of awardees from FY2000 or later. Among those who reported grant funding levels, HSR&D CDAs from FY1991-2010 had been PI on more grants of $100,000 than NIH K awardees. HSR&D CDAs had a higher mean number of major journal articles than NIH K awardees from FY1991-2010. Findings show that all three HSR career development programs are successfully selecting and mentoring awardees, ensuring additional HSR capacity to improve the quality and delivery of high-value care.

  4. Heat Rejection from a Variable Conductance Heat Pipe Radiator Panel

    Jaworske, D. A.; Gibson, M. A.; Hervol, D. S.

    2012-01-01

    A titanium-water heat pipe radiator having an innovative proprietary evaporator configuration was evaluated in a large vacuum chamber equipped with liquid nitrogen cooled cold walls. The radiator was manufactured by Advanced Cooling Technologies, Inc. (ACT), Lancaster, PA, and delivered as part of a Small Business Innovative Research effort. The radiator panel consisted of five titanium-water heat pipes operating as thermosyphons, sandwiched between two polymer matrix composite face sheets. The five variable conductance heat pipes were purposely charged with a small amount of non-condensable gas to control heat flow through the condenser. Heat rejection was evaluated over a wide range of inlet water temperature and flow conditions, and heat rejection was calculated in real-time utilizing a data acquisition system programmed with the Stefan-Boltzmann equation. Thermography through an infra-red transparent window identified heat flow across the panel. Under nominal operation, a maximum heat rejection value of over 2200 Watts was identified. The thermal vacuum evaluation of heat rejection provided critical information on understanding the radiator s performance, and in steady state and transient scenarios provided useful information for validating current thermal models in support of the Fission Power Systems Project.

  5. Winter-regime surface heat loss from heated streams

    Paily, P.P.; Macagno, E.O.; Kennedy, J.F.

    1974-01-01

    Evaluation of the rate of surface heat exchange between the water and air is a significant factor in any study of the thermal response of heated streams to heat inputs. Existing methods to determine the amount of heat transfer across the water surface are surveyed, and the different formulas developed for determining the heat exchange components are compiled. Heat-transfer models that have been proposed in the literature are reviewed, and a new linearized model for determining the rate of surface heat exchange is proposed. Generalized relations between the major climatological factors and the coefficients of the linearized heat-loss rate are established by multiple-regression analysis. The analysis is limited to cold-period conditions, in the sense that air temperatures below the freezing point of water only are considered in developing the regression equations. A computer program, using FORTRAN, is presented which enables the computation of the coefficients appearing in the linearized heat-loss rate for all combinations of the various climatological factors

  6. Renewable Heating And Cooling

    Renewable heating and cooling is a set of alternative resources and technologies that can be used in place of conventional heating and cooling technologies for common applications such as water heating, space heating, space cooling and process heat.

  7. Heat exchanger

    Wolowodiuk, Walter

    1976-01-06

    A heat exchanger of the straight tube type in which different rates of thermal expansion between the straight tubes and the supply pipes furnishing fluid to those tubes do not result in tube failures. The supply pipes each contain a section which is of helical configuration.

  8. Heat exchangers

    1975-01-01

    The tubes of a heat exchanger tube bank have a portion thereof formed in the shape of a helix, of effective radius equal to the tube radius and the space between two adjacent tubes, to tangentially contact the straight sections of the tubes immediately adjacent thereto and thereby provide support, maintain the spacing and account for differential thermal expansion thereof

  9. Heat exchanger

    Harada, F; Yanagida, T; Fujie, K; Futawatari, H

    1975-04-30

    The purpose of this construction is the improvement of heat transfer in finned tube heat exchangers, and therefore the improvement of its efficiency or its output per unit volume. This is achieved by preventing the formation of flow boundary layers in gaseous fluid. This effect always occurs on flow of smooth adjacent laminae, and especially if these have pipes carrying liquid passing through them; it worsens the heat transfer of such a boundary layer considerably compared to that in the turbulent range. The fins, which have several rows of heat exchange tubes passing through them, are fixed at a small spacing on theses tubes. The fins have slots cut in them by pressing or punching, where the pressed-out material remains as a web, which runs parallel to the level of the fin and at a small distance from it. These webs and slots are arranged radially around every tube hole, e.g. 6 in number. For a suitable small tube spacing, two adjacent tubes opposite each other have one common slot. Many variants of such slot arrangements are illustrated.

  10. Heat exchanger

    Wolowodiuk, W.

    1976-01-01

    A heat exchanger of the straight tube type is described in which different rates of thermal expansion between the straight tubes and the supply pipes furnishing fluid to those tubes do not result in tube failures. The supply pipes each contain a section which is of helical configuration

  11. Research on cooling of ultra high critical heat flux with external flow boiling of water. Challenge to achieve ultra high critical heat flux and improvement in estimation of critical heat flux. JAERI's nuclear research promotion program, H11-004 (Contract research)

    Monde, Masanori; Mitsutake, Yuichi; Ishida, Kenji; Hino, Ryutaro

    2003-03-01

    An ultra high critical heat flux (CHF) has been challenged with a highly subcooled water jet impinging on a small rectangular heated surface. Major objective of the study is to achieve an ultra high heat flux cooling as large as 100 MW/m 2 and to establish an accurate estimation method of the CHF. The experiments were carried out over the experimental range; a fixed jet diameter of 2 mm, jet velocity of 5 - 35 m/s, degree of subcooling of 80 - 170 K and system pressure of 0.1 - 1.0 MPa. The rectangular heated surface with a thin nickel foil of 0.03 - 0.3 mm in thickness, 5 and 10 mm in length, and 4 mm in width and heated by a direct current. Effects of thickness of heater wall, jet velocity and subcooling on the CHF were experimentally elucidated. The experimental results show that the CHF decreases about 50% as the heater thickness, namely heat capacity of heater decreases. Characteristics of the CHF with heater length of 10 mm are correlated within ±20% by the generalized correlation of subcooled CHF proposed by the authors. However, the CHF with the shorter heater length of 5 mm shows large deviation of -40% especially at lower subcooling and higher velocity. The maximum CHF of 212 MW/m 2 was achieved at the subcooling of 151 K, the jet velocity of 35 m/s and system pressure of 0.5 MPa. The maximum CHF under atmospheric pressure approaches to 48% of the ultimate maximum heat flux given by the assumptions that vapor molecules leave a liquid-vapor interface at the average speed of a Boltzman-Maxwellian gas and any molecules returning to the interface are not permitted. The ratio of the CHF and ultimate maximum heat flux was considerably enhanced from the existing record of 30%. This study can give the feasibility of ultra high heat flux removal facing in a development of components such as a diverter of a fusion reactor. (author)

  12. Heat pipe heat exchangers in heat recovery systems

    Stulc, P; Vasiliev, L L; Kiseljev, V G; Matvejev, Ju N

    1985-01-01

    The results of combined research and development activities of the National Research Institute for Machine Design, Prague, C.S.S.R. and the Institute for Heat and Mass Transfer, Minsk, U.S.S.R. concerning intensification heat pipes used in heat pipe heat exchangers are presented. This sort of research has been occasioned by increased interest in heat power economy trying to utilise waste heat produced by various technological processes. The developed heat pipes are deployed in construction of air-air, gas-air or gas-gas heat recovery exchangers in the field of air-engineering and air-conditioning. (author).

  13. Heat exchanger

    Bennett, J.C.

    1975-01-01

    A heat exchanger such as forms, for example, part of a power steam boiler is made up of a number of tubes that may be arranged in many different ways, and it is necessary that the tubes be properly supported. The means by which the tubes are secured must be as simple as possible so as to facilitate construction and must be able to continue to function effectively under the varying operating conditions to which the heat exchanger is subject. The arrangement described is designed to meet these requirements, in an improved way. The tubes are secured to a member extending past several tubes and abutment means are provided. At least some of the abutment means comprise two abutment pieces and a wedge secured to the supporting member, that acts on these pieces to maintain the engagement. (U.K.)

  14. German central solar heating plants with seasonal heat storage

    Bauer, D.; Marx, R.; Nussbicker-Lux, J.; Ochs, F.; Heidemann, W. [Institute of Thermodynamics and Thermal Engineering (ITW), University of Stuttgart, Pfaffenwaldring 6, D-70550 Stuttgart (Germany); Mueller-Steinhagen, H. [Institute of Thermodynamics and Thermal Engineering (ITW), University of Stuttgart, Pfaffenwaldring 6, D-70550 Stuttgart (Germany); Institute of Technical Thermodynamics (ITT), German Aerospace Centre (DLR), Stuttgart (Germany)

    2010-04-15

    Central solar heating plants contribute to the reduction of CO{sub 2}-emissions and global warming. The combination of central solar heating plants with seasonal heat storage enables high solar fractions of 50% and more. Several pilot central solar heating plants with seasonal heat storage (CSHPSS) built in Germany since 1996 have proven the appropriate operation of these systems and confirmed the high solar fractions. Four different types of seasonal thermal energy stores have been developed, tested and monitored under realistic operation conditions: Hot-water thermal energy store (e.g. in Friedrichshafen), gravel-water thermal energy store (e.g. in Steinfurt-Borghorst), borehole thermal energy store (in Neckarsulm) and aquifer thermal energy store (in Rostock). In this paper, measured heat balances of several German CSHPSS are presented. The different types of thermal energy stores and the affiliated central solar heating plants and district heating systems are described. Their operational characteristics are compared using measured data gained from an extensive monitoring program. Thus long-term operational experiences such as the influence of net return temperatures are shown. (author)

  15. Ecological studies related to the construction of the Defense Waste Processing Facility on the Savannah River Site. Annual report, FY-1991 and FY-1992

    Scott, D.E.; Chazel, A.C.; Pechmann, J.H.K.; Estes, R.A.

    1993-06-01

    The Defense Waste Processing Facility (DWPF) was built on the Savannah River Site (SRS) during the mid-1980`s. The Savannah River Ecology Laboratory (SREL) has completed 14 years of ecological studies related to the construction of the DWPF complex. Prior to construction, the 600-acre site (S-Area) contained a Carolina bay and the headwaters of a stream. Research conducted by the SREL has focused primarily on four questions related to these wetlands: (1) Prior to construction, what fauna and flora were present at the DWPF site and at similar, yet undisturbed, alternative sites? (2) By comparing the Carolina bay at the DWPF site (Sun Bay) with an undisturbed control Carolina bay (Rainbow Bay), what effect is construction having on the organisms that inhabited the DWPF site? (3) By comparing control streams with streams on the periphery of the DWPF site, what effect is construction having on the peripheral streams? (4) How effective have efforts been to lessen the impacts of construction, both with respect to erosion control measures and the construction of ``refuge ponds`` as alternative breeding sites for amphibians that formerly bred at Sun Bay? Through the long-term census-taking of biota at the DWPF site and Rainbow Bay, SREL has begun to evaluate the impact of construction on the biota and the effectiveness of mitigation efforts. Similarly, the effects of erosion from the DWPF site on the water quality of S-Area peripheral streams are being assessed. This research provides supporting data relevant to the National Environmental Policy Act (NEPA) of 1969, the Endangered Species Act of 1973, Executive Orders 11988 (Floodplain Management) and 11990 (Protection of Wetlands), and United States Department of Energy (DOE) Guidelines for Compliance with Floodplain/Wetland Environmental Review Requirements (10 CFR 1022).

  16. Prime Contract Awards Alphabetically by Contractor, State or Country, and Place. Part 9 (Hewlett Packard Company, Foster City, California - International Bus MCHS Corp, Louisville, Kentucky), FY1991

    1991-01-01

    44 0 4 N in M 4 a amN LU-4 OJ4 00o O-4NNN00 04-7)07 0m ()0) 1-0 U0o -4 mwNO r NO N x QO 000 LU00000W( MOO5 XU0 £000 a. ] - -4 F6 .. .5n -.J4 J.4 mm4...4 NNa0 1-am ~a") Ia 4-. -4 - 4 -*** o Q o o ooQ00o00o--44- 01 D .C 1C w : am 1 C00-4 1 l I co -4 mmiN4f4N- .N 4-4- .4 III aCca 4 aa in 0 n 0 0 0 00...04NNMOCOMO -4-4 -.1 640 IIOf-N4.-0444000.40-..400 <mNOO4-40000000000>C C-4- < Ia 4 0 <C’) Is ZZIW a.LL~a.La. 0.A 60 < 4Ni to I IfO(-0(N40ml0ilOONt’. f6 -4 6

  17. Prime Contract Awards Alphabetically by Contractor, State or Country, and Place. Part 1 (102 Construction Inc, Oklahoma City, Oklahoma - American Management Systems Inc, Linthicum, Maryland), FY1991

    1991-01-01

    20 z 00 0 0 0 U 0 Q 0 ge N iI co cm 0 I.- 1.- 00)o 0 -4 " I.- " .- Z. -4 P.- ZV F- CC a 2 $ toN U1 no 0j C o4 cI 0 F6 - C - P.- 0) 540 C) "o0 6-U M...0 40 0 0 C4 0. 0 0 0 -0 400 0 U I 4N0a a .0. Nl -.4-. .1 .4 -4-I -4 W4 -6 0.4-4 Ř U 0490 0. .OW co co) 4c Lo cco c) co) toA inL0) ACCA C I -N4C a4... f6 ION *600 0 co 0 C.) 00 - o - 46 IOMN a- x-2 Za a N o 0 -C-0 0- 1-- W41 30 10 64V 8- 4 0 0- 41 41) 0 0 0 1NIO Wr1- z 2 I- 10 20 I. 0 1- ION1 NO 4

  18. Prime Contractors with Awards over $25,000 by Name, Location, and Contract Number. Part 7 (Technology Systems Inc, Wiscasset, Maine -- Zymark Corporation, Hopkinton, Massachusetts), FY1991

    1991-01-01

    z V3 3z I .0J 0(. to0 0 ~ ml cci 0< ix F 3. l4 -I XI- 8 33 0 0 02~~ t; . 4L C0 3 w- = uc3 U (nl 3 C: go 0~~~ 3 8 t)0 0 0 C.)39. U 0 u3 F3 6i6t I -4 4...w cc~~- (n CI9- £. 4 1 6: 2) 2 0 - 1. w 9. W 423 u U .. ) w 0 ~ 4 acca CiC d x HH ul 1-4 H 1-4 HH OUR t- OD- =-4 m~ w ODI (’ S 000 D n01 0 IOD 0000 N...4W 0 F3 U9H -W) H .4. 0 m220 = C4 ix I C, gal 4 22 0~ 0 Ow. 0W". 0 ) U) 02 0 00 0 4 4 E .4 .4 w M 8 n2 0 0202402-02 蓤. 0. 2 2 .40 0 0 w Ld =) 8. Ca

  19. Prime Contract Awards Alphabetically by Contractor, State or Country, and Place. Part 12 (McFadden Jimmy, Portugal - NCR Japan LTD, Japan), FY1991

    1991-01-01

    co0 Z1--.-0) ) Mm𔄁’ -4-4 0- HM. I 0O-4 H 0r- 01r- 01r- 01-, 0 000Cl0 C 1 -4 xo)0) -I qt4 od w -4 HO 00 0~ .0 00 Wix wOC L44 WJOU WM WOO IL H I0-4 H1...1 1000U -JO -JO -j 0CO4O .-. *O 2 2 0 0 0 Uf C 13 (N if wOO cW c.0OOL . O WO W’-- Lj4 L1.000 WeB $- wi - 3-0 - W0 U a 03 ILN (L 0.- CL- CL In0h...0 0 0 0 0 0 -400c -40 -40 m"- r.00 4N10 .4. 1 ge4 63 1I I 3 I I I 1- 3 60 000 0 00 0* W2 0 In 10 6 LUi I WIX >0 6 .- i.4 4 4 4 .4-4_ 4 ._4-IN -iN -IN

  20. Prime Contract Awards Alphabetically by Contractor, State or Country, and Place. Part 11 (Lemmon Company, Sellersville Pennsylvania - McEwen Construction, Beale AFB, California), FY1991

    1991-01-01

    00-I v aEaIOMN n 0 U 0 0 1-4 0 00 x 0 web -CN0a 1 N N b I- z x x- I- 0-4 -4 1.- 0 1.- 1.-A W z I MN *4 0 0-4 U. 40 -4 0 .U 0 0. 40 3 I.-N M0N xnᝰ...CMC4� (" 0 0 00 0 0 0 10 N W I wix >u a 0 4 Ccljcd 0-4-4.4-4-4.4 ammmmmmmcv) 40 -4 -4 -4 -4 -4 CY 04 C4 04 CM CQ (4 04 N F- IZZU M0-4...C Of 04C)’ m EE KKl1Z K Kl x 06 06’. I to0 to w a wX)wxle= web x cU6ALOUn) 0D a 00909(0 0a0 00 0 0 004 06 06- I. ( 06l 00 00 0 00 0 40(4(0 0 0 0 0

  1. Prime Contract Awards Alphabetically by Contractor, State or Country, and Place. Part 16 (South Dakota [State of], Brookings, South Dakota - Tekna, Mountain View, California), FY1991

    1991-01-01

    4 - %-) N6- NN 4 .4 C.4 0 .4N Ho. up r-( r- N4 Nn NO. N N- NN M 040 H >.A WIx 0 -Cl 4c. q*j r- W W4 en H~C t-4OHI C00 C4 (D V 00 000~0 o CO a ccN H𔃺...I- I-- ə IW C-4 /) I-I. z I.- 2 z 2 Z z 3 IS I We-i if < 00 1-1 0 #-4 1-0 I- 1-4 0- < IS I Web Uo IP- I-- If M" ISO a a a 0 0 a 1-i ,0W UZ IS Z 2w 2...C4 C4 C4 Cj C-4 e4 C4 C4 C,4 cm ൌ (4 cli 04 " cli cm CS1 C4 e4 cm C14 c4cljcqclI"NNe4rqNN CIA CS1 C4 eq C14 C14 C4 C4 N C4 CSI eq C4 1 131 wix

  2. FY 1991 Report on the results of the researches on nonlinear photoelectronic materials; 1991 nendo hisenkei hikari denshi zairyo no kenkyu kaihatsu seika hokokusho

    NONE

    1992-03-01

    The nonlinear optics with light-light conversion and electro-optical effects are expected to be the optical materials of the next generation for their functions of, e.g., conversion of the infrared laser beams into visual light, and optical switching. The efforts are directed to development of the procedures for exploring and designing various raw materials, and technologies for synthesizing the raw materials and for producing and evaluating the materials, in order to develop highly nonlinear, high-speed responding materials. Three areas are studied; for the organic materials, the chiral nonlinear effects are demonstrated and the new procedure for determining electrical susceptibility ({gamma}) is developed; for the dispersed materials, highly nonlinear susceptibility of glass dispersed with fine particles of semiconductors, e.g., CuCl, is realized, and possibility of controlled dispersion of fine semiconductor particles in an organic polymer is established; and for development of the superlattice-based materials, the layered structures of thin organic superlattice films are studied, the thin semiconductor films of high purity and little defects are prepared, and development of the three-dimensional structures is started. The individual researches are conducted, 3 for the organic materials, 4 for the dispersed materials, and 2 for the superlattice-based materials. The targets of susceptibility and response are 10{sup -8}esu or more and 10ps or less, respectively. (NEDO)

  3. Prime Contract Awards Alphabetically by Contractor, State or Country, and Place. Part 18 (University of Virginia, Carsonville, Virginia - Zymark Corporation, Hopkinton, Massachusetts), FY1991

    1991-01-01

    00 at >00 > 44 -4m 4Z 44 > 43 I U aa COI :: >-- 0 003 tUN H" 00C C44 0 0OQ- 0C D4 .4 O4 p- 0 0 0n M4 is3- t4 UD IW - 4-4- I- 4- -4 -- N CHOaU HR 4 "o...oI.II :-4 M0 40e - C)C)C)M NCO MC)V .Nl l l .-4- -4 4- -M4-4M-0)M--4 -4 4 mN. -V ) MV)r m) C1.) -4-4 C) l*4 an -4N " N) C . zaw ( ൈz00L r c 44a.444

  4. Prime Contractors with Awards over $25,000 by Name, Location, and Contract Number. Part 6 (RGI Inc, San Diego, California -- Technology Specialist Inc, Arlington, Virginia), FY1991

    1991-01-01

    0 0 4- :3 I3 -CI L)4) m 0 0 c a. 0 I 40 a. I a. .8 z a.E-I0 Ca I I W U)U > 00 zE CA I I I CD 0 L) I U LO 0 0 :D L. V II WL I -3 I3 I Eki zaW L w~ fn...1-9. En (n W 0 >9 9 m 0. a. r: w~C 94 0% 09 9 D n00 : 9 lz 0HZ E, z o r; H i9 tun , . 9n 00 . 0.0~~~~L 9z 0 40 < 9 Z 00 9 9 9 9 0 n .- 0 0 In 000

  5. On the kinetics of the aluminum-water reaction during exposure in high-heat flux test loops: 1, A computer program for oxidation calculations

    Pawel, R.E.

    1988-01-01

    The ''Griess Correlation,'' in which the thickness of the corrosion product on aluminum alloy surfaces is expressed as a function of time and temperature for high-flux-reactor conditions, was rewritten in the form of a simple, general rate equation. Based on this equation, a computer program that calculates oxide-layer thickness for any given time-temperature transient was written. 4 refs

  6. The projective heat map

    Schwartz, Richard Evan

    2017-01-01

    This book introduces a simple dynamical model for a planar heat map that is invariant under projective transformations. The map is defined by iterating a polygon map, where one starts with a finite planar N-gon and produces a new N-gon by a prescribed geometric construction. One of the appeals of the topic of this book is the simplicity of the construction that yet leads to deep and far reaching mathematics. To construct the projective heat map, the author modifies the classical affine invariant midpoint map, which takes a polygon to a new polygon whose vertices are the midpoints of the original. The author provides useful background which makes this book accessible to a beginning graduate student or advanced undergraduate as well as researchers approaching this subject from other fields of specialty. The book includes many illustrations, and there is also a companion computer program.

  7. Heating networks and domestic central heating systems

    Kamler, W; Wasilewski, W

    1976-08-01

    This is a comprehensive survey of the 26 contributions from 8 European countries submitted to the 3rd International District Heating Conference in Warsaw held on the subject 'Heating Networks and Domestic Central Heating Systems'. The contributions are grouped according to 8 groups of subjects: (1) heat carriers and their parameters; (2) system of heating networks; (3) calculation and optimization of heating networks; (4) construction of heating networks; (5) operation control and automation; (6) operational problems; (7) corrosion problems; and (8) methods of heat accounting.

  8. Hydride heat pump with heat regenerator

    Jones, Jack A. (Inventor)

    1991-01-01

    A regenerative hydride heat pump process and system is provided which can regenerate a high percentage of the sensible heat of the system. A series of at least four canisters containing a lower temperature performing hydride and a series of at least four canisters containing a higher temperature performing hydride is provided. Each canister contains a heat conductive passageway through which a heat transfer fluid is circulated so that sensible heat is regenerated. The process and system are useful for air conditioning rooms, providing room heat in the winter or for hot water heating throughout the year, and, in general, for pumping heat from a lower temperature to a higher temperature.

  9. Heating systems for heating subsurface formations

    Nguyen, Scott Vinh [Houston, TX; Vinegar, Harold J [Bellaire, TX

    2011-04-26

    Methods and systems for heating a subsurface formation are described herein. A heating system for a subsurface formation includes a sealed conduit positioned in an opening in the formation and a heat source. The sealed conduit includes a heat transfer fluid. The heat source provides heat to a portion of the sealed conduit to change phase of the heat transfer fluid from a liquid to a vapor. The vapor in the sealed conduit rises in the sealed conduit, condenses to transfer heat to the formation and returns to the conduit portion as a liquid.

  10. Collaborative National Program for the Development and Performance Testing of Distributed Power Technologies with Emphasis on Combined Heat and Power Applications

    Soinski, Arthur; Hanson, Mark

    2006-06-28

    A current barrier to public acceptance of distributed generation (DG) and combined heat and power (CHP) technologies is the lack of credible and uniform information regarding system performance. Under a cooperative agreement, the Association of State Energy Research and Technology Transfer Institutions (ASERTTI) and the U.S. Department of Energy have developed four performance testing protocols to provide a uniform basis for comparison of systems. The protocols are for laboratory testing, field testing, long-term monitoring and case studies. They have been reviewed by a Stakeholder Advisory Committee made up of industry, public interest, end-user, and research community representatives. The types of systems covered include small turbines, reciprocating engines (including Stirling Cycle), and microturbines. The protocols are available for public use and the resulting data is publicly available in an online national database and two linked databases with further data from New York State. The protocols are interim pending comments and other feedback from users. Final protocols will be available in 2007. The interim protocols and the national database of operating systems can be accessed at www.dgdata.org. The project has entered Phase 2 in which protocols for fuel cell applications will be developed and the national and New York databases will continue to be maintained and populated.

  11. Heat pipes

    Dunn, Peter D

    1982-01-01

    A comprehensive, up-to-date coverage of the theory, design and manufacture of heat pipes and their applications. This latest edition has been thoroughly revised, up-dated and expanded to give an in-depth coverage of the new developments in the field. Significant new material has been added to all the chapters and the applications section has been totally rewritten to ensure that topical and important applications are appropriately emphasised. The bibliography has been considerably enlarged to incorporate much valuable new information. Thus readers of the previous edition, which has established

  12. Heat exchanger

    Dostatni, A.W.; Dostatni, Michel.

    1976-01-01

    In the main patent, a description was given of a heat exchanger with an exchange surface in preformed sheet metal designed for the high pressure and temperature service particularly encountered in nuclear pressurized water reactors and which is characterised by the fact that it is composed of at least one exchanger bundle sealed in a containment, the said bundle or bundles being composed of numerous juxtaposed individual compartments whose exchange faces are built of preformed sheet metal. The present addendun certificate concerns shapes of bundles and their positioning methods in the exchanger containment enabling its compactness to be increased [fr

  13. ORGEL program

    none

    1963-09-01

    Parameter optimization studies for an ORGEL power plant are reported, and the ESSOR test reactor used in the program is described. Research at Ispra in reactor physics, technology, metallurgy, heat transfer, chemistry, and physical chemistry associated with ORGEL development is also summarized. (D.C.W.)

  14. Regenerative Hydride Heat Pump

    Jones, Jack A.

    1992-01-01

    Hydride heat pump features regenerative heating and single circulation loop. Counterflow heat exchangers accommodate different temperatures of FeTi and LaNi4.7Al0.3 subloops. Heating scheme increases efficiency.

  15. Low temperature nuclear heat

    Kotakorpi, J.; Tarjanne, R. [comps.

    1977-08-01

    The meeting was concerned with the use of low grade nuclear heat for district heating, desalination, process heat, and agriculture and aquaculture. The sessions covered applications and demand, heat sources, and economics.

  16. Radiofrequency plasma heating: proceedings

    Swenson, D.G.

    1985-01-01

    The conference proceedings include sessions on Alfven Wave Heating, ICRF Heating and Current Drive, Lower Hybrid Heating and Current Drive, and ECRF Heating. Questions of confinement, diagnostics, instabilities and technology are considered. Individual papers are cataloged separately

  17. Geothermal Heat Pump Benchmarking Report

    None

    1997-01-17

    A benchmarking study was conducted on behalf of the Department of Energy to determine the critical factors in successful utility geothermal heat pump programs. A Successful program is one that has achieved significant market penetration. Successfully marketing geothermal heat pumps has presented some major challenges to the utility industry. However, select utilities have developed programs that generate significant GHP sales. This benchmarking study concludes that there are three factors critical to the success of utility GHP marking programs: (1) Top management marketing commitment; (2) An understanding of the fundamentals of marketing and business development; and (3) An aggressive competitive posture. To generate significant GHP sales, competitive market forces must by used. However, because utilities have functioned only in a regulated arena, these companies and their leaders are unschooled in competitive business practices. Therefore, a lack of experience coupled with an intrinsically non-competitive culture yields an industry environment that impedes the generation of significant GHP sales in many, but not all, utilities.

  18. Split heat pipe heat recovery system

    E. Azad

    2008-01-01

    This paper describes a theoretical analysis of a split heat pipe heat recovery system. The analysis is based on an Effectiveness-NTU approach to deduce its heat transfer characteristics. In this study the variation of overall effectiveness of heat recovery with the number of transfer units are presented. Copyright , Manchester University Press.

  19. Segmented heat exchanger

    Baldwin, Darryl Dean; Willi, Martin Leo; Fiveland, Scott Byron; Timmons, Kristine Ann

    2010-12-14

    A segmented heat exchanger system for transferring heat energy from an exhaust fluid to a working fluid. The heat exchanger system may include a first heat exchanger for receiving incoming working fluid and the exhaust fluid. The working fluid and exhaust fluid may travel through at least a portion of the first heat exchanger in a parallel flow configuration. In addition, the heat exchanger system may include a second heat exchanger for receiving working fluid from the first heat exchanger and exhaust fluid from a third heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the second heat exchanger in a counter flow configuration. Furthermore, the heat exchanger system may include a third heat exchanger for receiving working fluid from the second heat exchanger and exhaust fluid from the first heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the third heat exchanger in a parallel flow configuration.

  20. Dual source heat pump

    Ecker, Amir L.; Pietsch, Joseph A.

    1982-01-01

    What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating the fluid in heat exchange relationship with a refrigerant fluid; at least two refrigerant heat exchangers, one for effecting heat exchange with the fluid and a second for effecting heat exchange between refrigerant and a heat exchange fluid and the ambient air; a compressor for efficiently compressing the refrigerant; at least one throttling valve for throttling liquid refrigerant; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and direction of flow of the refrigerant therethrough for selecting a particular mode of operation. The heat exchange fluid provides energy for defrosting the second heat exchanger when operating in the air source mode and also provides a alternate source of heat.

  1. Scheduling of radio-controlled heating load

    Fox, B.; McCartney, A.I.; McCann, B.M.

    1998-01-01

    An economic loading program has been adapted to enable it to obtain an optimum heat-load profile to meet the forecast heat requirement. The heat load is represented by a 'generator' whose load is constrained to be negative. The incremental cost of this unit is a heat energy price. This is adjusted to obtain a heat profile containing the requisite energy. The profile is then used by a dynamic programming algorithm to derive a commitment pattern for each block. A case study is presented which shows that the procedure can minimise heat energy cost. It is also shown that use of the proposed method results in less generator load cycling. This reduced regulation duty should improve reliability. (author)

  2. Methodology and assumptions for evaluating heating and cooling energy requirements in new single-family residential buildings: Technical support document for the PEAR (Program for Energy Analysis of Residences) microcomputer program

    Huang, Y.J.; Ritschard, R.; Bull, J.; Byrne, S.; Turiel, I.; Wilson, D.; Hsui, C.; Foley, D.

    1987-01-01

    This report provides technical documentation for a software package called PEAR (Program for Energy Analysis of Residences) developed by LBL. PEAR offers an easy-to-use and accurate method of estimating the energy savings associated with various energy conservation measures used in site-built, single-family homes. This program was designed for use by non-technical groups such as home builders, home buyers or others in the buildings industry, and developed as an integral part of a set of voluntary guidelines entitled Affordable Housing Through Energy Conservation: A Guide to Designing and Constructing Energy Efficient Homes. These guidelines provide a method for selecting and evaluating cost-effective energy conservation measures based on the energy savings estimated by PEAR. This work is part of a Department of Energy program aimed at conducting research that will improve the energy efficiency of the nation's stock of conventionally-built and manufactured homes, and presenting the results to the public in a simplified format.

  3. Heat pipes in modern heat exchangers

    Vasiliev, Leonard L.

    2005-01-01

    Heat pipes are very flexible systems with regard to effective thermal control. They can easily be implemented as heat exchangers inside sorption and vapour-compression heat pumps, refrigerators and other types of heat transfer devices. Their heat transfer coefficient in the evaporator and condenser zones is 10 3 -10 5 W/m 2 K, heat pipe thermal resistance is 0.01-0.03 K/W, therefore leading to smaller area and mass of heat exchangers. Miniature and micro heat pipes are welcomed for electronic components cooling and space two-phase thermal control systems. Loop heat pipes, pulsating heat pipes and sorption heat pipes are the novelty for modern heat exchangers. Heat pipe air preheaters are used in thermal power plants to preheat the secondary-primary air required for combustion of fuel in the boiler using the energy available in exhaust gases. Heat pipe solar collectors are promising for domestic use. This paper reviews mainly heat pipe developments in the Former Soviet Union Countries. Some new results obtained in USA and Europe are also included

  4. Rapid freeze-drying cycle optimization using computer programs developed based on heat and mass transfer models and facilitated by tunable diode laser absorption spectroscopy (TDLAS).

    Kuu, Wei Y; Nail, Steven L

    2009-09-01

    Computer programs in FORTRAN were developed to rapidly determine the optimal shelf temperature, T(f), and chamber pressure, P(c), to achieve the shortest primary drying time. The constraint for the optimization is to ensure that the product temperature profile, T(b), is below the target temperature, T(target). Five percent mannitol was chosen as the model formulation. After obtaining the optimal sets of T(f) and P(c), each cycle was assigned with a cycle rank number in terms of the length of drying time. Further optimization was achieved by dividing the drying time into a series of ramping steps for T(f), in a cascading manner (termed the cascading T(f) cycle), to further shorten the cycle time. For the purpose of demonstrating the validity of the optimized T(f) and P(c), four cycles with different predicted lengths of drying time, along with the cascading T(f) cycle, were chosen for experimental cycle runs. Tunable diode laser absorption spectroscopy (TDLAS) was used to continuously measure the sublimation rate. As predicted, maximum product temperatures were controlled slightly below the target temperature of -25 degrees C, and the cascading T(f)-ramping cycle is the most efficient cycle design. In addition, the experimental cycle rank order closely matches with that determined by modeling.

  5. Transient Analysis of a Magnetic Heat Pump

    Schroeder, E. A.

    1985-01-01

    An experimental heat pump that uses a rare earth element as the refrigerant is modeled using NASTRAN. The refrigerant is a ferromagnetic metal whose temperature rises when a magnetic field is applied and falls when the magnetic field is removed. The heat pump is used as a refrigerator to remove heat from a reservoir and discharge it through a heat exchanger. In the NASTRAN model the components modeled are represented by one-dimensional ROD elements. Heat flow in the solids and fluid are analyzed. The problem is mildly nonlinear since the heat capacity of the refrigerant is temperature-dependent. One simulation run consists of a series of transient analyses, each representing one stroke of the heat pump. An auxiliary program was written that uses the results of one NASTRAN analysis to generate data for the next NASTRAN analysis.

  6. ENERGY STAR Certified Geothermal Heat Pumps

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 3.1 ENERGY STAR Program Requirements for Geothermal Heat Pumps that are effective as of...

  7. Titanium Heat Pipe Thermal Plane, Phase II

    National Aeronautics and Space Administration — The objective of the Phase II program is to complete the development of the titanium heat pipe thermal plane and establish all necessary steps for production of this...

  8. Heat pipe heat exchanger for heat recovery in air conditioning

    Abd El-Baky, Mostafa A.; Mohamed, Mousa M. [Mechanical Power Engineering Department, Faculty of Engineering, Minufiya University, Shebin El-Kom (Egypt)

    2007-03-15

    The heat pipe heat exchangers are used in heat recovery applications to cool the incoming fresh air in air conditioning applications. Two streams of fresh and return air have been connected with heat pipe heat exchanger to investigate the thermal performance and effectiveness of heat recovery system. Ratios of mass flow rate between return and fresh air of 1, 1.5 and 2.3 have been adapted to validate the heat transfer and the temperature change of fresh air. Fresh air inlet temperature of 32-40{sup o}C has been controlled, while the inlet return air temperature is kept constant at about 26{sup o}C. The results showed that the temperature changes of fresh and return air are increased with the increase of inlet temperature of fresh air. The effectiveness and heat transfer for both evaporator and condenser sections are also increased to about 48%, when the inlet fresh air temperature is increased to 40{sup o}C. The effect of mass flow rate ratio on effectiveness is positive for evaporator side and negative for condenser side. The enthalpy ratio between the heat recovery and conventional air mixing is increased to about 85% with increasing fresh air inlet temperature. The optimum effectiveness of heat pipe heat exchanger is estimated and compared with the present experimental data. The results showed that the effectiveness is close to the optimum effectiveness at fresh air inlet temperature near the fluid operating temperature of heat pipes. (author)

  9. Nonazeotropic Heat Pump

    Ealker, David H.; Deming, Glenn

    1991-01-01

    Heat pump collects heat from water circulating in heat-rejection loop, raises temperature of collected heat, and transfers collected heat to water in separate pipe. Includes sealed motor/compressor with cooling coils, evaporator, and condenser, all mounted in outer housing. Gradients of temperature in evaporator and condenser increase heat-transfer efficiency of vapor-compression cycle. Intended to recover relatively-low-temperature waste heat and use it to make hot water.

  10. Heat transfer: Pittsburgh 1987

    Lyczkowski, R.W.

    1987-01-01

    This book contains papers divided among the following sections: Process Heat Transfer; Thermal Hydraulics and Phase Change Phenomena; Analysis of Multicomponent Multiphase Flow and Heat Transfer; Heat Transfer in Advanced Reactors; General Heat Transfer in Solar Energy; Numerical Simulation of Multiphase Flow and Heat Transfer; High Temperature Heat Transfer; Heat Transfer Aspects of Severe Reactor Accidents; Hazardous Waste On-Site Disposal; and General Papers

  11. Industrial waste heat for district heating

    Heitner, K.L.; Brooks, P.P.

    1982-01-01

    Presents 2 bounding evaluations of industrial waste heat availability. Surveys waste heat from 29 major industry groups at the 2-digit level in Standard Industrial Codes (SIC). Explains that waste heat availability in each industry was related to regional product sales, in order to estimate regional waste heat availability. Evaluates 4 selected industries at the 4-digit SIC level. Finds that industrial waste heat represents a significant energy resource in several urban areas, including Chicago and Los Angeles, where it could supply all of these areas residential heating and cooling load. Points out that there is a strong need to evaluate the available waste heat for more industries at the 4-digit level. Urges further studies to identify other useful industrial waste heat sources as well as potential waste heat users

  12. HEATING-7, Multidimensional Finite-Difference Heat Conduction Analysis

    2000-01-01

    1 - Description of program or function: HEATING 7.2i and 7.3 are the most recent developments in a series of heat-transfer codes and obsolete all previous versions distributed by RSICC as SCA-1/HEATING5 and PSR-199/HEATING 6. Note that Unix and PC versions of HEATING7 are available in the CCC-545/SCALE 4.4 package. HEATING can solve steady-state and/or transient heat conduction problems in one-, two-, or three-dimensional Cartesian, cylindrical, or spherical coordinates. A model may include multiple materials, and the thermal conductivity, density, and specific heat of each material may be both time- and temperature-dependent. The thermal conductivity may also be anisotropic. Materials may undergo change of phase. Thermal properties of materials may be input or may be extracted from a material properties library. Heat- generation rates may be dependent on time, temperature, and position, and boundary temperatures may be time- and position-dependent. The boundary conditions, which may be surface-to-environment or surface-to-surface, may be specified temperatures or any combination of prescribed heat flux, forced convection, natural convection, and radiation. The boundary condition parameters may be time- and/or temperature-dependent. General gray body radiation problems may be modeled with user-defined factors for radiant exchange. The mesh spacing may be variable along each axis. HEATING uses a run-time memory allocation scheme to avoid having to recompile to match memory requirements for each specific problem. HEATING utilizes free-form input. In June 1997 HEATING 7.3 was added to the HEATING 7.2i packages, and the Unix and PC versions of both 7.2i and 7.3 were merged into one package. HEATING 7.3 is being released as a beta-test version; therefore, it does not entirely replace HEATING 7.2i. There is no published documentation for HEATING 7.3; but a listing of input specifications, which reflects changes for 7.3, is included in the PSR-199 documentation. For 3-D

  13. Data bank of critical heat flux

    Balino, J.L.; Ruival, M.H.

    1985-01-01

    More than 13.000 measurements of critical heat flux are classified in a data bank. From each experiment the following information can be obtained: cooling medium (light water, freon 12 or freon 21), geometry of the test section and thermalhydraulic parameters. The data management is performed by a computer program called CHFTRAT. A brief study of the influence of different parameters in the critical heat flux is presented, as an example of how to use the program. (M.E.L.) [es

  14. Study of fuel cell powerplant with heat recovery

    King, J. M.; Grasso, A. P.; Clausi, J. V.

    1975-01-01

    It was shown that heat can be recovered from fuel cell power plants by replacing the air-cooled heat exchangers in present designs with units which transfer the heat to the integrated utility system. Energy availability for a 40-kW power plant was studied and showed that the total usable energy at rated power represents 84 percent of the fuel lower heating value. The effects of design variables on heat availability proved to be small. Design requirements were established for the heat recovery heat exchangers, including measurement of the characteristics of two candidate fuel cell coolants after exposure to fuel cell operating conditions. A heat exchanger test program was defined to assess fouling and other characteristics of fuel cell heat exchangers needed to confirm heat exchanger designs for heat recovery.

  15. Automation of heating system with heat pump

    Ferdin, Gašper

    2016-01-01

    Because of high prices of energy, we are upgrading our heating systems with newer, more fuel efficient heating devices. Each new device has its own control system, which operates independently from other devices in a heating system. With a relatively low investment costs in automation, we can group devices in one central control system and increase the energy efficiency of a heating system. In this project, we show how to connect an oil furnace, a sanitary heat pump, solar panels and a heat p...

  16. A Critical Review of OSHA Heat Enforcement Cases: Lessons Learned.

    Arbury, Sheila; Lindsley, Matthew; Hodgson, Michael

    2016-04-01

    The aim of the study was to review the Occupational Safety and Health Administration's (OSHA) 2012 to 2013 heat enforcement cases, using identified essential elements of heat illness prevention to evaluate employers' programs and make recommendations to better protect workers from heat illness. (1) Identify essential elements of heat illness prevention; (2) develop data collection tool; and (3) analyze OSHA 2012 to 2013 heat enforcement cases. OSHA's database contains 84 heat enforcement cases in 2012 to 2013. Employer heat illness prevention programs were lacking in essential elements such as providing water and shade; adjusting the work/rest proportion to allow for workload and effective temperature; and acclimatizing and training workers. In this set of investigations, most employers failed to implement common elements of illness prevention programs. Over 80% clearly did not rely on national standard approaches to heat illness prevention.

  17. Heat pump technology

    Von Cube, Hans Ludwig; Goodall, E G A

    2013-01-01

    Heat Pump Technology discusses the history, underlying concepts, usage, and advancements in the use of heat pumps. The book covers topics such as the applications and types of heat pumps; thermodynamic principles involved in heat pumps such as internal energy, enthalpy, and exergy; and natural heat sources and energy storage. Also discussed are topics such as the importance of the heat pump in the energy industry; heat pump designs and systems; the development of heat pumps over time; and examples of practical everyday uses of heat pumps. The text is recommended for those who would like to kno

  18. Future heat supply of our cities. Heating by waste heat

    Brachetti, H E [Stadtwerke Hannover A.G. (Germany, F.R.); Technische Univ. Hannover (Germany, F.R.))

    1976-08-01

    The energy-price crisis resulted in structural changes of the complete energy supply and reactivated the question of energy management with respect to the optimum solution of meeting the energy requirements for space heating. Condensation power plants are increasingly replaced by thermal stations, the waste heat of which is used as so-called district heat. Thermal power stations must be situated close to urban areas. The problem of emission of harmful materials can partly be overcome by high-level emission. The main subject of the article, however, is the problem of conducting and distributing the heat. The building costs of heat pipeline systems and the requirements to be met by heat pipelines such as strength, heat insulation and protection against humidity and ground water are investigated.

  19. Heat-Related Illnesses

    ... Share this! EmergencyCareForYou » Emergency 101 » Heat-Related Illnesses Heat-Related Illnesses Dr. Glenn Mitchell , Emergency physician at ... about heat cramps and heat stroke and exhaustion. Heat Cramps Symptoms include muscle spasms, usually in the ...

  20. Heat-Related Illnesses

    Full Text Available ... Share this! EmergencyCareForYou » Emergency 101 » Heat-Related Illnesses Heat-Related Illnesses Dr. Glenn Mitchell , Emergency physician at ... about heat cramps and heat stroke and exhaustion. Heat Cramps Symptoms include muscle spasms, usually in the ...

  1. Research report of fiscal 1997. Research on the projects on Activities Implemented Jointly Japan Program (feasibility research on energy saving by improving heat management for hot blast stoves and heating furnaces); 1997 nendo chosa hokokusho. `Kyodo jisshi katsudo Japan Program` ni kakawaru project chosa (neppuro, kanetsuro no netsukanri kaizen ni yoru sho energy kanosei chosa)

    NONE

    1998-03-01

    Research was made on joint implementation (JI) for preventing global climate changes in China. Since such the stove and furnace consume a large amount of energy, their improvement and energy saving are important for integrated iron plants. Maanshan iron plant was selected for the research. All the furnaces were manually operated without combustion control systems, and oxygen meters for exhaust gas frequently troubled. As measures for the stoves, operation at a proper air fuel ratio, improvement of over heat storage combustion, and dust cleaning for waste heat recovery gas heaters were proposed. For the furnaces, a proper oxygen content at the end of furnaces (reduction of invasion air) was proposed to improve exhaust gas loss up to that in Japan. For this target, reinforced instrument management and standardized combustion control are essential. JI of software improvement for operation and management can reduce annual greenhouse effect gas emission to 45,900t and 6,300t in carbon equivalent for the stove and furnace, respectively. CO2 reduction is also estimated to be 1,173,000t and 205,000t in China of 107,570,000t in raw steel production, respectively. 28 figs., 32 tabs.

  2. Building Technologies Program Multi-Year Program Plan Research and Development 2008

    None, None

    2008-01-01

    Building Technologies Program Multi-Year Program Plan 2008 for research and development, including residential and commercial integration, lighting, HVAC and water heating, envelope, windows, and analysis tools.

  3. Absorption heat pump system

    Grossman, G.

    1982-06-16

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  4. Heat Related Illnesses

    Carter, R; Cheuvront, S. N; Sawka, M. N

    2006-01-01

    .... The risk of serious heat illness can be markedly reduced by implementing a variety of countermeasures, including becoming acclimated to the heat, managing heat stress exposure, and maintaining hydration...

  5. Heat Roadmap Europe 1

    Connolly, David; Mathiesen, Brian Vad; Østergaard, Poul Alberg

    2012-01-01

    Heat Roadmap Europe (Pre-study 1) investigates the role of district heating in the EU27 energy system by mapping local conditions across Europe, identifying the potential for district heating expansion, and subsequently simulating the potential resource in an hourly model of the EU27 energy system....... In 2010, approximately 12% of the space heating demand in Europe is met by district heating, but in this study four alternative scenarios are considered for the EU27 energy system: 1. 2010 with 30% district heating 2. 2010 with 50% district heating 3. 2030 with 30% district heating 4. 2050 with 50......% district heating These scenarios are investigated in two steps. Firstly, district heating replaces individual boilers by converting condensing power plants to combined heat and power plants (CHP) to illustrate how district heating improves the overall efficiency of the energy system. In the second step...

  6. Multidimensional Heat Conduction

    Rode, Carsten

    1998-01-01

    Analytical theory of multidimensional heat conduction. General heat conduction equation in three dimensions. Steay state, analytical solutions. The Laplace equation. Method of separation of variables. Principle of superposition. Shape factors. Transient, multidimensional heat conduction....

  7. Oscillating heat pipes

    Ma, Hongbin

    2015-01-01

    This book presents the fundamental fluid flow and heat transfer principles occurring in oscillating heat pipes and also provides updated developments and recent innovations in research and applications of heat pipes. Starting with fundamental presentation of heat pipes, the focus is on oscillating motions and its heat transfer enhancement in a two-phase heat transfer system. The book covers thermodynamic analysis, interfacial phenomenon, thin film evaporation,  theoretical models of oscillating motion and heat transfer of single phase and two-phase flows, primary  factors affecting oscillating motions and heat transfer,  neutron imaging study of oscillating motions in an oscillating heat pipes, and nanofluid’s effect on the heat transfer performance in oscillating heat pipes.  The importance of thermally-excited oscillating motion combined with phase change heat transfer to a wide variety of applications is emphasized. This book is an essential resource and learning tool for senior undergraduate, gradua...

  8. Heating in toroidal plasmas

    Knoepfel, H.; Mazzitelli, G.

    1984-01-01

    The article is a rather detailed report on the highlights in the area of the ''Heating in toroidal plasmas'', as derived from the presentations and discussions at the international symposium with the same name, held in Rome, March 1984. The symposium covered both the physics (experiments and theory) and technology of toroidal fusion plasma heating. Both large fusion devices (either already in operation or near completion) requiring auxiliary heating systems at the level of tens of megawatts, as well as physics of their heating processes and their induced side effects (as studied on smaller devices), received attention. Substantial progress was reported on the broad front of auxiliary plasma heating and Ohmic heating. The presentation of the main conclusions of the symposium is divided under the following topics: neutral-beam heating, Alfven wave heating, ion cyclotron heating, lower hybrid heating, RF current drive, electron cyclotron heating, Ohmic heating and special contributions

  9. Regenerative adsorbent heat pump

    Jones, Jack A. (Inventor)

    1991-01-01

    A regenerative adsorbent heat pump process and system is provided which can regenerate a high percentage of the sensible heat of the system and at least a portion of the heat of adsorption. A series of at least four compressors containing an adsorbent is provided. A large amount of heat is transferred from compressor to compressor so that heat is regenerated. The process and system are useful for air conditioning rooms, providing room heat in the winter or for hot water heating throughout the year, and, in general, for pumping heat from a lower temperature to a higher temperature.

  10. Heat Roadmap Europe

    David, Andrei; Mathiesen, Brian Vad; Averfalk, Helge

    2017-01-01

    The Heat Roadmap Europe (HRE) studies estimated a potential increase of the district heating (DH) share to 50% of the entire heat demand by 2050, with approximately 25–30% of it being supplied using large-scale electric heat pumps. This study builds on this potential and aims to document that suc......The Heat Roadmap Europe (HRE) studies estimated a potential increase of the district heating (DH) share to 50% of the entire heat demand by 2050, with approximately 25–30% of it being supplied using large-scale electric heat pumps. This study builds on this potential and aims to document...

  11. Annual simulations of heat pump systems with vertical ground heat exchangers

    Bernier, M.A.; Randriamiarinjatovo, D. [Ecole Polytechnique, Montreal, PQ (Canada). Dept. de Genie Mecanique

    2001-06-01

    The recent increased popularity in ground-coupled heat pump (GCHP) systems is due to their energy saving potential. However, in order for a GCHP to operate efficiently, they must be sized correctly. This paper presents a method to perform annual simulations of GCHP systems to optimize the length of the ground heat exchanger and provide annual energy consumption data. A computer program has been developed to simulate the building load, heat pump and the ground heat exchanger, the three most distinct parts of the system. The coupled governing equations of these three models are solved simultaneously until a converged solution is obtained at each time step. The simulations are performed using the Engineering Equation Solver (EES). This program has proven to be useful in balancing ground heat exchanger length against heat pump energy consumption.15 refs., 9 figs.

  12. Heat pumps in district heating networks

    Ommen, Torben Schmidt; Markussen, Wiebke Brix; Elmegaard, Brian

    constraints limit the power plants. Efficient heat pumps can be used to decouple the constraints of electricity and heat production, while maintaining the high energy efficiency needed to match the politically agreed carbon emission goals. The requirements in terms of COP, location, capacity and economy...... and strategic planning in the energy sector. The paper presents a case study of optimal implementation of heat pumps in the present energy system of the Copenhagen area. By introduction of the correct capacity of heat pumps, a 1,6 % reduction in fuel consumption for electricity and heat production can...

  13. FY 2000 report on the results of the development of commercialization technology of the photovoltaic power system. International cooperation project (Collection of the information on the IEA Solar Heating and Cooling Program); 2000 nendo seika hokokusho. Taiyoko hatsuden system jitsuyoka gijutsu kaihatsu kokusai jigyo kyoryoku (IEA taiyo reidanbo kyuto program ni kansuru joho shushu)

    NONE

    2001-03-01

    By sending specialists including mostly members of the IEA (International Energy Agency)/SHCP (Solar Heating and Cooling Program) to the Executive Committee Meeting of SHCP and the Task Specialist Meeting, information was collected, and the FY 2000 results were summarized. The mission of this implementing agreement by 2004 was to positively support the creation of the future environmentally sustainable by using solar design/technology to a high degree. For it, the following were to be carried out: development of solar technology including the cost reduction through the joint research with enterprises, construction of the international market, supply of the required information, quantification of the effectiveness of solar technology for the environment, tackling with the international standardization for expansion of the use in the building sector, promotion of solar technology utilization in developing countries, etc. In this fiscal year, finished were Task 19: Solar air/heat collecting system and Task 21: Natural lighting in buildings. Activities of Tasks 22-26, which started in the previous fiscal year, were continued. Activities of Tasks 27, 28 and 29 were newly started in this fiscal year. (NEDO)

  14. Solar heat storages in district heating networks

    Ellehauge, K. (Ellehauge og Kildemoes, AArhus (DK)); Engberg Pedersen, T. (COWI A/S, Kgs. Lyngby (DK))

    2007-07-15

    This report gives information on the work carried out and the results obtained in Denmark on storages for large solar heating plants in district heating networks. Especially in Denmark the share of district heating has increased to a large percentage. In 1981 around 33% of all dwellings in DK were connected to a district heating network, while the percentage in 2006 was about 60% (in total 1.5 mio. dwellings). In the report storage types for short term storage and long term storages are described. Short term storages are done as steel tanks and is well established technology widely used in district heating networks. Long term storages are experimental and used in connection with solar heating. A number of solar heating plants have been established with either short term or long term storages showing economy competitive with normal energy sources. Since, in the majority of the Danish district heating networks the heat is produced in co-generation plants, i.e. plants producing both electricity and heat for the network, special attention has been put on the use of solar energy in combination with co-generation. Part of this report describes that in the liberalized electricity market central solar heating plants can also be advantageous in combination with co-generation plants. (au)

  15. Heat pipes for ground heating and cooling

    Vasiliev, L L

    1988-01-01

    Different versions of heat pipe ground heating and cooling devices are considered. Solar energy, biomass, ground stored energy, recovered heat of industrial enterprises and ambient cold air are used as energy and cold sources. Heat pipe utilization of air in winter makes it possible to design accumulators of cold and ensures deep freezing of ground in order to increase its mechanical strength when building roadways through the swamps and ponds in Siberia. Long-term underground heat storage systems are considered, in which the solar and biomass energy is accumulated and then transferred to heat dwellings and greenhouses, as well as to remove snow from roadways with the help of heat pipes and solar collectors.

  16. Impact of Seasonal Heat Accumulation on Operation of Geothermal Heat Pump System with Vertical Ground Heat Exchanger

    Timofeev, D. V.; Malyavina, E. G.

    2017-11-01

    The subject of the investigation was to find out the influence of heat pump operation in summer on its function in winter. For this purpose a mathematical model of a ground coupled heat pump system has been developed and programmed. The mathematical model of a system ground heat exchanger uses the finite difference method to describe the heat transfer in soil and the analytical method to specify the heat transfer in the U-tubes heat exchanger. The thermal diffusivity by the heat transfer in the soil changes during gradual freezing of the pore moisture and thus slows soil freezing. The mathematical model of a heat pump includes the description of a scroll compressor and the simplified descriptions of the evaporator and condenser. The analysis showed that heating during the cold season and cooling in the warm season affect the average heat transfer medium temperature in the soil loop in the winter season. It has been also showed that the degree of this effect depends on the clay content in the soil.

  17. Boise geothermal district heating system

    Hanson, P.J.

    1985-10-01

    This document describes the Boise geothermal district heating project from preliminary feasibility studies completed in 1979 to a fully operational system by 1983. The report includes information about the two local governments that participated in the project - the City of Boise, Idaho and the Boise Warm Springs Water District. It also discusses the federal funding sources; the financial studies; the feasibility studies conducted; the general system planning and design; design of detailed system components; the legal issues involved in production; geological analysis of the resource area; distribution and disposal; the program to market system services; and the methods of retrofitting buildings to use geothermal hot water for space heating. Technically this report describes the Boise City district heating system based on 170/sup 0/F water, a 4000 gpm production system, a 41,000 foot pipeline system, and system economies. Comparable data are also provided for the Boise Warm Springs Water District. 62 figs., 31 tabs.

  18. Heat Roadmap Europe

    Connolly, David; Lund, Henrik; Mathiesen, Brian Vad

    2014-01-01

    compared to 1990 levels. None of these scenarios involve the large-scale implementation of district heating, but instead they focus on the electrification of the heating sector (primarily using heat pumps) and/or the large-scale implementation of electricity and heat savings. In this paper, the potential...... for district heating in the EU between now and 2050 is identified, based on extensive and detailed mapping of the EU heat demand and various supply options. Subsequently, a new ‘district heating plus heat savings’ scenario is technically and economically assessed from an energy systems perspective. The results...... indicate that with district heating, the EU energy system will be able to achieve the same reductions in primary energy supply and carbon dioxide emissions as the existing alternatives proposed. However, with district heating these goals can be achieved at a lower cost, with heating and cooling costs...

  19. Heat Roadmap Europe

    Hansen, Kenneth; Connolly, David; Lund, Henrik

    2015-01-01

    The cost of heat savings in buildings increase as more heat savings are achieved due to the state of the building stock and hence, alternatives other than savings typically become more economically feasible at a certain level of heat reductions. It is important to identify when the cost of heat...... savings become more expensive than the cost of sustainable heat supply, so society does not overinvest in heat saving measures. This study first investigates the heat saving potentials for different countries in Europe, along with their associated costs, followed by a comparison with alternative ways...... of supplying sustainable heating. Different heat production options are included in terms of individual and community heating systems. Furthermore, the levelised cost of supplying sustainable heat is estimated for both a single technology and from an energy system perspective. The results are analysed...

  20. Heat Roadmap Europe

    Connolly, David; Mathiesen, Brian Vad; Lund, Henrik

    2015-01-01

    This document is a summary of the key technical inputs for the modelling of the heat strategy for Europe outlined in the latest Heat Roadmap Europe studies [1, 2]. These studies quantify the impact of alternative heating strategies for Europe in 2030 and 2050. The study is based on geographical...... information systems (GIS) and energy system analyses. In this report, the inputs for other modelling tools such as PRIMES are presented, in order to enable other researches to generate similar heating scenarios for Europe. Although Heat Roadmap Europe presents a complete heat strategy for Europe, which...... includes energy efficiency, individual heating units (such as boilers and heat pumps), and heat networks, the recommendations here are primarily relating to the potential and modelling of district heating. Although other solutions will play a significant role in decarbonising the heating and cooling sector...

  1. Child Care Program Office

    Information Medicaid Public Health Centers Temporary "Cash" Assistance Senior Benefits Program the proposed regulation changes, including the potential costs to private persons of complying with Heating Assistance Medicaid Senior Benefits Temporary Assistance Get Help Food Health Care Cash Child Care

  2. "Nanotechnology Enabled Advanced Industrial Heat Transfer Fluids"

    Dr. Ganesh Skandan; Dr. Amit Singhal; Mr. Kenneth Eberts; Mr. Damian Sobrevilla; Prof. Jerry Shan; Stephen Tse; Toby Rossmann

    2008-06-12

    ABSTRACT Nanotechnology Enabled Advanced industrial Heat Transfer Fluids” Improving the efficiency of Industrial Heat Exchangers offers a great opportunity to improve overall process efficiencies in diverse industries such as pharmaceutical, materials manufacturing and food processing. The higher efficiencies can come in part from improved heat transfer during both cooling and heating of the material being processed. Additionally, there is great interest in enhancing the performance and reducing the weight of heat exchangers used in automotives in order to increase fuel efficiency. The goal of the Phase I program was to develop nanoparticle containing heat transfer fluids (e.g., antifreeze, water, silicone and hydrocarbon-based oils) that are used in transportation and in the chemical industry for heating, cooling and recovering waste heat. Much work has been done to date at investigating the potential use of nanoparticle-enhanced thermal fluids to improve heat transfer in heat exchangers. In most cases the effect in a commercial heat transfer fluid has been marginal at best. In the Phase I work, we demonstrated that the thermal conductivity, and hence heat transfer, of a fluid containing nanoparticles can be dramatically increased when subjected to an external influence. The increase in thermal conductivity was significantly larger than what is predicted by commonly used thermal models for two-phase materials. Additionally, the surface of the nanoparticles was engineered so as to have a minimal influence on the viscosity of the fluid. As a result, a nanoparticle-laden fluid was successfully developed that can lead to enhanced heat transfer in both industrial and automotive heat exchangers

  3. Monthly progress report: Heat source technology program

    George, T.G. [comp.

    1993-05-01

    This monthly report describes activities performed in support of Cassini fueled-clad production and studies related to the use of {sup 238}PuO{sub 2} in radioisotope power systems carried out for the Office of Special Applications of the US Department of Energy (DOE) by Los Alamos National Laboratory (LANL). Most of the activities described are ongoing; the results and conclusions described may change as the work progresses.

  4. Optimization of parameters of heat exchangers vehicles

    Andrei MELEKHIN

    2014-09-01

    Full Text Available The relevance of the topic due to the decision of problems of the economy of resources in heating systems of vehicles. To solve this problem we have developed an integrated method of research, which allows to solve tasks on optimization of parameters of heat exchangers vehicles. This method decides multicriteria optimization problem with the program nonlinear optimization on the basis of software with the introduction of an array of temperatures obtained using thermography. The authors have developed a mathematical model of process of heat exchange in heat exchange surfaces of apparatuses with the solution of multicriteria optimization problem and check its adequacy to the experimental stand in the visualization of thermal fields, an optimal range of managed parameters influencing the process of heat exchange with minimal metal consumption and the maximum heat output fin heat exchanger, the regularities of heat exchange process with getting generalizing dependencies distribution of temperature on the heat-release surface of the heat exchanger vehicles, defined convergence of the results of research in the calculation on the basis of theoretical dependencies and solving mathematical model.

  5. Numerical Analysis of Heat Storage and Heat Conductivity in the Concrete Hollow Core Deck Element

    Pomianowski, Michal Zbigniew; Heiselberg, Per; Jensen, Rasmus Lund

    2011-01-01

    extent these simplified models estimate the heat storage potential of precast hollow-core concrete decks correctly. This study investigates various approaches on how to model the heat transfer within the air void in the deck. Furthermore, it is analysed how different heat transfer models influence...... the overall heat transfer and heat storage in the hollow-core decks. The presented results allow comparison between detailed results from 2D-COMSOL simulations and simple 1D calculations from the whole building simulation tool such as BSim program and moreover, it is possible to validate the calculation...... method in BSim for the concrete deck element with air voids. Finally, this paper presents a comparison of the calculated heat conductivity of the hollow-core concrete deck and the measured heat conductivity for the same deck by using hot box apparatus....

  6. Investigation of Condensation Heat Transfer Correlation of Heat Exchanger Design in Secondary Passive Cooling System

    Ju, Yun Jae; Lee, Hee Joon [Kookmin Univ., Seoul (Korea, Republic of); Kang, Hanok; Lee, Taeho; Park, Cheontae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-12-15

    Recently, condensation heat exchangers have been studied for applications to the passive cooling systems of nuclear plants. To design vertical-type condensation heat exchangers in secondary passive cooling systems, TSCON (Thermal Sizing of CONdenser), a thermal sizing program for a condensation heat exchanger, was developed at KAERI (Korea Atomic Energy Research Institute). In this study, the existing condensation heat transfer correlation of TSCON was evaluated using 1,157 collected experimental data points from the heat exchanger of a secondary passive cooling system for the case of pure steam condensation. The investigation showed that the Shah correlation, published in 2009, provided the most satisfactory results for the heat transfer coefficient with a mean absolute error of 34.8%. It is suggested that the Shah correlation is appropriate for designing a condensation heat exchanger in TSCON.

  7. Rotary magnetic heat pump

    Kirol, L.D.

    1987-02-11

    A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation. 5 figs.

  8. Transient Heat Conduction

    Rode, Carsten

    1998-01-01

    Analytical theory of transient heat conduction.Fourier's law. General heat conducation equation. Thermal diffusivity. Biot and Fourier numbers. Lumped analysis and time constant. Semi-infinite body: fixed surface temperature, convective heat transfer at the surface, or constant surface heat flux...

  9. Preventing Hypothermia in Preterm Infants: A Program of Research

    This paper describes a program of research to examine thermoregulation in premature .... designed to minimize heat loss and aim for thermal ..... (4th ed.). London: Churchill Livingstone. Sedin, G. (1995). Neonatal heat transfer, routes of heat.

  10. Thulium-170 heat source

    Walter, Carl E.; Van Konynenburg, Richard; VanSant, James H.

    1992-01-01

    An isotopic heat source is formed using stacks of thin individual layers of a refractory isotopic fuel, preferably thulium oxide, alternating with layers of a low atomic weight diluent, preferably graphite. The graphite serves several functions: to act as a moderator during neutron irradiation, to minimize bremsstrahlung radiation, and to facilitate heat transfer. The fuel stacks are inserted into a heat block, which is encased in a sealed, insulated and shielded structural container. Heat pipes are inserted in the heat block and contain a working fluid. The heat pipe working fluid transfers heat from the heat block to a heat exchanger for power conversion. Single phase gas pressure controls the flow of the working fluid for maximum heat exchange and to provide passive cooling.

  11. District heating in Switzerland

    Herzog, F.

    1991-01-01

    District heating has been used in Switzerland for more than 50 years. Its share of the heat market is less than 3% today. An analysis of the use of district heating in various European countries shows that a high share of district heating in the heat market is always dependent on ideal conditions for its use. Market prospects and possible future developments in the use of district heating in Switzerland are described in this paper. The main Swiss producers and distributors of district heating are members of the Association of District Heating Producers and Distributors. This association supports the installation of district heating facilities where ecological, energetical and economic aspects indicate that district heating would be a good solution. (author) 2 tabs., 6 refs

  12. NASA energy technology applications program

    1980-07-05

    The NASA Energy Technology Applications Program is reviewed. This program covers the following points: 1. wind generation of electricity; 2. photovoltaic solar cells; 3. satellite power systems; 4. direct solar heating and cooling; 5. solar thermal power plants; 6. energy storage; 7. advanced ground propulsion; 8. stationary on-site power supply; 9. advanced coal extraction; 10. magnetic heat pump; 11. aeronautics.

  13. Optimization of heat recovery with computers. Waermerueckgewinnung mit Computer optimieren

    Gueggi, T. (Jaeggi AG, Bern (Switzerland))

    1991-05-01

    The economic efficiency of heat recovery systems largely depends on the correct dimensioning of the heat exchangers and the whole plant. With special computer programs today dimensioning, design choice and the combined action of the total system can be optimized on the basis of given parameters and to predict the economic and energetic result. One of these user programs is presented. (BWI).

  14. Proceedings: Meeting customer needs with heat pumps, 1991

    1992-12-01

    Electric heat pumps provide a growing number of residential and commercial customers with space heating and cooling as well as humidity control and water heating. Industrial customers use heat pump technology for energy-efficient, economical process heating and cooling. Heat pumps help utilities meet environmental protection needs and satisfy their load-shape objectives. The 1991 conference was held in Dallas on October 15--18, featuring 60 speakers representing electric utilities, consulting organizations, sponsoring organizations, and heat pump manufacturers. The speakers presented the latest information about heat pump markets, technologies, applications, trade ally programs, and relevant issues. Participants engaged in detailed discussions in ''breakout'' and parallel sessions and viewed more than 30 exhibits of heat pumps, software, and other products and services supporting heat pump installations and service. Electric utilities have the greatest vested interest in the sale of electric heat pumps and thus have responsibility to ensure quality installations through well-trained technicians, authoritative and accurate technical information, and wellinformed design professionals. The electric heat pump is an excellent tool for the electric utility industry's response to environmental and efficiency challenges as well as to competition from other fuel sources. Manufacturers are continually introducing new products and making research results available to meet these challenges. Industrial process heat pumps offer customers the ability to supply heat to process at a lower cost than heat supplied by primary-fuel-fired boilers. From the utility perspective these heat pumps offer an opportunity for a new electric year-round application

  15. Analysis of Heat Transfer

    2003-08-01

    This book deals with analysis of heat transfer which includes nonlinear analysis examples, radiation heat transfer, analysis of heat transfer in ANSYS, verification of analysis result, analysis of heat transfer of transition with automatic time stepping and open control, analysis of heat transfer using arrangement of ANSYS, resistance of thermal contact, coupled field analysis such as of thermal-structural interaction, cases of coupled field analysis, and phase change.

  16. Heating in toroidal plasmas

    Canobbio, E.

    1981-01-01

    This paper reports on the 2nd Joint Grenoble-Varenna International Symposium on Heating in Toroidal Plasmas, held at Como, Italy, from the 3-12 September 1980. Important problems in relation to the different existing processes of heating. The plasma were identified and discussed. Among others, the main processes discussed were: a) neutral beam heating, b) ion-(electron)-cyclotron resonance heating, c) hybrid resonance and low frequency heating

  17. Introduction to heat transfer

    SUNDÉN, B

    2012-01-01

    Presenting the basic mechanisms for transfer of heat, Introduction to Heat Transfer gives a deeper and more comprehensive view than existing titles on the subject. Derivation and presentation of analytical and empirical methods are provided for calculation of heat transfer rates and temperature fields as well as pressure drop. The book covers thermal conduction, forced and natural laminar and turbulent convective heat transfer, thermal radiation including participating media, condensation, evaporation and heat exchangers.

  18. Heat exchange apparatus

    Thurston, G.C.; McDaniels, J.D.; Gertsch, P.R.

    1979-01-01

    The present invention relates to heat exchangers used for transferring heat from the gas cooled core of a nuclear reactor to a secondary medium during standby and emergency conditions. The construction of the heat exchanger described is such that there is a minimum of welds exposed to the reactor coolant, the parasitic heat loss during normal operation of the reactor is minimized and the welds and heat transfer tubes are easily inspectable. (UK)

  19. Supplementary plasma heating studies in the Atomic Energy Commission France

    Consoli, T.

    1976-01-01

    The research on supplementary heating of toroidal plasma made in France at the Atomic Energy Commission and in the European Community are described (with special reference to the J.E.T. project) in the frame of the national programs. A non exhaustive description of the world effort in this topic is also presented: (neutral injection heating, TTMP (transit time magnetic pumping) heating, electron and ion cyclotron resonance, and lower hybrid resonance heating)

  20. Numerical simulation of induction heating thick-walled tubes

    Lenhard Richard

    2018-01-01

    Full Text Available In the paper is shown the connection of two toolboxes in an Ansys Workbench solution for induction heating. In Ansys Workbench, Maxwell electromagnetism programs and Fluent have been linked. In Maxwell, a simulation of electromagnetic induction was performed, where data on the magnetic field distribution in the heated material was obtained and then transformed into the Fluent program in which the induction heating simulation was performed.

  1. Heat cascading regenerative sorption heat pump

    Jones, Jack A. (Inventor)

    1995-01-01

    A simple heat cascading regenerative sorption heat pump process with rejected or waste heat from a higher temperature chemisorption circuit (HTCC) powering a lower temperature physisorption circuit (LTPC) which provides a 30% total improvement over simple regenerative physisorption compression heat pumps when ammonia is both the chemisorbate and physisorbate, and a total improvement of 50% or more for LTPC having two pressure stages. The HTCC contains ammonia and a chemisorbent therefor contained in a plurality of canisters, a condenser-evaporator-radiator system, and a heater, operatively connected together. The LTPC contains ammonia and a physisorbent therefor contained in a plurality of compressors, a condenser-evaporator-radiator system, operatively connected together. A closed heat transfer circuit (CHTC) is provided which contains a flowing heat transfer liquid (FHTL) in thermal communication with each canister and each compressor for cascading heat from the HTCC to the LTPC. Heat is regenerated within the LTPC by transferring heat from one compressor to another. In one embodiment the regeneration is performed by another CHTC containing another FHTL in thermal communication with each compressor. In another embodiment the HTCC powers a lower temperature ammonia water absorption circuit (LTAWAC) which contains a generator-absorber system containing the absorbent, and a condenser-evaporator-radiator system, operatively connected together. The absorbent is water or an absorbent aqueous solution. A CHTC is provided which contains a FHTL in thermal communication with the generator for cascading heat from the HTCC to the LTAWAC. Heat is regenerated within the LTAWAC by transferring heat from the generator to the absorber. The chemical composition of the chemisorbent is different than the chemical composition of the physisorbent, and the absorbent. The chemical composition of the FHTL is different than the chemisorbent, the physisorbent, the absorbent, and ammonia.

  2. Heat transfer from internally heated hemispherical pools

    Gabor, J.D.; Ellsion, P.G.; Cassulo, J.C.

    1980-01-01

    Experiments were conducted on heat transfer from internally heated ZnSO 4 -H 2 O pools to the walls of hemispherical containers. This experimental technique provides data for a heat transfer system that has to date been only theoretically treated. Three different sizes of copper hemispherical containers were used: 240, 280, 320 mm in diameter. The pool container served both as a heat transfer surface and as an electrode. The opposing electrode was a copper disk, 50 mm in diameter located at the top of the pool in the center. The top surface of the pool was open to the atmosphere

  3. Development of heat pump technology in eco-energy city project

    Omata, Tomio [New Energy Development Organization (Japan); Ogisu, Yoshihiro [Office of Eco-Energy City Project, Energy Conservation Center (Japan)

    1999-07-01

    In the New Sunshine Project conducted by MITI Japan, Eco-Energy City-Project covers the research area of utilization of industrial and municipal waste heat. For the further utilization of waste heat, several research programs are carried out for recovery and conversion of waste heat, transportation and storage of waste heat and final use of rather low temperature heat transported. Various types of heat driven heat pumps are developed in the Eco-Energy City Project. Concept of the Project is to utilize industrial and municipal waste heat for the city where energy demand is increasing. These heat pumps will contribute for the reduction of CO{sub 2} emission. (orig.)

  4. Heat pump augmentation of nuclear process heat

    Koutz, S.L.

    1986-01-01

    A system is described for increasing the temperature of a working fluid heated by a nuclear reactor. The system consists of: a high temperature gas cooled nuclear reactor having a core and a primary cooling loop through which a coolant is circulated so as to undergo an increase in temperature, a closed secondary loop having a working fluid therein, the cooling and secondary loops having cooperative association with an intermediate heat exchanger adapted to effect transfer of heat from the coolant to the working fluid as the working fluid passes through the intermediate heat exchanger, a heat pump connected in the secondary loop and including a turbine and a compressor through which the working fluid passes so that the working fluid undergoes an increase in temperature as it passes through the compressor, a process loop including a process chamber adapted to receive a process fluid therein, the process chamber being connected in circuit with the secondary loop so as to receive the working fluid from the compressor and transfer heat from the working fluid to the process fluid, a heat exchanger for heating the working fluid connected to the process loop for receiving heat therefrom and for transferring heat to the secondary loop prior to the working fluid passing through the compressor, the secondary loop being operative to pass the working fluid from the process chamber to the turbine so as to effect driving relation thereof, a steam generator operatively associated with the secondary loop so as to receive the working fluid from the turbine, and a steam loop having a feedwater supply and connected in circuit with the steam generator so that feedwater passing through the steam loop is heated by the steam generator, the steam loop being connected in circuit with the process chamber and adapted to pass steam to the process chamber with the process fluid

  5. Numerical Investigation of Floor Heating Systems in Low Energy Houses

    Weitzmann, Peter; Kragh, Jesper; Jensen, Claus Franceos

    2002-01-01

    In this paper an investigation of floor heating systems is performed with respect to heating demand and room temperature. Presently (2001) no commercially available building simulation programs that can be used to evaluate heating demand and thermal comfort in buildings with building integrated....... The model calculates heating demand, room temperatures, and thermal comfort parameters for a person in the room. The model is based on a numerical Finite Control Volume (FCV) method for the heat transfer in walls, ceiling, windows and floor. The model uses both convective and radiative heat transfer...... to the room air and between the room surfaces. The simulation model has been used to calculate heating demand and room temperature in a typical well insulated Danish single-family house with a heating demand of approximately 6000 kWh per year, for a 130 m² house. Two different types of floor heating systems...

  6. Seminar on heat pump research and applications: proceedings

    Steele, R.V. Jr. (ed.)

    1984-11-01

    This volume is a compilation of papers prepared by speakers at a seminar on heat pumps. The seminar was organized by the Electric Power Research Institute (EPRI) in cooperation with Louisiana Power and Light Company and New Orleans Public Service, Inc. The seminar's purpose was to inform utility managers and engineers of the most recent developments in residential heat pump technology and applications. Statements by invited panelists on the outlook for heat pump technology are also included. The speakers, who represented key organizations in the heat pump area, including utilities, industry associations, manufacturers, independent research institutes, government, and EPRI, addressed the following topics: status of heat pump research and development, heat pump testing and rating; field monitoring of heat pumps; heat pump water heaters; heat pump reliability; and marketing programs for pumps. All papers, total of sixteen have been processed for inclusion in the Energy Data Base.

  7. Numerical Simulation of Different Models of Heat Pipe Heat Exchanger Using AcuSolve

    Zainal Nurul Amira

    2017-01-01

    Full Text Available In this paper, a numerical simulation of heat pipe heat exchanger (HPHE is computed by using CFD solver program i.e. AcuSolve. Two idealized model of HPHE are created with different variant of entry’s dimension set to be case 1 and case 2. The geometry of HPHE is designed in SolidWorks and imported to AcuSolve to simulate the fluid flow numerically. The design of HPHE is the key to provide a heat exchanger system to work proficient as expected. Finally, the result is used to optimize and improving heat recovery systems of the increasing demand for energy efficiency in industry.

  8. SCEPTIC, Pressure Drop, Flow Rate, Heat Transfer, Temperature in Reactor Heat Exchanger

    Kattchee, N.; Reynolds, W.C.

    1975-01-01

    1 - Nature of physical problem solved: SCEPTIC is a program for calculating pressure drop, flow rates, heat transfer rates, and temperature in heat exchangers such as fuel elements of typical gas or liquid cooled nuclear reactors. The effects of turbulent and heat interchange between flow passages are considered. 2 - Method of solution: The computation procedure amounts to a nodal of lumped parameter type of calculation. The axial mesh size is automatically selected to assure that a prescribed accuracy of results is obtained. 3 - Restrictions on the complexity of the problem: Maximum number of subchannels is 25, maximum number of heated surfaces is 46

  9. Heat recovery in industry

    Steimle, F; Paul, J [Essen Univ. (Gesamthochschule) (Germany, F.R.)

    1977-05-01

    The waste heat of industrial furnaces and other heat-consuming installations can be utilized by recuperative processes in the furnace and by energy cascades. Economy and the need for an external supply of energy are closely connected. Straight cascades can hardly be realized and if the required temperature gradient is too great such heat should be utilized repeatedly if possible by recycling through heat pumps. The possibilities depend on the relevant temperature since the technology available for this differs in its state of development. The low-temperature waste heat from the final stage can be used for space-heating and water heating by heat exchangers and heat pumps and thus be put to a useful purpose.

  10. Solar heat gain through vertical cylindrical glass

    Kassem, M.A.; Kaseb, S.; El-Refaie, M.F. [Cairo Univ., Mechanical Power Engineering Dept., Cairo (Egypt)

    1999-10-01

    Spaces with nonplanar glazed envelopes are frequently encountered in contemporary buildings. Such spaces represent a problem when calculating the solar heat gain in the course of estimating the cooling or heating load; and hence, sizing of cooling or heating systems. The calculation, using the information currently available in the literature, is tedious and/or approximate. In the present work, the computational procedure for evaluating the solar heat gain to a space having a vertical cylindrical glass envelope is established, and, a computer program is coded to carry out the necessary computations and yield the results in a detailed usable form. The program is versatile and allows for the arbitrary variation of all pertinent parameters. (Author)

  11. Solar heat gain through vertical cylindrical glass

    Kassem, M.A.; Kaseb, S.; El-Refaie, M.F.

    1999-01-01

    Spaces with nonplanar glazed envelopes are frequently encountered in contemporary buildings. Such spaces represent a problem when calculating the solar heat gain in the course of estimating the cooling or heating load; and hence, sizing of cooling or heating systems. The calculation, using the information currently available in the literature, is tedious and/or approximate. In the present work, the computational procedure for evaluating the solar heat gain to a space having a vertical cylindrical glass envelope is established, and, a computer program is coded to carry out the necessary computations and yield the results in a detailed usable form. The program is versatile and allows for the arbitrary variation of all pertinent parameters. (Author)

  12. Solar heat gain through vertical cylindrical glass

    Kassem, M.A.; Kaseb, S.; El-Refaie, M.F. [Cairo Univ., Mechanical Power Engineering Dept., Cairo (Egypt)

    1999-07-01

    Spaces with nonplanar glazed envelopes are frequently encountered in contemporary buildings. Such spaces represent a problem when calculating the solar heat gain in the course of estimating the cooling or heating load; and hence, sizing of cooling or heating systems. The calculation, using the information currently available in the literature, is tedious and/or approximate. In the present work, the computational procedure for evaluating the solar heat gain to a space having a vertical cylindrical glass envelope is established, and, a computer program is coded to carry out the necessary computations and yield the results in a detailed usable form. The program is versatile and allows for the arbitrary variation of all pertinent parameters. (Author)

  13. New nuclear heat sources for district heating

    Lerouge, B.

    1975-01-01

    The means by which urban oil heating may be taken over by new energy sources, especially nuclear, are discussed. Several possibilities exist: pressurized water reactors for high powers, and low-temperature swimming-pool-type process-heat reactors for lower powers. Both these cases are discussed [fr

  14. Heat transfer system

    Not Available

    1980-03-07

    A heat transfer system for a nuclear reactor is described. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

  15. Basic heat transfer

    Bacon, D H

    2013-01-01

    Basic Heat Transfer aims to help readers use a computer to solve heat transfer problems and to promote greater understanding by changing data values and observing the effects, which are necessary in design and optimization calculations.The book is concerned with applications including insulation and heating in buildings and pipes, temperature distributions in solids for steady state and transient conditions, the determination of surface heat transfer coefficients for convection in various situations, radiation heat transfer in grey body problems, the use of finned surfaces, and simple heat exc

  16. Microscale Regenerative Heat Exchanger

    Moran, Matthew E.; Stelter, Stephan; Stelter, Manfred

    2006-01-01

    The device described herein is designed primarily for use as a regenerative heat exchanger in a miniature Stirling engine or Stirling-cycle heat pump. A regenerative heat exchanger (sometimes called, simply, a "regenerator" in the Stirling-engine art) is basically a thermal capacitor: Its role in the Stirling cycle is to alternately accept heat from, then deliver heat to, an oscillating flow of a working fluid between compression and expansion volumes, without introducing an excessive pressure drop. These volumes are at different temperatures, and conduction of heat between these volumes is undesirable because it reduces the energy-conversion efficiency of the Stirling cycle.

  17. Rock bed heat accumulators. Final report

    Riaz, M.

    1977-12-01

    The principal objectives of the research program on rock bed heat accumulators (or RBHA) are: (1) to investigate the technical and economic feasibility of storing large amounts of thermal energy (in the tens of MWt range) at high temperature (up to 500/sup 0/C) over extended periods of time (up to 6 months) using native earth or rock materials; (2) to conduct studies to establish the performance characteristics of large rock bed heat accumulators at various power and temperature levels compatible with thermal conversion systems; and (3) to assess the materials and environmental problems associated with the operation of such large heat accumulators. Results of the study indicate that rock bed heat accumulators for seasonal storage are both technically and economically feasible, and hence could be exploited in various applications in which storage plays an essential role such as solar power and total energy systems, district and cogeneration heating systems.

  18. D-Zero HVAC Heat Pump Controls

    Markley, Dan

    2004-01-01

    This engineering note documents the integration of Dzero Heat Pump 1 through Heat Pump 15 into the cryo/gas process control system commonly referred to as the cryo control system. Heat pumps 1 through 15 control the ambient air temperature on the 3rd, 5th, and 6th floor office areas at Dzero. The entire Johnson HVAC control system was replaced with a Siemens control system in 1999 leaving behind the 15 heat pumps with stand-alone Johnson controllers. Now, these 15 heat pump Johnson controllers are being replaced with small stand alone Beckhoff BC9000 controllers. The Beckhoff BC9000 controllers are network able into the existing Intellution control system. The Beckhoff BC9000 controllers use the cryo private Ethernet network and an OPC driver to get data into the Intellution SCADA node databases. The BC9000 is also programmed over this same Ethernet network.

  19. Investigation of Heat Pump Operation Strategies with Thermal Storage in Heating Conditions

    Wangsik Jung

    2017-12-01

    Full Text Available A heat pump with thermal storage system is a system that operates a heat pump during nighttime using inexpensive electricity; during this time, the generated thermal energy is stored in a thermal storage tank. The stored thermal energy is used by the heat pump during daytime. Based on a model of a dual latent thermal storage tank and a heat pump, this study conducts control simulations using both conventional and advanced methods for heating in a building. Conventional methods include the thermal storage priority method and the heat pump priority method, while advanced approaches include the region control method and the dynamic programming method. The heating load required for an office building is identified using TRNSYS (Transient system simulation, used for simulations of various control methods. The thermal storage priority method shows a low coefficient of performance (COP, while the heat pump priority method leads to high electricity costs due to the low use of thermal storage. In contrast, electricity costs are lower for the region control method, which operates using the optimal part load ratio of the heat pump, and for dynamic programming, which operates the system by following the minimum cost path. According to simulation results for the winter season, the electricity costs using the dynamic programming method are 17% and 9% lower than those of the heat pump priority and thermal storage priority methods, respectively. The region control method shows results similar to the dynamic programming method with respect to electricity costs. In conclusion, advanced control methods are proven to have advantages over conventional methods in terms of power consumption and electricity costs.

  20. Heat transfer enhancement

    Hasatani, Masanobu; Itaya, Yoshinori

    1985-01-01

    In order to develop energy-saving techniques and new energy techniques, and also most advanced techniques by making industrial equipment with high performance, heat transfer performance frequently becomes an important problem. In addition, the improvement of conventional heat transfer techniques and the device of new heat transfer techniques are often required. It is most proper that chemical engineers engage in the research and development for enhancing heat transfer. The research and development for enhancing heat transfer are important to heighten heat exchange efficiency or to cool equipment for preventing overheat in high temperature heat transfer system. In this paper, the techniques of enhancing radiative heat transfer and the improvement of radiative heat transfer characteristics are reported. Radiative heat transfer is proportional to fourth power of absolute temperature, and it does not require any heat transfer medium, but efficient heat-radiation converters are necessary. As the techniques of enhancing radiative heat transfer, the increase of emission and absorption areas, the installation of emissive structures and the improvement of radiative characteristics are discussed. (Kako, I.)

  1. Spreadsheet eases heat balance, payback calculations

    Conner, K.P.

    1992-01-01

    This paper reports that a generalized Lotus type spreadsheet program has been developed to perform the heat balance and simple payback calculations for various turbine-generator (TG) inlet steam pressures. It can be used for potential plant expansions or new cogeneration installations. The program performs the basic heat balance calculations that are associated with turbine-generator, feedwater heating process steam requirements and desuperheating. The printout, shows the basic data and formulation used in the calculations. The turbine efficiency data used are applicable for automatic extraction turbine-generators in the 30-80 MW range. Simple payback calculations are for chemical recovery boilers and power boilers used in the pulp and paper industry. However, the program will also accommodate boilers common to other industries

  2. Convective heat transfer

    Kakac, Sadik; Pramuanjaroenkij, Anchasa

    2014-01-01

    Intended for readers who have taken a basic heat transfer course and have a basic knowledge of thermodynamics, heat transfer, fluid mechanics, and differential equations, Convective Heat Transfer, Third Edition provides an overview of phenomenological convective heat transfer. This book combines applications of engineering with the basic concepts of convection. It offers a clear and balanced presentation of essential topics using both traditional and numerical methods. The text addresses emerging science and technology matters, and highlights biomedical applications and energy technologies. What’s New in the Third Edition: Includes updated chapters and two new chapters on heat transfer in microchannels and heat transfer with nanofluids Expands problem sets and introduces new correlations and solved examples Provides more coverage of numerical/computer methods The third edition details the new research areas of heat transfer in microchannels and the enhancement of convective heat transfer with nanofluids....

  3. The secure heating reactor

    Pind, C.

    1987-01-01

    The SECURE heating reactor was designed by ASEA-ATOM as a realistic alternative for district heating in urban areas and for supplying heat to process industries. SECURE has unique safety characteristics, that are based on fundamental laws of physics. The safety does not depend on active components or operator intervention for shutdown and cooling of the reactor. The inherent safety characteristics of the plant cannot be affected by operator errors. Due to its very low environment impact, it can be sited close to heat consumers. The SECURE heating reactor has been shown to be competitive in comparison with other alternatives for heating Helsinki and Seoul. The SECURE heating reactor forms a basis for the power-producing SECURE-P reactor known as PIUS (Process Inherent Ultimate Safety), which is based on the same inherent safety principles. The thermohydraulic function and transient response have been demonstrated in a large electrically heated loop at the ASEA-ATOM laboratories

  4. Effective geothermal heat

    Abelsen, Atle

    2006-01-01

    Scandinavia's currently largest geothermal heating project: the New Ahus hospital, is briefly presented. 300-400 wells on a field outside the hospital are constructed to store energy for both heating and cooling purposes

  5. Heat-Related Illnesses

    Full Text Available ... Be Prepared Safe Citizen Day Organize Important Medical Information ER Checklists Preparing for Emergencies Be ready to ... anyone can be affected. Here you will find information about heat cramps and heat stroke and exhaustion. ...

  6. Paleoclassical electron heat transport

    Callen, J.D.

    2005-01-01

    Radial electron heat transport in low collisionality, magnetically-confined toroidal plasmas is shown to result from paleoclassical Coulomb collision processes (parallel electron heat conduction and magnetic field diffusion). In such plasmas the electron temperature equilibrates along magnetic field lines a long length L, which is the minimum of the electron collision length and a maximum effective half length of helical field lines. Thus, the diffusing field lines induce a radial electron heat diffusivity M ≅ L/(πR 0q ) ∼ 10 >> 1 times the magnetic field diffusivity η/μ 0 ≅ ν e (c/ω p ) 2 . The paleoclassical electron heat flux model provides interpretations for many features of 'anomalous' electron heat transport: magnitude and radial profile of electron heat diffusivity (in tokamaks, STs, and RFPs), Alcator scaling in high density plasmas, transport barriers around low order rational surfaces and near a separatrix, and a natural heat pinch (or minimum temperature gradient) heat flux form. (author)

  7. Regenerative heat sources for heating networks

    Huenges, Ernst; Sperber, Evelyn; Eggers, Jan-Bleicke; Noll, Florian; Kallert, Anna Maria; Reuss, Manfred

    2015-01-01

    The ambitious goal, the German Federal Government has set itself, to reduce the emissions of greenhouse gases by 80% to 95% by the year 2050. As there are currently more than half of German energy consumption for the production of heat is required, big contributions to climate protection can be expected from this area if more renewable heat sources are used. Renewable heat sources such as bioenergy, solar thermal and geothermal energy in particular can be provided as compared to fossil fuels with significantly lower specific CO 2 emissions. Objectives in the heating market and scenarios for the transformation of the heat sector have been elaborated in the BMU Lead Study 2011. The main pillar of this scenario is the reduction of final energy consumption for heat by the energy-efficient renovation of existing buildings and further increasing demands on the energetic quality of new buildings. To cover the remaining energy demand, a focus is on the expansion of heating networks based on renewable energies. [de

  8. Ion cyclotron resonance heating

    Tajima, T.

    1982-01-01

    Ion cyclotron resonance heating of plasmas in tokamak and EBT configurations has been studied using 1-2/2 and 2-1/2 dimensional fully self-consistent electromagnetic particle codes. We have tested two major antenna configurations; we have also compared heating efficiencies for one and two ion species plasmas. We model a tokamak plasma with a uniform poloidal field and 1/R toroidal field on a particular q surface. Ion cyclotron waves are excited on the low field side by antennas parallel either to the poloidal direction or to the toroidal direction with different phase velocities. In 2D, minority ion heating (vsub(perpendicular)) and electron heating (vsub(parallel),vsub(perpendicular)) are observed. The exponential electron heating seems due to the decay instability. The minority heating is consistent with mode conversion of fast Alfven waves and heating by electrostatic ion cyclotron modes. Minority heating is stronger with a poloidal antenna. The strong electron heating is accompanied by toroidal current generation. In 1D, no thermal instability was observed and only strong minority heating resulted. For an EBT plasma we model it by a multiple mirror. We have tested heating efficiency with various minority concentrations, temperatures, mirror ratios, and phase velocities. In this geometry we have beach or inverse beach heating associated with the mode conversion layer perpendicular to the toroidal field. No appreciable electron heating is observed. Heating of ions is linear in time. For both tokamak and EBT slight majority heating above the collisional rate is observed due to the second harmonic heating. (author)

  9. MATHEMATICAL MODEL OF UNSTEADY HEAT TRANSFER OF PASSENGER CAR WITH HEATING SYSTEM

    E. V. Biloshytskyi

    2018-02-01

    Full Text Available Purpose. The existing mathematical models of unsteady heat processes in a passenger car do not fully reflect the thermal processes, occurring in the car wits a heating system. In addition, unsteady heat processes are often studied in steady regime, when the heat fluxes and the parameters of the thermal circuit are constant and do not depend on time. In connection with the emergence of more effective technical solutions to the life support system there is a need for creating a new mathematical apparatus, which would allow taking into account these features and their influence on the course of unsteady heat processes throughout the travel time. The purpose of this work is to create a mathematical model of the heat regime of a passenger car with a heating system that takes into account the unsteady heat processes. Methodology. To achieve this task the author composed a system of differential equations, describing unsteady heat processes during the heating of a passenger car. For the solution of the composed system of equations, the author used the method of elementary balances. Findings. The paper presents the developed numerical algorithm and computer program for simulation of transitional heat processes in a locomotive traction passenger car, which allows taking into account the various constructive solutions of the life support system of passenger cars and to simulate unsteady heat processes at any stage of the trip. Originality. For the first time the author developed a mathematical model of heat processes in a car with a heating system, that unlike existing models, allows to investigate the unsteady heat engineering performance in the cabin of the car under different operating conditions and compare the work of various life support systems from the point of view their constructive solutions. Practical value. The work presented the developed mathematical model of the unsteady heat regime of the passenger car with a heating system to estimate

  10. Research on the fundamental process of thermal-hydraulic behaviors in severe accident. Heat transfer on the liquid-liquid interface between molten core pool and coolant. JAERI's nuclear research promotion program, H10-027-6. Contract research

    Mishima, Kaichiro; Saito, Yasushi

    2002-03-01

    Heat transfer experiments under steady and transient conditions were performed using molten Wood's metal and distilled water to study heat transfer on the liquid-liquid interface between molten fuel pool and coolant under severe accident conditions. In the steady state experiment, boiling curve was measured over the range from natural convection region to film boiling region. The boiling behavior was observed using a high-speed video camera. In the transient experiment, distilled water was poured onto the hot molten metal surface, and the boiling curve was obtained in the cooling process. Comparing the measured boiling curve with existing correlations and experimental data for solid-liquid and liquid-liquid systems, the following conclusions were drawn: (a) When the interface surge is negligible and oxide layer is formed on the interface, the boiling curve at the liquid-liquid surface could be approximately reproduced by the heat transfer correlations for nucleate boiling and film boiling regions and the critical heat flux correlation for a liquid-solid system. (b) When no oxide layer is formed on the interface, the boiling curve at the liquid-liquid surface moved towards higher wall superheat than that at the liquid-solid surface, as Novakovic et al. observed in their experiment using mercury. (c) Transient heat transfer coefficient for film boiling at the liquid-liquid surface was about 100% higher than that predicted by the heat transfer correlation for a solid-liquid system. (author)

  11. Heat roadmap China

    Xiong, Weiming; Wang, Yu; Mathiesen, Brian Vad

    2015-01-01

    District heating is regarded as a key element of energy saving actions in the Chinese national energy strategy, while space heating in China is currently still dominated by coal boilers. However, there is no existing quantitative study to analyse the future heat strategy for China. Therefore...

  12. Heat Recovery System

    1984-01-01

    Ball Metal's design of ducting and controls for series of roof top heat exchangers was inspired by Tech Briefs. Heat exchangers are installed on eight press and coating lines used to decorate sheet metal. The heat recovery system provides an estimated energy savings of more than $250,000 per year.

  13. Microwave processing heats up

    Microwaves are a common appliance in many households. In the United States microwave heating is the third most popular domestic heating method food foods. Microwave heating is also a commercial food processing technology that has been applied for cooking, drying, and tempering foods. It's use in ...

  14. Solar heating pipe

    Hinson-Rider, G.

    1977-10-04

    A fluid carrying pipe is described having an integral transparent portion formed into a longitudinally extending cylindrical lens that focuses solar heat rays to a focal axis within the volume of the pipe. The pipe on the side opposite the lens has a heat ray absorbent coating for absorbing heat from light rays that pass through the focal axis.

  15. Champagne Heat Pump

    Jones, Jack A.

    2004-01-01

    The term champagne heat pump denotes a developmental heat pump that exploits a cycle of absorption and desorption of carbon dioxide in an alcohol or other organic liquid. Whereas most heat pumps in common use in the United States are energized by mechanical compression, the champagne heat pump is energized by heating. The concept of heat pumps based on other absorption cycles energized by heat has been understood for years, but some of these heat pumps are outlawed in many areas because of the potential hazards posed by leakage of working fluids. For example, in the case of the water/ammonia cycle, there are potential hazards of toxicity and flammability. The organic-liquid/carbon dioxide absorption/desorption cycle of the champagne heat pump is similar to the water/ammonia cycle, but carbon dioxide is nontoxic and environmentally benign, and one can choose an alcohol or other organic liquid that is also relatively nontoxic and environmentally benign. Two candidate nonalcohol organic liquids are isobutyl acetate and amyl acetate. Although alcohols and many other organic liquids are flammable, they present little or no flammability hazard in the champagne heat pump because only the nonflammable carbon dioxide component of the refrigerant mixture is circulated to the evaporator and condenser heat exchangers, which are the only components of the heat pump in direct contact with air in habitable spaces.

  16. Designing heat exchangers for process heat reactors

    Quade, R.N.

    1980-01-01

    A brief account is given of the IAEA specialist meeting on process heat applications technology held in Julich, November 1979. The main emphasis was on high temperature heat exchange. Papers were presented covering design requirements, design construction and prefabrication testing, and selected problems. Primary discussion centered around mechanical design, materials requirements, and structural analysis methods and limits. It appears that high temperature heat exchanges design to nuclear standards, is under extensive development but will require a lengthy concerted effort before becoming a commercial reality. (author)

  17. SUCO program

    Knebel, J.U.

    1995-01-01

    The SUCO program is a three-step series of scaled model experiments investigating the optional sump cooling concept of the EPR. This concept is entirely based on passive safety features. This report presents the basic physical phenomena and scaling criteria of decay heat removal from a large coolant pool by single-phase and two-phase natural circulation flow. The physical significance of the dimensionless similarity groups derived is evaluated. The report gives first measurement results of the 1:20 linearly scaled plane two-dimensional SUCOS-2D test facility. The real height SUCOT test facility that is in its building up phase is presented. (orig.)

  18. Condensation heat transfer in plate heat exchangers

    Panchal, C.B.

    1985-01-01

    An Alfa-Laval plate heat exchanger, previously tested as an evaporator, was retested as a condenser. Two series of tests with different chevron-angle plates were carried out using ammonia as a working fluid. The overall heat-transfer coefficient and pressure drop were measured, and the effects of operating parameters were determined. The experimental data were compared with theoretical predictions. In the analysis, a gravity-controlled condensation process was modeled theoretically, and the overall performance was calculated. The analysis shows that the overall heat-transfer coefficient can be predicted with an average uncertainty of about 10%. It is, however, important to consider the interfacial shear stress, because the effective friction factor is high for flow in plate heat exchangers

  19. Single Electrode Heat Effects

    Jacobsen, Torben; Broers, G. H. J.

    1977-01-01

    The heat evolution at a single irreversibly working electrode is treated onthe basis of the Brønsted heat principle. The resulting equation is analogous to the expression for the total heat evolution in a galvanic cellwith the exception that –DeltaS is substituted by the Peltier entropy, Delta......SP, of theelectrode reaction. eta is the overvoltage at the electrode. This equation is appliedto a high temperature carbonate fuel cell. It is shown that the Peltier entropyterm by far exceeds the heat production due to the irreversible losses, and thatthe main part of heat evolved at the cathode is reabsorbed...

  20. Introduction to heat transfer

    Weisman, J.

    1983-01-01

    Heat may be defined as that form of energy which spontaneously flows between two bodies, or two regions of a body, by virtue of a temperature difference. The second law of thermodynamics tells us that we cannot have heat flow from a low temperature to high temperature without doing work. Heat flows spontaneously from a high temperature to a low temperature region. Thermodynamics, which is concerned with equilibrium states, cannot tell us anything about the rate of heat flow in the presence of a finite temperature difference. It is to the discipline of heat transfer to which we must turn for this answer

  1. Heat Roadmap Europe 2

    Connolly, David; Mathiesen, Brian Vad; Østergaard, Poul Alberg

    Many strategies have already been proposed for the decarbonisation of the EU energy system by the year 2050. These typically focus on the expansion of renewable energy in the electricity sector and subsequently, electrifying both the heat and transport sectors as much as possible. In these strate......Many strategies have already been proposed for the decarbonisation of the EU energy system by the year 2050. These typically focus on the expansion of renewable energy in the electricity sector and subsequently, electrifying both the heat and transport sectors as much as possible....... In these strategies, the role of district heating has never been fully explored system, nor have the benefits of district heating been quantified at the EU level. This study combines the mapping of local heat demands and local heat supplies across the EU27. Using this local knowledge, new district heating potentials...... are identified and then, the EU27 energy system is modelled to investigate the impact of district heating. The results indicate that a combination of heat savings, district heating in urban areas, and individual heat pumps in rural areas will enable the EU27 to reach its greenhouse gas emission targets by 2050...

  2. Nuclear process heat

    Barnert, H.; Hohn, H.; Schad, M.; Schwarz, D.; Singh, J.

    1993-01-01

    In a system for the application of high temperature heat from the HTR one must distinguish between the current generation and the use of process heat. In this respect it is important that the current can be generated by dual purpose power plants. The process heat is used as sensible heat, vaporisation heat and as chemical energy at the chemical conversion for the conversion of raw materials, the refinement of fossil primary energy carriers and finally circuit processes for the fission of water. These processes supply the market for heat, fuels, motor fuels and basic materials. Fifteen examples of HTR heat processes from various projects and programmes are presented in form of energy balances, however in a rather short way. (orig./DG) [de

  3. Space Heating Equipment

    Rafferty, Kevin D.

    1998-01-01

    The performance evaluation of space heating equipment for a geothermal application is generally considered from either of two perspectives: (a) selecting equipment for installation in new construction, or (b) evaluating the performance and retrofit requirements of an existing system. With regard to new construction, the procedure is relatively straightforward. Once the heating requirements are determined, the process need only involve the selection of appropriately sized hot water heating equipment based on the available water temperature. It is important to remember that space heating equipment for geothermal applications is the same equipment used in non-geothermal applications. What makes geothermal applications unique is that the equipment is generally applied at temperatures and flow rates that depart significantly from traditional heating system design. This chapter presents general considerations for the performance of heating equipment at non-standard temperature and flow conditions, retrofit of existing systems, and aspects of domestic hot water heating.

  4. FTR europia gamma heating

    Ward, J.T. Jr.

    1975-01-01

    Calculated and experimental gamma heating rates of europia in the Engineering Mockup Critical Assembly (EMC) were correlated. A calculated to experimental (C/E) ratio of 1.086 was established in validating the theoretical approach and computational technique applied in the calculations. Gamma heat deposition rates in the FTR with Eu 2 O 3 control absorbers were determined from three-dimensional calculations. Maximum gamma heating was found to occur near the tip of a half-inserted row 5 control rod assembly--12.8 watts/gm of europia. Gamma heating profiles were established for a single half-inserted europia absorber assembly. Local heat peaking was found not to alter significantly heating rates computed in the FTR core model, where larger mesh interval sizes precluded examination of spatially-limited heating gradients. These computations provide the basis for thermal-hydraulic analyses to ascertain temperature profiles in the FTR under europia control

  5. Miniature Heat Pipes

    1997-01-01

    Small Business Innovation Research contracts from Goddard Space Flight Center to Thermacore Inc. have fostered the company work on devices tagged "heat pipes" for space application. To control the extreme temperature ranges in space, heat pipes are important to spacecraft. The problem was to maintain an 8-watt central processing unit (CPU) at less than 90 C in a notebook computer using no power, with very little space available and without using forced convection. Thermacore's answer was in the design of a powder metal wick that transfers CPU heat from a tightly confined spot to an area near available air flow. The heat pipe technology permits a notebook computer to be operated in any position without loss of performance. Miniature heat pipe technology has successfully been applied, such as in Pentium Processor notebook computers. The company expects its heat pipes to accommodate desktop computers as well. Cellular phones, camcorders, and other hand-held electronics are forsible applications for heat pipes.

  6. Heat Roadmap Europe

    Connolly, David

    2017-01-01

    This paper compares the electricity, heating, and cooling sectors at national level for various European countries. Annual energy demands are compared for all 28 EU countries, while peak hourly demands are compared for four countries that vary significantly. The results indicate that the heat...... demand is currently the largest of the three demand types considered in terms of both annual and peak demands: it is the largest annual demand in 25 of the 28 EU countries, and it represents the largest peak demand in all four countries analysed. Electricity, heating, and cooling demands are all likely...... that the demand for electricity could double compared to today, depending on how these changes occur. Considering the scale of additional electricity required to electrify future heating and cooling demands, heat pumps should be prioritised over electric heating and other alternatives, such as district heating...

  7. Horizontal Heat Exchanger Design and Analysis for Passive Heat Removal Systems

    Vierow, Karen

    2005-08-29

    This report describes a three-year project to investigate the major factors of horizontal heat exchanger performance in passive containment heat removal from a light water reactor following a design basis accident LOCA (Loss of Coolant Accident). The heat exchanger studied in this work may be used in advanced and innovative reactors, in which passive heat removal systems are adopted to improve safety and reliability The application of horizontal tube-bundle condensers to passive containment heat removal is new. In order to show the feasibility of horizontal heat exchangers for passive containment cooling, the following aspects were investigated: 1. the condensation heat transfer characteristics when the incoming fluid contains noncondensable gases 2. the effectiveness of condensate draining in the horizontal orientation 3. the conditions that may lead to unstable condenser operation or highly degraded performance 4. multi-tube behavior with the associated secondary-side effects This project consisted of two experimental investigations and analytical model development for incorporation into industry safety codes such as TRAC and RELAP. A physical understanding of the flow and heat transfer phenomena was obtained and reflected in the analysis models. Two gradute students (one funded by the program) and seven undergraduate students obtained research experience as a part of this program.

  8. Capture of Heat Energy from Diesel Engine Exhaust

    Chuen-Sen Lin

    2008-12-31

    , the synthetic fuel contained slightly less heat energy and fewer emissions. Test results obtained from adding different levels of a small amount of hydrogen into the intake manifold of a diesel-operated engine showed no effect on exhaust heat content. In other words, both synthetic fuel and conventional diesel with a small amount of hydrogen may not have a significant enough effect on the amount of recoverable heat and its feasibility. An economic analysis computer program was developed on Visual Basic for Application in Microsoft Excel. The program was developed to be user friendly, to accept different levels of input data, and to expand for other heat recovery applications (i.e., power, desalination, etc.) by adding into the program the simulation subroutines of the desired applications. The developed program has been validated using experimental data.

  9. District heating versus local heating - Social supportability

    Matei, Magdalena; Enescu, Diana; Varjoghie, Elena; Radu, Florin; Matei, Lucian

    2004-01-01

    District heating, DH, is an energy source which can provide a cost-effective, environmentally friendly source of heat and power for cities, but only in the case of well running systems, with reasonable technological losses. The benefits of DH system are well known: environmental friendly, energy security, economic and social advantages. DH already covers 60% of heating and hot water needs in transition economies. Today, 70 % of Russian, Latvian and Belarus homes use DH, and heating accounts for one-third of total Russian energy consumption. Yet a large number of DH systems in the region face serious financial, marketing or technical problems because of the policy framework. How can DH issues be best addressed in national and local policy? What can governments do to create the right conditions for the sustainable development of DH while improving service quality? What policies can help capture the economic, environmental and energy security benefits of co-generation and DH? To address these questions, the International Energy Agency (IEA) hosted in 2002 and 2004 conference focusing on the crucial importance of well-designed DH policies, for exchanging information on policy approaches. The conclusions of the conference have shown that 'DH systems can do much to save energy and boost energy security, but stronger policy measures are needed to encourage wise management and investment. With a stronger policy framework, DH systems in formerly socialist countries could save the equivalent of 80 billion cubic meters of natural gas a year through supply side efficiency improvements. This is greater than total annual natural gas consumption in Italy'. More efficient systems will also decrease costs, reducing household bills and making DH competitive on long-term. This paper presents the issues: -Theoretical benefits of the district heating and cooling systems; - Municipal heating in Romania; - Technical and economic problems of DH systems and social supportability; - How

  10. Optimum Design of Heat Exchangers Networks Part -I: Software Development

    Gabr, E.M.A.; EI-Temtamy, S.A.; Deriasl, S.F.; Moustafa, H.A.

    2004-01-01

    In this paper, we have developed a computerized framework for Heat Exchanger Network Synthesis (HENS) with optimality conditions of achieving the least operating and capital cost. The framework of HEN design involves the development three-computer programs, which applied sequentially to design an optimum HEN. The first program Automatic Minimum Utilities [AMU] developed for automatic formulation of LP equations, these equations can be solved by the optimization software [LINDO] to predict minimum hot and cold utilities. The second program based on Vertical Heat Transfer Method [VHTM] for predicting minimum overall heat transfer area and defining the optimum δbT m in. The third program [Mod.RESHEX] developed for targeting of heat transfer area and automatic synthesis of HEN. This program represents the modifications and development of RESHEX method to overcome the design defects, which appeared on original RESHEX applications

  11. 24 CFR 3280.506 - Heat loss/heat gain.

    2010-04-01

    ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Heat loss/heat gain. 3280.506... URBAN DEVELOPMENT MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS Thermal Protection § 3280.506 Heat loss/heat gain. The manufactured home heat loss/heat gain shall be determined by methods outlined in...

  12. Heat and mass transfer in buildings

    Kristoffersen, Astrid Rusaas

    2005-01-01

    This thesis has presented four journal papers about ventilation and heat transfer in buildings. Ventilation and heat transfer in buildings are elements that decide our indoor air quality, thermal comfort and energy use in buildings. Models and experiments are tools to understand the complex physics of heat and air transfer in buildings. As computers are, getting cheaper and more powerful, there is a need to develop reliable models that can predict heat and air transfer in buildings. The first paper in this thesis addressed the widely used multizone model. This model is mainly used to find the airflows between zones in a building. A multizone model is often coupled to an energy analysis program, and affects therefore the calculated energy use in a building. The first paper in this thesis, titled ''Effect of room air recirculation delay on the decay rate of tracer gas concentration'' discussed the impact of a recirculating ventilation system on the decay of the tracer gas concentration in the room. The delay of the tracer gas through the ventilation system affects the concentration in the room, and must be accounted for when calculating the amount of fresh air that the ventilation system supplies. The second paper titled ''CFD Investigation of Room Ventilation for Improved Operation of a Downdraft Table: Novel Concepts'' investigated the performance of a downdraft table by changing the ventilation configuration in the room by use of Computational Fluid Dynamics (CFD). CFD can provide a microscopic description of the airflow and the behavior of pollutants and temperature distribution in a room. This paper calculated the airflow pattern in the room without influence of thermal effects, and demonstrated the usage of CFD. It was found that the total airflow could be reduced compared to an existing configuration (and hence reduce energy costs), and at the same time increasing the performance of the downdraft table (increasing the indoor air quality). A room with a

  13. Ceramic Technology for Advanced Heat Engines Project

    1989-08-01

    The Ceramic Technology for Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Advanced Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DoD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially.

  14. Better utilisation of district heating systems. Subproject Hanover-Hamburg: 'Analysis of the control characteristics of district heating grids'. Part 1: Optimisation of automatic pump control for fast load variations. Part 2: Automation of district heating pumps at the man-machine communication interface. Part 3: Installation and adaptation of the BoFiT program system (Hanover only). Final report; Bessere Ausnutzung von Fernwaermeanlagen. Teilprojekt Hannover-Hamburg: 'Analyse des Regelverhaltens von Fernwaermenetzen'. T. 1: Optimieren einer automatischen Pumpensteuerung auf schnelle Lastwechsel. T. 2: Darstellen der Automatisierungseinrichtungen von Fernwaermepumpen an der Mensch-Maschine-Kommunikationsschnittstelle (MMK). T. 3: Installation und Anpassung des Programmsystems BoFiT (nur Hannover). Abschlussbericht

    Tuchs, M.; Beecken, J.; Hilmer, W.; Oel, M.; Schaper, H.; Micus, W.; Tegeler, C.; Ridder, M.; Schoettker, P.; Rogalla, B.U.; Feuerriegel, S.

    2000-07-01

    The general target of the interconnection research intention is discovering margins for optimizing the heat consumption by fast and ensured variation between producers with CHP generation plants and plants for primary heat and reverse. The project is subdivided in three parts: In part 1 the usefulness of automated operation of the communal distributed heating net-work was determined by: Comparison of real measurements with simulated processes calculations of the differential control processes, development and analysis of a control process concept and improvement of the existing controler action in the Hamburg and the Hannover model, investigations of the effects of closed loop control on safety and portrayal of the processes during optimised and automated operation. The advantage of this system can be demonstrated to be both economical and ecological. Safety analysis showed that a higher degree of automation does not compromise safe operation. In Hamburg these findings led to the development of a training simulator for the operating personnel. The optimisation techniques presented in part 1 can therefore be implemented in a model, which provides a very good analogy to the real network. In part 2 innovative forms of presentation of hydraulic relations of the controled District Heating network where developed. They where realised in a computer program. This program was installed in the District Heating control room. The target of part 3 is the practical application of BoFit for the generation of optimized propositions for operation mode of the District Heating net-work. The consideration of the actual condition of the District Heating network was realized by online-connection to the process data processing. The situation of costs of heat supply is found out by simulations for the present moment and for a prognosted period. (orig.)

  15. Optimization of Heat Exchangers

    Catton, Ivan

    2010-01-01

    The objective of this research is to develop tools to design and optimize heat exchangers (HE) and compact heat exchangers (CHE) for intermediate loop heat transport systems found in the very high temperature reator (VHTR) and other Generation IV designs by addressing heat transfer surface augmentation and conjugate modeling. To optimize heat exchanger, a fast running model must be created that will allow for multiple designs to be compared quickly. To model a heat exchanger, volume averaging theory, VAT, is used. VAT allows for the conservation of mass, momentum and energy to be solved for point by point in a 3 dimensional computer model of a heat exchanger. The end product of this project is a computer code that can predict an optimal configuration for a heat exchanger given only a few constraints (input fluids, size, cost, etc.). As VAT computer code can be used to model characteristics (pumping power, temperatures, and cost) of heat exchangers more quickly than traditional CFD or experiment, optimization of every geometric parameter simultaneously can be made. Using design of experiment, DOE and genetric algorithms, GE, to optimize the results of the computer code will improve heat exchanger design.

  16. Co-sponsored second quarter progress review conference on district heating

    None

    1980-01-01

    A summary of the progress review conference on district heating and cooling systems is presented. The agenda and lists of speakers and attendees are presented. A history of district heating and some present needs and future policies are given and an excerpt from the National District Heating Program Strategy (DOE, March 1980) is included. Following the presentation, District Heating and Cooling Systems Program, by Alan M. Rubin, a fact sheet on DOE's Integrated Community Energy Systems Program and information from an oral presentation, District Heating and Cooling Systems for Communities Through Power Plant Retrofit Distribution Network, are given. The Second Quarterly Oral Report to the US DOE on the District Heating and Cooling Project in Detroit; the executive summary of the Piqua, Ohio District Heating and Cooling Demonstration Project; the Second Quarterly Report of the Moorehead, Minnesota District Heating Project; and the report from the Moorehead, Minnesota mayor on the Hot Water District Heating Project are presented.

  17. Automotive Thermoelectric Waste Heat Recovery

    Meisner, Gregory P.

    2015-03-01

    Considerable fuel energy, as much as 70%, is not converted to useful work by internal combustion engines but is instead rejected as waste heat, and more than half of the waste heat, nearly 40% of fuel energy, is contained in vehicle exhaust gas. This provides an opportunity to recover some of the wasted fuel energy and convert it from heat into useful work, subject to the laws of thermodynamics, and thereby improve vehicle energy efficiency. Thermoelectric (TE) materials have been extensively researched and TE devices are now being developed for operation at high temperatures corresponding to automotive exhaust gases for direct solid-state conversion of heat into electricity. This has stimulated substantial progress in the development of practical TE generator (TEG) systems for large-scale commercialization. A significant enabler of this progress has been the US Department of Energy's Vehicle Technologies Program through funding for low cost solutions for automotive TE waste heat recovery to improve fuel economy. Our current project at General Motors has culminated in the identification of the potential supply chain for all components and assembly of an automotive TEG. A significant focus has been to develop integrated and iterative modeling tools for a fully optimized TEG design that includes all components and subsystems (TE modules, heat exchangers, thermal interfaces, electrical interconnects, power conditioning, and vehicle integration for maximal use of TEG power). We have built and tested a new, low-cost Initial TEG prototype based on state-of-the-art production-scale skutterudite TE modules, novel heat exchanger designs, and practical solutions to the many technical challenges for optimum TEG performance. We will use the results for our Initial TEG prototype to refine our modeling and design tools for a Final automotive TEG system prototype. Our recent results will be presented. Thanks to: J.R. Salvador, E.R. Gundlach, D. Thompson, N.K. Bucknor, M

  18. Floor heating maximizes residents` comfort

    Tirkkanen, P.; Wikstroem, T.

    1996-11-01

    Storing heat in floors by using economical night-time electricity does not increase the specific consumption of heating. According to studies done by IVO, the optimum housing comfort is achieved if the room is heated mainly by means of floor heating that is evened out by window or ceiling heating, or by a combination of all three forms of heating. (orig.)

  19. UHS, Ultimate Heat Sink Cooling Pond Analysis

    Codell, R.; Nuttle, W.K.

    1998-01-01

    1 - Description of program or function: Three programs model performance of an ultimate heat sink cooling pond. National Weather Service data is read and analyzed to predict periods of lowest cooling performance and highest evaporative loss. The data is compared to local site data for significant differences. Then the maximum pond temperature is predicted. Five programs model performance of an ultimate heat sink spray pond. The cooling performance, evaporative water loss, and drift water loss as a function of wind speed are estimated for a spray field. These estimates are used in conjunction with National Weather Service data to predict periods of lowest cooling performance and highest evaporative loss. This data is compared to local site data for significant differences. Then the maximum pond temperature is predicted. 2 - Method of solution: The transfer of heat and water vapor is modeled using an equilibrium temperature procedure for an UHS cooling pond. The UHS spray pond model considers heat, mass, and momentum transfer from a single water drop with the surrounding air, and modification of the surrounding air resulting from the heat, mass, and momentum transfer from many drops in different parts of a spray field. 3 - Restrictions on the complexity of the problem: The program SPRCO uses RANF, a uniform random number generator which is an intrinsic function on the CDC. All programs except COMET use the NAMELIST statement, which is non standard. Otherwise these programs conform to the ANSI Fortran 77 standard. The meteorological data scanning procedure requires tens of years of recorded data to be effective. The models and methods, provided as useful tool for UHS analyses of cooling ponds and spray ponds, are intended as guidelines only. Use of these methods does not automatically assure NRC approval, nor are they required procedures for nuclear-power-plant licensing

  20. The prospects for nuclear heating in Hungary

    Papp, I.; Lynch, G.F.

    1989-09-01

    In assessing alternative nuclear heat sources, a joint study was undertaken between Canada and Hungary to determine the feasibility of using the SLOWPOKE Energy System that has recently been developed. The SLOWPOKE Energy System is a benign nuclear heat source designed to supply 10 thermal megawatts in the form of hot water for local heating systems in buildings and institutions. It uses a combination of inherent safety features, including natural convection circulation and negative reactivity coefficients, and engineered features to ensure an extremely safe system. A SLOWPOKE demonstration heating reactor has been constructed in Canada. The unit started operation in July 1987 and is currently undergoing an extensive test program. Since the nuclear heat source is small, operates at atmospheric pressure, and produces hot water below 100 deg. C, the complex high-pressure, and high-temperature systems essential for electricity production are eliminated. As a result, the nuclear heat source can be located close to the load and will require a minimum of operator attention. In this way, a SLOWPOKE Energy System can be considered much like the oil- or natural gas fired furnace it is designed to replace. The extensive use of hot water district heating systems in Hungary offers the opportunity to exploit such simple nuclear systems as base load heat sources without an extensive retrofit of the existing systems. In addition, the studies have concluded that there are many economically attractive sites for 10 MW SLOWPOKE Energy Systems within the existing networks. The low capital investment requirements, coupled with a high degree of localization, even for the first unit, are seen as additional factors that facilitate the transfer of the technology to Hungary. Simple nuclear heat sources, such as the SLOWPOKE Energy System, when applied to the Hungarian district heating systems, offer the prospects of a significant reduction in the dependence on imported fossil fuels in the