Sample records for heat production rate


    Directory of Open Access Journals (Sweden)

    M. M. Akhmedova


    Full Text Available Methods of computing and mathematical modeling are all widely used in the study of various heat exchange processes that provide the ability to study the dynamics of the processes, as well as to conduct a reasonable search for the optimal technological parameters of heat treatment.This work is devoted to the identification of correlations among the factors that have the greatest effect on the rate of heating of the product at hightemperature heat sterilization in a stream of hot air, which are chosen as the temperature difference (between the most and least warming up points and speed cans during heat sterilization.As a result of the experimental data warming of the central and peripheral layers compote of apples in a 3 liter pot at high-temperature heat treatment in a stream of hot air obtained by the regression equation in the form of a seconddegree polynomial, taking into account the effects of pair interaction of these parameters. 

  2. The global joule heat production rate and the AE index (United States)

    Wei, S.; Ahn, B.-H.; Akasofu, S.-I.


    The degree of accuracy with which the AE index may be used as a measure of the joule heat production rate is evaluated for a typical substorm event on March 18, 1978, by estimating the global joule heat production rate as a function of time on the basis of data obtained from the IMS's six meridian chains. It is found that, although the AE index is statistically linearly related to the global joule heat production rate, caution is required when one assumes that details of AE index time variations during individual events are representative of those of the joule heat production rate.

  3. The bounds of the heat production rate within the moon (United States)

    Hsui, A. T.


    A new approach is proposed to the evaluation of the lower and upper bounds of the global heat production rate within planetary interiors. The approach is based on the relationship between the internal energy change and the volume change of a planetary object. For illustration, the approach is applied to the moon. Using an average global surface heat flux of 18 erg/sq cm-sec, and assuming constancy of the lunar radius during the past 3.2 billion years. the lunar heat release within the past 3.2 billion years is estimated at (30 to 40) x 10 to the tenth erg/cu cm. This is equivalent to the present day uranium concentration of 35 to 50 ppb provided the radiogenic isotopes are of the same proportion as that given by Toksoz et al. (1978).

  4. Memory behaviors of entropy production rates in heat conduction (United States)

    Li, Shu-Nan; Cao, Bing-Yang


    Based on the relaxation time approximation and first-order expansion, memory behaviors in heat conduction are found between the macroscopic and Boltzmann-Gibbs-Shannon (BGS) entropy production rates with exponentially decaying memory kernels. In the frameworks of classical irreversible thermodynamics (CIT) and BGS statistical mechanics, the memory dependency on the integrated history is unidirectional, while for the extended irreversible thermodynamics (EIT) and BGS entropy production rates, the memory dependences are bidirectional and coexist with the linear terms. When macroscopic and microscopic relaxation times satisfy a specific relationship, the entropic memory dependences will be eliminated. There also exist initial effects in entropic memory behaviors, which decay exponentially. The second-order term are also discussed, which can be understood as the global non-equilibrium degree. The effects of the second-order term are consisted of three parts: memory dependency, initial value and linear term. The corresponding memory kernels are still exponential and the initial effects of the global non-equilibrium degree also decay exponentially.

  5. Effects of heating rate on slow pyrolysis behavior, kinetic parameters and products properties of moso bamboo. (United States)

    Chen, Dengyu; Zhou, Jianbin; Zhang, Qisheng


    Effects of heating rate on slow pyrolysis behaviors, kinetic parameters, and products properties of moso bamboo were investigated in this study. Pyrolysis experiments were performed up to 700 °C at heating rates of 5, 10, 20, and 30 °C/min using thermogravimetric analysis (TGA) and a lab-scale fixed bed pyrolysis reactor. The results show that the onset and offset temperatures of the main devolatilization stage of thermogravimetry/derivative thermogravimetry (TG/DTG) curves obviously shift toward the high-temperature range, and the activation energy values increase with increasing heating rate. The heating rate has different effects on the pyrolysis products properties, including biochar (element content, proximate analysis, specific surface area, heating value), bio-oil (water content, chemical composition), and non-condensable gas. The solid yields from the fixed bed pyrolysis reactor are noticeably different from those of TGA mainly because the thermal hysteresis of the sample in the fixed bed pyrolysis reactor is more thorough. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. The Calculation Methods of the Specific Fuel Rate in Combined Heat and Electricity Production

    Directory of Open Access Journals (Sweden)

    I. A. Chuchueva


    Full Text Available The paper discusses a specific fuel rate in combined heat and electricity production using CHP technology. There are two objectives for calculation of specific fuel rate: a CHP technical efficiency estimate, b increasing CHP competitiveness at electricity and district heat markets. Currently, development of a number of thermo-dynamical methods of calculation solves the first problem while to solve the second one there is a number of developed economical methods of calculation. In Russia despite a decade of the wholesale electricity market progress the CHP market offers are still tightly connected with technical efficiency rate. To estimate the technical efficiency rate is widely used the least effective thermo-dynamical method – so called “physical” method”. The paper formulates a problem statement that is the specific fuel rate calculation and reviews the most widely applied methods. The review consists of two parts: in the first the Russian methods are discussed, and in the second one the methods widely used in the countries with highly developed electricity and district heat markets. A new thermo-dynamical method to calculate the specific fuel rate is introduced, which uses the linear characteristic curves of a steam turbine. The developed method allows us to take into consideration the energy inequality of the CHP products. Another advantages of this new method are calculation simplicity and small number of input data. To compare the effectiveness of different methods were introduced comparison rules and also calculations were performed. The comparison of thermo-dynamical methods shows that the most effective methods are an exergy method and also the method that takes into consideration the reduced generation of electricity (work method. Calculation complexity and large number of input data are main disadvantages of these methods. The comparison of economical methods shows that the most effective from stated point of view are a

  7. Parameter study of r-process lanthanide production and heating rates in kilonovae (United States)

    Lippuner, Jonas; Roberts, Luke F.


    Explosive r-process nucleosynthesis in material ejected during compact object mergers may lead to radioactively powered transients called kilonovae. The timescale and peak luminosity of these transients are sensitive to the composition of the material after nuclear burning ceases, as the composition determines the local heating rate from nuclear decays and the opacity. The presence of lanthanides in the ejecta can drastically increase the opacity. We use the new general-purpose nuclear reaction network SkyNet to run a parameter study of r-process nucleosynthesis for a range of initial electron fractions Ye, initial entropies s, and density decay timescales τ. We find that the ejecta is lanthanide-free for Ye >~ 0 . 22 - 0 . 3 , depending on s and τ. The heating rate is insensitive to s and τ, but certain, larger values of Ye lead to reduced heating rates, because single nuclides dominate the heating. With a simple model we estimate the luminosity, time, and effective temperature at the peak of the light curve. Since the opacity is much lower in the lanthanide-free case, we find the luminosity peaks much earlier at ~ 1 day vs. ~ 15 days in the lanthanide-rich cases. Although there is significant variation in the heating rate with Ye, changes in the heating rate do not mitigate the effect of the lanthanides. This research is partially supported by NSF under Award Numbers AST-1333520 and AST-1205732.

  8. Effects of heat stress on production, somatic cell score and conception rate in Holsteins. (United States)

    Hagiya, Koichi; Hayasaka, Kiyoshi; Yamazaki, Takeshi; Shirai, Tatsuo; Osawa, Takefumi; Terawaki, Yoshinori; Nagamine, Yoshitaka; Masuda, Yutaka; Suzuki, Mitsuyoshi


    We examined the effects of heat stress (HS) on production traits, somatic cell score (SCS) and conception rate at first insemination (CR) in Holsteins in Japan. We used a total of 228 242 records of milk, fat and protein yields, and SCS for the first three lactations, as well as of CR in heifers and in first- and second-lactation cows that had calved for the first time between 2000 and 2012. Records from 47 prefectural weather stations throughout Japan were used to calculate the temperature-humidity index (THI); areas were categorized into three regional groups: no HS (THI < 72), mild HS (72 ≤ THI < 79), and moderate HS (THI ≥ 79). Trait records from the three HS-region groups were treated as three different traits and trivariate animal models were used. The genetic correlations between milk yields from different HS groups were very high (0.91 to 0.99). Summer calving caused the greatest increase in SCS, and in the first and second lactations this increase became greater as THI increased. In cows, CR was affected by the interaction between HS group and insemination month: with summer and early autumn insemination, there was a reduction in CR, and it was much larger in the mild- and moderate-HS groups than in the no-HS group. © 2016 Japanese Society of Animal Science.

  9. Heat Production and Storage Are Positively Correlated with Measures of Body Size/Composition and Heart Rate Drift during Vigorous Running (United States)

    Buresh, Robert; Berg, Kris; Noble, John


    The purposes of this study were to determine the relationships between: (a) measures of body size/composition and heat production/storage, and (b) heat production/storage and heart rate (HR) drift during running at 95 % of the velocity that elicited lactate threshold, which was determined for 20 healthy recreational male runners. Subsequently,…

  10. High-rate continuous hydrogen production by Thermoanaerobacterium thermosaccharolyticum PSU-2 immobilized on heat-pretreated methanogenic granules

    DEFF Research Database (Denmark)

    O-Thong, Sompong; Prasertsan, P.; Karakashev, Dimitar Borisov


    Biohydrogen production from Thermoanaerobacterium thermosaccharolyticum strain PSU-2 was examined in upflow anaerobic sludge blanket (UASB) reactor and carrier-free upflow anaerobic reactor (UA), both fed with sucrose and operating at 60 degrees C. Heat-pretreated methanogenic granules were used...

  11. Limit cycle relations between the heat production rate and key intermediate concentrations in the oscillating belousov-zhabotinskii and briggs-rauscher reactions

    NARCIS (Netherlands)

    Kegel, W.K.; Miltenburg, J.C. van; Verlaan, M.C.; Schuijff, A.


    Limit cycle relations between heat production rates and oscillating intermediate concentrations are obtained after deconvolution of the calorimetric signal. In the case of the Belousov-Zhabotinskii (BZ) reaction, the area of the power signal coincides for 60% with the fast, autocatalytic part of the

  12. Interaction of heat production, strain rate and stress power in a plastically deforming body under tensile test (United States)

    Paglietti, A.


    At high strain rates the heat produced by plastic deformation can give rise to a rate dependent response even if the material has rate independent constitutive equations. This effect has to be evaluated when interpreting a material test, or else it could erroneously be ascribed to viscosity. A general thermodynamic theory of tensile testing of elastic-plastic materials is given in this paper; it is valid for large strain at finite strain rates. It enables discovery of the parameters governing the thermodynamic strain rate effect, provides a method for proper interpretation of the results of the tests of dynamic plasticity, and suggests a way of planning experiments in order to detect the real contribution of viscosity.

  13. Estimation of the dust production rate from the tungsten armour after repetitive ELM-like heat loads (United States)

    Pestchanyi, S.; Garkusha, I.; Makhlaj, V.; Landman, I.


    Experimental simulations for the erosion rate of tungsten targets under ITER edge-localized mode (ELM)-like surface heat loads of 0.75 MJ m-2 causing surface melting and of 0.45 MJ m-2 without melting have been performed in the QSPA-Kh50 plasma accelerator. Analytical considerations allow us to conclude that for both energy deposition values the erosion mechanism is solid dust ejection during surface cracking under the action of thermo-stress. Tungsten influx into the ITER containment of NW~5×1018 W per medium size ELM of 0.75 MJ m-2 and 0.25 ms time duration has been estimated. The radiation cooling power of Prad=150-300 MW due to such influx of tungsten is intolerable: it should cool the ITER core to 1 keV within a few seconds.

  14. Rectal temperatures, respiratory rates, production, and reproduction performances of crossbred Girolando cows under heat stress in northeastern Brazil (United States)

    da Costa, Antônio Nélson Lima; Feitosa, José Valmir; Montezuma, Péricles Afonso; de Souza, Priscila Teixeira; de Araújo, Airton Alencar


    This study compared the two breed groups of Girolando (½ Holstein ½ Gyr vs. ¾ Holstein ¼ Gyr) through analysis of the percentages (stressed or non-stressed cows) of rectal temperature (RT), respiratory rate (RR) and pregnancy rate (PR), and means of production and reproduction parameters to determine the group best suited to rearing in semiarid tropical climate. The experiment was conducted at the farm, in the municipality of Umirim, State of Ceará, Brazil. Two hundred and forty cows were used in a 2 × 2 factorial study; 120 of each group were kept under an intensive system during wet and dry seasons. The environmental parameters obtained were relative humidity (RH), air temperature (AT), and the temperature and humidity index (THI). Pregnancy diagnosis (PD) was determined by ultrasonography 30 days after artificial insemination (AI). The milk production of each cow was recorded with automated milkings in the farm. The variables were expressed as mean and standard error, evaluated by ANOVA at 5 % probability using the GLM procedure of SAS. Chi-square test at 5 % probability was applied to data of RT, RR, pregnancy rate (PR), and the number of AIs to obtain pregnancy. The majority of ½ Holstein cows showed mean values of RT and RR within the normal range in both periods and shifts. Most animals of the ¾ Holstein group exhibited the RR means above normal during the afternoon in the rainy and dry periods and RT means above normal during the afternoon in the dry period. After analyses, ½ Holstein crossbred cows are more capable of thermoregulating than ¾ Holstein cows under conditions of thermal stress, and the dry period was more impacting for bovine physiology with significant changes in physiological parameters, even for the first breed group. Knowledge of breed groups adapted to climatic conditions of northeastern Brazil can directly assist cattle farmers in selecting animals best adapted for forming herds.

  15. An environmental rating for heat pump equipment

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, P.J.


    The major federal and state regulatory trends that may affect heat pump markets are reviewed. Then the confluence of federal and state regulation, and what that may mean for heat pump markets, is discussed. The conclusion reached, and therefore the assumption for the rest of the paper, is that state regulators will increasingly be managing the environmental impacts associated with alternative heating, cooling, and water heating methods within the framework of Integrated Resource Planning (IRP). The input needs of IRP are reviewed, and some shortcomings of existing rating procedures for providing the IRP inputs are identified. Finally, the paper concludes with a brief suggestion on course of action.

  16. Corrosion Rate Monitoring in District Heating Systems

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel; Nielsen, Lars Vendelbo; Andersen, A.


    Quality control in district heating systems to keep uniform corrosion rates low and localized corrosion minimal is based on water quality control. Side-stream units equipped with carbon steel probes for online monitoring were mounted in district heating plants to investigate which techniques would...... be applicable, and if on-line monitoring could improve the quality control. Water quality monitoring was applied as well as corrosion rate monitoring with linear polarization resistance (LPR), electrochemical impedance spectroscopy (EIS), electrical resistance (ER) technique, mass loss and a crevice corrosion...... cell for localized corrosion risk estimation. Important variations in corrosion rate due to changes in make-up water quality were detected with the continuous monitoring provided by ER and crevice cell, while LPR gave unreliable corrosion rates. The acquisition time of two-three days for EIS...

  17. Radiative heating rates near the stratospheric fountain (United States)

    Doherty, G. M.; Newell, R. E.; Danielsen, E. F.


    Radiative heating rates are computed for various sets of conditions thought to be appropriate to the stratospheric fountain region: with and without a layer of cirrus cloud between 100 and 150 mbar; with standard ozone and with decreased ozone in the lower stratosphere, again with and without the cirrus cloud; and with different temperatures in the tropopause region. The presence of the cloud decreases the radiative cooling below the cloud in the upper troposphere and increases the cooling above it in the lower stratosphere. The cloud is heated at the base and cooled at the top and thus radiatively destabilized; overall it gains energy by radiation. Decreasing ozone above the cloud also tends to cool the lower stratosphere. The net effect is a tendency for vertical convergence and horizontal divergence in the cloud region. High resolution profiles of temperature, ozone, and cloudiness within the fountain region are required in order to assess the final balance of the various processes.

  18. A SINDA '85 nodal heat transfer rate calculation user subroutine (United States)

    Cheston, Derrick J.


    This paper describes a subroutine, GETQ, which was developed to compute the heat transfer rates through all conductors attached to a node within a SINDA '85 thermal submodel. The subroutine was written for version 2.3 of SINDA '85. Upon calling GETQ, the user supplies the submodel name and node number which the heat transfer rate computation is desired. The returned heat transfer rate values are broken down into linear, nonlinear, source and combined heat loads.

  19. A Simple Rate Law Experiment Using a Custom-Built Isothermal Heat Conduction Calorimeter (United States)

    Wadso, Lars; Li, Xi.


    Most processes (whether physical, chemical, or biological) produce or consume heat: measuring thermal power (the heat production rate) is therefore a typical method of studying processes. Here we describe the design of a simple isothermal heat conduction calorimeter built for use in teaching; we also provide an example of its use in simultaneously…

  20. Impact of Heat Stress on Poultry Production

    Directory of Open Access Journals (Sweden)

    Lucas J. Lara


    Full Text Available Understanding and controlling environmental conditions is crucial to successful poultry production and welfare. Heat stress is one of the most important environmental stressors challenging poultry production worldwide. The detrimental effects of heat stress on broilers and laying hens range from reduced growth and egg production to decreased poultry and egg quality and safety. Moreover, the negative impact of heat stress on poultry welfare has recently attracted increasing public awareness and concern. Much information has been published on the effects of heat stress on productivity and immune response in poultry. However, our knowledge of basic mechanisms associated to the reported effects, as well as related to poultry behavior and welfare under heat stress conditions is in fact scarce. Intervention strategies to deal with heat stress conditions have been the focus of many published studies. Nevertheless, effectiveness of most of the interventions has been variable or inconsistent. This review focuses on the scientific evidence available on the importance and impact of heat stress in poultry production, with emphasis on broilers and laying hens.

  1. Heat release rate of wood-plastic composites (United States)

    N. M. Stark; R. H. White; C. M. Clemons


    Wood-plastic composites are becoming more important as a material that fulfills recycling needs. In this study, fire performance tests were conducted on several compositions of wood and plastic materials using the Ohio State University rate of heat release apparatus. Test results included five-minute average heat release rate in kW/m2 (HRR avg) and maximum heat release...

  2. Assessment of heating rate and non-uniform heating in domestic microwave ovens. (United States)

    Pitchai, Krishnamoorthy; Birla, Sohan L; Jones, David; Subbiah, Jeyamkondan


    Due to the inherent nature of standing wave patterns of microwaves inside a domestic microwave oven cavity and varying dielectric properties of different food components, microwave heating produces non-uniform distribution of energy inside the food. Non-uniform heating is a major food safety concern in not-ready-to-eat (NRTE) microwaveable foods. In this study, we present a method for assessing heating rate and non-uniform heating in domestic microwave ovens. In this study a custom designed container was used to assess heating rate and non-uniform heating of a range of microwave ovens using a hedgehog of 30 T-type thermocouples. The mean and standard deviation of heating rate along the radial distance and sector of the container were measured and analyzed. The effect of the location of rings and sectors was analyzed using ANOVA to identify the best location for placing food on the turntable. The study suggested that the best location to place food in a microwave oven is not at the center but near the edge of the turntable assuming uniform heating is desired. The effect of rated power and cavity size on heating rate and non-uniform heating was also studied for a range of microwave ovens. As the rated power and cavity size increases, heating rate increases while non-uniform heating decreases. Sectors in the container also influenced heating rate (p microwave ovens were inconsistent in producing the same heating patterns between the two replications that were performed 4 h apart.

  3. Estimation of shutdown heat generation rates in GHARR-1 due to ...

    African Journals Online (AJOL)

    Fission products decay power and residual fission power generated after shutdown of Ghana Research Reactor-1 (GHARR-1) by reactivity insertion accident were estimated by solution of the decay and residual heat equations. A Matlab program code was developed to simulate the heat generation rates by fission product ...

  4. Study of Electrophysical Intrastratal Gasification at Different Coal Heating Rate

    Directory of Open Access Journals (Sweden)

    Larionov Kirill


    Full Text Available Experimental instrumental multi-method research, electrophysical ihtrastratal gasification of antracite with further definition of quantitative syngas composition and its combustion heat design at different heating rates. It was stated that concentration of carbon dioxide CO2, hydrogen H2 decreases with heating rate increase in received syngas, and there is rise of carbon monoxide CO concentration. The results of the research showed that heating rate increase leads to a small rise of combustion heat as decrease of H2 and CH4 concentration is compensated with increase of CO.

  5. The kinetics of reaction of the by-products of ablative materials at high temperatures and the rate of heat transfer between hot surfaces and reactive gases (United States)

    Spokes, G. N.; Beadle, P. C.; Gac, N. A.; Golden, D. M.; King, K. D.; Benson, S. W.


    Research has been conducted by means of laboratory experiments to enhance understanding of the fundamental mechanisms of heterogeneous and homogeneous chemical reactions taking place during ablative processes that accompany the reentry or manned space vehicles into planetary atmospheres. Fundamental mechanisms of those chemical reactions believed to be important in the thermal degradation of ablative plastic heat shield materials, and the gases evolved, are described.

  6. Heat exchangers selection, rating, and thermal design

    CERN Document Server

    Kakaç, Sadik; Pramuanjaroenkij, Anchasa


    Praise for the Bestselling Second EditionThe first edition of this work gathered in one place the essence of important information formerly scattered throughout the literature. The second edition adds the following new information: introductory material on heat transfer enhancement; an application of the Bell-Delaware method; new correlation for calculating heat transfer and friction coefficients for chevron-type plates; revision of many of the solved examples and the addition of several new ones.-MEMagazine

  7. Reaction rate in a heat bath

    CERN Document Server

    Jacob, Maurice René Michel


    We show in detail how the presence of a heat bath of photons effectively gives charged particles in the final state of a decay process a temperature-dependent mass, and changes the effective strength of the force responsible for the decay. At low temperature, gauge invariance causes both these effects to be largely cancelled by absorption of photons from the heat bath and by stimulated emission into it, but at high temperature the temperature-dependent mass is the dominant feature.

  8. Effects of heat input rates on T-1 and T-1A steel welds (United States)

    Davis, R. A.; Olsen, M. G.; Worden, S. W.


    Technology of T-1 and T-1A steels is emphasized in investigation of their weld-fabrication. Welding heat input rate, production weldment circumstances, and standards of welding control are considered.

  9. Measurement of heat generation from simulated bituminized product

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Yoshiyuki; Yoneya, Masayuki [TRP Safety Evaluation and Analysis team, Japan Nuclear Cycle Development Inst., Tokai, Ibaraki (Japan)


    The fire and explosion incident occurred at Bituminization Demonstration Facility of PNC Tokai Works on March 11, 1997. In order to ascertain the cause of incident, the investigation has been pushed forward. For the investigation, we prepared simulated bituminized product of measurement of heat generation in low temperature region less than 200degC. We used calvet Calorimeter MS80 for the heat generation measurement. Result of measurement, we were able to catch the feeble heat generation from bituminized product. The maximum calorific value that was able to detect it in isothermal measurement was approximately 1 mW/g in 160degC. It was approximately 2 mW/g in 200degC. And, as the another measurement, the measurement condition went heat rate by 0.01degC/minute, the highest temperature 190degC. As a result, the maximum generation of heat value that was able to detect it was approximately 0.5 mW/g. I changed simulated bituminized products and measured these. A difference of condition is salt particle size, salt content rate (45%, 60%), addition of the simulated precipitate. But there was not a difference in the generation of heat characteristic detected. (author)

  10. Charring rate of wood exposed to a constant heat flux (United States)

    R. H. White; H. C. Tran


    A critical factor in the fire endurance of a wood member is its rate of charring. Most available charring rate data have been obtained using the time-temperature curves of the standard fire resistance tests (ASTM E 119 and ISO 834) to define the fire exposure. The increased use of heat release calorimeters using exposures of constant heat flux levels has broadened the...

  11. Sensors measure surface ablation rate of reentry vehicle heat shield (United States)

    Russel, J. M., III


    Sensors measure surface erosion rate of ablating material in reentry vehicle heat shield. Each sensor, which is placed at precise depths in the heat shield is activated when the ablator surface erodes to the location of a sensing point. Sensor depth and activation time determine ablator surface erosion rate.

  12. Heat and mass transfer during baking: product quality aspects

    NARCIS (Netherlands)

    Asselman, A.; Straten, van G.; Hadiyanto, H.; Boom, R.M.; Esveld, D.C.; Boxtel, van A.J.B.


    Abstract Most food product qualities are developed during heating processes. Therefore the internal heating and mass transfer of water are important aspects in food processing. Heating of food products is mostly induced by convection heating. However, the number applications of convective heating in

  13. Burning rate of solid wood measured in a heat release rate calorimeter (United States)

    H. C. Tran; R. H. White


    Burning rate is a key factor in modeling fire growth and fire endurance of wood structures. This study investigated the burning rate of selected wood materials as determined by heat release, mass loss and charring rates. Thick samples of redwood, southern pine, red oak and basswood were tested in a heat release rate calorimeter. Results on ignitability and average beat...

  14. Flash-Fire Propensity and Heat-Release Rate Studies of Improved Fire Resistant Materials (United States)

    Fewell, L. L.


    Twenty-six improved fire resistant materials were tested for flash-fire propensity and heat release rate properties. The tests were conducted to obtain a descriptive index based on the production of ignitable gases during the thermal degradation process and on the response of the materials under a specific heat load.

  15. Methodology for DSC calibration in high heating rates

    Directory of Open Access Journals (Sweden)

    Carlos Isidoro Braga


    Full Text Available Despite the large use of differential scanning calorimetry (DSC technique in advanced polymer materials characterization, the new methodology called DSC in high heating rates was developed. The heating rate during conventional DSC experiments varying from 10 to 20ºC.min-¹, sample mass from 10 to 15mg and standard aluminum sample pan weighting, approximately, 27mg. In order to contribute to a better comprehension of DSC behavior in different heating rates, this work correlates as high heating rate influences to the thermal events in DSC experiments. Samples of metallic standard (In, Pb, Sn and Zn with masses varying from 0.570mg to 20.9mg were analyzed in multiples sample heating rate from 4 to 324°C. min-¹. In order to make properly all those experiments, a precise and careful temperature and enthalpy calibrations were performed and deeply discussed. Thus, this work shows a DSC methodology able to generate good and reliable results on experiments under any researcher choice heating rates to characterize the advanced materials used, for example, for aerospace industry. Also it helps the DSC users to find in their available instruments, already installed, a better and more accurate DSC test results, improving in just one shot the analysis sensitivity and resolution. Polypropylene melting and enthalpy thermal events are also studied using both the conventional DSC method and high heating rate method.

  16. Analysis of Water Recovery Rate from the Heat Melt Compactor (United States)

    Balasubramaniam, R.; Hegde, U.; Gokoglu, S.


    Human space missions generate trash with a substantial amount of plastic (20% or greater by mass). The trash also contains water trapped in food residue and paper products and other trash items. The Heat Melt Compactor (HMC) under development by NASA Ames Research Center (ARC) compresses the waste, dries it to recover water and melts the plastic to encapsulate the compressed trash. The resulting waste disk or puck represents an approximately ten-fold reduction in the volume of the initial trash loaded into the HMC. In the current design concept being pursued, the trash is compressed by a piston after it is loaded into the trash chamber. The piston face, the side walls of the waste processing chamber and the end surface in contact with the waste can be heated to evaporate the water and to melt the plastic. Water is recovered by the HMC in two phases. The first is a pre-process compaction without heat or with the heaters initially turned on but before the waste heats up. Tests have shown that during this step some liquid water may be expelled from the chamber. This water is believed to be free water (i.e., not bound with or absorbed in other waste constituents) that is present in the trash. This phase is herein termed Phase A of the water recovery process. During HMC operations, it is desired that liquid water recovery in Phase A be eliminated or minimized so that water-vapor processing equipment (e.g., condensers) downstream of the HMC are not fouled by liquid water and its constituents (i.e., suspended or dissolved matter) exiting the HMC. The primary water recovery process takes place next where the trash is further compacted while the heated surfaces reach their set temperatures for this step. This step will be referred to herein as Phase B of the water recovery process. During this step the waste chamber may be exposed to different selected pressures such as ambient, low pressure (e.g., 0.2 atm), or vacuum. The objective for this step is to remove both bound and

  17. Higher flow rates improve heating during hyperthermic intraperitoneal chemoperfusion. (United States)

    Furman, Matthew J; Picotte, Robert J; Wante, Mark J; Rajeshkumar, Barur R; Whalen, Giles F; Lambert, Laura A


    Heated intraperitoneal chemotherapy (HIPEC) kills cancer cells via thermal injury and improved chemotherapeutic cytotoxicity. We hypothesize that higher HIPEC flow rates improve peritoneal heating and HIPEC efficacy. (1) A HIPEC-model (30.8 L cooler with attached extracorporeal pump) was filled with 37°C water containing a suspended 1 L saline bag (SB) wrapped in a cooling sleeve, creating a constant heat sink. (2) HIPECs were performed in a swine model. Inflow, outflow, and peritoneal temperatures were monitored as flow rates varied. (3) Flow rates and temperatures during 20 HIPECs were reviewed. Higher flow rates decreased time required to increase water bath (WB) and SB temperature to 43°C. With a constant heat sink, the minimum flow rate required to reach 43°C in the WB was 1.75 L/min. Higher flow rates lead to greater temperature gradients between the WB and SB. In the swine model, the minimum flow rate required to reach 43°C outflow was 2.5-3.0 L/min. Higher flows led to more rapid heating of the peritoneum and greater peritoneal/outflow temperature gradients. Increased flow during clinical HIPEC suggested improved peritoneal heating with lower average visceral temperatures. There is a minimum flow rate required to reach goal temperature during HIPEC. Flow rate is an important variable in achieving and maintaining goal temperatures during HIPEC. © 2014 Wiley Periodicals, Inc.

  18. NPP ATMS Snowfall Rate Product (United States)

    Meng, Huan; Ferraro, Ralph; Kongoli, Cezar; Wang, Nai-Yu; Dong, Jun; Zavodsky, Bradley; Yan, Banghua


    Passive microwave measurements at certain high frequencies are sensitive to the scattering effect of snow particles and can be utilized to retrieve snowfall properties. Some of the microwave sensors with snowfall sensitive channels are Advanced Microwave Sounding Unit (AMSU), Microwave Humidity Sounder (MHS) and Advance Technology Microwave Sounder (ATMS). ATMS is the follow-on sensor to AMSU and MHS. Currently, an AMSU and MHS based land snowfall rate (SFR) product is running operationally at NOAA/NESDIS. Based on the AMSU/MHS SFR, an ATMS SFR algorithm has been developed recently. The algorithm performs retrieval in three steps: snowfall detection, retrieval of cloud properties, and estimation of snow particle terminal velocity and snowfall rate. The snowfall detection component utilizes principal component analysis and a logistic regression model. The model employs a combination of temperature and water vapor sounding channels to detect the scattering signal from falling snow and derive the probability of snowfall (Kongoli et al., 2015). In addition, a set of NWP model based filters is also employed to improve the accuracy of snowfall detection. Cloud properties are retrieved using an inversion method with an iteration algorithm and a two-stream radiative transfer model (Yan et al., 2008). A method developed by Heymsfield and Westbrook (2010) is adopted to calculate snow particle terminal velocity. Finally, snowfall rate is computed by numerically solving a complex integral. NCEP CMORPH analysis has shown that integration of ATMS SFR has improved the performance of CMORPH-Snow. The ATMS SFR product is also being assessed at several NWS Weather Forecast Offices for its usefulness in weather forecast.

  19. Modelling of elastic heat conductors via objective rate equations (United States)

    Morro, Angelo


    A thermoelastic solid is modelled by letting the heat flux be given by a rate equation. As any constitutive property, the rate equation has to be objective and consistent with thermodynamics. Accordingly, firstly a theorem is given that characterizes objective time derivatives. This allows the known objective time derivatives to be viewed as particular elements of the set so specified. Next the thermodynamic consistency is established for the constitutive models involving objective time derivatives within appropriate sets. It emerges that the thermodynamic consistency holds provided the stress contains additively terms quadratic in the heat flux vector in a form that is related to the derivative adopted for the rate of the heat flux.

  20. Coal-Fired Power Plant Heat Rate Reductions (United States)

    View a report that identifies systems and equipment in coal-fired power plants where efficiency improvements can be realized, and provides estimates of the resulting net plant heat rate reductions and costs for implementation.

  1. Molecular investigations on grain filling rate under terminal heat ...

    African Journals Online (AJOL)

    Molecular investigations on grain filling rate under terminal heat stress in bread wheat (Triticum aestivum L.) Girish Chandra Pandey, Jagadish Rane, Sindhu Sareen, Priyanka Siwach, NK Singh, Ratan Tiwari ...

  2. The usage of waste heat recovery units with improved heat engineering rates: theory and experimental research (United States)

    Chebotarev, Victor; Koroleva, Alla; Pirozhnikova, Anastasia


    Use of recuperator in heat producing plants for utilization of natural gas combustion products allows to achieve the saving of gas fuel and also provides for environmental sanitation. Decrease of the volumes of natural gas combustion due to utilization of heat provides not only for reduction of harmful agents in the combustion products discharged into the atmosphere, but also creates conditions for increase of energy saving in heating processes of heat producing plants due to air overheating in the recuperator. Grapho-analytical method of determination of energy saving and reduction of discharges of combustion products into the atmosphere is represented in the article. Multifunctional diagram is developed, allowing to determine simultaneously savings from reduction of volumes of natural gas combusted and from reduction of amounts of harmful agents in the combustion products discharged into the atmosphere. Calculation of natural gas economy for heat producing plant taking into consideration certain capacity is carried out.

  3. Heating rate of egg albumin solution and its change during Ohmic heating. (United States)

    Imai, T; Uemura, K; Noguchi, A


    Ohmic heating of egg albumin solution (10 w/v%) was examined at 50-10 kHz under a constant 10 V/cm. The heating rate of the solution was almost constant and increased slightly as the frequency increased. The gel formation was observed at about 75 degrees C and the heating rate increased above this temperature irrespective of the frequency used. The solution and gel showed almost the same impedance at the examined temperature (20-90 degrees C) and frequency (10 Hz-100 kHz). When the concentration of egg albumin was reduced to 2 w/v%, no gel was formed and a constant heating rate at over 75 degrees C was observed. The breaking strength of the gels showed little difference among the gels prepared by boiling water or Ohmic heating. These results suggest that the liquid components are not compartmentalized in the gel and that the sudden increase of heating rate above 75 degrees C was caused by the reduction of heat transfer of the gel at its phase change to the gel. Ohmic heating was also applied to the fresh egg white at the same conditions as that of the egg albumin solution. The fresh egg white did not show any sudden increase of heating rate until it reached 90 degrees C. However, the homogenized fresh egg white and its soluble part separated beforehand showed a slightly reduced heating rate and a sudden increase at about 60 degrees C. These results suggest that the gelatinous component of fresh egg white such as ovomucin represses the transfer of generated heat during Ohmic heating.

  4. Decomposition products of glycidyl esters of fatty acids by heating. (United States)

    Kimura, Wataru; Endo, Yasushi


    In this study, decomposition products of glycidyl palmitate (GP) of fatty acids heated at high temperature such as deep frying were investigated. When GP and tripalmitin (TP) were heated at 180 and 200 °C, they were decreased with heating time. The weight of GP was less than that of TP, although both GP and TP were converted to polar compounds after heating. The decomposition rate of GP was higher than TP. Both GP and TP produced considerable amounts of hydrocarbons and aldehydes during heating. Aldehydes produced from GP and TP included saturated aldehydes with carbon chain length of 3-10, while hydrocarbons consisted of carbon chain length of 8-15. It was observed that major hydrocarbons produced from GP during heating were pentadecane. Moreover, the level of carbon dioxide (CO2) released from GP was higher than that of TP. It was suggested that fatty acids in GE might be susceptible to decarboxylation. From these results, GP might be quickly decomposed to hydrocarbons, aldehydes and CO2 besides polar compounds by heating, in comparison with TP.

  5. Solar transition region and coronal response to heating rate perturbations (United States)

    Mariska, John T.


    Observations of Doppler shifts in UV emission lines formed in the solar transition region show continual plasma downflows and impulsive plasma upflows. Using numerical simulations, the authors examine the conjecture that areas of downflowing plasma are the base regions of coronal loops in which the heating is gradually decreasing and that areas of upflowing plasma are the base regions of coronal loops in which the heating rate is gradually increasing. Beginning with a coronal loop in equilibrium, the heating rate is reduced on time scales of 100, 1000, and 2000 s to 10 percent and 1 percent of the initial value, and the loop is allowed to evolve to a new equilibrium. The heating rate for the cooled models is then increased back to the initial value on the same time scales. While significant mass motions do develop in the simulations, both the emission measure and the velocity at 100,000 K do not show the characteristics present in UV observations.

  6. Design and demonstration of heat pipe cooling for NASP and evaluation of heating methods at high heating rates

    Energy Technology Data Exchange (ETDEWEB)

    Merrigan, M.A.; Sena, J.T.


    An evaluation of two heating methods for demonstration of NASP leading edge heat pipe technology was conducted. The heating methods were and rf induction heated plasma jet and direct rf induction. Tests were conducted to determine coupling from the argon plasma jet on a surface physically similar to a heat pipe. A molybdenum tipped calorimeter was fabricated and installed in an rf induction heated plasma jet for the test. The calorimetric measurements indicated a maximum power coupling of approximately 500 W/cm{sup 2} with the rf plasma jet. The effect of change in gas composition on the heating rate was investigated using helium. An alternative to the plasma heating of a heat pipe tip, an rf concentrator was evaluated for coupling to the hemispherical tip of a heat pipe. A refractory metal heat pipe was designed, fabricated, and tested for the evaluation. The heat pipe was designed for operation at 1400 to 1900 K with power input to 1000 W/cm{sup 2} over a hemispherical nose tip. Power input of 800 W/cm{sup 2} was demonstrated using the rf concentrator. 2 refs., 13 figs.

  7. Heating and cooling rates and their effects upon heart rate in the ...

    African Journals Online (AJOL)

    ... rates increase with increasing body temperature, and for all body temperatures heart rates were greater during heating than during cooling. This suggests that the cardiovascular system plays a role in the heat exchange of the tortoises, but further study is required to completely understand the thermoregulatory process.

  8. Effect of water activity and heating rate on Staphylococcus aureus heat resistance in walnut shells. (United States)

    Zhang, Lihui; Kou, Xiaoxi; Zhang, Shuang; Cheng, Teng; Wang, Shaojin


    Water activity (a w ) and heating rate have shown important effects on the thermo-tolerance of pathogens in low moisture foods during thermal treatments. In this study, three strains were selected to compare the heat resistance in walnut shell powder and finally the most heat resistant S. aureus ATCC 25923 was chosen to investigate the influence of a w and heating rate using a heating block system (HBS). The results showed that S. aureus ATCC 25923 became more thermo-tolerant at lower a w . The D-values of S. aureus ATCC 25923 increased with decreasing water activity and heating rates (<1°C/min). A significant increase in heat resistance of S. aureus ATCC 25923 in walnut shell powder was observed only for the heating rates of 0.2 and 0.5°C/min but not at 1, 5 and 10°C/min. There was a rapid reduction of S. aureus ATCC 25923 at elevated temperatures from 26 to 56°C at a heating rate of 0.1°C/min. The inactivation under non-isothermal conditions was better fitted by Weibull distribution (R 2 =0.97 to 0.99) than first-order kinetics (R 2 =0.88 to 0.98). These results suggest that an appropriate increase in moisture content of in-shell walnuts and heating rate during thermal process can improve the inactivation efficiency of pathogens in low moisture foods. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Heat transfer and heating rate of food stuffs in commercial shop ovens

    Indian Academy of Sciences (India)

    Heat transfer and heating rate of food stuffs in commercial shop ovens. P NAVANEETHAKRISHNAN. ∗. , P S S SRINIVASAN and. S DHANDAPANI. Department of Mechanical Engineering, Kongu Engineering College,. Perundurai 638 052 e-mail:, MS received 24 May 2006; ...

  10. Heat Pre-Treatment of Beverages Wastewater on Hydrogen Production (United States)

    Uyub, S. Z.; Mohd, N. S.; Ibrahim, S.


    At present, a large variety of alternative fuels have been investigated and hydrogen gas is considered as the possible solution for the future due to its unique characteristics. Through dark fermentation process, several factors were found to have significant impact on the hydrogen production either through process enhancement or inhibition and degradation rates or influencing parameters. This work was initiated to investigate the optimum conditions for heat pre-treatment and initial pH for the dark fermentative process under mesophilic condition using a central composite design and response surface methodology (RSM). Different heat treatment conditions and pH were performed on the seed sludge collected from the anaerobic digester of beverage wastewater treatment plant. Heat treatment of inoculum was optimized at different exposure times (30, 90, 120 min), temperatures (80, 90 and 100°C) and pH (4.5, 5.5, 6.5) in order to maximize the biohydrogen production and methanogens activity inhibition. It was found that the optimum heat pre-treatment condition and pH occurred at 100°C for 50 min and the pH of 6.00. At this optimum condition the hydrogen yield was 63.0476 ml H2/mol glucose (H2 Yield) and the COD removal efficiency was 90.87%. In conclusion, it can be hypothesized that different heat treatment conditions led to differences in the initial microbial communities (hydrogen producing bacteria) which resulted in the different hydrogen yields.

  11. Modeling the influence of potassium content and heating rate on biomass pyrolysis

    DEFF Research Database (Denmark)

    Trubetskaya, Anna; Surup, Gerrit; Shapiro, Alexander


    . The shrinking particle model considers internal and external heat transfer limitations and incorporates catalytic effects of potassium on the product yields. Modeling parameters were tuned with experimentally determined char yields at high heating rates (>200 K s−1) using a wire mesh reactor, a single particle...... burner, and a drop tube reactor. The experimental data demonstrated that heating rate and potassium content have significant effects on the char yield. The importance of shrinkage on the devolatilization time becomes greater with increasing particle size, but showed little influence on the char yields....

  12. The economic production lot size model with several production rates

    DEFF Research Database (Denmark)

    Larsen, Christian

    We study an extension of the economic production lot size model, where more than one production rate can be used during a cycle. The production rates and their corresponding runtimes are decision variables. We decompose the problem into two subproblems. First, we show that all production rates...

  13. Optimal Allocation of Heat Exchanger Inventory Associated with Fixed Power Output or Fixed Heat Transfer Rate Input


    COSTEA M.; Petrescu, S; K. Le Saos; Michel Feidt


    The purpose of this study is to determine the optimal distribution of the heat transfer surface area or conductance among the Stirling engine heat exchangers when the minimum of the total heat transfer surface area of the heat exchangers is sought. The optimization procedure must fulfill one of the following constraints: (1) fixed power output of the engine, (2) fixed heat transfer rate available at the source, or (3) fixed power output and heat transfer rate at the source. Internal and exter...

  14. Atmospheric production rate of {sup 36}Cl

    Energy Technology Data Exchange (ETDEWEB)

    Parrat, Y.; Hajdas, W.; Baltensperger, U.; Synal, H.A.; Kubik, P.W.; Gaeggeler, H.W. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Suter, M. [Eidgenoessische Technische Hochschule, Zurich (Switzerland)


    Using experimental cross sections, a new calculation of the atmospheric production rate of {sup 36}Cl was carried out. A mean production rate of 20 atoms m{sup -2}s{sup -1} was obtained, which is lower than mean {sup 36}Cl deposition rates. (author) 2 figs., 7 refs.

  15. Atomic recombination rate determination through heat-transfer measurement. (United States)

    Park, C.; Anderson, L. A.; Sheldahl, R. E.


    A theoretical and experimental demonstration is presented which shows that under suitable conditions the volume recombination coefficient can be determined by measuring the heat transfer rate into the wall of a cylinder through which a dissociated stream is passing. The experimental results obtained are in agreement with those of other investigators.

  16. Molecular investigations on grain filling rate under terminal heat ...

    African Journals Online (AJOL)

    Ezedom Theresa


    Jul 10, 2013 ... of determination (R2) was recorded 0.10 and 0.06, respectively. This indicates that the two markers were associated with the differences in grain filling (dGFR) rate as indicator for heat tolerance. Xbarc04 (Figure 1) and. Xgwm314 have their locus position on chromosomes 5B and 3D, respectively (Table 2).

  17. Molecular investigations on grain filling rate under terminal heat ...

    African Journals Online (AJOL)

    Ezedom Theresa


    Jul 10, 2013 ... Grain yield under post anthesis high temperature stress is largely influenced by grain filling rate (GFR). To investigate ... 75% of the progenies showed no difference while 25% showed significant difference in GFR under high temperature .... timely (normal) and late (terminal heat stress) conditions. Data on.

  18. NESDIS Blended Rain Rate (RR) Products (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The blended Rain Rate (RR) product is derived from multiple sensors/satellites. The blended products were merged from polar-orbiting and geostationary satellite...

  19. Radiogenic heat production in sedimentary rocks of the Gulf of Mexico Basin, south Texas (United States)

    McKenna, T.E.; Sharp, J.M.


    Radiogenic heat production within the sedimentary section of the Gulf of Mexico basin is a significant source of heat. Radiogenic heat should be included in thermal models of this basin (and perhaps other sedimentary basins). We calculate that radiogenic heat may contribute up to 26% of the overall surface heat-flow density for an area in south Texas. Based on measurements of the radioactive decay rate of ??-particles, potassium concentration, and bulk density, we calculate radiogenic heat production for Stuart City (Lower Cretaceous) limestones, Wilcox (Eocene) sandstones and mudrocks, and Frio (Oligocene) sandstones and mudrocks from south Texas. Heat production rates range from a low of 0.07 ?? 0.01 ??W/m3 in clean Stuart City limestones to 2.21 ?? 0.24??W/m3 in Frio mudrocks. Mean heat production rates for Wilcox sandstones, Frio sandstones, Wilcox mudrocks, and Frio mudrocks are 0.88, 1.19, 1.50, and 1.72 ??W/m3, respectively. In general, the mudrocks produce about 30-40% more heat than stratigraphically equivalent sandstones. Frio rocks produce about 15% more heat than Wilcox rocks per unit volume of clastic rock (sandstone/mudrock). A one-dimensional heat-conduction model indicates that this radiogenic heat source has a significant effect on subsurface temperatures. If a thermal model were calibrated to observed temperatures by optimizing basal heat-flow density and ignoring sediment heat production, the extrapolated present-day temperature of a deeply buried source rock would be overestimated.Radiogenic heat production within the sedimentary section of the Gulf of Mexico basin is a significant source of heat. Radiogenic heat should be included in thermal models of this basin (and perhaps other sedimentary basins). We calculate that radiogenic heat may contribute up to 26% of the overall surface heat-flow density for an area in south Texas. Based on measurements of the radioactive decay rate of ??-particles, potassium concentration, and bulk density, we

  20. Oxygen Ion Heat Rate within Alfvenic Turbulence in the Cusp (United States)

    Coffey, Victoria N.; Singh, Nagendra; Chandler, Michael O.


    The role that the cleft/cusp has in ionosphere-magnetosphere coupling makes it a dynamic and important region. It is directly exposed to the solar wind, making it possible for the entry of electromagnetic energy and precipitating electrons and ions from dayside reconnection and other dayside events. It is also a significant source of ionospheric plasma, contributing largely to the mass loading of the magnetosphere with large fluxes of outflowing ions. Crossing the cusp/cleft near 5100 km, the Polar instruments observe the common correlation of downward Poynting flux, ion energization, soft electron precipitation, broadband extremely low-frequency (BB-ELF) emissions, and density depletions. The dominant power in the BB-ELF emissions is now identified to be from spatially broad, low frequency Alfv nic structures. For a cusp crossing, we determine using the Electric Field Investigation (EFI), that the electric and magnetic field fluctuations are Alfv nic and the electric field gradients satisfy the inequality for stochastic acceleration. With all the Polar 1996 horizontal crossings of the cusp, we determine the O+ heating rate using the Thermal Ion Dynamics Experiment (TIDE) and Plasma Wave Investigation (PWI). We then compare this heating rate to other heating rates assuming the electric field gradient criteria exceeds the limit for stochastic acceleration for the remaining crossings. The comparison suggests that a stochastic acceleration mechanism is operational and the heating is controlled by the transverse spatial scale of the Alfvenic waves.

  1. Standby Rates for Combined Heat and Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Sedano, Richard [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Selecky, James [Brubaker & Associates, Inc., Chesterfield, MO (United States); Iverson, Kathryn [Brubaker & Associates, Inc., Chesterfield, MO (United States); Al-Jabir, Ali [Brubaker & Associates, Inc., Chesterfield, MO (United States); Garland, Patricia [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)


    Improvements in technology, low natural gas prices, and more flexible and positive attitudes in government and utilities are making distributed generation more viable. With more distributed generation, notably combined heat and power, comes an increase in the importance of standby rates, the cost of services utilities provide when customer generation is not operating or is insufficient to meet full load. This work looks at existing utility standby tariffs in five states. It uses these existing rates and terms to showcase practices that demonstrate a sound application of regulatory principles and ones that do not. The paper also addresses areas for improvement in standby rates.

  2. 30 CFR 250.1632 - Production rates. (United States)


    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Production rates. 250.1632 Section 250.1632 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Sulphur Operations § 250.1632 Production rates. Each sulphur...

  3. 40 CFR 75.36 - Missing data procedures for heat input rate determinations. (United States)


    ....36 Missing data procedures for heat input rate determinations. (a) When hourly heat input rate is... the heat input rate calculation shall be provided according to § 75.31 or § 75.33, as applicable. When... heat input rate calculations in accordance with paragraphs (b) and (d) of this section. (b) During the...

  4. Heating and cooling rates and their etTects upon heart rate in the ...

    African Journals Online (AJOL)


    Mar 16, 1988 ... have investigated aspects of thermoregulation, but the results obtained are contradictory, and no heart rate measurements were done. The purpose of this study was to investigate the heating and cooling rates of the angulate tortoise, Chersina angulata, in the eastern Cape Province,. South Africa.

  5. Utilization of low-temperature heat sources for heat and power production

    DEFF Research Database (Denmark)

    Haglind, Fredrik; Elmegaard, Brian


    Low-temperature heat sources are available in many applications, ranging from waste heat from marine diesel engines, industries and refrigeration plants to biomass, geothermal and solar heat sources. There is a great potential for enhancing the utilization of these heat sources by novel.......Both power production and heat pumps may benefit from the development as both technologies utilize a heat source. This makes it possible to cover the complete temperature range of low temperature sources. The development may contribute to significantly lower energy consumption in Danish industry and shipping...

  6. Particle loading rates for HVAC filters, heat exchangers, and ducts. (United States)

    Waring, M S; Siegel, J A


    The rate at which airborne particulate matter deposits onto heating, ventilation, and air-conditioning (HVAC) components is important from both indoor air quality (IAQ) and energy perspectives. This modeling study predicts size-resolved particle mass loading rates for residential and commercial filters, heat exchangers (i.e. coils), and supply and return ducts. A parametric analysis evaluated the impact of different outdoor particle distributions, indoor emission sources, HVAC airflows, filtration efficiencies, coils, and duct system complexities. The median predicted residential and commercial loading rates were 2.97 and 130 g/m(2) month for the filter loading rates, 0.756 and 4.35 g/m(2) month for the coil loading rates, 0.0051 and 1.00 g/month for the supply duct loading rates, and 0.262 g/month for the commercial return duct loading rates. Loading rates are more dependent on outdoor particle distributions, indoor sources, HVAC operation strategy, and filtration than other considered parameters. The results presented herein, once validated, can be used to estimate filter changing and coil cleaning schedules, energy implications of filter and coil loading, and IAQ impacts associated with deposited particles. The results in this paper suggest important factors that lead to particle deposition on HVAC components in residential and commercial buildings. This knowledge informs the development and comparison of control strategies to limit particle deposition. The predicted mass loading rates allow for the assessment of pressure drop and indoor air quality consequences that result from particle mass loading onto HVAC system components.

  7. Pyrolysis polygeneration of poplar wood: Effect of heating rate and pyrolysis temperature. (United States)

    Chen, Dengyu; Li, Yanjun; Cen, Kehui; Luo, Min; Li, Hongyan; Lu, Bin


    The pyrolysis of poplar wood were comprehensively investigated at different pyrolysis temperatures (400, 450, 500, 550, and 600°C) and at different heating rates (10, 30, and 50°C/min). The results showed that BET surface area of biochar, the HHV of non-condensable gas and bio-oil reached the maximum values of 411.06m(2)/g, 14.56MJ/m(3), and 14.39MJ/kg, under the condition of 600°C and 30°C/min, 600°C and 50°C/min, and 550°C and 50°C/min, respectively. It was conducive to obtain high mass and energy yield of bio-oil at 500°C and higher heating rate, while lower pyrolysis temperature and heating rate contributed towards obtaining both higher mass yield and energy yield of biochar. However, higher pyrolysis temperature and heating rate contributed to obtain both higher mass yield and energy yield of the non-condensable gas. In general, compared to the heating rate, the pyrolysis temperature had more effect on the product properties. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Heat Production as a Tool in Geothermal Exploration (United States)

    Rhodes, J. M.; Koteas, C.; Mabee, S. B.; Thomas, M.; Gagnon, T.


    Heat flow data (together with knowledge, or assumptions, of stratigraphy, thermal conductivity and heat production) provide the prime parameter for estimating the potential of geothermal resources. Unfortunately this information is expensive to obtain as it requires deep boreholes. Consequently it is sparse or lacking in areas not traditionally considered as having geothermal potential. New England (and most of the northeastern U.S.A.) is one such area. However, in the absence of volcano-derived hydrothermal activity with its attendant high heat flow, granitic plutons provide an alternative geothermal resource. Compared with other crustal rocks, granites contain higher concentrations of heat-producing elements (K, U, Th). Additionally, they are relatively homogeneous, compared to surrounding country rock, allowing for stimulation through hydro-fracking of large (>1 km3) geothermal reservoirs. Consequently we have adopted a different approach, obtaining heat production data rather then relying on the very sparse heat flow data. Birch and colleagues long since recognized the relationship between heat flow and heat production as an integral part of their concept of Heat Flow Provinces. Heat production is readily determined in the laboratory by measuring the density of a sample and the concentrations of its heat-producing elements potassium, uranium and thorium. We have determined the heat production for 570 samples from most of the major granitic and gneissic bodies in Massachusetts and Connecticut. We have also measured these parameters for 70 sedimentary rocks that cover granites and gneiss in the Connecticut and Narragansett Basins. This data is being used to calculate inferred heat flow data for these localities. Comparison of these inferred heat flow values with the sparse number of those measured directly in boreholes in the two States is encouraging, indicating that this approach has merit. We have also measured thermal conductivity on all of these samples

  9. Modelling temperature-dependent heat production over decades in High Arctic coal waste rock piles

    DEFF Research Database (Denmark)

    Hollesen, Jørgen; Elberling, Bo; Jansson, P.E.


    Subsurface heat production from oxidation of pyrite is an important process that may increase subsurface temperatures within coal waste rock piles and increase the release of acid mine drainage, AMD. Waste rock piles in the Arctic are especially vulnerable to changes in subsurface temperatures...... as the release of AMD normally is limited by permafrost. Here we show that temperatures within a 20 year old heat-producing waste rock pile in Svalbard (78°N) can be modelled by the one-dimensional heat and water flow model (CoupModel) with a new temperature-dependent heat-production module that includes both...... biological and chemical oxidation processes and heat source depletion over time. Inputs to the model are meteorological measurements, physical properties of the waste rock material and measured subsurface heat-production rates. Measured mean annual subsurface temperatures within the waste rock pile are up...

  10. Effect of seeding rate on organic production (United States)

    Increased demand for organic rice (Oryza sativa L.) has incentivized producer conversion from conventional to organically-managed rice production in the U.S. Little is known on the impacts of seeding rate on organic rice production. A completely randomized factorial design with four replications was...

  11. Ratings of structured products and issuers' commitments


    Veiga, Carlos; Wystup, Uwe


    This paper analyzes the evolution of the structured products market focusing on the tools available for private investors, on which they rely for the selection process. The selection process is extremely difficult because there is a myriad of products, because of the dynamic nature of the market and market participants' actions, and because of the complexity of many of the products. We consider the existing types of tools, in particular the rating schemes that have been proposed by industry p...

  12. Radiogenic heat production and heat flow in the northern Arabian Shield (United States)

    Gazzaz, M. A.; Hashad, A. H.

    This study presents the first comprehensive surface heat production data from the Arabian Shield, based on radiometric analysis of some 1200 rock samples, collected from the major ultramafic to felsic units along two transects crossing the different structural provinces, in the central and northern parts of the Shield. For the convenience of the presentation of the data, the two transects are divided into five terranes. Comparison of heat production averages and ranges of lithologically equivalent units in the different terranes shows considerable variation, depending on the geotectonic setting. Granitoids are the main contributor of heat production, variation in their abundance and composition are main factors in heat generation estimates. The largest contrast in heat production exists between rock units of both the Miskah and Madinah terranes, particularly the granitoids due, most probably, to difference in their general geotectonic evolution. The Miskah granitoids were evolved within a microplate underlain by Middle Proterozic granitoid basement, whereas the Madinah granitoids are interpreted to have been formed within the cores of Late Proterozoic ensimatic island arc terrane. Granitoids from the other terranes show no significant differences in heat production averages. The overall weighted HPU average for the northern Arabian Shield is estimated as 4.7 which corresponds to a heat flow of 1.13 HFU. One of the most important findings of this study is the delineation of a northwest trending high heat production province associated with mineralization along both the Nabitah suture zone and the Najd fault system.

  13. Dissociation rate of bromine diatomics in an argon heat bath (United States)

    Razner, R.; Hopkins, D.


    The evolution of a collection of 300 K bromine diatomics embedded in a heat bath of argon atoms at 1800 K was studied by computer, and a dissociation-rate constant for the reaction Br2 + BR + Ar yields Br + Ar was determined. Previously published probability distributions for energy and angular momentum transfers in classical three-dimensional Br2-Ar collisions were used in conjunction with a newly developed Monte Carlo scheme for this purpose. Results are compared with experimental shock-tube data and the predictions of several other theoretical models. A departure from equilibrium is obtained which is significantly greater than that predicted by any of these other theories.

  14. Solar Flux Deposition And Heating Rates In Jupiter's Atmosphere (United States)

    Perez-Hoyos, Santiago; Sánchez-Lavega, A.


    We discuss here the solar downward net flux in the 0.25 - 2.5 µm range in the atmosphere of Jupiter and the associated heating rates under a number of vertical cloud structure scenarios focusing in the effect of clouds and hazes. Our numerical model is based in the doubling-adding technique to solve the radiative transfer equation and it includes gas absorption by CH4, NH3 and H2, in addition to Rayleigh scattering by a mixture of H2 plus He. Four paradigmatic Jovian regions have been considered (hot-spots, belts, zones and Polar Regions). The hot-spots are the most transparent regions with downward net fluxes of 2.5±0.5 Wm-2 at the 6 bar level. The maximum solar heating is 0.04±0.01 K/day and occurs above 1 bar. Belts and zones characterization result in a maximum net downward flux of 0.5 Wm-2 at 2 bar and 0.015 Wm-2 at 6 bar. Heating is concentrated in the stratospheric and tropospheric hazes. Finally, Polar Regions are also explored and the results point to a considerable stratospheric heating of 0.04±0.02 K/day. In all, these calculations suggest that the role of the direct solar forcing in the Jovian atmospheric dynamics is limited to the upper 1 - 2 bar of the atmosphere except in the hot-spot areas. Acknowledgments: This work has been funded by Spanish MEC AYA2006-07735 with FEDER support and Grupos Gobierno Vasco IT-464-07.

  15. Local business models for district heat production; Kaukolaemmoen paikalliset liiketoimintamallit

    Energy Technology Data Exchange (ETDEWEB)

    Hakala, L.; Pesola, A.; Vanhanen, J.


    Local district heating business, outside large urban centers, is a profitable business in Finland, which can be practiced with several different business models. In addition to the traditional, local district heating business, local district heat production can be also based on franchising business model, on integrated service model or on different types of cooperation models, either between a local district heat producer and industrial site providing surplus heat or between a local district heat producer and a larger district heating company. Locally available wood energy is currently utilized effectively in the traditional district heating business model, in which a local entrepreneur produces heat to consumers in the local area. The franchising model is a more advanced version of the traditional district heating entrepreneurship. In this model, franchisor funds part of the investments, as well as offers centralized maintenance and fuel supply, for example. In the integrated service model, the local district heat producer offers also energy efficiency services and other value-added services, which are based on either the local district heat suppliers or his partner's expertise. In the cooperation model with industrial site, the local district heating business is based on the utilization of the surplus heat from the industrial site. In some cases, profitable operating model approach may be a district heating company outsourcing operations of one or more heating plants to a local entrepreneur. It can be concluded that all business models for district heat production (traditional district heat business model, franchising, integrated service model, cooperative model) discussed in this report can be profitable in Finnish conditions, as well for the local heat producer as for the municipality - and, above all, they produce cost-competitive heat for the end-user. All the models were seen as viable and interesting and having possibilities for expansion Finland

  16. Utilization of low temperature heat for environmentally friendly electricity production

    DEFF Research Database (Denmark)

    Andreasen, Jesper Graa; Elmegaard, Brian; Haglind, Fredrik


    The focus on reduction of fossil fuelled electricity generation has increased the attention on exploitation of low grade heat as the energy source for electricity producing power plants. Low grade heat is heat, which isavailable at a low temperature, e.g. from waste heat from marine diesel engines...... and industrial processes orfrom geothermal and solar heat sources. Utilization of such heat sources makes it possible to produce electricity with no additional burning of fossil fuel, and does therefore represent an environmentally friendly alternative to fossil fuel based electricity production. Utilization...... of low grade heat is not feasible with conventional steam Rankine cycles (steam engines) due to undesirable properties of steam. Instead the organic Rankine cycle is typically used, since it enables thechoice of a working fluid, e.g. hydrocarbons or refrigerants, with desirable properties. One of the key...

  17. Maximum orbit plane change with heat-transfer-rate considerations (United States)

    Lee, J. Y.; Hull, D. G.


    Two aerodynamic maneuvers are considered for maximizing the plane change of a circular orbit: gliding flight with a maximum thrust segment to regain lost energy (aeroglide) and constant altitude cruise with the thrust being used to cancel the drag and maintain a high energy level (aerocruise). In both cases, the stagnation heating rate is limited. For aeroglide, the controls are the angle of attack, the bank angle, the time at which the burn begins, and the length of the burn. For aerocruise, the maneuver is divided into three segments: descent, cruise, and ascent. During descent the thrust is zero, and the controls are the angle of attack and the bank angle. During cruise, the only control is the assumed-constant angle of attack. During ascent, a maximum thrust segment is used to restore lost energy, and the controls are the angle of attack and bank angle. The optimization problems are solved with a nonlinear programming code known as GRG2. Numerical results for the Maneuverable Re-entry Research Vehicle with a heating-rate limit of 100 Btu/ft(2)-s show that aerocruise gives a maximum plane change of 2 deg, which is only 1 deg larger than that of aeroglide. On the other hand, even though aerocruise requires two thrust levels, the cruise characteristics of constant altitude, velocity, thrust, and angle of attack are easy to control.

  18. Aging and Productivity - Evidence from Piece Rates


    Pekkarinen, Tuomas; Uusitalo, Roope


    We evaluate the effects of aging on productivity using piece-rate earnings as a proxy for worker output. Our data contain the population of Finnish blue collar workers in 61 different industries during 1990-2002. A unique feature of the data is that we can observe the exact hours worked on piece rates and on fixed time rates as well as earnings under both performance schemes. We account for the selection into piece rates by using firm-level changes in pay systems as instruments for the probab...

  19. Effect of the rate of temperature increase on water quality during heating in electromagnetic- and gas-heated pans. (United States)

    Hiratsuka, Hiroshi; Sasaki, Ken


    More rapid increases in the pH value and hardness during electromagnetic heating of a pan of water were observed than when the pan was heated by LNG or LPG. The water quality changed universally in several tap water samples across Japan. This quality change was closely correlated with the rate of temperature increase, irrespective of heating by electromagnetic induction, LNG or LPG.

  20. Temperature dependence of fission product release rates

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, J.L.; McGown, M.E.; Reynolds, A.B.


    Fission product fractional release rates, K, used in the Albrecht-Wild model and measured at Kernforschungszentrum Karlsruhe and Oak Ridge National Laboratory can be fitted well by a single straight line for each fission product over the entire temperature range of the data when in K is plotted as a function of 1/T. Past applications of the Albrecht-Wild model have used plots of ln K versus T, which required three fits over the temperature range. Thus it is suggested that fractional release rates be represented by the Arrhenius form, K = K /SUB o/ exp(-Q/RT).

  1. The Relationship between the Heat Disorder Incidence Rate and Heat Stress Indices at Yamanashi Prefecture in Japan


    Shin Akatsuka; Tadashi Uno; Masahiro Horiuchi


    In recent years, the risk of heat disorder in daily life has increased dramatically because the thermal environment has been deteriorating. The main objective of this study was to examine regional differences in the relationship between heat disorder incidence rate and heat stress indices at Yamanashi Prefecture, Japan. Daily maximum air temperature and daily maximum WBGT were used as heat stress indices in each region. Nonlinear regression analysis was used to examine the regional difference...

  2. Productivity Shocks, Discount Rate and Incentives


    Sonia Di Giannatale; Itza Curiel; Juan Herrera; Katya Rodríguez


    In this paper we analyze a repeated Principal Agent model, formulated as a Multi-Objective Optimization problem. We approximate its Pareto Frontier by using a recently proposed Multi-Objective Optimization Evolutionary Algorithm named RankMOEA. We focus on the effects of changes of productivity shocks and discount rates on the aforementioned Pareto Frontier. Our numerical results indicate that as the discount rate increases, the Principal Agent relationship generates higher values; the spread...

  3. Excess heat production of future net zero energy buildings within district heating areas in Denmark

    DEFF Research Database (Denmark)

    Nielsen, Steffen; Möller, Bernd


    buildings in Denmark are connected to electricity grids and around half are connected to districtheating (DH) systems. Connecting buildings to larger energy systems enables them to send and receive energy from these systems. This paper’s objective is to examine how excess heat production from NZEBs...... excess heat production from solar thermal collectors. The main findings are that the excess heat from NZEBs can benefit DH systems by decreasing the production from production units utilizing combustible fuels. In DH areas where the heat demand in summer months is already covered by renewable energy......Denmark’s long-term energy goal is to develop an energy system solely based on renewable energy sources by 2050. To reach this goal, energy savings in buildings is essential. Therefore, the focus on energy efficient measures in buildings and netzeroenergybuildings (NZEBs) has increased. Most...

  4. Studi Pengaruh Operating Heat Rate Terhadap Efisiensi Kinerja Pltu Labuhan Angin Sibolga


    Simanjuntak, Sari Manna


    130402104 Heat rate merupakan ukuran keandalan dari suatu unit pembangkit. Heat rate didefinisikan sebagai jumlah energi bahan bakar yang dibutuhkan untuk menghasilkan listrik sebesar 1 kWh. Tujuan penelitian ini adalah mengevaluasi kinerja PLTU dari pengaruh beban terhadap pemakaian konsumsi spesifik bahan bakar, heat rate dan efisiensi termal pada PLTU Labuhan Angin Sibolga. Perhitungan nilai heat rate dilakukan dengan menggunakan metode langsung atau sering dikenal den...

  5. NGNP Process Heat Applications: Hydrogen Production Accomplishments for FY2010

    Energy Technology Data Exchange (ETDEWEB)

    Charles V Park


    This report summarizes FY10 accomplishments of the Next Generation Nuclear Plant (NGNP) Engineering Process Heat Applications group in support of hydrogen production technology development. This organization is responsible for systems needed to transfer high temperature heat from a high temperature gas-cooled reactor (HTGR) reactor (being developed by the INL NGNP Project) to electric power generation and to potential industrial applications including the production of hydrogen.

  6. On the radiogenic heat production of igneous rocks

    Directory of Open Access Journals (Sweden)

    D. Hasterok


    Full Text Available Radiogenic heat production is a physical parameter crucial to properly estimating lithospheric temperatures and properly understanding processes related to the thermal evolution of the Earth. Yet heat production is, in general, poorly constrained by direct observation because the key radiogenic elements exist in trace amounts making them difficulty image geophysically. In this study, we advance our knowledge of heat production throughout the lithosphere by analyzing chemical analyses of 108,103 igneous rocks provided by a number of geochemical databases. We produce global estimates of the average and natural range for igneous rocks using common chemical classification systems. Heat production increases as a function of increasing felsic and alkali content with similar values for analogous plutonic and volcanic rocks. The logarithm of median heat production is negatively correlated (r2 = 0.98 to compositionally-based estimates of seismic velocities between 6.0 and 7.4 km s−1, consistent with the vast majority of igneous rock compositions. Compositional variations for continent-wide models are also well-described by a log-linear correlation between heat production and seismic velocity. However, there are differences between the log-linear models for North America and Australia, that are consistent with interpretations from previous studies that suggest above average heat production across much of Australia. Similar log-linear models also perform well within individual geological provinces with ∼1000 samples. This correlation raises the prospect that this empirical method can be used to estimate average heat production and natural variance both laterally and vertically throughout the lithosphere. This correlative relationship occurs despite a direct causal relationship between these two parameters but probably arises from the process of differentiation through melting and crystallization.

  7. Evaluation of radiative heating rate profiles in eight GCMs using A-train satellite observations (United States)

    Cesana, Gregory; Waliser, D. E.; L'Ecuyer, T.; Jiang, X.; Li, J.-L.


    In this study, we take advantage of two modeling experiments and A-train satellite observations to characterize the impact of cloud biases in the vertical distribution of radiative heating rates in eight general circulation models General Circulation Models (GCMs). We compare the modeled vertical distribution of clouds against the GCM-Oriented Cloud-Aerosols Lidar and Infrared Pathfinder Satellite Observations Cloud Product (CALIPSO-GOCCP) using a simulator approach. Although the overall pattern of modeled zonal cloud frequency profiles is relatively good (r=0.92 for the multi-model mean), we show two main systematic biases in the cloud frequency profiles: a positive bias above 7km (up to 10%), particularly in the tropics; and a negative bias below 3km (up to -10%), which reaches a maximum over the stratocumulus cloud regions. Using radiative heating rate profiles calculated with constraints from CloudSat, CALIPSO and other satellite observations, we show that the excess of clouds in the upper troposphere (>7km) results in excess infrared and solar heating in the vicinity of the clouds as well as more infrared heating for the entire column below the cloud. On the other hand, the lack of clouds in the lower troposphere reduces the infrared cooling near the missing cloud levels and increases the absorption of solar radiation by water vapor below. The global radiative heating rate between 50°S and 50°N is too warm in the models (-0.81K/day vs. -1.01K/day). The representation of clouds in GCMs remains challenging, but reducing the cloud biases would lead to an improvement of the heating rate profiles, which in turn would help in improving other aspects of models' simulations such as the dynamics, cloud feedbacks and surface-atmosphere interactions.

  8. 40 CFR 75.83 - Calculation of Hg mass emissions and heat input rate. (United States)


    ... heat input rate. 75.83 Section 75.83 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Calculation of Hg mass emissions and heat input rate. The owner or operator shall calculate Hg mass emissions and heat input rate in accordance with the procedures in sections 9.1 through 9.3 of appendix F to...

  9. Atmospheric solar heating rate in the water vapor bands (United States)

    Chou, Ming-Dah


    The total absorption of solar radiation by water vapor in clear atmospheres is parameterized as a simple function of the scaled water vapor amount. For applications to cloudy and hazy atmospheres, the flux-weighted k-distribution functions are computed for individual absorption bands and for the total near-infrared region. The parameterization is based upon monochromatic calculations and follows essentially the scaling approximation of Chou and Arking, but the effect of temperature variation with height is taken into account in order to enhance the accuracy. Furthermore, the spectral range is extended to cover the two weak bands centered at 0.72 and 0.82 micron. Comparisons with monochromatic calculations show that the atmospheric heating rate and the surface radiation can be accurately computed from the parameterization. Comparisons are also made with other parameterizations. It is found that the absorption of solar radiation can be computed reasonably well using the Goody band model and the Curtis-Godson approximation.

  10. The effect of wind on the rate of heat loss from avian cup-shaped nests.

    Directory of Open Access Journals (Sweden)

    Caragh B Heenan

    Full Text Available Forced convection can significantly influence the heat loss from birds and their offspring but effects may be reduced by using sheltered micro-sites such as cavities or constructing nests. The structural and thermal properties of the nests of two species, the spiny-cheeked honeyeater (Acanthagenys rufogularis and yellow-throated miner (Manorina flavigula, were measured in relation to three wind speeds. Nest dimensions differ between the two species, despite the similar body mass of the incubating adults, however nest conductance is comparable. As wind speed increases, so does the rate of heat loss from the nests of both species, and further still during incubation recesses. The significance of forced convection through the nest is a near-doubling in heat production required by the parent, even when incubating at relatively low wind speeds. This provides confirmation that selecting a sheltered nest site is important for avian reproductive success.

  11. Pyrolysis mechanism of macerals at a low heating rate

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J.; Yuan, J.; Xu, Y. [Southeast University, Nanjing (China). Thermal Energy Engineering Research Institute


    Pyrolysis of macerals at a low heating rate was studied using DTA technology. The process of the pyrolysis was analyzed using a combined differential and integral method. The results showed that the process was quite complicated and cannot be described as a one-step reaction. However, there was a definite dividing point for the process, corresponding to the temperature of the maximum weight loss rate, T{sub m}. Based on the assumption that the pyrolysis reaction consisted of two steps, it was found that the rates of both steps are controlled by diffusion of different mechanism. The former step is Anti-Jander three dimension, the later ZLT equation. The activation energies of the two steps are also different, the former is larger than the later. The reasons causing the change of activation energy in the two steps were discussed by comparing the change of pososity in pyrolysis. The macerals showed similar pyrolysis mechanism but different activation energies. Usually the activation energy for inertinite was the lowest. The activation energy was affected by rank and increased with increasing rank. 10 refs., 1 fig., 3 tabs.

  12. Analysis of Effect of Heat Pipe Parameters in Minimising the Entropy Generation Rate


    Rakesh Hari; Chandrasekharan Muraleedharan


    Heat transfer and fluid flow in the heat pipe system result in thermodynamic irreversibility generating entropy. The minimum entropy generation principle can be used for optimum design of flat heat pipe. The objective of the present work is to minimise the total entropy generation rate as the objective function with different parameters of the flat heat pipe subjected to some constraints. These constraints constitute the limitations on the heat transport capacity of the heat pipe. This physic...

  13. Metabolic heat production by human and animal populations in cities (United States)

    Stewart, Iain D.; Kennedy, Chris A.


    Anthropogenic heating from building energy use, vehicle fuel consumption, and human metabolism is a key term in the urban energy budget equation. Heating from human metabolism, however, is often excluded from urban energy budgets because it is widely observed to be negligible. Few reports for low-latitude cities are available to support this observation, and no reports exist on the contribution of domestic animals to urban heat budgets. To provide a more comprehensive view of metabolic heating in cities, we quantified all terms of the anthropogenic heat budget at metropolitan scale for the world's 26 largest cities, using a top-down statistical approach. Results show that metabolic heat release from human populations in mid-latitude cities (e.g. London, Tokyo, New York) accounts for 4-8% of annual anthropogenic heating, compared to 10-45% in high-density tropical cities (e.g. Cairo, Dhaka, Kolkata). Heat release from animal populations amounts to world's most densely populated megacity—at 6.5 W m-2, surpassing heat production by electricity use in buildings (5.8 W m-2) and fuel combustion in vehicles (3.9 W m-2). These findings, along with recent output from global climate models, suggest that in the world's largest and most crowded cities, heat emissions from human metabolism alone can force measurable change in mean annual temperature at regional scale.

  14. Resistive polymer versus forced-air warming: comparable heat transfer and core rewarming rates in volunteers. (United States)

    Kimberger, Oliver; Held, Christine; Stadelmann, Karin; Mayer, Nikolaus; Hunkeler, Corinne; Sessler, Daniel I; Kurz, Andrea


    Mild perioperative hypothermia increases the risk of several severe complications. Perioperative patient warming to preserve normothermia has thus become routine, with forced-air warming being used most often. In previous studies, various resistive warming systems have shown mixed results in comparison with forced-air. Recently, a polymer-based resistive patient warming system has been developed. We compared the efficacy of a standard forced-air warming system with the resistive polymer system in volunteers. Eight healthy volunteers participated, each on two separate study days. Unanesthetized volunteers were cooled to a core temperature (tympanic membrane) of 34 degrees C by application of forced-air at 10 degrees C and a circulating-water mattress at 4 degrees C. Meperidine and buspirone were administered to prevent shivering. In a randomly designated order, volunteers were then rewarmed (until their core temperatures reached 36 degrees C) with one of the following active warming systems: (1) forced-air warming (Bair Hugger warming cover #300, blower #750, Arizant, Eden Prairie, MN); or (2) polymer fiber resistive warming (HotDog whole body blanket, HotDog standard controller, Augustine Biomedical, Eden Prairie, MN). The alternate system was used on the second study day. Metabolic heat production, cutaneous heat loss, and core temperature were measured. Metabolic heat production and cutaneous heat loss were similar with each system. After a 30-min delay, core temperature increased nearly linearly by 0.98 (95% confidence interval 0.91-1.04) degrees C/h with forced-air and by 0.92 (0.85-1.00) degrees C/h with resistive heating (P = 0.4). Heating efficacy and core rewarming rates were similar with full-body forced-air and full-body resistive polymer heating in healthy volunteers.

  15. Theoretical Design of a Thermosyphon for Efficient Process Heat Removal from Next Generation Nuclear Plant (NGNP) for Production of Hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Piyush Sabharwall; Fred Gunnerson; Akira Tokuhiro; Vivek Utgiker; Kevan Weaver; Steven Sherman


    The work reported here is the preliminary analysis of two-phase Thermosyphon heat transfer performance with various alkali metals. Thermosyphon is a device for transporting heat from one point to another with quite extraordinary properties. Heat transport occurs via evaporation and condensation, and the heat transport fluid is re-circulated by gravitational force. With this mode of heat transfer, the thermosyphon has the capability to transport heat at high rates over appreciable distances, virtually isothermally and without any requirement for external pumping devices. For process heat, intermediate heat exchangers (IHX) are required to transfer heat from the NGNP to the hydrogen plant in the most efficient way possible. The production of power at higher efficiency using Brayton Cycle, and hydrogen production requires both heat at higher temperatures (up to 1000oC) and high effectiveness compact heat exchangers to transfer heat to either the power or process cycle. The purpose for selecting a compact heat exchanger is to maximize the heat transfer surface area per volume of heat exchanger; this has the benefit of reducing heat exchanger size and heat losses. The IHX design requirements are governed by the allowable temperature drop between the outlet of the NGNP (900oC, based on the current capabilities of NGNP), and the temperatures in the hydrogen production plant. Spiral Heat Exchangers (SHE’s) have superior heat transfer characteristics, and are less susceptible to fouling. Further, heat losses to surroundings are minimized because of its compact configuration. SHEs have never been examined for phase-change heat transfer applications. The research presented provides useful information for thermosyphon design and Spiral Heat Exchanger.

  16. Research of Heating Rates Influence on Layer Coal Gasification of Krasnogorsky And Borodinsky Coal Deposit

    Directory of Open Access Journals (Sweden)

    Jankovskiy Stanislav


    Full Text Available Experimental research of heating rate influence on coal samples gasification process of Krasnogorsky and Borodinsky coal deposit ranks A and 2B was done to define optimal heating mode in high intensification of dispersal of inflammable gases conditions. Abundance ratio of carbon monoxide and nitrogen monoxide, water vapor, carbon dioxide at four values of heating rate within the range of 5 to 30 K/min. with further definition of optimal heating rate of coals was stated.

  17. Sensitivity analysis of radiative heating and cooling rates in planetary atmospheres: general linearization and adjoint approaches (United States)

    Ustinov, E. A.


    Radiative heating and cooling provide primary source and ultimate sink of energy driving lower planetary atmospheres. Evaluating the sensitivities of atmospheric dynamics models on these primary atmospheric parameters requires knowing how heating and cooling rates depend on these same parameters. We discuss two approaches that make it possible to directly compute the sensitivities of heating and cooling rates in parallel with evaluation of heating and cooling rates themselves.

  18. Electricity and heat production by biomass cogeneration (United States)

    Marčič, Simon; Marčič, Milan


    In Slovenia, approximately 2 % of electricity is generated using cogeneration systems. Industrial and district heating networks ensure the growth of such technology. Today, many existing systems are outdated, providing myriad opportunities for reconstruction. One concept for the development of households and industry envisages the construction of several small biomass units and the application of natural gas as a fuel with a relatively extensive distribution network. This concept has good development potential in Slovenia. Forests cover 56 % of the surface area in Slovenia, which has, as a result, a lot of waste wood to be turned into biomass. Biomass is an important fuel in Slovenia. Biomass is gasified in a gasifier, and the wood gas obtained is used to power the gas engine. This paper describes a biomass cogeneration system as the first of this type in Slovenia, located in Ruše.

  19. Heat stress causes substantial labour productivity loss in Australia (United States)

    Zander, Kerstin K.; Botzen, Wouter J. W.; Oppermann, Elspeth; Kjellstrom, Tord; Garnett, Stephen T.


    Heat stress at the workplace is an occupational health hazard that reduces labour productivity. Assessment of productivity loss resulting from climate change has so far been based on physiological models of heat exposure. These models suggest productivity may decrease by 11-27% by 2080 in hot regions such as Asia and the Caribbean, and globally by up to 20% in hot months by 2050. Using an approach derived from health economics, we describe self-reported estimates of work absenteeism and reductions in work performance caused by heat in Australia during 2013/2014. We found that the annual costs were US$655 per person across a representative sample of 1,726 employed Australians. This represents an annual economic burden of around US$6.2 billion (95% CI: 5.2-7.3 billion) for the Australian workforce. This amounts to 0.33 to 0.47% of Australia’s GDP. Although this was a period when many Australians experienced what is at present considered exceptional heat, our results suggest that adaptation measures to reduce heat effects should be adopted widely if severe economic impacts from labour productivity loss are to be avoided if heat waves become as frequent as predicted.

  20. Studies on Heat Transfer in Agricultural Products by Far-infrared Ray


    劉, 厚清; 毛利, 建太郎; 難波, 和彦


    Heat is transferred when the objected has temperature differences. In this research, the difference of two heating methods (far-infrared ray heating and hot wind heating) was analyzed. To compare their differences, the heat flux was measured by setting a heat flux meter beneath the surface of the object at different depths, then the heat conductivities and heat diffusion rates were analyzed. 1. Compared with hot wind, far-infrared ray heating has more heat flux before reaching a definite dept...

  1. Dissolution and Precipitation Behaviour during Continuous Heating of Al–Mg–Si Alloys in a Wide Range of Heating Rates

    Directory of Open Access Journals (Sweden)

    Julia Osten


    Full Text Available In the present study, the dissolution and precipitation behaviour of four different aluminium alloys (EN AW-6005A, EN AW-6082, EN AW-6016, and EN AW-6181 in four different initial heat treatment conditions (T4, T6, overaged, and soft annealed was investigated during heating in a wide dynamic range. Differential scanning calorimetry (DSC was used to record heating curves between 20 and 600 °C. Heating rates were studied from 0.01 K/s to 5 K/s. We paid particular attention to control baseline stability, generating flat baselines and allowing accurate quantitative evaluation of the resulting DSC curves. As the heating rate increases, the individual dissolution and precipitation reactions shift to higher temperatures. The reactions during heating are significantly superimposed and partially run simultaneously. In addition, precipitation and dissolution reactions are increasingly suppressed as the heating rate increases, whereby exothermic precipitation reactions are suppressed earlier than endothermic dissolution reactions. Integrating the heating curves allowed the enthalpy levels of the different initial microstructural conditions to be quantified. Referring to time–temperature–austenitisation diagrams for steels, continuous heating dissolution diagrams for aluminium alloys were constructed to summarise the results in graphical form. These diagrams may support process optimisation in heat treatment shops.

  2. Dissolution and Precipitation Behaviour during Continuous Heating of Al–Mg–Si Alloys in a Wide Range of Heating Rates (United States)

    Osten, Julia; Milkereit, Benjamin; Schick, Christoph; Kessler, Olaf


    In the present study, the dissolution and precipitation behaviour of four different aluminium alloys (EN AW-6005A, EN AW-6082, EN AW-6016, and EN AW-6181) in four different initial heat treatment conditions (T4, T6, overaged, and soft annealed) was investigated during heating in a wide dynamic range. Differential scanning calorimetry (DSC) was used to record heating curves between 20 and 600 °C. Heating rates were studied from 0.01 K/s to 5 K/s. We paid particular attention to control baseline stability, generating flat baselines and allowing accurate quantitative evaluation of the resulting DSC curves. As the heating rate increases, the individual dissolution and precipitation reactions shift to higher temperatures. The reactions during heating are significantly superimposed and partially run simultaneously. In addition, precipitation and dissolution reactions are increasingly suppressed as the heating rate increases, whereby exothermic precipitation reactions are suppressed earlier than endothermic dissolution reactions. Integrating the heating curves allowed the enthalpy levels of the different initial microstructural conditions to be quantified. Referring to time–temperature–austenitisation diagrams for steels, continuous heating dissolution diagrams for aluminium alloys were constructed to summarise the results in graphical form. These diagrams may support process optimisation in heat treatment shops.

  3. Finite-Rate Ablation Boundary Conditions for Carbon-Phenolic Heat-Shield (United States)

    Chen, Y.-K.; Milos, Frank S.


    A formulation of finite-rate ablation surface boundary conditions, including oxidation, nitridation, and sublimation of carbonaceous material with pyrolysis gas injection, has been developed based on surface species mass conservation. These surface boundary conditions are discretized and integrated with a Navier-Stokes solver. This numerical procedure can predict aerothermal heating, chemical species concentration, and carbonaceous material ablation rate over the heatshield surface of re-entry space vehicles. In this study, the gas-gas and gas-surface interactions are established for air flow over a carbon-phenolic heatshield. Two finite-rate gas-surface interaction models are considered in the present study. The first model is based on the work of Park, and the second model includes the kinetics suggested by Zhluktov and Abe. Nineteen gas phase chemical reactions and four gas-surface interactions are considered in the present model. There is a total of fourteen gas phase chemical species, including five species for air and nine species for ablation products. Three test cases are studied in this paper. The first case is a graphite test model in the arc-jet stream; the second is a light weight Phenolic Impregnated Carbon Ablator at the Stardust re-entry peak heating conditions, and the third is a fully dense carbon-phenolic heatshield at the peak heating point of a proposed Mars Sample Return Earth Entry Vehicle. Predictions based on both finite-rate gas- surface interaction models are compared with those obtained using B' tables, which were created based on the chemical equilibrium assumption. Stagnation point convective heat fluxes predicted using Park's finite-rate model are far below those obtained from chemical equilibrium B' tables and Zhluktov's model. Recession predictions from Zhluktov's model are generally lower than those obtained from Park's model and chemical equilibrium B' tables. The effect of species mass diffusion on predicted ablation rate is also

  4. Towards a model for protein production rates

    CERN Document Server

    Dong, J J; Zia, R K P


    In the process of translation, ribosomes read the genetic code on an mRNA and assemble the corresponding polypeptide chain. The ribosomes perform discrete directed motion which is well modeled by a totally asymmetric simple exclusion process (TASEP) with open boundaries. Using Monte Carlo simulations and a simple mean-field theory, we discuss the effect of one or two ``bottlenecks'' (i.e., slow codons) on the production rate of the final protein. Confirming and extending previous work by Chou and Lakatos, we find that the location and spacing of the slow codons can affect the production rate quite dramatically. In particular, we observe a novel ``edge'' effect, i.e., an interaction of a single slow codon with the system boundary. We focus in detail on ribosome density profiles and provide a simple explanation for the length scale which controls the range of these interactions.

  5. ATMS Snowfall Rate Product and Its Applications (United States)

    Meng, H.; Kongoli, C.; Dong, J.; Wang, N. Y.; Ferraro, R. R.; Zavodsky, B.; Banghua Yan, B.


    A snowfall rate (SFR) algorithm has been developed for the Advanced Technology Microwave Sounder (ATMS) aboard S-NPP and future JPSS satellites. The product is based on the NOAA/NESDIS operational Microwave Humidity Sounder (MHS) SFR but with several key advancements. The algorithm has benefited from continuous development to improve accuracy and snowfall detection efficiency. The enhancements also expand the applicable temperature range for the algorithm and allow significantly more snowfall to be detected than the operational SFR. Another major improvement is the drastically reduced product latency by using Direct Broadcast (DB) data. The new developments have also been implemented in the MHS SFR to ensure product consistency across satellites. Currently, there are five satellites that carry either ATMS or MHS: S-NPP, NOAA-18/-19 and Metop-A/-B. The combined satellites deliver up to ten SFR estimates a day at any location over land in mid-latitudes. The product provides much needed winter precipitation estimates for applications such as weather forecasting and hydrology. Both ATMS and MHS SFR serve as input to a global precipitation analysis product, the NOAA/NCEP CMORPH-Snow. SFR is the sole satellite-based snowfall estimates in the blended product. In addition, ATMS and MHS SFR was assessed at several NWS Weather Forecast Offices (WFOs) and NESDIS/Satellite Analysis Branch (SAB) for its operational values in winter 2015. This is a joint effort among NASA/SPoRT, NOAA/NESDIS, University of Maryland/CICS, and the WFOs. The feedback from the assessment indicated that SFR provides useful information for snowfall forecast. It is especially valuable for areas with poor radar coverage and ground observations. The feedback also identified some limitations of the product such as inadequate detection of shallow snowfall. The algorithm developers will continue to improve product quality as well as developing SFR for new microwave sensors and over ocean in a project

  6. Heat transfer and heating rate of food stuffs in commercial shop ovens

    Indian Academy of Sciences (India)

    The CFD analysis of flow and temperature distribution in heating ovens used in bakery shop, to keep the foodstuffs warm, is attempted using finite element technique. The oven is modelled as a two-dimensional steady state natural convection heat transfer problem. Effects of heater location and total heat input on ...

  7. Heat storage rate and acute fatigue in rats

    Directory of Open Access Journals (Sweden)

    L.O.C. Rodrigues


    Full Text Available Thermal environmental stress can anticipate acute fatigue during exercise at a fixed intensity (%VO2max. Controversy exists about whether this anticipation is caused by the absolute internal temperature (Tint, ºC, by the heat storage rate (HSR, cal/min or by both mechanisms. The aim of the present study was to study acute fatigue (total exercise time, TET during thermal stress by determining Tint and HSR from abdominal temperature. Thermal environmental stress was controlled in an environmental chamber and determined as wet bulb globe temperature (ºC, with three environmental temperatures being studied: cold (18ºC, thermoneutral (23.1ºC or hot (29.4ºC. Six untrained male Wistar rats weighing 260-360 g were used. The animals were submitted to exercise at the same time of day in the three environments and at two treadmill velocities (21 and 24 m/min until exhaustion. After implantation of a temperature sensor and treadmill adaptation, the animals were submitted to a Latin square experimental design using a 2 x 3 factorial scheme (velocity and environment, with the level of significance set at P<0.05. The results showed that the higher the velocity and the ambient temperature, the lower was the TET, with these two factors being independent. This result indicated that fatigue was independently affected by both the increase in exercise intensity and the thermal environmental stress. Fatigue developed at different Tint and HSR showed the best inverse relationship with TET. We conclude that HSR was the main anticipating factor of fatigue.

  8. The influence of temperature and heating rate on the slow pyrolysis of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Williams, P.T.; Besler, Serpil [Leeds Univ. (United Kingdom). Dept. of Fuel and Energy


    The slow pyrolysis of biomass in the form of pine wood was investigated in a static batch reactor at pyrolysis temperatures from 300 to 720{sup o}C and heating rates from 5 to 80 K min{sup -1}. The compositions and properties of the derived gases, pyrolytic oils and solid char were determined in relation to pyrolysis temperatures and heating rates. In addition, the wood and the major components of the wood - cellulose, hemicellulose and lignin - were pyrolysed in a thermogravimetric analyser (TGA) under the same experimental conditions as in the static batch reactor. The static batch reactor results showed that as the pyrolysis temperature was increased, the percentage mass of solid char decreased, while gas and oil products increased. There was a small effect of heating rate on product yield. The lower temperature regime of decomposition of wood showed that mainly H{sub 2}O, CO{sub 2} and CO were evolved and at the higher temperature regime, the main decomposition products were oil, H{sub 2}O, H{sub 2}, hydrocarbon gases and lower concentrations of CO and CO{sub 2}. Fourier transformation infra-red spectroscopy and elemental analysis of the oils showed they were highly oxygenated. The TGA results for wood showed two main regimes of weight loss, the lower temperature regime could be correlated with the decomposition of hemicellulose and the initial stages of cellulose decomposition whilst the upper temperature regime correlated mainly with the later stages of cellulose decomposition. Lignin thermal decomposition occurred throughout the temperature range of pyrolysis. (author)

  9. Heating rate effect on thermoluminescence glow curves of LiF:Mg,Cu,P+PTFE phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Cruz-Zaragoza, E. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, A.P. 70-543, Mexico D.F. 04510 (Mexico); Gonzalez, P.R., E-mail: [Instituto Nacional de Investigaciones Nucleares, Carretera Mexico-Toluca S/N, C.P. 52750, Ocoyoacac, Estado de Mexico (Mexico); Azorin, J. [Universidad Autonoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, 09340 Mexico D.F. (Mexico); Furetta, C. [Touro University Rome, Division of Touro College New York, Circne Gianicolense 15-17, 00153 Rome (Italy)


    The influence of heating rate on the thermoluminescence (TL) property of LiF:Mg,Cu,P+PTFE was analyzed. The activation energy and the frequency factor as a function of the heating rate were determined. The kinetic parameters and their dependence on the heating rate were evaluated using the sequential quadratic programming glow curve deconvolution (SQPGCD). The results showed that as the heating rate increases, the peak intensity at the maximum (I{sub M}) decreases and shifts to higher temperature; similar behavior of the kinetics parameters was observed. - Highlights: >Heating rate influence on the thermoluminescence (TL) property of LiF:Mg,Cu,P was analyzed. > The kinetic parameters, activation energy and frequency factor were evaluated using the sequential quadratic programming glow curve deconvolution. > The peak intensity at the maximum (I{sub M}) of the glow curves decreases. > Shifts to higher temperature were observed as the heating rate increased. > Similar behavior of the kinetics parameters was noticed.

  10. An examination of heat rate improvements due to waste heat integration in an oxycombustion pulverized coal power plant (United States)

    Charles, Joshua M.

    Oxyfuel, or oxycombustion, technology has been proposed as one carbon capture technology for coal-fired power plants. An oxycombustion plant would fire coal in an oxidizer consisting primarily of CO2, oxygen, and water vapor. Flue gas with high CO2 concentrations is produced and can be compressed for sequestration. Since this compression generates large amounts of heat, it was theorized that this heat could be utilized elsewhere in the plant. Process models of the oxycombustion boiler, steam cycle, and compressors were created in ASPEN Plus and Excel to test this hypothesis. Using these models, heat from compression stages was integrated to the flue gas recirculation heater, feedwater heaters, and to a fluidized bed coal dryer. All possible combinations of these heat sinks were examined, with improvements in coal flow rate, Qcoal, net power, and unit heat rate being noted. These improvements would help offset the large efficiency impacts inherent to oxycombustion technology.

  11. Conventional and microwave-assisted pyrolysis of biomass under different heating rates


    Wu, C; Budarin, VL; Gronnow, MJ; De Bruyn, M; Onwudili, JA; Clark, JH; Williams, PT


    Biomass was subjected to conventional and microwave pyrolysis, to determine the influence of each process on the yield and composition of the derived gas, oil and char products. The influence of pyrolysis temperature and heating rate for the conventional pyrolysis and the microwave power was investigated. Two major stages of gas release were observed during biomass pyrolysis, the first being CO/CO and the second one CH/H. This two-stage gas release was much more obvious for the conventional p...

  12. Adaptation to hot climate and strategies to alleviate heat stress in livestock production. (United States)

    Renaudeau, D; Collin, A; Yahav, S; de Basilio, V; Gourdine, J L; Collier, R J


    Despite many challenges faced by animal producers, including environmental problems, diseases, economic pressure, and feed availability, it is still predicted that animal production in developing countries will continue to sustain the future growth of the world's meat production. In these areas, livestock performance is generally lower than those obtained in Western Europe and North America. Although many factors can be involved, climatic factors are among the first and crucial limiting factors of the development of animal production in warm regions. In addition, global warming will further accentuate heat stress-related problems. The objective of this paper was to review the effective strategies to alleviate heat stress in the context of tropical livestock production systems. These strategies can be classified into three groups: those increasing feed intake or decreasing metabolic heat production, those enhancing heat-loss capacities, and those involving genetic selection for heat tolerance. Under heat stress, improved production should be possible through modifications of diet composition that either promotes a higher intake or compensates the low feed consumption. In addition, altering feeding management such as a change in feeding time and/or frequency, are efficient tools to avoid excessive heat load and improve survival rate, especially in poultry. Methods to enhance heat exchange between the environment and the animal and those changing the environment to prevent or limit heat stress can be used to improve performance under hot climatic conditions. Although differences in thermal tolerance exist between livestock species (ruminants > monogastrics), there are also large differences between breeds of a species and within each breed. Consequently, the opportunity may exist to improve thermal tolerance of the animals using genetic tools. However, further research is required to quantify the genetic antagonism between adaptation and production traits to evaluate

  13. Deriving heat production from gaseous exchange: validity of the approach

    NARCIS (Netherlands)

    Gerrits, W.J.J.; Borne, van den J.J.G.C.; Labussière, E.


    The use of indirect calorimetry as a means to quantify heat production (Q) and net substrate oxidation has increased rapidly since the pioneering work of Lavoisier, and today, indirect calorimetry is often used as a reference for other measures of Q. Simple equations were developed and widely

  14. Heat production in nocturnal ( Praomys natalensis ) and diurnal ...

    African Journals Online (AJOL)

    Non-shivering thermogenesis (NST) was measured as a response to an injection of noradrenaline (1,5 mg/kg s.c.) in both species and NST magnitude for R. pumilio was significantly higher (p<0,001) when compared to P. natalensis. The differences in heat production are related to the difference in fur insulation and this ...

  15. Heat Balance Analysis of EPS Products Shaping Process

    Directory of Open Access Journals (Sweden)

    Władysiak R.


    Full Text Available The work is a part of research into the reduction of energy consumption in the production of EPSthrough the modernization of technological equipment used. This paper presents the results of research and analysis of heat transfer process between the water vapor that was provided to machine, the mold, the product and the environment. The paper shows the calculation of the heat balance of the production cycle for two types of mold: standard and modernized. The performance tests used an infrared imaging camera. The results were used to develop a computer image analysis and statistical analysis. This paper presents the main stages of the production process and the construction of technological equipment used, changing the mold surface temperature field during the production cycle and the structure of the heat balance for the mold and its instrumentation. It has been shown that the modernization of construction of technological equipment has reduced the temperature field and as a consequence of decreased of demand for process steam production cycle.

  16. Fabrication and heating rate study of microscopic surface electrode ion traps (United States)

    Daniilidis, N.; Narayanan, S.; Möller, S. A.; Clark, R.; Lee, T. E.; Leek, P. J.; Wallraff, A.; Schulz, St.; Schmidt-Kaler, F.; Häffner, H.


    We report heating rate measurements in a microfabricated gold-on-sapphire surface electrode ion trap with a trapping height of approximately 240 μm. Using the Doppler recooling method, we characterize the trap heating rates over an extended region of the trap. The noise spectral density of the trap falls in the range of noise spectra reported in ion traps at room temperature. We find that during the first months of operation, the heating rates increase by approximately one order of magnitude. The increase in heating rates is largest in the ion-loading region of the trap, providing a strong hint that surface contamination plays a major role for excessive heating rates. We discuss data found in the literature and the possible relation of anomalous heating to sources of noise and dissipation in other systems, namely impurity atoms adsorbed onto metal surfaces and amorphous dielectrics.

  17. Levels of potassium, uranium, thorium and rate of radiogenic heat production in the bedrock adjacent to Camamu and Almada sedimentary basins, Bahia, Brazil; Teores de potassio, uranio, torio e taxa de producao de calor radiogenico no embasamento adjacente as bacias sedimentares de Camamu e Almada, Bahia, Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Sapucaia, Najara Santos; Barbosa, Johildo Salomao Figueiredo [Instituto de Geociencias, Universidade Federal da Bahia, Salvador, BA (Brazil); Argollo, Roberto Max de, E-mail:, E-mail:, E-mail: [Laboratorio de Fisica Nuclear Aplicada, Instituto de Fisica, Universidade Federal da Bahia, Salvador, BA (Brazil)


    The bedrock adjacent to Camamu and Almada sedimentary basins is characterized mainly by rocks of granulite and amphibolite facies, with archaean and paleoproterozoic ages, which belong to orogen Itabuna-Salvador-Curaca. The units in major proportion in this context are the metatonalites associated with basic and metamonzonites belonging to Itabuna belt. In smaller area occur the Teolandia granite and the Moenda granodiorite associated with the Ipiau band amphibolites, the charnockites and charnoenderbites of Jequie bloc, the neoproterozoic sienites and the mafic dikes. The K, U and Th contents of the rocks vary from 0,02 to 6,33% for K, from < 0,2 to 9,10 ppm for U and from < 0,4 to 64,38 ppm for Th. These contents are higher in the charnockites, Moenda granodiorite, Teolandia granite and sienites, intermediate in the metatonalites and metamonzonites and lower in the basic granulites. The heat production rates are higher in the lithologies where K, U and Th are also higher, varying from 0,58 to 5,57 {mu}W m{sup -3}. The coverage areas of such lithologies are, however, small compared with that of the metatonalitic granulites, metamonzonitic granulites and sienites where the rates vary from 0,10 to 1,44 {mu}W m{sup -3}, 0,23 to 5,55 {mu}W m{sup -3} and 0,60 to 2,24 {mu}W m{sup -3}, respectively. In this case, the heat production rates vary from 0,10 to 1,44 {mu}W m{sup -3}. The basic granulites have the smaller rates, from 0,06 to 0,36 {mu}W m-3. The observation of the lithologies in the margins of the two basins suggest that, in the bedrock under the younger sediments, may predominate the metatonalites, followed by the metamonzonites, with some significant participation of sienites in the Almada basin. In those lithologies, the volumetric heat production rates, with one standard deviation range, are 0,41 +- 0,30 {mu}W m{sup -3} for metatonalites, 0,71 +- 0,57 {mu}W m{sup -3} for metamonzonites and 1,20 +- 0,51 {mu}W m{sup -3} for sienites. (author)


    Energy Technology Data Exchange (ETDEWEB)

    Ramanathan Sampath


    This final technical report describes work performed under DOE Grant No. DE-FG22-96PC96224 during the period September 24, 1996 to September 23, 1999 which covers the entire performance period of the project. During this period, modification, alignment, and calibration of the measurement system, measurement of devolatilization time-scales for single coal particles subjected to a range of heating rates and temperature data at these time-scales, and analysis of the temperature data to understand the effect of heating rates on coal thermal properties were carried out. A new thermodynamic model was developed to predict the heat transfer behavior for single coal particles using one approach based on the analogy for thermal property of polymers. Results of this model suggest that bituminous coal particles behave like polymers during rapid heating on the order of 10{sup 4}-10{sup 5} K/s. At these heating rates during the early stages of heating, the vibrational part of the heat capacity of the coal molecules appears to be still frozen but during the transition from heat-up to devolatilization, the heat capacity appears to attain a sudden jump in its value as in the case of polymers. There are a few data available in the coal literature for low heating rate experiments (10{sup 2}-10{sup 3} K/s) conducted by UTRC, our industrial partner, in this project. These data were obtained for a longer heating duration on the order of several seconds as opposed to the 10 milliseconds heating time of the single particle experiments discussed above. The polymer analogy model was modified to include longer heating time on the order of several seconds to test these data. However, the model failed to predict these low heating rate data. It should be noted that UTRC's work showed reasonably good agreement with Merrick model heat capacity predictions at these low heating rates, but at higher heating rates UTRC observed that coal thermal response was heat flux dependent. It is concluded

  19. Fitness-related differences in the rate of whole-body evaporative heat loss in exercising men are heat-load dependent. (United States)

    Lamarche, Dallon T; Notley, Sean R; Louie, Jeffrey C; Poirier, Martin P; Kenny, Glen P


    What is the central question of this study? Aerobic fitness modulates heat loss, but the heat-load threshold at which fitness-related differences in heat loss occur in young healthy men remains unclear. What is the main finding and its importance? We demonstrate using direct calorimetry that aerobic fitness modulates heat loss in a heat-load-dependent manner, with fitness-related differences occurring between young men who have low and high fitness when the heat load is ∼≥500 W. Although aerobic fitness has been known for some time to modulate heat loss, our findings define the precise heat-load threshold at which fitness-related differences occur. The effect of aerobic fitness (defined as rate of peak oxygen consumption) on heat loss during exercise is thought to be related to the level of heat stress. However, it remains unclear at what combined exercise and environmental (net) heat-load threshold these fitness-related differences occur. To identify this, we assessed whole-body heat exchange (dry and evaporative) by direct calorimetry in young (22 ± 3 years) men matched for physical characteristics with low (Low-fit; 39.8 ± 2.5 ml O2  kg-1  min-1 ), moderate (Mod-fit; 50.9 ± 1.2 ml O2  kg-1  min-1 ) and high aerobic fitness (High-fit; 62.0 ± 4.4 ml O2  kg-1  min-1 ; each n = 8), during three 30 min bouts of cycling in dry heat (40°C, 12% relative humidity) at increasing rates of metabolic heat production of 300 (Ex1), 400 (Ex2) and 500 W (Ex3), each followed by a 15 min recovery period. Each group was exposed to a similar net heat load (metabolic plus ∼100 W dry heat gain; P = 0.83) during each exercise bout [∼400 (Ex1), ∼500 (Ex2) and ∼600 W (Ex3); P fit (Ex2, 466 ± 21 W; Ex3, 557 ± 26 W) compared with the Low-fit group (Ex2, 439 ± 22 W; Ex3, 511 ± 20 W) during Ex2 and Ex3 (P ≤ 0.03). Conversely, evaporative heat loss for the Mod-fit group did not differ from either the High-fit or Low

  20. Heat generation rates in lithium thionyl chloride cells (United States)

    Frank, H.


    An empirical equation that is useful for good first approximation in thermal modeling is presented. Indications and measurements of electrochemical heat effects were investigated. The particular cells of interest are of the D size, with spiral wound configuration and were instrumented with a thermocouple. It is found that cathode limited cells can explode on reversal at moderate temperatures.

  1. Impact of heating rate and solvent on Ni-based catalysts prepared by solution combustion method for syngas methanation

    Directory of Open Access Journals (Sweden)

    Zeng Yan


    Full Text Available Ni-Al2O3 catalysts prepared by solution combustion method for syngas methanation were enhanced by employing various heating rate and different solvent. The catalytic properties were tested in syngas methanation. The result indicates that both of heating rate and solvent remarkably affect Ni particle size, which is a key factor to the catalytic activity of Ni-Al2O3 catalysts for syngas methanation. Moreover, the relationship between Ni particle size and the production rate of methane per unit mass was correlated. The optimal Ni-Al2O3 catalyst prepared in ethanol at 2°C/min, achieves a maximum production rate of methane at the mean size of 20.8 nm.

  2. Cost Price of Products in the System of Heat, Refrigeration and Electric Energy Production Combined at Thermal Power Plant


    Tubolev Alexander; Romashova Olga; Belyaev Leonid


    Nowadays combination of electric, heat and refrigerating energy production (trigeneration) is one of the modern technological solutions for energy efficiency increase and ecological problem solution [1]. Two types of refrigerating machines can be used for both energy and heat production combined: compression aggregates consuming electric energy and absorption aggregates using hot water heat, vapor or other heat conductors.

  3. Fuzzy production planning models for an unreliable production system with fuzzy production rate and stochastic/fuzzy demand rate

    Directory of Open Access Journals (Sweden)

    K. A. Halim


    Full Text Available In this article, we consider a single-unit unreliable production system which produces a single item. During a production run, the production process may shift from the in-control state to the out-of-control state at any random time when it produces some defective items. The defective item production rate is assumed to be imprecise and is characterized by a trapezoidal fuzzy number. The production rate is proportional to the demand rate where the proportionality constant is taken to be a fuzzy number. Two production planning models are developed on the basis of fuzzy and stochastic demand patterns. The expected cost per unit time in the fuzzy sense is derived in each model and defuzzified by using the graded mean integration representation method. Numerical examples are provided to illustrate the optimal results of the proposed fuzzy models.

  4. Convective Heat Transfer Scaling of Ignition Delay and Burning Rate with Heat Flux and Stretch Rate in the Equivalent Low Stretch Apparatus (United States)

    Olson, Sandra


    To better evaluate the buoyant contributions to the convective cooling (or heating) inherent in normal-gravity material flammability test methods, we derive a convective heat transfer correlation that can be used to account for the forced convective stretch effects on the net radiant heat flux for both ignition delay time and burning rate. The Equivalent Low Stretch Apparatus (ELSA) uses an inverted cone heater to minimize buoyant effects while at the same time providing a forced stagnation flow on the sample, which ignites and burns as a ceiling fire. Ignition delay and burning rate data is correlated with incident heat flux and convective heat transfer and compared to results from other test methods and fuel geometries using similarity to determine the equivalent stretch rates and thus convective cooling (or heating) rates for those geometries. With this correlation methodology, buoyant effects inherent in normal gravity material flammability test methods can be estimated, to better apply the test results to low stretch environments relevant to spacecraft material selection.

  5. Heat stress effects on farrowing rate in sows: genetic parameter estimation using within-line and crossbred models. (United States)

    Bloemhof, S; Kause, A; Knol, E F; Van Arendonk, J A M; Misztal, I


    The pork supply chain values steady and undisturbed piglet production. Fertilization and maintaining gestation in warm and hot climates is a challenge that can be potentially improved by selection. The objective of this study was to estimate 1) genetic variation for farrowing rate of sows in 2 dam lines and their reciprocal cross; 2) genetic variation for farrowing rate heat tolerance, which can be defined as the random regression slope of farrowing rate against increasing temperature at day of insemination, and the genetic correlation between farrowing rate and heat tolerance; 3) genetic correlation between farrowing rate in purebreds and crossbreds; and 4) genetic correlation between heat tolerance in purebreds and crossbreds. The estimates were based on 93,969 first insemination records per cycle from 24,456 sows inseminated between January 2003 and July 2008. These sows originated from a Dutch purebred Yorkshire dam line (D), an International purebred Large White dam line (ILW), and from their reciprocal crosses (RC) raised in Spain and Portugal. Within-line and crossbred models were used for variance component estimation. Heritability estimates for farrowing rate were 0.06, 0.07, and 0.02 using within-line models for D, ILW, and RC, respectively, and 0.07, 0.07, and 0.10 using the crossbred model, respectively. For farrowing rate, purebred-crossbred genetic correlations were 0.57 between D and RC and 0.50 between ILW and RC. When including heat tolerance in the within-line model, heritability estimates for farrowing rate were 0.05, 0.08, and 0.03 for D, ILW, and RC, respectively. Heritability for heat tolerance at 29.3°C was 0.04, 0.02, and 0.05 for D, ILW, and RC, respectively. Genetic correlations between farrowing rate and heat tolerance tended to be negative in crossbreds and ILW-line sows, implying selection for increased levels of production traits, such as growth and reproductive output, is likely to increase environmental sensitivity. This study shows

  6. Heat exposure, cardiovascular stress and work productivity in rice harvesters in India: implications for a climate change future. (United States)

    Sahu, Subhashis; Sett, Moumita; Kjellstrom, Tord


    Excessive workplace heat exposures create well-known risks of heat stroke, and it limits the workers' capacity to sustain physical activity. There is very limited evidence available on how these effects reduce work productivity, while the quantitative relationship between heat and work productivity is an essential basis for climate change impact assessments. We measured hourly heat exposure in rice fields in West Bengal and recorded perceived health problems via interviews of 124 rice harvesters. In a sub-group (n = 48) heart rate was recorded every minute in a standard work situation. Work productivity was recorded as hourly rice bundle collection output. The hourly heat levels (WBGT = Wet Bulb Globe Temperature) were 26-32°C (at air temperatures of 30-38°C), exceeding international standards. Most workers reported exhaustion and pain during work on hot days. Heart rate recovered quickly at low heat, but more slowly at high heat, indicating cardiovascular strain. The hourly number of rice bundles collected was significantly reduced at WBGT>26°C (approximately 5% per°C of increased WBGT). We conclude that high heat exposure in agriculture caused heat strain and reduced work productivity. This reduction will be exacerbated by climate change and may undermine the local economy.

  7. Analysis of Effect of Heat Pipe Parameters in Minimising the Entropy Generation Rate

    Directory of Open Access Journals (Sweden)

    Rakesh Hari


    Full Text Available Heat transfer and fluid flow in the heat pipe system result in thermodynamic irreversibility generating entropy. The minimum entropy generation principle can be used for optimum design of flat heat pipe. The objective of the present work is to minimise the total entropy generation rate as the objective function with different parameters of the flat heat pipe subjected to some constraints. These constraints constitute the limitations on the heat transport capacity of the heat pipe. This physical nonlinear programming problem with nonlinear constraints is solved using LINGO 15.0 software, which enables finding optimum values for the independent design variables for which entropy generation is minimum. The effect of heat load, length, and sink temperature on design variables and corresponding entropy generation is studied. The second law analysis using minimum entropy generation principle is found to be effective in designing performance enhanced heat pipe.

  8. Geothermal Energy Production With Innovative Methods Of Geothermal Heat Recovery

    Energy Technology Data Exchange (ETDEWEB)

    Swenson, Allen [GeoTek Energy, LLC, Frisco, TX (United States); Darlow, Rick [GeoTek Energy, LLC, Frisco, TX (United States); Sanchez, Angel [GeoTek Energy, LLC, Frisco, TX (United States); Pierce, Michael [GeoTek Energy, LLC, Frisco, TX (United States); Sellers, Blake [GeoTek Energy, LLC, Frisco, TX (United States)


    The ThermalDrive™ Power System (“TDPS”) offers one of the most exciting technological advances in the geothermal power generation industry in the last 30 years. Using innovations in subsurface heat recovery methods, revolutionary advances in downhole pumping technology and a distributed approach to surface power production, GeoTek Energy, LLC’s TDPS offers an opportunity to change the geothermal power industry dynamics.

  9. Mixing rates and vertical heat fluxes north of Svalbard from Arctic winter to spring (United States)

    Meyer, Amelie; Fer, Ilker; Sundfjord, Arild; Peterson, Algot K.


    Mixing and heat flux rates collected in the Eurasian Basin north of Svalbard during the N-ICE2015 drift expedition are presented. The observations cover the deep Nansen Basin, the Svalbard continental slope, and the shallow Yermak Plateau from winter to summer. Mean quiescent winter heat flux values in the Nansen Basin are 2 W m-2 at the ice-ocean interface, 3 W m-2 in the pycnocline, and 1 W m-2 below the pycnocline. Large heat fluxes exceeding 300 W m-2 are observed in the late spring close to the surface over the Yermak Plateau. The data consisting of 588 microstructure profiles and 50 days of high-resolution under-ice turbulence measurements are used to quantify the impact of several forcing factors on turbulent dissipation and heat flux rates. Wind forcing increases turbulent dissipation seven times in the upper 50 m, and doubles heat fluxes at the ice-ocean interface. The presence of warm Atlantic Water close to the surface increases the temperature gradient in the water column, leading to enhanced heat flux rates within the pycnocline. Steep topography consistently enhances dissipation rates by a factor of four and episodically increases heat flux at depth. It is, however, the combination of storms and shallow Atlantic Water that leads to the highest heat flux rates observed: ice-ocean interface heat fluxes average 100 W m-2 during peak events and are associated with rapid basal sea ice melt, reaching 25 cm/d.

  10. AGPase: its role in crop productivity with emphasis on heat tolerance in cereals. (United States)

    Saripalli, Gautam; Gupta, Pushpendra Kumar


    AGPase, a key enzyme of starch biosynthetic pathway, has a significant role in crop productivity. Thermotolerant variants of AGPase in cereals may be used for developing cultivars, which may enhance productivity under heat stress. Improvement of crop productivity has always been the major goal of plant breeders to meet the global demand for food. However, crop productivity itself is influenced in a large measure by a number of abiotic stresses including heat, which causes major losses in crop productivity. In cereals, crop productivity in terms of grain yield mainly depends upon the seed starch content so that starch biosynthesis and the enzymes involved in this process have been a major area of investigation for plant physiologists and plant breeders alike. Considerable work has been done on AGPase and its role in crop productivity, particularly under heat stress, because this enzyme is one of the major enzymes, which catalyses the rate-limiting first committed key enzymatic step of starch biosynthesis. Keeping the above in view, this review focuses on the basic features of AGPase including its structure, regulatory mechanisms involving allosteric regulators, its sub-cellular localization and its genetics. Major emphasis, however, has been laid on the genetics of AGPases and its manipulation for developing high yielding cultivars that will have comparable productivity under heat stress. Some important thermotolerant variants of AGPase, which mainly involve specific amino acid substitutions, have been highlighted, and the prospects of using these thermotolerant variants of AGPase in developing cultivars for heat prone areas have been discussed. The review also includes a brief account on transgenics for AGPase, which have been developed for basic studies and crop improvement.

  11. Biomass Pyrolysis: Comments on Some Sources of Confusions in the Definitions of Temperatures and Heating Rates

    Directory of Open Access Journals (Sweden)

    Jacques Lédé


    Full Text Available Biomass pyrolysis is usually characterized on the basis of temperature and heating rate. Unfortunately, these parameters are badly defined in processing reactors as well as in laboratory devices. From the results of simplified models, the present paper points out the significant mistakes that can be made when assuming that the actual temperature and heating rate of reacting biomass particles are the same as those of the external heating medium. The difficulties in defining these two parameters are underlined in both cases of a heat source temperature supposed to be constant or to increase with time.

  12. Prediction of the heat transfer rate of a single layer wire-on-tube type heat exchanger using ANFIS

    Energy Technology Data Exchange (ETDEWEB)

    Hayati, Mohsen [Electrical Engineering Department, Faculty of Engineering, Razi University, Tagh-E-Bostan, Kermanshah 67149 (Iran); Computational Intelligence Research Center, Razi University, Tagh-E-Bostan, Kermanshah 67149 (Iran); Rezaei, Abbas; Seifi, Majid [Electrical Engineering Department, Faculty of Engineering, Razi University, Tagh-E-Bostan, Kermanshah 67149 (Iran)


    In this paper, we applied an Adaptive Neuro-Fuzzy Inference System (ANFIS) model for prediction of the heat transfer rate of the wire-on-tube type heat exchanger. Limited experimental data was used for training and testing ANFIS configuration with the help of hybrid learning algorithm consisting of backpropagation and least-squares estimation. The predicted values are found to be in good agreement with the actual values from the experiments with mean relative error less than 2.55%. Also, we compared the proposed ANFIS model to an ANN approach. Results show that the ANFIS model has more accuracy in comparison to ANN approach. Therefore, we can use ANFIS model to predict the performances of thermal systems in engineering applications, such as modeling heat exchangers for heat transfer analysis. (author)

  13. Best Practice cost rates for air pollutants, traffic, power generation and heat production. Appendix B of the ''Method convention 2.0 for the evaluation of environmental costs''; Best-Practice-Kostensaetze fuer Luftschadstoffe, Verkehr, Strom- und Waermeerzeugung. Anhang B der ''Methodenkonvention 2.0 zur Schaetzung von Umweltkosten''

    Energy Technology Data Exchange (ETDEWEB)

    Schwermer, Sylvia [Umweltbundesamt, Dessau (Germany); Preiss, Philipp; Mueller, Wolf [Stuttgart Univ. (Germany). Inst. fuer Energiewirtschaft und Rationelle Energieanwendung (IER)


    Technically substantiated information for the estimation of environmental costs is of high environmental interest. The environmental costs provide important information on the discussion about the costs and benefits of environmental protection more objective and on the design of environmental protection instruments. The economic evaluation of environmental damages enables an estimation of the benefits of environmental policies, because environmental policies avoid costs to the environment and health in the present and in the future. The contribution under consideration contains recommendations of the Federal Environment Agency (Dessau-Rosslau, Federal Republic of Germany) on best practice cost rates for climate and air pollutants as well as estimations for activity-related environmental costs of transport as well as power generation and heat production. The recommendations are based in substantial part on the results of the research project.

  14. Effect of high heating rate on thermal decomposition behaviour of ...

    Indian Academy of Sciences (India)

    but rely on the concentration of hydrogen. The model ... first-order rate law. Lehmhus and Rausch (2004) have annealed TiH2 pow- der in air and argon. In argon, the powder does not develop a surface layer and as a result, a small amount of hydro- gen is lost ... rate effect on the thermal decomposition behaviour of TiH2.

  15. Measurement uncertainties when determining heat rate, isentropic efficiency and swallowing capacity

    Energy Technology Data Exchange (ETDEWEB)

    Snygg, U.


    The objective of the project was to determine the uncertainties when calculating heat rate, isentropic efficiencies and swallowing capacities of power plants. Normally when a power plant is constructed, the supplier also guarantee some performance values, e.g. heat rate. When the plant is built and running under normal conditions, an evaluation is done and the guarantee values are checked. Different measured parameters influence the calculated value differently, and therefore a sensitivity factor can be defined as the sensitivity of a calculated value when the measured value is changing. The product of this factor and the uncertainty of the measured parameter gives an error of the calculated value. For every measured parameter, the above given factor has to be determined and then the root square sum gives the overall uncertainty of the calculated parameter. To receive acceptable data during the evaluation of the plant, a test code is to be followed. The test code also gives guidelines how big the errors of the measurements are. In this study, ASME PTC6 and DIN 1943 were used. The results show that not only the test code was of vital importance, but also the distribution of the power output of the HP-IP turbines contra LP turbines. A higher inlet pressure of the LP turbine gives a smaller uncertainty of the isentropic efficiency. An increase from 6 to 13 bar will lower the uncertainty 1.5 times. 10 refs, 24 figs, 23 tabs, 5 appendixes

  16. Heat Release Rates for Shipboard Dry Goods Storage Space Materials (United States)


    instrumented duct (shown in Figure 5) to monitor combustion products and an exhaust blower that ensures that all fire products are captured. Within the duct...length of approximately one meter. This signal, which is inversely related to the amount of soot in the air, provided an estimate of the degree of...obscuration caused by the soot [10]. 10 11 12 Figure 5. Interior of Calorimeter Exhaust Duct The calorimeter gas intake is a hoop-shaped length of

  17. The effect of heating rate on the surface chemistry of NiTi. (United States)

    Undisz, Andreas; Hanke, Robert; Freiberg, Katharina E; Hoffmann, Volker; Rettenmayr, Markus


    The impact of the heating rate on the Ni content at the surface of the oxide layer of biomedical NiTi is explored. Heat treatment emulating common shape-setting procedures was performed by means of conventional and inductive heating for similar annealing time and temperature, applying various heating rates from ~0.25 K s(-1) to 250 K s(-1). A glow discharge optical emission spectroscopy method was established and employed to evaluate concentration profiles of Ni, Ti and O in the near-surface region at high resolution. The Ni content at the surface of the differently treated samples varies significantly, with maximum surface Ni concentrations of ~20 at.% at the lowest and ~1.5 at.% at the highest heating rate, i.e. the total amount of Ni contained in the surface region of the oxide layer decreases by >15 times. Consequently, the heating rate is a determinant for the biomedical characteristics of NiTi, especially since Ni available at the surface of the oxide layer may affect the hemocompatibility and be released promptly after surgical application of a respective implant. Furthermore, apparently contradictory results presented in the literature reporting surface Ni concentrations of ~3 at.% to >20 at.% after heat treatment are consistently explained considering the ascertained effect of the heating rate. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  18. Computer simulation of metal wire explosion under high rate heating (United States)

    Zolnikov, K. P.; Kryzhevich, D. S.; Korchuganov, A. V.


    Synchronous electric explosion of metal wires and synthesis of bicomponent nanoparticles were investigated on the base of molecular dynamics method. Copper and nickel nanosized crystallites of cylindrical shape were chosen as conductors for explosion. The embedded atom approximation was used for calculation of the interatomic interactions. The agglomeration process after explosion metal wires was the main mechanism for particle synthesis. The distribution of chemical elements was non-uniform over the cross section of the bicomponent particles. The copper concentration in the surface region was higher than in the bulk of the synthesized particle. By varying the loading parameters (heating temperature, the distance between the wires) one can control the size and internal structure of the synthesized bicomponent nanoparticles. The obtained results showed that the method of molecular dynamics can be effectively used to determine the optimal technological mode of nanoparticle synthesis on the base of electric explosion of metal wires.

  19. 77 FR 74027 - Certain Integrated Circuit Packages Provided with Multiple Heat-Conducting Paths and Products... (United States)


    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Certain Integrated Circuit Packages Provided with Multiple Heat- Conducting Paths and Products... integrated circuit packages provided with multiple heat-conducting paths and products containing same by...

  20. Effect of heat rate constraint on minimum-fuel synergetic plane change (United States)

    Mease, Kenneth D.; Utashima, Masayoshi


    The synergetic plane change offers substantial fuel savings over the pure-propulsive alternative for certain noncoplanar orbital transfers. On the other hand, the thermal environment for a synergetic plane change vehicle can be quite severe. The minimum-fuel controls are computed approximately by parametrizing the controls and solving the resulting nonlinear programming problem. By considering several different levels of heat rate constraint, we characterize how the control strategy should be modified in order to keep the heat rate below the specified limit. Flight on the heat rate constraint boundary at high angle of attack is the key characteristic.

  1. Influence of heating rate on the condensational instability. [in outer layers of solar atmosphere (United States)

    Dahlburg, R. B.; Mariska, J. T.


    Analysis and numerical simulation are used to determine the effect that various heating rates have on the linear and nonlinear evolution of a typical plasma within a solar magnetic flux tube subject to the condensational instability. It is found that linear stability depends strongly on the heating rate. The results of numerical simulations of the nonlinear evolution of the condensational instability in a solar magnetic flux tube are presented. Different heating rates lead to quite different nonlinear evolutions, as evidenced by the behavior of the global internal energy.

  2. Inverse problem of estimating transient heat transfer rate on external wall of forced convection pipe

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wen-Lih; Yang, Yu-Ching; Chang, Win-Jin; Lee, Haw-Long [Clean Energy Center, Department of Mechanical Engineering, Kun Shan University, Yung-Kang City, Tainan 710-03 (China)


    In this study, a conjugate gradient method based inverse algorithm is applied to estimate the unknown space and time dependent heat transfer rate on the external wall of a pipe system using temperature measurements. It is assumed that no prior information is available on the functional form of the unknown heat transfer rate; hence, the procedure is classified as function estimation in the inverse calculation. The accuracy of the inverse analysis is examined by using simulated exact and inexact temperature measurements. Results show that an excellent estimation of the space and time dependent heat transfer rate can be obtained for the test case considered in this study. (author)

  3. Effect of heating rate on intercritical annealing of low-carbon cold-rolled steel (United States)

    Thomas, Larrin

    A study was performed on the effect of heating rate on transformations during intercritical annealing of cold-rolled low-carbon sheet steels. Two sets of experiments were developed: 1) a series of alloys (1020, 1019M, 15B25) with two different cold reductions (nominally 40 and 60 pct) were heated at different rates and transformation temperatures were determined using analysis of dilatometry and metallography of intercritically annealed samples, allowing the study of the impact of composition and cold work on transformation behavior with different heating rates. 2) A cold-rolled C-Mn-Nb steel was tested with different heating rates selected for different degrees of recrystallization during austenite formation to test the impact of ferrite recrystallization on austenite formation. Heat treated samples were analyzed with SEM, EBSD, dilatometry, and microhardness to study the changes in transformation behavior. The results of this study were extended by adding step heating tests, heat treatments with an intercritical hold, and secondary ion mass spectrometry (SIMS) measurements of Mn distribution. Austenite transformation temperatures increased logarithmically with heating rate. Greater degrees of cold work led to reduced transformation temperatures across all heating rates because the energy of cold work increased the driving force for austenite formation. The relative effects of alloying additions on transformation temperatures remained with increasing heating rate. Rapid heating minimized ferrite recrystallization and pearlite spheroidization. Austenite formation occurred preferentially in recovered ferrite regions as opposed to recrystallized ferrite boundaries. Martensite was evenly distributed in slowly heated steels because austenite formed on recrystallized, equiaxed, ferrite boundaries. With rapid heating, austenite formed in directionally-oriented recovered ferrite which increased the degree of banding. The greatest degree of banding was found with

  4. Production of dry wood chips in connection with a district heating plant

    Directory of Open Access Journals (Sweden)

    Yrjölä Jukka


    Full Text Available Moisture and its variation in wood chips make the control of burning in small scale heating appliances difficult resulting in emissions and loss of efficiency. If the quality of wood chips would be better, i. e. dried and sieved fuel with more uniform size distribution would be avail able, the burning could be much cleaner and efficiency higher. In addition higher power out put could be obtained and the investment costs of the burning appliances would be lower. The production of sieved and dried wood chip with good quality could be accomplished in connection with a district heating plant. Then the plant would make profit, in addition to the district heat, from the dried wood chips sold to the neighboring buildings and enterprises sep a rated from the district heating net using wood chips in energy production. The peak power of a district heating plant is required only a short time during the coldest days of the winter. Then the excess capacity during the milder days can be used as heat source for drying of wood chips to be marketed. Then wood chips are sieved and the fuel with best quality is sold and the reject is used as fuel in the plant it self. In a larger district heating plant, quality of the fuel does not need to be so high In this paper the effect of moisture on the fuel chain and on the boiler is discussed. Energy and mass balance calculations as a tool of system design is described and the characteristics of proposed dry chips production method is discussed.

  5. Sperm Production Rate, Gonadal and Extragonadal Sperm ...

    African Journals Online (AJOL)

    Five healthy West African Dwarf (WAD) rams, 1.5 to 2.5 years of age and weighing between 15 kg to 20 kg were used to determine daily sperm production, gonadal and exragonadal sperm reserves. Gonadal and extragonadal sperm reserves were estimated by the haemocytometric method, while the daily sperm production ...

  6. Study on heat transfer rate of an osmotic heat pipe. 3rd Report. Estimation of heat transport limits; Shinto heat pipe no netsuyuso ni kansuru kenkyu. 3. Netsuyuso genkai no yosoku

    Energy Technology Data Exchange (ETDEWEB)

    Ipposhi, S.; Imura, H. [Kumamoto University, Kumamoto (Japan). Faculty of Engineering; Konya, K. [Oji Paper Co. Ltd., Tokyo (Japan); Yamamura, H. [Kyushu University, Fukuoka (Japan)


    This paper describes an experimental and theoretical study on the heat transport limits of an osmotic heat pipe operated under the atmospheric pressure, using aqueous polyethylene glycol 600 solution (0.1 - 1.0 kmol/m{sup 3}) as the working fluid and 18 tubular-type acetyl cellulose osmotic membranes. As a result, the correlation between the heat transport rate and the osmotic area was revealed, and the effects of the physical properties of the solution and the geometry (i.e. inside diameters of the flow lines, etc.) of the osmotic heat pipe on the heat transport rate were theoretically investigated. Also, the heat transport rate of the present osmotic heat pipe is about 85% compared with that under such an ideal condition that the solution of the average concentration is assumed to be filled in the solution loop. 4 refs., 9 figs., 1 tab.

  7. Krypton Production Cross Sections and Production Rates in Simulation Experiments (United States)

    Gilabert, E.; Lavielle, B.; Schiekel, Th.; Herpers, U.; Neumann, S.; Michel, R.


    The stacked-foil technique was used to measured proton induced excitation functions from Sr targets (SrF2). The irradiations were performed at the Laboratoire National Saturne in Saclay (F), the Svedberg Laboratory in Uppsala (S) and the Paul Scherrer Institute in Villigen (CH) with primary energies from 45 to 400 MeV. After gamma-spectrometric measurement of short and medium-lived radionuclides and after sufficient cooling, stable and long lived Kr isotopes were measured at Centre Etude Nucleaire in Bordeaux (F). Deduced cross sections were corrected for the production of secondary protons and neutrons by a method developed by Lupke[1]. There are no literature data which can be compared with the cross sections from this work. Theoretical calculations of cross sections were performed using two approaches. The first one was using the hybrid model of preequilibrium reactions with the code AREL[2]. The second was using the Intra-Nuclear-Cascade/Evaporation model in the form of the High Energy Transport Code (HETC)[3]. This study shows that for energies above 200 MeV, the spallation model is better suited to explain the nuclear reactions whereas the preequilibrium model leads to underestimation of the experimental data. For energies above 200 MeV, HETC should be preferred to AREL calculations. In physical models describing galactic cosmic ray (GCR) interactions with matter [4], cross sections of both, proton and neutron-induced reactions, are important parameters. Using the measured cross sections for proton-induced reactions from this work and the experimental Kr depth profiles obtained from Sr targets in the LNS172 simulation experiment [5], we established a set of excitation functions for neutron-induced reactions, which now excellently describes the production rate depth profiles from the simulation experiment. Before measuring experimental cross sections for Kr from Sr, the theoretical depth profiles calculated with pure theoretical excitation functions showed

  8. Approximate Method of Calculating Heating Rates at General Three-Dimensional Stagnation Points During Atmospheric Entry (United States)

    Hamilton, H. H., II


    An approximate method for calculating heating rates at general three dimensional stagnation points is presented. The application of the method for making stagnation point heating calculations during atmospheric entry is described. Comparisons with results from boundary layer calculations indicate that the method should provide an accurate method for engineering type design and analysis applications.

  9. Heat resistance of Salmonella in various egg products. (United States)

    Garibaldi, J A; Straka, R P; Ijichi, K


    The heat-resistance characteristics of Salmonella typhimurium Tm-1, a reference strain in the stationary phase of growth, were determined at several temperatures in the major types of products produced by the egg industry. The time required to kill 90% of the population (D value) at a given temperature in specific egg products was as follows: at 60 C (140 F), D = 0.27 min for whole egg; D = 0.60 min for whole egg plus 10% sucrose; D = 1.0 min for fortified whole egg; D = 0.20 min for egg white (pH 7.3), stabilized with aluminum; D = 0.40 min for egg yolk; D = 4.0 min for egg yolk plus 10% sucrose; D = 5.1 min for egg yolk plus 10% NaCl; D = 1.0 min for scrambled egg mix; at 55 C (131 F), D = 0.55 min for egg white (pH 9.2); D = 1.2 min for egg white (pH 9.2) plus 10% sucrose. The average Z value (number of degrees, either centigrade or fahrenheit, for a thermal destruction time curve to traverse one logarithmic cycle) was 4.6 C (8.3 F) with a range from 4.2 to 5.3 C. Supplementation with 10% sucrose appeared to have a severalfold greater effect on the heat stabilization of egg white proteins than on S. typhimurium Tm-1. This information should be of value in the formulation of heat treatments to insure that all egg products be free of viable salmonellae.

  10. Average Rate of Heat-Related Hospitalizations in 23 States, 2001-2010 (United States)

    U.S. Environmental Protection Agency — This map shows the 2001–2010 average rate of hospitalizations classified as “heat-related” by medical professionals in 23 states that participate in CDC’s...

  11. An analysis of representative heating load lines for residential HSPF ratings

    Energy Technology Data Exchange (ETDEWEB)

    Rice, C. Keith [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shen, Bo [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shrestha, Som S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)


    This report describes an analysis to investigate representative heating loads for single-family detached homes using current EnergyPlus simulations (DOE 2014a). Hourly delivered load results are used to determine binned load lines using US Department of Energy (DOE) residential prototype building models (DOE 2014b) developed by Pacific Northwest National Laboratory (PNNL). The selected residential single-family prototype buildings are based on the 2006 International Energy Conservation Code (IECC 2006) in the DOE climate regions. The resulting load lines are compared with the American National Standards Institute (ANSI)/Air-Conditioning, Heating, and Refrigeration Institute (AHRI) Standard 210/240 (AHRI 2008) minimum and maximum design heating requirement (DHR) load lines of the heating seasonal performance factor (HSPF) ratings procedure for each region. The results indicate that a heating load line closer to the maximum DHR load line, and with a lower zero load ambient temperature, is more representative of heating loads predicted for EnergyPlus prototype residential buildings than the minimum DHR load line presently used to determine HSPF ratings. An alternative heating load line equation was developed and compared to binned load lines obtained from the EnergyPlus simulation results. The effect on HSPF of the alternative heating load line was evaluated for single-speed and two-capacity heat pumps, and an average HSPF reduction of 16% was found. The alternative heating load line relationship is tied to the rated cooling capacity of the heat pump based on EnergyPlus autosizing, which is more representative of the house load characteristics than the rated heating capacity. The alternative heating load line equation was found to be independent of climate for the six DOE climate regions investigated, provided an adjustable zero load ambient temperature is used. For Region IV, the default DOE climate region used for HSPF ratings, the higher load line results in an ~28

  12. Laser production and heating of plasma for MHD application (United States)

    Jalufka, N. W.


    Experiments have been made on the production and heating of plasmas by the absorption of laser radiation. These experiments were performed to ascertain the feasibility of using laser-produced or laser-heated plasmas as the input for a magnetohydrodynamic (MHD) generator. Such a system would have a broad application as a laser-to-electricity energy converter for space power transmission. Experiments with a 100-J-pulsed CO2 laser were conducted to investigate the breakdown of argon gas by a high-intensity laser beam, the parameters (electron density and temperature) of the plasma produced, and the formation and propagation of laser-supported detonation (LSD) waves. Experiments were also carried out using a 1-J-pulsed CO2 laser to heat the plasma produced in a shock tube. The shock-tube hydrogen plasma reached electron densities of approximately 10 to the 17th/cu cm and electron temperatures of approximately 1 eV. Absorption of the CO2 laser beam by the plasma was measured, and up to approximately 100 percent absorption was observed. Measurements with a small MHD generator showed that the energy extraction efficiency could be very large with values up to 56 percent being measured.

  13. Changes in heart rate variability during the induction and decay of heat acclimation. (United States)

    Flouris, Andreas D; Poirier, Martin P; Bravi, Andrea; Wright-Beatty, Heather E; Herry, Christophe; Seely, Andrew J; Kenny, Glen P


    We evaluated the changes in core temperature, heart rate, and heart rate variability (HRV) during the induction and decay of heat acclimation. Ten males (23 ± 3 years; 79.5 ± 3.5 kg; 15.2 ± 4.5 percent body fat; 51.13 ± 4.61 mLO(2)∙kg(-1)∙min(-1) peak oxygen uptake) underwent a 14-day heat acclimation protocol comprising of 90-min cycling at ~50 % peak oxygen uptake at 40 °C and ~20 % relative humidity. Core temperature, heart rate, and 102 HRV measures were recorded during a heat tolerance test conducted at baseline (day 0) and at the end of the induction (day 14) and decay (day 28) phases. Heat acclimation resulted in significantly reduced core temperature [rectal (χ (2) = 1298.14, p rate (χ (2) = 1230.17, p heat acclimation-induced reductions in rectal temperature, esophageal temperature, and heart rate, respectively, were lost. Heat acclimation was accompanied by profound and broad changes in HRV: at the end of the induction phase, 75 of the 102 variability measures computed were significantly different (p Heat acclimation is accompanied by reduced core temperature, significant bradycardia, and marked alterations in HRV, which we interpret as being related to vagal dominance. The observed changes in core temperature persist for at least 2 weeks of non-exposure to heat, while the changes in heart rate and HRV decay faster and are only partly evident after 2 weeks of non-exposure to heat.

  14. Dilatometric and hardness analysis of C45 steel tempering with different heating-up rates

    Directory of Open Access Journals (Sweden)

    A. Kulawik


    Full Text Available Modelling of technological processes of heat treatment or welding, involving multiple heat source transitions, requires considering the phenomenon of tempering. In work have been presented results of dilatometric research of hardened C45 steel subjected to tempering. The analysis of the influence of heating rate at the kinetic determined from dilatometric curves has been made. There have also been estimated quantities of transformation expansions and thermal expansion coefficients of hardening and tempering structures (austenite, ferrite, pearlite, martensite and sorbite. The analysis of tempering time influence on the hardness of tempered steel has been made. Functions associating hardness with tempering time (rate of heating-up in technological processes based on short-timed action of a heat source (eg. laser treatment have been suggested.

  15. Effects of particle size and heating rate on swelling characteristics of a bituminous coal

    Energy Technology Data Exchange (ETDEWEB)

    Yu, D.; Xu, M.; Liu, X.; Wang, Q.; Gao, X. [Huazhong University of Science and Technology, Wuhan (China)


    A size-classified bituminous coal was pyrolyzed in a laboratory drop tube furnace at different heating rates. The effects of coal particle size and heating rate on particle swelling properties were investigated. The results show that coal particles undergo obvious swelling during pyrolysis, leading to the formation of a large number of char cenospheres with a large central void surrounded by a thin shell. Analyses indicate this is caused by high concentrations of vitrinite present in coal samples. At the same heating rate, the extent of swelling increases with deceasing particle size and the difference in swelling decreases with increasing particle size. Since finer coal samples contain higher content of vitrinite, the observed phenomena are considered to be the result of the different content of vitrinite in these samples. The reason is that coal particles containing more vitrinite early undergo a softening and deformation stage and swell significantly during pyrolysis. When the heating rate increases the swelling of coal particle sin the same size range firstly increases and then decreases, which implies that an optimum heating rate at which coal particles swell most must exist. Reasonable explanation for this effect of heating rate on particle swelling are provided in the present study. 14 refs., 4 figs., 2 tabs.

  16. Solid motor aft closure insulation erosion. [heat flux correlation for rate analysis (United States)

    Stampfl, E.; Landsbaum, E. M.


    The erosion rate of aft closure insulation in a number of large solid propellant motors was empirically analyzed by correlating the average ablation rate with a number of variables that had previously been demonstrated to affect heat flux. The main correlating parameter was a heat flux based on the simplified Bartz heat transfer coefficient corrected for two-dimensional effects. A multiplying group contained terms related to port-to-throat ratio, local wall angle, grain geometry and nozzle cant angle. The resulting equation gave a good correlation and is a useful design tool.

  17. Improving the thermal efficiency of a jaggery production module using a fire-tube heat exchanger. (United States)

    La Madrid, Raul; Orbegoso, Elder Mendoza; Saavedra, Rafael; Marcelo, Daniel


    Jaggery is a product obtained after heating and evaporation processes have been applied to sugar cane juice via the addition of thermal energy, followed by the crystallisation process through mechanical agitation. At present, jaggery production uses furnaces and pans that are designed empirically based on trial and error procedures, which results in low ranges of thermal efficiency operation. To rectify these deficiencies, this study proposes the use of fire-tube pans to increase heat transfer from the flue gases to the sugar cane juice. With the aim of increasing the thermal efficiency of a jaggery installation, a computational fluid dynamic (CFD)-based model was used as a numerical tool to design a fire-tube pan that would replace the existing finned flat pan. For this purpose, the original configuration of the jaggery furnace was simulated via a pre-validated CFD model in order to calculate its current thermal performance. Then, the newly-designed fire-tube pan was virtually replaced in the jaggery furnace with the aim of numerically estimating the thermal performance at the same operating conditions. A comparison of both simulations highlighted the growth of the heat transfer rate at around 105% in the heating/evaporation processes when the fire-tube pan replaced the original finned flat pan. This enhancement impacted the jaggery production installation, whereby the thermal efficiency of the installation increased from 31.4% to 42.8%. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Production rates of major regional Floras

    NARCIS (Netherlands)

    Polhill, R.M.


    The ambitious programme of major regional Floras for developing countries initiated in the late 1940’s to 1960’s is now mostly under serious reappraisal because of the slow rates of progress, coupled with political changes, financial restrictions and evolving technology. From our present viewpoint

  19. Measurement of Ion Motional Heating Rates over a Range of Trap Frequencies and Temperatures

    CERN Document Server

    Bruzewicz, C D; Chiaverini, J


    We present measurements of the motional heating rate of a trapped ion at different trap frequencies and temperatures between $\\sim$0.6 and 1.5 MHz and $\\sim$4 and 295 K. Additionally, we examine the possible effect of adsorbed surface contaminants with boiling points below $\\sim$105$^{\\circ}$C by measuring the ion heating rate before and after locally baking our ion trap chip under ultrahigh vacuum conditions. We compare the heating rates presented here to those calculated from available electric-field noise models. We can tightly constrain a subset of these models based on their expected frequency and temperature scaling interdependence. Discrepancies between the measured results and predicted values point to the need for refinement of theoretical noise models in order to more fully understand the mechanisms behind motional trapped-ion heating.

  20. The heating rate in the tropical tropopause region; Die Erwaermungsrate in der tropischen Tropopausenregion

    Energy Technology Data Exchange (ETDEWEB)

    Hamann, Ulrich


    The major part of the movement of air masses from the troposphere to the stratosphere takes place in the tropics. The conveyed air mass is transported with the Brewer-Dobson circulation poleward and therefore influences the global stratospheric composition. An important cause variable for the transport of air through the tropical tropopause layer (TTL) is the radiative heating, which is investigated in this work. The influence of trace gases, temperature, and cloudiness on the heating rate is quantified, especially the effect of the overlap of several cloud layers is discussed. The heating rate in the tropics is simulated for one year. Regional differences of the heating rate profile appear between convective and stably stratified regions. By means of trace gas concentrations, temperature, and heating rates it is determined that an enhanced transport of air through the TTL took place between January and April 2007. The comparison with previous works shows that accurate input data sets of trace gases, temperature, and cloudiness and exact methods for the simulation of the radiative transfer are indispensable for modeling of the heating rate with the required accuracy. (orig.)

  1. Thermodynamic Analysis of a Ship Power Plant Operating with Waste Heat Recovery through Combined Heat and Power Production


    Mirko Grljušić; Vladimir Medica; Nikola Račić


    The goal of this research is to study a cogeneration plant for combined heat & power (CHP) production that utilises the low-temperature waste energy in the power plant of a Suezmax-size oil tanker for all heating and electricity requirements during navigation. After considering various configurations, a standard propulsion engine operating at maximum efficiency and a CHP Plant with R245fa fluid using a supercritical organic Rankine cycle (ORC) is selected. All the ship heat requirements ...

  2. Melting and crystallization of poly(3-hydroxybutyrate: effect of heating/cooling rates on phase transformation

    Directory of Open Access Journals (Sweden)

    Renate Maria Ramos Wellen


    Full Text Available AbstractWe studied the crystallization and melting phenomena of poly (3- hydroxybutyrate (PHB, a biodegradable and biocompatible semi-crystalline thermoplastic, obtained from renewable resources. Its high crystallinity motivated several studies on crystallization and melting behavior, and also on ways to increase the amorphous polymer fraction. The effect of heating and cooling rates on the crystallization and melting of commercial PHB was investigated by differential scanning calorimetry. Several rates, ranging from 2.5 to 20 °C min–1, were used to study the phase changes during heating/cooling/reheating cycles. The results showed that PHB partially crystallizes from the melt during the cooling cycle and partially cold crystallizes on reheating, and that the relative amount of polymer crystallizing in each stage strongly depends on the cooling rate. The melt and cold crystallization temperatures, as well as the rates of phase change, depend strongly on the cooling and heating rates.

  3. Influence of heat transfer rates on pressurization of liquid/slush hydrogen propellant tanks (United States)

    Sasmal, G. P.; Hochstein, J. I.; Hardy, T. L.


    A multi-dimensional computational model of the pressurization process in liquid/slush hydrogen tank is developed and used to study the influence of heat flux rates at the ullage boundaries on the process. The new model computes these rates and performs an energy balance for the tank wall whereas previous multi-dimensional models required a priori specification of the boundary heat flux rates. Analyses of both liquid hydrogen and slush hydrogen pressurization were performed to expose differences between the two processes. Graphical displays are presented to establish the dependence of pressurization time, pressurant mass required, and other parameters of interest on ullage boundary heat flux rates and pressurant mass flow rate. Detailed velocity fields and temperature distributions are presented for selected cases to further illuminate the details of the pressurization process. It is demonstrated that ullage boundary heat flux rates do significantly effect the pressurization process and that minimizing heat loss from the ullage and maximizing pressurant flow rate minimizes the mass of pressurant gas required to pressurize the tank. It is further demonstrated that proper dimensionless scaling of pressure and time permit all the pressure histories examined during this study to be displayed as a single curve.

  4. They're heating up: Internet search query trends reveal significant public interest in heat-not-burn tobacco products.

    Directory of Open Access Journals (Sweden)

    Theodore L Caputi

    Full Text Available Heat-not-burn tobacco products, battery powered devices that heat leaf tobacco to approximately 500 degrees Fahrenheit to produce an inhalable aerosol, are being introduced in markets around the world. Japan, where manufacturers have marketed several heat-not-burn brands since 2014, has been the focal national test market, with the intention of developing global marketing strategies. We used Google search query data to estimate, for the first time, the scale and growth potential of heat-not-burn tobacco products. Average monthly searches for heat-not-burn products rose 1,426% (95%CI: 746,3574 between their first (2015 and second (2016 complete years on the market and an additional 100% (95%CI: 60, 173 between the products second (2016 and third years on the market (Jan-Sep 2017. There are now between 5.9 and 7.5 million heat-not-burn related Google searches in Japan each month based on September 2017 estimates. Moreover, forecasts relying on the historical trends suggest heat-not-burn searches will increase an additional 32% (95%CI: -4 to 79 during 2018, compared to current estimates for 2017 (Jan-Sep, with continued growth thereafter expected. Contrasting heat-not-burn's rise in Japan to electronic cigarettes' rise in the United States we find searches for heat-not-burn eclipsed electronic cigarette searches during April 2016. Moreover, the change in average monthly queries for heat-not-burn in Japan between 2015 and 2017 was 399 (95% CI: 184, 1490 times larger than the change in average monthly queries for electronic cigarettes in the Unites States over the same time period, increasing by 2,956% (95% CI: 1729, 7304 compared to only 7% (95% CI: 3,13. Our findings are a clarion call for tobacco control leaders to ready themselves as heat-not-burn tobacco products will likely garner substantial interest as they are introduced into new markets. Public health practitioners should expand heat-not-burn tobacco product surveillance, adjust existing

  5. They're heating up: Internet search query trends reveal significant public interest in heat-not-burn tobacco products. (United States)

    Caputi, Theodore L; Leas, Eric; Dredze, Mark; Cohen, Joanna E; Ayers, John W


    Heat-not-burn tobacco products, battery powered devices that heat leaf tobacco to approximately 500 degrees Fahrenheit to produce an inhalable aerosol, are being introduced in markets around the world. Japan, where manufacturers have marketed several heat-not-burn brands since 2014, has been the focal national test market, with the intention of developing global marketing strategies. We used Google search query data to estimate, for the first time, the scale and growth potential of heat-not-burn tobacco products. Average monthly searches for heat-not-burn products rose 1,426% (95%CI: 746,3574) between their first (2015) and second (2016) complete years on the market and an additional 100% (95%CI: 60, 173) between the products second (2016) and third years on the market (Jan-Sep 2017). There are now between 5.9 and 7.5 million heat-not-burn related Google searches in Japan each month based on September 2017 estimates. Moreover, forecasts relying on the historical trends suggest heat-not-burn searches will increase an additional 32% (95%CI: -4 to 79) during 2018, compared to current estimates for 2017 (Jan-Sep), with continued growth thereafter expected. Contrasting heat-not-burn's rise in Japan to electronic cigarettes' rise in the United States we find searches for heat-not-burn eclipsed electronic cigarette searches during April 2016. Moreover, the change in average monthly queries for heat-not-burn in Japan between 2015 and 2017 was 399 (95% CI: 184, 1490) times larger than the change in average monthly queries for electronic cigarettes in the Unites States over the same time period, increasing by 2,956% (95% CI: 1729, 7304) compared to only 7% (95% CI: 3,13). Our findings are a clarion call for tobacco control leaders to ready themselves as heat-not-burn tobacco products will likely garner substantial interest as they are introduced into new markets. Public health practitioners should expand heat-not-burn tobacco product surveillance, adjust existing tobacco

  6. Isothermal calorimeter for measurements of time-dependent heat generation rate in individual supercapacitor electrodes (United States)

    Munteshari, Obaidallah; Lau, Jonathan; Krishnan, Atindra; Dunn, Bruce; Pilon, Laurent


    Heat generation in electric double layer capacitors (EDLCs) may lead to temperature rise and reduce their lifetime and performance. This study aims to measure the time-dependent heat generation rate in individual carbon electrode of EDLCs under various charging conditions. First, the design, fabrication, and validation of an isothermal calorimeter are presented. The calorimeter consisted of two thermoelectric heat flux sensors connected to a data acquisition system, two identical and cold plates fed with a circulating coolant, and an electrochemical test section connected to a potentiostat/galvanostat system. The EDLC cells consisted of two identical activated carbon electrodes and a separator immersed in an electrolyte. Measurements were performed on three cells with different electrolytes under galvanostatic cycling for different current density and polarity. The measured time-averaged irreversible heat generation rate was in excellent agreement with predictions for Joule heating. The reversible heat generation rate in the positive electrode was exothermic during charging and endothermic during discharging. By contrast, the negative electrode featured both exothermic and endothermic heat generation during both charging and discharging. The results of this study can be used to validate existing thermal models, to develop thermal management strategies, and to gain insight into physicochemical phenomena taking place during operation.

  7. Heat dissipation of high rate Li-SOCl sub 2 primary cells (United States)

    Cho, Y. I.; Halpert, G.; Deligiannis, E.


    The heat dissipation problem occurring in the lithium thionyl chloride cells discharged at relatively high rates under normal discharge conditions is examined. Four heat flow paths were identified, and the thermal resistances of the relating cell components along each flow path were accordingly calculated. From the thermal resistance network analysis, it was demonstrated that about 90 percent of the total heat produced within the cell should be dissipated along the radial direction in a spirally wound cell. In addition, the threshold value of the heat generation rate at which cell internal temperature could be maintained below 100 C, was calculated from total thermal resistance and found to be 2.9 W. However, these calculations were made only at the cell components' level, and the transient nature of the heat accumulation and dissipation was not considered. A simple transient model based on the lumped-heat-capacity concept was developed to predict the time-dependent cell temperature at different discharge rates. The overall objective was to examine the influence of cell design variable from the heat removal point of view under normal discharge conditions and to make recommendations to build more efficient lithium cells.

  8. Heating capabilities of the Hotline and Autoline at low flow rates. (United States)

    Schnoor, Joerg; Weber, Ingo; Macko, Stephan; Heussen, Nicole; Rossaint, Rolf


    At low flow rates, fluid warmers using coaxial warming tubes are superior in preventing heat loss. This laboratory investigation was performed in order to compare the heating capabilities of two coaxial fluid warmers. The Hotline and the Autoline were investigated by using normal saline at various flow rates (10-99 ml x h(-1)). Final infusion temperatures were measured six times in a row at the end of the tubing by using a rapid-response thermometer. Final temperatures were compared with those of infusions, which passed through disposable i.v. tubing covered and warmed using an 'off label' convective air warming system (WarmTouch). Measurements were performed at two different room temperatures (20 and 24 degrees C). Each group was analyzed with respect to differences between various flow rates as well as differences between the groups at comparable flow rates by using a three-way anova with multiple comparisons according to Tukey's procedure. Significance was defined at P flow rates efficiently above 34 degrees C, with the Hotline being more effective than the Autoline (P flow rates (10-60 and 80 ml x h(-1)), the Autoline demonstrated lower infusion temperatures throughout elevated room temperature at flow rates between 20 and 90 ml x h(-1). Both devices heated infusions more efficiently compared with 'off label used' convective air warmer (each with P flow rates. However, the heating capability of the Hotline was superior and can further be increased at low flow rates by increasing the room temperature.

  9. The Chemistry of Self-Heating Food Products: An Activity for Classroom Engagement (United States)

    Oliver-Hoyo, Maria T.; Pinto, Gabriel; Llorens-Molina, Juan Antonio


    Two commercial self-heating food products have been used to apply chemical concepts such as stoichiometry, enthalpies of reactions and solutions, and heat transfer in a classroom activity. These products are the self-heating beverages sold in Europe and the Meals, Ready to Eat or MREs used primarily by the military in the United States. The main…

  10. A simple parameterization for the height of maximum ozone heating rate (United States)

    Zhang, Feng; Hou, Can; Li, Jiangnan; Liu, Renqiang; Liu, Cuiping


    It is well-known that the height of the maximum ozone heating rate is much higher than the height of the maximum ozone concentration in the stratosphere. However, it lacks an analytical expression to explain it. A simple theoretical model has been proposed to calculate the height of maximum ozone heating rate and further understand this phenomenon. Strong absorption of ozone causes the incoming solar flux to be largely attenuated before reaching the location of the maximum ozone concentration. By comparing with the exact radiative transfer calculations, the heights of the maximum ozone heating rate produced by the theoretical model are generally very close to the true values. When the cosine of solar zenith angle μ0 = 1.0 , in US Standard atmosphere, the heights of the maximum ozone heating rate by the theoretical model are 41.4 km in the band 0.204-0.233 μm, 47.9 km in the band 0.233-0.270 μm, 44.5 km in the band 0.270-0.286 μm, 37.1 km in the band 0.286-0.303 μm, and 30.2 km in the band 0.303-0.323 μm, respectively. The location of the maximum ozone heating rate is sensitive to the solar spectral range. In band 1, the heights of the maximum ozone heating rate by the theoretical model are 52.3 km for μ0 = 0.1 , 47.1 km for μ0 = 0.3 , 44.6 km for μ0 = 0.5 , 43.1 km for μ0 = 0.7 , 41.9 km for μ0 = 0.9 , 41.4 km for μ0 = 1.0 in US Standard atmosphere, respectively. This model also illustrates that the location of the maximum ozone heating rate is sensitive to the solar zenith angle.

  11. The Effect of Heat Treatments and Coatings on the Outgassing Rate of Stainless Steel Chambers

    Energy Technology Data Exchange (ETDEWEB)

    Mamum, Md Abdullah A. [Old Dominion Univ., Norfolk, VA (United States); Elmustafa, Abdelmageed A, [Old Dominion Univ., Norfolk, VA (United States); Stutzman, Marcy L. [JLAB, Newport News, VA (United States); Adderley, Philip A. [JLAB, Newport News, VA (United States); Poelker, Matthew [JLAB, Newport News, VA (United States)


    The outgassing rates of four nominally identical 304L stainless steel vacuum chambers were measured to determine the effect of chamber coatings and heat treatments. One chamber was coated with titanium nitride (TiN) and one with amorphous silicon (a-Si) immediately following fabrication. One chamber remained uncoated throughout, and the last chamber was first tested without any coating, and then coated with a-Si following a series of heat treatments. The outgassing rate of each chamber was measured at room temperatures between 15 and 30 deg C following bakes at temperatures between 90 and 400 deg C. Measurements for bare steel showed a significant reduction in the outgassing rate by more than a factor of 20 after a 400 deg C heat treatment (3.5 x 10{sup 12} TorrL s{sup -1}cm{sup -2} prior to heat treatment, reduced to 1.7 x 10{ sup -13} TorrL s{sup -1}cm{sup -2} following heat treatment). The chambers that were coated with a-Si showed minimal change in outgassing rates with heat treatment, though an outgassing rate reduced by heat treatments prior to a-Si coating was successfully preserved throughout a series of bakes. The TiN coated chamber exhibited remarkably low outgassing rates, up to four orders of magnitude lower than the uncoated stainless steel. An evaluation of coating composition suggests the presence of elemental titanium which could provide pumping and lead to an artificially low outgassing rate. The outgassing results are discussed in terms of diffusion-limited versus recombination-limited processes.

  12. Investigations about the quantitative changes of carbon dioxide production in humans. Report 2: Carbon dioxide production during fever and its relationship with heat production (United States)

    Liebermeister, C.


    Investigations are cited and explained for carbon dioxide production during fever and its relationship with heat production. The general topics of discussion are: (1) carbon dioxide production for alternating fever attacks; (2) heat balance during the perspiration phase; (3) heat balance during the chill phase; (4) the theory of fever; and (5) chill phase for other fever attacks.

  13. Assessment of CFD Hypersonic Turbulent Heating Rates for Space Shuttle Orbiter (United States)

    Wood, William A.; Oliver, A. Brandon


    Turbulent CFD codes are assessed for the prediction of convective heat transfer rates at turbulent, hypersonic conditions. Algebraic turbulence models are used within the DPLR and LAURA CFD codes. The benchmark heat transfer rates are derived from thermocouple measurements of the Space Shuttle orbiter Discovery windward tiles during the STS-119 and STS-128 entries. The thermocouples were located underneath the reaction-cured glass coating on the thermal protection tiles. Boundary layer transition flight experiments conducted during both of those entries promoted turbulent flow at unusually high Mach numbers, with the present analysis considering Mach 10{15. Similar prior comparisons of CFD predictions directly to the flight temperature measurements were unsatisfactory, showing diverging trends between prediction and measurement for Mach numbers greater than 11. In the prior work, surface temperatures and convective heat transfer rates had been assumed to be in radiative equilibrium. The present work employs a one-dimensional time-accurate conduction analysis to relate measured temperatures to surface heat transfer rates, removing heat soak lag from the flight data, in order to better assess the predictive accuracy of the numerical models. The turbulent CFD shows good agreement for turbulent fuselage flow up to Mach 13. But on the wing in the wake of the boundary layer trip, the inclusion of tile conduction effects does not explain the prior observed discrepancy in trends between simulation and experiment; the flight heat transfer measurements are roughly constant over Mach 11-15, versus an increasing trend with Mach number from the CFD.

  14. Solar radiation during rewarming from torpor in elephant shrews: supplementation or substitution of endogenous heat production? (United States)

    Thompson, Michelle L; Mzilikazi, Nomakwezi; Bennett, Nigel C; McKechnie, Andrew E


    Many small mammals bask in the sun during rewarming from heterothermy, but the implications of this behaviour for their energy balance remain little understood. Specifically, it remains unclear whether solar radiation supplements endogenous metabolic thermogenesis (i.e., rewarming occurs through the additive effects of internally-produced and external heat), or whether solar radiation reduces the energy required to rewarm by substituting (i.e, replacing) metabolic heat production. To address this question, we examined patterns of torpor and rewarming rates in eastern rock elephant shrews (Elephantulus myurus) housed in outdoor cages with access to either natural levels of solar radiation or levels that were experimentally reduced by means of shade cloth. We also tested whether acclimation to solar radiation availability was manifested via phenotypic flexibility in basal metabolic rate (BMR), non-shivering thermogenesis (NST) capacity and/or summit metabolism (Msum). Rewarming rates varied significantly among treatments, with elephant shrews experiencing natural solar radiation levels rewarming faster than conspecifics experiencing solar radiation levels equivalent to approximately 20% or 40% of natural levels. BMR differed significantly between individuals experiencing natural levels of solar radiation and conspecifics experiencing approximately 20% of natural levels, but no between-treatment difference was evident for NST capacity or Msum. The positive relationship between solar radiation availability and rewarming rate, together with the absence of acclimation in maximum non-shivering and total heat production capacities, suggests that under the conditions of this study solar radiation supplemented rather than substituted metabolic thermogenesis as a source of heat during rewarming from heterothermy.


    Barker, H A


    1. The denaturation rate of partially dried crystallizable egg albumin is greatly decreased by decreasing its water content. 2. The temperature of denaturation, defined as the temperature at which half of the protein becomes insoluble in distilled water after a definite time of heating, is a linear function of the relative humidity with which the protein is in equilibrium. 3. By applying the Arrhenius equation it is shown that the rate of heat denaturation at a given temperature is an exponential function of the relative humidity. 4. The application of the observed relations to the analysis of the mechanism of thermal death of microorganisms is suggested. 5. The water content of native and heat-denatured egg albumin is determined as a function of the relative humidity of water vapor. It is shown that the heat-denatured modification takes up approximately 80 per cent as much water at all relative humidities as does native egg albumin.

  16. Grate-firing of biomass for heat and power production

    DEFF Research Database (Denmark)

    Yin, Chungen; Rosendahl, Lasse; Kær, Søren Knudsen


    bed on the grate, and the advanced secondary air supply (a real breakthrough in this technology) are highlighted for grate-firing systems. Amongst all the issues or problems associated with grate-fired boilers burning biomass, primary pollutant formation and control, deposition formation and corrosion......As a renewable and environmentally friendly energy source, biomass (i.e., any organic non-fossil fuel) and its utilization are gaining an increasingly important role worldwide Grate-firing is one of the main competing technologies in biomass combustion for heat and power production, because it can...... fire a wide range of fuels of varying moisture content, and requires less fuel preparation and handling. The basic objective of this paper is to review the state-of-the-art knowledge on grate-fired boilers burning biomass: the key elements in the firing system and the development, the important...

  17. Baroreceptor unloading does not limit forearm sweat rate during severe passive heat stress. (United States)

    Schlader, Zachary J; Gagnon, Daniel; Lucas, Rebekah A I; Pearson, James; Crandall, Craig G


    This study tested the hypothesis that sweat rate during passive heat stress is limited by baroreceptor unloading associated with heat stress. Two protocols were performed in which healthy subjects underwent passive heat stress that elicited an increase in intestinal temperature of ∼1.8°C. Upon attaining this level of hyperthermia, in protocol 1 (n = 10, 3 females) a bolus (19 ml/kg) of warm (∼38°C) isotonic saline was rapidly (5-10 min) infused intravenously to elevate central venous pressure (CVP), while in protocol 2 (n = 11, 5 females) phenylephrine was infused intravenously (60-120 μg/min) to return mean arterial pressure (MAP) to normothermic levels. In protocol 1, heat stress reduced CVP from 3.9 ± 1.9 mmHg (normothermia) to -0.6 ± 1.4 mmHg (P 0.999). Sweat rate was elevated by heat stress (1.21 ± 0.44 mg·cm(-2)·min(-1)) but remained unchanged during rapid saline infusion (1.26 ± 0.47 mg·cm(-2)·min(-1), P = 0.5), whereas cutaneous vascular conductance increased from 77 ± 10 to 101 ± 20% of local heating max (P = 0.029). In protocol 2, MAP was reduced with heat stress from 85 ± 7 mmHg to 76 ± 8 mmHg (P = 0.048). Although phenylephrine infusion returned MAP to normothermic levels (88 ± 7 mmHg; P > 0.999), sweat rate remained unchanged during phenylephrine infusion (1.39 ± 0.22 vs. 1.41 ± 0.24 mg·cm(-2)·min(-1); P > 0.999). These data indicate that both cardiopulmonary and arterial baroreceptor unloading do not limit increases in sweat rate during passive heat stress. Copyright © 2015 the American Physiological Society.

  18. Standard Test Method for Measuring Heat Transfer Rate Using a Thin-Skin Calorimeter

    CERN Document Server

    American Society for Testing and Materials. Philadelphia


    1.1 This test method covers the design and use of a thin metallic calorimeter for measuring heat transfer rate (also called heat flux). Thermocouples are attached to the unexposed surface of the calorimeter. A one-dimensional heat flow analysis is used for calculating the heat transfer rate from the temperature measurements. Applications include aerodynamic heating, laser and radiation power measurements, and fire safety testing. 1.2 Advantages 1.2.1 Simplicity of ConstructionThe calorimeter may be constructed from a number of materials. The size and shape can often be made to match the actual application. Thermocouples may be attached to the metal by spot, electron beam, or laser welding. 1.2.2 Heat transfer rate distributions may be obtained if metals with low thermal conductivity, such as some stainless steels, are used. 1.2.3 The calorimeters can be fabricated with smooth surfaces, without insulators or plugs and the attendant temperature discontinuities, to provide more realistic flow conditions for ...

  19. Some Problems of the Integration of Heat Pump Technology into a System of Combined Heat and Electricity Production

    Directory of Open Access Journals (Sweden)

    G. Böszörményi


    Full Text Available The closure of a part of the municipal combined heat and power (CHP plant of Košice city would result in the loss of 200 MW thermal output within a realtively short period of time. The long term development plan for the Košice district heating system concentrates on solving this problem. Taking into account the extremely high (90 % dependence of Slovakia on imported energy sources and the desirability of reducing the emission of pollutantst the alternative of supplying of 100 MW thermal output from geothermal sources is attractive. However the indices of economic efficiency for this alternative are unsatisfactory. Cogeneration of electricity and heat in a CHP plant, the most efficient way of supplying heat to Košice at the present time. If as planned, geothermal heat is fed directly into the district heating network the efficiency would be greatly reduced. An excellent solution of this problem would be a new conception, preferring the utilization of geothermal heat in support of a combined electricity and heat production process. The efficiency of geothermal energy utilization could be increased through a special heat pump. This paper deals with several aspects of the design of a heat pump to be integrated into the system of the CHP plant.

  20. Study of heat production and transfer in shredded tires (United States)

    Sellassie, Kassahun G.

    The purpose of this study is to determine the cause(s) of initial exothermic reactions in shredded tire. The primary hypothesis was that the oxidation of exposed steel wires, the oxidation of rubber, or sulfur causes the exothermic reactions in shredded tire. Laboratory tests were conducted to determine the heat transfer properties of the shredded tires by using a hot-plate apparatus. The experiments were conducted by varying the physical and environmental conditions as follows: (1) Tire size, (2) Wire content, (3) Water content, (4) Effective stress, (5) Air supply, (6) pH, (7) Humic Acid. First, laboratory testing was conducted to determine the effects of tire size on the heat transfer properties of shredded tires. The heat coefficient and diffusivity ranged from 3.0 to 3.5 W/m-K and 0.0002 to 0.00084 m 2/hour, respectively. Next, experiments were conducted to determine the effects of wire content on the exothermic reaction rate of tire shreds. When various amounts of wire (i.e., 5% to 15%) were exposed, the reaction rate increased, 2800 Btu for every lb of iron that is oxidized. In comparison, tire shreds with no wire were also tested under the same experimental conditions as above, however, no exothermic reaction occurred. These tests (i.e., with no wire) illustrate that carbon black in rubber molecule considers not oxidize. It was postulated that the reaction between iron in the wire and sulfur in the tire may be a potential cause of the exothermic reaction under low oxygen conditions. Experiments without air supply yielded no exothermic reaction. Thus, sulfur did not cause exotherm, because it is at low energy level and immobilized in the vulcanization process. In addition, experiments were conducted as the air supply was varied from 0 to 4 psi. With air pressure of less than 4-psi, no reaction occurred until 4-psi air was provided for the experiment. In conclusion, the design of an embankment with tire shreds should include shredded tires of bigger size

  1. Shortwave radiative heating rate profiles in hazy and clear atmosphere: a sensitivity study (United States)

    Doppler, Lionel; Fischer, Jürgen; Ravetta, François; Pelon, Jacques; Preusker, René


    Aerosols have an impact on shortwave heating rate profiles (additional heating or cooling). In this survey, we quantify the impact of several key-parameters on the heating rate profiles of the atmosphere with and without aerosols. These key-parameters are: (1) the atmospheric model (tropical, midlatitude summer or winter, US Standard), (2) the integrated water vapor amount (IWV ), (3) the ground surface (flat and rough ocean, isotropic surface albedo for land), (4) the aerosol composition (dusts, soots or maritimes mixtures with respect to the OPAC-database classification), (5) the aerosol optical depth and (6) vertical postion, and (7) the single-scattering albedo (?o) of the aerosol mixture. This study enables us to evaluate which parameters are most important to take into account in a radiative energy budget of the atmosphere and will be useful for a future study: the retrieval of heating rates profiles from satellite data (CALIPSO, MODIS, MERIS) over the Mediterranean Sea. All the heating rates are computed by using the vector irradiances computed at each pressure level in the spectral interval 0.2 - 3.6μm (shortwave) by the 1D radiative transfer model for atmosphere and ocean: MOMO (Matrix-Operator MOdel) of the Institute for Space Science, FU Berlin 1

  2. The economic production lot size model extended to include more than one production rate

    DEFF Research Database (Denmark)

    Larsen, Christian


    btween the demand rate and the production rate which minimizes unit production costs, and should be used in an increasing order. Then, given the production rates, we derive closed-form expressions for all optimal runtimes as well as the minimum average cost. This analysis reveals that it is the size...... of the setup cost that determines the need for being able to use several production rates. Finally, we show how to derive a near-optimal solution of the general problem....

  3. Influence of microwave heating on biogas production from Sida hermaphrodita silage. (United States)

    Zieliński, Marcin; Dębowski, Marcin; Rusanowska, Paulina


    This study compared the effects on biogas production of suspended sludge versus a combination of suspended sludge and immobilized biomass, and microwave versus convection heating. Biogas production was the highest in the hybrid bioreactor heated by microwaves (385L/kg VS) and also the most stable, as shown by the FOS/TAC ratio and pH. Regardless of the type of heating, biogas production was 8% higher with immobilized biomass than without. Although the lag phase of biogas production was shorter with microwave heating than without, the log phase was longer, and biogas production in the microwave heated bioreactors took about twice as long (ca. 40days) to plateau as in the conventionally heated bioreactors. These differences in the profile of biogas production are likely due to the athermal effects of microwave irradiation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Heating and dehumidification in production greenhouses at northern latitudes

    NARCIS (Netherlands)

    Kempkes, F.; Zwart, De H.F.; Munoz, P.; Montero, J.I.; Baptista, F.J.; Giuffrida, F.; Gilli, Celine; Stepowska, Agnieszka; Stanghellini, C.


    The majority of greenhouses in northern latitudes are heated, in the winter mainly for temperature control and year round to control humidity. Heating is accepted by most organic regulations in different countries; if heating efficiently and the energy source is predominantly renewable energy,

  5. Existing and Past Methods of Test and Rating Standards Related to Integrated Heat Pump Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Reedy, Wayne R. [Sentech, Inc.


    This report evaluates existing and past US methods of test and rating standards related to electrically operated air, water, and ground source air conditioners and heat pumps, 65,000 Btu/hr and under in capacity, that potentiality incorporate a potable water heating function. Two AHRI (formerly ARI) standards and three DOE waivers were identified as directly related. Six other AHRI standards related to the test and rating of base units were identified as of interest, as they would form the basis of any new comprehensive test procedure. Numerous other AHRI and ASHRAE component test standards were also identified as perhaps being of help in developing a comprehensive test procedure.

  6. Thermal Heat and Power Production with Models for Local and Regional Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Saether, Sturla


    The primary goal of this thesis is the description and modelling of combined heat and power systems as well as analyses of thermal dominated systems related to benefits of power exchange. Large power plants with high power efficiency (natural gas systems) and heat production in local heat pumps can be favourable in areas with low infrastructure of district heating systems. This system is comparable with typical combined heat and power (CHP) systems based on natural gas with respect to efficient use of fuel energy. The power efficiency obtainable from biomass and municipal waste is relatively low and the advantage of CHP for this system is high compared to pure power production with local heat pumps for heat generation. The advantage of converting pure power systems into CHP systems is best for power systems with low power efficiency and heat production at low temperature. CHP systems are divided into two main groups according to the coupling of heat and power production. Some CHP systems, especially those with strong coupling between heat and power production, may profit from having a thermal heat storage subsystem. District heating temperatures direct the heat to power ratio of the CHP units. The use of absorption chillers driven by district heating systems are also evaluated with respect to enhancing the utilisation of district heating in periods of low heat demand. Power exchange between a thermal dominated and hydropower system is found beneficial. Use of hydropower as a substitute for peak power production in thermal dominated systems is advantageous. Return of base load from the thermal dominated system to the hydropower system can balance in the net power exchange.

  7. Thermal sensation, rate of temperature change, and the heat dissipation design for tablet computers. (United States)

    Zhang, Han; Hedge, Alan; Cosley, Daniel


    Past research has shown that the rate of change of skin surface temperature can affect thermal sensation. This study investigated users' thermal responses to a tablet heating surface with different heat pads and different temperature change rates. The test conditions included: A. keeping the surface at a constant 42 °C, B. increasing the surface temperature from 38 °C to 42 °C at a rate of 0.02 °C/s in progressive intervals, C. increasing the temperature at 0.15 °C/s in progressive intervals, and D. Heating two left and right side pads alternately from 38 °C to 42 °C at 0.15 °C/s in progressive intervals. Overall results showed the lowest temperature change rate of 0.02 °C/s was most preferred in terms of thermal comfort. The findings suggest a potential to improve user thermal experience by dissipating tablet computer heat at a lower temperature change rate, or by alternating the dissipation areas. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Heat shock response in yeast involves changes in both transcription rates and mRNA stabilities.

    Directory of Open Access Journals (Sweden)

    Laia Castells-Roca

    Full Text Available We have analyzed the heat stress response in the yeast Saccharomyces cerevisiae by determining mRNA levels and transcription rates for the whole transcriptome after a shift from 25 °C to 37 °C. Using an established mathematical algorithm, theoretical mRNA decay rates have also been calculated from the experimental data. We have verified the mathematical predictions for selected genes by determining their mRNA decay rates at different times during heat stress response using the regulatable tetO promoter. This study indicates that the yeast response to heat shock is not only due to changes in transcription rates, but also to changes in the mRNA stabilities. mRNA stability is affected in 62% of the yeast genes and it is particularly important in shaping the mRNA profile of the genes belonging to the environmental stress response. In most cases, changes in transcription rates and mRNA stabilities are homodirectional for both parameters, although some interesting cases of antagonist behavior are found. The statistical analysis of gene targets and sequence motifs within the clusters of genes with similar behaviors shows that both transcriptional and post-transcriptional regulons apparently contribute to the general heat stress response by means of transcriptional factors and RNA binding proteins.

  9. Study of the Al-Si-X system by different cooling rates and heat treatment

    Directory of Open Access Journals (Sweden)

    Miguel Angel Suarez


    Full Text Available The solidification behavior of the Al-12.6% Si (A1, the hypereutectic Al-20%Si (A2 and the Al-20%Si-1.5% Fe-0.5%Mn (A3 (in wt. (% alloys, at different cooling rates is reported and discussed. The cooling rates ranged between 0.93 °C/s and 190 °C/s when cast in sand and copper wedge-shaped molds, respectively. A spheroidization heat treatment was carried out to the alloys in the as-cast condition at 540 °C for 11 hours and quench in water with a subsequent heat treatment at 170 °C for 5 hours with the purpose of improving the mechanical properties. The samples were characterized by optical microscopy, scanning electron microscopy and mechanically by tensile test, in order to evaluate the response of the heat treatment on the different starting microstructures and mechanical properties. It was found that alloys cooled at rates greater than 10.8 °C/s had a smaller particle size and better distribution, also showed a greater response to spheroidization heat treatment of all silicon (Si phases. The spheroidization heat treatment caused an increase in the ultimate tensile stress (UTS and elongation when compared with the alloys in the as-cast condition. The highest UTS value of 174 MPa was obtained for the (A1 alloy.

  10. Effects of Heat Stress on Construction Labor Productivity in Hong Kong: A Case Study of Rebar Workers. (United States)

    Yi, Wen; Chan, Albert P C


    Global warming is bringing more frequent and severe heat waves, and the result will be serious for vulnerable populations such as construction workers. Excessive heat stress has profound effects on physiological responses, which cause occupational injuries, fatalities and low productivity. Construction workers are particularly affected by heat stress, because of the body heat production caused by physically demanding tasks, and hot and humid working conditions. Field studies were conducted between August and September 2016 at two construction training grounds in Hong Kong. Onsite wet-bulb globe temperature (WBGT), workers' heart rate (HR), and labor productivity were measured and monitored. Based on the 378 data sets of synchronized environmental, physiological, construction labor productivity (CLP), and personal variables, a CLP-heat stress model was established. It was found that WBGT, percentage of maximum HR, age, work duration, and alcohol drinking habits were determining factors for predicting the CLP (adjusted R ² = 0.68, p < 0.05). The model revealed that heat stress reduces CLP, with the percentage of direct work time decreasing by 0.33% when the WBGT increased by 1 °C. The findings in this study extend the existing practice notes by providing scientific data that may be of benefit to the industry in producing solid guidelines for working in hot weather.

  11. The economic production lot size model extended to include more than one production rate

    DEFF Research Database (Denmark)

    Larsen, Christian


    production rates should be chosen in the interval between the demand rate and the production rate which minimizes unit production costs, and should be used in an increasing order. Then, given the production rates, we derive closed-form expressions for all optimal runtimes as well as the minimum average cost....... This analysis reveals that it is the size of the setup cost that determines the need for being able to use several production rates. We also show how to derive a near-optimal solution of the general problem....

  12. Effect of surface catalytic activity on stagnation heat-transfer rates. (United States)

    Anderson, L. A.


    An experiment was made to determine the effect heterogeneous catalytic surface reactions have on heat-transfer rates in highly frozen low-density stagnation-point boundary layers. Data were obtained in arc-heated facilities that were capable of producing large percentages of chemical energy frozen in a supersonic freestream. The heat-transfer rate to a silicon-dioxide surface was reduced to a minimum value of only one-third of the value obtained on relatively active nickel and platinum surfaces. This is the result of its low catalytic efficiency. Ionization energy was recovered on both the active and the inactive surfaces, indicating that this energy either was released many times faster than the recombination energy or was not controlled by the surface composition.

  13. Catalytic heat exchangers for small-scale production of hydrogen - feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Silversand, F. [Catator AB, Lund (Sweden)


    A feasibility study concerning heat-exchanger reactors in small-scale production of hydrogen has been performed on the request of Svenskt Gastekniskt Center AB and SWEP International AB. The basic idea is to implement different catalysts into brazed plate-type heat exchangers. This can be achieved by installing catalytic cylinders in the inlet-and outlet ports of the heat exchangers or through treatment of the plates to render them catalytically active. It is also possible to sandwich catalytically active wire meshes between the plates. Experiments concerning steam reforming of methanol and methane have been performed in a micro-reactor to gather kinetic data for modelling purposes. Performance calculations concerning heat exchanger reactors have then been conducted with Catator's generic simulation code for catalytic reactors (CatalystExplorer). The simulations clearly demonstrate the technical performance of these reactors. Indeed, the production rate of hydrogen is expected to be about 10 nm{sup 3}/h per litre of heat exchanger. The corresponding value for a conventional steam-reforming unit is about 1 nm{sup 3}/h or less per litre of reactor volume. Also, the compactness and the high degree of integration together with the possibilities of mass production will give an attractive cost for such units. Depending on the demands concerning the purity of the hydrogen it is possible to add secondary catalytic steps like water-gas shifters, methanation and selective oxidation, into a one-train unit, i.e. to design an all-inclusive design. Such reactors can be used for the supply of hydrogen to fuel cells. The production cost for hydrogen can be cut by 60 - 70% through the utilisation of heat exchanger reactors instead of conventional electrolysis. This result is primarily a result of the high price for electricity compared to the feed stock prices in steam reforming. It is important to verify the performance calculations and the simulation results through

  14. Heat and mass transfer rates during flow of dissociated hydrogen gas over graphite surface (United States)

    Nema, V. K.; Sharma, O. P.


    To improve upon the performance of chemical rockets, the nuclear reactor has been applied to a rocket propulsion system using hydrogen gas as working fluid and a graphite-composite forming a part of the structure. Under the boundary layer approximation, theoretical predictions of skin friction coefficient, surface heat transfer rate and surface regression rate have been made for laminar/turbulent dissociated hydrogen gas flowing over a flat graphite surface. The external stream is assumed to be frozen. The analysis is restricted to Mach numbers low enough to deal with the situation of only surface-reaction between hydrogen and graphite. Empirical correlations of displacement thickness, local skin friction coefficient, local Nusselt number and local non-dimensional heat transfer rate have been obtained. The magnitude of the surface regression rate is found low enough to ensure the use of graphite as a linear or a component of the system over an extended period without loss of performance.

  15. Effect of pyrolysis pressure and heating rate on radiata pine char structure and apparent gasification reactivity

    Energy Technology Data Exchange (ETDEWEB)

    E. Cetin; R. Gupta; B. Moghtaderi [University of Newcastle, Callaghan, NSW (Australia). Discipline of Chemical Engineering, Faculty of Engineering and Built Environment, School of Engineering


    The knowledge of biomass char gasification kinetics has considerable importance in the design of advanced biomass gasifiers, some of which operate at high pressure. The char gasification kinetics themselves are influenced by char structure. In this study, the effects of pyrolysis pressure and heating rate on the char structure were investigated using scanning electron microscopy (SEM) analysis, digital cinematography, and surface area analysis. Char samples were prepared at pressures between 1 and 20 bar, temperatures ranging from 800 to 1000{degree}C, and heating rates between 20 and 500{degree}C/s. Our results indicate that pyrolysis conditions have a notable impact on the biomass char morphology. Pyrolysis pressure, in particular, was found to influence the size and the shape of char particles while high heating rates led to plastic deformation of particles (i.e. melting) resulting in smooth surfaces and large cavities. The global gasification reactivities of char samples were also determined using thermogravimetric analysis (TGA) technique. Char reactivities were found to increase with increasing pyrolysis heating rates and decreasing pyrolysis pressure. 22 refs., 8 figs., 2 tabs.

  16. The influence of SPS heating rates on the synthesis reaction of tantalum diboride

    Directory of Open Access Journals (Sweden)

    Jolanta Laszkiewicz-Łukasik


    Full Text Available TaB2 is a material from the Ultra High Temperature Ceramics group and is rather unexplored because it is difficult to procure the raw materials and to densify TaB2. Using SPS technique to realize reactive sintering processes of powders mixture according to the reaction Ta + 2B → TaB2 makes it possible to achieve TaB2 in one technological step. The aim of the study was to determine the influence of heating rates on the synthesis reaction and on the multistage densification mechanisms during SPS processes. The mixture was sintered at constant parameters of 2200 °C, 48 MPa for 5 min with the usage of heating rates from 50 °C/min up to 400 °C/min. The densification processes were studied through analyzing the shrinkage of powder compacts during SPS (Spark Plasma Sintering processes. The comparison of the densification curves indicates that the reactions do not proceed completely at slow heating rates. Namely, too low heating rates contribute to the sintering of tantalum before the synthesis reaction and demonstrate the presence of boron in liquid state. The best material obtained in this study has Young's modulus 571 GPa, Vickers hardness 20.7 GPa (HV1 and indentation fracture toughness KIC 4.7 MPa m1/2.

  17. Time dependent heat transfer rates in high Reynolds number hypersonic flowfields (United States)

    Flanagan, Michael J.


    Time dependent heat transfer rates have been calculated from time dependent temperature measurements in the vicinity of shock-wave boundary-layer interactions due to conical compression ramps on an axisymmetric body. The basic model is a cylindrical body with a 10 degree conical nose. Four conical ramps, 20, 25, 30, and 35 degrees serve as shock wave generators. Flowfield surveys have been made in the vicinity of the conical ramp vertex, the separation point, and the reattachment point. A significant effort was made to characterize the natural frequencies and relative powers of the resulting fluctuations in heat transfer rates. This research effort, sponsored jointly by NASA and the Air Force, was conducted in the Air Force Flight Dynamics Directorate High Reynolds Facility. The nominal freestream Mach number was 6, and the freestream Reynolds numbers ranged from 2.2 million/ft to 30.0 million/ft. Experimental results quantify temperature response and the resulting heat transfer rates as a function of ramp angle and Reynolds number. The temperature response within the flowfield appears to be steady-state for all compression ramp angles and all Reynolds numbers, and hence, the heat transfer rates appear to be steady-state.

  18. The influence of SPS heating rates on the synthesis reaction of tantalum diboride

    Energy Technology Data Exchange (ETDEWEB)

    Laszkiewicz-Lukasik, J.; Jaworska, L.; Putyra, P.; Klimczyk, P.; Garzel, G.


    TaB2 is a material from the Ultra High Temperature Ceramics group and is rather unexplored because it is difficult to procure the raw materials and to densify TaB2. Using SPS technique to realize reactive sintering processes of powders mixture according to the reaction Ta+2B→TaB2 makes it possible to achieve TaB2 in one technological step. The aim of the study was to determine the influence of heating rates on the synthesis reaction and on the multistage densification mechanisms during SPS processes. The mixture was sintered at constant parameters of 2200°C, 48MPa for 5min with the usage of heating rates from 50°C/min up to 400°C/min. The densification processes were studied through analyzing the shrinkage of powder compacts during SPS (Spark Plasma Sintering) processes. The comparison of the densification curves indicates that the reactions do not proceed completely at slow heating rates. Namely, too low heating rates contribute to the sintering of tantalum before the synthesis reaction and demonstrate the presence of boron in liquid state. The best material obtained in this study has Young's modulus 571GPa, Vickers hardness 20.7GPa (HV1) and indentation fracture toughness KIC 4.7MPam1/2. (Author)

  19. Recovering hydrogen production performance of upflow anaerobic sludge blanket reactor (UASBR) fed with galactose via repeated heat treatment strategy. (United States)

    Sivagurunathan, Periyasamy; Anburajan, Parthiban; Kumar, Gopalakrishnan; Park, Jong-Hun; Kim, Sang-Hyoun


    This study evaluated the effect of repeated heat treatment towards the enhancement of hydrogen fermentation from galactose in an upflow anaerobic sludge blanket reactor with the hydraulic retention time of 6h and the operation temperature of 37°C. The hydrogen production rate (HPR) and hydrogen yield (HY) gradually increased up to 9.1L/L/d and 1.1mol/mol galactose, respectively, until the 33rd day of operation. When heat treatment at 80°C for 30min was applied, hydrogen production performance was enhanced by 37% with the enrichment of hydrogen producing bacteria population. The HPR and HY were achieved at 12.5L/L/d and 1.5mol/mol hexose, respectively, during further 30 cycles of reactor operation. The repeated heat treatment would be a viable strategy to warrant reliable continuous hydrogen production using mixed culture. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Mixing state of aerosols over the Indo-Gangetic Plain: Radiative forcing and heating rate (United States)

    Srivastava, R.; Ramachandran, S.


    ratio is calculated from the geometry of core-shell particles, which depends on the mass and density of the core and shell. The size distribution parameters and refractive indices of different aerosol species are taken from OPAC database [3]. Different fractions of black carbon, water soluble and mineral dust aerosols involved in core-shell mixing emerge as the most probable mixing states over the IGP. Aerosol forcing for external mixing shows higher deviations from those for probable mixing cases during winter and pre-monsoon. The heating rate over Kanpur and Gandhi College in the lower troposphere is similar during pre-monsoon (March-May) ( 0.75 K day^{-1}) and monsoon (June-September) ( 0.5 K day^{-1}), while differences occur in other seasons [4]. Aerosol heating rate profiles exhibit primary and secondary peaks over the IGP and exhibit seasonal variations. Details on the calculations of aerosol mixing states over IGP, the impact of aerosol mixing state on aerosol forcing and heating rate will be discussed. References: [1] Intergovernmental panel on climate change (2007), Solomon S. et al. (eds.), Cambridge Univ. Press, NewYork. [2] Holben B. N., et al. (2001), J. Geophys. Res., 106(D11), 12067-12097. [3] Hess M., P. Koepke, I. Schult (1998), Bull. Am. Meteorol. Soc., 79, 831-844. [4] Srivastava R., S. Ramachandran (2012), Q. J. R. Meteorol. Soc., 138, doi:10.1002/qj.1958.

  1. Impact of the High Flux Isotope Reactor HEU to LEU Fuel Conversion on Cold Source Nuclear Heat Generation Rates

    Energy Technology Data Exchange (ETDEWEB)

    Chandler, David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)


    Under the sponsorship of the US Department of Energy National Nuclear Security Administration, staff members at the Oak Ridge National Laboratory have been conducting studies to determine whether the High Flux Isotope Reactor (HFIR) can be converted from high enriched uranium (HEU) fuel to low enriched uranium (LEU) fuel. As part of these ongoing studies, an assessment of the impact that the HEU to LEU fuel conversion has on the nuclear heat generation rates in regions of the HFIR cold source system and its moderator vessel was performed and is documented in this report. Silicon production rates in the cold source aluminum regions and few-group neutron fluxes in the cold source moderator were also estimated. Neutronics calculations were performed with the Monte Carlo N-Particle code to determine the nuclear heat generation rates in regions of the HFIR cold source and its vessel for the HEU core operating at a full reactor power (FP) of 85 MW(t) and the reference LEU core operating at an FP of 100 MW(t). Calculations were performed with beginning-of-cycle (BOC) and end-of-cycle (EOC) conditions to bound typical irradiation conditions. Average specific BOC heat generation rates of 12.76 and 12.92 W/g, respectively, were calculated for the hemispherical region of the cold source liquid hydrogen (LH2) for the HEU and LEU cores, and EOC heat generation rates of 13.25 and 12.86 W/g, respectively, were calculated for the HEU and LEU cores. Thus, the greatest heat generation rates were calculated for the EOC HEU core, and it is concluded that the conversion from HEU to LEU fuel and the resulting increase of FP from 85 MW to 100 MW will not impact the ability of the heat removal equipment to remove the heat deposited in the cold source system. Silicon production rates in the cold source aluminum regions are estimated to be about 12.0% greater at BOC and 2.7% greater at EOC for the LEU core in comparison to the HEU core. Silicon is aluminum s major transmutation product and

  2. High-temperature pretreatment of biogas substrate by using district heating to increase the biogas production; Hoegtemperaturfoerbehandling av biogassubstrat med fjaerrvaerme foer oekad biogasproduktion

    Energy Technology Data Exchange (ETDEWEB)

    Del Pilar Castillo, Maria; Ascue, Johnny [JTI, Uppsala (Sweden); Olsson, Marcus; Henriksson, Gunilla; Nordman, Roger [SP, Boraas (Sweden)


    In this study, we have shown that pre-heating sludge from a waste water treatment plant can give a higher biogas production rate. However, pretreatment showed no effect on substrate from a biogas plant at the conditions tested in this study. The study has also shown that there is potential of using district heating in the biogas industry for thermal pretreatment of sludge.

  3. Effect of low and high heating rates on reaction path of Ni(V)/Al multilayer

    Energy Technology Data Exchange (ETDEWEB)

    Maj, Łukasz, E-mail: [Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta St., 30-059 Kraków (Poland); Morgiel, Jerzy; Szlezynger, Maciej [Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta St., 30-059 Kraków (Poland); Bała, Piotr; Cios, Grzegorz [AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, 30 Kawiory St., 30-055 Kraków (Poland)


    The effect of heating rates of Ni(V)/Al NanoFoils{sup ®} was investigated with transmission electron microscopy (TEM). The Ni(V)/Al were subjected to heating by using differential scanning calorimetry (DSC), in-situ TEM or electric pulse. Local chemical analysis was carried out using energy dispersive X-ray spectroscopy (EDS). Phase analysis was done with X-ray diffractions (XRD) and selected area electron diffractions (SAED). The experiments showed that slow heating in DSC results in development of separate exothermic effects at ∼230 °C, ∼280 °C and ∼390 °C, corresponding to precipitation of Al{sub 3}Ni, Al{sub 3}Ni{sub 2} and NiAl phases, respectively, i.e. like in vanadium free Ni/Al multilayers. Further heating to 700 °C allowed to obtain a single phase NiAl foil. The average grain size (g.s.) of NiAl phase produced in the DSC heat treated foil was comparable with the Ni(V)/Al multilayer period (∼50 nm), whereas in the case of reaction initiated with electric pulse the g.s. was in the micrometer range. Upon slow heating vanadium tends to segregate to zones parallel to the original multilayer internal interfaces, while in SHS process vanadium-rich phases precipitates at grain boundaries of the NiAl phase. - Highlights: • Peaks in DSC heating of Ni(V)/Al were explained by in-situ TEM observations. • Nucleation of Al{sub 3}Ni, Al{sub 3}Ni{sub 2} and NiAl at slow heating of Ni(V)/Al was documented. • Near surface NiAl obtained from NanoFoil show Ag precipitates at grain boundaries.

  4. Exergy analysis of a combined heat and power plant with integrated lignocellulosic ethanol production

    DEFF Research Database (Denmark)

    Lythcke-Jørgensen, Christoffer Ernst; Haglind, Fredrik; Clausen, Lasse Røngaard


    of an integrated system in which steam extracted from an existing combined heat and power unit is used for covering the heating demand of a lignocellulosic ethanol production facility. The integration solution was designed and optimized using already existing steam extraction points in the combined heat and power...... produces ethanol, solid biofuel, molasses, and is able to produce district heating hot water. Considering all products equally valuable, the exergy efficiency of the ethanol facility was found to be 0.790 during integrated operation with zero district heating production, and 0.852 during integrated......Integrating second generation bioethanol production in combined heat and power units is expected to increase system energy efficiencies while producing sustainable fuel for the transportation sector at a competitive price. By applying exergy analysis, this study assessed the efficiency...

  5. Permafrost thawing in organic Arctic soils accelerated by ground heat production

    DEFF Research Database (Denmark)

    Hollesen, Jørgen; Matthiesen, Henning; Møller, Anders Bjørn


    recognized as a potential positive-feedback mechanism that would enhance permafrost thawing and the release of carbon3, 4. This internal heat production is poorly understood, however, and the strength of this effect remains unclear3. Here, we have quantified the variability of heat production in contrasting...... organic permafrost soils across Greenland and tested the hypothesis that these soils produce enough heat to reach a tipping point after which internal heat production can accelerate the decomposition processes. Results show that the impact of climate changes on natural organic soils can be accelerated...

  6. Influence of Heating Rate on Annealing and Reverse Transformation Behavior of TRIP Steels Having Martensite as Starting Microstructure (United States)

    Kim, Jeong In; Choi, Yong Hoon; Ryu, Joo Hyun; Lee, Sea Woong; Lee, Kyooyoung; Suh, Dong-Woo


    The influence of heating rate on the annealing and transformation behavior is investigated in TRIP steel having martensite as the starting microstructure. A higher heating rate preserves the hierarchical structure of the initial microstructure before starting the reverse transformation. As the heating rate increases, the reversely transformed austenite has a propensity to develop a fine lath morphology, a consequence of the retention of pre-existing austenite and its growth along the lath boundary.

  7. Artificial Neural Networks-Based Software for Measuring Heat Collection Rate and Heat Loss Coefficient of Water-in-Glass Evacuated Tube Solar Water Heaters. (United States)

    Liu, Zhijian; Liu, Kejun; Li, Hao; Zhang, Xinyu; Jin, Guangya; Cheng, Kewei


    Measurements of heat collection rate and heat loss coefficient are crucial for the evaluation of in service water-in-glass evacuated tube solar water heaters. However, conventional measurement requires expensive detection devices and undergoes a series of complicated procedures. To simplify the measurement and reduce the cost, software based on artificial neural networks for measuring heat collection rate and heat loss coefficient of water-in-glass evacuated tube solar water heaters was developed. Using multilayer feed-forward neural networks with back-propagation algorithm, we developed and tested our program on the basis of 915 measured samples of water-in-glass evacuated tube solar water heaters. This artificial neural networks-based software program automatically obtained accurate heat collection rate and heat loss coefficient using simply "portable test instruments" acquired parameters, including tube length, number of tubes, tube center distance, heat water mass in tank, collector area, angle between tubes and ground and final temperature. Our results show that this software (on both personal computer and Android platforms) is efficient and convenient to predict the heat collection rate and heat loss coefficient due to it slow root mean square errors in prediction. The software now can be downloaded from

  8. Good production rate forecast based on flow, reservoir analysis

    Energy Technology Data Exchange (ETDEWEB)

    El-Feky, S.A.


    Well bore flow efficiencies under expected modes of production operations, coupled with a detailed reservoir description, are necessary for an accurate evaluation of production rate forecast. A production rate forecast for an offshore water-drive oil reservoir in the Gulf of Suez has been prepared. The best overall completion that exhibits both the highest initial producing rates and the long term producing efficiencies was determined for different wells. Three different flow configurations were examined. The wells were classified according to their productivity indices into Group I, Group II, and Group III, having average productivity indices of 53, 18 and 6 b/d/psi, respectively. The study was based on the performance of the three well groups. The Orkiszewski correlation for vertical multiphase pressure gradient calculation program available from Garrett Computing Systems was used to calculate bottom hole flowing pressures at a wide range of oil and water production rates with and without gas lift. Analysis of the expected reservoir performance was essential in evaluating the production forecast. Based on the results of the evaluation, reservoir operations, including well completions, control of water production, and gas lift requirements, have been recommended.

  9. Smoke Movement in an Atrium with a Fire with Low Rate of Heat Release

    DEFF Research Database (Denmark)

    Nielsen, Peter V.; Brohus, Henrik; Petersen, A. J.


    Results from small-scale experiments on smoke movement in an atrium are given, both with and without a vertical temperature gradient, and expressions for the smoke movement are developed on the basis of these experiments. Comparisons with a general analytical expression used for calculating...... the height to the location of the smoke layer are given. Furthermore, the paper discusses the air movement in a typical atrium exposed to different internal and external heat loads to elaborate on the use of the "flow element" expressions developed for smoke movement from a fire with a low rate of heat...

  10. Effects of steam pretreatment and co-production with ethanol on the energy efficiency and process economics of combined biogas, heat and electricity production from industrial hemp. (United States)

    Barta, Zsolt; Kreuger, Emma; Björnsson, Lovisa


    The study presented here has used the commercial flow sheeting program Aspen Plus™ to evaluate techno-economic aspects of large-scale hemp-based processes for producing transportation fuels. The co-production of biogas, district heat and power from chopped and steam-pretreated hemp, and the co-production of ethanol, biogas, heat and power from steam-pretreated hemp were analysed. The analyses include assessments of heat demand, energy efficiency and process economics in terms of annual cash flows and minimum biogas and ethanol selling prices (MBSP and MESP). Producing biogas, heat and power from chopped hemp has the highest overall energy efficiency, 84% of the theoretical maximum (based on lower heating values), providing that the maximum capacity of district heat is delivered. The combined production of ethanol, biogas, heat and power has the highest energy efficiency (49%) if district heat is not produced. Neither the inclusion of steam pretreatment nor co-production with ethanol has a large impact on the MBSP. Ethanol is more expensive to produce than biogas is, but this is compensated for by its higher market price. None of the scenarios examined are economically viable, since the MBSP (EUR 103-128 per MWh) is higher than the market price of biogas (EUR 67 per MWh). The largest contribution to the cost is the cost of feedstock. Decreasing the retention time in the biogas process for low solids streams by partly replacing continuous stirred tank reactors by high-rate bioreactors decreases the MBSP. Also, recycling part of the liquid from the effluent from anaerobic digestion decreases the MBSP. The production and prices of methane and ethanol influence the process economics more than the production and prices of electricity and district heat. To reduce the production cost of ethanol and biogas from biomass, the use of feedstocks that are cheaper than hemp, give higher output of ethanol and biogas, or combined production with higher value products are

  11. Effects of steam pretreatment and co-production with ethanol on the energy efficiency and process economics of combined biogas, heat and electricity production from industrial hemp (United States)


    Background The study presented here has used the commercial flow sheeting program Aspen Plus™ to evaluate techno-economic aspects of large-scale hemp-based processes for producing transportation fuels. The co-production of biogas, district heat and power from chopped and steam-pretreated hemp, and the co-production of ethanol, biogas, heat and power from steam-pretreated hemp were analysed. The analyses include assessments of heat demand, energy efficiency and process economics in terms of annual cash flows and minimum biogas and ethanol selling prices (MBSP and MESP). Results Producing biogas, heat and power from chopped hemp has the highest overall energy efficiency, 84% of the theoretical maximum (based on lower heating values), providing that the maximum capacity of district heat is delivered. The combined production of ethanol, biogas, heat and power has the highest energy efficiency (49%) if district heat is not produced. Neither the inclusion of steam pretreatment nor co-production with ethanol has a large impact on the MBSP. Ethanol is more expensive to produce than biogas is, but this is compensated for by its higher market price. None of the scenarios examined are economically viable, since the MBSP (EUR 103–128 per MWh) is higher than the market price of biogas (EUR 67 per MWh). The largest contribution to the cost is the cost of feedstock. Decreasing the retention time in the biogas process for low solids streams by partly replacing continuous stirred tank reactors by high-rate bioreactors decreases the MBSP. Also, recycling part of the liquid from the effluent from anaerobic digestion decreases the MBSP. The production and prices of methane and ethanol influence the process economics more than the production and prices of electricity and district heat. Conclusions To reduce the production cost of ethanol and biogas from biomass, the use of feedstocks that are cheaper than hemp, give higher output of ethanol and biogas, or combined production with

  12. Optimization of a one-step heat-inducible in vivo mini DNA vector production system.

    Directory of Open Access Journals (Sweden)

    Nafiseh Nafissi

    Full Text Available While safer than their viral counterparts, conventional circular covalently closed (CCC plasmid DNA vectors offer a limited safety profile. They often result in the transfer of unwanted prokaryotic sequences, antibiotic resistance genes, and bacterial origins of replication that may lead to unwanted immunostimulatory responses. Furthermore, such vectors may impart the potential for chromosomal integration, thus potentiating oncogenesis. Linear covalently closed (LCC, bacterial sequence free DNA vectors have shown promising clinical improvements in vitro and in vivo. However, the generation of such minivectors has been limited by in vitro enzymatic reactions hindering their downstream application in clinical trials. We previously characterized an in vivo temperature-inducible expression system, governed by the phage λ pL promoter and regulated by the thermolabile λ CI[Ts]857 repressor to produce recombinant protelomerase enzymes in E. coli. In this expression system, induction of recombinant protelomerase was achieved by increasing culture temperature above the 37°C threshold temperature. Overexpression of protelomerase led to enzymatic reactions, acting on genetically engineered multi-target sites called "Super Sequences" that serve to convert conventional CCC plasmid DNA into LCC DNA minivectors. Temperature up-shift, however, can result in intracellular stress responses and may alter plasmid replication rates; both of which may be detrimental to LCC minivector production. We sought to optimize our one-step in vivo DNA minivector production system under various induction schedules in combination with genetic modifications influencing plasmid replication, processing rates, and cellular heat stress responses. We assessed different culture growth techniques, growth media compositions, heat induction scheduling and temperature, induction duration, post-induction temperature, and E. coli genetic background to improve the productivity and

  13. Kijkwijzer: The Dutch rating system for audiovisual productions

    NARCIS (Netherlands)

    Valkenburg, P.M.; Beentjes, J.W.J.; Nikken, P.; Tan, E.S.H.


    Kijkwijzer is the name of the new Dutch rating system in use since early 2001 to provide information about the possible harmful effects of movies, home videos and television programs on young people. The rating system is meant to provide audiovisual productions with both age-based and content-based

  14. Evaluation of induced activity, decay heat and dose rate distribution after shutdown in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Maki, Koichi [Hitachi Ltd., Ibaraki (Japan). Hitachi Research Lab.; Satoh, Satoshi; Hayashi, Katsumi; Yamada, Koubun; Takatsu, Hideyuki; Iida, Hiromasa


    Induced activity, decay heat and dose rate distributions after shutdown were estimated for 1MWa/m{sup 2} operation in ITER. The activity in the inboard blanket one day after shutdown is 1.5x10{sup 11}Bq/cm{sup 3}, and the average decay heating rate 0.01w/cm{sup 3}. The dose rate outside the 120cm thick concrete biological shield is two order higher than the design criterion of 5{mu}Sv/h. This indicates that the biological shield thickness should be enhanced by 50cm in concrete, that is, total thickness 170cm for workers to enter the reactor room and to perform maintenance. (author)

  15. The Effect of Particle Concentration on the Heating Rate of Ferrofluids for Magnetic Hyperthermia

    Directory of Open Access Journals (Sweden)

    Malaescu I.


    Full Text Available The complex magnetic susceptibility χ(f = χ′(f - i χ″(f, of a ferrofluid sample with magnetite particles dispersed in kerosene and stabilized with oleic acid, over the range 0.1 GHz to 6 GHz, was determined. The initial sample has been successively diluted with kerosene (with a dilution rate of 2/3, thus obtaining further three samples. Using the complex magnetic susceptibility measurements of each sample, the frequency field and particle concentration dependencies of the heating rate of the ferrofluid samples, were analyzed. The results show the possibility of using the heating rate of ferrofluid samples with different particle concentrations, in hyperthermia applications.

  16. Stagnation-point heat-transfer rate predictions at aeroassist flight conditions (United States)

    Gupta, Roop N.; Jones, Jim J.; Rochelle, William C.


    The results are presented for the stagnation-point heat-transfer rates used in the design process of the Aeroassist Flight Experiment (AFE) vehicle over its entire aeropass trajectory. The prediction methods used in this investigation demonstrate the application of computational fluid dynamics (CFD) techniques to a wide range of flight conditions and their usefulness in a design process. The heating rates were computed by a viscous-shock-layer (VSL) code at the lower altitudes and by a Navier-Stokes (N-S) code for the higher altitude cases. For both methods, finite-rate chemically reacting gas was considered, and a temperature-dependent wall-catalysis model was used. The wall temperature for each case was assumed to be radiative equilibrium temperature, based on total heating. The radiative heating was estimated by using a correlation equation. Wall slip was included in the N-S calculation method, and this method implicitly accounts for shock slip. The N-S/VSL combination of projection methods was established by comparison with the published benchmark flow-field code LAURA results at lower altitudes, and the direct simulation Monte Carlo results at higher altitude cases. To obtain the design heating rate over the entire forward face of the vehicle, a boundary-layer method (BLIMP code) that employs reacting chemistry and surface catalysis was used. The ratio of the VSL or N-S method prediction to that obtained from the boundary-layer method code at the stagnation point is used to define an adjustment factor, which accounts for the errors involved in using the boundary-layer method.

  17. Study on heat transport rate of an osmotic heat pipe. Effects of the initial concentration on the heat transport limits; Shinto heat pipe no netsu yuso ni kansuru kenkyu. 1. Shoki nodo no netsu yuso genkai ni oyobosu eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Ipposhi, S.; Imura, H. [Kumamoto University, Kumamoto (Japan). Faculty of Engineering


    This paper describes an experimental study on. the effects of an initial concentration on a maximum heat transport rate of an osmotic heat pipe operated under the atmospheric pressure. The working fluid was aqueous polyethylene glycol 600 solution and the 18 tubular-type osmosis membranes made of acetyl cellulose were used. The initial concentration was varied from 0.1 to 1.0 kmol/ m{sup 3} with 0.1 kmol/m{sup 3} step. As a result, it is shown that the optimum initial concentration exists for the maximum heat transport rate in the osmotic heat pipe. In addition, the concentrations in the solution riser and downcomer are related to the initial concentration. 11 refs., 11 figs., 2 tabs.

  18. The effect of sampling rate on interpretation of the temporal characteristics of radiative and convective heating in wildland flames (United States)

    David Frankman; Brent W. Webb; Bret W. Butler; Daniel Jimenez; Michael Harrington


    Time-resolved radiative and convective heating measurements were collected on a prescribed burn in coniferous fuels at a sampling frequency of 500 Hz. Evaluation of the data in the time and frequency domain indicate that this sampling rate was sufficient to capture the temporal fluctuations of radiative and convective heating. The convective heating signal contained...

  19. A dilatometric study of the phase transformations in 300 and 350 maraging steels during continuous heating rates

    Directory of Open Access Journals (Sweden)

    Leandro Gomes de Carvalho


    Full Text Available The influences of the chemical composition and heating rate have been studied in 300 and 350 maraging steels using dilatometry. For these tests, heating was carried out with heating rates of 1, 10 and 28 °C/s. The results have shown that the precipitation mechanism for both materials in the studied range is by lattice diffusion. Furthermore, Co and Ti contents influence strongly the precipitation. The lattice diffusion mechanism in the martensite reversion is influenced by Ni and Co contents and heating rate. For small heating rates ( ~1 °C/s this mechanism prevails in the 300 maraging steel while for the 350 maraging steel has a minor importance. The mechanism of martensite reversion for 350 maraging steel in the studied range is mainly by shear mechanism. For higher heating rates (~28 ºC/s the shear mechanism prevails in both maraging steels.

  20. Rheology and microstructure of binary mixed gel of rice bran protein-whey: effect of heating rate and whey addition. (United States)

    Rafe, Ali; Vahedi, Elnaz; Hasan-Sarei, Azadeh Ghorbani


    Rice bran protein (RBP) is a valuable plant protein which has unique nutritional and hypoallergenic properties. Whey proteins have wide applications in the food industry, such as in dairy, meat and bakery products. Whey protein concentrate (WPC), RBP and their mixtures at different ratios (1:1, 1:2, 1:5 and 1:10 w/w) were heated from 20 to 90 °C at different heating rates (0.5, 1, 5 and 10 °C min(-1) ). The storage modulus (G') and gelling point (Tgel ) of WPC were higher than those of RBP, indicating the good ability of WPC to develop stiffer networks. By increasing the proportion of WPC in mixed systems, G' was increased and Tgel was reduced. Nevertheless, the elasticity of all binary mixtures was lower than that of WPC alone. Tgel and the final G' of RBP-WPC blends were increased by raising the heating rate. The RBP-WPC mixtures developed more elastic gels than RBP alone at different heating rates. RBP had a fibrillar and lentil-like structure whose fibril assembly had smaller structures than those of WPC. The gelling structure of the mixed gel of WPC-RBP was improved by adding WPC. Indeed, by adding WPC, gels tended to show syneresis and had lower water-holding capacity. Furthermore, the gel structure was produced by adding WPC to the non-gelling RBP, which is compatible with whey and can be applied as a functional food for infants and/or adults. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  1. Porphyroblast crystallization kinetics: the role of the nutrient production rate

    DEFF Research Database (Denmark)

    Schwarz, Jens-Oliver; Engi, Martin; Berger, Alfons


    , such as grain size distributions. In turn, data on porphyroblast textures for natural samples are used to infer which mechanism dominated during their formation. Whereas previous models assume that the rate-limiting step for a porphyroblast producing reaction is either transport or growth, the model advanced...... in this study considers the production of nutrients for porphyroblasts as a potentially rate-limiting factor. This production reflects the breakdown of (metastable) reactants, which at a specific pressure (P) and temperature (T) depends on the bulk composition of the sample. The production of nutrients...... that potentially contribute to the formation of porphyroblasts is computed based on thermodynamic models. The conceptual model assumes that these nutrients feed into some intergranular medium, and products form by nutrient consumption from that medium, with rates depending on reaction affinity. For any sequence...

  2. Thermodynamic Analysis of a Ship Power Plant Operating with Waste Heat Recovery through Combined Heat and Power Production

    Directory of Open Access Journals (Sweden)

    Mirko Grljušić


    Full Text Available The goal of this research is to study a cogeneration plant for combined heat & power (CHP production that utilises the low-temperature waste energy in the power plant of a Suezmax-size oil tanker for all heating and electricity requirements during navigation. After considering various configurations, a standard propulsion engine operating at maximum efficiency and a CHP Plant with R245fa fluid using a supercritical organic Rankine cycle (ORC is selected. All the ship heat requirements can be covered by energy of organic fluid after expansion in the turbine, except feeder-booster heating. Hence, an additional quantity of working fluid may be heated using an after Heat Recovery Steam Generator (HRSG directed to the feeder-booster module. An analysis of the obtained results shows that the steam turbine plant does not yield significant fuel savings. However, a CHP plant with R245fa fluid using supercritical ORC meets all of the demands for electrical energy and heat while burning only a small amount of additional fuel in HRSG at the main engine off-design operation.

  3. Torrefaction of invasive alien plants: Influence of heating rate and other conversion parameters on mass yield and higher heating value. (United States)

    Mundike, Jhonnah; Collard, François-Xavier; Görgens, Johann F


    With the aim of controlling their proliferation, two invasive alien plants, Lantana camara (LC) and Mimosa pigra (MP), both widespread in Africa, were considered for torrefaction for renewable energy applications. Using thermogravimetric analysis, the influence of heating rate (HR: 2.18-19.82°Cmin(-1)) together with variable temperature and hold time on char yield and HHV (in a bomb calorimeter) were determined. Statistically significant effects of HR on HHV with optima at 10.5°Cmin(-1) for LC and 20°Cmin(-1) for MP were obtained. Increases of HHV up to 0.8MJkg(-1) or energy yield greater than 10%, together with a 3-fold reduction in torrefaction conversion time could be achieved by optimisation of HR. Analysis of the torrefaction volatiles by TG-MS showed that not only hemicelluloses, but also lignin conversion, could influence the optimum HR value. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Effect of heating system using a geothermal heat pump on the production performance and housing environment of broiler chickens. (United States)

    Choi, H C; Salim, H M; Akter, N; Na, J C; Kang, H K; Kim, M J; Kim, D W; Bang, H T; Chae, H S; Suh, O S


    A geothermal heat pump (GHP) is a potential heat source for the economic heating of broiler houses with optimum production performance. An investigation was conducted to evaluate the effect of a heating system using a GHP on production performance and housing environment of broiler chickens. A comparative analysis was also performed between the GHP system and a conventional heating system that used diesel for fuel. In total, 34,000 one-day-old straight run broiler chicks were assigned to 2 broiler houses with 5 replicates in each (3,400 birds/replicate pen) for 35 d. Oxygen(,) CO(2), and NH(3) concentrations in the broiler house, energy consumption and cost of heating, and production performance of broilers were evaluated. Results showed that the final BW gain significantly (P < 0.05) increased when chicks were reared in the GHP broiler house compared with that of chicks reared in the conventional broiler house (1.73 vs. 1.62 kg/bird). The heating system did not affect the mortality of chicks during the first 4 wk of the experimental period, but the mortality markedly increased in the conventional broiler house during the last wk of the experiment. Oxygen content in the broiler house during the experimental period was not affected by the heating system, but the CO(2) and NH(3) contents significantly increased (P < 0.05) in the conventional broiler house compared with those in the GHP house. Fuel consumption was significantly reduced (P < 0.05) and electricity consumption significantly increased (P < 0.05) in the GHP house compared with the consumption in the conventional house during the experiment. The total energy cost of heating the GHP house was significantly lower (P < 0.05) compared with that of the conventional house. It is concluded that a GHP system could increase the production performance of broiler chicks due to increased inside air quality of the broiler house. The GHP system had lower CO(2) and NH(3) emissions with lower energy cost than the

  5. New industrial heat pump applications to textile production

    Energy Technology Data Exchange (ETDEWEB)



    Application of pinch technology to the US industries in an early screening study has identified potential for heat pumps in several standard processes such as distillation and drying processes. Due to lack process information, the previous study was not able to draw any definite conclusion concerning the heat pump application potential in textile process. However, the commonly encountered drying process in the finishing section of textile plant has been shown to create opportunities for heat pump placement. The site selected for this study is a textile plant in North Carolina and the participating utility is Duke Power Company. The objective of this study is to further identify the energy savings potential through advanced heat pumps and other energy conservation methods developed in the context of pinch technology. The key findings of this study are as follows. The previously unrecoverable waste heat from the exhaust air can now be reclaimed through a spray type air washer and heat pump system. The recommended heat pump system recovers heat from the looper exhaust and use it to preheat the air in the gas tenter. A reduction of 50% of the gas consumption in the tenter can be achieved. The removal of lint from the exhaust air reduced the potential of air pollution. The collected lint can be burned in the boiler as a supplemental fuel source to reduce the fuel consumption in the plant. With fuel price predicted to go up and electricity price remain relatively stable in the future, the heat pump system can payback in less than three years. 15 figs., 4 tabs.

  6. Effects of Adiabatic Heating on the High Strain Rate Deformation of Polymer Matrix Composites (United States)

    Sorini, Chris; Chattopadhyay, Aditi; Goldberg, Robert K.


    Polymer matrix composites (PMCs) are increasingly being used in aerospace structures that are expected to experience complex dynamic loading conditions throughout their lifetime. As such, a detailed understanding of the high strain rate behavior of the constituents, particularly the strain rate, temperature, and pressure dependent polymer matrix, is paramount. In this paper, preliminary efforts in modeling experimentally observed temperature rises due to plastic deformation in PMCs subjected to dynamic loading are presented. To this end, an existing isothermal viscoplastic polymer constitutive formulation is extended to model adiabatic conditions by incorporating temperature dependent elastic properties and modifying the components of the inelastic strain rate tensor to explicitly depend on temperature. It is demonstrated that the modified polymer constitutive model is capable of capturing strain rate and temperature dependent yield as well as thermal softening associated with the conversion of plastic work to heat at high rates of strain. The modified constitutive model is then embedded within a strength of materials based micromechanics framework to investigate the manifestation of matrix thermal softening, due to the conversion of plastic work to heat, on the high strain rate response of a T700Epon 862 (T700E862) unidirectional composite. Adiabatic model predictions for high strain rate composite longitudinal tensile, transverse tensile, and in-plane shear loading are presented. Results show a substantial deviation from isothermal conditions; significant thermal softening is observed for matrix dominated deformation modes (transverse tension and in-plane shear), highlighting the importance of accounting for the conversion of plastic work to heat in the polymer matrix in the high strain rate analysis of PMC structures.

  7. Mapping {sup 15}O Production Rate for Proton Therapy Verification

    Energy Technology Data Exchange (ETDEWEB)

    Grogg, Kira; Alpert, Nathaniel M.; Zhu, Xuping [Center for Advanced Radiological Sciences, Nuclear Medicine and Molecular Imaging, Radiology Department, Massachusetts General Hospital, Boston, Massachusetts (United States); Min, Chul Hee [Department of Radiological Science, College of Health Science, Yonsei University, Wonju, Kangwon (Korea, Republic of); Testa, Mauro; Winey, Brian [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States); Normandin, Marc D. [Center for Advanced Radiological Sciences, Nuclear Medicine and Molecular Imaging, Radiology Department, Massachusetts General Hospital, Boston, Massachusetts (United States); Shih, Helen A.; Paganetti, Harald; Bortfeld, Thomas [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States); El Fakhri, Georges, E-mail: [Center for Advanced Radiological Sciences, Nuclear Medicine and Molecular Imaging, Radiology Department, Massachusetts General Hospital, Boston, Massachusetts (United States)


    Purpose: This work was a proof-of-principle study for the evaluation of oxygen-15 ({sup 15}O) production as an imaging target through the use of positron emission tomography (PET), to improve verification of proton treatment plans and to study the effects of perfusion. Methods and Materials: Dynamic PET measurements of irradiation-produced isotopes were made for a phantom and rabbit thigh muscles. The rabbit muscle was irradiated and imaged under both live and dead conditions. A differential equation was fitted to phantom and in vivo data, yielding estimates of {sup 15}O production and clearance rates, which were compared to live versus dead rates for the rabbit and to Monte Carlo predictions. Results: PET clearance rates agreed with decay constants of the dominant radionuclide species in 3 different phantom materials. In 2 oxygen-rich materials, the ratio of {sup 15}O production rates agreed with the expected ratio. In the dead rabbit thighs, the dynamic PET concentration histories were accurately described using {sup 15}O decay constant, whereas the live thigh activity decayed faster. Most importantly, the {sup 15}O production rates agreed within 2% (P>.5) between conditions. Conclusions: We developed a new method for quantitative measurement of {sup 15}O production and clearance rates in the period immediately following proton therapy. Measurements in the phantom and rabbits were well described in terms of {sup 15}O production and clearance rates, plus a correction for other isotopes. These proof-of-principle results support the feasibility of detailed verification of proton therapy treatment delivery. In addition, {sup 15}O clearance rates may be useful in monitoring permeability changes due to therapy.

  8. Genetic component of sensitivity to heat stress for nonreturn rate of Brazilian Holstein cattle. (United States)

    Santana, M L; Bignardi, A B; Stefani, G; El Faro, L


    The objectives of the present study were: 1) to investigate variation in the genetic component of heat stress for nonreturn rate at 56 days after first artificial insemination (NR56); 2) to identify and characterize the genotype by environment interaction (G × E) due to heat stress for NR56 of Brazilian Holstein cattle. A linear random regression model (reaction norm model) was applied to 51,748 NR56 records of 28,595 heifers and multiparous cows. The decline in NR56 due to heat stress was more pronounced in milking cows compared to heifers. The age of females at first artificial insemination and temperature-humidity index (THI) exerted an important influence on the genetic parameters of NR56. Several evidence of G × E on NR56 were found as the high slope/intercept ratio and frequent intersection of reaction norms. Additionally, the genetic correlation between NR56 at opposite extremes of the THI scale reached estimates below zero, indicating that few of the same genes are responsible for NR56 under conditions of thermoneutrality and heat stress. The genetic evaluation and selection for NR56 in Holstein cattle reared under (sub)tropical conditions should therefore take into consideration the genetic variation on age at insemination and G × E due to heat stress. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. ITER Generic Diagnostic Upper Port Plug Nuclear Heating and Personnel Dose Rate Assesment

    Energy Technology Data Exchange (ETDEWEB)

    Russell E. Feder and Mahmoud Z. Youssef


    Neutronics analysis to find nuclear heating rates and personnel dose rates were conducted in support of the integration of diagnostics in to the ITER Upper Port Plugs. Simplified shielding models of the Visible-Infrared diagnostic and of a large aperture diagnostic were incorporated in to the ITER global CAD model. Results for these systems are representative of typical designs with maximum shielding and a small aperture (Vis-IR) and minimal shielding with a large aperture. The neutronics discrete-ordinates code ATTILA® and SEVERIAN® (the ATTILA parallel processing version) was used. Material properties and the 500 MW D-T volume source were taken from the ITER “Brand Model” MCNP benchmark model. A biased quadrature set equivelant to Sn=32 and a scattering degree of Pn=3 were used along with a 46-neutron and 21-gamma FENDL energy subgrouping. Total nuclear heating (neutron plug gamma heating) in the upper port plugs ranged between 380 and 350 kW for the Vis-IR and Large Aperture cases. The Large Aperture model exhibited lower total heating but much higher peak volumetric heating on the upper port plug structure. Personnel dose rates are calculated in a three step process involving a neutron-only transport calculation, the generation of activation volume sources at pre-defined time steps and finally gamma transport analyses are run for selected time steps. ANSI-ANS 6.1.1 1977 Flux-to-Dose conversion factors were used. Dose rates were evaluated for 1 full year of 500 MW DT operation which is comprised of 3000 1800-second pulses. After one year the machine is shut down for maintenance and personnel are permitted to access the diagnostic interspace after 2-weeks if dose rates are below 100 μSv/hr. Dose rates in the Visible-IR diagnostic model after one day of shutdown were 130 μSv/hr but fell below the limit to 90 μSv/hr 2-weeks later. The Large Aperture style shielding model exhibited higher and more persistent dose rates. After 1-day the dose rate was 230

  10. Martian surface heat production and crustal heat flow from Mars Odyssey Gamma‐Ray spectrometry

    National Research Council Canada - National Science Library

    Hahn, B. C; McLennan, S. M; Klein, E. C


    .... As previous studies have suggested that the crust is a repository for approximately 50% of the radiogenic elements on Mars, these models provide important, directly measurable constraints on Martian heat generation...

  11. Space Shuttle Solid Rocket Motor Plume Pressure and Heat Rate Measurements (United States)

    vonEckroth, Wulf; Struchen, Leah; Trovillion, Tom; Perez, Ravael; Nereolich, Shaun; Parlier, Chris


    The Solid Rocket Booster (SRB) Main Flame Deflector (MFD) at Launch Complex 39A was instrumented with sensors to measure heat rates, pressures, and temperatures on the last three Space Shuttle launches. Because the SRB plume is hot and erosive, a robust Tungsten Piston Calorimeter was developed to compliment the measurements made by off-the-shelf sensors. Witness materials were installed and their melting and erosion response to the Mach 2 / 4500 F / 4-second duration plume was observed. The data show that the specification document used for the design of the MFD thermal protection system over-predicted heat rates by a factor of 3 and under-predicted pressures by a factor of 2. These findings will be used to baseline NASA Computational Fluid Dynamics models and develop innovative MFD designs for the Space Launch System (SLS) before this vehicle becomes operational in 2017.

  12. Uncertainties in fission-product decay-heat calculations

    Energy Technology Data Exchange (ETDEWEB)

    Oyamatsu, K.; Ohta, H.; Miyazono, T.; Tasaka, K. [Nagoya Univ. (Japan)


    The present precision of the aggregate decay heat calculations is studied quantitatively for 50 fissioning systems. In this evaluation, nuclear data and their uncertainty data are taken from ENDF/B-VI nuclear data library and those which are not available in this library are supplemented by a theoretical consideration. An approximate method is proposed to simplify the evaluation of the uncertainties in the aggregate decay heat calculations so that we can point out easily nuclei which cause large uncertainties in the calculated decay heat values. In this paper, we attempt to clarify the justification of the approximation which was not very clear at the early stage of the study. We find that the aggregate decay heat uncertainties for minor actinides such as Am and Cm isotopes are 3-5 times as large as those for {sup 235}U and {sup 239}Pu. The recommended values by Atomic Energy Society of Japan (AESJ) were given for 3 major fissioning systems, {sup 235}U(t), {sup 239}Pu(t) and {sup 238}U(f). The present results are consistent with the AESJ values for these systems although the two evaluations used different nuclear data libraries and approximations. Therefore, the present results can also be considered to supplement the uncertainty values for the remaining 17 fissioning systems in JNDC2, which were not treated in the AESJ evaluation. Furthermore, we attempt to list nuclear data which cause large uncertainties in decay heat calculations for the future revision of decay and yield data libraries. (author)

  13. Influence of inlet velocity of air and solid particle feed rate on holdup mass and heat transfer characteristics in cyclone heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Mothilal, T. [T. J. S. Engineering College, Gummidipoond (India); Pitchandi, K. [Sri Venkateswara College of Engineering, Sriperumbudur (India)


    Present work elaborates the effect of inlet velocity of air and solid particle feed rate on holdup mass and heat transfer characteristics in a cyclone heat exchanger. The RNG k-ε turbulence model was adopted for modeling high turbulence flow and Discrete phase model (DPM) to track solid particles in a cyclone heat exchanger by ANSYS FLUENT software. The effect of inlet air velocity (5 to 25 m/s) and inlet solid particle feed rate of (0.2 to 2.5 g/s) at different particle diameter (300 to 500 μm) on holdup mass and heat transfer rate in cyclone heat exchanger was studied at air inlet temperature of 473 K. Results show that holdup mass and heat transfer rate increase with increase in inlet air velocity and inlet solid particle feed rate. Influence of solid particle feed rate on holdup mass has more significance. Experimental setup was built for high efficiency cyclone. Good agreement was found between experimental and simulation pressure drop. Empirical correlation was derived for dimensionless holdup mass and Nusselt number based on CFD data by regression technique. Correlation predicts dimensional holdup mass with +5% to -8% errors of experimental data and Nusselt number with +9% to -3%.

  14. Conception rate of artificially inseminated Holstein cows affected by cloudy vaginal mucus, under intense heat conditions

    Directory of Open Access Journals (Sweden)

    Miguel Mellado


    Full Text Available The objective of this work was to obtain prevalence estimates of cloudy vaginal mucus in artificially inseminated Holstein cows raised under intense heat, in order to assess the effect of meteorological conditions on its occurrence during estrus and to determine its effect on conception rate. In a first study, an association was established between the occurrence of cloudy vaginal mucus during estrus and the conception rate of inseminated cows (18,620 services, raised under intense heat (mean annual temperature of 22°C, at highly technified farms, in the arid region of northern Mexico. In a second study, data from these large dairy operations were used to assess the effect of meteorological conditions throughout the year on the occurrence of cloudy vaginal mucus during artificial insemination (76,899 estruses. The overall rate of estruses with cloudy vaginal mucus was 21.4% (16,470/76,899; 95% confidence interval = 21.1-21.7%. The conception rate of cows with clean vaginal mucus was higher than that of cows with abnormal mucus (30.6 vs. 22%. Prevalence of estruses with cloudy vaginal mucus was strongly dependent on high ambient temperature and markedly higher in May and June. Acceptable conception rates in high milk-yielding Holstein cows can only be obtained with cows showing clear and translucid mucus at artificial insemination.

  15. Domestic Hot Water Production with Ground Source Heat Pump in Apartment Buildings

    Directory of Open Access Journals (Sweden)

    Jukka Yrjölä


    Full Text Available Producing domestic hot water (DHW with a ground source heat pump (GSHP is challenging due to the high temperature (HT of DHW. There are many studies proving the better performance of cascade heat pumps compared to single-stage heat pumps when the difference between the condensing and the evaporation temperature is large. In this system approach study, different GSHP arrangements are described and computationally compared. A two-stage heat pump arrangement is introduced in which water tanks of the heating system are utilized for warming up the DHW in two stages. It is shown that the electricity consumption with this two-stage system is approximately 31% less than with the single-stage heat pump and 12% less than with the cascade system. Further, both low temperature (LT and HT heat pumps can run alone, which is not common in cascade or other two-stage heat pumps. This is advantageous because the high loads of the space heating and DHW production are not simultaneous. Proper insulation of the DHW and recirculation pipe network is essential, and drying towel rails or other heating coils should be avoided when aiming for a high efficiency. The refrigerants in the calculations are R407C for the LT heat pump and R134a for the HT heat pump. Investment costs are excluded from calculations.

  16. Statistical properties of Joule heating rate, electric field and conductances at high latitudes

    Directory of Open Access Journals (Sweden)

    A. T. Aikio


    Full Text Available Statistical properties of Joule heating rate, electric field and conductances in the high latitude ionosphere are studied by a unique one-month measurement made by the EISCAT incoherent scatter radar in Tromsø (66.6 cgmlat from 6 March to 6 April 2006. The data are from the same season (close to vernal equinox and from similar sunspot conditions (about 1.5 years before the sunspot minimum providing an excellent set of data to study the MLT and Kp dependence of parameters with high temporal and spatial resolution. All the parameters show a clear MLT variation, which is different for low and high Kp conditions. Our results indicate that the response of morning sector conductances and conductance ratios to increased magnetic activity is stronger than that of the evening sector. The co-location of Pedersen conductance maximum and electric field maximum in the morning sector produces the largest Joule heating rates 03–05 MLT for Kp≥3. In the evening sector, a smaller maximum occurs at 18 MLT. Minimum Joule heating rates in the nightside are statistically observed at 23 MLT, which is the location of the electric Harang discontinuity. An important outcome of the paper are the fitted functions for the Joule heating rate as a function of electric field magnitude, separately for four MLT sectors and two activity levels (Kp<3 and Kp≥3. In addition to the squared electric field, the fit includes a linear term to study the possible anticorrelation or correlation between electric field and conductance. In the midday sector, positive correlation is found as well as in the morning sector for the high activity case. In the midnight and evening sectors, anticorrelation between electric field and conductance is obtained, i.e. high electric fields are associated with low conductances. This is expected to occur in the return current regions adjacent to auroral arcs as a result of ionosphere-magnetosphere coupling, as discussed by Aikio et al. (2004 In

  17. Statistical properties of Joule heating rate, electric field and conductances at high latitudes

    Directory of Open Access Journals (Sweden)

    A. T. Aikio


    Full Text Available Statistical properties of Joule heating rate, electric field and conductances in the high latitude ionosphere are studied by a unique one-month measurement made by the EISCAT incoherent scatter radar in Tromsø (66.6 cgmlat from 6 March to 6 April 2006. The data are from the same season (close to vernal equinox and from similar sunspot conditions (about 1.5 years before the sunspot minimum providing an excellent set of data to study the MLT and Kp dependence of parameters with high temporal and spatial resolution.

    All the parameters show a clear MLT variation, which is different for low and high Kp conditions. Our results indicate that the response of morning sector conductances and conductance ratios to increased magnetic activity is stronger than that of the evening sector. The co-location of Pedersen conductance maximum and electric field maximum in the morning sector produces the largest Joule heating rates 03–05 MLT for Kp≥3. In the evening sector, a smaller maximum occurs at 18 MLT. Minimum Joule heating rates in the nightside are statistically observed at 23 MLT, which is the location of the electric Harang discontinuity.

    An important outcome of the paper are the fitted functions for the Joule heating rate as a function of electric field magnitude, separately for four MLT sectors and two activity levels (Kp<3 and Kp≥3. In addition to the squared electric field, the fit includes a linear term to study the possible anticorrelation or correlation between electric field and conductance. In the midday sector, positive correlation is found as well as in the morning sector for the high activity case. In the midnight and evening sectors, anticorrelation between electric field and conductance is obtained, i.e. high electric fields are associated with low conductances. This is expected to occur in the return current regions adjacent to

  18. Water temperature, body mass and fasting heat production of pacu (Piaractus mesopotamicus

    Directory of Open Access Journals (Sweden)


    Full Text Available ABSTRACT Knowledge on fasting heat production (HEf of fish is key to develop bioenergetics models thus improving feeding management of farmed species. The core of knowledge on HEf of farmed, neotropical fish is scarce. This study assessed the effect of body mass and water temperature on standard metabolism and fasting heat production of pacu, Piaractus mesopotamicus, an omnivore, Neotropical fresh water characin important for farming and fisheries industries all through South American continent. An automated, intermittent flow respirometry system was used to measure standard metabolic rate (SMR of pacu (17 - 1,050 g at five water temperatures: 19, 23, 26, 29 and 33 °C. Mass specific SMR increased with increasing water temperature but decreased as function of body mass. The allometric exponent for scaling HEf was 0.788, and lied in the range recorded for all studied warm-water fish. The recorded van't Hoff factor (Q10 for pacu (2.06 shows the species low response to temperature increases. The model HEf = 0.04643×W0.7882×T1.837 allows to predict HEf (kJ d-1 from body mass (W, kg and water temperature (T, °C, and can be used in bioenergetical models for the species.

  19. Wastewater treatment high rate algal ponds for biofuel production. (United States)

    Park, J B K; Craggs, R J; Shilton, A N


    While research and development of algal biofuels are currently receiving much interest and funding, they are still not commercially viable at today's fossil fuel prices. However, a niche opportunity may exist where algae are grown as a by-product of high rate algal ponds (HRAPs) operated for wastewater treatment. In addition to significantly better economics, algal biofuel production from wastewater treatment HRAPs has a much smaller environmental footprint compared to commercial algal production HRAPs which consume freshwater and fertilisers. In this paper the critical parameters that limit algal cultivation, production and harvest are reviewed and practical options that may enhance the net harvestable algal production from wastewater treatment HRAPs including CO(2) addition, species control, control of grazers and parasites and bioflocculation are discussed. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Molecular dynamics study on the effect of boundary heating rate on the phase change characteristics of thin film liquid

    Energy Technology Data Exchange (ETDEWEB)

    Hasan, Mohammad Nasim, E-mail:; Morshed, A. K. M. Monjur, E-mail:; Rabbi, Kazi Fazle, E-mail:; Haque, Mominul, E-mail: [Department of Mechanical Engineering, Bangladesh University of Engineering and Technology (BUET) Dhaka-1000 (Bangladesh)


    In this study, theoretical investigation of thin film liquid phase change phenomena under different boundary heating rates has been conducted with the help of molecular dynamics simulation. To do this, the case of argon boiling over a platinum surface has been considered. The study has been conducted to get a better understanding of the nano-scale physics of evaporation/boiling for a three phase system with particular emphasis on the effect of boundary heating rate. The simulation domain consisted of liquid and vapor argon atoms placed over a platinum wall. Initially the whole system was brought to an equilibrium state at 90 K with the help of equilibrium molecular dynamics and then the temperature of the bottom wall was increased to a higher temperature (250 K/130 K) over a finite heating period. Depending on the heating period, the boundary heating rate has been varied in the range of 1600×10{sup 9} K/s to 8×10{sup 9} K/s. The variations of argon region temperature, pressure, net evaporation number with respect to time under different boundary heating rates have been determined and discussed. The heat fluxes normal to platinum wall for different cases were also calculated and compared with theoretical upper limit of maximum possible heat transfer to elucidate the effect of boundary heating rate.

  1. Liquid-Phase Heat-Release Rates of the Systems Hydrazine-Nitric Acid and Unsymmetrical Dimethylhydrazine-Nitric Acid (United States)

    Somogyi, Dezso; Feiler, Charles E.


    The initial rates of heat release produced by the reactions of hydrazine and unsymmetrical dimethylhydrazine with nitric acid were determined in a bomb calorimeter under conditions of forced mixing. Fuel-oxidant weight ratio and injection velocity were varied. The rate of heat release apparently depended on the interfacial area between the propellants. Above a narrow range of injection velocities representing a critical amount of interfacial area, the rates reached a maximum and were almost constant with injection velocity. The maximum rate for hydrazine was about 70 percent greater than that for unsymmetrical dimethylhydrazine. The total heat released did not vary with mixture ratio over the range studied.

  2. Internal stress-induced melting below melting temperature at high-rate laser heating (United States)

    Hwang, Yong Seok; Levitas, Valery I.


    In this Letter, continuum thermodynamic and phase field approaches (PFAs) predicted internal stress-induced reduction in melting temperature for laser-irradiated heating of a nanolayer. Internal stresses appear due to thermal strain under constrained conditions and completely relax during melting, producing an additional thermodynamic driving force for melting. Thermodynamic melting temperature for Al reduces from 933.67 K for a stress-free condition down to 898.1 K for uniaxial strain and to 920.8 K for plane strain. Our PFA simulations demonstrated barrierless surface-induced melt nucleation below these temperatures and propagation of two solid-melt interfaces toward each other at the temperatures very close to the corresponding predicted thermodynamic equilibrium temperatures for the heating rate Q ≤1.51×1010K/s. At higher heating rates, kinetic superheating competes with a reduction in melting temperature and melting under uniaxial strain occurs at 902.1 K for Q = 1.51 × 1011 K/s and 936.9 K for Q = 1.46 × 1012 K/s.

  3. Internal stress-induced melting below melting temperature at high-rate laser heating

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Yong Seok, E-mail: [Department of Aerospace Engineering, Iowa State University, Ames, Iowa 50011 (United States); Levitas, Valery I., E-mail: [Departments of Aerospace Engineering, Mechanical Engineering, and Material Science and Engineering, Iowa State University, Ames, Iowa 50011 (United States)


    In this Letter, continuum thermodynamic and phase field approaches (PFAs) predicted internal stress-induced reduction in melting temperature for laser-irradiated heating of a nanolayer. Internal stresses appear due to thermal strain under constrained conditions and completely relax during melting, producing an additional thermodynamic driving force for melting. Thermodynamic melting temperature for Al reduces from 933.67 K for a stress-free condition down to 898.1 K for uniaxial strain and to 920.8 K for plane strain. Our PFA simulations demonstrated barrierless surface-induced melt nucleation below these temperatures and propagation of two solid-melt interfaces toward each other at the temperatures very close to the corresponding predicted thermodynamic equilibrium temperatures for the heating rate Q≤1.51×10{sup 10}K/s. At higher heating rates, kinetic superheating competes with a reduction in melting temperature and melting under uniaxial strain occurs at 902.1 K for Q = 1.51 × 10{sup 11 }K/s and 936.9 K for Q = 1.46 × 10{sup 12 }K/s.

  4. Effects of NaCl on metabolic heat evolution rates by barley roots (United States)

    Criddle, R. S.; Hansen, L. D.; Breidenbach, R. W.; Ward, M. R.; Huffaker, R. C.


    The effect of salinity stress on metabolic heat output of barley (Hordeum vulgare L.) root tips was measured by isothermal microcalorimetry. Several varieties differing in tolerance to salinity were compared and differences quantified. Two levels of inhibition by increasing salt were found. Following the transition from the initial rate of the first level, inhibition remained at about 50% with further increases in salt concentration up to 150 millimolar. The concentration of salt required to inhibit to this level was cultivar dependent. At highter concentrations (>150 millimolar) of salt, metabolism was further decreased. This decrease was not cultivar dependent. The decreased rate of metabolic heat output at the first transition could be correlated with decreases in uptake of NO3-, NH4+, and Pi that occurred as the salt concentration was increased. The high degree of dependence of the inhibition of metabolic heat output on NaCl concentration points to a highly cooperative reaction responsible for the general inhibition of metabolism and nutrient uptake. The time required to attain the first level of salt inhibition is less than 20 minutes. Inhibition of root tips was not reversible by washing with salt free solutions. In addition to revealing these features of salt inhibition, isothermal microcalorimetry is a promising method for convenient and rapid determination of varietal differences in response to increasing salinity.

  5. Assessment of vehicle trip production rates in Ilorin (Nigeria) | Jimoh ...

    African Journals Online (AJOL)

    The city was divided into 5 zones, and origin and destination traffic survey questionnaires were administered to 110 households in each zone, to obtain primary data on socio-economic characteristics of daily trip patterns and preferred modes of travel. The data was analyz-ed for trip production rates by regression and cross ...

  6. Empirical Model for Predicting Rate of Biogas Production | Adamu ...

    African Journals Online (AJOL)

    Rate of biogas production using cow manure as substrate was monitored in two laboratory scale batch reactors (13 liter and 108 liter capacities). Two empirical models based on the Gompertz and the modified logistic equations were used to fit the experimental data based on non-linear regression analysis using Solver tool ...

  7. Evaluation of biogas production rate and biochemical changes in ...

    African Journals Online (AJOL)

    The rate of biogas generation and biochemical changes in pig dung used in a simple mobile biogas digester designed and constructed at the Department of Environmental Technology, Federal University of Technology Owerri, Nigeria were evaluated. Measurable gas production started 4 days after feeding the digester with ...

  8. Production constraints and mortality rate in poultry farms in Esan ...

    African Journals Online (AJOL)

    Results show that farmers faced severe production limitations particularly disease infestation with a mean value of 4.64, high feed cost (x = 3.98), prevalence of ineffective drugs (x = 3.74) and seasonal glut (x = 3.70). Mortality rate in the poultry farms was high with a percentage of 47%, largely caused by disease infection (x ...

  9. Additive Effects of Heating and Exercise on Baroreflex Control of Heart Rate in Healthy Males. (United States)

    Peçanha, Tiago; Forjaz, Claudia Lucia de Moraes; Low, David Andrew


    This study assessed the additive effects of passive heating and exercise on cardiac baroreflex sensitivity (cBRS) and heart rate variability (HRV). Twelve healthy young men (25±1 yrs, 23.8±0.5 kg/m(2)) randomly underwent two experimental sessions: heat stress (HS; whole-body heat stress using a tube-lined suit to increase core temperature by ~1°C) and normothermia (NT). Each session was composed of a: pre-intervention rest (REST1); HS or NT interventions; post-intervention rest (REST2); and 14 min of cycling exercise [7 min at 40%HRreserve (EX1) and 7 min at 60%HRreserve (EX2)]. Heart rate and finger blood pressure were continuously recorded. cBRS was assessed using the sequence (cBRSSEQ) and transfer function (cBRSTF) methods. HRV was assessed using the indices SDNN (standard deviation of RR intervals) and RMSSD (root mean square of successive RR intervals). cBRS and HRV were not different between sessions during EX1 and EX2 (i.e. matched heart rate conditions: EX1=116±3 vs. 114±3, EX2=143±4 vs. 142±3 bpm; but different workloads: EX1=50±9 vs. 114±8, EX2=106±10 vs. 165±8 Watts; for HS and NT, respectively; Pheart rates), cBRS and HRV were significantly reduced in HS (cBRSSEQ = 1.6±0.3 vs. 0.6±0.1 ms/mmHg, P<0.01; SDNN = 2.3±0.1 vs. 1.3±0.2 ms, P<0.01). In conclusion, in conditions matched by HR, the addition of heat stress to exercise does not affect cBRS and HRV. Alternatively, in workload-matched conditions, the addition of heat to exercise results in reduced cBRS and HRV compared to exercise in normothermia. Copyright © 2017, Journal of Applied Physiology.

  10. Radioactive decay products in neutron star merger ejecta: heating efficiency and γ-ray emission (United States)

    Hotokezaka, K.; Wanajo, S.; Tanaka, M.; Bamba, A.; Terada, Y.; Piran, T.


    The radioactive decay of the freshly synthesized r-process nuclei ejected in compact binary mergers powers optical/infrared macronovae (kilonovae) that follow these events. The light curves depend critically on the energy partition among the different decay products and it plays an important role in estimates of the amount of ejected r-process elements from a given observed signal. We show that 20-50 per cent of the total radioactive energy is released in γ-rays on time-scales from hours to a month. The number of emitted γ-rays per unit energy interval has roughly a flat spectrum between a few dozen keV and 1 MeV so that most of the energy is carried by ˜1 MeV γ-rays. However, at the peak of macronova emission the optical depth of the γ-rays is ˜0.02 and most of the γ-rays escape. The loss of these γ-rays reduces the heat deposition into the ejecta and hence reduces the expected macronova signals if those are lanthanides dominated. This implies that the ejected mass is larger by a factor of 2-3 than what was previously estimated. Spontaneous fission heats up the ejecta and the heating rate can increase if a sufficient amount of transuranic nuclei are synthesized. Direct measurements of these escaping γ-rays may provide the ultimate proof for the macronova mechanisms and an identification of the r-process nucleosynthesis sites. However, the chances to detect these signals are slim with current X-ray and γ-ray missions. New detectors, more sensitive by at least a factor of 10, are needed for a realistic detection rate.

  11. The transformation of heat in an engine (United States)

    Neumann, Kurt


    This report presents a thermodynamic basis for rating heat engines. The production of work by a heat engine rests on the operation of supplying heat, under favorable conditions, to a working fluid and then taking it away.

  12. Devolatilization kinetics of woody biomass at short residence times and high heating rates and peak temperatures

    DEFF Research Database (Denmark)

    Johansen, Joakim M.; Gadsbøll, Rasmus; Thomsen, Jesper


    This work combines experimental and computational fluid dynamics (CFD) results to derive global kinetics for biomass (pine wood) devolatilization during heating rates on the order of 105Ks-1, bulk flow peak temperatures between 1405 and 1667K, and particle residence times below 0.1s. Experiments ...... faster kinetics than found in the literature, leading to predicted residence times required for full conversion one order of magnitude lower than when compared to thermogravimetric analysis (TGA) derived kinetics.......This work combines experimental and computational fluid dynamics (CFD) results to derive global kinetics for biomass (pine wood) devolatilization during heating rates on the order of 105Ks-1, bulk flow peak temperatures between 1405 and 1667K, and particle residence times below 0.1s. Experiments...... were conducted on a laboratory laminar entrained flow reactor (LFR) using solid fuel feed rates on the order of 10-20mgh-1. Employing a simple single step first order (SFOR) mechanism with an Arrhenius type rate expression, the best fit of the pyrolysis kinetics was found to be: A=18.9×103s-1, Ea=21305...

  13. Reliable radiogenic heat production of representative lithological groups (United States)

    Vilà, Miquel; Fernández, Manel


    Determining the temperature distribution within the lithosphere requires the knowledge of the radiogenic heat production (RHP) distribution within the crust and the lithospheric mantle. RHP of crustal rocks varies considerably at different scales as a result of the petrogenetic processes responsible for their formation and therefore RHP depends on the considered lithologies. In this work we address RHP variability of some common lithological groups from a compilation of a total of 2188 representative U, Th and K concentrations of different worldwide rock types derived from 102 geochemical and geophysical datasets previously published. To optimize the use of the generated RHP database we have classified and renamed the rock-type denominations of the original works following a petrologic classification scheme with a hierarchical structure. To compute RHP a reasonable average density was assigned for each lithologic group. The RHP data of each lithological group is presented in cumulative distribution plots, and we report a table with the mean, the standard deviation, the minimum and maximum values, and the significant percentiles (10th, 25th, 50th, 75th and 90th) of these lithological groups. In general, for each lithological group exists a wide zone around the median value with a constant slope indicating RHP values with the same probability of occurrence. This zone usually includes the RHP range defined by the 25th and the 75th percentile. When compare previuos RHP estimates of representative lithological groups with our results it is observed that most of them fall between the 25th and 75th percentiles obtained. We integrate our results in a schematic model of the differentiation processes undergone by lithospheric rocks. This model allows us to discuss the RHP variability for the different igneous, sedimentary and metamorphic lithological groups from a petrogenetic viewpoint. Finally we give some useful guidelines to assign RHP values to lithospheric thermal

  14. Working in Australia's heat: health promotion concerns for health and productivity. (United States)

    Singh, Sudhvir; Hanna, Elizabeth G; Kjellstrom, Tord


    This exploratory study describes the experiences arising from exposure to extreme summer heat, and the related health protection and promotion issues for working people in Australia. Twenty key informants representing different industry types and occupational groups or activities in Australia provided semi-structured interviews concerning: (i) perceptions of workplace heat exposure in the industry they represented, (ii) reported impacts on health and productivity, as well as (iii) actions taken to reduce exposure or effects of environmental heat exposure. All interviewees reported that excessive heat exposure presents a significant challenge for their industry or activity. People working in physically demanding jobs in temperatures>35°C frequently develop symptoms, and working beyond heat tolerance is common. To avoid potentially dangerous health impacts they must either slow down or change their work habits. Such health-preserving actions result in lost work capacity. Approximately one-third of baseline work productivity can be lost in physically demanding jobs when working at 40°C. Employers and workers consider that heat exposure is a 'natural hazard' in Australia that cannot easily be avoided and so must be accommodated or managed. Among participants in this study, the locus of responsibility for coping with heat lay with the individual, rather than the employer. Heat exposure during Australian summers commonly results in adverse health effects and productivity losses, although quantification studies are lacking. Lack of understanding of the hazardous nature of heat exposure exacerbates the serious risk of heat stress, as entrenched attitudinal barriers hamper amelioration or effective management of this increasing occupational health threat. Educational programmes and workplace heat guidelines are required. Without intervention, climate change in hot countries, such as Australia, can be expected to further exacerbate heat-related burden of disease and loss

  15. Performance evaluation of adding ethanol production into an existing combined heat and power plant. (United States)

    Starfelt, F; Thorin, E; Dotzauer, E; Yan, J


    In this paper, the configuration and performance of a polygeneration system are studied by modelling the integration of a lignocellulosic wood-to-ethanol process with an existing combined heat and power (CHP) plant. Data from actual plants are applied to validate the simulation models. The integrated polygeneration system reaches a total efficiency of 50%, meeting the heating load in the district heating system. Excess heat from the ethanol production plant supplies 7.9 MW to the district heating system, accounting for 17.5% of the heat supply at full heating load. The simulation results show that the production of ethanol from woody biomass is more efficient when integrated with a CHP plant compared to a stand-alone production plant. The total biomass consumption is reduced by 13.9% while producing the same amounts of heat, electricity and ethanol fuel as in the stand-alone configurations. The results showed that another feature of the integrated polygeneration system is the longer annual operating period compared to existing cogeneration. Thus, the renewable electricity production is increased by 2.7% per year.

  16. Stage-specific heat effects: timing and duration of heat waves alter demographic rates of a global insect pest. (United States)

    Zhang, Wei; Rudolf, Volker H W; Ma, Chun-Sen


    The frequency and duration of periods with high temperatures are expected to increase under global warming. Thus, even short-lived organisms are increasingly likely to experience periods of hot temperatures at some point of their life-cycle. Despite recent progress, it remains unclear how various temperature experiences during the life-cycle of organisms affect demographic traits. We simulated hot days (daily mean temperature of 30 °C) increasingly experienced under field conditions and investigated how the timing and duration of such hot days during the life cycle of Plutella xylostella affects adult traits. We show that hot days experienced during some life stages (but not all) altered adult lifespan, fecundity, and oviposition patterns. Importantly, the effects of hot days were contingent on which stage was affected, and these stage-specific effects were not always additive. Thus, adults that experience different temporal patterns of hot periods (i.e., changes in timing and duration) during their life-cycle often had different demographic rates and reproductive patterns. These results indicate that we cannot predict the effects of current and future climate on natural populations by simply focusing on changes in the mean temperature. Instead, we need to incorporate the temporal patterns of heat events relative to the life-cycle of organisms to describe population dynamics and how they will respond to future climate change.


    Directory of Open Access Journals (Sweden)

    Marija Macenić


    Full Text Available At three locations in Zagreb, classical and extended thermal response test (TRT was conducted on installed coaxial heat exchangers. With classic TR test, thermogeological properties of the ground and thermal resistance of the borehole were determined at each location. It is seen that thermal conductivity of the ground varies, due to difference in geological profile of the sites. In addition, experimental research of steady-state thermal response step test (SSTRST was carried out to determine heat rejection rates for passive and active cooling in steady state regime. Results showed that heat rejection rate is only between 8-11 W/m, which indicates that coaxial system is not suitable for passive cooling demands. Furthermore, the heat pump in passive cooling mode uses additional plate heat exchanger where there is additional temperature drop of working fluid by approximately 1,5 °C. Therefore, steady-state rejection rate for passive cooling is even lower for a real case project. Coaxial heat exchanger should be always designed for an active cooling regime with an operation of a heat pump compressor in a classical vapour compression refrigeration cycle.

  18. Extreme learning machine: a new alternative for measuring heat collection rate and heat loss coefficient of water-in-glass evacuated tube solar water heaters. (United States)

    Liu, Zhijian; Li, Hao; Tang, Xindong; Zhang, Xinyu; Lin, Fan; Cheng, Kewei


    Heat collection rate and heat loss coefficient are crucial indicators for the evaluation of in service water-in-glass evacuated tube solar water heaters. However, the direct determination requires complex detection devices and a series of standard experiments, wasting too much time and manpower. To address this problem, we previously used artificial neural networks and support vector machine to develop precise knowledge-based models for predicting the heat collection rates and heat loss coefficients of water-in-glass evacuated tube solar water heaters, setting the properties measured by "portable test instruments" as the independent variables. A robust software for determination was also developed. However, in previous results, the prediction accuracy of heat loss coefficients can still be improved compared to those of heat collection rates. Also, in practical applications, even a small reduction in root mean square errors (RMSEs) can sometimes significantly improve the evaluation and business processes. As a further study, in this short report, we show that using a novel and fast machine learning algorithm-extreme learning machine can generate better predicted results for heat loss coefficient, which reduces the average RMSEs to 0.67 in testing.

  19. Standard Test Method for Measuring Heat-Transfer Rate Using a Thermal Capacitance (Slug) Calorimeter

    CERN Document Server

    American Society for Testing and Materials. Philadelphia


    1.1 This test method describes the measurement of heat transfer rate using a thermal capacitance-type calorimeter which assumes one-dimensional heat conduction into a cylindrical piece of material (slug) with known physical properties. 1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. 1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. Note 1—For information see Test Methods E 285, E 422, E 458, E 459, and E 511.

  20. Technology and operational considerations for low-heat-rate trajectories. [of future winged earth reentry vehicles (United States)

    Wurster, K. E.; Eldred, C. H.


    A broad parametric study which examines several critical aspects of low-heat-rate entry trajectories is performed. Low planform loadings associated with future winged earth-entry vehicles coupled with the potential application of metallic thermal protection systems (TPS) suggest that such trajectories are of particular interest. Studied are three heating conditions - reference, stagnation, and windward centerline, for both laminar and turbulent flow; configuration-related factors including planform loading and hypersonic angle of attack; and mission-related factors such as cross-range and orbit inclination. Results indicate benefits in the design of TPS to be gained by utilizing moderate angles of attack as opposed to high-lift coefficient, high angles of attack, during entry. An assessment of design and technology implications is made.

  1. Cost Estimates Of Concentrated Photovoltaic Heat Sink Production (United States)


    generation. As the CPV market has matured, production costs have come down to near flat-panel photovoltaic (PV) production costs. CPV units...has matured, production costs have come down to near flat-panel photovoltaic (PV) production costs. CPV units outperform flat-panel PV units in areas...Adam Plesniak Dr. Jesse Cunha Dr. Peter Crooker Dr. Anthony Gannon Dr. Garth Hobson LCDR Derek Fletcher, U.S. Navy Janice Long Most

  2. Design and simulation of heat exchangers using Aspen HYSYS, and Aspen exchanger design and rating for paddy drying application (United States)

    Janaun, J.; Kamin, N. H.; Wong, K. H.; Tham, H. J.; Kong, V. V.; Farajpourlar, M.


    Air heating unit is one of the most important parts in paddy drying to ensure the efficiency of a drying process. In addition, an optimized air heating unit does not only promise a good paddy quality, but also save more for the operating cost. This study determined the suitable and best specifications heating unit to heat air for paddy drying in the LAMB dryer. In this study, Aspen HYSYS v7.3 was used to obtain the minimum flow rate of hot water needed. The resulting data obtained from Aspen HYSYS v7.3 were used in Aspen Exchanger Design and Rating (EDR) to generate heat exchanger design and costs. The designs include shell and tubes and plate heat exchanger. The heat exchanger was designed in order to produce various drying temperatures of 40, 50, 60 and 70°C of air with different flow rate, 300, 2500 and 5000 LPM. The optimum condition for the heat exchanger were found to be plate heat exchanger with 0.6 mm plate thickness, 198.75 mm plate width, 554.8 mm plate length and 11 numbers of plates operating at 5000 LPM air flow rate.

  3. Solid waste from Swine wastewater as a fuel source for heat production

    National Research Council Canada - National Science Library

    Park, Myung-Ho; Kumar, Sanjay; Ra, ChangSix


    This study was to evaluate the feasibility of recycling the solids separated from swine wastewater treatment process as a fuel source for heat production and to provide a data set on the gas emissions...

  4. Calculation of Efficiencies of a Ship Power Plant Operating with Waste Heat Recovery through Combined Heat and Power Production

    Directory of Open Access Journals (Sweden)

    Mirko Grljušić


    Full Text Available The aim of this research was to investigate the possibility of a combined heat & power (CHP plant, using the waste heat from a Suezmax-size oil tanker’s main engine, to meet all heating and electricity requirements during navigation. After considering various configurations, a standard propulsion engine operating at maximum efficiency, combined with a supercritical Organic Rankine cycle (ORC system, was selected to supply the auxiliary power, using R245fa or R123 as the working fluid. The system analysis showed that such a plant can meet all heat and electrical power requirements at full load, with the need to burn only a small amount of supplementary fuel in a heat recovery steam generator (HRSG when the main engine operates at part load. Therefore, it is possible to increase the overall thermal efficiency of the ship’s power plant by more than 5% when the main engine operates at 65% or more of its specified maximum continuous rating (SMCR.

  5. Automated Production of High Rep Rate Foam Targets (United States)

    Hall, F.; Spindloe, C.; Haddock, D.; Tolley, M.; Nazarov, W.


    Manufacturing low density targets in the numbers needed for high rep rate experiments is highly challenging. This report summarises advances from manual production to semiautomated and the improvements that follow both in terms of production time and target uniformity. The production process is described and shown to be improved by the integration of an xyz robot with dispensing capabilities. Results are obtained from manual and semiautomated production runs and compared. The variance in the foam thickness is reduced significantly which should decrease experimental variation due to target parameters and could allow for whole batches to be characterised by the measurement of a few samples. The work applies to both foil backed and free standing foam targets.

  6. Calculations of Solar Shortwave Heating Rates due to Black Carbon and Ozone Absorption Using in Situ Measurements (United States)

    Gao, R. S.; Hall, S. R.; Swartz, W. H.; Spackman, J. R.; Watts, L. A.; Fahey, D. W.; Aikin, K. C.; Shetter, R. E.; Bui, T. P.


    Results for the solar heating rates in ambient air due to absorption by black-carbon (BC) containing particles and ozone are presented as calculated from airborne observations made in the tropical tropopause layer (TTL) in January-February 2006. The method uses airborne in situ observations of BC particles, ozone and actinic flux. Total BC mass is obtained along the flight track by summing the masses of individually detected BC particles in the range 90 to 600-nm volume-equivalent diameter, which includes most of the BC mass. Ozone mixing ratios and upwelling and partial downwelling solar actinic fluxes were measured concurrently with BC mass. Two estimates used for the BC wavelength-dependent absorption cross section yielded similar heating rates. For mean altitudes of 16.5, 17.5, and 18.5 km (0.5 km) in the tropics, average BC heating rates were near 0.0002 K/d. Observed BC coatings on individual particles approximately double derived BC heating rates. Ozone heating rates exceeded BC heating rates by approximately a factor of 100 on average and at least a factor of 4, suggesting that BC heating rates in this region are negligible in comparison.

  7. Direct Respiration of Lipids During Heat Production in the Inflorescence of Philodendron selloum. (United States)

    Walker, D B; Gysi, J; Sternberg, L; Deniro, M J


    Respiration in the heat-generating, sterile florets of Philodendron selloum was examined by electron microscopy and carbon isotopic analysis of respired carbon dioxide. After the spathe unfolded, the florets switched from carbohydrate oxidation to lipid oxidation, which persisted during heating and for at least 2 days thereafter. The scarcity of glyoxysome-like organelles and the low catalase activity in this tissue indicate that the lipid was respired directly and not after conversion to carbohydrate by the glyoxylate shunt. Thus, lipid metabolism in this heat-generating plant tissue appears to mimic aspects of the biochemistry and physiology of heat production in some animal tissues.

  8. Study on heat transport rate of an osmotic heat pipe. 2nd Report. Flow in a membrane module; Shinto heat pipe no netsuyuso ni kansuru kenkyu. 2. Maku module nai no ryudo ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Ipposhi, S.; Imura, H. [Kumamoto University, Kumamoto (Japan). Faculty of Engineering


    An osmotic heat pipe is a top beat mode heat pipe driven by an osmotic force. Therefore, a concentration and a solution flow rate in a membrane module of the osmotic heat pipe are especially of great importance for the heat transport. Thus, the flow in the membrane module is7investigated in detail. As a result, with a ratio of a concentration on the membrane wall to a mixed mean concentration derived semi-theoretically, correlations for the mixed mean concentration, the concentration on the wall and the solution flow rate along the channel in the membrane module were proposed, which can correlate the experimental data from reference (2) within {+-}20% errors. In addition, a method of increasing in the osmotic pumping rate and heat transport rate was proposed. 3 refs., 10 figs., 1 tab.

  9. Modeling Electric Discharges with Entropy Production Rate Principles

    Directory of Open Access Journals (Sweden)

    Thomas Christen


    Full Text Available Under which circumstances are variational principles based on entropy production rate useful tools for modeling steady states of electric (gas discharge systems far from equilibrium? It is first shown how various different approaches, as Steenbeck’s minimum voltage and Prigogine’s minimum entropy production rate principles are related to the maximum entropy production rate principle (MEPP. Secondly, three typical examples are discussed, which provide a certain insight in the structure of the models that are candidates for MEPP application. It is then thirdly argued that MEPP, although not being an exact physical law, may provide reasonable model parameter estimates, provided the constraints contain the relevant (nonlinear physical effects and the parameters to be determined are related to disregarded weak constraints that affect mainly global entropy production. Finally, it is additionally conjectured that a further reason for the success of MEPP in certain far from equilibrium systems might be based on a hidden linearity of the underlying kinetic equation(s.

  10. Heat production and quantitative oxidation of nutrients by physical activity in pigs

    DEFF Research Database (Denmark)

    Jakobsen, K; Chwalibog, André; Henckel, S


    and oxidation of carbohydrate and fat were calculated 30 min before (I), 10 min during walking (II) and in intervals of 10 min (III, IV) and 30 min (V) after walking. Heat production increased 2-3 times in section II in relation to section I, remained high for 20 min in section III and IV, but reached the basal...... line in section V. Oxidation of carbohydrate was the main source for heat production....

  11. Development of a silicone ablator for high-heat-flux and high-shear-rate condition (United States)

    Campbell, R. A.; Ramseyer, J. A.; Huntress, A.


    A silicone material was developed which gives suitable ablative protection in the high heat flux, high shear environments encountered in severe reentry applications, such as nose cones for ballistic vehicles and protection of leading edges or other critical areas of a vehicle. In addition, the ease of handling, low application cost, and room temperature cure make such a silicon material suitable nozzles for the large rockets necessary for vehicle launching. The development of this product is traced from the selection of suitable polymers through the choice of fillers and the finalization of filler loadings.

  12. Reaction rate and energy-loss rate for photopair production by relativistic nuclei (United States)

    Chodorowski, Michal J.; Zdziarski, Andrzej A.; Sikora, Marek


    The process of e(+/-) pair production by relativistic nuclei on ambient photons is considered. The process is important for cosmic-ray nuclei in interstellar and intergalactic space as well as in galactic and extragalactic compact objects. The rate of this process is given by an integral of the cross section over the photon angular and energy distribution. In the case of isotropic photons, the angular integration is performed to provide an expression for the rate at given photon energy in the nucleus rest frame. The total rate then becomes a single integral of that rate over the photon energy distribution. Formulas are also given for the fractional energy loss of a relativistic nucleus colliding with a photon of a given energy in the rest frame. The nucleus energy-loss rate is integrated over the photon angular distribution in the case of isotropic photons, and simple fits are provided.

  13. Numerical Studies on Heat Release Rate in Room Fire on Liquid Fuel under Different Ventilation Factors

    Directory of Open Access Journals (Sweden)

    N. Cai


    Full Text Available Heat release rate (HRR of the design fire is the most important parameter in assessing building fire hazards. However, HRR in room fire was only studied by computational fluid dynamics (CFD in most of the projects determining fire safety provisions by performance-based design. In contrast to ten years ago, officers in the Far East are now having better knowledge of CFD. Two common questions are raised on CFD-predicted results on describing free boundaries; and on computing grid size. In this work, predicting HRR by the CFD model was justified with experimental room pool fire data reported earlier. The software fire dynamics simulator (FDS version 5 was selected as the CFD simulation tool. Prescribed input heating rate based on the experimental results was used with the liquid fuel model in FDS. Five different free boundary conditions were investigated to predict HRR. Grid sensitivity study was carried out using one stretched mesh and multiple uniform meshes with different grid sizes. As it is difficult to have the entire set of CFD predicted results agreed with experiments, macroscopic flow parameters on the mass flow rate through door opening predicted by CFD were also justified by another four conditions with different ventilation factors.

  14. Radiogenic heat production of crustal rocks: An assessment based on geochemical data (United States)

    Wollenberg, H. A.; Smith, A. R.

    A survey of the geochemical literature and unpublished data has resulted in the classification of U, Th, and K concentrations by rock type. Over 2500 data entries have been compiled, permitting calculation of their radiogenic heat production. In the igneous rocks mean heat production ranges from highs of 12-20 heat production units (HPU: µWm-3) in some peralkaline intrusives, through ˜ 4 HPU in acidic, ˜ 2 in intermediate, and ˜ 1 in basic rocks, to a low of 0.3 HPU in ultramafic rocks. Siliceous clastic rocks generally have greater heat production (2 to 4 HPU) than do chemical sedimentary rocks, including the carbonates (0.4 to 2 HPU). The heat production of metamorphic rocks generally depends on the radioelement contents of their igneous and sedimentary predecessors, modified by metamorphic processes. Based on estimates of the proportion of the continental crust that specific rock types occupy, the weighted mean radiogenic heat production of the upper continental crust estimated from this data base is ˜ 3 HPU.

  15. Production and Distribution Planning in District Heating Systems; Produktions- och distributionsplanering av fjaerrvaerme

    Energy Technology Data Exchange (ETDEWEB)

    Kvarnstroem, Johan; Dotzauer, Erik; Dahlquist, Erik


    To produce heat and power is costly. Therefore it is important for the district heating companies to plan and optimize the production. The aim with the present project is to find out how also the distribution of heat can be considered in the planning. The principal procedure is to first construct a prediction of the heat demand, and then, given the demand prediction, construct the production plan. Due to the complexity of the problem, the need for mathematical models is obvious. The report gives a survey introduction to production planning in district heating systems and presents a model for the purpose. The model is developed for one of the district heating systems in Stockholm owned by the energy company Fortum. Traditionally, models for production planning do not consider the distribution network. In such models, usually the methodology Mixed Integer Programming (MIP) is used. The report suggests how the distribution network can be modeled as a MIP; it shall be possible to link the network model to existing software that models the production plants as MIP. The model is developed in the programming language GAMS. Analysis and results are presented. The results show that the suggested plans vary depending on if the distribution network is considered or not. The report also suggests how a simple sensitivity analysis of the production plans can be performed. This is necessary since there are always uncertainties associated with weather- and load predictions.

  16. Aerobrake heating rate sensitivity study for the Aeroassist Flight Experiment (AFE) (United States)

    Rochelle, W. C.; Ting, P. C.; Mueller, S. R.; Colovin, J. E.; Bouslog, S. A.; Curry, D. M.; Scott, C. D.


    The sensitivities associated with the prediction of the Aeroassist Flight Experiment (AFE) vehicle's aerothermodynamic environment are presently evaluated in order to assess the heating-rate uncertainties of the AFE's aerobrake component, as a function of time in various trajectories, and as a function of distance around the aerobrake. Relative importance is evaluated by means of the Boundary Layer Integral Matrix Procedure for such areas of uncertainty as the trajectory parameters, the catalycity of the thermal-protection tiles, the nose radius variation/surface pressure distribution, and viscous interaction effects.

  17. Simultaneous optimization of the cavity heat load and trip rates in linacs using a genetic algorithm

    Directory of Open Access Journals (Sweden)

    Balša Terzić


    Full Text Available In this paper, a genetic algorithm-based optimization is used to simultaneously minimize two competing objectives guiding the operation of the Jefferson Lab’s Continuous Electron Beam Accelerator Facility linacs: cavity heat load and radio frequency cavity trip rates. The results represent a significant improvement to the standard linac energy management tool and thereby could lead to a more efficient Continuous Electron Beam Accelerator Facility configuration. This study also serves as a proof of principle of how a genetic algorithm can be used for optimizing other linac-based machines.

  18. Thermal Analysis On The Kinetics Of Magnesium-Aluminum Layered Double Hydroxides In Different Heating Rates

    Directory of Open Access Journals (Sweden)

    Hongbo Y.


    Full Text Available The thermal decomposition of magnesium-aluminum layered double hydroxides (LDHs was investigated by thermogravimetry analysis and differential scanning calorimetry (DSC methods in argon environment. The influence of heating rates (including 2.5, 5, 10, 15 and 20K/min on the thermal behavior of LDHs was revealed. By the methods of Kissinger and Flynn-Wall-Ozawa, the thermal kinetic parameters of activation energy and pre-exponential factor for the exothermic processes under non-isothermal conditions were calculated using the analysis of corresponding DSC curves.

  19. Effect of heating rate on toxicity of pyrolysis gases from some synthetic polymers (United States)

    Hilado, C. J.; Soriano, J. A.; Kosola, K. L.


    The effect of heating rate on the toxicity of the pyrolysis gases from some synthetic polymers was investigate, using a screening test method. The synthetic polymers were polyethylene, polystyrene, polymethyl methacrylate, polycarbonate, ABS, polyaryl sulfone, polyether sulfone, and polyphenylene sulfide. The toxicants from the sulfur-containing polymers appeared to act more rapidly than the toxicants from the other polymers. It is not known whether this effect is due primarily to differences in concentration or in the nature of the toxicants. The carbon monoxide concentrations found do not account for the observed results.

  20. Short communication: Effect of heat stress on nonreturn rate of Italian Holstein cows. (United States)

    Biffani, S; Bernabucci, U; Vitali, A; Lacetera, N; Nardone, A


    The data set consisted of 1,016,856 inseminations of 191,012 first, second, and third parity Holstein cows from 484 farms. Data were collected from year 2001 through 2007 and included meteorological data from 35 weather stations. Nonreturn rate at 56 d after first insemination (NR56) was considered. A logit model was used to estimate the effect of temperature-humidity index (THI) on reproduction across parities. Then, least squares means were used to detect the THI breakpoints using a 2-phase linear regression procedure. Finally, a multiple-trait threshold model was used to estimate variance components for NR56 in first and second parity cows. A dummy regression variable (t) was used to estimate NR56 decline due to heat stress. The NR56, both for first and second parity cows, was significantly (unfavorable) affected by THI from 4 d before 5 d after the insemination date. Additive genetic variances for NR56 increased from first to second parity both for general and heat stress effect. Genetic correlations between general and heat stress effects were -0.31 for first parity and -0.45 for second parity cows. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  1. Differences in response to heat stress due to production level and breed of dairy cows (United States)

    Gantner, Vesna; Bobic, Tina; Gantner, Ranko; Gregic, Maja; Kuterovac, Kresimir; Novakovic, Jurica; Potocnik, Klemen


    The climatic conditions in Croatia are deteriorating which significantly increases the frequency of heat stress. This creates a need for an adequate dairy farming strategy. The impact of heat stress can be reduced in many ways, but the best long-term solution includes the genetic evaluation and selection for heat stress resistance. In order to create the basis for genetic evaluation, this research determined the variation in daily milk yield (DMY) and somatic cell count (SCC) as well as the differences in resistance to heat stress due to production level (high, low) and breed (Holstein, Simmental) of dairy cattle breed in Croatia. For statistical analysis, 1,070,554 test-day records from 70,135 Holsteins reared on 5679 farms and 1,300,683 test-day records from 86,013 Simmentals reared on 8827 farms in Croatia provided by the Croatian Agricultural Agency were used. The results of this research indicate that the high-producing cows are much more susceptible to heat stress than low-producing especially Holsteins. Also, the results of this research indicate that Simmental breed, in terms of daily milk production and somatic cell count, could be more resistant to heat stress than Holstein. The following research should determine whether Simmentals are genetically more appropriate for the challenges that are in store for the future milk production in this region. Furthermore, could an adequate production level be achieved with Simmentals by maintaining the heat resistance?

  2. Differences in response to heat stress due to production level and breed of dairy cows. (United States)

    Gantner, Vesna; Bobic, Tina; Gantner, Ranko; Gregic, Maja; Kuterovac, Kresimir; Novakovic, Jurica; Potocnik, Klemen


    The climatic conditions in Croatia are deteriorating which significantly increases the frequency of heat stress. This creates a need for an adequate dairy farming strategy. The impact of heat stress can be reduced in many ways, but the best long-term solution includes the genetic evaluation and selection for heat stress resistance. In order to create the basis for genetic evaluation, this research determined the variation in daily milk yield (DMY) and somatic cell count (SCC) as well as the differences in resistance to heat stress due to production level (high, low) and breed (Holstein, Simmental) of dairy cattle breed in Croatia. For statistical analysis, 1,070,554 test-day records from 70,135 Holsteins reared on 5679 farms and 1,300,683 test-day records from 86,013 Simmentals reared on 8827 farms in Croatia provided by the Croatian Agricultural Agency were used. The results of this research indicate that the high-producing cows are much more susceptible to heat stress than low-producing especially Holsteins. Also, the results of this research indicate that Simmental breed, in terms of daily milk production and somatic cell count, could be more resistant to heat stress than Holstein. The following research should determine whether Simmentals are genetically more appropriate for the challenges that are in store for the future milk production in this region. Furthermore, could an adequate production level be achieved with Simmentals by maintaining the heat resistance?

  3. On Bottleneck Product Rate Variation Problem with Batching

    Directory of Open Access Journals (Sweden)

    Shree Khadka


    Full Text Available The product rate variation problem minimizes the variation in the rate at which different models of a common base product are produced on the assembly lines with the assumption of negligible switch-over cost and unit processing time for each copy of each model. The assumption of significant setup and arbitrary processing times forces the problem to be a two phase problem. The first phase determines the size and the number of batches and the second one sequences the batches of models. In this paper, the bottleneck case i.e. the min-max case of the problem with a generalized objective function is formulated. A Pareto optimal solution is proposed and a relation between optimal sequences for the problem with different objective functions is investigated.

  4. Electrical power production from low-grade waste heat using a thermally regenerative ethylenediamine battery (United States)

    Rahimi, Mohammad; D'Angelo, Adriana; Gorski, Christopher A.; Scialdone, Onofrio; Logan, Bruce E.


    Thermally regenerative ammonia-based batteries (TRABs) have been developed to harvest low-grade waste heat as electricity. To improve the power production and anodic coulombic efficiency, the use of ethylenediamine as an alternative ligand to ammonia was explored here. The power density of the ethylenediamine-based battery (TRENB) was 85 ± 3 W m-2-electrode area with 2 M ethylenediamine, and 119 ± 4 W m-2 with 3 M ethylenediamine. This power density was 68% higher than that of TRAB. The energy density was 478 Wh m-3-anolyte, which was ∼50% higher than that produced by TRAB. The anodic coulombic efficiency of the TRENB was 77 ± 2%, which was more than twice that obtained using ammonia in a TRAB (35%). The higher anodic efficiency reduced the difference between the anode dissolution and cathode deposition rates, resulting in a process more suitable for closed loop operation. The thermal-electric efficiency based on ethylenediamine separation using waste heat was estimated to be 0.52%, which was lower than that of TRAB (0.86%), mainly due to the more complex separation process. However, this energy recovery could likely be improved through optimization of the ethylenediamine separation process.

  5. The effect of seeding with bacteria on biogas production rate

    Energy Technology Data Exchange (ETDEWEB)

    Dangoggo, S.M. [Usmanu Danfodiyo University, Sokoto (Nigeria). Dept. of Chemistry; Aliyu, M.; Atiku, A.T. [Usmanu Danfodiyo University, Sokoto (Nigeria). Energy Research Centre


    Biogas as a clean and cheap fuel is studied with the aim of determining the effect of seeding with bacteria on its production rate using four different substrates. The seeding with four different digesters was carried out with 5g of digested cowdung sludge obtained from a working digester. Results indicate that of all the substrates used for the studies, ipomea asarifobia produced the highest amount of biogas over a period of 40 days. (Author)

  6. Biodiesel production process from microalgae oil by waste heat recovery and process integration. (United States)

    Song, Chunfeng; Chen, Guanyi; Ji, Na; Liu, Qingling; Kansha, Yasuki; Tsutsumi, Atsushi


    In this work, the optimization of microalgae oil (MO) based biodiesel production process is carried out by waste heat recovery and process integration. The exergy analysis of each heat exchanger presented an efficient heat coupling between hot and cold streams, thus minimizing the total exergy destruction. Simulation results showed that the unit production cost of optimized process is 0.592$/L biodiesel, and approximately 0.172$/L biodiesel can be avoided by heat integration. Although the capital cost of the optimized biodiesel production process increased 32.5% and 23.5% compared to the reference cases, the operational cost can be reduced by approximately 22.5% and 41.6%. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Biodrying of animal slaughterhouse residues and heat production

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, Y. [Centre de recherche industrielle, Quebec City, PQ (Canada)


    Animal carcasses from slaughterhouses are usually composted on farms, but the composting process is not optimized and a large volumes of carbonaceous residues are needed. This type of composting takes place over a period of 6 to 9 months in a nonaerated static pile. Quebec's industrial research centre (CRIQ) developed an organic biodrying process (BIOSECO) adapted to large-scale operations in order to optimize the treatment of slaughterhouse residues. Biodrying is a form of composting, in which the thermophilic phase is optimized, making it possible to evaporate large amounts of water. Biodrying is done inside a building and reduces the amount of carbonaceous residues considerably. The process is optimized by the sequence in which the slaughterhouse residues are added, the choice of input and the aeration flow. Slaughterhouse residues can be treated non-stop throughout the entire year. Since the odours are nearly completed limited to the building, the biodrying can be done near the slaughterhouse. A large amount of heat was produced by the process during the pilot project. It was concluded that the BIOSECO biodrying process is suitable for treating slaughterhouse residues in an effective and economic manner, and has the added advantage of producing heat that could be used for various purposes.

  8. Effects of packaging and heat transfer kinetics on drug-product stability during storage under uncontrolled temperature conditions. (United States)

    Nakamura, Toru; Yamaji, Takayuki; Takayama, Kozo


    To predict the stability of pharmaceutical preparations under uncontrolled temperature conditions accurately, a method to compute the average reaction rate constant taking into account the heat transfer from the atmosphere to the product was developed. The average reaction rate constants computed with taken into consideration heat transfer (κ(re) ) were then compared with those computed without taking heat transfer into consideration (κ(in) ). The apparent thermal diffusivity (κ(a) ) exerted some influence on the average reaction rate constant ratio (R, R = κ(re) /κ(in) ). In the regions where the κ(a) was large (above 1 h(-1) ) or very small, the value of R was close to 1. On the contrary, in the middle region (0.001-1 h(-1) ), the value of R was less than 1.The κ(a) of the central part of a large-size container and that of the central part of a paper case of 10 bottles of liquid medicine (100 mL) fell within this middle region. On the basis of the above-mentioned considerations, heat transfer may need to be taken into consideration to enable a more accurate prediction of the stability of actual pharmaceutical preparations under nonisothermal atmospheres. Copyright © 2013 Wiley Periodicals, Inc.

  9. Experimental investigation on heat transfer rate of Co–Mn ferrofluids in external magnetic field

    Directory of Open Access Journals (Sweden)

    Margabandhu M.


    Full Text Available Manganese substituted cobalt ferrite (Co1–xMnxFe2O4 with x = 0, 0.3, 0.5, 0.7 and 1 nanopowders were synthesized by chemical coprecipitation method. The synthesized magnetic nanoparticles were investigated by various characterization techniques, such as X-ray diffraction (XRD, vibrating sample magnetometry (VSM, scanning electron microscopy (SEM and thermogravimetric and differential thermal analysis (TG/DTA. The XRD results confirmed the presence of cubic spinel structure of the prepared powders and the average crystallite size of magnetic particles ranging from 23 to 45 nm. The VSM results showed that the magnetic properties varied with an increase in substituted manganese while SEM analysis showed the change in the morphology of obtained magnetic nanoparticles. The TG/DTA analysis indicated the formation of crystalline structure of the synthesized samples. The heat transfer rate was measured in specially prepared magnetic nanofluids (nanoparticles dispersed in carrier fluid transformer oil as a function of time and temperature in presence of external magnetic fields. The experimental analysis indicated enhanced heat transfer rate of the magnetic nanofluids which depended upon the strength of external magnetic field and chemical composition.

  10. The influence of annealing temperature and heating rate on thermoluminescence properties of nanocrystalline calcium borate powder (United States)

    Tengku Kamarnl Bahri, T. N. H.; Hussin, R.; Ahmad, N. E.


    We have reported the influence of annealing temperature and heating rate on thermoluminescence (TL) properties of nanocrystalline calcium borate, CaB2O4, powder synthesized by solution combustion method. Powder X-ray diffraction experiments were carried out on CaB2O4 to get the crystal phase and size. The samples were annealed using the TLD oven and exposed to cobalt-60 source. TL glow curves were measured and recorded using a Harshaw model 3500 TLD reader. The crystal phase confirmed one major phase of CaB2O4 with 27 nm in size. CaB2O4 has a simple glow curve with only one and a well defined peak at around 150 °C. TL intensity was higher after annealing the material before irradiation which indicated the importance of annealing. It was found that an annealing temperature at 300 °C for one hour and the heating rate of 10 °C s-1 was the best procedure to produce high TL intensity.

  11. Heat

    CERN Document Server

    Lawrence, Ellen


    Is it possible to make heat by rubbing your hands together? Why does an ice cube melt when you hold it? In this title, students will conduct experiments to help them understand what heat is. Kids will also investigate concepts such as which materials are good at conducting heat and which are the best insulators. Using everyday items that can easily be found around the house, students will transform into scientists as they carry out step-by-step experiments to answer interesting questions. Along the way, children will pick up important scientific skills. Heat includes seven experiments with detailed, age-appropriate instructions, surprising facts and background information, a "conclusions" section to pull all the concepts in the book together, and a glossary of science words. Colorful, dynamic designs and images truly put the FUN into FUN-damental Experiments.

  12. Occupational Heat Stress Impacts on Health and Productivity in a Steel Industry in Southern India. (United States)

    Krishnamurthy, Manikandan; Ramalingam, Paramesh; Perumal, Kumaravel; Kamalakannan, Latha Perumal; Chinnadurai, Jeremiah; Shanmugam, Rekha; Srinivasan, Krishnan; Venugopal, Vidhya


    Workers laboring in steel industries in tropical settings with high ambient temperatures are subjected to thermally stressful environments that can create well-known risks of heat-related illnesses and limit workers' productivity. A cross-sectional study undertaken in a steel industry in a city nicknamed "Steel City" in Southern India assessed thermal stress by wet bulb globe temperature (WBGT) and level of dehydration from urine color and urine specific gravity. A structured questionnaire captured self-reported heat-related health symptoms of workers. Some 90% WBGT measurements were higher than recommended threshold limit values (27.2-41.7°C) for heavy and moderate workloads and radiational heat from processes were very high in blooming-mill/coke-oven (67.6°C globe temperature). Widespread heat-related health concerns were prevalent among workers, including excessive sweating, fatigue, and tiredness reported by 50% workers. Productivity loss was significantly reported high in workers with direct heat exposures compared to those with indirect heat exposures (χ2 = 26.1258, degrees of freedom = 1, p work capacities. Health and productivity risks in developing tropical country work settings can be further aggravated by the predicted temperature rise due to climate change, without appropriate interventions. Apart from industries enhancing welfare facilities and designing control interventions, further physiological studies with a seasonal approach and interventional studies are needed to strengthen evidence for developing comprehensive policies to protect workers employed in high heat industries.

  13. Review of solar assisted heat pump drying systems for agricultural and marine products

    Energy Technology Data Exchange (ETDEWEB)

    Daghigh, Ronak [Solar Energy Research Institute, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor (Malaysia); Department of Mechanical and Materials Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor (Malaysia); Ruslan, Mohd Hafidz; Sulaiman, Mohamad Yusof; Sopian, Kamaruzzaman [Solar Energy Research Institute, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor (Malaysia)


    Combining solar energy and heat pump technology is a very attractive concept. It is able to eliminate some difficulties and disadvantages of using solar dryer systems or solely using heat pump drying separately. Solar assisted heat pump drying systems have been studied and applied since the last decades in order to increase the quality of products where low temperature and well-controlled drying conditions are needed. This paper reviewed studies on the advances in solar heat pump drying systems. Results and observation from the studies of solar assisted heat pump dryer systems indicated that for heat sensitive materials; improved quality control, reduced energy consumption, high coefficient of performance and high thermal efficiency of the dryer were achieved. The way forward and future directions in R and D in this field are further research regarding theoretical and experimental analysis as well as for the replacement of conventional solar dryer or heat pump dryer with solar assisted heat pump drying systems and solar assisted chemical and ground source heat pump dryers which should present energy efficient applications of the technologies. (author)

  14. The effect of temperature and heating rate on char properties obtained from solar pyrolysis of beech wood. (United States)

    Zeng, Kuo; Minh, Doan Pham; Gauthier, Daniel; Weiss-Hortala, Elsa; Nzihou, Ange; Flamant, Gilles


    Char samples were produced from pyrolysis in a lab-scale solar reactor. The pyrolysis of beech wood was carried out at temperatures ranging from 600 to 2000°C, with heating rates from 5 to 450°C/s. CHNS, scanning electron microscopy analysis, X-ray diffractometry, Brunauer-Emmett-Teller adsorption were employed to investigate the effect of temperature and heating rate on char composition and structure. The results indicated that char structure was more and more ordered with temperature increase and heating rate decrease (higher than 50°C/s). The surface area and pore volume firstly increased with temperature and reached maximum at 1200°C then reduced significantly at 2000°C. Besides, they firstly increased with heating rate and then decreased slightly at heating rate of 450°C/s when final temperature was no lower than 1200°C. Char reactivity measured by TGA analysis was found to correlate with the evolution of char surface area and pore volume with temperature and heating rate. Copyright © 2015 Elsevier Ltd. All rights reserved.


    Directory of Open Access Journals (Sweden)

    Milun Babić


    Full Text Available Today, in Serbia there are several sites with installed combined heat and power facilities. The most of these plants, for various reasons, do not produce electricity. One such plant is "Energetika" (Kragujevac, Serbia, which is primarily a district heating company. Steam generator in the plant has been installed in the 1970's and has worked in one short period of time. Installed steam turbines are 8 MW and 20 MW rated power. "Energetika" in accordance with the general trend of increasing energy efficiency of production process initiated revitalization of the plant. This revitalization started with a study which approach and the results are briefly given in the paper. All results show that retrofit of facility should be acceptable for the management. Developed scenarios indicate that in the case of the limited resources optimal retrofit should start with smaller turbine (8 MW rated power then after providing the funds should continue with the retrofit of 20 MW turbine.

  16. 30 CFR 250.1159 - May the Regional Supervisor limit my well or reservoir production rates? (United States)


    ... reservoir production rates? 250.1159 Section 250.1159 Mineral Resources MINERALS MANAGEMENT SERVICE... Gas Production Requirements Production Rates § 250.1159 May the Regional Supervisor limit my well or reservoir production rates? (a) The Regional Supervisor may set a Maximum Production Rate (MPR) for a...

  17. High heating rate decomposition dynamics of copper oxide by nanocalorimetry-coupled time-of-flight mass spectrometry (United States)

    Yi, Feng; DeLisio, Jeffery B.; Nguyen, Nam; Zachariah, Michael R.; LaVan, David A.


    The thermodynamics and evolved gases were measured during the rapid decomposition of copper oxide (CuO) thin film at rates exceeding 100,000 K/s. CuO decomposes to release oxygen when heated and serves as an oxidizer in reactive composites and chemical looping combustion. Other instruments have shown either one or two decomposition steps during heating. We have confirmed that CuO decomposes by two steps at both slower and higher heating rates. The decomposition path influences the reaction course in reactive Al/CuO/Al composites, and full understanding is important in designing reactive mixtures and other new reactive materials.

  18. Effect of Heating Rate on Accelerated Carbide Spheroidisation (ASR in 100CrMnSi6-4 Bearing Steel

    Directory of Open Access Journals (Sweden)

    Hauserova D.


    Full Text Available Typical processing routes for bearing steels include a soft annealing stage, the purpose of which is to obtain a microstructure containing globular carbides in ferritic matrix. A newly developed process called ASR cuts the carbide spheroidisation times several fold, producing considerably finer globular carbides than conventional soft annealing. The present paper explores the effect of the heating rate and temperature on the accelerated carbide spheroidisation process and on the resulting hardness. Accelerated spheroidisation was achieved by thermal cycling for several minutes around various temperatures close to the transformation temperature at various heating rates applied by induction heating.

  19. The production rate of cosmogenic deuterium at the Moon's surface (United States)

    Füri, Evelyn; Deloule, Etienne; Trappitsch, Reto


    The hydrogen (D/H) isotope ratio is a key tracer for the source of planetary water. However, secondary processes such as solar wind implantation and cosmic ray induced spallation reactions have modified the primordial D/H signature of 'water' in all rocks and soils recovered on the Moon. Here, we re-evaluate the production rate of cosmogenic deuterium (D) at the Moon's surface through ion microprobe analyses of hydrogen isotopes in olivines from eight Apollo 12 and 15 mare basalts. These in situ measurements are complemented by CO2 laser extraction-static mass spectrometry analyses of cosmogenic noble gas nuclides (3He, 21Ne, 38Ar). Cosmic ray exposure (CRE) ages of the mare basalts, derived from their cosmogenic 21Ne content, range from 60 to 422 Ma. These CRE ages are 35% higher, on average, than the published values for the same samples. The amount of D detected in the olivines increases linearly with increasing CRE ages, consistent with a production rate of (2.17 ± 0.11) ×10-12 mol(g rock)-1 Ma-1. This value is more than twice as high as previous estimates for the production of D by galactic cosmic rays, indicating that for water-poor lunar samples, i.e., samples with water concentrations ≤50 ppm, corrected D/H ratios have been severely overestimated.

  20. The thermal state and strength of the lithosphere in the Spanish Central System and Tajo Basin from crustal heat production and thermal isostasy


    Jiménez Díaz, Alberto; Ruiz Pérez, Javier; Villaseca González, Carlos; Tejero López, Rosa; Capote del Villar, Ramón


    In this work we have modeled the thermal structure of the lithosphere of the Spanish Central System and the Tajo Basin, and their implications for lithospheric strength. For his, we have used refined heatproducing elements (HPE) values to obtain new estimates of heat production rates in the Spanish Central System and Tajo Basin areas, which have been used joined to the relation between topography and thermal structure of the lithosphere to calculate the best- it surface heat flows in the stu...

  1. Effect of Cooling Rate on Microstructure and Mechanical Properties of Eutectoid Steel Under Cyclic Heat Treatment (United States)

    Maji, Soma; Subhani, Amir Raza; Show, Bijay Kumar; Maity, Joydeep


    A systematic study has been carried out to ascertain the effect of cooling rate on structure and mechanical properties of eutectoid steel subjected to a novel incomplete austenitization-based cyclic heat treatment process up to 4 cycles. Each cycle consists of a short-duration holding (6 min) at 775 °C (above A1) followed by cooling at different rates (furnace cooling, forced air cooling and ice-brine quenching). Microstructure and properties are found to be strongly dependent on cooling rate. In pearlitic transformation regime, lamellar disintegration completes in 61 h and 48 min for cyclic furnace cooling. This leads to a spheroidized structure possessing a lower hardness and strength than that obtained in as-received annealed condition. On contrary, lamellar disintegration does not occur for cyclic forced air cooling with high air flow rate (78 m3 h-1). Rather, a novel microstructure consisting of submicroscopic cementite particles in a `interweaved pearlite' matrix is developed after 4 cycles. This provides an enhancement in hardness (395 HV), yield strength (473 MPa) and UTS (830 MPa) along with retention of a reasonable ductility (%Elongation = 19) as compared to as-received annealed condition (hardness = 222 HV, YS = 358 MPa, UTS = 740 MPa, %Elongation = 21).

  2. Energy efficient multistage zeolite drying for heat sensitive products

    NARCIS (Netherlands)

    Djaeni, M.


    Although drying takes a significant part of the total energy usage in industry, currently available drying technology is often not efficient in terms of energy consumption. Generally, the energy efficiency for drying processes ranges between 20-60% depending on the dryer type and product to be

  3. Dynamic Heat Production Modeling for Life Cycle Assessment of Insulation in Danish Residential Buildings

    DEFF Research Database (Denmark)

    Sohn, Joshua L.; Kalbar, Pradip; Birkved, Morten


    for space heating without insulation over the lifespan of a building. When the energy sources for insulation production are similar to the energy mix that supplies heat, this logic is valid to very high level of insulation. However, in Denmark, as well as many other countries this assumption is becoming...... increasingly incorrect. Given the generally long service life of buildings, the significance of future energy mixes, which are expected/intended to have a smaller environmental impact, can be great. In this paper, a reference house is used to assess the life cycle environmental impacts of mineral wool...... insulation in a Danish single-family detached home. This single family house, is based on averages of current Danish construction practices with building heat losses estimated using Be10. To simulate a changing district heating grid mix, heat supply fuel sources are modeled according to Danish energy mix...

  4. Comparison of microwave and conduction-convection heating autohydrolysis pretreatment for bioethanol production. (United States)

    Aguilar-Reynosa, Alejandra; Romaní, Aloia; Rodríguez-Jasso, Rosa M; Aguilar, Cristóbal N; Garrote, Gil; Ruiz, Héctor A


    This work describes the application of two forms of heating for autohydrolysis pretreatment on isothermal regimen: conduction-convection heating and microwave heating processing using corn stover as raw material for bioethanol production. Pretreatments were performed using different operational conditions: residence time (10-50 min) and temperature (160-200°C) for both pretreatments. Subsequently, the susceptibility of pretreated solids was studied using low enzyme loads, and high substrate loads. The highest conversion was 95.1% for microwave pretreated solids. Also solids pretreated by microwave heating processing showed better ethanol conversion in simultaneous saccharification and fermentation process (92% corresponding to 33.8g/L). Therefore, microwave heating processing is a promising technology in the pretreatment of lignocellulosic materials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. The production of electrical and thermal energy from the exhaust gas heat of preheater kilns

    Energy Technology Data Exchange (ETDEWEB)

    Lang, T.A.; Mosimann, P.


    It is shown, by means of an example, i.e., a 1600-ton/day four-stage suspension preheater kiln of a cement factory, that the waste heat present in the exhaust gases can be converted into useful electrical and thermal energy. This is possible even though the exhaust gases are heavily loaded with dust. The heat recovery system installed in 1981/1982 in a Swiss cement plant and the respective production line are described in detail. A comprehensive explanation is given concerning the experience of the first operating year, the interaction of the new plant with the existing production facilities, and the current measured technical data. The performance limits for economic operation are explained and the decision criteria quoted. Further applications of the successfully tested heat recovery system can be expected wherever heat sources in the form of heavily loaded gases are available.

  6. Dehydrating of flax fiber with microwave heating for biocomposite production. (United States)

    Panigrahi, Satyanarayan; Ghazanfari, Ahmad; Meda, Venkatesh


    The feasibility of microwave dehydrating flax fiber was evaluated using a commercial domestic microwave oven at four power settings representing 200, 300, 400 and 500 Watt (W) power level. Due to the possibility of local heating and consequent fiber degradation, the changes in color of the flax fiber at different levels of temperature were also investigated. The dehydration processes at various power levels were simulated by Page model. Based on visual inspection, color analysis and scanning electron microscopy (SEM) of the fiber, it was revealed that discoloration of the fiber occurred at about 170 degrees C. At 200 and 300 W power level, after 10 minutes of dehydrating, the moisture content of the fiber reached from initial 7.9% close to 2.0 and 1.0%, respectively. For 400 W power level, the moisture content of the fiber dropped to 0. 10% in about 9.5 minutes. Major discoloration of the fiber was noticed when dehydration was proceed beyond 4.5 minutes for 500 W treatment. The Page model very well fitted the experimental data. The coefficients of determination calculated from the model and the experimental data increased with increase in applied microwave power

  7. Heat production and dissipation in a South African diurnal murid ...

    African Journals Online (AJOL)

    standard deviation of body mass was 50,53 ± 6,33 g. The mice were acclimated for three weeks at an ambient temperature (T J of 25 cC with a ... perspex metabolic chamber (volume 800 mI). Resting metabolic rate RMR was calculated as in Haim & Fourie. (1980a). Body temperature (Tb) and Ta were measured using.

  8. Gamma ray heating rates due to chromium isotopes in stellar core during late stages of high mass stars (>10M⊙

    Directory of Open Access Journals (Sweden)

    Nabi Jameel-Un


    Full Text Available Gamma ray heating rates are thought to play a crucial role during the pre-supernova stage of high mass stars. Gamma ray heating rates, due to β±-decay and electron (positron capture on chromium isotopes, are calculated using proton-neutron quasiparticle random phase approximation theory. The electron capture significantly affects the lepton fraction (Ye and accelerates the core contraction. The gamma rays emitted as a result of weak processes heat the core and tend to hinder the cooling and contraction due to electron capture and neutrino emission. The emitted gamma rays tend to produce enormous entropy and set the convection to play its role at this stage. The gamma heating rates, on 50-60Cr, are calculated for the density range 10 < ρ ( < 1011 and temperature range 107 < T (K < 3.0×1010.

  9. Observation of abundant heat production from a reactor device and of isotopic changes in the fuel


    Levi, Giuseppe; Evelyn, Foschi; Bo, Hoistad; Roland, Pettesson; Lars, Tegnér; Hanno, Essén


    New results are presented from an extended experimental investigation of anomalous heat production in a special type of reactor tube operating at high temperatures. The reactor, named E-Cat, is charged with a small amount of hydrogen-loaded nickel powder plus some additives, mainly Lithium. The reaction is primarily initiated by heat from resistor coils around the reactor tube. Measurements of the radiated power from the reactor were performed with high-resolution ...

  10. Vacuum evaporation treatment of digestate: full exploitation of cogeneration heat to process the whole digestate production. (United States)

    Guercini, S; Castelli, G; Rumor, C


    Vacuum evaporation represents an interesting and innovative solution for managing animal waste surpluses in areas with high livestock density. To reduce operational costs, a key factor is the availability of an inexpensive source of heat, such as that coming from an anaerobic digestion (AD) plant. The aim of this study was to test vacuum evaporation for the treatment of cattle slurry digestate focusing on heat exploitation. Tests were performed with a pilot plant fed with the digestate from a full-scale AD plant. The results were used to evaluate if and how cogeneration heat can support both the AD plant and the subsequent evaporation of the whole daily digestate production in a full-scale plant. The concentrate obtained (12% total solids) represents 40-50% of the influent. The heat requirement is 0.44 kWh/kg condensate. Heat power availability exceeding the needs of the digestor ranges from 325 (in winter) to 585 kW (in summer) versus the 382 kW required for processing the whole digestate production. To by-pass fluctuations, we propose to use the heat coming from the cogenerator directly in the evaporator, tempering the digestor with the latent heat of distillation vapor.

  11. Pyrolysis behavior of tire-derived fuels at different temperatures and heating rates. (United States)

    Unapumnuk, Kessinee; Keener, Tim C; Lu, Mingming; Khang, Soon-Jai


    Pyrolytic product distribution rates and pyrolysis behavior of tire-derived fuels (TDF) were investigated using thermogravimetric analyzer (TGA) techniques. A TGA was designed and built to investigate the behavior and products of pyrolysis of typical TDF specimens. The fundamental knowledge of TGA analysis and principal fuel analysis are applied in this study. Thermogravimetry of the degradation temperature of the TDF confirms the overall decomposition rate of the volatile products during the depolymerization reaction. The principal fuel analysis (proximate and ultimate analysis) of the pyrolytic char products show the correlation of volatilization into the gas and liquid phases and the existence of fixed carbon and other compounds that remain as a solid char. The kinetic parameters were calculated using least square with minimizing sum of error square technique. The results show that the average kinetic parameters of TDF are the activation energy, E = 1322 +/- 244 kJ/mol, a pre-exponential constant of A = 2.06 +/- 3.47 x 10(10) min(-1), and a reaction order n = 1.62 +/- 0.31. The model-predicted rate equations agree with the experimental data. The overall TDF weight conversion represents the carbon weight conversion in the sample.

  12. Development of a water boil-off spent-fuel calorimeter system. [To measure decay heat generation rate

    Energy Technology Data Exchange (ETDEWEB)

    Creer, J.M.; Shupe, J.W. Jr.


    A calorimeter system was developed to measure decay heat generation rates of unmodified spent fuel assemblies from commercial nuclear reactors. The system was designed, fabricated, and successfully tested using the following specifications: capacity of one BWR or PWR spent fuel assembly; decay heat generation range 0.1 to 2.5 kW; measurement time of < 12 h; and an accuracy of +-10% or better. The system was acceptance tested using a dc reference heater to simulate spent fuel assembly heat generation rates. Results of these tests indicated that the system could be used to measure heat generation rates between 0.5 and 2.5 kW within +- 5%. Measurements of heat generation rates of approx. 0.1 kW were obtained within +- 15%. The calorimeter system has the potential to permit measurements of heat generation rates of spent fuel assemblies and other devices in the 12- to 14-kW range. Results of calorimetry of a Turkey Point spent fuel assembly indicated that the assembly was generating approx. 1.55 kW.

  13. Climate change projections of heat stress in Europe: From meteorological variables to impacts on productivity (United States)

    Casanueva, Ana; Kotlarski, Sven; Liniger, Mark A.


    Future climate change is likely to have important impacts in many socio-economic sectors. In particular, higher summer temperatures or more prolonged heat waves may be responsible for health problems and productivity losses related to heat stress, especially affecting people exposed to such situations (e.g. working under outside settings or in non-acclimatized workplaces). Heat stress on the body under work load and consequently their productivity loss can be described through heat stress indices that are based on multiple meteorological parameters such as temperature, humidity, wind and radiation. Exploring the changes of these variables under a warmer climate is of prime importance for the Impacts, Adaptation and Vulnerability communities. In particular, the H2020 project HEAT-SHIELD aims at analyzing the impact of climate change on heat stress in strategic industries in Europe (manufacturing, construction, transportation, tourism and agriculture) within an inter-sectoral framework (climate scientists, biometeorologists, physiologists and stakeholders). In the present work we explore present and future heat stress over Europe using an ensemble of the state-of-the-art RCMs from the EURO-CORDEX initiative. Since RCMs cannot be directly used in impact studies due to their partly substantial biases, a standard bias correction method (empirical quantile mapping) is applied to correct the individual variables that are then used to derive heat stress indices. The objectives of this study are twofold, 1) to test the ability of the separately bias corrected variables to reproduce the main characteristics of heat stress indices in present climate conditions and 2) to explore climate change projections of heat stress indices. We use the wet bulb globe temperature (WBGT) as primary heat stress index, considering two different versions for indoor (or in the shade, based on temperature and humidity conditions) and outdoor settings (including also wind and radiation). The WBGT

  14. Life Cycle Assessment of Miscanthus as a Fuel Alternative in District Heat Production

    DEFF Research Database (Denmark)

    Parajuli, Ranjan; Dalgaard, Tommy; Nguyen, Thu Lan Thi


    better than in the boilerfrom the stand point of GWP and savings in fossil fuels, but leads to a higher LU.A comparison between Miscanthus and NG shows that the former in spite of possessing advantage in reducing GWP and NRE use,additional land required for it could be seen as a disadvantage. Key words......This study assesses the environmental performance of district heat production based on Miscanthus as a fuel input and compares it with Natural Gas (NG). As a baseline scenario, we assume that the process of energy conversion from Miscanthus to heat takes place in a Combined Heat and Power (CHP...

  15. Integration and software for thermal test of heat rate sensors. [space shuttle external tank (United States)

    Wojciechowski, C. J.; Shrider, K. R.


    A minicomputer controlled radiant test facility is described which was developed and calibrated in an effort to verify analytical thermal models of instrumentation islands installed aboard the space shuttle external tank to measure thermal flight parameters during ascent. Software was provided for the facility as well as for development tests on the SRB actuator tail stock. Additional testing was conducted with the test facility to determine the temperature and heat flux rate and loads required to effect a change of color in the ET tank external paint. This requirement resulted from the review of photographs taken of the ET at separation from the orbiter which showed that 75% of the external tank paint coating had not changed color from its original white color. The paint on the remaining 25% of the tank was either brown or black, indicating that it had degraded due to heating or that the spray on form insulation had receded in these areas. The operational capability of the facility as well as the various tests which were conducted and their results are discussed.

  16. Empirical correction of XBT fall rate and its impact on heat content analysis (United States)

    Hamon, M.; Le Traon, P. Y.; Reverdin, G.


    We used a collocation method between XBT and CTD/OSD (Ocean Station Data including bottle cast and low resolution CTD) from WOD05 (1°×2°×15 days) to statistically correct the XBT fall rate. An analysis of the annual median bias on depth showed that it is necessary to apply a thermal correction linked to probe calibration error, a second order correction on the depth as well as a depth offset representing measurement errors during XBT deployment. We had to separate data in several categories: shallow and deep XBT and deployment sea temperatures (below or above 10 °C). We also processed separately XBT measurements close to Japan between 1968 and 1985 due to large regional biases. Once the corrections have been applied, the analysis of heat content signal is derived from corrected XBT. From this analysis, we confirm that the maximum heat content in the top 700 m found during the 70's in early papers can be explained by the XBT biases. In addition, a trend of 0.32.1022 J/year is observed between the period 1970 and 2008.

  17. Conceptual study of methanol production system using nuclear heat and coal

    Energy Technology Data Exchange (ETDEWEB)

    Fumizawa, Motoo; Inaba, Yoshitomo; Hishida, Makoto [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Ogawa, Masuro; Nomura, Shinichi; Yamada, Seiya


    Presently a large amount of coal is being consumed for producing electricity and industrial usage. However, global warming by carbon dioxide emission from fossil fuel burning may demand us to reduce the emission rate of carbon dioxide. This paper describes a conceptual study using a nuclear heat from the high temperature gas-cooled reactor that is combined with a coal gasification and a hydrogen production subsystem to produce methanol. As a result, it is clarified that the addition of the hydrogen is necessary as a raw gas for methanol synthesis in order to convert coal to methanol effectively and completely without emitting carbon dioxide and without having residual carbon in the refining process. Consequently, two methanol production systems are proposed to reduce effectively the emission of carbon dioxide because the conversion factor of raw material to methanol exceeds 100 percent, and they are examined and evaluated on several aspects, such as economy, environment, effective usage of coal and nuclear energy, operation flexibility and require technology development. (author).

  18. Diabatic heating rate estimates from European Centre for Medium-Range Weather Forecasts analyses (United States)

    Christy, John R.


    Vertically integrated diabatic heating rate estimates (H) calculated from 32 months of European Center for Medium-Range Weather Forecasts daily analyses (May 1985-December 1987) are determined as residuals of the thermodynamic equation in pressure coordinates. Values for global, hemispheric, zonal, and grid point H are given as they vary over the time period examined. The distribution of H is compared with previous results and with outgoing longwave radiation (OLR) measurements. The most significant negative correlations between H and OLR occur for (1) tropical and Northern-Hemisphere mid-latitude oceanic areas and (2) zonal and hemispheric mean values for periods less than 90 days. Largest positive correlations are seen in periods greater than 90 days for the Northern Hemispheric mean and continental areas of North Africa, North America, northern Asia, and Antarctica. The physical basis for these relationships is discussed. An interyear comparison between 1986 and 1987 reveals the ENSO signal.

  19. Fasting heat production of Saanen and Anglo Nubian goats measured using open-circuit facemask respirometry. (United States)

    Fernandes, M H M da R; Lima, A R C; Almeida, A K; Borghi, T H; Teixeira, I A M de A; de Resende, K T


    This study aimed to establish the heat production (HP) of Saanen and Anglo Nubian goats at absorptive (feeding) and at post-absorptive (fasting) statuses to determine the adequate period of fasting required for the measurement of basal metabolism. Gas exchange was recorded via open-circuit facemask respirometry. Six non-lactating and non-pregnant goats of each breed, Saanen (49.2 ± 3.2 kg of body weight, BW) and Anglo Nubian (64.0 ± 3.0 kg BW), were placed in individual pens with ad libitum access to the same total mixed ration. After a 3-day feeding period, the animals were subjected to fasting (no feed), and the gas exchange measurement was performed for 30 min at 0, 12, 20, 36, 44, 60 and 68 h after fasting. The daily HP of the Saanen and Anglo Nubian goats averaged 557.4 ± 38.7 and 357.1 ± 35.3 kJ/kg0.75  BW day respectively. During fasting, the methane production decreased exponentially in both breeds, and the critical time when methane production was statistically equal to zero was at 31 h of fasting for the Saanen goats and at 40 h for the Anglo Nubian goats. The daily HP and respiratory exchange rate during fasting decreased up to 60 h. Taken together, our results suggest that the ideal period to measure fasting heat production (FHP) for goats fed at maintenance levels should be between 40 h and 60 h of fasting. Consequently, the daily FHP, after 60 h of fasting, of Saanen and Anglo Nubian goats was 183.3 ± 16.3 and 211.1 ± 11.5 kJ/kg0.75  BW day respectively. The results presented herein are relevant for future studies of energy metabolism in goats. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.

  20. Prediction and measurement of heat transfer rates for the shock-induced unsteady laminar boundary layer on a flat plate (United States)

    Cook, W. J.


    The unsteady laminar boundary layer induced by the flow-initiating shock wave passing over a flat plate mounted in a shock tube was theoretically and experimentally studied in terms of heat transfer rates to the plate for shock speeds ranging from 1.695 to 7.34 km/sec. The theory presented by Cook and Chapman for the shock-induced unsteady boundary layer on a plate is reviewed with emphasis on unsteady heat transfer. A method of measuring time-dependent heat-transfer rates using thin-film heat-flux gages and an associated data reduction technique are outlined in detail. Particular consideration is given to heat-flux measurement in short-duration ionized shocktube flows. Experimental unsteady plate heat transfer rates obtained in both air and nitrogen using thin-film heat-flux gages generally agree well with theoretical predictions. The experimental results indicate that the theory continues to predict the unsteady boundary layer behavior after the shock wave leaves the trailing edge of the plate even though the theory is strictly applicable only for the time interval in which the shock remains on the plate.

  1. Using forecast and observed weather data to assess performance of forecast products in identifying heat waves and estimating heat wave effects on mortality. (United States)

    Zhang, Kai; Chen, Yeh-Hsin; Schwartz, Joel D; Rood, Richard B; O'Neill, Marie S


    Heat wave and health warning systems are activated based on forecasts of health-threatening hot weather. We estimated heat-mortality associations based on forecast and observed weather data in Detroit, Michigan, and compared the accuracy of forecast products for predicting heat waves. We derived and compared apparent temperature (AT) and heat wave days (with heat waves defined as ≥ 2 days of daily mean AT ≥ 95th percentile of warm-season average) from weather observations and six different forecast products. We used Poisson regression with and without adjustment for ozone and/or PM10 (particulate matter with aerodynamic diameter ≤ 10 μm) to estimate and compare associations of daily all-cause mortality with observed and predicted AT and heat wave days. The 1-day-ahead forecast of a local operational product, Revised Digital Forecast, had about half the number of false positives compared with all other forecasts. On average, controlling for heat waves, days with observed AT = 25.3°C were associated with 3.5% higher mortality (95% CI: -1.6, 8.8%) than days with AT = 8.5°C. Observed heat wave days were associated with 6.2% higher mortality (95% CI: -0.4, 13.2%) than non-heat wave days. The accuracy of predictions varied, but associations between mortality and forecast heat generally tended to overestimate heat effects, whereas associations with forecast heat waves tended to underestimate heat wave effects, relative to associations based on observed weather metrics. Our findings suggest that incorporating knowledge of local conditions may improve the accuracy of predictions used to activate heat wave and health warning systems.

  2. An evaluation of alternate production methods for Pu-238 general purpose heat source pellets

    Energy Technology Data Exchange (ETDEWEB)

    Mark Borland; Steve Frank


    For the past half century, the National Aeronautics and Space Administration (NASA) has used Radioisotope Thermoelectric Generators (RTG) to power deep space satellites. Fabricating heat sources for RTGs, specifically General Purpose Heat Sources (GPHSs), has remained essentially unchanged since their development in the 1970s. Meanwhile, 30 years of technological advancements have been made in the applicable fields of chemistry, manufacturing and control systems. This paper evaluates alternative processes that could be used to produce Pu 238 fueled heat sources. Specifically, this paper discusses the production of the plutonium-oxide granules, which are the input stream to the ceramic pressing and sintering processes. Alternate chemical processes are compared to current methods to determine if alternative fabrication processes could reduce the hazards, especially the production of respirable fines, while producing an equivalent GPHS product.

  3. Analysis of Competitiveness and Support Instruments for Heat and Electricity Production from Wood Biomass in Latvia (United States)

    Klavs, G.; Kudrenickis, I.; Kundzina, A.


    Utilisation of renewable energy sources is one of the key factors in a search for efficient ways of reducing the emissions of greenhouse gases and improving the energy supply security. So far, the district heating supply in Latvia has been based on natural gas, with the wood fuel playing a minor role; the same is true for decentralised combined heat-power (CHP) production. The paper describes a method for evaluation of the economic feasibility of heat and electricity production from wood biomass under the competition between different fuel types and taking into account the electricity market. For the simulation, a cost estimation model is applied. The results demonstrate that wood biomass can successfully be utilised for competitive heat production by boiler houses, while for electricity production by CHP utilities it cannot compete on the market (even despite the low prices on wood biomass fuel) unless particular financial support instruments are applied. The authors evaluate the necessary support level and the impact of two main support instruments - the investment subsidies and the feed-in tariff - on the economic viability of wood-fuelled CHP plants, and show that the feed-in tariff could be considered as an instrument strongly affecting the competitiveness of such type CHP. Regarding the feed-in tariff determination, a compromise should be found between the economy-dictated requirement to develop CHP projects concerning capacities above 5 MWel - on the one hand, and the relatively small heat loads in many Latvian towns - on the other.

  4. Planning Horizon for Production Inventory Models with Production Rate Dependent on Demand and Inventory Level

    Directory of Open Access Journals (Sweden)

    Jennifer Lin


    Full Text Available This paper discusses why the selection of a finite planning horizon is preferable to an infinite one for a replenishment policy of production inventory models. In a production inventory model, the production rate is dependent on both the demand rate and the inventory level. When there is an exponentially decreasing demand, the application of an infinite planning horizon model is not suitable. The emphasis of this paper is threefold. First, while pointing out questionable results from a previous study, we propose a corrected infinite planning horizon inventory model for the first replenishment cycle. Second, while investigating the optimal solution for the minimization problem, we found that the infinite planning horizon should not be applied when dealing with an exponentially decreasing demand. Third, we developed a new production inventory model under a finite planning horizon for practitioners. Numerical examples are provided to support our findings.

  5. Temperature and Heat Flow Rate Calibration of a Calvet Calorimeter from 0 {°}C to 190 {°}C (United States)

    Kim, Daeho; Lee, Joohyun; Kwon, Suyong


    This study describes the temperature and heat flow rate calibrations of a Calvet calorimeter (SETARAM, BT2.15) in the temperature range of 0-190 {°}C. Temperature calibration is carried out using three reference materials, namely water, gallium, and indium, as specified in the International Temperature Scale of 1990 (ITS-90). The sample temperature of the Calvet calorimeter is corrected by the obtained mean value, -0.489 {°}C, of the measured extrapolated peak onset temperature (Te) when the heating rate (β) is zero (Δ T_corr (β = 0)). The heat flow rate is calibrated using a reference material with a known heat capacity, namely SRM 720 α -Al2O3 (synthetic sapphire), which is traceable to the National Institute of Standards and Technology. From the heat flow rate measurements of the blank baseline and SRM 720, the proportional calibration factor, K_{Φ }, in the 0-190 {°}C temperature range was determined. The specific heat capacity of copper was measured with the obtained calibration values, and the measured data show consistency with the reference value.

  6. Textural and rheological properties of Pacific whiting surimi as affected by nano-scaled fish bone and heating rates. (United States)

    Yin, Tao; Park, Jae W


    Textural and rheological properties of Pacific whiting (PW) surimi were investigated at various heating rates with the use of nano-scaled fish bone (NFB) and calcium chloride. Addition of NFB and slow heating improved gel strength significantly. Activity of endogenous transglutaminase (ETGase) from PW surimi was markedly induced by both NFB calcium and calcium chloride, showing an optimal temperature at 30°C. Initial storage modulus increased as NFB calcium concentration increased and the same trend was maintained throughout the temperature sweep. Rheograms with temperature sweep at slow heating rate (1°C/min) exhibited two peaks at ∼ 35°C and ∼ 70°C. However, no peak was observed during temperature sweep from 20 to 90°C at fast heating rate (20°C/min). Protein patterns of surimi gels were affected by both heating rate and NFB calcium concentration. Under slow heating, myosin heavy chain intensity decreased with NFB calcium concentration, indicating formation of ε-(γ-glutamyl) lysine cross-links by ETGase and NFB calcium ion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. 5 CFR 532.253 - Special rates or rate ranges for leader, supervisory, and production facilitating positions. (United States)


    ... to the same occupational series and title, that lead, supervise, or perform production facilitating..., supervisory, and production facilitating positions. 532.253 Section 532.253 Administrative Personnel OFFICE OF....253 Special rates or rate ranges for leader, supervisory, and production facilitating positions. (a...

  8. Tick resistance and heat tolerance characteristics in cattle. III. Sweating rate

    Directory of Open Access Journals (Sweden)

    Cecília José Veríssimo


    Full Text Available Cattle in a sustainable tropical livestock should be heat tolerant and resistant to ticks. The relationship between Rhipicephalus (Boophilus microplus infestation and sweating rate, an important heat tolerance characteristic, was studied in six Nellore and four Holstein steers of seven-month-old. They were artificial infested (a.i. with 10,000 (Holstein and 20,000 (Nellore larvae in 16/Apr/2011. In days 20, 23 and 24 after the infestation, the 10 bigger females ticks found in whole animal were weighed and put in a chamber (27 oC and 80% RH, weighing the egg mass of each female tick fourteen days after. The sweating rate (SRskin, measured by Scheleger and Turner, 1963, method, in a shaved area of shoulder skin was evaluated in 14/Apr (2 days before the a.i. and in 05/May (19 days after a.i.. In 14/Apr the Scheleger and Turner, 1963, method was done on the coat not shaved (SRcoat. The sweating rate was measured in the afternoon (from 2 P.M., after 30 minutes of direct sunlight, on April. On May, the animals remained 60 minutes in direct sunlight because this day was colder. The experimental design was a non-probability sample restricted to the 10 available animals. Data from the steers’ sweating rate were analyzed using the General linear models of the SPSS® statistical package (version 12.0 using SRskin as dependent variable and breed and sampling date as independent variables. For SRcoat breed was the independent variable. Nellore, a tropical cattle breed, had higher SRskin (1,000.82 ± 64.59 g m-2 h-1, P< 0.001 than Holstein (620.45 ± 79.10 g m-2 h-1. SRskin was higher on May (1,187.33 ± 71.49 g m-2 h-1, P< 0.001 than on April (433.93 ± 71.49 g m-2 h-1. The correlation between the two different measurements of SR was positive and significant (r= 0,545, P<0,01, Pearson correlation. But in SRcoat the breed effect disappeared because the Holstein SRcoat increased (Holstein: 884.95 ± 472.12 g m-2 h-1 and Nellore: 1,060.72 ± 318.21 g m-2 h-1

  9. [Calculation of thermal protein changes in food with heat conduction. Determination of reaction rate and activation heat]. (United States)

    Herrmann, J; Brennig, K; Nour, S


    The velocity constant k of protein changes is commonly determined by heating as abruptly as possible to a given temperature for various periods. Its dependence on temperature or activation heat is deduced from the k value determinations at different temperatures, using the ARRHENIUS diagram. In contrast to this, the authors determined the k and E values in a temperature field for a constant reaction time. This is done directly in the foodstuff which is introduced (in ball form) into a bath of constant temperature. In case of foodstuffs with mere heat conduction, there are in the interior innumerable spherical shells subjected to the same thermal stress which increases from within towards the exterior. Thermal protein changes (such as the thermal coagulation of egg white and muscle proteins and the formation of metmyochromogen) which can be visualized directly or, in case of enzymatic denaturation, indirectly by colour reactions, using the presence-absence method, may be observed if the ball is cut in half. This procedure (termed "change-over method" by the authors) permits to calculate the unknown k and E values from the radius of the visible inner circle. (This applied also to cylindrical forms.) Since this method allows to estimate approximately these reaction kinetic constants directly in the foodstuff under conditions encountered in practice, it is in many cases better suited for simulating, calculating, or optimizing desirable or undesirable protein changes occurring during thermal processing than the mere model experiment with abrupt heating which does not reproduce the changes in the reaction medium occuring during the slow increase or decrease in temperature.

  10. Enhancing microalgal photosynthesis and productivity in wastewater treatment high rate algal ponds for biofuel production. (United States)

    Sutherland, Donna L; Howard-Williams, Clive; Turnbull, Matthew H; Broady, Paul A; Craggs, Rupert J


    With microalgal biofuels currently receiving much attention, there has been renewed interest in the combined use of high rate algal ponds (HRAP) for wastewater treatment and biofuel production. This combined use of HRAPs is considered to be an economically feasible option for biofuel production, however, increased microalgal productivity and nutrient removal together with reduced capital costs are needed before it can be commercially viable. Despite HRAPs being an established technology, microalgal photosynthesis and productivity is still limited in these ponds and is well below the theoretical maximum. This paper critically evaluates the parameters that limit microalgal light absorption and photosynthesis in wastewater HRAPs and examines biological, chemical and physical options for improving light absorption and utilisation, with the view of enhancing biomass production and nutrient removal. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Analytical expressions for optimum flow rates in evaporators and condensers of heat pumping systems

    Energy Technology Data Exchange (ETDEWEB)

    Granryd, E. [Dept. of Energy Technology, Royal Institute of Technology, KTH, Stockholm (Sweden)


    The flow velocities on the air or liquid side of evaporators and condensers in refrigerating or heat pump systems affect the system performance considerably. Furthermore the velocity can often be chosen rather freely without obvious first cost implications. The purpose of the paper is to show analytical relations indicating possible optimum operating conditions. Considering a base case where the design data are known, simple analytical relations are deduced for optimum flow rates that will result in highest overall COP of the system when energy demand for the compressor as well as pumps or fans are included. This optimum is equivalent to the solution for minimum total energy demand of the system for a given cooling load. It is also shown that a different (and higher) flow rate will result in maximum net cooling capacity for a refrigerating system with fixed compressor speed. The expressions can be used for design purposes as well as for checking suitable flow velocities in existing plants. The relations may also be incorporated in algorithms for optimal operation of systems with variable speed compressors. (author)

  12. Production and physiological responses of heat-stressed lactating dairy cattle to conductive cooling. (United States)

    Perano, Kristen M; Usack, Joseph G; Angenent, Largus T; Gebremedhin, Kifle G


    C cooling water was 0.3°C lower than the rectal temperature with 10°C cooling water, but the other measurements (respiration rate, milk production, and DMI) did not show a statistically significant difference between the cooling water temperatures. Placing waterbeds on concrete stalls without additional cooling did not have a measurable effect in alleviating the heat stress of the cows. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.


    Directory of Open Access Journals (Sweden)

    S. A. Shevtsov


    Full Text Available Using scientificand practical experience and analysis of recent innovative activity on modernization of food concentrates production, a new variant of the energy-efficient processing of cereal crops using superheated steam and direct involvement in the cooking and drying process waste energy using the vapor compression heat pump was suggested. A method for production of cereal concentrates, which is realized using microprocessor control of technological parameters. According to the information on the processes of cereals washing, cooking, drying and cooling microprocessor provides regime parameters control under the restrictions due to both yield of cooked and dried cereal of high quality and economic feasibility. At the same time the amount of moisture is continuously determined in the recirculation loop formed by the evaporation from the cereals in the drying process. To implement the proposed method of cooked and dried cereals production it is offered to use refrigerationand compressor unit operating in a heat pump mode. The refrigerant to be used is khladon 12V1 CF2ClBr with a boiling point in the evaporator of 4°C and the condensing temperature of 153.7 °C. The use of the heat pump in the heat supply system of cooked and dried cereals production instead of electric heaters will reduce power costs by 1.72 times. The proposed method for the production and control of technological parameters in the field of the product acceptable technological properties will provide high quality cooked and dried cereals; an increase in thermal efficiency by making full use of the waste heat of superheated steam; the reduction of specific energy consumption by 25-30 %; the creation of waste-free and environmentally friendly technologies for cereal production.

  14. Copepod egg production, moulting and growth rates and secondary production in the Skagerrak in August 1988

    DEFF Research Database (Denmark)

    Peterson, W.T.; Tiselius, P.; Kiørboe, Thomas


    Measurements of hydrography, chlorophyll, moulting rates of juvenile copepods and egg production rates of adult female copepods were made at eight stations along a transect across the Skagerrak. The goals of the study were to determine (i) if there were correlations between spatial variations......: 50% of chla was 50 .mu.m, averaged for all stations. Chlorophyll ranged from 0.2 to 2.5 .mu.g l-1 at most depths and stations. Specific growth rates of copepods averaged 0.10 day-1 for adult females and 0.27 day-1 for juveniles. The latter...

  15. Coolant-side heat-transfer rates for a hydrogen-oxygen rocket and a new technique for data correlation (United States)

    Schacht, R. L.; Quentmeyer, R. J.


    An experimental investigation was conducted to determine the coolant-side, heat transfer coefficients for a liquid cooled, hydrogen-oxygen rocket thrust chamber. Heat transfer rates were determined from measurements of local hot gas wall temperature, local coolant temperature, and local coolant pressure. A correlation incorporating an integration technique for the transport properties needed near the pseudocritical temperature of liquid hydrogen gives a satisfactory prediction of hot gas wall temperatures.

  16. Detection of heat wave using Kalpana-1 VHRR land surface temperature product over India (United States)

    Shah, Dhiraj; Pandya, Mehul R.; Pathak, Vishal N.; Darji, Nikunj P.; Trivedi, Himanshu J.


    Heat Waves can have notable impacts on human mortality, ecosystem, economics and energy supply. The effect of heat wave is much more intense during summer than the other seasons. During the period of April to June, spells of very hot weather occur over certain regions of India and global warming scenario may result in further increases of such temperature anomalies and corresponding heat waves conditions. In this paper, satellite observations have been used to detect the heat wave conditions prevailing over India for the period of May-June 2015. The Kalpana-1 VHRR derived land surface temperature (LST) products have been used in the analysis to detect the heat wave affected regions over India. Results from the analysis shows the detection of heat wave affected pixels over Indian land mass. It can be seen that during the study period the parts of the west India, Indo-gangetic plane, Telangana and part of Vidarbh was under severe heat wave conditions which is also confirmed with Automatic Weather Station (AWS) air temperature observations.

  17. Uncertainties in the estimation of specific absorption rate during radiofrequency alternating magnetic field induced non-adiabatic heating of ferrofluids (United States)

    Lahiri, B. B.; Ranoo, Surojit; Philip, John


    Magnetic fluid hyperthermia (MFH) is becoming a viable cancer treatment methodology where the alternating magnetic field induced heating of magnetic fluid is utilized for ablating the cancerous cells or making them more susceptible to the conventional treatments. The heating efficiency in MFH is quantified in terms of specific absorption rate (SAR), which is defined as the heating power generated per unit mass. In majority of the experimental studies, SAR is evaluated from the temperature rise curves, obtained under non-adiabatic experimental conditions, which is prone to various thermodynamic uncertainties. A proper understanding of the experimental uncertainties and its remedies is a prerequisite for obtaining accurate and reproducible SAR. Here, we study the thermodynamic uncertainties associated with peripheral heating, delayed heating, heat loss from the sample and spatial variation in the temperature profile within the sample. Using first order approximations, an adiabatic reconstruction protocol for the measured temperature rise curves is developed for SAR estimation, which is found to be in good agreement with those obtained from the computationally intense slope corrected method. Our experimental findings clearly show that the peripheral and delayed heating are due to radiation heat transfer from the heating coils and slower response time of the sensor, respectively. Our results suggest that the peripheral heating is linearly proportional to the sample area to volume ratio and coil temperature. It is also observed that peripheral heating decreases in presence of a non-magnetic insulating shielding. The delayed heating is found to contribute up to ~25% uncertainties in SAR values. As the SAR values are very sensitive to the initial slope determination method, explicit mention of the range of linear regression analysis is appropriate to reproduce the results. The effect of sample volume to area ratio on linear heat loss rate is systematically studied and the

  18. Coal plasticity at high heating rates and temperatures. Final technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    Gerjarusak, S.; Peters, W.A.; Howard, J.B.


    Plastic coals are important feedstocks in coke manufacture, coal liquefaction, gasification, and combustion. During these processes, the thermoplastic behavior of these coals is also important since it may contribute to desirable or undesirable characteristics. For example, during liquefaction, the plastic behavior is desired since it leads to liquid-liquid reactions which are faster than solid-liquid reactions. During gasification, the elastic behavior is undesired since it leads to caking and agglomeration of coal particles which result in bed bogging in fixed or fluidized bed gasifiers. The plastic behavior of different coals was studied using a fast-response plastometer. A modified plastometer was used to measure the torque required to turn at constant angular speed a cone-shaped disk embedded in a thin layer of coal. The coal particles were packed between two metal plates which are heated electrically. Heating rates, final temperatures, pressures, and durations of experiment ranged from 200--800 K/s, 700--1300 K, vacuum-50 atm helium, and 0--40 s, respectively. The apparent viscosity of the molten coal was calculated from the measured torque using the governing equation of the cone-and-plate viscometer. Using a concentrated suspension model, the molten coal`s apparent viscosity was related to the quantity of the liquid metaplast present during pyrolysis. Seven coals from Argonne National Laboratory Premium Coal Sample Bank were studied. Five bituminous coals, from high-volatile to low-volatile bituminous, were found to have very good plastic behavior. Coal type strongly affects the magnitude and duration of plasticity. Hvb coals were most plastic. Mvb and lvb coals, though the maximum plasticity and plastic period were less. Low rank coals such as subbituminous and lignite did not exhibit any plasticity in the present studies. Coal plasticity is moderately well correlated with simple indices of coal type such as the elemental C,O, and H contents.

  19. Nuclear data production, calculation and measurement: a global overview of the gamma heating issue

    Directory of Open Access Journals (Sweden)

    Gueton O.


    Full Text Available The gamma heating evaluation in different materials found in current and future generations of nuclear reactor (EPRTM, GENIV, MTR-JHR, is becoming an important issue especially for the design of many devices (control rod, heavy reflector, in-core & out-core experiments…. This paper deals with the works started since 2009 in the Reactor Studies Department of CEA Cadarache in ordre to answer to several problematic which have been identified as well for nuclear data production and calculation as for experimental measurement methods. The selected subjects are: Development of a Monte Carlo code (FIFRELIN to simulate the prompt fission gamma emission which represents the major part of the gamma heating production inside the core Production and qualification of new evaluations of nuclear data especially for radiative capture and inelastic neutron scattering which are the main sources of gamma heating out-core Development and qualification of a recommended method for the total gamma heating calculation using the Monte Carlo simulation code TRIPOLI-4 Development, test and qualification of new devices dedicated to the in-core gamma heating measurement as well in MTR-JHR as in zero power facilities (EOLE-MINERVE of CEA, Cadarache to increase the experimental measurement accuracy.

  20. Numerical evaluation of spherical geometry approximation for heating and cooling of irregular shaped food products. (United States)

    Uyar, Rahmi; Erdogdu, Ferruh


    Irregular shapes of food products add difficulties in modeling of food processes, and using actual geometries might be in expense of computing time without offering any advantages in heating and cooling processes. In this study, a three-dimensional scanner was used to obtain geometrical description of strawberry, pear, and potato, and cooling-heating simulations were carried out in a computational heat transfer program. Then, spherical assumption was applied to compare center and volume average temperature changes using volume to surface area ratios of these samples to define their characteristic length. In addition, spherical assumption for a finite cylinder and a cube was also applied to demonstrate the effect of sphericity. Geometries with sphericity values above 0.9 were determined to hold the spherical assumption. Irregular shapes of food products add difficulties in modeling of heating and cooling processes of food products. In addition, using actual geometries are in expense of computational time without offering any advantages. Hence, spherical approximation for irregular geometries was demonstrated under sphericity values of 0.9. This approach might help in developing better heating and cooling processes. © 2012 Institute of Food Technologists®

  1. Nuclear data production, calculation and measurement: a global overview of the gamma heating issue (United States)

    Colombier, A.-C.; Amharrak, H.; Fourmentel, D.; Ravaux, S.; Régnier, D.; Gueton, O.; Hudelot, J.-P.; Lemaire, M.


    The gamma heating evaluation in different materials found in current and future generations of nuclear reactor (EPRTM, GENIV, MTR-JHR), is becoming an important issue especially for the design of many devices (control rod, heavy reflector, in-core & out-core experiments…). This paper deals with the works started since 2009 in the Reactor Studies Department of CEA Cadarache in ordre to answer to several problematic which have been identified as well for nuclear data production and calculation as for experimental measurement methods. The selected subjects are: bid.1"> Development of a Monte Carlo code (FIFRELIN) to simulate the prompt fission gamma emission which represents the major part of the gamma heating production inside the core bid.2"> Production and qualification of new evaluations of nuclear data especially for radiative capture and inelastic neutron scattering which are the main sources of gamma heating out-core bid.3"> Development and qualification of a recommended method for the total gamma heating calculation using the Monte Carlo simulation code TRIPOLI-4 bid.4"> Development, test and qualification of new devices dedicated to the in-core gamma heating measurement as well in MTR-JHR as in zero power facilities (EOLE-MINERVE) of CEA, Cadarache to increase the experimental measurement accuracy.

  2. Radioactivity and radiogenic heat production in the oil field of the Reconcavo Basin; Radioatividade e geracao de calor radiogenico em pocos petroliferos na Bacia do Reconcavo

    Energy Technology Data Exchange (ETDEWEB)

    Alves Junior, Paulo B.; Argollo, Roberto M. de [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Centro de Pesquisa em Geofisica e Geologia


    The production of radiogenic heat in the terrestrial crust is due mainly to U, Th and K presents in the rocks. In this work, we use the gamma-ray spectrometry technique to determine the contents of these elements in drill cuttings and obtaining profiles of heat production rates in oils wells of the Reconcavo basin. In the total, we measure 640 samples of drill cuttings from wells FFL-1 and MGP-34 ceded by PETROBRAS. The thorium contents vary from 1.6 to 25.5 ppm, the uranium contents varied from 0.5 to 5.82 ppm, the potassium samples varied from 0.05 to 2.25 % and the production rates of radiogenic heat varied among 0.50 to 10.85 10{sup -4} {mu}W kg{sup -1}. With the profiles heat production rates obtained, a correlation was verified among these rates and the lithologies at wells FFL-1 and MGP-34. These values will be used in the correlation between these samples at wells and the sample collected at blooming. (author)

  3. Fuzzy economic production quantity model with time dependent demand rate

    Directory of Open Access Journals (Sweden)

    Susanta Kumar Indrajitsingha


    Full Text Available Background: In this paper, an economic production quantity model is considered under a fuzzy environment. Both the demand cost and holding cost are considered using fuzzy pentagonal numbers. The Signed Distance Method is used to defuzzify the total cost function. Methods: The results obtained by these methods are compared with the help of a numerical example. Sensitivity analysis is also carried out to explore the effect of changes in the values of some of the system parameters. Results and conclusions: The fuzzy EPQ model with time dependent demand rate was presented together with the possible implementation. The behavior of changes in parameters was analyzed. The possible extension of the implementation of this method was presented.

  4. Production rates of terrestrial in-situ-produced cosmogenic nuclides

    Energy Technology Data Exchange (ETDEWEB)

    Reedy, R.C. [Los Alamos National Lab., NM (United States); Tuniz, C.; Fink, D. [Australian Nuclear Science and Technology Organisation, Menai, NSW (Australia)


    Production rates of cosmogenic nuclides made in situ in terrestrial samples and how they are applied to the interpretation of measured radionuclide concentrations were discussed at a one-day Workshop held 2 October 1993 in Sydney, Australia. The status of terrestrial in-situ studies using the long-lived radionuclides {sup 10}Be, {sup 14}C, {sup 26}Al, {sup 36}Cl, and {sup 41}Ca and of various modeling and related studies were presented. The relative uncertainties in the various factors that go into the interpretation of these terrestrial in-situ cosmogenic nuclides were discussed. The magnitudes of the errors for these factors were estimated and none dominated the final uncertainty.

  5. Parametric analysis of air–water heat recovery concept applied to HVAC systems: Effect of mass flow rates

    Directory of Open Access Journals (Sweden)

    Mohamad Ramadan


    Full Text Available In the last three decades, the world has experienced enormous increases in energy and fuel consumption as a consequence of the economic and population growth. This causes renewable energy and energy recovery to become a requirement in building designs rather than option. The present work concerns a coupling between energy recovery and Heating, Ventilating and Air Conditioning HVAC domains and aims to apply heat recovery concepts to HVAC applications working on refrigeration cycles. It particularly uses the waste energy of the condenser hot air to heat/preheat domestic water. The heat exchanger considered in the recovery system is concentric tube heat exchanger. A thermal modeling of the complete system as well as a corresponding iterative code are developed and presented. Calculations with the code are performed and give pertinent magnitude orders of energy saving and management in HVAC applications. A parametric analysis based on several water and air flow rates is carried out. It was shown that water can be heated from 25 to 70 °C depending on the mass flow rates and cooling loads of the HVAC system. The most efficient configurations are obtained by lowering the air flow rate of the condenser fan.

  6. Jurassic high heat production granites associated with the Weddell Sea rift system, Antarctica (United States)

    Leat, Philip T.; Jordan, Tom A.; Flowerdew, Michael J.; Riley, Teal R.; Ferraccioli, Fausto; Whitehouse, Martin J.


    The distribution of heat flow in Antarctic continental crust is critical to understanding continental tectonics, ice sheet growth and subglacial hydrology. We identify a group of High Heat Production granites, intruded into upper crustal Palaeozoic metasedimentary sequences, which may contribute to locally high heat flow beneath the West Antarctic Ice Sheet. Four of the granite plutons are exposed above ice sheet level at Pagano Nunatak, Pirrit Hills, Nash Hills and Whitmore Mountains. A new Usbnd Pb zircon age from Pirrit Hills of 178.0 ± 3.5 Ma confirms earlier Rbsbnd Sr and Usbnd Pb dating and that the granites were emplaced approximately coincident with the first stage of Gondwana break-up and the developing Weddell rift, and 5 m.y. after eruption of the Karoo-Ferrar large igneous province. Aerogeophysical data indicate that the plutons are distributed unevenly over 40,000 km2 with one intruded into the transtensional Pagano Shear Zone, while the others were emplaced within the more stable Ellsworth-Whitmore mountains continental block. The granites are weakly peraluminous A-types and have Th and U abundances up to 60.7 and 28.6 ppm respectively. Measured heat production of the granite samples is 2.96-9.06 μW/m3 (mean 5.35 W/m3), significantly higher than average upper continental crust and contemporaneous silicic rocks in the Antarctic Peninsula. Heat flow associated with the granite intrusions is predicted to be in the range 70-95 mW/m2 depending on the thickness of the high heat production granite layer and the regional heat flow value. Analysis of detrital zircon compositions and ages indicates that the high Th and U abundances are related to enrichment of the lower-mid crust that dates back to 200-299 Ma at the time of the formation of the Gondwanide fold belt and its post-orogenic collapse and extension.

  7. Concentrations, metabolic clearance rates, production rates and plasma binding of cortisol in Antarctic phocid seals. (United States)

    Liggins, G C; France, J T; Schneider, R C; Knox, B S; Zapol, W M


    We have reported previously that plasma of the Weddell seal, a member of the phocid family, contains a very high concentration of cortisol. The present study was undertaken to determine whether high cortisol levels were common to seals in the Antarctic environment, or to other phocidae, and to determine the mechanism of the hypercortisolaemia. High levels of cortisol (0.82-2.38 mumol/l) were found in 4 phocidae (Weddell, crabeater, leopard and Southern elephant seals), whereas levels in a member of the otariid family (Antarctic fur seal) were similar to human values. Metabolic clearance rates (MCR) and production rates (PR) of cortisol were determined in the field in Weddell (N = 1), crabeater (N = 3) and leopard (N = 3) seals following bolus injections of [3H] cortisol. The MCR and PR did not differ between the three phocids, but whereas the MCR of 410-590 1/day was twice that of human values, the PR of 460-1180 mumol.m-2 x d-1 was up to 40-fold greater. The binding capacity of corticosteroid-binding globulin (CBG) was equal to or greater than the plasma concentrations of cortisol, resulting in relatively low concentrations of free cortisol. We conclude that hypercortisolaemia is maintained in phocid seals mainly by a high production rate--the highest (corrected for surface area) reported in any species. The relatively low cortisol levels in otariid seals studied in the same environment suggest that the high PR in phocidae is unrelated to the harsh climatic conditions, but may be part of their adaptation for diving to extreme depths.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Possibilities of Combined Heat and Power Production in Šiauliai Region

    Directory of Open Access Journals (Sweden)

    Martynas Mickus


    Full Text Available The article investigates the possibilities of biomass and municipal waste utilization in Šiauliai region by introducing a combined heat and power production plant. The paper presents an overview of biomass and municipal waste composition and identifies its heat value and generation quantities. Investigation includes modelling CHP plant operation based on real data that includes detailed information on actual heat load in Šiauliai, the current amount and prognosis of biomass production and waste generation in the area. Modelling suitable power plant size is performed. Economic evaluation has shown that the current economical indicators are poor. Energy generation from waste still requires additional support in order to be competitive.Article in Lithuanian

  9. Heart rate variability and heat sensation during CT coronary angiography: Low-osmolar versus iso-osmolar contrast media

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, Anders; Ripsweden, Jonaz; Aspelin, Peter; Cederlund, Kerstin; Brismar, B. Torkel (Dept. of Clinical Science, Intervention and Technology, Karolinska Inst., Div. of Medical Imaging and Technology and Dept. of Radiology, Karolinska Univ. Hospital, Huddinge, Stockholm (Sweden)), e-mail:; Rueck, Andreas (Div. of Cardiology, Dept. of Internal Medicine, Karolinska Inst., Karolinska Univ. Hospital, Stockholm (Sweden))


    Background: During computed tomography coronary angiography (CTCA) unexpected changes in heart rate while scanning may affect image quality. Purpose: To evaluate whether an iso-osmolar contrast medium (IOCM, iodixanol) and a low-osmolar contrast medium (LOCM, iomeprol) affect heart rate and experienced heat sensation differently. Material and Methods: One hundred patients scheduled for CTCA were randomized to receive either iodixanol 320 mgI/ml or iomeprol 400 mgI/ml. Depending on their heart rate, the patients were assigned to one of five scanning protocols, each optimized for different heart rate ranges. During scanning the time between each heart beat (hb) was recorded, and the corresponding heart rate was calculated. For each contrast medium (CM) the average heart rate, the variation in heart rate from individual mean heart rate, and the mean deviation from the predefined scanning protocol were calculated. Experience of heat was obtained immediately after scanning by using a visual analog scale (VAS). Examination quality was rated by two radiologists on a three-point scale. Results: The mean variation in heart rate after IOCM was 1.4 hb/min and after LOCM it was 4.4 hb/min (NS). The mean deviations in heart rate from that in the predefined scanning protocol were 2.0 hb/min and 4.7 hb/min, respectively (NS). A greater number of arrhythmic hb were observed after LOCM compared with IOCM (P<0.001). There was no statistically significant difference in image quality. The LOCM group reported a stronger heat sensation after CM injection than the IOCM group (VAS =36 mm and 18 mm, P<0.05). Conclusion: At clinically used concentrations the IOCM, iodixanol 320 mgI/ml, does not increase the heart rate during CTCA and causes less heart arrhythmia and less heat sensation than the LOCM, iomeprol 400 mgI/ml

  10. Exergy analysis of a combined heat and power plant with integrated lignocellulosic ethanol production

    DEFF Research Database (Denmark)

    Lythcke-Jørgensen, Christoffer Ernst; Haglind, Fredrik; Clausen, Lasse Røngaard


    Lignocellulosic ethanol production is often assumed integrated in polygeneration systems because of its energy intensive nature. The objective of this study is to investigate potential irreversibilities from such integration, and what impact it has on the efficiency of the integrated ethanol...... production. An exergy analysis is carried out for a modelled polygeneration system in which lignocellulosic ethanol production based on hydrothermal pretreatment is integrated in an existing combined heat and power (CHP) plant. The ethanol facility is driven by steam extracted from the CHP unit when feasible...... in the ethanol facility. The calculated standard exergy efficiency of the ethanol facility varied from 0.564 to 0.855, of which the highest was obtained for integrated operation at reduced CHP load and full district heating production in the ethanol facility, and the lowest for separate operation with zero...

  11. Composition, production rate and characterization of Greek dental solid waste. (United States)

    Mandalidis, Alexandros; Topalidis, Antonios; Voudrias, Evangelos A; Iosifidis, Nikolaos


    The overall objective of this work is to determine the composition, characterization and production rate of Greek dental solid waste (DSW). This information is important to design and cost management systems for DSW, for safety and health considerations and for assessing environmental impact. A total of 141 kg of DSW produced by a total of 2542 patients in 20 dental practices from Xanthi, Greece was collected, manually separated and weighed over a period of four working weeks. The waste was separated in 19 sub fractions, which were classified in 2 major categories, according to Greek regulations: Domestic-type waste comprising 8% and hazardous waste comprising 92% by weight of total DSW. The latter was further classified in infectious waste, toxic waste and mixed type waste (infectious and toxic together), accounting for 88.5%, 3.5% and 0.03% of total DSW by weight, respectively. The overall unit production rates (mean ± standard error of the mean) were 381 ± 15 g/practice/d and 53.3 ± 1.4 g/patient/d for total DSW, 337 ± 14 g/practice/d and 46.6 ± 1.2 g/patient/d for total infectious DSW, 13.4 ± 0.7 g/practice/d and 2.1 ± 0.1 g/patient/d for total toxic DSW and 30.4 ± 2.5 g/practice/d and 4.6 ± 0.4 g/patient/d for domestic-type waste. Daily DSW production was correlated with daily number of patients and regression correlations were produced. DSW was subject to laboratory characterization in terms of bulk density, calorific value, moisture, ash and volatile solids content. Measured calorific values were compared to predictions from empirical models. Copyright © 2018. Published by Elsevier Ltd.

  12. Low effective activation energies for oxygen release from metal oxides: evidence for mass-transfer limits at high heating rates. (United States)

    Jian, Guoqiang; Zhou, Lei; Piekiel, Nicholas W; Zachariah, Michael R


    Oxygen release from metal oxides at high temperatures is relevant to many thermally activated chemical processes, including chemical-looping combustion, solar thermochemical cycles and energetic thermite reactions. In this study, we evaluated the thermal decomposition of nanosized metal oxides under rapid heating (~10(5) K s(-1)) with time-resolved mass spectrometry. We found that the effective activation-energy values that were obtained using the Flynn-Wall-Ozawa isoconversional method are much lower than the values found at low heating rates, indicating that oxygen transport might be rate-determining at a high heating rate. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Effect of heating rate and plant species on the size and uniformity of silver nanoparticles synthesized using aromatic plant extracts (United States)

    Hernández-Pinero, Jorge Luis; Terrón-Rebolledo, Manuel; Foroughbakhch, Rahim; Moreno-Limón, Sergio; Melendrez, M. F.; Solís-Pomar, Francisco; Pérez-Tijerina, Eduardo


    Mixing aqueous silver solutions with aqueous leaf aromatic plant extracts from basil, mint, marjoram and peppermint resulted in the synthesis of quasi-spherical silver nanoparticles in a range of size between 2 and 80 nm in diameter as analyzed by analytical high-resolution electron microscopy. The average size could be controlled by applying heat to the initial reaction system at different rates of heating, and by the specific botanical species employed for the reaction. Increasing the rate of heating resulted in a statistically significant decrease in the size of the nanoparticles produced, regardless of the species employed. This fact was more evident in the case of marjoram, which decreased the average diameter from 27 nm at a slow rate of heating to 8 nm at a high rate of heating. With regard to the species, minimum sizes of mint yielded an average size between 10 and 25 nm. The results indicate that aromatic plant extracts can be used to achieve the controlled synthesis of metal nanoparticles.

  14. Effects of heat treatment on antioxidative and anti-inflammatory properties of orange by-products (United States)

    This study investigated the changes in functional components, antioxidative activities, antibacterial activities, anti-inflammatory activities of orange (Citrus sinensis (L.) Osbeck) by-products (OBP) by heat treatment at 50 and 100 degrees C (hereafter, 50D and 100D extracts, respectively). Optimal...

  15. 77 FR 39735 - Certain Integrated Circuit Packages Provided With Multiple Heat-Conducting Paths and Products... (United States)


    ... Integrated Circuit Packages Provided With Multiple Heat- Conducting Paths and Products Containing Same... within the United States after importation of certain integrated circuit packages provided with multiple... importation, or the sale within the United States after importation of certain integrated circuit packages...

  16. Alteration of fasting heat production during fescue toxicosis in Holstein steers (United States)

    This study was designed to examine alteration of fasting heat production (FHP) during fescue toxicosis. Six ruminally cannulated Holstein steers (BW=348 ±13 kg) were weight-matched into pairs and utilized in a two period crossover design experiment. Each period consisted of two temperature segments,...

  17. Planning the production of a fleet of domestic combined heat and power generators

    NARCIS (Netherlands)

    Bosman, M.G.C.; Bakker, Vincent; Molderink, Albert; Hurink, Johann L.; Smit, Gerardus Johannes Maria


    This paper describes a planning problem, arising in the energy supply chain, that deals with the planning of the production runs of micro combined heat and power (microCHP) appliances installed in houses, cooperating in a fleet. Two types of this problem are described. The first one is the Single

  18. An evaluation of interferences in heat production from low enthalpy geothermal doublets systems

    NARCIS (Netherlands)

    Willems, C.J.L.; Maghami Nick, Hamidreza M.; Weltje, G.J.; Bruhn, D.F.


    Required distance between doublet systems in low enthalpy geothermal heat exploitation is often not fully elucidated. The required distance aims to prevent negative interference influencing the utilisation efficiency of doublet systems. Currently production licence areas are often issued based on

  19. An evaluation of interferences in heat production from low enthalpy geothermal doublets systems

    DEFF Research Database (Denmark)

    Willems, Cees J. L.; Nick, Hamidreza M.; Weltje, Gert Jan


    Required distance between doublet systems in low enthalpy geothermal heat exploitation is often not fully elucidated. The required distance aims to prevent negative interference influencing the utilisation efficiency of doublet systems. Currently production licence areas are often issued based...... and minimal required production temperature. The results of this study can be used to minimize negative interference or optimise positive interference aiming at improving geothermal doublet deployment efficiency. (C) 2017 The Authors. Published by Elsevier Ltd....

  20. Co-composting of eggshell waste in self-heating reactors: monitoring and end product quality


    Soares, Micaela A. R.; Quina, Margarida M. J.; Rosa M. Quinta-Ferreira


    Industrial eggshell waste (ES) is classified as an animal by-product not intended to human consumption. For reducing pathogen spreading risk due to soil incorporation of ES, sanitation by composting is a pre-treatment option. This work aims to evaluate eggshell waste recycling in self-heating composting reactors and investigate ES effect on process evolution and end product quality. Potato peel, grass clippings and rice husks were the starting organic materials considered. The incorporati...

  1. Designer as Ethnographer: A Study of Domestic Cooking and Heating Product Design for Irish Older Adults


    White, P. J.


    In many ways, the design of domestic cooking and heating products reflects the zeitgeist of Irish culture throughout the 20th and into the 21st century. From domesticity to materialism, these products have evolved to meet fundamental human needs within the home. Concurrent with this, the methods and processes designers use to create domestic artefacts have evolved and changed. The emergence of Design Ethnography illustrates an evolution where Design has appropriated an establis...

  2. Crustal heat production and estimate of terrestrial heat flow in central East Antarctica, with implications for thermal input to the East Antarctic ice sheet

    Directory of Open Access Journals (Sweden)

    J. W. Goodge


    Full Text Available Terrestrial heat flow is a critical first-order factor governing the thermal condition and, therefore, mechanical stability of Antarctic ice sheets, yet heat flow across Antarctica is poorly known. Previous estimates of terrestrial heat flow in East Antarctica come from inversion of seismic and magnetic geophysical data, by modeling temperature profiles in ice boreholes, and by calculation from heat production values reported for exposed bedrock. Although accurate estimates of surface heat flow are important as an input parameter for ice-sheet growth and stability models, there are no direct measurements of terrestrial heat flow in East Antarctica coupled to either subglacial sediment or bedrock. As has been done with bedrock exposed along coastal margins and in rare inland outcrops, valuable estimates of heat flow in central East Antarctica can be extrapolated from heat production determined by the geochemical composition of glacial rock clasts eroded from the continental interior. In this study, U, Th, and K concentrations in a suite of Proterozoic (1.2–2.0 Ga granitoids sourced within the Byrd and Nimrod glacial drainages of central East Antarctica indicate average upper crustal heat production (Ho of about 2.6  ±  1.9 µW m−3. Assuming typical mantle and lower crustal heat flux for stable continental shields, and a length scale for the distribution of heat production in the upper crust, the heat production values determined for individual samples yield estimates of surface heat flow (qo ranging from 33 to 84 mW m−2 and an average of 48.0  ±  13.6 mW m−2. Estimates of heat production obtained for this suite of glacially sourced granitoids therefore indicate that the interior of the East Antarctic ice sheet is underlain in part by Proterozoic continental lithosphere with an average surface heat flow, providing constraints on both geodynamic history and ice-sheet stability. The ages and geothermal

  3. An evaluation of a farm scale biogas plant with a micro turbine for combined heat and power production; Utvaerdering av gaardsbiogasanlaeggning med mikroturbin foer kraftvaermeproduktion

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Nils; Edstroem, Mats; Hansson, Mikael (Swedish Inst. of Agricultural and Environmental Engineering, Uppsala (Sweden)); Algerbo, Per-Anders (HIR Malmoehus, Bjaerred (Sweden))


    The purpose of this study was to: To evaluate a farm scale biogas plant digesting energy and nutrient rich substrates at a high organic loading rate and biogas production using the biogas for combined heat and power production with a micro turbine. Put together technical, biological and economical documentation which can help farmers to investigate presumption to invest in a farm scale biogas plant for heat and power production. The farm scale biogas plant has an active digester volume of 450 m3 and the process temperature is ca 37 deg C. A micro turbine with 105 kW electrical and 160 kW thermal power is used for heat and power production. The produced electricity is sold to the grid and the heat is used on the farm for drying grain and heating two houses. The plant is digesting poultry manure and 2 substrates from the agriculture industry. All together the plant is digesting 3140 metric tons of substrates/yr and the substrates costs 160 k SEK/yr. Total investment for the plant is 4.7 M SEK. Produced head reduces the oil consumption at the farm with 15 m3 (value 100 k SEK/yr). There is a surplus of heat production of 600 MWh/yr. The production cost for the electricity is close to 0,66 SEK/kWh based on a value of the digestate of 100 SEK/ton together with an investment subsidy of 30 %. The production cost for the electricity is strongly depending on the value of the digestate. Hagavik is a crop production farm based on organic farming. If the valuation of the digestate is reduced to 50 SEK/ton, the production cost for the electricity increases to approx. 0.84 SEK/kWh (1 SEK is about 0.14 USD)

  4. Mid- Atlantic Gas Hydrate, Heat Flow, and Basin Analysis: Implications to Hydrocarbon Production in the Carolina Trough (United States)

    Phrampus, B. J.


    The new Mid- and South Atlantic Planning Areas for oil and gas leasing is proposed to open in 2021. This region lacks in contemporary geologic and geophysical petroleum data and has no conventional wells drilled within the proposed leasing area. As such, addressing the hydrocarbon potential of this region is particularly difficult. Here, we use new and legacy multi-channel seismic data with heat flow observations, ocean temperature measurements, and new seismic interpretations of gas hydrate deposits to determine basin-wide heat flow along the Mid- Atlantic. These data reveal a conductive heat flow regime along the continental margin with a lack of fluid flow that is consistent with sea floor spreading rates and cooling oceanic crust. We then use these observations in combination with basal heat flow models and sedimentation records to determine the thermal history of a cross section of the Carolina Trough. These models reveal varying depth of potential hydrocarbon production that begin at ~ 2000 mbsf and extend down to depths greater than 7000 mbsf across the Carolina Trough. These potentially productive depths correspond to varying stratal ages, but all models contain the Late Jurassic, which is a potential analog to the U.S. Gulf Coast's Smackover Formation. Additionally, the timing of hydrocarbon generation reveal that Early through Middle Jurassic evaporite deposits and Late Jurassic tight limestones should have been in place before the Early Jurassic source rocks reached a depth of burial sufficiently deep for the production of hydrocarbons. These potential seals may trap significant quantities of hydrocarbons with in the Jurassic layers, resulting in significant hydrocarbon potential within the Carolina Trough.

  5. Analysis of two production inventory systems with buffer, retrials and different production rates (United States)

    Jose, K. P.; Nair, Salini S.


    This paper considers the comparison of two ( {s,S} ) production inventory systems with retrials of unsatisfied customers. The time for producing and adding each item to the inventory is exponentially distributed with rate β. However, a production rate α β higher than β is used at the beginning of the production. The higher production rate will reduce customers' loss when inventory level approaches zero. The demand from customers is according to a Poisson process. Service times are exponentially distributed. Upon arrival, the customers enter into a buffer of finite capacity. An arriving customer, who finds the buffer full, moves to an orbit. They can retry from there and inter-retrial times are exponentially distributed. The two models differ in the capacity of the buffer. The aim is to find the minimum value of total cost by varying different parameters and compare the efficiency of the models. The optimum value of α corresponding to minimum total cost is an important evaluation. Matrix analytic method is used to find an algorithmic solution to the problem. We also provide several numerical or graphical illustrations.

  6. Density of states, specific heat and nuclear spin-lattice relaxation rate in PrOs4Sb12 (United States)

    Abu Alrub, Tayseer; Curnoe, Stephanie


    We present a theoretical study of the density of states, specific heat and nuclear spin-relaxation rate in the unconventional superconductor PrOs4Sb12. In this material, superconductivity is best described by a three component order parameter in the triplet channel. Instead of nodes, deep dips appear in the gap function producing power law temperature dependencies at higher temperatures and exponential suppression at low temperatures of the specific heat and the nuclear spin lattice relaxation rate. Various experimental observations will be discussed in this context.

  7. Joule-Heated Molten Regolith Electrolysis Reactor Concepts for Oxygen and Metals Production on the Moon and Mars (United States)

    Sibille, Laurent; Dominques, Jesus A.


    The maturation of Molten Regolith Electrolysis (MRE) as a viable technology for oxygen and metals production on explored planets relies on the realization of the self-heating mode for the reactor. Joule heat generated during regolith electrolysis creates thermal energy that should be able to maintain the molten phase (similar to electrolytic Hall-Heroult process for aluminum production). Self-heating via Joule heating offers many advantages: (1) The regolith itself is the crucible material, it protects the vessel walls (2) Simplifies the engineering of the reactor (3) Reduces power consumption (no external heating) (4) Extends the longevity of the reactor. Predictive modeling is a tool chosen to perform dimensional analysis of a self-heating reactor: (1) Multiphysics modeling (COMSOL) was selected for Joule heat generation and heat transfer (2) Objective is to identify critical dimensions for first reactor prototype.

  8. Analysis of heat and mass transfer during microwave drying of food products

    Directory of Open Access Journals (Sweden)

    A. K. Haghi


    Full Text Available Microwave (MW drying is a rapid dehydration technique that can be applied to specific foods. Increasing concerns over product quality and production costs have motivated the researchers to investigate and the industry to adopt microwave drying technology. The advantages of microwave drying include the following: shorter drying time, improved product quality, and flexibility in producing a wide variety of dried products. Drying is influenced by heat and mass transfer between drying airflow and product, as well as the complex moisture transport processes which take place in the product.. This paper presents an analytical approach for the drying of potato. The laws of moisture content change in the food product as a function of mass transfer are used for the theoretical approach. The study gives a brief description of efforts made to obtain basic drying parameters under different microwave drying conditions. This computational method can be used as a tool for microwave drying of potato slabs more efficiency.

  9. Modelling of labour productivity loss due to climate change: HEAT-SHIELD (United States)

    Kjellstrom, Tord; Daanen, Hein


    Climate change will bring higher heat levels (temperature and humidity combined) to large parts of the world. When these levels reach above thresholds well defined by human physiology, the ability to maintain physical activity levels decrease and labour productivity is reduced. This impact is of particular importance in work situations in areas with long high intensity hot seasons, but also affects cooler areas during heat waves. Our modelling of labour productivity loss includes climate model data of the Inter-Sectoral Impact Model Inter-comparison Project (ISI-MIP), calculations of heat stress indexes during different months, estimations of work capacity loss and its annual impacts in different parts of the world. Different climate models will be compared for the Representative Concentration Pathways (RCPs) and the outcomes of the 2015 Paris Climate Conference (COP21) agreements. The validation includes comparisons of modelling outputs with actual field studies using historical heat data. These modelling approaches are a first stage contribution to the European Commission funded HEAT-SHIELD project.

  10. How do rain drops affect atmospheric radiative fluxes and heating rates? (United States)

    Hill, Peter; Chiu, Christine; Chern, Jiun-Dar; Allan, Richard; Hill, Adrian


    General circulation model (GCM) radiation schemes are becoming increasingly sophisticated; the treatment of clouds has become more refined while the number of gases and aerosol species that are represented continues to rise. However, all GCMs continue to ignore the radiative effect of precipitating liquid water (rain). The resulting biases are expected to be small, but they have yet to be quantified. This study aims to provide a first estimate of how rain affects the atmospheric radiation budget at a range of temporal and spatial scales. This is a necessary first step towards determining whether GCM radiation schemes should include rain. We define the rain radiative effect here as the difference between radiative fluxes calculated with and without rain. We perform calculations using the SOCRATES (Suite Of Community Radiative Transfer codes based on Edwards-Slingo) radiative tranfser scheme. Input atmospheric profiles are taken from two weeks (one week during boreal winter and the other during boreal summer) of a Goddard multiscale modelling framework (MMF) simulation. Based on these calculations, we shall quantify and explain how rain affects the transfer of radiation through the atmosphere and thus radiative heating rates and fluxes at both the surface and top of atmosphere.

  11. Shut-down dose rate analyses for the ITER electron cyclotron-heating upper launcher

    Energy Technology Data Exchange (ETDEWEB)

    Weinhorst, Bastian; Serikov, Arkady; Fischer, Ulrich; Lu, Lei [Institute for Neutron Physics and Reactor Technology INR (Germany); Karlsruhe Institute of Technology KIT (Germany); Spaeh, Peter; Strauss, Dirk [Institute for Applied Materials IAM (Germany); Karlsruhe Institute of Technology KIT (Germany)


    The electron cyclotron resonance heating upper launcher (ECHUL) is going to be installed in the upper port of the ITER tokamak thermonuclear fusion reactor for plasma mode stabilization (neoclassical tearing modes and the sawtooth instability). The paper reports the latest neutronic modeling and analyses which have been performed for the ITER reference front steering launcher design. It focuses on the port accessibility after reactor shut-down for which dose rate (SDDR) distributions on a fine regular mesh grid were calculated. The results are compared to those obtained for the ITER Dummy Upper Port. The calculations showed that the heterogeneous ECHUL design gives rise to enhanced radiation streaming as compared to the homogenous dummy upper port. Therefore the used launcher geometry was upgraded to a more recent development stage. The inter-comparison shows a significant improvement of the launchers shielding properties but also the necessity to further upgrade the shielding performance. Furthermore, the analysis for the homogenous dummy upper port, which represents optimal shielding inside the launcher, demonstrates that the shielding upgrade also needs to include the launcher's environment.

  12. 39 CFR 3010.2 - Types of rate adjustments for market dominant products. (United States)


    ... 39 Postal Service 1 2010-07-01 2010-07-01 false Types of rate adjustments for market dominant... FOR MARKET DOMINANT PRODUCTS General Provisions § 3010.2 Types of rate adjustments for market dominant products. (a) There are four types of rate adjustments for market dominant products. A Type 1-A rate...

  13. Hardening by cooling rate control and post-firing heat treatment in Pd-Ag-Sn alloy for bonding porcelain. (United States)

    Yu, Young-Jun; Seol, Hyo-Joung; Cho, Mi-Hyang; Kim, Hyung-Il; Kwon, Yong Hoon


    The aim of this study was to determine the hardening effect by controlling the cooling rate during the porcelain firing process and performing an additional post-firing heat treatment in a Pd-Ag-Sn alloy. The most effective cooling rate for alloy hardening was determined by cooling the specimens at various cooling rates after oxidation treatment. A subsequent porcelain firing simulation followed by cooling at the selected cooling rate was performed. A post-firing heat treatment was then done at 600°C in a porcelain furnace. The hardening mechanism was characterized by a hardness test, X-ray diffraction, field emission scanning electron microscopy and energy dispersive X-ray spectroscopy. Alloy softening occurred during the porcelain firing process followed by cooling at a controlled cooling rate. A post-firing heat treatment allowed apparent precipitation hardening. It is advisable to perform a postfiring heat treatment at 600°C in a porcelain furnace by annealing metal substructure after porcelain fusing.

  14. Modeling gallic acid production rate by empirical and statistical analysis

    Directory of Open Access Journals (Sweden)

    Bratati Kar


    Full Text Available For predicting the rate of enzymatic reaction empirical correlation based on the experimental results obtained under various operating conditions have been developed. Models represent both the activation as well as deactivation conditions of enzymatic hydrolysis and the results have been analyzed by analysis of variance (ANOVA. The tannase activity was found maximum at incubation time 5 min, reaction temperature 40ºC, pH 4.0, initial enzyme concentration 0.12 v/v, initial substrate concentration 0.42 mg/ml, ionic strength 0.2 M and under these optimal conditions, the maximum rate of gallic acid production was 33.49 mumoles/ml/min.Para predizer a taxa das reações enzimaticas uma correlação empírica baseada nos resultados experimentais foi desenvolvida. Os modelos representam a ativação e a desativativação da hydrolise enzimatica. Os resultados foram avaliados pela análise de variança (ANOVA. A atividade máxima da tannase foi obtida após 5 minutos de incubação, temperatura 40ºC, pH 4,0, concentração inicial da enzima de 0,12 v/v, concentração inicial do substrato 0,42 mg/ml, força iônica 0,2 M. Sob essas condições a taxa máxima de produção ácido galico foi de 33,49 µmoles/ml/min.

  15. Evaluation of reusable surface insulation for space shuttle over a range of heat-transfer rate and surface temperature (United States)

    Chapman, A. J.


    Reusable surface insulation materials, which were developed as heat shields for the space shuttle, were tested over a range of conditions including heat-transfer rates between 160 and 620 kW/sq m. The lowest of these heating rates was in a range predicted for the space shuttle during reentry, and the highest was more than twice the predicted entry heating on shuttle areas where reusable surface insulation would be used. Individual specimens were tested repeatedly at increasingly severe conditions to determine the maximum heating rate and temperature capability. A silica-base material experienced only minimal degradation during repeated tests which included conditions twice as severe as predicted shuttle entry and withstood cumulative exposures three times longer than the best mullite material. Mullite-base materials cracked and experienced incipient melting at conditions within the range predicted for shuttle entry. Neither silica nor mullite materials consistently survived the test series with unbroken waterproof surfaces. Surface temperatures for a silica and a mullite material followed a trend expected for noncatalytic surfaces, whereas surface temperatures for a second mullite material appeared to follow a trend expected for a catalytic surface.

  16. Forecast of power generation and heat production from renewable energy sources

    Directory of Open Access Journals (Sweden)

    Pydych Tadeusz


    Full Text Available The share of renewable energy sources (RES in the end use of energy in the UE will increase from the present level of about 25% to 50 % in 2030 according to the assumptions of the European Commission. In Poland the RES Act was passed in 2015. The act defines mechanisms and instruments for supporting the production of electricity and heat from renewable energy sources. Statistics (2003–2014 of electricity generation and heat production from RES in Poland were used in the research. Because of amendments to regulations connected with promoting RES and the emissions trading system (ETS as well as the uncertainty associated with further directions of the energy and environmental policy, generation of electricity and heat based on the use of RES must be modelled while taking risk into account. A number of dynamic processes incorporating random events may be modelled by stochastic equations using Ito calculus. By applying Euler’s method to solve stochastic differential equations (SDE, it is possible to simulate the development of the use of renewable energy carriers in electricity generation and heat production in the future.

  17. Magnetic nanowires and hyperthermia: How geometry and material affect heat production efficiency

    KAUST Repository

    Contreras, Maria F.


    Magnetic hyperthermia, which refers to the production of heat by magnetic nanostructures under an alternating magnetic field (AMF), has been previously investigated with superparamagnetic nanobeads as a cancer therapy method. Magnetic nanowires (NWs) used in hyperthermia can be very promising, as it has been shown that they have a larger magnetic moment per unit of volume compared to the nanobeads. Moreover, Fe NWs proved to have a higher heating efficiency compared to Fe nanobeads, when exposed to an AMF at the same concentration [1].

  18. Heat production and quantitative oxidation of nutrients by physical activity in humans

    DEFF Research Database (Denmark)

    Thorbek, G; Chwalibog, André; Jakobsen, K


    The effect of physical activity on heat production and oxidation of nutrients was measured by means of indirect calorimetry. The experiment included 6 male and 4 female healthy subjects who, during a 24-hour stay in the respiration chambers, performed, in the morning and afternoon, 15 min cycling...... of 66.2 kJ by cycling caused on average a heat increment of 309 kJ, yielding the mean energetic efficiency for the performed work of 0.22. The activity caused an increment of 11.5 g oxidized carbohydrate and 2.6 g oxidized fat....

  19. Occupational Heat Stress Impacts on Health and Productivity in a Steel Industry in Southern India

    Directory of Open Access Journals (Sweden)

    Manikandan Krishnamurthy


    Conclusion: Preliminary evidence shows that high heat exposures and heavy workload adversely affect the workers’ health and reduce their work capacities. Health and productivity risks in developing tropical country work settings can be further aggravated by the predicted temperature rise due to climate change, without appropriate interventions. Apart from industries enhancing welfare facilities and designing control interventions, further physiological studies with a seasonal approach and interventional studies are needed to strengthen evidence for developing comprehensive policies to protect workers employed in high heat industries.

  20. Critical Analysis of Moving Heat Source Shape for ARC Welding Process of High Deposition Rate

    Czech Academy of Sciences Publication Activity Database

    Ghosh, A.; Hloch, Sergej; Chattopadhyaya, S.


    Roč. 21, č. 1 (2014), s. 95-98 ISSN 1330-3651 Institutional support: RVO:68145535 Keywords : Gaussian heat distribution * oval heat source shape * Submerged Arc Welding Subject RIV: JQ - Machines ; Tools Impact factor: 0.579, year: 2014

  1. Influence of heating rate on sorbitic transformation temperature of tempering C45 steel

    Directory of Open Access Journals (Sweden)

    A. Kulawik


    Full Text Available In this paper the analysis of speed heating influence on sorbitic transormation temperature of tempering C45 steel is presented. On thebasis of dilatometric research, functions associating heating time with initial and final temperature of sorbitic transformation have beendetermined as well as the size structural (γ and thermal (α expansion coefficients of quenching and tempering structures have beenestimated.

  2. Clinical application of fetal urine production rate in unexplained polyhydramnios. (United States)

    Touboul, C; Picone, O; Levaillant, J M; Boithias, C; Frydman, R; Boulvain, M; Senat, M V


    To evaluate the clinical use of hourly fetal urine production rate (HFUPR) in polyhydramnios. This was a retrospective review of 33 singleton pregnancies with polyhydramnios, 30 of them unexplained and three due to gastrointestinal atresia. HFUPR was estimated using three-dimensional ultrasound and was compared with recently established nomograms. Abnormal midterm outcome, defined as diagnosis or persistence of pathology after the neonatal period until the age of 2 years, was analyzed according to prenatal HFUPR measurements and other polyhydramnios characteristics. Seventeen of the 30 fetuses with unexplained polyhydramnios had an HFUPR above the 95(th) centile, and five (29.4%) of them developed midterm disorders. None of the 13 with normal HFUPR developed midterm disorders. The HFUPR was 1.9 (SD, 0.7) multiples of the median (MoM) in fetuses with an adverse childhood outcome and 1.4 (SD, 1.2) in fetuses with normal childhood outcome (P = 0.34). In the three fetuses with gastrointestinal atresia, the HFUPR was significantly lower than in those with unexplained polyhydramnios (P = 0.003). HFUPR was associated with the mechanism of polyhydramnios but failed to help in the prognosis of unexplained polyhydramnios because of lack of power. Children with prenatal unexplained polyhydramnios and HFUPR above the 95(th) centile should nevertheless receive detailed pediatric follow-up. Copyright (c) 2009 ISUOG. Published by John Wiley & Sons, Ltd.

  3. Influence of composition and rate heating on formation of black core in bodies obtained with red ceramic; Influencia da composicao e da taxa de aquecimento na formacao do coracao negro em pecas obtidas com massas da ceramica vermelha

    Energy Technology Data Exchange (ETDEWEB)

    Santana, L.N.L.; Goncalves, W.P.; Silva, B.J. da; Macedo, R.S.; Santos, R.C.; Lisboa, D., E-mail: [Universidade Federal de Campina Grande (UFCG), Campina Grande, PB (Brazil)


    In the heating of pieces of red pottery can the defect known as black core, this may deteriorate the technical and aesthetic characteristics of the final product. This study evaluated the influence of chemical composition and heating rate on the formation of black core in bodies red ceramic. The masses were treated and samples were extruded, dried, sintered at 900 °C, with heating rates of 5, 10, 15, 20 and 30 °C / min. and determined the following properties: water absorption, linear shrinkage and flexural strength. The pieces made with the mass containing lower content of iron oxide showed better resistance to bending when subjected to rapid heating. The presence of the black core was identified through visual analysis of the pieces after the break, being more apparent in parts subject to rates above 5 °C / min. (author)

  4. Experimental study of the influence of varying ceiling height on the heat release rate of a pool fire (United States)

    Liu, Jiahao; Wang, Jian; Richard, Yuen


    To investigate the influence of ceiling height on the combustion process of a pool fire whose flame impinges the ceiling, a sequence of pool fires with varying ceiling heights was performed using a scaled-down cone calorimeter. N-heptane and jet-A were employed as fuels to conducted the tests. Experimental findings reveal that with the decreasing ceiling height, the maximum and average heat release rates will initially increase due to the enhanced heat feedback, and then decrease as a result of the restriction of air entrainment caused by the extremely small ceiling height. In addition, the dimensionless ceiling height is found to have a linear relationship with the logarithm value of the dimensionless averaged heat release rate for the two given fuels with the similar slope of -2/3.

  5. Hall Effects on Unsteady MHD Reactive Flow Through a Porous Channel with Convective Heating at the Arrhenius Reaction Rate (United States)

    Das, S.; Patra, R. R.; Jana, R. N.; Makinde, O. D.


    This paper deals with the study of an unsteady magnetohydrodynamic (MHD) flow and heat transfer of a reactive, viscous, incompressible, electrically conducting fluid between two infinitely long parallel porous plates where one of the plates is set into impulsive/uniformly accelerated motion in the presence of a uniform transverse magnetic field at the Arrhenius reaction rate, with the Hall currents taken into account. The transient momentum equations are solved analytically with the use of the Laplace transform technique, and the velocity field and shear stresses are obtained in a unified closed form. The energy equation is tackled numerically using Matlab. The effects of the pertinent parameters on the fluid velocity, temperature, shear stresses, and the heat transfer rate at the plates are investigated. The results reveal that the combined effects of magnetic field, suction/injection, exothermic reaction, and variable thermal conductivity have a significant impact on the hydromagnetic flow and heat transfer.

  6. Educational gradients in the use of electronic cigarettes and heat-not-burn tobacco products in Japan


    Miyazaki, Yuki; Tabuchi, Takahiro


    Objectives In addition to electronic cigarettes (e-cigarettes), tobacco companies have recently begun to sell heat-not-burn tobacco products, Ploom and iQOS in Japan. Previous research has reported an inverse association between combustible cigarette smoking and educational attainment, but little is known about the association for e-cigarettes, especially heat-not-burn tobacco products. Our objective was to analyze the relationship between educational attainment and e-cigarette and heat-not-b...

  7. Estimation of metabolic heat production and methane emission in Sahiwal and Karan Fries heifers under different feeding regimes

    Directory of Open Access Journals (Sweden)

    Sunil Kumar


    Full Text Available Aim: The objective of this study was designed to estimate the metabolic heat production and methane emission in Sahiwal and Karan Fries (Holstein-Friesian X Tharparkar heifers under two different feeding regimes, i.e., feeding regime-1 as per the National Research Council (NRC (2001 and feeding regime-2 having 15% higher energy (supplementation of molasses than NRC (2001. Materials and Methods: Six (n = 6 healthy heifers of Sahiwal and Karan Fries with 18-24 months of age were selected from Indian Council of Agricultural Research-National Dairy Research Institute, Karnal. An initial 15 days was maintained under feeding regime-1 and feeding regime-2 as adaptation period; actual experiment was conducted from 16th day onward for next 15 days. At the end of feeding regimes (on day 15th and 16th, expired air and volume were collected in Douglas bag for two consecutive days (morning [6:00 am] and evening [4:00 pm]. The fraction of methane and expired air volume were measured by methane analyzer and wet test meter, respectively. The oxygen consumption and carbon dioxide production were measured by iWorx LabScribe2. Results: The heat production (kcal/day was significantly (p0.05. The energy loss as methane (% from total heat production was significantly (p<0.05 higher in feeding regime-1. The body weight (kg, metabolic body weight (W0.75, and basal metabolic rate (kcal/kg0.75 were significantly (p<0.05 higher in feeding regime-2 in both breeds. Conclusions: This study indicates that higher energy diet by supplementing molasses may reduce energy loss as methane and enhance the growth of Sahiwal and Karan Fries heifers.

  8. Use of biomass for clean and efficient production of heat and power. Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    Glarborg, P.; Lans, R. van der; Frandsen, J.B.F.; Johnsson, J.E.; Jensen, A.; Kiil, S.; Dam-Johansen, K.


    The present EFP98 project is the second phase of a long-term, strategic research project, the aim of which is to facilitate the use of significant amounts of biomass in the production of power and heat. The project deals with combustion and emission issues related to the use of biomass, specifically combustion of straw on a grate and wet flue gas desulphurization. A mathematical model for combustion of straw on a grate is developed as a tool to improve the understanding of this process. The model includes heat transfer to and in the bed as well as pyrolysis and char oxidation. To verify the model and to obtain a better understanding of fixed-bed straw combustion, a number of bench-scale laboratory experiments have been conducted at TNO in Holland. Predicted combustion rates and bed temperatures were in fairly good agreement with experimental fixed-bed data. A parameter analysis has identified the sensitivity of modeling predictions towards important parameters in the model. Measuring programs on straw firing have been conducted at Enstedvaerket and Masnedoe. Measuring results include gas temperature and gas composition (O{sub 2}, CO{sub 2}, CO. SO{sub 2}, NO) from different positions in the boiler. Data from Masnedoe include also results from co-firing of straw with other biomass fuels (25-35%). The results indicate that co-firing in the quantities does not significantly affect emissions. Nitrogen oxides emissions from Masnedoevaerket were found to be significantly higher than those of Ensted. The work on wet flue gas desulphurization on aimed to provide the information necessary to optimize and further develop the process. The main focus was fuel and sorbent flexibility, use of the waste product from the semi-dry FGD process as a sorbent in wet FGD, and ways of optimizing the Wet FGD process with respect to a high degree of desulphurization, a low content of residual limestone in the gypsum and a continuous steady state operation of the FGD plant. Laboratory

  9. Comparison of the Heat Release Rate from the Mass Loss Calorimeter to the Cone Calorimeter for Wood-based Materials (United States)

    Laura E. Hasburgh; Robert H. White; Mark A. Dietenberger; Charles R. Boardman


    There is a growing demand for material properties to be used as inputs in fi re behavior models designed to address building fire safety. This comparative study evaluates using the mass loss calorimeter as an alternative to the cone calorimeter for obtaining heat release rates of wood-based materials. For this study, a modified mass loss calorimeter utilized an...

  10. Effects of calcination temperature and heating rate on the photocatalytic properties of ZnO prepared by pyrolysis. (United States)

    He, Lingling; Tong, Zhifang; Wang, Zhonghua; Chen, Ming; Huang, Ni; Zhang, Wei


    A series of ZnO nanorods were prepared by pyrolysis of zinc acetate at different calcination temperatures and heating rates under ambient atmosphere. The as-prepared ZnO nanorods were characterized by X-ray diffractometer (XRD), scanning electron microscopy (SEM), UV-visible diffuse reflectance spectroscopy (DRS) and X-ray photoelectron spectroscopy (XPS). The photocatalytic performances of the ZnO nanorods were evaluated by the photodegradation of methyl orange (MO) and 4-nitrophenol (4-NP). The morphology, optical property, surface composition, and photocatalytic performance of the ZnO samples were affected by both calcination temperature and heating rate. The photocatalytic activity of the ZnO sample was obviously decreased with increased heating rate, which might be ascribed to the simultaneous decrease of oxygen vacancies and surface adsorption oxygen species. The ZnO nanorods prepared at 300°C with a heating rate of 1°C/min exhibited good photocatalytic activity and photochemical stability, allowing good potential practical application in environmental remediation. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Mass transport around comets and its impact on the seasonal differences in water production rates

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, M.; Altwegg, K.; Thomas, N. [Physikalisches Institut, University of Bern, Sidlerstrasse 5, 3012 Bern (Switzerland); Fougere, N.; Combi, M. R.; Tenishev, V. M. [Atmospheric, Oceanic and Space Sciences, University of Michigan, 2455 Hayward Street, Ann Arbor, MI 48109 (United States); Le Roy, L. [Center for Space and Habitability, University of Bern, Sidlerstrasse 5, 3012 Bern (Switzerland)


    Comets are surrounded by a thin expanding atmosphere, and although the nucleus' gravity is small, some molecules and grains, possibly with the inclusion of ices, can get transported around the nucleus through scattering (atoms/molecules) and gravitational pull (grains). Based on the obliquity of the comet, it is also possible that volatile material and icy grains get trapped in regions, which are in shadow until the comet passes its equinox. When the Sun rises above the horizon and the surface starts to heat up, this condensed material starts to desorb and icy grains will sublimate off the surface, possibly increasing the comet's neutral gas production rate on the outbound path. In this paper we investigate the mass transport around the nucleus, and based on a simplified model, we derive the possible contribution to the asymmetry in the seasonal gas production rate that could arise from trapped material released from cold areas once they come into sunlight. We conclude that the total amount of volatiles retained by this effect can only contribute up to a few percent of the asymmetry observed in some comets.

  12. How Vial Geometry Variability Influences Heat Transfer and Product Temperature During Freeze-Drying. (United States)

    Scutellà, Bernadette; Passot, Stéphanie; Bourlés, Erwan; Fonseca, Fernanda; Tréléa, Ioan Cristian


    Vial design features can play a significant role in heat transfer between the shelf and the product and, consequently, in the final quality of the freeze-dried product. Our objective was to investigate the impact of the variability of some geometrical dimensions of a set of tubing vials commonly used for pharmaceuticals production on the distribution of the vial heat transfer coefficients (Kv) and its potential consequence on product temperature. Sublimation tests were carried out using pure water and 8 combinations of chamber pressure (4-50 Pa) and shelf temperature (-40°C and 0°C) in 2 freeze-dryers. Kv values were individually determined for 100 vials located in the center of the shelf. Vial bottom curvature depth and contact area between the vial and the shelf were carefully measured for 120 vials and these data were used to calculate Kv distribution due to variability in vial geometry. At low pressures commonly used for sensitive products (below 10 Pa), the vial-shelf contact area appeared crucial for explaining Kv heterogeneity and was found to generate, in our study, a product temperature distribution of approximately 2°C during sublimation. Our approach provides quantitative guidelines for defining vial geometry tolerance specifications and product temperature safety margins. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  13. Revisiting the global surface energy budgets with maximum-entropy-production model of surface heat fluxes (United States)

    Huang, Shih-Yu; Deng, Yi; Wang, Jingfeng


    The maximum-entropy-production (MEP) model of surface heat fluxes, based on contemporary non-equilibrium thermodynamics, information theory, and atmospheric turbulence theory, is used to re-estimate the global surface heat fluxes. The MEP model predicted surface fluxes automatically balance the surface energy budgets at all time and space scales without the explicit use of near-surface temperature and moisture gradient, wind speed and surface roughness data. The new MEP-based global annual mean fluxes over the land surface, using input data of surface radiation, temperature data from National Aeronautics and Space Administration-Clouds and the Earth's Radiant Energy System (NASA CERES) supplemented by surface specific humidity data from the Modern-Era Retrospective Analysis for Research and Applications (MERRA), agree closely with previous estimates. The new estimate of ocean evaporation, not using the MERRA reanalysis data as model inputs, is lower than previous estimates, while the new estimate of ocean sensible heat flux is higher than previously reported. The MEP model also produces the first global map of ocean surface heat flux that is not available from existing global reanalysis products.

  14. Crop Production under Drought and Heat Stress: Plant Responses and Management Options. (United States)

    Fahad, Shah; Bajwa, Ali A; Nazir, Usman; Anjum, Shakeel A; Farooq, Ayesha; Zohaib, Ali; Sadia, Sehrish; Nasim, Wajid; Adkins, Steve; Saud, Shah; Ihsan, Muhammad Z; Alharby, Hesham; Wu, Chao; Wang, Depeng; Huang, Jianliang


    Abiotic stresses are one of the major constraints to crop production and food security worldwide. The situation has aggravated due to the drastic and rapid changes in global climate. Heat and drought are undoubtedly the two most important stresses having huge impact on growth and productivity of the crops. It is very important to understand the physiological, biochemical, and ecological interventions related to these stresses for better management. A wide range of plant responses to these stresses could be generalized into morphological, physiological, and biochemical responses. Interestingly, this review provides a detailed account of plant responses to heat and drought stresses with special focus on highlighting the commonalities and differences. Crop growth and yields are negatively affected by sub-optimal water supply and abnormal temperatures due to physical damages, physiological disruptions, and biochemical changes. Both these stresses have multi-lateral impacts and therefore, complex in mechanistic action. A better understanding of plant responses to these stresses has pragmatic implication for remedies and management. A comprehensive account of conventional as well as modern approaches to deal with heat and drought stresses have also been presented here. A side-by-side critical discussion on salient responses and management strategies for these two important abiotic stresses provides a unique insight into the phenomena. A holistic approach taking into account the different management options to deal with heat and drought stress simultaneously could be a win-win approach in future.

  15. The heat insulating properties of potato starch extruded with addition of chosen by- products of food industry

    Directory of Open Access Journals (Sweden)

    Zdybel Ewa


    Full Text Available The study was aimed at determination of time of heat transition through the layer of quince, apple, linen, rose pomace and potato pulp, as well as layer of potato starch and potato starch extruded with addition of above mentioned by-products. Additionally the attempt of creation a heat insulating barrier from researched raw material was made. The heat conductivity of researched materials was dependent on the type of material and its humidity. Extruded potato starch is characterized by smaller heat conductivity than potato starch extruded with addition of pomace. The obtained rigid extruded starch moulders were characterized by higher heat insulating properties than the loose beads. It is possible to use starch and by-products of food industry for production of heat insulating materials.

  16. Production Planning with Respect to Uncertainties. Simulator Based Production Planning of Average Sized Combined Heat and Power Production Plants; Produktionsplanering under osaekerhet. Simulatorbaserad produktionsplanering av medelstora kraftvaermeanlaeggningar

    Energy Technology Data Exchange (ETDEWEB)

    Haeggstaahl, Daniel [Maelardalen Univ., Vaesteraas (Sweden); Dotzauer, Erik [AB Fortum, Stockholm (Sweden)


    Production planning in Combined Heat and Power (CHP) systems is considered. The focus is on development and use of mathematical models and methods. Different aspects on production planning are discussed, including weather and load predictions. Questions relevant on the different planning horizons are illuminated. The main purpose with short-term (one week) planning is to decide when to start and stop the production units, and to decide how to use the heat storage. The main conclusion from the outline of pros and cons of commercial planning software are that several are using Mixed Integer Programming (MIP). In that sense they are similar. Building a production planning model means that the planning problem is formulated as a mathematical optimization problem. The accuracy of the input data determines the practical detail level of the model. Two alternatives to the methods used in today's commercial programs are proposed: stochastic optimization and simulator-based optimization. The basic concepts of mathematical optimization are outlined. A simulator-based model for short-term planning is developed. The purpose is to minimize the production costs, depending on the heat demand in the district heating system, prices of electricity and fuels, emission taxes and fees, etc. The problem is simplified by not including any time-linking conditions. The process model is developed in IPSEpro, a heat and mass-balance software from SimTech Simulation Technology. TOMLAB, an optimization toolbox in MATLAB, is used as optimizer. Three different solvers are applied: glcFast, glcCluster and SNOPT. The link between TOMLAB and IPSEpro is accomplished using the Microsoft COM technology. MATLAB is the automation client and contains the control of IPSEpro and TOMLAB. The simulator-based model is applied to the CHP plant in Eskilstuna. Two days are chosen and analyzed. The optimized production is compared to the measured. A sensitivity analysis on how variations in outdoor

  17. Heat Stress (United States)

    ... Publications and Products Programs Contact NIOSH NIOSH HEAT STRESS Recommend on Facebook Tweet Share Compartir NEW OSHA- ... hot environments may be at risk of heat stress. Exposure to extreme heat can result in occupational ...

  18. Exergoeconomic analysis and optimization of combined heat and power production. A review

    Energy Technology Data Exchange (ETDEWEB)

    Abusoglu, Aysegul; Kanoglu, Mehmet [Department of Mechanical Engineering, University of Gaziantep, 27310 Gaziantep (Turkey)


    Exergoeconomics is also called thermoeconomics, and thermoeconomic analysis methodologies combine economic and thermodynamic analysis by applying the cost concept to exergy which accounts for the quality of energy. The main concept of thermoeconomics is the exergetic cost and it deals with cost accounting methods. This paper is a review on the exergoeconomic analysis and optimization of combined heat and power production (CHPP). A brief historical overview on the exergoeconomics analysis and optimization is given. The concept of exergetic cost and cost accounting methods are discussed. An application of relevant formulation is given using a diesel engine powered cogeneration system as an example. Main thermoeconomic methodologies available in literature are described and their advantages and disadvantages with respect to one another are compared and discussed through a well-known problem, namely CGAM. Important studies on thermoeconomic analysis and optimization of combined heat and power production are listed based on the methodology used and the type of system considered. (author)

  19. Impact of Cold Waves and Heat Waves on the Energy Production Sector

    Directory of Open Access Journals (Sweden)

    Juan A. Añel


    Full Text Available Cold and heat waves represent a significant problem for the electricity generation sector. The disruptions cold and heat waves can cause in power production are beyond their consumption impacts through, for instance, higher peak demand. Unexpected stops at thermal or nuclear power plants by excessively high-temperature water constitute clear examples of this. In this invited paper, we use past case studies to analyze the impact of these kinds of events on power production. Subsequently we discuss how events of this nature may evolve over the future in view of their association to climate change. Although the review is not exhaustive, we do expose some ideas that may be relevant for decision making in this area

  20. A mechanism for corrosion product deposition on the carbon steel piping in the residual heat removal system of BWRs

    Energy Technology Data Exchange (ETDEWEB)

    Aizawa, Motohiro; Chiba, Yoshinori [Hitachi Engineering Co., Ltd., Nuclear Power Plant Engineering Dept., Hitachi, Ibaraki (Japan); Hosokawa, Hideyuki [Hitachi Ltd., Power and Industrial Systems R and D Laboratory, Hitachi, Ibaraki (Japan); Ohsumi, Katsumi [Hitachi Ltd., Power and Industrial Systems Nuclear Systems Division, Hitachi, Ibaraki (Japan); Uchida, Shunsuke [Tohoku Univ., Graduate School of Engineering, Dept. of Quantum Science and Energy Engineering, Sendai, Miyagi (Japan); Ishizawa, Noboru [Tokyo Electric Power Company, Kashiwazaki-Kariwa Nuclear Power Station, Kashiwazaki, Niigata (Japan)


    The dose rate of the residual heat removal (RHR) piping has been considered to be caused by accumulation of insoluble (crud) radioactive corrosion products on carbon steel surfaces. Soft shutdown procedures (i.e., plant shutdown with moderate coolant temperature reduction rate) used to be applied to reduce crud radioactivity release from the fuel surface, but these are no longer used because of the need for shorter plant shutdown times. In order to apply other suitable countermeasures to reduce RHR dose rate, assessment of plant data, experiments on deposition of crud and ion species on carbon steel, and mass balance evaluation of radioactive corrosion products based on plant and laboratory data were carried out and the following findings were made. (1) Deposits of ion species on carbon steel surfaces of the RHR piping was much more numerous than for crud. (2) Ion species accumulation behavior on RHR piping, which is temperature dependent, can be evaluated with the calculation model used for the dehydration reaction of corrosion products generated during the wet lay-up period. (3) Deposition amounts could be reduced to 1/2.5 when the starting RHR system operation temperature was lowered from 155degC to 120degC. (author)

  1. Optimized Heating Rate and Soot-catalyst Ratio for Soot Oxidation over MoO3 Catalyst

    Directory of Open Access Journals (Sweden)

    Congwei Mei


    Full Text Available MoO3 is now utilized as a promising catalyst due to its high activity and favorable mobility at low temperature. Its spectral data and surface microstructures were characterized by Fourier transform infrared spectra (FT-IR and Field emission scanning electron microscope (FESEM. Thermo-analysis of the carbon black was performed over nano-MoO3 catalyst in a thermogravimetric analyzer (TGA at various heating rates and soot-catalyst ratios. Through the analysis of kinetic parameters, we found that the heat transfer effect and diffusion effect can be removed by setting lower heating rates and soot-catalyst ratios. Therefore, a strategy for selecting proper thermogravimetric parameters were established, which can contribute to the better understanding of thermo-analytical process. Copyright © 2017 BCREC Group. All rights reserved Received: 4th December 2016; Revised: 13rd June 2017; Accepted: 9th April 2017; Available online: 27th October 2017; Published regularly: December 2017 How to Cite: Mei, C., Mei, D., Yue, S, Chen, Z., Yuan, Y. (2017. Optimized Heating Rate and Soot-catalyst Ratio for Soot Oxidation over MoO3 Catalyst. Bulletin of Chemical Reaction Engineering & Catalysis, 12 (3: 408-414 (doi:10.9767/bcrec.12.3.845.408-414

  2. Perspectives of advanced thermal management in solar thermochemical syngas production using a counter-flow solid-solid heat exchanger (United States)

    Falter, Christoph; Sizmann, Andreas; Pitz-Paal, Robert


    A modular reactor model is presented for the description of solar thermochemical syngas production involving counter-flow heat exchangers that recuperate heat from the solid phase. The development of the model is described including heat diffusion within the reactive material as it travels through the heat exchanger, which was previously identified to be a possibly limiting factor in heat exchanger design. Heat transfer within the reactive medium is described by conduction and radiation, where the former is modeled with the three-resistor model and the latter with the Rosseland diffusion approximation. The applicability of the model is shown by the analysis of heat exchanger efficiency for different material thicknesses and porosities in a system with 8 chambers and oxidation and reduction temperatures of 1000 K and 1800 K, respectively. Heat exchanger efficiency is found to rise strongly for a reduction of material thickness, as the element mass is reduced and a larger part of the elements takes part in the heat exchange process. An increase of porosity enhances radiation heat exchange but deteriorates conduction. The overall heat exchange in the material is improved for high temperatures in the heat exchanger, as radiation dominates the energy transfer. The model is shown to be a valuable tool for the development and analysis of solar thermochemical reactor concepts involving heat exchange from the solid phase.

  3. Heat shock protein 70, heat shock protein 32, and vascular endothelial growth factor production and their effects on lipopolysaccharide-induced apoptosis in porcine aortic endothelial cells. (United States)

    Bernardini, Chiara; Zannoni, Augusta; Turba, Maria Elena; Fantinati, Paolo; Tamanini, Carlo; Bacci, Maria Laura; Forni, Monica


    Lipopolysaccharide (LPS) is a highly proactive molecule that causes in vivo a systemic inflammatory response syndrome and activates in vitro the inflammatory pathway in different cellular types, including endothelial cells (EC). Because the proinflammatory status could lead to EC injury and apoptosis, the expression of proinflammatory genes must be finely regulated through the induction of protective genes. This study aimed at determining whether an LPS exposure is effective in inducing apoptosis in primary cultures of porcine aortic endothelial cells and in stimulating heat shock protein (Hsp)70 and Hsp32 production as well as vascular endothelial growth factor (VEGF) secretion. Cells between third and eighth passage were exposed to 10 microg/mL LPS for 1, 7, 15, and 24 hours (time-course experiments) or to 1, 10, and 100 microg/mL LPS for 7 and 15 hours (dose-response experiments). Apoptosis was not affected by 1 microg/mL LPS but significantly increased in a dose-dependent manner with the highest LPS doses. Furthermore, apoptosis rate increased only till 15 hours of LPS exposure. LPS stimulated VEGF secretion in a dose-dependent manner; its effect became significant after 7 hours and reached a plateau after 15 hours. Both Hsp70 and Hsp32 expressions were induced by LPS in a dose-dependent manner after 7 hours. Subsequent studies were addressed to evaluate the protective role of Hsp32, Hsp70, and VEGF. Hemin, an Hsp32 inducer (5, 20, 50 microM), and recombinant VEGF (100 and 200 ng/mL), were added to the culture 2 hours before LPS (10 microg/mL for 24 hours); to induce Hsp70 expression, cells were heat shocked (42 degrees C for 1 hour) 15 hours before LPS (10 microg/mL for 24 hours). Hemin exposure upregulated Hsp32 expression in a dose-dependent manner and protected cells against LPS-induced apoptosis. Heat shock (HS) stimulated Hsp70 expression but failed to reduce LPS-induced apoptosis; VEGF addition did not protect cells against LPS-induced apoptosis at any

  4. SISGR - In situ characterization and modeling of formation reactions under extreme heating rates in nanostructured multilayer foils

    Energy Technology Data Exchange (ETDEWEB)

    Hufnagel, Todd C.


    Materials subjected to extreme conditions, such as very rapid heating, behave differently than materials under more ordinary conditions. In this program we examined the effect of rapid heating on solid-state chemical reactions in metallic materials. One primary goal was to develop experimental techniques capable of observing these reactions, which can occur at heating rates in excess of one million degrees Celsius per second. One approach that we used is x-ray diffraction performed using microfocused x-ray beams and very fast x-ray detectors. A second approach is the use of a pulsed electron source for dynamic transmission electron microscopy. With these techniques we were able to observe how the heating rate affects the chemical reaction, from which we were able to discern general principles about how these reactions proceed. A second thrust of this program was to develop computational tools to help us understand and predict the reactions. From atomic-scale simulations were learned about the interdiffusion between different metals at high heating rates, and about how new crystalline phases form. A second class of computational models allow us to predict the shape of the reaction front that occurs in these materials, and to connect our understanding of interdiffusion from the atomistic simulations to measurements made in the laboratory. Both the experimental and computational techniques developed in this program are expected to be broadly applicable to a wider range of scientific problems than the intermetallic solid-state reactions studied here. For example, we have already begun using the x-ray techniques to study how materials respond to mechanical deformation at very high rates.

  5. Technological Alternatives or Use of Wood Fuel in Combined Heat and Power Production (United States)

    Rusanova, Jekaterina; Markova, Darja; Bazbauers, Gatis; Valters, Kārlis


    Abstract Latvia aims for 40% share of renewable energy in the total final energy use. Latvia has large resources of biomass and developed district heating systems. Therefore, use of biomass for heat and power production is an economically attractive path for increase of the share of renewable energy. The optimum technological solution for use of biomass and required fuel resources have to be identified for energy planning and policy purposes. The aim of this study was to compare several wood fuel based energy conversion technologies from the technical and economical point of view. Three biomass conversion technologies for combined heat and electricity production (CHP) were analyzed: • CHP with steam turbine technology; • gasification CHP using gas engine; • bio-methane combined cycle CHP. Electricity prices for each alternative are presented. The results show the level of support needed for the analyzed renewable energy technologies and time period needed to reach price parity with the natural gas - fired combined cycle gas turbine (CCGT) CHPss. The results also show that bio-methane technology is most competitive when compared with CCGT among the considered technologies regarding fuel consumption and electricity production, but it is necessary to reduce investment costs to reach the electricity price parity with the natural gas CCGT.

  6. Productive Government Purchases and the Real Exchange Rate


    Basu, Parantap; Kollmann, Robert


    Empirical research documents that an exogenous rise in government purchases in a given country triggers a depreciation of its real exchange rate. This raises an important puzzle, as standard macro theories predict an appreciation of the real exchange rate. We argue that this prediction reflects the assumption that government purchases are unproductive. Using a simple model, we show that the real exchange rate may depreciate in response to a rise in government purchases, if those purchases inc...

  7. Application of multivariate adaptive regression spine-assisted objective function on optimization of heat transfer rate around a cylinder

    Energy Technology Data Exchange (ETDEWEB)

    Dey, Prasenjit; Dad, Ajoy K. [Mechanical Engineering Department, National Institute of Technology, Agartala (India)


    The present study aims to predict the heat transfer characteristics around a square cylinder with different corner radii using multivariate adaptive regression splines (MARS). Further, the MARS-generated objective function is optimized by particle swarm optimization. The data for the prediction are taken from the recently published article by the present authors [P. Dey, A. Sarkar, A.K. Das, Development of GEP and ANN model to predict the unsteady forced convection over a cylinder, Neural Comput. Appl. (2015). Further, the MARS model is compared with artificial neural network and gene expression programming. It has been found that the MARS model is very efficient in predicting the heat transfer characteristics. It has also been found that MARS is more efficient than artificial neural network and gene expression programming in predicting the forced convection data, and also particle swarm optimization can efficiently optimize the heat transfer rate.

  8. Method and apparatus for active control of combustion rate through modulation of heat transfer from the combustion chamber wall (United States)

    Roberts, Jr., Charles E.; Chadwell, Christopher J.


    The flame propagation rate resulting from a combustion event in the combustion chamber of an internal combustion engine is controlled by modulation of the heat transfer from the combustion flame to the combustion chamber walls. In one embodiment, heat transfer from the combustion flame to the combustion chamber walls is mechanically modulated by a movable member that is inserted into, or withdrawn from, the combustion chamber thereby changing the shape of the combustion chamber and the combustion chamber wall surface area. In another embodiment, heat transfer from the combustion flame to the combustion chamber walls is modulated by cooling the surface of a portion of the combustion chamber wall that is in close proximity to the area of the combustion chamber where flame speed control is desired.

  9. Calcium bromide hydration for heat storage systems


    Ai Niwa; Noriyuki Kobayashi


    A chemical reaction is a common and simple way to produce heat for a heat storage system. The reaction produces heat energy without the use of electricity or fuel. The goal of this study was to develop a heat storage system for use in automobiles, which is able to provide heat rapidly via a hydration reaction. A heat storage system without an evaporator stores high-density heat and has a high heat output rate since the solid–liquid product that is formed is transferred as a heat medium to the...

  10. Geochemical implications of production and storage control by coupling a direct-use geothermal system with heat networks


    Daniilidis, Alexandros; Scholten, Tjardo; Hooghiem, Joram; De Persis, Claudio; Herber, Rien


    This paper outlines a method in which the heat production of a geothermal system is controlled in relation to the demand from a district-heating network. A model predictive control strategy is designed, which uses volume measurements in the storage tank, and predictions of the demand, to regulate the production of the geothermal system in real time. The implications of such time-varying production for the reservoir are investigated using a 2D reactive transport reservoir model. As a case stud...

  11. Molecular epidemiology and heat resistance of Listeria monocytogenes in meat products and meat-processing plants and listeriosis in Latvia


    Berzins, Aivars


    The prevalence, contamination and heat resistance of Listeria monocytogenes were investigated in meat products and meat-processing plants. Moreover, trends of human listeriosis in Latvia were studied over a 10-year period from 1998 to 2007. A high prevalence (40%) of L. monocytogenes was found in cold-smoked meat products compared with other heat-treated ready-to-eat meat products (0.7%) available in retail markets in Latvia. Pulsed-field gel electrophoresis (PFGE) and serotyping were ap...

  12. The effect of ultrasound irradiation on the convective heat transfer rate during immersion cooling of a stationary sphere. (United States)

    Kiani, Hossein; Sun, Da-Wen; Zhang, Zhihang


    It has been proven that ultrasound irradiation can enhance the rate of heat transfer processes. The objective of this work was to study the heat transfer phenomenon, mainly the heat exchange at the surface, as affected by ultrasound irradiation around a stationary copper sphere (k=386W m(-1)K(-1), C(p)=384J kg(-1)K(-1), ρ=8660kg m(-3)) during cooling. The sphere (0.01m in diameter) was immersed in an ethylene glycol-water mixture (-10°C) in an ultrasonic cooling system that included a refrigerated circulator, a flow meter, an ultrasound generator and an ultrasonic bath. The temperature of the sphere was recorded using a data logger equipped with a T-type thermocouple in the center of the sphere. The temperature of the cooling medium was also monitored by four thermocouples situated at different places in the bath. The sphere was located at different positions (0.02, 0.04 and 0.06m) above the transducer surface of the bath calculated considering the center of the sphere as the center of the reference system and was exposed to different intensities of ultrasound (0, 120, 190, 450, 890, 1800, 2800, 3400 and 4100W m(-2)) during cooling. The frequency of the ultrasound was 25kHz. It was demonstrated that ultrasound irradiation can increase the rate of heat transfer significantly, resulting in considerably shorter cooling times. Higher intensities caused higher cooling rates, and Nu values were increased from about 23-27 to 25-108 depending on the intensity of ultrasound and the position of the sphere. However, high intensities of ultrasound led to the generation of heat at the surface of the sphere, thus limiting the lowest final temperature achieved. An analytical solution was developed considering the heat generation and was fitted to the experimental data with R(2) values in the range of 0.910-0.998. Visual observations revealed that both cavitation and acoustic streaming were important for heat transfer phenomenon. Cavitation clouds at the surface of the sphere

  13. Integration of heat treatment of wood with cogeneration production and district heating; Vaermebehandling av trae integrerad med kraftvaermeproduktion och fjaerrvaerme

    Energy Technology Data Exchange (ETDEWEB)

    Delin, Lennart; Essen, Henrik (AaF, Stockholm (Sweden))


    Heat treatment of wood changes the properties of wood so that the moisture uptake is reduced and the wood movements are reduced at variations in the ambient air humidity. The wood gets an increased resistance to rot and can therefore replace impregnated wood in certain applications. Heat treated wood is however not suitable for direct contact with soil. The strength is also reduced by heat treatment, so it is not recommended for supporting constructions. No additives whatsoever are used in the treatment, so the heat treated wood is very advantageous from an environmental point of view. The wood is dried completely at the heat treatment and heated to about 200 deg C. The question has hence been put, if it is advantageous to collocate a heat treatment plant with district heating or a power cogeneration plant. The aim of the study is to assess the value of such a collocation. Existing heat treatment plants are both few and small and the calculations have hence been made for how a large plant could be designed. A market study is included to assess the market for this type of plants. This shows that the present market for heat treated wood is very small. A full scale treatment plant of the type discussed in this study could probably not be built, since even single plants of this size would require a too large part of the market. The potential to replace impregnated wood is on the other hand very large. The cost for large scale heat treatment should be significantly lower than for impregnated wood and the cost for handling hazardous waste (which impregnated wood is classified as) is also removed. There should therefore be a potential for a future much larger volume of heat treated wood. The study shows that the energetic profit of collocation of a heat treatment plant for wood with district heating or power cogeneration plants is of lower importance. Maximally about 0.5 MSEK/year can be saved for a 25 000 m3/year plant. The initial drying of all sawn lumber has much more

  14. 3D slicing of radiogenic heat production in Bahariya Formation, Tut oil field, North-Western Desert, Egypt. (United States)

    Al-Alfy, I M; Nabih, M A


    A 3D block of radiogenic heat production was constructed from the subsurface total gamma ray logs of Bahariya Formation, Western Desert, Egypt. The studied rocks possess a range of radiogenic heat production varying from 0.21 μWm(-3) to 2.2 μWm(-3). Sandstone rocks of Bahariya Formation have higher radiogenic heat production than the average for crustal sedimentary rocks. The high values of density log of Bahariya Formation indicate the presence of iron oxides which contribute the uranium radioactive ores that increase the radiogenic heat production of these rocks. The average radiogenic heat production produced from the study area is calculated as 6.3 kW. The histogram and cumulative frequency analyses illustrate that the range from 0.8 to 1.2 μWm(-3) is about 45.3% of radiogenic heat production values. The 3D slicing of the reservoir shows that the southeastern and northeastern parts of the study area have higher radiogenic heat production than other parts. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  15. Die Materials for Critical Applications and Increased Production Rates

    Energy Technology Data Exchange (ETDEWEB)

    David Schwam; John Wallace; Sebastian Birceanu


    Die materials for aluminum die-casting need to be resistant to heat checking, and have good resistance to washout and to soldering in a fast flow of molten aluminum. To resist heat checking, die materials should have a low coefficient of thermal expansion, high thermal conductivity, high hot yield strength, good temper softening resistance, high creep strength, and adequate ductility. To resist the washout and soldering, die materials should have high hot hardness, good temper resistance, low solubility in molten aluminum and good oxidation resistance. It is difficult for one material to satisfy with all above requirements. In practice, H13 steel is the most popular material for aluminum die casting dies. While it is not an ideal choice, it is substantially less expensive to use than alternative materials. However, in very demanding applications, it is sometimes necessary to use alternative materials to ensure a reasonable die life. Copper-base, nickel-base alloys and superalloys, titanium-,molybdenum-, tungsten-base alloys, and to some extent yttrium and niobium alloys, have all been considered as potential materials for demanding die casting applications. Most of these alloys exhibit superior thermal fatigue resistance, but suffer from other shortcomings.

  16. Using rating to evaluate quality of peanut products | Ogunsanwo ...

    African Journals Online (AJOL)

    Peanuts seeds roasted at 140°C for 40 min for either 25 or 35 min were rated to be of comparable quality with locally available commercial samples. Peanut butter prepared from seeds roasted at160°C for 30 min was also rated to be comparable with commercial samples, while Kwulinkwulis from seeds dry roasted at 150°C ...

  17. Reproduction rate as a factor in meat production

    African Journals Online (AJOL)

    yield more saleable beef. Under ranching conditions, gross mar- gins increased parallel with calving rate, but the margin per cow" did not always follow this trend. In Sourveld area!! it will proba- bly not be profitable to improve calving rates by additional short-term feeding during winter. The negative effect -on reproduction.

  18. The effects of energy expenditure rate on work productivity performance at different levels of production standard time. (United States)

    Nur, Nurhayati Mohd; Dawal, Siti Zawiah Md; Dahari, Mahidzal; Sanusi, Junedah


    [Purpose] The purpose of this study was to investigate the effects of energy expenditure rate on work productivity performance at different levels of production standard time. [Subjects and Methods] Twenty industrial workers performed repetitive tasks at three different levels of production standard time, normal, hard, and very hard. Work productivity and energy expenditure rate were recorded during the experimental tasks. [Results] The work productivity target was not attainable for the hard and very hard production standard times. This was attributed to the energy expenditure rate, which increased as the level of production standard time became harder. The percentage change in energy expenditure rate for the very hard level (32.5%) relative to the normal level was twice that of the hard level (15.5%), indicating a higher risk of work-related musculoskeletal disorders for the harder production standard time. The energy expenditure rate for the very hard production standard time (1.36 kcal/min) was found to exceed the maximum energy expenditure rate recommended for light repetitive tasks involving both arms (1.2 kcal/min). [Conclusion] The present study shows that working with an energy expenditure rate that is either equal to or above the maximum energy expenditure rate of the tasks results in decreased work productivity performance due to the onset of physical fatigue and a higher risks of work-related musculoskeletal disorders.

  19. Thermal Disk Winds in X-Ray Binaries: Realistic Heating and Cooling Rates Give Rise to Slow, but Massive, Outflows (United States)

    Higginbottom, N.; Proga, D.; Knigge, C.; Long, K. S.


    A number of X-ray binaries exhibit clear evidence for the presence of disk winds in the high/soft state. A promising driving mechanism for these outflows is mass loss driven by the thermal expansion of X-ray heated material in the outer disk atmosphere. Higginbottom & Proga recently demonstrated that the properties of thermally driven winds depend critically on the shape of the thermal equilibrium curve, since this determines the thermal stability of the irradiated material. For a given spectral energy distribution, the thermal equilibrium curve depends on an exact balance between the various heating and cooling mechanisms at work. Most previous work on thermally driven disk winds relied on an analytical approximation to these rates. Here, we use the photoionization code cloudy to generate realistic heating and cooling rates which we then use in a 2.5D hydrodynamic model computed in ZEUS to simulate thermal winds in a typical black hole X-ray binary. We find that these heating and cooling rates produce a significantly more complex thermal equilibrium curve, with dramatically different stability properties. The resulting flow, calculated in the optically thin limit, is qualitatively different from flows calculated using approximate analytical rates. Specifically, our thermal disk wind is much denser and slower, with a mass-loss rate that is a factor of two higher and characteristic velocities that are a factor of three lower. The low velocity of the flow—{v}\\max ≃ 200 km s-1—may be difficult to reconcile with observations. However, the high mass-loss rate—15 × the accretion rate—is promising, since it has the potential to destabilize the disk. Thermally driven disk winds may therefore provide a mechanism for state changes.

  20. Investigation of char strength and expansion properties of an intumescent coating exposed to rapid heating rates

    DEFF Research Database (Denmark)

    Nørgaard, Kristian Petersen; Dam-Johansen, Kim; Català, Pere


    , char properties, measured at room temperature, were dependent on the preceding storage conditions (in air or in a desiccator). The char was found to have the highest mechanical strength against compression in the outer crust facing the heat source. For thin (147μm) free coating films, a tendency...... with respect to the mechanical resistance against compression, degree of expansion, and residual mass fraction. Experimental results show that when using this type of shock heating, the mechanical resistance of the char against compression cannot meaningfully be correlated to the expansion factor. In addition...

  1. Interwell Connectivity and Diagnosis Using Correlation of Production and Injection Rate Data in Hydrocarbon Production

    Energy Technology Data Exchange (ETDEWEB)

    Jerry L. Jensen; Larry W. Lake; Ali Al-Yousef; Dan Weber; Ximing Liang; T.F. Edgar; Nazli Demiroren; Danial Kaviani


    This report details progress and results on inferring interwell communication from well rate fluctuations. Starting with the procedure of Albertoni and Lake (2003) as a foundation, the goal of the project was to develop further procedures to infer reservoir properties through weights derived from correlations between injection and production rates. A modified method, described in Yousef and others (2006a,b), and herein referred to as the 'capacitance model', is the primary product of this research project. The capacitance model (CM) produces two quantities, {lambda} and {tau}, for each injector-producer well pair. For the CM, we have focused on the following items: (1) Methods to estimate {lambda} and {tau} from simulated and field well rates. The original method uses both non-linear and linear regression and lacks the ability to include constraints on {lambda} and {tau}. The revised method uses only non-linear regression, permitting constraints to be included as well as accelerating the solution so that problems with large numbers of wells are more tractable. (2) Approaches to integrate {lambda} and {tau} to improve connectivity evaluations. Interpretations have been developed using Lorenz-style and log-log plots to assess heterogeneity. Testing shows the interpretations can identify whether interwell connectivity is controlled by flow through fractures, high-permeability layers, or due to partial completion of wells. Applications to the South Wasson and North Buck Draw Fields show promising results. (3) Optimization of waterflood injection rates using the CM and a power law relationship for watercut to maximize economic return. Tests using simulated data and a range of oil prices show the approach is working. (4) Investigation of methods to increase the robustness of {lambda} and {tau} estimates. Human interventions, such as workovers, also cause rate fluctuations and can be misinterpreted by the model if bottom hole pressure data are not available. A

  2. Wastewater treatment high rate algal pond biomass for bio-crude oil production. (United States)

    Mehrabadi, Abbas; Craggs, Rupert; Farid, Mohammed M


    This study investigates the production potential of bio-crude from wastewater treatment high rate algal pond (WWT HRAP) biomass in terms of yield, elemental/chemical composition and higher heating value (HHV). Hydrothermal liquefaction (HTL) of the biomass slurry (2.2wt% solid content, 19.7kJ/g HHV) was conducted at a range of temperatures (150-300°C) for one hour. The bio-crude yield and HHV varied in range of 3.1-24.9wt% and 37.5-38.9kJ/g, respectively. The bio-crudes were comprised of 71-72.4wt% carbon, 0.9-4.8wt% nitrogen, 8.7-9.8wt% hydrogen and 12-15.7wt% oxygen. GC-MS analysis indicated that pyrroles, indoles, amides and fatty acids were the most abundant bio-crude compounds. HTL of WWT HRAP biomass resulted, also, in production of 10.5-26wt% water-soluble compounds (containing up to 293mg/L ammonia), 1.0-9.3wt% gas and 44.8-85.5wt% solid residue (12.2-18.1kJ/g). The aqueous phase has a great potential to be used as an ammonia source for further algal cultivation and the solid residue could be used as a process fuel source. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Impact of Fe powder sintering and soldering in production of porous heating surface on flow boiling heat transfer in minichannels

    Directory of Open Access Journals (Sweden)

    Depczyński Wojciech


    Full Text Available This paper focuses on identification of the impact of porous heated surface on flow boiling heat transfer in a rectangular minichannel. The heated element for Fluorinert FC-72 was a thin plate made of Haynes-230. Infrared thermography was used to determine changes in the temperature on its outer smooth side. The porous surface in contact with the fluid in the minichannel was produced in two processes: sintering or soldering of Fe powder to the plate. The results were presented as relationships between the heat transfer coefficient and the distance from the minichannel inlet and as boiling curves. Results obtained for using a smooth heated plate at the saturated boiling region were also presented to compare. In the subcooled boiling region, at a higher heat flux, the heat transfer coefficient was slightly higher for the surface prepared via soldering. In the saturated boiling region, the local heat transfer coefficients obtained for the smooth plate surface were slightly higher than those achieved from the sintered plate surface. The porous structures formed have low thermal conductivity. This may induce noticeable thermal resistance at the diffusion bridges of the sintered structures, in particular within the saturated boiling region.

  4. Impact of Fe powder sintering and soldering in production of porous heating surface on flow boiling heat transfer in minichannels (United States)

    Depczyński, Wojciech; Piasecki, Artur; Piasecka, Magdalena; Strąk, Kinga


    This paper focuses on identification of the impact of porous heated surface on flow boiling heat transfer in a rectangular minichannel. The heated element for Fluorinert FC-72 was a thin plate made of Haynes-230. Infrared thermography was used to determine changes in the temperature on its outer smooth side. The porous surface in contact with the fluid in the minichannel was produced in two processes: sintering or soldering of Fe powder to the plate. The results were presented as relationships between the heat transfer coefficient and the distance from the minichannel inlet and as boiling curves. Results obtained for using a smooth heated plate at the saturated boiling region were also presented to compare. In the subcooled boiling region, at a higher heat flux, the heat transfer coefficient was slightly higher for the surface prepared via soldering. In the saturated boiling region, the local heat transfer coefficients obtained for the smooth plate surface were slightly higher than those achieved from the sintered plate surface. The porous structures formed have low thermal conductivity. This may induce noticeable thermal resistance at the diffusion bridges of the sintered structures, in particular within the saturated boiling region.

  5. Heat Production and Energy Efficiency of Broilers Infected With Necrotic Enteritis. (United States)

    M'Sadeq, Shawkat A; Wu, Shu-Biao; Choct, Mingan; Swick, Robert A


    Necrotic enteritis (NE) in poultry is the most important bacterial disease in terms of economic losses. The present study was conducted to evaluate the effect of an experimental challenge with necrotic enteritis on respiration and heat production in birds pretreated with dietary acylated starch or antibiotics (AB) zinc bacitracin (50 mg/kg) plus salinomycin (60 mg/kg). In total, 48 1-day-old Ross 308 male broilers were assigned to floor pens until day 10. On day 11, birds were randomly placed into 16 calorimetric chambers with four replicates of three birds per treatment. Treatments were: control, AB, acetylated high-amylose maize starch (SA), or butyrylated high-amylose maize starch (SB). Birds were NE challenged by inoculation with 5000 sporulated oocysts each of Eimeria maxima and Eimeria acervulina and 2500 sporulated oocysts of Eimeria brunetti on day 9 and Clostridium perfringens (3.8 × 10(8) colony-forming units) on day 14. The results showed that heat production (HP), respiratory quotient (RQ), heat increment, weight gain (WG), feed intake (FI), and livability (LV) of birds fed control, SA, and SB diets were lower than birds fed AB at 19 and 42 hr postinoculation (P energy intake (MEI), and metabolizable energy (P energy, and MEI of birds fed control, SA, and SB but not AB diets.

  6. Energy productivity, fertilization rate and profitability of wheat production after various predecessors II.Profitability of wheat production

    Directory of Open Access Journals (Sweden)

    Z. Uhr


    Full Text Available Abstract. In the course of our study on the adaptation of modern genotypes common winter wheat (Triticum aestivum to the requirements of sustainable agriculture data were received concerning the influence of the predecessor and nitrogen fertilizer rate on energy efficiency and recyclable nitrogen fertilization and profitability of productivity.We share these data with the scientific community, as they are up-to-date and informative in both theoretical and practical aspects. The analyses are based on data from field experiments fertilizer derived after predecessor cereals – regular crop of sorghum, millet, maize and legumes after predecessor - separate sowing of chickpeas. Energy efficiency of nitrogen fertilization was calculated as the ratio between the energy supplied in the additional grain yield and energy input in the form of fertilizers. Refundable efficiency of nitrogen fertilization is the additional amount of nitrogen accumulated in the grain, with respect to the applied nitrogen fertilization. Economic profitability of production is evaluated by coefficient R = P/Ra (ratio of benefits/costs. The results show that energy efficiency and recyclable nitrogen fertilization are on average five times higher after cereal than after legumes predecessor, and decreased with increasing the fertilizer rate, the decrease was statistically significant only for the first item (exponent. Profitability ratio of production after the introduction of legumes predecessor in crop rotation increases by an average of 42% and retains maximum values of fertilization levels 0.06, 0.12 and 0.18 t/ha nitrogen. Profitability of wheat production using pre-legumes crop is not determined by the parameters nitrogen fertilizer rate and energy efficiency of nitrogen fertilization and refundable efficiency of nitrogen fertilization.

  7. Genetic variations alter production and behavioral responses following heat stress in 2 strains of laying hens. (United States)

    Mack, L A; Felver-Gant, J N; Dennis, R L; Cheng, H W


    Genetic differences alter the type and degree of hens' responses and their ability to adapt to a stressor. This study examined the effects of genotypic variations on the productivity and behavior of laying hens following heat stress (HS). Two strains of White Leghorn hens were used: DXL (Dekalb XL), a commercial strain individually selected for egg production and KGB (kind, gentle bird), a strain selected for high group productivity and survivability. Ninety hens (48 DXL and 42 KGB) at 28 wk of age were randomly assigned to either a hot (H: mean = 32.6°C) or control (C: mean = 24.3°C) treatment and housed in pairs by strain for 9 d. Egg production and quality, behavior, body and organ weights, and circulating hormone concentrations were measured. Heat-stressed hens had lower egg production [adjusted (adj) P weight tended to be reduced at d 1 and was reduced at d 9 (adj P = 0.007), but was reduced only at d 9 among H-KGB hens (adj P = 0.007). Eggshell thickness was also reduced among H hens at d 9 (adj P = 0.007), especially among H-KGB hens (adj P = 0.01). Plasma triiodothyronine concentration was reduced among H-hens (adj P = 0.01), especially among H-DXL hens (adj P = 0.01). Neither temperature nor strain affected the plasma thyroxine and plasma and yolk corticosterone concentrations. Heat-stressed hens spent less time walking (adj P = 0.001) and more time drinking (adj P = 0.007) and resting (adj P = 0.001) than C-hens. The results indicate that although HS reduced production and caused behavioral changes among hens from both strains, the responses differed by genotype. The data provide evidence that genetic selection is a useful strategy for reducing HS response in laying hens. The results provide insights for conducting future studies to develop heat-resistant strains to improve hen well-being, especially under the current commercial conditions.

  8. Heat exposure and productivity in orchards: Implications for climate change research. (United States)

    Quiller, Grant; Krenz, Jennifer; Ebi, Kristie; Hess, Jeremy J; Fenske, Richard A; Sampson, Paul D; Pan, Mengjie; Spector, June T


    Recent studies suggest that heat exposure degrades work productivity, but such studies have not considered individual- and workplace-level factors. Forty-six tree-fruit harvesters (98% Latino/a) from 6 orchards participated in a cross-sectional study in central/eastern Washington in 2015. The association between maximum measured work-shift wet-bulb globe temperature (WBGT max ) and productivity (total weight of fruit bins collected per time worked) was estimated using linear mixed-effects models, adjusting for relevant confounders. The mean (standard deviation) WBGT max was 27.9°C (3.6°C) in August and 21.2°C (2.0°C) in September. There was a trend of decreasing productivity with increasing WBGT max , but this association was not statistically significant. When individual- and workplace-level factors were included in the model, the association approached the null. Not considering individual, work, and economic factors that affect rest and recovery in projections of the effects of climate change could result in overestimates of reductions in future productivity and underestimate risk of heat illness.

  9. Oxidation of benzoic acid by heat-activated persulfate: Effect of temperature on transformation pathway and product distribution. (United States)

    Zrinyi, Nick; Pham, Anh Le-Tuan


    Heat activates persulfate (S2O82-) into sulfate radical (SO4-), a powerful oxidant capable of transforming a wide variety of contaminants. Previous studies have shown that an increase in temperature accelerates the rates of persulfate activation and contaminant transformation. However, few studies have considered the effect of temperature on contaminant transformation pathway. The objective of this study was to determine how temperature (T = 22-70 °C) influences the activation of persulfate, the transformation of benzoic acid (i.e., a model compound), and the distribution of benzoic acid oxidation products. The time-concentration profiles of the products suggest that benzoic acid was transformed via decarboxylation and hydroxylation mechanisms, with the former becoming increasingly important at elevated temperatures. The pathway through which the products were further oxidized was also influenced by the temperature of persulfate activation. Our findings suggest that the role of temperature in the persulfate-based treatment systems is not limited only to controlling the rates of sulfate and hydroxyl radical generation. The ability of sulfate radical to initiate decarboxylation reactions and, more broadly, fragmentation reactions, as well as the effect of temperature on these transformation pathways could be important to the transformation of a number of organic contaminants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Prediction of heating rate controlled viscous flow activation energy during spark plasma sintering of amorphous alloy powders (United States)

    Paul, Tanaji; Harimkar, Sandip P.


    The viscous flow behavior of Fe-based amorphous alloy powder during isochronal spark plasma sintering was analyzed under the integrated theoretical background of the Arrhenius and directional structural relaxation models. A relationship between viscous flow activation energy and heating rate was derived. An extension of the pertinent analysis to Ti-based amorphous alloys confirmed the broad applicability of such a relationship for predicting the activation energy for sintering below the glass transition temperature (T g) of the amorphous alloy powders.

  11. The effects of concentration and heating-cooling rate on rheological properties of Plantago lanceolata seed mucilage

    DEFF Research Database (Denmark)

    Hesarinejad, Mohammad Ali; Sami Jokandan, Maryam; Mohammadifar, Mohammad Amin


    In this study, the effect of concentration (0.5, 1, 1.5 and 2%) and heating-cooling rate (1, 5 and 10 °C min−1) on the rheological properties of Plantago lanceolata seed mucilage (PLSM) solutions were investigated. It was observed that the gum dispersions exhibited viscoelastic properties under...... information. The results revealed that PLSM had high total sugar content (87.35%), and it is likely an arabinoxylomannan-type polysaccharide....

  12. Evaluation of thermal energy storage for the proposed Twin Cities District Heating system. [using cogeneration heat production and aquifiers for heat storage (United States)

    Meyer, C. F.


    The technical and economic feasibility of incorporating thermal energy storage components into the proposed Twin Cities District heating project was evaluated. The technical status of the project is reviewed and conceptual designs of district heating systems with and without thermal energy storage were compared in terms of estimated capital requirements, fuel consumption, delivered energy cost, and environmental aspects. The thermal energy storage system is based on cogeneration and the storage of heat in aquifers.

  13. Autohydrolysis pretreatment of Arundo donax: a comparison between microwave-assisted batch and fast heating rate flow-through reaction systems. (United States)

    Galia, Alessandro; Schiavo, Benedetto; Antonetti, Claudia; Galletti, Anna Maria Raspolli; Interrante, Leonardo; Lessi, Marco; Scialdone, Onofrio; Valenti, Maria Grazia


    Autohydrolysis of lignocellulosic biomass in liquid hot water has been widely studied owing to its high efficiency and relatively low cost. In the perspective of industrial applications, continuous or semi-continuous processes are more interesting than batch systems. Moreover, microwave heating of pretreatment systems has been proposed to intensify the kinetics of the process. In this study, the autohydrolysis of Arundo donax was performed in pure liquid hot water using a microwave-heated batch reactor and a semi-continuous flow-through reaction system with fast heating rate at the same operating conditions with the aim of performing a systematic comparison between the two different experimental apparatuses. The effect of process temperature and time, biomass to water mass to volume ratio and water flow rate on the concentration and yield of hydrolysis products was investigated. The flow-through set-up allowed us to reach biomass solubilization up to 44.5 wt% on dry basis, while the batch system stopped at 34.5 wt% suggesting that the mass transfer could be the rate-determining step in the solubilization of the constituting biopolymers. For example, in the flow-through layout, using a flow rate of 3.5 mL/min at 200 °C with 20 min of processing time, quantitative recovery of hemicellulose was obtained with limited formation of degradation products. Interestingly, higher cellulose/hemicellulose extraction ratios were found using the microwave-assisted batch reactor. FTIR analyses of the solid residues recovered after the pretreatment offered independent information on the fractions of liquefied biopolymers complementary to those derived from HPLC and UV-Vis spectroscopy. Collected experimental results indicated that the flow-through system can be adopted to obtain complete solubilization of the hemicellulose fraction of Arundo donax addressing the product distribution in soluble compounds towards fermentable sugars with limited formation of sugar degradation

  14. An EPQ Model with Unit Production Cost and Set-Up Cost as Functions of Production Rate

    Directory of Open Access Journals (Sweden)

    Behrouz Afshar-Nadjafi


    Full Text Available Extensive research has been devoted to economic production quantity (EPQ problem. However, no attention has been paid to problems where unit production and set-up costs must be considered as functions of production rate. In this paper, we address the problem of determining the optimal production quantity and rate of production in which unit production and set-up costs are assumed to be continuous functions of production rate. Based on the traditional economic production quantity (EPQ formula, the cost function associated with this model is proved to be nonconvex and a procedure is proposed to solve this problem. Finally, utility of the model is presented using some numerical examples and the results are analyzed.


    Directory of Open Access Journals (Sweden)

    Elisângela Michele Miguel


    Full Text Available The inefficient surface cleaning of equipments such as heat exchangers results in the accumulation of mineral residue that can form fouling which are difficult to remove. It can represent one of the biggest problems for the equipment operation decreasing its efficiency and impairing the functioning which can either involve greater spending on chemicals to be carried out the cleaning process. Moreover, due to the presence of mineral in poorly sanitized surface, there may be the adhesion and biofilm formation by microorganisms which can compromises the quality and the shelf-life of milk and dairy products and can bring risks to the consumer health. This review aims to address relevant aspects of biofilm formation in heat exchangers surfaces, the process of fouling and its negative aspects for the dairy industry.

  16. Effect of Catalytic Pyrolysis Conditions Using Pulse Current Heating Method on Pyrolysis Products of Wood Biomass

    Directory of Open Access Journals (Sweden)

    Sensho Honma


    Full Text Available The influence of catalysts on the compositions of char and pyrolysis oil obtained by pyrolysis of wood biomass with pulse current heating was studied. The effects of catalysts on product compositions were analyzed using GC-MS and TEM. The compositions of some aromatic compounds changed noticeably when using a metal oxide species as the catalyst. The coexistence or dissolution of amorphous carbon and iron oxide was observed in char pyrolyzed at 800°C with Fe3O4. Pyrolysis oil compositions changed remarkably when formed in the presence of a catalyst compared to that obtained from the uncatalyzed pyrolysis of wood meal. We observed a tendency toward an increase in the ratio of polyaromatic hydrocarbons in the pyrolysis oil composition after catalytic pyrolysis at 800°C. Pyrolysis of biomass using pulse current heating and an adequate amount of catalyst is expected to yield a higher content of specific polyaromatic compounds.

  17. Effect of catalytic pyrolysis conditions using pulse current heating method on pyrolysis products of wood biomass. (United States)

    Honma, Sensho; Hata, Toshimitsu; Watanabe, Takashi


    The influence of catalysts on the compositions of char and pyrolysis oil obtained by pyrolysis of wood biomass with pulse current heating was studied. The effects of catalysts on product compositions were analyzed using GC-MS and TEM. The compositions of some aromatic compounds changed noticeably when using a metal oxide species as the catalyst. The coexistence or dissolution of amorphous carbon and iron oxide was observed in char pyrolyzed at 800 °C with Fe3O4. Pyrolysis oil compositions changed remarkably when formed in the presence of a catalyst compared to that obtained from the uncatalyzed pyrolysis of wood meal. We observed a tendency toward an increase in the ratio of polyaromatic hydrocarbons in the pyrolysis oil composition after catalytic pyrolysis at 800 °C. Pyrolysis of biomass using pulse current heating and an adequate amount of catalyst is expected to yield a higher content of specific polyaromatic compounds.

  18. Thermal Gains Through Collective Metabolic Heat Production in Social Caterpillars of Eriogaster lanestris (United States)

    Ruf, C.; Fiedler, K.

    We investigated thermal characteristics of aggregations of social, tent-building caterpillars of the small eggar moth Eriogaster lanestris (Lepidoptera: Lasiocampidae). The highly synchronous behavior of individuals of the colony has important consequences for their thermal ecology. Air temperature in the tent fluctuates according to the caterpillars' activity: air temperature slowly rises about 2.5-3 °C above the surroundings when caterpillars aggregate in the tent after feeding and decreases rapidly when the larvae leave the tent. Thermal energy can be stored for a few hours when ambient temperature drops. Experiments show that metabolic heat production sufficiently explains this effect. As even minor additional heat gain may reduce developmental time, aggregating in the tent may thus confer selective advantages under overcast weather or at night, when behavioral thermoregulation through basking is not possible.

  19. Effect of Catalytic Pyrolysis Conditions Using Pulse Current Heating Method on Pyrolysis Products of Wood Biomass (United States)

    Honma, Sensho; Hata, Toshimitsu; Watanabe, Takashi


    The influence of catalysts on the compositions of char and pyrolysis oil obtained by pyrolysis of wood biomass with pulse current heating was studied. The effects of catalysts on product compositions were analyzed using GC-MS and TEM. The compositions of some aromatic compounds changed noticeably when using a metal oxide species as the catalyst. The coexistence or dissolution of amorphous carbon and iron oxide was observed in char pyrolyzed at 800°C with Fe3O4. Pyrolysis oil compositions changed remarkably when formed in the presence of a catalyst compared to that obtained from the uncatalyzed pyrolysis of wood meal. We observed a tendency toward an increase in the ratio of polyaromatic hydrocarbons in the pyrolysis oil composition after catalytic pyrolysis at 800°C. Pyrolysis of biomass using pulse current heating and an adequate amount of catalyst is expected to yield a higher content of specific polyaromatic compounds. PMID:25614894

  20. Demand for waste as fuel in the swedish district heating sector: a production function approach. (United States)

    Furtenback, Orjan


    This paper evaluates inter-fuel substitution in the Swedish district heating industry by analyzing almost all the district heating plants in Sweden in the period 1989-2003, specifically those plants incinerating waste. A multi-output plant-specific production function is estimated using panel data methods. A procedure for weighting the elasticities of factor demand to produce a single matrix for the whole industry is introduced. The price of waste is assumed to increase in response to the energy and CO2 tax on waste-to-energy incineration that was introduced in Sweden on 1 July 2006. Analysis of the plants involved in waste incineration indicates that an increase in the net price of waste by 10% is likely to reduce the demand for waste by 4.2%, and increase the demand for bio-fuels, fossil fuels, other fuels and electricity by 5.5%, 6.0%, 6.0% and 6.0%, respectively.

  1. Skylab and solar exploration. [chromosphere-corona structure, energy production and heat transport processes (United States)

    Von Puttkamer, J.


    Review of some of the findings concerning solar structure, energy production, and heat transport obtained with the aid of the manned Skylab space station observatory launched on May 14, 1973. Among the topics discussed are the observation of thermonuclear fusion processes which cannot be simulated on earth, the observation of short-wave solar radiation not visible to observers on earth, and the investigation of energy-transport processes occurring in the photosphere, chromosphere, and corona. An apparent paradox is noted in that the cooler chromosphere is heating the hotter corona, seemingly in defiance of the second law of thermodynamics, thus suggesting that a nonthermal mechanism underlies the energy transport. Understanding of this nonthermal mechanism is regarded as an indispensable prerequisite for future development of plasma systems for terrestrial applications.

  2. The effect of heat pretreatment temperature on fermentative hydrogen production using mixed cultures

    Energy Technology Data Exchange (ETDEWEB)

    Baghchehsaraee, Bita; Nakhla, George; Karamanev, Dimitre; Margaritis, Argyrios [Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, Ontario N6A 5B9 (Canada); Reid, Gregor [Department of Microbiology and Immunology, The University of Western Ontario, London, Ontario (Canada); Canadian Research and Development Center for Probiotics, Lawson Health Research Institute, 268 Grosvenor Street, London, Ontario N6A 4V2 (Canada)


    The effect of heat treatment at different temperatures on two types of inocula, activated sludge and anaerobically digested sludge, was investigated in batch cultures. Heat treatments were conducted at 65, 80 and 95 C for 30 min. The untreated inocula produced less amount of hydrogen than the pretreated inocula, with lactic acid as the main metabolite. The maximum yields of 2.3 and 1.6 mol H{sub 2}/mol glucose were achieved for the 65 C pretreated anaerobically digested and activated sludges, respectively. Approximately a 15% decrease in yield was observed with increasing pretreatment temperature from 65 to 95 C concomitant with an increase in butyrate/acetate ratio from 1.5 to 2.4 for anaerobically digested sludge. The increase of pretreatment temperature of activated sludge to 95 C suppressed the hydrogen production by lactic acid fermentation. DNA analysis of the microbial community showed that the elevated pretreatment temperatures reduced the species diversity. (author)

  3. Influence of Heating Rate on Ferrite Recrystallization and Austenite Formation in Cold-Rolled Microalloyed Dual-Phase Steels (United States)

    Philippot, C.; Bellavoine, M.; Dumont, M.; Hoummada, K.; Drillet, J.; Hebert, V.; Maugis, P.


    Compared with other dual-phase (DP) steels, initial microstructures of cold-rolled martensite-ferrite have scarcely been investigated, even though they represent a promising industrial alternative to conventional ferrite-pearlite cold-rolled microstructures. In this study, the influence of the heating rate (over the range of 1 to 10 K/s) on the development of microstructures in a microalloyed DP steel is investigated; this includes the tempering of martensite, precipitation of microalloying elements, recrystallization, and austenite formation. This study points out the influence of the degree of ferrite recrystallization prior to the austenite formation, as well as the importance of the cementite distribution. A low heating rate giving a high degree of recrystallization, leads to the formation of coarse austenite grains that are homogenously distributed in the ferrite matrix. However, a high heating rate leading to a low recrystallization degree, results in a banded-like structure with small austenite grains surrounded by large ferrite grains. A combined approach, involving relevant multiscale microstructural characterization and modeling to rationalize the effect of the coupled processes, highlights the role of the cold-worked initial microstructure, here a martensite-ferrite mixture: recrystallization and austenite formation commence in the former martensite islands before extending in the rest of the material.

  4. Effect of heating rate and kinetic model selection on activation energy of nonisothermal crystallization of amorphous felodipine. (United States)

    Chattoraj, Sayantan; Bhugra, Chandan; Li, Zheng Jane; Sun, Changquan Calvin


    The nonisothermal crystallization kinetics of amorphous materials is routinely analyzed by statistically fitting the crystallization data to kinetic models. In this work, we systematically evaluate how the model-dependent crystallization kinetics is impacted by variations in the heating rate and the selection of the kinetic model, two key factors that can lead to significant differences in the crystallization activation energy (Ea ) of an amorphous material. Using amorphous felodipine, we show that the Ea decreases with increase in the heating rate, irrespective of the kinetic model evaluated in this work. The model that best describes the crystallization phenomenon cannot be identified readily through the statistical fitting approach because several kinetic models yield comparable R(2) . Here, we propose an alternate paired model-fitting model-free (PMFMF) approach for identifying the most suitable kinetic model, where Ea obtained from model-dependent kinetics is compared with those obtained from model-free kinetics. The most suitable kinetic model is identified as the one that yields Ea values comparable with the model-free kinetics. Through this PMFMF approach, nucleation and growth is identified as the main mechanism that controls the crystallization kinetics of felodipine. Using this PMFMF approach, we further demonstrate that crystallization mechanism from amorphous phase varies with heating rate. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  5. Geochemical implications of production and storage control by coupling a direct-use geothermal system with heat networks

    NARCIS (Netherlands)

    Daniilidis, Alexandros; Scholten, Tjardo; Hooghiem, Joram; Persis, Claudio De; Herber, Rien


    This paper outlines a method in which the heat production of a geothermal system is controlled in relation to the demand from a district-heating network. A model predictive control strategy is designed, which uses volume measurements in the storage tank, and predictions of the demand, to regulate

  6. Seasonal performance calculation for residential heat pumps with combined space heating and hot water production (FHBB method)

    Energy Technology Data Exchange (ETDEWEB)

    Wemhoener, C.; Afjei, Th


    This final report for the Swiss Federal Office of Energy (SFOE) presents the results of work done at the University of Applied Sciences Basel, in Muttenz, Switzerland, on the development of a simple method of calculating the seasonal performance of residential heat pumps that are used to simultaneously provide heat for both space heating and hot water preparation. The report reviews the 'state of the art' concerning calculation methods and existing standards and discusses the shortcomings of some of these methods as a basis for the further development. The principles of the method proposed are explained and the calculation steps involved are described. Sources for base-data for the individual calculation steps are described, such as meteorological data, heat-source temperature, heating and hot water demand and the coefficient of performance of the heat pumps used. Also, heat losses due to cyclic operation, test procedures and factors for simultaneous operation are discussed, whereby both theoretical values and results from simulations are presented. Finally, the method is applied to two sample systems.

  7. Additional paper waste in pulping sludge for biohydrogen production by heat-shocked sludge. (United States)

    Chairattanamanokorn, Prapaipid; Tapananont, Supachok; Detjaroen, Siriporn; Sangkhatim, Juthatip; Anurakpongsatorn, Patana; Sirirote, Pramote


    Dark anaerobic fermentation is an interesting alternative method for producing biohydrogen (H(2)) as a renewable fuel because of its low cost and various usable organic substrates. Pulping sludge from wastewater treatment containing plentiful cellulosic substrate could be feasibly utilized for H(2) production by dark fermentation. The objective of this study was to investigate the optimal proportion of pulping sludge to paper waste, the optimal initial pH, and the optimal ratio of carbon and nitrogen (C/N) for H(2) production by anaerobic seed sludge pretreated with heat. The pulping sludge was pretreated with NaOH solution at high temperature and further hydrolyzed with crude cellulase. Pretreatment of the pulping sludge with 3% NaOH solution under autoclave at 121 °C for 2 h, hydrolysis with 5 FPU crude cellulase at 50 °C, and pH 4.8 for 24 h provided the highest reducing sugar production yield (229.68 ± 2.09 mg/g(TVS)). An initial pH of 6 and a C/N ratio of 40 were optimal conditions for H(2) production. Moreover, the supplement of paper waste in the pulping sludge enhanced the cumulative H(2) production yield. The continuous hydrogen production was further conducted in a glass reactor with nylon pieces as supporting media and the maximum hydrogen production yield was 151.70 ml/g(TVS).

  8. Survey of Productivity Rates Used for Highway Construction (United States)


    compared to other industries. INDUSTRY PRODUCTIVITY INCREASE % Agriculture 3.64 Construction 0.80 Government 1.64 0 Manufacturing 2.60 Mining 3.17...FROM TEE IVERAGI 4., Table 3.14 UF Survey Seed and Mulch 78 .2. cont. SEED AND MULCH SQUARI IAED) LCCL CCNDITIONS TRAFFIC :41jS RURAL URBAIN LIMITED

  9. Traditional product rating in gastronomic circuits: lessons from the Cerrado

    Directory of Open Access Journals (Sweden)

    Moises Villamil Balestro


    Full Text Available The social construction of differentiated and nested markets and alternative agrifood systems in relation to conventional agribusiness systems of modern agriculture constitute a significant strategy to overcome the exclusion of millions of small farmers and peasants. On its turn, the growing demand and differentiated use of traditional products in the gastronomic circuit, as well as new forms of interaction between chefs and farmers who produce traditional products, can be a drive for the construction of these differentiated markets. One of the findings of this article is that the asymmetry between chefs and producers in the possession of symbolic capital necessary for the assessment process of the typical products has a negative impact for the distribution of economic capital and, as a result, there is great unevenness between the prices paid to produces and the prices of the dishes incorporating such products as delicacies. The appropriation of the economic result of the valuation decreases as a result of this process. The producer knowledge is often appropriated and reproduced in the assessment process and he does not take advantage of it. Departing from contributions of economic sociology and the economy of singularities, such issues are discussed by this article.

  10. Practical considerations for maximizing heat production in a novel thermobrachytherapy seed prototype. (United States)

    Gautam, Bhoj; Warrell, Gregory; Shvydka, Diana; Subramanian, Manny; Ishmael Parsai, E


    A combination of hyperthermia and radiation in the treatment of cancer has been proven to provide better tumor control than radiation administered as a monomodality, without an increase in complications or serious toxicities. Moreover, concurrent administration of hyperthermia and radiation displays synergistic enhancement, resulting in greater tumor cell killing than hyperthermia and radiation delivered separately. The authors have designed a new thermobrachytherapy (TB) seed, which serves as a source of both radiation and heat for concurrent brachytherapy and hyperthermia treatments when implanted in solid tumors. This innovative seed, similar in size and geometry to conventional seeds, will have self-regulating thermal properties. The new seed's geometry is based on the standard BEST Model 2301(125)I seed, resulting in very similar dosimetric properties. The TB seed generates heat when placed in an oscillating magnetic field via induction heating of a ferromagnetic Ni-Cu alloy core that replaces the tungsten radiographic marker of the standard Model 2301. The alloy composition is selected to undergo a Curie transition near 50 °C, drastically decreasing power production at higher temperatures and providing for temperature self-regulation. Here, the authors present experimental studies of the magnetic properties of Ni-Cu alloy material, the visibility of TB seeds in radiographic imaging, and the ability of seed prototypes to uniformly heat tissue to a desirable temperature. Moreover, analyses are presented of magnetic shielding and thermal expansion of the TB seed, as well as matching of radiation dose to temperature distributions for a short interseed distance in a given treatment volume. Annealing the Ni-Cu alloy has a significant effect on its magnetization properties, increasing the sharpness of the Curie transition. The TB seed preserves the radiographic properties of the BEST 2301 seed in both plain x rays and CT images, and a preliminary experiment

  11. Integrated rate expression for the production of glucose equivalent ...

    Indian Academy of Sciences (India)


    (2) It is taken for granted that the plant is not under any water stress. Thus the ex- cessive water loss that results from a high stomatal conductance and thereby inhibits photosynthesis is considered to be compensated. Taking these two rea- sonable assumptions into consideration, we deter- mine the rate of different steps of ...

  12. Camelina production affected by seeding rate and depth (United States)

    Camelina (Camelina sativa L.) is an oilseed that has shown potential as an alternative crop to diversify wheat-fallow systems in the northern Great Plains. However, agronomic information is lacking for management of this relatively new crop. The impact of seeding depth and rate were determined in s...

  13. Integrated rate expression for the production of glucose equivalent ...

    Indian Academy of Sciences (India)

    A temperature-dependent integrated kinetics for the overall process of photosynthesis in green plants is discussed. The C4 plants are chosen and in these plants, the rate of photosynthesis does not depend on the partial pressure of O2. Using some basic concepts like chemical equilibrium or steady state approximation, ...

  14. Experimental and theoretical study of shuttle lee-side heat transfer rates (United States)

    Mruk, G. K.; Bertin, J.; Lamb, J. P.


    The experimental program which was conducted in the Calspan 96-inch hypersonic shock tunnel to investigate what effect the windward surface temperature had on the heat transfer to the leeward surface of the space shuttle orbiter is discussed. Heat-transfer distributions, surface-pressure distributions, and schlieren photographs were obtained for an 0.01-scale model of the 139 configuration space shuttle orbiter at angles-of-attack of 30 and 40 deg. Similar data were obtained for an 0.01 scale wingless model of the 139 configuration at angles-of-attack of 30 and 90 deg. Data were obtained for Mach numbers from Reynolds numbers, and surface temperatures and compared with theoretical results.

  15. The effect of heat developed during high strain rate deformation on the constitutive modeling of amorphous polymers (United States)

    Safari, Keivan H.; Zamani, Jamal; Guedes, Rui M.; Ferreira, Fernando J.


    An adiabatic constitutive model is proposed for large strain deformation of polycarbonate (PC) at high strain rates. When the strain rate is sufficiently high such that the heat generated does not have time to transfer to the surroundings, temperature of material rises. The high strain rate deformation behavior of polymers is significantly affected by temperature-dependent constants and thermal softening. Based on the isothermal model which first was introduced by Mulliken and Boyce et al. (Int. J. Solids Struct. 43:1331-1356, 2006), an adiabatic model is proposed to predict the yield and post-yield behavior of glassy polymers at high strain rates. When calculating the heat generated and the temperature changes during the step by step simulation of the deformation, temperature-dependent elastic constants are incorporated to the constitutive equations. Moreover, better prediction of softening phenomena is achieved by the new definition for softening parameters of the proposed model. The constitutive model has been implemented numerically into a commercial finite element code through a user material subroutine (VUMAT). The experimental results, obtained using a split Hopkinson pressure bar, are supported by dynamic mechanical thermal analysis (DMTA) and Decompose/Shift/Reconstruct (DSR) method. Comparison of adiabatic model predictions with experimental data demonstrates the ability of the model to capture the characteristic features of stress-strain curve of the material at very high strain rates.

  16. Near-surface Heating of Young Rift Sediment Causes Mass Production and Discharge of Reactive Dissolved Organic Matter

    National Research Council Canada - National Science Library

    Yu-shih Lin; Boris P Koch; Tomas Feseker; Kai Ziervogel; Tobias Goldhammer; Frauke Schmidt; Matthias Witt; Matthias Y Kellermann; Matthias Zabel; Andreas Teske; Kai-uwe Hinrichs


    .... Here we present evidence showing that near-surface heating of sediment in the Guaymas Basin, a young extensional depression, causes mass production and discharge of reactive dissolved organic matter (DOM...

  17. An Assessment of Some Design Constraints on Heat Production of a 3D Conceptual EGS Model Using an Open-Source Geothermal Reservoir Simulation Code

    Energy Technology Data Exchange (ETDEWEB)

    Yidong Xia; Mitch Plummer; Robert Podgorney; Ahmad Ghassemi


    Performance of heat production process over a 30-year period is assessed in a conceptual EGS model with a geothermal gradient of 65K per km depth in the reservoir. Water is circulated through a pair of parallel wells connected by a set of single large wing fractures. The results indicate that the desirable output electric power rate and lifespan could be obtained under suitable material properties and system parameters. A sensitivity analysis on some design constraints and operation parameters indicates that 1) the fracture horizontal spacing has profound effect on the long-term performance of heat production, 2) the downward deviation angle for the parallel doublet wells may help overcome the difficulty of vertical drilling to reach a favorable production temperature, and 3) the thermal energy production rate and lifespan has close dependence on water mass flow rate. The results also indicate that the heat production can be improved when the horizontal fracture spacing, well deviation angle, and production flow rate are under reasonable conditions. To conduct the reservoir modeling and simulations, an open-source, finite element based, fully implicit, fully coupled hydrothermal code, namely FALCON, has been developed and used in this work. Compared with most other existing codes that are either closed-source or commercially available in this area, this new open-source code has demonstrated a code development strategy that aims to provide an unparalleled easiness for user-customization and multi-physics coupling. Test results have shown that the FALCON code is able to complete the long-term tests efficiently and accurately, thanks to the state-of-the-art nonlinear and linear solver algorithms implemented in the code.

  18. Novel Method for Measuring the Heat Collection Rate and Heat Loss Coefficient of Water-in-Glass Evacuated Tube Solar Water Heaters Based on Artificial Neural Networks and Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Zhijian Liu


    Full Text Available The determinations of heat collection rate and heat loss coefficient are crucial for the evaluation of in service water-in-glass evacuated tube solar water heaters. However, the direct determination requires complex detection devices and a series of standard experiments, which also wastes too much time and manpower. To address this problem, we propose machine learning models including artificial neural networks (ANNs and support vector machines (SVM to predict the heat collection rate and heat loss coefficient without a direct determination. Parameters that can be easily obtained by “portable test instruments” were set as independent variables, including tube length, number of tubes, tube center distance, heat water mass in tank, collector area, final temperature and angle between tubes and ground, while the heat collection rate and heat loss coefficient determined by the detection device were set as dependent variables respectively. Nine hundred fifteen samples from in-service water-in-glass evacuated tube solar water heaters were used for training and testing the models. Results show that the multilayer feed-forward neural network (MLFN with 3 nodes is the best model for the prediction of heat collection rate and the general regression neural network (GRNN is the best model for the prediction of heat loss coefficient due to their low root mean square (RMS errors, short training times, and high prediction accuracies (under the tolerances of 30%, 20%, and 10%, respectively.

  19. Correlation of Heating Rates, Crystal Structures, and Microwave Dielectric Properties of Li2ZnTi3O8 Ceramics (United States)

    Lu, Xuepeng; Zheng, Yong; Huang, Qi; Xiong, Weihao


    The correlation of heating rates, crystal structures, and microwave dielectric properties of Li2ZnTi3O8 ceramics was thoroughly investigated. Ionic polarizability, atomic packing fractions, bond strengths, and octahedral distortion of Li2ZnTi3O8 ceramics were calculated on the basis of structure refinement data. The "black core" phenomenon resulting from reduction of Ti4+ ions was observed for Li2ZnTi3O8 ceramic sintered at 1°/min; reduction of Ti4+ ions could be limited by heating more rapidly. For heating rates from 1 to 7°/min, the dielectric constants ( ɛ r) of Li2ZnTi3O8 ceramics were mainly determined by ionic polarizability. The temperature coefficient of the resonant frequency ( τ f ) of Li2ZnTi3O8 ceramics was determined by bond strengths. Li2ZnTi3O8 ceramic sintered at 1°/min had the lowest quality factor ( Q × f); this was related to the high dielectric loss as a result of oxygen vacancies formed by reduction of Ti4+ ions. Q × f values of Li2ZnTi3O8 ceramics also decreased with increasing heating rate from 3 to 7°/min, owing to reduced packing fractions and average grain sizes. Li2ZnTi3O8 ceramic sintered at 3°/min had the optimum microwave dielectric properties of ɛ r = 26.6, Q × f = 83,563 GHz, and τ f = -12.4 ppm/°C.

  20. Occurrence Rates and Heating Effects of Tangential and Rotational Discontinuities as Obtained from Three-dimensional Simulation of Magnetohydrodynamic Turbulence (United States)

    Zhang, Lei; He, Jiansen; Tu, Chuanyi; Yang, Liping; Wang, Xin; Marsch, Eckart; Wang, Linghua


    MHD discontinuities are ubiquitous in the solar wind and are often found at the origin of turbulence intermittency. They may also play a key role in the turbulence dissipation and heating of the solar wind. The tangential discontinuities (TDs) and rotational discontinuities (RDs) are the two most important types of discontinuities. Recently, the connection between turbulence intermittency and proton thermodynamics has been observationally investigated. Here, we present numerical results from a three-dimensional MHD simulation with pressure anisotropy and we define new methods for identifying and distinguishing TDs and RDs. Three statistical results obtained for the relative occurrence rates and heating effects are highlighted: (1) RDs tend to take up the majority of the discontinuities along with time; (2) the thermal states embedding TDs tend to be associated with extreme plasma parameters or instabilities while RDs do not; (3) TDs have a higher average T as well as perpendicular temperature {{T}\\bot }. The simulation shows that TDs and RDs evolve and contribute to solar wind heating differently. These results will improve our understanding of the mechanisms that generate discontinuities and cause plasma heating.

  1. Estimation of Sand Production Rate Using Geomechanical and Hydromechanical Models

    Directory of Open Access Journals (Sweden)

    Son Tung Pham


    Full Text Available This paper aims to develop a numerical model that can be used in sand control during production phase of an oil and gas well. The model is able to predict not only the onset of sand production using critical bottom hole pressure inferred from geomechanical modelling, but also the mass of sand produced versus time as well as the change of porosity versus space and time using hydromechanical modelling. A detailed workflow of the modelling was presented with each step of calculations. The empirical parameters were calibrated using laboratory data. Then the modelling was applied in a case study of an oilfield in Cuu Long basin. In addition, a sensitivity study of the effect of drawdown pressure was presented in this paper. Moreover, a comparison between results of different hydromechanical models was also addressed. The outcome of this paper demonstrated the possibility of modelling the sand production mass in real cases, opening a new approach in sand control in petroleum industry.

  2. Periconceptional Heat Stress of Holstein Dams Is Associated with Differences in Daughter Milk Production and Composition during Multiple Lactations


    Brown, Britni M.; Stallings, Jon W.; Clay, John S.; Rhoads, Michelle L.


    Heat stress at the time of conception affects the subsequent milk production of primiparous Holstein cows; however, it is unknown whether these effects are maintained across multiple lactations. Therefore, the objective of the current study was to examine the relationship between periconceptional heat stress and measurements of milk production and composition in cows retained within a herd for multiple lactations. National Dairy Herd Improvement Association data was obtained from Dairy Record...

  3. Continuous biohydrogen production using cheese whey: Improving the hydrogen production rate

    Energy Technology Data Exchange (ETDEWEB)

    Davila-Vazquez, Gustavo; Cota-Navarro, Ciria Berenice; Razo-Flores, Elias [Division de Ciencias Ambientales, Instituto Potosino de Investigacion Cientifica y Tecnologica, Camino a la Presa San Jose 2055, Lomas 4a seccion, C.P. 78216, San Luis Potosi, S.L.P (Mexico); Rosales-Colunga, Luis Manuel; de Leon-Rodriguez, Antonio [Division de Biologia Molecular, Instituto Potosino de Investigacion Cientifica y Tecnologica, Camino a la Presa San Jose 2055, Lomas 4a seccion, C.P. 78216, San Luis Potosi, S.L.P (Mexico)


    Due to the renewed interest in finding sustainable fuels or energy carriers, biohydrogen (Bio-H{sub 2}) from biomass is a promising alternative. Fermentative Bio-H{sub 2} production was studied in a continuous stirred tank reactor (CSTR) operated during 65.6 d with cheese whey (CW) as substrate. Three hydraulic retention times (HRTs) were tested (10, 6 and 4 h) and the highest volumetric hydrogen production rate (VHPR) was attained with HRT of 6 h. Therefore, four organic loading rates (OLRs) at a fixed HRT of 6 h were tested thereafter, being: 92.4, 115.5, 138.6 and 184.4 g lactose/L/d. The highest VHPR (46.61 mmol H{sub 2}/L/h) and hydrogen molar yield (HMY) of 2.8 mol H{sub 2}/mol lactose were found at an OLR of 138.6 g lactose/L/d; a sharp fall in VHPR occurred at an OLR of 184.4 g lactose/L/d. Butyric, propionic and acetic acids were the main soluble metabolites found, with butyric-to-acetic ratios ranging from 1.0 to 2.4. Bacterial community was identified by partial sequence analysis of the 16S rRNA and polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). The results showed that at HRT of 10 h and 6 h were dominated by the Clostridium genus. The VHPR attained in this study is the highest reported value for a CSTR system using CW as substrate with anaerobic sludge as inoculum and represents a 33-fold increase compared to a previous study. Thus, it was demonstrated that continuous fermentative Bio-H{sub 2} production from CW can be significantly enhanced by an appropriate selection of parameters such as HRT and OLR. Enhancements in VHPR are significant because it is a critical parameter to determine the full-scale practical application of fermentation technologies that will be used for sustainable and clean energy generation. (author)

  4. Heat production in growing pigs calculated according to the RQ and CN methods

    DEFF Research Database (Denmark)

    Christensen, K; Chwalibog, André; Henckel, S


    1. Heat production, calculated according to the respiratory quotient methods, HE(RQ), and the carbon nitrogen balance method, HE(CN), was compared using the results from a total of 326 balance trials with 56 castrated male pigs fed different dietary composition and variable feed levels during...... the difference. 6. In pigs receiving a cereal based diet, HE(RQ) may be expected to give 3-4% higher values than HE(CN), but in case easily available carbohydrates (glucose, sucrose) or high-fibre diets are provided, the differences may be larger. 7. Both methods were carried out with similar accuracy...

  5. Compilation of Data on Radionuclide Data for Specific Activity, Specific Heat and Fission Product Yields

    Energy Technology Data Exchange (ETDEWEB)

    Gibbs, A.; Thomason, R.S.


    This compilation was undertaken to update the data used in calculation of curie and heat loadings of waste containers in the Solid Waste Management Facility. The data has broad general use and has been cross-checked extensively in order to be of use in the Materials Accountability arena. The fission product cross-sections have been included because they are of use in the Environmental Remediation and Waste Management areas where radionuclides which are not readily detectable need to be calculated from the relative fission yields and material dispersion data.

  6. Production of Heat Resistant Composite based on Siloxane Elastomer and Multiwall Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Bessonov I.V.


    Full Text Available Development of a new generation of composite with unique thermal properties is an important task in the fields of science and technology where material is operated at high temperatures and exposure to a short-wave radiation. Recent studies show that carbon nanomaterials (fullerenes and carbon nanotubes could improve the thermal, radiation and thermal-oxidative stability of the polymer matrix. In this article the development of a new heat resistant composite based on elastomer and carbon nanotubes (CNT was performed and physicochemical properties of final product were evaluated.

  7. High hydrogen production rate of microbial electrolysis cell (MEC) with reduced electrode spacing. (United States)

    Cheng, Shaoan; Logan, Bruce E


    Practical applications of microbial electrolysis cells (MECs) require high hydrogen production rates and a compact reactor. These goals can be achieved by reducing electrode spacing but high surface area anodes are needed. The brush anode MEC with electrode spacing of 2 cm had a higher hydrogen production rate and energy efficiency than an MEC with a flat cathode and a 1-cm electrode spacing. The maximum hydrogen production rate with a 2 cm electrode spacing was 17.8 m(3)/m(3)d at an applied voltage of E(ap)=1 V. Reducing electrode spacing increased hydrogen production rates at the lower applied voltages, but not at the higher (>0.6 V) applied voltages. These results demonstrate that reducing electrode spacing can increase hydrogen production rate, but that the closest electrode spacing do not necessarily produce the highest possible hydrogen production rates. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Steady and dynamic shear rheological behavior of semi dilute Alyssum homolocarpum seed gum solutions: influence of concentration, temperature and heating-cooling rate. (United States)

    Alaeddini, Behzad; Koocheki, Arash; Mohammadzadeh Milani, Jafar; Razavi, Seyed Mohammad Ali; Ghanbarzadeh, Babak


    Alyssum homolocarpum seed gum (AHSG) solution exhibits high viscosity at low shear rates and has anionic features. However there is no information regarding the flow and dynamic properties of this gum in semi-dilute solutions. The present study aimed to investigate the dynamic and steady shear behavior of AHSG in the semi-dilute region. The viscosity profile demonestrated a shear thinning behavior at all temperatures and concentrations. An increase in the AHSG concentration was acompanied by an increase in the pseudoplasticity degree, whereas, by increasing the temperature, the pseudoplasticity of AHSG decreased. At low gum concentration, solutions had more viscosity dependence on temperature. The mechanical spectra obtained from the frequency sweep experiment demonstrated viscoelastic properties for gum solutions. AHSG solutions showed typical weak gel-like behavior, revealing G' greater than G' within the experimental range of frequency (Hz), with slight frequency dependency. The influence of temperature on viscoelastic properties of AHSG solutions was studied during both heating (5-85 °C) and cooling (85-5 °C) processes. The complex viscosity of AHSG was greater compared to the apparent viscosity, indicating the disruption of AHSG network structure under continuous shear rates and deviation from the Cox-Merz rule. During the initial heating, the storage modulus showed a decreasing trend and, with a further increase in temperature, the magnitude of storage modulus increased. The influence of temperature on the storage modulus was considerable when a higher heating rate was applied. AHSG can be applied as a thickening and stabilizing agents in food products that require good stability against temperature. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  9. An inter-comparison of six latent and sensible heat flux products over the Southern Ocean

    Directory of Open Access Journals (Sweden)

    Lejiang Yu


    Full Text Available The latent heat fluxes (LHF and sensible heat fluxes (SHF over the Southern Ocean from six different data sets are inter-compared for the period 1988–2000. The six data sets include three satellite-based products, namely, the second version of the Goddard Satellite-Based Surface Turbulent Fluxes data set (GSSTF-2, the third version of the Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data (HOAPS-3 and the Japanese Ocean Fluxes Data Sets with Use of Remote Sensing Observations (J-OFURO; two global reanalysis products, namely, the National Centers for Environmental Prediction–Department of Energy Reanalysis 2 data set (NCEP-2 and the European Centre for Medium-Range Weather Forecasts 40 Year Re-analysis data set (ERA-40; and the Objectively Analyzed Air–Sea Fluxes for the Global Oceans data set (OAFlux. All these products reveal a similar pattern in the averaged flux fields. The zonal mean LHF fields all exhibit a continuous increase equatorward. With an exception of HOAPS-3, the zonal mean SHF fields display a minimum value near 50°S, increasing both pole- and equatorward. The differences in the standard deviation for LHF are larger among the six data products than the differences for SHF. Over the regions where the surface fluxes are significantly influenced by the Antarctic Oscillation and the Pacific–South American teleconnection, the values and distributions of both LHF and SHF are consistent among the six products. It was found that the spatial patterns of the standard deviations and trends of LHF and SHF can be explained primarily by sea–air specific humidity and temperature differences; wind speed plays a minor role.

  10. The production of hydrotalcite from magnesite ore as non-toxic heat stabiliser for polyvinyl chloride

    Directory of Open Access Journals (Sweden)

    J. van der Laan


    Full Text Available In recent years polyvinyl chloride (PVC processors had to submit to worldwide pressure to convert to environmentally friendly stabilisers such as hydrotalcite (HT, since most of the heat stabilisers currently in use contain heavy metals such as lead, cadmium or barium – these being highly toxic. The presently used HT production process is, however, very expensive as it involves the recovering of magnesium from seawater magnesia. The purpose of this study was to prove that it is indeed possible to produce cost effective and non-toxic HT from an alternative source. During this study the costing and heat stabilising ability of the hydrotalcite produced from magnesite was compared to that of commercially available heat stabilisers. The effect of the pre-mixing process, as well as the influence of particle size distribution was also investigated. A cost comparative and stabilising efficiency study indicated the cost effectiveness of HT produced from magnesite ore, in comparison with other commercially available stabilisers. The use of HT as produced from magnesite ore would indeed assist in the worldwide changeover to environmentally friendly stabilisers.

  11. Dual substrate feedback control of specific growth-rate in vaccine production

    NARCIS (Netherlands)

    Neeleman, R.; Beuvery, E.C.; Vries, D.; Straten, van G.; Boxtel, van A.J.B.


    Abstract: Unexpectedly, primary concern of bio-pharmaceutical industry is not optimisation of product yield or cost reduction, but consistency in production and product quality. This paper describes the methodology and experimental results of specific growth-rate control for vaccine production. The

  12. Numerical analysis of temperature distribution due to basement radiogenic heat production, St. Lawrence Lowlands, eastern Canada (United States)

    Liu, Hejuan; Giroux, Bernard; Harris, Lyal B.; Mansour, John


    Although eastern Canada is considered as having a low potential for high-temperature geothermal resources, the possibility for additional localized radioactive heat sources in Mesoproterozoic Grenvillian basement to parts of the Palaeozoic St. Lawrence Lowlands in Quebec, Canada, suggests that this potential should be reassessed. However, such a task remains hard to achieve due to scarcity of heat flow data and ambiguity about the nature of the basement. To get an appraisal, the impact of radiogenic heat production for different Grenville Province crystalline basement units on temperature distribution at depth was simulated using the Underworld Geothermal numerical modelling code. The region south of Trois-Rivières was selected as representative for the St. Lawrence Lowlands. An existing 3D geological model based on well log data, seismic profiles and surface geology was used to build a catalogue of plausible thermal models. Statistical analyses of radiogenic element (U, Th, K) concentrations from neighbouring outcropping Grenville domains indicate that the radiogenic heat production of rocks in the modelled region is in the range of 0.34-3.24 μW/m3, with variations in the range of 0.94-5.83 μW/m3 for the Portneuf-Mauricie (PM) Domain, 0.02-4.13 μW/m3 for the Shawinigan Domain (Morin Terrane), and 0.34-1.96 μW/m3 for the Parc des Laurentides (PDL) Domain. Various scenarios considering basement characteristics similar to the PM domain, Morin Terrane and PDL Domain were modelled. The results show that the temperature difference between the scenarios can be as much as 12 °C at a depth of 5 km. The results also show that the temperature distribution is strongly affected by both the concentration of radiogenic elements and the thermal conductivity of the basement rocks. The thermal conductivity in the basement affects the trend of temperature change between two different geological units, and the spatial extent of thermal anomalies. The validity of the results was

  13. Self-heating probe instrument and method for measuring high temperature melting volume change rate of material (United States)

    Wang, Junwei; Wang, Zhiping; Lu, Yang; Cheng, Bo


    The castings defects are affected by the melting volume change rate of material. The change rate has an important effect on running safety of the high temperature thermal storage chamber, too. But the characteristics of existing measuring installations are complex structure, troublesome operation and low precision. In order to measure the melting volume change rate of material accurately and conveniently, a self-designed measuring instrument, self-heating probe instrument, and measuring method are described. Temperature in heating cavity is controlled by PID temperature controller; melting volume change rate υ and molten density are calculated based on the melt volume which is measured by the instrument. Positive and negative υ represent expansion and shrinkage of the sample volume after melting, respectively. Taking eutectic LiF+CaF2 for example, its melting volume change rate and melting density at 1 123 K are -20.6% and 2 651 kg·m-3 measured by this instrument, which is only 0.71% smaller than literature value. Density and melting volume change rate of industry pure aluminum at 973 K and analysis pure NaCl at 1 123 K are detected by the instrument too. The measure results are agreed with report values. Measuring error sources are analyzed and several improving measures are proposed. In theory, the measuring errors of the change rate and molten density which are measured by the self-designed instrument is nearly 1/20-1/50 of that measured by the refitted mandril thermal expansion instrument. The self-designed instrument and method have the advantages of simple structure, being easy to operate, extensive applicability for material, relatively high accuracy, and most importantly, temperature and sample vapor pressure have little effect on the measurement accuracy. The presented instrument and method solve the problems of complicated structure and procedures, and large measuring errors for the samples with high vapor pressure by existing installations.

  14. Physiological and performance adaptations to an in-season soccer camp in the heat: Associations with heart rate and heart rate variability

    DEFF Research Database (Denmark)

    Buchheit, M; Voss, S C; Nybo, Lars


    The aim of the present study was to examine the associations between adaptive responses to an in-season soccer training camp in the heat and changes in submaximal exercising heart rate (HRex, 5-min run at 9 ¿km/h), postexercise HR recovery (HRR) and HR variability (HRV). Fifteen well-trained...... but non-heat-acclimatized male adult players performed a training week in Qatar (34.6¿±¿1.9°C wet bulb globe temperature). HRex, HRR, HRV (i.e. the standard deviation of instantaneous beat-to-beat R-R interval variability measured from Poincaré plots SD1, a vagal-related index), creatine kinase (CK......) activity, plasma volume (PV) changes, and post-5-min run rate of perceived exertion (RPE) were collected at six occasions in temperate environmental conditions (22°C). Players also performed the yo-yo intermittent recovery test level 1 (Yo-Yo IR1) in the same environmental conditions (22°C), both...

  15. Reliability assessment - for production and distribution of heat; Riskbaserad tillfoerlitlighet - i produktion och leverans av vaerme

    Energy Technology Data Exchange (ETDEWEB)

    Transtroem, Christoffer; Joerud, Fredrik; Ehrstedt, Thomas


    The content of this project gives the basic framework of a guideline in how to study the reliability of both production and distribution of heat, i.e. the report forms the developing phase of a methodology for identification of potential risks in a system for district heat. The risks are prioritized and used as a decision tool to design a program for mitigation of the risk exposure. This report also describes a basic idea of how to further develop this methodology. The methodology is based on an initial screening with an optional phase of detailed analysis for weak links identified in the initial screening process. The methodology is different to previous tools as it facilitate an efficient approach to identify weak links in all parts of the system for district heat. The objective is to clearly describe the methodology in order to enable performance, also without support from experts in risk engineering. The practicing personnel intend to be technical staff from both the operational- and maintenance departments of a district heat company in general. During the project, several technical meetings were performed and interviews also took place, with engineers intended to be the typical end users of this tool. As a basic part of the methodology, established methodologies of risk assessment were studied. The studies have been a part of the design to achieve a method well adjusted for the end user group. Some parts of the methodology have already been tested in real cases, as several regular analyses have been performed in parallel with the development of this methodology.

  16. Kinetic modeling of hydrogen production rate by photoautotrophic cyanobacterium A. variabilis ATCC 29413 as a function of both CO2 concentration and oxygen production rate. (United States)

    Salleh, Siti Fatihah; Kamaruddin, Azlina; Uzir, Mohamad Hekarl; Mohamed, Abdul Rahman; Shamsuddin, Abdul Halim


    Hydrogen production by cyanobacteria could be one of the promising energy resources in the future. However, there is very limited information regarding the kinetic modeling of hydrogen production by cyanobacteria available in the literature. To provide an in-depth understanding of the biological system involved during the process, the Haldane's noncompetitive inhibition equation has been modified to determine the specific hydrogen production rate (HPR) as a function of both dissolved CO2 concentration (CTOT) and oxygen production rate (OPR). The highest HPR of 15 [Formula: see text] was found at xCO2 of 5% vol/vol and the rate consequently decreased when the CTOT and OPR were 0.015 k mol m(-3) and 0.55 mL h(-1), respectively. The model provided a fairly good estimation of the HPR with respect to the experimental data collected.

  17. Heat dissipation does not suppress an immune response in laboratory mice divergently selected for basal metabolic rate (BMR). (United States)

    Książek, Aneta; Konarzewski, Marek


    The capacity for heat dissipation is considered to be one of the most important constraints on rates of energy expenditure in mammals. To date, the significance of this constraint has been tested exclusively under peak metabolic demands, such as during lactation. Here, we used a different set of metabolic stressors, which do not induce maximum energy expenditures and yet are likely to expose the potential constraining effect of heat dissipation. We compared the physiological responses of mice divergently selected for high (H-BMR) and low basal metabolic rate (L-BMR) to simultaneous exposure to the keyhole limpet haemocyanin (KLH) antigen and high ambient temperature (Ta). At 34°C (and at 23°C, used as a control), KLH challenge resulted in a transient increase in core body temperature (Tb) in mice of both line types (by approximately 0.4°C). Warm exposure did not produce line-type-dependent differences in Tb (which was consistently higher by ca. 0.6°C in H-BMR mice across both Ta values), nor did it result in the suppression of antibody synthesis. These findings were also supported by the lack of between-line-type differences in the mass of the thymus, spleen or lymph nodes. Warm exposure induced the downsizing of heat-generating internal organs (small intestine, liver and kidneys) and an increase in intrascapular brown adipose tissue mass. However, these changes were similar in scope in both line types. Mounting a humoral immune response in selected mice was therefore not affected by ambient temperature. Thus, a combined metabolic challenge of high Ta and an immune response did not appreciably compromise the capacity to dissipate heat, even in the H-BMR mice. © 2016. Published by The Company of Biologists Ltd.

  18. A pilot study of traditional indoor biomass cooking and heating in rural Bhutan: gas and particle concentrations and emission rates. (United States)

    Wangchuk, T; He, C; Knibbs, L D; Mazaheri, M; Morawska, L


    Although many studies have reported the health effects of biomass fuels in developing countries, relatively few have quantitatively characterized emissions from biomass stoves during cooking and heating. The aim of this pilot study was to characterize the emission characteristics of different biomass stoves in four rural houses in Bhutan during heating (metal chimney stove), rice cooking (traditional mud stove), fodder preparation (stone tripod stove), and liquor distillation (traditional mud stove). Three stage measurements (before, during, and after the activity had ceased) were conducted for PM2.5 , particle number (PN), CO, and CO2 . When stoves were operated, the pollutant concentrations were significantly elevated above background levels, by an average of 40 and 18 times for PM2.5 and CO, respectively. Emission rates (mg/min) ranged from 1.07 × 102 (PM2.5 ) and 3.50 × 102 (CO) for the stone tripod stove during fodder preparation to 6.20 × 102 (PM2.5 ) and 2.22 × 103 (CO) for the traditional mud stove during liquor distillation. Usable PN data were only available for one house, during heating using a metal chimney stove, which presented an emission rate of 3.24 × 1013 particles/min. Interventions to control household air pollution in Bhutan, in order to reduce the health risks associated with cooking and heating, are recommended. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Mathematical simulation of the coupled heat and moisture exchange in storehouses of agricultural production (United States)

    Kondrashov, V. I.

    The complete mathematical model of coupled heat and moisture exchange in a global system is offered: stored production - protecting constructions of storehouses - surrounding medium. The calculation is carried out under the implicit finite-difference scheme with use of splitting, factorization and fast converging iterations. The mathematical basis of calculation underlies designed software for optimization of projection and operation of farm production storehouses. Annotation Es wurde ein komplettes mathematisches Modell des wechselseitigen Wärme- und Wasseraustausches in einem globalen System: Umwelt - Schutzspeicherkonstruktion - zu lagernde Produktion vorge-schlagen. Die Berechnung erfolgt anhand des latenten, endlich differentialen Schemas. Dabei werden Spaltung, zusammenströmende Iterationen u. a. eingesetzt. Basierend auf diese mathematische Berechnung wurde Software entwickelt für die optimierende Projektierung/Planung von landwirtschaftlichen Produktionsspeichern.

  20. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. (United States)

    Ciais, Ph; Reichstein, M; Viovy, N; Granier, A; Ogée, J; Allard, V; Aubinet, M; Buchmann, N; Bernhofer, Chr; Carrara, A; Chevallier, F; De Noblet, N; Friend, A D; Friedlingstein, P; Grünwald, T; Heinesch, B; Keronen, P; Knohl, A; Krinner, G; Loustau, D; Manca, G; Matteucci, G; Miglietta, F; Ourcival, J M; Papale, D; Pilegaard, K; Rambal, S; Seufert, G; Soussana, J F; Sanz, M J; Schulze, E D; Vesala, T; Valentini, R


    Future climate warming is expected to enhance plant growth in temperate ecosystems and to increase carbon sequestration. But although severe regional heatwaves may become more frequent in a changing climate, their impact on terrestrial carbon cycling is unclear. Here we report measurements of ecosystem carbon dioxide fluxes, remotely sensed radiation absorbed by plants, and country-level crop yields taken during the European heatwave in 2003. We use a terrestrial biosphere simulation model to assess continental-scale changes in primary productivity during 2003, and their consequences for the net carbon balance. We estimate a 30 per cent reduction in gross primary productivity over Europe, which resulted in a strong anomalous net source of carbon dioxide (0.5 Pg C yr(-1)) to the atmosphere and reversed the effect of four years of net ecosystem carbon sequestration. Our results suggest that productivity reduction in eastern and western Europe can be explained by rainfall deficit and extreme summer heat, respectively. We also find that ecosystem respiration decreased together with gross primary productivity, rather than accelerating with the temperature rise. Model results, corroborated by historical records of crop yields, suggest that such a reduction in Europe's primary productivity is unprecedented during the last century. An increase in future drought events could turn temperate ecosystems into carbon sources, contributing to positive carbon-climate feedbacks already anticipated in the tropics and at high latitudes.

  1. Puerarin ameliorates heat stress-induced oxidative damage and apoptosis in bovine Sertoli cells by suppressing ROS production and upregulating Hsp72 expression. (United States)

    Cong, Xia; Zhang, Qian; Li, Huatao; Jiang, Zhongling; Cao, Rongfeng; Gao, Shansong; Tian, Wenru


    Puerarin, a bioactive isoflavone glucoside extracted from radix Puerariae, has been proven to possess many biological activities. However, the role of puerarin in protecting bovine Sertoli cells (bSCs) under heat stress conditions remains to be clarified. The present study aimed to explore the possible protective mechanism of puerarin for primary cultured bSCs subjected to heat stress. Bovine Sertoli cells were treated with 15 μM of puerarin before they were exposed to 42 °C for 1 hour. The dose of puerarin (15 μM) was determined on the basis of cell viability. The results showed that puerarin treatment suppressed the production of reactive oxygen species and decreased the oxidative damage of the bSCs subjected to heat stress, as indicated by changes in superoxide dismutase, catalase, and glutathione peroxidase activities and malondialdehyde content. Moreover, puerarin treatment also suppressed the initiation of mitochondria-dependent apoptotic pathway, as revealed by changes in Bax to Bcl-2 ratio, mitochondrial membrane potential, cytochrome C release, caspase-3 activation, and apoptotic rate compared with the heat stress group. In addition, puerarin treatment increased Hsp72 expression in the bSCs with no apparent cellular cytotoxicity compared with the control group. Furthermore, increased Hsp72 was detected in the heat stress plus puerarin group compared with the heat stress group. In conclusion, puerarin attenuates heat stress-induced oxidative damage and apoptosis of bSCs by suppressing reactive oxygen species production and upregulating Hsp72 expression. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Capsaicinoids improve egg production by regulating ovary nuclear transcription factors against heat stress in quail. (United States)

    Sahin, N; Orhan, C; Tuzcu, M; Juturu, V; Sahin, K


    1. To examine the molecular mechanism of capsaicinoid supplementation from capsicum extract, laying Japanese quail (n = 180, 5 weeks old) were reared either at 22°C for 24 h/d (thermoneutral, TN) or at 34°C for 8 h/d (heat stress, HS) and fed on one of three diets containing 0, 25 or 50 mg of capsaicinoids per kilogram for 12 weeks (2 × 3 factorial arrangement). 2. The results revealed that exposure to HS decreased feed consumption by 10.7% and egg production by 13.6%, increased serum and ovary malondialdehyde (MDA) levels by 66.9% and 88.1%, respectively, and reduced ovary superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) activities by 28.3%, 48.7% and 43.8%, respectively. 3. There were magnifications in the ovary nuclear factor kappa-light-chain-enhancer of activated B cell (NF-κB) levels by 42.4% and suppressions in nuclear factor (erythroid-derived 2)-like 2 (Nrf2), protein kinase B (Akt) and haem-oxygenase 1 (HO-1) levels by 29.2%, 38.2% and 30.7%, respectively, in heat-stressed quail. 4. With increasing supplemental capsaicinoids, there were linear increases in egg production, antioxidant enzyme activity, linear decreases in ovary MDA and NF-κB levels and linear increases in ovary Nrf2, Akt and HO-1 levels at a greater extent in quail reared under TN condition than those reared under HS condition. Two-way treatment interactions showed that the degree of restorations in all response variables was more notable under the HS environment than under the TN environment as supplemental capsaicinoid level was increased. 5. In conclusion, capsaicinoid supplementation alleviates oxidative stress through regulating the ovary nuclear transcription factors in heat-stressed quail.

  3. Development of heat and mass balance analysis code in out-of-pile hydrogen production system for HTTR heat utilization system (contract research)

    Energy Technology Data Exchange (ETDEWEB)

    Inaba, Yoshitomo; Inagaki, Yoshiyuki; Hayashi, Koji; Suyama, Kazumasa [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment


    A heat and mass balance analysis code has been developed to examine test conditions, to investigate transient behavior etc. in the out-of-pile hydrogen production system for the HTTR heat utilization system. The code can analyze temperature, mass and pressure profiles of helium and process gases and behavior of the control system under both static state (case of steady operation) and dynamic state (case of transient operation). This report describes analytical methods, basic equations and constitution of the code, and how to make of the input data, estimate of the analytical results and so on. (author)

  4. Isolation and identification of oxidation products of guaiacol from brines and heated meat matrix. (United States)

    Bölicke, Sarah-Maria; Ternes, Waldemar


    In this study we investigated the formation of the oxidation products of guaiacol in brines and heated meat matrix: 6-nitrosoguaiacol, 4-nitroguaiacol and 6-nitroguaiacol. For this purpose we applied a newly developed HPLC-UV and LC-MS method. For the first time, 6-nitrosoguaiacol was determined in brine and meat (containing guaiacol and sodium nitrite), which had been heated to 80°C and subsequently subjected to simulated digestion. Application of 500mg/L ascorbic acid to the brines reduced guaiacol degradation at pH3 and simultaneously inhibited the formation of 6-nitrosoguaiacol compared to brines containing only 100mg/L of ASC. The oxidation products were isolated with a new extraction method from meat samples containing 400mg/kg sodium nitrite at pH3.6 following simulated digestion. When oxygen was added, 6-nitrosoguaiacol was determined even at legally allowed levels (150mg/kg) of the curing agent. Finally, we developed a new LC-MS method for the separation and qualitative determination of the four main smoke methoxyphenols. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. An in vitro evaluation of heat production during osteotomy preparation for dental implants with compressive osteotomes. (United States)

    Quaranta, Alessandro; Andreana, Sebastiano; Spazzafumo, Liana; Piemontese, Matteo


    To assess heat production using osteotomes under conditions simulating implant placement in D3, D4 bone. Implant osteotomes were tested (Winsix, Biosafin, Italy). Site preparations were performed on porcine ribs through a compressive fashion. The ribs were partially immersed in a custom-made water bath/water pump system that maintained the baseline temperature at 36 °C. Temperatures generated at different depths (2, 5, and 9 mm) during a series of 25 osteotomies were measured using 3 thermocouples connected to a digital thermometer. The mean temperatures never exceeded 37 °C and were all significantly lower than those reported during preparation with standard implant drills. Statistical evaluation of the temperature during implant site preparation showed slight significant variations between the baseline values and those of the different depth preparations. Within the limits of this study, the production of heat during implant preparation using osteotomes shows significant variations at different depths. However, these variations are not clinically relevant because they never increased over the values that negatively affect bone that may jeopardize osseointegration.

  6. Critical factors for profitable combined production of heat, power and biofuels; Kritiska faktorer foer loensam produktion i bioenergikombinat

    Energy Technology Data Exchange (ETDEWEB)

    Nohlgren, Ingrid; Gunnarsson, Emma; Lundqvist, Per; Stigander, Haakan; Widmark, Annika (AaF, Stockholm (Sweden))


    During the last 5-10 years, research and development efforts have been made in the field of polygeneration of heat and power with production of 'other green' products such as transport fuels or wood pellets. The driving force for heat and power producers is the potential of increased profitability through additional sales of heat. The driving force for wood pellet and some transport fuel producers is the potential of low cost process steam or heat. However, in the case of gasification based transport fuel production processes the situation is different. The process generates a surplus of heat, which can benefit from the proximity of a district heating net. In addition, some polygeneration combinations could provide other advantages such as more efficient raw material handling. Together with these driving forces, the EU renewable energy directive (which targets 10 % renewable energy use in the transport sector by 2020), shows that the market for production of renewable transport fuel is expanding. To refine Swedish biomass resources to more highly valuable products such as wood pellets or renewable transport fuels would maintain industry and employment opportunities within Sweden and at the same time fulfils the international and national climate targets. The overall aim with this project is to describe the factors which are crucial for the opportunity for profitable polygeneration of heat, power and wood pellets or renewable transport fuels and how these factors influence the location of such a plant within Sweden. The important factors can be categorized as: (1) Supply of raw material, (2) distribution of raw material and products, (3) Demand of products and (4) Integration between the different plants. In this project, only general aspects are described and should be seen as guidance for the industry (both energy and forest industry) which has an interest in polygeneration. The project gives an overview of different possibilities, opportunities and

  7. Experimental particle formation rates spanning tropospheric sulfuric acid and ammonia abundances, ion production rates, and temperatures

    CERN Document Server

    Kürten, Andreas; Almeida, Joao; Kupiainen-Määttä, Oona; Dunne, Eimear M.; Duplissy, Jonathan; Williamson, Christina; Barmet, Peter; Breitenlechner, Martin; Dommen, Josef; Donahue, Neil M.; Flagan, Richard C.; Franchin, Alessandro; Gordon, Hamish; Hakala, Jani; Hansel, Armin; Heinritzi, Martin; Ickes, Luisa; Jokinen, Tuija; Kangasluoma, Juha; Kim, Jaeseok; Kirkby, Jasper; Kupc, Agnieszka; Lehtipalo, Katrianne; Leiminger, Markus; Makhmutov, Vladimir; Onnela, Antti; Ortega, Ismael K.; Petäjä, Tuukka; Praplan, Arnaud P.; Riccobono, Francesco; Rissanen, Matti P.; Rondo, Linda; Schnitzhofer, Ralf; Schobesberger, Siegfried; Smith, James N.; Steiner, Gerhard; Stozhkov, Yuri; Tomé, António; Tröstl, Jasmin; Tsagkogeorgas, Georgios; Wagner, Paul E.; Wimmer, Daniela; Ye, Penglin; Baltensperger, Urs; Carslaw, Ken; Kulmala, Markku; Curtius, Joachim


    Binary nucleation of sulfuric acid and water as well as ternary nucleation involving ammonia arethought to be the dominant processes responsible for new particle formation (NPF) in the cold temperaturesof the middle and upper troposphere. Ions are also thought to be important for particle nucleation inthese regions. However, global models presently lack experimentally measured NPF rates under controlledlaboratory conditions and so at present must rely on theoretical or empirical parameterizations. Here withdata obtained in the European Organization for Nuclear Research CLOUD (Cosmics Leaving OUtdoor Droplets)chamber, we present the first experimental survey of NPF rates spanning free tropospheric conditions. Theconditions during nucleation cover a temperature range from 208 to 298 K, sulfuric acid concentrationsbet ween 5 × 105and 1 × 109cm3, and ammonia mixing ratios from zero added ammonia, i.e., nominally purebinary, to a maximum of ~1400 parts per trillion by volume (pptv). We performed nucleation s...

  8. Inventory of future power and heat production technologies; Inventering av framtidens el- och vaermeproduktionstekniker

    Energy Technology Data Exchange (ETDEWEB)

    Ekstroem, Clas [Vattenfall Research and Development AB, Stockholm (Sweden)


    's Water Framework Directive. Combined heat and power with a steam cycle is currently the most cost-effective alternative for biofuel based power production, and it also provides optimal utilization of fuel. The potential here is restricted mainly by the amount of available district heating demands. Gasification with gas turbines or gas engines ensures higher electricity efficiency for plants up to 50 MW, although costs are currently high. Wind power has become competitive owing to fast international expansion, although only on the strength of effective climate-related control measures and measures favouring renewable energy production. Its potential is restricted by the quantities that can be integrated into the electricity network, given that production is reliant on wind conditions. The possibility of storing electricity/energy could increase its usability. Wave power is a promising future alternative, although currently at an early stage of development. Its potential is restricted by the quantities that can be integrated into the electricity network, given that production is entirely reliant on waves. Combined plants with combined heat and power or district heating improve the overall utilization of fuel. Upgrading solid biofuels to pellets is currently a competitive option, and torrefication could prove an interesting option should there be a demand for prolonged storing ability and improved grindability. Pyrolysis oil can be burned in simple plants, and would also enable a cost-effective use of 'problematic' biofuels. Infrastructure and handling must however be adapted to the fact that pyrolysis oil is corrosive and unstable for storing. The competitiveness of all biofuel based automotive fuel alternatives studied pre-supposes that future control measures within the transport sector are equally effective as those currently in place. Under current conditions biogas is a competitive alternative to petrol, but its potential is curbed by the restricted

  9. Deformation behaviour in advanced heat resistant materials during slow strain rate testing at elevated temperature

    Directory of Open Access Journals (Sweden)

    Mattias Calmunger


    Full Text Available In this study, slow strain rate tensile testing at elevated temperature is used to evaluate the influence of temperature and strain rate on deformation behaviour in two different austenitic alloys. One austenitic stainless steel (AISI 316L and one nickel-base alloy (Alloy 617 have been investigated. Scanning electron microscopy related techniques as electron channelling contrast imaging and electron backscattering diffraction have been used to study the damage and fracture micromechanisms. For both alloys the dominante damage micromechanisms are slip bands and planar slip interacting with grain bounderies or precipitates causing strain concentrations. The dominante fracture micromechanism when using a slow strain rate at elevated temperature, is microcracks at grain bounderies due to grain boundery embrittlement caused by precipitates. The decrease in strain rate seems to have a small influence on dynamic strain ageing at 650°C.

  10. Optimization of the RF cavity heat load and trip rates for CEBAF at 12 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, He [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Roblin, Yves R. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Freyberger, Arne P. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Krafft, Geoffrey A. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Terzic, Balsa P. [Old Dominion Univ., Norfolk, VA (United States)


    The Continuous Electron Beam Accelerator Facility at JLab has 200 RF cavities in the north linac and the south linac respectively after the 12 GeV upgrade. The purpose of this work is to simultaneously optimize the heat load and the trip rate for the cavities and to reconstruct the pareto-optimal front in a timely manner when some of the cavities are turned down. By choosing an efficient optimizer and strategically creating the initial gradients, the pareto-optimal front for no more than 15 cavities down can be re-established within 20 seconds.

  11. Assessment of advanced small-scale combined heat and power production

    Energy Technology Data Exchange (ETDEWEB)

    Spitzer, J. [Joanneum Research (Austria)


    To increase the share of renewable energy sources, bioenergy has to be used for electricity generation, preferably in combined heat and power (CHP) production systems, besides its traditional use in space heating. The need for small-scale, i.e. below 5 MW{sub el}, CHP production arises from the fact that a considerable portion of the available solid biofuels may not be transported over long distances for economic reasons and that in many cases the heat demand is below 10 MW{sub el} in district heating schemes in communities with less than 10 000 inhabitants. The available technical options have to be assessed with respect to performance, reliability and economy. Such an assessment has been performed in a study where the following options have been compared: Gasification - combustion engine or gas turbine; Combustion - steam turbine/engine; Combustion - hot air turbine; Combustion - Stirling engine. While conventional steam cycle systems are available and reliable they are generally not economical in the power range under consideration. Among the other systems, which are not yet commercially available, the Stirling engine system seems to be attractive in the power range below 500 kW{sub el} and the hot air system could close the gap to the steam cycle systems, i.e. cover the power range between 0.5 and 5.0 MW{sub el}. Gasification schemes seem less suitable: The power generation part (combustion engine and gas turbine) is well established for natural gas, with the combustion engine in the lower (<5 MW{sub el}) and the gas turbine in the higher (>5MW{sub el}) power range. However, the gas quality needed for the operation of a combustion engine requires expensive pre-treatment of the gas from wood gasification so that this scheme is less attractive for the power range under consideration. These conclusions lead to R and D efforts in Austria in two directions: Hot air turbine: A utility demonstration plant is under construction with a power of 1 600 kW{sub el

  12. Theoretical prediction of the effect of heat transfer parameters on cooling rates of liquid-filled plastic straws used for cryopreservation of spermatozoa. (United States)

    Sansinen, M; Santos, M V; Zaritzky, N; Baez, R; Chirife, J


    Heat transfer plays a key role in cryopreservation of liquid semen in plastic straws. The effect of several parameters on the cooling rate of a liquid-filled polypropylene straw when plunged into liquid nitrogen was investigated using a theoretical model. The geometry of the straw containing the liquid was assimilated as two concentric finite cylinders of different materials: the fluid and the straw; the unsteady-state heat conduction equation for concentric cylinders was numerically solved. Parameters studied include external (convection) heat transfer coefficient (h), the thermal properties of straw manufacturing material and wall thickness. It was concluded that the single most important parameter affecting the cooling rate of a liquid column contained in a straw is the external heat transfer coefficient in LN2. Consequently, in order to attain maximum cooling rates, conditions have to be designed to obtain the highest possible heat transfer coefficient when the plastic straw is plunged in liquid nitrogen.

  13. Model for the evaluation and prediction of production rate of sinter ...

    African Journals Online (AJOL)

    A model has been derived for evaluation and prediction of production rate of sinter machine operating on vertical mode. The quadratic model expressed as: P = 0.4395 V – 0.0526 V2 + 0.54, showed that the production rate of the sinter machine was dependent on the vertical sintering height. The maximum deviation of the ...

  14. Short- and long-run exchange rate effects on forest product trade: evidence from panel data (United States)

    Torjus F. Bolksejo; Joseph Buongiorno


    Impacts of exchange rates on international forest products trade are widely debated, but the empirical evidence regarding this issue is still inconclusive. Here, we report findings of the impacts of the exchange rates on the main forest product imports and exports of the US, from January 1989 to November 2004. Export data consisted of monthly series of the main...

  15. Erythromycin inhibits tumor necrosis factor alpha and interleukin 6 production induced by heat-killed Streptococcus pneumoniae in whole blood

    NARCIS (Netherlands)

    Schultz, M. J.; Speelman, P.; Zaat, S.; van Deventer, S. J.; van der Poll, T.


    To determine the effects of penicillin and erythromycin on cytokine production induced by heat-killed Streptococcus pneumoniae (HKSP), we studied the effects of those drugs on cytokine production induced by S. pneumoniae in human whole blood in vitro and ex vivo. In whole blood in vitro,

  16. Inventory of future power and heat production technologies; Inventering av framtidens el- och vaermeproduktionstekniker

    Energy Technology Data Exchange (ETDEWEB)

    Ekstroem, Clas (Vattenfall Research and Development AB, Stockholm (Sweden))


    's Water Framework Directive. Combined heat and power with a steam cycle is currently the most cost-effective alternative for biofuel based power production, and it also provides optimal utilization of fuel. The potential here is restricted mainly by the amount of available district heating demands. Gasification with gas turbines or gas engines ensures higher electricity efficiency for plants up to 50 MW, although costs are currently high. Wind power has become competitive owing to fast international expansion, although only on the strength of effective climate-related control measures and measures favouring renewable energy production. Its potential is restricted by the quantities that can be integrated into the electricity network, given that production is reliant on wind conditions. The possibility of storing electricity/energy could increase its usability. Wave power is a promising future alternative, although currently at an early stage of development. Its potential is restricted by the quantities that can be integrated into the electricity network, given that production is entirely reliant on waves. Combined plants with combined heat and power or district heating improve the overall utilization of fuel. Upgrading solid biofuels to pellets is currently a competitive option, and torrefication could prove an interesting option should there be a demand for prolonged storing ability and improved grindability. Pyrolysis oil can be burned in simple plants, and would also enable a cost-effective use of 'problematic' biofuels. Infrastructure and handling must however be adapted to the fact that pyrolysis oil is corrosive and unstable for storing. The competitiveness of all biofuel based automotive fuel alternatives studied pre-supposes that future control measures within the transport sector are equally effective as those currently in place. Under current conditions biogas is a competitive alternative to petrol, but its potential is curbed by the restricted

  17. 24 CFR 200.950 - Building product standards and certification program for solar water heating system. (United States)


    ... certification program for solar water heating system. 200.950 Section 200.950 Housing and Urban Development... solar water heating system. (a) Applicable standards. (1) All solar water heating systems shall be...) Document OG-300-93, Operating Guidelines and Minimum Standards for Certifying Solar Water Heating Systems...

  18. Effects of heating and cooling rate on transformation behaviors in weld heat affected zone of low carbon steel; Teitanso koban no yosetsu netsu eikyobu no hentai kyodo ni oyobosu kanetsu reikyaku sokudo no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Kanetsuki, Y.; Katsumata, M. [Kobe Steel, Ltd., Kobe (Japan)


    Discussions were given on effects of welding heat cycles on transformation behaviors in a weld heat affected zone (HAZ). Test pieces are low-carbon fine ferrite pearlite organization steel sheets, which have been treated with a thermomechanical control process (TMCP). The heat cycling was experimented at a maximum temperature of 1350 degC by using a high-frequency heating coil, heating rates from 0.15 to 200 degC/s, cooling rates from 10 to 80 degC/s at an elevated temperature region (higher than 900 degC), and transformation regions (lower than 900 degC) from 0.5 to 6 degC. A transformation curve in actual welding heat cycling was interpreted from these results. Shear-type inverse transformation (from ferrite to austenite) occurs in a rate region corresponding to the heating rate realized during welding. Austenite containing internal stress and a lower structure formed by this inverse transformation accelerates transformation into grain boundary ferrite (GBF) and acerous ferrite (AF). On the other hand, slow cooling in the elevated temperature region releases the internal stress, restores the lower structure, and suppresses the GBF and AF transformation. The GBF tends to precipitate pearlite in adjacent regions and deteriorates the HAZ tenacity. 17 refs., 8 figs., 1 tab.

  19. Learning control for riser-slug elimination and production-rate optimization for an offshore oil and gas production process

    DEFF Research Database (Denmark)

    Pedersen, Simon; Løhndorf, Petar Durdevic; Yang, Zhenyu


    Slugging flow in the offshore oil & gas production attracts lot of attention due to it's limitation of production rate, periodic overload on processing facilities, and even direct cause of emergency shutdown. This work aims at two correlated objectives: (i) Preventing slugging flow; and meanwhile...

  20. Flat rate accounting in district heat supply; Pauschalabrechnung in der Fernwaermeversorgung

    Energy Technology Data Exchange (ETDEWEB)

    Heberle, V. [Veba Kraftwerke AG, Gelsenkirchen (Germany)


    In the form of laws and decrees of recent years, the energy political fundamentals in Germany have resulted in a substantial reduction in energy input as well as in environment relative emissions. For example, the `Thermal Protection Law` was revised and came into effect in 1995. Its objective is to cut the energy input for new buildings by at least 30% over the old regulation. A further 30% reduction for new buildings is planned for 1999 by a new energy conservation decree. In addition to the anticipated drop in consumption, the deregulation of the energy market will lead to pressure on costs and prices and consequently to a further depletion of the competitiveness of district heat. (orig.) [Deutsch] Die verstaerkten Anforderungen an den Gebaeudewaermeschutz sowie die anstehende Liberalisierung des Energiemarktes machen den Anschluss von Gebaeuden im kleineren Leistungsbereich wirtschaftlich immer schwieriger. Fernwaermeversorger, die Waerme aus Kraft-Waerme-Kopplung bereitstellen und daher mit hohen Festkosten belastet sind, muessen alle sich bietenden Moeglichkeiten zur Kostenreduzierung ausschoepfen, um wettbewerbsfaehig zu bleiben. Der Autor stellt die Wiedereinfuehrung der Pauschalabrechnung als eine preisgestalterische Variante zur Kostenreduzierung vor. Dabei geht er auf die rechtlichen Voraussetzungen und die Umsetzung bei neugebauten und bereits versorgten Einfamilienhaeuser ein. (orig.)