WorldWideScience

Sample records for heat input schemes

  1. Dynamics and controls of urban heat sink and island phenomena in a desert city: Development of a local climate zone scheme using remotely-sensed inputs

    Science.gov (United States)

    Nassar, Ahmed K.; Blackburn, G. Alan; Whyatt, J. Duncan

    2016-09-01

    This study aims to determine the dynamics and controls of Surface Urban Heat Sinks (SUHS) and Surface Urban Heat Islands (SUHI) in desert cities, using Dubai as a case study. A Local Climate Zone (LCZ) schema was developed to subdivide the city into different zones based on similarities in land cover and urban geometry. Proximity to the Gulf Coast was also determined for each LCZ. The LCZs were then used to sample seasonal and daily imagery from the MODIS thermal sensor to determine Land Surface Temperature (LST) variations relative to desert sand. Canonical correlation techniques were then applied to determine which factors explained the variability between urban and desert LST. Our results indicate that the daytime SUHS effect is greatest during the summer months (typically ∼3.0 °C) with the strongest cooling effects in open high-rise zones of the city. In contrast, the night-time SUHI effect is greatest during the winter months (typically ∼3.5 °C) with the strongest warming effects in compact mid-rise zones of the city. Proximity to the Arabian Gulf had the largest influence on both SUHS and SUHI phenomena, promoting daytime cooling in the summer months and night-time warming in the winter months. However, other parameters associated with the urban environment such as building height had an influence on daytime cooling, with larger buildings promoting shade and variations in airflow. Likewise, other parameters such as sky view factor contributed to night-time warming, with higher temperatures associated with limited views of the sky.

  2. Characterization of industrial process waste heat and input heat streams

    Energy Technology Data Exchange (ETDEWEB)

    Wilfert, G.L.; Huber, H.B.; Dodge, R.E.; Garrett-Price, B.A.; Fassbender, L.L.; Griffin, E.A.; Brown, D.R.; Moore, N.L.

    1984-05-01

    The nature and extent of industrial waste heat associated with the manufacturing sector of the US economy are identified. Industry energy information is reviewed and the energy content in waste heat streams emanating from 108 energy-intensive industrial processes is estimated. Generic types of process equipment are identified and the energy content in gaseous, liquid, and steam waste streams emanating from this equipment is evaluated. Matchups between the energy content of waste heat streams and candidate uses are identified. The resultant matrix identifies 256 source/sink (waste heat/candidate input heat) temperature combinations. (MHR)

  3. Modeling of heat transfer into a heat pipe for a localized heat input zone

    International Nuclear Information System (INIS)

    Rosenfeld, J.H.

    1987-01-01

    A general model is presented for heat transfer into a heat pipe using a localized heat input. Conduction in the wall of the heat pipe and boiling in the interior structure are treated simultaneously. The model is derived from circumferential heat transfer in a cylindrical heat pipe evaporator and for radial heat transfer in a circular disk with boiling from the interior surface. A comparison is made with data for a localized heat input zone. Agreement between the theory and the model is good. This model can be used for design purposes if a boiling correlation is available. The model can be extended to provide improved predictions of heat pipe performance

  4. Heat input control in coke ovens battery using artificial intelligence

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, R.; Kannan, C.; Sistla, S.; Kumar, D. [Tata Steel, Jamshedpur (India)

    2005-07-01

    Controlled heating is very essential for producing coke with certain desired properties. Controlled heating involves controlling the heat input into the battery dynamically depending on the various process parameters like current battery temperature, the set point of battery temperature, moisture in coal, ambient temperature, coal fineness, cake breakage etc. An artificial intelligence (AI) based heat input control has been developed in which currently some of the above mentioned process parameters are considered and used for calculating the pause time which is applied between reversal during the heating process. The AI based model currently considers 3 input variables, temperature deviation history, current deviation of the battery temperature from the target temperature and the actual heat input into the battery. Work is in progress to control the standard deviation of coke end temperature using this model. The new system which has been developed in-house has replaced Hoogovens supplied model. 7 figs.

  5. Boiling and burnout phenomena under transient heat input, 1

    International Nuclear Information System (INIS)

    Aoki, Shigebumi; Kozawa, Yoshiyuki; Iwasaki, Hideaki.

    1976-01-01

    In order to simulate the thermo-hydrodynamic conditions at reactor power excursions, a test piece was placed in a forced convective channel and heated with exponential power inputs. The boiling heat transfer and the burnout heat flux under the transient heat input were measured, and pressure and water temperature changes in the test section were recorded at the same time. Following experimental results were obtained; (1) Transient boiling heat transfer characteristics at high heat flux stayed on the stationary nucleate boiling curve of each flow condition, or extrapolated line of the curves. (2) Transient burnout heat flux increased remarkably with decreasing heating-time-constant, when the flow rate was lower and the subcooling was higher. (3) Transient burnout phenomena were expressed with the relation of (q sub(max) - q sub(sBO)) tau = constant at several flow conditions. This relation was derived from the stationary burnout mechanism of pool boiling. (auth.)

  6. Effect of heat input on dilution and heat affected zone in submerged ...

    Indian Academy of Sciences (India)

    Proper management of heat input in weld- ing is important .... total nugget area, heat transfer boundary length, and nugget parameter. 3. ... Predominant parameters that had greater influence on welding quality were identified as wire feed rate ...

  7. Effect of heat input on heat affected zone cracking in laser welded ATI Allvac 718Plus superalloy

    International Nuclear Information System (INIS)

    Idowu, O.A.; Ojo, O.A.; Chaturvedi, M.C.

    2007-01-01

    The heat affected zones (HAZs) of low and high heat input laser welds of a newly developed superalloy, ATI Allvac 718Plus, were studied. Low heat input welds suffered significant HAZ grain boundary liquation cracking, while no cracking was observed in spite of a more extensive HAZ intergranular liquation in the higher heat input welds. Combination of lower welding stresses generated during cooling, and relaxation of these stresses by thick intergranular liquid were suggested to be the factors that contributed to the absence of cracking in the high heat input welds. Further, healing of some of the HAZ cracks in lower heat input welds by fusion zone interdendritic liquid occurred through liquid backfilling

  8. Evolutionary algorithm based heuristic scheme for nonlinear heat transfer equations.

    Science.gov (United States)

    Ullah, Azmat; Malik, Suheel Abdullah; Alimgeer, Khurram Saleem

    2018-01-01

    In this paper, a hybrid heuristic scheme based on two different basis functions i.e. Log Sigmoid and Bernstein Polynomial with unknown parameters is used for solving the nonlinear heat transfer equations efficiently. The proposed technique transforms the given nonlinear ordinary differential equation into an equivalent global error minimization problem. Trial solution for the given nonlinear differential equation is formulated using a fitness function with unknown parameters. The proposed hybrid scheme of Genetic Algorithm (GA) with Interior Point Algorithm (IPA) is opted to solve the minimization problem and to achieve the optimal values of unknown parameters. The effectiveness of the proposed scheme is validated by solving nonlinear heat transfer equations. The results obtained by the proposed scheme are compared and found in sharp agreement with both the exact solution and solution obtained by Haar Wavelet-Quasilinearization technique which witnesses the effectiveness and viability of the suggested scheme. Moreover, the statistical analysis is also conducted for investigating the stability and reliability of the presented scheme.

  9. Evolutionary algorithm based heuristic scheme for nonlinear heat transfer equations.

    Directory of Open Access Journals (Sweden)

    Azmat Ullah

    Full Text Available In this paper, a hybrid heuristic scheme based on two different basis functions i.e. Log Sigmoid and Bernstein Polynomial with unknown parameters is used for solving the nonlinear heat transfer equations efficiently. The proposed technique transforms the given nonlinear ordinary differential equation into an equivalent global error minimization problem. Trial solution for the given nonlinear differential equation is formulated using a fitness function with unknown parameters. The proposed hybrid scheme of Genetic Algorithm (GA with Interior Point Algorithm (IPA is opted to solve the minimization problem and to achieve the optimal values of unknown parameters. The effectiveness of the proposed scheme is validated by solving nonlinear heat transfer equations. The results obtained by the proposed scheme are compared and found in sharp agreement with both the exact solution and solution obtained by Haar Wavelet-Quasilinearization technique which witnesses the effectiveness and viability of the suggested scheme. Moreover, the statistical analysis is also conducted for investigating the stability and reliability of the presented scheme.

  10. Performance investigation of advanced adsorption desalination cycle with condenser-evaporator heat recovery scheme

    KAUST Repository

    Thu, Kyaw; Kim, Youngdeuk; Myat, Aung; Chakraborty, Anutosh; Ng, K. C.

    2013-01-01

    Energy or heat recovery schemes are keys for the performance improvement of any heat-activated cycles such as the absorption and adsorption cycles. We present two innovative heat recovery schemes between the condensing and evaporating units

  11. Effect of finite heat input on the power performance of micro heat engines

    International Nuclear Information System (INIS)

    Khu, Kerwin; Jiang, Liudi; Markvart, Tom

    2011-01-01

    Micro heat engines have attracted considerable interest in recent years for their potential exploitation as micro power sources in microsystems and portable devices. Thermodynamic modeling can predict the theoretical performance that can be potentially achieved by micro heat engine designs. An appropriate model can not only provide key information at the design stage but also indicate the potential room for improvement in existing micro heat engines. However, there are few models reported to date which are suitable for evaluating the power performance of micro heat engines. This paper presents a new thermodynamic model for determining the theoretical limit of power performance of micro heat engines with consideration to finite heat input and heat leakage. By matching the model components to those of a representative heat engine layout, the theoretical power, power density, and thermal efficiency achievable for a micro heat engine can be obtained for a given set of design parameters. The effects of key design parameters such as length and thermal conductivity of the engine material on these theoretical outputs are also investigated. Possible trade-offs among these performance objectives are discussed. Performance results derived from the developed model are compared with those of a working micro heat engine (P3) as an example. -- Highlights: → Thermodynamic model for micro heat engines. → Effect of different parameters on potential performance. → Tradeoffs for determining optimal size of micro engines.

  12. Transient heat transfer for helium gas flowing over a horizontal cylinder with exponentially increasing heat input

    International Nuclear Information System (INIS)

    Liu, Qiusheng; Fukuda, Katsuya

    2003-01-01

    The transient heat transfer coefficients for forced convection flow of helium gas over a horizontal cylinder were measured under wide experimental conditions. The platinum cylinder with a diameter of 1.0 mm was used as test heater and heated by electric current with an exponentially increasing heat input of Q 0 exp(t/τ). The gas flow velocities ranged from 5 to 35 m/s, the gas temperatures ranged from 25 to 80degC, and the periods of heat generation rate, τ, ranged from 40 ms to 20 s. The surface superheat and heat flux increase exponentially as the heat generation rate increases with the exponential function. It was clarified that the heat transfer coefficient approaches the quasi-steady-state one for the period τ longer than about 1 s, and it becomes higher for the period shorter than around 1 s. The transient heat transfer shows less dependence on the gas flowing velocity when the period becomes very shorter. The gas temperature in this study shows little influence on the heat transfer coefficient. Semi-empirical correlation for quasi-steady-state heat transfer was obtained based on the experimental data. The ratios of transient Nusselt number Nu tr to quasi-steady-state Nusselt number Nu st at various periods, flow velocities, and gas temperatures were obtained. The heat transfer shifts to the quasi-steady-state heat transfer for longer periods and shifts to the transient heat transfer for shorter periods at the same flow velocity. It also approaches the quasi-steady-state one for higher flow velocity at the same period. Empirical correlation for transient heat transfer was also obtained based on the experimental data. (author)

  13. Experimental study of heating scheme effect on the inner divertor power footprint widths in EAST lower single null discharges

    Science.gov (United States)

    Deng, G. Z.; Xu, J. C.; Liu, X.; Liu, X. J.; Liu, J. B.; Zhang, H.; Liu, S. C.; Chen, L.; Yan, N.; Feng, W.; Liu, H.; Xia, T. Y.; Zhang, B.; Shao, L. M.; Ming, T. F.; Xu, G. S.; Guo, H. Y.; Xu, X. Q.; Gao, X.; Wang, L.

    2018-04-01

    A comprehensive work of the effects of plasma current and heating schemes on divertor power footprint widths is carried out in the experimental advanced superconducting tokamak (EAST). The divertor power footprint widths, i.e., the scrape-off layer heat flux decay length λ q and the heat spreading S, are crucial physical and engineering parameters for fusion reactors. Strong inverse scaling of λ q and S with plasma current have been demonstrated for both neutral beam (NB) and lower hybrid wave (LHW) heated L-mode and H-mode plasmas at the inner divertor target. For plasmas heated by the combination of the two kinds of auxiliary heating schemes (NB and LHW), the divertor power widths tend to be larger in plasmas with higher ratio of LHW power. Comparison between experimental heat flux profiles at outer mid-plane (OMP) and divertor target for NB heated and LHW heated L-mode plasmas reveals that the magnetic topology changes induced by LHW may be the main reason to the wider divertor power widths in LHW heated discharges. The effect of heating schemes on divertor peak heat flux has also been investigated, and it is found that LHW heated discharges tend to have a lower divertor peak heat flux compared with NB heated discharges under similar input power. All these findings seem to suggest that plasmas with LHW auxiliary heating scheme are better heat exhaust scenarios for fusion reactors and should be the priorities for the design of next-step fusion reactors like China Fusion Engineering Test Reactor.

  14. A two-stage heating scheme for heat assisted magnetic recording

    Science.gov (United States)

    Xiong, Shaomin; Kim, Jeongmin; Wang, Yuan; Zhang, Xiang; Bogy, David

    2014-05-01

    Heat Assisted Magnetic Recording (HAMR) has been proposed to extend the storage areal density beyond 1 Tb/in.2 for the next generation magnetic storage. A near field transducer (NFT) is widely used in HAMR systems to locally heat the magnetic disk during the writing process. However, much of the laser power is absorbed around the NFT, which causes overheating of the NFT and reduces its reliability. In this work, a two-stage heating scheme is proposed to reduce the thermal load by separating the NFT heating process into two individual heating stages from an optical waveguide and a NFT, respectively. As the first stage, the optical waveguide is placed in front of the NFT and delivers part of laser energy directly onto the disk surface to heat it up to a peak temperature somewhat lower than the Curie temperature of the magnetic material. Then, the NFT works as the second heating stage to heat a smaller area inside the waveguide heated area further to reach the Curie point. The energy applied to the NFT in the second heating stage is reduced compared with a typical single stage NFT heating system. With this reduced thermal load to the NFT by the two-stage heating scheme, the lifetime of the NFT can be extended orders longer under the cyclic load condition.

  15. Nonlinear unknown input sliding mode observer based chaotic system synchronization and message recovery scheme with uncertainty

    International Nuclear Information System (INIS)

    Sharma, Vivek; Sharma, B.B.; Nath, R.

    2017-01-01

    In the present manuscript, observer based synchronization and message recovery scheme is discussed for a system with uncertainties. LMI conditions are analytically derived solution of which gives the observer design matrices. Earlier approaches have used adaptive laws to address the uncertainties, however in present work, decoupling approach is used to make observer robust against uncertainties. The methodology requires upper bounds on nonlinearity and the message signal and estimates for these bounds are generated adaptively. Thus no information about the nature of nonlinearity and associated Lipschitz constant is needed in proposed approach. Message signal is recovered using equivalent output injection which is a low pass filtered equivalent of the discontinuous effort required to maintain the sliding motion. Finally, the efficacy of proposed Nonlinear Unknown Input Sliding Mode Observer (NUISMO) for chaotic communication is verified by conducting simulation studies on two chaotic systems i.e. third order Chua circuit and Rossler system.

  16. Effect of variable heat input on the heat transfer characteristics in an Organic Rankine Cycle system

    Directory of Open Access Journals (Sweden)

    Aboaltabooq Mahdi Hatf Kadhum

    2016-01-01

    Full Text Available This paper analyzes the heat transfer characteristics of an ORC evaporator applied on a diesel engine using measured data from experimental work such as flue gas mass flow rate and flue gas temperature. A mathematical model was developed with regard to the preheater, boiler and the superheater zones of a counter flow evaporator. Each of these zones has been subdivided into a number of cells. The hot source of the ORC cycle was modeled. The study involves the variable heat input's dependence on the ORC system's heat transfer characteristics, with especial emphasis on the evaporator. The results show that the refrigerant's heat transfer coefficient has a higher value for a 100% load from the diesel engine, and decreases with the load decrease. Also, on the exhaust gas side, the heat transfer coefficient decreases with the decrease of the load. The refrigerant's heat transfer coefficient increased normally with the evaporator's tube length in the preheater zone, and then increases rapidly in the boiler zone, followed by a decrease in the superheater zone. The exhaust gases’ heat transfer coefficient increased with the evaporator’ tube length in all zones. The results were compared with result by other authors and were found to be in agreement.

  17. Transient pool boiling heat transfer due to increasing heat inputs in subcooled water at high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, K. [Kobe Univ. of Mercantile Marine (Japan); Shiotsu, M.; Sakurai, A. [Kyoto Univ. (Japan)

    1995-09-01

    Understanding of transient boiling phenomenon caused by increasing heat inputs in subcooled water at high pressures is necessary to predict correctly a severe accident due to a power burst in a water-cooled nuclear reactor. Transient maximum heat fluxes, q{sub max}, on a 1.2 mm diameter horizontal cylinder in a pool of saturated and subcooled water for exponential heat inputs, q{sub o}e{sup t/T}, with periods, {tau}, ranging from about 2 ms to 20 s at pressures from atmospheric up to 2063 kPa for water subcoolings from 0 to about 80 K were measured to obtain the extended data base to investigate the effect of high subcoolings on steady-state and transient maximum heat fluxes, q{sub max}. Two main mechanisms of q{sub max} exist depending on the exponential periods at low subcoolings. One is due to the time lag of the hydrodynamic instability which starts at steady-state maximum heat flux on fully developed nucleate boiling (FDNB), and the other is due to the heterogenous spontaneous nucleations (HSN) in flooded cavities which coexist with vapor bubbles growing up from active cavities. The shortest period corresponding to the maximum q{sub max} for long period range belonging to the former mechanism becomes longer and the q{sub max}mechanism for long period range shifts to that due the HSN on FDNB with the increase of subcooling and pressure. The longest period corresponding to the minimum q{sub max} for the short period range belonging to the latter mechanism becomes shorter with the increase in saturated pressure. On the contrary, the longest period becomes longer with the increase in subcooling at high pressures. Correlations for steady-state and transient maximum heat fluxes were presented for a wide range of pressure and subcooling.

  18. Transient pool boiling heat transfer due to increasing heat inputs in subcooled water at high pressures

    International Nuclear Information System (INIS)

    Fukuda, K.; Shiotsu, M.; Sakurai, A.

    1995-01-01

    Understanding of transient boiling phenomenon caused by increasing heat inputs in subcooled water at high pressures is necessary to predict correctly a severe accident due to a power burst in a water-cooled nuclear reactor. Transient maximum heat fluxes, q max , on a 1.2 mm diameter horizontal cylinder in a pool of saturated and subcooled water for exponential heat inputs, q o e t/T , with periods, τ, ranging from about 2 ms to 20 s at pressures from atmospheric up to 2063 kPa for water subcoolings from 0 to about 80 K were measured to obtain the extended data base to investigate the effect of high subcoolings on steady-state and transient maximum heat fluxes, q max . Two main mechanisms of q max exist depending on the exponential periods at low subcoolings. One is due to the time lag of the hydrodynamic instability which starts at steady-state maximum heat flux on fully developed nucleate boiling (FDNB), and the other is due to the heterogenous spontaneous nucleations (HSN) in flooded cavities which coexist with vapor bubbles growing up from active cavities. The shortest period corresponding to the maximum q max for long period range belonging to the former mechanism becomes longer and the q max mechanism for long period range shifts to that due the HSN on FDNB with the increase of subcooling and pressure. The longest period corresponding to the minimum q max for the short period range belonging to the latter mechanism becomes shorter with the increase in saturated pressure. On the contrary, the longest period becomes longer with the increase in subcooling at high pressures. Correlations for steady-state and transient maximum heat fluxes were presented for a wide range of pressure and subcooling

  19. Heat input properties of hollow cathode arc as a welding heat source

    International Nuclear Information System (INIS)

    Nishikawa, Hiroshi; Shobako, Shinichiro; Ohta, Masashi; Ohji, Takayoshi

    2005-01-01

    In order to clarify whether a hollow cathode arc (HCA) can be used as a welding heat source in space, investigations into the fundamental characteristics of HCA were experimentally performed under low pressure conditions. The HCA method enables an arc discharge to ignite and maintain under low pressure conditions; in contrast, low pressure conditions make it extremely difficult for the conventional gas tungsten arc method to form an arc discharge. In an earlier paper, it was shown that the melting process by HCA is very sensitive to process parameters such as the gas flow rate and arc length, and a deep penetration forms when the arc length is long and the gas flow rate is low. In this paper, the distribution of the arc current on the anode surface and the plasma properties of the HCA under low pressure conditions have been made clear and the total heat energy to the anode has been discussed in order to understand the heat input properties of the HCA. The result shows that the HCA in the case of a low gas flow rate is a high and concentrated energy source, and the high energy input to the anode contributes to the deep penetration

  20. Effect of Heat Input on Inclusion Evolution Behavior in Heat-Affected Zone of EH36 Shipbuilding Steel

    Science.gov (United States)

    Sun, Jincheng; Zou, Xiaodong; Matsuura, Hiroyuki; Wang, Cong

    2018-03-01

    The effects of heat input parameters on inclusion and microstructure characteristics have been investigated using welding thermal simulations. Inclusion features from heat-affected zones (HAZs) were profiled. It was found that, under heat input of 120 kJ/cm, Al-Mg-Ti-O-(Mn-S) composite inclusions can act effectively as nucleation sites for acicular ferrites. However, this ability disappears when the heat input is increased to 210 kJ/cm. In addition, confocal scanning laser microscopy (CSLM) was used to document possible inclusion-microstructure interactions, shedding light on how inclusions assist beneficial transformations toward property enhancement.

  1. An asymptotic-preserving stochastic Galerkin method for the radiative heat transfer equations with random inputs and diffusive scalings

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Shi, E-mail: sjin@wisc.edu [Department of Mathematics, University of Wisconsin-Madison, Madison, WI 53706 (United States); Institute of Natural Sciences, Department of Mathematics, MOE-LSEC and SHL-MAC, Shanghai Jiao Tong University, Shanghai 200240 (China); Lu, Hanqing, E-mail: hanqing@math.wisc.edu [Department of Mathematics, University of Wisconsin-Madison, Madison, WI 53706 (United States)

    2017-04-01

    In this paper, we develop an Asymptotic-Preserving (AP) stochastic Galerkin scheme for the radiative heat transfer equations with random inputs and diffusive scalings. In this problem the random inputs arise due to uncertainties in cross section, initial data or boundary data. We use the generalized polynomial chaos based stochastic Galerkin (gPC-SG) method, which is combined with the micro–macro decomposition based deterministic AP framework in order to handle efficiently the diffusive regime. For linearized problem we prove the regularity of the solution in the random space and consequently the spectral accuracy of the gPC-SG method. We also prove the uniform (in the mean free path) linear stability for the space-time discretizations. Several numerical tests are presented to show the efficiency and accuracy of proposed scheme, especially in the diffusive regime.

  2. Does Kaniso activate CASINO?: input coding schemes and phonology in visual-word recognition.

    Science.gov (United States)

    Acha, Joana; Perea, Manuel

    2010-01-01

    Most recent input coding schemes in visual-word recognition assume that letter position coding is orthographic rather than phonological in nature (e.g., SOLAR, open-bigram, SERIOL, and overlap). This assumption has been drawn - in part - by the fact that the transposed-letter effect (e.g., caniso activates CASINO) seems to be (mostly) insensitive to phonological manipulations (e.g., Perea & Carreiras, 2006, 2008; Perea & Pérez, 2009). However, one could argue that the lack of a phonological effect in prior research was due to the fact that the manipulation always occurred in internal letter positions - note that phonological effects tend to be stronger for the initial syllable (Carreiras, Ferrand, Grainger, & Perea, 2005). To reexamine this issue, we conducted a masked priming lexical decision experiment in which we compared the priming effect for transposed-letter pairs (e.g., caniso-CASINO vs. caviro-CASINO) and for pseudohomophone transposed-letter pairs (kaniso-CASINO vs. kaviro-CASINO). Results showed a transposed-letter priming effect for the correctly spelled pairs, but not for the pseudohomophone pairs. This is consistent with the view that letter position coding is (primarily) orthographic in nature.

  3. Revisiting the latent heat nudging scheme for the rainfall assimilation of a simulated convective storm

    Science.gov (United States)

    Leuenberger, D.; Rossa, A.

    2007-12-01

    Next-generation, operational, high-resolution numerical weather prediction models require economical assimilation schemes for radar data. In the present study we evaluate and characterise the latent heat nudging (LHN) rainfall assimilation scheme within a meso-γ scale NWP model in the framework of identical twin simulations of an idealised supercell storm. Consideration is given to the model’s dynamical response to the forcing as well as to the sensitivity of the LHN scheme to uncertainty in the observations and the environment. The results indicate that the LHN scheme is well able to capture the dynamical structure and the right rainfall amount of the storm in a perfect environment. This holds true even in degraded environments but a number of important issues arise. In particular, changes in the low-level humidity field are found to affect mainly the precipitation amplitude during the assimilation with a fast adaptation of the storm to the system dynamics determined by the environment during the free forecast. A constant bias in the environmental wind field, on the other hand, has the potential to render a successful assimilation with the LHN scheme difficult, as the velocity of the forcing is not consistent with the system propagation speed determined by the wind. If the rainfall forcing moves too fast, the system propagation is supported and the assimilated storm and forecasts initialised therefrom develop properly. A too slow forcing, on the other hand, can decelerate the system and eventually disturb the system dynamics by decoupling the low-level moisture inflow from the main updrafts during the assimilation. This distortion is sustained in the free forecast. It has further been found that a sufficient temporal resolution of the rainfall input is crucial for the successful assimilation of a fast moving, coherent convective storm and that the LHN scheme, when applied to a convective storm, appears to necessitate a careful tuning.

  4. effects of heat input on the chemical composition and hardness

    African Journals Online (AJOL)

    2012-07-02

    Jul 2, 2012 ... fluencing liquid flow, heat and mass transfer, and the thermal cycle in the ... ther in understanding evaporation-limited weld pool temperatures in arc ..... This in- dicates that, the quantity of O2 is not large enough to reduce the ...

  5. Heat input effect of friction stir welding on aluminium alloy AA 6061-T6 welded joint

    Directory of Open Access Journals (Sweden)

    Sedmak Aleksandar

    2016-01-01

    Full Text Available This paper deals with the heat input and maximum temperature developed during friction stir welding with different parameters. Aluminium alloy (AA 6061-T6 has been used for experimental and numerical analysis. Experimental analysis is based on temperature measurements by using infrared camera, whereas numerical analysis was based on empirical expressions and finite element method. Different types of defects have been observed in respect to different levels of heat input.

  6. Optimum systems design with random input and output applied to solar water heating

    Science.gov (United States)

    Abdel-Malek, L. L.

    1980-03-01

    Solar water heating systems are evaluated. Models were developed to estimate the percentage of energy supplied from the Sun to a household. Since solar water heating systems have random input and output queueing theory, birth and death processes were the major tools in developing the models of evaluation. Microeconomics methods help in determining the optimum size of the solar water heating system design parameters, i.e., the water tank volume and the collector area.

  7. Effect of Heat Input on Geometry of Austenitic Stainless Steel Weld Bead on Low Carbon Steel

    Science.gov (United States)

    Saha, Manas Kumar; Hazra, Ritesh; Mondal, Ajit; Das, Santanu

    2018-05-01

    Among different weld cladding processes, gas metal arc welding (GMAW) cladding becomes a cost effective, user friendly, versatile method for protecting the surface of relatively lower grade structural steels from corrosion and/or erosion wear by depositing high grade stainless steels onto them. The quality of cladding largely depends upon the bead geometry of the weldment deposited. Weld bead geometry parameters, like bead width, reinforcement height, depth of penetration, and ratios like reinforcement form factor (RFF) and penetration shape factor (PSF) determine the quality of the weld bead geometry. Various process parameters of gas metal arc welding like heat input, current, voltage, arc travel speed, mode of metal transfer, etc. influence formation of bead geometry. In the current experimental investigation, austenite stainless steel (316) weld beads are formed on low alloy structural steel (E350) by GMAW using 100% CO2 as the shielding gas. Different combinations of current, voltage and arc travel speed are chosen so that heat input increases from 0.35 to 0.75 kJ/mm. Nine number of weld beads are deposited and replicated twice. The observations show that weld bead width increases linearly with increase in heat input, whereas reinforcement height and depth of penetration do not increase with increase in heat input. Regression analysis is done to establish the relationship between heat input and different geometrical parameters of weld bead. The regression models developed agrees well with the experimental data. Within the domain of the present experiment, it is observed that at higher heat input, the weld bead gets wider having little change in penetration and reinforcement; therefore, higher heat input may be recommended for austenitic stainless steel cladding on low alloy steel.

  8. Effects of Heat Input on Microstructure, Corrosion and Mechanical Characteristics of Welded Austenitic and Duplex Stainless Steels: A Review

    Directory of Open Access Journals (Sweden)

    Ghusoon Ridha Mohammed

    2017-01-01

    Full Text Available The effects of input heat of different welding processes on the microstructure, corrosion, and mechanical characteristics of welded duplex stainless steel (DSS are reviewed. Austenitic stainless steel (ASS is welded using low-heat inputs. However, owing to differences in the physical metallurgy between ASS and DSS, low-heat inputs should be avoided for DSS. This review highlights the differences in solidification mode and transformation characteristics between ASS and DSS with regard to the heat input in welding processes. Specifically, many studies about the effects of heat energy input in welding process on the pitting corrosion, intergranular stress, stresscorrosion cracking, and mechanical properties of weldments of DSS are reviewed.

  9. Reactor waste heat utilization and district heating reactors. Nuclear district heating in Sweden - Regional reject heat utilization schemes and small heat-only reactors

    International Nuclear Information System (INIS)

    Hannerz, K.; Larsson, Y.; Margen, P.

    1977-01-01

    A brief review is given of the current status of district heating in Sweden. In future, district heating schemes will become increasingly interesting as a means of utilizing heat from nuclear reactors. Present recommendations in Sweden are that large reactors should not be located closer than about 20 km from large population centres. Reject heat from such reactors is cheap at source. To minimize the cost of long distance hot water transmission large heat rates must be transmitted. Only areas with large populations can meet this requirement. The three areas of main interest are Malmoe/Lund/Helsingborg housing close to 0.5 million; Greater Stockholm housing 1 to 1.5 million and Greater Gothenburg housing about 0.5 million people. There is an active proposal that the Malmoe/Lund/Helsingborg region would be served by a third nuclear unit at Barsebaeck, located about 20 km from Malmoe/Lund and supplying 950 MW of base load heat. Preliminary proposals for Stockholm involve a 2000 MW heat supply; proposals for Gothenburg are more tentative. The paper describes progress on these proposals and their technology. It also outlines technology under development to increase the economic range of large scale heat transport and to make distribution economic even for low heat-density family housing estates. Regions apart from the few major urban areas mentioned above require the adoption of a different approach. To this end the development of a small, simple low-temperature reactor for heat-only production suitable for urban location has been started in Sweden in close contact with Finland. Some results of the work in progress are presented, with emphasis on the safety requirements. An outline is given in the paper as to how problems of regional heat planning and institutional and legislative issues are being approached

  10. Microstructural characterization of the HAZ of the AISI 439 with different heat input

    International Nuclear Information System (INIS)

    Silva, Lorena de Azevedo; Lima, Luciana Iglesias Lourenco; Campos, Wagner Reis da Costa

    2007-01-01

    Ferritic stainless steels have certain useful corrosion properties, such as resistance to chloride, corrosion in oxidizing aqueous media, oxidation at high temperatures, etc. It is suitable for the aqueous chloride environments, heat transfer applications, condenser tubing for fresh water power plants, industrial buildings, and recently, the ferritic stainless steels have also received attention owing to its superior performance under irradiation. Sometimes in these applications the use of welding processes is necessary. The object of the present work was to research the relationship between microstructure and microhardness in the heat affect zone (HAZ) of the AISI 439, for two different heat input. The base metal shows a random distribution of the precipitates. The HAZ size, grain size, and the amount of precipitates had increased to the bigger heat input weld. The precipitation occurred in bigger amount in the sample with greater heat input, had increased the microhardness. It was observed that the grain size is related with heat input, and that the microhardness is more strong related with other feature, as carbides and nitrites precipitation. (author)

  11. Response of Cryolite-Based Bath to a Shift in Heat Input/output Balance

    Science.gov (United States)

    Liu, Jingjing; Taylor, Mark; Dorreen, Mark

    2017-04-01

    A technology for low amperage potline operation is now recognized as a competitive advantage for the aluminum smelting industry in order to align smelter operations with the power and aluminum price markets. This study investigates the cryolite-based bath response to heat balance shifts when the heat extraction from the bath is adjusted to different levels in a laboratory analogue. In the analogue experiments, the heat balance shift is driven by a graphite `cold finger' heat exchanger, which can control the heat extraction from the analogue, and a corresponding change in heat input from the furnace which maintains the control temperature of the lab "cell." This paper reports the first experimental results from shifting the steady state of the lab cell heat balance, and investigates the effects on the frozen ledge and bath superheat. The lab cell energy balances are compared with energy balances in a published industrial cell model.

  12. Effects of heat input on the pitting resistance of Inconel 625 welds by overlay welding

    Science.gov (United States)

    Kim, Jun Seok; Park, Young IL; Lee, Hae Woo

    2015-03-01

    The objective of this study was to establish the relationship between the dilution ratio of the weld zone and pitting resistance depending on the heat input to welding of the Inconel alloy. Each specimen was produced by electroslag welding using Inconel 625 as the filler metal. In the weld zone of each specimen, dendrite grains were observed near the fusion line and equiaxed grains were observed on the surface. It was also observed that a melted zone with a high Fe content was formed around the fusion line, which became wider as the welding heat input increased. In order to evaluate the pitting resistance, potentiodynamic polarization tests and CPT tests were conducted. The results of these tests confirmed that there is no difference between the pitting resistances of each specimen, as the structures of the surfaces were identical despite the effect of the differences in the welding heat input for each specimen and the minor dilution effect on the surface.

  13. A Reconfiguration Scheme for Accommodating Actuator Failures in Multi-Input, Multi-Output Flight Control Systems

    Science.gov (United States)

    Siwakosit, W.; Hess, R. A.; Bacon, Bart (Technical Monitor); Burken, John (Technical Monitor)

    2000-01-01

    A multi-input, multi-output reconfigurable flight control system design utilizing a robust controller and an adaptive filter is presented. The robust control design consists of a reduced-order, linear dynamic inversion controller with an outer-loop compensation matrix derived from Quantitative Feedback Theory (QFT). A principle feature of the scheme is placement of the adaptive filter in series with the QFT compensator thus exploiting the inherent robustness of the nominal flight control system in the presence of plant uncertainties. An example of the scheme is presented in a pilot-in-the-loop computer simulation using a simplified model of the lateral-directional dynamics of the NASA F18 High Angle of Attack Research Vehicle (HARV) that included nonlinear anti-wind up logic and actuator limitations. Prediction of handling qualities and pilot-induced oscillation tendencies in the presence of these nonlinearities is included in the example.

  14. Effect of heat input on the microstructure and mechanical properties of gas tungsten arc welded AISI 304 stainless steel joints

    International Nuclear Information System (INIS)

    Kumar, Subodh; Shahi, A.S.

    2011-01-01

    Highlights: → Welding procedure is established for welding 6 mm thick AISI 304 using GTAW process. → Mechanical properties of the weld joints are influenced strongly by the heat input. → Highest tensile strength of 657.32 MPa is achieved by joints using low heat input. → Welding parameters affect heat input and hence microstructure of weld joints. → Extent of grain coarsening in the HAZ increases with increase in the heat input. -- Abstract: Influence of heat input on the microstructure and mechanical properties of gas tungsten arc welded 304 stainless steel (SS) joints was studied. Three heat input combinations designated as low heat (2.563 kJ/mm), medium heat (2.784 kJ/mm) and high heat (3.017 kJ/mm) were selected from the operating window of the gas tungsten arc welding process (GTAW) and weld joints made using these combinations were subjected to microstructural evaluations and tensile testing so as to analyze the effect of thermal arc energy on the microstructure and mechanical properties of these joints. The results of this investigation indicate that the joints made using low heat input exhibited higher ultimate tensile strength (UTS) than those welded with medium and high heat input. Significant grain coarsening was observed in the heat affected zone (HAZ) of all the joints and it was found that the extent of grain coarsening in the heat affected zone increased with increase in the heat input. For the joints investigated in this study it was also found that average dendrite length and inter-dendritic spacing in the weld zone increases with increase in the heat input which is the main reason for the observable changes in the tensile properties of the weld joints welded with different arc energy inputs.

  15. Heat input effect of friction stir welding on aluminum alloy AA 6061-T6 welded joint

    Czech Academy of Sciences Publication Activity Database

    Sedmak, A.; Kumar, R.; Chattopadhyaya, S.; Hloch, Sergej; Tadić, S.; Djurdjević, A. A.; Čeković, I. R.; Dončeva, E.

    2016-01-01

    Roč. 20, č. 2 (2016), s. 637-641 ISSN 0354-9836 Institutional support: RVO:68145535 Keywords : friction stir welding * defect * heat input * maximum temperature Subject RIV: JQ - Machines ; Tools Impact factor: 1.093, year: 2016 http://www.doiserbia.nb.rs/img/doi/0354-9836/2016/0354-98361500147D.pdf

  16. 40 CFR 75.83 - Calculation of Hg mass emissions and heat input rate.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Calculation of Hg mass emissions and... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTINUOUS EMISSION MONITORING Hg Mass Emission Provisions § 75.83 Calculation of Hg mass emissions and heat input rate. The owner or operator shall calculate Hg mass emissions...

  17. Effect of heat input on dissimilar welds of ultra high strength steel and duplex stainless steel: Microstructural and compositional analysis

    Energy Technology Data Exchange (ETDEWEB)

    Tasalloti, H., E-mail: hamed.tasalloti.kashani@student.lut.fi; Kah, P., E-mail: paul.kah@lut.fi; Martikainen, J., E-mail: jukka.martikainen@lut.fi

    2017-01-15

    The effect of heat input on the microstructure and compositional heterogeneity of welds of direct-quenched ultra high strength steel (Optim 960 QC) and duplex stainless steel (UNS S32205) was studied. The dissimilar welds were made using GMAW with a fully austenitic filler wire. In addition to grain coarsening in the heat affected zone (HAZ) of the ferritic side, it was found that an increase in heat input correlatively increased the proportional volume of bainitic to martensitic phases. Coarse ferritic grains were observed in the duplex HAZ. Higher heat input, however, had a beneficial effect on the nucleation of austenite in the HAZ. Heat input had a regulatory effect on grain growth within the austenitic weld and more favorable equiaxed austenite was obtained with higher heat input. On the ferritic side of the welds, macrosegregation in the form of a martensitic intermediate zone was observed for all the cooling rates studied. However, on the duplex side, macrosegregation in the fusion boundary was only noticed with higher cooling rates. Microstructural observations and compositional analysis suggest that higher heat input could be beneficial for the structural integrity of the weld despite higher heat input increasing the extent of adverse coarse grains in the HAZ, especially on the ferritic side. - Highlights: •The effect of heat input on dissimilar welds of UHSS and DSS was studied. •Transmutation of the microstructure was discussed in detail. •The influence of heat input on compositional heterogeneity of welds was described. •Higher heat input enhanced bainitic transformation on the ferritic side. •Macrosegregation was affected by the amount of heat input on the DSS side.

  18. Evaluation of the Low Heat Input Process for Weld Repair of Nickel-Base Superalloys

    Science.gov (United States)

    Durocher, J.; Richards, N. L.

    2011-10-01

    The repair of turbine blades and vanes commonly involves gas tungsten arc welding or an equivalent process, but unfortunately these components are often susceptible to heat-affected zone (HAZ) cracking during the weld repair process. This is a major problem especially in cast alloys due to their coarse-grain size and where the (Al + Ti) contents is in excess of 3-4%; vacuum brazing is also used but mainly on low stress non-rotating components such as vanes. Micro-welding has the potential to deposit small amounts of filler at low heat input levels with minimum HAZ and thus is an attractive process for depositing a quality weld. As with conventional fusion processes, the filler alloy is deposited by the generation of a low power arc between a consumable electrode and the substrate. The low heat input of this process offers unique advantages over more common welding processes such as gas tungsten arc, plasma arc, laser, and electron beam welding. In this study, the low heat input characteristic of micro-welding has been used to simulate weld repair using Inconel (IN) (Inconel and IN are trademarks of INCO Alloys International) 625, Rene (Rene is a trademark of General Electric Company) 41, Nimonic (Nimonic is a trademark of INCO Alloys International) 105 and Inconel 738LC filler alloys, to a cast Inconel 738LC substrate. The effect of micro-welding process parameters on the deposition rate, coating quality, and substrate has been investigated.

  19. Optimal placement of combined heat and power scheme (cogeneration): application to an ethylbenzene plant

    International Nuclear Information System (INIS)

    Zainuddin Abd Manan; Lim Fang Yee

    2001-01-01

    Combined heat and power (CHP) scheme, also known as cogeneration is widely accepted as a highly efficient energy saving measure, particularly in medium to large scale chemical process plants. To date, CHP application is well established in the developed countries. The advantage of a CHP scheme for a chemical plant is two-fold: (i) drastically cut down on the electricity bill from on-site power generation (ii) to save the fuel bills through recovery of the quality waste heat from power generation for process heating. In order to be effective, a CHP scheme must be placed at the right temperature level in the context of the overall process. Failure to do so might render a CHP venture worthless. This paper discusses the procedure for an effective implementation of a CHP scheme. An ethylbenzene process is used as a case study. A key visualization tool known as the grand composite curves is used to provide an overall picture of the process heat source and heat sink profiles. The grand composite curve, which is generated based on the first principles of Pinch Analysis enables the CHP scheme to be optimally placed within the overall process scenario. (Author)

  20. Effect of heating scheme on SOL width in DIII-D and EAST

    Directory of Open Access Journals (Sweden)

    L. Wang

    2017-08-01

    Full Text Available Joint DIII-D/EAST experiments in the radio-frequency (RF heated H-mode scheme with comparison to that of neutral beam (NB heated H-mode scheme were carried out on DIII-D and EAST under similar conditions to examine the effect of heating scheme on scrape-off layer (SOL width in H-mode plasmas for application to ITER. A dimensionally similar plasma equilibrium was used to match the EAST shape parameters. The divertor heat flux and SOL widths were measured with infra-red camera in DIII-D, while with divertor Langmuir probe array in EAST. It has been demonstrated on both DIII-D and EAST that RF-heated plasma has a broader SOL than NB-heated plasma when the edge electrons are effectively heated in low plasma current and low density regime with low edge collisionality. Detailed edge and pedestal profile analysis on DIII-D suggests that the low edge collisionality and ion orbit loss effect may account for the observed broadening. The joint experiment in DIII-D has also demonstrated the strong inverse dependence of SOL width on the plasma current in electron cyclotron heated (ECH H-mode plasmas.

  1. Intrinsic Mechanisms of Ductile-brittle Transition for F460 Steel Welding Coarse Grained Heat Affected Zones with Different Heat Inputs

    Directory of Open Access Journals (Sweden)

    LI Jing

    2016-08-01

    Full Text Available Coarse grain heat affected zone (HAZ of F460 steel was simulated by a Gleeble 3800 thermo-mechanical simulator. The microstructure, critical event of the HAZ formed at various heat inputs (E were characterized and determined by optical microscopy (OM and scanning electronic microscopy (SEM, and cleavage fracture stress σf was also calculated by ABAQUS software. Based on above systematic analysis, the intrinsic mechanism of ductile-brittle transition for F460 steel heat affected zones with different heat inputs were revealed. The results indicate that:with the improvement of heat input, the microstructures in sequence are a minority of lath martensite and massive fine lath bainite, more lath bainite with less granular bainite, more granular bainite with less lath bainite, bulky of granular bainite; and the maximum size of the original austenite grain and bainite packet becomes bigger with the improvement of heat input. The size of bainite packet is critical event of the cleavage fracture for coarse grain heat affected zone specimens with various heat inputs by comparing the relationships among residual crack length, original austenite grain size and bainite packet size. With the decreasing of the bainitic packet, the ductile to brittle transition temperature decreases. In addition, cleavage fracture stress σf is also calculated by ABAQUS software, σf gradually decreases with the increase of the heat input, which can explain the intrinsic mechanism of ductile to brittle transition temperature Tk with the change of the heat input.

  2. Development of High Heat Input Welding Offshore Steel as Normalized Condition

    Science.gov (United States)

    Deng, Wei; Qin, Xiaomei

    The heavy plate used for offshore structure is one of the important strategic products. In recent years, there is an increasing demand for heavy shipbuilding steel plate with excellent weldability in high heat input welding. During the thermal cycle, the microstructure of the heat affected zone (HAZ) of plates was damaged, and this markedly reduced toughness of HAZ. So, how to improve the toughness of HAZ has been a key subject in the fields of steel research. Oxide metallurgy is considered as an effective way to improve toughness of HAZ, because it could be used to retard grain growth by fine particles, which are stable at the high temperature.The high strength steel plate, which satisfies the low temperature specification, has been applied to offshore structure. Excellent properties of the plates and welded joints were obtained by oxide metallurgy technology, latest controlled rolling and accelerated cooling technology using Ultra-Fast Cooling (an on-line accelerated cooling system). The 355MPa-grade high strength steel plates with normalizing condition were obtained, and the steels have excellent weldability with heat input energy of 79 287kJ/cm, and the nil ductility transition (NDT) temperature was -70°C, which can satisfy the construction of offshore structure in cold regions.

  3. Study on Relative COP Changes with Increasing Heat Input Temperatures of Double Effect Steam Absorption Chillers

    Directory of Open Access Journals (Sweden)

    Abd Majid Mohd Amin

    2016-01-01

    Full Text Available Absorption chillers at cogeneration plants generate chilled water using steam supplied by heat recovery steam generators. The chillers are mainly of double effect type. The COP of double effect varies from 0.7 to 1.2 depending on operation and maintenance practices of the chillers. Heat input to the chillers during operations could have impact on the COP of the chillers. This study is on relative COP changes with increasing the heat input temperatures for a steam absorption chiller at a gas fueled cogeneration plant. Reversible COP analysis and zero order model were used for evaluating COP of the chiller for 118 days operation period. Results indicate increasing COP trends for both the reversible COP and zero model COP. Although the zero model COP are within the range of double effect absorption chiller, it is not so for the actual COP. The actual COP is below the range of normal double effect COP. It is recommended that economic replacement analysis to be undertaken to assess the feasibility either to repair or replace the existing absorption chiller.

  4. Projection scheme for a reflected stochastic heat equation with additive noise

    Science.gov (United States)

    Higa, Arturo Kohatsu; Pettersson, Roger

    2005-02-01

    We consider a projection scheme as a numerical solution of a reflected stochastic heat equation driven by a space-time white noise. Convergence is obtained via a discrete contraction principle and known convergence results for numerical solutions of parabolic variational inequalities.

  5. Specimen Test of Large-Heat-Input Fusion Welding Method for Use of SM570TMCP

    Directory of Open Access Journals (Sweden)

    Dongkyu Lee

    2015-01-01

    Full Text Available In this research, the large-heat-input welding conditions optimized to use the rear plate and the high-performance steel of SM570TMCP, a new kind of steel suitable for the requirements of prospective customers, are proposed. The goal of this research is to contribute to securing the welding fabrication optimized to use the high-strength steel and rear steel plates in the field of construction industry in the future. This research is judged to contribute to securing the welding fabrication optimized to use the high-strength steel and rear steel plates in the field of construction industry in the future.

  6. A study of upwind schemes on the laminar hypersonic heating predictions for the reusable space vehicle

    Science.gov (United States)

    Qu, Feng; Sun, Di; Zuo, Guang

    2018-06-01

    With the rapid development of the Computational Fluid Dynamics (CFD), Accurate computing hypersonic heating is in a high demand for the design of the new generation reusable space vehicle to conduct deep space exploration. In the past years, most researchers try to solve this problem by concentrating on the choice of the upwind schemes or the definition of the cell Reynolds number. However, the cell Reynolds number dependencies and limiter dependencies of the upwind schemes, which are of great importance to their performances in hypersonic heating computations, are concerned by few people. In this paper, we conduct a systematic study on these properties respectively. Results in our test cases show that SLAU (Simple Low-dissipation AUSM-family) is with a much higher level of accuracy and robustness in hypersonic heating predictions. Also, it performs much better in terms of the limiter dependency and the cell Reynolds number dependency.

  7. Performance investigation of advanced adsorption desalination cycle with condenser-evaporator heat recovery scheme

    KAUST Repository

    Thu, Kyaw

    2013-01-01

    Energy or heat recovery schemes are keys for the performance improvement of any heat-activated cycles such as the absorption and adsorption cycles. We present two innovative heat recovery schemes between the condensing and evaporating units of an adsorption desalination (AD) cycle. By recovering the latent heat of condenser and dumping it into the evaporative process of the evaporator, it elevates the evaporating temperature and hence the adsorption pressure seen by the adsorbent. From isotherms, this has an effect of increasing the vapour uptake. In the proposed configurations, one approach is simply to have a run-about water circuit between the condenser and the evaporator and a pump is used to achieve the water circulation. This run-around circuit is a practical method for retrofitting purposes. The second method is targeted towards a new AD cycle where an encapsulated condenser-evaporator unit is employed. The heat transfer between the condensing and evaporative vapour is almost immediate and the processes occur in a fully integrated vessel, thereby minimizing the heat transfer resistances of heat exchangers. © 2013 Desalination Publications.

  8. Microstructure and mechanical properties of hard zone in friction stir welded X80 pipeline steel relative to different heat input

    Energy Technology Data Exchange (ETDEWEB)

    Aydin, Hakan, E-mail: hakanay@uludag.edu.tr [Engineering and Architecture Faculty, Mechanical Engineering Department, Uludag University, 16059 Gorukle-Bursa (Turkey); Nelson, Tracy W. [Mechanical Engineering Department, Brigham Young University, 435 CTB, Provo, UT 84602 (United States)

    2013-12-01

    The study was conducted to investigate the microstructure and mechanical properties of the hard zone in friction stir welded X80 pipeline steel at different heat inputs. Microstructural analysis of the welds was carried out using optical microscopy, transmission electron microscopy, and microhardness. Heat input during friction stir welding process had a significant influence on the microstructure and mechanical properties in the hard zone along the advancing side of the weld nugget. Based on the results, the linear relationships between heat input and post-weld microstructures and mechanical properties in the hard zone of friction stir welded X80 steels were established. It can be concluded that with decrease in heat input the bainitic structure in the hard zone becomes finer and so hard zone strength increases.

  9. Microstructure and mechanical properties of hard zone in friction stir welded X80 pipeline steel relative to different heat input

    International Nuclear Information System (INIS)

    Aydin, Hakan; Nelson, Tracy W.

    2013-01-01

    The study was conducted to investigate the microstructure and mechanical properties of the hard zone in friction stir welded X80 pipeline steel at different heat inputs. Microstructural analysis of the welds was carried out using optical microscopy, transmission electron microscopy, and microhardness. Heat input during friction stir welding process had a significant influence on the microstructure and mechanical properties in the hard zone along the advancing side of the weld nugget. Based on the results, the linear relationships between heat input and post-weld microstructures and mechanical properties in the hard zone of friction stir welded X80 steels were established. It can be concluded that with decrease in heat input the bainitic structure in the hard zone becomes finer and so hard zone strength increases

  10. Auroral energy input from energetic electrons and Joule heating at Chatanika

    International Nuclear Information System (INIS)

    Wickwar, V.B.; Baron, M.J.; Sears, R.D.

    1975-01-01

    With the incoherent scatter radar at Chatanika, Alaska, a wide variety of measurements can be made related to the ionosphere, magnetosphere, and neutral atmosphere. A significant parameter is the amount of energy transferred from the magnetosphere into the ionosphere and neutral atmosphere during periods of auroral activity. In this report a procedure is examined whereby the incident energy flux of auroral electrons is ascertained from radar measurements. As part of the process radar-determined fluxes are compared with those ascertained from simultaneous photometric observations at 4278 A. The fluxes obtained by both techniques had similar magnitudes and time variations. If it is assumed that the largest uncertainty in the radar/photometer comparison is the effective recombination coefficient, then that coefficient can also be deduced. A value 3times10 -7 cm 3 /s at about 105 km is found, which is in good agreement with other recent determinations during active auroral conditions. This technique is combined with one to ascertain the Joule heating to determine the energy input from the magnetosphere to the ionosphere in a region localized above the radar on March 22, 1973, in the midnight sector. The energy input is continuous at a significant level, i.e., greater than the 3 ergs/cm 2 that could be delivered by the sun, were it overhead. Moreover, at times, each of these inputs became as great as 30 ergs/cm 2 s

  11. Low heat input welding of nickel superalloy GTD-111 with Inconel 625 filler metal

    Energy Technology Data Exchange (ETDEWEB)

    Athiroj, Athittaya; Wangyao, Panyawat; Hartung, Fritz; Lothongkum, Gobboon [Chulalongkorn Univ., Bangkok (Thailand). Dept. of Metallurgical Engineering

    2018-03-01

    GTD-111 precipitation-strengthened nickel-based superalloy is widely used in blades of gas turbine engines which operate at high temperature and in a hot localized corrosion atmosphere. After long-term exposure to high temperature, γ' precipitate is known to exhibit catastrophic changes in size and distribution which cause deterioration of its properties and failure of the component. In this study, a damaged blade removed from a land-based gas turbine generator was subjected to nonpre-heat-treated GTAW and laser welding repair with various welding powers in the range of 135 to 295 J x mm{sup -1}, followed by post-weld heat treatment (PWHT) at 1473 K for 7200 s and strain aging at 1118 K for 86 400 s. Results show no significant relationship between welding powers, size and area fraction of the γ' precipitate in the fcc γ matrix in both GTAW and laser-welded specimens. The final γ' precipitate size and distribution depend mainly on PWHT parameters as γ' precipitates in all GTAW and laser welded specimens showed similar size and area fraction independently of the heat input from welding. Unmixed zones are observed in all laser welding specimens which may cause preferential weld corrosion during service. Microcrack occurrence due to welding and PWHT processes is also discussed.

  12. Effect of heat input on the microstructure, residual stresses and corrosion resistance of 304L austenitic stainless steel weldments

    Energy Technology Data Exchange (ETDEWEB)

    Unnikrishnan, Rahul, E-mail: rahulunnikrishnannair@gmail.com [Department of Metallurgical and Materials Engineering, Visvesvaraya National Institute of Technology (VNIT), South Ambazari Road, Nagpur 440010, Maharashtra (India); Idury, K.S.N. Satish, E-mail: satishidury@gmail.com [Department of Metallurgical and Materials Engineering, Visvesvaraya National Institute of Technology (VNIT), South Ambazari Road, Nagpur 440010, Maharashtra (India); Ismail, T.P., E-mail: tpisma@gmail.com [Department of Metallurgical and Materials Engineering, Visvesvaraya National Institute of Technology (VNIT), South Ambazari Road, Nagpur 440010, Maharashtra (India); Bhadauria, Alok, E-mail: alokbhadauria1@gmail.com [Department of Metallurgical and Materials Engineering, Visvesvaraya National Institute of Technology (VNIT), South Ambazari Road, Nagpur 440010, Maharashtra (India); Shekhawat, S.K., E-mail: satishshekhawat@gmail.com [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay (IITB), Powai, Mumbai 400076, Maharashtra (India); Khatirkar, Rajesh K., E-mail: rajesh.khatirkar@gmail.com [Department of Metallurgical and Materials Engineering, Visvesvaraya National Institute of Technology (VNIT), South Ambazari Road, Nagpur 440010, Maharashtra (India); Sapate, Sanjay G., E-mail: sgsapate@yahoo.com [Department of Metallurgical and Materials Engineering, Visvesvaraya National Institute of Technology (VNIT), South Ambazari Road, Nagpur 440010, Maharashtra (India)

    2014-07-01

    Austenitic stainless steels are widely used in high performance pressure vessels, nuclear, chemical, process and medical industry due to their very good corrosion resistance and superior mechanical properties. However, austenitic stainless steels are prone to sensitization when subjected to higher temperatures (673 K to 1173 K) during the manufacturing process (e.g. welding) and/or certain applications (e.g. pressure vessels). During sensitization, chromium in the matrix precipitates out as carbides and intermetallic compounds (sigma, chi and Laves phases) decreasing the corrosion resistance and mechanical properties. In the present investigation, 304L austenitic stainless steel was subjected to different heat inputs by shielded metal arc welding process using a standard 308L electrode. The microstructural developments were characterized by using optical microscopy and electron backscattered diffraction, while the residual stresses were measured by X-ray diffraction using the sin{sup 2}ψ method. It was observed that even at the highest heat input, shielded metal arc welding process does not result in significant precipitation of carbides or intermetallic phases. The ferrite content and grain size increased with increase in heat input. The grain size variation in the fusion zone/heat affected zone was not effectively captured by optical microscopy. This study shows that electron backscattered diffraction is necessary to bring out changes in the grain size quantitatively in the fusion zone/heat affected zone as it can consider twin boundaries as a part of grain in the calculation of grain size. The residual stresses were compressive in nature for the lowest heat input, while they were tensile at the highest heat input near the weld bead. The significant feature of the welded region and the base metal was the presence of a very strong texture. The texture in the heat affected zone was almost random. - Highlights: • Effect of heat input on microstructure, residual

  13. Multiscale solutions of radiative heat transfer by the discrete unified gas kinetic scheme

    Science.gov (United States)

    Luo, Xiao-Ping; Wang, Cun-Hai; Zhang, Yong; Yi, Hong-Liang; Tan, He-Ping

    2018-06-01

    The radiative transfer equation (RTE) has two asymptotic regimes characterized by the optical thickness, namely, optically thin and optically thick regimes. In the optically thin regime, a ballistic or kinetic transport is dominant. In the optically thick regime, energy transport is totally dominated by multiple collisions between photons; that is, the photons propagate by means of diffusion. To obtain convergent solutions to the RTE, conventional numerical schemes have a strong dependence on the number of spatial grids, which leads to a serious computational inefficiency in the regime where the diffusion is predominant. In this work, a discrete unified gas kinetic scheme (DUGKS) is developed to predict radiative heat transfer in participating media. Numerical performances of the DUGKS are compared in detail with conventional methods through three cases including one-dimensional transient radiative heat transfer, two-dimensional steady radiative heat transfer, and three-dimensional multiscale radiative heat transfer. Due to the asymptotic preserving property, the present method with relatively coarse grids gives accurate and reliable numerical solutions for large, small, and in-between values of optical thickness, and, especially in the optically thick regime, the DUGKS demonstrates a pronounced computational efficiency advantage over the conventional numerical models. In addition, the DUGKS has a promising potential in the study of multiscale radiative heat transfer inside the participating medium with a transition from optically thin to optically thick regimes.

  14. Effects of heat input on pitting corrosion in super duplex stainless steel weld metals

    Science.gov (United States)

    Shin, Yong taek; Shin, Hak soo; Lee, Hae woo

    2012-12-01

    Due to the difference in reheating effects depending on the heat input of subsequent weld passes, the microstructure of the weld metal varies between acicular type austenite and a mixture of polygonal type and grain boundary mixed austenite. These microstructural changes may affect the corrosion properties of duplex stainless steel welds. This result indicates that the pitting resistance of the weld can be strongly influenced by the morphology of the secondary austenite phase. In particular, the ferrite phase adjacent to the acicular type austenite phase shows a lower Pitting Resistance Equivalent (PRE) value of 25.3, due to its lower chromium and molybdenum contents, whereas the secondary austenite phase maintains a higher PRE value of more than 38. Therefore, it can be inferred that the pitting corrosion is mainly due to the formation of ferrite phase with a much lower PRE value.

  15. Unified implicit kinetic scheme for steady multiscale heat transfer based on the phonon Boltzmann transport equation

    Science.gov (United States)

    Zhang, Chuang; Guo, Zhaoli; Chen, Songze

    2017-12-01

    An implicit kinetic scheme is proposed to solve the stationary phonon Boltzmann transport equation (BTE) for multiscale heat transfer problem. Compared to the conventional discrete ordinate method, the present method employs a macroscopic equation to accelerate the convergence in the diffusive regime. The macroscopic equation can be taken as a moment equation for phonon BTE. The heat flux in the macroscopic equation is evaluated from the nonequilibrium distribution function in the BTE, while the equilibrium state in BTE is determined by the macroscopic equation. These two processes exchange information from different scales, such that the method is applicable to the problems with a wide range of Knudsen numbers. Implicit discretization is implemented to solve both the macroscopic equation and the BTE. In addition, a memory reduction technique, which is originally developed for the stationary kinetic equation, is also extended to phonon BTE. Numerical comparisons show that the present scheme can predict reasonable results both in ballistic and diffusive regimes with high efficiency, while the memory requirement is on the same order as solving the Fourier law of heat conduction. The excellent agreement with benchmark and the rapid converging history prove that the proposed macro-micro coupling is a feasible solution to multiscale heat transfer problems.

  16. Silicon Carbide (SiC) Device and Module Reliability, Performance of a Loop Heat Pipe Subjected to a Phase-Coupled Heat Input to an Acceleration Field

    Science.gov (United States)

    2016-05-01

    AFRL-RQ-WP-TR-2016-0108 SILICON CARBIDE (SiC) DEVICE AND MODULE RELIABILITY Performance of a Loop Heat Pipe Subjected to a Phase-Coupled...CARBIDE (SiC) DEVICE AND MODULE RELIABILITY Performance of a Loop Heat Pipe Subjected to a Phase-Coupled Heat Input to an Acceleration Field 5a...Shukla, K., “Thermo-fluid dynamics of Loop Heat Pipe Operation,” International Communications in Heat and Mass Transfer , Vol. 35, No. 8, 2008, pp

  17. Effect of welding heat input on microstructures and toughness in simulated CGHAZ of V–N high strength steel

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jun, E-mail: hujunral@163.com [The State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819 (China); Du, Lin-Xiu [The State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819 (China); Wang, Jian-Jun [Institute of Materials Research, School of Material and Metallurgy, Northeastern university, Shenyang 110819 (China); Gao, Cai-Ru [The State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819 (China)

    2013-08-10

    For the purpose of obtaining the appropriate heat input in the simulated weld CGHAZ of the hot-rolled V–N microalloyed high strength S-lean steel, the microstructural evolution, hardness, and toughness subjected to four different heat inputs were investigated. The results indicate that the hardness decreases with increase in the heat input, while the toughness first increases and then decreases. Moderate heat input is optimum, and the microstructure is fine polygonal ferrite, granular bainite, and acicular ferrite with dispersive nano-scale V(C,N) precipitates. The hardness is well-matched with that of the base metal. Moreover, the occurrence of energy dissipating micromechanisms (ductile dimples, tear ridges) contributes to the maximum total impact energy. The detrimental effect of the free N atoms on the toughness can be partly remedied by optimizing the microstructural type, fraction, morphologies, and crystallographic characteristics. The potency of V(C,N) precipitates on intragranular ferrite nucleation without MnS assistance under different heat inputs was discussed.

  18. Effects of heat input on mechanical properties of metal inert gas welded 1.6 mm thick galvanized steel sheet

    International Nuclear Information System (INIS)

    Rafiqul, M I; Ishak, M; Rahman, M M

    2012-01-01

    It is usually a lot easier and less expensive to galvanize steel before it is welded into useful products. Galvanizing afterwards is almost impossible. In this research work, Galvanized Steel was welded by using the ER 308L stainless steel filler material. This work was done to find out an alternative way of welding and investigate the effects of heat input on the mechanical properties of butt welded joints of Galvanized Steel. A 13.7 kW maximum capacity MIG welding machine was used to join 1.6 mm thick sheet of galvanized steel with V groove and no gap between mm. Heat inputs was gradually increased from 21.06 to 25.07 joules/mm in this study. The result shows almost macro defects free welding and with increasing heat input the ultimate tensile strength and welding efficiency decrease. The Vickers hardness also decreases at HAZ with increasing heat input and for each individual specimen; hardness was lowest in heat affected zone (HAZ), intermediate in base metal and maximum in welded zone. The fracture for all specimens was in the heat affected zone while testing in the universal testing machine.

  19. Effects of heat input on mechanical properties of metal inert gas welded 1.6 mm thick galvanized steel sheet

    Science.gov (United States)

    Rafiqul, M. I.; Ishak, M.; Rahman, M. M.

    2012-09-01

    It is usually a lot easier and less expensive to galvanize steel before it is welded into useful products. Galvanizing afterwards is almost impossible. In this research work, Galvanized Steel was welded by using the ER 308L stainless steel filler material. This work was done to find out an alternative way of welding and investigate the effects of heat input on the mechanical properties of butt welded joints of Galvanized Steel. A 13.7 kW maximum capacity MIG welding machine was used to join 1.6 mm thick sheet of galvanized steel with V groove and no gap between mm. Heat inputs was gradually increased from 21.06 to 25.07 joules/mm in this study. The result shows almost macro defects free welding and with increasing heat input the ultimate tensile strength and welding efficiency decrease. The Vickers hardness also decreases at HAZ with increasing heat input and for each individual specimen; hardness was lowest in heat affected zone (HAZ), intermediate in base metal and maximum in welded zone. The fracture for all specimens was in the heat affected zone while testing in the universal testing machine.

  20. A statistical survey of heat input parameters into the cusp thermosphere

    Science.gov (United States)

    Moen, J. I.; Skjaeveland, A.; Carlson, H. C.

    2017-12-01

    Based on three winters of observational data, we present those ionosphere parameters deemed most critical to realistic space weather ionosphere and thermosphere representation and prediction, in regions impacted by variability in the cusp. The CHAMP spacecraft revealed large variability in cusp thermosphere densities, measuring frequent satellite drag enhancements, up to doublings. The community recognizes a clear need for more realistic representation of plasma flows and electron densities near the cusp. Existing average-value models produce order of magnitude errors in these parameters, resulting in large under estimations of predicted drag. We fill this knowledge gap with statistics-based specification of these key parameters over their range of observed values. The EISCAT Svalbard Radar (ESR) tracks plasma flow Vi , electron density Ne, and electron, ion temperatures Te, Ti , with consecutive 2-3 minute windshield-wipe scans of 1000x500 km areas. This allows mapping the maximum Ti of a large area within or near the cusp with high temporal resolution. In magnetic field-aligned mode the radar can measure high-resolution profiles of these plasma parameters. By deriving statistics for Ne and Ti , we enable derivation of thermosphere heating deposition under background and frictional-drag-dominated magnetic reconnection conditions. We separate our Ne and Ti profiles into quiescent and enhanced states, which are not closely correlated due to the spatial structure of the reconnection foot point. Use of our data-based parameter inputs can make order of magnitude corrections to input data driving thermosphere models, enabling removal of previous two fold drag errors.

  1. The influence of high heat input and inclusions control for rare earth on welding in low alloy high strength steel

    Science.gov (United States)

    Chu, Rensheng; Mu, Shukun; Liu, Jingang; Li, Zhanjun

    2017-09-01

    In the current paper, it is analyzed for the influence of high heat input and inclusions control for rare earth on welding in low alloy high strength steel. It is observed for the structure for different heat input of the coarse-grained area. It is finest for the coarse grain with the high heat input of 200 kJ / cm and the coarse grain area with 400 kJ / cm is the largest. The performance with the heat input of 200 kJ / cm for -20 °C V-shaped notch oscillatory power is better than the heat input of 400 kJ / cm. The grain structure is the ferrite and bainite for different holding time. The grain structure for 5s holding time has a grain size of 82.9 μm with heat input of 200 kJ/cm and grain size of 97.9 μm for 10s holding time. For the inclusions for HSLA steel with adding rare earth, they are Al2O3-CaS inclusions in the Al2O3-CaS-CaO ternary phase diagram. At the same time, it can not be found for low melting calcium aluminate inclusions compared to the inclusions for the HSLA steel without rare earth. Most of the size for the inclusions is between 1 ~ 10μm. The overall grain structure is smaller and the welding performance is more excellent for adding rare earth.

  2. Performance investigation on a 4-bed adsorption desalination cycle with internal heat recovery scheme

    KAUST Repository

    Thu, Kyaw

    2016-10-08

    Multi-bed adsorption cycle with the internal heat recovery between the condenser and the evaporator is investigated for desalination application. A numerical model is developed for a 4-bed adsorption cycle implemented with the master-and-slave configuration and the aforementioned internal heat recovery scheme. The present model captures the reversed adsorption/desorption phenomena frequently associated with the unmatched switching periods. Mesoporous silica gel and water vapor emanated from the evaporation of the seawater are employed as the adsorbent and adsorbate pair. The experimental data and investigation for such configurations are reported for the first time at heat source temperatures from 50 °C to 70 °C. The numerical model is validated rigorously and the parametric study is conducted for the performance of the cycle at assorted operation conditions such as hot and cooling water inlet temperatures and the cycle times. The specific daily water production (SDWP) of the present cycle is found to be about 10 m/day per tonne of silica gel for the heat source temperature at 70 °C. Performance comparison is conducted for various types of adsorption desalination cycles. It is observed that the AD cycle with the current configuration provides superior performance whilst is operational at unprecedentedly low heat source temperature as low as 50 °C.

  3. The nuclear heating calculation scheme for material testing in the future Jules Horowitz Reactor

    International Nuclear Information System (INIS)

    Huot, N.; Aggery, A.; Blanchet, D.; Courcelle, A.; Czernecki, S.; Di-Salvo, J.; Doederlein, C.; Serviere, H.; Willermoz, G.

    2004-01-01

    An innovative nuclear heating calculation scheme for materials testing carried out in in the future Jules Horowitz reactor (JHR) is described. A heterogeneous gamma source calculation is first performed at assembly level using the deterministic code APOLLO2. This is followed by a Monte Carlo gamma transport calculation in the whole core using the TRIPOLI4 code. The calculated gamma sources at the assembly level are applied in the whole core simulation using a weighting based on power distribution obtained from the neutronic core calculation. (authors)

  4. Crustal heat production and estimate of terrestrial heat flow in central East Antarctica, with implications for thermal input to the East Antarctic ice sheet

    Science.gov (United States)

    Goodge, John W.

    2018-02-01

    Terrestrial heat flow is a critical first-order factor governing the thermal condition and, therefore, mechanical stability of Antarctic ice sheets, yet heat flow across Antarctica is poorly known. Previous estimates of terrestrial heat flow in East Antarctica come from inversion of seismic and magnetic geophysical data, by modeling temperature profiles in ice boreholes, and by calculation from heat production values reported for exposed bedrock. Although accurate estimates of surface heat flow are important as an input parameter for ice-sheet growth and stability models, there are no direct measurements of terrestrial heat flow in East Antarctica coupled to either subglacial sediment or bedrock. As has been done with bedrock exposed along coastal margins and in rare inland outcrops, valuable estimates of heat flow in central East Antarctica can be extrapolated from heat production determined by the geochemical composition of glacial rock clasts eroded from the continental interior. In this study, U, Th, and K concentrations in a suite of Proterozoic (1.2-2.0 Ga) granitoids sourced within the Byrd and Nimrod glacial drainages of central East Antarctica indicate average upper crustal heat production (Ho) of about 2.6 ± 1.9 µW m-3. Assuming typical mantle and lower crustal heat flux for stable continental shields, and a length scale for the distribution of heat production in the upper crust, the heat production values determined for individual samples yield estimates of surface heat flow (qo) ranging from 33 to 84 mW m-2 and an average of 48.0 ± 13.6 mW m-2. Estimates of heat production obtained for this suite of glacially sourced granitoids therefore indicate that the interior of the East Antarctic ice sheet is underlain in part by Proterozoic continental lithosphere with an average surface heat flow, providing constraints on both geodynamic history and ice-sheet stability. The ages and geothermal characteristics of the granites indicate that crust in central

  5. 40 CFR 75.81 - Monitoring of Hg mass emissions and heat input at the unit level.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Monitoring of Hg mass emissions and... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTINUOUS EMISSION MONITORING Hg Mass Emission Provisions § 75.81 Monitoring of Hg mass emissions and heat input at the unit level. The owner or operator of the...

  6. 40 CFR 75.82 - Monitoring of Hg mass emissions and heat input at common and multiple stacks.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Monitoring of Hg mass emissions and... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTINUOUS EMISSION MONITORING Hg Mass Emission Provisions § 75.82 Monitoring of Hg mass emissions and heat input at common and multiple stacks. (a) Unit...

  7. Influence of heat input in electron beam process on microstructure and properties of duplex stainless steel welded interface

    Science.gov (United States)

    Zhang, Zhiqiang; Jing, Hongyang; Xu, Lianyong; Han, Yongdian; Zhao, Lei; Lv, Xiaoqing; Zhang, Jianyang

    2018-03-01

    The influence of heat input in electron beam (EB) process on microstructure, mechanical properties, and pitting corrosion resistance of duplex stainless steel (DSS) welded interface was investigated. The rapid cooling in EB welding resulted in insufficient austenite formation. The austenite mainly consisted of grain boundary austenite and intragranular austenite, and there was abundant Cr2N precipitation in the ferrite. The Ni, Mo, and Si segregation indicated that the dendritic solidification was primarily ferrite in the weld. The weld exhibited higher hardness, lower toughness, and poorer pitting corrosion resistance than the base metal. The impact fractures of the welds were dominated by the transgranular cleavage failure of the ferrite. The ferrite was selectively attacked because of its lower pitting resistance equivalent number than that of austenite. The Cr2N precipitation accelerated the pitting corrosion. In summary, the optimised heat input slightly increased the austenite content, reduced the segregation degree and ferrite texture intensity, decreased the hardness, and improved the toughness and pitting corrosion resistance. However, the effects were limited. Furthermore, optimising the heat input could not suppress the Cr2N precipitation. Taking into full consideration the microstructure and properties, a heat input of 0.46 kJ/mm is recommended for the EB welding of DSS.

  8. Weld residual stress according to the ways of heat input in the simulation of weld process using finite element analysis

    International Nuclear Information System (INIS)

    Yang, Jun Seog; Lee, Kyoung Soo; Park, Chi Yong

    2008-01-01

    This paper is to discuss distribution of welding residual stresses of a ferritic low alloy steel nozzle with dissimilar metal weld using Alloy 82/182. Two Dimensional (2D) thermo-mechanical finite element analyses are carried out to simulate multi-pass welding process on the basis of the detailed and fabrication data. On performing the welding analysis generally, the characteristics on the heat input and heat transfer of weld are affected on the weld residual stress analyses. Thermal analyses in the welding heat cycle process is very important process in weld residual stress analyses. Therefore, heat is rapidly input to the weld pass material, using internal volumetric heat generation, at a rate which raises the peak weld metal temperature to 2200 .deg. C and the base metal adjacent to the weld to about 1400 .deg. C. These are approximately the temperature that the weld metal and surrounding base materials reach during welding. Also, According to the various ways of applying the weld heat source, the predicted residual stress results are compared with measured axial, hoop and radial through-wall profiles in the heat affected zone of test component. Also, those results are compared with those of full 3-dimensional simulation

  9. Effects of Heat Input and Bead Generation Methods on Finite Element Analysis of Multi-Pass Welding Process

    Energy Technology Data Exchange (ETDEWEB)

    Park, Won Dong; Kim, Ji Hoon; Bahn, Chi Bum [Pusan National University, Busan (Korea, Republic of)

    2016-10-15

    Welding residual stresses are determined by various factors such as heat input, initial temperature of molten bead, heating time, cooling time, cooling conditions, and boundary conditions. In this study, a sensitivity analysis was performed to find the major factors and reasonable assumptions for simulation. Two-dimensional axisymmetric simulation was conducted by using commercial finite element analysis program ABAQUS, for multi-pass Alloy 82 welds in a 304 Stainless Steel and SA-105 Carbon Steel. The major object is to evaluate effects of the heat input methods and weld bead generation methods on the welding residual stress distribution. Totally four kinds of methods were compared. From the previous results, we could make the following conclusions. 1. Although there are non-negligible differences in HAZ depending on heat input method, welding residual stress distributions have roughly similar trends. However, it is needed to perform the more exact analysis to apply heat energy more carefully into the individual bead. 2. Residual stress distribution were similar for the two weld bead generation technique. However, overlapping was happened when element birth technique was applied. Effects of overlapping could not ignore as deformation increases. However, overlapping problem was avoided when quiet element technique was used. 3. Since existence of inactive bead elements, inaccurate weld residual stresses could be occurred in boundaries of previous and next weld elements in case of quiet element technique.

  10. Effect of Heat Input on Microstructure and Hardness Distribution of Laser Welded Si-Al TRIP-Type Steel

    Directory of Open Access Journals (Sweden)

    Adam Grajcar

    2014-01-01

    Full Text Available This study is concerned with issues related to laser welding of Si-Al type TRIP steels with Nb and Ti microadditions. The tests of laser welding of thermomechanically rolled sheet sections were carried out using keyhole welding and a solid-state laser. The tests carried out for various values of heat input were followed by macro- and microscopic metallographic investigations as well as by microhardness measurements of welded areas. A detailed microstructural analysis was carried out in the penetration area and in various areas of the heat affected zone (HAZ. Special attention was paid to the influence of cooling conditions on the stabilisation of retained austenite, the most characteristic structural component of TRIP steels. The tests made it possible to determine the maximum value of heat input preventing the excessive grain growth in HAZ and to identify the areas of the greatest hardness reaching 520 HV0.1.

  11. Identification of some cross flow heat exchanger dynamic responses by measurement with low level binary pseudo-random input signals

    International Nuclear Information System (INIS)

    Corran, E.R.; Cummins, J.D.; Hopkinson, A.

    1964-02-01

    An experiment was performed to assess the usefulness of the binary cross-correlation method in the context of the identification problem. An auxiliary burner was excited with a discrete interval binary code and the response to the perturbation of the input heat was observed by recording the variations of the primary inlet, primary outlet and secondary outlet temperatures. The observations were analysed to yield cross-correlation functions and frequency responses were subsequently determined between primary inlet and primary outlet temperatures and also between primary inlet and secondary outlet temperatures. The analysis verified (1) that these dynamic responses of this cross flow heat exchanger may be predicted theoretically, (2) in so far as this heat exchanger is representative of the generality of plant, that the binary cross-correlation method provides adequate identification of plant dynamics for control purposes in environments where small input variations and low signal to noise ratio are obligatory. (author)

  12. Influence of heat input on weld bead geometry using duplex stainless steel wire electrode on low alloy steel specimens

    Directory of Open Access Journals (Sweden)

    Ajit Mondal

    2016-12-01

    Full Text Available Gas metal arc welding cladding becomes a popular surfacing technique in many modern industries as it enhances effectively corrosion resistance property and wear resistance property of structural members. Quality of weld cladding may be enhanced by controlling process parameters. If bead formation is found acceptable, cladding is also expected to be good. Weld bead characteristics are often assessed by bead geometry, and it is mainly influenced by heat input. In this paper, duplex stainless steel E2209 T01 is deposited on E250 low alloy steel specimens with 100% CO2 gas as shielding medium with different heats. Weld bead width, height of reinforcement and depth of penetration are measured. Regression analysis is done on the basis of experimental data. Results reveal that within the range of bead-on-plate welding experiments done, parameters of welding geometry are on the whole linearly related with heat input. A condition corresponding to 0.744 kJ/mm heat input is recommended to be used for weld cladding in practice.

  13. The 'Gruessen' district heating scheme in Pratteln, Switzerland; Waermeverbund Gruessen Pratteln. HT-Abwaerme aus ARA Rhein

    Energy Technology Data Exchange (ETDEWEB)

    Lessing, R.

    2006-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) describes a high-temperature district heating scheme in Pratteln, Switzerland that uses waste heat from a regional wastewater treatment plant to provide the basis for a district heating system that provides heating energy for commercial facilities. These include a food distribution centre, various industrial facilities, a school and a hotel. Additional heating power is provided, when necessary, by conventional boilers at the wastewater treatment plant and two of the industrial partners. The report describes the original project and the installations actually built. Total-energy balance, transport losses as well as electrical power requirements are discussed, as is the further development of the scheme, which foresees the integration of a waste-fermentation / biogas facility and a motorway restaurant in the vicinity.

  14. Effect of heat input on microstructure and mechanical properties of dissimilar joints between super duplex stainless steel and high strength low alloy steel

    International Nuclear Information System (INIS)

    Sadeghian, M.; Shamanian, M.; Shafyei, A.

    2014-01-01

    Highlights: • The microstructure of weld metal consists of austenite and ferrite. • The HAZ of the API X-65 shows different transformation. • Impact strength of sample with low heat input was lower than base metals. • The heat input at 0.506 kJ/mm is not the suitable for dissimilar joining between UNS S32750/API X-65. - Abstract: In the present study, microstructure and mechanical properties of UNS S32750 super duplex stainless steel (SDSS)/API X-65 high strength low alloy steel (HSLA) dissimilar joint were investigated. For this purpose, gas tungsten arc welding (GTAW) was used in two different heat inputs: 0.506 and 0.86 kJ/mm. The microstructures investigation with optical microscope, scanning electron microscope and X-ray diffraction showed that an increase in heat input led to a decrease in ferrite percentage, and that detrimental phases were not present. It also indicated that in heat affected zone of HSLA base metal in low heat input, bainite and ferrite phases were created; but in high heat input, perlite and ferrite phases were created. The results of impact tests revealed that the specimen with low heat input exhibited brittle fracture and that with high heat input had a higher strength than the base metals

  15. Economic and CO2 mitigation impacts of promoting biomass heating systems: An input-output study for Vorarlberg, Austria

    International Nuclear Information System (INIS)

    Madlener, Reinhard; Koller, Martin

    2007-01-01

    This paper reports on an empirical investigation about the economic and CO 2 mitigation impacts of bioenergy promotion in the Austrian federal province of Vorarlberg. We study domestic value-added, employment, and fiscal effects by means of a static input-output analysis. The bioenergy systems analysed comprise biomass district heating, pellet heating, and automated wood chip heating systems, as well as logwood stoves and boilers, ceramic stoves, and buffer storage systems. The results indicate that gross economic effects are significant, regarding both investment and operation of the systems, and that the negative economic effects caused by the displacement of conventional decentralised heating systems might be in the order of 20-40%. Finally, CO 2 mitigation effects are substantial, contributing already in 2004 around 35% of the 2010 CO 2 mitigation target of the Land Vorarlberg for all renewable energy sources

  16. Investment appraisal of heat and power plants within an emissions trading scheme. Final Report of the INVIS Project

    International Nuclear Information System (INIS)

    Laurikka, H.; Pirilae, P.

    2005-04-01

    The opportunity cost for carbon dioxide (CO 2 ) emissions has become a new factor influencing investments in heat and power production capacity globally, and in particular in countries with a greenhouse gas emissions trading system, such as the European Union Emissions Trading Scheme (EU ETS). There is a considerable power capacity investment need in the coming decades in Finland, in Europe and globally. As the economic lifetime of an investment in heat and power capacity typically ranges from 20-40 years, 'carbon finance' and the EU ETS therefore introduce a considerable and fundamental price risk to the investment problem. In Europe, the price risk is present in all investments and divestments of power production licences or capacity, be it a green-field plant, a retrofit of an existing plant or an acquisition. The objective of the INVIS research project was to extend the knowledge on strategic implications of emissions trading in investments into heat and power generation. This report gives an overview on the main findings of the project. The focus of INVIS project was on (1) quantitative investment appraisal and (2) methods rather than tools or parameter values. Particular attention in the INVIS project was paid to the incorporation of emissions trading in new methods of investment appraisal, which aim at taking into account the value of real options, rights to postpone or revise decisions. The EU ETS modifies the quantitative investment appraisal of heat and power plants directly through the emission allowance price and the number of free allowances and indirectly through impacts on output prices, input prices, taxation, and subsidies. From the risk perspective, the most problematic impact seems to be the regulatory uncertainty in the number of free allowances, which can turn out to be a barrier for investment in fossil-fuel-fired thermal power plants - even combined-cycle gas turbines. The emission allowance price is a stochastic variable, which implies it is

  17. Assessing sustainability of a low-input single-farm vegetable box-scheme using emergy and LCA methodology

    DEFF Research Database (Denmark)

    Markussen, Mads Ville; Kulak, M.; Østergård, Hanne

    2012-01-01

    for minimizing resource use are fuels and electricity. Substitution of these would require the use of renewable energy. However, an increase in inputs from society may imply a lower net-yield to society from the farm and would thus be less desirable. The LCA data are currently being analysed and these results......Sustainable development implies necessarily making use of renewable resources to a larger extent. Thus a sustainability assessment has to identify hotspots for reducing use of non-renewable resources and potentials for substitution of these with renewable resources. LCA as well as emergy assessment......, the emergy method lacks some of the standardization and robustness of LCA. In this study we apply both methods to the same case study. The case considered is an organic stockless vegetable farm of 7 ha in UK which distributes its products in weekly boxes to 250 local consumers. The farm has systematically...

  18. Effect of weld metal chemistry and heat input on the structure and properties of duplex stainless steel welds

    Energy Technology Data Exchange (ETDEWEB)

    Muthupandi, V.; Bala Srinivasan, P.; Seshadri, S.K.; Sundaresan, S

    2003-10-15

    The excellent combination of strength and corrosion resistance in duplex stainless steels (DSS) is due to their strict composition control and microstructural balance. The ferrite-austenite ratio is often upset in DSS weld metals owing to the rapid cooling rates associated with welding. To achieve the desired ferrite-austenite balance and hence properties, either the weld metal composition and/or the heat input is controlled. In the current work, a low heat input process viz., EBW and another commonly employed process, gas tungsten-arc welding have been employed for welding of DSS with and without nickel enhancement. Results show that (i) chemical composition has got a greater influence on the ferrite-austenite ratio than the cooling rate, (ii) and even EBW which is considered an immature process in welding of DSS, can be employed provided means of filler addition could be devised.

  19. Present status of two R.F. heating schemes: I.C.R.H. and L.H.R.H

    International Nuclear Information System (INIS)

    Consoli, T.

    1977-01-01

    Among the large number of wave-plasma interaction, Ion-Cyclotron Resonant Heating (I.C.R.H.) and Lower Hybrid Resonant Heating (L.H.R.H.), are two promising additional R.F. heating schemes for toroidal hot plasma. They both offer the advantage of using power generators which requires a moderate development for next generation machines. It seems important to try to state in the limits of this paper the present experimental situation of these two R.F. heating methods as it results from the vast literature published from the last European Conference

  20. TO SELECTION OF TECHNOLOGICAL SCHEME OF SOFTENING HEAT TREATMENT FOR HIGH CHROMIUM CAST IRON

    Directory of Open Access Journals (Sweden)

    V. G. Efremenko

    2014-03-01

    Full Text Available Purpose. High chromium cast irons with austenitic matrix have low machinability. The aim of work is search of new energy-saving modes of preliminary softening heat treatment enhancing the machinability of castings by forming an optimum microstructure. Methodology. Metallographic analysis, hardness testing and machinability testing are applied. Findings. It was found out that high temperature annealing with continuous cooling yields to martensite-austenite matrix in cast iron 270Х15Г2Н1MPhT, which abruptly affects the machinability of cast iron. Significant improvement of machinability is achieved by forming of structure "ferrite + granular carbides" and by decline of hardness to 37-39 HRC in the case of two-stage isothermal annealing in the subcritical temperature range or by the use of quenching and tempering (two-step or cyclic. Originality. It was found that the formation of the optimal structure of the matrix and achievement of desired hardness level needed for improving machinability of high chromium cast iron containing 3 % austenite-forming elements, can be obtained: 1 due to pearlite original austenite followed by spherodization eutectoid carbides, and 2 by getting predominantly martensite structure followed by the decay of martensite and carbides coagulation at high-temperature tempering. Practical value. The new energy-saving schemes of softening heat treatment to ensure the growth of machinability of high chromium cast iron, alloyed by higher quantity of austenite forming elements, are proposed.

  1. The Development and Microstructure Analysis of High Strength Steel Plate NVE36 for Large Heat Input Welding

    Science.gov (United States)

    Peng, Zhang; Liangfa, Xie; Ming, Wei; Jianli, Li

    In the shipbuilding industry, the welding efficiency of the ship plate not only has a great effect on the construction cost of the ship, but also affects the construction speed and determines the delivery cycle. The steel plate used for large heat input welding was developed sufficiently. In this paper, the composition of the steel with a small amount of Nb, Ti and large amount of Mn had been designed in micro-alloyed route. The content of C and the carbon equivalent were also designed to a low level. The technology of oxide metallurgy was used during the smelting process of the steel. The rolling technology of TMCP was controlled at a low rolling temperature and ultra-fast cooling technology was used, for the purpose of controlling the transformation of the microstructure. The microstructure of the steel plate was controlled to be the mixed microstructure of low carbon bainite and ferrite. Large amount of oxide particles dispersed in the microstructure of steel, which had a positive effects on the mechanical property and welding performance of the steel. The mechanical property of the steel plate was excellent and the value of longitudinal Akv at -60 °C is more than 200 J. The toughness of WM and HAZ were excellent after the steel plate was welded with a large heat input of 100-250 kJ/cm. The steel plate processed by mentioned above can meet the requirement of large heat input welding.

  2. Effects of Heat Input on the Mechanical and Metallurgical Characteristics of Tig Welded Incoloy 800Ht Joints

    Directory of Open Access Journals (Sweden)

    Kumar S. Arun

    2017-09-01

    Full Text Available This study focuses on the effect of heat input on the quality characteristics of tungsten inert arc gas welded incoloy 800HT joints using inconel-82 filler wire. Butt welding was done on specimens with four different heat inputs by varying the process parameters like welding current and speed. The result indicated that higher heat input levels has led to the formation of coarser grain structure, reduced mechanical properties and sensitization issues on the weldments. The formation of titanium nitrides provided resistance to fracture and increased the tensile strength of the joints at high temperatures. Further aging was done on the welded sample at a temperature of 750°C for 500 hours and the metallographic result showed formation of carbides along the grain boundaries in a chain of discrete and globular form which increased the hardness of the material. The formation of spinel NiCr2O4 provided oxidation resistance to the material during elevated temperature service.

  3. Metallurgy and mechanical properties variation with heat input,during dissimilar metal welding between stainless and carbon steel

    Science.gov (United States)

    Ramdan, RD; Koswara, AL; Surasno; Wirawan, R.; Faturohman, F.; Widyanto, B.; Suratman, R.

    2018-02-01

    The present research focus on the metallurgy and mechanical aspect of dissimilar metal welding.One of the common parameters that significantly contribute to the metallurgical aspect on the metal during welding is heat input. Regarding this point, in the present research, voltage, current and the welding speed has been varied in order to observe the effect of heat input on the metallurgical and mechanical aspect of both welded metals. Welding was conducted by Gas Metal Arc Welding (GMAW) on stainless and carbon steel with filler metal of ER 309. After welding, hardness test (micro-Vickers), tensile test, macro and micro-structure characterization and Energy Dispersive Spectroscopy (EDS) characterization were performed. It was observed no brittle martensite observed at HAZ of carbon steel, whereas sensitization was observed at the HAZ of stainless steel for all heat input variation at the present research. Generally, both HAZ at carbon steel and stainless steel did not affect tensile test result, however the formation of chromium carbide at the grain boundary of HAZ structure (sensitization) of stainless steel, indicate that better process and control of welding is required for dissimilar metal welding, especially to overcome this issue.

  4. Selecting a distillation scheme for purifying ditolymethane for a nuclear heat source

    International Nuclear Information System (INIS)

    Garanin, V.I.; Stychinskii, G.F.; Chukhlov, G.Z.; Smirnova, V.S.

    1989-01-01

    Ditolymethane can be used as a coolant in nuclear heat plants, although it needs ongoing purification from radiolytic products, including low-boiling and high-boiling components. Periodic distillation to remove radiolytic products represents world practice. The objective of this study was to develop a distillation system less laborious to service, simpler to automate, and costing less to operate. A continuous-flow plant can have those advantages if one could use the heat from the first loop in the plant (200-240C) to evaporate the ditolymethane and the low-boiling components instead of the more expensive electrical power, while the vapor could be condensed by cheaper air cooling to +30C instead of water cooling, while one could reduce the loss of ditolymethane with the wastes and almost eliminate the loss of low-boiling components in the vacuum pump. The laboratory tests were based on outgassed ditholymethane coolant from the first loop in the ARBUS nuclear heat plant, which had the following mass-fraction composition: ditolylmethane 82 ± 1, low-boiling components 2.3 ± 0.2, and high-boiling ones 16 ± 1%. The low-boiling components included benzene, toluene, xylene, and four unidentified compounds. The high-boiling ones included compounds containing three or more benzene rings and having a mean molecular weight 450. Continuous purification from these components and water was examined in two ways. In a one-stage system, the two types of organic component and the water are removed under a common vacuum by sequential partial condensation from the common vapor flow as the temperature is reduced. The two-stage scheme differed in that the low-boiling components and the water were removed at a lower vacuum (first stage) and the high-boiling ones at a higher vacuum (second stage)

  5. Development of High Heat Input Welding High Strength Steel Plate for Oil Storage Tank in Xinyu Steel Company

    Science.gov (United States)

    Zhao, Hemin; Dong, Fujun; Liu, Xiaolin; Xiong, Xiong

    This essay introduces the developed high-heat input welding quenched and tempered pressure vessel steel 12MnNiVR for oil storage tank by Xinyu Steel, which passed the review by the Boiler and Pressure Vessel Standards Technical Committee in 2009. The review comments that compared to the domestic and foreign similar steel standard, the key technical index of enterprise standard were in advanced level. After the heat input of 100kJ/cm electro-gas welding, welded points were still with excellent low temperature toughness at -20°C. The steel plate may be constructed for oil storage tank, which has been permitted by thickness range from 10 to 40mm, and design temperature among -20°C-100°C. It studied microstructure genetic effects mechanical properties of the steel. Many production practices indicated that the mechanical properties of products and the steel by stress relief heat treatment of steel were excellent, with pretreatment of hot metal, converter refining, external refining, protective casting, TMCP and heat treatment process measurements. The stability of performance and matured technology of Xinyu Steel support the products could completely service the demand of steel constructed for 10-15 million cubic meters large oil storage tank.

  6. Employment impacts of energy conservation schemes in the residential sector. Calculation of direct and indirect employment effects using a dedicated input/output simulation approach

    International Nuclear Information System (INIS)

    Jeeninga, H.; Weber, C.; Maeenpaeae, I.; Rivero Garcia, F.; Wiltshire, V.; Wade, J.

    1999-10-01

    The relationship between investments in energy efficiency and employment is investigated. The employment effects of several energy conservation schemes implemented in the residential sector are determined by means of a dedicated input/output simulation approach. The employment effects of energy conservation schemes were determined for France, Germany, the Netherlands, Spain and the United Kingdom. Within the time frame of the project, it was not feasible to perform a comparable analysis for Greece, Ireland and Austria. For Finland, the employment effects of energy auditing schemes were investigated by means of a macro economic simulation model. The main driving force behind the positive employment effect of investment in energy efficiency in the residential sector is the fact that the energy sector has a rather low labour intensity. The resulting shift of expenditures from the energy sector to other sectors with higher labour intensity leads to increased employment. The main mechanisms that determine the net shift in employment resulting from investments in energy conservation are: 1. The employment effect related to the initial investment in energy efficiency; 2. The energy saving effect. Due to lower energy bill, a shift in expenditure pattern will occur from the labour extensive energy sector towards sectors with higher labour intensity, thus inducing a net positive effect on employment; 3. The effects of money transfers between sectors. For example, when the investment is subsidised by the government, money is transferred from the governmental sector to the residential sector; 4. Changes in the total government budget as a result of changes in total tax revenue and expenditures on unemployment benefits. Different financing methods for the investment in energy efficiency are analysed. The initial investment can be financed from the general household consumption budget, by means of a loan, using a subsidy or using private savings. The following input parameters

  7. Thermal insulation of high confinement mode with dominant electron heating in comparison to dominant ion heating and corresponding changes of torque input

    International Nuclear Information System (INIS)

    Sommer, Fabian H.D.

    2013-01-01

    The ratio of heating power going to electrons and ions will undergo a transition from mixed electron and ion heating as it is in current fusion experiments to dominant electron heating in future experiments and reactors. In order to make valid projections towards future devices the connected changes in plasma response and performance are important to be study and understand: Do electron heated plasmas behave systematically different or is the change of heated species fully compensated by heat exchange from electrons to ions? How does particle transport influence the density profile? Is the energy confinement and the H-mode pedestal reduced with reduced torque input? Does the turbulent transport regime change fundamentally? The unique capabilities of the ECRH system at ASDEX Upgrade enable this change of heated species by replacing NBI with ECRH power and thereby offer the possibility to discuss these and other questions. For low heating powers corresponding to high collisionalities the transition from mixed electron and ion heating to pure electron heating showed next to no degradation of the global plasma parameters and no change of the edge values of kinetic profiles. The electron density shows an increased central peaking with increased ECRH power. The central electron temperature stays constant while the ion temperature decreases slightly. The toroidal rotation decreases with reduced NBI fraction, but does not influence the profile stability. The power balance analysis shows a large energy transfer from electrons to ions, so that the electron heat flux approaches zero at the edge whereas the ion heat flux is independent of heating mix. The ion heat diffusivity exceeds the electron one. For high power, low collisionality discharges global plasma parameters show a slight degradation with increasing electron heating. The density profile shows a strong peaking which remains unchanged when modifying the heating mix. The electron temperature profile is unchanged

  8. Comparative study for axial and radial shuffling scheme effect on the performance of Pb-Bi cooled fast reactors with natural uranium as fuel cycle input

    International Nuclear Information System (INIS)

    Zaki Suud; Indah Rosidah; Maryam Afifah; Ferhat Aziz; Sekimoto, H.

    2013-01-01

    Full text:Comparative study for the Design of Pb-Bi cooled fast reactors with natural uranium as fuel cycle input using special radial shuffling strategy and axial direction modified CANDLE burn-up scheme has been performed. The reactors utilizes UN-PuN as fuel, Eutectic Pb-Bi as coolant, and can be operated without refueling for 10 years in each batch. Reactor design optimization is performed to utilize natural uranium as fuel cycle input. This reactor subdivided into 6-10 regions with equal volume in radial directions. The natural uranium is initially put in region 1, and after one cycle of 10 years of burn-up it is shifted to region 2 and the region 1 is filled by fresh natural uranium fuel. This concept is basically applied to all regions. The calculation has been done by using SRAC-Citation system code and JENDL-3.2 library. The effective multiplication factor change increases monotonously during 10 years reactor operation time. There is significant power distribution change in the central part of the core during the BOC and the EOC in the radial shuffling system. It is larger than that in the case of modified CANDLE case which use axial direction burning region move. The burn-up level of fuel is slowly grows during the first 15 years but then grow faster in the rest of burn-up history. This pattern is a little bit different from the case of modified CANDLE burn-up scheme in Axial direction in which the slow growing burn-up period is relatively longer almost half of the burn-up history. (author)

  9. Production of hot electrons in mirror systems associated with ECR heating with longitudinal input of microwaves

    International Nuclear Information System (INIS)

    Zhil'tsov, V.A.; Skovoroda, A.A.; Timofeev, A.V.; Kharitonov, K.Yu.; Shcherbakov, A.G.

    1991-01-01

    Almost all experiments on ECR plasma heating are accompanied by the formation of hot electrons (i.e., electrons with energy substantially greater than the average of the bulk population). In mirror systems these electrons may determine the basic energy content (β) of the plasma. In this paper, results are presented from experimental measurements of the hot electron population resulting from ECR heating of the plasma in OGRA-4. A theoretical model is developed which describes the hot electron dynamics and the propagation of electromagnetic oscillations in the plasma self-consistently. The results obtained with this model are in agreement with experimental data

  10. Effect of Welding Heat Input on the Microstructure and Toughness in Simulated CGHAZ of 800 MPa-Grade Steel for Hydropower Penstocks

    Directory of Open Access Journals (Sweden)

    Qingfeng Ding

    2017-03-01

    Full Text Available To determine the appropriate welding heat input for simulated coarse grained heat affected zone (CGHAZ of 800 MPa-grade steel used in hydropower penstocks, the microstructural evolution, hardness, and 50% fraction appearance transition temperature (50% FATT were investigated. The results indicated that when the cooling rate (heat input is reduced (increased, the impact toughness at −20 °C and hardness of the simulated CGHAZ decreased. When the heat input increased from 18 to 81 kJ/cm, the 50% FATT increased from −80 °C to −11 °C. At 18 kJ/cm, the microstructures consisted of lath bainite and granular bainite, but lath bainite decreased with increasing heat input. The increase in the 50% FATT was attributed mainly to an increase in the austenite grain size and effective grain size, and a decrease in lath bainite and the fraction of HAGBs (misorientation: ≥15°.

  11. Effects of aging treatment and heat input on the microstructures and mechanical properties of TIG-welded 6061-T6 alloy joints

    Science.gov (United States)

    Peng, Dong; Shen, Jun; Tang, Qin; Wu, Cui-ping; Zhou, Yan-bing

    2013-03-01

    Aging treatment and various heat input conditions were adopted to investigate the microstructural evolution and mechanical properties of TIG welded 6061-T6 alloy joints by microstructural observations, microhardness tests, and tensile tests. With an increase in heat input, the width of the heat-affected zone (HAZ) increases and grains in the fusion zone (FZ) coarsen. Moreover, the hardness of the HAZ decreases, whereas that of the FZ decreases initially and then increases with an increase in heat input. Low heat input results in the low ultimate tensile strength of the welded joints due to the presence of partial penetrations and pores in the welded joints. After a simple artificial aging treatment at 175°C for 8 h, the microstructure of the welded joints changes slightly. The mechanical properties of the welded joints enhance significantly after the aging process as few precipitates distribute in the welded seam.

  12. Corrosion behavior in high heat input welded heat-affected zone of Ni-free high-nitrogen Fe–18Cr–10Mn–N austenitic stainless steel

    International Nuclear Information System (INIS)

    Moon, Joonoh; Ha, Heon-Young; Lee, Tae-Ho

    2013-01-01

    The pitting corrosion and interphase corrosion behaviors in high heat input welded heat-affected zone (HAZ) of a metastable high-nitrogen Fe–18Cr–10Mn–N austenitic stainless steel were explored through electrochemical tests. The HAZs were simulated using Gleeble simulator with high heat input welding condition of 300 kJ/cm and the peak temperature of the HAZs was changed from 1200 °C to 1350 °C, aiming to examine the effect of δ-ferrite formation on corrosion behavior. The electrochemical test results show that both pitting corrosion resistance and interphase corrosion resistance were seriously deteriorated by δ-ferrite formation in the HAZ and their aspects were different with increasing δ-ferrite fraction. The pitting corrosion resistance was decreased by the formation of Cr-depleted zone along δ-ferrite/austenite (γ) interphase resulting from δ-ferrite formation; however it didn't depend on δ-ferrite fraction. The interphase corrosion resistance depends on the total amount of Cr-depleted zone as well as ferrite area and thus continuously decreased with increasing δ-ferrite fraction. The different effects of δ-ferrite fraction on pitting corrosion and interphase corrosion were carefully discussed in terms of alloying elements partitioning in the HAZ based on thermodynamic consideration. - Highlights: • Corrosion behavior in the weld HAZ of high-nitrogen austenitic alloy was studied. • Cr 2 N particle was not precipitated in high heat input welded HAZ of tested alloy. • Pitting corrosion and interphase corrosion show a different behavior. • Pitting corrosion resistance was affected by whether or not δ-ferrite forms. • Interphase corrosion resistance was affected by the total amount of δ-ferrite

  13. Effects of the Back Plate Inner Diameter on the Frictional Heat Input and General Performance of Brush Seals

    Directory of Open Access Journals (Sweden)

    Manuel Hildebrandt

    2018-05-01

    Full Text Available Reducing losses in the secondary air system of gas and steam turbines can significantly increase the efficiency of such machines. Meanwhile, brush seals are a widely used alternative to labyrinth seals. Their most valuable advantage over other sealing concepts is the very small gap between the sealing package and the rotor and thus reduced leakage mass flow. This small gap can be achieved due to the great radial flexibility without running the risk of severe detrimental deterioration in case of rubbing. Rubbing between rotor and seal during operation might occur as a result of e.g., an unequal thermal expansion of the rotor and stator or a rotor elongation due to centrifugal forces or manoeuvre forces. Thanks to the flexible structure of the brush seal, the contact forces during a rubbing event are reduced; however, the frictional heat input can still be considerable. Particularly in aircraft engines with their thin and lightweight rotor structures, the permissible material stresses can easily be exceeded by an increased heat input and thus harm the engine’s integrity. The geometry of the seal has a decisive influence on the resulting contact forces and consequently the heat input. This paper is a contribution to further understand the influence of the geometrical parameters of the brush seal on the heat input and the leakage during the rubbing of the seal on the rotor. In this paper, a total of three seals with varied back plate inner diameter are examined in more detail. The experimental tests were carried out on the brush seal test rig of the Institute of Thermal Turbomachinery (ITS under machine-relevant conditions. These are represented by pressure differences of 1 to 7 bar, surface speeds of 30 to 180 m/s and radial interferences of 0.1 to 0.4 mm. For a better interpretation, the results were compared with those obtained at the static test rig of the Institute of Jet Propulsion and Turbomachinery (IFAS at the Technical University of

  14. Real-time simulation of thermal stresses and creep in plates subjected to transient heat input

    DEFF Research Database (Denmark)

    Hattel, Jesper Henri; Jacobsen, Torben Krogsdal; Hansen, P.N.

    1997-01-01

    -difference approach. It applies a general formulation which takes into account nonconstant material properties (e.g. temperature, material, or time dependency), heat-transfer coefficients, and creep. The temperature calculation applies a one-dimensional numerical model, whereas the stress analysis is semi......This paper presents a novel numerical technique for solving the temperature and stress fields in a plate subjected to arbitrarily varying transient boundary conditions (transient temperature and heat-flux variations) on a surface. The numerical method is based on the control-volume finite......-two-dimensional. Both plane stress and plane strain conditions are considered as extreme cases. It is shown that, by using the developed numerical technique, very fast real-time simulations can be performed. The method has proved its applicability in e.g. high-pressure die-casting, and applications to this industrial...

  15. Support schemes and ownership structures - The policy context for fuel cell based micro-combined heat and power

    Energy Technology Data Exchange (ETDEWEB)

    Ropenus, S.; Thorsten Schroeder, S.; Costa, A.; Obe, E.

    2010-05-15

    In recent years, fuel cell based micro-combined heat and power has received increasing attention due to its potential contribution to energy savings, efficiency gains, customer proximity and flexibility in operation and capacity size. The FC4Home project assesses technical and economic aspects of the ongoing fuel cell based micro-combined heat and power (mCHP) demonstration projects by addressing the socio-economic and systems analyses perspectives of a large-scale promotion scheme of fuel cells. This document constitutes the deliverable of Work Package 1 of the FC4Home project and provides an introduction to the policy context for mCHP. Section 1 describes the rationale for the promotion of mCHP by explaining its potential contribution to European energy policy goals. Section 2 addresses the policy context at the supranational European level by outlining relevant EU Directives on support schemes for promoting combined heat and power and energy from renewable sources. These Directives are to be implemented at the national level by the Member States. Section 3 conceptually presents the spectrum of national support schemes, ranging from investment support to market-based operational support. The choice of support scheme simultaneously affects risk and technological development, which is the focus of Section 4. Subsequent to this conceptual overview, Section 5 takes a glance at the national application of support schemes for mCHP in practice, notably in the three country cases of the FC4Home project, Denmark, France and Portugal. Another crucial aspect for the diffusion of the mCHP technology is possible ownership structures. These may range from full consumer ownership to ownership by utilities and energy service companies, which is discussed in Section 6. Finally, a conclusion (Section 7) wraps up previous findings and provides a short 'preview' of the quantitative analyses in subsequent Work Packages by giving some food for thought on the way. (author)

  16. Reconstructive schemes for variational iteration method within Yang-Laplace transform with application to fractal heat conduction problem

    Directory of Open Access Journals (Sweden)

    Liu Chun-Feng

    2013-01-01

    Full Text Available A reconstructive scheme for variational iteration method using the Yang-Laplace transform is proposed and developed with the Yang-Laplace transform. The identification of fractal Lagrange multiplier is investigated by the Yang-Laplace transform. The method is exemplified by a fractal heat conduction equation with local fractional derivative. The results developed are valid for a compact solution domain with high accuracy.

  17. Impact of filling scheme on beam induced RF heating in CERN LHC and HL-LHC

    CERN Document Server

    AUTHOR|(CDS)2241936; De Vito, Luca; Salvant, Benoit

    At CERN, after the first maintenance cycle (Long Shutdown 1, LS1) of the Large Hadron Collider (LHC), several sectors of the accelerator present a beam-induced heating much larger than expectations. This work compares data measured by cryogenic instrumentation with the expected heat load for various filling schemes and shows that impedance is not reasonably the major cause of the additional heat load. With this aim, the scaling of the power loss is analyzed carefully. In particular the scaling of the computed power loss from beam coupling impedance with the number of bunches is well understood only for a very broad band Impedance and for a very narrow band Impedance in ideal filling schemes that assume that the machine is full of equispaced bunches. This thesis analyzes also this dependence with number of bunches of the impedance of a resonator for a wide range of quality factors and more realistic filling schemes. The commonly assumed scaling with the square of number of bunches for narrow band resonator...

  18. Anthropogenic heat flux: advisable spatial resolutions when input data are scarce

    Science.gov (United States)

    Gabey, A. M.; Grimmond, C. S. B.; Capel-Timms, I.

    2018-02-01

    Anthropogenic heat flux (QF) may be significant in cities, especially under low solar irradiance and at night. It is of interest to many practitioners including meteorologists, city planners and climatologists. QF estimates at fine temporal and spatial resolution can be derived from models that use varying amounts of empirical data. This study compares simple and detailed models in a European megacity (London) at 500 m spatial resolution. The simple model (LQF) uses spatially resolved population data and national energy statistics. The detailed model (GQF) additionally uses local energy, road network and workday population data. The Fractions Skill Score (FSS) and bias are used to rate the skill with which the simple model reproduces the spatial patterns and magnitudes of QF, and its sub-components, from the detailed model. LQF skill was consistently good across 90% of the city, away from the centre and major roads. The remaining 10% contained elevated emissions and "hot spots" representing 30-40% of the total city-wide energy. This structure was lost because it requires workday population, spatially resolved building energy consumption and/or road network data. Daily total building and traffic energy consumption estimates from national data were within ± 40% of local values. Progressively coarser spatial resolutions to 5 km improved skill for total QF, but important features (hot spots, transport network) were lost at all resolutions when residential population controlled spatial variations. The results demonstrate that simple QF models should be applied with conservative spatial resolution in cities that, like London, exhibit time-varying energy use patterns.

  19. Review, modeling, Heat Integration, and improved schemes of Rectisol®-based processes for CO2 capture

    International Nuclear Information System (INIS)

    Gatti, Manuele; Martelli, Emanuele; Marechal, François; Consonni, Stefano

    2014-01-01

    The paper evaluates the thermodynamic performances and the energy integration of alternative schemes of a methanol absorption based acid gas removal process designed for CO 2 Capture and Storage. More precisely, this work focuses the attention on the Rectisol ® process specifically designed for the selective removal of H 2 S and CO 2 from syngas produced by coal gasification. The study addresses the following issues: (i) perform a review of the Rectisol ® schemes proposed by engineers and researchers with the purpose of determining the best one for CO 2 capture and storage; (ii) calibrate the PC-SAFT equation of state for CH 3 OH–CO 2 –H 2 S–H 2 –CO mixtures at conditions relevant to the Rectisol ® process; (iii) evaluate the thermodynamic performances and optimize the energy integration of a “Reference” scheme derived from those available in the literature; (iv) identify and assess alternative Rectisol ® schemes with optimized performance for CO 2 Capture and Storage and Heat Integration with utilities. On the basis of the analysis of the Composite Curves of the integrated process, we propose some possible improvements at the level of the process configuration, like the introduction of mechanical vapor recompression and the development of a two stage regeneration arrangement. - Highlights: • Comprehensive review of the Rectisol ® process configurations and applications. • Calibration of PC-SAFT equation of state for Rectisol ® -relevant mixtures. • Detailed process simulation and optimized Heat Integration, and utility design. • Development of alternative Rectisol ® schemes optimized for CO 2 Capture

  20. Responses of Lithium-Modified Bath to a Shift in Heat Input/Output Balance and Observation of Freeze-Lining Formation During the Heat Balance Shift

    Science.gov (United States)

    Liu, Jingjing; Taylor, Mark; Dorreen, Mark

    2018-02-01

    In the aluminum electrolysis process, new industrial aluminum/electricity power markets demand a new cell technology to extend the cell heat balance and amperage operating window of smelters by shifting the steady states. The current work investigates the responses of lithium-modified bath system when the input/output balance is shifted in a laboratory analogue to the industrial heat balance shift. Li2CO3 is added to the cryolite-AlF3-CaF2-Al2O3 system as a bath modifier. A freeze deposit is formed on a `cold finger' dipped into the bath and investigated by X-ray diffraction analysis and electron probe X-ray microanalysis. The macro- and micro-structure of the freeze lining varies with the bath superheat (bath temperature minus bath liquidus temperature) and an open crystalline layer with entrapped liquid dominates the freeze thickness. Compared with the cryolite-AlF3-CaF2-Al2O3 bath system, the lithium-modified bath freeze is more sensitive to the heat balance shift. This freeze investigation provides primary information to understand the variation of the side ledge in an industrial cell when the lithium-modified bath system is used.

  1. A stock-flow consistent input-output model with applications to energy price shocks, interest rates, and heat emissions

    Science.gov (United States)

    Berg, Matthew; Hartley, Brian; Richters, Oliver

    2015-01-01

    By synthesizing stock-flow consistent models, input-output models, and aspects of ecological macroeconomics, a method is developed to simultaneously model monetary flows through the financial system, flows of produced goods and services through the real economy, and flows of physical materials through the natural environment. This paper highlights the linkages between the physical environment and the economic system by emphasizing the role of the energy industry. A conceptual model is developed in general form with an arbitrary number of sectors, while emphasizing connections with the agent-based, econophysics, and complexity economics literature. First, we use the model to challenge claims that 0% interest rates are a necessary condition for a stationary economy and conduct a stability analysis within the parameter space of interest rates and consumption parameters of an economy in stock-flow equilibrium. Second, we analyze the role of energy price shocks in contributing to recessions, incorporating several propagation and amplification mechanisms. Third, implied heat emissions from energy conversion and the effect of anthropogenic heat flux on climate change are considered in light of a minimal single-layer atmosphere climate model, although the model is only implicitly, not explicitly, linked to the economic model.

  2. Heat input effect on the microstructural transformation and mechanical properties in GTAW welds of a 409L ferritic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Delgado, J. A.; Ambriz, R. R.; Cuenca-Alvarez, R.; Alatorre, N.; Curiel, F. F.

    2016-10-01

    Welds without filler metal and welds using a conventional austenitic stainless steel filler metal (ER308L) were performed to join a ferritic stainless steel with Gas Tungsten Arc Welding process (GTAW). Welding parameters were adjusted to obtain three different heat input values. Microstructure reveals the presence of coarse ferritic matrix and martensite laths in the Heat Affected Zone (HAZ). Dilution between filler and base metal was correlated with the presence of austenite, martensite and ferrite in the weld metal. Weld thermal cycles were measured to correlate the microstructural transformation in the HAZ. Microhardness measurements (maps and profiles) allow to identify the different zones of the welded joints (weld metal, HAZ, and base metal). Comparing the base metal with the weld metal and the HAZ, a hardness increment (∼172 HV{sub 0}.5 to ∼350 HV{sub 0}.5 and ∼310 HV{sub 0}.5, respectively) was observed, which has been attributed to the martensite formation. Tensile strength of the welded joints without filler metal increased moderately with respect to base metal. In contrast, ductility was approximately 25% higher than base metal, which provided a toughness improvement of the welded joints. (Author)

  3. COMPARISON OF COOLING SCHEMES FOR HIGH HEAT FLUX COMPONENTS COOLING IN FUSION REACTORS

    Directory of Open Access Journals (Sweden)

    Phani Kumar Domalapally

    2015-04-01

    Full Text Available Some components of the fusion reactor receives high heat fluxes either during the startup and shutdown or during the operation of the machine. This paper analyzes different ways of enhancing heat transfer using helium and water for cooling of these high heat flux components and then conclusions are drawn to decide the best choice of coolant, for usage in near and long term applications.

  4. Support schemes and ownership structures - the policy context for fuel cell based micro-combined heat and power

    Science.gov (United States)

    Schroeder, Sascha Thorsten; Costa, Ana; Obé, Elisabeth

    In recent years, fuel cell based micro-combined heat and power (mCHP) has received increasing attention due to its potential contribution to European energy policy goals, i.e., sustainability, competitiveness and security of supply. Besides technical advances, regulatory framework and ownership structures are of crucial importance in order to achieve greater diffusion of the technology in residential applications. This paper analyses the interplay of policy and ownership structures for the future deployment of mCHP. Furthermore, it regards the three country cases Denmark, France and Portugal. Firstly, the implications of different kinds of support schemes on investment risk and the diffusion of a technology are explained conceptually. Secondly, ownership arrangements are addressed. Then, a cross-country comparison on present support schemes for mCHP and competing technologies discusses the national implementation of European legislation in Denmark, France and Portugal. Finally, resulting implications for ownership arrangements on the choice of support scheme are explained. From a conceptual point of view, investment support, feed-in tariffs and price premiums are the most appropriate schemes for fuel cell mCHP. This can be used for improved analysis of operational strategies. The interaction of this plethora of elements necessitates careful balancing from a private- and socio-economic point of view.

  5. Instantaneous-to-daily GPP upscaling schemes based on a coupled photosynthesis-stomatal conductance model: correcting the overestimation of GPP by directly using daily average meteorological inputs.

    Science.gov (United States)

    Wang, Fumin; Gonsamo, Alemu; Chen, Jing M; Black, T Andrew; Zhou, Bin

    2014-11-01

    Daily canopy photosynthesis is usually temporally upscaled from instantaneous (i.e., seconds) photosynthesis rate. The nonlinear response of photosynthesis to meteorological variables makes the temporal scaling a significant challenge. In this study, two temporal upscaling schemes of daily photosynthesis, the integrated daily model (IDM) and the segmented daily model (SDM), are presented by considering the diurnal variations of meteorological variables based on a coupled photosynthesis-stomatal conductance model. The two models, as well as a simple average daily model (SADM) with daily average meteorological inputs, were validated using the tower-derived gross primary production (GPP) to assess their abilities in simulating daily photosynthesis. The results showed IDM closely followed the seasonal trend of the tower-derived GPP with an average RMSE of 1.63 g C m(-2) day(-1), and an average Nash-Sutcliffe model efficiency coefficient (E) of 0.87. SDM performed similarly to IDM in GPP simulation but decreased the computation time by >66%. SADM overestimated daily GPP by about 15% during the growing season compared to IDM. Both IDM and SDM greatly decreased the overestimation by SADM, and improved the simulation of daily GPP by reducing the RMSE by 34 and 30%, respectively. The results indicated that IDM and SDM are useful temporal upscaling approaches, and both are superior to SADM in daily GPP simulation because they take into account the diurnally varying responses of photosynthesis to meteorological variables. SDM is computationally more efficient, and therefore more suitable for long-term and large-scale GPP simulations.

  6. Poly(4-vinylphenol gate insulator with cross-linking using a rapid low-power microwave induction heating scheme for organic thin-film-transistors

    Directory of Open Access Journals (Sweden)

    Ching-Lin Fan

    2016-03-01

    Full Text Available A Microwave-Induction Heating (MIH scheme is proposed for the poly(4-vinylphenol (PVP gate insulator cross-linking process to replace the traditional oven heating cross-linking process. The cross-linking time is significantly decreased from 1 h to 5 min by heating the metal below the PVP layer using microwave irradiation. The necessary microwave power was substantially reduced to about 50 W by decreasing the chamber pressure. The MIH scheme is a good candidate to replace traditional thermal heating for cross-linking of PVP as the gate insulator for organic thin-film-transistors.

  7. Poly(4-vinylphenol) gate insulator with cross-linking using a rapid low-power microwave induction heating scheme for organic thin-film-transistors

    Science.gov (United States)

    Fan, Ching-Lin; Shang, Ming-Chi; Hsia, Mao-Yuan; Wang, Shea-Jue; Huang, Bohr-Ran; Lee, Win-Der

    2016-03-01

    A Microwave-Induction Heating (MIH) scheme is proposed for the poly(4-vinylphenol) (PVP) gate insulator cross-linking process to replace the traditional oven heating cross-linking process. The cross-linking time is significantly decreased from 1 h to 5 min by heating the metal below the PVP layer using microwave irradiation. The necessary microwave power was substantially reduced to about 50 W by decreasing the chamber pressure. The MIH scheme is a good candidate to replace traditional thermal heating for cross-linking of PVP as the gate insulator for organic thin-film-transistors.

  8. Analysis of energy efficiency retrofit schemes for heating, ventilating and air-conditioning systems in existing office buildings based on the modified bin method

    International Nuclear Information System (INIS)

    Wang, Zhaoxia; Ding, Yan; Geng, Geng; Zhu, Neng

    2014-01-01

    Highlights: • A modified bin method is adopted to propose and optimize the EER schemes. • A case study is presented to demonstrate the analysis procedures of EER schemes. • Pertinent EER schemes for HVAC systems are proposed for the object building. - Abstract: Poor thermal performance of building envelop and low efficiencies of heating, ventilating and air-conditioning (HVAC) systems can always be found in the existing office buildings with large energy consumption. This paper adopted a modified bin method to propose and optimize the energy efficiency retrofit (EER) schemes. An existing office building in Tianjin was selected as an example to demonstrate the procedures of formulating the design scheme. Pertinent retrofit schemes for HVAC system were proposed after the retrofit of building envelop. With comprehensive consideration of energy efficiency and economic benefits, the recommended scheme that could improve the overall energy efficiency by 71.20% was determined

  9. Influence of heat input and radius to pipe thickness ratio on the residual stresses in circumferential arc welded pipes of API X46 steels

    International Nuclear Information System (INIS)

    Hemmatzadeh, Majid; Moshayedi, Hessamoddin; Sattari-Far, Iradj

    2017-01-01

    The present work aims to study residual stresses caused by circumferentially welding of two similar API X46 steel pipes by means of finite element modeling. Considering the metallurgical phase transformations and through thermal-mechanical uncoupled analysis, the 3D modeling was carried out by SYSWELD software. Materialistic thermal and mechanical properties of all phases were defined in terms of temperature as well as phase transformation properties. Residual stress was measured through hole-drilling method. The obtained results were used to verify the finite element model. By means of full factorial experiment designing method, effects of heat input and radius to pipe thickness ratio on maximum values of hoop and axial residual stresses were investigated. The effect of each factor was studied in 3 levels and by 9 experiments. Results of statistical analysis revealed that increase in heat input and radius-thickness ratio would lead to higher values of maximum hoop and axial residual stresses. However, interactions of high level of heat input and a low level of radius-thickness ratio increased inter-pass temperature and consequently caused a sudden raise in maximum values of residual stresses. - Highlights: • A FEM model was developed to simulate welding considering phase transformations. • The obtained residual stresses were validated by experiments. • Effect of heat input and radius-to-thickness ratio on residual stress were investigated. • Increasing heat input for 100% caused increasing hoop and axial residual stress until 200%. • Interaction of high heat input and low R/t causes a sudden increase in axial residual stresses.

  10. Performance investigation on a 4-bed adsorption desalination cycle with internal heat recovery scheme

    KAUST Repository

    Thu, Kyaw; Yanagi, Hideharu; Saha, Bidyut Baran; Ng, Kim Choon

    2016-01-01

    Multi-bed adsorption cycle with the internal heat recovery between the condenser and the evaporator is investigated for desalination application. A numerical model is developed for a 4-bed adsorption cycle implemented with the master

  11. Water desalting schemes when using heat gas-vapor mixture in front of contact condenser

    OpenAIRE

    Kuznetsova, Svitlana A.

    2016-01-01

    Ukraine is a country with low quality of fresh water; there are regions with its deficiency. One of the possible solutions to this problem is the desalination of the brackish water from surface and groundwater sources by using heat of the mixture before the contact condenser in gas-steam turbine plants. The plants produce electricity and heat energy for the needs of the industrial, agricultural complexes and the population of Kherson, Nikolaev and Odessa regions. The studies were carried out ...

  12. Effect of Heat Input During Disk Laser Bead-On-Plate Welding of Thermomechanically Rolled Steel on Penetration Characteristics and Porosity Formation in the Weld Metal

    Directory of Open Access Journals (Sweden)

    Lisiecki A.

    2016-03-01

    Full Text Available The paper presents a detailed analysis of the influence of heat input during laser bead-on-plate welding of 5.0 mm thick plates of S700MC steel by modern Disk laser on the mechanism of steel penetration, shape and depth of penetration, and also on tendency to weld porosity formation. Based on the investigations performed in a wide range of laser welding parameters the relationship between laser power and welding speed, thus heat input, required for full penetration was determined. Additionally the relationship between the laser welding parameters and weld quality was determined.

  13. Effect of heat-insulating wall on input energy of a photovoltaic/solar/air-heat system for a residence; Jutaku no kodannetsuka ni yoru taiyoko netsu/taiki netsu system no donyu energy sakugen koka

    Energy Technology Data Exchange (ETDEWEB)

    Kenmoku, Y; Sakakibara, T [Toyohashi University of Technology, Aichi (Japan); Nakagawa, S [Maizuru College of Technology, Kyoto (Japan)

    1996-10-27

    A proposal was made to introduce a photovoltaic/solar/air-heat system which positively utilizes natural energy in order to curtail consumption of fossil energy, corroborating that the system has greatly reduced energy input in the primary energy level in a house. This paper examines the effect of curtailment of energy input in the case of reducing the load of air conditioning through the high heat insulation of a house. The energy input was evaluated by calculating additional equipment energy needed newly for the high heat insulation. The system performance and the energy load varied greatly depending on weather conditions. The subject system consisted of solar cells, inverter, heat concentrator, heat storage tank, heat pump and gas hot-water supply device. The thickening of the insulation sharply reduced heating load in the house, thereby decreasing fuel energy substantially. An insulation material of 100mm thick was capable of reducing energy input by 16-23% compared with that of 50mm thick. 5 refs., 5 figs, 3 tabs.

  14. Effect of Welding Heat Input on Microstructure and Texture of Inconel 625 Weld Overlay Studied Using the Electron Backscatter Diffraction Method

    Science.gov (United States)

    Kim, Joon-Suk; Lee, Hae-Woo

    2016-12-01

    The grain size and the texture of three specimens prepared at different heat inputs were determined using optical microscopy and the electron backscatter diffraction method of scanning electron microscopy. Each specimen was equally divided into fusion line zone (FLZ), columnar dendrite zone (CDZ), and surface zone (SZ), according to the location of the weld. Fine dendrites were observed in the FLZ, coarse dendrites in the CDZ, and dendrites grew perpendicular to the FLZ and CDZ. As the heat input increased, the melted zone in the vicinity of the FLZ widened due to the higher Fe content. A lower image quality value was observed for the FLZ compared to the other zones. The results of grain size measurement in each zone showed that the grain size of the SZ became larger as the heat input increased. From the inverse pole figure (IPF) map in the normal direction (ND) and the rolling direction (RD), as the heat input increased, a specific orientation was formed. However, a dominant [001] direction was observed in the RD IPF map.

  15. Demand Controlled Economizer Cycles: A Direct Digital Control Scheme for Heating, Ventilating, and Air Conditioning Systems,

    Science.gov (United States)

    1984-05-01

    Control Ignored any error of 1/10th degree or less. This was done by setting the error term E and the integral sum PREINT to zero If then absolute value of...signs of two errors jeq tdiff if equal, jump clr @preint else zero integal sum tdiff mov @diff,rl fetch absolute value of OAT-RAT ci rl,25 is...includes a heating coil and thermostatic control to maintain the air in this path at an elevated temperature, typically around 80 degrees Farenheit (80 F

  16. Geothermal source heat pumps under energy services companies finance scheme to increase energy efficiency and production in stockbreeding facilities

    International Nuclear Information System (INIS)

    Borge-Diez, David; Colmenar-Santos, Antonio; Pérez-Molina, Clara; López-Rey, África

    2015-01-01

    In Europe energy services are underutilized in terms of their potential to improve energy efficiency and reduce external energy dependence. Agricultural and stockbreeding sectors have high potential to improve their energy efficiency. This paper presents an energy model for geothermal source heat pumps in stockbreeding facilities and an analysis of an energy services business case. The proposed solution combines both energy cost reduction and productivity increases and improves energy services company financing scheme. CO 2 emissions drop by 89%, reducing carbon footprint and improving added value for the product. For the two different evaluated scenarios, one including winter heating and one including heating and cooling, high IRR (internal return rate) values are obtained. A sensitivity analysis reveals that the IRR ranges from 10.25% to 22.02%, making the investment attractive. To make the research highly extensible, a sensitivity analysis for different locations and climatic conditions is presented, showing a direct relationship between financial parameters and climatic conditions. A Monte Carlo simulation is performed showing that initial fuel cost and initial investment are the most decisive in the financial results. This work proves that energy services based on geothermal energy can be profitable in these sectors and can increase sustainability, reduce CO 2 emissions and improve carbon footprint. - Highlights: • Geothermal heat pumps are studied to promote industrial energy services. • Geothermal energy in farming facilities improves global competitiveness. • Research shows profitability of low enthalpy geothermal energy services. • Climatic conditions sensitivity analysis reveals IRR ranges from 10.25% to 22.02%. • Added market value for the product as carbon footprint reduction, are achieved

  17. Living in cold homes after heating improvements: Evidence from Warm-Front, England's Home Energy Efficiency Scheme

    International Nuclear Information System (INIS)

    Critchley, Roger; Gilbertson, Jan; Grimsley, Michael; Green, Geoff

    2007-01-01

    Objective: To investigate explanatory factors for persistent cold temperatures in homes which have received heating improvements. Design: Analysis of data from a national survey of dwellings and households (in England occupied by low-income residents) that had received heating improvements or repairs under the Warm Front Scheme. Methods: Over the winters of 2001-02 and 2002-03, householders recorded living room and main bedroom temperatures in a diary. Entries were examined for 888 households, which had received high level heating interventions. Two hundred and twenty-two households were identified as occupying cold homes, with mean bedroom temperature below 16 deg. C or mean living room temperatures below 18 deg. C. Binary logistic regression was used to model dwelling and household features and then occupants' behaviour and attitudes in the 'cold homes' sub-set compared with the remainder of the high intervention group. Seventy-nine supplementary, structured telephone interviews explored reasons given for lower temperatures. Using graphical and tabular methods, householders preferring cooler homes were distinguished from those who felt constrained in some way. Results: Cold homes predominate in pre-1930 properties where the householder remains dissatisfied with the heating system despite major improvements funded by Warm Front. Residents of cold homes are less likely to have long-standing illness or disability, but more likely to experience anxiety or depression. A small sample of telephone interviews reveals those preferring lower temperatures for health or other reasons, report less anxiety and depression than those with limited control over their home environment. Their 'thermal resistance' to higher temperatures challenges orthodox definitions of comfort and fuel poverty

  18. Simulation of heat pipe rapid transient performance using a multi-nodal implicit finite difference scheme

    International Nuclear Information System (INIS)

    Peery, J.S.; Best, F.R.

    1987-01-01

    A model to simulate heat pipe rapid transients has been developed. This model uses a one-dimensional development of the continuity and momentum equations to solve for the velocity and pressure distributions in both the liquid and vapor regions. A two-dimensional development of the energy equation is used to determine the temperature distributions in the liquid and vapor regions, as well as in the walls of the heat pipe. The vapor and liquid regions are coupled through mass and energy transfer due to evaporation and condensation. The model used for this phenomenon is based on the physical conditions of the vapor and liquid for a given node. However, this model for evaporation and condensation not only causes the energy equation to be nonlinear but also constrains the time step to 10 -4 seconds for convergence to be reached. The model has been run for small transients up to 2 seconds to produce temperature distributions and demonstrate the convergence difficulties associated with the evaporation/condensation model used

  19. A New Scheme for Considering Soil Water-Heat Transport Coupling Based on Community Land Model: Model Description and Preliminary Validation

    Science.gov (United States)

    Wang, Chenghai; Yang, Kai

    2018-04-01

    Land surface models (LSMs) have developed significantly over the past few decades, with the result that most LSMs can generally reproduce the characteristics of the land surface. However, LSMs fail to reproduce some details of soil water and heat transport during seasonal transition periods because they neglect the effects of interactions between water movement and heat transfer in the soil. Such effects are critical for a complete understanding of water-heat transport within a soil thermohydraulic regime. In this study, a fully coupled water-heat transport scheme (FCS) is incorporated into the Community Land Model (version 4.5) to replaces its original isothermal scheme, which is more complete in theory. Observational data from five sites are used to validate the performance of the FCS. The simulation results at both single-point and global scale show that the FCS improved the simulation of soil moisture and temperature. FCS better reproduced the characteristics of drier and colder surface layers in arid regions by considering the diffusion of soil water vapor, which is a nonnegligible process in soil, especially for soil surface layers, while its effects in cold regions are generally inverse. It also accounted for the sensible heat fluxes caused by liquid water flow, which can contribute to heat transfer in both surface and deep layers. The FCS affects the estimation of surface sensible heat (SH) and latent heat (LH) and provides the details of soil heat and water transportation, which benefits to understand the inner physical process of soil water-heat migration.

  20. Effects of Heat Input and Bead Generation Methods on Finite Element Analysis of Cylindrical Multi-Pass Welding Process of Metals

    International Nuclear Information System (INIS)

    Park, Won Dong; Bahn, Chi Bum; Kim, Ji Hoon

    2017-01-01

    In this study, a finite element analysis of a cylindrical multi-pass weldment for dissimilar metals was performed. The effects of the heat input method and weld bead generation method were considered. We compared two heat input methods: the heat flux method and the temperature method. We also compared two weld bead generation methods: the element birth method and the quiet element method. Although the results of the thermal analysis show deviations between the two heat input methods, the welding residual stresses were similar. Because the areas exposed to high temperature were similar and the strength of the material was very low in high temperature (above the 1000 ℃), the effects of the weld bead temperature were insignificant. The distributions of the welding residual stress were similar to each other. However, gaps and overlaps occurred on the welding boundary surfaces when the element birth method was applied. The quiet element method is more suitable for a large deformation model in order to simulate a more accurate weld shape.

  1. Effects of Heat Input and Bead Generation Methods on Finite Element Analysis of Cylindrical Multi-Pass Welding Process of Metals

    Energy Technology Data Exchange (ETDEWEB)

    Park, Won Dong; Bahn, Chi Bum; Kim, Ji Hoon [Pusan Nat’l Univ., Busan (Korea, Republic of)

    2017-06-15

    In this study, a finite element analysis of a cylindrical multi-pass weldment for dissimilar metals was performed. The effects of the heat input method and weld bead generation method were considered. We compared two heat input methods: the heat flux method and the temperature method. We also compared two weld bead generation methods: the element birth method and the quiet element method. Although the results of the thermal analysis show deviations between the two heat input methods, the welding residual stresses were similar. Because the areas exposed to high temperature were similar and the strength of the material was very low in high temperature (above the 1000 ℃), the effects of the weld bead temperature were insignificant. The distributions of the welding residual stress were similar to each other. However, gaps and overlaps occurred on the welding boundary surfaces when the element birth method was applied. The quiet element method is more suitable for a large deformation model in order to simulate a more accurate weld shape.

  2. Numerical investigation of ICRF antenna designs and heating schemes for Alcator C

    International Nuclear Information System (INIS)

    Blackfield, D.T.; Blackwell, B.D.

    1983-02-01

    Initially, approximately 500 kW of rf power will be launched through one port of Alcator C at a frequency of 180 to 220 MHz. We use a hot-plasma slab model to examine antenna coupling and power deposition for second harmonic (H, B 0 = 6.7 T) heating regime. The plasma medium is assumed uniform in y and z and is stratified in x. Three-dimensional, four-mode field solutions are obtained by solution of the boundary condition equations in the x direction, and by Fourier transform methods in y and z. We study the dependence of radiation resistance upon coupling parameters such as antenna width and radial position. This is interpreted in terms of the spectral (k/sub y/, k/sub z/) distribution of power, the effect of the evanescent region at the edge, and the attenuation length of the waves

  3. Combined convective heat and airborne pollutant removals in a slot vented enclosure under different flow schemes: Parametric investigations and non unique flow solutions

    International Nuclear Information System (INIS)

    Ren, Xiu-Hong; Hu, Jiang-Tao; Liu, Di; Zhao, Fu-Yun; Li, Xiao-Hong; Wang, Han-Qing

    2016-01-01

    Highlights: • Combined convective heat and airborne transports under different flow schemes. • Natural and forced convection dominated regimes were identified with transition. • Dual solution branches were sustained for the transitional mixing flow scheme. • Rest solutions evolving from motionless flows coincided with other solution branch. • Heat and species lines were presented to delineate heat and mass transport structures. - Abstract: This paper reports a numerical study of mixed convection on a heated and polluted strip within a slot ventilated enclosure in which the displacement and mixing flow schemes are considered. Contours of streamfunction, heatfunction, and massfunction are presented to clearly scrutinize the mechanism of heat and airborne pollutant transports. For the displacement flow scheme, thermal Nusselt and pollutant Sherwood numbers under different Reynolds numbers remain almost constant as the value of Gr/Re 2 decreases down to the regime of forced convection dominated. However, as Ar increases up to the regime of natural convection dominated, both Nu and Sh increase sharply with Ar (Gr/Re 2 ). Similar trends could be observed for the situation of mixing ventilated flow scheme. In the mixing scheme, non unique steady flow solutions could be observed for the range of transitional flow regime. Upward solutions, downward solutions and rest solutions have been exemplified with varying Gr/Re 2 . Dual solution branches could be sustained at the range of 39.0 ≤ Gr/Re 2  ≤ 6.0 × 10 3 , while the rest solutions obtained from rest states were completely coinciding with former continuous solutions. The present work could be significant for the natural optimization and passive control of heat and pollutant removals from the electronic boxes or building enclosures.

  4. The analysis of the external factors influence on the efficiency of the absorption heat pumps inclusion in the scheme of a two-stage line installation of a STP

    Directory of Open Access Journals (Sweden)

    Luzhkovoy Dmitriy S.

    2017-01-01

    Full Text Available The article deals with a comparative analysis of the efficiency of a two-stage line installation in a heating turbine before and after the inclusion of absorption heat pumps into its scheme with a decrease in the outside air temperature. The research shows the dependence of the efficiency of the line installation on its heat load while using AHP in its scheme, as well as on the heat conversion factor of the absorption heat pumps.

  5. Experimental investigation of a low-temperature organic Rankine cycle (ORC) engine under variable heat input operating at both subcritical and supercritical conditions

    International Nuclear Information System (INIS)

    Kosmadakis, George; Manolakos, Dimitris; Papadakis, George

    2016-01-01

    Highlights: • Small-scale ORC engine with converted scroll expander is installed at laboratory. • Design suitable for supercritical operation. • ORC engine tested at temperature equal to 95 °C. • Focus is given on expansion and thermal efficiency. • Supercritical operation showed some promising performance. - Abstract: The detailed experimental investigation of an organic Rankine cycle (ORC) is presented, which is designed to operate at supercritical conditions. The net capacity of this engine is almost 3 kW and the laboratory testing of the engine includes the variation of the heat input and of the hot water temperature. The maximum heat input is 48 kW_t_h, while the hot water temperature ranges from 65 up to 100°C. The tests are conducted at the laboratory and the heat source is a controllable electric heater, which can keep the hot water temperature constant, by switching on/off its electrical resistances. The expansion machine is a modified scroll compressor with major conversions, in order to be able to operate with safety at high pressure (or even supercritical at some conditions). The ORC engine is equipped with a dedicated heat exchanger of helical coil design, suitable for such applications. The speeds of the expander and ORC pump are regulated with frequency inverters, in order to control the cycle top pressure and heat input. The performance of all components is evaluated, while special attention is given on the supercritical heat exchanger and the scroll expander. The performance tests examined here concern the variation of the heat input, while the hot water temperature is equal to 95 °C. The aim is to examine the engine performance at the design conditions, as well as at off-design ones. Especially the latter ones are very important, since this engine will be coupled with solar collectors at the final configuration, where the available heat is varied to a great extent. The engine has been measured at the laboratory, where a thermal

  6. Weldability with Process Parameters During Fiber Laser Welding of a Titanium Plate (II) - The Effect of Control of Heat Input on Weldability -

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Do; Kim, Ji Sung [Korea Maritime and Ocean Univ., Busan (Korea, Republic of)

    2016-12-15

    Laser welding is a high-density energy welding method. Hence, deep penetration and high welding speed can be realized with lower heat input as compared with conventional welding. The heat input of a CW laser welding is determined by laser power and welding speed. In this study, bead and lap welding of 0.5 mmt pure titanium was performed using a fiber laser. Its weldability with laser power and welding speed was evaluated. Penetration, bead width, joining length, and bead shape were investigated, and the mechanical properties were examined through tensile-shear strength tests. Welds with sound joining length were obtained when the laser power and welding speed were respectively 0.5 kW and 2.5 m/min, and 1.5 kW and 6 m/min, and the weld obtained at low output presented better ductility than that obtained at high output.

  7. Weldability with Process Parameters During Fiber Laser Welding of a Titanium Plate (II) - The Effect of Control of Heat Input on Weldability -

    International Nuclear Information System (INIS)

    Kim, Jong Do; Kim, Ji Sung

    2016-01-01

    Laser welding is a high-density energy welding method. Hence, deep penetration and high welding speed can be realized with lower heat input as compared with conventional welding. The heat input of a CW laser welding is determined by laser power and welding speed. In this study, bead and lap welding of 0.5 mmt pure titanium was performed using a fiber laser. Its weldability with laser power and welding speed was evaluated. Penetration, bead width, joining length, and bead shape were investigated, and the mechanical properties were examined through tensile-shear strength tests. Welds with sound joining length were obtained when the laser power and welding speed were respectively 0.5 kW and 2.5 m/min, and 1.5 kW and 6 m/min, and the weld obtained at low output presented better ductility than that obtained at high output

  8. Heating treatment schemes for enhancing chelant-assisted phytoextraction of heavy metals from contaminated soils.

    Science.gov (United States)

    Chen, Yahua; Wang, Chunchun; Wang, Guiping; Luo, Chunling; Mao, Ying; Shen, Zhenguo; Li, Xiangdong

    2008-04-01

    Recent research has shown that chelant-assisted phytoextraction approaches often require a high dosage of chelant applied to soil. The present study focused on optimization of phytoremediation processes to increase the phytoextraction efficiency of metals at reduced chelant applications. Pot experiments were carried out to investigate the effects of increased soil temperature on shoot uptake of heavy metals by corn (Zea mays L.) and mung bean (Vigna radiat L. Wilczek) from heavy metal-contaminated soils. After the application of S,S-ethylenediaminedisuccinic acid or ethylenediaminetetra-acetic acid, soils were exposed to high temperatures (50 or 80 degrees C) for 3 h, which significantly increased the concentration of heavy metals in shoots. The heating treatment 2 d after the chelant addition resulted in higher concentrations of metals compared with those treatments 2 d before or simultaneously with the chelant application. Irrigation with 100 degrees C water 2 d after the chelant addition, or irrigation with 100 degrees C chelant solutions directly, also resulted in significantly higher phytoextraction of metals in the two crops compared with 25 degrees C chelant solutions. In addition, a novel application method to increase soil temperature using underground polyvinyl chloride tubes would increase the chelant-assisted extraction efficiency of Cu approximately 10- to 14-fold in corn and fivefold in mung bean compared with those nonheating treatments. In a field experiment, increasing soil temperature 2 d after chelant addition also increased the shoot Cu uptake approximately fivefold compared with those nonheating treatments. This new technique may represent a potential, engineering-oriented approach for phytoremediation of metal-polluted soils.

  9. Development, validation and application of a fixed district heating model structure that requires small amounts of input data

    International Nuclear Information System (INIS)

    Aberg, Magnus; Widén, Joakim

    2013-01-01

    Highlights: • A fixed model structure for cost-optimisaton studies of DH systems is developed. • A method for approximating heat demands using outdoor temperature data is developed. • Six different Swedish district heating systems are modelled and studied. • The impact of heat demand change on heat and electricity production is examined. • Reduced heat demand leads to less use of fossil fuels and biomass in the modelled systems. - Abstract: Reducing the energy use of buildings is an important part in reaching the European energy efficiency targets. Consequently, local energy systems need to adapt to a lower demand for heating. A 90% of Swedish multi-family residential buildings use district heating (DH) produced in Sweden’s over 400 DH systems, which use different heat production technologies and fuels. DH system modelling results obtained until now are mostly for particular DH systems and cannot be easily generalised. Here, a fixed model structure (FMS) based on linear programming for cost-optimisaton studies of DH systems is developed requiring only general DH system information. A method for approximating heat demands based on local outdoor temperature data is also developed. A scenario is studied where the FMS is applied to six Swedish DH systems and heat demands are reduced due to energy efficiency improvements in buildings. The results show that the FMS is a useful tool for DH system optimisation studies and that building energy efficiency improvements lead to reduced use of fossil fuels and biomass in DH systems. Also, the share of CHP in the production mix is increased in five of the six DH systems when the heat demand is reduced

  10. STUDY OF THE INFLUENCE OF THE HEAT INPUT ON MECHANICAL PROPERTIES OF C-Mn STEEL WELD METALS OBTAINED BY SUBMERGED ARC PROCESS

    Directory of Open Access Journals (Sweden)

    Erick de Sousa Marouço

    2013-06-01

    Full Text Available The present work is part of a research program that aims to evaluate the technical feasibility of increasing productivity in the manufacturing of tubular components for offshore oil industry, which are fully welded by automatic submerged arc welding process, with high heat input, but with no impairment on the impact toughness of the weld metal. Multipass welds were produced by the submerged arc welding process, with a combination of F7A4-EM12K (wire/flux, by using a 3.2 mm-diameter wire, preheating at 80°C, with direct current, in flat position, with heat input varying from 3.5 kJ/mm to 12 kJ/mm. After welding, tensile tests and Charpy-V impact tests at –60°C, –40°C, –20°C, 0°C and 20°C were carried out, as well as metallographic examination by both optical (OM and scanning electron microscopy (SEM, of specimens obtained entirely from the weld metal, allowing the discussion over the toughness X microstructure relationship. The weld metals have shown higher toughness levels in relation to the minimum required for use with low-alloy C-Mn steels welding with requirements of impact toughness of 27 J at 0°C for heat input up to 12 kJ/mm allowing an increase in productivity of 58% on the effective manufacturing time.

  11. A study on influence of heat input variation on microstructure of reduced activation ferritic martensitic steel weld metal produced by GTAW process

    International Nuclear Information System (INIS)

    Arivazhagan, B.; Srinivasan, G.; Albert, S.K.; Bhaduri, A.K.

    2011-01-01

    Reduced activation ferritic martensitic (RAFM) steel is a major structural material for test blanket module (TBM) to be incorporated in International Thermonuclear Experimental Reactor (ITER) programme to study the breeding of tritium in fusion reactors. This material has been mainly developed to achieve significant reduction in the induced radioactivity from the structural material used. Fabrication of TBM involves extensive welding, and gas tungsten arc welding (GTAW) process is one of the welding processes being considered for this purpose. In the present work, the effect of heat input on microstructure of indigenously developed RAFM steel weld metal produced by GTAW process has been studied. Autogenous bead-on-plate welding, autogenous butt-welding, butt-welding with filler wire addition, and pulsed welding on RAFMS have been carried out using GTAW process respectively. The weld metal is found to contain δ-ferrite and its volume fraction increased with increase in heat input. This fact suggests that δ-ferrite content in the weld metal is influenced by the cooling rate during welding. It was also observed that the hardness of the weld metal decreased with increase in δ-ferrite content. This paper highlights the effect of heat input and PWHT duration on microstructure and hardness of welds.

  12. Flux Limiter Lattice Boltzmann Scheme Approach to Compressible Flows with Flexible Specific-Heat Ratio and Prandtl Number

    International Nuclear Information System (INIS)

    Gan Yanbiao; Li Yingjun; Xu Aiguo; Zhang Guangcai

    2011-01-01

    We further develop the lattice Boltzmann (LB) model [Physica A 382 (2007) 502] for compressible flows from two aspects. Firstly, we modify the Bhatnagar-Gross-Krook (BGK) collision term in the LB equation, which makes the model suitable for simulating flows with different Prandtl numbers. Secondly, the flux limiter finite difference (FLFD) scheme is employed to calculate the convection term of the LB equation, which makes the unphysical oscillations at discontinuities be effectively suppressed and the numerical dissipations be significantly diminished. The proposed model is validated by recovering results of some well-known benchmarks, including (i) The thermal Couette flow; (ii) One- and two-dimensional Riemann problems. Good agreements are obtained between LB results and the exact ones or previously reported solutions. The flexibility, together with the high accuracy of the new model, endows the proposed model considerable potential for tracking some long-standing problems and for investigating nonlinear nonequilibrium complex systems. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  13. An efficient algorithm for bi-objective combined heat and power production planning under the emission trading scheme

    International Nuclear Information System (INIS)

    Rong, Aiying; Figueira, José Rui; Lahdelma, Risto

    2014-01-01

    Highlights: • Define fuel mix setting for the bi-objective CHP environmental/economic dispatch. • Develop an efficient algorithm for constructing the Pareto frontier for the problem. • Time complexity analysis is conducted for the proposed algorithm. • The algorithm is theoretically compared against a traditional algorithm. • The efficiency of the algorithm is justified by numerical results. - Abstract: The growing environmental awareness and the apparent conflicts between economic and environmental objectives turn energy planning problems naturally into multi-objective optimization problems. In the current study, mixed fuel combustion is considered as an option to achieve tradeoff between economic objective (associated with fuel cost) and emission objective (measured in CO 2 emission cost according to fuels and emission allowance price) because a fuel with higher emissions is usually cheaper than one with lower emissions. Combined heat and power (CHP) production is an important high-efficiency technology to promote under the emission trading scheme. In CHP production, the production planning of both commodities must be done in coordination. A long-term planning problem decomposes into thousands of hourly subproblems. In this paper, a bi-objective multi-period linear programming CHP planning model is presented first. Then, an efficient specialized merging algorithm for constructing the exact Pareto frontier (PF) of the problem is presented. The algorithm is theoretically and empirically compared against a modified dichotomic search algorithm. The efficiency and effectiveness of the algorithm is justified

  14. Evaluation of the subsidy scheme for heat pumps, pellet-fuelled fireplaces and control systems; Evaluering av tilskuddsordningen til varmepumper, pelletskaminer og styringssystemer

    Energy Technology Data Exchange (ETDEWEB)

    Bjoernstad, Even; Grande, Jorunn; Sand, Roar; Wendelborg, Christian

    2005-07-01

    Enova's subsidy scheme for energy economising in households was carried out in 2003. Subsidies were given to investments in heat pumps, pellet-fuelled fireplaces and electric energy management systems. The primary objective for this evaluation is to build knowledge about the effect of such subsidy schemes, and determine if they contribute to the reduction of electricity consumption in households. Questions that are addressed include Enova's administration of the subsidy scheme, the effects on households, the effects on the energy market, prices and technology. It is concluded that the scheme had a varied effect for the three technologies entitled to subsidies, and heat pump applications got 92,5 percent of the total sum. The households that received subsidies are in general positive, and the households that did not are in general not so satisfied with the service. It is concluded Enova has administered the subsidy scheme well, especially considering the time-frame and the changed economical conditions given (ml)

  15. Numerical simulation of a TLD pulsed laser-heating scheme for determination of shallow dose and deep dose in low-LET radiation fields

    International Nuclear Information System (INIS)

    Kearfott, K.J.; Han, S.; Wagner, E.C.; Samei, E.; Wang, C.-K.C.

    2000-01-01

    A new method is described to determine the depth-dose distribution in low-LET radiation fields using a thick thermoluminescent dosimeter (TLD) with a pulsed laser-heating scheme to obtain TL glow output. The computational simulation entails heat conduction and glow curve production processes. An iterative algorithm is used to obtain the dose distribution in the detector. The simulation results indicate that the method can predict the shallow and deep dose in various radiation fields with relative errors less than 20%

  16. New Edge Localized Modes at Marginal Input Power with Dominant RF-heating and Lithium-wall Conditioning in EAST

    DEFF Research Database (Denmark)

    Wang, H.; Xu, G.; Guo, H.

    The EAST tokamak has achieved, for the rst time, the ELMy H-mode at a connement improvement factor HITER89P 1:7, with dominant RF heating and active wall conditioning by lithium evaporation and real-time injection of Li powder. During the H-mode phase, a new small-ELM regime has been observed wit......-III ELMy crash enhances the radial electric field Er and turbulence driven Reynolds stress. Furthermore, the lament-like structure of type-III ELMs has clearly been identified as multiple peaks on the ion saturation and floating potential measurements....

  17. In-process tool rotational speed variation with constant heat input in friction stir welding of AZ31 sheets with variable thickness

    Science.gov (United States)

    Buffa, Gianluca; Campanella, Davide; Forcellese, Archimede; Fratini, Livan; Simoncini, Michela

    2017-10-01

    In the present work, friction stir welding experiments on AZ31 magnesium alloy sheets, characterized by a variable thickness along the welding line, were carried out. The approach adapted during welding consisted in maintaining constant the heat input to the joint. To this purpose, the rotational speed of the pin tool was increased with decreasing thickness and decreased with increasing thickness in order to obtain the same temperatures during welding. The amount by which the rotational speed was changed as a function of the sheet thickness was defined on the basis of the results given by FEM simulations of the FSW process. Finally, the effect of the in-process variation of the tool rotational speed on the mechanical and microstructural properties of FSWed joints was analysed by comparing both the nominal stress vs. nominal strain curves and microstructure of FSWed joints obtained in different process conditions. It was observed that FSW performed by keeping constant the heat input to the joint leads to almost coincident results both in terms of the curve shape, ultimate tensile strength and ultimate elongation values, and microstructure.

  18. Microstructural, Mechanical, and Electrochemical Analysis of Duplex and Superduplex Stainless Steels Welded with the Autogenous TIG Process Using Different Heat Input

    Directory of Open Access Journals (Sweden)

    Gláucio Soares da Fonseca

    2017-12-01

    Full Text Available Duplex Stainless Steels (DSS and Superduplex Stainless Steels (SDSS have a strong appeal in the petrochemical industry. These steels have excellent properties, such as corrosion resistance and good toughness besides good weldability. Welding techniques take into account the loss of alloying elements during the process, so this loss is usually compensated by the addition of a filler metal rich in alloying elements. A possible problem would be during the welding of these materials in adverse conditions in service, where the operator could have difficulties in welding with the filler metal. Therefore, in this work, two DSS and one SDSS were welded, by autogenous Tungsten Inert Gas (TIG, i.e., without addition of a filler metal, by three different heat inputs. After welding, microstructural, mechanical, and electrochemical analysis was performed. The microstructures were characterized for each welding condition, with the aid of optical microscopy (OM. Vickers hardness, Charpy-V, and cyclic polarization tests were also performed. After the electrochemical tests, the samples were analyzed by scanning electron microscopy (SEM. The SDSS welded with high heat input kept the balance of the austenite and ferrite, and toughness above the limit value. The hardness values remain constant in the weld regions and SDSS is the most resistant to corrosion.

  19. An introduction to the UNCLE finite element scheme

    International Nuclear Information System (INIS)

    Enderby, J.A.

    1983-01-01

    UNCLE is a completely general finite element scheme which provides common input, output, equation-solving and other facilities for a family of finite element codes for linear and non-linear stress analysis, heat transfer etc. This report describes the concepts on which UNCLE is based and gives a general account of the facilities provided. (author)

  20. An introduction to the UNCLE finite element scheme

    Energy Technology Data Exchange (ETDEWEB)

    Enderby, J A [UK Atomic Energy Authority, Northern Division, Risley Nuclear Power Development Establishment, Risley, Warrington (United Kingdom)

    1983-05-01

    UNCLE is a completely general finite element scheme which provides common input, output, equation-solving and other facilities for a family of finite element codes for linear and non-linear stress analysis, heat transfer etc. This report describes the concepts on which UNCLE is based and gives a general account of the facilities provided. (author)

  1. Temper-bead repair-welding of neutron-irradiated reactor (pressure) vessel by low-heat-input TIG and YAG laser welding

    International Nuclear Information System (INIS)

    Nakata, Kiyotomo; Ozawa, Masayoshi; Kamo, Kazuhiko

    2006-01-01

    Weldability in neutron-irradiated low alloy steel for reactor (pressure) vessel has been studied by temper-bead repair-welding of low-heat-input TIG and YAG laser welding. A low alloy steel and its weld, and stainless steel clad and nickel (Ni)-based alloy clad were irradiated in a materials test reactor (LVR-15, Czech Republic) up to 1.4 x 10 24 n/m 2 (>1 MeV) at 290degC, which approximately corresponds to the maximum neutron fluence of 60-year-operation plants' vessels. The He concentration in the irradiated specimens was estimated to be up to 12.9 appm. The repair-welding was carried out by TIG and YAG laser welding at a heat input from 0.06 to 0.86 MJ/m. The mechanical tests of tensile, impact, side bend and hardness were carried out after the repair-welding. Cracks were not observed in the irradiated low alloy steel and its weld by temper-bead repair-welding. Small porosities were formed in the first and second layers of the repair-welds of low alloy steel (base metal). However, only a few porosities were found in the repair-welds of the weld of low alloy steel. From the results of mechanical tests, the repair-welding could be done in the irradiated weld of low alloy steel containing a He concentration up to 12.9 appm, although repair-welding could be done in base metal of low alloy steel containing up to only 1.7 appmHe. On the other hand, cracks occurred in the heat affected zones of stainless steel and Ni-based alloy clads by repair-welding, except by YAG laser repair-welding at a heat input of 0.06 MJ/m in stainless steel clad containing 1.7 appmHe. Based on these results, the determination processes were proposed for optimum parameters of repair-welding of low alloy steel and clad used for reactor (pressure) vessel. (author)

  2. Development and experimental qualification of a calculation scheme for the evaluation of gamma heating in experimental reactors. Application to MARIA and Jules Horowitz (JHR) MTR Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Tarchalski, M.; Pytel, K.; Wroblewska, M.; Marcinkowska, Z.; Boettcher, A.; Prokopowicz, R. [NCBJ Institute, MARIA Reactor, ul.Andrzeja Soltana 7, 05-400 Swierk (Poland); Sireta, P.; Gonnier, C.; Bignan, G. [CEA, DEN, Reactor Studies Department, Cadarache, F-13108 St-Paul-Lez-Durance (France); Lyoussi, A.; Fourmentel, D.; Barbot, L.; Villard, J.F.; Destouches, C. [CEA, DEN, DER, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, F-13108 St-Paul-Lez-Durance (France); Reynard-Carette, C.; Brun, J. [Aix Marseille Universite, CNRS, Universite de Toulon, IM2NP UMR 7334, 13397, Marseille (France); Jagielski, J. [NCBJ Institute, MARIA Reactor, ul.Andrzeja Soltana 7, 05-400 Swierk (Poland); Institute of Electronic Materials Technolgy, Wolczynska 133, 01-919 Warszawa (Poland); Luks, A. [Institute of Heat Engineering, Nowowiejska 21/25, 00-665 Warsaw (Poland)

    2015-07-01

    Precise computational determination of nuclear heating which consists predominantly of gamma heating (more than 80 %) is one of the challenges in material testing reactor exploitation. Due to sophisticated construction and conditions of experimental programs planned in JHR it became essential to use most accurate and precise gamma heating model. Before the JHR starts to operate, gamma heating evaluation methods need to be developed and qualified in other experimental reactor facilities. This is done inter alia using OSIRIS, MINERVE or EOLE research reactors in France. Furthermore, MARIA - Polish material testing reactor - has been chosen to contribute to the qualification of gamma heating calculation schemes/tools. This reactor has some characteristics close to those of JHR (beryllium usage, fuel element geometry). To evaluate gamma heating in JHR and MARIA reactors, both simulation tools and experimental program have been developed and performed. For gamma heating simulation, new calculation scheme and gamma heating model of MARIA have been carried out using TRIPOLI4 and APOLLO2 codes. Calculation outcome has been verified by comparison to experimental measurements in MARIA reactor. To have more precise calculation results, model of MARIA in TRIPOLI4 has been made using the whole geometry of the core. This has been done for the first time in the history of MARIA reactor and was complex due to cut cone shape of all its elements. Material composition of burnt fuel elements has been implemented from APOLLO2 calculations. An experiment for nuclear heating measurements and calculation verification has been done in September 2014. This involved neutron, photon and nuclear heating measurements at selected locations in MARIA reactor using in particular Rh SPND, Ag SPND, Ionization Chamber (all three from CEA), KAROLINA calorimeter (NCBJ) and Gamma Thermometer (CEA/SCK CEN). Measurements were done in forty points using four channels. Maximal nuclear heating evaluated from

  3. Extension of the ECRH operational space with O2 and X3 heating schemes to control tungsten accumulation in ASDEX Upgrade

    Science.gov (United States)

    Höhnle, H.; Stober, J.; Herrmann, A.; Kasparek, W.; Leuterer, F.; Monaco, F.; Neu, R.; Schmid-Lorch, D.; Schütz, H.; Schweinzer, J.; Stroth, U.; Wagner, D.; Vorbrugg, S.; Wolfrum, E.; ASDEX Upgrade Team

    2011-08-01

    ASDEX Upgrade has been operated with tungsten-coated plasma-facing components for several years. H-mode operation with good confinement has been demonstrated. Nevertheless, purely neutral beam injection-heated H-modes with reduced gas puff, moderate heating power or/and increased triangularity tend to accumulate tungsten, followed by a radiative collapse. Under these conditions, central electron heating with electron cyclotron resonance heating (ECRH), usually in X2 polarization, changes the impurity transport in the plasma centre, reducing the central tungsten concentration and, in many cases, stabilizing the plasma. In order to extend the applicability of central ECRH to a wider range of magnetic field and plasma current additional ECRH schemes with reduced single-pass absorption have been implemented: X3 heating allows us to reduce the magnetic field by 30%, such that the first H-modes with an ITER-like value of the safety factor of q95 = 3 could be run in the tungsten-coated device. O2 heating increases the cutoff density by a factor of 2 allowing higher currents and triangularities to be addressed. For both schemes, scenarios have been developed to cope with the associated reduced absorption. In the case of central X3 heating, the X2 resonance lies close to the pedestal top at the high-field side of the plasma, serving as a beam dump. For O2, holographic mirrors have been developed which guarantee a second pass through the plasma centre. The beam position on these reflectors is controlled by fast thermocouples. Stray-radiation protection has been implemented using sniffer probes.

  4. Extension of the ECRH operational space with O2 and X3 heating schemes to control tungsten accumulation in ASDEX Upgrade

    International Nuclear Information System (INIS)

    Hoehnle, H.; Kasparek, W.; Stroth, U.; Stober, J.; Herrmann, A.; Leuterer, F.; Monaco, F.; Neu, R.; Schmid-Lorch, D.; Schuetz, H.; Schweinzer, J.; Wagner, D.; Vorbrugg, S.; Wolfrum, E.

    2011-01-01

    ASDEX Upgrade has been operated with tungsten-coated plasma-facing components for several years. H-mode operation with good confinement has been demonstrated. Nevertheless, purely neutral beam injection-heated H-modes with reduced gas puff, moderate heating power or/and increased triangularity tend to accumulate tungsten, followed by a radiative collapse. Under these conditions, central electron heating with electron cyclotron resonance heating (ECRH), usually in X2 polarization, changes the impurity transport in the plasma centre, reducing the central tungsten concentration and, in many cases, stabilizing the plasma. In order to extend the applicability of central ECRH to a wider range of magnetic field and plasma current additional ECRH schemes with reduced single-pass absorption have been implemented: X3 heating allows us to reduce the magnetic field by 30%, such that the first H-modes with an ITER-like value of the safety factor of q 95 = 3 could be run in the tungsten-coated device. O2 heating increases the cutoff density by a factor of 2 allowing higher currents and triangularities to be addressed. For both schemes, scenarios have been developed to cope with the associated reduced absorption. In the case of central X3 heating, the X2 resonance lies close to the pedestal top at the high-field side of the plasma, serving as a beam dump. For O2, holographic mirrors have been developed which guarantee a second pass through the plasma centre. The beam position on these reflectors is controlled by fast thermocouples. Stray-radiation protection has been implemented using sniffer probes.

  5. Support schemes and ownership structures - the policy context for fuel cell based micro-combined heat and power

    DEFF Research Database (Denmark)

    Schröder, Sascha Thorsten; Costa, Ana; Obé, Elisabeth

    2011-01-01

    the national implementation of European legislation in Denmark, France and Portugal. Finally, resulting implications for ownership arrangements on the choice of support scheme are explained. From a conceptual point of view, investment support, feed-in tariffs and price premiums are the most appropriate schemes...... for fuel cell mCHP. This can be used for improved analysis of operational strategies. The interaction of this plethora of elements necessitates careful balancing from a private- and socio-economic point of view....

  6. EXPERIENCE OF UTILIZATION OF CAPACITY BANKS AND SCHEMES OF FREQUENCY REGULATION IN MUNICIPAL CENTRALIZED HEATING SYSTEM OF CHISINAU

    Directory of Open Access Journals (Sweden)

    CHERNEI M

    2013-04-01

    Full Text Available The current paper provides a brief summary of the district heating system of the municipality Chisinau, including heat power sources, heat distribution network, production and consumption development over the past two decades and other data. Also, the priority investment projects realized by JSC "Termocom" are being presented. The company had implemented an automated monitoring system for the heat power production, transportation and distribution. For many years, the company used bellows pipes with polyurethane insulation, ball valves and plate heat exchangers. 14 out of 21 district heating boiler stations were upgraded 10 were completely automated having as a result no further need in full-time duty personnel there. The experience gained in the implementation of capacity banks and frequency inverters, summarizing the benefits and achieved results, is also presented in the current paper. It is to be underlined that in 2011 the company achieved decrease in electricity consumption by about 30% in comparison with 2005.

  7. Decoupled scheme based on the Hermite expansion to construct lattice Boltzmann models for the compressible Navier-Stokes equations with arbitrary specific heat ratio.

    Science.gov (United States)

    Hu, Kainan; Zhang, Hongwu; Geng, Shaojuan

    2016-10-01

    A decoupled scheme based on the Hermite expansion to construct lattice Boltzmann models for the compressible Navier-Stokes equations with arbitrary specific heat ratio is proposed. The local equilibrium distribution function including the rotational velocity of particle is decoupled into two parts, i.e., the local equilibrium distribution function of the translational velocity of particle and that of the rotational velocity of particle. From these two local equilibrium functions, two lattice Boltzmann models are derived via the Hermite expansion, namely one is in relation to the translational velocity and the other is connected with the rotational velocity. Accordingly, the distribution function is also decoupled. After this, the evolution equation is decoupled into the evolution equation of the translational velocity and that of the rotational velocity. The two evolution equations evolve separately. The lattice Boltzmann models used in the scheme proposed by this work are constructed via the Hermite expansion, so it is easy to construct new schemes of higher-order accuracy. To validate the proposed scheme, a one-dimensional shock tube simulation is performed. The numerical results agree with the analytical solutions very well.

  8. Measuring Dilution and Wear for Laser Cladding of Stellite 6 Produced on a P91 Steel Substrate using Two Different Heat Inputs

    Directory of Open Access Journals (Sweden)

    Kusmoko Alain

    2016-01-01

    Full Text Available Stellite 6 was deposited by laser cladding on a P91 substrate with energy inputs of 1 kW (P91-1 and 1.8 kW (P91–1.8. The chemical compositions, microstructures and surface roughnesses of these coatings were characterized by atomic absorption spectroscopy, scanning electron microscopy and atomic force microscopy. The microhardness of the coatings was measured and the wear mechanism of the coatings was evaluated using a pin-on-plate (reciprocating wear testing machine. The results showed less cracking and pore development for Stellite 6 coatings applied to the P91 steel substrate with the lower heat input (P91–1. Further, the Stellite coating for P91-1 was significantly harder than that obtained for P91–1.8. The wear test results indicated that the weight loss for P91–1 was much lower than for P91–1.8. The surface topography data indicated that the surface roughness for P91-1 was much lower than for P91–1.8. The measurements of dilution and carbon content showed that P91–1 has lower dilution and higher concentration of carbon than P91–1.8. It is concluded that the lower hardness of the coating for P91–1.8, together with the softer underlying substrate structure, markedly reduced the wear resistance of the Stellite 6 coating and the lower hardness of the coating for P91-1.8 was due to higher level of dilution and lower concentration of carbon.

  9. Effect of heat input on microstructure, wear and friction behavior of (wt.-%) 50FeCrC-20FeW-30FeB coating on AISI 1020 produced by using PTA welding.

    Science.gov (United States)

    Özel, Cihan; Gürgenç, Turan

    2018-01-01

    In this study, AISI 1020 steel surface was coated in different heat inputs with (wt.-%) 50FeCrC-20FeW-30FeB powder mixture by using plasma transferred arc (PTA) welding method. The microstructure of the coated samples were investigated by using optical microscope (OM), scanning electron microscope (SEM), X-ray diffraction (XRD) and energy dispersive X-ray (EDS). The hardness was measured with micro hardness test device. The dry sliding wear and friction coefficient properties were determined using a block-on-disk type wear test device. Wear tests were performed at 19.62 N, 39.24 N, 58.86 N load and the sliding distance of 900 m. The results were shown that different microstructures formed due to the heat input change. The highest average micro hardness value was measured at 1217 HV on sample coated with low heat input. It was determined that the wear resistance decreased with increasing heat input.

  10. Characterization of dynamic thermal control schemes and heat transfer pathways for incorporating variable emissivity electrochromic materials into a space suit heat rejection system

    Science.gov (United States)

    Massina, Christopher James

    The feasibility of conducting long duration human spaceflight missions is largely dependent on the provision of consumables such as oxygen, water, and food. In addition to meeting crew metabolic needs, water sublimation has long served as the primary heat rejection mechanism in space suits during extravehicular activity (EVA). During a single eight hour EVA, approximately 3.6 kg (8 lbm) of water is lost from the current suit. Reducing the amount of expended water during EVA is a long standing goal of space suit life support systems designers; but to date, no alternate thermal control mechanism has demonstrated the ability to completely eliminate the loss. One proposed concept is to convert the majority of a space suit's surface area into a radiator such that the local environment can be used as a radiative thermal sink for rejecting heat without mass loss. Due to natural variations in both internal (metabolic) loads and external (environmental) sink temperatures, radiative transport must be actively modulated in order to maintain an acceptable thermal balance. Here, variable emissivity electrochromic devices are examined as the primary mechanism for enabling variable heat rejection. This dissertation focuses on theoretical and empirical evaluations performed to determine the feasibility of using a full suit, variable emissivity radiator architecture for space suit thermal control. Operational envelopes are described that show where a given environment and/or metabolic load combination may or may not be supported by the evaluated thermal architecture. Key integration considerations and guidelines include determining allowable thermal environments, defining skin-to-radiator heat transfer properties, and evaluating required electrochromic performance properties. Analysis also considered the impacts of dynamic environmental changes and the architecture's extensibility to EVA on the Martian surface. At the conclusion of this work, the full suit, variable emissivity

  11. Evaluation of the support schemes of The District Heating Program during the period 2008 to 2011; Evaluering av stoetteprogrammene for fjernvarme i perioden 2008 til 2011

    Energy Technology Data Exchange (ETDEWEB)

    Lindland, Odd Ivar; Johansen, Staale; Holstad, Jon; Vennes, Wenche; Kallset, Eirik

    2012-11-01

    The District Heating Program as they are designed today, are evaluated after four years of operation, to see if the program works as intended and meet the goals that were set up at the start of 2008. It is also seen in the evaluation of the development of district heating market in the period, to see if there are trends and changes in the regulatory framework that makes it appropriate to make changes to the programs. Users 'perception of the program and the programs' direct and indirect influence on the development of district heating market is also considered. The PricewaterhouseCoopers AS (PwC) has carried out the evaluation, commissioned by Enova. PwC has conducted Internet-based surveys and interviewed actors in various roles within the district. PwC concluded that the goals that were set at the input of the program period is reached. Energy results were higher than expected, while there is a trend that Enova have to pay more and more for the projects. The number of applications and projects has remained fairly stable, while projects have been smaller in size and extent. (eb)

  12. On the development of OpenFOAM solvers based on explicit and implicit high-order Runge-Kutta schemes for incompressible flows with heat transfer

    Science.gov (United States)

    D'Alessandro, Valerio; Binci, Lorenzo; Montelpare, Sergio; Ricci, Renato

    2018-01-01

    Open-source CFD codes provide suitable environments for implementing and testing low-dissipative algorithms typically used to simulate turbulence. In this research work we developed CFD solvers for incompressible flows based on high-order explicit and diagonally implicit Runge-Kutta (RK) schemes for time integration. In particular, an iterated PISO-like procedure based on Rhie-Chow correction was used to handle pressure-velocity coupling within each implicit RK stage. For the explicit approach, a projected scheme was used to avoid the "checker-board" effect. The above-mentioned approaches were also extended to flow problems involving heat transfer. It is worth noting that the numerical technology available in the OpenFOAM library was used for space discretization. In this work, we additionally explore the reliability and effectiveness of the proposed implementations by computing several unsteady flow benchmarks; we also show that the numerical diffusion due to the time integration approach is completely canceled using the solution techniques proposed here.

  13. Validation of Numerical Schemes in a Thermal-Hydraulic Analysis Code for a Natural Convection Heat Transfer of a Molten Pool

    International Nuclear Information System (INIS)

    Kim, Jong Tae; Ha, Kwang Soon; Kim, Hwan Yeol; Park, Rae Joon; Song, Jin Ho

    2010-01-01

    , unsteady turbulence models based on filtered or volume-averaged governing equations have been applied for the turbulent natural convection heat transfer. Tran et al. used large eddy simulation (LES) for the analysis of molten corium coolability. The numerical instability is related to a gravitational force of the molten corium. A staggered grid method on an orthogonal structured grid is used to prohibit a pressure oscillation in the numerical solution. But it is impractical to use the structured grid for a partially filled spherical pool, a cone-type pool or triangular pool. An unstructured grid is an alternative for the nonrectangular pools. In order to remove the checkerboard- like pressure oscillation on the unstructured grid, some special interpolation scheme is required. In order to evaluate in-vessel coolability of the molten corium for a pressurized water reactor (PWR), thermo-hydraulic analysis code LILAC had been developed. LILAC has a capability of multi-layered conjugate heat transfer with melt solidification. A solution domain can be 2-dimensional, axisymmetric, and 3-dimensional. LILAC is based on the unstructured mesh technology to discretized non-rectangular pool geometry. Because of too limited man-power to maintain the code, it becomes more and more difficult to implement new physical and numerical models in the code along with increased complication of the code. Recently, open source CFD code OpenFOAM has been released and applied to many academic and engineering areas. OpenFOAM is based on the very similar numerical schemes to the LILAC code. It has many physical and numerical models for multi-physics analysis. And because it is based on object-oriented programming, it is known that new models can be easily implemented and is very fast with a lower possibility of coding errors. This is a very attractive feature for the development, validation and maintenance of an analysis code. On the contrary to commercial CFD codes, it is possible to modify and add

  14. Investigation of Rapid Low-Power Microwave-Induction Heating Scheme on the Cross-Linking Process of the Poly(4-vinylphenol) for the Gate Insulator of Pentacene-Based Thin-Film Transistors

    Science.gov (United States)

    Fan, Ching-Lin; Shang, Ming-Chi; Wang, Shea-Jue; Hsia, Mao-Yuan; Lee, Win-Der; Huang, Bohr-Ran

    2017-01-01

    In this study, a proposed Microwave-Induction Heating (MIH) scheme has been systematically studied to acquire suitable MIH parameters including chamber pressure, microwave power and heating time. The proposed MIH means that the thin indium tin oxide (ITO) metal below the Poly(4-vinylphenol) (PVP) film is heated rapidly by microwave irradiation and the heated ITO metal gate can heat the PVP gate insulator, resulting in PVP cross-linking. It is found that the attenuation of the microwave energy decreases with the decreasing chamber pressure. The optimal conditions are a power of 50 W, a heating time of 5 min, and a chamber pressure of 20 mTorr. When suitable MIH parameters were used, the effect of PVP cross-linking and the device performance were similar to those obtained using traditional oven heating, even though the cross-linking time was significantly decreased from 1 h to 5 min. Besides the gate leakage current, the interface trap state density (Nit) was also calculated to describe the interface status between the gate insulator and the active layer. The lowest interface trap state density can be found in the device with the PVP gate insulator cross-linked by using the optimal MIH condition. Therefore, it is believed that the MIH scheme is a good candidate to cross-link the PVP gate insulator for organic thin-film transistor applications as a result of its features of rapid heating (5 min) and low-power microwave-irradiation (50 W). PMID:28773101

  15. Investigation of Rapid Low-Power Microwave-Induction Heating Scheme on the Cross-Linking Process of the Poly(4-vinylphenol for the Gate Insulator of Pentacene-Based Thin-Film Transistors

    Directory of Open Access Journals (Sweden)

    Ching-Lin Fan

    2017-07-01

    Full Text Available In this study, a proposed Microwave-Induction Heating (MIH scheme has been systematically studied to acquire suitable MIH parameters including chamber pressure, microwave power and heating time. The proposed MIH means that the thin indium tin oxide (ITO metal below the Poly(4-vinylphenol (PVP film is heated rapidly by microwave irradiation and the heated ITO metal gate can heat the PVP gate insulator, resulting in PVP cross-linking. It is found that the attenuation of the microwave energy decreases with the decreasing chamber pressure. The optimal conditions are a power of 50 W, a heating time of 5 min, and a chamber pressure of 20 mTorr. When suitable MIH parameters were used, the effect of PVP cross-linking and the device performance were similar to those obtained using traditional oven heating, even though the cross-linking time was significantly decreased from 1 h to 5 min. Besides the gate leakage current, the interface trap state density (Nit was also calculated to describe the interface status between the gate insulator and the active layer. The lowest interface trap state density can be found in the device with the PVP gate insulator cross-linked by using the optimal MIH condition. Therefore, it is believed that the MIH scheme is a good candidate to cross-link the PVP gate insulator for organic thin-film transistor applications as a result of its features of rapid heating (5 min and low-power microwave-irradiation (50 W.

  16. Influence of iron powder addition onto heat inputs, at stainless steels welds; Influencia da adicao do po de ferro no insumo de calor e na ZAC, em soldas de aco ARBL

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Samuel I.N.; Spinelli, Dirceu [Sao Paulo Univ., Sao Carlos, SP (Brazil). Escola de Engenharia; Magalhaes B Goncalves, Gilberto de; Souza, Paulo C.R.D. de

    1992-12-31

    In this work, welding with or without iron powder addition in stainless steels were produced. The welds obtained in only one pass with three different angles of grooves and several welding condition. The results showed that the heat input changes with and without iron powder addition that were found out by the cooling rates changes in weld pool. (author). 10 refs., 4 figs., 4 tabs.

  17. High order ADER schemes for a unified first order hyperbolic formulation of continuum mechanics: Viscous heat-conducting fluids and elastic solids

    International Nuclear Information System (INIS)

    Dumbser, Michael; Peshkov, Ilya; Romenski, Evgeniy; Zanotti, Olindo

    2016-01-01

    Highlights: • High order schemes for a unified first order hyperbolic formulation of continuum mechanics. • The mathematical model applies simultaneously to fluid mechanics and solid mechanics. • Viscous fluids are treated in the frame of hyper-elasticity as generalized visco-plastic solids. • Formal asymptotic analysis reveals the connection with the Navier–Stokes equations. • The distortion tensor A in the model appears to be well-suited for flow visualization. - Abstract: This paper is concerned with the numerical solution of the unified first order hyperbolic formulation of continuum mechanics recently proposed by Peshkov and Romenski [110], further denoted as HPR model. In that framework, the viscous stresses are computed from the so-called distortion tensor A, which is one of the primary state variables in the proposed first order system. A very important key feature of the HPR model is its ability to describe at the same time the behavior of inviscid and viscous compressible Newtonian and non-Newtonian fluids with heat conduction, as well as the behavior of elastic and visco-plastic solids. Actually, the model treats viscous and inviscid fluids as generalized visco-plastic solids. This is achieved via a stiff source term that accounts for strain relaxation in the evolution equations of A. Also heat conduction is included via a first order hyperbolic system for the thermal impulse, from which the heat flux is computed. The governing PDE system is hyperbolic and fully consistent with the first and the second principle of thermodynamics. It is also fundamentally different from first order Maxwell–Cattaneo-type relaxation models based on extended irreversible thermodynamics. The HPR model represents therefore a novel and unified description of continuum mechanics, which applies at the same time to fluid mechanics and solid mechanics. In this paper, the direct connection between the HPR model and the classical hyperbolic–parabolic Navier

  18. High order ADER schemes for a unified first order hyperbolic formulation of continuum mechanics: Viscous heat-conducting fluids and elastic solids

    Energy Technology Data Exchange (ETDEWEB)

    Dumbser, Michael, E-mail: michael.dumbser@unitn.it [Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123 Trento (Italy); Peshkov, Ilya, E-mail: peshkov@math.nsc.ru [Open and Experimental Center for Heavy Oil, Université de Pau et des Pays de l' Adour, Avenue de l' Université, 64012 Pau (France); Romenski, Evgeniy, E-mail: evrom@math.nsc.ru [Sobolev Institute of Mathematics, 4 Acad. Koptyug Avenue, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, 2 Pirogova Str., 630090 Novosibirsk (Russian Federation); Zanotti, Olindo, E-mail: olindo.zanotti@unitn.it [Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123 Trento (Italy)

    2016-06-01

    Highlights: • High order schemes for a unified first order hyperbolic formulation of continuum mechanics. • The mathematical model applies simultaneously to fluid mechanics and solid mechanics. • Viscous fluids are treated in the frame of hyper-elasticity as generalized visco-plastic solids. • Formal asymptotic analysis reveals the connection with the Navier–Stokes equations. • The distortion tensor A in the model appears to be well-suited for flow visualization. - Abstract: This paper is concerned with the numerical solution of the unified first order hyperbolic formulation of continuum mechanics recently proposed by Peshkov and Romenski [110], further denoted as HPR model. In that framework, the viscous stresses are computed from the so-called distortion tensor A, which is one of the primary state variables in the proposed first order system. A very important key feature of the HPR model is its ability to describe at the same time the behavior of inviscid and viscous compressible Newtonian and non-Newtonian fluids with heat conduction, as well as the behavior of elastic and visco-plastic solids. Actually, the model treats viscous and inviscid fluids as generalized visco-plastic solids. This is achieved via a stiff source term that accounts for strain relaxation in the evolution equations of A. Also heat conduction is included via a first order hyperbolic system for the thermal impulse, from which the heat flux is computed. The governing PDE system is hyperbolic and fully consistent with the first and the second principle of thermodynamics. It is also fundamentally different from first order Maxwell–Cattaneo-type relaxation models based on extended irreversible thermodynamics. The HPR model represents therefore a novel and unified description of continuum mechanics, which applies at the same time to fluid mechanics and solid mechanics. In this paper, the direct connection between the HPR model and the classical hyperbolic–parabolic Navier

  19. Identification of Excess Heat Utilisation Potential using GIS: Analysis of Case Studies for Denmark

    DEFF Research Database (Denmark)

    Bühler, Fabian; Petrovic, Stefan; Ommen, Torben Schmidt

    2017-01-01

    feasibility of using this approach is evaluated for four scenarios. Special focus is placed on the challenges for the connection of excess heat sources to heat consumers, as well as tax schemes applicable in Denmark. To account for uncertainties in the model input, Monte Carlo simulations and Morris...

  20. Regenerative Hydride Heat Pump

    Science.gov (United States)

    Jones, Jack A.

    1992-01-01

    Hydride heat pump features regenerative heating and single circulation loop. Counterflow heat exchangers accommodate different temperatures of FeTi and LaNi4.7Al0.3 subloops. Heating scheme increases efficiency.

  1. Cabauw Experimental Results from the Project for Intercomparison of Land-Surface Parameterization Schemes.

    Science.gov (United States)

    Chen, T. H.; Henderson-Sellers, A.; Milly, P. C. D.; Pitman, A. J.; Beljaars, A. C. M.; Polcher, J.; Abramopoulos, F.; Boone, A.; Chang, S.; Chen, F.; Dai, Y.; Desborough, C. E.; Dickinson, R. E.; Dümenil, L.; Ek, M.; Garratt, J. R.; Gedney, N.; Gusev, Y. M.;  Kim, J.;  Koster, R.;  Kowalczyk, E. A.;  Laval, K.;  Lean, J.;  Lettenmaier, D.;  Liang, X.;  Mahfouf, J.-F.;  Mengelkamp, H.-T.;  Mitchell, K.;  Nasonova, O. N.;  Noilhan, J.;  Robock, A.;  Rosenzweig, C.;  Schaake, J.;  Schlosser, C. A.;  Schulz, J.-P.;  Shao, Y.;  Shmakin, A. B.;  Verseghy, D. L.;  Wetzel, P.;  Wood, E. F.;  Xue, Y.;  Yang, Z.-L.;  Zeng, Q.

    1997-06-01

    In the Project for Intercomparison of Land-Surface Parameterization Schemes phase 2a experiment, meteorological data for the year 1987 from Cabauw, the Netherlands, were used as inputs to 23 land-surface flux schemes designed for use in climate and weather models. Schemes were evaluated by comparing their outputs with long-term measurements of surface sensible heat fluxes into the atmosphere and the ground, and of upward longwave radiation and total net radiative fluxes, and also comparing them with latent heat fluxes derived from a surface energy balance. Tuning of schemes by use of the observed flux data was not permitted. On an annual basis, the predicted surface radiative temperature exhibits a range of 2 K across schemes, consistent with the range of about 10 W m2 in predicted surface net radiation. Most modeled values of monthly net radiation differ from the observations by less than the estimated maximum monthly observational error (±10 W m2). However, modeled radiative surface temperature appears to have a systematic positive bias in most schemes; this might be explained by an error in assumed emissivity and by models' neglect of canopy thermal heterogeneity. Annual means of sensible and latent heat fluxes, into which net radiation is partitioned, have ranges across schemes of30 W m2 and 25 W m2, respectively. Annual totals of evapotranspiration and runoff, into which the precipitation is partitioned, both have ranges of 315 mm. These ranges in annual heat and water fluxes were approximately halved upon exclusion of the three schemes that have no stomatal resistance under non-water-stressed conditions. Many schemes tend to underestimate latent heat flux and overestimate sensible heat flux in summer, with a reverse tendency in winter. For six schemes, root-mean-square deviations of predictions from monthly observations are less than the estimated upper bounds on observation errors (5 W m2 for sensible heat flux and 10 W m2 for latent heat flux). Actual

  2. FLUTAN input specifications

    International Nuclear Information System (INIS)

    Borgwaldt, H.; Baumann, W.; Willerding, G.

    1991-05-01

    FLUTAN is a highly vectorized computer code for 3-D fluiddynamic and thermal-hydraulic analyses in cartesian and cylinder coordinates. It is related to the family of COMMIX codes originally developed at Argonne National Laboratory, USA. To a large extent, FLUTAN relies on basic concepts and structures imported from COMMIX-1B and COMMIX-2 which were made available to KfK in the frame of cooperation contracts in the fast reactor safety field. While on the one hand not all features of the original COMMIX versions have been implemented in FLUTAN, the code on the other hand includes some essential innovative options like CRESOR solution algorithm, general 3-dimensional rebalacing scheme for solving the pressure equation, and LECUSSO-QUICK-FRAM techniques suitable for reducing 'numerical diffusion' in both the enthalphy and momentum equations. This report provides users with detailed input instructions, presents formulations of the various model options, and explains by means of comprehensive sample input, how to use the code. (orig.) [de

  3. Colour schemes

    DEFF Research Database (Denmark)

    van Leeuwen, Theo

    2013-01-01

    This chapter presents a framework for analysing colour schemes based on a parametric approach that includes not only hue, value and saturation, but also purity, transparency, luminosity, luminescence, lustre, modulation and differentiation.......This chapter presents a framework for analysing colour schemes based on a parametric approach that includes not only hue, value and saturation, but also purity, transparency, luminosity, luminescence, lustre, modulation and differentiation....

  4. Tradable schemes

    NARCIS (Netherlands)

    J.K. Hoogland (Jiri); C.D.D. Neumann

    2000-01-01

    textabstractIn this article we present a new approach to the numerical valuation of derivative securities. The method is based on our previous work where we formulated the theory of pricing in terms of tradables. The basic idea is to fit a finite difference scheme to exact solutions of the pricing

  5. A solar-thermal energy harvesting scheme: enhanced heat capacity of molten HITEC salt mixed with Sn/SiO(x) core-shell nanoparticles.

    Science.gov (United States)

    Lai, Chih-Chung; Chang, Wen-Chih; Hu, Wen-Liang; Wang, Zhiming M; Lu, Ming-Chang; Chueh, Yu-Lun

    2014-05-07

    We demonstrated enhanced solar-thermal storage by releasing the latent heat of Sn/SiO(x) core-shell nanoparticles (NPs) embedded in a eutectic salt. The microstructures and chemical compositions of Sn/SiO(x) core-shell NPs were characterized. In situ heating XRD provides dynamic crystalline information about the Sn/SiO(x) core-shell NPs during cyclic heating processes. The latent heat of ∼29 J g(-1) for Sn/SiO(x) core-shell NPs was measured, and 30% enhanced heat capacity was achieved from 1.57 to 2.03 J g(-1) K(-1) for the HITEC solar salt without and with, respectively, a mixture of 5% Sn/SiO(x) core-shell NPs. In addition, an endurance cycle test was performed to prove a stable operation in practical applications. The approach provides a method to enhance energy storage in solar-thermal power plants.

  6. Shielding Gas and Heat Input Effects on the Mechanical and Metallurgical Characterization of Gas Metal Arc Welding of Super Martensitic Stainless Steel (12Cr5Ni2Mo) Joints

    Science.gov (United States)

    Prabakaran, T.; Prabhakar, M.; Sathiya, P.

    This paper deals with the effects of shielding gas mixtures (100% CO2, 100% Ar and 80 % Ar + 20% CO2) and heat input (3.00, 3.65 and 4.33kJ/mm) on the mechanical and metallurgical characteristics of AISI 410S (American Iron and Steel Institute) super martensitic stainless steel (SMSS) by gas metal arc welding (GMAW) process. AISI 410S SMSS with 1.2mm diameter of a 410 filler wire was used in this study. A detailed microstructural analysis of the weld region as well as the mechanical properties (impact, microhardness and tensile tests at room temperature and 800∘C) was carried out. The tensile and impact fracture surfaces were further analyzed through scanning electron microscope (SEM). 100% Ar shielded welds have a higher amount of δ ferrite content and due to this fact the tensile strength of the joints is superior to the other two shielded welds.

  7. Reprocessing input data validation

    International Nuclear Information System (INIS)

    Persiani, P.J.; Bucher, R.G.; Pond, R.B.; Cornella, R.J.

    1990-01-01

    The Isotope Correlation Technique (ICT), in conjunction with the gravimetric (Pu/U ratio) method for mass determination, provides an independent verification of the input accountancy at the dissolver or accountancy stage of the reprocessing plant. The Isotope Correlation Technique has been applied to many classes of domestic and international reactor systems (light-water, heavy-water, graphite, and liquid-metal) operating in a variety of modes (power, research, production, and breeder), and for a variety of reprocessing fuel cycle management strategies. Analysis of reprocessing operations data based on isotopic correlations derived for assemblies in a PWR environment and fuel management scheme, yielded differences between the measurement-derived and ICT-derived plutonium mass determinations of (-0.02 ± 0.23)% for the measured U-235 and (+0.50 ± 0.31)% for the measured Pu-239, for a core campaign. The ICT analyses has been implemented for the plutonium isotopics in a depleted uranium assembly in a heavy-water, enriched uranium system and for the uranium isotopes in the fuel assemblies in light-water, highly-enriched systems. 7 refs., 5 figs., 4 tabs

  8. Input filter compensation for switching regulators

    Science.gov (United States)

    Lee, F. C.; Kelkar, S. S.

    1982-01-01

    The problems caused by the interaction between the input filter, output filter, and the control loop are discussed. The input filter design is made more complicated because of the need to avoid performance degradation and also stay within the weight and loss limitations. Conventional input filter design techniques are then dicussed. The concept of pole zero cancellation is reviewed; this concept is the basis for an approach to control the peaking of the output impedance of the input filter and thus mitigate some of the problems caused by the input filter. The proposed approach for control of the peaking of the output impedance of the input filter is to use a feedforward loop working in conjunction with feedback loops, thus forming a total state control scheme. The design of the feedforward loop for a buck regulator is described. A possible implementation of the feedforward loop design is suggested.

  9. Methodological developments and qualification of calculation schemes for the modelling of photonic heating in the experimental devices of the future Jules Horowitz material testing reactor (RJH)

    International Nuclear Information System (INIS)

    Blanchet, D.

    2006-01-01

    The objective of this work is to develop the modelling of the nuclear heating of the experimental devices of the future Jules Horowitz material testing reactor (RJH). The strong specific nuclear power produced (460 kW/l), induces so intense photonic fluxes which cause heating and large temperature gradients that it is necessary to control it by an adequate design. However, calculations of heating are penalized by the very large uncertainties estimated at a value of about 30% (2*σ) coming from the gaps and uncertainties of the data of gamma emission present in the libraries of basic nuclear data. The experimental program ADAPh aims at reducing these uncertainties. Measurements by thermoluminescent detectors (TLD) and ionisation chambers are carried out in the critical assemblies EOLE (Mox) and Minerve (UO 2 ). The rigorous interpretation of these measurements requires specific developments based on Monte-Carlo simulations of coupled neutron-gamma and gamma-electron transport. The developments carried out are made different in particular by the modelling of cavities phenomena and delayed gamma emissions by the decay of fission products. The comparisons calculation-measurement made it possible to identify a systematic bias confirming a tendency of calculations to underestimate measurements. A Bayesian method of adjustment was developed in order to re-estimate the principal components of the gamma heating and to transpose the results obtained to the devices of the RJH, under conditions clearly and definitely representative. This work made possible to reduce significantly the uncertainties on the determination of the gamma heating from 30 to 15 per cent. (author)

  10. Regulatory aspects, an important factor for geothermal energy application for district heating development. European insurance scheme to cover geological risk related to geothermal operations

    International Nuclear Information System (INIS)

    Popovski, Kiril

    2000-01-01

    District heating is one of the most interesting fields of geothermal energy application development in Europe. However, besides the technical/technological/economical and organizational aspects of the problem in question, the related legal and regulatory aspects influence very much the real possibilities for wider introduction of this energy source in the state energy balances in most of the countries. Based on the official EU report for the State-of-the-art of the problem of the insurance to cover geological risks and necessary aspects to be developed and resolved in a better and 'common' way in order to enable higher investments in bigger projects (district heating) development, the paper presents the situation in different European countries in relation to the Macedonian one. Conclusions extracted should give a positive contribution to the process of the Macedonian laws accommodation to the common EU practice. (Author)

  11. HEATING-7, Multidimensional Finite-Difference Heat Conduction Analysis

    International Nuclear Information System (INIS)

    2000-01-01

    1 - Description of program or function: HEATING 7.2i and 7.3 are the most recent developments in a series of heat-transfer codes and obsolete all previous versions distributed by RSICC as SCA-1/HEATING5 and PSR-199/HEATING 6. Note that Unix and PC versions of HEATING7 are available in the CCC-545/SCALE 4.4 package. HEATING can solve steady-state and/or transient heat conduction problems in one-, two-, or three-dimensional Cartesian, cylindrical, or spherical coordinates. A model may include multiple materials, and the thermal conductivity, density, and specific heat of each material may be both time- and temperature-dependent. The thermal conductivity may also be anisotropic. Materials may undergo change of phase. Thermal properties of materials may be input or may be extracted from a material properties library. Heat- generation rates may be dependent on time, temperature, and position, and boundary temperatures may be time- and position-dependent. The boundary conditions, which may be surface-to-environment or surface-to-surface, may be specified temperatures or any combination of prescribed heat flux, forced convection, natural convection, and radiation. The boundary condition parameters may be time- and/or temperature-dependent. General gray body radiation problems may be modeled with user-defined factors for radiant exchange. The mesh spacing may be variable along each axis. HEATING uses a run-time memory allocation scheme to avoid having to recompile to match memory requirements for each specific problem. HEATING utilizes free-form input. In June 1997 HEATING 7.3 was added to the HEATING 7.2i packages, and the Unix and PC versions of both 7.2i and 7.3 were merged into one package. HEATING 7.3 is being released as a beta-test version; therefore, it does not entirely replace HEATING 7.2i. There is no published documentation for HEATING 7.3; but a listing of input specifications, which reflects changes for 7.3, is included in the PSR-199 documentation. For 3-D

  12. TART input manual

    International Nuclear Information System (INIS)

    Kimlinger, J.R.; Plechaty, E.F.

    1982-01-01

    The TART code is a Monte Carlo neutron/photon transport code that is only on the CRAY computer. All the input cards for the TART code are listed, and definitions for all input parameters are given. The execution and limitations of the code are described, and input for two sample problems are given

  13. Cascade self-seeding scheme with wake monochromator for narrow-bandwidth X-ray FELs

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany); Kocharyan, Vitali; Saldin, Evgeni [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2010-06-15

    Three different approaches have been proposed so far for production of highly monochromatic X-rays from a baseline XFEL undulator: (i) single-bunch selfseeding scheme with a four crystal monochromator in Bragg reflection geometry; (ii) double-bunch self-seeding scheme with a four-crystal monochromator in Bragg reflection geometry; (iii) single-bunch self-seeding scheme with a wake monochromator. A unique element of the X-ray optical design of the last scheme is the monochromatization of X-rays using a single crystal in Bragg-transmission geometry. A great advantage of this method is that the monochromator introduces no path delay of X-rays. This fact eliminates the need for a long electron beam bypass, or for the creation of two precisely separated, identical electron bunches, as required in the other two self-seeding schemes. In its simplest configuration, the self-seeded XFEL consists of an input undulator and an output undulator separated by a monochromator. In some experimental situations this simplest two-undulator configuration is not optimal. The obvious and technically possible extension is to use a setup with three or more undulators separated by monochromators. This amplification-monochromatization cascade scheme is distinguished, in performance, by a small heat-loading of crystals and a high spectral purity of the output radiation. This paper describes such cascade self-seeding scheme with wake monochromators.We present feasibility study and exemplifications for the SASE2 line of the European XFEL. (orig.)

  14. Capacity-achieving CPM schemes

    OpenAIRE

    Perotti, Alberto; Tarable, Alberto; Benedetto, Sergio; Montorsi, Guido

    2008-01-01

    The pragmatic approach to coded continuous-phase modulation (CPM) is proposed as a capacity-achieving low-complexity alternative to the serially-concatenated CPM (SC-CPM) coding scheme. In this paper, we first perform a selection of the best spectrally-efficient CPM modulations to be embedded into SC-CPM schemes. Then, we consider the pragmatic capacity (a.k.a. BICM capacity) of CPM modulations and optimize it through a careful design of the mapping between input bits and CPM waveforms. The s...

  15. `Green heat` in a UK city

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1997-06-01

    This brief article describes the Sheffield `green heat` scheme which utilises heat from a local waste incinerator to operate an independent district heating scheme within Sheffield city centre. Standby and peak overload heat generation capacity is provided by four boiler plants ensuring integrity of supply. The benefits of the scheme and future developments are outlined. (UK)

  16. Additive operator-difference schemes splitting schemes

    CERN Document Server

    Vabishchevich, Petr N

    2013-01-01

    Applied mathematical modeling isconcerned with solving unsteady problems. This bookshows how toconstruct additive difference schemes to solve approximately unsteady multi-dimensional problems for PDEs. Two classes of schemes are highlighted: methods of splitting with respect to spatial variables (alternating direction methods) and schemes of splitting into physical processes. Also regionally additive schemes (domain decomposition methods)and unconditionally stable additive schemes of multi-component splitting are considered for evolutionary equations of first and second order as well as for sy

  17. Self-optimizing control of air-source heat pump with multivariable extremum seeking

    International Nuclear Information System (INIS)

    Dong, Liujia; Li, Yaoyu; Mu, Baojie; Xiao, Yan

    2015-01-01

    The air-source heat pump (ASHP) is widely adopted for cooling and heating of residential and commercial buildings. The performance of ASHP can be controlled by several operating variables, such as compressor capacity, condenser fan speed, evaporator fan speed and suction superheat. In practice, the system characteristics can be varied significantly by the variations in ambient condition, operation setpoint, internal thermal load and equipment degradation, which makes it difficult to obtain accurate plant models. As consequence, the model based control strategies for ASHP could limit the achievable energy efficiency. Model-free self-optimizing control strategies are thus more preferable. In this study, a multi-input extremum seeking control (ESC) scheme is proposed for both heating and cooling operation of ASHP. The zone temperature is assumed to be regulated by the compressor capacity, while the expansion valve opening is used to regulate the suction superheat at the given setpoint. The total power consumption of the compressor, the condenser fan and the evaporator fan is measured as input to the ESC, while the ESC controls the evaporator fan speed, the condenser fan speed and the suction superheat setpoint. The proposed scheme is evaluated with a Modelica based dynamic simulation model of ASHP under both cooling and heating modes of operation. Simulation results show the effectiveness of the proposed scheme to achieve the maximum achievable efficiency in a nearly model-free manner. - Highlights: • Multi-input ESC. • Air-source heat pump. • Cooling and heating. • Modelica based model

  18. Input-output supervisor

    International Nuclear Information System (INIS)

    Dupuy, R.

    1970-01-01

    The input-output supervisor is the program which monitors the flow of informations between core storage and peripheral equipments of a computer. This work is composed of three parts: 1 - Study of a generalized input-output supervisor. With sample modifications it looks like most of input-output supervisors which are running now on computers. 2 - Application of this theory on a magnetic drum. 3 - Hardware requirement for time-sharing. (author) [fr

  19. Fault tolerant control of wind turbines using unknown input observers

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Stoustrup, Jakob

    2012-01-01

    This paper presents a scheme for accommodating faults in the rotor and generator speed sensors in a wind turbine. These measured values are important both for the wind turbine controller as well as the supervisory control of the wind turbine. The scheme is based on unknown input observers, which...

  20. Using dynamic input allocation for elongation control at FTU

    International Nuclear Information System (INIS)

    Boncagni, L.; Galeani, S.; Granucci, G.; Varano, G.; Vitale, V.; Zaccarian, L.

    2010-01-01

    In this paper we exploit the dynamic allocation scheme for input redundant control systems proposed in to achieve elongation control on FTU (Frascati Tokamak Upgrade). The scheme first serves as a means for regulating the current in the F coils. Then, due to the quasi-static relationship between the plasma elongation and the F coils current, elongation control is achieved by suitably generalizing the allocation scheme. Both simulation and experimental results are reported.

  1. SSYST-3. Input description

    International Nuclear Information System (INIS)

    Meyder, R.

    1983-12-01

    The code system SSYST-3 is designed to analyse the thermal and mechanical behaviour of a fuel rod during a LOCA. The report contains a complete input-list for all modules and several tested inputs for a LOCA analysis. (orig.)

  2. MDS MIC Catalog Inputs

    Science.gov (United States)

    Johnson-Throop, Kathy A.; Vowell, C. W.; Smith, Byron; Darcy, Jeannette

    2006-01-01

    This viewgraph presentation reviews the inputs to the MDS Medical Information Communique (MIC) catalog. The purpose of the group is to provide input for updating the MDS MIC Catalog and to request that MMOP assign Action Item to other working groups and FSs to support the MITWG Process for developing MIC-DDs.

  3. Can premium tariffs for micro-generation and small scale renewable heat help the fuel poor, and if so, how? Case studies of innovative finance for community energy schemes in the UK

    International Nuclear Information System (INIS)

    Saunders, R.W.; Gross, R.J.K.; Wade, J.

    2012-01-01

    In the UK, the introduction of micro-generation Feed in Tariffs (FiTs) and a proposed Renewable Heat Incentive (RHI) for domestic and small scale schemes have re-energised the market for investment in domestic scale renewable energy. These incentives may provide financial opportunities for those with capital to spend but for the record numbers with low incomes in ‘fuel poverty’, these benefits may seem out of reach. This paper shows that with appropriate financial intermediaries it is possible for renewable energy incentives to be used to alleviate fuel poverty. Simple financial analysis demonstrates the theoretical potential of FiTs to help those in fuel poverty. Two case studies of renewable energy projects in low income areas investigate how the incentives may be used in practice, what barriers exist and what success factors are evident. The analysis shows that local energy organisations (LEOs) are key if the poor are to access benefits from premium tariff schemes. Low interest finance mechanisms, good information sharing and community involvement are found as key success factors. - Highlights: ► This paper researches the potential for FiTs and RHIs to help those in fuel poverty. ► Simple financial modelling shows the potential benefit of FiTs to the fuel poor. ► Original case study research investigates how these benefits can be realised. ► The action of local energy organisations (LEOs) is important to optimise outcomes. ► Financing and dynamics between the community and LEOs are key to success.

  4. Determinants of Agro-inputs redemption under the electronic wallet ...

    African Journals Online (AJOL)

    The study assessed the spread of farmers and participation in terms of input redemption and the determinants of farmers redeemed with agro-inputs under the electronic-wallet initiative of the Growth Enhancement Support Scheme of the On-going Agricultural Transformation Agenda. Secondary data covering the Nigerian ...

  5. Adaptive projective synchronization of different chaotic systems with nonlinearity inputs

    International Nuclear Information System (INIS)

    Niu Yu-Jun; Pei Bing-Nan; Wang Xing-Yuan

    2012-01-01

    We investigate the projective synchronization of different chaotic systems with nonlinearity inputs. Based on the adaptive technique, sliding mode control method and pole assignment technique, a novel adaptive projective synchronization scheme is proposed to ensure the drive system and the response system with nonlinearity inputs can be rapidly synchronized up to the given scaling factor. (general)

  6. Techno-economic analysis and optimization of the heat recovery of utility boiler flue gas

    International Nuclear Information System (INIS)

    Xu, Gang; Huang, Shengwei; Yang, Yongping; Wu, Ying; Zhang, Kai; Xu, Cheng

    2013-01-01

    Highlights: • Four typical flue gas heat recovery schemes are quantitatively analyzed. • The analysis considers thermodynamic, heat transfer and hydrodynamics factors. • Techno-economic analysis and optimization design are carried out. • High-stage steam substitute scheme obtains better energy-saving effect. • Large heat transfer area and high flue gas resistances weaken overall performance. - Abstract: Coal-fired power plants in China consume nearly half of available coals, and the resulting CO 2 emissions cover over 40% of total national emissions. Therefore, reducing the energy expenditure of coal-fired power plants is of great significance to China’s energy security and greenhouse gas reduction programs. For coal-fired power plants, the temperature of a boiler’s exhaust gas reaches 120–150 °C or even higher. The thermal energy of boiler’s exhaust accounts for approximately 3–8% of the total energy of fuel input. Given these factors, we conducted a techno-economic analysis and optimization design of the heat recovery system using boiler exhaust gas. This research is conformed to the principles of thermodynamic, heat transfer, and hydrodynamics. Based on the data from an existing 1000 MW typical power generation unit in China, four typical flue gas heat recovery schemes are quantitatively analyzed from the thermodynamics perspective. The impacts of flue gas heat recovery on net work output and standard coal consumption rate of various schemes are performed. Furthermore, the transfer area of heat recovery exchanger and the draft fan work increment due to the flue gas pressure drop are analyzed. Finally, a techno-economic analysis of the heat recovery schemes is conducted, and some recommendations on optimization design parameters are proposed, with full consideration of various factors such as the decrease on fuel cost due to energy conservation as well as the investment cost of heat recovery retrofitting. The results revealed that, high

  7. PLEXOS Input Data Generator

    Energy Technology Data Exchange (ETDEWEB)

    2017-02-01

    The PLEXOS Input Data Generator (PIDG) is a tool that enables PLEXOS users to better version their data, automate data processing, collaborate in developing inputs, and transfer data between different production cost modeling and other power systems analysis software. PIDG can process data that is in a generalized format from multiple input sources, including CSV files, PostgreSQL databases, and PSS/E .raw files and write it to an Excel file that can be imported into PLEXOS with only limited manual intervention.

  8. ColloInputGenerator

    DEFF Research Database (Denmark)

    2013-01-01

    This is a very simple program to help you put together input files for use in Gries' (2007) R-based collostruction analysis program. It basically puts together a text file with a frequency list of lexemes in the construction and inserts a column where you can add the corpus frequencies. It requires...... it as input for basic collexeme collostructional analysis (Stefanowitsch & Gries 2003) in Gries' (2007) program. ColloInputGenerator is, in its current state, based on programming commands introduced in Gries (2009). Projected updates: Generation of complete work-ready frequency lists....

  9. A scheme for the hadron spectrum

    International Nuclear Information System (INIS)

    Hoyer, P.

    1978-03-01

    A theoretically self-consistent dual scheme is proposed for the hadron spectrum, which follows naturally from basic requirements and phenomenology. All resonance properties and couplings are calculable in terms of a limited number of input parameters. A first application to ππ→ππ explains the linear trajectory and small daughter couplings. The Zweig rule and the decoupling of baryonium from mesons are expected to be consequences of the scheme. (Auth.)

  10. Input description for BIOPATH

    International Nuclear Information System (INIS)

    Marklund, J.E.; Bergstroem, U.; Edlund, O.

    1980-01-01

    The computer program BIOPATH describes the flow of radioactivity within a given ecosystem after a postulated release of radioactive material and the resulting dose for specified population groups. The present report accounts for the input data necessary to run BIOPATH. The report also contains descriptions of possible control cards and an input example as well as a short summary of the basic theory.(author)

  11. Input and execution

    International Nuclear Information System (INIS)

    Carr, S.; Lane, G.; Rowling, G.

    1986-11-01

    This document describes the input procedures, input data files and operating instructions for the SYVAC A/C 1.03 computer program. SYVAC A/C 1.03 simulates the groundwater mediated movement of radionuclides from underground facilities for the disposal of low and intermediate level wastes to the accessible environment, and provides an estimate of the subsequent radiological risk to man. (author)

  12. Gestures and multimodal input

    OpenAIRE

    Keates, Simeon; Robinson, Peter

    1999-01-01

    For users with motion impairments, the standard keyboard and mouse arrangement for computer access often presents problems. Other approaches have to be adopted to overcome this. In this paper, we will describe the development of a prototype multimodal input system based on two gestural input channels. Results from extensive user trials of this system are presented. These trials showed that the physical and cognitive loads on the user can quickly become excessive and detrimental to the interac...

  13. Lattice-Boltzmann scheme for natural convection in porous media

    NARCIS (Netherlands)

    Sman, van der R.G.M.

    1997-01-01

    A lattice-Boltzmann scheme for natural convection in porous media is developed and applied to the heat transfer problem of a 1000 kg potato packaging. The scheme has features new to the field of LB schemes. It is mapped on a orthorhombic lattice instead of the traditional cubic lattice. Furthermore

  14. MARS code manual volume II: input requirements

    International Nuclear Information System (INIS)

    Chung, Bub Dong; Kim, Kyung Doo; Bae, Sung Won; Jeong, Jae Jun; Lee, Seung Wook; Hwang, Moon Kyu

    2010-02-01

    Korea Advanced Energy Research Institute (KAERI) conceived and started the development of MARS code with the main objective of producing a state-of-the-art realistic thermal hydraulic systems analysis code with multi-dimensional analysis capability. MARS achieves this objective by very tightly integrating the one dimensional RELAP5/MOD3 with the multi-dimensional COBRA-TF codes. The method of integration of the two codes is based on the dynamic link library techniques, and the system pressure equation matrices of both codes are implicitly integrated and solved simultaneously. In addition, the Equation-Of-State (EOS) for the light water was unified by replacing the EOS of COBRA-TF by that of the RELAP5. This input manual provides a complete list of input required to run MARS. The manual is divided largely into two parts, namely, the one-dimensional part and the multi-dimensional part. The inputs for auxiliary parts such as minor edit requests and graph formatting inputs are shared by the two parts and as such mixed input is possible. The overall structure of the input is modeled on the structure of the RELAP5 and as such the layout of the manual is very similar to that of the RELAP. This similitude to RELAP5 input is intentional as this input scheme will allow minimum modification between the inputs of RELAP5 and MARS3.1. MARS3.1 development team would like to express its appreciation to the RELAP5 Development Team and the USNRC for making this manual possible

  15. Heat Roadmap Europe

    DEFF Research Database (Denmark)

    Connolly, David; Mathiesen, Brian Vad; Lund, Henrik

    2015-01-01

    This document is a summary of the key technical inputs for the modelling of the heat strategy for Europe outlined in the latest Heat Roadmap Europe studies [1, 2]. These studies quantify the impact of alternative heating strategies for Europe in 2030 and 2050. The study is based on geographical...... information systems (GIS) and energy system analyses. In this report, the inputs for other modelling tools such as PRIMES are presented, in order to enable other researches to generate similar heating scenarios for Europe. Although Heat Roadmap Europe presents a complete heat strategy for Europe, which...... includes energy efficiency, individual heating units (such as boilers and heat pumps), and heat networks, the recommendations here are primarily relating to the potential and modelling of district heating. Although other solutions will play a significant role in decarbonising the heating and cooling sector...

  16. Efeito da energia de soldagem sobre a microestrutura e propriedades mecânicas da zona afetada pelo calor de juntas de aço inoxidável duplex Effect of the welding heat input on the microstructure and mechanical properties of the heat affected zone of multipass welded joints of duplex stainless steel

    Directory of Open Access Journals (Sweden)

    Everton Barbosa Nunes

    2011-09-01

    Full Text Available O objetivo deste trabalho é analisar a influência da energia de soldagem na zona afetada pelo calor (ZAC, de juntas soldadas do aço inoxidável duplex UNS S31803. Foram realizadas soldagens com eletrodo revestido AWS E2209-17 em junta tipo V de Aço Inoxidável Duplex UNS S31803, com dois níveis de energia (15 e 20 kJ/cm. A condição soldada com energia mais elevada apresentou uma ZAC mais extensa e microestrutura mais grosseira nos passes de acabamento. No entanto, nos passes de enchimento e de raiz, as ZAC's destas regiões foram mais refinadas e menos extensa. Em relação à microdureza, a condição soldada com energia de 15 kJ/cm apresentou níveis menores. Em relação à tenacidade, não foi verificada diferença significativa nos resultados.The aim this work is to evaluate the influence of multipass welding heat input on the microstructure and mechanical properties of the heat affected zone (HAZ of UNS S31803 duplex stainless steel multipass welded joints. The shielded metal arc welding process using as filler metal the AWS E2209-17 covered electrode were employed had been carried through V joint groove UNS S31803 DSS, so that two levels of energy (15 and 20 kJ/cm had been used in this experiment. The condition welded with higher energy higher a HAZ extensive and coarser microstructure in the finishing passes. On the other hand, in the wadding passes and root pass, the HAZ this region was more refined and less extensive. In respect of microhardness, the condition welded with energy of 15 kJ/cm got lower levels. In relation to toughness, it was not observed significant differences.

  17. Electron heating in JET by ICRH

    International Nuclear Information System (INIS)

    Cordey, J.G.; Christiansen, J.P.; Core, W.G.F.; Cotrell, G.A.; Eriksson, L.G.; Kovanen, M.A.; Lomas, P.; Start, D.F.H.; Taroni, A.; Tibone, F.

    1991-01-01

    Several ICRH experiments carried out on JET during the period 1988-90 have been directed specifically at raising the electron temperature to a high value by maximizing the total input power per particle (P tot /n). It has been found that the electron temperature saturates around 12-14 keV in sharp contrast to NBI ion heating experiments in which ion temperatures exceed 25 keV. Initial calculations suggested that this saturation was due to strongly enhanced transport in the central region. It is shown in this paper that the saturation is due to a lack of heating in the plasma center. The power input to electrons in an ICRF minority heating scheme is mainly via collisional transfer from the minority fast ions and a main problem is to maintain a peaked profile of fast ions. In the present experiments the highest fast ion energy content 4MJ has been achieved with a He 3 minority scheme, the equivalent fast ion toroidal β is 8%; electron temperatures in the range 11-14 keV are attained in these pulses. There are several possible physical effects that can give rise to the broadening of the fast ion radial profile: sawteeth, fishbones, fast ion finite orbit effects and Alfven or drift wave turbulence driven by the large gradients of fast ion pressure (discussed in section IV). The existence of such phenomena in many JET pulses means that the calculation of the power input profile by codes which contain purely classical collisional processes can be misleading. Hence an alternative approach is developed in section II; the measured fast ion energy is used directly to evaluate the power input to the central region; the scaling of the electron temperature with the actual power per particle can therefore be determined (section III). (author) 6 refs., 5 figs

  18. Simulations of Moscow megacity heat island with the COSMO-CLM model using two different urban canopy schemes and realistic building parameters, derived from OpenStreetMap data

    Science.gov (United States)

    Varentsov, Mikhail; Wouters, Hendrik; Trusilova, Kristina; Samsonov, Timofey; Konstantinov, Pavel

    2017-04-01

    In this study we present the application of the regional climate model COSMO-CLM to simulate urban heat island (UHI) phenomenon for Moscow megacity, which is the biggest agglomeration in Europe (with modern population of more than 17 million people). Significant differences of Moscow from the cities of Western Europe are related with much more continental climate with higher diurnal and annual temperature variations, and with specific building features such as its high density and almost total predominance of high-rise and low-rise blocks of flats on the private low-rise houses. Because of these building and climate features, the UHI of Moscow megacity is stronger than UHIs of many other cities of the similar size, with a mean intensity is about 2 °C and maximum intensity reaching up to 13 °C (Lokoschenko, 2014). Such a pronounced UHI together with the existence of an extensive observation network (more than 50 weather and air quality monitoring stations and few microwave temperature profilers) within the city and its surrounding make Moscow an especially interesting place for urban climate researches and good testbed for urban canopy models. In our numerical experiments, regional climate model firstly was adapted for investigated region with aim to improve quality of its simulations of rural areas. Then, to take into account urban canopy effects on thermal regime of the urbanized areas, we used two different versions of COSMO-CLM model. First is coupled with TEB (Town Energy Balance) single layer urban canopy model (Trusilova, 2013), and second is extended with bulk urban canopy scheme TERRA_URB using the Semi-empircal URban-canopY dependency parametriation SURY (Wouters et. al, 2016). Numerical experiments with these two versions of the model were run with spatial resolution about 1 km for several summer and winter months. To provide specific parameters, required for urban parameterizations, such as urban fraction, building height and street canyon aspect ratio

  19. Signature Schemes Secure against Hard-to-Invert Leakage

    DEFF Research Database (Denmark)

    Faust, Sebastian; Hazay, Carmit; Nielsen, Jesper Buus

    2012-01-01

    of the secret key. As a second contribution, we construct a signature scheme that achieves security for random messages assuming that the adversary is given a polynomial-time hard to invert function. Here, polynomial-hardness is required even when given the entire public-key – so called weak auxiliary input......-theoretically reveal the entire secret key. In this work, we propose the first constructions of digital signature schemes that are secure in the auxiliary input model. Our main contribution is a digital signature scheme that is secure against chosen message attacks when given an exponentially hard-to-invert function...... security. We show that such signature schemes readily give us auxiliary input secure identification schemes...

  20. An adaptive Cartesian control scheme for manipulators

    Science.gov (United States)

    Seraji, H.

    1987-01-01

    A adaptive control scheme for direct control of manipulator end-effectors to achieve trajectory tracking in Cartesian space is developed. The control structure is obtained from linear multivariable theory and is composed of simple feedforward and feedback controllers and an auxiliary input. The direct adaptation laws are derived from model reference adaptive control theory and are not based on parameter estimation of the robot model. The utilization of feedforward control and the inclusion of auxiliary input are novel features of the present scheme and result in improved dynamic performance over existing adaptive control schemes. The adaptive controller does not require the complex mathematical model of the robot dynamics or any knowledge of the robot parameters or the payload, and is computationally fast for online implementation with high sampling rates.

  1. grim: A Flexible, Conservative Scheme for Relativistic Fluid Theories

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, Mani; Gammie, Charles F. [Department of Astronomy, University of Illinois, 1110 West Green Street, Urbana, IL, 61801 (United States); Foucart, Francois, E-mail: manic@illinois.edu, E-mail: gammie@illinois.edu, E-mail: fvfoucart@lbl.gov [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States)

    2017-03-01

    Hot, diffuse, relativistic plasmas such as sub-Eddington black-hole accretion flows are expected to be collisionless, yet are commonly modeled as a fluid using ideal general relativistic magnetohydrodynamics (GRMHD). Dissipative effects such as heat conduction and viscosity can be important in a collisionless plasma and will potentially alter the dynamics and radiative properties of the flow from that in ideal fluid models; we refer to models that include these processes as Extended GRMHD. Here we describe a new conservative code, grim, that enables all of the above and additional physics to be efficiently incorporated. grim combines time evolution and primitive variable inversion needed for conservative schemes into a single step using an algorithm that only requires the residuals of the governing equations as inputs. This algorithm enables the code to be physics agnostic as well as flexibility regarding time-stepping schemes. grim runs on CPUs, as well as on GPUs, using the same code. We formulate a performance model and use it to show that our implementation runs optimally on both architectures. grim correctly captures classical GRMHD test problems as well as a new suite of linear and nonlinear test problems with anisotropic conduction and viscosity in special and general relativity. As tests and example applications, we resolve the shock substructure due to the presence of dissipation, and report on relativistic versions of the magneto-thermal instability and heat flux driven buoyancy instability, which arise due to anisotropic heat conduction, and of the firehose instability, which occurs due to anisotropic pressure (i.e., viscosity). Finally, we show an example integration of an accretion flow around a Kerr black hole, using Extended GRMHD.

  2. Finite-volume scheme for anisotropic diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Es, Bram van, E-mail: bramiozo@gmail.com [Centrum Wiskunde & Informatica, P.O. Box 94079, 1090GB Amsterdam (Netherlands); FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, The Netherlands" 1 (Netherlands); Koren, Barry [Eindhoven University of Technology (Netherlands); Blank, Hugo J. de [FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, The Netherlands" 1 (Netherlands)

    2016-02-01

    In this paper, we apply a special finite-volume scheme, limited to smooth temperature distributions and Cartesian grids, to test the importance of connectivity of the finite volumes. The area of application is nuclear fusion plasma with field line aligned temperature gradients and extreme anisotropy. We apply the scheme to the anisotropic heat-conduction equation, and compare its results with those of existing finite-volume schemes for anisotropic diffusion. Also, we introduce a general model adaptation of the steady diffusion equation for extremely anisotropic diffusion problems with closed field lines.

  3. Finite Boltzmann schemes

    NARCIS (Netherlands)

    Sman, van der R.G.M.

    2006-01-01

    In the special case of relaxation parameter = 1 lattice Boltzmann schemes for (convection) diffusion and fluid flow are equivalent to finite difference/volume (FD) schemes, and are thus coined finite Boltzmann (FB) schemes. We show that the equivalence is inherent to the homology of the

  4. Plasma heating

    International Nuclear Information System (INIS)

    Wilhelm, R.

    1989-01-01

    Successful plasma heating is essential in present fusion experiments, for the demonstration of DpT burn in future devices and finally for the fusion reactor itself. This paper discusses the common heating systems with respect to their present performance and their applicability to future fusion devices. The comparative discussion is oriented to the various function of heating, which are: - plasma heating to fusion-relevant parameters and to ignition in future machines, -non-inductive, steady-pstate current drive, - plasma profile control, -neutral gas breakdown and plasma build-up. In view of these different functions, the potential of neutral beam injection (NBI) and the various schemes of wave heating (ECRH, LH, ICRH and Alven wave heating) is analyzed in more detail. The analysis includes assessments of the present physical and technical state of these heating methods, and makes suggestions for future developments and about outstanding problems. Specific attention is given to the still critical problem of efficient current drive, especially with respect to further extrapolation towards an economically operating tokamak reactor. Remarks on issues such as reliability, maintenance and economy conclude this comparative overview on plasma heating systems. (author). 43 refs.; 13 figs.; 3 tabs

  5. Support Schemes and Ownership Structures

    DEFF Research Database (Denmark)

    Ropenus, Stephanie; Schröder, Sascha Thorsten; Costa, Ana

    , Denmark, France and Portugal. Another crucial aspect for the diffusion of the mCHP technology is possible ownership structures. These may range from full consumer ownership to ownership by utilities and energy service companies, which is discussed in Section 6. Finally, a conclusion (Section 7) wraps up......In recent years, fuel cell based micro‐combined heat and power has received increasing attention due to its potential contribution to energy savings, efficiency gains, customer proximity and flexibility in operation and capacity size. The FC4Home project assesses technical and economic aspects...... of support scheme simultaneously affects risk and technological development, which is the focus of Section 4. Subsequent to this conceptual overview, Section 5 takes a glance at the national application of support schemes for mCHP in practice, notably in the three country cases of the FC4Home project...

  6. A hybrid pi control scheme for airship hovering

    International Nuclear Information System (INIS)

    Ashraf, Z.; Choudhry, M.A.; Hanif, A.

    2012-01-01

    Airship provides us many attractive applications in aerospace industry including transportation of heavy payloads, tourism, emergency management, communication, hover and vision based applications. Hovering control of airship has many utilizations in different engineering fields. However, it is a difficult problem to sustain the hover condition maintaining controllability. So far, different solutions have been proposed in literature but most of them are difficult in analysis and implementation. In this paper, we have presented a simple and efficient scheme to design a multi input multi output hybrid PI control scheme for airship. It can maintain stability of the plant by rejecting disturbance inputs to ensure robustness. A control scheme based on feedback theory is proposed that uses principles of optimality with integral action for hovering applications. Simulations are carried out in MTALAB for examining the proposed control scheme for hovering in different wind conditions. Comparison of the technique with an existing scheme is performed, describing the effectiveness of control scheme. (author)

  7. Electricity storage using a thermal storage scheme

    Energy Technology Data Exchange (ETDEWEB)

    White, Alexander, E-mail: ajw36@cam.ac.uk [Hopkinson Laboratory, Cambridge University Engineering Department, Trumpington Street, Cambridge. CB2 1PZ (United Kingdom)

    2015-01-22

    The increasing use of renewable energy technologies for electricity generation, many of which have an unpredictably intermittent nature, will inevitably lead to a greater demand for large-scale electricity storage schemes. For example, the expanding fraction of electricity produced by wind turbines will require either backup or storage capacity to cover extended periods of wind lull. This paper describes a recently proposed storage scheme, referred to here as Pumped Thermal Storage (PTS), and which is based on “sensible heat” storage in large thermal reservoirs. During the charging phase, the system effectively operates as a high temperature-ratio heat pump, extracting heat from a cold reservoir and delivering heat to a hot one. In the discharge phase the processes are reversed and it operates as a heat engine. The round-trip efficiency is limited only by process irreversibilities (as opposed to Second Law limitations on the coefficient of performance and the thermal efficiency of the heat pump and heat engine respectively). PTS is currently being developed in both France and England. In both cases, the schemes operate on the Joule-Brayton (gas turbine) cycle, using argon as the working fluid. However, the French scheme proposes the use of turbomachinery for compression and expansion, whereas for that being developed in England reciprocating devices are proposed. The current paper focuses on the impact of the various process irreversibilities on the thermodynamic round-trip efficiency of the scheme. Consideration is given to compression and expansion losses and pressure losses (in pipe-work, valves and thermal reservoirs); heat transfer related irreversibility in the thermal reservoirs is discussed but not included in the analysis. Results are presented demonstrating how the various loss parameters and operating conditions influence the overall performance.

  8. The international logistics of wood pellets for heating and power production in Europe: Costs, energy-input and greenhouse gas balances of pellet consumption in Italy, Sweden and the Netherlands

    NARCIS (Netherlands)

    Sikkema, R.|info:eu-repo/dai/nl/110609913; Junginger, H.M.|info:eu-repo/dai/nl/202130703; Pichler, W.; Hayes, S.; Faaij, A.P.C.|info:eu-repo/dai/nl/10685903X

    2010-01-01

    The European wood pellet market is booming: concerns about climate change and renewable energy targets are predominant drivers. The aim of this analysis is to compare typical wood pellet chains from the purchase of the feedstock from sawmills to the conversion into heat or electricity. Cost

  9. GARFEM input deck description

    Energy Technology Data Exchange (ETDEWEB)

    Zdunek, A.; Soederberg, M. (Aeronautical Research Inst. of Sweden, Bromma (Sweden))

    1989-01-01

    The input card deck for the finite element program GARFEM version 3.2 is described in this manual. The program includes, but is not limited to, capabilities to handle the following problems: * Linear bar and beam element structures, * Geometrically non-linear problems (bar and beam), both static and transient dynamic analysis, * Transient response dynamics from a catalog of time varying external forcing function types or input function tables, * Eigenvalue solution (modes and frequencies), * Multi point constraints (MPC) for the modelling of mechanisms and e.g. rigid links. The MPC definition is used only in the geometrically linearized sense, * Beams with disjunct shear axis and neutral axis, * Beams with rigid offset. An interface exist that connects GARFEM with the program GAROS. GAROS is a program for aeroelastic analysis of rotating structures. Since this interface was developed GARFEM now serves as a preprocessor program in place of NASTRAN which was formerly used. Documentation of the methods applied in GARFEM exists but is so far limited to the capacities in existence before the GAROS interface was developed.

  10. Input or intimacy

    Directory of Open Access Journals (Sweden)

    Judit Navracsics

    2014-01-01

    Full Text Available According to the critical period hypothesis, the earlier the acquisition of a second language starts, the better. Owing to the plasticity of the brain, up until a certain age a second language can be acquired successfully according to this view. Early second language learners are commonly said to have an advantage over later ones especially in phonetic/phonological acquisition. Native-like pronunciation is said to be most likely to be achieved by young learners. However, there is evidence of accentfree speech in second languages learnt after puberty as well. Occasionally, on the other hand, a nonnative accent may appear even in early second (or third language acquisition. Cross-linguistic influences are natural in multilingual development, and we would expect the dominant language to have an impact on the weaker one(s. The dominant language is usually the one that provides the largest amount of input for the child. But is it always the amount that counts? Perhaps sometimes other factors, such as emotions, ome into play? In this paper, data obtained from an EnglishPersian-Hungarian trilingual pair of siblings (under age 4 and 3 respectively is analyzed, with a special focus on cross-linguistic influences at the phonetic/phonological levels. It will be shown that beyond the amount of input there are more important factors that trigger interference in multilingual development.

  11. Possible schemes for solar-powered air-conditioning in 2-storey terrace houses

    International Nuclear Information System (INIS)

    Chu, C.M.; Bono, A.; Prabhakar, A.

    2006-01-01

    Space cooling is required all year round in the tropics, and probably accounts for a considerable proportion of the cost of electricity. Solar radiation can be channeled into cooling by photovoltaic powered systems and through the relatively new adsorption cycle technology. Two-storey terrace housing appear to have the greatest potential of introducing solar-powered cooling to residential homes. There are two schemes to cool a two-storey terrace housing: 1) By spraying water down the roof a tank, circulated by a pump powered by PV panels on the roof or 2) By replacing the roof with solar hot water collectors and use adsorption cooling chillers to produce air-conditioning for the entire block of terrace houses. In scheme number 1, a preliminary, rough technical evaluation showed that it is possible to pump water to the roof to flow down as a thin film and cool the roof by evaporation to about 40 degree C from about 70 degree C if without water evaporation at the highest insolation rate of the day. Scheme number 2, which uses adsorption chilling technology, requires communal sharing of the air-conditioning facility. The effect of collecting solar heat using the roof is two fold: to absorb solar energy for producing hot water and reducing excess heat input to the house. Preliminary costing demonstrates that solar-powered air-conditioning is within reach of commercialisation, bearing in mind that bulk purchases will dramatically lower the price of a product

  12. Scheme for generating Greenberger-Horne-Zeilinger-type states of n photons

    International Nuclear Information System (INIS)

    Sagi, Yoav

    2003-01-01

    In this paper we propose a scheme for creating a three photons Greenberger-Horne-Zeilinger-type (GHZ) state using only linear optics elements and single-photon detectors. We furthermore generalize the scheme for producing any GHZ-like state of n photons. The input state of the scheme consists of a nonentangled state of n photons. Experimental aspects regarding the implementation of the scheme are presented. Finally, the role of such schemes in quantum information processing with photons is discussed

  13. Scheme Program Documentation Tools

    DEFF Research Database (Denmark)

    Nørmark, Kurt

    2004-01-01

    are separate and intended for different documentation purposes they are related to each other in several ways. Both tools are based on XML languages for tool setup and for documentation authoring. In addition, both tools rely on the LAML framework which---in a systematic way---makes an XML language available...... as named functions in Scheme. Finally, the Scheme Elucidator is able to integrate SchemeDoc resources as part of an internal documentation resource....

  14. GAROS input deck description

    Energy Technology Data Exchange (ETDEWEB)

    Vollan, A.; Soederberg, M. (Aeronautical Research Inst. of Sweden, Bromma (Sweden))

    1989-01-01

    This report describes the input for the programs GAROS1 and GAROS2, version 5.8 and later, February 1988. The GAROS system, developed by Arne Vollan, Omega GmbH, is used for the analysis of the mechanical and aeroelastic properties for general rotating systems. It has been specially designed to meet the requirements of aeroelastic stability and dynamic response of horizontal axis wind energy converters. Some of the special characteristics are: * The rotor may have one or more blades. * The blades may be rigidly attached to the hub, or they may be fully articulated. * The full elastic properties of the blades, the hub, the machine house and the tower are taken into account. * With the same basic model, a number of different analyses can be performed: Snap-shot analysis, Floquet method, transient response analysis, frequency response analysis etc.

  15. Access to Research Inputs

    DEFF Research Database (Denmark)

    Czarnitzki, Dirk; Grimpe, Christoph; Pellens, Maikel

    2015-01-01

    The viability of modern open science norms and practices depends on public disclosure of new knowledge, methods, and materials. However, increasing industry funding of research can restrict the dissemination of results and materials. We show, through a survey sample of 837 German scientists in life...... sciences, natural sciences, engineering, and social sciences, that scientists who receive industry funding are twice as likely to deny requests for research inputs as those who do not. Receiving external funding in general does not affect denying others access. Scientists who receive external funding...... of any kind are, however, 50 % more likely to be denied access to research materials by others, but this is not affected by being funded specifically by industry...

  16. Access to Research Inputs

    DEFF Research Database (Denmark)

    Czarnitzki, Dirk; Grimpe, Christoph; Pellens, Maikel

    The viability of modern open science norms and practices depend on public disclosure of new knowledge, methods, and materials. However, increasing industry funding of research can restrict the dissemination of results and materials. We show, through a survey sample of 837 German scientists in life...... sciences, natural sciences, engineering, and social sciences, that scientists who receive industry funding are twice as likely to deny requests for research inputs as those who do not. Receiving external funding in general does not affect denying others access. Scientists who receive external funding...... of any kind are, however, 50% more likely to be denied access to research materials by others, but this is not affected by being funded specifically by industry....

  17. Robust Fault Detection for Switched Fuzzy Systems With Unknown Input.

    Science.gov (United States)

    Han, Jian; Zhang, Huaguang; Wang, Yingchun; Sun, Xun

    2017-10-03

    This paper investigates the fault detection problem for a class of switched nonlinear systems in the T-S fuzzy framework. The unknown input is considered in the systems. A novel fault detection unknown input observer design method is proposed. Based on the proposed observer, the unknown input can be removed from the fault detection residual. The weighted H∞ performance level is considered to ensure the robustness. In addition, the weighted H₋ performance level is introduced, which can increase the sensibility of the proposed detection method. To verify the proposed scheme, a numerical simulation example and an electromechanical system simulation example are provided at the end of this paper.

  18. Secure communication based on multi-input multi-output chaotic system with large message amplitude

    International Nuclear Information System (INIS)

    Zheng, G.; Boutat, D.; Floquet, T.; Barbot, J.P.

    2009-01-01

    This paper deals with the problem of secure communication based on multi-input multi-output (MIMO) chaotic systems. Single input secure communication based on chaos can be easily extended to multiple ones by some combinations technologies, however all the combined inputs possess the same risk to be broken. In order to reduce this risk, a new secure communication scheme based on chaos with MIMO is discussed in this paper. Moreover, since the amplitude of messages in traditional schemes is limited because it would affect the quality of synchronization, the proposed scheme is also improved into an amplitude-independent one.

  19. Modeling and generating input processes

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, M.E.

    1987-01-01

    This tutorial paper provides information relevant to the selection and generation of stochastic inputs to simulation studies. The primary area considered is multivariate but much of the philosophy at least is relevant to univariate inputs as well. 14 refs.

  20. Robust Model Predictive Control Schemes for Tracking Setpoints

    Directory of Open Access Journals (Sweden)

    Vu Trieu Minh

    2010-01-01

    Full Text Available This paper briefly reviews the development of nontracking robust model predictive control (RMPC schemes for uncertain systems using linear matrix inequalities (LMIs subject to input saturated and softened state constraints. Then we develop two new tracking setpoint RMPC schemes with common Lyapunov function and with zero terminal equality subject to input saturated and softened state constraints. The novel tracking setpoint RMPC schemes are able to stabilize uncertain systems once the output setpoints lead to the violation of the state constraints. The state violation can be regulated by changing the value of the weighting factor. A brief comparative simulation study of the two tracking setpoint RMPC schemes is done via simple examples to demonstrate the ability of the softened state constraint schemes. Finally, some features of future research from this study are discussed.

  1. Multiresolution signal decomposition schemes

    NARCIS (Netherlands)

    J. Goutsias (John); H.J.A.M. Heijmans (Henk)

    1998-01-01

    textabstract[PNA-R9810] Interest in multiresolution techniques for signal processing and analysis is increasing steadily. An important instance of such a technique is the so-called pyramid decomposition scheme. This report proposes a general axiomatic pyramid decomposition scheme for signal analysis

  2. Adaptive protection scheme

    Directory of Open Access Journals (Sweden)

    R. Sitharthan

    2016-09-01

    Full Text Available This paper aims at modelling an electronically coupled distributed energy resource with an adaptive protection scheme. The electronically coupled distributed energy resource is a microgrid framework formed by coupling the renewable energy source electronically. Further, the proposed adaptive protection scheme provides a suitable protection to the microgrid for various fault conditions irrespective of the operating mode of the microgrid: namely, grid connected mode and islanded mode. The outstanding aspect of the developed adaptive protection scheme is that it monitors the microgrid and instantly updates relay fault current according to the variations that occur in the system. The proposed adaptive protection scheme also employs auto reclosures, through which the proposed adaptive protection scheme recovers faster from the fault and thereby increases the consistency of the microgrid. The effectiveness of the proposed adaptive protection is studied through the time domain simulations carried out in the PSCAD⧹EMTDC software environment.

  3. Evolutionary Algorithm for Optimal Vaccination Scheme

    International Nuclear Information System (INIS)

    Parousis-Orthodoxou, K J; Vlachos, D S

    2014-01-01

    The following work uses the dynamic capabilities of an evolutionary algorithm in order to obtain an optimal immunization strategy in a user specified network. The produced algorithm uses a basic genetic algorithm with crossover and mutation techniques, in order to locate certain nodes in the inputted network. These nodes will be immunized in an SIR epidemic spreading process, and the performance of each immunization scheme, will be evaluated by the level of containment that provides for the spreading of the disease

  4. THE MODEL FOR POWER EFFICIENCY ASSESSMENT OF CONDENSATION HEATING INSTALLATIONS

    Directory of Open Access Journals (Sweden)

    D. Kovalchuk

    2017-11-01

    Full Text Available The main part of heating systems and domestic hot water systems are based on the natural gas boilers. Forincreasing the overall performance of such heating system the condensation gas boilers was developed and are used. Howevereven such type of boilers don't use all energy which is released from a fuel combustion. The main factors influencing thelowering of overall performance of condensation gas boilers in case of operation in real conditions are considered. Thestructure of the developed mathematical model allowing estimating the overall performance of condensation gas boilers(CGB in the conditions of real operation is considered. Performace evaluation computer experiments of such CGB during aheating season for real weather conditions of two regions of Ukraine was made. Graphic dependences of temperatureconditions and heating system effectiveness change throughout a heating season are given. It was proved that normal CGBdoes not completely use all calorific value of fuel, thus, it isn't effective. It was also proved that the efficiency of such boilerssignificantly changes during a heating season depending on weather conditions and doesn't reach the greatest possible value.The possibility of increasing the efficiency of CGB due to hydraulic division of heating and condensation sections and use ofthe vapor-compression heat pump for deeper cooling of combustion gases and removing of the highest possible amount ofthermal energy from them are considered. The scheme of heat pump connection to the heating system with a convenient gasboiler and the separate condensation economizer allowing to cool combustion gases deeply below a dew point and to warm upthe return heat carrier before a boiler input is provided. The technological diagram of the year-round use of the heat pump forhot water heating after the end of heating season, without gas use is offered.

  5. Short-term heat load forecasting for single family houses

    DEFF Research Database (Denmark)

    Bacher, Peder; Madsen, Henrik; Nielsen, Henrik Aalborg

    2013-01-01

    This paper presents a method for forecasting the load for space heating in a single-family house. The forecasting model is built using data from sixteen houses located in Sønderborg, Denmark, combined with local climate measurements and weather forecasts. Every hour the hourly heat load for each...... house the following two days is forecasted. The forecast models are adaptive linear time-series models and the climate inputs used are: ambient temperature, global radiation and wind speed. A computationally efficient recursive least squares scheme is used. The models are optimized to fit the individual...... noise and that practically all correlation to the climate variables are removed. Furthermore, the results show that the forecasting errors mainly are related to: unpredictable high frequency variations in the heat load signal (predominant only for some houses), shifts in resident behavior patterns...

  6. Final report of the study on heat networks in Ile-de-France, contributing to the elaboration of the climate-air-energy regional scheme + Judicial aspect + Economic aspect + Assessment of development potential of urban heating in Ile-de-France - Analysis document based on the study on heat networks contributing to the elaboration of the climate-air-energy regional plan

    International Nuclear Information System (INIS)

    2012-10-01

    A first report is a contribution to the elaboration of a plan aiming at the substitution of fossil energies, at the development of heat deliveries, while maintaining network economic profitability. Such a plan is based on the connection of buildings, the renovation, extension and interconnection of existing networks, and the creation of new heat networks. The study addressed technical, urban, financial, judicial and cartographic aspects. Public statistical data have been used and interviews of actors (network funders, representatives of delegating authorities, social landlords, administrations, and technical professions) have been performed. A guide of good practices is proposed regarding contract reviewing conditions, possibilities of revision of subscribed power. Prospective issues are discussed: strategic stakes and deposits, actions paths and tools, strategy and action plan. Appendices address methodologies, organisation of the geographical information system, judicial aspect with the circular of 1982, financial data and aspects. Then, a set of reports more precisely presents various aspects addressed as a contribution for the study of heat networks in Ile-de-France: the judicial aspect (present status, guide of good judicial practices), the economic aspect (present status of sale prices and costs, analysis of financing, of revision formula), and an assessment of urban heating development (context, technical aspect, analysis of the geographical information system)

  7. Threshold Signature Schemes Application

    Directory of Open Access Journals (Sweden)

    Anastasiya Victorovna Beresneva

    2015-10-01

    Full Text Available This work is devoted to an investigation of threshold signature schemes. The systematization of the threshold signature schemes was done, cryptographic constructions based on interpolation Lagrange polynomial, elliptic curves and bilinear pairings were examined. Different methods of generation and verification of threshold signatures were explored, the availability of practical usage of threshold schemes in mobile agents, Internet banking and e-currency was shown. The topics of further investigation were given and it could reduce a level of counterfeit electronic documents signed by a group of users.

  8. JET RF dominated scenarios and ion ITB experiments with low external momentum input

    International Nuclear Information System (INIS)

    Crisanti, F.; Esposito, B.; Gormezano, C.; Buratti, P.; Cardinali, A.; Giovannozzi, E.; Sozzi, C.; Becoulet, A.; Rimini, F.; Garbet, X.; Guirlet, R.; Joffrin, E.; Litaudon, X.; Brambilla, M.; Baar, M. de; Luna, E. de la; Vries, P. de; Giroud, C.; Mantica, P.; Mantsinen, M.; Salmi, A.; Eester, D. van

    2005-01-01

    Advanced Tokamak scenarios include two different regimes: the 'steady state' (characterized by the presence of an Internal Transport Barrier (ITB)) and the 'hybrid scenario' (characterized by central q > 1 and a large region with magnetic shear close to zero). So far both the regimes, at least for the ion species, have always been obtained in presence of strong injection of external momentum by Neutrals Beam Injection (NBI) heating. By using Lower Hybrid Current Drive (LHCD) to sustain the central q slightly above one and with a large plasma region having the magnetic shear s close to zero, an 'hybrid scenario' has been established, for the first time, in discharges with dominant Ion Cyclotron Resonance Heating (ICRH) and with a normalized beta close to two. By starting from a configuration with reversed magnetic shear (sustained only by LHCD) and with a well established ITB on the electron species, an ITB also on the ions species has been obtained by using ICRH in an ion minority heating scheme, ( 3 He)D. No external momentum input was provided by the NBI, except for the diagnostic charge-exchange and the MSE beams. In these discharges the evaluated ExB shearing rate was always very small (in the noisy range) and lower than analytical evaluations of the turbulence growth rate. (author)

  9. Input preshaping with frequency domain information for flexible-link manipulator control

    Science.gov (United States)

    Tzes, Anthony; Englehart, Matthew J.; Yurkovich, Stephen

    1989-01-01

    The application of an input preshaping scheme to flexible manipulators is considered. The resulting control corresponds to a feedforward term that convolves in real-time the desired reference input with a sequence of impulses and produces a vibration free output. The robustness of the algorithm with respect to injected disturbances and modal frequency variations is not satisfactory and can be improved by convolving the input with a longer sequence of impulses. The incorporation of the preshaping scheme to a closed-loop plant, using acceleration feedback, offers satisfactory disturbance rejection due to feedback and cancellation of the flexible mode effects due to the preshaping. A frequency domain identification scheme is used to estimate the modal frequencies on-line and subsequently update the spacing between the impulses. The combined adaptive input preshaping scheme provides the fastest possible slew that results in a vibration free output.

  10. An efficient numerical scheme for the simulation of parallel-plate active magnetic regenerators

    DEFF Research Database (Denmark)

    Torregrosa-Jaime, Bárbara; Corberán, José M.; Payá, Jorge

    2015-01-01

    A one-dimensional model of a parallel-plate active magnetic regenerator (AMR) is presented in this work. The model is based on an efficient numerical scheme which has been developed after analysing the heat transfer mechanisms in the regenerator bed. The new finite difference scheme optimally com...... to the fully implicit scheme, the proposed scheme achieves more accurate results, prevents numerical errors and requires less computational effort. In AMR simulations the new scheme can reduce the computational time by 88%....

  11. CSR schemes in agribusiness

    DEFF Research Database (Denmark)

    Pötz, Katharina Anna; Haas, Rainer; Balzarova, Michaela

    2013-01-01

    of schemes that can be categorized on focus areas, scales, mechanisms, origins, types and commitment levels. Research limitations/implications – The findings contribute to conceptual and empirical research on existing models to compare and analyse CSR standards. Sampling technique and depth of analysis limit......Purpose – The rise of CSR followed a demand for CSR standards and guidelines. In a sector already characterized by a large number of standards, the authors seek to ask what CSR schemes apply to agribusiness, and how they can be systematically compared and analysed. Design....../methodology/approach – Following a deductive-inductive approach the authors develop a model to compare and analyse CSR schemes based on existing studies and on coding qualitative data on 216 CSR schemes. Findings – The authors confirm that CSR standards and guidelines have entered agribusiness and identify a complex landscape...

  12. Tabled Execution in Scheme

    Energy Technology Data Exchange (ETDEWEB)

    Willcock, J J; Lumsdaine, A; Quinlan, D J

    2008-08-19

    Tabled execution is a generalization of memorization developed by the logic programming community. It not only saves results from tabled predicates, but also stores the set of currently active calls to them; tabled execution can thus provide meaningful semantics for programs that seemingly contain infinite recursions with the same arguments. In logic programming, tabled execution is used for many purposes, both for improving the efficiency of programs, and making tasks simpler and more direct to express than with normal logic programs. However, tabled execution is only infrequently applied in mainstream functional languages such as Scheme. We demonstrate an elegant implementation of tabled execution in Scheme, using a mix of continuation-passing style and mutable data. We also show the use of tabled execution in Scheme for a problem in formal language and automata theory, demonstrating that tabled execution can be a valuable tool for Scheme users.

  13. Evaluating statistical cloud schemes

    OpenAIRE

    Grützun, Verena; Quaas, Johannes; Morcrette , Cyril J.; Ament, Felix

    2015-01-01

    Statistical cloud schemes with prognostic probability distribution functions have become more important in atmospheric modeling, especially since they are in principle scale adaptive and capture cloud physics in more detail. While in theory the schemes have a great potential, their accuracy is still questionable. High-resolution three-dimensional observational data of water vapor and cloud water, which could be used for testing them, are missing. We explore the potential of ground-based re...

  14. Gamma spectrometry; level schemes

    International Nuclear Information System (INIS)

    Blachot, J.; Bocquet, J.P.; Monnand, E.; Schussler, F.

    1977-01-01

    The research presented dealt with: a new beta emitter, isomer of 131 Sn; the 136 I levels fed through the radioactive decay of 136 Te (20.9s); the A=145 chain (β decay of Ba, La and Ce, and level schemes for 145 La, 145 Ce, 145 Pr); the A=47 chain (La and Ce, β decay, and the level schemes of 147 Ce and 147 Pr) [fr

  15. Scheme of energy utilities

    International Nuclear Information System (INIS)

    2002-04-01

    This scheme defines the objectives relative to the renewable energies and the rational use of the energy in the framework of the national energy policy. It evaluates the needs and the potentialities of the regions and preconizes the actions between the government and the territorial organizations. The document is presented in four parts: the situation, the stakes and forecasts; the possible actions for new measures; the scheme management and the regional contributions analysis. (A.L.B.)

  16. A simplified computational scheme for thermal analysis of LWR spent fuel dry storage and transportation casks

    International Nuclear Information System (INIS)

    Kim, Chang Hyun

    1997-02-01

    A simplified computational scheme for thermal analysis of the LWR spent fuel dry storage and transportation casks has been developed using two-step thermal analysis method incorporating effective thermal conductivity model for the homogenized spent fuel assembly. Although a lot of computer codes and analytical models have been developed for application to the fields of thermal analysis of dry storage and/or transportation casks, some difficulties in its analysis arise from the complexity of the geometry including the rod bundles of spent fuel and the heat transfer phenomena in the cavity of cask. Particularly, if the disk-type structures such as fuel baskets and aluminium heat transfer fins are included, the thermal analysis problems in the cavity are very complex. To overcome these difficulties, cylindrical coordinate system is adopted to calculate the temperature profile of a cylindrical cask body using the multiple cylinder model as the step-1 analysis of the present study. In the step-2 analysis, Cartesian coordinate system is adopted to calculate the temperature distributions of the disk-type structures such as fuel basket and aluminium heat transfer fin using three- dimensional conduction analysis model. The effective thermal conductivity for homogenized spent fuel assembly based on Manteufel and Todreas model is incorporated in step-2 analysis to predict the maximum fuel temperature. The presented two-step computational scheme has been performed using an existing HEATING 7.2 code and the effective thermal conductivity for the homogenized spent fuel assembly has been calculated by additional numerical analyses. Sample analyses of five cases are performed for NAC-STC including normal transportation condition to examine the applicability of the presented simplified computational scheme for thermal analysis of the large LWR spent fuel dry storage and transportation casks and heat transfer characteristics in the cavity of the cask with the disk-type structures

  17. MIMO transmit scheme based on morphological perceptron with competitive learning.

    Science.gov (United States)

    Valente, Raul Ambrozio; Abrão, Taufik

    2016-08-01

    This paper proposes a new multi-input multi-output (MIMO) transmit scheme aided by artificial neural network (ANN). The morphological perceptron with competitive learning (MP/CL) concept is deployed as a decision rule in the MIMO detection stage. The proposed MIMO transmission scheme is able to achieve double spectral efficiency; hence, in each time-slot the receiver decodes two symbols at a time instead one as Alamouti scheme. Other advantage of the proposed transmit scheme with MP/CL-aided detector is its polynomial complexity according to modulation order, while it becomes linear when the data stream length is greater than modulation order. The performance of the proposed scheme is compared to the traditional MIMO schemes, namely Alamouti scheme and maximum-likelihood MIMO (ML-MIMO) detector. Also, the proposed scheme is evaluated in a scenario with variable channel information along the frame. Numerical results have shown that the diversity gain under space-time coding Alamouti scheme is partially lost, which slightly reduces the bit-error rate (BER) performance of the proposed MP/CL-NN MIMO scheme. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Enhanced Input in LCTL Pedagogy

    Directory of Open Access Journals (Sweden)

    Marilyn S. Manley

    2009-08-01

    Full Text Available Language materials for the more-commonly-taught languages (MCTLs often include visual input enhancement (Sharwood Smith 1991, 1993 which makes use of typographical cues like bolding and underlining to enhance the saliency of targeted forms. For a variety of reasons, this paper argues that the use of enhanced input, both visual and oral, is especially important as a tool for the lesscommonly-taught languages (LCTLs. As there continues to be a scarcity of teaching resources for the LCTLs, individual teachers must take it upon themselves to incorporate enhanced input into their own self-made materials. Specific examples of how to incorporate both visual and oral enhanced input into language teaching are drawn from the author’s own experiences teaching Cuzco Quechua. Additionally, survey results are presented from the author’s Fall 2010 semester Cuzco Quechua language students, supporting the use of both visual and oral enhanced input.

  19. Enhanced Input in LCTL Pedagogy

    Directory of Open Access Journals (Sweden)

    Marilyn S. Manley

    2010-08-01

    Full Text Available Language materials for the more-commonly-taught languages (MCTLs often include visual input enhancement (Sharwood Smith 1991, 1993 which makes use of typographical cues like bolding and underlining to enhance the saliency of targeted forms. For a variety of reasons, this paper argues that the use of enhanced input, both visual and oral, is especially important as a tool for the lesscommonly-taught languages (LCTLs. As there continues to be a scarcity of teaching resources for the LCTLs, individual teachers must take it upon themselves to incorporate enhanced input into their own self-made materials. Specific examples of how to incorporate both visual and oral enhanced input into language teaching are drawn from the author’s own experiences teaching Cuzco Quechua. Additionally, survey results are presented from the author’s Fall 2010 semester Cuzco Quechua language students, supporting the use of both visual and oral enhanced input.

  20. Nuclear heat sources for cryogenic refrigerator applications

    International Nuclear Information System (INIS)

    Raab, B.; Schock, A.; King, W.G.; Kline, T.; Russo, F.A.

    1975-01-01

    Spacecraft cryogenic refrigerators require thermal inputs on the order of 1000 W. First, the characteristics of solar-electric and radioisotope heat source systems for supplying this thermal input are compared. Then the design of a 238 Pu heat source for this application is described, and equipment for shipping and handling the heat source is discussed. (LCL)

  1. Towards Symbolic Encryption Schemes

    DEFF Research Database (Denmark)

    Ahmed, Naveed; Jensen, Christian D.; Zenner, Erik

    2012-01-01

    , namely an authenticated encryption scheme that is secure under chosen ciphertext attack. Therefore, many reasonable encryption schemes, such as AES in the CBC or CFB mode, are not among the implementation options. In this paper, we report new attacks on CBC and CFB based implementations of the well......Symbolic encryption, in the style of Dolev-Yao models, is ubiquitous in formal security models. In its common use, encryption on a whole message is specified as a single monolithic block. From a cryptographic perspective, however, this may require a resource-intensive cryptographic algorithm......-known Needham-Schroeder and Denning-Sacco protocols. To avoid such problems, we advocate the use of refined notions of symbolic encryption that have natural correspondence to standard cryptographic encryption schemes....

  2. Compact Spreader Schemes

    Energy Technology Data Exchange (ETDEWEB)

    Placidi, M.; Jung, J. -Y.; Ratti, A.; Sun, C.

    2014-07-25

    This paper describes beam distribution schemes adopting a novel implementation based on low amplitude vertical deflections combined with horizontal ones generated by Lambertson-type septum magnets. This scheme offers substantial compactness in the longitudinal layouts of the beam lines and increased flexibility for beam delivery of multiple beam lines on a shot-to-shot basis. Fast kickers (FK) or transverse electric field RF Deflectors (RFD) provide the low amplitude deflections. Initially proposed at the Stanford Linear Accelerator Center (SLAC) as tools for beam diagnostics and more recently adopted for multiline beam pattern schemes, RFDs offer repetition capabilities and a likely better amplitude reproducibility when compared to FKs, which, in turn, offer more modest financial involvements both in construction and operation. Both solutions represent an ideal approach for the design of compact beam distribution systems resulting in space and cost savings while preserving flexibility and beam quality.

  3. An improved robust model predictive control for linear parameter-varying input-output models

    NARCIS (Netherlands)

    Abbas, H.S.; Hanema, J.; Tóth, R.; Mohammadpour, J.; Meskin, N.

    2018-01-01

    This paper describes a new robust model predictive control (MPC) scheme to control the discrete-time linear parameter-varying input-output models subject to input and output constraints. Closed-loop asymptotic stability is guaranteed by including a quadratic terminal cost and an ellipsoidal terminal

  4. An Energy Efficient Cooperative Hierarchical MIMO Clustering Scheme for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Sungyoung Lee

    2011-12-01

    Full Text Available In this work, we present an energy efficient hierarchical cooperative clustering scheme for wireless sensor networks. Communication cost is a crucial factor in depleting the energy of sensor nodes. In the proposed scheme, nodes cooperate to form clusters at each level of network hierarchy ensuring maximal coverage and minimal energy expenditure with relatively uniform distribution of load within the network. Performance is enhanced by cooperative multiple-input multiple-output (MIMO communication ensuring energy efficiency for WSN deployments over large geographical areas. We test our scheme using TOSSIM and compare the proposed scheme with cooperative multiple-input multiple-output (CMIMO clustering scheme and traditional multihop Single-Input-Single-Output (SISO routing approach. Performance is evaluated on the basis of number of clusters, number of hops, energy consumption and network lifetime. Experimental results show significant energy conservation and increase in network lifetime as compared to existing schemes.

  5. New analytic unitarization schemes

    International Nuclear Information System (INIS)

    Cudell, J.-R.; Predazzi, E.; Selyugin, O. V.

    2009-01-01

    We consider two well-known classes of unitarization of Born amplitudes of hadron elastic scattering. The standard class, which saturates at the black-disk limit includes the standard eikonal representation, while the other class, which goes beyond the black-disk limit to reach the full unitarity circle, includes the U matrix. It is shown that the basic properties of these schemes are independent of the functional form used for the unitarization, and that U matrix and eikonal schemes can be extended to have similar properties. A common form of unitarization is proposed interpolating between both classes. The correspondence with different nonlinear equations are also briefly examined.

  6. An ideal internally heat integrated batch distillation with a jacketed still with application to a reactive system

    International Nuclear Information System (INIS)

    Jana, Amiya K.; Maiti, Debadrita

    2013-01-01

    Batch distillation is an irreversible process and consumes many times the theoretical minimum energy requirement. The present work focuses on the development of an internally heat integrated batch distillation with a jacketed still (IHIBDJS) aiming to reduce the degree of irreversibility towards zero. The IHIBDJS scheme consists of a rectifying tower equipped with an overhead condenser and a still pot or reboiler that surrounds the tower concentrically. For improving the energy efficiency by the reduction of external energy input, the rectifier is operated at an elevated pressure so that a thermal driving force should exist between the rectifying tower and the concentric still. For this purpose, an isentropic compression system is mounted in the reboiled vapor line. Aiming to reduce further the degree of process irreversibility, we propose an additional thermal arrangement into the IHIBDJS configuration that couples the overhead vapor with the reboiler liquid, thereby reducing further the external heat consumption. It is investigated for a reactive batch distillation column that the effective use of internal heat sources would make the heat integrated column an independent scheme of external heat source. - Highlights: • An internal heat integration approach is developed for batch distillation. • Further intensification is made by thermally coupling top vapor with still liquid. • A reactive system is used to illustrate the proposed scheme

  7. Online short-term heat load forecasting for single family houses

    DEFF Research Database (Denmark)

    Bacher, Peder; Madsen, Henrik; Nielsen, Henrik Aalborg

    2013-01-01

    . Every hour the hourly heat load for each house the following two days is forecasted. The forecast models are adaptive linear time-series models and the climate inputs used are: ambient temperature, global radiation, and wind speed. A computationally efficient recursive least squares scheme is used......This paper presents a method for forecasting the load for heating in a single-family house. Both space and hot tap water heating are forecasted. The forecasting model is built using data from sixteen houses in Sønderborg, Denmark, combined with local climate measurements and weather forecasts...... variations in the heat load signal (predominant only for some houses), peaks presumably from showers, shifts in resident behavior, and uncertainty of the weather forecasts for longer horizons, especially for the solar radiation....

  8. Development of the GUI environments of MIDAS code for convenient input and output processing

    International Nuclear Information System (INIS)

    Kim, K. L.; Kim, D. H.

    2003-01-01

    MIDAS is being developed at KAERI as an integrated Severe Accident Analysis Code with easy model modification and addition by restructuring the data transfer scheme. In this paper, the input file management system, IEDIT and graphic simulation system, SATS, are presented as MIDAS input and output GUI systems. These two systems would form the basis of the MIDAS GUI system for input and output processing, and they are expected to be useful tools for severe accidents analysis and simulation

  9. 4. Payment Schemes

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 2. Electronic Commerce - Payment Schemes. V Rajaraman. Series Article Volume 6 Issue 2 February 2001 pp 6-13. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/006/02/0006-0013 ...

  10. Contract saving schemes

    NARCIS (Netherlands)

    Ronald, R.; Smith, S.J.; Elsinga, M.; Eng, O.S.; Fox O'Mahony, L.; Wachter, S.

    2012-01-01

    Contractual saving schemes for housing are institutionalised savings programmes normally linked to rights to loans for home purchase. They are diverse types as they have been developed differently in each national context, but normally fall into categories of open, closed, compulsory, and ‘free

  11. Alternative reprocessing schemes evaluation

    International Nuclear Information System (INIS)

    1979-02-01

    This paper reviews the parameters which determine the inaccessibility of the plutonium in reprocessing plants. Among the various parameters, the physical and chemical characteristics of the materials, the various processing schemes and the confinement are considered. The emphasis is placed on that latter parameter, and the advantages of an increased confinement in the socalled PIPEX reprocessing plant type are presented

  12. Introduction to association schemes

    NARCIS (Netherlands)

    Seidel, J.J.

    1991-01-01

    The present paper gives an introduction to the theory of association schemes, following Bose-Mesner (1959), Biggs (1974), Delsarte (1973), Bannai-Ito (1984) and Brouwer-Cohen-Neumaier (1989). Apart from definitions and many examples, also several proofs and some problems are included. The paragraphs

  13. Reaction schemes of immunoanalysis

    International Nuclear Information System (INIS)

    Delaage, M.; Barbet, J.

    1991-01-01

    The authors apply a general theory for multiple equilibria to the reaction schemes of immunoanalysis, competition and sandwich. This approach allows the manufacturer to optimize the system and provide the user with interpolation functions for the standard curve and its first derivative as well, thus giving access to variance [fr

  14. Alternative health insurance schemes

    DEFF Research Database (Denmark)

    Keiding, Hans; Hansen, Bodil O.

    2002-01-01

    In this paper, we present a simple model of health insurance with asymmetric information, where we compare two alternative ways of organizing the insurance market. Either as a competitive insurance market, where some risks remain uninsured, or as a compulsory scheme, where however, the level...... competitive insurance; this situation turns out to be at least as good as either of the alternatives...

  15. Performance comparison of binary modulation schemes for visible light communication

    KAUST Repository

    Park, Kihong

    2015-09-11

    In this paper, we investigate the power spectral density of several binary modulation schemes including variable on-off keying, variable pulse position modulation, and pulse dual slope modulation which were previously proposed for visible light communication with dimming control. We also propose a novel slope-based modulation called differential chip slope modulation (DCSM) and develop a chip-based hard-decision receiver to demodulate the resulting signal, detect the chip sequence, and decode the input bit sequence. We show that the DCSM scheme can exploit spectrum density more efficiently than the reference schemes while providing an error rate performance comparable to them. © 2015 IEEE.

  16. AUS - the Australian modular scheme for reactor neutronics computations

    International Nuclear Information System (INIS)

    Robinson, G.S.

    1975-12-01

    A general description is given of the AUS modular scheme for reactor neutronics calculations. The scheme currently includes modules which provide the capacity for lattice calculations, 1D transport calculations, 1 and 2D diffusion calculations (with feedback-free kinetics), and burnup calculations. Details are provided of all system aspects of AUS, but individual modules are only outlined. A complete specification is given of that part of user input which controls the calculation sequence. The report also provides sufficient details of the supervisor program and of the interface data sets to enable additional modules to be incorporated in the scheme. (author)

  17. Material input of nuclear fuel

    International Nuclear Information System (INIS)

    Rissanen, S.; Tarjanne, R.

    2001-01-01

    The Material Input (MI) of nuclear fuel, expressed in terms of the total amount of natural material needed for manufacturing a product, is examined. The suitability of the MI method for assessing the environmental impacts of fuels is also discussed. Material input is expressed as a Material Input Coefficient (MIC), equalling to the total mass of natural material divided by the mass of the completed product. The material input coefficient is, however, only an intermediate result, which should not be used as such for the comparison of different fuels, because the energy contents of nuclear fuel is about 100 000-fold compared to the energy contents of fossil fuels. As a final result, the material input is expressed in proportion to the amount of generated electricity, which is called MIPS (Material Input Per Service unit). Material input is a simplified and commensurable indicator for the use of natural material, but because it does not take into account the harmfulness of materials or the way how the residual material is processed, it does not alone express the amount of environmental impacts. The examination of the mere amount does not differentiate between for example coal, natural gas or waste rock containing usually just sand. Natural gas is, however, substantially more harmful for the ecosystem than sand. Therefore, other methods should also be used to consider the environmental load of a product. The material input coefficient of nuclear fuel is calculated using data from different types of mines. The calculations are made among other things by using the data of an open pit mine (Key Lake, Canada), an underground mine (McArthur River, Canada) and a by-product mine (Olympic Dam, Australia). Furthermore, the coefficient is calculated for nuclear fuel corresponding to the nuclear fuel supply of Teollisuuden Voima (TVO) company in 2001. Because there is some uncertainty in the initial data, the inaccuracy of the final results can be even 20-50 per cent. The value

  18. Phasing Out a Polluting Input

    OpenAIRE

    Eriksson, Clas

    2015-01-01

    This paper explores economic policies related to the potential conflict between economic growth and the environment. It applies a model with directed technological change and focuses on the case with low elasticity of substitution between clean and dirty inputs in production. New technology is substituted for the polluting input, which results in a gradual decline in pollution along the optimal long-run growth path. In contrast to some recent work, the era of pollution and environmental polic...

  19. Adaptive transmission schemes for MISO spectrum sharing systems

    KAUST Repository

    Bouida, Zied

    2013-06-01

    We propose three adaptive transmission techniques aiming to maximize the capacity of a multiple-input-single-output (MISO) secondary system under the scenario of an underlay cognitive radio network. In the first scheme, namely the best antenna selection (BAS) scheme, the antenna maximizing the capacity of the secondary link is used for transmission. We then propose an orthogonal space time bloc code (OSTBC) transmission scheme using the Alamouti scheme with transmit antenna selection (TAS), namely the TAS/STBC scheme. The performance improvement offered by this scheme comes at the expense of an increased complexity and delay when compared to the BAS scheme. As a compromise between these schemes, we propose a hybrid scheme using BAS when only one antenna verifies the interference condition and TAS/STBC when two or more antennas are illegible for communication. We first derive closed-form expressions of the statistics of the received signal-to-interference-and-noise ratio (SINR) at the secondary receiver (SR). These results are then used to analyze the performance of the proposed techniques in terms of the average spectral efficiency, the average number of transmit antennas, and the average bit error rate (BER). This performance is then illustrated via selected numerical examples. © 2013 IEEE.

  20. An enhanced dynamic ID-based authentication scheme for telecare medical information systems

    Directory of Open Access Journals (Sweden)

    Ankita Chaturvedi

    2017-01-01

    Full Text Available The authentication schemes for telecare medical information systems (TMIS try to ensure secure and authorized access. ID-based authentication schemes address secure communication, but privacy is not properly addressed. In recent times, dynamic ID-based remote user authentication schemes for TMIS have been presented to protect user’s privacy. The dynamic ID-based authentication schemes efficiently protect the user’s privacy. Unfortunately, most of the existing dynamic ID-based authentication schemes for TMIS ignore the input verifying condition. This makes login and password change phases inefficient. Inefficiency of the password change phase may lead to denial of service attack in the case of incorrect input in the password change phase. To overcome these weaknesses, we proposed a new dynamic ID-based authentication scheme using a smart card. The proposed scheme can quickly detect incorrect inputs which makes the login and password change phase efficient. We adopt the approach with the aim to protect privacy, and efficient login and password change phases. The proposed scheme also resists off-line password guessing attack and denial of service attack. We also demonstrate the validity of the proposed scheme by utilizing the widely-accepted BAN (Burrows, Abadi, and Needham logic. In addition, our scheme is comparable in terms of the communication and computational overheads with relevant schemes for TMIS.

  1. Development and testing of aluminum micro channel heat sink

    Science.gov (United States)

    Kumaraguruparan, G.; Sornakumar, T.

    2010-06-01

    Microchannel heat sinks constitute an innovative cooling technology for the removal of a large amount of heat from a small area and are suitable for electronics cooling. In the present work, Tool Steel D2 grade milling slitting saw type plain milling cutter is fabricated The microchannels are machined in aluminum work pieces to form the microchannel heat sink using the fabricated milling cutter in an horizontal milling machine. A new experimental set-up is fabricated to conduct the tests on the microchannel heat sink. The heat carried by the water increases with mass flow rate and heat input. The heat transfer coefficient and Nusselt number increases with mass flow rate and increased heat input. The pressure drop increases with Reynolds number and decreases with input heat. The friction factor decreases with Reynolds number and decreases with input heat. The thermal resistance decreases with pumping power and decreases with input heat.

  2. On Converting Secret Sharing Scheme to Visual Secret Sharing Scheme

    Directory of Open Access Journals (Sweden)

    Wang Daoshun

    2010-01-01

    Full Text Available Abstract Traditional Secret Sharing (SS schemes reconstruct secret exactly the same as the original one but involve complex computation. Visual Secret Sharing (VSS schemes decode the secret without computation, but each share is m times as big as the original and the quality of the reconstructed secret image is reduced. Probabilistic visual secret sharing (Prob.VSS schemes for a binary image use only one subpixel to share the secret image; however the probability of white pixels in a white area is higher than that in a black area in the reconstructed secret image. SS schemes, VSS schemes, and Prob. VSS schemes have various construction methods and advantages. This paper first presents an approach to convert (transform a -SS scheme to a -VSS scheme for greyscale images. The generation of the shadow images (shares is based on Boolean XOR operation. The secret image can be reconstructed directly by performing Boolean OR operation, as in most conventional VSS schemes. Its pixel expansion is significantly smaller than that of VSS schemes. The quality of the reconstructed images, measured by average contrast, is the same as VSS schemes. Then a novel matrix-concatenation approach is used to extend the greyscale -SS scheme to a more general case of greyscale -VSS scheme.

  3. Selectively strippable paint schemes

    Science.gov (United States)

    Stein, R.; Thumm, D.; Blackford, Roger W.

    1993-03-01

    In order to meet the requirements of more environmentally acceptable paint stripping processes many different removal methods are under evaluation. These new processes can be divided into mechanical and chemical methods. ICI has developed a paint scheme with intermediate coat and fluid resistant polyurethane topcoat which can be stripped chemically in a short period of time with methylene chloride free and phenol free paint strippers.

  4. Cryptanalysis of Two Fault Countermeasure Schemes

    DEFF Research Database (Denmark)

    Banik, Subhadeep; Bogdanov, Andrey

    2015-01-01

    function with some additional randomness and computes the value of the function. The second called the unmasking function, is computed securely using a different register and undoes the effect of the masking with random bits. We will show that there exists a weakness in the way in which both these schemes...... is meant for the protection of block ciphers like AES. The second countermeasure was proposed in IEEE-HOST 2015 and protects the Grain-128 stream cipher. The design divides the output function used in Grain-128 into two components. The first called the masking function, masks the input bits to the output...

  5. Mars 2.2 code manual: input requirements

    International Nuclear Information System (INIS)

    Chung, Bub Dong; Lee, Won Jae; Jeong, Jae Jun; Lee, Young Jin; Hwang, Moon Kyu; Kim, Kyung Doo; Lee, Seung Wook; Bae, Sung Won

    2003-07-01

    Korea Advanced Energy Research Institute (KAERI) conceived and started the development of MARS code with the main objective of producing a state-of-the-art realistic thermal hydraulic systems analysis code with multi-dimensional analysis capability. MARS achieves this objective by very tightly integrating the one dimensional RELAP5/MOD3 with the multi-dimensional COBRA-TF codes. The method of integration of the two codes is based on the dynamic link library techniques, and the system pressure equation matrices of both codes are implicitly integrated and solved simultaneously. In addition, the Equation-of-State (EOS) for the light water was unified by replacing the EOS of COBRA-TF by that of the RELAP5. This input manual provides a complete list of input required to run MARS. The manual is divided largely into two parts, namely, the one-dimensional part and the multi-dimensional part. The inputs for auxiliary parts such as minor edit requests and graph formatting inputs are shared by the two parts and as such mixed input is possible. The overall structure of the input is modeled on the structure of the RELAP5 and as such the layout of the manual is very similar to that of the RELAP. This similitude to RELAP5 input is intentional as this input scheme will allow minimum modification between the inputs of RELAP5 and MARS. MARS development team would like to express its appreciation to the RELAP5 Development Team and the USNRC for making this manual possible

  6. Scalable Nonlinear Compact Schemes

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Debojyoti [Argonne National Lab. (ANL), Argonne, IL (United States); Constantinescu, Emil M. [Univ. of Chicago, IL (United States); Brown, Jed [Univ. of Colorado, Boulder, CO (United States)

    2014-04-01

    In this work, we focus on compact schemes resulting in tridiagonal systems of equations, specifically the fifth-order CRWENO scheme. We propose a scalable implementation of the nonlinear compact schemes by implementing a parallel tridiagonal solver based on the partitioning/substructuring approach. We use an iterative solver for the reduced system of equations; however, we solve this system to machine zero accuracy to ensure that no parallelization errors are introduced. It is possible to achieve machine-zero convergence with few iterations because of the diagonal dominance of the system. The number of iterations is specified a priori instead of a norm-based exit criterion, and collective communications are avoided. The overall algorithm thus involves only point-to-point communication between neighboring processors. Our implementation of the tridiagonal solver differs from and avoids the drawbacks of past efforts in the following ways: it introduces no parallelization-related approximations (multiprocessor solutions are exactly identical to uniprocessor ones), it involves minimal communication, the mathematical complexity is similar to that of the Thomas algorithm on a single processor, and it does not require any communication and computation scheduling.

  7. Assessment of Growth Enhancement Support Scheme among Rice ...

    African Journals Online (AJOL)

    USER

    result of the findings showed that the scheme had very low performance indices in ... direct fertilizer purchase and distribution, and introduce an alternative system of distribution ... effective delivery of yield-increasing farm input (FRN, 2013). ..... telecommunications service providers, making it difficult to get their packages.

  8. Research on radiative heat transfer in sodium combustion. Modeling, verification and development a radiative properties measuring method. Report of the JNC cooperative research scheme on the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Li Bingxi; Kudo, Kazuhiko

    2001-05-01

    A quantitative evaluation of a radiative heat transfer is important in sodium combustion because a large amount of aerosol particles, which are produced as a result of the combustion, exists in a combustion region. In this study, a development of radiation model with aerosols and optical property measurement has been carried out for the purpose of evaluating radiative heat transfer based on a optical property, diameter, number density and statistical and spatial distribution of aerosol particles. In 2000 research, one dimensional analysis program of the Monte Carlo method has been developed. This program evaluates a radiative transmission intensity based on an optical property and a statistic and spatial diameter distribution of airborne particles. Using this program, an optical property can be estimated from experimental conditions (e.g. diameter distribution) and results (radiative transmission intensity). As a result of numerical analyses which evaluate an influence of a size parameter (relation between a particle diameter [D] and wavelength [λ] :=πD/λ) on the accuracy evaluation, an optical property can be estimated within 3% accuracy though an angle distribution measurement of radiative transmission intensity is necessary when the size parameter becomes large. (author)

  9. Research on a New Signature Scheme on Blockchain

    Directory of Open Access Journals (Sweden)

    Chao Yuan

    2017-01-01

    Full Text Available With the rise of Bitcoin, blockchain which is the core technology of Bitcoin has received increasing attention. Privacy preserving and performance on blockchain are two research points in academia and business, but there are still some unresolved issues in both respects. An aggregate signature scheme is a digital signature that supports making signatures on many different messages generated by many different users. Using aggregate signature, the size of the signature could be shortened by compressing multiple signatures into a single signature. In this paper, a new signature scheme for transactions on blockchain based on the aggregate signature was proposed. It was worth noting that elliptic curve discrete logarithm problem and bilinear maps played major roles in our signature scheme. And the security properties of our signature scheme were proved. In our signature scheme, the amount will be hidden especially in the transactions which contain multiple inputs and outputs. Additionally, the size of the signature on transaction is constant regardless of the number of inputs and outputs that the transaction contains, which can improve the performance of signature. Finally, we gave an application scenario for our signature scheme which aims to achieve the transactions of big data on blockchain.

  10. ESCAP mobile training scheme.

    Science.gov (United States)

    Yasas, F M

    1977-01-01

    In response to a United Nations resolution, the Mobile Training Scheme (MTS) was set up to provide training to the trainers of national cadres engaged in frontline and supervisory tasks in social welfare and rural development. The training is innovative in its being based on an analysis of field realities. The MTS team consisted of a leader, an expert on teaching methods and materials, and an expert on action research and evaluation. The country's trainers from different departments were sent to villages to work for a short period and to report their problems in fulfilling their roles. From these grass roots experiences, they made an analysis of the job, determining what knowledge, attitude and skills it required. Analysis of daily incidents and problems were used to produce indigenous teaching materials drawn from actual field practice. How to consider the problems encountered through government structures for policy making and decisions was also learned. Tasks of the students were to identify the skills needed for role performance by job analysis, daily diaries and project histories; to analyze the particular community by village profiles; to produce indigenous teaching materials; and to practice the role skills by actual role performance. The MTS scheme was tried in Nepal in 1974-75; 3 training programs trained 25 trainers and 51 frontline workers; indigenous teaching materials were created; technical papers written; and consultations were provided. In Afghanistan the scheme was used in 1975-76; 45 participants completed the training; seminars were held; and an ongoing Council was created. It is hoped that the training program will be expanded to other countries.

  11. Bonus schemes and trading activity

    NARCIS (Netherlands)

    Pikulina, E.S.; Renneboog, L.D.R.; ter Horst, J.R.; Tobler, P.N.

    2014-01-01

    Little is known about how different bonus schemes affect traders' propensity to trade and which bonus schemes improve traders' performance. We study the effects of linear versus threshold bonus schemes on traders' behavior. Traders buy and sell shares in an experimental stock market on the basis of

  12. Succesful labelling schemes

    DEFF Research Database (Denmark)

    Juhl, Hans Jørn; Stacey, Julia

    2001-01-01

    . In the spring of 2001 MAPP carried out an extensive consumer study with special emphasis on the Nordic environmentally friendly label 'the swan'. The purpose was to find out how much consumers actually know and use various labelling schemes. 869 households were contacted and asked to fill in a questionnaire...... it into consideration when I go shopping. The respondent was asked to pick the most suitable answer, which described her use of each label. 29% - also called 'the labelling blind' - responded that they basically only knew the recycling label and the Government controlled organic label 'Ø-mærket'. Another segment of 6...

  13. Scheme of stepmotor control

    International Nuclear Information System (INIS)

    Grashilin, V.A.; Karyshev, Yu.Ya.

    1982-01-01

    A 6-cycle scheme of step motor is described. The block-diagram and the basic circuit of the step motor control are presented. The step motor control comprises a pulse shaper, electronic commutator and power amplifiers. The step motor supply from 6-cycle electronic commutator provides for higher reliability and accuracy than from 3-cycle commutator. The control of step motor work is realised by the program given by the external source of control signals. Time-dependent diagrams for step motor control are presented. The specifications of the step-motor is given

  14. World Input-Output Network.

    Directory of Open Access Journals (Sweden)

    Federica Cerina

    Full Text Available Production systems, traditionally analyzed as almost independent national systems, are increasingly connected on a global scale. Only recently becoming available, the World Input-Output Database (WIOD is one of the first efforts to construct the global multi-regional input-output (GMRIO tables. By viewing the world input-output system as an interdependent network where the nodes are the individual industries in different economies and the edges are the monetary goods flows between industries, we analyze respectively the global, regional, and local network properties of the so-called world input-output network (WION and document its evolution over time. At global level, we find that the industries are highly but asymmetrically connected, which implies that micro shocks can lead to macro fluctuations. At regional level, we find that the world production is still operated nationally or at most regionally as the communities detected are either individual economies or geographically well defined regions. Finally, at local level, for each industry we compare the network-based measures with the traditional methods of backward linkages. We find that the network-based measures such as PageRank centrality and community coreness measure can give valuable insights into identifying the key industries.

  15. Parameter setting and input reduction

    NARCIS (Netherlands)

    Evers, A.; van Kampen, N.J.|info:eu-repo/dai/nl/126439737

    2008-01-01

    The language acquisition procedure identifies certain properties of the target grammar before others. The evidence from the input is processed in a stepwise order. Section 1 equates that order and its typical effects with an order of parameter setting. The question is how the acquisition procedure

  16. Constituency Input into Budget Management.

    Science.gov (United States)

    Miller, Norman E.

    1995-01-01

    Presents techniques for ensuring constituency involvement in district- and site-level budget management. Outlines four models for securing constituent input and focuses on strategies to orchestrate the more complex model for staff and community participation. Two figures are included. (LMI)

  17. Remote input/output station

    CERN Multimedia

    1972-01-01

    A general view of the remote input/output station installed in building 112 (ISR) and used for submitting jobs to the CDC 6500 and 6600. The card reader on the left and the line printer on the right are operated by programmers on a self-service basis.

  18. Lithium inputs to subduction zones

    NARCIS (Netherlands)

    Bouman, C.; Elliott, T.R.; Vroon, P.Z.

    2004-01-01

    We have studied the sedimentary and basaltic inputs of lithium to subduction zones. Various sediments from DSDP and ODP drill cores in front of the Mariana, South Sandwich, Banda, East Sunda and Lesser Antilles island arcs have been analysed and show highly variable Li contents and δ

  19. FED, Geometry Input Generator for Program TRUMP

    International Nuclear Information System (INIS)

    Schauer, D.A.; Elrod, D.C.

    1996-01-01

    1 - Description of program or function: FED reduces the effort required to obtain the necessary geometric input for problems which are to be solved using the heat-transfer code, TRUMP (NESC 771). TRUMP calculates transient and steady-state temperature distributions in multidimensional systems. FED can properly zone any body of revolution in one, or three dimensions. 2 - Method of solution: The region of interest must first be divided into areas which may consist of a common material. The boundaries of these areas are the required FED input. Each area is subdivided into volume nodes, and the geometrical properties are calculated. Finally, FED connects the adjacent nodes to one another, using the proper surface area, interface distance, and, if specified, radiation form factor and interface conductance. 3 - Restrictions on the complexity of the problem: Rectangular bodies can only be approximated by using a very large radius of revolution compared to the total radial thickness and by considering only a small angular segment in the circumferential direction

  20. Finite-difference schemes for anisotropic diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Es, Bram van, E-mail: es@cwi.nl [Centrum Wiskunde and Informatica, P.O. Box 94079, 1090GB Amsterdam (Netherlands); FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, Association EURATOM-FOM (Netherlands); Koren, Barry [Eindhoven University of Technology (Netherlands); Blank, Hugo J. de [FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, Association EURATOM-FOM (Netherlands)

    2014-09-01

    In fusion plasmas diffusion tensors are extremely anisotropic due to the high temperature and large magnetic field strength. This causes diffusion, heat conduction, and viscous momentum loss, to effectively be aligned with the magnetic field lines. This alignment leads to different values for the respective diffusive coefficients in the magnetic field direction and in the perpendicular direction, to the extent that heat diffusion coefficients can be up to 10{sup 12} times larger in the parallel direction than in the perpendicular direction. This anisotropy puts stringent requirements on the numerical methods used to approximate the MHD-equations since any misalignment of the grid may cause the perpendicular diffusion to be polluted by the numerical error in approximating the parallel diffusion. Currently the common approach is to apply magnetic field-aligned coordinates, an approach that automatically takes care of the directionality of the diffusive coefficients. This approach runs into problems at x-points and at points where there is magnetic re-connection, since this causes local non-alignment. It is therefore useful to consider numerical schemes that are tolerant to the misalignment of the grid with the magnetic field lines, both to improve existing methods and to help open the possibility of applying regular non-aligned grids. To investigate this, in this paper several discretization schemes are developed and applied to the anisotropic heat diffusion equation on a non-aligned grid.

  1. Packet reversed packet combining scheme

    International Nuclear Information System (INIS)

    Bhunia, C.T.

    2006-07-01

    The packet combining scheme is a well defined simple error correction scheme with erroneous copies at the receiver. It offers higher throughput combined with ARQ protocols in networks than that of basic ARQ protocols. But packet combining scheme fails to correct errors when the errors occur in the same bit locations of two erroneous copies. In the present work, we propose a scheme that will correct error if the errors occur at the same bit location of the erroneous copies. The proposed scheme when combined with ARQ protocol will offer higher throughput. (author)

  2. A full quantum network scheme

    International Nuclear Information System (INIS)

    Ma Hai-Qiang; Wei Ke-Jin; Yang Jian-Hui; Li Rui-Xue; Zhu Wu

    2014-01-01

    We present a full quantum network scheme using a modified BB84 protocol. Unlike other quantum network schemes, it allows quantum keys to be distributed between two arbitrary users with the help of an intermediary detecting user. Moreover, it has good expansibility and prevents all potential attacks using loopholes in a detector, so it is more practical to apply. Because the fiber birefringence effects are automatically compensated, the scheme is distinctly stable in principle and in experiment. The simple components for every user make our scheme easier for many applications. The experimental results demonstrate the stability and feasibility of this scheme. (general)

  3. Input measurements in reprocessing plants

    International Nuclear Information System (INIS)

    Trincherini, P.R.; Facchetti, S.

    1980-01-01

    The aim of this work is to give a review of the methods and the problems encountered in measurements in 'input accountability tanks' of irradiated fuel treatment plants. This study was prompted by the conviction that more and more precise techniques and methods should be at the service of safeguards organizations and that ever greater efforts should be directed towards promoting knowledge of them among operators and all those general area of interest includes the nuclear fuel cycle. The overall intent is to show the necessity of selecting methods which produce measurements which are not only more precise but are absolutely reliable both for routine plant operation and for safety checks in the input area. A description and a critical evaluation of the most common physical and chemical methods are provided, together with an estimate of the precision and accuracy obtained in real operating conditions

  4. Adaptive distributed parameter and input estimation in linear parabolic PDEs

    KAUST Repository

    Mechhoud, Sarra

    2016-01-01

    First, new sufficient identifiability conditions of the input and the parameter simultaneous estimation are stated. Then, by means of Lyapunov-based design, an adaptive estimator is derived in the infinite-dimensional framework. It consists of a state observer and gradient-based parameter and input adaptation laws. The parameter convergence depends on the plant signal richness assumption, whereas the state convergence is established using a Lyapunov approach. The results of the paper are illustrated by simulation on tokamak plasma heat transport model using simulated data.

  5. Experimental investigation of an active magnetic regenerative heat circulator applied to self-heat recuperation technology

    International Nuclear Information System (INIS)

    Kotani, Yui; Kansha, Yasuki; Ishizuka, Masanori; Tsutsumi, Atsushi

    2014-01-01

    An experimental investigation into an active magnetic regenerative (AMR) heat circulator based on self-heat recuperation technology, was conducted to evaluate its energy saving potential in heat circulation. In an AMR heat circulator, magnetocaloric effect is applied to recuperate the heat exergy of the process fluid. The recuperated heat can be reused to heat the feed process fluid and realize self-heat recuperation. In this paper, AMR heat circulator has newly been constructed to determine the amount of heat circulated when applied to self-heat recuperation and the energy consumption of the heat circulator. Gadolinium and water was used as the magnetocaloric working material and the process fluid, respectively. The heat circulated amount was determined by measuring the temperature of the process fluid and gadolinium. The net work input for heat circulation was obtained from the magnetizing and demagnetizing forces and the distance travelled by the magnetocaloric bed. The results were compared with the minimum work input needed for heat circulation derived from exergy loss during heat exchange. It was seen that the experimentally obtained value was close to the minimum work input needed for heat circulation. - Highlights: • AMR heat circulator has newly been constructed for experimental evaluation. • Heat circulation in the vicinity of Curie temperature was observed. • Energy consumption of an AMR heat circulator has been measured. • Energy saving for processes near Curie temperature of working material was seen

  6. Magnetospheric energy inputs into the upper atmospheres of the giant planets

    Directory of Open Access Journals (Sweden)

    C. G. A. Smith

    2005-07-01

    Full Text Available We revisit the effects of Joule heating upon the upper atmospheres of Jupiter and Saturn. We show that in addition to direct Joule heating there is an additional input of kinetic energy – ion drag energy – which we quantify relative to the Joule heating. We also show that fluctuations about the mean electric field, as observed in the Earth's ionosphere, may significantly increase the Joule heating itself. For physically plausible parameters these effects may increase previous estimates of the upper atmospheric energy input at Saturn from ~10 TW to ~20 TW.

    Keywords. Ionosphere (Electric fields and currents; Planetary ionosphere – Magnetospheric physics (Auroral phenomena

  7. Heat pumps: heat recovery

    Energy Technology Data Exchange (ETDEWEB)

    Pielke, R

    1976-01-01

    The author firstly explains in a general manner the functioning of the heat pump. Following a brief look at the future heat demand and the possibilities of covering it, the various methods of obtaining energy (making use of solar energy, ground heat, and others) and the practical applications (office heating, swimming pool heating etc.) are explained. The author still sees considerable difficulties in using the heat pump at present on a large scale. Firstly there is not enough maintenance personnel available, secondly the electricity supply undertakings cannot provide the necessary electricity on a wide basis without considerable investments. Other possibilities to save energy or to use waste energy are at present easier and more economical to realize. Recuperative and regenerative systems are described.

  8. An improved anonymous authentication scheme for roaming in ubiquitous networks.

    Science.gov (United States)

    Lee, Hakjun; Lee, Donghoon; Moon, Jongho; Jung, Jaewook; Kang, Dongwoo; Kim, Hyoungshick; Won, Dongho

    2018-01-01

    With the evolution of communication technology and the exponential increase of mobile devices, the ubiquitous networking allows people to use our data and computing resources anytime and everywhere. However, numerous security concerns and complicated requirements arise as these ubiquitous networks are deployed throughout people's lives. To meet the challenge, the user authentication schemes in ubiquitous networks should ensure the essential security properties for the preservation of the privacy with low computational cost. In 2017, Chaudhry et al. proposed a password-based authentication scheme for the roaming in ubiquitous networks to enhance the security. Unfortunately, we found that their scheme remains insecure in its protection of the user privacy. In this paper, we prove that Chaudhry et al.'s scheme is vulnerable to the stolen-mobile device and user impersonation attacks, and its drawbacks comprise the absence of the incorrect login-input detection, the incorrectness of the password change phase, and the absence of the revocation provision. Moreover, we suggest a possible way to fix the security flaw in Chaudhry et al's scheme by using the biometric-based authentication for which the bio-hash is applied in the implementation of a three-factor authentication. We prove the security of the proposed scheme with the random oracle model and formally verify its security properties using a tool named ProVerif, and analyze it in terms of the computational and communication cost. The analysis result shows that the proposed scheme is suitable for resource-constrained ubiquitous environments.

  9. An improved anonymous authentication scheme for roaming in ubiquitous networks.

    Directory of Open Access Journals (Sweden)

    Hakjun Lee

    Full Text Available With the evolution of communication technology and the exponential increase of mobile devices, the ubiquitous networking allows people to use our data and computing resources anytime and everywhere. However, numerous security concerns and complicated requirements arise as these ubiquitous networks are deployed throughout people's lives. To meet the challenge, the user authentication schemes in ubiquitous networks should ensure the essential security properties for the preservation of the privacy with low computational cost. In 2017, Chaudhry et al. proposed a password-based authentication scheme for the roaming in ubiquitous networks to enhance the security. Unfortunately, we found that their scheme remains insecure in its protection of the user privacy. In this paper, we prove that Chaudhry et al.'s scheme is vulnerable to the stolen-mobile device and user impersonation attacks, and its drawbacks comprise the absence of the incorrect login-input detection, the incorrectness of the password change phase, and the absence of the revocation provision. Moreover, we suggest a possible way to fix the security flaw in Chaudhry et al's scheme by using the biometric-based authentication for which the bio-hash is applied in the implementation of a three-factor authentication. We prove the security of the proposed scheme with the random oracle model and formally verify its security properties using a tool named ProVerif, and analyze it in terms of the computational and communication cost. The analysis result shows that the proposed scheme is suitable for resource-constrained ubiquitous environments.

  10. A Simple K-Map Based Variable Selection Scheme in the Direct ...

    African Journals Online (AJOL)

    A multiplexer with (n-l) data select inputs can realise directly a function of n variables. In this paper, a simple k-map based variable selection scheme is proposed such that an n variable logic function can be synthesised using a multiplexer with (n-q) data input variables and q data select variables. The procedure is based on ...

  11. Influência da energia de soldagem na microestrutura e na microdureza de revestimentos de aço inoxidável duplex Influence of the heat input on the microstructure and microhardness of weld overlay of duplex stainless steel

    Directory of Open Access Journals (Sweden)

    Everton Barbosa Nunes

    2012-06-01

    Full Text Available Aços inoxidáveis duplex (AID são caracterizados por apresentar interessante boas propriedades mecânicas e resistência à corrosão, possuindo um vasto campo de aplicação na indústria química e petroquímica. Geralmente, os reparos dos equipamentos ou estruturas são realizados por soldagem, sendo importante a seleção de parâmetros. É de suma importância a obtenção do teor adequado de ferrita no metal de solda, sendo que a variação da energia de soldagem pode influenciar de forma direta no percentual de ferrita. Logo, o objetivo deste trabalho é avaliar a influência da variação da energia de soldagem na microestrutura e na microdureza do metal de solda do AID. Foram realizadas soldagens de revestimento com sobreposição de duas camadas sobre o aço estrutural ASTM A516 Gr.60, utilizando eletrodo revestido AWS E2209-17. Três níveis de energia (15, 20 e 24 kJ/cm foram empregados, variando-se a corrente e a velocidade de soldagem. Foi verificado que para os níveis de energia empregados não houve diferença significativa no percentual de ferrita, porém o primeiro cordão depositado apresentou maior teor de austenita em relação aos demais cordões. De forma geral, foi verificado que o primeiro cordão depositado obteve níveis maiores de microdureza. Todas as condições apresentaram microdurezas abaixo do valor crítico.Duplex stainless steels (DSS are characterized by the presentation of an interesting combination of good mechanical properties and corrosion resistance, having a wide application in chemical and petrochemical industry. Generally, the manufacture and repair of any industrial equipment involve welding operations, even though it is very important to evaluate the influence of welding parameters. It is very important to obtain appropriate ferrite content in the weld metal, so that the variation of heat input can influence on the ferrite content directly. Therefore, the aim this work is to evaluate the

  12. Password Authentication Scheme with Secured Login Interface

    Directory of Open Access Journals (Sweden)

    AKINWALE A. Taofiki

    2009-12-01

    Full Text Available This paper presents a novel solution to the age long problem of password security at input level. In our solution, each of the various characters from which a password could be composed is encoded with a random single digit integer and presented to the user via an input interface form. A legitimate user entering his password only needs to carefully study the sequence of code that describe his password, and then enter these code in place of his actual password characters. This approach does not require the input code to be hidden from anyone or converted to placeholder characters for security reasons. Our solution engine regenerates new code for each character each time the carriage return key is struck, producing a hardened password that is convincingly more secure than conventional password entry system against both online and offline attackers. Using empirical data and a prototype implementation of our scheme, we give evidence that our approach is viable in practice, in terms of ease of use, improved security, and performance.

  13. A more accurate scheme for calculating Earth's skin temperature

    Science.gov (United States)

    Tsuang, Ben-Jei; Tu, Chia-Ying; Tsai, Jeng-Lin; Dracup, John A.; Arpe, Klaus; Meyers, Tilden

    2009-02-01

    The theoretical framework of the vertical discretization of a ground column for calculating Earth’s skin temperature is presented. The suggested discretization is derived from the evenly heat-content discretization with the optimal effective thickness for layer-temperature simulation. For the same level number, the suggested discretization is more accurate in skin temperature as well as surface ground heat flux simulations than those used in some state-of-the-art models. A proposed scheme (“op(3,2,0)”) can reduce the normalized root-mean-square error (or RMSE/STD ratio) of the calculated surface ground heat flux of a cropland site significantly to 2% (or 0.9 W m-2), from 11% (or 5 W m-2) by a 5-layer scheme used in ECMWF, from 19% (or 8 W m-2) by a 5-layer scheme used in ECHAM, and from 74% (or 32 W m-2) by a single-layer scheme used in the UCLA GCM. Better accuracy can be achieved by including more layers to the vertical discretization. Similar improvements are expected for other locations with different land types since the numerical error is inherited into the models for all the land types. The proposed scheme can be easily implemented into state-of-the-art climate models for the temperature simulation of snow, ice and soil.

  14. Optimization of Heat Exchangers

    International Nuclear Information System (INIS)

    Catton, Ivan

    2010-01-01

    The objective of this research is to develop tools to design and optimize heat exchangers (HE) and compact heat exchangers (CHE) for intermediate loop heat transport systems found in the very high temperature reator (VHTR) and other Generation IV designs by addressing heat transfer surface augmentation and conjugate modeling. To optimize heat exchanger, a fast running model must be created that will allow for multiple designs to be compared quickly. To model a heat exchanger, volume averaging theory, VAT, is used. VAT allows for the conservation of mass, momentum and energy to be solved for point by point in a 3 dimensional computer model of a heat exchanger. The end product of this project is a computer code that can predict an optimal configuration for a heat exchanger given only a few constraints (input fluids, size, cost, etc.). As VAT computer code can be used to model characteristics (pumping power, temperatures, and cost) of heat exchangers more quickly than traditional CFD or experiment, optimization of every geometric parameter simultaneously can be made. Using design of experiment, DOE and genetric algorithms, GE, to optimize the results of the computer code will improve heat exchanger design.

  15. On Secure NOMA Systems with Transmit Antenna Selection Schemes

    KAUST Repository

    Lei, Hongjiang; Zhang, Jianming; Park, Kihong; Xu, Peng; Ansari, Imran Shafique; Pan, Gaofeng; Alomair, Basel; Alouini, Mohamed-Slim

    2017-01-01

    This paper investigates the secrecy performance of a two-user downlink non-orthogonal multiple access systems. Both single-input and single-output and multiple-input and singleoutput systems with different transmit antenna selection (TAS) strategies are considered. Depending on whether the base station has the global channel state information of both the main and wiretap channels, the exact closed-form expressions for the secrecy outage probability (SOP) with suboptimal antenna selection and optimal antenna selection schemes are obtained and compared with the traditional space-time transmission scheme. To obtain further insights, the asymptotic analysis of the SOP in high average channel power gains regime is presented and it is found that the secrecy diversity order for all the TAS schemes with fixed power allocation is zero. Furthermore, an effective power allocation scheme is proposed to obtain the nonzero diversity order with all the TAS schemes. Monte-Carlo simulations are performed to verify the proposed analytical results.

  16. On Secure NOMA Systems with Transmit Antenna Selection Schemes

    KAUST Repository

    Lei, Hongjiang

    2017-08-09

    This paper investigates the secrecy performance of a two-user downlink non-orthogonal multiple access systems. Both single-input and single-output and multiple-input and singleoutput systems with different transmit antenna selection (TAS) strategies are considered. Depending on whether the base station has the global channel state information of both the main and wiretap channels, the exact closed-form expressions for the secrecy outage probability (SOP) with suboptimal antenna selection and optimal antenna selection schemes are obtained and compared with the traditional space-time transmission scheme. To obtain further insights, the asymptotic analysis of the SOP in high average channel power gains regime is presented and it is found that the secrecy diversity order for all the TAS schemes with fixed power allocation is zero. Furthermore, an effective power allocation scheme is proposed to obtain the nonzero diversity order with all the TAS schemes. Monte-Carlo simulations are performed to verify the proposed analytical results.

  17. Modified Aggressive Packet Combining Scheme

    International Nuclear Information System (INIS)

    Bhunia, C.T.

    2010-06-01

    In this letter, a few schemes are presented to improve the performance of aggressive packet combining scheme (APC). To combat error in computer/data communication networks, ARQ (Automatic Repeat Request) techniques are used. Several modifications to improve the performance of ARQ are suggested by recent research and are found in literature. The important modifications are majority packet combining scheme (MjPC proposed by Wicker), packet combining scheme (PC proposed by Chakraborty), modified packet combining scheme (MPC proposed by Bhunia), and packet reversed packet combining (PRPC proposed by Bhunia) scheme. These modifications are appropriate for improving throughput of conventional ARQ protocols. Leung proposed an idea of APC for error control in wireless networks with the basic objective of error control in uplink wireless data network. We suggest a few modifications of APC to improve its performance in terms of higher throughput, lower delay and higher error correction capability. (author)

  18. Transmission usage cost allocation schemes

    International Nuclear Information System (INIS)

    Abou El Ela, A.A.; El-Sehiemy, R.A.

    2009-01-01

    This paper presents different suggested transmission usage cost allocation (TCA) schemes to the system individuals. Different independent system operator (ISO) visions are presented using the proportional rata and flow-based TCA methods. There are two proposed flow-based TCA schemes (FTCA). The first FTCA scheme generalizes the equivalent bilateral exchanges (EBE) concepts for lossy networks through two-stage procedure. The second FTCA scheme is based on the modified sensitivity factors (MSF). These factors are developed from the actual measurements of power flows in transmission lines and the power injections at different buses. The proposed schemes exhibit desirable apportioning properties and are easy to implement and understand. Case studies for different loading conditions are carried out to show the capability of the proposed schemes for solving the TCA problem. (author)

  19. A one-dimensional heat transfer model for parallel-plate thermoacoustic heat exchangers

    NARCIS (Netherlands)

    de Jong, Anne; Wijnant, Ysbrand H.; de Boer, Andries

    2014-01-01

    A one-dimensional (1D) laminar oscillating flow heat transfer model is derived and applied to parallel-plate thermoacoustic heat exchangers. The model can be used to estimate the heat transfer from the solid wall to the acoustic medium, which is required for the heat input/output of thermoacoustic

  20. Heat pipe heat storage performance

    Energy Technology Data Exchange (ETDEWEB)

    Caruso, A; Pasquetti, R [Univ. de Provence, Marseille (FR). Inst. Universitaire des Systemes; Grakovich, L P; Vasiliev, L L [A.V. Luikov Heat and Mass Transfer Inst. of the BSSR, Academy of Sciences, Minsk (BY)

    1989-01-01

    Heat storage offers essential thermal energy saving for heating. A ground heat store equipped with heat pipes connecting it with a heat source and to the user is considered in this paper. It has been shown that such a heat exchanging system along with a batch energy source meets, to a considerable extent, house heating requirements. (author).

  1. The concept of parallel input/output processing for an electron linac

    International Nuclear Information System (INIS)

    Emoto, Takashi

    1993-01-01

    The instrumentation of and the control system for the PNC 10 MeV CW electron linac are described. A new concept of parallel input/output processing for the linac has been introduced. It is based on a substantial number of input/output processors(IOP) using beam control and diagnostics. The flexibility and simplicity of hardware/software are significant advantages with this scheme. (author)

  2. Multiple-Input Multiple-Output OFDM with Index Modulation

    OpenAIRE

    Basar, Ertugrul

    2015-01-01

    Orthogonal frequency division multiplexing with index modulation (OFDM-IM) is a novel multicarrier transmission technique which has been proposed as an alternative to classical OFDM. The main idea of OFDM-IM is the use of the indices of the active subcarriers in an OFDM system as an additional source of information. In this work, we propose multiple-input multiple-output OFDM-IM (MIMO-OFDM-IM) scheme by combining OFDM-IM and MIMO transmission techniques. The low complexity transceiver structu...

  3. Extended lattice Boltzmann scheme for droplet combustion.

    Science.gov (United States)

    Ashna, Mostafa; Rahimian, Mohammad Hassan; Fakhari, Abbas

    2017-05-01

    The available lattice Boltzmann (LB) models for combustion or phase change are focused on either single-phase flow combustion or two-phase flow with evaporation assuming a constant density for both liquid and gas phases. To pave the way towards simulation of spray combustion, we propose a two-phase LB method for modeling combustion of liquid fuel droplets. We develop an LB scheme to model phase change and combustion by taking into account the density variation in the gas phase and accounting for the chemical reaction based on the Cahn-Hilliard free-energy approach. Evaporation of liquid fuel is modeled by adding a source term, which is due to the divergence of the velocity field being nontrivial, in the continuity equation. The low-Mach-number approximation in the governing Navier-Stokes and energy equations is used to incorporate source terms due to heat release from chemical reactions, density variation, and nonluminous radiative heat loss. Additionally, the conservation equation for chemical species is formulated by including a source term due to chemical reaction. To validate the model, we consider the combustion of n-heptane and n-butanol droplets in stagnant air using overall single-step reactions. The diameter history and flame standoff ratio obtained from the proposed LB method are found to be in good agreement with available numerical and experimental data. The present LB scheme is believed to be a promising approach for modeling spray combustion.

  4. Heat transfer

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Heat transfer. Heat conduction in solid slab. Convective heat transfer. Non-linear temperature. variation due to flow. HEAT FLUX AT SURFACE. conduction/diffusion.

  5. Heat Waves

    Science.gov (United States)

    Heat Waves Dangers we face during periods of very high temperatures include: Heat cramps: These are muscular pains and spasms due ... that the body is having trouble with the heat. If a heat wave is predicted or happening… - ...

  6. Heat Islands

    Science.gov (United States)

    EPA's Heat Island Effect Site provides information on heat islands, their impacts, mitigation strategies, related research, a directory of heat island reduction initiatives in U.S. communities, and EPA's Heat Island Reduction Program.

  7. Coordinated renewable energy support schemes

    DEFF Research Database (Denmark)

    Morthorst, P.E.; Jensen, S.G.

    2006-01-01

    . The first example covers countries with regional power markets that also regionalise their support schemes, the second countries with separate national power markets that regionalise their support schemes. The main findings indicate that the almost ideal situation exists if the region prior to regionalising...

  8. CANONICAL BACKWARD DIFFERENTIATION SCHEMES FOR ...

    African Journals Online (AJOL)

    This paper describes a new nonlinear backward differentiation schemes for the numerical solution of nonlinear initial value problems of first order ordinary differential equations. The schemes are based on rational interpolation obtained from canonical polynomials. They are A-stable. The test problems show that they give ...

  9. Heat pump heating with heat pumps driven by combustion engines or turbines

    Energy Technology Data Exchange (ETDEWEB)

    Hein, K

    1977-01-27

    The heat pump described is driven by a gas Otto cycle engine, or a gas- or light- or heavy-oil fired Diesel engine. The claim refers to the use of waste heat of the engines by feeding into the input circuit of the heat pump. In addition, a drive by an electrical motor-generator or power production can be selected at times of peak load in the electrical supply network.

  10. Performance Analysis of Virtual MIMO Relaying Schemes Based on Detect–Split–Forward

    KAUST Repository

    Al-Basit, Suhaib M.; Al-Ghadhban, Samir; Zummo, Salam A.

    2014-01-01

    © 2014, Springer Science+Business Media New York. Virtual multi-input multi-output (vMIMO) schemes in wireless communication systems improve coverage, throughput, capacity, and quality of service. In this paper, we propose three uplink vMIMO relaying schemes based on detect–split–forward (DSF). In addition, we investigate the effect of several physical parameters such as distance, modulation type and number of relays. Furthermore, an adaptive vMIMO DSF scheme based on VBLAST and STBC is proposed. In order to do that, we provide analytical tools to evaluate the performance of the propose vMIMO relaying scheme.

  11. Performance Analysis of Virtual MIMO Relaying Schemes Based on Detect–Split–Forward

    KAUST Repository

    Al-Basit, Suhaib M.

    2014-10-29

    © 2014, Springer Science+Business Media New York. Virtual multi-input multi-output (vMIMO) schemes in wireless communication systems improve coverage, throughput, capacity, and quality of service. In this paper, we propose three uplink vMIMO relaying schemes based on detect–split–forward (DSF). In addition, we investigate the effect of several physical parameters such as distance, modulation type and number of relays. Furthermore, an adaptive vMIMO DSF scheme based on VBLAST and STBC is proposed. In order to do that, we provide analytical tools to evaluate the performance of the propose vMIMO relaying scheme.

  12. Analysis of Paper reduction schemes to develop selection criteria for ofdm signals

    International Nuclear Information System (INIS)

    Abro, F.R.

    2015-01-01

    This paper presents a review of different PAPR (Peak to Average Power Ratio) reduction schemes of OFDM (Orthogonal Frequency Division Multiplexing) signals. The schemes that have been considered include Clipping and Filtering, Coding, ACE (Active Contstellation Extension), SLM (Selected Mapping), PTS (Partial Transmit Sequence), TI (Tone Injection) and TR (Tone Reservation). A comparative analysis has been carried out qualitatively. It has been demonstrated how these schemes can be combined with MIMO (Multiple Input Multiple Output) technologies. Finally, criteria for selection of PAPR reduction schemes of OFDM systems are discussed. (author)

  13. A Stereo Music Preprocessing Scheme for Cochlear Implant Users.

    Science.gov (United States)

    Buyens, Wim; van Dijk, Bas; Wouters, Jan; Moonen, Marc

    2015-10-01

    Listening to music is still one of the more challenging aspects of using a cochlear implant (CI) for most users. Simple musical structures, a clear rhythm/beat, and lyrics that are easy to follow are among the top factors contributing to music appreciation for CI users. Modifying the audio mix of complex music potentially improves music enjoyment in CI users. A stereo music preprocessing scheme is described in which vocals, drums, and bass are emphasized based on the representation of the harmonic and the percussive components in the input spectrogram, combined with the spatial allocation of instruments in typical stereo recordings. The scheme is assessed with postlingually deafened CI subjects (N = 7) using pop/rock music excerpts with different complexity levels. The scheme is capable of modifying relative instrument level settings, with the aim of improving music appreciation in CI users, and allows individual preference adjustments. The assessment with CI subjects confirms the preference for more emphasis on vocals, drums, and bass as offered by the preprocessing scheme, especially for songs with higher complexity. The stereo music preprocessing scheme has the potential to improve music enjoyment in CI users by modifying the audio mix in widespread (stereo) music recordings. Since music enjoyment in CI users is generally poor, this scheme can assist the music listening experience of CI users as a training or rehabilitation tool.

  14. Development of knowledgebase system for assisting signal validation scheme design

    International Nuclear Information System (INIS)

    Kitamura, M.; Baba, T.; Washio, T.; Sugiyama, K.

    1987-01-01

    The purpose of this study is to develop a knowledgebase system to be used as a tool for designing signal validation schemes. The outputs from the signal validation scheme can be used as; (1) auxiliary signals for detecting sensor failures, (2) inputs to advanced instrumentation such as disturbance analysis and diagnosis system or safety parameter display system, and (3) inputs to digital control systems. Conventional signal validation techniques such as comparison of redundant sensors, limit checking, and calibration tests have been employed in nuclear power plants. However, these techniques have serious drawbacks, e.g. needs for extra sensors, vulnerability to common mode failures, limited applicability to continuous monitoring, etc. To alleviate these difficulties, a new signal validation technique has been developed by using the methods called analytic redundancy and parity space. Although the new technique has been proved feasible as far as preliminary tests are concerned, further developments should be made in order to enhance its practical applicability

  15. Chemical sensors are hybrid-input memristors

    Science.gov (United States)

    Sysoev, V. I.; Arkhipov, V. E.; Okotrub, A. V.; Pershin, Y. V.

    2018-04-01

    Memristors are two-terminal electronic devices whose resistance depends on the history of input signal (voltage or current). Here we demonstrate that the chemical gas sensors can be considered as memristors with a generalized (hybrid) input, namely, with the input consisting of the voltage, analyte concentrations and applied temperature. The concept of hybrid-input memristors is demonstrated experimentally using a single-walled carbon nanotubes chemical sensor. It is shown that with respect to the hybrid input, the sensor exhibits some features common with memristors such as the hysteretic input-output characteristics. This different perspective on chemical gas sensors may open new possibilities for smart sensor applications.

  16. High intensity heat pulse problem

    International Nuclear Information System (INIS)

    Yalamanchili, R.

    1977-01-01

    The use of finite-difference methods for the solution of partial differential equations is common in both design and research and development because of the advance of computers. The numerical methods for the unsteady heat diffusion equation received most attention not only because of heat transfer problems but also happened to be the basis for any study of parabolic partial differential equations. It is common to test the heat equation first even the methods developed for complex nonlinear parabolic partial differential equations arising in fluid mechanics or convective heat transfer. It is concluded that the finite-element method is conservative in both stability and monoscillation characteristics than the finite-difference method but not as conservative as the method of weighted-residuals. Since the finite-element is unique because of Gurtin's variational principle and numerous finite-differences can be constructed, it is found that some finite-difference schemes are better than the finite-element scheme in accuracy also. Therefore, further attention is focused here on finite-difference schemes only. Various physical problems are considered in the field of heat transfer. These include: numerous problems in steady and unsteady heat conduction; heat pulse problems, such as, plasma torch; problems arising from machining operations, such as, abrasive cut-off and surface grinding. (Auth.)

  17. Synchronization and Desynchronizing Control Schemes for Supermarket Refrigeration Systems

    DEFF Research Database (Denmark)

    Larsen, Lars Finn Sloth; Thybo, Claus Thybo; Izadi-Zamanabadi, Roozbeh

    2007-01-01

    A supermarket refrigeration system is a hybrid system with switched nonlinear dynamics and discrete-valued input variables such as opening/closing of valves and start/stop of compressors. Practical and simulation studies have shown that the use of distributed hysteresis controllers to operate...... complexity for desynchronizing the valve operations while improving performance. Simulation results indicate the potential increase in efficiency and reduction in wear comparing with traditional control schemes....

  18. Lunar Base Heat Pump

    Science.gov (United States)

    Walker, D.; Fischbach, D.; Tetreault, R.

    1996-01-01

    The objective of this project was to investigate the feasibility of constructing a heat pump suitable for use as a heat rejection device in applications such as a lunar base. In this situation, direct heat rejection through the use of radiators is not possible at a temperature suitable for lde support systems. Initial analysis of a heat pump of this type called for a temperature lift of approximately 378 deg. K, which is considerably higher than is commonly called for in HVAC and refrigeration applications where heat pumps are most often employed. Also because of the variation of the rejection temperature (from 100 to 381 deg. K), extreme flexibility in the configuration and operation of the heat pump is required. A three-stage compression cycle using a refrigerant such as CFC-11 or HCFC-123 was formulated with operation possible with one, two or three stages of compression. Also, to meet the redundancy requirements, compression was divided up over multiple compressors in each stage. A control scheme was devised that allowed these multiple compressors to be operated as required so that the heat pump could perform with variable heat loads and rejection conditions. A prototype heat pump was designed and constructed to investigate the key elements of the high-lift heat pump concept. Control software was written and implemented in the prototype to allow fully automatic operation. The heat pump was capable of operation over a wide range of rejection temperatures and cooling loads, while maintaining cooling water temperature well within the required specification of 40 deg. C +/- 1.7 deg. C. This performance was verified through testing.

  19. Heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, E L; Eisenmann, G; Hahne, E [Stuttgart Univ. (TH) (F.R. Germany). Inst. fuer Thermodynamik und Waermetechnik

    1976-04-01

    A survey is presented on publications on design, heat transfer, form factors, free convection, evaporation processes, cooling towers, condensation, annular gap, cross-flowed cylinders, axial flow through a bundle of tubes, roughnesses, convective heat transfer, loss of pressure, radiative heat transfer, finned surfaces, spiral heat exchangers, curved pipes, regeneraters, heat pipes, heat carriers, scaling, heat recovery systems, materials selection, strength calculation, control, instabilities, automation of circuits, operational problems and optimization.

  20. Towards long pulse high performance discharges in Tore Supra: experimental knowledge and technological developments for heat exhaust

    International Nuclear Information System (INIS)

    1995-08-01

    This document deals with fusion heat exhaust experiments in Tore Supra tokamak. The purpose of the Tore Supra tokamak is to achieve and control long pulse powerful discharges. High input power is required to generate the non inductive current, approximately 25 MW . The conception and realisation of a Plasma Facing Component (PFC) scheme able to deal with this large amount of power is the main issue. A description of the water loop used for power removal and of the calorimetric system to determine the overall heat exhaust balance is provided. The infra-red measurements used during plasma operation are also described, together with several heat exhaust devices. The behaviour of ion cyclotron and lower hybrid wave launchers is addressed. Eventually, some information is provided on technological developments of PFC in Tore Supra. (TEC). 61 refs., 34 figs

  1. hybrid modulation scheme fo rid modulation scheme fo dulation

    African Journals Online (AJOL)

    eobe

    control technique is done through simulations and ex control technique .... HYBRID MODULATION SCHEME FOR CASCADED H-BRIDGE INVERTER CELLS. C. I. Odeh ..... and OR operations. Referring to ... MATLAB/SIMULINK environment.

  2. Generalized projective synchronization of chaotic nonlinear gyros coupled with dead-zone input

    International Nuclear Information System (INIS)

    Hung, M.-L.; Yan, J.-J.; Liao, T.-L.

    2008-01-01

    This paper addresses the synchronization problem of drive-response chaotic gyros coupled with dead-zone nonlinear input. Using the sliding mode control technique, a novel control law is established which guarantees generalized projective synchronization even when the dead-zone nonlinearity is present. Numerical simulations are presented to verify that the synchronization can be achieved by using the proposed synchronization scheme

  3. Wireless Power Transmission via Sheet Medium Using Automatic Phase Adjustment of Multiple Inputs

    Science.gov (United States)

    Matsuda, Takashi; Oota, Toshifumi; Kado, Youiti; Zhang, Bing

    The wireless power transmission via sheet medium is a novel physical form of communication that utilizes the surface as a medium to provide both data and power transmission services. To efficiently transmit a relatively-large amount of electric power (several watts), we have developed a wireless power transmission system via sheet medium that concentrates the electric power on a specific spot by using phase control of multiple inputs. However, to find the optimal phases of the multiple inputs making the microwave converge on a specific spot in the sheet medium, the prior knowledge of the device's position, and the pre-experiment measuring the output power, are needed. In wireless communication area, it is known that the retrodirective array scheme can efficiently transmit the power in a self-phasing manner, which uses the pilot signals sent by the client devices. In this paper, we apply the retrodirective array scheme to the wireless power transmission system via sheet medium, and propose a power transmission scheme using the phase-adjustment of multiple inputs. To confirm the effectiveness of the proposal scheme, we evaluate its performance by computer simulation and realistic measurement. Both results show that the proposal scheme can achieve the retrodirectivity over the wireless power transmission via sheet medium.

  4. Repositioning Recitation Input in College English Teaching

    Science.gov (United States)

    Xu, Qing

    2009-01-01

    This paper tries to discuss how recitation input helps overcome the negative influences on the basis of second language acquisition theory and confirms the important role that recitation input plays in improving college students' oral and written English.

  5. Distribution of return point memory states for systems with stochastic inputs

    International Nuclear Information System (INIS)

    Amann, A; Brokate, M; Rachinskii, D; Temnov, G

    2011-01-01

    We consider the long term effect of stochastic inputs on the state of an open loop system which exhibits the so-called return point memory. An example of such a system is the Preisach model; more generally, systems with the Preisach type input-state relationship, such as in spin-interaction models, are considered. We focus on the characterisation of the expected memory configuration after the system has been effected by the input for sufficiently long period of time. In the case where the input is given by a discrete time random walk process, or the Wiener process, simple closed form expressions for the probability density of the vector of the main input extrema recorded by the memory state, and scaling laws for the dimension of this vector, are derived. If the input is given by a general continuous Markov process, we show that the distribution of previous memory elements can be obtained from a Markov chain scheme which is derived from the solution of an associated one-dimensional escape type problem. Formulas for transition probabilities defining this Markov chain scheme are presented. Moreover, explicit formulas for the conditional probability densities of previous main extrema are obtained for the Ornstein-Uhlenbeck input process. The analytical results are confirmed by numerical experiments.

  6. Exergetic life cycle assessment of cement production process with waste heat power generation

    International Nuclear Information System (INIS)

    Sui, Xiuwen; Zhang, Yun; Shao, Shuai; Zhang, Shushen

    2014-01-01

    Highlights: • Exergetic life cycle assessment was performed for the cement production process. • Each system’s efficiency before and after waste heat power generation was analyzed. • The waste heat power generation improved the efficiency of each production system. • It provided technical support for the implementation of energy-saving schemes. - Abstract: The cement industry is an industry that consumes a considerable quantity of resources and energy and has a very large influence on the efficient use of global resources and energy. In this study, exergetic life cycle assessment is performed for the cement production process, and the energy efficiency and exergy efficiency of each system before and after waste heat power generation is investigated. The study indicates that, before carrying out a waste heat power generation project, the objective energy efficiencies of the raw material preparation system, pulverized coal preparation system and rotary kiln system are 39.4%, 10.8% and 50.2%, respectively, and the objective exergy efficiencies are 4.5%, 1.4% and 33.7%, respectively; after carrying out a waste heat power generation project, the objective energy efficiencies are 45.8%, 15.5% and 55.1%, respectively, and the objective exergy efficiencies are 7.8%, 2.8% and 38.1%, respectively. The waste heat power generation project can recover 3.7% of the total input exergy of a rotary kiln system and improve the objective exergy efficiencies of the above three systems. The study can identify degree of resource and energy utilization and the energy-saving effect of a waste heat power generation project on each system, and provide technical support for managers in the implementation of energy-saving schemes

  7. Real time plasma control experiments using the JET auxiliary plasma heating systems as the actuator

    International Nuclear Information System (INIS)

    Zornig, N.H.

    1999-01-01

    The role of the Real Time Power Control system (RTPC) in the Joint European Torus (JET) is described in depth. The modes of operation are discussed in detail and a number of successful experiments are described. These experiments prove that RTPC can be used for a wide range of experiments, including: (1) Feedback control of plasma parameters in real time using Ion Cyclotron Resonance Heating (ICRH) or Neutral Beam Heating (NBH) as the actuator in various JET operating regimes. It is demonstrated that in a multi-parameter space it is not sufficient to control one global plasma parameter in order to avoid performance limiting events. (2) Restricting neutron production and subsequent machine activation resulting from high performance pulses. (3) The simulation of α-particle heating effects in a DT-plasma in a D-only plasma. The heating properties of α-particles are simulated using ICRH-power, which is adjusted in real time. The simulation of α-particle heating in JET allows the effects of a change in isotopic mass to be separated from α-particle heating. However, the change in isotopic mass of the plasma ions appears to affect not only the global energy confinement time (τ E ) but also other parameters such as the electron temperature at the plasma edge. This also affects τ E , making it difficult to make a conclusive statement about any isotopic effect. (4) For future JET experiments a scheme has been designed which simulates the behaviour of a fusion reactor experimentally. The design parameters of the International Thermonuclear Experimental Reactor (ITER) are used. In the proposed scheme the most relevant dimensionless plasma parameters are similar in JET and ITER. It is also shown how the amount of heating may be simulated in real time by RTPC using the electron temperature and density as input parameters. The results of two demonstration experiments are presented. (author)

  8. Textual Enhancement of Input: Issues and Possibilities

    Science.gov (United States)

    Han, ZhaoHong; Park, Eun Sung; Combs, Charles

    2008-01-01

    The input enhancement hypothesis proposed by Sharwood Smith (1991, 1993) has stimulated considerable research over the last 15 years. This article reviews the research on textual enhancement of input (TE), an area where the majority of input enhancement studies have aggregated. Methodological idiosyncrasies are the norm of this body of research.…

  9. 7 CFR 3430.607 - Stakeholder input.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Stakeholder input. 3430.607 Section 3430.607 Agriculture Regulations of the Department of Agriculture (Continued) COOPERATIVE STATE RESEARCH, EDUCATION... § 3430.607 Stakeholder input. CSREES shall seek and obtain stakeholder input through a variety of forums...

  10. 7 CFR 3430.15 - Stakeholder input.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Stakeholder input. 3430.15 Section 3430.15... Stakeholder input. Section 103(c)(2) of the Agricultural Research, Extension, and Education Reform Act of 1998... RFAs for competitive programs. CSREES will provide instructions for submission of stakeholder input in...

  11. Good governance for pension schemes

    CERN Document Server

    Thornton, Paul

    2011-01-01

    Regulatory and market developments have transformed the way in which UK private sector pension schemes operate. This has increased demands on trustees and advisors and the trusteeship governance model must evolve in order to remain fit for purpose. This volume brings together leading practitioners to provide an overview of what today constitutes good governance for pension schemes, from both a legal and a practical perspective. It provides the reader with an appreciation of the distinctive characteristics of UK occupational pension schemes, how they sit within the capital markets and their social and fiduciary responsibilities. Providing a holistic analysis of pension risk, both from the trustee and the corporate perspective, the essays cover the crucial role of the employer covenant, financing and investment risk, developments in longevity risk hedging and insurance de-risking, and best practice scheme administration.

  12. Optimum RA reactor fuelling scheme

    International Nuclear Information System (INIS)

    Strugar, P.; Nikolic, V.

    1965-10-01

    Ideal reactor refueling scheme can be achieved only by continuous fuel elements movement in the core, which is not possible, and thus approximations are applied. One of the possible approximations is discontinuous movement of fuel elements groups in radial direction. This enables higher burnup especially if axial exchange is possible. Analysis of refueling schemes in the RA reactor core and schemes with mixing the fresh and used fuel elements show that 30% higher burnup can be achieved by applying mixing, and even 40% if reactivity due to decrease in experimental space is taken into account. Up to now, mean burnup of 4400 MWd/t has been achieved, and the proposed fueling scheme with reduction of experimental space could achieve mean burnup of 6300 MWd/t which means about 25 Mwd/t per fuel channel [sr

  13. A Novel Iris Segmentation Scheme

    Directory of Open Access Journals (Sweden)

    Chen-Chung Liu

    2014-01-01

    Full Text Available One of the key steps in the iris recognition system is the accurate iris segmentation from its surrounding noises including pupil, sclera, eyelashes, and eyebrows of a captured eye-image. This paper presents a novel iris segmentation scheme which utilizes the orientation matching transform to outline the outer and inner iris boundaries initially. It then employs Delogne-Kåsa circle fitting (instead of the traditional Hough transform to further eliminate the outlier points to extract a more precise iris area from an eye-image. In the extracted iris region, the proposed scheme further utilizes the differences in the intensity and positional characteristics of the iris, eyelid, and eyelashes to detect and delete these noises. The scheme is then applied on iris image database, UBIRIS.v1. The experimental results show that the presented scheme provides a more effective and efficient iris segmentation than other conventional methods.

  14. Numerical schemes for explosion hazards

    International Nuclear Information System (INIS)

    Therme, Nicolas

    2015-01-01

    In nuclear facilities, internal or external explosions can cause confinement breaches and radioactive materials release in the environment. Hence, modeling such phenomena is crucial for safety matters. Blast waves resulting from explosions are modeled by the system of Euler equations for compressible flows, whereas Navier-Stokes equations with reactive source terms and level set techniques are used to simulate the propagation of flame front during the deflagration phase. The purpose of this thesis is to contribute to the creation of efficient numerical schemes to solve these complex models. The work presented here focuses on two major aspects: first, the development of consistent schemes for the Euler equations, then the buildup of reliable schemes for the front propagation. In both cases, explicit in time schemes are used, but we also introduce a pressure correction scheme for the Euler equations. Staggered discretization is used in space. It is based on the internal energy formulation of the Euler system, which insures its positivity and avoids tedious discretization of the total energy over staggered grids. A discrete kinetic energy balance is derived from the scheme and a source term is added in the discrete internal energy balance equation to preserve the exact total energy balance at the limit. High order methods of MUSCL type are used in the discrete convective operators, based solely on material velocity. They lead to positivity of density and internal energy under CFL conditions. This ensures that the total energy cannot grow and we can furthermore derive a discrete entropy inequality. Under stability assumptions of the discrete L8 and BV norms of the scheme's solutions one can prove that a sequence of converging discrete solutions necessarily converges towards the weak solution of the Euler system. Besides it satisfies a weak entropy inequality at the limit. Concerning the front propagation, we transform the flame front evolution equation (the so called

  15. Breeding schemes in reindeer husbandry

    Directory of Open Access Journals (Sweden)

    Lars Rönnegård

    2003-04-01

    Full Text Available The objective of the paper was to investigate annual genetic gain from selection (G, and the influence of selection on the inbreeding effective population size (Ne, for different possible breeding schemes within a reindeer herding district. The breeding schemes were analysed for different proportions of the population within a herding district included in the selection programme. Two different breeding schemes were analysed: an open nucleus scheme where males mix and mate between owner flocks, and a closed nucleus scheme where the males in non-selected owner flocks are culled to maximise G in the whole population. The theory of expected long-term genetic contributions was used and maternal effects were included in the analyses. Realistic parameter values were used for the population, modelled with 5000 reindeer in the population and a sex ratio of 14 adult females per male. The standard deviation of calf weights was 4.1 kg. Four different situations were explored and the results showed: 1. When the population was randomly culled, Ne equalled 2400. 2. When the whole population was selected on calf weights, Ne equalled 1700 and the total annual genetic gain (direct + maternal in calf weight was 0.42 kg. 3. For the open nucleus scheme, G increased monotonically from 0 to 0.42 kg as the proportion of the population included in the selection programme increased from 0 to 1.0, and Ne decreased correspondingly from 2400 to 1700. 4. In the closed nucleus scheme the lowest value of Ne was 1300. For a given proportion of the population included in the selection programme, the difference in G between a closed nucleus scheme and an open one was up to 0.13 kg. We conclude that for mass selection based on calf weights in herding districts with 2000 animals or more, there are no risks of inbreeding effects caused by selection.

  16. Biomass heating at East Surrey Hospital: technical evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Landen, R; Rippengal, R

    2000-07-01

    This report provides the results of a detailed evaluation of the proposed biomass heating installation at East Surrey Hospital. It is intended to allow the Trust to make a decision on whether to proceed further with the scheme and, if so, on what basis. Specific areas assessed and reported on include: existing services provision for heating and cooling; technical aspects of the proposed biomass scheme; commercial aspects of the proposed biomass scheme. (author)

  17. Turn customer input into innovation.

    Science.gov (United States)

    Ulwick, Anthony W

    2002-01-01

    It's difficult to find a company these days that doesn't strive to be customer-driven. Too bad, then, that most companies go about the process of listening to customers all wrong--so wrong, in fact, that they undermine innovation and, ultimately, the bottom line. What usually happens is this: Companies ask their customers what they want. Customers offer solutions in the form of products or services. Companies then deliver these tangibles, and customers just don't buy. The reason is simple--customers aren't expert or informed enough to come up with solutions. That's what your R&D team is for. Rather, customers should be asked only for outcomes--what they want a new product or service to do for them. The form the solutions take should be up to you, and you alone. Using Cordis Corporation as an example, this article describes, in fine detail, a series of effective steps for capturing, analyzing, and utilizing customer input. First come indepth interviews, in which a moderator works with customers to deconstruct a process or activity in order to unearth "desired outcomes." Addressing participants' comments one at a time, the moderator rephrases them to be both unambiguous and measurable. Once the interviews are complete, researchers then compile a comprehensive list of outcomes that participants rank in order of importance and degree to which they are satisfied by existing products. Finally, using a simple mathematical formula called the "opportunity calculation," researchers can learn the relative attractiveness of key opportunity areas. These data can be used to uncover opportunities for product development, to properly segment markets, and to conduct competitive analysis.

  18. PREVIMER : Meteorological inputs and outputs

    Science.gov (United States)

    Ravenel, H.; Lecornu, F.; Kerléguer, L.

    2009-09-01

    PREVIMER is a pre-operational system aiming to provide a wide range of users, from private individuals to professionals, with short-term forecasts about the coastal environment along the French coastlines bordering the English Channel, the Atlantic Ocean, and the Mediterranean Sea. Observation data and digital modelling tools first provide 48-hour (probably 96-hour by summer 2009) forecasts of sea states, currents, sea water levels and temperatures. The follow-up of an increasing number of biological parameters will, in time, complete this overview of coastal environment. Working in partnership with the French Naval Hydrographic and Oceanographic Service (Service Hydrographique et Océanographique de la Marine, SHOM), the French National Weather Service (Météo-France), the French public science and technology research institute (Institut de Recherche pour le Développement, IRD), the European Institute of Marine Studies (Institut Universitaire Européen de la Mer, IUEM) and many others, IFREMER (the French public institute fo marine research) is supplying the technologies needed to ensure this pertinent information, available daily on Internet at http://www.previmer.org, and stored at the Operational Coastal Oceanographic Data Centre. Since 2006, PREVIMER publishes the results of demonstrators assigned to limited geographic areas and to specific applications. This system remains experimental. The following topics are covered : Hydrodynamic circulation, sea states, follow-up of passive tracers, conservative or non-conservative (specifically of microbiological origin), biogeochemical state, primary production. Lastly, PREVIMER provides researchers and R&D departments with modelling tools and access to the database, in which the observation data and the modelling results are stored, to undertake environmental studies on new sites. The communication will focus on meteorological inputs to and outputs from PREVIMER. It will draw the lessons from almost 3 years during

  19. Further optimization of a parallel double-effect organosilicon distillation scheme through exergy analysis

    International Nuclear Information System (INIS)

    Sun, Jinsheng; Dai, Leilei; Shi, Ming; Gao, Hong; Cao, Xijia; Liu, Guangxin

    2014-01-01

    In our previous work, a significant improvement in organosilicon monomer distillation using parallel double-effect heat integration between a heavies removal column and six other columns, as well as heat integration between methyltrichlorosilane and dimethylchlorosilane columns, reduced the total exergy loss of the currently running counterpart by 40.41%. Further research regarding this optimized scheme demonstrated that it was necessary to reduce the higher operating pressure of the methyltrichlorosilane column, which is required for heat integration between the methyltrichlorosilane and dimethylchlorosilane columns. Therefore, in this contribution, a challenger scheme is presented with heat pumps introduced separately from the originally heat-coupled methyltrichlorosilane and dimethylchlorosilane columns in the above-mentioned optimized scheme, which is the prototype for this work. Both schemes are simulated using the same purity requirements used in running industrial units. The thermodynamic properties from the simulation are used to calculate the energy consumption and exergy loss of the two schemes. The results show that the heat pump option further reduces the flowsheet energy consumption and exergy loss by 27.35% and 10.98% relative to the prototype scheme. These results indicate that the heat pumps are superior to heat integration in the context of energy-savings during organosilicon monomer distillation. - Highlights: • Combine the paralleled double-effect and heat pump distillation to organosilicon distillation. • Compare the double-effect with the heat pump in saving energy. • Further cut down the flowsheet energy consumption and exergy loss by 27.35% and 10.98% respectively

  20. Heat Stress

    Science.gov (United States)

    ... Publications and Products Programs Contact NIOSH NIOSH HEAT STRESS Recommend on Facebook Tweet Share Compartir OSHA-NIOSH ... hot environments may be at risk of heat stress. Exposure to extreme heat can result in occupational ...

  1. Effects of Symmetrically Arranged Heat Sources on the Heat Release Performance of Extruded-Type Heat Sinks

    Energy Technology Data Exchange (ETDEWEB)

    Ku, Min Ye [Chonbuk National Univ., Chonju (Korea, Republic of)

    2016-02-15

    In this study we investigated the effects of symmetrically arranged heat sources on the heat release performances of extruded-type heat sinks through experiments and thermal fluid simulations. Also, based on the results we suggested a high-efficiency and cost-effective heat sink for a solar inverter cooling system. In this parametric study, the temperatures between heaters on the base plate and the heat release rates were investigated with respect to the arrangements of heat sources and amounts of heat input. Based on the results we believe that the use of both sides of the heat sink is the preferred method for releasing the heat from the heat source to the ambient environment rather than the use of a single side of the heat sink. Also from the results, it is believed that the symmetric arrangement of the heat sources is recommended to achieve a higher rate of heat transfer. From the results of the thermal fluid simulation, it was possible to confirm the qualitative agreement with the experimental results. Finally, quantitative comparison with respect to mass flow rates, heat inputs, and arrangements of the heat source was also performed.

  2. A perturbational h4 exponential finite difference scheme for the convective diffusion equation

    International Nuclear Information System (INIS)

    Chen, G.Q.; Gao, Z.; Yang, Z.F.

    1993-01-01

    A perturbational h 4 compact exponential finite difference scheme with diagonally dominant coefficient matrix and upwind effect is developed for the convective diffusion equation. Perturbations of second order are exerted on the convective coefficients and source term of an h 2 exponential finite difference scheme proposed in this paper based on a transformation to eliminate the upwind effect of the convective diffusion equation. Four numerical examples including one- to three-dimensional model equations of fluid flow and a problem of natural convective heat transfer are given to illustrate the excellent behavior of the present exponential schemes. Besides, the h 4 accuracy of the perturbational scheme is verified using double precision arithmetic

  3. Heat pipe dynamic behavior

    Science.gov (United States)

    Issacci, F.; Roche, G. L.; Klein, D. B.; Catton, I.

    1988-01-01

    The vapor flow in a heat pipe was mathematically modeled and the equations governing the transient behavior of the core were solved numerically. The modeled vapor flow is transient, axisymmetric (or two-dimensional) compressible viscous flow in a closed chamber. The two methods of solution are described. The more promising method failed (a mixed Galerkin finite difference method) whereas a more common finite difference method was successful. Preliminary results are presented showing that multi-dimensional flows need to be treated. A model of the liquid phase of a high temperature heat pipe was developed. The model is intended to be coupled to a vapor phase model for the complete solution of the heat pipe problem. The mathematical equations are formulated consistent with physical processes while allowing a computationally efficient solution. The model simulates time dependent characteristics of concern to the liquid phase including input phase change, output heat fluxes, liquid temperatures, container temperatures, liquid velocities, and liquid pressure. Preliminary results were obtained for two heat pipe startup cases. The heat pipe studied used lithium as the working fluid and an annular wick configuration. Recommendations for implementation based on the results obtained are presented. Experimental studies were initiated using a rectangular heat pipe. Both twin beam laser holography and laser Doppler anemometry were investigated. Preliminary experiments were completed and results are reported.

  4. Design of Low Voltage Low Power CMOS OP-AMPS with Rail-to-Rail Input/Output Swing

    OpenAIRE

    Gopalaiah, SV; Shivaprasad, AP; Panigrahi, Sukanta K

    2004-01-01

    A novel input and output biasing circuit to extend the input common mode (CM) voltage range and the output swing to rail-to-rail in a low voltage op-amp in standard CMOS technology is presented. The input biasing circuit uses a Switched Capacitor Based Attenuator (SCBA) approach to establish rail-to-rail common mode input voltage range. And the output biasing circuit uses an Output Driver (OD), with floating bias to give the rail-to-rail swing at output stage. Three different OD schemes in op...

  5. Energy Input Flux in the Global Quiet-Sun Corona

    Energy Technology Data Exchange (ETDEWEB)

    Mac Cormack, Cecilia; Vásquez, Alberto M.; López Fuentes, Marcelo; Nuevo, Federico A. [Instituto de Astronomía y Física del Espacio (IAFE), CONICET-UBA, CC 67—Suc 28, (C1428ZAA) Ciudad Autónoma de Buenos Aires (Argentina); Landi, Enrico; Frazin, Richard A. [Department of Climate and Space Sciences and Engineering (CLaSP), University of Michigan, 2455 Hayward Street, Ann Arbor, MI 48109-2143 (United States)

    2017-07-01

    We present first results of a novel technique that provides, for the first time, constraints on the energy input flux at the coronal base ( r ∼ 1.025 R {sub ⊙}) of the quiet Sun at a global scale. By combining differential emission measure tomography of EUV images, with global models of the coronal magnetic field, we estimate the energy input flux at the coronal base that is required to maintain thermodynamically stable structures. The technique is described in detail and first applied to data provided by the Extreme Ultraviolet Imager instrument, on board the Solar TErrestrial RElations Observatory mission, and the Atmospheric Imaging Assembly instrument, on board the Solar Dynamics Observatory mission, for two solar rotations with different levels of activity. Our analysis indicates that the typical energy input flux at the coronal base of magnetic loops in the quiet Sun is in the range ∼0.5–2.0 × 10{sup 5} (erg s{sup −1} cm{sup −2}), depending on the structure size and level of activity. A large fraction of this energy input, or even its totality, could be accounted for by Alfvén waves, as shown by recent independent observational estimates derived from determinations of the non-thermal broadening of spectral lines in the coronal base of quiet-Sun regions. This new tomography product will be useful for the validation of coronal heating models in magnetohydrodinamic simulations of the global corona.

  6. An improved anonymous authentication scheme for roaming in ubiquitous networks

    Science.gov (United States)

    Lee, Hakjun; Lee, Donghoon; Moon, Jongho; Jung, Jaewook; Kang, Dongwoo; Kim, Hyoungshick

    2018-01-01

    With the evolution of communication technology and the exponential increase of mobile devices, the ubiquitous networking allows people to use our data and computing resources anytime and everywhere. However, numerous security concerns and complicated requirements arise as these ubiquitous networks are deployed throughout people’s lives. To meet the challenge, the user authentication schemes in ubiquitous networks should ensure the essential security properties for the preservation of the privacy with low computational cost. In 2017, Chaudhry et al. proposed a password-based authentication scheme for the roaming in ubiquitous networks to enhance the security. Unfortunately, we found that their scheme remains insecure in its protection of the user privacy. In this paper, we prove that Chaudhry et al.’s scheme is vulnerable to the stolen-mobile device and user impersonation attacks, and its drawbacks comprise the absence of the incorrect login-input detection, the incorrectness of the password change phase, and the absence of the revocation provision. Moreover, we suggest a possible way to fix the security flaw in Chaudhry et al’s scheme by using the biometric-based authentication for which the bio-hash is applied in the implementation of a three-factor authentication. We prove the security of the proposed scheme with the random oracle model and formally verify its security properties using a tool named ProVerif, and analyze it in terms of the computational and communication cost. The analysis result shows that the proposed scheme is suitable for resource-constrained ubiquitous environments. PMID:29505575

  7. An experimental study of the enhanced heating capacity of an electric heat pump (EHP) using the heat recovered from a gas engine generator

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Cheol Min; Chang, Se Dong [HAC R and D Laboratory, LG Electronics, 327-23 Gasan-Dong, Geumcheon-gu, Seoul 153-802 (Korea); Lee, Jaekeun; Hwang, Yujin [School of Mechanical Engineering, Pusan National University, San 30, Changjeon-Dong, Keumjeong-Ku, Busan 609-735 (Korea)

    2009-11-15

    This paper is concerned with the effect of recovered heat on the heating capacity of an Electric Heat Pump (EHP), which is supplied with electric power and recovered heat from a gas engine generator system. Two methods of supplying recovery heat are examined: (i) to the refrigerant with the discharge line heat exchanger (HEX), and (ii) to the refrigerant of the evaporator with the sub-evaporator. Heating capacity, input power and coefficient of performance (COP) were investigated and compared for each heat recovery method. Conclusively, we found that the second method was most reasonable to recover wasted heat and increased system COP by 215%. (author)

  8. CASKETSS-HEAT: a finite difference computer program for nonlinear heat conduction problems

    International Nuclear Information System (INIS)

    Ikushima, Takeshi

    1988-12-01

    A heat conduction program CASKETSS-HEAT has been developed. CASKETSS-HEAT is a finite difference computer program used for the solution of multi-dimensional nonlinear heat conduction problems. Main features of CASKETSS-HEAT are as follows. (1) One, two and three-dimensional geometries for heat conduction calculation are available. (2) Convection and radiation heat transfer of boundry can be specified. (3) Phase change and chemical change can be treated. (4) Finned surface heat transfer can be treated easily. (5) Data memory allocation in the program is variable according to problem size. (6) The program is a compatible heat transfer analysis program to the stress analysis program SAP4 and SAP5. (7) Pre- and post-processing for input data generation and graphic representation of calculation results are available. In the paper, brief illustration of calculation method, input data and sample calculation are presented. (author)

  9. Adaptive distributed parameter and input estimation in linear parabolic PDEs

    KAUST Repository

    Mechhoud, Sarra

    2016-01-01

    In this paper, we discuss the on-line estimation of distributed source term, diffusion, and reaction coefficients of a linear parabolic partial differential equation using both distributed and interior-point measurements. First, new sufficient identifiability conditions of the input and the parameter simultaneous estimation are stated. Then, by means of Lyapunov-based design, an adaptive estimator is derived in the infinite-dimensional framework. It consists of a state observer and gradient-based parameter and input adaptation laws. The parameter convergence depends on the plant signal richness assumption, whereas the state convergence is established using a Lyapunov approach. The results of the paper are illustrated by simulation on tokamak plasma heat transport model using simulated data.

  10. Demand for inputs in silkworm production: the case of Turkey

    Directory of Open Access Journals (Sweden)

    Osman Orkan Özer

    Full Text Available ABSTRACT The objective of this study was to calculate the price, cross, and Morishima Technical Substitution elasticities for the costs of manpower, supply of mulberry leaves, transportation, heating, and material, all of which play pivotal roles for producers in sericulture. A survey was conducted by face-to-face interviews with 207 farmers within the scope of the study. At the analysis phase of the study, the share equity translog cost model was used. The response of the producers to the production input prices were calculated as inelastic. The strictest demand for an input belongs to mulberry leaves (-0.051 and the highest elasticity for transportation costs (-0.314. Sericulture dependents on workforce and mulberry leaves and this activity in Turkey is a labor-dense type of production.

  11. Free energy and heat capacity

    International Nuclear Information System (INIS)

    Kurata, M.; Devanathan, R.

    2015-01-01

    Free energy and heat capacity of actinide elements and compounds are important properties for the evaluation of the safety and reliable performance of nuclear fuel. They are essential inputs for models that describe complex phenomena that govern the behaviour of actinide compounds during nuclear fuels fabrication and irradiation. This chapter introduces various experimental methods to measure free energy and heat capacity to serve as inputs for models and to validate computer simulations. This is followed by a discussion of computer simulation of these properties, and recent simulations of thermophysical properties of nuclear fuel are briefly reviewed. (authors)

  12. Multiuser switched diversity scheduling schemes

    KAUST Repository

    Shaqfeh, Mohammad; Alnuweiri, Hussein M.; Alouini, Mohamed-Slim

    2012-01-01

    Multiuser switched-diversity scheduling schemes were recently proposed in order to overcome the heavy feedback requirements of conventional opportunistic scheduling schemes by applying a threshold-based, distributed, and ordered scheduling mechanism. The main idea behind these schemes is that slight reduction in the prospected multiuser diversity gains is an acceptable trade-off for great savings in terms of required channel-state-information feedback messages. In this work, we characterize the achievable rate region of multiuser switched diversity systems and compare it with the rate region of full feedback multiuser diversity systems. We propose also a novel proportional fair multiuser switched-based scheduling scheme and we demonstrate that it can be optimized using a practical and distributed method to obtain the feedback thresholds. We finally demonstrate by numerical examples that switched-diversity scheduling schemes operate within 0.3 bits/sec/Hz from the ultimate network capacity of full feedback systems in Rayleigh fading conditions. © 2012 IEEE.

  13. Nonlinear secret image sharing scheme.

    Science.gov (United States)

    Shin, Sang-Ho; Lee, Gil-Je; Yoo, Kee-Young

    2014-01-01

    Over the past decade, most of secret image sharing schemes have been proposed by using Shamir's technique. It is based on a linear combination polynomial arithmetic. Although Shamir's technique based secret image sharing schemes are efficient and scalable for various environments, there exists a security threat such as Tompa-Woll attack. Renvall and Ding proposed a new secret sharing technique based on nonlinear combination polynomial arithmetic in order to solve this threat. It is hard to apply to the secret image sharing. In this paper, we propose a (t, n)-threshold nonlinear secret image sharing scheme with steganography concept. In order to achieve a suitable and secure secret image sharing scheme, we adapt a modified LSB embedding technique with XOR Boolean algebra operation, define a new variable m, and change a range of prime p in sharing procedure. In order to evaluate efficiency and security of proposed scheme, we use the embedding capacity and PSNR. As a result of it, average value of PSNR and embedding capacity are 44.78 (dB) and 1.74t⌈log2 m⌉ bit-per-pixel (bpp), respectively.

  14. Multiuser switched diversity scheduling schemes

    KAUST Repository

    Shaqfeh, Mohammad

    2012-09-01

    Multiuser switched-diversity scheduling schemes were recently proposed in order to overcome the heavy feedback requirements of conventional opportunistic scheduling schemes by applying a threshold-based, distributed, and ordered scheduling mechanism. The main idea behind these schemes is that slight reduction in the prospected multiuser diversity gains is an acceptable trade-off for great savings in terms of required channel-state-information feedback messages. In this work, we characterize the achievable rate region of multiuser switched diversity systems and compare it with the rate region of full feedback multiuser diversity systems. We propose also a novel proportional fair multiuser switched-based scheduling scheme and we demonstrate that it can be optimized using a practical and distributed method to obtain the feedback thresholds. We finally demonstrate by numerical examples that switched-diversity scheduling schemes operate within 0.3 bits/sec/Hz from the ultimate network capacity of full feedback systems in Rayleigh fading conditions. © 2012 IEEE.

  15. A privacy preserving secure and efficient authentication scheme for telecare medical information systems.

    Science.gov (United States)

    Mishra, Raghavendra; Barnwal, Amit Kumar

    2015-05-01

    The Telecare medical information system (TMIS) presents effective healthcare delivery services by employing information and communication technologies. The emerging privacy and security are always a matter of great concern in TMIS. Recently, Chen at al. presented a password based authentication schemes to address the privacy and security. Later on, it is proved insecure against various active and passive attacks. To erase the drawbacks of Chen et al.'s anonymous authentication scheme, several password based authentication schemes have been proposed using public key cryptosystem. However, most of them do not present pre-smart card authentication which leads to inefficient login and password change phases. To present an authentication scheme with pre-smart card authentication, we present an improved anonymous smart card based authentication scheme for TMIS. The proposed scheme protects user anonymity and satisfies all the desirable security attributes. Moreover, the proposed scheme presents efficient login and password change phases where incorrect input can be quickly detected and a user can freely change his password without server assistance. Moreover, we demonstrate the validity of the proposed scheme by utilizing the widely-accepted BAN (Burrows, Abadi, and Needham) logic. The proposed scheme is also comparable in terms of computational overheads with relevant schemes.

  16. Heat pumps

    CERN Document Server

    Macmichael, DBA

    1988-01-01

    A fully revised and extended account of the design, manufacture and use of heat pumps in both industrial and domestic applications. Topics covered include a detailed description of the various heat pump cycles, the components of a heat pump system - drive, compressor, heat exchangers etc., and the more practical considerations to be taken into account in their selection.

  17. Inverse estimation of heat flux and temperature on nozzle throat-insert inner contour

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Tsung-Chien [Department of Power Vehicle and Systems Engineering, Chung Cheng Institute of Technology, National Defense University, Ta-Hsi, Tao-Yuan 33509 (China); Liu, Chiun-Chien [Chung Shan Institute of Science and Technology, Lung-Tan, Tao-Yuan 32526 (China)

    2008-07-01

    During the missile flight, the jet flow with high temperature comes from the heat flux of propellant burning. An enormous heat flux from the nozzle throat-insert inner contour conducted into the nozzle shell will degrade the material strength of nozzle shell and reduce the nozzle thrust efficiency. In this paper, an on-line inverse method based on the input estimation method combined with the finite-element scheme is proposed to inversely estimate the unknown heat flux on the nozzle throat-insert inner contour and the inner wall temperature by applying the temperature measurements of the nozzle throat-insert. The finite-element scheme can easily define the irregularly shaped boundary. The superior capability of the proposed method is demonstrated in two major time-varying estimation cases. The computational results show that the proposed method has good estimation performance and highly facilitates the practical implementation. An effective analytical method can be offered to increase the operation reliability and thermal-resistance layer design in the solid rocket motor. (author)

  18. Heat removing under hypersonic conditions

    Directory of Open Access Journals (Sweden)

    Semenov Mikhail E.

    2016-01-01

    Full Text Available In this paper we consider the heat transfer properties of the axially symmetric body with parabolic shape at hypersonic speeds (with a Mach number M > 5. We use the numerical methods based on the implicit difference scheme (Fedorenko method with direct method based on LU-decomposition and iterative method based on the Gauss-Seigel method. Our numerical results show that the heat removing process should be performed in accordance with the nonlinear law of heat distribution over the surface taking into account the hypersonic conditions of motion.

  19. Continuous-variable quantum cloning of coherent states with phase-conjugate input modes using linear optics

    International Nuclear Information System (INIS)

    Chen, Haixia; Zhang, Jing

    2007-01-01

    We propose a scheme for continuous-variable quantum cloning of coherent states with phase-conjugate input modes using linear optics. The quantum cloning machine yields M identical optimal clones from N replicas of a coherent state and N replicas of its phase conjugate. This scheme can be straightforwardly implemented with the setups accessible at present since its optical implementation only employs simple linear optical elements and homodyne detection. Compared with the original scheme for continuous-variable quantum cloning with phase-conjugate input modes proposed by Cerf and Iblisdir [Phys. Rev. Lett. 87, 247903 (2001)], which utilized a nondegenerate optical parametric amplifier, our scheme loses the output of phase-conjugate clones and is regarded as irreversible quantum cloning

  20. Electrical Injection Schemes for Nanolasers

    DEFF Research Database (Denmark)

    Lupi, Alexandra; Chung, Il-Sug; Yvind, Kresten

    2014-01-01

    Three electrical injection schemes based on recently demonstrated electrically pumped photonic crystal nanolasers have been numerically investigated: 1) a vertical p-i-n junction through a post structure; 2) a lateral p-i-n junction with a homostructure; and 3) a lateral p-i-n junction....... For this analysis, the properties of different schemes, i.e., electrical resistance, threshold voltage, threshold current, and internal efficiency as energy requirements for optical interconnects are compared and the physics behind the differences is discussed....

  1. Signal multiplexing scheme for LINAC

    International Nuclear Information System (INIS)

    Sujo, C.I.; Mohan, Shyam; Joshi, Gopal; Singh, S.K.; Karande, Jitendra

    2004-01-01

    For the proper operation of the LINAC some signals, RF (radio frequency) as well as LF (low frequency) have to be available at the Master Control Station (MCS). These signals are needed to control, calibrate and characterize the RF fields in the resonators. This can be achieved by proper multiplexing of various signals locally and then routing the selected signals to the MCS. A multiplexing scheme has been designed and implemented, which will allow the signals from the selected cavity to the MCS. High isolation between channels and low insertion loss for a given signal are important issues while selecting the multiplexing scheme. (author)

  2. Solar Load Inputs for USARIEM Thermal Strain Models and the Solar Radiation-Sensitive Components of the WBGT Index

    National Research Council Canada - National Science Library

    Matthew, William

    2001-01-01

    This report describes processes we have implemented to use global pyranometer-based estimates of mean radiant temperature as the common solar load input for the Scenario model, the USARIEM heat strain...

  3. A first generation numerical geomagnetic storm prediction scheme

    International Nuclear Information System (INIS)

    Akasofu, S.-I.; Fry, C.F.

    1986-01-01

    Because geomagnetic and auroral disturbances cause significant interference on many electrical systems, it is essential to develop a reliable geomagnetic and auroral storm prediction scheme. A first generation numerical prediction scheme has been developed. The scheme consists of two major computer codes which in turn consist of a large number of subroutine codes and of empirical relationships. First of all, when a solar flare occurs, six flare parameters are determined as the input data set for the first code which is devised to show the simulated propagation of solar wind disturbances in the heliosphere to a distance of 2 a.u. Thus, one can determine the relative location of the propagating disturbances with the Earth's position. The solar wind speed and the three interplanetary magnetic field (IMF) components are then computed as a function of time at the Earth's location or any other desired (space probe) locations. These quantities in turn become the input parameters for the second major code which computes first the power of the solar wind-magnetosphere dynamo as a function of time. The power thus obtained and the three IMF components can be used to compute or infer: the predicted geometry of the auroral oval; the cross-polar cap potential; the two geomagnetic indices AE and Dst; the total energy injection rate into the polar ionosphere; and the atmospheric temperature, etc. (author)

  4. Spatial interpolation schemes of daily precipitation for hydrologic modeling

    Science.gov (United States)

    Hwang, Y.; Clark, M.R.; Rajagopalan, B.; Leavesley, G.

    2012-01-01

    Distributed hydrologic models typically require spatial estimates of precipitation interpolated from sparsely located observational points to the specific grid points. We compare and contrast the performance of regression-based statistical methods for the spatial estimation of precipitation in two hydrologically different basins and confirmed that widely used regression-based estimation schemes fail to describe the realistic spatial variability of daily precipitation field. The methods assessed are: (1) inverse distance weighted average; (2) multiple linear regression (MLR); (3) climatological MLR; and (4) locally weighted polynomial regression (LWP). In order to improve the performance of the interpolations, the authors propose a two-step regression technique for effective daily precipitation estimation. In this simple two-step estimation process, precipitation occurrence is first generated via a logistic regression model before estimate the amount of precipitation separately on wet days. This process generated the precipitation occurrence, amount, and spatial correlation effectively. A distributed hydrologic model (PRMS) was used for the impact analysis in daily time step simulation. Multiple simulations suggested noticeable differences between the input alternatives generated by three different interpolation schemes. Differences are shown in overall simulation error against the observations, degree of explained variability, and seasonal volumes. Simulated streamflows also showed different characteristics in mean, maximum, minimum, and peak flows. Given the same parameter optimization technique, LWP input showed least streamflow error in Alapaha basin and CMLR input showed least error (still very close to LWP) in Animas basin. All of the two-step interpolation inputs resulted in lower streamflow error compared to the directly interpolated inputs. ?? 2011 Springer-Verlag.

  5. Preparation and documentation of a CATHENA input file for Darlington NGS

    International Nuclear Information System (INIS)

    1989-03-01

    A CATHENA input model has been developed and documented for the heat transport system of the Darlington Nuclear Generating Station. CATHENA, an advanced two-fluid thermalhydraulic computer code, has been designed for analysis of postulated loss-of-coolant accidents (LOCA) and upset conditions in the CANDU system. This report describes the Darlington input model (or idealization), and gives representative results for a simulation of a small break at an inlet header

  6. AN ADVANCED LEAKAGE SCHEME FOR NEUTRINO TREATMENT IN ASTROPHYSICAL SIMULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Perego, A. [Institut für Kernphysik, Technische Universität Darmstadt, Schlossgartenstraße 2, D-64289 Darmstadt (Germany); Cabezón, R. M. [Physics Department, University of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland); Käppeli, R., E-mail: albino.perego@physik.tu-darmstadt.de [Seminar for Applied Mathematics, ETH Zürich, Rämistrasse 101, 8092 Zürich (Switzerland)

    2016-04-15

    We present an Advanced Spectral Leakage (ASL) scheme to model neutrinos in the context of core-collapse supernovae (CCSNe) and compact binary mergers. Based on previous gray leakage schemes, the ASL scheme computes the neutrino cooling rates by interpolating local production and diffusion rates (relevant in optically thin and thick regimes, respectively) separately for discretized values of the neutrino energy. Neutrino trapped components are also modeled, based on equilibrium and timescale arguments. The better accuracy achieved by the spectral treatment allows a more reliable computation of neutrino heating rates in optically thin conditions. The scheme has been calibrated and tested against Boltzmann transport in the context of Newtonian spherically symmetric models of CCSNe. ASL shows a very good qualitative and a partial quantitative agreement for key quantities from collapse to a few hundreds of milliseconds after core bounce. We have proved the adaptability and flexibility of our ASL scheme, coupling it to an axisymmetric Eulerian and to a three-dimensional smoothed particle hydrodynamics code to simulate core collapse. Therefore, the neutrino treatment presented here is ideal for large parameter-space explorations, parametric studies, high-resolution tests, code developments, and long-term modeling of asymmetric configurations, where more detailed neutrino treatments are not available or are currently computationally too expensive.

  7. Capillary pumped loop body heat exchanger

    Science.gov (United States)

    Swanson, Theodore D. (Inventor); Wren, deceased, Paul (Inventor)

    1998-01-01

    A capillary pumped loop for transferring heat from one body part to another body part, the capillary pumped loop comprising a capillary evaporator for vaporizing a liquid refrigerant by absorbing heat from a warm body part, a condenser for turning a vaporized refrigerant into a liquid by transferring heat from the vaporized liquid to a cool body part, a first tube section connecting an output port of the capillary evaporator to an input of the condenser, and a second tube section connecting an output of the condenser to an input port of the capillary evaporator. A wick may be provided within the condenser. A pump may be provided between the second tube section and the input port of the capillary evaporator. Additionally, an esternal heat source or heat sink may be utilized.

  8. On 165Ho level scheme

    International Nuclear Information System (INIS)

    Ardisson, Claire; Ardisson, Gerard.

    1976-01-01

    A 165 Ho level scheme was constructed which led to the interpretation of sixty γ rays belonging to the decay of 165 Dy. A new 702.9keV level was identified to be the 5/2 - member of the 1/2 ) 7541{ Nilsson orbit. )] [fr

  9. Homogenization scheme for acoustic metamaterials

    KAUST Repository

    Yang, Min; Ma, Guancong; Wu, Ying; Yang, Zhiyu; Sheng, Ping

    2014-01-01

    the scattering amplitudes. We verify our scheme by applying it to three different examples: a layered lattice, a two-dimensional hexagonal lattice, and a decorated-membrane system. It is shown that the predicted characteristics and wave fields agree almost

  10. Homogenization scheme for acoustic metamaterials

    KAUST Repository

    Yang, Min

    2014-02-26

    We present a homogenization scheme for acoustic metamaterials that is based on reproducing the lowest orders of scattering amplitudes from a finite volume of metamaterials. This approach is noted to differ significantly from that of coherent potential approximation, which is based on adjusting the effective-medium parameters to minimize scatterings in the long-wavelength limit. With the aid of metamaterials’ eigenstates, the effective parameters, such as mass density and elastic modulus can be obtained by matching the surface responses of a metamaterial\\'s structural unit cell with a piece of homogenized material. From the Green\\'s theorem applied to the exterior domain problem, matching the surface responses is noted to be the same as reproducing the scattering amplitudes. We verify our scheme by applying it to three different examples: a layered lattice, a two-dimensional hexagonal lattice, and a decorated-membrane system. It is shown that the predicted characteristics and wave fields agree almost exactly with numerical simulations and experiments and the scheme\\'s validity is constrained by the number of dominant surface multipoles instead of the usual long-wavelength assumption. In particular, the validity extends to the full band in one dimension and to regimes near the boundaries of the Brillouin zone in two dimensions.

  11. New practicable Siberian Snake schemes

    International Nuclear Information System (INIS)

    Steffen, K.

    1983-07-01

    Siberian Snake schemes can be inserted in ring accelerators for making the spin tune almost independent of energy. Two such schemes are here suggested which lend particularly well to practical application over a wide energy range. Being composed of horizontal and vertical bending magnets, the proposed snakes are designed to have a small maximum beam excursion in one plane. By applying in this plane a bending correction that varies with energy, they can be operated at fixed geometry in the other plane where most of the bending occurs, thus avoiding complicated magnet motion or excessively large magnet apertures that would otherwise be needed for large energy variations. The first of the proposed schemes employs a pair of standard-type Siberian Snakes, i.e. of the usual 1st and 2nd kind which rotate the spin about the longitudinal and the transverse horizontal axis, respectively. The second scheme employs a pair of novel-type snakes which rotate the spin about either one of the horizontal axes that are at 45 0 to the beam direction. In obvious reference to these axes, they are called left-pointed and right-pointed snakes. (orig.)

  12. Nonlinear Secret Image Sharing Scheme

    Directory of Open Access Journals (Sweden)

    Sang-Ho Shin

    2014-01-01

    efficiency and security of proposed scheme, we use the embedding capacity and PSNR. As a result of it, average value of PSNR and embedding capacity are 44.78 (dB and 1.74tlog2⁡m bit-per-pixel (bpp, respectively.

  13. Innovative system for delivery of low temperature district heating

    OpenAIRE

    Ianakiev, A; Cui, JM; Garbett, S; Filer, A

    2017-01-01

    An innovative low temperature district heating (LTDH) local network is developed in Nottingham, supported by the REMOURBAN project, part of the H2020 Smart City and Community Lighthouse scheme. It was proposed that a branch emanating from the return pipe of the existing district heating system in Nottingham would be created to use low temperature heating for the first time on such scale in the UK. The development is aimed to extract unused heat from existing district heating system and to mak...

  14. Integration of look-ahead multicast and unicast scheduling for input-queued cell switches

    DEFF Research Database (Denmark)

    Yu, Hao; Ruepp, Sarah Renée; Berger, Michael Stübert

    2012-01-01

    This paper presents an integration of multicast and unicast traffic scheduling algorithms for input-queued cell switches. The multi-level round-robin multicast scheduling (ML-RRMS) algorithm with the look-ahead (LA) mechanism provides a highly scalable architecture and is able to reduce the head...... module that filters out the conflicting requests to ensure fairness. Simulation results show that comparing with the scheme using WBA for the multicast scheduling, the scheme proposed in this paper reduces the HOL blocking problem for multicast traffic and provides a significant improvement in terms...

  15. READDATA: a FORTRAN 77 codeword input package

    International Nuclear Information System (INIS)

    Lander, P.A.

    1983-07-01

    A new codeword input package has been produced as a result of the incompatibility between different dialects of FORTRAN, especially when character variables are passed as parameters. This report is for those who wish to use a codeword input package with FORTRAN 77. The package, called ''Readdata'', attempts to combine the best features of its predecessors such as BINPUT and pseudo-BINPUT. (author)

  16. CREATING INPUT TABLES FROM WAPDEG FOR RIP

    International Nuclear Information System (INIS)

    K.G. Mon

    1998-01-01

    The purpose of this calculation is to create tables for input into RIP ver. 5.18 (Integrated Probabilistic Simulator for Environmental Systems) from WAPDEG ver. 3.06 (Waste Package Degradation) output. This calculation details the creation of the RIP input tables for TSPA-VA REV.00

  17. Wave energy input into the Ekman layer

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    This paper is concerned with the wave energy input into the Ekman layer, based on 3 observational facts that surface waves could significantly affect the profile of the Ekman layer. Under the assumption of constant vertical diffusivity, the analytical form of wave energy input into the Ekman layer is derived. Analysis of the energy balance shows that the energy input to the Ekman layer through the wind stress and the interaction of the Stokes-drift with planetary vorticity can be divided into two kinds. One is the wind energy input, and the other is the wave energy input which is dependent on wind speed, wave characteristics and the wind direction relative to the wave direction. Estimates of wave energy input show that wave energy input can be up to 10% in high-latitude and high-wind speed areas and higher than 20% in the Antarctic Circumpolar Current, compared with the wind energy input into the classical Ekman layer. Results of this paper are of significance to the study of wave-induced large scale effects.

  18. Input Enhancement and L2 Question Formation.

    Science.gov (United States)

    White, Lydia; And Others

    1991-01-01

    Investigated the extent to which form-focused instruction and corrective feedback (i.e., "input enhancement"), provided within a primarily communicative program, contribute to learners' accuracy in question formation. Study results are interpreted as evidence that input enhancement can bring about genuine changes in learners' interlanguage…

  19. Application of stable adaptive schemes to nuclear reactor systems, (2)

    International Nuclear Information System (INIS)

    Kukuda, Toshio

    1979-01-01

    The parameter identification and adaptive control schemes applied in a previous study to a nonlinear point reactor are extended to the case of a loosely-coupled-core reactor with internal feedbacks, constituting a nonlinear overall system. Both schemes are shown to be stable, with the system newly represented on the pattern of the Model Reference Adaptive System (MRAS) with use made of the Lyapunov's method. For either parameter identification or adaptive control of a loosely-coupled-core reactor, there exists no canonical form of multiple input-multiple output system which can be directly applied for deriving the MRAS with the matrix version of the Kalman-Yakubovich lemma as it was in the case of the point reactor. This difficulty is circumvented by the practical assumption that the neutron density can be directly measured on each core as reactivity change is applied as input into the coupled core as a whole. For parameter identification, the model parameters are adaptively adjusted to those of each core, while for the adaptive control, plant parameters of each core can be adaptively compensated, again through control inputs, to asymptotically reduce the output error between the model and the plant. The point reactor is shown to correspond to a special case. (author)

  20. Statistical identification of effective input variables

    International Nuclear Information System (INIS)

    Vaurio, J.K.

    1982-09-01

    A statistical sensitivity analysis procedure has been developed for ranking the input data of large computer codes in the order of sensitivity-importance. The method is economical for large codes with many input variables, since it uses a relatively small number of computer runs. No prior judgemental elimination of input variables is needed. The sceening method is based on stagewise correlation and extensive regression analysis of output values calculated with selected input value combinations. The regression process deals with multivariate nonlinear functions, and statistical tests are also available for identifying input variables that contribute to threshold effects, i.e., discontinuities in the output variables. A computer code SCREEN has been developed for implementing the screening techniques. The efficiency has been demonstrated by several examples and applied to a fast reactor safety analysis code (Venus-II). However, the methods and the coding are general and not limited to such applications

  1. Active fault tolerance control of a wind turbine system using an unknown input observer with an actuator fault

    Directory of Open Access Journals (Sweden)

    Li Shanzhi

    2018-03-01

    Full Text Available This paper proposes a fault tolerant control scheme based on an unknown input observer for a wind turbine system subject to an actuator fault and disturbance. Firstly, an unknown input observer for state estimation and fault detection using a linear parameter varying model is developed. By solving linear matrix inequalities (LMIs and linear matrix equalities (LMEs, the gains of the unknown input observer are obtained. The convergence of the unknown input observer is also analysed with Lyapunov theory. Secondly, using fault estimation, an active fault tolerant controller is applied to a wind turbine system. Finally, a simulation of a wind turbine benchmark with an actuator fault is tested for the proposed method. The simulation results indicate that the proposed FTC scheme is efficient.

  2. Heat pumps

    CERN Document Server

    Brodowicz, Kazimierz; Wyszynski, M L; Wyszynski

    2013-01-01

    Heat pumps and related technology are in widespread use in industrial processes and installations. This book presents a unified, comprehensive and systematic treatment of the design and operation of both compression and sorption heat pumps. Heat pump thermodynamics, the choice of working fluid and the characteristics of low temperature heat sources and their application to heat pumps are covered in detail.Economic aspects are discussed and the extensive use of the exergy concept in evaluating performance of heat pumps is a unique feature of the book. The thermodynamic and chemical properties o

  3. Applying LU Decomposition of Matrices to Design Anonymity Bilateral Remote User Authentication Scheme

    Directory of Open Access Journals (Sweden)

    Xiong Li

    2013-01-01

    Full Text Available We apply LU decomposition of matrices to present an anonymous bilateral authentication scheme. This paper aims at improving security and providing more excellent performances for remote user authentication scheme. The proposed scheme can provide bilateral authentication and session key agreement, can quickly check the validity of the input password, and can really protect the user anonymity. The security of the proposed scheme is based on the discrete logarithm problem (DLP, Diffie-Hellman problem (DHP, and the one-way hash function. It can resist various attacks such as insider attack, impersonation attack, server spoofing attack, and stolen smart card attack. Moreover, the presented scheme is computationally efficient for real-life implementation.

  4. Experimental Results of Network-Assisted Interference Suppression Scheme Using Adaptive Beam-Tilt Switching

    Directory of Open Access Journals (Sweden)

    Tomoki Murakami

    2017-01-01

    Full Text Available This paper introduces a network-assisted interference suppression scheme using beam-tilt switching per frame for wireless local area network systems and its effectiveness in an actual indoor environment. In the proposed scheme, two access points simultaneously transmit to their own desired station by adjusting angle of beam-tilt including transmit power assisted from network server for the improvement of system throughput. In the conventional researches, it is widely known that beam-tilt is effective for ICI suppression in the outdoor scenario. However, the indoor effectiveness of beam-tilt for ICI suppression has not yet been indicated from the experimental evaluation. Thus, this paper indicates the effectiveness of the proposed scheme by analyzing multiple-input multiple-output channel matrices from experimental measurements in an office environment. The experimental results clearly show that the proposed scheme offers higher system throughput than the conventional scheme using just transmit power control.

  5. Measuring Input Thresholds on an Existing Board

    Science.gov (United States)

    Kuperman, Igor; Gutrich, Daniel G.; Berkun, Andrew C.

    2011-01-01

    A critical PECL (positive emitter-coupled logic) interface to Xilinx interface needed to be changed on an existing flight board. The new Xilinx input interface used a CMOS (complementary metal-oxide semiconductor) type of input, and the driver could meet its thresholds typically, but not in worst-case, according to the data sheet. The previous interface had been based on comparison with an external reference, but the CMOS input is based on comparison with an internal divider from the power supply. A way to measure what the exact input threshold was for this device for 64 inputs on a flight board was needed. The measurement technique allowed an accurate measurement of the voltage required to switch a Xilinx input from high to low for each of the 64 lines, while only probing two of them. Directly driving an external voltage was considered too risky, and tests done on any other unit could not be used to qualify the flight board. The two lines directly probed gave an absolute voltage threshold calibration, while data collected on the remaining 62 lines without probing gave relative measurements that could be used to identify any outliers. The PECL interface was forced to a long-period square wave by driving a saturated square wave into the ADC (analog to digital converter). The active pull-down circuit was turned off, causing each line to rise rapidly and fall slowly according to the input s weak pull-down circuitry. The fall time shows up as a change in the pulse width of the signal ready by the Xilinx. This change in pulse width is a function of capacitance, pulldown current, and input threshold. Capacitance was known from the different trace lengths, plus a gate input capacitance, which is the same for all inputs. The pull-down current is the same for all inputs including the two that are probed directly. The data was combined, and the Excel solver tool was used to find input thresholds for the 62 lines. This was repeated over different supply voltages and

  6. A Secure Dynamic Identity and Chaotic Maps Based User Authentication and Key Agreement Scheme for e-Healthcare Systems.

    Science.gov (United States)

    Li, Chun-Ta; Lee, Cheng-Chi; Weng, Chi-Yao; Chen, Song-Jhih

    2016-11-01

    Secure user authentication schemes in many e-Healthcare applications try to prevent unauthorized users from intruding the e-Healthcare systems and a remote user and a medical server can establish session keys for securing the subsequent communications. However, many schemes does not mask the users' identity information while constructing a login session between two or more parties, even though personal privacy of users is a significant topic for e-Healthcare systems. In order to preserve personal privacy of users, dynamic identity based authentication schemes are hiding user's real identity during the process of network communications and only the medical server knows login user's identity. In addition, most of the existing dynamic identity based authentication schemes ignore the inputs verification during login condition and this flaw may subject to inefficiency in the case of incorrect inputs in the login phase. Regarding the use of secure authentication mechanisms for e-Healthcare systems, this paper presents a new dynamic identity and chaotic maps based authentication scheme and a secure data protection approach is employed in every session to prevent illegal intrusions. The proposed scheme can not only quickly detect incorrect inputs during the phases of login and password change but also can invalidate the future use of a lost/stolen smart card. Compared the functionality and efficiency with other authentication schemes recently, the proposed scheme satisfies desirable security attributes and maintains acceptable efficiency in terms of the computational overheads for e-Healthcare systems.

  7. Application of stable adaptive schemes to nuclear reactor systems, (1)

    International Nuclear Information System (INIS)

    Fukuda, Toshio

    1978-01-01

    Parameter identification and adaptive control schemes are presented for a point reactor with internal feedbacks which lead to the nonlinearity of the overall system. Both are shown stable with new representation of the system, which corresponds to the nonminimal system representation, in the vein of the Model Reference Adaptive System (MRAS) via the Lyapunov's method. For the sake of the parameter identification, model parameters can be adjusted adaptively as soon as measurements start, while plant parameters can also adaptively be compensated through control input to reduce the output error between the model and the plant for the case of the adaptive control. In the case of the adaptive control, control schemes are presented for two cases, the case of the unknown decay constant of the delayed neutron and the case of the known constant. The adaptive control scheme for the latter case is shown extremely simpler than that for the former. Furthermore, when plant parameters vary slowly with time, computer simulations show that the proposed adaptive control scheme works satisfactorily enough to stabilize an unstable reactor and that it does even in the noise with small variance. (auth.)

  8. Heat transfer

    International Nuclear Information System (INIS)

    Saad, M.A.

    1985-01-01

    Heat transfer takes place between material systems as a result of a temperature difference. The transmission process involves energy conversions governed by the first and second laws of thermodynamics. The heat transfer proceeds from a high-temperature region to a low-temperature region, and because of the finite thermal potential, there is an increase in entropy. Thermodynamics, however, is concerned with equilibrium states, which includes thermal equilibrium, irrespective of the time necessary to attain these equilibrium states. But heat transfer is a result of thermal nonequilibrium conditions, therefore, the laws of thermodynamics alone cannot describe completely the heat transfer process. In practice, most engineering problems are concerned with the rate of heat transfer rather than the quantity of heat being transferred. Resort then is directed to the particular laws governing the transfer of heat. There are three distinct modes of heat transfer: conduction, convection, and radiation. Although these modes are discussed separately, all three types may occur simultaneously

  9. Carbon emissions and resources use by Chinese economy 2007: A 135-sector inventory and input-output embodiment

    Science.gov (United States)

    Chen, G. Q.; Chen, Z. M.

    2010-11-01

    A 135-sector inventory and embodiment analysis for carbon emissions and resources use by Chinese economy 2007 is presented in this paper by an ecological input-output modeling based on the physical entry scheme. Included emissions and resources belong to six categories as: (1) greenhouse gas (GHG) in terms of CO 2, CH 4, and N 2O; (2) energy in terms of coal, crude oil, natural gas, hydropower, nuclear power, and firewood; (3) water in terms of freshwater; (4) exergy in terms of coal, crude oil, natural gas, grain, bean, tuber, cotton, peanut, rapeseed, sesame, jute, sugarcane, sugar beet, tobacco, silkworm feed, tea, fruits, vegetables, wood, bamboo, pulp, meat, egg, milk, wool, aquatic products, iron ore, copper ore, bauxite, lead ore, zinc ore, pyrite, phosphorite, gypsum, cement, nuclear fuel, and hydropower; (5) and (6) solar and cosmic emergies in terms of sunlight, wind power, deep earth heat, chemical power of rain, geopotential power of rain, chemical power of stream, geopotential power of stream, wave power, geothermal power, tide power, topsoil loss, coal, crude oil, natural gas, ferrous metal ore, non-ferrous metal ore, non-metal ore, cement, and nuclear fuel. Accounted based on the embodied intensities are carbon emissions and resources use embodied in the final use as rural consumption, urban consumption, government consumption, gross fixed capital formation, change in inventories, and export, as well as in the international trade balance. The resulted database is basic to environmental account of carbon emissions and resources use at various levels.

  10. Heat exchanger

    Science.gov (United States)

    Daman, Ernest L.; McCallister, Robert A.

    1979-01-01

    A heat exchanger is provided having first and second fluid chambers for passing primary and secondary fluids. The chambers are spaced apart and have heat pipes extending from inside one chamber to inside the other chamber. A third chamber is provided for passing a purge fluid, and the heat pipe portion between the first and second chambers lies within the third chamber.

  11. Total dose induced increase in input offset voltage in JFET input operational amplifiers

    International Nuclear Information System (INIS)

    Pease, R.L.; Krieg, J.; Gehlhausen, M.; Black, J.

    1999-01-01

    Four different types of commercial JFET input operational amplifiers were irradiated with ionizing radiation under a variety of test conditions. All experienced significant increases in input offset voltage (Vos). Microprobe measurement of the electrical characteristics of the de-coupled input JFETs demonstrates that the increase in Vos is a result of the mismatch of the degraded JFETs. (authors)

  12. Relationship between fatigue of generation II image intensifier and input illumination

    Science.gov (United States)

    Chen, Qingyou

    1995-09-01

    If there is fatigue for an image intesifier, then it has an effect on the imaging property of the night vision system. In this paper, using the principle of Joule Heat, we derive a mathematical formula for the generated heat of semiconductor photocathode. We describe the relationship among the various parameters in the formula. We also discuss reasons for the fatigue of Generation II image intensifier caused by bigger input illumination.

  13. Development of an Input Model to MELCOR 1.8.5 for the Ringhals 3 PWR

    International Nuclear Information System (INIS)

    Nilsson, Lars

    2004-12-01

    An input file to the severe accident code MELCOR 1.8.5 has been developed for the Swedish pressurized water reactor Ringhals 3. The aim was to produce a file that can be used for calculations of various postulated severe accident scenarios, although the first application is specifically on cases involving large hydrogen production. The input file is rather detailed with individual modelling of all three cooling loops. The report describes the basis for the Ringhals 3 model and the input preparation step by step and is illustrated by nodalization schemes of the different plant systems. Present version of the report is restricted to the fundamental MELCOR input preparation, and therefore most of the figures of Ringhals 3 measurements and operating parameters are excluded here. These are given in another, complete version of the report, for limited distribution, which includes tables for pertinent data of all components. That version contains appendices with a complete listing of the input files as well as tables of data compiled from a RELAP5 file, that was a major basis for the MELCOR input for the cooling loops. The input was tested in steady-state calculations in order to simulate the initial conditions at current nominal operating conditions in Ringhals 3 for 2775 MW thermal power. The results of the steady-state calculations are presented in the report. Calculations with the MELCOR model will then be carried out of certain accident sequences for comparison with results from earlier MAAP4 calculations. That work will be reported separately

  14. [PICS: pharmaceutical inspection cooperation scheme].

    Science.gov (United States)

    Morénas, J

    2009-01-01

    The pharmaceutical inspection cooperation scheme (PICS) is a structure containing 34 participating authorities located worldwide (October 2008). It has been created in 1995 on the basis of the pharmaceutical inspection convention (PIC) settled by the European free trade association (EFTA) in1970. This scheme has different goals as to be an international recognised body in the field of good manufacturing practices (GMP), for training inspectors (by the way of an annual seminar and experts circles related notably to active pharmaceutical ingredients [API], quality risk management, computerized systems, useful for the writing of inspection's aide-memoires). PICS is also leading to high standards for GMP inspectorates (through regular crossed audits) and being a room for exchanges on technical matters between inspectors but also between inspectors and pharmaceutical industry.

  15. Project financing renewable energy schemes

    International Nuclear Information System (INIS)

    Brandler, A.

    1993-01-01

    The viability of many Renewable Energy projects is critically dependent upon the ability of these projects to secure the necessary financing on acceptable terms. The principal objective of the study was to provide an overview to project developers of project financing techniques and the conditions under which project finance for Renewable Energy schemes could be raised, focussing on the potential sources of finance, the typical project financing structures that could be utilised for Renewable Energy schemes and the risk/return and security requirements of lenders, investors and other potential sources of financing. A second objective is to describe the appropriate strategy and tactics for developers to adopt in approaching the financing markets for such projects. (author)

  16. Network Regulation and Support Schemes

    DEFF Research Database (Denmark)

    Ropenus, Stephanie; Schröder, Sascha Thorsten; Jacobsen, Henrik

    2009-01-01

    -in tariffs to market-based quota systems, and network regulation approaches, comprising rate-of-return and incentive regulation. National regulation and the vertical structure of the electricity sector shape the incentives of market agents, notably of distributed generators and network operators......At present, there exists no explicit European policy framework on distributed generation. Various Directives encompass distributed generation; inherently, their implementation is to the discretion of the Member States. The latter have adopted different kinds of support schemes, ranging from feed....... This article seeks to investigate the interactions between the policy dimensions of support schemes and network regulation and how they affect the deployment of distributed generation. Firstly, a conceptual analysis examines how the incentives of the different market agents are affected. In particular...

  17. Distance labeling schemes for trees

    DEFF Research Database (Denmark)

    Alstrup, Stephen; Gørtz, Inge Li; Bistrup Halvorsen, Esben

    2016-01-01

    We consider distance labeling schemes for trees: given a tree with n nodes, label the nodes with binary strings such that, given the labels of any two nodes, one can determine, by looking only at the labels, the distance in the tree between the two nodes. A lower bound by Gavoille et al. [Gavoille...... variants such as, for example, small distances in trees [Alstrup et al., SODA, 2003]. We improve the known upper and lower bounds of exact distance labeling by showing that 1/4 log2(n) bits are needed and that 1/2 log2(n) bits are sufficient. We also give (1 + ε)-stretch labeling schemes using Theta...

  18. Small-scale classification schemes

    DEFF Research Database (Denmark)

    Hertzum, Morten

    2004-01-01

    Small-scale classification schemes are used extensively in the coordination of cooperative work. This study investigates the creation and use of a classification scheme for handling the system requirements during the redevelopment of a nation-wide information system. This requirements...... classification inherited a lot of its structure from the existing system and rendered requirements that transcended the framework laid out by the existing system almost invisible. As a result, the requirements classification became a defining element of the requirements-engineering process, though its main...... effects remained largely implicit. The requirements classification contributed to constraining the requirements-engineering process by supporting the software engineers in maintaining some level of control over the process. This way, the requirements classification provided the software engineers...

  19. Identifying best-fitting inputs in health-economic model calibration: a Pareto frontier approach.

    Science.gov (United States)

    Enns, Eva A; Cipriano, Lauren E; Simons, Cyrena T; Kong, Chung Yin

    2015-02-01

    To identify best-fitting input sets using model calibration, individual calibration target fits are often combined into a single goodness-of-fit (GOF) measure using a set of weights. Decisions in the calibration process, such as which weights to use, influence which sets of model inputs are identified as best-fitting, potentially leading to different health economic conclusions. We present an alternative approach to identifying best-fitting input sets based on the concept of Pareto-optimality. A set of model inputs is on the Pareto frontier if no other input set simultaneously fits all calibration targets as well or better. We demonstrate the Pareto frontier approach in the calibration of 2 models: a simple, illustrative Markov model and a previously published cost-effectiveness model of transcatheter aortic valve replacement (TAVR). For each model, we compare the input sets on the Pareto frontier to an equal number of best-fitting input sets according to 2 possible weighted-sum GOF scoring systems, and we compare the health economic conclusions arising from these different definitions of best-fitting. For the simple model, outcomes evaluated over the best-fitting input sets according to the 2 weighted-sum GOF schemes were virtually nonoverlapping on the cost-effectiveness plane and resulted in very different incremental cost-effectiveness ratios ($79,300 [95% CI 72,500-87,600] v. $139,700 [95% CI 79,900-182,800] per quality-adjusted life-year [QALY] gained). Input sets on the Pareto frontier spanned both regions ($79,000 [95% CI 64,900-156,200] per QALY gained). The TAVR model yielded similar results. Choices in generating a summary GOF score may result in different health economic conclusions. The Pareto frontier approach eliminates the need to make these choices by using an intuitive and transparent notion of optimality as the basis for identifying best-fitting input sets. © The Author(s) 2014.

  20. Cambridge community Optometry Glaucoma Scheme.

    Science.gov (United States)

    Keenan, Jonathan; Shahid, Humma; Bourne, Rupert R; White, Andrew J; Martin, Keith R

    2015-04-01

    With a higher life expectancy, there is an increased demand for hospital glaucoma services in the United Kingdom. The Cambridge community Optometry Glaucoma Scheme (COGS) was initiated in 2010, where new referrals for suspected glaucoma are evaluated by community optometrists with a special interest in glaucoma, with virtual electronic review and validation by a consultant ophthalmologist with special interest in glaucoma. 1733 patients were evaluated by this scheme between 2010 and 2013. Clinical assessment is performed by the optometrist at a remote site. Goldmann applanation tonometry, pachymetry, monoscopic colour optic disc photographs and automated Humphrey visual field testing are performed. A clinical decision is made as to whether a patient has glaucoma or is a suspect, and referred on or discharged as a false positive referral. The clinical findings, optic disc photographs and visual field test results are transmitted electronically for virtual review by a consultant ophthalmologist. The number of false positive referrals from initial referral into the scheme. Of the patients, 46.6% were discharged at assessment and a further 5.7% were discharged following virtual review. Of the patients initially discharged, 2.8% were recalled following virtual review. Following assessment at the hospital, a further 10.5% were discharged after a single visit. The COGS community-based glaucoma screening programme is a safe and effective way of evaluating glaucoma referrals in the community and reducing false-positive referrals for glaucoma into the hospital system. © 2014 Royal Australian and New Zealand College of Ophthalmologists.

  1. New schemes for particle accelerators

    International Nuclear Information System (INIS)

    Nishida, Y.

    1985-01-01

    In the present paper, the authors propose new schemes for realizing the v/sub p/xB accelerator, by using no plasma system for producing the strong longitudinal waves. The first method is to use a grating for obtaining extended interaction of an electron beam moving along the grating surface with light beam incident also along the surface. Here, the light beam propagates obliquely to the grating grooves for producing strong electric field, and the electron beam propagates in parallel to the light beam. The static magnetic field is applied perpendicularly to the grating surface. In the present system, the beam interacts synchronously with the p-polarized wave which has the electric field be parallel to the grating surface. Another conventional scheme is to use a delay circuit. Here, the light beam propagates obliquely between a pair of array of conductor fins or slots. The phase velocity of the spatial harmonics in the y-direction (right angle to the array of slots) is slower than the speed of light. With the aid of powerful laser light or microwave source, it should be possible to miniaturise linacs by using the v/sub p/xB effect and schemes proposed here

  2. Heat pipe

    International Nuclear Information System (INIS)

    Triggs, G.W.; Lightowlers, R.J.; Robinson, D.; Rice, G.

    1986-01-01

    A heat pipe for use in stabilising a specimen container for irradiation of specimens at substantially constant temperature within a liquid metal cooled fast reactor, comprises an evaporator section, a condenser section, an adiabatic section therebetween, and a gas reservoir, and contains a vapourisable substance such as sodium. The heat pipe further includes a three layer wick structure comprising an outer relatively fine mesh layer, a coarse intermediate layer and a fine mesh inner layer for promoting unimpeded return of condensate to the evaporation section of the heat pipe while enhancing heat transfer with the heat pipe wall and reducing entrainment of the condensate by the upwardly rising vapour. (author)

  3. A Memory Efficient Network Encryption Scheme

    Science.gov (United States)

    El-Fotouh, Mohamed Abo; Diepold, Klaus

    In this paper, we studied the two widely used encryption schemes in network applications. Shortcomings have been found in both schemes, as these schemes consume either more memory to gain high throughput or low memory with low throughput. The need has aroused for a scheme that has low memory requirements and in the same time possesses high speed, as the number of the internet users increases each day. We used the SSM model [1], to construct an encryption scheme based on the AES. The proposed scheme possesses high throughput together with low memory requirements.

  4. An Arbitrated Quantum Signature Scheme without Entanglement*

    International Nuclear Information System (INIS)

    Li Hui-Ran; Luo Ming-Xing; Peng Dai-Yuan; Wang Xiao-Jun

    2017-01-01

    Several quantum signature schemes are recently proposed to realize secure signatures of quantum or classical messages. Arbitrated quantum signature as one nontrivial scheme has attracted great interests because of its usefulness and efficiency. Unfortunately, previous schemes cannot against Trojan horse attack and DoS attack and lack of the unforgeability and the non-repudiation. In this paper, we propose an improved arbitrated quantum signature to address these secure issues with the honesty arbitrator. Our scheme takes use of qubit states not entanglements. More importantly, the qubit scheme can achieve the unforgeability and the non-repudiation. Our scheme is also secure for other known quantum attacks . (paper)

  5. Input-output rearrangement of isolated converters

    DEFF Research Database (Denmark)

    Madsen, Mickey Pierre; Kovacevic, Milovan; Mønster, Jakob Døllner

    2015-01-01

    This paper presents a new way of rearranging the input and output of isolated converters. The new arrangement posses several advantages, as increased voltage range, higher power handling capabilities, reduced voltage stress and improved efficiency, for applications where galvanic isolation...

  6. Multiple Input - Multiple Output (MIMO) SAR

    Data.gov (United States)

    National Aeronautics and Space Administration — This effort will research and implement advanced Multiple-Input Multiple-Output (MIMO) Synthetic Aperture Radar (SAR) techniques which have the potential to improve...

  7. Outsourcing, public Input provision and policy cooperation

    OpenAIRE

    Aronsson, Thomas; Koskela, Erkki

    2009-01-01

    This paper concerns public input provision as an instrument for redistribution under international outsourcing by using a model-economy comprising two countries, North and South, where firms in the North may outsource part of their low-skilled labor intensive production to the South. We consider two interrelated issues: (i) the incentives for each country to modify the provision of public input goods in response to international outsourcing, and (ii) whether international outsourcing justifie...

  8. A full-field residual stress estimation scheme for fitness-for-service assessment of pipe girth welds: Part II – A shell theory based implementation

    International Nuclear Information System (INIS)

    Song, Shaopin; Dong, Pingsha; Pei, Xianjun

    2015-01-01

    With the two key controlling parameters identified and their effectiveness demonstrated in Part I of this study series for constructing a continuous residual stress profile at weld region, a classical shell theory based model is proposed in this paper (Part II) for describing through-thickness residual stress distributions of both axial and hoop components at any axial location beyond weld region. The shell theory based model is analytically constructed through an assembly of two parts: One represents weld region and the other represents the remaining component section away from weld. The final assembly of the two parts leads to a closed form solution to both axial and hoop residual stress components as a function of axial distance from weld toe position. The effectiveness of the full-field residual stress estimation scheme is demonstrated by comparing with a series of finite element modeling results over a broad range of pipe weld geometries and welding conditions. The present development should provide a consistent and effective means for estimating through-thickness residual stress profile as a continuous function of pipe geometry, welding heat input, as well as material characteristics. - Highlights: • A shell theory based two-part assembly model is developed for generalizing residual stress distributions. • A full-field estimation of through-thickness residual stress profiles can be achieved. • The proposed estimation scheme offers both consistency and mechanics basis in residual stress profile generation. • An estimation scheme for welding-induced plastic zone size is proposed and validated. • The shell theory based estimation scheme can also provide a reasonable estimate on distortion in radial direction

  9. Comparison of ANN (MLP), ANFIS, SVM, and RF models for the online classification of heating value of burning municipal solid waste in circulating fluidized bed incinerators.

    Science.gov (United States)

    You, Haihui; Ma, Zengyi; Tang, Yijun; Wang, Yuelan; Yan, Jianhua; Ni, Mingjiang; Cen, Kefa; Huang, Qunxing

    2017-10-01

    The heating values, particularly lower heating values of burning municipal solid waste are critically important parameters in operating circulating fluidized bed incineration systems. However, the heating values change widely and frequently, while there is no reliable real-time instrument to measure heating values in the process of incinerating municipal solid waste. A rapid, cost-effective, and comparative methodology was proposed to evaluate the heating values of burning MSW online based on prior knowledge, expert experience, and data-mining techniques. First, selecting the input variables of the model by analyzing the operational mechanism of circulating fluidized bed incinerators, and the corresponding heating value was classified into one of nine fuzzy expressions according to expert advice. Development of prediction models by employing four different nonlinear models was undertaken, including a multilayer perceptron neural network, a support vector machine, an adaptive neuro-fuzzy inference system, and a random forest; a series of optimization schemes were implemented simultaneously in order to improve the performance of each model. Finally, a comprehensive comparison study was carried out to evaluate the performance of the models. Results indicate that the adaptive neuro-fuzzy inference system model outperforms the other three models, with the random forest model performing second-best, and the multilayer perceptron model performing at the worst level. A model with sufficient accuracy would contribute adequately to the control of circulating fluidized bed incinerator operation and provide reliable heating value signals for an automatic combustion control system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Adaptive Neural Output Feedback Control for Uncertain Robot Manipulators with Input Saturation

    Directory of Open Access Journals (Sweden)

    Rong Mei

    2017-01-01

    Full Text Available This paper presents an adaptive neural output feedback control scheme for uncertain robot manipulators with input saturation using the radial basis function neural network (RBFNN and disturbance observer. First, the RBFNN is used to approximate the system uncertainty, and the unknown approximation error of the RBFNN and the time-varying unknown external disturbance of robot manipulators are integrated as a compounded disturbance. Then, the state observer and the disturbance observer are proposed to estimate the unmeasured system state and the unknown compounded disturbance based on RBFNN. At the same time, the adaptation technique is employed to tackle the control input saturation problem. Utilizing the estimate outputs of the RBFNN, the state observer, and the disturbance observer, the adaptive neural output feedback control scheme is developed for robot manipulators using the backstepping technique. The convergence of all closed-loop signals is rigorously proved via Lyapunov analysis and the asymptotically convergent tracking error is obtained under the integrated effect of the system uncertainty, the unmeasured system state, the unknown external disturbance, and the input saturation. Finally, numerical simulation results are presented to illustrate the effectiveness of the proposed adaptive neural output feedback control scheme for uncertain robot manipulators.

  11. Winter-regime surface heat loss from heated streams

    International Nuclear Information System (INIS)

    Paily, P.P.; Macagno, E.O.; Kennedy, J.F.

    1974-01-01

    Evaluation of the rate of surface heat exchange between the water and air is a significant factor in any study of the thermal response of heated streams to heat inputs. Existing methods to determine the amount of heat transfer across the water surface are surveyed, and the different formulas developed for determining the heat exchange components are compiled. Heat-transfer models that have been proposed in the literature are reviewed, and a new linearized model for determining the rate of surface heat exchange is proposed. Generalized relations between the major climatological factors and the coefficients of the linearized heat-loss rate are established by multiple-regression analysis. The analysis is limited to cold-period conditions, in the sense that air temperatures below the freezing point of water only are considered in developing the regression equations. A computer program, using FORTRAN, is presented which enables the computation of the coefficients appearing in the linearized heat-loss rate for all combinations of the various climatological factors

  12. Integrated multiscale simulation of combined heat and power based district heating system

    International Nuclear Information System (INIS)

    Li, Peifeng; Nord, Natasa; Ertesvåg, Ivar Ståle; Ge, Zhihua; Yang, Zhiping; Yang, Yongping

    2015-01-01

    Highlights: • Simulation of power plant, district heating network and heat users in detail and integrated. • Coupled calculation and analysis of the heat and pressure losses of the district heating network. • District heating is not preferable for very low heat load due to relatively high heat loss. • Lower design supply temperatures of the district heating network give higher system efficiency. - Abstract: Many studies have been carried out separately on combined heat and power and district heating. However, little work has been done considering the heat source, the district heating network and the heat users simultaneously, especially when it comes to the heating system with large-scale combined heat and power plant. For the purpose of energy conservation, it is very important to know well the system performance of the integrated heating system from the very primary fuel input to the terminal heat users. This paper set up a model of 300 MW electric power rated air-cooled combined heat and power plant using Ebsilon software, which was validated according to the design data from the turbine manufacturer. Then, the model of heating network and heat users were developed based on the fundamental theories of fluid mechanics and heat transfer. Finally the combined heat and power based district heating system was obtained and the system performances within multiscale scope of the system were analyzed using the developed Ebsilon model. Topics with regard to the heat loss, the pressure drop, the pump power consumption and the supply temperatures of the district heating network were discussed. Besides, the operational issues of the integrated system were also researched. Several useful conclusions were drawn. It was found that a lower design primary supply temperature of the district heating network would give a higher seasonal energy efficiency of the integrated system throughout the whole heating season. Moreover, it was not always right to relate low design

  13. A simplified method of calculating heat flow through a two-phase heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Yohanis, Y.G. [Thermal Systems Engineering Group, Faculty of Engineering, University of Ulster, Newtownabbey, Co Antrim, BT37 0QB Northern Ireland (United Kingdom)]. E-mail: yg.yohanis@ulster.ac.uk; Popel, O.S. [Non-traditional Renewable Energy Sources, Institute for High Temperatures, Russian Academy of Sciences, 13/19 Izhorskaya str., IVTAN, Moscow 125412 (Russian Federation); Frid, S.E. [Non-traditional Renewable Energy Sources, Institute for High Temperatures, Russian Academy of Sciences, 13/19 Izhorskaya str., IVTAN, Moscow 125412 (Russian Federation)

    2005-10-01

    A simplified method of calculating the heat flow through a heat exchanger in which one or both heat carrying media are undergoing a phase change is proposed. It is based on enthalpies of the heat carrying media rather than their temperatures. The method enables the determination of the maximum rate of heat flow provided the thermodynamic properties of both heat-carrying media are known. There will be no requirement to separately simulate each part of the system or introduce boundaries within the heat exchanger if one or both heat-carrying media undergo a phase change. The model can be used at the pre-design stage, when the parameters of the heat exchangers may not be known, i.e., to carry out an assessment of a complex energy scheme such as a steam power plant. One such application of this model is in thermal simulation exercises within the TRNSYS modeling environment.

  14. A simplified method of calculating heat flow through a two-phase heat exchanger

    International Nuclear Information System (INIS)

    Yohanis, Y.G.; Popel, O.S.; Frid, S.E.

    2005-01-01

    A simplified method of calculating the heat flow through a heat exchanger in which one or both heat carrying media are undergoing a phase change is proposed. It is based on enthalpies of the heat carrying media rather than their temperatures. The method enables the determination of the maximum rate of heat flow provided the thermodynamic properties of both heat-carrying media are known. There will be no requirement to separately simulate each part of the system or introduce boundaries within the heat exchanger if one or both heat-carrying media undergo a phase change. The model can be used at the pre-design stage, when the parameters of the heat exchangers may not be known, i.e., to carry out an assessment of a complex energy scheme such as a steam power plant. One such application of this model is in thermal simulation exercises within the TRNSYS modeling environment

  15. Study on diverse passive decay heat removal approach and principle

    International Nuclear Information System (INIS)

    Lin Qian; Si Shengyi

    2012-01-01

    Decay heat removal in post-accident is one of the most important aspects concerned in the reactor safety analysis. Passive decay heat removal approach is used to enhance nuclear safety. In advanced reactors, decay heat is removed by multiple passive heat removal paths through core to ultimate heat sink by passive residual heat removal system, passive injection system, passive containment cooling system and so on. Various passive decay heat removal approaches are summarized in this paper, the common features and differences of their heat removal paths are analyzed, and the design principle of passive systems for decay heat removal is discussed. It is found that. these decay heat removal paths is combined by some basic heat transfer processes, by the combination of these basic processes, diverse passive decay heat removal approach or system design scheme can be drawn. (authors)

  16. Design and evaluation of nonverbal sound-based input for those with motor handicapped.

    Science.gov (United States)

    Punyabukkana, Proadpran; Chanjaradwichai, Supadaech; Suchato, Atiwong

    2013-03-01

    Most personal computing interfaces rely on the users' ability to use their hand and arm movements to interact with on-screen graphical widgets via mainstream devices, including keyboards and mice. Without proper assistive devices, this style of input poses difficulties for motor-handicapped users. We propose a sound-based input scheme enabling users to operate Windows' Graphical User Interface by producing hums and fricatives through regular microphones. Hierarchically arranged menus are utilized so that only minimal numbers of different actions are required at a time. The proposed scheme was found to be accurate and capable of responding promptly compared to other sound-based schemes. Being able to select from multiple item-selecting modes helps reducing the average time duration needed for completing tasks in the test scenarios almost by half the time needed when the tasks were performed solely through cursor movements. Still, improvements on facilitating users to select the most appropriate modes for desired tasks should improve the overall usability of the proposed scheme.

  17. ENERGY SUPPLY OF COMMERTIAL GREENHOUSE WITH THE GAS DRIVEN HEAT PUMP part II

    Directory of Open Access Journals (Sweden)

    Sit M.L.

    2013-12-01

    Full Text Available In this article a scheme of connection of heat exchanger for utilization of heat of flue gases to evaporator is proposed. In proposed scheme is ensured the minimum power of ventilator for air’s feeding to the evaporator of heat pump and compensation of pulsations of temperature of flue gases and pressure of ventilator. It is shown how to optimize parameters of heat exchanger in conditions of minimum of dissipation of energy with utilization of value of entransy. It is elaborated a scheme of coordinated control system of hydraulic transmissions, that transfers power on compressor of heat pump and electrical generator.

  18. Decoupling schemes for the SSC Collider

    International Nuclear Information System (INIS)

    Cai, Y.; Bourianoff, G.; Cole, B.; Meinke, R.; Peterson, J.; Pilat, F.; Stampke, S.; Syphers, M.; Talman, R.

    1993-05-01

    A decoupling system is designed for the SSC Collider. This system can accommodate three decoupling schemes by using 44 skew quadrupoles in the different configurations. Several decoupling schemes are studied and compared in this paper

  19. Renormalization scheme-invariant perturbation theory

    International Nuclear Information System (INIS)

    Dhar, A.

    1983-01-01

    A complete solution to the problem of the renormalization scheme dependence of perturbative approximants to physical quantities is presented. An equation is derived which determines any physical quantity implicitly as a function of only scheme independent variables. (orig.)

  20. Wireless Broadband Access and Accounting Schemes

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    In this paper, we propose two wireless broadband access and accounting schemes. In both schemes, the accounting system adopts RADIUS protocol, but the access system adopts SSH and SSL protocols respectively.

  1. Combined heat and power in the City

    Energy Technology Data Exchange (ETDEWEB)

    Crafter, A. [Corporation of London (United Kingdom). Dept. of Technical Services

    2002-03-01

    This article reports on the development of a large-scale combined heat and power community energy scheme within the City of London. Supported by the Corporation of London and using its own buildings to provide the heating and cooling loads, the scheme has established a power plant close to Smithfield Meat Market and supplies district heating and chilled water for air conditioning to its own properties and some private customers in the nearby districts. Details are given of the power plant which is sited in a conservation area with limited access, the use of absorption chillers to produce the chilled water, the estimated amount of carbon dioxide emissions saved, and the financial benefits of the scheme.

  2. Linking payment to health outcomes: a taxonomy and examination of performance-based reimbursement schemes between healthcare payers and manufacturers.

    Science.gov (United States)

    Carlson, Josh J; Sullivan, Sean D; Garrison, Louis P; Neumann, Peter J; Veenstra, David L

    2010-08-01

    To identify, categorize and examine performance-based health outcomes reimbursement schemes for medical technology. We performed a review of performance-based health outcomes reimbursement schemes over the past 10 years (7/98-010/09) using publicly available databases, web and grey literature searches, and input from healthcare reimbursement experts. We developed a taxonomy of scheme types by inductively organizing the schemes identified according to the timing, execution, and health outcomes measured in the schemes. Our search yielded 34 coverage with evidence development schemes, 10 conditional treatment continuation schemes, and 14 performance-linked reimbursement schemes. The majority of schemes are in Europe and Australia, with an increasing number in Canada and the U.S. These schemes have the potential to alter the reimbursement and pricing landscape for medical technology, but significant challenges, including high transaction costs and insufficient information systems, may limit their long-term impact. Future studies regarding experiences and outcomes of implemented schemes are necessary. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  3. Tightly Secure Signatures From Lossy Identification Schemes

    OpenAIRE

    Abdalla , Michel; Fouque , Pierre-Alain; Lyubashevsky , Vadim; Tibouchi , Mehdi

    2015-01-01

    International audience; In this paper, we present three digital signature schemes with tight security reductions in the random oracle model. Our first signature scheme is a particularly efficient version of the short exponent discrete log-based scheme of Girault et al. (J Cryptol 19(4):463–487, 2006). Our scheme has a tight reduction to the decisional short discrete logarithm problem, while still maintaining the non-tight reduction to the computational version of the problem upon which the or...

  4. Resource use in a low-input organic vegetable food supply system in UK - a case study

    DEFF Research Database (Denmark)

    Østergård, Hanne; Markussen, Mads V.; Kulak, Michal

    2014-01-01

    The sustainability of a small-scale low-input organic vegetable farm in United Kingdom with high crop diversity and a related box scheme food supply system was assessed by emergy evaluation, an environmental accounting method based on the direct and indirect use of solar equivalent joules. The main...

  5. Thermal resistance of a convectively cooled plate with applied heat flux and variable internal heat generation

    International Nuclear Information System (INIS)

    Venkataraman, N.S.; Cardoso, H.P.; Oliveira Filho, O.B. de

    1981-01-01

    The conductive heat transfer in a rectangular plate with nonuniform internal heat generation, with one end convectively cooled and a part of the opposite end subjected to external heat flux is considered. The remaining part of this end as well as the other two sides are thermally insulated. The governing differential equation is solved by a finite difference scheme. The variation of the thermal resistance with Biot modulus, the plate geometry, the internal heat generation parameter and the type of profile of internal heat generation is discussed. (author) [pt

  6. Safety provision during heating of coal downcast shafts with gas heat generators using degassed methane

    Directory of Open Access Journals (Sweden)

    В. Р. Алабьев

    2017-06-01

    Together with heat generators of mixed type the article also describes a working principle of heat generator of indirect action type, which to the fullest extent possible meets requirements of Russian Federation legislation and regulation for application of this heat generators in coal mines conditions. The article has a principal working scheme of heat unit layout using this type of generator. It is shown that after development of corresponding normative documents regulating processes of design, construction and operation of heating units using heaters of indirect action, their application in Russian coal mines will be possible without breaking Safety standards and rules.

  7. Forced convection heat transfer in He II

    International Nuclear Information System (INIS)

    Kashani, A.

    1986-01-01

    An investigation of forced convection heat transfer in He II is conducted. The study includes both experimental and theoretical treatments of the problem. The experiment consists of a hydraulic pump and a copper flow tube, 3 mm in ID and 2m long. The system allows measurements of one-dimensional heat and mass transfer in He II. The heat transfer experiments are performed by applying heat at the midpoint along the length of the flow tube. Two modes of heat input are employed, i.e., step function heat input and square pulse heat input. The heat transfer results are discussed in terms of temperature distribution in the tube. The experimental temperature profiles are compared with numerical solutions of an analytical model developed from the He II energy equation. The bath temperature is set at three different values of 1.65, 1.80, and 1.95 K. The He II flow velocity is varied up to 90 cm/s. Pressure is monitored at each end of the flow tube, and the He II pressure drop is obtained for different flow velocities. Results indicate that He II heat transfer by forced convention is considerably higher than that by internal convection. The theoretical model is in close agreement with the experiment. He II pressure drop and friction factor are very similar to those of an ordinary fluid

  8. Optimum input leads for cryogenic apparatus

    International Nuclear Information System (INIS)

    Der Nigohossian, G.

    1967-02-01

    The electrical leads used to introduce a current into a cryostat cause a heat influx due to thermal conduction and to Joule heating. It is very important to be able to minimize this flux. Theoretical calculation of optimized leads takes into account the varying heat and electrical conductivities of the leads as well as the heat exchange coefficient with the effluent gas. Practical results have been summarized in different tables which permit for a specific material i.e. copper, aluminium, brass, stainless steel with the intensity and end temperatures being known (i.e. 4,2 or 18,5 deg. K at the cold end; 77,295 or 320 deg. K at the warm end) to deduce the minimum heat flow and the length-cross section ratio of the optimized leads. A general method is indicated, which would allow to solve the same problem for other materials. (author) [fr

  9. Comparative study of numerical schemes of TVD3, UNO3-ACM and optimized compact scheme

    Science.gov (United States)

    Lee, Duck-Joo; Hwang, Chang-Jeon; Ko, Duck-Kon; Kim, Jae-Wook

    1995-01-01

    Three different schemes are employed to solve the benchmark problem. The first one is a conventional TVD-MUSCL (Monotone Upwind Schemes for Conservation Laws) scheme. The second scheme is a UNO3-ACM (Uniformly Non-Oscillatory Artificial Compression Method) scheme. The third scheme is an optimized compact finite difference scheme modified by us: the 4th order Runge Kutta time stepping, the 4th order pentadiagonal compact spatial discretization with the maximum resolution characteristics. The problems of category 1 are solved by using the second (UNO3-ACM) and third (Optimized Compact) schemes. The problems of category 2 are solved by using the first (TVD3) and second (UNO3-ACM) schemes. The problem of category 5 is solved by using the first (TVD3) scheme. It can be concluded from the present calculations that the Optimized Compact scheme and the UN03-ACM show good resolutions for category 1 and category 2 respectively.

  10. Purifying, concentrating and anhydriding bio-ethanol: Alternative process schemes and innovative separation methods

    International Nuclear Information System (INIS)

    Guerreri, G.; Lovati, A.

    1992-01-01

    Starting with the conventional process scheme for bio-ethanol production, this paper illustrates how the anhydriding section, which incorporates an azeotropic distillation process, can be conveniently substituted with a plate and frame pervaporation process which makes use of optimum heat exchange with the stripping section. This technical feasibility study, which proves the superior energy efficiency of the pervaporation scheme as compared with the conventional scheme, is followed by a cost benefit analysis which evidences the economic benefits also to be had with pervaporation

  11. Optimal Sales Schemes for Network Goods

    DEFF Research Database (Denmark)

    Parakhonyak, Alexei; Vikander, Nick

    consumers simultaneously, serve them all sequentially, or employ any intermediate scheme. We show that the optimal sales scheme is purely sequential, where each consumer observes all previous sales before choosing whether to buy himself. A sequential scheme maximizes the amount of information available...

  12. THROUGHPUT ANALYSIS OF EXTENDED ARQ SCHEMES

    African Journals Online (AJOL)

    PUBLICATIONS1

    ABSTRACT. Various Automatic Repeat Request (ARQ) schemes have been used to combat errors that befall in- formation transmitted in digital communication systems. Such schemes include simple ARQ, mixed mode ARQ and Hybrid ARQ (HARQ). In this study we introduce extended ARQ schemes and derive.

  13. Arbitrated quantum signature scheme with message recovery

    International Nuclear Information System (INIS)

    Lee, Hwayean; Hong, Changho; Kim, Hyunsang; Lim, Jongin; Yang, Hyung Jin

    2004-01-01

    Two quantum signature schemes with message recovery relying on the availability of an arbitrator are proposed. One scheme uses a public board and the other does not. However both schemes provide confidentiality of the message and a higher efficiency in transmission

  14. Input energy measurement toward warm dense matter generation using intense pulsed power generator

    Science.gov (United States)

    Hayashi, R.; Ito, T.; Ishitani, T.; Tamura, F.; Kudo, T.; Takakura, N.; Kashine, K.; Takahashi, K.; Sasaki, T.; Kikuchi, T.; Harada, Nob.; Jiang, W.; Tokuchi, A.

    2016-05-01

    In order to investigate properties of warm dense matter (WDM) in inertial confinement fusion (ICF), evaluation method for the WDM with isochoric heating on the implosion time-scale using an intense pulsed power generator ETIGO-II (∼1 TW, ∼50 ns) has been considered. In this study, the history of input energy into the sample is measured from the voltage and the current waveforms. To achieve isochoric heating, a foamed aluminum with pore sizes 600 μm and with 90% porosity was packed into a hollow glass capillary (ø 5 mm × 10 mm). The temperature of the sample is calculated from the numerical calculation using the measured input power. According to the above measurements, the input energy into a sample and the achievable temperature are estimated to be 300 J and 6000 K. It indicates that the WDM state is generated using the proposed method with ICF implosion time-scale.

  15. District heating and cooling systems for communities through power plant retrofit and distribution network. Volume 3. Tasks 4-6. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Watt, J.R.; Sommerfield, G.A.

    1979-08-01

    Stone and Webster Engineering Corporation is a member of the Demonstration Team to review and assess the technical aspects of cogeneration for district heating. Task 4 details the most practical retrofit schemes. Of the cogeneration schemes studied, a back-pressure turbine is considered the best source of steam for district heating. Battelle Columbus Laboratories is a member of the Demonstration Team employed to investigate several institutional issues affecting the success of district heating. The Toledo Edison legal staff reviewed the legal aspects of mandate to serve, easement and franchise requirements, and corporate charter requirements. The principal findings of both the Battelle investigations and the legal research are summarized in Task 5. A complete discussion of each issue is included in the two sections labeled Legal Issues and Institutional Issues. In Task 6, Battelle Columbus Laboratories completed a preliminary economic analysis, incorporating accurate input parameters applicable to utility ownership of the proposed district-heating system. The methodology used is summarized, the assumptions are listed, and the results are briefly reviewed.

  16. Six axis force feedback input device

    Science.gov (United States)

    Ohm, Timothy (Inventor)

    1998-01-01

    The present invention is a low friction, low inertia, six-axis force feedback input device comprising an arm with double-jointed, tendon-driven revolute joints, a decoupled tendon-driven wrist, and a base with encoders and motors. The input device functions as a master robot manipulator of a microsurgical teleoperated robot system including a slave robot manipulator coupled to an amplifier chassis, which is coupled to a control chassis, which is coupled to a workstation with a graphical user interface. The amplifier chassis is coupled to the motors of the master robot manipulator and the control chassis is coupled to the encoders of the master robot manipulator. A force feedback can be applied to the input device and can be generated from the slave robot to enable a user to operate the slave robot via the input device without physically viewing the slave robot. Also, the force feedback can be generated from the workstation to represent fictitious forces to constrain the input device's control of the slave robot to be within imaginary predetermined boundaries.

  17. Numerical routine for magnetic heat pump cascading

    DEFF Research Database (Denmark)

    Filonenko, Konstantin; Lei, Tian; Engelbrecht, Kurt

    Heat pumps use low-temperature heat absorbed from the energy source to create temperature gradient (TG) across the energy sink. Magnetic heat pumps (MHP) can perform this function through operating active magnetic regeneration (AMR) cycle. For building heating, TGs of up to a few K might...... and 3 K. Changing the number of MHPs, we optimized input parameters to achieve maximum heating powers. We have found that both maximum heating power and COP decrease together with number of heat pumps, but the TGs and the temperature span can be largely increased. References [1] M. Tahavori et al., “A...... be necessary, which is hardly achievable with a single MHP and such techniques as cascading are required. Series and parallel cascading increase the AMR span and heating power, respectively, but do not change TG. Therefore, the intermediate type of cascading was proposed with individual MHPs separately...

  18. Heat transfer coeffcient for boiling carbon dioxide

    DEFF Research Database (Denmark)

    Knudsen, Hans Jørgen Høgaard; Jensen, Per Henrik

    1997-01-01

    Heat transfer coefficient and pressure drop for boiling carbon dioxide (R744) flowing in a horizontal pipe has been measured. The pipe is heated by condensing R22 outside the pipe. The heat input is supplied by an electrical heater wich evaporates the R22. With the heat flux assumed constant over...... the whole surface and with measured temperature difference between the inner surface and the evaporation temperature a mean heat transfer coefficient is calculated. The calculated heat transfer coefficient has been compared with the Chart Correlation of Shah. The Chart Correlation predicts too low heat...... transfer coefficient but the ratio between the measured and the calculated heat transfer coefficient is nearly constant and equal 1.9. With this factor the correlation predicts the measured data within 14% (RMS). The pressure drop is of the same order as the measuring uncertainty and the pressure drop has...

  19. A Three-Phase Dual-Input Matrix Converter for Grid Integration of Two AC Type Energy Resources

    DEFF Research Database (Denmark)

    Liu, Xiong; Wang, Peng; Chiang Loh, Poh

    2013-01-01

    This paper proposes a novel dual-input matrix converter (DIMC) to integrate two three-phase ac type energy resources to a power grid. The proposed matrix converter is developed based on the traditional indirect matrix converter under reverse power flow operation mode, but with its six......-to-output voltage boost capability since power flows from the converter’s voltage source side to its current source side. Commanded currents can be extracted from the two input sources to the grid. The proposed control and modulation schemes guarantee sinusoidal input and output waveforms as well as unity input......-switch voltage source converter replaced by a nine-switch configuration. With the additional three switches, the proposed DIMC can provide six in put terminals, which make it possible to integrate two independent ac sources into a single grid-tied power electronics interface. The proposed converter has input...

  20. Development of a parameterization scheme of mesoscale convective systems

    International Nuclear Information System (INIS)

    Cotton, W.R.

    1994-01-01

    The goal of this research is to develop a parameterization scheme of mesoscale convective systems (MCS) including diabatic heating, moisture and momentum transports, cloud formation, and precipitation. The approach is to: Perform explicit cloud-resolving simulation of MCSs; Perform statistical analyses of simulated MCSs to assist in fabricating a parameterization, calibrating coefficients, etc.; Test the parameterization scheme against independent field data measurements and in numerical weather prediction (NWP) models emulating general circulation model (GCM) grid resolution. Thus far we have formulated, calibrated, implemented and tested a deep convective engine against explicit Florida sea breeze convection and in coarse-grid regional simulations of mid-latitude and tropical MCSs. Several explicit simulations of MCSs have been completed, and several other are in progress. Analysis code is being written and run on the explicitly simulated data

  1. Conceptual scheme of a hybrid mesocatalytic fusion reactor

    International Nuclear Information System (INIS)

    Petrov, Yu.V.

    1988-01-01

    To test the practical realization of the mesocatalytic method for energy production a preliminary engineering analysis and calculation of the separate units of the conceptual scheme of the hybrid mesocatalytic reactor was made. The construction and efficiency of the most characteristic separate blocks of the conceptual scheme for muon-catalyzed fusion are examined. The muon catalysis cycle in a dt mixture was assessed. The kinetics and energetics of muon production through a pion-forming target and a converter were evaluated. Concomitant questions, particularly the removal of helium from hydrogen, are discussed. Fusion chamber requirements were calculated and problems of heat removal were assessed. Blanket construction and efficiency were examined. The efficiency of different methods for power generation were comparatively reviewed including hybrid thermonuclear, electronuclear nuclear, and hybrid mesocatalytic methods. Energy balances and economic restrictions were examined

  2. Ignition and fusion burn in fast ignition scheme

    International Nuclear Information System (INIS)

    Takabe, Hideaki

    1998-01-01

    The target physics of fast ignition is briefly reviewed by focusing on the ignition and fusion burn in the off-center ignition scheme. By the use of a two dimensional hydrodynamic code with an alpha heating process, the ignition condition is studied. It is shown that the ignition condition of the off-center ignition scheme coincides with that of the the central isochoric model. After the ignition, a nuclear burning wave is seen to burn the cold main fuel with a velocity of 2 - 3 x 10 8 cm/s. The spark energy required for the off-center ignition is 2 - 3 kJ or 10 - 15 kJ for the core density of 400 g/cm 3 or 200 g/cm 3 , respectively. It is demonstrated that a core gain of more than 2,000 is possible for a core energy of 100 kJ with a hot spark energy of 13 kJ. The requirement for the ignition region's heating time is also discussed by modeling a heating source in the 2-D code. (author)

  3. A survey of radio frequency heating in tokamaks

    International Nuclear Information System (INIS)

    Bhatti, Z.R.

    1998-01-01

    A brief summary is given of the plasma physics of radio frequency heating in tokamaks. The general features common to all schemes are described. The three main methods, ion cyclotron electron cyclotron, and lower hybrid are also discussed. (author)

  4. Self-Structured Organizing Single-Input CMAC Control for Robot Manipulator

    Directory of Open Access Journals (Sweden)

    ThanhQuyen Ngo

    2011-09-01

    Full Text Available This paper represents a self-structured organizing single-input control system based on differentiable cerebellar model articulation controller (CMAC for an n-link robot manipulator to achieve the high-precision position tracking. In the proposed scheme, the single-input CMAC controller is solely used to control the plant, so the input space dimension of CMAC can be simplified and no conventional controller is needed. The structure of single-input CMAC will also be self-organized; that is, the layers of single-input CMAC will grow or prune systematically and their receptive functions can be automatically adjusted. The online tuning laws of single-input CMAC parameters are derived in gradient-descent learning method and the discrete-type Lyapunov function is applied to determine the learning rates of proposed control system so that the stability of the system can be guaranteed. The simulation results of robot manipulator are provided to verify the effectiveness of the proposed control methodology.

  5. Effects of the distribution density of a biomass combined heat and power plant network on heat utilisation efficiency in village-town systems.

    Science.gov (United States)

    Zhang, Yifei; Kang, Jian

    2017-11-01

    The building of biomass combined heat and power (CHP) plants is an effective means of developing biomass energy because they can satisfy demands for winter heating and electricity consumption. The purpose of this study was to analyse the effect of the distribution density of a biomass CHP plant network on heat utilisation efficiency in a village-town system. The distribution density is determined based on the heat transmission threshold, and the heat utilisation efficiency is determined based on the heat demand distribution, heat output efficiency, and heat transmission loss. The objective of this study was to ascertain the optimal value for the heat transmission threshold using a multi-scheme comparison based on an analysis of these factors. To this end, a model of a biomass CHP plant network was built using geographic information system tools to simulate and generate three planning schemes with different heat transmission thresholds (6, 8, and 10 km) according to the heat demand distribution. The heat utilisation efficiencies of these planning schemes were then compared by calculating the gross power, heat output efficiency, and heat transmission loss of the biomass CHP plant for each scenario. This multi-scheme comparison yielded the following results: when the heat transmission threshold was low, the distribution density of the biomass CHP plant network was high and the biomass CHP plants tended to be relatively small. In contrast, when the heat transmission threshold was high, the distribution density of the network was low and the biomass CHP plants tended to be relatively large. When the heat transmission threshold was 8 km, the distribution density of the biomass CHP plant network was optimised for efficient heat utilisation. To promote the development of renewable energy sources, a planning scheme for a biomass CHP plant network that maximises heat utilisation efficiency can be obtained using the optimal heat transmission threshold and the nonlinearity

  6. REMINDER: Saved Leave Scheme (SLS)

    CERN Multimedia

    2003-01-01

    Transfer of leave to saved leave accounts Under the provisions of the voluntary saved leave scheme (SLS), a maximum total of 10 days'* annual and compensatory leave (excluding saved leave accumulated in accordance with the provisions of Administrative Circular No 22B) can be transferred to the saved leave account at the end of the leave year (30 September). We remind you that unused leave of all those taking part in the saved leave scheme at the closure of the leave year accounts is transferred automatically to the saved leave account on that date. Therefore, staff members have no administrative steps to take. In addition, the transfer, which eliminates the risk of omitting to request leave transfers and rules out calculation errors in transfer requests, will be clearly shown in the list of leave transactions that can be consulted in EDH from October 2003 onwards. Furthermore, this automatic leave transfer optimizes staff members' chances of benefiting from a saved leave bonus provided that they ar...

  7. Plasma heating: NBI ampersand RF, an introduction

    International Nuclear Information System (INIS)

    Koch, R.

    1996-01-01

    The additional heating and non-inductive current-drive methods are reviewed. First, the limitations of ohmic heating in tokamaks are examined and the motivations for using additional heating in tokamaks or other machines are discussed. Next we sketch the principles of heating by injection of fast neutrals - or Neutral Beam Injection (NBI). The principle of the injector is briefly outlined. Positive and negative ion based concepts are discussed. The remainder of the lecture focuses on the processes by which the beam transfers energy to the plasma: the ionisation and slowing-down processes. Next, I make a review of the different heating schemes based on the transfer of electromagnetic energy to the plasma. The different wave heating frequency ranges are listed and the propagation and damping peculiarities are sketched in each domain. Heating in the Alfven and lower hybrid wave domains are described in some more details. 21 refs., 9 figs., 1 tab

  8. Computer Generated Inputs for NMIS Processor Verification

    International Nuclear Information System (INIS)

    J. A. Mullens; J. E. Breeding; J. A. McEvers; R. W. Wysor; L. G. Chiang; J. R. Lenarduzzi; J. T. Mihalczo; J. K. Mattingly

    2001-01-01

    Proper operation of the Nuclear Identification Materials System (NMIS) processor can be verified using computer-generated inputs [BIST (Built-In-Self-Test)] at the digital inputs. Preselected sequences of input pulses to all channels with known correlation functions are compared to the output of the processor. These types of verifications have been utilized in NMIS type correlation processors at the Oak Ridge National Laboratory since 1984. The use of this test confirmed a malfunction in a NMIS processor at the All-Russian Scientific Research Institute of Experimental Physics (VNIIEF) in 1998. The NMIS processor boards were returned to the U.S. for repair and subsequently used in NMIS passive and active measurements with Pu at VNIIEF in 1999

  9. Quantum Secure Communication Scheme with W State

    International Nuclear Information System (INIS)

    Wang Jian; Zhang Quan; Tang Chaojng

    2007-01-01

    We present a quantum secure communication scheme using three-qubit W state. It is unnecessary for the present scheme to use alternative measurement or Bell basis measurement. Compared with the quantum secure direct communication scheme proposed by Cao et al. [H.J. Cao and H.S. Song, Chin. Phys. Lett. 23 (2006) 290], in our scheme, the detection probability for an eavesdropper's attack increases from 8.3% to 25%. We also show that our scheme is secure for a noise quantum channel.

  10. Labeling schemes for bounded degree graphs

    DEFF Research Database (Denmark)

    Adjiashvili, David; Rotbart, Noy Galil

    2014-01-01

    We investigate adjacency labeling schemes for graphs of bounded degree Δ = O(1). In particular, we present an optimal (up to an additive constant) log n + O(1) adjacency labeling scheme for bounded degree trees. The latter scheme is derived from a labeling scheme for bounded degree outerplanar...... graphs. Our results complement a similar bound recently obtained for bounded depth trees [Fraigniaud and Korman, SODA 2010], and may provide new insights for closing the long standing gap for adjacency in trees [Alstrup and Rauhe, FOCS 2002]. We also provide improved labeling schemes for bounded degree...

  11. Harmonize input selection for sediment transport prediction

    Science.gov (United States)

    Afan, Haitham Abdulmohsin; Keshtegar, Behrooz; Mohtar, Wan Hanna Melini Wan; El-Shafie, Ahmed

    2017-09-01

    In this paper, three modeling approaches using a Neural Network (NN), Response Surface Method (RSM) and response surface method basis Global Harmony Search (GHS) are applied to predict the daily time series suspended sediment load. Generally, the input variables for forecasting the suspended sediment load are manually selected based on the maximum correlations of input variables in the modeling approaches based on NN and RSM. The RSM is improved to select the input variables by using the errors terms of training data based on the GHS, namely as response surface method and global harmony search (RSM-GHS) modeling method. The second-order polynomial function with cross terms is applied to calibrate the time series suspended sediment load with three, four and five input variables in the proposed RSM-GHS. The linear, square and cross corrections of twenty input variables of antecedent values of suspended sediment load and water discharge are investigated to achieve the best predictions of the RSM based on the GHS method. The performances of the NN, RSM and proposed RSM-GHS including both accuracy and simplicity are compared through several comparative predicted and error statistics. The results illustrated that the proposed RSM-GHS is as uncomplicated as the RSM but performed better, where fewer errors and better correlation was observed (R = 0.95, MAE = 18.09 (ton/day), RMSE = 25.16 (ton/day)) compared to the ANN (R = 0.91, MAE = 20.17 (ton/day), RMSE = 33.09 (ton/day)) and RSM (R = 0.91, MAE = 20.06 (ton/day), RMSE = 31.92 (ton/day)) for all types of input variables.

  12. Shaped input distributions for structural damage localization

    DEFF Research Database (Denmark)

    Ulriksen, Martin Dalgaard; Bernal, Dionisio; Damkilde, Lars

    2018-01-01

    localization method is cast that operates on the premise of shaping inputs—whose spatial distribution is fixed—by use of a model, such that these inputs, in one structural subdomain at a time, suppress certain steady-state vibration quantities (depending on the type of damage one seeks to interrogate for......). Accordingly, damage is localized when the vibration signature induced by the shaped inputs in the damaged state corresponds to that in the reference state, hereby implying that the approach does not point directly to damage. Instead, it operates with interrogation based on postulated damage patterns...

  13. A parallel input composite transimpedance amplifier

    Science.gov (United States)

    Kim, D. J.; Kim, C.

    2018-01-01

    A new approach to high performance current to voltage preamplifier design is presented. The design using multiple operational amplifiers (op-amps) has a parasitic capacitance compensation network and a composite amplifier topology for fast, precision, and low noise performance. The input stage consisting of a parallel linked JFET op-amps and a high-speed bipolar junction transistor (BJT) gain stage driving the output in the composite amplifier topology, cooperating with the capacitance compensation feedback network, ensures wide bandwidth stability in the presence of input capacitance above 40 nF. The design is ideal for any two-probe measurement, including high impedance transport and scanning tunneling microscopy measurements.

  14. Nuclear reaction inputs based on effective interactions

    Energy Technology Data Exchange (ETDEWEB)

    Hilaire, S.; Peru, S.; Dubray, N.; Dupuis, M.; Bauge, E. [CEA, DAM, DIF, Arpajon (France); Goriely, S. [Universite Libre de Bruxelles, Institut d' Astronomie et d' Astrophysique, CP-226, Brussels (Belgium)

    2016-11-15

    Extensive nuclear structure studies have been performed for decades using effective interactions as sole input. They have shown a remarkable ability to describe rather accurately many types of nuclear properties. In the early 2000 s, a major effort has been engaged to produce nuclear reaction input data out of the Gogny interaction, in order to challenge its quality also with respect to nuclear reaction observables. The status of this project, well advanced today thanks to the use of modern computers as well as modern nuclear reaction codes, is reviewed and future developments are discussed. (orig.)

  15. Simulation of a Multidimensional Input Quantum Perceptron

    Science.gov (United States)

    Yamamoto, Alexandre Y.; Sundqvist, Kyle M.; Li, Peng; Harris, H. Rusty

    2018-06-01

    In this work, we demonstrate the improved data separation capabilities of the Multidimensional Input Quantum Perceptron (MDIQP), a fundamental cell for the construction of more complex Quantum Artificial Neural Networks (QANNs). This is done by using input controlled alterations of ancillary qubits in combination with phase estimation and learning algorithms. The MDIQP is capable of processing quantum information and classifying multidimensional data that may not be linearly separable, extending the capabilities of the classical perceptron. With this powerful component, we get much closer to the achievement of a feedforward multilayer QANN, which would be able to represent and classify arbitrary sets of data (both quantum and classical).

  16. Load Estimation from Natural input Modal Analysis

    DEFF Research Database (Denmark)

    Aenlle, Manuel López; Brincker, Rune; Canteli, Alfonso Fernández

    2005-01-01

    One application of Natural Input Modal Analysis consists in estimating the unknown load acting on structures such as wind loads, wave loads, traffic loads, etc. In this paper, a procedure to determine loading from a truncated modal model, as well as the results of an experimental testing programme...... estimation. In the experimental program a small structure subjected to vibration was used to estimate the loading from the measurements and the experimental modal space. The modal parameters were estimated by Natural Input Modal Analysis and the scaling factors of the mode shapes obtained by the mass change...

  17. Integration of Fault Detection and Isolation with Control Using Neuro-fuzzy Scheme

    Directory of Open Access Journals (Sweden)

    A. Asokan

    2009-10-01

    Full Text Available In this paper an algorithms is developed for fault diagnosis and fault tolerant control strategy for nonlinear systems subjected to an unknown time-varying fault. At first, the design of fault diagnosis scheme is performed using model based fault detection technique. The neuro-fuzzy chi-square scheme is applied for fault detection and isolation. The fault magnitude and time of occurrence of fault is obtained through neuro-fuzzy chi-square scheme. The estimated magnitude of the fault magnitude is normalized and used by the feed-forward control algorithm to make appropriate changes in the manipulated variable to keep the controlled variable near its set value. The feed-forward controller acts along with feed-back controller to control the multivariable system. The performance of the proposed scheme is applied to a three- tank process for various types of fault inputs to show the effectiveness of the proposed approach.

  18. Multiple image encryption scheme based on pixel exchange operation and vector decomposition

    Science.gov (United States)

    Xiong, Y.; Quan, C.; Tay, C. J.

    2018-02-01

    We propose a new multiple image encryption scheme based on a pixel exchange operation and a basic vector decomposition in Fourier domain. In this algorithm, original images are imported via a pixel exchange operator, from which scrambled images and pixel position matrices are obtained. Scrambled images encrypted into phase information are imported using the proposed algorithm and phase keys are obtained from the difference between scrambled images and synthesized vectors in a charge-coupled device (CCD) plane. The final synthesized vector is used as an input in a random phase encoding (DRPE) scheme. In the proposed encryption scheme, pixel position matrices and phase keys serve as additional private keys to enhance the security of the cryptosystem which is based on a 4-f system. Numerical simulations are presented to demonstrate the feasibility and robustness of the proposed encryption scheme.

  19. Heat exchanger

    International Nuclear Information System (INIS)

    Leigh, D.G.

    1976-01-01

    The arrangement described relates particularly to heat exchangers for use in fast reactor power plants, in which heat is extracted from the reactor core by primary liquid metal coolant and is then transferred to secondary liquid metal coolant by means of intermediate heat exchangers. One of the main requirements of such a system, if used in a pool type fast reactor, is that the pressure drop on the primary coolant side must be kept to a minimum consistent with the maintenance of a limited dynamic head in the pool vessel. The intermediate heat exchanger must also be compact enough to be accommodated in the reactor vessel, and the heat exchanger tubes must be available for inspection and the detection and plugging of leaks. If, however, the heat exchanger is located outside the reactor vessel, as in the case of a loop system reactor, a higher pressure drop on the primary coolant side is acceptable, and space restriction is less severe. An object of the arrangement described is to provide a method of heat exchange and a heat exchanger to meet these problems. A further object is to provide a method that ensures that excessive temperature variations are not imposed on welded tube joints by sudden changes in the primary coolant flow path. Full constructional details are given. (U.K.)

  20. Direct Heat

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, P J

    1990-01-01

    Potential resources and applications of earth heat in the form of geothermal energy are large. United States direct uses amount to 2,100 MWt thermal and worldwide 8,850 MWt above a reference temperature of 35 degrees Celsius. Space and district heating are the major direct uses of geothermal energy. Equipment employed in direct use projects is of standard manufacture and includes downhole and circulation pumps, transmission and distribution pipelines, heat exchangers and convectors, heat pumps and chillers. Direct uses of earth heat discussed are space and district heating, greenhouse heating and fish farming, process and industrial applications. The economic feasibility of direct use projects is governed by site specific factors such as location of user and resource, resource quality, system load factor and load density, as well as financing. Examples are presented of district heating in Klamath Falls, and Elko. Further developments of direct uses of geothermal energy will depend on matching user needs to the resource, and improving load factors and load density.

  1. Corrosion protected reversing heat exchanger

    International Nuclear Information System (INIS)

    Zawierucha, R.

    1984-01-01

    A reversing heat exchanger of the plate and fin type having multiple aluminum parting sheets in a stacked arrangement with corrugated fins separating the sheets to form multiple flow paths, means for closing the ends of the sheets, an input manifold arrangement of headers for the warm end of of the exchanger and an output manifold arrangement for the cold end of the exchanger with the input air feed stream header and the waste gas exhaust header having an alloy of zinc and aluminum coated on the inside surface for providing corrosion protection to the stack

  2. A Coupled Surface Nudging Scheme for use in Retrospective ...

    Science.gov (United States)

    A surface analysis nudging scheme coupling atmospheric and land surface thermodynamic parameters has been implemented into WRF v3.8 (latest version) for use with retrospective weather and climate simulations, as well as for applications in air quality, hydrology, and ecosystem modeling. This scheme is known as the flux-adjusting surface data assimilation system (FASDAS) developed by Alapaty et al. (2008). This scheme provides continuous adjustments for soil moisture and temperature (via indirect nudging) and for surface air temperature and water vapor mixing ratio (via direct nudging). The simultaneous application of indirect and direct nudging maintains greater consistency between the soil temperature–moisture and the atmospheric surface layer mass-field variables. The new method, FASDAS, consistently improved the accuracy of the model simulations at weather prediction scales for different horizontal grid resolutions, as well as for high resolution regional climate predictions. This new capability has been released in WRF Version 3.8 as option grid_sfdda = 2. This new capability increased the accuracy of atmospheric inputs for use air quality, hydrology, and ecosystem modeling research to improve the accuracy of respective end-point research outcome. IMPACT: A new method, FASDAS, was implemented into the WRF model to consistently improve the accuracy of the model simulations at weather prediction scales for different horizontal grid resolutions, as wel

  3. Heat Stroke

    DEFF Research Database (Denmark)

    Mørch, Sofie Søndergaard; Andersen, Johnny Dohn Holmgren; Bestle, Morten Heiberg

    2017-01-01

    not diagnosed until several days after admittance; hence treatment with cooling was delayed. Both patients were admitted to the intensive care unit, where they were treated with an external cooling device and received treatment for complications. Both cases ended fatally. As global warming continues, more heat......Heat stroke is an acute, life-threatening emergency characterized clinically by elevated body temperature and central nervous system dysfunction. Early recognition and treatment including aggressive cooling and management of life-threatening systemic complications are essential to reduce morbidity...... and mortality. This case report describes two Danish patients diagnosed with heat stroke syndrome during a heat wave in the summer of 2014. Both patients were morbidly obese and had several predisposing illnesses. However since heat stroke is a rare condition in areas with temperate climate, they were...

  4. ICRF heating experiments in JFT-2 tokamak

    International Nuclear Information System (INIS)

    Matsumoto, Hiroshi

    1986-01-01

    This is an experimental study of ICRF heating on JFT-2 Tokamak in Japan Atomic Energy Research Institute. In this study, we first clarified physical and engineering problems of ICRF heating of tokamak plasma. Next, we optimized the design of the ICRF heating system, and the plasma parameters for the heating. Finally, we could demonstrate a high efficiency of this additional heating method by launching RF power which is two or three times as large as an ohmic input power to a plasma. And we achieved following things. (1) We optimized a design of an antenna, and we improved a durability of the system for high voltage. With the result that we achieved the maximum power density on an antenna. (2) We demonstrated that electron heating regime and ion heating regime can be easily accessed by controlling plasma parameters. Also we found the optimum heating conditions in each heating regime. (3) We experimentally clarified the production mechanism of impurities during ICRF heating. We could reduce the influx of metal impurity ions to a plasma by employing low z materials for limiters and antenna shields. Consequently, we improved a heating efficiency of electrons. Next, we studied a power balance of plasma during ICRF heating, and we could compare heating characteristics of ICRF with other additional heatings on JFT-2. (author)

  5. A literature survey on numerical heat transfer

    Science.gov (United States)

    Shih, T. M.

    1982-12-01

    Technical papers in the area of numerical heat transfer published from 1977 through 1981 are reviewed. The journals surveyed include: (1) ASME Journal of Heat Transfer, (2) International Journal of Heat and Mass Transfer, (3) AIAA Journal, (4) Numerical Heat Transfer, (5) Computers and Fluids, (6) International Journal for Numerical Methods in Engineering, (7) SIAM Journal of Numerical Analysis, and (8) Journal of Computational Physics. This survey excludes experimental work in heat transfer and numerical schemes that are not applied to equations governing heat transfer phenomena. The research work is categorized into the following areas: (A) conduction, (B) boundary-layer flows, (C) momentum and heat transfer in cavities, (D) turbulent flows, (E) convection around cylinders and spheres or within annuli, (F) numerical convective instability, (G) radiation, (H) combustion, (I) plumes, jets, and wakes, (J) heat transfer in porous media, (K) boiling, condensation, and two-phase flows, (L) developing and fully developed channel flows, (M) combined heat and mass transfer, (N) applications, (O) comparison and properties of numerical schemes, and (P) body-fitted coordinates and nonuniform grids.

  6. Improved scheme for parametrization of convection in the Met Office's Numerical Atmospheric-dispersion Modelling Environment (NAME)

    Science.gov (United States)

    Meneguz, Elena; Thomson, David; Witham, Claire; Kusmierczyk-Michulec, Jolanta

    2015-04-01

    NAME is a Lagrangian atmospheric dispersion model used by the Met Office to predict the dispersion of both natural and man-made contaminants in the atmosphere, e.g. volcanic ash, radioactive particles and chemical species. Atmospheric convection is responsible for transport and mixing of air resulting in a large exchange of heat and energy above the boundary layer. Although convection can transport material through the whole troposphere, convective clouds have a small horizontal length scale (of the order of few kilometres). Therefore, for large-scale transport the horizontal scale on which the convection exists is below the global NWP resolution used as input to NAME and convection must be parametrized. Prior to the work presented here, the enhanced vertical mixing generated by non-resolved convection was reproduced by randomly redistributing Lagrangian particles between the cloud base and cloud top with probability equal to 1/25th of the NWP predicted convective cloud fraction. Such a scheme is essentially diffusive and it does not make optimal use of all the information provided by the driving meteorological model. To make up for these shortcomings and make the parametrization more physically based, the convection scheme has been recently revised. The resulting version, presented in this paper, is now based on the balance equation between upward, entrainment and detrainment fluxes. In particular, upward mass fluxes are calculated with empirical formulas derived from Cloud Resolving Models and using the NWP convective precipitation diagnostic as closure. The fluxes are used to estimate how many particles entrain, move upward and detrain. Lastly, the scheme is completed by applying a compensating subsidence flux. The performance of the updated convection scheme is benchmarked against available observational data of passive tracers. In particular, radioxenon is a noble gas that can undergo significant long range transport: this study makes use of observations of

  7. Heat Mining or Replenishable Geothermal Energy? A Project for Advanced-Level Physics Students

    Science.gov (United States)

    Dugdale, Pam

    2014-01-01

    There is growing interest in the use of low enthalpy geothermal (LEG) energy schemes, whereby heated water is extracted from sandstone aquifers for civic heating projects. While prevalent in countries with volcanic activity, a recently proposed scheme for Manchester offered the perfect opportunity to engage students in the viability of this form…

  8. Moderator heat recovery of CANDU reactors

    International Nuclear Information System (INIS)

    Fath, H.E.S.; Ahmed, S.T.

    1986-01-01

    A moderator heat recovery scheme is proposed for CANDU reactors. The proposed circuit utilizes all the moderator heat to the first stages of the plant feedwater heating system. CANDU-600 reactors are considered with moderator heat load varying from 120 to 160 MWsub(th), and moderator outlet temperature (from calandria) varying from 80 to 100 0 C. The steam saved from the turbine extraction system was found to produce an additional electric power ranging from 5 to 11 MW. This additional power represents a 0.7-1.7% increase in the plant electric output power and a 0.2-0.7% increase in the plant thermal efficiency. The outstanding features and advantages of the proposed scheme are presented. (author)

  9. EVALUATION OF THERMAL EFFICIENCY OF THE TECHNOLOGICAL SCHEME OF APPLE CHIPS AND DRIED FRUITS PRODUCTION

    Directory of Open Access Journals (Sweden)

    G. V. Kalashnikov

    2014-01-01

    Full Text Available The estimation of thermodynamic perfection of separate technological processes is executed at heat-moisture of handling of fruit and a line of manufacture of fruit apple chips and dried fruits. The technological scheme of a line of processing of fruits and manufactures of fruit chips on the basis of convection and the microwave-dryings suggested resource-saving. The technique is made and results of calculation of thermal expenses for various schemes of manufacture of apple chips are resulted. For the offered scheme material, thermal and power streams on the basis of balance parities of technological processes are certain. The comparative thermal production efficiency of apple chips for a base foreign variant and the offered technological scheme with the closed cycle of use of the heat-carrier and the combined convection-microwave-drying is shown. In this paper we define the thermal and energy flows for the processes of convective drying, pre-microwave drying, hydrothermal treatment and final microwave drying plant material, which are one of the main stages of the production of all kinds of fruit and vegetable concentrates, including fruit apple chips. Resource-saving ways moisture-heat of handling (hydration, blanching, drying, etc. produce raw materials in the production of food concentrates suggested a reduced water flow with a high degree of use of its potential power and microwave sources. To assess the thermal efficiency of the various processes and production schemes used as indicators of thermal efficiency and proposed value of specific heat (kJ / kg given mass productivity per unit of feedstock and translational moisture. The values of the mass fraction of the heat of material flows for the base and the proposed resource-saving production scheme fruit chips, for example, apple, based on a combination of convection-microwave drying each control surface.

  10. 7 CFR 3430.907 - Stakeholder input.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Stakeholder input. 3430.907 Section 3430.907 Agriculture Regulations of the Department of Agriculture (Continued) COOPERATIVE STATE RESEARCH, EDUCATION, AND EXTENSION SERVICE, DEPARTMENT OF AGRICULTURE COMPETITIVE AND NONCOMPETITIVE NON-FORMULA FEDERAL...

  11. Input and Intake in Language Acquisition

    Science.gov (United States)

    Gagliardi, Ann C.

    2012-01-01

    This dissertation presents an approach for a productive way forward in the study of language acquisition, sealing the rift between claims of an innate linguistic hypothesis space and powerful domain general statistical inference. This approach breaks language acquisition into its component parts, distinguishing the input in the environment from…

  12. A summary of WIMSD4 input option

    International Nuclear Information System (INIS)

    Halsall, M.J.

    1980-07-01

    A description is given of all the available input data options in the ICL 4/70 and IBM 370 versions of WIMSD4, with little more than a reference where there is already adequate documentation but with rather more detail where no such documentation exists. (author)

  13. Representations of space based on haptic input

    NARCIS (Netherlands)

    Zuidhoek, S.

    2005-01-01

    The present thesis focused on the representations of grasping space based on haptic input. We aimed at identifying their characteristics, and the underlying neurocognitive processes and mechanisms. To this end, we studied the systematic distortions in performance on several orientation perception

  14. Hydrogen Generation Rate Model Calculation Input Data

    International Nuclear Information System (INIS)

    KUFAHL, M.A.

    2000-01-01

    This report documents the procedures and techniques utilized in the collection and analysis of analyte input data values in support of the flammable gas hazard safety analyses. This document represents the analyses of data current at the time of its writing and does not account for data available since then

  15. Fragment separator momentum compression schemes

    Energy Technology Data Exchange (ETDEWEB)

    Bandura, Laura, E-mail: bandura@anl.gov [Facility for Rare Isotope Beams (FRIB), 1 Cyclotron, East Lansing, MI 48824-1321 (United States); National Superconducting Cyclotron Lab, Michigan State University, 1 Cyclotron, East Lansing, MI 48824-1321 (United States); Erdelyi, Bela [Argonne National Laboratory, Argonne, IL 60439 (United States); Northern Illinois University, DeKalb, IL 60115 (United States); Hausmann, Marc [Facility for Rare Isotope Beams (FRIB), 1 Cyclotron, East Lansing, MI 48824-1321 (United States); Kubo, Toshiyuki [RIKEN Nishina Center, RIKEN, Wako (Japan); Nolen, Jerry [Argonne National Laboratory, Argonne, IL 60439 (United States); Portillo, Mauricio [Facility for Rare Isotope Beams (FRIB), 1 Cyclotron, East Lansing, MI 48824-1321 (United States); Sherrill, Bradley M. [National Superconducting Cyclotron Lab, Michigan State University, 1 Cyclotron, East Lansing, MI 48824-1321 (United States)

    2011-07-21

    We present a scheme to use a fragment separator and profiled energy degraders to transfer longitudinal phase space into transverse phase space while maintaining achromatic beam transport. The first order beam optics theory of the method is presented and the consequent enlargement of the transverse phase space is discussed. An interesting consequence of the technique is that the first order mass resolving power of the system is determined by the first dispersive section up to the energy degrader, independent of whether or not momentum compression is used. The fragment separator at the Facility for Rare Isotope Beams is a specific application of this technique and is described along with simulations by the code COSY INFINITY.

  16. Fragment separator momentum compression schemes

    International Nuclear Information System (INIS)

    Bandura, Laura; Erdelyi, Bela; Hausmann, Marc; Kubo, Toshiyuki; Nolen, Jerry; Portillo, Mauricio; Sherrill, Bradley M.

    2011-01-01

    We present a scheme to use a fragment separator and profiled energy degraders to transfer longitudinal phase space into transverse phase space while maintaining achromatic beam transport. The first order beam optics theory of the method is presented and the consequent enlargement of the transverse phase space is discussed. An interesting consequence of the technique is that the first order mass resolving power of the system is determined by the first dispersive section up to the energy degrader, independent of whether or not momentum compression is used. The fragment separator at the Facility for Rare Isotope Beams is a specific application of this technique and is described along with simulations by the code COSY INFINITY.

  17. Electrical injection schemes for nanolasers

    DEFF Research Database (Denmark)

    Lupi, Alexandra; Chung, Il-Sug; Yvind, Kresten

    2013-01-01

    The performance of injection schemes among recently demonstrated electrically pumped photonic crystal nanolasers has been investigated numerically. The computation has been carried out at room temperature using a commercial semiconductor simulation software. For the simulations two electrical...... of 3 InGaAsP QWs on an InP substrate has been chosen for the modeling. In the simulations the main focus is on the electrical and optical properties of the nanolasers i.e. electrical resistance, threshold voltage, threshold current and wallplug efficiency. In the current flow evaluation the lowest...... threshold current has been achieved with the lateral electrical injection through the BH; while the lowest resistance has been obtained from the current post structure even though this model shows a higher current threshold because of the lack of carrier confinement. Final scope of the simulations...

  18. Scheme of thinking quantum systems

    International Nuclear Information System (INIS)

    Yukalov, V I; Sornette, D

    2009-01-01

    A general approach describing quantum decision procedures is developed. The approach can be applied to quantum information processing, quantum computing, creation of artificial quantum intelligence, as well as to analyzing decision processes of human decision makers. Our basic point is to consider an active quantum system possessing its own strategic state. Processing information by such a system is analogous to the cognitive processes associated to decision making by humans. The algebra of probability operators, associated with the possible options available to the decision maker, plays the role of the algebra of observables in quantum theory of measurements. A scheme is advanced for a practical realization of decision procedures by thinking quantum systems. Such thinking quantum systems can be realized by using spin lattices, systems of magnetic molecules, cold atoms trapped in optical lattices, ensembles of quantum dots, or multilevel atomic systems interacting with electromagnetic field

  19. Yellow light for green scheme

    International Nuclear Information System (INIS)

    Morch, Stein

    2004-01-01

    The article asserts that there could be an investment boom for wind, hydro and bio power in a common Norwegian-Swedish market scheme for green certificates. The Swedish authorities are ready, and the Norwegian government is preparing a report to the Norwegian Parliament. What are the ambitions of Norway, and will hydro power be included? A green certificate market common to more countries have never before been established and requires the solution of many challenging problems. In Sweden, certificate support is expected to promote primarily bioenergy, wind power and small-scale hydro power. In Norway there is an evident potential for wind power, and more hydro power can be developed if desired

  20. Pomeranchuk conjecture and symmetry schemes

    Energy Technology Data Exchange (ETDEWEB)

    Galindo, A.; Morales, A.; Ruegg, H. [Junta de Energia Nuclear, Madrid (Spain); European Organization for Nuclear Research, Geneva (Switzerland); University of Geneva, Geneva (Switzerland)

    1963-01-15

    Pomeranchuk has conjectured that the cross-sections for charge-exchange processes vanish asymptotically as the energy tends to infinity. (By ''charge'' it is meant any internal quantum number, like electric charge, hypercharge, .. . ). It has been stated by several people that this conjecture implies equalities among the total cross-sections whenever any symmetry scheme is invoked for the strong interactions. But to our knowledge no explicit general proof of this statement has been given so far. We want to give this proof for any compact Lie group. We also prove, under certain assumptions, that the equality of the total cross-sections implies that s{sup -l} times the charge-exchange forward scattering absorptive amplitudes tend to zero as s -> ∞.

  1. Leaders’ receptivity to subordinates’ creative input: the role of achievement goals and composition of creative input

    NARCIS (Netherlands)

    Sijbom, R.B.L.; Janssen, O.; van Yperen, N.W.

    2015-01-01

    We identified leaders’ achievement goals and composition of creative input as important factors that can clarify when and why leaders are receptive to, and supportive of, subordinates’ creative input. As hypothesized, in two experimental studies, we found that relative to mastery goal leaders,

  2. A new impetus for developing industrial process heat applications of HTR in europe - HTR2008-58259

    International Nuclear Information System (INIS)

    Hittner, D.; De Groot, S.; Griffay, G.; Yvon, P.; Pienkowski, L.; Ruer, J.; Angulo, C.; Laquaniello, G.

    2008-01-01

    Due to its high operating temperature (up to 850 deg. C with present technologies, possibly higher in the longer term), and its power range (a few hundred MW), the modular HTR could address a larger scope of industrial process heat needs than other present nuclear systems. Even if HTR can contribute to competitive electricity generation, this potential for industrial heat applications is the main incentive for developing this type of reactor, as it could open to nuclear energy a large non-electricity market. However several issues must be addressed and solved successfully for HTR to actually enter the market of industrial process heat: 1) as an absolute prerequisite, to develop a strategic alliance of nuclear industry and R and D with process heat user industries. 2) to solve some key technical issues, as for instance the design of a reactor and of a coupling system flexible enough to reconcile a single reactor design with multiple applications and versatile requirements for the heat source, and the development of special adaptations of the application processes or even of new processes to fit with the assets and constraints of HTR heat supply, 3) to solve critical industrial issues such as economic competitiveness, availability and 4) to address the licensing issues raised by the conjunction of nuclear and industrial risks. In line with IAEA initiatives for supporting non-electric applications of nuclear energy and with the orientations of the SET-Plan of the European Commission, the (European) HTR Technology Network (HTR-TN) proposes a new project, together with industrial process heat user partners, to provide a first impetus to the strategic alliance between nuclear and non-nuclear industries. End user requirements will be expressed systematically on the basis of inputs from industrial partners on various types of process heat applications. These requirements will be confronted with the capabilities of the HTR heat source, in order to point out possible

  3. Matroids and quantum-secret-sharing schemes

    International Nuclear Information System (INIS)

    Sarvepalli, Pradeep; Raussendorf, Robert

    2010-01-01

    A secret-sharing scheme is a cryptographic protocol to distribute a secret state in an encoded form among a group of players such that only authorized subsets of the players can reconstruct the secret. Classically, efficient secret-sharing schemes have been shown to be induced by matroids. Furthermore, access structures of such schemes can be characterized by an excluded minor relation. No such relations are known for quantum secret-sharing schemes. In this paper we take the first steps toward a matroidal characterization of quantum-secret-sharing schemes. In addition to providing a new perspective on quantum-secret-sharing schemes, this characterization has important benefits. While previous work has shown how to construct quantum-secret-sharing schemes for general access structures, these schemes are not claimed to be efficient. In this context the present results prove to be useful; they enable us to construct efficient quantum-secret-sharing schemes for many general access structures. More precisely, we show that an identically self-dual matroid that is representable over a finite field induces a pure-state quantum-secret-sharing scheme with information rate 1.

  4. A New Energy-Efficient Data Transmission Scheme Based on DSC and Virtual MIMO for Wireless Sensor Network

    OpenAIRE

    Li, Na; Zhang, Liwen; Li, Bing

    2015-01-01

    Energy efficiency in wireless sensor network (WSN) is one of the primary performance parameters. For improving the energy efficiency of WSN, we introduce distributed source coding (DSC) and virtual multiple-input multiple-output (MIMO) into wireless sensor network and then propose a new data transmission scheme called DSC-MIMO. DSC-MIMO compresses the source data using distributed source coding before transmitting, which is different from the existing communication schemes. Data compression c...

  5. On a two-pass scheme without a faraday mirror for free-space relativistic quantum cryptography

    Energy Technology Data Exchange (ETDEWEB)

    Kravtsov, K. S.; Radchenko, I. V. [Russian Academy of Sciences, Prokhorov General Physics Institute (Russian Federation); Korol' kov, A. V. [Academy of Cryptography (Russian Federation); Kulik, S. P., E-mail: sergei.kulik@gmail.com [Moscow State University (Russian Federation); Molotkov, S. N., E-mail: sergei.molotkov@gmail.com [Academy of Cryptography (Russian Federation)

    2013-05-15

    The stability of destructive interference independent of the input polarization and the state of a quantum communication channel in fiber optic systems used in quantum cryptography plays a principal role in providing the security of communicated keys. A novel optical scheme is proposed that can be used both in relativistic quantum cryptography for communicating keys in open space and for communicating them over fiber optic lines. The scheme ensures stability of destructive interference and admits simple automatic balancing of a fiber interferometer.

  6. On a two-pass scheme without a faraday mirror for free-space relativistic quantum cryptography

    International Nuclear Information System (INIS)

    Kravtsov, K. S.; Radchenko, I. V.; Korol’kov, A. V.; Kulik, S. P.; Molotkov, S. N.

    2013-01-01

    The stability of destructive interference independent of the input polarization and the state of a quantum communication channel in fiber optic systems used in quantum cryptography plays a principal role in providing the security of communicated keys. A novel optical scheme is proposed that can be used both in relativistic quantum cryptography for communicating keys in open space and for communicating them over fiber optic lines. The scheme ensures stability of destructive interference and admits simple automatic balancing of a fiber interferometer.

  7. Advances in Nuclear Power Process Heat Applications

    International Nuclear Information System (INIS)

    2012-05-01

    Following an IAEA coordinated research project, this publication compiles the findings of research and development activities related to practical nuclear process heat applications. An overview of current progress on high temperature gas cooled reactors coupling schemes for different process heat applications, such as hydrogen production and desalination is included. The associated safety aspects are also highlighted. The summary report documents the results and conclusions of the project.

  8. Novel neural networks-based fault tolerant control scheme with fault alarm.

    Science.gov (United States)

    Shen, Qikun; Jiang, Bin; Shi, Peng; Lim, Cheng-Chew

    2014-11-01

    In this paper, the problem of adaptive active fault-tolerant control for a class of nonlinear systems with unknown actuator fault is investigated. The actuator fault is assumed to have no traditional affine appearance of the system state variables and control input. The useful property of the basis function of the radial basis function neural network (NN), which will be used in the design of the fault tolerant controller, is explored. Based on the analysis of the design of normal and passive fault tolerant controllers, by using the implicit function theorem, a novel NN-based active fault-tolerant control scheme with fault alarm is proposed. Comparing with results in the literature, the fault-tolerant control scheme can minimize the time delay between fault occurrence and accommodation that is called the time delay due to fault diagnosis, and reduce the adverse effect on system performance. In addition, the FTC scheme has the advantages of a passive fault-tolerant control scheme as well as the traditional active fault-tolerant control scheme's properties. Furthermore, the fault-tolerant control scheme requires no additional fault detection and isolation model which is necessary in the traditional active fault-tolerant control scheme. Finally, simulation results are presented to demonstrate the efficiency of the developed techniques.

  9. An Interference Cancellation Scheme for High Reliability Based on MIMO Systems

    Directory of Open Access Journals (Sweden)

    Jae-Hyun Ro

    2018-03-01

    Full Text Available This article proposes a new interference cancellation scheme in a half-duplex based two-path relay system. In the conventional two-path relay system, inter-relay-interference (IRI which severely degrades the error performances at a destination occurs because a source and a relay transmit signals simultaneously at a specific time. The proposed scheme removes the IRI at a relay for higher signal-to-interference plus noise ratio (SINR to receive interference free signal at a destination, unlike the conventional relay system, which removes IRI at a destination. To handle the IRI, the proposed scheme uses multiple-input multiple-output (MIMO signal detection at the relays and it makes low-complexity signal processing at a destination which is a usually mobile user. At the relays, the proposed scheme uses the low-complexity QR decomposition-M algorithm (QRD-M to optimally remove the IRI. Also, for obtaining diversity gain, the proposed scheme uses cyclic delay diversity (CDD to transmit the signals at a source and the relays. In simulation results, the error performance for the proposed scheme is better when the distance between one relay and another relay is low unlike the conventional scheme because the QRD-M detects received signal in order of higher post signal-to-noise ratio (SNR.

  10. Effect of synthetic jet modulation schemes on the reduction of a laminar separation bubble

    Science.gov (United States)

    Seo, J. H.; Cadieux, F.; Mittal, R.; Deem, E.; Cattafesta, L.

    2018-03-01

    The response of a laminar separation bubble to synthetic jet forcing with various modulation schemes is investigated via direct numerical simulations. A simple sinusoidal waveform is considered as a reference case, and various amplitude modulation schemes, including the square-wave "burst" modulation, are employed in the simulations. The results indicate that burst modulation is less effective at reducing the length of the flow separation than the sinusoidal forcing primarily because burst modulation is associated with a broad spectrum of input frequencies that are higher than the target frequency for the flow control. It is found that such high-frequency forcing delays vortex roll-up and promotes vortex pairing and merging, which have an adverse effect on reducing the separation bubble length. A commonly used amplitude modulation scheme is also found to have reduced effectiveness due to its spectral content. A new amplitude modulation scheme which is tailored to impart more energy at the target frequency is proposed and shown to be more effective than the other modulation schemes. Experimental measurements confirm that modulation schemes can be preserved through the actuator and used to enhance the energy content at the target modulation frequency. The present study therefore suggests that the effectiveness of synthetic jet-based flow control could be improved by carefully designing the spectral content of the modulation scheme.

  11. A one-dimensional heat transfer model for parallel-plate thermoacoustic heat exchangers.

    Science.gov (United States)

    de Jong, J A; Wijnant, Y H; de Boer, A

    2014-03-01

    A one-dimensional (1D) laminar oscillating flow heat transfer model is derived and applied to parallel-plate thermoacoustic heat exchangers. The model can be used to estimate the heat transfer from the solid wall to the acoustic medium, which is required for the heat input/output of thermoacoustic systems. The model is implementable in existing (quasi-)1D thermoacoustic codes, such as DeltaEC. Examples of generated results show good agreement with literature results. The model allows for arbitrary wave phasing; however, it is shown that the wave phasing does not significantly influence the heat transfer.

  12. Heat pipes

    CERN Document Server

    Dunn, Peter D

    1994-01-01

    It is approximately 10 years since the Third Edition of Heat Pipes was published and the text is now established as the standard work on the subject. This new edition has been extensively updated, with revisions to most chapters. The introduction of new working fluids and extended life test data have been taken into account in chapter 3. A number of new types of heat pipes have become popular, and others have proved less effective. This is reflected in the contents of chapter 5. Heat pipes are employed in a wide range of applications, including electronics cooling, diecasting and injection mo

  13. Heat conduction

    International Nuclear Information System (INIS)

    Grigull, U.; Sandner, H.

    1984-01-01

    Included are discussions of rates of heat transfer by conduction, the effects of varying and changing properties, thermal explosions, distributed heat sources, moving heat sources, and non-steady three-dimensional conduction processes. Throughout, the importance of thinking both numerically and symbolically is stressed, as this is essential to the development of the intuitive understanding of numerical values needed for successful designing. Extensive tables of thermophysical properties, including thermal conductivity and diffusivity, are presented. Also included are exact and approximate solutions to many of the problems that arise in practical situations

  14. Analysis of hybrid electric/thermofluidic inputs for wet shape memory alloy actuators

    Science.gov (United States)

    Flemming, Leslie; Mascaro, Stephen

    2013-01-01

    A wet shape memory alloy (SMA) actuator is characterized by an SMA wire embedded within a compliant fluid-filled tube. Heating and cooling of the SMA wire produces a linear contraction and extension of the wire. Thermal energy can be transferred to and from the wire using combinations of resistive heating and free/forced convection. This paper analyzes the speed and efficiency of a simulated wet SMA actuator using a variety of control strategies involving different combinations of electrical and thermofluidic inputs. A computational fluid dynamics (CFD) model is used in conjunction with a temperature-strain model of the SMA wire to simulate the thermal response of the wire and compute strains, contraction/extension times and efficiency. The simulations produce cycle rates of up to 5 Hz for electrical heating and fluidic cooling, and up to 2 Hz for fluidic heating and cooling. The simulated results demonstrate efficiencies up to 0.5% for electric heating and up to 0.2% for fluidic heating. Using both electric and fluidic inputs concurrently improves the speed and efficiency of the actuator and allows for the actuator to remain contracted without continually delivering energy to the actuator, because of the thermal capacitance of the hot fluid. The characterized speeds and efficiencies are key requirements for implementing broader research efforts involving the intelligent control of electric and thermofluidic networks to optimize the speed and efficiency of wet actuator arrays.

  15. Computational scheme for transient temperature distribution in PWR vessel wall

    International Nuclear Information System (INIS)

    Dedovic, S.; Ristic, P.

    1980-01-01

    Computer code TEMPNES is a part of joint effort made in Gosa Industries in achieving the technique for structural analysis of heavy pressure vessels. Transient heat conduction problems analysis is based on finite element discretization of structures non-linear transient matrix formulation and time integration scheme as developed by Wilson (step-by-step procedure). Convection boundary conditions and the effect of heat generation due to radioactive radiation are both considered. The computation of transient temperature distributions in reactor vessel wall when the water temperature suddenly drops as a consequence of reactor cooling pump failure is presented. The vessel is treated as as axisymmetric body of revolution. The program has two finite time element options a) fixed predetermined increment and; b) an automatically optimized time increment for each step dependent on the rate of change of the nodal temperatures. (author)

  16. Innovative system for delivery of low temperature district heating

    Directory of Open Access Journals (Sweden)

    Anton Ivanov Ianakiev

    2017-01-01

    Full Text Available An innovative Low Temperature District Heating (LTDH local network is developed in Nottingham, supported by REMOURBAN project, part of the H2020 Smart City and Community Lighthouse scheme. It was proposed that a branch emanating from the return pipe of the of the existing district heating system in Nottingham would be created to use low temperature heating for the first time in UK. The development is aimed to extract wasted (unused heat from existing district heating system and make it more efficient and profitable. Four maisonette blocks of 94 low-raised flats, at Nottingham demo site of the REMOURBAN project will be connected to this new LTDH system. The scheme will provide a primary supply of heat and hot water at approximately 50oC to 60oC. Innovated solutions have been put forward to overcome certain barriers, such as legionella related risks and peak loads during extreme heating seasons and occasional maintenance.

  17. Proposal for a district heat supply system

    International Nuclear Information System (INIS)

    Alefeld, G.

    1976-01-01

    A district heating scheme is proposed which makes it possible to use the waste heat from power stations for the supply of households and industry. The heat is stored by evaporation of ammonia salts or liquids with dissolved salts. Both substances are transported on existing rail- or waterways to heating stations near the consumers, and the heat recovered by reaction of the two components. Then the product of reaction is transported back to the power stations, and reactivated by heat again. Based on a cost estimation, it can be shown that the proposed heat transport with heat trains or ships, at distances up to 100 km, results in heat costs which are to-day already below that of heat from fuel oil. The investment required for the heat transport system is unusually low due to the use of transport ways which already exist. The district heating system is not only favourable in respect of the environment, but actually reduces its present strain, both at the consumer and at the power stations. The technical advantages of the suggested concept, especially the possibility of introducing it in stages, are discussed. The consequences for the national economy regarding the safety of supply and the trade balance, as well as for the public transport undertakings, are obvious, and therefore not included in the paper. (orig.) [de

  18. Efficient Closed-Loop Schemes for MIMO-OFDM-Based WLANs

    Directory of Open Access Journals (Sweden)

    Jiang Yi

    2006-01-01

    Full Text Available The single-input single-output (SISO orthogonal frequency-division multiplexing (OFDM systems for wireless local area networks (WLAN defined by the IEEE 802.11a standard can support data rates up to 54 Mbps. In this paper, we consider deploying two transmit and two receive antennas to increase the data rate up to 108 Mbps. Applying our recent multiple-input multiple-output (MIMO transceiver designs, that is, the geometric mean decomposition (GMD and the uniform channel decomposition (UCD schemes, we propose simple and efficient closed-loop MIMO-OFDM designs for much improved performance, compared to the standard singular value decomposition (SVD based schemes as well as the open-loop V-BLAST (vertical Bell Labs layered space-time based counterparts. In the explicit feedback mode, precoder feedback is needed for the proposed schemes. We show that the overhead of feedback can be made very moderate by using a vector quantization method. In the time-division duplex (TDD mode where the channel reciprocity is exploited, our schemes turn out to be robust against the mismatch between the uplink and downlink channels. The advantages of our schemes are demonstrated via extensive numerical examples.

  19. How can conceptual schemes change teaching?

    Science.gov (United States)

    Wickman, Per-Olof

    2012-03-01

    Lundqvist, Almqvist and Östman describe a teacher's manner of teaching and the possible consequences it may have for students' meaning making. In doing this the article examines a teacher's classroom practice by systematizing the teacher's transactions with the students in terms of certain conceptual schemes, namely the epistemological moves, educational philosophies and the selective traditions of this practice. In connection to their study one may ask how conceptual schemes could change teaching. This article examines how the relationship of the conceptual schemes produced by educational researchers to educational praxis has developed from the middle of the last century to today. The relationship is described as having been transformed in three steps: (1) teacher deficit and social engineering, where conceptual schemes are little acknowledged, (2) reflecting practitioners, where conceptual schemes are mangled through teacher practice to aid the choices of already knowledgeable teachers, and (3) the mangling of the conceptual schemes by researchers through practice with the purpose of revising theory.

  20. District heating

    International Nuclear Information System (INIS)

    Hansen, L.

    1993-01-01

    The environmental risks and uncertainties of a high-energy future are disturbing and give rise to several reservations concerning the use of fossil fuels. A number of technologies will help to reduce atmospheric pollution. In Denmark special importance is attached to the following: Energy conservation. Efficient energy conversion. Renewable energy sources. District heating, combined production of heat and power. Many agree that district heating (DH), produced by the traditional heat-only plant, and combined heat and power (CHP) have enormous potential when considering thermal efficiency and lowered environmental impacts: The basic technology of each is proven, it would be relatively simple to satisfy a substantial part of the energy demand, and their high efficiencies mean reduced pollution including greenhouse gas emissions. This is especially important in high population density areas - the obviously preferred sites for such energy generation. Compared with individual heating DH can provide a community with an operationally efficient and most often also an economically competitive heat supply. This is particularly true under the circumstances where the DH system is supplied from CHP plants. Their use results in very substantial improvements in overall efficiency. Further environmental improvements arise from the reduced air pollution obtainable in reasonably large CHP plants equipped with flue gas cleaning to remove particles, sulphur dioxide, and nitrogen acids. As a consequence of these considerations, DH plays an important role in fulfilling the space and water heating demand in many countries. This is especially the case in Denmark where this technology is utilised to a very great extent. Indeed, DH is one of the reasons why Denmark has relatively good air quality in the cities. (au)