WorldWideScience

Sample records for heat hyperalgesia induced

  1. An improved model of heat-induced hyperalgesia--repetitive phasic heat pain causing primary hyperalgesia to heat and secondary hyperalgesia to pinprick and light touch.

    Science.gov (United States)

    Jürgens, Tim P; Sawatzki, Alexander; Henrich, Florian; Magerl, Walter; May, Arne

    2014-01-01

    This study tested a modified experimental model of heat-induced hyperalgesia, which improves the efficacy to induce primary and secondary hyperalgesia and the efficacy-to-safety ratio reducing the risk of tissue damage seen in other heat pain models. Quantitative sensory testing was done in eighteen healthy volunteers before and after repetitive heat pain stimuli (60 stimuli of 48°C for 6 s) to assess the impact of repetitive heat on somatosensory function in conditioned skin (primary hyperalgesia area) and in adjacent skin (secondary hyperalgesia area) as compared to an unconditioned mirror image control site. Additionally, areas of flare and secondary hyperalgesia were mapped, and time course of hyperalgesia determined. After repetitive heat pain conditioning we found significant primary hyperalgesia to heat, and primary and secondary hyperalgesia to pinprick and to light touch (dynamic mechanical allodynia). Acetaminophen (800 mg) reduced pain to heat or pinpricks only marginally by 11% and 8%, respectively (n.s.), and had no effect on heat hyperalgesia. In contrast, the areas of flare (-31%) and in particular of secondary hyperalgesia (-59%) as well as the magnitude of hyperalgesia (-59%) were significantly reduced (all pheat pain induces significant peripheral sensitization (primary hyperalgesia to heat) and central sensitization (punctate hyperalgesia and dynamic mechanical allodynia). These findings are relevant to further studies using this model of experimental heat pain as it combines pronounced peripheral and central sensitization, which makes a convenient model for combined pharmacological testing of analgesia and anti-hyperalgesia mechanisms related to thermal and mechanical input.

  2. An Improved Model of Heat-Induced Hyperalgesia—Repetitive Phasic Heat Pain Causing Primary Hyperalgesia to Heat and Secondary Hyperalgesia to Pinprick and Light Touch

    Science.gov (United States)

    Henrich, Florian; Magerl, Walter; May, Arne

    2014-01-01

    This study tested a modified experimental model of heat-induced hyperalgesia, which improves the efficacy to induce primary and secondary hyperalgesia and the efficacy-to-safety ratio reducing the risk of tissue damage seen in other heat pain models. Quantitative sensory testing was done in eighteen healthy volunteers before and after repetitive heat pain stimuli (60 stimuli of 48°C for 6 s) to assess the impact of repetitive heat on somatosensory function in conditioned skin (primary hyperalgesia area) and in adjacent skin (secondary hyperalgesia area) as compared to an unconditioned mirror image control site. Additionally, areas of flare and secondary hyperalgesia were mapped, and time course of hyperalgesia determined. After repetitive heat pain conditioning we found significant primary hyperalgesia to heat, and primary and secondary hyperalgesia to pinprick and to light touch (dynamic mechanical allodynia). Acetaminophen (800 mg) reduced pain to heat or pinpricks only marginally by 11% and 8%, respectively (n.s.), and had no effect on heat hyperalgesia. In contrast, the areas of flare (−31%) and in particular of secondary hyperalgesia (−59%) as well as the magnitude of hyperalgesia (−59%) were significantly reduced (all pheat pain induces significant peripheral sensitization (primary hyperalgesia to heat) and central sensitization (punctate hyperalgesia and dynamic mechanical allodynia). These findings are relevant to further studies using this model of experimental heat pain as it combines pronounced peripheral and central sensitization, which makes a convenient model for combined pharmacological testing of analgesia and anti-hyperalgesia mechanisms related to thermal and mechanical input. PMID:24911787

  3. Nerve growth factor induces facial heat hyperalgesia and plays a role in trigeminal neuropathic pain in rats.

    Science.gov (United States)

    Dos Reis, Renata C; Kopruszinski, Caroline M; Nones, Carina F M; Chichorro, Juliana G

    2016-09-01

    There is preclinical evidence that nerve growth factor (NGF) contributes toward inflammatory hyperalgesia in the orofacial region, but the mechanisms underlying its hyperalgesic effect as well as its role in trigeminal neuropathic pain require further investigation. This study investigated the ability of NGF to induce facial heat hyperalgesia and the involvement of tyrosine kinase receptor A, transient receptor potential vanilloid 1, and mast cells in NGF pronociceptive effects. In addition, the role of NGF in heat hyperalgesia in a model of trigeminal neuropathic pain was evaluated. NGF injection into the upper lip of naive rats induced long-lasting heat hyperalgesia. Pretreatment with an antibody anti-NGF, antagonists of tyrosine kinase receptor A, and transient receptor potential vanilloid 1 receptors or compound 48/80, to induce mast-cell degranulation, all attenuated NGF-induced hyperalgesia. In a rat model of trigeminal neuropathic pain, local treatment with anti-NGF significantly reduced heat hyperalgesia. In addition, increased NGF levels were detected in the ipsilateral infraorbital nerve branch at the time point that represents the peak of heat hyperalgesia. The results suggest that NGF is a prominent hyperalgesic mediator in the trigeminal system and it may represent a potential therapeutic target for the management of painful orofacial conditions, including trigeminal neuropathic pain.

  4. Transient Receptor Potential Vanilloid 1 is essential for cisplatin-induced heat hyperalgesia in mice

    Directory of Open Access Journals (Sweden)

    Carlton Susan M

    2010-03-01

    Full Text Available Abstract Background Cisplatin is primarily used for treatment of ovarian and testicular cancer. Oxaliplatin is the only effective treatment for metastatic colorectal cancer. Both are known to cause dose related, cumulative toxic effects on the peripheral nervous system and thirty to forty percent of cancer patients receiving these agents experience painful peripheral neuropathy. The mechanisms underlying painful platinum-induced neuropathy remain poorly understood. Previous studies have demonstrated important roles for TRPV1, TRPM8, and TRPA1 in inflammation and nerve injury induced pain. Results In this study, using real-time, reverse transcriptase, polymerase chain reaction (RT-PCR, we analyzed the expression of TRPV1, TRPM8, and TRPA1 induced by cisplatin or oxaliplatin in vitro and in vivo. For in vitro studies, cultured E15 rat dorsal root ganglion (DRG neurons were treated for up to 48 hours with cisplatin or oxaliplatin. For in vivo studies, trigeminal ganglia (TG were isolated from mice treated with platinum drugs for three weeks. We show that cisplatin and oxaliplatin-treated DRG neurons had significantly increased in TRPV1, TRPA1, and TRPM8 mRNA expression. TG neurons from cisplatin treated mice had significant increases in TRPV1 and TRPA1 mRNA expression while oxaliplatin strongly induced only TRPA1. Furthermore, compared to the cisplatin-treated wild-type mice, cisplatin-treated TRPV1-null mice developed mechanical allodynia but did not exhibit enhancement of noxious heat- evoked pain responses. Immunohistochemistry studies showed that cisplatin-treated mice had no change in the proportion of the TRPV1 immunopositive TG neurons. Conclusion These results indicate that TRPV1 and TRPA1 could contribute to the development of thermal hyperalgesia and mechanical allodynia following cisplatin-induced painful neuropathy but that TRPV1 has a crucial role in cisplatin-induced thermal hyperalgesia in vivo.

  5. Increased synaptophysin is involved in inflammation-induced heat hyperalgesia mediated by cyclin-dependent kinase 5 in rats.

    Directory of Open Access Journals (Sweden)

    Hong-Hai Zhang

    Full Text Available Mechanisms associated with cyclin-dependent kinase 5 (Cdk5-mediated heat hyperalgesia induced by inflammation remain undefined. This study was designed to examine whether Cdk5 mediates heat hyperalgesia resulting from peripheral injection of complete Freund's adjuvant (CFA in the spinal dorsal horns of rats by interacting with synaptophysin, a well known membrane protein mediating the endocytosis-exocytosis cycle of synaptic vesicles as a molecular marker associated with presynaptic vesicle membranes. The role of Cdk5 in mediating synaptophysin was examined through the combined use of behavioral approaches, imaging studies, and immunoprecipitation following CFA-induced inflammatory pain. Results showed that Cdk5 colocalized with both synaptophysin and soluble N-ethylmaleimide-sensitive factor (NSF attachment protein receptors (SNAREs consisting of VAMP-2, SNAP-25, and syntaxin 1A in spinal dorsal horn of rats. Increased synaptophysin expression of spinal cord horn neurons post intraplantar injection of CFA coincided with increased duration of heat hyperalgesia lasting from 6 h to 3 d. Intrathecal administration of roscovitine, a Cdk5 specific inhibitor, significantly depressed synaptophysin expression during peak heat hyperalgesia and heat hyperalgesia induced by peripheral injection of CFA. Data presented in this report indicated that calpain activity was transiently upregulated 6 h post CFA-treatment despite previous reports suggesting that calpain was capable of cleaving p35 into p25. Results from previous studies obtained by other laboratories demonstrated that significant changes in p35 expression levels within spinal cord horn neurons were not observed in the CFA-treated inflammatory pain model although significant upregulation of Cdk5 kinase was observed between 2 h to 7 d. Therefore, generation of p25 occurred in a calpain-independent fashion in a CFA-treated inflammatory pain model. Our results demonstrated that increased synaptophysin

  6. Sustained Morphine Administration Induces TRPM8-Dependent Cold Hyperalgesia.

    Science.gov (United States)

    Gong, Kerui; Jasmin, Luc

    2017-02-01

    It is not uncommon for patients chronically treated with opioids to exhibit opioid-induced hyperalgesia, and this has been widely reported clinically and experimentally. The molecular substrate for this hyperalgesia is multifaceted, and associated with a complex neural reorganization even in the periphery. For instance, we have recently shown that chronic morphine-induced heat hyperalgesia is associated with an increased expression of GluN2B containing N-methyl-D-aspartate receptors, as well as of the neuronal excitatory amino acid transporter 3/excitatory amino acid carrier 1, in small-diameter primary sensory neurons only. Cold allodynia is also a common complaint of patients chronically treated with opioids, yet its molecular mechanisms remain to be understood. Here we present evidence that the cold sensor TRPM8 channel is involved in opioid-induced hyperalgesia. After 7 days of morphine administration, we observed an upregulation of TRPM8 channels using patch clamp recording on sensory neurons and Western blot analysis on dorsal root ganglia. The selective TRPM8 antagonist RQ-00203078 blocked cold hyperalgesia in morphine-treated rats. Also, TRPM8 knockout mice failed to develop cold hyperalgesia after chronic administration of morphine. Our results show that chronic morphine upregulates TRPM8 channels, which is in contrast with the previous finding that acute morphine triggers TRPM8 internalization. Patients receiving chronic opioid are sensitive to cold. We show in mice and rats that sustained morphine administration induces cold hyperalgesia and an upregulation of TRPM8. Knockout or selectively blocking TRPM8 reduces morphine-induced cold hyperalgesia suggesting TRPM8 is regulated by opioids. Copyright © 2016 American Pain Society. Published by Elsevier Inc. All rights reserved.

  7. Hyperalgesia and temporal summation of pain after heat injury in man

    DEFF Research Database (Denmark)

    Pedersen, J L; Andersen, O K; Arendt-Nielsen, L

    1998-01-01

    of pain in normal skin with summation of pain in skin with primary and secondary hyperalgesia evoked by a heat injury. A heat injury was produced on the crus of 12 volunteers with a 50 x 25 mm thermode (47 degrees C, 7 min). Measurements were made before, and 0, 1, 2, and 4 h after the heat injury......, in three areas: primary and secondary mechanical hyperalgesia induced by the heat injury, and in a mirror image of the injury on the opposite leg. Temporal summation of pain was induced by repeated electrical stimuli (five stimuli at 2 Hz) and assessed by visual analog scale (VAS). Primary hyperalgesia...... was evaluated by von Frey hairs and electrical stimuli, and the areas of secondary hyperalgesia with a rigid von Frey hair (314 mN). Significant primary (P heat injury. The pain threshold to single electrical stimuli was reduced...

  8. Gender differences in pain and secondary hyperalgesia after heat/capsaicin sensitization in healthy volunteers

    DEFF Research Database (Denmark)

    Jensen, Magnus Thorsten; Petersen, Karin Lottrup

    2006-01-01

    differences in development of secondary hyperalgesia. Cutaneous hyperalgesia was induced with the heat/capsaicin sensitization model. Outcome measures were areas of secondary hyperalgesia to brush and von Frey hair stimulation after heat and capsaicin sensitization, rating of pain during heat....../capsaicin sensitization, and heat pain detection thresholds. There was a trend toward smaller areas of secondary hyperalgesia in women. After adjusting for estimated gender differences in forearm surface area, areas to brush but not von Frey hair stimulation after capsaicin sensitization were larger in women. Peak pain......, but not total pain, during prolonged noxious thermal stimulation was higher in women. There was no gender difference in pain ratings during capsaicin sensitization or in heat pain detection thresholds. The results provided only limited support to the hypothesis that gender differences in clinical pain syndromes...

  9. Secondary hyperalgesia to heat stimuli after burn injury in man

    DEFF Research Database (Denmark)

    Pedersen, J L; Kehlet, H

    1998-01-01

    The aim of the study was to examine the presence of hyperalgesia to heat stimuli within the zone of secondary hyperalgesia to punctate mechanical stimuli. A burn was produced on the medial part of the non-dominant crus in 15 healthy volunteers with a 50 x 25 mm thermode (47 degrees C, 7 min......), and assessments were made 70 min and 40 min before, and 0, 1, and 2 h after the burn injury. Hyperalgesia to mechanical and heat stimuli were examined by von Frey hairs and contact thermodes (3.75 and 12.5 cm2), and pain responses were rated with a visual analog scale (0-100). The area of secondary hyperalgesia...... to punctate stimuli was assessed with a rigid von Frey hair (462 mN). The heat pain responses to 45 degrees C in 5 s (3.75 cm2) were tested in the area just outside the burn, where the subjects developed secondary hyperalgesia, and on the lateral crus where no subject developed secondary hyperalgesia (control...

  10. Heat pain detection threshold is associated with the area of secondary hyperalgesia following brief thermal sensitization

    DEFF Research Database (Denmark)

    Hansen, Morten Sejer; Wetterslev, Jørn; Pipper, Christian Bressen

    2017-01-01

    INTRODUCTION: The area of secondary hyperalgesia following brief thermal sensitization (BTS) of the skin and heat pain detection thresholds (HPDT) may both have predictive abilities in regards to pain sensitivity and clinical pain states. The association between HPDT and secondary hyperalgesia......, however, remains unsettled, and the dissimilarities in physiologic properties suggest that they may represent 2 distinctively different pain entities. The aim of this study was to investigate the association between HPDT and BTS-induced secondary hyperalgesia. METHODS: A sample of 121 healthy male...... participants was included and tested on 2 separate study days with BTS (45°C, 3 minutes), HPDT, and pain during thermal stimulation (45°C, 1 minute). Areas of secondary hyperalgesia were quantified after monofilament pinprick stimulation. The pain catastrophizing scale (PCS) and hospital anxiety and depression...

  11. Is heat pain detection threshold associated with the area of secondary hyperalgesia following brief thermal sensitization?

    DEFF Research Database (Denmark)

    Hansen, Morten Sejer; Wetterslev, Jørn; Pipper, Christian Bressen

    2016-01-01

    role in the development of secondary hyperalgesia; however, a possible association of secondary hyperalgesia following brief thermal sensitization and other heat pain models remains unknown. Our aim with this study is to investigate how close the heat pain detection threshold is associated...... with the size of the area of secondary hyperalgesia induced by the clinical heat pain model: Brief thermal sensitization. METHODS AND DESIGN: We aim to include 120 healthy participants. The participants will be tested on two separate study days with the following procedures: i) Brief thermal sensitization, ii......) heat pain detection threshold and iii) pain during thermal stimulation. Additionally, the participants will be tested with the Pain Catastrophizing Scale and Hospital Anxiety and Depression Scale questionnaires. We conducted statistical simulations based on data from our previous study, to estimate...

  12. The BDNF/TrkB Signaling Pathway Is Involved in Heat Hyperalgesia Mediated by Cdk5 in Rats

    OpenAIRE

    Zhang, Hong-Hai; Zhang, Xiao-Qin; Xue, Qing-Sheng; Yan-Luo,; Huang, Jin-Lu; Zhang, Su; Shao, Hai-Jun; Lu, Han; Wang, Wen-Yuan; Yu, Bu-Wei

    2014-01-01

    Background Cyclin-dependent kinase 5 (Cdk5) has been shown to play an important role in mediating inflammation-induced heat hyperalgesia. However, the underlying mechanism remains unclear. The aim of this study was to determine whether roscovitine, an inhibitor of Cdk5, could reverse the heat hyperalgesia induced by peripheral injection of complete Freund's adjuvant (CFA) via the brain-derived neurotrophic factor (BDNF)-tyrosine kinase B (TrkB) signaling pathway in the dorsal horn of the spin...

  13. The Area of Secondary Hyperalgesia following Heat Stimulation in Healthy Male Volunteers

    DEFF Research Database (Denmark)

    Hansen, Morten Sejer; Wetterslev, Jørn; Pipper, Christian Bressen

    2016-01-01

    , with a minimum interval of 7 days. Additionally, heat pain detection threshold and pain during thermal stimulation (45°C for 1 min.), and the psychological tests Pain Catastrophizing Scale and Hospital Anxiety and Depression Score were applied. RESULTS: For areas of secondary hyperalgesia, an intra...... and above the 3rd quartile considering all included participants. Heat pain detection threshold predicted area of secondary hyperalgesia with an adjusted R2 of 0.20 (P = 0.0006). CONCLUSIONS: We have demonstrated a low intra-individual, and a high inter-individual variation in thermally induced secondary...

  14. The BDNF/TrkB signaling pathway is involved in heat hyperalgesia mediated by Cdk5 in rats.

    Directory of Open Access Journals (Sweden)

    Hong-Hai Zhang

    Full Text Available Cyclin-dependent kinase 5 (Cdk5 has been shown to play an important role in mediating inflammation-induced heat hyperalgesia. However, the underlying mechanism remains unclear. The aim of this study was to determine whether roscovitine, an inhibitor of Cdk5, could reverse the heat hyperalgesia induced by peripheral injection of complete Freund's adjuvant (CFA via the brain-derived neurotrophic factor (BDNF-tyrosine kinase B (TrkB signaling pathway in the dorsal horn of the spinal cord in rats.Heat hyperalgesia induced by peripheral injection of CFA was significantly reversed by roscovitine, TrkB-IgG, and the TrkB inhibitor K252a, respectively. Furthermore, BDNF was significantly increased from 0.5 h to 24 h after CFA injection in the spinal cord dorsal horn. Intrathecal adminstration of the Cdk5 inhibitor roscovitine had no obvious effects on BDNF levels. Increased TrkB protein level was significantly reversed by roscovitine between 0.5 h and 6 h after CFA injection. Cdk5 and TrkB co-immunoprecipitation results suggested Cdk5 mediates the heat hyperalgesia induced by CFA injection by binding with TrkB, and the binding between Cdk5 and TrkB was markedly blocked by intrathecal adminstration of roscovitine.Our data suggested that the BDNF-TrkB signaling pathway was involved in CFA-induced heat hyperalgesia mediated by Cdk5. Roscovitine reversed the heat hyperalgesia induced by peripheral injection of CFA by blocking BDNF/TrkB signaling pathway, suggesting that severing the close crosstalk between Cdk5 and the BDNF/TrkB signaling cascade may present a potential target for anti-inflammatory pain.

  15. Time course of primary and secondary hyperalgesia after heat injury to the skin

    DEFF Research Database (Denmark)

    Møiniche, S; Dahl, J B; Kehlet, H

    1993-01-01

    the injury in any volunteer. These findings suggest post-injury development of secondary hyperalgesia to be a dynamic process, closely related in time to a peripheral nociceptive input, with reversal to normal when the peripheral lesion disappears. These observations may be relevant to the concept of "pre......We have examined the time course of, and relationship between, primary and secondary hyperalgesia after thermal injury to the skin in humans. Burn injuries (15 x 25 mm rectangular thermode, 49 degrees C, 5 min) were produced in eight healthy, unmedicated male volunteers, on the medial side...... of the right calf, on two occasions at least 8 days apart. Heat pain detection thresholds (HPDT), heat pain tolerance (HPT), mechanical pain detection threshold (MPDT) and the intensity of burn-injury induced erythema (skin erythema index, SEI) were assessed inside the burn injury. HPT was assessed only in one...

  16. Chronic vitamin C administration induces thermal hyperalgesia in ...

    African Journals Online (AJOL)

    Against a backdrop of neurological effects, the effects of acute and chronic administration of vitamin C (600mg/kg) on pain processing were investigated in male rats. Chronic administration of vitamin C induced significant thermal hyperalgesia while acute administration had no effect. In addition, the intraperitoneal ...

  17. The Area of Secondary Hyperalgesia following Heat Stimulation in Healthy Male Volunteers: Inter- and Intra-Individual Variance and Reproducibility.

    Directory of Open Access Journals (Sweden)

    Morten Sejer Hansen

    Full Text Available Clinical pain models can be applied when investigating basic physiologic pain responses in healthy volunteers. Several pain models exist; however, only few have been adequately validated. Our primary aim with this prospective study was to investigate the intra- and inter-individual variation in secondary hyperalgesia elicited by brief thermal sensitization (45°C for 3 min in healthy volunteers.Fifty healthy volunteers were included. Areas of secondary hyperalgesia following brief thermal sensitization were investigated by 2 observers on 4 experimental days, with a minimum interval of 7 days. Additionally, heat pain detection threshold and pain during thermal stimulation (45°C for 1 min., and the psychological tests Pain Catastrophizing Scale and Hospital Anxiety and Depression Score were applied.For areas of secondary hyperalgesia, an intra-observer intra-person correlation of 0.85, 95% CI [0.78, 0.90], an intra-observer inter-person correlation of 0.03, 95% CI [0.00, 0.16], and a coefficient of variation of 0.17, 95% CI [0.14, 0.21] was demonstrated. Four percent of the study population had areas of secondary hyperalgesia both below the 1st and above the 3rd quartile considering all included participants. Heat pain detection threshold predicted area of secondary hyperalgesia with an adjusted R2 of 0.20 (P = 0.0006.We have demonstrated a low intra-individual, and a high inter-individual variation in thermally induced secondary hyperalgesia. We conclude that brief thermal sensitization produce secondary hyperalgesia with a high level of reproducibility, which can be applied to investigate different phenotypes related to secondary hyperalgesia in healthy volunteers.clinicaltrials.gov NCT02166164.

  18. Is heat pain detection threshold associated with the area of secondary hyperalgesia following brief thermal sensitization? A study of healthy volunteers - design and detailed plan of analysis.

    Science.gov (United States)

    Hansen, Morten Sejer; Wetterslev, Jørn; Pipper, Christian Bressen; Asghar, Mohammad Sohail; Dahl, Jørgen Berg

    2016-05-31

    Several factors are believed to influence the development and experience of pain. Human clinical pain models are central tools, in the investigation of basic physiologic pain responses, and can be applied in patients as well as in healthy volunteers. Each clinical pain model investigates different aspects of the human pain response. Brief thermal sensitization induces a mild burn injury, resulting in development of primary hyperalgesia at the site of stimulation, and secondary hyperalgesia surrounding the site of stimulation. Central sensitization is believed to play an important role in the development of secondary hyperalgesia; however, a possible association of secondary hyperalgesia following brief thermal sensitization and other heat pain models remains unknown. Our aim with this study is to investigate how close the heat pain detection threshold is associated with the size of the area of secondary hyperalgesia induced by the clinical heat pain model: Brief thermal sensitization. We aim to include 120 healthy participants. The participants will be tested on two separate study days with the following procedures: i) Brief thermal sensitization, ii) heat pain detection threshold and iii) pain during thermal stimulation. Additionally, the participants will be tested with the Pain Catastrophizing Scale and Hospital Anxiety and Depression Scale questionnaires. We conducted statistical simulations based on data from our previous study, to estimate an empirical power of 99.9 % with α of 0.05. We define that an R(2) heat stimulation, and thus may be a biomarker of an individual's pain sensitivity. The number of studies investigating secondary hyperalgesia is growing; however basic knowledge of the physiologic aspects of secondary hyperalgesia in humans is still incomplete. We therefore find it interesting to investigate if HPDT, a known quantitative sensory test, is associated with areas of secondary hyperalgesia following brief thermal sensitization Clinicaltrials

  19. Ranolazine attenuation of CFA-induced mechanical hyperalgesia.

    Science.gov (United States)

    Casey, Gregory P; Roberts, Jomar S; Paul, Dennis; Diamond, Ivan; Gould, Harry J

    2010-01-01

    To determine whether ranolazine, a new anti-angina medication, could be an effective analgesic agent in complete Freund's adjuvant-induced inflammatory pain. Plantar injection of complete Freund's adjuvant (CFA) produces an extended period of hyperalgesia that is associated with a dramatic up-regulation of Na(v) 1.7 sodium channels in populations of large and small dorsal root ganglion neurons related to the injection site. Ranolazine appears to produce its anti-angina effect through blocking the late sodium current associated with the voltage-gated sodium channel, Na(v) 1.5. Because ranolazine also inhibits Na(v) 1.7, and 1.8, we sought to determine whether it could be an effective analgesic agent in CFA-induced inflammatory pain. Baseline determinations of withdrawal from thermal and mechanical stimulation were made in Sprague-Dawley rats ( approximately 300-350 x g). Following determination of baseline, one hindpaw in each group was injected with 0.1 mL of CFA. The contralateral paw received saline. Thermal and mechanical stimulation was repeated on the third day post-injection. Vehicle (0.9% isotonic saline; pH 3.0) or ranolazine was then administered in randomized and blinded doses either by intraperitoneal (ip) injection (0, 10, 20, and 50 mg/kg) or by oral gavage (po; 0, 20, 50, 100, and 200 mg/kg). Animals were again tested 30 minutes (ip) and 1 hour (po) after drug administration. Ranolazine produced dose-dependant analgesia on mechanical allodynia induced by CFA injection, but had no effect on thermal hyperalgesia. Ranolazine's potential as a new option for managing both angina and chronic inflammatory pain warrants further study.

  20. Aberrant TRPV1 expression in heat hyperalgesia associated with trigeminal neuropathic pain.

    Science.gov (United States)

    Urano, Hiroko; Ara, Toshiaki; Fujinami, Yoshiaki; Hiraoka, B Yukihiro

    2012-01-01

    Trigeminal neuropathic pain is a facial pain syndrome associated with trigeminal nerve injury. However, the mechanism of trigeminal neuropathic pain is poorly understood. This study aimed to determine the role of transient receptor potential vanilloid 1 (TRPV1) in heat hyperalgesia in a trigeminal neuropathic pain model. We evaluated nociceptive responses to mechanical and heat stimuli using a partial infraorbital nerve ligation (pIONL) model. Withdrawal responses to mechanical and heat stimuli to vibrissal pads (VP) were assessed using von Frey filaments and a thermal stimulator equipped with a heat probe, respectively. Changes in withdrawal responses were measured after subcutaneous injection of the TRP channel antagonist capsazepine. In addition, the expression of TRPV1 in the trigeminal ganglia was examined. Mechanical allodynia and heat hyperalgesia were observed in VP by pIONL. Capsazepine suppressed heat hyperalgesia but not mechanical allodynia. The number of TRPV1-positive neurons in the trigeminal ganglia was significantly increased in the large-diameter-cell group. These results suggest that TRPV1 plays an important role in the heat hyperalgesia observed in the pIONL model.

  1. Acute restraint stress induces hyperalgesia via non-adrenergic ...

    African Journals Online (AJOL)

    Analgesia or hyperalgesia has been reported to occur in animals under different stress conditions. This study examined the effect of acute restraint stress on nociception in rats. Acute restraint stress produced a time-dependant decrease in pain threshold; this hyperalgesia was not affected by prior administration of ...

  2. Intradermal administration of magnesium sulphate and magnesium chloride produces hypesthesia to mechanical but hyperalgesia to heat stimuli in humans

    Directory of Open Access Journals (Sweden)

    Ikemoto Tatsunori

    2009-08-01

    Full Text Available Abstract Background Although magnesium ions (Mg2+ are known to display many similar features to other 2+ charged cations, they seem to have quite an important and unique role in biological settings, such as NMDA blocking effect. However, the role of Mg2+ in the neural transmission system has not been studied as sufficiently as calcium ions (Ca2+. To clarify the sensory effects of Mg2+ in peripheral nervous systems, sensory changes after intradermal injection of Mg2+ were studied in humans. Methods Magnesium sulphate, magnesium chloride and saline were injected into the skin of the anterior region of forearms in healthy volunteers and injection-induced irritating pain ("irritating pain", for short, tactile sensation, tactile pressure thresholds, pinch-pain changes and intolerable heat pain thresholds of the lesion were monitored. Results Flare formation was observed immediately after magnesium sulphate or magnesium chloride injection. We found that intradermal injections of magnesium sulphate and magnesium chloride transiently caused irritating pain, hypesthesia to noxious and innocuous mechanical stimulations, whereas secondary hyperalgesia due to mechanical stimuli was not observed. In contrast to mechanical stimuli, intolerable heat pain-evoking temperature was significantly decreased at the injection site. In addition to these results, spontaneous pain was immediately attenuated by local cooling. Conclusion Membrane-stabilizing effect and peripheral NMDA-blocking effect possibly produced magnesium-induced mechanical hypesthesia, and extracellular cation-induced sensitization of TRPV1 channels was thought to be the primary mechanism of magnesium-induced heat hyperalgesia.

  3. Social transfer of alcohol withdrawal-induced hyperalgesia in female prairie voles.

    Science.gov (United States)

    Walcott, Andre T; Smith, Monique L; Loftis, Jennifer M; Ryabinin, Andrey E

    2018-03-27

    The expression of pain serves as a way for animals to communicate potential dangers to nearby conspecifics. Recent research demonstrated that mice undergoing alcohol or morphine withdrawal, or inflammation, could socially communicate their hyperalgesia to nearby mice. However, it is unknown whether such social transfer of hyperalgesia can be observed in other species of rodents. Therefore, the present study investigated if the social transfer of hyperalgesia occurs in the highly social prairie vole (Microtus ochrogaster). We observe that adult female prairie voles undergoing withdrawal from voluntary two-bottle choice alcohol drinking display an increase in nociception. This alcohol withdrawal-induced hypersensitiity is socially transferred to female siblings within the same cage and female strangers housed in separate cages within the same room. These experiments reveal that the social transfer of pain phenomenon is not specific to inbred mouse strains and that prairie voles display alcohol withdrawal and social transfer-induced hyperalgesia.

  4. Flurbiprofen in rapid eye movement sleep deprivation induced hyperalgesia.

    Science.gov (United States)

    Gürel, Elif Ezgi; Ural, Keremcan; Öztürk, Gülnur; Öztürk, Levent

    2014-04-10

    Rapid eye movement (REM) sleep deprivation induces hyperalgesia in healthy rats. Here, we evaluated the effects of flurbiprofen, an anti-inflammatory and neuroprotective agent, on the increased thermal responses observed in REM sleep deprived rats. Forty female rats were divided into four groups following 96-hour REM sleep deprivation: intraperitoneal injections of placebo, and flurbiprofen 5 mg/kg, 15 mg/kg and 40 mg/kg were made in CONT (n=10), FBP5, FBP15 and FBP40 groups respectively. Pain threshold measurements were performed three times at baseline (0.hour), at the end of REM sleep deprivation (96.hour) and at 1 h after injections (97.hour) by hot plate and tail-flick tests. REM sleep deprivation induced a significant decrease in pain thresholds of all rats (hotplate: 0.hour vs 96.hour, 9.75±2.85 vs 5.10±2.02, pFlurbiprofen in 15 mg/kg and 40 mg/kg doses significantly improved pain tolerance measured by tail flick test (tail flick in FBP15 and FBP40 groups: 96.hour vs 97.hour, 7.01±4.97 vs 8.34±3.61 and 5.06±1.57 vs 7.04±2.49, pFlurbiprofen was used for the first time in a rat model of REM sleep deprivation, and it provided anti-nociceptive effects in 15 mg/kg and 40 mg/kg doses. Flurbiprofen may have the potential for treatment of painful syndromes accompanying insomnia or sleep loss. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Anterior Cingulate Cortex Contributes to Alcohol Withdrawal- Induced and Socially Transferred Hyperalgesia.

    Science.gov (United States)

    Smith, Monique L; Walcott, Andre T; Heinricher, Mary M; Ryabinin, Andrey E

    2017-01-01

    Pain is often described as a "biopsychosocial" process, yet social influences on pain and underlying neural mechanisms are only now receiving significant experimental attention. Expression of pain by one individual can be communicated to nearby individuals by auditory, visual, and olfactory cues. Conversely, the perception of another's pain can lead to physiological and behavioral changes in the observer, which can include induction of hyperalgesia in "bystanders" exposed to "primary" conspecifics in which hyperalgesia has been induced directly. The current studies were designed to investigate the neural mechanisms responsible for the social transfer of hyperalgesia in bystander mice housed and tested with primary mice in which hyperalgesia was induced using withdrawal (WD) from voluntary alcohol consumption. Male C57BL/6J mice undergoing WD from a two-bottle choice voluntary alcohol-drinking procedure served as the primary mice. Mice housed in the same room served as bystanders. Naïve, water-drinking controls were housed in a separate room. Immunohistochemical mapping identified significantly enhanced Fos immunoreactivity (Fos-ir) in the anterior cingulate cortex (ACC) and insula (INS) of bystander mice compared to naïve controls, and in the dorsal medial hypothalamus (DMH) of primary mice. Chemogenetic inactivation of the ACC but not primary somatosensory cortex reversed the expression of hyperalgesia in both primary and bystander mice. These studies point to an overlapping neural substrate for expression of socially transferred hyperalgesia and that expressed during alcohol WD.

  6. Vitamin B complex attenuated heat hyperalgesia following infraorbital nerve constriction in rats and reduced capsaicin in vivo and in vitro effects.

    Science.gov (United States)

    Kopruszinski, Caroline M; Reis, Renata C; Bressan, Elisangela; Reeh, Peter W; Chichorro, Juliana G

    2015-09-05

    Vitamins of the B complex attenuate some neuropathic pain sensory aspects in various animal models and in patients, but the mechanisms underlying their effects remain to be elucidated. Herein it was investigated if the treatment with a vitamin B complex (VBC) reduces heat hyperalgesia in rats submitted to infraorbital nerve constriction and the possibility that TRPV1 receptors represent a target for B vitamins. In the present study, the VBC refers to a combination of vitamins B1, B6 and B12 at low- (18, 18 and 1.8mg/kg, respectively) or high- (180, 180 and 18mg/kg, respectively) doses. Acute treatment of rats with either the low- or the high-doses combination reduced heat hyperalgesia after nerve injury, but the high-doses combination resulted in a long-lasting effect. Repeated treatment with the low-dose combination reduced heat hyperalgesia on day four after nerve injury and showed a synergist effect with a single injection of carbamazepine (3 or 10mg/kg), which per se failed to modify the heat threshold. In naïve rats, acute treatment with the high-dose of VBC or B1 and B12 vitamins independently reduced heat hyperalgesia evoked by capsaicin (3µg into the upper lip). Moreover, the VBC, as well as, each one of the B vitamins independently reduced the capsaicin-induced calcium responses in HEK 293 cells transiently transfected with the human TRPV1 channels. Altogether, these results indicate that B vitamins can be useful to control heat hyperalgesia associated with trigeminal neuropathic pain and that modulation of TRPV1 receptors may contribute to their anti-hyperalgesic effects. Copyright © 2015. Published by Elsevier B.V.

  7. Bilateral hand/wrist heat and cold hyperalgesia, but not hypoesthesia, in unilateral carpal tunnel syndrome.

    Science.gov (United States)

    de la Llave-Rincón, Ana Isabel; Fernández-de-las-Peñas, César; Fernández-Carnero, Josué; Padua, Luca; Arendt-Nielsen, Lars; Pareja, Juan A

    2009-10-01

    The aim of the current study was to evaluate bilaterally warm/cold detection and heat/cold pain thresholds over the hand/wrist in patients with carpal tunnel syndrome (CTS). A total of 25 women with strictly unilateral CTS (mean 42 +/- 10 years), and 20 healthy matched women (mean 41 +/- 8 years) were recruited. Warm/cold detection and heat/cold pain thresholds were assessed bilaterally over the carpal tunnel and the thenar eminence in a blinded design. Self-reported measures included both clinical pain history (intensity, location and area) and Boston Carpal Tunnel Questionnaire. No significant differences between groups for both warm and cold detection thresholds in either carpal tunnel or thenar eminence (P > 0.5) were found. Further, significant differences between groups, but not between sides, for both heat and cold pain thresholds in both the carpal tunnel and thenar eminence were found (all P < 0.001). Heat pain thresholds (P < 0.01) were negatively correlated, whereas cold pain thresholds (P < 0.001) were positively correlated with hand pain intensity and duration of symptoms. Our findings revealed bilateral thermal hyperalgesia (lower heat pain and reduced cold pain thresholds) but not hypoesthesia (normal warm/cold detection thresholds) in patients with strictly unilateral CTS when compared to controls. We suggest that bilateral heat and cold hyperalgesia may reflect impairments in central nociceptive processing in patients with unilateral CTS. The bilateral thermal hyperalgesia associated with pain intensity and duration of pain history supports a role of generalized sensitization mechanisms in the initiation, maintenance and spread of pain in CTS.

  8. Neonatal Handling Produces Sex Hormone-Dependent Resilience to Stress-Induced Muscle Hyperalgesia in Rats.

    Science.gov (United States)

    Alvarez, Pedro; Green, Paul G; Levine, Jon D

    2018-06-01

    Neonatal handling (NH) of male rat pups strongly attenuates stress response and stress-induced persistent muscle hyperalgesia in adults. Because female sex is a well established risk factor for stress-induced chronic muscle pain, we explored whether NH provides resilience to stress-induced hyperalgesia in adult female rats. Rat pups underwent NH, or standard (control) care. Muscle mechanical nociceptive threshold was assessed before and after water avoidance (WA) stress, when they were adults. In contrast to male rats, NH produced only a modest protection against WA stress-induced muscle hyperalgesia in female rats. Gonadectomy completely abolished NH-induced resilience in male rats but produced only a small increase in this protective effect in female rats. The administration of the antiestrogen drug fulvestrant, in addition to gonadectomy, did not enhance the protective effect of NH in female rats. Finally, knockdown of the androgen receptor by intrathecal antisense treatment attenuated the protective effect of NH in intact male rats. Together, these data indicate that androgens play a key role in NH-induced resilience to WA stress-induced muscle hyperalgesia. NH induces androgen-dependent resilience to stress-induced muscle pain. Therefore, androgens may contribute to sex differences observed in chronic musculoskeletal pain and its enhancement by stress. Copyright © 2018 The American Pain Society. Published by Elsevier Inc. All rights reserved.

  9. Prolonged maintenance of capsaicin-induced hyperalgesia by brief daily vibration stimuli.

    Science.gov (United States)

    Kim, Hee Kee; Schattschneider, Jörn; Lee, Inhyung; Chung, Kyungsoon; Baron, Ralf; Chung, Jin Mo

    2007-05-01

    This study tests the hypothesis that central sensitization initiated by nociceptive input can be maintained by repeated brief innocuous peripheral inputs. Capsaicin was injected intradermally into the hind paw of adult rats. Three different types of daily cutaneous mechanical stimulations (vibration, soft brush, or pressure) were applied to the capsaicin-injected paw for a period of 2 weeks. Daily stimulation consisted of a 10-s stimulation repeated every 30s for 30 min. Foot withdrawal thresholds to von Frey stimuli applied to the paw were measured once a day for 4 weeks. The capsaicin-only group (control rats without daily stimulation) showed hyperalgesia lasting for 3 days. In contrast, hyperalgesia persisted for 2 weeks in the group that received vibration stimulation. Neither the soft brush nor the pressure group showed a significant difference in mechanical threshold from the control group (capsaicin only). The vibration-induced prolonged hyperalgesia was significantly reduced by systemic injection of ifenprodil, an NMDA-receptor antagonist, but it was not influenced by either an AMPA-receptor blocker or a reactive oxygen species (ROS) scavenger. Furthermore, a dorsal column lesion did not interfere with the prolongation of hyperalgesia. Data suggest that vibration-induced prolongation of hyperalgesia is mediated by spinal NMDA-receptors, and a similar mechanism may underlie some forms of chronic pain with no obvious causes, such as complex regional pain syndrome type 1 (CRPS-1).

  10. Peripheral lidocaine, but not ketamine inhibit capsaicin-induced hyperalgesia in humans

    DEFF Research Database (Denmark)

    Gottrup, Hanne; Bach, Flemming Winther; Arendt-Nielsen, Lars

    2000-01-01

    We examined the effect of the subcutaneous infiltration of ketamine, lidocaine and saline before injury on capsaicin-induced pain and hyperalgesia. Twelve healthy volunteers participated in two separate, randomized, double-blind, placebo-controlled crossover experiments. In experiment 1, 100...... micrograms capsaicin was injected intradermally in one volar forearm 10 min after the skin had been pretreated with lidocaine 20.0 mg in 2.0 ml or 0.9% saline 2.0 ml at the capsaicin injection site. In experiment 2, a similar capsaicin test was given 10 min after the skin had been pretreated with ketamine 5...... and brush stimuli, and areas of brush-evoked and punctate-evoked hyperalgesia. Lidocaine reduced all measures compared with placebo (P ketamine failed to change any measures. Pain scores and areas of hyperalgesia were not affected when the contralateral site was infiltrated with ketamine...

  11. Pharmacokinetic/Pharmacodynamic Relationship of Gabapentin in a CFA-induced Inflammatory Hyperalgesia Rat Model

    DEFF Research Database (Denmark)

    Larsen, Malte Selch; Keizer, Ron; Munro, Gordon

    2016-01-01

    PURPOSE: Gabapentin displays non-linear drug disposition, which complicates dosing for optimal therapeutic effect. Thus, the current study was performed to elucidate the pharmacokinetic/pharmacodynamic (PKPD) relationship of gabapentin's effect on mechanical hypersensitivity in a rat model of CFA......-induced inflammatory hyperalgesia. METHODS: A semi-mechanistic population-based PKPD model was developed using nonlinear mixed-effects modelling, based on gabapentin plasma and brain extracellular fluid (ECF) time-concentration data and measurements of CFA-evoked mechanical hyperalgesia following administration...

  12. Evaluation of antivenoms in the neutralization of hyperalgesia and edema induced by Bothrops jararaca and Bothrops asper snake venoms

    Directory of Open Access Journals (Sweden)

    Picolo G.

    2002-01-01

    Full Text Available Neutralization of hyperalgesia induced by Bothrops jararaca and B. asper venoms was studied in rats using bothropic antivenom produced at Instituto Butantan (AVIB, 1 ml neutralizes 5 mg B. jararaca venom and polyvalent antivenom produced at Instituto Clodomiro Picado (AVCP, 1 ml neutralizes 2.5 mg B. aspar venom. The intraplantar injection of B. jararaca and B. asper venoms caused hyperalgesia, which peaked 1 and 2 h after injection, respectively. Both venoms also induced edema with a similar time course. When neutralization assays involving the independent injection of venom and antivenom were performed, the hyperalgesia induced by B. jararaca venom was neutralized only when bothropic antivenom was administered iv 15 min before venom injection, whereas edema was neutralized when antivenom was injected 15 min or immediately before venom injection. On the other hand, polyvalent antivenom did not interfere with hyperalgesia or edema induced by B. asper venom, even when administered prior to envenomation. The lack of neutralization of hyperalgesia and edema induced by B. asper venom is not attributable to the absence of neutralizing antibodies in the antivenom, since neutralization was achieved in assays involving preincubation of venom and antivenom. Cross-neutralization of AVCP or AVIB against B. jararaca and B. asper venoms, respectively, was also evaluated. Only bothropic antivenom partially neutralized hyperalgesia induced by B. asper venom in preincubation experiments. The present data suggest that hyperalgesia and edema induced by Bothrops venoms are poorly neutralized by commercial antivenoms even when antibodies are administered immediately after envenomation.

  13. Experimental occlusal interference induces long-term masticatory muscle hyperalgesia in rats.

    Science.gov (United States)

    Cao, Ye; Xie, Qiu-Fei; Li, Kai; Light, Alan R; Fu, Kai-Yuan

    2009-08-01

    Temporomandibular joint or related masticatory muscle pain represents the most common chronic orofacial pain condition. Patients frequently report this kind of pain after dental alterations in occlusion. However, lack of understanding of the mechanisms of occlusion-related temporomandibular joint and muscle pain prevents treating this problem successfully. To explore the relationship between improper occlusion (occlusal interference) and masticatory muscle pain, we created an occlusal interference animal model by directly bonding a crown to a maxillary molar to raise the masticating surface of the tooth in rats. We raised the occlusal surface to three different heights (0.2, 0.4, and 0.6mm), and for one month we quantitatively measured mechanical nociceptive thresholds of the temporal and masseter muscles on both sides. Results showed a stimulus-response relationship between the height of occlusal interference and muscle hyperalgesia. Removal of the crown 6 days after occlusal interference showed that the removal at this time could not terminate the 1 month duration of mechanical hyperalgesia in the masticatory muscles. Lastly, we systemically administered NMDA antagonist MK801 (0.2, 0.1, and 0.05 mg/kg) to the treated rats and found that MK801 dose dependently attenuated the occlusal interference-induced hyperalgesia. These findings suggest that occlusal interference is directly related to masticatory muscle pain, and that central sensitization mechanisms are involved in the maintenance of the occlusal interference-induced mechanical hyperalgesia.

  14. Relation cellular- molecular between serum IL10 levels and hyperalgesia variation in adjuvant- induced arthritis

    Directory of Open Access Journals (Sweden)

    Zenab Akhtari

    2015-01-01

    Full Text Available Background: Regarding to the important anti-inflammatory role of IL10 during inflammation process and hyperalgesia and edema variation during CFA-induced arthritis and also the increase of Spinal mu opioid receptor (mOR expression, in this study researchers investigate the role of serum IL10 level on mOR expression and edema and hyperalgesia variation during different stages of Complete Freund`s Adjuvant (CFA - induced arthritis in male Wistar rats. Materials and Methods: Mono-arthritis was induced by CFA and inflammatory symptoms (hyperalgesia and edema were assessed on 0, 3, 7, 14th and 21st days of study. Anti-IL10 was administered during the 21 days of study in different experimental groups. mOR expression were detected by western blotting on 0, 3,7, 14th and 21st days of study. Data was analyzed by SPSS statistical software version 19 with using one way ANOVA (post hoc Tokey's. Results: Our results showed that anti-IL10 administration in AA group (Adjuvant Arthritis caused an increase in the paw volume and hyperalgesia until 21st of study. Our study stated that there were no significant differences in spinal mOR expression between AA and AA+anti-IL10rats. Conclusion: Our study confirmed that anti-IL10administration caused to hyperalgesia and edema during AA inflammation. Also these findings suggested that mOR expression increased in chronic phase of AA inflammation, however an increase in the level of spinal mu opioid receptor (mOR expression during AA inflammation is not mediated directly via the effect of serum IL-10.

  15. PLGA-Curcumin Attenuates Opioid-Induced Hyperalgesia and Inhibits Spinal CaMKIIα

    Science.gov (United States)

    Hu, Xiaoyu; Huang, Fang; Szymusiak, Magdalena; Tian, Xuebi; Liu, Ying; Wang, Zaijie Jim

    2016-01-01

    Opioid-induced hyperalgesia (OIH) is one of the major problems associated with prolonged use of opioids for the treatment of chronic pain. Effective treatment for OIH is lacking. In this study, we examined the efficacy and preliminary mechanism of curcumin in attenuating OIH. We employed a newly developed PLGA-curcumin nanoformulation (PLGA-curcumin) in order to improve the solubility of curcumin, which has been a major obstacle in properly characterizing curcumin’s mechanism of action and efficacy. We found that curcumin administered intrathecally or orally significantly attenuated hyperalgesia in mice with morphine-induced OIH. Furthermore, we demonstrated that the effects of curcumin on OIH correlated with the suppression of chronic morphine-induced CaMKIIα activation in the superficial laminae of the spinal dorsal horn. These data suggest that PLGA-curcumin may reverse OIH possibly by inhibiting CaMKIIα and its downstream signaling. PMID:26744842

  16. PLGA-Curcumin Attenuates Opioid-Induced Hyperalgesia and Inhibits Spinal CaMKIIα.

    Directory of Open Access Journals (Sweden)

    Xiaoyu Hu

    Full Text Available Opioid-induced hyperalgesia (OIH is one of the major problems associated with prolonged use of opioids for the treatment of chronic pain. Effective treatment for OIH is lacking. In this study, we examined the efficacy and preliminary mechanism of curcumin in attenuating OIH. We employed a newly developed PLGA-curcumin nanoformulation (PLGA-curcumin in order to improve the solubility of curcumin, which has been a major obstacle in properly characterizing curcumin's mechanism of action and efficacy. We found that curcumin administered intrathecally or orally significantly attenuated hyperalgesia in mice with morphine-induced OIH. Furthermore, we demonstrated that the effects of curcumin on OIH correlated with the suppression of chronic morphine-induced CaMKIIα activation in the superficial laminae of the spinal dorsal horn. These data suggest that PLGA-curcumin may reverse OIH possibly by inhibiting CaMKIIα and its downstream signaling.

  17. Cutaneous C-polymodal fibers lacking TRPV1 are sensitized to heat following inflammation, but fail to drive heat hyperalgesia in the absence of TPV1 containing C-heat fibers

    Directory of Open Access Journals (Sweden)

    Koerber H Richard

    2010-09-01

    Full Text Available Abstract Background Previous studies have shown that the TRPV1 ion channel plays a critical role in the development of heat hyperalgesia after inflammation, as inflamed TRPV1-/- mice develop mechanical allodynia but fail to develop thermal hyperalgesia. In order to further investigate the role of TRPV1, we have used an ex vivo skin/nerve/DRG preparation to examine the effects of CFA-induced-inflammation on the response properties of TRPV1-positive and TRPV1-negative cutaneous nociceptors. Results In wildtype mice we found that polymodal C-fibers (CPMs lacking TRPV1 were sensitized to heat within a day after CFA injection. This sensitization included both a drop in average heat threshold and an increase in firing rate to a heat ramp applied to the skin. No changes were observed in the mechanical response properties of these cells. Conversely, TRPV1-positive mechanically insensitive, heat sensitive fibers (CHs were not sensitized following inflammation. However, results suggested that some of these fibers may have gained mechanical sensitivity and that some previous silent fibers gained heat sensitivity. In mice lacking TRPV1, inflammation only decreased heat threshold of CPMs but did not sensitize their responses to the heat ramp. No CH-fibers could be identified in naïve nor inflamed TRPV1-/- mice. Conclusions Results obtained here suggest that increased heat sensitivity in TRPV1-negative CPM fibers alone following inflammation is insufficient for the induction of heat hyperalgesia. On the other hand, TRPV1-positive CH fibers appear to play an essential role in this process that may include both afferent and efferent functions.

  18. Concomitant Migraine and Temporomandibular Disorders are Associated With Higher Heat Pain Hyperalgesia and Cephalic Cutaneous Allodynia.

    Science.gov (United States)

    Chaves, Thais C; Dach, Fabíola; Florencio, Lidiane L; Carvalho, Gabriela F; Gonçalves, Maria C; Bigal, Marcelo E; Speciali, José G; Bevilaqua-Grossi, Débora

    2016-10-01

    The aim of this study was to assess differences in the levels of hyperalgesia and cutaneous allodynia (CA) among women with migraine, temporomandibular disorders (TMD), or both. Eighty women participated in the study. Mean ages for the control group, TMD group, migraine group, and migraine+TMD group were 26.15 (95% confidence interval [CI], 28.73 to 23.57), 31.65 (95% CI, 37.82 to 25.48), 35.05 (95% CI, 40.37 to 29.73), and 34.20 (95% CI, 37.99 to 30.41) years, respectively. The 12-item Allodynia Symptom Checklist was administered to assess CA. All participants underwent the Quantitative Sensory Test to determine the cold-pain and heat-pain thresholds. Mechanical pain thresholds were assessed using Semmes-Weinstein monofilaments. One-way analysis of variance and χ tests were used for statistical analysis. Alpha was set at 0.05 level for statistical significance. For all sites evaluated, the mean cold-pain threshold values were significantly lower in the TMD, migraine, and TMD+migraine groups compared with the control group. However, the mean heat-pain threshold values in the extracephalic region were significantly smaller only for the TMD+migraine group compared with the control group (41.94°C; 95% CI, 40.54 to 43.34 vs. 44.79°C; 95% CI, 43.45 to 46.12; P=0.03). Mechanical hyperalgesia in orofacial and neck sites was significantly lower in the TMD and TMD+migraine groups compared with the control group. Mean total 12-item Allodynia Symptom Checklist score in the TMD+migraine group was significantly higher than in the migraine group (9.53; 95% CI, 7.45 to 11.60 vs. 6.95; 95% CI, 5.35 to 8.55; P=0.02). More pronounced levels of hyperalgesia and CA were found in patients with both TMD and migraine. Thus, it is suggested that the concomitant presence of TMD and migraine may be related to intensification of central sensitization.

  19. Melatonin Alters the Mechanical and Thermal Hyperalgesia Induced by Orofacial Pain Model in Rats.

    Science.gov (United States)

    Scarabelot, Vanessa Leal; Medeiros, Liciane Fernandes; de Oliveira, Carla; Adachi, Lauren Naomi Spezia; de Macedo, Isabel Cristina; Cioato, Stefania Giotti; de Freitas, Joice S; de Souza, Andressa; Quevedo, Alexandre; Caumo, Wolnei; Torres, Iraci Lucena da Silva

    2016-10-01

    Melatonin is a neuroendocrine hormone that presents a wide range of physiological functions including regulating circadian rhythms and sleep, enhancing immune function, sleep improvement, and antioxidant effects. In addition, melatonin has received special attention in pain treatment since it is effective and presents few adverse effects. In this study, we evaluated the effect of acute dose of melatonin upon hyperalgesia induced by complete Freund's adjuvant in a chronic orofacial pain model in Sprague-Dawley rats. Nociceptive behavior was assessed by facial Von Frey and the hot plate tests at baseline and thereafter 30, 60, and 120 min, 24 h, and 7 days after melatonin treatment. We demonstrated that acute melatonin administration alters mechanical and thermal hyperalgesia induced by an orofacial pain model (TMD), highlighting that the melatonin effect upon mechanical hyperalgesia remained until 7 days after its administration. Besides, we observed specific tissue profiles of neuroimmunomodulators linked to pain conditions and/or melatonin effect (brain-derived neurotrophic factor, nerve growth factor, and interleukins 6 and 10) in the brainstem levels, and its effects were state-dependent of the baseline of these animals.

  20. Gradual withdrawal of remifentanil infusion may prevent opioid-induced hyperalgesia.

    Science.gov (United States)

    Comelon, M; Raeder, J; Stubhaug, A; Nielsen, C S; Draegni, T; Lenz, H

    2016-04-01

    The aim of this study was to examine if gradual withdrawal of remifentanil infusion prevented opioid-induced hyperalgesia (OIH) as opposed to abrupt withdrawal. OIH duration was also evaluated. Nineteen volunteers were enrolled in this randomized, double-blinded, placebo-controlled, crossover study. All went through three sessions: abrupt or gradual withdrawal of remifentanil infusion and placebo. Remifentanil was administered at 2.5 ng ml(-1) for 30 min before abrupt withdrawal or gradual withdrawal by 0.6 ng ml(-1) every five min. Pain was assessed at baseline, during infusion, 45-50 min and 105-110 min after end of infusions using the heat pain test (HPT) and the cold pressor test (CPT). The HPT 45 min after infusion indicated OIH development in the abrupt withdrawal session with higher pain scores compared with the gradual withdrawal and placebo sessions (both Pwithdrawal compared with placebo (P=0.93). In the CPT 50 min after end of infusion there was OIH in both remifentanil sessions compared with placebo (gradual P=0.01, abrupt Pwithdrawal of remifentanil infusion in the HPT. After abrupt withdrawal OIH was present in the HPT. In the CPT there was OIH after both gradual and abrupt withdrawal of infusion. The duration of OIH was less than 105 min for both pain modalities. NCT 01702389. EudraCT number 2011-002734-39. © The Author 2016. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Role of TRPV1 and ASIC3 channels in experimental occlusal interference-induced hyperalgesia in rat masseter muscle.

    Science.gov (United States)

    Xu, X X; Cao, Y; Ding, T T; Fu, K Y; Li, Y; Xie, Q F

    2016-04-01

    Masticatory muscle pain may occur following immediate occlusal alteration by dental treatment. The underlying mechanisms are poorly understood. Transient receptor potential vanilloid-1 (TRPV1) and acid-sensing ion channel-3 (ASIC3) mediate muscle hyperalgesia under various pathologic conditions. We have developed a rat model of experimental occlusal interference (EOI) that consistently induces mechanical hyperalgesia in jaw muscles. Whether TRPV1 and ASIC3 mediate this EOI-induced hyperalgesia is unknown. Rat model of EOI-induced masseter hyperalgesia was established. Real-time polymerase chain reaction, Western blot and retrograde labelling combined with immunofluorescence were performed to evaluate the modulation of TRPV1 and ASIC3 expression in trigeminal ganglia (TGs) and masseter afferents of rats after EOI. The effects of intramuscular administration of TRPV1 and ASIC3 antagonists on the EOI-induced hyperalgesia in masseter muscle were examined. After EOI, gene expressions and protein levels of TRPV1 and ASIC3 in bilateral TGs were up-regulated. The percentage of ASIC3- (but not TRPV1-) positive neurons in masseter afferents increased after EOI. More small-sized and small to medium-sized masseter afferents expressed TRPV1 and ASIC3 separately following EOI. These changes peaked at day 7 and then returned to original status within 10 days after EOI. Intramuscular administration of the TRPV1 antagonist AMG-9810 partially reversed this mechanical hyperalgesia in masseter muscle. No improvement was exhibited after administration of the ASIC3 antagonist APETx2. Co-injection of AMG-9810 and APETx2 enhanced the effect of AMG-9810 administration alone. Peripheral TRPV1 and ASIC3 contribute to the development of the EOI-induced mechanical hyperalgesia in masseter muscle. © 2015 European Pain Federation - EFIC®

  2. Sex Difference in Oxytocin-Induced Anti-Hyperalgesia at the Spinal Level in Rats with Intraplantar Carrageenan-Induced Inflammation.

    Science.gov (United States)

    Chow, Lok-Hi; Chen, Yuan-Hao; Wu, Wan-Chuan; Chang, En-Pei; Huang, Eagle Yi-Kung

    2016-01-01

    Previously, we demonstrated intrathecal administration of oxytocin strongly induced anti-hyperalgesia in male rats. By using an oxytocin-receptor antagonist (atosiban), the descending oxytocinergic pathway was found to regulate inflammatory hyperalgesia in our previous study using male rats. The activity of this neural pathway is elevated during hyperalgesia, but whether this effect differs in a sex-dependent manner remains unknown. We conducted plantar tests on adult male and female virgin rats in which paw inflammation was induced using carrageenan. Exogenous (i.t.) application of oxytocin exerted no anti-hyperalgesic effect in female rats, except at an extremely high dose. Female rats exhibited similar extent of hyperalgesia to male rats did when the animals received the same dose of carrageenan. When atosiban was administered alone, the severity of hyperalgesia was not increased in female rats. Moreover, insulin-regulated aminopeptidase (IRAP) was expressed at higher levels in the spinal cords of female rats compared with those of male rats. Oxytocin-induced anti-hyperalgesia exhibits a sex-dependent difference in rats. This difference can partially result from the higher expression of IRAP in the spinal cords of female rats, because IRAP functions as an enzyme that degrades oxytocin. Our study confirms the existence of a sex difference in oxytocin-induced anti-hyperalgesia at the spinal level in rats.

  3. Pharmacokinetic/Pharmacodynamic Relationship of Gabapentin in a CFA-induced Inflammatory Hyperalgesia Rat Model.

    Science.gov (United States)

    Larsen, Malte Selch; Keizer, Ron; Munro, Gordon; Mørk, Arne; Holm, René; Savic, Rada; Kreilgaard, Mads

    2016-05-01

    Gabapentin displays non-linear drug disposition, which complicates dosing for optimal therapeutic effect. Thus, the current study was performed to elucidate the pharmacokinetic/pharmacodynamic (PKPD) relationship of gabapentin's effect on mechanical hypersensitivity in a rat model of CFA-induced inflammatory hyperalgesia. A semi-mechanistic population-based PKPD model was developed using nonlinear mixed-effects modelling, based on gabapentin plasma and brain extracellular fluid (ECF) time-concentration data and measurements of CFA-evoked mechanical hyperalgesia following administration of a range of gabapentin doses (oral and intravenous). The plasma/brain ECF concentration-time profiles of gabapentin were adequately described with a two-compartment plasma model with saturable intestinal absorption rate (K m  = 44.1 mg/kg, V max  = 41.9 mg/h∙kg) and dose-dependent oral bioavailability linked to brain ECF concentration through a transit compartment. Brain ECF concentration was directly linked to a sigmoid E max function describing reversal of hyperalgesia (EC 50, plasma  = 16.7 μg/mL, EC 50, brain  = 3.3 μg/mL). The proposed semi-mechanistic population-based PKPD model provides further knowledge into the understanding of gabapentin's non-linear pharmacokinetics and the link between plasma/brain disposition and anti-hyperalgesic effects. The model suggests that intestinal absorption is the primary source of non-linearity and that the investigated rat model provides reasonable predictions of clinically effective plasma concentrations for gabapentin.

  4. Facial hyperalgesia due to direct action of endothelin-1 in the trigeminal ganglion of mice.

    Science.gov (United States)

    Gomes, Lenyta Oliveira; Chichorro, Juliana Geremias; Araya, Erika Ivanna; de Oliveira, Jade; Rae, Giles Alexander

    2018-03-23

    This study assessed the ability of endothelin-1 (ET-1) to evoke heat hyperalgesia when injected directly into the trigeminal ganglia (TG) of mice and determined the receptors implicated in this effect. The effects of TG ET A and ET B receptor blockade on alleviation of heat hyperalgesia in a model of trigeminal neuropathic pain induced by infraorbital nerve constriction (CION) were also examined. Naive mice received an intraganglionar (i.g.) injection of ET-1 (0.3-3 pmol) or the selective ET B R agonist sarafotoxin S6c (3-30 pmol), and response latencies to ipsilateral heat stimulation were assessed before the treatment and at 1-h intervals up to 5 h after the treatment. Heat hyperalgesia induced by i.g. ET-1 or CION was assessed after i.g. injections of ET A R and ET B R antagonists (BQ-123 and BQ-788, respectively, each at 0.5 nmol). Intraganglionar ET-1 or sarafotoxin S6c injection induced heat hyperalgesia lasting 4 and 2 h, respectively. Heat hyperalgesia induced by ET-1 was attenuated by i.g. BQ-123 or BQ-788. On day 5 after CION, i.g. BQ-788 injection produced a more robust antihyperalgesic effect compared with BQ-123. ET-1 injection into the TG promotes ET A R/ET B R-mediated facial heat hyperalgesia, and both receptors are clearly implicated in CION-induced hyperalgesia in the murine TG system. © 2018 Royal Pharmaceutical Society.

  5. Differential effects of systemically administered ketamine and lidocaine on dynamic and static hyperalgesia induced by intradermal capsaicin in humans

    DEFF Research Database (Denmark)

    Gottrup, Hanne; Hansen, Peter Orm; Arendt-Nielsen, Lars

    2000-01-01

    We have examined the effect of systemic administration of ketamine and lidocaine on brush-evoked (dynamic) pain and punctate-evoked (static) hyperalgesia induced by capsaicin. In a randomized, double-blind, placebo-controlled, crossover study, we studied 12 volunteers in three experiments....... Capsaicin 100 micrograms was injected intradermally on the volar forearm followed by an i.v. infusion of ketamine (bolus 0.1 mg kg-1 over 10 min followed by infusion of 7 micrograms kg-1 min-1), lidocaine 5 mg kg-1 or saline for 50 min. Infusion started 15 min after injection of capsaicin. The following...... were measured: spontaneous pain, pain evoked by punctate and brush stimuli (VAS), and areas of brush-evoked and punctate-evoked hyperalgesia. Ketamine reduced both the area of brush-evoked and punctate-evoked hyperalgesia significantly and it tended to reduce brush-evoked pain. Lidocaine reduced...

  6. Topical thermal therapy with hot packs suppresses physical inactivity-induced mechanical hyperalgesia and up-regulation of NGF.

    Science.gov (United States)

    Nakagawa, Tatsuki; Hiraga, Shin-Ichiro; Mizumura, Kazue; Hori, Kiyomi; Ozaki, Noriyuki; Koeda, Tomoko

    2017-10-12

    We focused on the analgesic effect of hot packs for mechanical hyperalgesia in physically inactive rats. Male Wistar rats were randomly divided into four groups: control, physical inactivity (PI), PI + sham treatment (PI + sham), and PI + hot pack treatment (PI + hot pack) groups. Physical inactivity rats wore casts on both hind limbs in full plantar flexed position for 4 weeks. Hot pack treatment was performed for 20 min a day, 5 days a week. Although mechanical hyperalgesia and the up-regulation of NGF in the plantar skin and gastrocnemius muscle were observed in the PI and the PI + sham groups, these changes were significantly suppressed in the PI + hot pack group. The present results clearly demonstrated that hot pack treatment was effective in reducing physical inactivity-induced mechanical hyperalgesia and up-regulation of NGF in plantar skin and gastrocnemius muscle.

  7. Toll-like receptor 4 mutant and null mice retain morphine-induced tolerance, hyperalgesia, and physical dependence.

    Directory of Open Access Journals (Sweden)

    Theresa Alexandra Mattioli

    Full Text Available The innate immune system modulates opioid-induced effects within the central nervous system and one target that has received considerable attention is the toll-like receptor 4 (TLR4. Here, we examined the contribution of TLR4 in the development of morphine tolerance, hyperalgesia, and physical dependence in two inbred mouse strains: C3H/HeJ mice which have a dominant negative point mutation in the Tlr4 gene rendering the receptor non-functional, and B10ScNJ mice which are TLR4 null mutants. We found that neither acute antinociceptive response to a single dose of morphine, nor the development of analgesic tolerance to repeated morphine treatment, was affected by TLR4 genotype. Likewise, opioid induced hyperalgesia and opioid physical dependence (assessed by naloxone precipitated withdrawal were not altered in TLR4 mutant or null mice. We also examined the behavioural consequence of two stereoisomers of naloxone: (- naloxone, an opioid receptor antagonist, and (+ naloxone, a purported antagonist of TLR4. Both stereoisomers of naloxone suppressed opioid induced hyperalgesia in wild-type control, TLR4 mutant, and TLR4 null mice. Collectively, our data suggest that TLR4 is not required for opioid-induced analgesic tolerance, hyperalgesia, or physical dependence.

  8. Nitric oxide synthase modulates CFA-induced thermal hyperalgesia through cytokine regulation in mice.

    Science.gov (United States)

    Chen, Yong; Boettger, Michael K; Reif, Andreas; Schmitt, Angelika; Uçeyler, Nurcan; Sommer, Claudia

    2010-03-02

    Although it has been largely demonstrated that nitric oxide synthase (NOS), a key enzyme for nitric oxide (NO) production, modulates inflammatory pain, the molecular mechanisms underlying these effects remain to be clarified. Here we asked whether cytokines, which have well-described roles in inflammatory pain, are downstream targets of NO in inflammatory pain and which of the isoforms of NOS are involved in this process. Intraperitoneal (i.p.) pretreatment with 7-nitroindazole sodium salt (7-NINA, a selective neuronal NOS inhibitor), aminoguanidine hydrochloride (AG, a selective inducible NOS inhibitor), L-N(G)-nitroarginine methyl ester (L-NAME, a non-selective NOS inhibitor), but not L-N(5)-(1-iminoethyl)-ornithine (L-NIO, a selective endothelial NOS inhibitor), significantly attenuated thermal hyperalgesia induced by intraplantar (i.pl.) injection of complete Freund's adjuvant (CFA). Real-time reverse transcription-polymerase chain reaction (RT-PCR) revealed a significant increase of nNOS, iNOS, and eNOS gene expression, as well as tumor necrosis factor-alpha (TNF), interleukin-1 beta (IL-1beta), and interleukin-10 (IL-10) gene expression in plantar skin, following CFA. Pretreatment with the NOS inhibitors prevented the CFA-induced increase of the pro-inflammatory cytokines TNF and IL-1beta. The increase of the anti-inflammatory cytokine IL-10 was augmented in mice pretreated with 7-NINA or L-NAME, but reduced in mice receiving AG or L-NIO. NNOS-, iNOS- or eNOS-knockout (KO) mice had lower gene expression of TNF, IL-1beta, and IL-10 following CFA, overall corroborating the inhibitor data. These findings lead us to propose that inhibition of NOS modulates inflammatory thermal hyperalgesia by regulating cytokine expression.

  9. Nitric oxide synthase modulates CFA-induced thermal hyperalgesia through cytokine regulation in mice

    Directory of Open Access Journals (Sweden)

    Üçeyler Nurcan

    2010-03-01

    Full Text Available Abstract Background Although it has been largely demonstrated that nitric oxide synthase (NOS, a key enzyme for nitric oxide (NO production, modulates inflammatory pain, the molecular mechanisms underlying these effects remain to be clarified. Here we asked whether cytokines, which have well-described roles in inflammatory pain, are downstream targets of NO in inflammatory pain and which of the isoforms of NOS are involved in this process. Results Intraperitoneal (i.p. pretreatment with 7-nitroindazole sodium salt (7-NINA, a selective neuronal NOS inhibitor, aminoguanidine hydrochloride (AG, a selective inducible NOS inhibitor, L-N(G-nitroarginine methyl ester (L-NAME, a non-selective NOS inhibitor, but not L-N(5-(1-iminoethyl-ornithine (L-NIO, a selective endothelial NOS inhibitor, significantly attenuated thermal hyperalgesia induced by intraplantar (i.pl. injection of complete Freund's adjuvant (CFA. Real-time reverse transcription-polymerase chain reaction (RT-PCR revealed a significant increase of nNOS, iNOS, and eNOS gene expression, as well as tumor necrosis factor-alpha (TNF, interleukin-1 beta (IL-1β, and interleukin-10 (IL-10 gene expression in plantar skin, following CFA. Pretreatment with the NOS inhibitors prevented the CFA-induced increase of the pro-inflammatory cytokines TNF and IL-1β. The increase of the anti-inflammatory cytokine IL-10 was augmented in mice pretreated with 7-NINA or L-NAME, but reduced in mice receiving AG or L-NIO. NNOS-, iNOS- or eNOS-knockout (KO mice had lower gene expression of TNF, IL-1β, and IL-10 following CFA, overall corroborating the inhibitor data. Conclusion These findings lead us to propose that inhibition of NOS modulates inflammatory thermal hyperalgesia by regulating cytokine expression.

  10. Is mechanism and symptom-based analgesia an answer to opioid-Induced hyperalgesia?

    Directory of Open Access Journals (Sweden)

    Mayank Gupta

    2015-01-01

    Full Text Available "Cancer Pain" and "Pain in cancer patient" are not synonymous. Opioid-induced Hyperalgesia (OIH is a paradoxical state of nociceptive sensitization caused by exposure to opioids. Neuropathic pain is only partially responsive to opioids; injudicious increase in dose of opioids in neuropathic pain may not only result in inadequate pain relief but also OIH. Majority of literature on OIH is in non-cancer pain with systemic use of opioids. We describe the development and successful treatment of OIH in a 55-year-old male patient with Small cell Carcinoma Lung. Opioid tapering, rotation, systemic desensitization helps in combatting OIH. The use of anti-neuropathic adjuvant analgesics helps not only in preventing and treating OIH but also in understanding putative mechanisms underlying neuropathic pain and OIH.

  11. Activation of ERK signalling by Src family kinases (SFKs) in DRG neurons contributes to hydrogen peroxide (H2O2)-induced thermal hyperalgesia.

    Science.gov (United States)

    Singh, Ajeet Kumar; Vinayak, Manjula

    2017-10-01

    Concomitant generation of reactive oxygen species during tissue inflammation has been recognised as a major factor for the development and the maintenance of hyperalgesia, out of which H 2 O 2 is the major player. However, molecular mechanism of H 2 O 2 induced hyperalgesia is still obscure. The aim of present study is to analyse the mechanism of H 2 O 2 -induced hyperalgesia in rats. Intraplantar injection of H 2 O 2 (5, 10 and 20 µmoles/paw) induced a significant thermal hyperalgesia in the hind paw, confirmed by increased c-Fos activity in dorsal horn of spinal cord. Onset of hyperalgesia was prior to development of oxidative stress and inflammation. Rapid increase in phosphorylation of extracellular signal regulated kinase (ERK) was observed in neurons of dorsal root ganglia after 20 min of H 2 O 2 (10 µmoles/paw) administration, which gradually returned towards normal level within 24 h, following the pattern of thermal hyperalgesia. The expression of TNFR1 followed the same pattern and colocalised with pERK. ERK phosphorylation was observed in NF-200-positive and -negative neurons, indicating the involvement of ERK in C-fibres as well as in A-fibres. Intrathecal preadministration of Src family kinases (SFKs) inhibitor (PP1) and MEK inhibitor (PD98059) prevented H 2 O 2 induced augmentation of ERK phosphorylation and thermal hyperalgesia. Pretreatment of protein tyrosine phosphatases (PTPs) inhibitor (sodium orthovanadate) also diminished hyperalgesia, although it further increased ERK phosphorylation. Combination of orthovanadate with PP1 or PD98059 did not exhibit synergistic antihyperalgesic effect. The results demonstrate SFKs-mediated ERK activation and increased TNFR1 expression in nociceptive neurons during H 2 O 2 induced hyperalgesia. However, the role of PTPs in hyperalgesic behaviour needs further molecular analysis.

  12. Andrographolide Inhibits Mechanical and Thermal Hyperalgesia in a Rat Model of HIV-Induced Neuropathic Pain

    Directory of Open Access Journals (Sweden)

    Zhihua Yi

    2018-06-01

    Full Text Available Aim: In this study, we investigated whether andrographolide (Andro can alleviate neuropathic pain induced by HIV gp120 plus ddC treatment and the mechanism of its action.Methods: The paw withdrawal threshold and the paw withdrawal latency were observed to assess pain behaviors in all groups of the rats, including control group, control combined with Andro treatment group, sham group, gp120 combined with ddC treatment group, gp120 plus ddC combined with A438079 treatment group, and gp120 plus ddC combined with Andro treatment by intrathecally injecting at a dose of 25 μg/20 μl group. The protein expression levels of the P2X7 receptor, tumor necrosis factor-α-receptor (TNFα-R, interleukin-1β (IL-1β, IL-10, phospho-extracellular regulated protein kinases (ERK (p-ERK in the L4–L6 dorsal root ganglia (DRG were measured by western blotting. Real-time quantitative polymerase chain reaction was used to test the mRNA expression level of the P2X7 receptor. Double-labeling immunofluorescence was used to identify the co-localization of the P2X7 receptor with glial fibrillary acidic protein (GFAP in DRG. Molecular docking was performed to identify whether the Andro interacted perfectly with the rat P2X7 (rP2X7 receptor.Results: Andro attenuated the mechanical and thermal hyperalgesia in gp120+ddC-treated rats and down-regulated the P2X7 receptor mRNA and protein expression in the L4–L6 DRGs of gp120+ddC-treated rats. Additionally, Andro simultaneously decreased the expression of TNFα-R and IL-1β protein, increased the expression of IL-10 protein in L4–L6 DRGs, and inhibited the activation of ERK signaling pathways. Moreover, Andro decreased the co-expression of GFAP and the P2X7 receptor in the SGCs of L4–L6 DRG on 14th day after surgery.Conclusion: Andro decreased the hyperalgesia induced by gp120 plus ddC.

  13. Traumatic osteoarthritis-induced persistent mechanical hyperalgesia in a rat model of anterior cruciate ligament transection plus a medial meniscectomy

    Directory of Open Access Journals (Sweden)

    Tsai HC

    2017-12-01

    after 5 weeks but persisted. There were no differences in thermal hyperalgesia or motor coordination. Conclusion: Traumatic OA induced mechanical hyperalgesia but did not cause thermal hyperalgesia or influence motor coordination. Furthermore, to investigate chronic pain induced by OA, the observational period should be at least 5 weeks after the intervention. These findings may help in further research and improve our understanding of traumatic OA-induced pain mechanisms. Keywords: traumatic osteoarthritis, acute and chronic pain, mechanical hyperalgesia, thermal hyperalgesia, motor coordination

  14. TRPA1 contributes to capsaicin-induced facial cold hyperalgesia in rats.

    Science.gov (United States)

    Honda, Kuniya; Shinoda, Masamichi; Furukawa, Akihiko; Kita, Kozue; Noma, Noboru; Iwata, Koichi

    2014-12-01

    Orofacial cold hyperalgesia is known to cause severe persistent pain in the face following trigeminal nerve injury or inflammation, and transient receptor potential (TRP) vanilloid 1 (TRPV1) and TRP ankylin 1 (TRPA1) are thought to be involved in cold hyperalgesia. However, how these two receptors are involved in cold hyperalgesia is not fully understood. To clarify the mechanisms underlying facial cold hyperalgesia, nocifensive behaviors to cold stimulation, the expression of TRPV1 and TRPA1 in trigeminal ganglion (TG) neurons, and TG neuronal excitability to cold stimulation following facial capsaicin injection were examined in rats. The head-withdrawal reflex threshold (HWRT) to cold stimulation of the lateral facial skin was significantly decreased following facial capsaicin injection. This reduction of HWRT was significantly recovered following local injection of TRPV1 antagonist as well as TRPA1 antagonist. Approximately 30% of TG neurons innervating the lateral facial skin expressed both TRPV1 and TRPA1, and about 64% of TRPA1-positive neurons also expressed TRPV1. The TG neuronal excitability to noxious cold stimulation was significantly increased following facial capsaicin injection and this increase was recovered by pretreatment with TRPA1 antagonist. These findings suggest that TRPA1 sensitization via TRPV1 signaling in TG neurons is involved in cold hyperalgesia following facial skin capsaicin injection. © 2014 Eur J Oral Sci.

  15. Synthesis of lipid mediators during UVB-induced inflammatory hyperalgesia in rats and mice.

    Directory of Open Access Journals (Sweden)

    Marco Sisignano

    Full Text Available Peripheral sensitization during inflammatory pain is mediated by a variety of endogenous proalgesic mediators including a number of oxidized lipids, some of which serve endogenous modulators of sensory TRP-channels. These lipids are eicosanoids of the arachidonic acid and linoleic acid pathway, as well as lysophophatidic acids (LPAs. However, their regulation pattern during inflammatory pain and their contribution to peripheral sensitization is still unclear. Here, we used the UVB-model for inflammatory pain to investigate alterations of lipid concentrations at the site of inflammation, the dorsal root ganglia (DRGs as well as the spinal dorsal horn and quantified 21 lipid species from five different lipid families at the peak of inflammation 48 hours post irradiation. We found that known proinflammatory lipids as well as lipids with unknown roles in inflammatory pain to be strongly increased in the skin, whereas surprisingly little changes of lipid levels were seen in DRGs or the dorsal horn. Importantly, although there are profound differences between the number of cytochrome (CYP genes between mice and rats, CYP-derived lipids were regulated similarly in both species. Since TRPV1 agonists such as LPA 18∶1, 9- and 13-HODE, 5- and 12-HETE were elevated in the skin, they may contribute to thermal hyperalgesia and mechanical allodynia during UVB-induced inflammatory pain. These results may explain why some studies show relatively weak analgesic effects of cyclooxygenase inhibitors in UVB-induced skin inflammation, as they do not inhibit synthesis of other proalgesic lipids such as LPA 18∶1, 9-and 13-HODE and HETEs.

  16. Spatial and temporal aspects of muscle hyperalgesia induced by nerve growth factor in humans

    DEFF Research Database (Denmark)

    Andersen, H.; Arendt-Nielsen, L.; Svensson, P.

    2008-01-01

    longus and at the web between 1st and 2nd metatarsal (central involvement). One day after the NGF/control injections, hypertonic saline (0.5 ml, 5.8%) was injected into the left and right TA to study the pain response to chemical stimulation of the hyperalgesic muscle tissue. Scores on a modified Likert...... distribution of muscle hyperalgesia over time (immediately after, 3 h, 1, 4, 7 and 21 days) after injecting NGF (5 mu g) into the tibialis anterior (TA) muscle, to explore possibly involved central pain mechanisms and to investigate the effect of gender on development of hyperalgesia. Totally 20 healthy...... scale were used to assess soreness during muscle function. An area of hyperalgesia was observed locally at the injected site 3 h after injection of NGF, which expanded both proximally and distally on day 1; this effect subsided on day 4. Decreased PPT was also found between 1st and 2nd metatarsal on day...

  17. Sonic hedgehog signaling in spinal cord contributes to morphine-induced hyperalgesia and tolerance through upregulating brain-derived neurotrophic factor expression

    Science.gov (United States)

    Song, Zhi-Jing; Miao, Shuai; Zhao, Ye; Wang, Xiu-Li; Liu, Yue-Peng

    2018-01-01

    Purpose Preventing opioid-induced hyperalgesia and tolerance continues to be a major clinical challenge, and the underlying mechanisms of hyperalgesia and tolerance remain elusive. Here, we investigated the role of sonic hedgehog (Shh) signaling in opioid-induced hyperalgesia and tolerance. Methods Shh signaling expression, behavioral changes, and neurochemical alterations induced by morphine were analyzed in male adult CD-1 mice with repeated administration of morphine. To investigate the contribution of Shh to morphine-induced hyperalgesia (MIH) and tolerance, Shh signaling inhibitor cyclopamine and Shh small interfering RNA (siRNA) were used. To explore the mechanisms of Shh signaling in MIH and tolerance, brain-derived neurotrophic factor (BDNF) inhibitor K252 and anti-BDNF antibody were used. Results Repeated administration of morphine produced obvious hyperalgesia and tolerance. The behavioral changes were correlated with the upregulation and activation of morphine treatment-induced Shh signaling. Pharmacologic and genetic inhibition of Shh signaling significantly delayed the generation of MIH and tolerance and associated neurochemical changes. Chronic morphine administration also induced upregulation of BDNF. Inhibiting BDNF effectively delayed the generation of MIH and tolerance. The upregulation of BDNF induced by morphine was significantly suppressed by inhibiting Shh signaling. In naïve mice, exogenous activation of Shh signaling caused a rapid increase of BDNF expression, as well as thermal hyperalgesia. Inhibiting BDNF significantly suppressed smoothened agonist-induced hyperalgesia. Conclusion These findings suggest that Shh signaling may be a critical mediator for MIH and tolerance by regulating BDNF expression. Inhibiting Shh signaling, especially during the early phase, may effectively delay or suppress MIH and tolerance. PMID:29662325

  18. Knee joint mobilization reduces secondary mechanical hyperalgesia induced by capsaicin injection into the ankle joint.

    Science.gov (United States)

    Sluka, K A; Wright, A

    2001-01-01

    Joint mobilization is a treatment approach commonly used by physical therapists for the management of a variety of painful conditions. However, the clinical effectiveness when compared to placebo and the neurophysiological mechanism of action are not known. The purpose of this study was to establish that application of a manual therapy technique will produce antihyperalgesia in an animal model of joint inflammation and that the antihyperalgesia produced by joint mobilization depends on the time of treatment application. Capsaicin (0.2%, 50 microl) was injected into the lateral aspect of the left ankle joint and mechanical withdrawal threshold assessed before and after capsaicin injection in Sprague-Dawley rats. Joint mobilization of the ipsilateral knee joint was performed 2 h after capsaicin injection for a total of 3 min, 9 min or 15 min under halothane anaesthesia. Control groups included animals that received halothane for the same time as the group that received joint mobilization and those whose limbs were held for the same duration as the mobilization (no halothane). Capsaicin resulted in a decreased mechanical withdrawal threshold by 2 h after injection that was maintained through 4 h. Both 9 and 15 min of mobilization, but not 3 min of mobilization, increased the withdrawal threshold to mechanical stimuli to baseline values when compared with control groups. The antihyperalgesic effect of joint mobilization lasted 30 min. Thus, joint mobilization (9 or 15 min duration) produces a significant reversal of secondary mechanical hyperalgesia induced by intra-articular injection of capsaicin. Copyright 2001 European Federation of Chapters of the International Association for the Study of Pain.

  19. Neuroplastic alteration of TTX-resistant sodium channel with visceral pain and morphine-induced hyperalgesia

    Directory of Open Access Journals (Sweden)

    Chen J

    2012-11-01

    Full Text Available Jinghong Chen,1,2,4 Ze-hui Gong,4 Hao Yan,2 Zhijun Qiao,3 Bo-yi Qin41Department of Internal Medicine, Neuroscience Program, The University of Texas Medical Branch, Galveston, TX, USA; 2The Divisions of Pharmacy, Pharmacology core lab, MD Anderson Cancer Center, Houston, TX, USA; 3University of Texas-Pan American, Edinburg, TX, USA; 4Beijing Institute of Pharmacology and Toxicology, Beijing, China Abstract: The discovery of the tetrodotoxin-resistant (TTX-R Na+ channel in nociceptive neurons has provided a special target for analgesic intervention. In a previous study we found that both morphine tolerance and persistent visceral inflammation resulted in visceral hyperalgesia. It has also been suggested that hyperexcitability of sensory neurons due to altered TTX-R Na+ channel properties and expression contributes to hyperalgesia; however, we do not know if some TTX-R Na+ channel property changes can be triggered by visceral hyperalgesia and morphine tolerance, or whether there are similar molecular or channel mechanisms in both situations. To evaluate the effects of morphine tolerance and visceral inflammation on the channel, we investigated the dorsal root ganglia (DRG neuronal change following these chronic treatments. Using whole-cell patch clamp recording, we recorded TTX-R Na+ currents in isolated adult rat lumbar and sacral (L6-S2 DRG neurons from normal and pathologic rats with colon inflammatory pain or chronic morphine treatment. We found that the amplitudes of TTX-R Na+ currents were signiflcantly increased in small-diameter DRG neurons with either morphine tolerance or visceral inflammatory pain. Meanwhile, the result also showed that those treatments altered the kinetics properties of the electrical current (ie, the activating and inactivating speed of the channel was accelerated. Our current results suggested that in both models, visceral chronic inflammatory pain and morphine tolerance causes electrophysiological changes in voltage

  20. The Glt1 glutamate receptor mediates the establishment and perpetuation of chronic visceral pain in an animal model of stress-induced bladder hyperalgesia.

    Science.gov (United States)

    Ackerman, A Lenore; Jellison, Forrest C; Lee, Una J; Bradesi, Sylvie; Rodríguez, Larissa V

    2016-04-01

    Psychological stress exacerbates interstitial cystitis/bladder pain syndrome (IC/BPS), a lower urinary tract pain disorder characterized by increased urinary frequency and bladder pain. Glutamate (Glu) is the primary excitatory neurotransmitter modulating nociceptive networks. Glt1, an astrocytic transporter responsible for Glu clearance, is critical in pain signaling termination. We sought to examine the role of Glt1 in stress-induced bladder hyperalgesia and urinary frequency. In a model of stress-induced bladder hyperalgesia with high construct validity to human IC/BPS, female Wistar-Kyoto (WKY) rats were subjected to 10-day water avoidance stress (WAS). Referred hyperalgesia and tactile allodynia were assessed after WAS with von Frey filaments. After behavioral testing, we assessed Glt1 expression in the spinal cord by immunoblotting. We also examined the influence of dihydrokainate (DHK) and ceftriaxone (CTX), which downregulate and upregulate Glt1, respectively, on pain development. Rats exposed to WAS demonstrated increased voiding frequency, increased colonic motility, anxiety-like behaviors, and enhanced visceral hyperalgesia and tactile allodynia. This behavioral phenotype correlated with decreases in spinal Glt1 expression. Exogenous Glt1 downregulation by DHK resulted in hyperalgesia similar to that following WAS. Exogenous Glt1 upregulation via intraperitoneal CTX injection inhibited the development of and reversed preexisting pain and voiding dysfunction induced by WAS. Repeated psychological stress results in voiding dysfunction and hyperalgesia that correlate with altered central nervous system glutamate processing. Manipulation of Glu handling altered the allodynia developing after psychological stress, implicating Glu neurotransmission in the pathophysiology of bladder hyperalgesia in the WAS model of IC/BPS. Copyright © 2016 the American Physiological Society.

  1. Visceral hyperalgesia induced by forebrain-specific suppression of native Kv7/KCNQ/M-current in mice

    Directory of Open Access Journals (Sweden)

    Bian Xiling

    2011-10-01

    Full Text Available Abstract Background Dysfunction of brain-gut interaction is thought to underlie visceral hypersensitivity which causes unexplained abdominal pain syndromes. However, the mechanism by which alteration of brain function in the brain-gut axis influences the perception of visceral pain remains largely elusive. In this study we investigated whether altered brain activity can generate visceral hyperalgesia. Results Using a forebrain specific αCaMKII promoter, we established a line of transgenic (Tg mice expressing a dominant-negative pore mutant of the Kv7.2/KCNQ2 channel which suppresses native KCNQ/M-current and enhances forebrain neuronal excitability. Brain slice recording of hippocampal pyramidal neurons from these Tg mice confirmed the presence of hyperexcitable properties with increased firing. Behavioral evaluation of Tg mice exhibited increased sensitivity to visceral pain induced by intraperitoneal (i.p. injection of either acetic acid or magnesium sulfate, and intracolon capsaicin stimulation, but not cutaneous sensation for thermal or inflammatory pain. Immunohistological staining showed increased c-Fos expression in the somatosensory SII cortex and insular cortex of Tg mice that were injected intraperitoneally with acetic acid. To mimic the effect of cortical hyperexcitability on visceral hyperalgesia, we injected KCNQ/M channel blocker XE991 into the lateral ventricle of wild type (WT mice. Intracerebroventricular injection of XE991 resulted in increased writhes of WT mice induced by acetic acid, and this effect was reversed by co-injection of the channel opener retigabine. Conclusions Our findings provide evidence that forebrain hyperexcitability confers visceral hyperalgesia, and suppression of central hyperexcitability by activation of KCNQ/M-channel function may provide a therapeutic potential for treatment of abdominal pain syndromes.

  2. [Characteristics of experimental occlusal interference-induced masticatory mechanical hyperalgesia of rats].

    Science.gov (United States)

    Li, Xuejiao; Cao, Ye; Xie, Qiufei

    2014-10-01

    To investigate the relationship between the existence of occlusal interference and masticatory muscle hyperalgesia by exploring the stimulus-response relationship between the duration of occlusal interference and masticatory muscle mechanical withdrawal threshold. Occlusal interference with 0.4 mm-thick crowns on rat molars was removed under anaesthesia at 2, 3, 4, 5, and 6 d after wear, and masticatory muscle mechanical withdrawal threshold was tested at 1, 3, 5, 7, 10, 14, 21 and 28 d. Decreased mechanical withdrawal thresholds were detected in temporal muscles and masseter muscles on both sides following occlusal interference (P 0.05). No significant differences were detected between the contralateral side with the ipsilateral side (P occlusal interference at 5 d, and the existence of the occlusal interference is positively correlated with the duration of the mechanical hyperalgesia.

  3. Sonic hedgehog signaling in spinal cord contributes to morphine-induced hyperalgesia and tolerance through upregulating brain-derived neurotrophic factor expression

    Directory of Open Access Journals (Sweden)

    Liu S

    2018-04-01

    Full Text Available Su Liu,1,2,* Jun-Li Yao,1,3,* Xin-Xin Wan,1,* Zhi-Jing Song,1 Shuai Miao,1,2 Ye Zhao,1,2 Xiu-Li Wang,1,2 Yue-Peng Liu4 1Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China; 2Department of Anesthesiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; 3Department of Anesthesiology, Xuzhou Children’s Hospital, Xuzhou, Jiangsu, China; 4Center of Clinical Research and Translational Medicine, Lianyungang Oriental Hospital, Lianyungang, Jiangsu, China *These authors contributed equally to this work Purpose: Preventing opioid-induced hyperalgesia and tolerance continues to be a major clinical challenge, and the underlying mechanisms of hyperalgesia and tolerance remain elusive. Here, we investigated the role of sonic hedgehog (Shh signaling in opioid-induced hyperalgesia and tolerance. Methods: Shh signaling expression, behavioral changes, and neurochemical alterations induced by morphine were analyzed in male adult CD-1 mice with repeated administration of morphine. To investigate the contribution of Shh to morphine-induced hyperalgesia (MIH and tolerance, Shh signaling inhibitor cyclopamine and Shh small interfering RNA (siRNA were used. To explore the mechanisms of Shh signaling in MIH and tolerance, brain-derived neurotrophic factor (BDNF inhibitor K252 and anti-BDNF antibody were used. Results: Repeated administration of morphine produced obvious hyperalgesia and tolerance. The behavioral changes were correlated with the upregulation and activation of morphine treatment-induced Shh signaling. Pharmacologic and genetic inhibition of Shh signaling significantly delayed the generation of MIH and tolerance and associated neurochemical changes. Chronic morphine administration also induced upregulation of BDNF. Inhibiting BDNF effectively delayed the generation of MIH and tolerance. The upregulation of BDNF induced by morphine was significantly suppressed by inhibiting Shh

  4. Laser heat hyperalgesia is not a feature of non-specific chronic low back pain.

    Science.gov (United States)

    Franz, M; Ritter, A; Puta, C; Nötzel, D; Miltner, W H R; Weiss, T

    2014-11-01

    Based upon studies using mechanical pin-prick, pressure, electrical or heat stimuli applied to painful and/or pain-free parts of the body, chronic low back pain (CLBP) has been shown to be associated with generalized and enhanced pain sensitivity and altered brain responses to noxious stimuli. To date, no study examined the processing of noxious laser heat pulses, which are known to selectively excite thermal nociceptors located in the superficial skin layers, in CLBP. We studied laser heat pain thresholds (LHPTs) and nociceptive laser-evoked brain electrical potentials (LEPs) following skin stimulation of the pain-affected back and the pain-free abdomen using noxious laser heat stimulation in 16 CLBP patients and 16 age- and gender-matched healthy controls (HCs). We observed no statistically significant differences in LHPTs between CLBP patients and HCs, neither on the back nor on the abdomen. Furthermore, we found no evidence for altered brain responses between CLBP patients and HCs in response to stimulation of the back and abdomen in single-trial latencies and amplitudes of LEP components (N2, P2). The results are in contrast to previous studies showing hypersensitivity to different experimental noxious stimuli (e.g., contact heat). We argue that these discrepancies may be due to low spatial and temporal summation within the central nervous system following laser heat stimulation. Our results indicate important methodological differences between laser heat and thermode stimulation that should be taken into account when interpreting results, such as from thermal quantitative sensory testing. © 2014 European Pain Federation - EFIC®

  5. Opioid-induced hyperalgesia in clinical anesthesia practice: what has remained from theoretical concepts and experimental studies?

    Science.gov (United States)

    Weber, Lena; Yeomans, David C; Tzabazis, Alexander

    2017-08-01

    This article reviews the phenomenon of opioid-induced hyperalgesia (OIH) and its implications for clinical anesthesia. The goal of this review is to give an update on perioperative prevention and treatment strategies, based on findings in preclinical and clinical research. Several systems have been suggested to be involved in the pathophysiology of OIH with a focus on the glutaminergic system. Very recently preclinical data revealed that peripheral μ-opioid receptors (MORs) are key players in the development of OIH and acute opioid tolerance (AOT). Peripheral MOR antagonists could, thus, become a new prevention/treatment option of OIH in the perioperative setting. Although the impact of OIH on postoperative pain seems to be moderate, recent evidence suggests that increased hyperalgesia following opioid treatment correlates with the risk of developing persistent pain after surgery. In clinical practice, distinction among OIH, AOT and acute opioid withdrawal remains difficult, especially because a specific quantitative sensory test to diagnose OIH has not been validated yet. Since the immediate postoperative period is not ideal to initiate long-term treatment for OIH, the best strategy is to prevent its occurrence. A multimodal approach, including choice of opioid, dose limitations and addition of nonopioid analgesics, is recommended.

  6. Enhanced brain responses to C-fiber input in the area of secondary hyperalgesia induced by high-frequency electrical stimulation of the skin.

    Science.gov (United States)

    van den Broeke, Emanuel N; Mouraux, André

    2014-11-01

    High-frequency electrical stimulation (HFS) of the human skin induces an increase in both mechanical and heat pain sensitivity in the surrounding unconditioned skin. The aim of this study was to investigate the effect of HFS on the intensity of perception and brain responses elicited by the selective activation of C fibers. HFS was applied to the ventral forearm of 15 healthy volunteers. Temperature-controlled CO2 laser stimulation was used to activate selectively low-threshold C-fiber afferents without concomitantly activating Aδ-fiber afferents. These stimuli were detected with reaction times compatible with the conduction velocity of C fibers. The intensity of perception and event-related brain potentials (ERPs) elicited by thermal stimuli delivered to the surrounding unconditioned skin were recorded before (T0) and after HFS (T1: 20 min after HFS; T2: 45 min after HFS). The contralateral forearm served as a control. Mechanical hyperalgesia following HFS was confirmed by measuring the change in the intensity of perception elicited by mechanical punctate stimuli. HFS resulted in increased intensity of perception to mechanical punctate stimulation and selective C-fiber thermal stimulation at both time points. In contrast, the N2 wave of the ERP elicited by C-fiber stimulation (679 ± 88 ms; means ± SD) was enhanced at T1 but not at T2. The P2 wave (808 ± 105 ms) was unaffected by HFS. Our results suggest that HFS enhances the sensitivity to thermal C-fiber input in the area of secondary hyperalgesia. However, there was no significant enhancement of the magnitude of the C-fiber ERPs at T2, suggesting that quickly adapting C fibers do not contribute to this enhancement. Copyright © 2014 the American Physiological Society.

  7. Fear of pain potentiates nocebo hyperalgesia

    Directory of Open Access Journals (Sweden)

    Aslaksen PM

    2015-10-01

    Full Text Available Per M Aslaksen,1 Peter S Lyby2 1Department of Psychology, Research Group for Cognitive Neuroscience, The Faculty of Health Sciences, University of Tromsø, The Arctic University of Norway, Tromsø, Norway; 2Catosenteret Rehabilitation Center, Son, Norway Abstract: Nocebo hyperalgesia has received sparse experimental attention compared to placebo analgesia. The aim of the present study was to investigate if personality traits and fear of pain could predict experimental nocebo hyperalgesia. One hundred and eleven healthy volunteers (76 females participated in an experimental study in which personality traits and fear of pain were measured prior to induction of thermal heat pain. Personality traits were measured by the Big-Five Inventory-10. Fear of pain was measured by the Fear of Pain Questionnaire III. Heat pain was induced by a PC-controlled thermode. Pain was measured by a computerized visual analog scale. Stress levels during the experiment were measured by numerical rating scales. The participants were randomized to a Nocebo group or to a no-treatment Natural History group. The results revealed that pain and stress levels were significantly higher in the Nocebo group after nocebo treatment. Mediation analysis showed that higher levels of the Fear of Pain Questionnaire III factor "fear of medical pain" significantly increased stress levels after nocebo treatment and that higher stress levels were associated with increased nocebo hyperalgesic responses. There were no significant associations between any of the personality factors and the nocebo hyperalgesic effect. The results from the present study suggest that dispositional fear of pain might be a useful predictor for nocebo hyperalgesia and emotional states concomitant with expectations of increased pain. Furthermore, measurement of traits that are specific to pain experience is probably better suited for prediction of nocebo hyperalgesic responses compared to broad measures of personality

  8. Vascular endothelial cells mediate mechanical stimulation-induced enhancement of endothelin hyperalgesia via activation of P2X2/3 receptors on nociceptors.

    Science.gov (United States)

    Joseph, Elizabeth K; Green, Paul G; Bogen, Oliver; Alvarez, Pedro; Levine, Jon D

    2013-02-13

    Endothelin-1 (ET-1) is unique among a broad range of hyperalgesic agents in that it induces hyperalgesia in rats that is markedly enhanced by repeated mechanical stimulation at the site of administration. Antagonists to the ET-1 receptors, ET(A) and ET(B), attenuated both initial as well as stimulation-induced enhancement of hyperalgesia (SIEH) by endothelin. However, administering antisense oligodeoxynucleotide to attenuate ET(A) receptor expression on nociceptors attenuated ET-1 hyperalgesia but had no effect on SIEH, suggesting that this is mediated via a non-neuronal cell. Because vascular endothelial cells are both stretch sensitive and express ET(A) and ET(B) receptors, we tested the hypothesis that SIEH is dependent on endothelial cells by impairing vascular endothelial function with octoxynol-9 administration; this procedure eliminated SIEH without attenuating ET-1 hyperalgesia. A role for protein kinase Cε (PKCε), a second messenger implicated in the induction and maintenance of chronic pain, was explored. Intrathecal antisense for PKCε did not inhibit either ET-1 hyperalgesia or SIEH, suggesting no role for neuronal PKCε; however, administration of a PKCε inhibitor at the site of testing selectively attenuated SIEH. Compatible with endothelial cells releasing ATP in response to mechanical stimulation, P2X(2/3) receptor antagonists eliminated SIEH. The endothelium also appears to contribute to hyperalgesia in two ergonomic pain models (eccentric exercise and hindlimb vibration) and in a model of endometriosis. We propose that SIEH is produced by an effect of ET-1 on vascular endothelial cells, sensitizing its release of ATP in response to mechanical stimulation; ATP in turn acts at the nociceptor P2X(2/3) receptor.

  9. Analgesic Effect of Photobiomodulation on Bothrops Moojeni Venom-Induced Hyperalgesia: A Mechanism Dependent on Neuronal Inhibition, Cytokines and Kinin Receptors Modulation.

    Directory of Open Access Journals (Sweden)

    Nikele Nadur-Andrade

    2016-10-01

    Full Text Available Envenoming induced by Bothrops snakebites is characterized by drastic local tissue damage that involves an intense inflammatory reaction and local hyperalgesia which are not neutralized by conventional antivenom treatment. Herein, the effectiveness of photobiomodulation to reduce inflammatory hyperalgesia induced by Bothrops moojeni venom (Bmv, as well as the mechanisms involved was investigated.Bmv (1 μg was injected through the intraplantar route in the right hind paw of mice. Mechanical hyperalgesia and allodynia were evaluated by von Frey filaments at different time points after venom injection. Low level laser therapy (LLLT was applied at the site of Bmv injection at wavelength of red 685 nm with energy density of 2.2 J/cm2 at 30 min and 3 h after venom inoculation. Neuronal activation in the dorsal horn spinal cord was determined by immunohistochemistry of Fos protein and the mRNA expression of IL-6, TNF-α, IL-10, B1 and B2 kinin receptors were evaluated by Real time-PCR 6 h after venom injection. Photobiomodulation reversed Bmv-induced mechanical hyperalgesia and allodynia and decreased Fos expression, induced by Bmv as well as the mRNA levels of IL-6, TNF-α and B1 and B2 kinin receptors. Finally, an increase on IL-10, was observed following LLLT.These data demonstrate that LLLT interferes with mechanisms involved in nociception and hyperalgesia and modulates Bmv-induced nociceptive signal. The use of photobiomodulation in reducing local pain induced by Bothropic venoms should be considered as a novel therapeutic tool for the treatment of local symptoms induced after bothropic snakebites.

  10. Effects of Transcranial Direct Current Stimulation Block Remifentanil-Induced Hyperalgesia: A Randomized, Double-Blind Clinical Trial

    Directory of Open Access Journals (Sweden)

    Gilberto Braulio

    2018-02-01

    Full Text Available Background: Remifentanil-induced hyperalgesia (r-IH involves an imbalance in the inhibitory and excitatory systems. As the transcranial Direct Current Stimulation (tDCS modulates the thalamocortical synapses in a top-down manner, we hypothesized that the active (a-t-DCS would be more effective than sham(s-tDCS to prevent r-IH. We used an experimental paradigm to induce temporal summation of pain utilizing a repetitive cold test (rCOLDT assessed by the Numerical Pain Score (NPS 0-10 and we evaluated the function of the descending pain modulatory system (DPMS by the change on the NPS (0–10 during the conditioned pain modulation (CPM-task (primary outcomes. We tested whether a-tDCS would be more effective than s-tDCS to improve pain perception assessed by the heat pain threshold (HPT and the reaction time during the ice-water pain test (IPT (secondary outcomes.Methods: This double-blinded, factorial randomized trial included 48 healthy males, ages ranging 19–40 years. They were randomized into four equal groups: a-tDCS/saline, s-tDCS/saline, a-tDCS/remifentanil and s-tDCS/remifentanil. tDCS was applied over the primary motor cortex, during 20 min at 2 mA, which was introduced 10 min after starting remifentanil infusion at 0.06 μg⋅kg-1⋅min-1 or saline.Results: An ANCOVA mixed model revealed that during the rCOLDT, there was a significant main effect on the NPS scores (F = 3.81; P = 0.01. The s-tDCS/remifentanil group presented larger pain scores during rCOLDT, [mean (SD 5.49 (1.04] and a-tDCS/remifentanil group had relative lower pain scores [4.15 (1.62]; showing its blocking effect on r-IH. a-tDCS/saline and s-tDCS/saline groups showed lowest pain scores during rCOLDT, [3.11 (1.2] and [3.15 (1.62], respectively. The effect of sedation induced by remifentanil during the rCOLDT was not significant (F = 0.76; P = 0.38. Remifentanil groups showed positive scores in the NPS (0–10 during the CPM-task, that is, it produced a disengagement of

  11. Variable transcriptional responsiveness of the P2X3 receptor gene during CFA-induced inflammatory hyperalgesia.

    Science.gov (United States)

    Nuñez-Badinez, Paulina; Sepúlveda, Hugo; Diaz, Emilio; Greffrath, Wolfgang; Treede, Rolf-Detlef; Stehberg, Jimmy; Montecino, Martin; van Zundert, Brigitte

    2018-05-01

    The purinergic receptor P2X3 (P2X3-R) plays important roles in molecular pathways of pain, and reduction of its activity or expression effectively reduces chronic inflammatory and neuropathic pain sensation. Inflammation, nerve injury, and cancer-induced pain can increase P2X3-R mRNA and/or protein levels in dorsal root ganglia (DRG). However, P2X3-R expression is unaltered or even reduced in other pain studies. The reasons for these discrepancies are unknown and might depend on the applied traumatic intervention or on intrinsic factors such as age, gender, genetic background, and/or epigenetics. In this study, we sought to get insights into the molecular mechanisms responsible for inflammatory hyperalgesia by determining P2X3-R expression in DRG neurons of juvenile male rats that received a Complete Freund's Adjuvant (CFA) bilateral paw injection. We demonstrate that all CFA-treated rats showed inflammatory hyperalgesia, however, only a fraction (14-20%) displayed increased P2X3-R mRNA levels, reproducible across both sides. Immunostaining assays did not reveal significant increases in the percentage of P2X3-positive neurons, indicating that increased P2X3-R at DRG somas is not critical for inducing inflammatory hyperalgesia in CFA-treated rats. Chromatin immunoprecipitation (ChIP) assays showed a correlated (R 2  = 0.671) enrichment of the transcription factor Runx1 and the epigenetic active mark histone H3 acetylation (H3Ac) at the P2X3-R gene promoter in a fraction of the CFA-treated rats. These results suggest that animal-specific increases in P2X3-R mRNA levels are likely associated with the genetic/epigenetic context of the P2X3-R locus that controls P2X3-R gene transcription by recruiting Runx1 and epigenetic co-regulators that mediate histone acetylation. © 2017 Wiley Periodicals, Inc.

  12. Increased serum IL-6 level time-dependently regulates hyperalgesia and spinal mu opioid receptor expression during CFA-induced arthritis.

    Science.gov (United States)

    Tekieh, E; Zaringhalam, Jalal; Manaheji, H; Maghsoudi, N; Alani, B; Zardooz, H

    2011-01-01

    Interleukin (IL)-6 is known to cause pro- and anti-inflammatory effects during different stages of inflammation. Recent therapeutic investigations have focused on treatment of various inflammatory disorders with anti-cytokine substances. As a result, the aim of this study was to further elucidate the influence of IL-6 in hyperalgesia and edema during different stages of Complete Freund's Adjuvant (CFA)-induced arthritis (AA) in male Wistar rats. AA was induced by a single subcutaneous injection of CFA into the rats' hindpaw. Anti-IL-6 was administered either daily or weekly during the 21 days of study. Spinal mu opioid receptor (mOR) expression was detected by Western blotting. Daily and weekly treatment with an anti-IL-6 antibody significantly decreased paw edema in the AA group compared to the AA control group. Additionally, daily and weekly anti-IL-6 administration significantly reduced hyperalgesia on day 7 in the AA group compared to the AA control group; however, there were significant increases in hyperalgesia in the antibody-treated group on days 14 and 21 compared to the AA control group. IL-6 antibody-induced increases in hyperalgesia on the 14 th and 21 st days after CFA injection correlated with a time-dependent, significant reduction in spinal mOR expression during anti-IL-6 treatment. Our study confirmed the important time-dependent relationship between serum IL-6 levels and hyperalgesia during AA. These results suggest that the stages of inflammation in AA must be considered for anti-hyperalgesic and anti-inflammatory interventions via anti-IL-6 antibody treatment.

  13. Tratamento farmacológico da hiperalgesia experimentalmente induzida pelo núcleo pulposo Pharmacologic treatment of hyperalgesia experimentally induced by nucleus pulposus

    Directory of Open Access Journals (Sweden)

    André Luiz de Souza Grava

    2010-01-01

    Full Text Available OBJETIVO: Avaliar o efeito de drogas anti-inflamatórias (dexametasona, indometacina, atenolol, indometacina e atenolol e analgésica (morfina sobre a hiperalgesia experimentalmente induzida pelo núcleo pulposo em contato com o gânglio da raiz dorsal de L5. MÉTODOS: Trinta ratos Wistar machos com peso de 220 a 250g foram utilizados no estudo. A indução da hiperalgesia foi realizada por meio do contato de fragmento de núcleo pulposo retirado da região sacrococcígea e colocado sobre o gânglio da raiz dorsal de L5. Os 30 animais foram divididos em grupos experimentais de acordo com a droga utilizada. As drogas foram administradas durante duas semanas a partir da realização do procedimento cirúrgico para a indução da hiperalgesia. A hiperalgesia mecânica e térmica foram avaliadas por meio do teste da pressão constante da pata, von Frey eletrônico e Hargraves por um período de sete semanas. RESULTADOS: A maior redução da hiperalgesia foi observada no grupo de animais tratados pela morfina, seguido pela dexametasona, indometacina e atenolol. A redução da hiperalgesia foi observada após a interrupção da administração das drogas, com exceção do grupo de animais tratados com morfina, nos quais ocorreu aumento da hiperalgesia após a interrupção do tratamento. CONCLUSÕES: A hiperalgesia induzida pelo contato do núcleo pulposo com o gânglio da raiz dorsal pode ser reduzida com a administração de anti-inflamatórios e analgésicos, tendo sido observado a maior redução da hiperalgesia com a administração da morfina e dexametasona.OBJECTIVE: To evaluate the effect of antiinflammatory (dexamethasone, indomethacin, atenolol, indomethacin and atenolol and analgesic drugs (morphine on hyperalgesia experimentally induced by nucleus pulposus (NP contact with the L5- dorsal root ganglion (DRG. METHODS: Thirty male Wistar rats with weights ranging from 220 to 250 g were used in the study. The hyperalgesia was induced by

  14. [Trigeminal purinergic P2X4 receptor involved in experimental occlusal interference-induced hyperalgesia in rat masseter muscle].

    Science.gov (United States)

    Xu, Xiaoxiang; Cao, Ye; Ding, Tingting; Fu, Kaiyuan; Xie, Qiufei

    2016-03-01

    To explore the expression of purinergic p2X4 receptor (P2X4R) in trigeminal ganglion of rats after occlusal interference. Investigation of peripheral receptor mechanism of occlusal interference-induced masticatory muscle pain will aid the development of drug intervention against this condition. Experimental occlusal interference was established by application of 0.4 mm metal crown to the upper right first molar of male Sprague-Dawley rats. Real-time PCR assay was used to investigate P2X4R mRNA level in trigeminal ganglion in rats with occlusal interference for 3, 7, 10 and 14 days and in control rats without occlusal interference (n=5 in each). Retrograde labelling combining immunofluorescence was performed to evaluate the percentage of P2X4R-positive cells in masseter afferent neurons (n=5 in each group). Graded concentrations of P2XR antagonist TNP-ATP (0.1, 10, 125, 250, 500 μmol/L) or saline (n=5 in each group) was administrated in right masseter and the mechanical sensitivity of bilateral masseters was measured before occlusal interference application, before the injection, and 30 min as well as 60 min after the injection. Compared with control rats (P2X4R mRNA: right side: 1.00±0.26, left side: 0.94± 0.21; percentage of P2X4R-positive masseter afferents: right side: [64.3±6.3]%, left side: [67.7±5.8]%), the level of P2X4R mRNA in bilateral trigeminal ganglia (right side: 5.98±3.56; left side: 5.06±2.88) of rats with occlusal interference for 7 days up-regulated (Pocclusal interference-induced masseter hyperalgesia.

  15. Beam induced RF heating

    CERN Document Server

    Salvant, B; Arduini, G; Assmann, R; Baglin, V; Barnes, M J; Bartmann, W; Baudrenghien, P; Berrig, O; Bracco, C; Bravin, E; Bregliozzi, G; Bruce, R; Bertarelli, A; Carra, F; Cattenoz, G; Caspers, F; Claudet, S; Day, H; Garlasche, M; Gentini, L; Goddard, B; Grudiev, A; Henrist, B; Jones, R; Kononenko, O; Lanza, G; Lari, L; Mastoridis, T; Mertens, V; Métral, E; Mounet, N; Muller, J E; Nosych, A A; Nougaret, J L; Persichelli, S; Piguiet, A M; Redaelli, S; Roncarolo, F; Rumolo, G; Salvachua, B; Sapinski, M; Schmidt, R; Shaposhnikova, E; Tavian, L; Timmins, M; Uythoven, J; Vidal, A; Wenninger, J; Wollmann, D; Zerlauth, M

    2012-01-01

    After the 2011 run, actions were put in place during the 2011/2012 winter stop to limit beam induced radio frequency (RF) heating of LHC components. However, some components could not be changed during this short stop and continued to represent a limitation throughout 2012. In addition, the stored beam intensity increased in 2012 and the temperature of certain components became critical. In this contribution, the beam induced heating limitations for 2012 and the expected beam induced heating limitations for the restart after the Long Shutdown 1 (LS1) will be compiled. The expected consequences of running with 25 ns or 50 ns bunch spacing will be detailed, as well as the consequences of running with shorter bunch length. Finally, actions on hardware or beam parameters to monitor and mitigate the impact of beam induced heating to LHC operation after LS1 will be discussed.

  16. Nitrous oxide (N(2)O) reduces postoperative opioid-induced hyperalgesia after remifentanil-propofol anaesthesia in humans.

    Science.gov (United States)

    Echevarría, G; Elgueta, F; Fierro, C; Bugedo, D; Faba, G; Iñiguez-Cuadra, R; Muñoz, H R; Cortínez, L I

    2011-12-01

    The aim of this study was to test if intraoperative administration of N(2)O during propofol-remifentanil anaesthesia prevented the onset of postoperative opioid-induced hyperalgesia (OIH). Fifty adult ASA I-II patients undergoing elective open septorhinoplasty under general anaesthesia were studied. Anaesthesia was with propofol, adjusted to bispectral index (40-50), and remifentanil (0.30 μg kg(-1) min(-1)). Patients were assigned to one of the two groups: with N(2)O (70%) and without N(2)O (100% oxygen). Mechanical pain thresholds were measured before surgery and 2 and 12-18 h after surgery. Pain measurements were performed on the arm using hand-held von Frey filaments. A non-parametric analysis of variance was used in the von Frey data analysis. P<0.05 was considered statistically significant. Baseline pain thresholds to mechanical stimuli were similar in both groups, with mean values of 69 [95% confidence interval (CI): 50.2, 95.1] g in the group without N(2)O and 71 (95% CI: 45.7, 112.1) g in the group with N(2)O. Postoperative pain scores and cumulative morphine consumption were similar between the groups. The analysis revealed a decrease in the threshold value in both groups. However, post hoc comparisons showed that at 12-18 h after surgery, the decrease in mechanical threshold was greater in the group without N(2)O than the group with N(2)O (post hoc analysis with Bonferroni's correction, P<0.05). Intraoperative 70% N(2)O administration significantly reduced postoperative OIH in patients receiving propofol-remifentanil anaesthesia.

  17. Limonene reduces hyperalgesia induced by gp120 and cytokines by modulation of IL-1 β and protein expression in spinal cord of mice.

    Science.gov (United States)

    Piccinelli, Ana Claudia; Morato, Priscila Neder; Dos Santos Barbosa, Marcelo; Croda, Julio; Sampson, Jared; Kong, Xiangpeng; Konkiewitz, Elisabete Castelon; Ziff, Edward B; Amaya-Farfan, Jaime; Kassuya, Cândida Aparecida Leite

    2017-04-01

    We have investigated the antihyperalgesic effects of limonene in mice that received intrathecal injection of gp120. Male Swiss mice received gp120, IL-1β or TNF-α intrathecally or sterile saline as a control. A mechanical sensitivity test was performed at 2 and 3h after the injection. Spinal cord and blood samples were isolated for protein quantification. Intrathecal administration of gp120 increased mechanical sensitivity measured with an electronic Von Frey apparatus, at 2 and 3h after the injections. Limonene administered orally prior to gp120 administration significantly decreased this mechanical sensitivity at 3h after the gp120 injection. In addition, intrathecal injection of gp120 increased IL-1β and IL-10 in serum, and limonene prevented the ability of gp120 to increase these cytokines. Limonene also inhibited TNF-α and IL-1β-induced mechanical hyperalgesia. Western blot assay demonstrated limonene was capable of increasing SOD expression in the cytoplasm of cells from spinal cord at 4h after intrathecal IL-1β injection. These results demonstrate that gp120 causes mechanical hyperalgesia and a peripheral increase in IL-1β and IL-10, and that prior administration of limonene inhibits these changes. Also limonene modulates the activation of SOD expression in the spinal cord after spinal IL-1β application. The ability of limonene to inhibit the mechanical hyperalgesia induced by gp120, TNF-α and IL-1β emphasizes the anti-inflammatory action of limonene, specifically its ability to inhibit cytokine production and its consequences. Copyright © 2016. Published by Elsevier Inc.

  18. Effect of Mas-related gene (Mrg) receptors on hyperalgesia in rats with CFA-induced inflammation via direct and indirect mechanisms.

    Science.gov (United States)

    Jiang, Jianping; Wang, Dongmei; Zhou, Xiaolong; Huo, Yuping; Chen, Tingjun; Hu, Fenjuan; Quirion, Rémi; Hong, Yanguo

    2013-11-01

    Mas oncogene-related gene (Mrg) receptors are exclusively distributed in small-sized neurons in trigeminal and dorsal root ganglia (DRG). We investigated the effects of MrgC receptor activation on inflammatory hyperalgesia and its mechanisms. A selective MrgC receptor agonist, bovine adrenal medulla peptide 8-22 (BAM8-22) or melanocyte-stimulating hormone (MSH) or the μ-opioid receptor (MOR) antagonist CTAP was administered intrathecally (i.t.) in rats injected with complete Freund's adjuvant (CFA) in one hindpaw. Thermal and mechanical nociceptive responses were assessed. Neurochemicals were measured by immunocytochemistry, Western blot, ELISA and RT-PCR. CFA injection increased mRNA for MrgC receptors in lumbar DRG. BAM8-22 or MSH, given i.t., generated instant short and delayed long-lasting attenuations of CFA-induced thermal hyperalgesia, but not mechanical allodynia. These effects were associated with decreased up-regulation of neuronal NOS (nNOS), CGRP and c-Fos expression in the spinal dorsal horn and/or DRG. However, i.t. administration of CTAP blocked the induction by BAM8-22 of delayed anti-hyperalgesia and inhibition of nNOS and CGRP expression in DRG. BAM8-22 also increased mRNA for MORs and pro-opiomelanocortin, along with β-endorphin content in the lumbar spinal cord and/or DRG. MrgC receptors and nNOS were co-localized in DRG neurons. Activation of MrgC receptors suppressed up-regulation of pronociceptive mediators and consequently inhibited inflammatory pain, because of the activation of up-regulated MrgC receptors and subsequent endogenous activity at MORs. The uniquely distributed MrgC receptors could be a novel target for relieving inflammatory pain. © 2013 The British Pharmacological Society.

  19. Effect of sympathetic nerve block on acute inflammatory pain and hyperalgesia

    DEFF Research Database (Denmark)

    Pedersen, J L; Rung, G W; Kehlet, H

    1997-01-01

    BACKGROUND: Sympathetic nerve blocks relieve pain in certain chronic pain states, but the role of the sympathetic pathways in acute pain is unclear. Thus the authors wanted to determine whether a sympathetic block could reduce acute pain and hyperalgesia after a heat injury in healthy volunteers....... The duration and quality of blocks were evaluated by the sympatogalvanic skin response and skin temperature. Bilateral heat injuries were produced on the medial surfaces of the calves with a 50 x 25 mm thermode (47 degrees C, 7 min) 45 min after the blocks. Pain intensity induced by heat, pain thresholds...... between sympathetic block and placebo for pain or mechanical allodynia during injury, or pain thresholds, pain responses to heat, or areas of secondary hyperalgesia after the injury. The comparisons were done for the period when the block was effective. CONCLUSION: Sympathetic nerve block did not change...

  20. Influence of clonidine and ketamine on m-RNA expression in a model of opioid-induced hyperalgesia in mice.

    Directory of Open Access Journals (Sweden)

    Henning Ohnesorge

    Full Text Available We investigated the influence of morphine and ketamine or clonidine in mice on the expression of genes that may mediate pronociceptive opioid effects.C57BL/6 mice received morphine injections thrice daily using increasing doses (5-20 mg∙kg(-1 for 3 days (sub-acute, n=6 or 14 days (chronic, n=6 and additionally either s-ketamine (5 mg∙kg(-1, n=6 or clonidine (0.1 mg∙kg(-1, n=6. Tail flick test and the assessment of the mechanical withdrawal threshold of the hindpaw was performed during and 4 days after cessation of opioid treatment. Upon completion of the behavioural testing the mRNA-concentration of the NMDA receptor (NMDAR1 and β-arrestin 2 (Arrb2 were measured by PCR.Chronic opioid treatment resulted in a delay of the tail flick latency with a rapid on- and offset. Simultaneously the mice developed a static mechanical hyperalgesia with a delayed onset that that outlasted the morphine treatment. Sub-acute morphine administration resulted in a decrease of NMDAR1 and Arrb2 whereas during longer opioid treatment the expression NMDAR1 and Arrb2 mRNA increased again to baseline values. Coadministration of s-ketamine or clonidine resulted in a reversal of the mechanical hyperalgesia and inhibited the normalization of NMDAR1 mRNA expression but had no effect on the expression of Arrb2 mRNA.In the model of chronic morphine therapy the antinociceptive effects of morphine are represented by the thermal analgesia while the proniceptive effects are represented by the mechanical hyperalgesia. The results indicate that the regulation of the expression of NMDAR1 and Arrb2 may be associated to the development of OIH in mice.The results indicate that co-administration of clonidine or ketamine may influence the underlying mechanisms of OIH.

  1. Induced current heating probe

    International Nuclear Information System (INIS)

    Thatcher, G.; Ferguson, B.G.; Winstanley, J.P.

    1984-01-01

    An induced current heating probe is of thimble form and has an outer conducting sheath and a water flooded flux-generating unit formed from a stack of ferrite rings coaxially disposed in the sheath. The energising coil is made of solid wire which connects at one end with a coaxial water current tube and at the other end with the sheath. The stack of ferrite rings may include non-magnetic insulating rings which help to shape the flux. (author)

  2. Effect of riluzole on acute pain and hyperalgesia in humans

    DEFF Research Database (Denmark)

    Hammer, N A; Lillesø, J; Pedersen, J L

    1999-01-01

    Riluzole modulates several transmitter systems which may be involved in nociception. Antinociceptive effects have been shown in animal studies, but there are no human data. Therefore, we have examined the acute analgesic effect of riluzole in a human model of inflammatory pain induced by a thermal...... injury on the distal leg (47 degrees C, 7 min, 12.5 cm2) in 20 healthy volunteers. Hyperalgesia to mechanical and heat stimuli were examined by von Frey hairs and thermodes. We used a randomized, double-blind, placebo-controlled design, and subjects received riluzole 100 mg or placebo for 2 days...

  3. [Stress-induced hyperalgesia (SIH) as a consequence of emotional deprivation and psychosocial traumatization in childhood : Implications for the treatment of chronic pain].

    Science.gov (United States)

    Egle, U T; Egloff, N; von Känel, R

    2016-12-01

    It is now widely recognized that in many chronic pain syndromes the intensity and severity of individually perceived pain does not correlate consistently with the degree of peripheral nervous system tissue damage or with the intensity of primary afferent or spinal nociceptive neurone activity. In particular, stress and anxiety exert modulatory influences on pain depending on the nature, duration and intensity of the stressor and developmental influences on the maturation of the stress as well as the pain system. In some chronic pain syndromes, e. g. fibromyalgia, TMD or somatoform disorders, no nociceptive or neuropathic input is detectable. We summarise the studies investigating the neural substrates and neurobiological mechanisms of stress-induced hyperalgesia (SIH) in animals and humans. The review provides new perspectives and challenges for the current and future treatment of chronic pain.

  4. The retardation of myometrial infiltration, reduction of uterine contractility, and alleviation of generalized hyperalgesia in mice with induced adenomyosis by levo-tetrahydropalmatine (l-THP) and andrographolide.

    Science.gov (United States)

    Mao, Xiaoyan; Wang, Yuedong; Carter, Andrew V; Zhen, Xuechu; Guo, Sun-Wei

    2011-10-01

    Adenomyosis is a tough disease to manage nonsurgically. Levo-tetrahydropalmatine (l-THP), a known analgesic, and andrographolide, a nuclear factor kappa B (NF-κB) inhibitor, are both active ingredients extracted from Chinese medicinal herbs. We sought to determine whether treatment of l-THP, andrographolide, and valproic acid (VPA) would suppress the myometrial infiltration, improve pain behavior, and reduce uterine contractility in a mice model of adenomyosis. Adenomyosis was induced in 55 female ICR mice neonatally dosed with tamoxifen, while another 8 (group C) were dosed with solvent only. Starting from 4 weeks after birth, hotplate test was administrated to all mice every 4 weeks. At the 16th week, all mice with induced adenomyosis were randomly divided into 6 groups, each receiving different treatment for 3 weeks: low- or high-dose l-THP, andrographolide, low-dose l-THP and andrographolide jointly, VPA, and untreated. Group C received no treatment. After treatment, the hotplate test was administered and all mice were killed. The depth of myometrial infiltration of ectopic endometrium and uterine contractility were measured and compared across groups. We found that induction of adenomyosis resulted in progressive generalized hyperalgesia, along with elevated amplitude and irregularity of uterine contractions. Treatment with either l-THP, andrographolide, VPA, or l-THP and andrographolide jointly suppressed myometrial infiltration, improved generalized hyperalgesia, and reduced the amplitude and irregularity of uterine contractions. These results suggest that increased uterine contractility, in the form of increased contractile amplitude and irregularity, may contribute to dysmenorrhea in women with adenomyosis. More importantly, l-THP, andrographolide, and VPA all seem to be promising compounds for treating adenomyosis.

  5. Preoperative But Not Postoperative Flurbiprofen Axetil Alleviates Remifentanil-induced Hyperalgesia After Laparoscopic Gynecological Surgery: A Prospective, Randomized, Double-blinded, Trial.

    Science.gov (United States)

    Zhang, Linlin; Shu, Ruichen; Zhao, Qi; Li, Yize; Wang, Chunyan; Wang, Haiyun; Yu, Yonghao; Wang, Guolin

    2017-05-01

    Acute remifentanil exposure during intraoperative analgesia might enhance sensitivity to noxious stimuli and nociceptive responses to innocuous irritation. Cyclooxygenase inhibition was demonstrated to attenuate experimental remifentanil-induced hyperalgesia (RIH) in rodents and human volunteers. The study aimed to compare the effects of preoperative and postoperative flurbiprofen axetil (FA) on RIH after surgery. Ninety patients undergoing elective laparoscopic gynecologic surgery were randomly assigned to receive either intravenous placebo before anesthesia induction (Group C); or intravenous FA (1.0 mg/kg) before anesthesia induction (Group F1) or before skin closure (Group F2). Anesthesia consisted off sevoflurane and remifentanil (0.30 μg/kg/min). Postoperative pain was managed by sufentanil titration in the postanesthetic care unit, followed by sufentanil infusion via patient-controlled analgesia. Mechanical pain threshold (primary outcome), pain scores, sufentanil consumption, and side-effects were documented for 24 hours postoperatively. Postoperative pain score in Group F1 was lower than Group C. Time of first postoperative sufentanil titration was prolonged in Group F1 than Group C (P=0.021). Cumulative sufentanil consumption in Group F1 was lower than Group C (P<0.001), with a mean difference of 8.75 (95% confidence interval, 5.21-12.29) μg. Mechanical pain threshold on the dominant inner forearm was more elevated in Group F1 than Group C (P=0.005), with a mean difference of 17.7 (95% confidence interval, 5.4-30.0) g. Normalized hyperalgesia area was decreased in Group F1 compared to Group C (P=0.007). No statistically significant difference was observed between Group F2 and Group C. Preoperative FA reduces postoperative RIH in patients undergoing laparoscopic gynecologic surgery under sevoflurane-remifentanil anesthesia.

  6. Tongluo Zhitong Prescription Alleviates Allodynia, Hyperalgesia, and Dyskinesia in the Chronic Constriction Injury Model of Rats

    Directory of Open Access Journals (Sweden)

    Zhiyong Wang

    2017-01-01

    Full Text Available Neuropathic pain is common in clinical practice. Exploration of new drug therapeutics has always been carried out for more satisfactory effects and fewer side-effects. In the present study, we aimed to investigate effects of Tongluo Zhitong Prescription (TZP, a compounded Chinese medicine description, on neuropathic pain model of rats with chronic constriction injury (CCI. The CCI model was established by loosely ligating sciatic nerve with catgut suture, proximal to its trifurcation. The static and dynamic allodynia, heat hyperalgesia, mechanical allodynia, cold allodynia, and gait were assessed. Our results showed that TZP alleviated CCI-induced static and dynamic allodynia, suppressed heat hyperalgesia and cold and mechanical allodynia, and improved gait function. These results suggest that TZP could alleviate neuropathic pain. Further experiments are needed to explore its mechanisms.

  7. Cold Pain Threshold Identifies a Subgroup of Individuals With Knee Osteoarthritis That Present With Multimodality Hyperalgesia and Elevated Pain Levels

    OpenAIRE

    Wright, Anthony; Benson, Heather A.E.; Will, Rob; Moss, Penny

    2017-01-01

    Objectives: Cold hyperalgesia has been established as an important marker of pain severity in a number of conditions. This study aimed to establish the extent to which patients with knee osteoarthritis (OA) demonstrate widespread cold, heat, and pressure hyperalgesia. OA participants with widespread cold hyperalgesia were compared with the remaining OA cohort to determine whether they could be distinguished in terms of hyperalgesia, pain report, pain quality, and physical function. Methods: A...

  8. Transcutaneous electrical nerve stimulation on Yongquan acupoint reduces CFA-induced thermal hyperalgesia of rats via down-regulation of ERK2 phosphorylation and c-Fos expression.

    Science.gov (United States)

    Yang, Lin; Yang, Lianxue; Gao, Xiulai

    2010-07-01

    Activation of extracellular signal-regulated kinase-1/2 (ERK1/2) and its involvement in regulating gene expression in spinal dorsal horn, cortical and subcortical neurons by peripheral noxious stimulation contribute to pain hypersensitivity. Transcutaneous electrical nerve stimulation (TENS) is a treatment used in physiotherapy practice to promote analgesia in acute and chronic inflammatory conditions. In this study, a total number of 114 rats were used for three experiments. Effects of complete Freund's adjuvant (CFA)-induced inflammatory pain hypersensitivity and TENS analgesia on ERK1/2 phosphorylation and c-Fos protein expression were examined by using behavioral test, Western blot, and immunostaining methods. We found that CFA injection caused an area of localized swelling, erythema, hypersensitivity to thermal stimuli, the decreased response time of hind paw licking (HPL), as well as upregulation of c-Fos protein expression and ERK2 phosphorylation in the ipsilateral spinal dorsal horn and the contralateral primary somatosensory area of cortex and the amygdala of rats. TENS on Yongquan acupoint for 20 min produced obvious analgesic effects as demonstrated with increased HPL to thermal stimuli of CFA-treated rats. In addition, TENS application suppressed the CFA-induced ERK2 activation and c-Fos protein expression. These results suggest that down-regulation of ERK2 phosphorylation and c-Fos expression were involved in TENS inhibition on CFA-induced thermal hyperalgesia of rats.

  9. Association of occlusal interference-induced masseter muscle hyperalgesia and P2X3 receptors in the trigeminal subnucleus caudalis and midbrain periaqueductal gray.

    Science.gov (United States)

    Sun, Shuzhen; Qi, Dong; Yang, Yingying; Ji, Ping; Kong, Jingjing; Wu, Qingting

    2016-03-02

    P2X3 receptor plays a role in nociception transmission of orofacial pain in temporomandibular disorder patients. A previous study found that P2X3 receptors in masseter muscle afferent neurons and the trigeminal ganglia were involved in masseter muscle pain induced by inflammation caused by chemical agents or eccentric muscle contraction. In this study, we attempted to investigate changes in P2X3 receptors in the trigeminal subnucleus caudalis (Vc) and midbrain periaqueductal gray (PAG) in relation to the hyperalgesia of masseter muscles induced by occlusal interference. Experimental occlusal interference by crown application was established in 30 rats and another 30 rats were treated as sham controls. On days 1, 3, 7, 14, and 28 after crown application, the mechanical pain threshold was examined by von-Frey filaments. The expression of the P2X3 receptor in Vc and PAG was investigated by immunohistochemistry and quantitative PCR. We found that mechanical pain threshold of bilateral masseter muscles decreased significantly after occlusal interference, which remained for the entire experimental period. The mRNA expression of the P2X3 receptor increased significantly and the number of P2X3R-positive neurons increased markedly in Vc and PAG accordingly. These results indicate that the upregulated expression of P2X3 receptors in Vc and PAG may contribute toward the development of orofacial pain induced by occlusal interference and P2X3 receptors in the PAG may play a key role in the supraspinal antiociception effect.

  10. Pre-emptive administration of intravenous acetaminophen with transversus abdominis plane block (tap-blocke in the prevention of fentanil-induced hyperalgesia in pediatric oncological patient undergoing abdominal surgery

    Directory of Open Access Journals (Sweden)

    Dmytro Dmytriiev

    2015-10-01

      Abstract Background: Acetaminophen is a selective COX-2 agonist that has been shown to decrease the intensity of opioid-induced hyperalgesia (OIH in children. We aimed to investigate the effects of preemptive administration of intravenous acitomenofen  in the prevention of high-dose fentanil-induced hyperalgesia in pediatric patients. Methods: 45 patients of  American Society of Anesthesiologists physical status 1-3 undergoing abdominal surgery were randomly assigned to one of the following three groups. each of which received either IV acetaminophen  (an initial dose of 1.5 ml/kg for 40 min before before the induction of anesthesia or placebo saline 40 min before the induction of anesthesia and intraoperative fentanil infusion: group LFH received a placebo and 0.05 μg/kg/min fentanil; group FH received a placebo and 0.3 μg/kg/min fentanil; and group AFH received IV preemptive administration acetaminophen  and TAP-blocke bupivacaine 0,3 mg/kg.             Results: The mechanical hyperalgesia threshold 12 hr after surgery was significantly lower in group FH than in the other two groups. Postoperative pain intensity using visual analog scale (VAS and cumulative volume of a patient controlled analgesia (PCA containing morphine over 12 hr were significantly greater in group FH than in group AFH. The time to the first postoperative analgesic requirement was significantly shorter in group RH than in the other two groups. The sevoflurane requirement was significantly greater in group LFH than in the other groups. The frequency of hypotension and bradycardia was significantly higher, but shivering and postoperative nausea and vomiting were significantly lower in group AFH than in the other two groups. Conclusions: High-doses of fentanil induced hyperalgesia, which presented a decreased mechanical hyperalgesia threshold, enhanced pain intensity, a shorter time to first postoperative analgesic requirement, and greater morphine consumption, but IV

  11. Differential activation of p38 and extracellular signal-regulated kinase in spinal cord in a model of bee venom-induced inflammation and hyperalgesia

    Directory of Open Access Journals (Sweden)

    Kobayashi Kimiko

    2008-04-01

    Full Text Available Abstract Background Honeybee's sting on human skin can induce ongoing pain, hyperalgesia and inflammation. Injection of bee venom (BV into the intraplantar surface of the rat hindpaw induces an early onset of spontaneous pain followed by a lasting thermal and mechanical hypersensitivity in the affected paw. The underlying mechanisms of BV-induced thermal and mechanical hypersensitivity are, however, poorly understood. In the present study, we investigated the role of mitogen-activated protein kinase (MAPK in the generation of BV-induced pain hypersensitivity. Results We found that BV injection resulted in a quick activation of p38, predominantly in the L4/L5 spinal dorsal horn ipsilateral to the inflammation from 1 hr to 7 d post-injection. Phosphorylated p38 (p-p38 was expressed in both neurons and microglia, but not in astrocytes. Intrathecal administration of the p38 inhibitor, SB203580, prevented BV-induced thermal hypersensitivity from 1 hr to 3 d, but had no effect on mechanical hypersensitivity. Activated ERK1/2 was observed exclusively in neurons in the L4/L5 dorsal horn from 2 min to 1 d, peaking at 2 min after BV injection. Intrathecal administration of the MEK inhibitor, U0126, prevented both mechanical and thermal hypersensitivity from 1 hr to 2 d. p-ERK1/2 and p-p38 were expressed in neurons in distinct regions of the L4/L5 dorsal horn; p-ERK1/2 was mainly in lamina I, while p-p38 was mainly in lamina II of the dorsal horn. Conclusion The results indicate that differential activation of p38 and ERK1/2 in the dorsal horn may contribute to the generation and development of BV-induced pain hypersensitivity by different mechanisms.

  12. Trigeminal-Rostral Ventromedial Medulla circuitry is involved in orofacial hyperalgesia contralateral to tissue injury

    Directory of Open Access Journals (Sweden)

    Chai Bryan

    2012-10-01

    Full Text Available Abstract Background Our previous studies have shown that complete Freund’s adjuvant (CFA-induced masseter inflammation and microinjection of the pro-inflammatory cytokine interleukin-1β (IL-1β into the subnucleus interpolaris/subnucleus caudalis transition zone of the spinal trigeminal nucleus (Vi/Vc can induce contralateral orofacial hyperalgesia in rat models. We have also shown that contralateral hyperalgesia is attenuated with a lesion of the rostral ventromedial medulla (RVM, a critical site of descending pain modulation. Here we investigated the involvement of the RVM-Vi/Vc circuitry in mediating contralateral orofacial hyperalgesia after an injection of CFA into the masseter muscle. Results Microinjection of the IL-1 receptor antagonist (5 nmol, n=6 into the ipsilateral Vi/Vc attenuated the CFA-induced contralateral hyperalgesia but not the ipsilateral hyperalgesia. Intra-RVM post-treatment injection of the NK1 receptor antagonists, RP67580 (0.5-11.4 nmol and L-733,060 (0.5-11.4 nmol, attenuated CFA-induced bilateral hyperalgesia and IL-1β induced bilateral hyperalgesia. Serotonin depletion in RVM neurons prior to intra-masseter CFA injection prevented the development of contralateral hyperalgesia 1–3 days after CFA injection. Inhibition of 5-HT3 receptors in the contralateral Vi/Vc with direct microinjection of the select 5-HT3 receptor antagonist, Y-25130 (2.6-12.9 nmol, attenuated CFA-induced contralateral hyperalgesia. Lesions to the ipsilateral Vc prevented the development of ipsilateral hyperalgesia but did not prevent the development of contralateral hyperalgesia. Conclusions These results suggest that the development of CFA-induced contralateral orofacial hyperalgesia is mediated through descending facilitatory mechanisms of the RVM-Vi/Vc circuitry.

  13. Nanocrystallinity induced by heating

    DEFF Research Database (Denmark)

    Mørup, Steen; Meaz, T.M.; Bender Koch, C.

    1997-01-01

    Samples of akaganeite (beta-FeOOH) and goethite (alpha-FeOOH) have been studied after heating at various temperatures up to 800 C. X-ray diffraction and Mossbauer spectroscopy measurements showed that slightly below the temperatures at which the samples transform to hematite (alpha-Fe2O3) the oxy......Samples of akaganeite (beta-FeOOH) and goethite (alpha-FeOOH) have been studied after heating at various temperatures up to 800 C. X-ray diffraction and Mossbauer spectroscopy measurements showed that slightly below the temperatures at which the samples transform to hematite (alpha-Fe2O3...

  14. Remifentanil-induced tolerance, withdrawal or hyperalgesia in infants: a randomized controlled trial. RAPIP trial: remifentanil-based analgesia and sedation of paediatric intensive care patients.

    Science.gov (United States)

    Welzing, Lars; Link, Florian; Junghaenel, Shino; Oberthuer, Andre; Harnischmacher, Urs; Stuetzer, Hartmut; Roth, Bernhard

    2013-01-01

    Short-acting opioids like remifentanil are suspected of an increased risk for tolerance, withdrawal and opioid-induced hyperalgesia (OIH). These potential adverse effects have never been investigated in neonates. To compare remifentanil and fentanyl concerning the incidence of tolerance, withdrawal and OIH. 23 mechanically ventilated infants received up to 96 h either a remifentanil- or fentanyl-based analgesia and sedation regimen with low-dose midazolam. We compared the required opioid doses and the number of opioid dose adjustments. Following extubation, withdrawal symptoms were assessed by a modification of the Finnegan score. OIH was evaluated by the CHIPPS scale and by testing the threshold of the flexion withdrawal reflex with calibrated von Frey filaments. Remifentanil had to be increased by 24% and fentanyl by 47% to keep the infants adequately sedated during mechanical ventilation. Following extubation, infants revealed no pronounced opioid withdrawal and low average Finnegan scores in both groups. Only 1 infant of the fentanyl group and 1 infant of the remifentanil group required methadone for treatment of withdrawal symptoms. Infants also revealed no signs of OIH and low CHIPPS scores in both groups. The median threshold of the flexion withdrawal reflex was 4.5 g (IQR = 2.3) in the fentanyl group and 2.7 g (IQR = 3.3) in the remifentanil group (p = 0.312), which is within the physiologic range of healthy infants. Remifentanil does not seem to be associated with an increased risk for tolerance, withdrawal or OIH. Copyright © 2013 S. Karger AG, Basel.

  15. Transcutaneous electrical nerve stimulation attenuates CFA-induced hyperalgesia and inhibits spinal ERK1/2-COX-2 pathway activation in rats.

    Science.gov (United States)

    Fang, Jun-Fan; Liang, Yi; Du, Jun-Ying; Fang, Jian-Qiao

    2013-06-15

    Transcutaneous electrical nerve stimulation (TENS) is a non-pharmacologic treatment for pain relief. In previous animal studies, TENS effectively alleviated Complete Freund's Adjuvant (CFA)- or carrageenan-induced inflammatory pain. Although TENS is known to produce analgesia via opioid activation in the brain and at the spinal level, few reports have investigated the signal transduction pathways mediated by TENS. Prior studies have verified the importance of the activation of extracellular signal-regulated kinase (ERK) signal transduction pathway in the spinal cord dorsal horn (SCDH) in acute and persistent inflammatory pains. Here, by using CFA rat model, we tested the efficacy of TENS on inhibiting the expressions of p-ERK1/2 and of its downstream cyclooxygenase-2 (COX-2) and the level of prostaglandin E2 (PGE2) at spinal level. Rats were randomly divided into control, model and TENS groups, and injected subcutaneously with 100 μl CFA or saline in the plantar surface of right hind paw. Rats in the TENS group were treated with TENS (constant aquare wave, 2 Hz and 100 Hz alternating frequencies, intensities ranging from 1 to 2 mA, lasting for 30 min each time) at 5 h and 24 h after injection. Paw withdrawal thresholds (PWTs) were measured with dynamic plantar aesthesiometer at 3d before modeling and 5 h, 6 h, and 25 h after CFA injection. The ipsilateral sides of the lumbar spinal cord dosral horns were harvested for detecting the expressions of p-ERK1/2 and COX-2 by western blot analysis and qPCR, and PGE2 by ELISA. CFA-induced periphery inflammation decreased PWTs and increased paw volume of rats. TENS treatment significantly alleviated mechanical hyperalgesia caused by CFA. However, no anti-inflammatory effect of TENS was observed. Expression of p-ERK1/2 protein and COX-2 mRNA was significantly up-regualted at 5 h and 6 h after CFA injection, while COX-2 and PGE2 protein level only increased at 6 h after modeling. Furthermore, the high expression of p-ERK1

  16. The major brain endocannabinoid 2-AG controls neuropathic pain and mechanical hyperalgesia in patients with neuromyelitis optica.

    Directory of Open Access Journals (Sweden)

    Hannah L Pellkofer

    Full Text Available Recurrent myelitis is one of the predominant characteristics in patients with neuromyelitis optica (NMO. While paresis, visual loss, sensory deficits, and bladder dysfunction are well known symptoms in NMO patients, pain has been recognized only recently as another key symptom of the disease. Although spinal cord inflammation is a defining aspect of neuromyelitis, there is an almost complete lack of data on altered somatosensory function, including pain. Therefore, eleven consecutive patients with NMO were investigated regarding the presence and clinical characteristics of pain. All patients were examined clinically as well as by Quantitative Sensory Testing (QST following the protocol of the German Research Network on Neuropathic Pain (DFNS. Additionally, plasma endocannabinoid levels and signs of chronic stress and depression were determined. Almost all patients (10/11 suffered from NMO-associated neuropathic pain for the last three months, and 8 out of 11 patients indicated relevant pain at the time of examination. Symptoms of neuropathic pain were reported in the vast majority of patients with NMO. Psychological testing revealed signs of marked depression. Compared to age and gender-matched healthy controls, QST revealed pronounced mechanical and thermal sensory loss, strongly correlated to ongoing pain suggesting the presence of deafferentation-induced neuropathic pain. Thermal hyperalgesia correlated to MRI-verified signs of spinal cord lesion. Heat hyperalgesia was highly correlated to the time since last relapse of NMO. Patients with NMO exhibited significant mechanical and thermal dysesthesia, namely dynamic mechanical allodynia and paradoxical heat sensation. Moreover, they presented frequently with either abnormal mechanical hypoalgesia or hyperalgesia, which depended significantly on plasma levels of the endogenous cannabinoid 2-arachidonoylglycerole (2-AG. These data emphasize the high prevalence of neuropathic pain and hyperalgesia

  17. Dexamethasone as Adjuvant to Bupivacaine Prolongs the Duration of Thermal Antinociception and Prevents Bupivacaine-Induced Rebound Hyperalgesia via Regional Mechanism in a Mouse Sciatic Nerve Block Model

    Science.gov (United States)

    An, Ke; Elkassabany, Nabil M.; Liu, Jiabin

    2015-01-01

    Background Dexamethasone has been studied as an effective adjuvant to prolong the analgesia duration of local anesthetics in peripheral nerve block. However, the route of action for dexamethasone and its potential neurotoxicity are still unclear. Methods A mouse sciatic nerve block model was used. The sciatic nerve was injected with 60ul of combinations of various medications, including dexamethasone and/or bupivacaine. Neurobehavioral changes were observed for 2 days prior to injection, and then continuously for up to 7 days after injection. In addition, the sciatic nerves were harvested at either 2 days or 7 days after injection. Toluidine blue dyeing and immunohistochemistry test were performed to study the short-term and long-term histopathological changes of the sciatic nerves. There were six study groups: normal saline control, bupivacaine (10mg/kg) only, dexamethasone (0.5mg/kg) only, bupivacaine (10mg/kg) combined with low-dose (0.14mg/kg) dexamethasone, bupivacaine (10mg/kg) combined with high-dose (0.5mg/kg) dexamethasone, and bupivacaine (10mg/kg) combined with intramuscular dexamethasone (0.5mg/kg). Results High-dose perineural dexamethasone, but not systemic dexamethasone, combined with bupivacaine prolonged the duration of both sensory and motor block of mouse sciatic nerve. There was no significant difference on the onset time of the sciatic nerve block. There was “rebound hyperalgesia” to thermal stimulus after the resolution of plain bupivacaine sciatic nerve block. Interestingly, both low and high dose perineural dexamethasone prevented bupivacaine-induced hyperalgesia. There was an early phase of axon degeneration and Schwann cell response as represented by S-100 expression as well as the percentage of demyelinated axon and nucleus in the plain bupivacaine group compared with the bupivacaine plus dexamethasone groups on post-injection day 2, which resolved on post-injection day 7. Furthermore, we demonstrated that perineural dexamethasone

  18. Enhancement of antinociception by coadminstration of minocycline and a non-steroidal anti-inflammatory drug indomethacin in naïve mice and murine models of LPS-induced thermal hyperalgesia and monoarthritis

    Directory of Open Access Journals (Sweden)

    Masocha Willias

    2010-12-01

    Full Text Available Abstract Background Minocycline and a non-steroidal anti-inflammatory drug (NSAID indomethacin, have anti-inflammatory activities and are both used in the management of rheumatoid arthritis. However, there are no reports on whether coadministration of these drugs could potentiate each other's activities in alleviating pain and weight bearing deficits during arthritis. Methods LPS was injected to BALB/c mice intraperitoneally (i.p. to induce thermal hyperalgesia. The hot plate test was used to study thermal nociception in naïve BALB/c and C57BL/6 mice and BALB/c mice with LPS-induced thermal hyperalgesia and to evaluate antinociceptive effects of drugs administered i.p. Monoarthritis was induced by injection of LPS intra-articularly into the right hind (RH limb ankle joint of C57BL/6 mice. Weight bearing changes and the effect of i.p. drug administration were analyzed in freely moving mice using the video-based CatWalk gait analysis system. Results In naïve mice indomethacin (5 to 50 mg/kg had no significant activity, minocycline (25 to 100 mg/kg produced hyperalgesia to thermal nociception, however, coadministration of minocycline 50 mg/kg with indomethacin 5 or 10 mg/kg produced significant antinociceptive effects in the hot plate test. A selective inhibitor of COX-1, FR122047 (10 mg/kg and a selective COX-2 inhibitor, CAY10404 (10 mg/kg had no significant antinociceptive activities to thermal nociception in naïve mice, however, coadministration of minocycline, with CAY10404 but not FR122047 produced significant antinociceptive effects. In mice with LPS-induced hyperalgesia vehicle, indomethacin (10 mg/kg or minocycline (50 mg/kg did not produce significant changes, however, coadministration of minocycline plus indomethacin resulted in antinociceptive activity. LPS-induced RH limb monoarthritis resulted in weight bearing (RH/left hind (LH limb paw pressure ratios and RH/LH print area ratios deficits. Treatment with indomethacin (1 mg/kg or

  19. Demarcation of secondary hyperalgesia zones

    DEFF Research Database (Denmark)

    Ringsted, Thomas K; Enghuus, Casper; Petersen, Morten A

    2015-01-01

    of analgesic drug effects in humans. However, since the methods applied in demarcating the secondary hyperalgesia zone seem inconsistent across studies, we examined the effect of a standardized approach upon the measurement of SHA following a first degree burn injury (BI). NEW METHOD: The study was a two.......0001). No day-to-day or observer-to-observer differences in SHAs were observed. Intraclass correlation coefficients, in the range of 0.51 to 0.84, indicated a moderate to almost perfect reliability between observers. COMPARISON WITH EXISTING METHODS: No standardized approach in SHA-assessment has hitherto been...... presented. CONCLUSIONS: This is the first study to demonstrate that demarcation of secondary hyperalgesia zones depends on the developed pressure of the punctate stimulator used....

  20. Peripheral Receptor Mechanisms Underlying Orofacial Muscle Pain and Hyperalgesia

    Science.gov (United States)

    Saloman, Jami L.

    Musculoskeletal pain conditions, particularly those associated with temporomandibular joint and muscle disorders (TMD) are severely debilitating and affect approximately 12% of the population. Identifying peripheral nociceptive mechanisms underlying mechanical hyperalgesia, a prominent feature of persistent muscle pain, could contribute to the development of new treatment strategies for the management of TMD and other muscle pain conditions. This study provides evidence of functional interactions between ligand-gated channels, P2X3 and TRPV1/TRPA1, in trigeminal sensory neurons, and proposes that these interactions underlie the development of mechanical hyperalgesia. In the masseter muscle, direct P2X3 activation, via the selective agonist αβmeATP, induced a dose- and time-dependent hyperalgesia. Importantly, the αβmeATP-induced hyperalgesia was prevented by pretreatment of the muscle with a TRPV1 antagonist, AMG9810, or the TRPA1 antagonist, AP18. P2X3 was co-expressed with both TRPV1 and TRPA1 in masseter muscle afferents confirming the possibility for intracellular interactions. Moreover, in a subpopulation of P2X3 /TRPV1 positive neurons, capsaicin-induced Ca2+ transients were significantly potentiated following P2X3 activation. Inhibition of Ca2+-dependent kinases, PKC and CaMKII, prevented P2X3-mechanical hyperalgesia whereas blockade of Ca2+-independent PKA did not. Finally, activation of P2X3 induced phosphorylation of serine, but not threonine, residues in TRPV1 in trigeminal sensory neurons. Significant phosphorylation was observed at 15 minutes, the time point at which behavioral hyperalgesia was prominent. Similar data were obtained regarding another nonselective cation channel, the NMDA receptor (NMDAR). Our data propose P2X3 and NMDARs interact with TRPV1 in a facilitatory manner, which could contribute to the peripheral sensitization underlying masseter hyperalgesia. This study offers novel mechanisms by which individual pro-nociceptive ligand

  1. Bone hyperalgesia after mechanical impact stimulation: a human experimental pain model.

    Science.gov (United States)

    Finocchietti, Sara; Graven-Nielsen, Thomas; Arendt-Nielsen, Lars

    2014-12-01

    Hyperalgesia in different musculoskeletal structures including bones is a major clinical problem. An experimental bone hyperalgesia model was developed in the present study. Hyperalgesia was induced by three different weights impacted on the shinbone in 16 healthy male and female subjects. The mechanical impact pain threshold (IPT) was measured as the height from which three weights (165, 330, and 660 g) should be dropped to elicit pain at the shinbone. Temporal summation of pain to repeated impact stimuli was assessed. All these stimuli caused bone hyperalgesia. The pressure pain threshold (PPT) was assessed by a computerized pressure algometer using two different probes (1.0 and 0.5 cm(2)). All parameters were recorded before (0), 24, 72, and 96 h after the initial stimulations. The IPTs were lowest 24 h after hyperalgesia induction for all three weights and the effect lasted up to 72 h (p pain and hyperalgesia model may provide the basis for studying this fundamental mechanism of bone-related hyperalgesia and be used for profiling compounds developed for this target.

  2. Analgesic effect of paeoniflorin in rats with neonatal maternal separation-induced visceral hyperalgesia is mediated through adenosine A(1) receptor by inhibiting the extracellular signal-regulated protein kinase (ERK) pathway.

    Science.gov (United States)

    Zhang, Xiao-Jun; Chen, Hong-Li; Li, Zhi; Zhang, Hong-Qi; Xu, Hong-Xi; Sung, Joseph J Y; Bian, Zhao-Xiang

    2009-11-01

    Paeoniflorin (PF), a chief active ingredient in the root of Paeonia lactiflora Pall (family Ranunculaceae), is effective in relieving colorectal distention (CRD)-induced visceral pain in rats with visceral hyperalgesia induced by neonatal maternal separation (NMS). This study aimed at exploring the underlying mechanisms of PF's analgesic effect on CRD-evoked nociceptive signaling in the central nervous system (CNS) and investigating whether the adenosine A(1) receptor is involved in PF's anti-nociception. CRD-induced visceral pain as well as phosphorylated-extracellular signal-regulated protein kinase (p-ERK) and phospho-cAMP response element-binding protein (p-CREB) expression in the CNS structures of NMS rats were suppressed by NMDA receptor antagonist dizocilpine (MK-801) and ERK phosphorylation inhibitor U0126. PF could similarly inhibit CRD-evoked p-ERK and c-Fos expression in laminae I-II of the lumbosacral dorsal horn and anterior cingulate cortex (ACC). PF could also reverse the CRD-evoked increased glutamate concentration by CRD as shown by dynamic microdialysis monitoring in ACC, whereas, DPCPX, an antagonist of adenosine A(1) receptor, significantly blocked the analgesic effect of PF and PF's inhibition on CRD-induced p-ERK and p-CREB expression. These results suggest that PF's analgesic effect is possibly mediated by adenosine A(1) receptor by inhibiting CRD-evoked glutamate release and the NMDA receptor dependent ERK signaling.

  3. GluN2B/CaMKII mediates CFA-induced hyperalgesia via HDAC4-modified spinal COX2 transcription.

    Science.gov (United States)

    Lai, Cheng-Yuan; Hsieh, Ming-Chun; Ho, Yu-Cheng; Chen, Gin-Den; Chou, Dylan; Ruan, Ting; Lee, An-Sheng; Wang, Hsueh-Hsiao; Chau, Yat-Pang; Peng, Hsien-Yu; Lai, Cheng-Hung

    2018-06-01

    Histone deacetylase 4 (HDAC4), which actively shuttles between the nucleus and cytoplasm, is an attractive candidate for a repressor mechanism in epigenetic modification. However, the potential role of HDAC4-dependent epigenetics in the neural plasticity underlying the development of inflammatory pain has not been well established. By injecting complete Freund's adjuvant (CFA) into the hind-paw of Sprague-Dawley rats (200-250 g), we found animals displayed behavioral hyperalgesia was accompanied with HDAC4 phosphorylation and cytoplasmic redistribution in the dorsal horn neurons. Cytoplasmic HDAC4 retention led to its uncoupling with the COX2 promoter, hence prompting spinal COX2 transcription and expression in the dorsal horn. Moreover, the GluN2B-bearing N-methyl-d-aspartate receptor (GluN2B-NMDAR)/calmodulin-dependent protein kinase II (CaMKII) acted as an upstream cascade to facilitate HDAC4 phosphorylation/redistribution-associated spinal COX2 expression after inflammatory insults. The results of this pilot study demonstrated that the development and/or maintenance of inflammatory pain involved the spinal HDAC4-dependent epigenetic mechanisms. Our findings open up a new avenue for the development of a novel medical strategy for the relief of inflammatory pain. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Effects of perceived and exerted pain control on neural activity during pain relief in experimental heat hyperalgesia: a fMRI study.

    Science.gov (United States)

    Mohr, C; Leyendecker, S; Petersen, D; Helmchen, C

    2012-04-01

    Perceived control over pain can attenuate pain perception by mechanisms of endogenous pain control and emotional reappraisal irrespective of whether this control is exerted or only perceived. Self-initiated termination of pain elicits different expectations of subsequent pain relief as compared to perceived pain control. It is unknown whether and how this perceived vs. exerted control on pain differs and affects subsequent pain relief. Using fMRI, we studied two factors of pain control on pain relief: the (i) sense of control (perceived control but no execution) and (ii) the execution of control (exerted control). To account for the impact of factual execution of pain control on pain relief we applied bearable short and hardly bearable long contact-heat stimuli which were applied either controllable or not. Using controllability as factor, there was dissociable neural activity during pain relief: following the perceived control condition neural activity was found in the orbitofrontal and mediofrontal cortex and, following the exerted control condition, in the anterolateral and dorsolateral prefrontal cortex and posterior parietal cortex. We conclude that (i) pain controllability has an impact on pain relief and (ii) the prefrontal cortex shows dissociable neural activity during pain relief following exerted vs. perceived pain control. This might reflect the higher grade of uncertainty during pain relief following perceived pain control mediated by the orbitofrontal and medial prefrontal cortex and processes of working memory and updating expectations during pain relief following exerted control mediated by the lateral prefrontal cortex. © 2011 European Federation of International Association for the Study of Pain Chapters.

  5. Furan: A critical heat induced dietary contaminant

    DEFF Research Database (Denmark)

    Mariotti, María S.; Granby, Kit; Rozowski, Jaime

    2013-01-01

    The presence of furan in a broad range of heat processed foods (0-6000 μg kg-1) has received considerable attention due to the fact that this heat induced contaminant is considered as a "possible carcinogenic compound to humans". Since a genotoxic mode of action could be associated with furan...... of some critical factors such as heating conditions, pH and matrix microstructure are discussed in order to propose some potential methodologies for furan mitigation in a wide range of heated foods. © 2013 The Royal Society of Chemistry....

  6. Magnetic induced heating of nanoparticle solutions

    Energy Technology Data Exchange (ETDEWEB)

    Murph, S. Hunyadi [Savannah River Site (SRS), Aiken, SC (United States); Univ. of Georgia, Athens, GA (United States); Brown, M. [Savannah River Site (SRS), Aiken, SC (United States); Coopersmith, K. [Savannah River Site (SRS), Aiken, SC (United States); Fulmer, S. [Savannah River Site (SRS), Aiken, SC (United States); Sessions, H. [Savannah River Site (SRS), Aiken, SC (United States); Ali, M. [Univ. of South Carolina, Columbia, SC (United States)

    2016-12-02

    Magnetic induced heating of nanoparticles (NP) provides a useful advantage for many energy transfer applications. This study aims to gain an understanding of the key parameters responsible for maximizing the energy transfer leading to nanoparticle heating through the use of simulations and experimental results. It was found that magnetic field strength, NP concentration, NP composition, and coil size can be controlled to generate accurate temperature profiles in NP aqueous solutions.

  7. Acidic pH facilitates peripheral αβmeATP-mediated nociception in rats: differential roles of P2X, P2Y, ASIC and TRPV1 receptors in ATP-induced mechanical allodynia and thermal hyperalgesia.

    Science.gov (United States)

    Seo, Hyoung-Sig; Roh, Dae-Hyun; Kwon, Soon-Gu; Yoon, Seo-Yeon; Kang, Suk-Yun; Moon, Ji-Young; Choi, Sheu-Ran; Beitz, Alvin J; Lee, Jang-Hern

    2011-03-01

    Peripheral ischemia is commonly associated with an increase in tissue ATP concentration and a decrease in tissue pH. Although in vitro data suggest that low tissue pH can affect ATP-binding affinities to P2 receptors, the mechanistic relationship between ATP and low pH on peripheral nociception has not been fully examined. This study was designed to investigate the potential role of an acidified environment on intraplantar αβmeATP-induced peripheral pain responses in rats. The mechanical allodynia (MA) produced by injection of αβmeATP was significantly increased in animals that received the drug diluted in pH 4.0 saline compared to those that received the drug diluted in pH 7.0 saline. Moreover, animals injected with αβmeATP (100 nmol) in pH 4.0 saline developed thermal hyperalgesia (TH), which did not occur in animals treated with αβmeATP diluted in pH 7.0 saline. To elucidate which receptors were involved in this pH-related facilitation of αβmeATP-induced MA and TH, rats were pretreated with PPADS (P2 antagonist), TNP-ATP (P2X antagonist), MRS2179 (P2Y1 antagonist), AMG9810 (TRPV1 antagonist) or amiloride (ASIC blocker). Both PPADS and TNP-ATP dose-dependently blocked pH-facilitated MA, while TH was significantly reduced by pre-treatment with MRS2179 or AMG9810. Moreover, amiloride injection significantly reduced low pH-induced facilitation of αβmeATP-mediated MA, but not TH. These results demonstrate that low tissue pH facilitates ATP-mediated MA via the activation of P2X receptors and ASICs, whereas TH induced by ATP under low pH conditions is mediated by the P2Y1 receptor and TRPV1, but not ASIC. Thus distinct mechanisms are responsible for the development of MA and TH under conditions of tissue acidosis and increased ATP. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Cold Pain Threshold Identifies a Subgroup of Individuals With Knee Osteoarthritis That Present With Multimodality Hyperalgesia and Elevated Pain Levels.

    Science.gov (United States)

    Wright, Anthony; Benson, Heather A E; Will, Rob; Moss, Penny

    2017-09-01

    Cold hyperalgesia has been established as an important marker of pain severity in a number of conditions. This study aimed to establish the extent to which patients with knee osteoarthritis (OA) demonstrate widespread cold, heat, and pressure hyperalgesia. OA participants with widespread cold hyperalgesia were compared with the remaining OA cohort to determine whether they could be distinguished in terms of hyperalgesia, pain report, pain quality, and physical function. A total of 80 participants with knee OA and 40 matched healthy, pain-free controls participated. OA participants completed a washout of their usual medication. Quantitative sensory testing was completed at 3 sites using standard methods. Cold pain threshold (CPT) and heat pain thresholds (HPT) were tested using a Peltier thermode and pressure pain thresholds (PPT) using a digital algometer. All participants completed the short-form health survey questionnaire and OA participants completed the PainDETECT, Western Ontario and McMaster Universities Osteoarthritis Index of the Knee (WOMAC), and pain quality assessment scale questionnaires. OA participants demonstrated widespread cold hyperalgesia (Ppain, decreased function, and more features of neuropathic pain. This study identified a specific subgroup of patients with knee OA who exhibited widespread, multimodality hyperalgesia, more pain, more features of neuropathic pain, and greater functional impairment. Identification of patients with this pain phenotype may permit more targeted and effective pain management.

  9. Biophoton emission induced by heat shock.

    Directory of Open Access Journals (Sweden)

    Katsuhiro Kobayashi

    Full Text Available Ultraweak biophoton emission originates from the generation of reactive oxygen species (ROS that are produced in mitochondria as by-products of cellular respiration. In healthy cells, the concentration of ROS is minimized by a system of biological antioxidants. However, heat shock changes the equilibrium between oxidative stress and antioxidant activity, that is, a rapid rise in temperature induces biophoton emission from ROS. Although the rate and intensity of biophoton emission was observed to increase in response to elevated temperatures, pretreatment at lower high temperatures inhibited photon emission at higher temperatures. Biophoton measurements are useful for observing and evaluating heat shock.

  10. Transcutaneous electrical nerve stimulation attenuates CFA-induced hyperalgesia and inhibits spinal ERK1/2-COX-2 pathway activation in rats

    OpenAIRE

    Fang, Jun-Fan; Liang, Yi; Du, Jun-Ying; Fang, Jian-Qiao

    2013-01-01

    Background Transcutaneous electrical nerve stimulation (TENS) is a non-pharmacologic treatment for pain relief. In previous animal studies, TENS effectively alleviated Complete Freund?s Adjuvant (CFA)- or carrageenan-induced inflammatory pain. Although TENS is known to produce analgesia via opioid activation in the brain and at the spinal level, few reports have investigated the signal transduction pathways mediated by TENS. Prior studies have verified the importance of the activation of extr...

  11. Diffusion induced by cyclotron resonance heating

    International Nuclear Information System (INIS)

    Riyopoulos, S.; Tajima, T.; Hatori, T.; Pfirsch, D.

    1985-09-01

    The wave induced particle transport during the ion cyclotron resonance heating is studied in collisionless toroidal plasmas. It is shown that the previously neglected non-conservation of the toroidal angular momentum IP/sub phi/ caused by the toroidal wave component E/sub phi/ is necessary to allow particle diffusion and yields the leading diffusive contribution. While the induced ion transport for the rf power in contemporary experiments is of the order of the neoclassical value, that of fast alpha particles is quite large if resonance is present

  12. Heat pump processes induced by laser radiation

    Science.gov (United States)

    Garbuny, M.; Henningsen, T.

    1980-01-01

    A carbon dioxide laser system was constructed for the demonstration of heat pump processes induced by laser radiation. The system consisted of a frequency doubling stage, a gas reaction cell with its vacuum and high purity gas supply system, and provisions to measure the temperature changes by pressure, or alternatively, by density changes. The theoretical considerations for the choice of designs and components are dicussed.

  13. Involvement of MrgprC in Electroacupuncture Analgesia for Attenuating CFA-Induced Thermal Hyperalgesia by Suppressing the TRPV1 Pathway

    Directory of Open Access Journals (Sweden)

    Ying-jun Liu

    2018-01-01

    Full Text Available Mas-related G-protein-coupled receptor C (MrgprC plays an important role in modulating chronic inflammatory pain. Electroacupuncture (EA has a satisfactory analgesic effect on chronic pain. This study aimed to investigate the involvement of MrgprC and its transient receptor potential vanilloid 1 (TRPV1 pathway in EA analgesia in chronic inflammatory pain. Chronic inflammatory pain was induced by subcutaneously injecting complete Freund’s adjuvant (CFA into the left hind paw. EA (2/100 Hz stimulation was administered. MrgprC siRNAs were intrathecally administered to inhibit MrgprC expression, and bovine adrenal medulla 8-22 (BAM8-22 was used to activate MrgprC. The mechanical allodynia was decreased by EA significantly since day 3. The piled analgesic effect of EA was partially blocked by 6 intrathecal administrations of MrgprC siRNA. Both EA and BAM8-22 could downregulate the expression of TRPV1 and PKC in both the DRG and the SCDH. Both EA and BAM8-22 could also decrease the TRPV1 translocation and p-TRPV1 level in both the DRG and the SCDH. The effects of EA on PKCε, TRPV1 translocation, and p-TRPV1 in both the DRG and the SCDH were reversed by MrgprC siRNA. The results indicated that MrgprC played crucial roles in chronic pain modulation and was involved in EA analgesia partially through the regulation of TRPV1 function at the DRG and SCDH levels.

  14. Involvement of MrgprC in Electroacupuncture Analgesia for Attenuating CFA-Induced Thermal Hyperalgesia by Suppressing the TRPV1 Pathway.

    Science.gov (United States)

    Liu, Ying-Jun; Lin, Xiao-Xi; Fang, Jian-Qiao; Fang, Fang

    2018-01-01

    Mas-related G-protein-coupled receptor C (MrgprC) plays an important role in modulating chronic inflammatory pain. Electroacupuncture (EA) has a satisfactory analgesic effect on chronic pain. This study aimed to investigate the involvement of MrgprC and its transient receptor potential vanilloid 1 (TRPV1) pathway in EA analgesia in chronic inflammatory pain. Chronic inflammatory pain was induced by subcutaneously injecting complete Freund's adjuvant (CFA) into the left hind paw. EA (2/100 Hz) stimulation was administered. MrgprC siRNAs were intrathecally administered to inhibit MrgprC expression, and bovine adrenal medulla 8-22 (BAM8-22) was used to activate MrgprC. The mechanical allodynia was decreased by EA significantly since day 3. The piled analgesic effect of EA was partially blocked by 6 intrathecal administrations of MrgprC siRNA. Both EA and BAM8-22 could downregulate the expression of TRPV1 and PKC in both the DRG and the SCDH. Both EA and BAM8-22 could also decrease the TRPV1 translocation and p-TRPV1 level in both the DRG and the SCDH. The effects of EA on PKC ε , TRPV1 translocation, and p-TRPV1 in both the DRG and the SCDH were reversed by MrgprC siRNA. The results indicated that MrgprC played crucial roles in chronic pain modulation and was involved in EA analgesia partially through the regulation of TRPV1 function at the DRG and SCDH levels.

  15. Heat transfer characteristics of induced mixed convection

    International Nuclear Information System (INIS)

    Weiss, Y.; Lahav, C.; Szanto, M.; Shai, I.

    1996-01-01

    In the present work we focus our attention on the opposed Induced Mixed Convection case, i.e. the flow field structure in a vertical cylinder, closed at its bottom, opens at the top, and being heated circumferentially. The paper reports an experimental study of this complex heat transfer process. For a better understanding of the flow field and the related heat transfer process, two different experimental systems were built. The first was a flow visualization system, with water as the working fluid, while the second system enabled quantitative measurements of the temperature field in air. All the experiments were performed in the turbulent flow regime. In order to learn about all possible flow regimes, the visualization tests were conducted in three different length-to-diameter ratios (1/d=1,5,10). Quantitative measurements of the cylindrical wall temperature, as well as the radial and axial temperature profiles in the flow field, were taken in the air system. Based on the visualization observation and the measured wall temperature profile, it was found that the OIMC can be characterized by three main regimes: a mixing regime at the top, a central turbulent core and a boundary layer type of flow adjacent to the heated wall. (authors)

  16. Sphingosine 1-phosphate mediates hyperalgesia via a neutrophil-dependent mechanism.

    Directory of Open Access Journals (Sweden)

    Amanda Finley

    Full Text Available Novel classes of pain-relieving molecules are needed to fill the void between non-steroidal anti-inflammatory agents and narcotics. We have recently shown that intraplantar administration of sphingosine 1-phosphate (S1P in rats causes peripheral sensitization and hyperalgesia through the S1P(1 receptor subtype (S1PR(1: the mechanism(s involved are largely unknown and were thus explored in the present study. Intraplantar injection of carrageenan in rats led to a time-dependent development of thermal hyperalgesia that was associated with pronounced edema and infiltration of neutrophils in paw tissues. Inhibition of 1 S1P formation with SK-I, a sphingosine kinase inhibitor, 2 S1P bioavailability with the S1P blocking antibody Sphingomab, LT1002 (but not its negative control, LT1017 or 3 S1P actions through S1PR(1 with the selective S1PR(1 antagonist, W146 (but not its inactive enantiomer, W140 blocked thermal hyperalgesia and infiltration of neutrophils. Taken together, these findings identify S1P as an important contributor to inflammatory pain acting through S1PR(1 to elicit hyperalgesia in a neutrophil-dependant manner. In addition and in further support, we demonstrate that the development of thermal hyperalgesia following intraplantar injection of S1P or SEW2871 (an S1PR(1 agonist was also associated with neutrophilic infiltration in paw tissues as these events were attenuated by fucoidan, an inhibitor of neutrophilic infiltration. Importantly, FTY720, an FDA-approved S1P receptor modulator known to block S1P-S1PR(1 signaling, attenuated carrageenan-induced thermal hyperalgesia and associated neutrophil infiltration. Targeting the S1P/S1PR(1 axis opens a therapeutic strategy for the development of novel non-narcotic anti-hyperalgesic agents.

  17. Hypoxia-inducible factor 1 regulates heat and cold pain sensitivity and persistence.

    Science.gov (United States)

    Kanngiesser, Maike; Mair, Norbert; Lim, Hee-Young; Zschiebsch, Katja; Blees, Johanna; Häussler, Annett; Brüne, Bernhard; Ferreiròs, Nerea; Kress, Michaela; Tegeder, Irmgard

    2014-06-01

    The present study assessed the functions of the transcription factor hypoxia-inducible factor (HIF) in sensory neurons in models of acute, inflammatory, ischemic, and neuropathic pain. The alpha subunit, HIF1α, was specifically deleted in neurons of the dorsal root ganglia by mating HIF1α(fl/fl) mice with SNScre mice. SNS-HIF1α(-/-) mice were more sensitive to noxious heat and cold pain stimulation than were HIF1α(fl/fl) control mice. They also showed heightened first-phase nociceptive responses in the formalin and capsaicin tests with increased numbers of cFos-positive neurons in the dorsal horn, and intensified hyperalgesia in early phases after paw inflammation and hind limb ischemia/reperfusion. The behavioral cold and heat pain hypersensitivity was explained by increased calcium fluxes after transient receptor potential channel activation in primary sensory neurons of SNS-HIF1α(-/-) mice and lowered electrical activation thresholds of sensory fibers. SNS-HIF1α(-/-) mice however, developed less neuropathic pain after sciatic nerve injury, which was associated with an abrogation of HIF1-mediated gene up-regulation. The results suggest that HIF1α is protective in terms of acute heat and cold pain but in case of ongoing activation in injured neurons, it may promote the development of neuropathic pain. The duality of HIF1 in pain regulation may have an impact on the side effects of drugs targeting HIF1, which are being developed, for example, as anticancer agents. Specifically, in patients with cancer neuropathy, however, temporary HIF1 inhibition might provide a welcome combination of growth and pain reduction.

  18. Exploring the potential effect of Ocimum sanctum in vincristine-induced neuropathic pain in rats

    Directory of Open Access Journals (Sweden)

    Jaggi Amteshwar

    2010-01-01

    Full Text Available Abstract The present study was designed to investigate the ameliorative potential of Ocimum sanctum and its saponin rich fraction in vincristine-induced peripheral neuropathic pain in rats. Peripheral neuropathy was induced in rats by administration of vincristine sulfate (50 μg/kg i.p. for 10 consecutive days. The mechanical hyperalgesia, cold allodynia, paw heat hyperalgesia and cold tail hyperalgesia were assessed by performing the pinprick, acetone, hot plate and cold tail immersion tests, respectively. Biochemically, the tissue thio-barbituric acid reactive species (TBARS, super-oxide anion content (markers of oxidative stress and total calcium levels were measured. Vincristine administration was associated with the development of mechanical hyperalgesia, cold allodynia, heat and cold hyperalgesia. Furthermore, vincristine administration was also associated with an increase in oxidative stress and calcium levels. However, administration of Ocimum sanctum (100 and 200 mg/kg p.o. and its saponin rich fraction (100 and 200 mg/kg p.o. for 14 days significantly attenuated vincristine-induced neuropathic pain along with decrease in oxidative stress and calcium levels. It may be concluded that Ocimum sanctum has ameliorative potential in attenuating chemotherapy induced-painful neuropathic state, which may be attributed to decrease in oxidative stress and calcium levels. Furthermore, saponin rich fraction of Ocimum sanctum may be responsible for its noted beneficial effect in neuropathic pain in rats.

  19. Effect of sympathetic activity on capsaicin-evoked pain, hyperalgesia, and vasodilatation.

    Science.gov (United States)

    Baron, R; Wasner, G; Borgstedt, R; Hastedt, E; Schulte, H; Binder, A; Kopper, F; Rowbotham, M; Levine, J D; Fields, H L

    1999-03-23

    Painful nerve and tissue injuries can be exacerbated by activity in sympathetic neurons. The mechanisms of sympathetically maintained pain (SMP) are unclear. To determine the effect of cutaneous sympathetic activity on pain induced by primary afferent C-nociceptor sensitization with capsaicin in humans. In healthy volunteers capsaicin was applied topically (n = 12) or injected into the forearm skin (n = 10) to induce spontaneous pain, dynamic and punctate mechanical hyperalgesia, and antidromic (axon reflex) vasodilatation (flare). Intensity of pain and hyperalgesia, axon reflex vasodilatation (laser Doppler), and flare size and area of hyperalgesia (planimetry) were assessed. The local skin temperature at the application and measurement sites was kept constant at 35 degrees C. In each individual the analyses were performed during the presence of high and low sympathetic skin activity induced by whole-body cooling and warming with a thermal suit. By this method sympathetic vasoconstrictor activity is modulated in the widest range that can be achieved physiologically. The degree of vasoconstrictor discharge was monitored by measuring skin blood flow (laser Doppler) and temperature (infrared thermometry) at the index finger. The intensity and spatial distribution of capsaicin-evoked spontaneous pain and dynamic and punctate mechanical hyperalgesia were identical during the presence of high and low sympathetic discharge. Antidromic vasodilatation and flare size were significantly diminished when sympathetic vasoconstrictor neurons were excited. Cutaneous sympathetic vasoconstrictor activity does not influence spontaneous pain and mechanical hyperalgesia after capsaicin-induced C-nociceptor sensitization. When using physiologic stimulation of sympathetic activity, the capsaicin model is not useful for elucidating mechanisms of SMP. In neuropathic pain states with SMP, different mechanisms may be present.

  20. Ameliorative potential of Ocimum sanctum in chronic constriction injury-induced neuropathic pain in rats

    Directory of Open Access Journals (Sweden)

    GURPREET KAUR

    2015-03-01

    Full Text Available The present study was designed to investigate the ameliorative potential of Ocimumsanctum and its saponin rich fraction in chronic constriction injury-induced neuropathic pain in rats. The chronic constriction injury was induced by placing four loose ligatures around the sciatic nerve, proximal to its trifurcation. The mechanical hyperalgesia, cold allodynia, paw heat hyperalgesia and cold tail hyperalgesia were assessed by performing the pinprick, acetone, hot plate and cold tail immersion tests, respectively. Biochemically, the tissue thio-barbituric acid reactive species, super-oxide anion content (markers of oxidative stress and total calcium levels were measured. Chronic constriction injury was associated with the development of mechanical hyperalgesia, cold allodynia, heat and cold hyperalgesia along with an increase in oxidative stress and calcium levels. However, administration of Ocimumsanctum (100 and 200 mg/kg p.o. and its saponin rich fraction (100 and 200 mg/kg p.o. for 14 days significantly attenuated chronic constriction injury-induced neuropathic pain as well as decrease the oxidative stress and calcium levels. It may be concluded that saponin rich fraction of Ocimum sanctum has ameliorative potential in attenuating painful neuropathic state, which may be attributed to a decrease in oxidative stress and calcium levels.

  1. Beam induced heating reduction by bunch flattening

    CERN Document Server

    Argyropoulos, T; Esteban Müller, JF; Jakobsen, S; Mastoridis, T; Metral, E; Mounet, N; Papotti, G; Pieloni, T; Salvant, B; Shaposhnikova, E; Timko, H

    2014-01-01

    The main purpose of this MD was to modify the beam induced heating on some critical LHC components by flattening the bunch distribution by applying an RF phase modulation. In this way, the beam spectrum was modified so that the power spectral density is reduced at low frequencies (below 1.1 GHz), which is the band of frequencies where the beam interaction with different component impedances is most critical. We present temperature measurements showing the beneficial effect of this latter distribution on some of the monitored devices. Longitudinal peak detected Schottky spectrum was also acquired during the first part of the MD with the intention of estimating the synchrotron frequency shift due to the reactive part of the longitudinal impedance. In the second part of the MD, an attempt to cure the transverse instability during the beta-squeeze was done by reducing the RF voltage to lengthen the bunches and enhance Landau Damping.

  2. Dextromethorphan attenuated the higher vulnerability to inflammatory thermal hyperalgesia caused by prenatal morphine exposure in rat offspring

    Directory of Open Access Journals (Sweden)

    Chen Chien-Fang

    2011-08-01

    Full Text Available Abstract Background Co-administration of dextromethorphan (DM with morphine during pregnancy and throughout lactation has been found to reduce morphine physical dependence and tolerance in rat offspring. No evidence was presented, however, for the effect of DM co-administered with morphine during pregnancy on inflammatory hyperalgesia in morphine-exposed offspring. Therefore, we attempt to investigate the possible effect of prenatal morphine exposure on the vulnerability to hyperalgesia and the possible therapeutic effect of DM in the present study. Methods Fifty μl of carrageenan (20 mg/ml was injected subcutaneously into the plantar surface of the right hind paw in p18 rats to induce hyperalgesia. Mean paw withdrawal latency was measured in the plantar test to index the severity of hyperalgesia. Using Western blotting and RT-PCR, the quantitative analyses of NMDA receptor NR1 and NR2B subunits were performed in spinal cords from different groups of animals. Results In the carrageenan-induced hyperalgesia model, rat offspring passively exposed to morphine developed a severe hyperalgesia on postnatal day 18 (p18, which also had a more rapid time course than those in the controls. Co-administration of DM with morphine in the dams prevented this adverse effect of morphine in the offspring rats. Western blot and RT-PCR analysis showed that the levels of protein and mRNA of NMDA receptor NR1 and NR2B subunits were significantly higher in the lumbar spinal cords of rats (p14 exposed to prenatal morphine; the co-administration of DM could reverse the effect of morphine on NR1 and attenuate the effect on NR2B. Conclusions Thus, DM may have a great potential in the prevention of higher vulnerability to inflammatory thermal hyperalgesia in the offspring of morphine-addicted mothers.

  3. Subjects with Knee Osteoarthritis Exhibit Widespread Hyperalgesia to Pressure and Cold.

    Directory of Open Access Journals (Sweden)

    Penny Moss

    Full Text Available Hyperalgesia to mechanical and thermal stimuli are characteristics of a range of disorders such as tennis elbow, whiplash and fibromyalgia. This study evaluated the presence of local and widespread mechanical and thermal hyperalgesia in individuals with knee osteoarthritis, compared to healthy control subjects. Twenty-three subjects with knee osteoarthritis and 23 healthy controls, matched for age, gender and body mass index, were recruited for the study. Volunteers with any additional chronic pain conditions were excluded. Pain thresholds to pressure, cold and heat were tested at the knee, ipsilateral heel and ipsilateral elbow, in randomized order, using standardised methodology. Significant between-groups differences for pressure pain and cold pain thresholds were found with osteoarthritic subjects demonstrating significantly increased sensitivity to both pressure (p = .018 and cold (p = .003 stimuli, compared with controls. A similar pattern of results extended to the pain-free ipsilateral ankle and elbow indicating widespread pressure and cold hyperalgesia. No significant differences were found between groups for heat pain threshold, although correlations showed that subjects with greater sensitivity to pressure pain were also likely to be more sensitive to both cold pain and heat pain. This study found widespread elevated pain thresholds in subjects with painful knee osteoarthritis, suggesting that altered nociceptive system processing may play a role in ongoing arthritic pain for some patients.

  4. Hyperalgesia in a human model of acute inflammatory pain: a methodological study

    DEFF Research Database (Denmark)

    Pedersen, J L; Kehlet, H

    1998-01-01

    as significant for all variables with fewer than 12 subjects in a cross-over design (2alpha = 5% and power = 80%). Between-day comparisons demanded up to 25 subjects to detect changes of the same magnitude. The burns caused mild to moderate pain (VAS: mean 29, SD 14) and the subjects (all right-handed) were more......The aim of the study was to examine reproducibility of primary and secondary hyperalgesia in a psychophysical model of human inflammatory pain. Mild burns were produced on the crura of 12 volunteers with a 50 x 25 mm thermode (47 degrees C, 7 min). Assessments of (i) cold and warm detection...... thresholds, (ii) mechanical and heat pain thresholds, (iii) pain to heat (43 degrees C and 45 degrees C, 5 s), (iv) secondary hyperalgesia, and (v) skin erythema were made 1.75 and 0.5 h before, and 0, 1, 2, 4, and 6 h after a burn injury. Sensory thresholds and hyperalgesia to heat and mechanical stimuli...

  5. A novel and selective poly (ADP-ribose polymerase inhibitor ameliorates chemotherapy-induced painful neuropathy.

    Directory of Open Access Journals (Sweden)

    Lauren E Ta

    Full Text Available Chemotherapy-induced neuropathy is the principle dose limiting factor requiring discontinuation of many chemotherapeutic agents, including cisplatin and oxaliplatin. About 30 to 40% of patients receiving chemotherapy develop pain and sensory changes. Given that poly (ADP-ribose polymerase (PARP inhibition has been shown to provide neuroprotection, the current study was developed to test whether the novel PARP inhibitor compound 4a (analog of ABT-888 would attenuate pain in cisplatin and oxaliplatin-induced neuropathy in mice.An established chemotherapy-induced painful neuropathy model of two weekly cycles of 10 intraperitoneal (i.p. injections separated by 5 days rest was used to examine the therapeutic potential of the PARP inhibitor compound 4a. Behavioral testing using von Frey, paw radiant heat, cold plate, and exploratory behaviors were taken at baseline, and followed by testing at 3, 6, and 8 weeks from the beginning of drug treatment.Cisplatin-treated mice developed heat hyperalgesia and mechanical allodynia while oxaliplatin-treated mice exhibited cold hyperalgesia and mechanical allodynia. Co-administration of 50 mg/kg or 25 mg/kg compound 4a with platinum regimen, attenuated cisplatin-induced heat hyperalgesia and mechanical allodynia in a dose dependent manner. Similarly, co-administration of 50 mg/kg compound 4a attenuated oxaliplatin-induced cold hyperalgesia and mechanical allodynia. These data indicate that administration of a novel PARP inhibitor may have important applications as a therapeutic agent for human chemotherapy-induced painful neuropathy.

  6. A novel and selective poly (ADP-ribose) polymerase inhibitor ameliorates chemotherapy-induced painful neuropathy.

    Science.gov (United States)

    Ta, Lauren E; Schmelzer, James D; Bieber, Allan J; Loprinzi, Charles L; Sieck, Gary C; Brederson, Jill D; Low, Philip A; Windebank, Anthony J

    2013-01-01

    Chemotherapy-induced neuropathy is the principle dose limiting factor requiring discontinuation of many chemotherapeutic agents, including cisplatin and oxaliplatin. About 30 to 40% of patients receiving chemotherapy develop pain and sensory changes. Given that poly (ADP-ribose) polymerase (PARP) inhibition has been shown to provide neuroprotection, the current study was developed to test whether the novel PARP inhibitor compound 4a (analog of ABT-888) would attenuate pain in cisplatin and oxaliplatin-induced neuropathy in mice. An established chemotherapy-induced painful neuropathy model of two weekly cycles of 10 intraperitoneal (i.p.) injections separated by 5 days rest was used to examine the therapeutic potential of the PARP inhibitor compound 4a. Behavioral testing using von Frey, paw radiant heat, cold plate, and exploratory behaviors were taken at baseline, and followed by testing at 3, 6, and 8 weeks from the beginning of drug treatment. Cisplatin-treated mice developed heat hyperalgesia and mechanical allodynia while oxaliplatin-treated mice exhibited cold hyperalgesia and mechanical allodynia. Co-administration of 50 mg/kg or 25 mg/kg compound 4a with platinum regimen, attenuated cisplatin-induced heat hyperalgesia and mechanical allodynia in a dose dependent manner. Similarly, co-administration of 50 mg/kg compound 4a attenuated oxaliplatin-induced cold hyperalgesia and mechanical allodynia. These data indicate that administration of a novel PARP inhibitor may have important applications as a therapeutic agent for human chemotherapy-induced painful neuropathy.

  7. A role of TRPA1 in mechanical hyperalgesia is revealed by pharmacological inhibition

    Directory of Open Access Journals (Sweden)

    Huynh Truc

    2007-12-01

    Full Text Available Abstract Mechanical hyperalgesia is a clinically-relevant form of pain sensitization that develops through largely unknown mechanisms. TRPA1, a Transient Receptor Potential ion channel, is a sensor of pungent chemicals that may play a role in acute noxious mechanosensation and cold thermosensation. We have developed a specific small molecule TRPA1 inhibitor (AP18 that can reduce cinnameldehyde-induced nociception in vivo. Interestingly, AP18 is capable of reversing CFA-induced mechanical hyperalgesia in mice. Although TRPA1-deficient mice develop normal CFA-induced hyperalgeisa, AP18 is ineffective in the knockout mice, consistent with an on-target mechanism. Therefore, TRPA1 plays a role in sensitization of nociception, and that compensation in TRPA1-deficient mice masks this requirement.

  8. Dynamic mechanical assessment of muscle hyperalgesia in humans: The dynamic algometer

    Science.gov (United States)

    Finocchietti, Sara; Graven-Nielsen, Thomas; Arendt-Nielsen, Lars

    2015-01-01

    BACKGROUND: Musculoskeletal pain is often associated with a nonhomogeneous distribution of mechanical hyperalgesia. Consequently, new methods able to detect this distribution are needed. OBJECTIVE: To develop and test a new method for assessing muscle hyperalgesia with high temporal and spatial resolution that provides complementary information compared with information obtained by traditional static pressure algometry. METHODS: The dynamic pressure algometer was tested bilaterally on the tibialis anterior muscle in 15 healthy subjects and compared with static pressure algometry. The device consisted of a wheel that was rolled over the muscle tissue with a fixed velocity and different predefined forces. The pain threshold force was determined and pain intensity to a fixed-force stimulation was continuously rated on a visual analogue scale while the wheel was rolling over the muscle. The pressure pain sensitivity was evaluated before, during, and after muscle pain and hyperalgesia induced unilaterally by either injection of hypertonic saline (0.5 mL, 6%) into the tibialis anterior or eccentric exercise evoking delayed-onset muscle soreness (DOMS). RESULTS: The intraclass correlation coefficient was >0.88 for the dynamic thresholds; thus, the method was reliable. Compared with baseline, both techniques detected hyperalgesia at the saline injection site and during DOMS (Palgometer also detected the widespread, patchy distribution of sensitive loci during DOMS, which was difficult to evaluate using static pressure algometry. DISCUSSION AND CONCLUSION: The present study showed that dynamic pressure algometry is a reliable tool for evaluating muscle hyperalgesia (threshold and pain rating) with high temporal and spatial resolution. It can be applied as a simple clinical bed-side test and as a quantitative tool in pharmacological profiling studies. PMID:25664539

  9. Finite element calculation of stress induced heating of superconductors

    International Nuclear Information System (INIS)

    Akin, J.E.; Moazed, A.

    1976-01-01

    This research is concerned with the calculation of the amount of heat generated due to the development of mechanical stresses in superconducting composites. An emperical equation is used to define the amount of stress-induced heat generation per unit volume. The equation relates the maximum applied stress and the experimental measured hysteresis loop of the composite stress-strain diagram. It is utilized in a finite element program to calculate the total stress-induced heat generation for the superconductor. An example analysis of a solenoid indicates that the stress-induced heating can be of the same order of magnitude as eddy current effects

  10. Heat shock transcription factors regulate heat induced cell death in a ...

    Indian Academy of Sciences (India)

    2007-03-29

    Mar 29, 2007 ... Heat shock transcription factors regulate heat induced cell death in a rat ... the synthesis of heat shock proteins (Hsps) which is strictly regulated by ... The lack of Hsp synthesis in these cells was due to a failure in HSF1 DNA ...

  11. Interaction of hyperalgesia and sensory loss in complex regional pain syndrome type I (CRPS I.

    Directory of Open Access Journals (Sweden)

    Volker Huge

    Full Text Available BACKGROUND: Sensory abnormalities are a key feature of Complex Regional Pain Syndrome (CRPS. In order to characterise these changes in patients suffering from acute or chronic CRPS I, we used Quantitative Sensory Testing (QST in comparison to an age and gender matched control group. METHODS: 61 patients presenting with CRPS I of the upper extremity and 56 healthy subjects were prospectively assessed using QST. The patients' warm and cold detection thresholds (WDT; CDT, the heat and cold pain thresholds (HPT; CPT and the occurrence of paradoxical heat sensation (PHS were observed. RESULTS: In acute CRPS I, patients showed warm and cold hyperalgesia, indicated by significant changes in HPT and CPT. WDT and CDT were significantly increased as well, indicating warm and cold hypoaesthesia. In chronic CRPS, thermal hyperalgesia declined, but CDT as well as WDT further deteriorated. Solely patients with acute CRPS displayed PHS. To a minor degree, all QST changes were also present on the contralateral limb. CONCLUSIONS: We propose three pathomechanisms of CRPS I, which follow a distinct time course: Thermal hyperalgesia, observed in acute CRPS, indicates an ongoing aseptic peripheral inflammation. Thermal hypoaesthesia, as detected in acute and chronic CRPS, signals a degeneration of A-delta and C-fibres, which further deteriorates in chronic CRPS. PHS in acute CRPS I indicates that both inflammation and degeneration are present, whilst in chronic CRPS I, the pathomechanism of degeneration dominates, signalled by the absence of PHS. The contralateral changes observed strongly suggest the involvement of the central nervous system.

  12. Interaction of hyperalgesia and sensory loss in complex regional pain syndrome type I (CRPS I).

    Science.gov (United States)

    Huge, Volker; Lauchart, Meike; Förderreuther, Stefanie; Kaufhold, Wibke; Valet, Michael; Azad, Shahnaz Christina; Beyer, Antje; Magerl, Walter

    2008-07-23

    Sensory abnormalities are a key feature of Complex Regional Pain Syndrome (CRPS). In order to characterise these changes in patients suffering from acute or chronic CRPS I, we used Quantitative Sensory Testing (QST) in comparison to an age and gender matched control group. 61 patients presenting with CRPS I of the upper extremity and 56 healthy subjects were prospectively assessed using QST. The patients' warm and cold detection thresholds (WDT; CDT), the heat and cold pain thresholds (HPT; CPT) and the occurrence of paradoxical heat sensation (PHS) were observed. In acute CRPS I, patients showed warm and cold hyperalgesia, indicated by significant changes in HPT and CPT. WDT and CDT were significantly increased as well, indicating warm and cold hypoaesthesia. In chronic CRPS, thermal hyperalgesia declined, but CDT as well as WDT further deteriorated. Solely patients with acute CRPS displayed PHS. To a minor degree, all QST changes were also present on the contralateral limb. We propose three pathomechanisms of CRPS I, which follow a distinct time course: Thermal hyperalgesia, observed in acute CRPS, indicates an ongoing aseptic peripheral inflammation. Thermal hypoaesthesia, as detected in acute and chronic CRPS, signals a degeneration of A-delta and C-fibres, which further deteriorates in chronic CRPS. PHS in acute CRPS I indicates that both inflammation and degeneration are present, whilst in chronic CRPS I, the pathomechanism of degeneration dominates, signalled by the absence of PHS. The contralateral changes observed strongly suggest the involvement of the central nervous system.

  13. Heat-induced alterations in the cell nucleus

    International Nuclear Information System (INIS)

    Kampinga, H.H.

    1989-01-01

    Hyperthermia may kill eukaryotic cells and may also enhance the radiosensitivity of those cells that survive the heat treatment. Clinically, the possible use of hyperthermia as an adjuvant in the radiotherapeutic treatment of cancer needs the understanding of mechanisms that underlay heat-induced cell death and radiosensitization. By in vitro heating of established human (HeLaS3) and rodent (Ehrlich Ascites Tumor and LM fibroblast) cell lines, both killing and radiosensitization were investigated. (author). 1067 refs.; 76 figs.; 19 tabs

  14. Topical gabapentin gel alleviates allodynia and hyperalgesia in the chronic sciatic nerve constriction injury neuropathic pain model.

    Science.gov (United States)

    Shahid, M; Subhan, F; Ahmad, N; Ali, G; Akbar, S; Fawad, K; Sewell, R D E

    2017-04-01

    Systemic gabapentin is a mainstay treatment for neuropathic pain though there are side-effects. Localized therapy may curtail such side-effects so a topical gabapentin dermal application was examined in the chronic constriction injury (CCI) model of neuropathic pain. Partial denervation CCI was achieved by rat sciatic nerve ligation. Gabapentin gel (10% w/w) was applied three times daily on the ipsilateral or contralateral plantar surface of the hind-paw, whereas in a concurrent systemic study, gabapentin was intraperitoneally administered daily (75 mg/kg) for 30 days. Tests for static- and dynamic-mechano-allodynia [paw withdrawal threshold (PWT) to von Frey filament application and latency (PWL) to light brushing], cold-allodynia [paw withdrawal duration (PWD) to acetone], heat- (PWL and PWD) and mechano-hyperalgesia (PWD to pin prick) were utilized to assess pain, whereas effects on locomotion (open field) and motor balance (rotarod and footprint analysis) were measured on days 5-30 post surgery. Topical application of gabapentin gel ipsilaterally but not contralaterally alleviated CCI-induced static- (days 10-30) and dynamic-allodynia (days 15-30), suppressed cold-allodynia (days 10-30), heat- (days 15-30) and mechano-hyperalgesia (days 5-30) indicating a local action. Systemic gabapentin exhibited similar pain profiles but was associated with motor impairment. The gabapentin gel formulation afforded desirable neuropathic pain alleviating effects devoid of unwanted systemic side-effects. These outcomes disclose an expedient pharmacological validation of the effectiveness of topical gabapentin gel against an extensive range of nociceptive stimulus modalities utilizing the CCI-induced neuropathic pain model. They also advocate further clinical studies on topical gabapentin with regard to certain neuropathic pain syndromes. Systemic gabapentin neuropathic pain management carries side-effects ostensibly preventable by localized therapy. This study validates the

  15. ELM induced divertor heat loads on TCV

    Science.gov (United States)

    Marki, J.; Pitts, R. A.; Horacek, J.; Tskhakaya, D.; TCV Team

    2009-06-01

    Results are presented for heat loads at the TCV outer divertor target during ELMing H-mode using a fast IR camera. Benefitting from a recent surface cleaning of the entire first wall graphite armour, a comparison of the transient thermal response of freshly cleaned and untreated tile surfaces (coated with thick co-deposited layers) has been performed. The latter routinely exhibit temperature transients exceeding those of the clean ones by a factor ˜3, even if co-deposition throughout the first days of operation following the cleaning process leads to the steady regrowth of thin layers. Filaments are occasionally observed during the ELM heat flux rise phase, showing a spatial structure consistent with energy release at discrete toroidal locations in the outer midplane vicinity and with individual filaments carrying ˜1% of the total ELM energy. The temporal waveform of the ELM heat load is found to be in good agreement with the collisionless free streaming particle model.

  16. ELM induced divertor heat loads on TCV

    Energy Technology Data Exchange (ETDEWEB)

    Marki, J., E-mail: janos.marki@epfl.c [Centre de Recherches en Physique des Plasmas (CRPP), Ecole Polytechnique Federale de Lausanne (EPFL), Association Euratom - Confederation Suisse, CH-1015 Lausanne (Switzerland); Pitts, R.A. [Centre de Recherches en Physique des Plasmas (CRPP), Ecole Polytechnique Federale de Lausanne (EPFL), Association Euratom - Confederation Suisse, CH-1015 Lausanne (Switzerland); Horacek, J. [Institute of Plasma Physics, Association EUROATOM-IPP.CR, Za Slovankou 3, 182 00 Prague 8 (Czech Republic); Tskhakaya, D. [Association EURATOM-OAW, Institut fuer Theoretische Physik, A-6020 Innsbruck (Austria)

    2009-06-15

    Results are presented for heat loads at the TCV outer divertor target during ELMing H-mode using a fast IR camera. Benefitting from a recent surface cleaning of the entire first wall graphite armour, a comparison of the transient thermal response of freshly cleaned and untreated tile surfaces (coated with thick co-deposited layers) has been performed. The latter routinely exhibit temperature transients exceeding those of the clean ones by a factor approx3, even if co-deposition throughout the first days of operation following the cleaning process leads to the steady regrowth of thin layers. Filaments are occasionally observed during the ELM heat flux rise phase, showing a spatial structure consistent with energy release at discrete toroidal locations in the outer midplane vicinity and with individual filaments carrying approx1% of the total ELM energy. The temporal waveform of the ELM heat load is found to be in good agreement with the collisionless free streaming particle model.

  17. Heat stroke induced cerebellar dysfunction: A “forgotten syndrome”

    Science.gov (United States)

    Kosgallana, Athula D; Mallik, Shreyashee; Patel, Vishal; Beran, Roy G

    2013-01-01

    We report a case of heat stroke induced acute cerebellar dysfunction, a rare neurological disease characterized by gross cerebellar dysfunction with no acute radiographic changes, in a 61 years old ship captain presenting with slurred speech and gait ataxia. A systematic review of the literature on heat stroke induced cerebellar dysfunction was performed, with a focus on investigations, treatment and outcomes. After review of the literature and detailed patient investigation it was concluded that this patient suffered heat stroke at a temperature less than that quoted in the literature. PMID:24340279

  18. Involvement of NO-cGMP pathway in anti-hyperalgesic effect of PDE5 inhibitor tadalafil in experimental hyperalgesia.

    Science.gov (United States)

    Otari, K V; Upasani, C D

    2015-08-01

    The association of elevated level of cyclic guanosine monophosphate (cGMP) with inhibition of hyperalgesia and involvement of nitric oxide (NO)-cGMP pathway in the modulation of pain perception was previously reported. Phosphodiesterases 5 (PDE5) inhibitors, sildenafil and tadalafil (TAD) used in erectile dysfunction, are known to act via the NO-cGMP pathway. TAD exerts its action by increasing the levels of intracellular cGMP. Hence, the present study investigated the effect of TAD 5, 10, or 20 mg/kg, per os (p.o.) or L-NAME 20 mg/kg, intraperitoneally (i.p.) and TAD (20 mg/kg, p.o.) in carrageenan- and diabetes-induced hyperalgesia in rats using hot plate test at 55 ± 2 °C. In carrageenan- and diabetes-induced hyperalgesia, TAD (10 and 20 mg/kg, p.o.) significantly increased paw withdrawal latencies (PWLs) as compared to the control group. L-NAME significantly decreased PWLs as compared to the normal group and aggravated the hyperalgesia. Moreover, significant difference in PWLs of L-NAME and TAD 20 was evident. Co-administration of L-NAME (20 mg/kg) with TAD (20 mg/kg) showed significant difference in PWLs as compared to the TAD (20 mg/kg), indicating L-NAME reversed and antagonized TAD-induced anti-hyperalgesia. This suggested an important role of NO-cGMP pathway in TAD-induced anti-hyperalgesic effect.

  19. Chlorophyll loss associated with heat-induced senescence in bentgrass.

    Science.gov (United States)

    Jespersen, David; Zhang, Jing; Huang, Bingru

    2016-08-01

    Heat stress-induced leaf senescence is characterized by the loss of chlorophyll from leaf tissues. The objectives of this study were to examine genetic variations in the level of heat-induced leaf senescence in hybrids of colonial (Agrostis capillaris)×creeping bentgrass (Agrostis stolonifera) contrasting in heat tolerance, and determine whether loss of leaf chlorophyll during heat-induced leaf senescence was due to suppressed chlorophyll synthesis and/or accelerated chlorophyll degradation in the cool-season perennial grass species. Plants of two hybrid backcross genotypes ('ColxCB169' and 'ColxCB190') were exposed to heat stress (38/33°C, day/night) for 28 d in growth chambers. The analysis of turf quality, membrane stability, photochemical efficiency, and chlorophyll content demonstrated significant variations in the level of leaf senescence induced by heat stress between the two genotypes, with ColXCB169 exhibiting a lesser degree of decline in chlorophyll content, photochemical efficiency and membrane stability than ColXCB190. The assays of enzymatic activity or gene expression of several major chlorophyll-synthesizing (porphobilinogen deaminase, Mg-chelatase, protochlorophyllide-reductase) and chlorophyll-degrading enzymes (chlorophyllase, pheophytinase, and chlorophyll-degrading peroxidase) indicated heat-induced decline in leaf chlorophyll content was mainly due to accelerated chlorophyll degradation, as manifested by increased gene expression levels of chlorophyllase and pheophytinase, and the activity of pheophytinase (PPH), while chlorophyll-synthesizing genes and enzymatic activities were not differentially altered by heat stress in the two genotypes. The analysis of heat-induced leaf senescence of pph mutants of Arabidopsis further confirmed that PPH could be one enzymes that plays key roles in regulating heat-accelerated chlorophyll degradation. Further research on enzymes responsible in part for the loss of chlorophyll during heat-induced

  20. Avaliação da hiperalgesia e alterações histológicas do gânglio da raiz dorsal induzidas pelo núcleo pulposo Evaluation of hyperalgesia and histological changes of dorsal root ganglion induced by nucleus pulposus

    Directory of Open Access Journals (Sweden)

    André Luiz de Souza Grava

    2010-01-01

    estruturas do gânglio da raiz dorsal e apresentaram aumento da intensidade nos períodos mais longos de observação.OBJECTIVE: To evaluate hyperalgesia and histological changes of dorsal root ganglia induced by nucleus pulposus (NP contact. METHODS: Twenty Wistar rats were used, divided into two experimental groups. In one of the groups, a fragment of the autologous NP was removed from the sacroccocigeal region and deposited on the L5 dorsal root ganglia. In the control group, the NP was removed from the sacrococcygeal region, L5 dorsal root ganglia were exposed and covered by a piece of adipous fat tissue. Hyperalgesia was evaluated by the von Frey electronic test and Hargreaves test, and histological changes of the dorsal root ganglia by HE staining and immunohistochemistry using iNOS. The evaluation of hyperalgesia and histological changes of the dorsal root ganglia were performed on the third postoperative day and after 1, 3, 5, and 7 weeks. RESULTS: NP induced higher intensity mechanical and thermal hyperalgesia. Dorsal root ganglia in contact with nucleus pulposus presented histological changes and the intensity of these changes were proportional to the length of time in contact. The expression of iNOS was higher in the glial cells in contact with the nucleus pulposus. CONCLUSION: The contact of nucleus pulposus with dorsal root ganglia induced histological changes and mechanical and thermal hyperalgesia. These changes were more intense after longer period of evaluation.

  1. Advanced oxidation protein products sensitized the transient receptor potential vanilloid 1 via NADPH oxidase 1 and 4 to cause mechanical hyperalgesia

    Directory of Open Access Journals (Sweden)

    Ruoting Ding

    2016-12-01

    Full Text Available Oxidative stress is a possible pathogenesis of hyperalgesia. Advanced oxidation protein products (AOPPs, a new family of oxidized protein compounds, have been considered as a novel marker of oxidative stress. However, the role of AOPPs in the mechanism of hyperalgesia remains unknown. Our study aims to investigate whether AOPPs have an effect on hyperalgesia and the possible underlying mechanisms. To identify the AOPPs involved, we induced hyperalgesia in rats by injecting complete Freund’s adjuvant (CFA in hindpaw. The level of plasma AOPPs in CFA-induced rats was 1.6-fold in comparison with what in normal rats (P<0.05. After intravenous injection of AOPPs-modified rat serum albumin (AOPPs-RSA in Sprague-Dawley rats, the paw mechanical thresholds, measured by the electronic von Frey system, significantly declined. Immunofluorescence staining indicated that AOPPs increased expressions of NADPH oxidase 1 (Nox1, NADPH oxidase 4 (Nox4, transient receptor potential vanilloid 1 (TRPV1 and calcitonin gene-related peptide (CGRP in the dorsal root ganglia (DRG tissues. In-vitro studies were performed on primary DRG neurons which were obtained from both thoracic and lumbar DRG of rats. Results indicated that AOPPs triggered reactive oxygen species (ROS production in DRG neurons, which were significantly abolished by ROS scavenger N-acetyl-l-cysteine (NAC and small-interfering RNA (siRNA silencing of Nox1 or Nox4. The expressions of Nox1, Nox4, TRPV1 and CGRP were significantly increased in AOPPs-induced DRG neurons. And relevant siRNA or inhibitors notably suppressed the expressions of these proteins and the calcium influxes in AOPPs-induced DRG neurons. In conclusion, AOPPs increased significantly in CFA-induced hyperalgesia rats and they activated Nox1/Nox4-ROS to sensitize TRPV1-dependent Ca2+ influx and CGRP release which led to inducing mechanical hyperalgesia.

  2. Practical Considerations for Thermal Stresses Induced by Surface Heating

    International Nuclear Information System (INIS)

    Blanchard, James P.

    2003-01-01

    Rapid surface heating can induce large stresses in solids. A relatively simple model, assuming full constraint in two dimensions and no constraint in the third dimension, can adequately model stresses in a wide variety of situations. This paper derives this simple model, and supports it with criteria for its validity. Phenomena that are considered include non-zero penetration depths for the heat deposition, spatial non-uniformity in the surface heating, and elastic waves. Models for each of these cases, using simplified geometries, are used to develop quantitative limits for their applicability

  3. Concept of heat-induced inkless eco-printing.

    Science.gov (United States)

    Chen, Jinxiang; Wang, Yong; Xie, Juan; Meng, Chuang; Wu, Gang; Zu, Qiao

    2012-07-01

    Existing laser and inkjet printers often produce adverse effects on human health, the recycling of printing paper and the environment. Therefore, this paper examines the thermogravimetry curves for printer paper, analyzes the discoloration of paper using heat-induction, and investigates the relationship between paper discoloration and the heat-inducing temperature. The mechanism of heat-induced printing is analyzed initially, and its feasibility is determined by a comparative analysis of heat-induced (laser ablation) printing and commercial printing. The innovative concept of heat-induced inkless eco-printing is proposed, in which the required text or graphics are formed on the printing paper via yellowing and blackening produced by thermal energy. This process does not require ink during the printing process; thus, it completely eliminates the aforementioned health and environmental issues. This research also contributes to related interdisciplinary research in biology, laser technology, photochemistry, nano-science, paper manufacturing and color science. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Modulation of oral heat and cold pain by irritant chemicals.

    Science.gov (United States)

    Albin, Kelly C; Carstens, Mirela Iodi; Carstens, E

    2008-01-01

    Common food irritants elicit oral heat or cool sensations via actions at thermosensitive transient receptor potential (TRP) channels. We used a half-tongue, 2-alternative forced-choice procedure coupled with bilateral pain intensity ratings to investigate irritant effects on heat and cold pain. The method was validated in a bilateral thermal difference detection task. Capsaicin, mustard oil, and cinnamaldehyde enhanced lingual heat pain elicited by a 49 degrees C stimulus. Mustard oil and cinnamaldehyde weakly enhanced lingual cold pain (9.5 degrees C), whereas capsaicin had no effect. Menthol significantly enhanced cold pain and weakly reduced heat pain. To address if capsaicin's effect was due to summation of perceptually similar thermal and chemical sensations, one-half of the tongue was desensitized by application of capsaicin. Upon reapplication, capsaicin elicited little or no irritant sensation yet still significantly enhanced heat pain on the capsaicin-treated side, ruling out summation. In a third experiment, capsaicin significantly enhanced pain ratings to graded heat stimuli (47 degrees C to 50 degrees C) resulting in an upward shift of the stimulus-response function. Menthol may induce cold hyperalgesia via enhanced thermal gating of TRPM8 in peripheral fibers. Capsaicin, mustard oil, and cinnamaldehyde may induce heat hyperalgesia via enhanced thermal gating of TRPV1 that is coexpressed with TRPA1 in peripheral nociceptors.

  5. Does naloxone reinstate secondary hyperalgesia in humans after resolution of a burn injury?

    DEFF Research Database (Denmark)

    Pereira, Manuel P; Werner, Mads U; Ringsted, Thomas K

    2013-01-01

    Development of secondary hyperalgesia following a cutaneous injury is a centrally mediated, robust phenomenon. The pathophysiological role of endogenous opioid signalling to the development of hyperalgesia is unclear. Recent animal studies, carried out after the resolution of inflammatory pain...

  6. Heat transfer in tube bundles of heat exchangers with flow baffles induced forced mixing

    International Nuclear Information System (INIS)

    AbuRomia, M.M.; Chu, A.W.; Cho, S.M.

    1976-01-01

    Thermal analysis of shell-and-tube heat exchangers is being investigated through geometric modeling of the unit configuration in addition to considering the heat transfer processes taking place within the tube bundle. The governing equations that characterize the heat transfer from the shell side fluid to the tube side fluid across the heat transfer tubewalls are indicated. The equations account for the heat transfer due to molecular conduction, turbulent thermal diffusion, and forced fluid mixing among various shell side fluid channels. The analysis, though general in principle, is being applied to the Clinch River Breeder Reactor Plant-Intermediate Heat Exchanger, which utilizes flow baffles appropriately designed for induced forced fluid mixing in the tube bundle. The results of the analysis are presented in terms of the fluid and tube wall temperature distributions of a non-baffled and baffled tube bundle geometry. The former case yields axial flow in the main bundle region while the latter is associated with axial/cross flow in the bundle. The radial components of the axial/cross flow yield the necessary fluid mixing that results in reducing the thermal unbalance among the heat transfer to the allowable limits. The effect of flow maldistribution, present on the tube or shell sides of the heat exchangers, in altering the temperature field of tube bundles is also noted

  7. Spin Heat Accumulation Induced by Tunneling from a Ferromagnet

    NARCIS (Netherlands)

    Vera-Marun, I.J.; Wees, B.J. van; Jansen, R.

    2014-01-01

    An electric current from a ferromagnet into a nonmagnetic material can induce a spin-dependent electron temperature. Here, it is shown that this spin heat accumulation, when created by tunneling from a ferromagnet, produces a non-negligible voltage signal that is comparable to that due to the

  8. Photo-induced-heat localization on nanostructured metallic glasses

    Science.gov (United States)

    Uzun, Ceren; Kahler, Niloofar; Grave de Peralta, Luis; Kumar, Golden; Bernussi, Ayrton A.

    2017-09-01

    Materials with large photo-thermal energy conversion efficiency are essential for renewable energy applications. Photo-excitation is an effective approach to generate controlled and localized heat at relatively low excitation optical powers. However, lateral heat diffusion to the surrounding illuminated areas accompanied by low photo-thermal energy conversion efficiency remains a challenge for metallic surfaces. Surface nanoengineering has proven to be a successful approach to further absorption and heat generation. Here, we show that pronounced spatial heat localization and high temperatures can be achieved with arrays of amorphous metallic glass nanorods under infrared optical illumination. Thermography measurements revealed marked temperature contrast between illuminated and non-illuminated areas even under low optical power excitation conditions. This attribute allowed for generating legible photo-induced thermal patterns on textured metallic glass surfaces.

  9. Spin heat accumulation induced by tunneling from a ferromagnet.

    Science.gov (United States)

    Vera-Marun, I J; van Wees, B J; Jansen, R

    2014-02-07

    An electric current from a ferromagnet into a nonmagnetic material can induce a spin-dependent electron temperature. Here, it is shown that this spin heat accumulation, when created by tunneling from a ferromagnet, produces a non-negligible voltage signal that is comparable to that due to the coexisting electrical spin accumulation and can give a different Hanle spin precession signature. The effect is governed by the spin polarization of the Peltier coefficient of the tunnel contact, its Seebeck coefficient, and the spin heat resistance of the nonmagnetic material, which is related to the electrical spin resistance by a spin-Wiedemann-Franz law. Moreover, spin heat injection is subject to a heat conductivity mismatch that is overcome if the tunnel interface has a sufficiently large resistance.

  10. Arthroscopic knee surgery does not modify hyperalgesic responses to heat injury

    DEFF Research Database (Denmark)

    Werner, Mads U; Duun, Preben; Kraemer, Otto

    2003-01-01

    contralateral to the surgical side. Ibuprofen and acetaminophen were given for 2 days before the first burn injury and again from the time of surgery. In the controls, the two burn injuries were separated by 7 days. Sensory variables included cumulated pain score during induction of the burn (visual analog...... scale), secondary hyperalgesia area, and mechanical and thermal pain perception and pain thresholds assessed before and 1 h after the burn injury. RESULTS: The heat injuries induced significant increases in pain perception (P pain thresholds (P pain...... thresholds were higher during the second burn injury in patients (P pain to heat injury (P > 0.8), secondary hyperalgesia areas (P > 0.1), mechanical and thermal pain perception (P > 0.1), or mechanical and thermal pain...

  11. Improvement of boiling heat transfer by radiation induced boiling enhancement

    International Nuclear Information System (INIS)

    Imai, Yasuyuki; Okamoto, Koji; Madarame, Haruki; Takamasa, Tomoji

    2003-01-01

    For nuclear reactor systems, the critical heat flux (CHF) data is very important because it limits reactor efficiency. Improvement of CHF requires that the cooling liquid can contact the heating surface, or a high-wettability, highly hydrophilic heating surface, even if a vapor bubble layer is generated on the surface. In our previous study, we confirmed that the surface wettability changed significantly or that highly hydrophilic conditions were achieved, after irradiation of 60 Co gamma ray, by the Radiation Induced Surface Activation (RISA) phenomenon. To delineate the effect of RISA on boiling phenomena, surface wettability in a high-temperature environment and critical heat flux (CHF) of metal oxides irradiated by gamma rays were investigated. A CHF experiment in the pool boiling condition was carried out under atmospheric pressure. The heating test section made of titanium was 0.2 mm in thickness, 3 mm in height, and 60 mm in length. Oxidation of the surface was carried out by plasma jetting for 40 seconds. The test section was irradiated by 60 Co gamma ray with predetermined radiation intensity and period. The CHF of oxidized titanium was improved up to 100 percent after 800 kGy 60 Co gamma ray irradiation. We call this effect Radiation Induced Boiling Enhancement (RIBE). Before we conducted the CHF experiment, contact angles of the test pieces were measured to show the relationship between wettability and CHF. The CHF in the present experiment increases will surface wettability in the same manner as shown by Liaw and Dhir's results. (author)

  12. Improvement of boiling heat transfer by radiation induced boiling enhancement

    International Nuclear Information System (INIS)

    Imai, Y.; Okamoto, K.; Madarame, H.; Takamasa, T.

    2003-01-01

    For nuclear reactor systems, the Critical Heat Flux (CHF) data is very important because it limits reactor efficiency. Improvement of CHF requires that the cooling liquid can contact the heating surface, or a high-wettability, highly hydrophilic heating surface, even if a vapor bubble layer is generated on the surface. In our previous study, we confirmed that the surface wettability changed significantly or that highly hydrophilic conditions were achieved, after irradiation of 60Co gamma ray, by the Radiation Induced Surface Activation (RISA) phenomenon. To delineate the effect of RISA on boiling phenomena, surface wettability in a high-temperature environment and Critical Heat Flux (CHF) of metal oxides irradiated by gamma rays were investigated. A CHF experiment in the pool boiling condition was carried out under atmospheric pressure. The heating test section made of titanium was 0.2mm in thickness, 3mm in height, and 60mm in length. Oxidation of the surfaces was carried out by plasma jetting for 40 seconds. The test section was irradiated by 60Co gamma ray with predetermined radiation intensity and period. The CHF of oxidized titanium was improved up to 100 percent after 800kGy 60Co gamma ray irradiation. We call this effect Radiation Induced Boiling Enhancement (RIBE). Before we conducted the CHF experiment, contact angles of the test pieces were measured to show the relationship between wettability and CHF. The CHF in the present experiment increases with surface wettability in the same manner as shown by Liaw and Dhir's results

  13. Mechanical analysis of a heat-shock induced developmental defect

    Science.gov (United States)

    Crews, Sarah M.; McCleery, W. Tyler; Hutson, M. Shane

    2014-03-01

    Embryonic development in Drosophila is a complex process involving coordinated movements of mechanically interacting tissues. Perturbing this system with a transient heat shock can result in a number of developmental defects. In particular, a heat shock applied during the earliest morphogenetic movements of gastrulation can lead to apparent recovery, but then subsequent morphogenetic failure 5-6 hours later during germ band retraction. The process of germ band retraction requires an intact amnioserosa - a single layered extra-embryonic epithelial tissue - and heat shock at gastrulation can induce the later opening of holes in the amnioserosa. These holes are highly correlated with failures of germ band retraction. These holes could be caused by a combination of mechanical weakness in the amnioserosa or local increases in mechanical stress. Here, we assess the role of mechanical stress using confocal imaging to compare cell and tissue morphology in the amnioserosa of normal and heat-shocked embryos and laser hole drilling to map the stress field around the times and locations at which heat-shock induced holes open.

  14. A Rat Model of Full Thickness Thermal Injury Characterized by Thermal Hyperalgesia, Mechanical Allodynia, Pronociceptive Peptide Release and Tramadol Analgesia

    Science.gov (United States)

    2014-01-01

    tramadol reduces acute, postoperative, neuropathic and cancer pain [9,10,12 14] and may have a lower propensity to induce addiction [15] with little to...opioid systems simultaneously, we next examined whether tramadol could attenuate burn evoked pain behaviors in our rat model of full thickness thermal...injury. Tramadol attenuated thermal hyperalgesia when administered one week following thermal injury, a time point when pain behaviors peak in this

  15. Maximum skin hyperaemia induced by local heating: possible mechanisms.

    Science.gov (United States)

    Gooding, Kim M; Hannemann, Michael M; Tooke, John E; Clough, Geraldine F; Shore, Angela C

    2006-01-01

    Maximum skin hyperaemia (MH) induced by heating skin to > or = 42 degrees C is impaired in individuals at risk of diabetes and cardiovascular disease. Interpretation of these findings is hampered by the lack of clarity of the mechanisms involved in the attainment of MH. MH was achieved by local heating of skin to 42-43 degrees C for 30 min, and assessed by laser Doppler fluximetry. Using double-blind, randomized, placebo-controlled crossover study designs, the roles of prostaglandins were investigated by inhibiting their production with aspirin and histamine, with the H1 receptor antagonist cetirizine. The nitric oxide (NO) pathway was blocked by the NO synthase inhibitor, NG-nitro-L-arginine methyl esther (L-NAME), and enhanced by sildenafil (prevents breakdown of cGMP). MH was not altered by aspirin, cetirizine or sildenafil, but was reduced by L-NAME: median placebo 4.48 V (25th, 75th centiles: 3.71, 4.70) versus L-NAME 3.25 V (3.10, 3.80) (p = 0.008, Wilcoxon signed rank test). Inhibition of NO production (L-NAME) resulted in a more rapid reduction in hyperaemia after heating (p = 0.011), whereas hyperaemia was prolonged in the presence of sildenafil (p = 0.003). The increase in skin blood flow was largely confined to the directly heated area, suggesting that the role of heat-induced activation of the axon reflex was small. NO, but not prostaglandins, histamine or an axon reflex, contributes to the increase in blood flow on heating and NO is also a component of the resolution of MH after heating. Copyright 2006 S. Karger AG, Basel.

  16. Analysis of laser-induced heating in optical neuronal guidance

    DEFF Research Database (Denmark)

    Ebbesen, Christian L.; Bruus, Henrik

    2012-01-01

    Recently, it has been shown that it is possible to control the growth direction of neuronal growth cones by stimulation with weak laser light; an effect dubbed optical neuronal guidance. The effect exists for a broad range of laser wavelengths, spot sizes, spot intensities, optical intensity...... profiles and beam modulations, but it is unknown which biophysical mechanisms govern it. Based on thermodynamic modeling and simulation using published experimental parameters as input, we argue that the guidance is linked to heating. Until now, temperature effects due to laser-induced heating...

  17. Enhanced heat sink with geometry induced wall-jet

    Energy Technology Data Exchange (ETDEWEB)

    Hossain, Md. Mahamudul, E-mail: sohel0991@gmail.com; Tikadar, Amitav; Bari, Fazlul; Morshed, A. K. M. M. [Department of Mechanical Engineering Bangladesh University of Engineering and Technology, Dhaka-1000. Bangladesh (Bangladesh)

    2016-07-12

    Mini-channels embedded in solid matrix have already proven to be a very efficient way of electronic cooling. Traditional mini-channel heat sinks consist of single layer of parallel channels. Although mini-channel heat sink can achieve very high heat flux, its pumping requirement for circulating liquid through the channel increase very sharply as the flow velocity increases. The pumping requirements of the heat sink can be reduced by increasing its performance. In this paper a novel approach to increase the thermal performance of the mini-channel heat sink is proposed through geometry induced wall jet which is a passive technique. Geometric irregularities along the channel length causes abrupt pressure change between the channels which causes cross flow through the interconnections thus one channel faces suction and other channel jet action. This suction and jet action disrupts boundary layer causing enhanced heat transfer performance. A CFD model has been developed using commercially available software package FLUENT to evaluate the technique. A parametric study of the velocities and the effect of the position of the wall-jets have been performed. Significant reduction in thermal resistance has been observed for wall-jets, it is also observed that this reduction in thermal resistance is dependent on the position and shape of the wall jet.

  18. Increased Hyperalgesia and Proinflammatory Cytokines in the Spinal Cord and Dorsal Root Ganglion After Surgery and/or Fentanyl Administration in Rats.

    Science.gov (United States)

    Chang, Lu; Ye, Fang; Luo, Quehua; Tao, Yuanxiang; Shu, Haihua

    2018-01-01

    Perioperative fentanyl has been reported to induce hyperalgesia and increase postoperative pain. In this study, we tried to investigate behavioral hyperalgesia, the expression of proinflammatory cytokines, such as interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α), and the activation of microglia in the spinal cord and dorsal root ganglion (DRG) in a rat model of surgical plantar incision with or without perioperative fentanyl. Four groups of rats (n = 32 for each group) were subcutaneously injected with fentanyl at 60 μg/kg or normal saline for 4 times with 15-minute intervals. Plantar incisions were made to rats in 2 groups after the second drug injection. Mechanical and thermal nociceptive thresholds were assessed by the tail pressure test and paw withdrawal test on the day before, at 1, 2, 3, 4 hours, and on the days 1-7 after drug injection. The lumbar spinal cord, bilateral DRG, and cerebrospinal fluid of 4 rats in each group were collected to measure IL-1β, IL-6, and TNF-α on the day before, at the fourth hour, and on the days 1, 3, 5, and 7 after drug injection. The lumbar spinal cord and bilateral DRG were removed to detect the ionized calcium-binding adapter molecule 1 on the day before and on the days 1 and 7 after drug injection. Rats injected with normal saline only demonstrated no significant mechanical or thermal hyperalgesia or any increases of IL-1β, IL-6, and TNF-α in the spinal cord or DRG. However, injection of fentanyl induced analgesia within as early as 4 hours and a significant delayed tail mechanical and bilateral plantar thermal hyperalgesia after injections lasting for 2 days, while surgical plantar incision induced a significant mechanical and thermal hyperalgesia lasting for 1-4 days. The combination of fentanyl and incision further aggravated the hyperalgesia and prolonged the duration of hyperalgesia. The fentanyl or surgical incision upregulated the expression of IL-1β, IL-6, and TNF-α in the

  19. Effect of a high-dose target-controlled naloxone infusion on pain and hyperalgesia in patients following groin hernia repair: study protocol for a randomized controlled trial

    DEFF Research Database (Denmark)

    Pereira, Manuel Pedro; Utke Werner, Mads; Berg Dahl, Joergen

    2015-01-01

    no volunteer developed significant secondary hyperalgesia after the placebo infusion. In order to consistently demonstrate latent sensitization in humans, a pain model inducing deep tissue inflammation, as used in animal studies, might be necessary. The aim of the present study is to examine whether a high......-dose target-controlled naloxone infusion can reinstate pain and hyperalgesia following recovery from open groin hernia repair and thus consistently demonstrate opioid-mediated latent sensitization in humans. METHODS/DESIGN: Patients submitted to unilateral, primary, open groin hernia repair will be included...

  20. Pharmacological interaction between oxcarbazepine and two COX inhibitors in a rat model of inflammatory hyperalgesia.

    Science.gov (United States)

    Stepanović-Petrović, Radica M; Tomić, Maja A; Vučković, Sonja M; Poznanović, Goran; Ugrešić, Nenad D; Prostran, Milica Š; Bošković, Bogdan

    2011-01-01

    Oxcarbazepine, ibuprofen and etodolac have efficacy in inflammatory pain. The combination of different drugs activates both central and peripheral pain inhibitory pathways to induce additive or synergistic antinociception, and this interaction may allow lower doses of each drug combined and improve the safety profile, with lower side-effects. This study aimed to examine the effects of oxcarbazepine-ibuprofen and oxcarbazepine-etodolac combinations, in a rat model of inflammatory hyperalgesia, and determine the type of interaction between drugs. Rats were intraplantarly injected with carrageenan (0.1 ml, 1%) and the hyperalgesia was assessed by modified paw pressure test. The anti-hyperalgesic effects of oxcarbazepine, ibuprofen and etodolac and oxcarbazepine-ibuprofen and oxcarbazepine-etodolac combinations were examined. Drugs were co-administered in a fixed-dose fractions of the ED₅₀ and the type of interaction was determined by isobolographic analysis. Oxcarbazepine (40-160 mg/kg; p.o.), ibuprofen (10-120 mg/kg; p.o.) and etodolac (5-20 mg/kg; p.o.) produced a significant, dose-dependent anti-hyperalgesia in carrageenan-injected rats. ED₅₀ values (mean±SEM) for oxcarbazepine, ibuprofen and etodolac were 88.17±3.65, 47.07±10.27 and 13.05±1.42 mg/kg, respectively. Oxcarbazepine-ibuprofen and oxcarbazepine-etodolac combinations induced significant and dose-dependent anti-hyperalgesia. Isobolographic analysis revealed that oxcarbazepine exerts a synergistic interaction with ibuprofen, with almost 4-fold reduction of doses of both drugs in combination. In contrast, there was an additive interaction with etodolac. Synergistic interaction of oxcarbazepine with ibuprofen and its additive interaction with etodolac provide new information about the combination pain treatment and could be explored further in patients with inflammatory pain. Adverse effect analysis of the combinations is necessary to verify possible clinical use of the mixtures. Copyright

  1. Flow-excursion-induced dryout at low-heat-flux

    International Nuclear Information System (INIS)

    Khatib-Rahbar, M.; Cazzoli, E.G.

    1983-01-01

    Flow-excursion-induced dryout at low-heat-flux natural-convection boiling, typical of liquid-metal fast-breeder reactors, is addressed. Steady-state calculations indicate that low-quality boiling is possible up to the point of Ledinegg instability leading to flow excursion and subsequent dryout in agreement with experimental data. A flow-regime-dependent dryout heat flux relationship based upon saturated boiling criterion is also presented. Transient analysis indicates that premature flow excursion can not be ruled out and sodium boiling is highly transient dependent. Analysis of a high-heat-flux forced convection, loss-of-flow transient shows a significantly faster flow excursion leading to dryout in excellent agreement with parallel calculations using the two-dimensional THORAX code. 17 figures

  2. Flow induced vibration in shell and tube heat exchangers

    International Nuclear Information System (INIS)

    Soper, B.M.H.

    1981-01-01

    Assessing heat exchanger designs, from the standpoint of flow induced vibration, is becoming increasingly important as shell side flow velocities are increased in a quest for better thermal performance. This paper reviews the state of the art concerning the main sources of vibration excitation, i.e. vortex shedding resonance, turbulent buffeting, fluidelastic instability and acoustic resonance, as well as the structural dynamics of the tubes. It is concluded that there are many areas which require further investigation but there are sufficient data available at present to design, with reasonable confidence, units that will be free from flow induced vibration. Topics which are considered to be key areas for further work are listed

  3. Sex specific effects of heat induced hormesis in Hsf-deficient Drosophila melanogaster

    DEFF Research Database (Denmark)

    Sørensen, J G; Kristensen, Torsten Nygård; Kristensen, K V

    2007-01-01

    In insects mild heat stress early in life has been reported to increase life span and heat resistance later in life, a phenomenon termed hormesis. Here, we test if the induction of the heat shock response by mild heat stress is mediating hormesis in longevity and heat resistance at older age...... line, seemingly mediated by the production of heat shock proteins (Hsps). The results indicate that heat inducible Hsps are important for heat induced hormesis in longevity and heat stress resistance. However, the results also suggest that other processes are involved and that different mechanisms...... might have marked sex specific impact...

  4. GABAergic mechanisms are involved in the antihyperalgesic effects of carbamazepine and oxcarbazepine in a rat model of inflammatory hyperalgesia.

    Science.gov (United States)

    Stepanović-Petrović, Radica M; Tomić, Maja A; Vucković, Sonja M; Kocev, Nikola; Ugresić, Nenad D; Prostran, Milica S; Bosković, Bogdan

    2008-01-01

    The purpose of this study was to investigate the involvement of GABAergic mechanisms in the antihyperalgesic effect of carbamazepine and oxcarbazepine by examining the effect of bicuculline (GABA(A) receptor antagonist) on these effects of antiepileptic drugs. Rats were intraplantarly (i.pl.) injected with the proinflammatory compound concanavalin A (Con A). A paw-pressure test was used to determine: (1) the development of hyperalgesia induced by Con A; (2) the effects of carbamazepine/oxcarbazepine on Con A-induced hyperalgesia, and (3) the effects of bicuculline on the carbamazepine/oxcarbazepine antihyperalgesia. Intraperitoneally injected bicuculline (0.5-1 mg/kg, i.p.) exhibited significant suppression of the systemic antihyperalgesic effects of carbamazepine (27 mg/kg, i.p.) and oxcarbazepine (80 mg/kg, i.p.). When applied intraplantarly, bicuculline (0.14 mg/paw, i.pl.) did not produce any change in the peripheral antihyperalgesic effects of carbamazepine (0.14 mg/paw, i.pl.) and oxcarbazepine (0.5 mg/paw, i.pl.). Bicuculline alone did not produce an intrinsic effect in the paw-pressure test. These results indicate that the antihyperalgesic effects of carbamazepine and oxcarbazepine against inflammatory hyperalgesia involve in part the GABAergic inhibitory modulation of pain transmission at central, but not at peripheral sites, which is mediated via GABA(A) receptor activation. Copyright 2008 S. Karger AG, Basel.

  5. Analysis of flow induced vibration in heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Beek, A.W. van [Institute for Mechanical Constructions TNO, Delft (Netherlands)

    1977-12-01

    A description will be given of three different types of heat exchangers developed by the Dutch Nuclear Industry Group ''Neratoom'' in cooperation with TNO for the sodium-cooled fast breeder reactor SNR-300 at Kalkar. Moreover, the research related with flow induced vibrations carried out by TNO (Organization for Applied Scientific Research) will be presented. The flow induced forces on the tubes of the straight-tube steam generators were measured at the inlet and outlet section where partial crossflow occurs. With the measured flow induced forces the response of a tube was calculated as a function of the tube-to-supportbush clearances taking into account the non-linear damping effects from the sodium. The theoretical results showed that for this particular design no tube impact damage is to be expected which was confirmed later by a full scale experiment. Special attention will be devoted to the steam generator with helical-coil tube-bundles, where the sodium flows in a counter cross-flow over the tube-bundle. Extensive measurements of the power spectra of the flow induced forces were carried out since no information could be found in the literature. The vibration analysis will be presented and vibration modes of the entire bundle will be compared with experimentally obtained results. Finally a description of the vibration tests to be carried out on the intermediate heat exchanger (IHX) will be presented. (author)

  6. Analysis of flow induced vibration in heat exchangers

    International Nuclear Information System (INIS)

    Beek, A.W. van

    1977-01-01

    A description will be given of three different types of heat exchangers developed by the Dutch Nuclear Industry Group ''Neratoom'' in cooperation with TNO for the sodium-cooled fast breeder reactor SNR-300 at Kalkar. Moreover, the research related with flow induced vibrations carried out by TNO (Organization for Applied Scientific Research) will be presented. The flow induced forces on the tubes of the straight-tube steam generators were measured at the inlet and outlet section where partial crossflow occurs. With the measured flow induced forces the response of a tube was calculated as a function of the tube-to-supportbush clearances taking into account the non-linear damping effects from the sodium. The theoretical results showed that for this particular design no tube impact damage is to be expected which was confirmed later by a full scale experiment. Special attention will be devoted to the steam generator with helical-coil tube-bundles, where the sodium flows in a counter cross-flow over the tube-bundle. Extensive measurements of the power spectra of the flow induced forces were carried out since no information could be found in the literature. The vibration analysis will be presented and vibration modes of the entire bundle will be compared with experimentally obtained results. Finally a description of the vibration tests to be carried out on the intermediate heat exchanger (IHX) will be presented. (author)

  7. Racemization of Valine by Impact-Induced Heating

    Science.gov (United States)

    Furukawa, Yoshihiro; Takase, Atsushi; Sekine, Toshimori; Kakegawa, Takeshi; Kobayashi, Takamichi

    2018-03-01

    Homochirality plays an important role in all living organisms but its origin remains unclear. It also remains unclear whether such chiral molecules survived terrestrial heavy impact events. Impacts of extraterrestrial objects on early oceans were frequent and could have affected the chirality of oceanic amino acids when such amino acids accumulated during impacts. This study investigated the effects of shock-induced heating on enantiomeric change of valine with minerals such as olivine ([Mg0.9, Fe0.1]2SiO4), hematite (Fe2O3), and calcite (CaCO3). With a shock wave generated by an impact at 0.8 km/s, both d- and l-enriched valine were significantly decomposed and partially racemized under all experimental conditions. Different minerals had different shock impedances; therefore, they provided different P-T conditions for identical impacts. Furthermore, the high pH of calcite promoted the racemization of valine. The results indicate that in natural hypervelocity impacts, amino acids in shocked oceanic water would have decomposed completely, since impact velocity and the duration of shock compression and heating are typically greater in hypervelocity impact events than those in experiments. Even with the shock wave by the impact of small and decelerated projectiles in which amino acids survive, the shock heating may generate sufficient heat for significant racemization in shocked oceanic water. However, the duration of shock induced heating by small projectiles is limited and the population of such decelerated projectiles would be limited. Therefore, even though impacts of asteroids and meteorites were frequent on the prebiotic Earth, impact events would not have significantly changed the ee of proteinogenic amino acids accumulated in the entire ocean.

  8. Detection of cold pain, cold allodynia and cold hyperalgesia in freely behaving rats

    Directory of Open Access Journals (Sweden)

    Woolf Clifford J

    2005-12-01

    Full Text Available Abstract Background Pain is elicited by cold, and a major feature of many neuropathic pain states is that normally innocuous cool stimuli begin to produce pain (cold allodynia. To expand our understanding of cold induced pain states we have studied cold pain behaviors over a range of temperatures in several animal models of chronic pain. Results We demonstrate that a Peltier-cooled cold plate with ± 1°C sensitivity enables quantitative measurement of a detection withdrawal response to cold stimuli in unrestrained rats. In naïve rats the threshold for eliciting cold pain behavior is 5°C. The withdrawal threshold for cold allodynia is 15°C in both the spared nerve injury and spinal nerve ligation models of neuropathic pain. Cold hyperalgesia is present in the spared nerve injury model animals, manifesting as a reduced latency of withdrawal response threshold at temperatures that elicit cold pain in naïve rats. We also show that following the peripheral inflammation produced by intraplantar injection of complete Freund's adjuvant, a hypersensitivity to cold occurs. Conclusion The peltier-cooled provides an effective means of assaying cold sensitivity in unrestrained rats. Behavioral testing of cold allodynia, hyperalgesia and pain will greatly facilitate the study of the neurobiological mechanisms involved in cold/cool sensations and enable measurement of the efficacy of pharmacological treatments to reduce these symptoms.

  9. Loop Heat Pipe Temperature Oscillation Induced by Gravity Assist and Reservoir Heating

    Science.gov (United States)

    Ku, Jentung; Garrison, Matt; Patel, Deepak; Robinson, Frank; Ottenstein, Laura

    2015-01-01

    The Laser Thermal Control System (LCTS) for the Advanced Topographic Laser Altimeter System (ATLAS) to be installed on NASA's Ice, Cloud, and Land Elevation Satellite (ICESat-2) consists of a constant conductance heat pipe and a loop heat pipe (LHP) with an associated radiator. During the recent thermal vacuum testing of the LTCS where the LHP condenser/radiator was placed in a vertical position above the evaporator and reservoir, it was found that the LHP reservoir control heater power requirement was much higher than the analytical model had predicted. Even with the control heater turned on continuously at its full power, the reservoir could not be maintained at its desired set point temperature. An investigation of the LHP behaviors found that the root cause of the problem was fluid flow and reservoir temperature oscillations, which led to persistent alternate forward and reversed flow along the liquid line and an imbalance between the vapor mass flow rate in the vapor line and liquid mass flow rate in the liquid line. The flow and temperature oscillations were caused by an interaction between gravity and reservoir heating, and were exacerbated by the large thermal mass of the instrument simulator which modulated the net heat load to the evaporator, and the vertical radiator/condenser which induced a variable gravitational pressure head. Furthermore, causes and effects of the contributing factors to flow and temperature oscillations intermingled.

  10. heat-induced biological changes as heat tolerance indices related to growth performance in buffaloes

    International Nuclear Information System (INIS)

    Kaldes, M.Z.N.

    2004-01-01

    the main objective of this study was to predict new heat tolerance indices related to hot summer growth performance, depending on heat - induced changes in some physiological and biochemical parameters of young water buffalo calves. the present study was carried out on 8 egyptian male buffalo calves of 6 months old and 106.8 kg mean body weight (B W), and on the same animals of 12 months old and 179.5 kg mean B W. the animals were maintained in a climatic chamber of the egyptian atomic energy authority. the animals were maintained in metabolic cages inside a climatic chamber for 3 weeks under mild climate (20-24 c and 50-60% Rh, equivalent to 62-72 THI) for 6 hours daily as adjustment period,followed by 5 and 7 days in the 6- and 12-month old calves, respectively at the same climatic conditions as a control period.this was followed by 6 hours of acute heat exposure period (33-43 c and 40-60% Rh, equivalent to 85-93 Thi), then by chronic heat exposure period of the same climatic conditions for 5 and 7 days in the 6- and 12- month old calves, respectively.Rectal temperature (RT) and respiration rate (RR) were estimated daily, whereas BW was estimated at the beginning and the end of each exposure period

  11. Heat-induced electron emission in paraelectric phase of triglycine sulfate heated with great rate

    CERN Document Server

    Sidorkin, A A; Rogazinskaya, O V; Milovidova, S D

    2002-01-01

    One recorded experimentally heat-induced electron emission in ferroelectric triglycine sulfate (TGS) crystal within temperature range exceeding the Curie point by 10-15 K. One studied cases of q = dT/dt various rates of linear heating of specimens of TGS nominally pure crystal and TGS crystal with chromium impurity. Increase of heating rate is shown to result in increase of emission current density within the whole investigated range of temperatures. Temperature of emission occurrence depends on q rate negligibly. At the same time, temperature of emission disappearance monotonically increases with q growth. At q below 1 K/min it is localized below the Curie point. At q = 4-5 K/min the mentioned temperature reaches 60-65 deg C. In TGS crystal with chromium impurity the temperature of emission occurrence is close to the case of pure TGS. In this case, the range of emission drawing in paraphase here is by about 2 times narrower in contrast to the case of pure TGS heated with the same rate

  12. Chaos of radiative heat-loss-induced flame front instability.

    Science.gov (United States)

    Kinugawa, Hikaru; Ueda, Kazuhiro; Gotoda, Hiroshi

    2016-03-01

    We are intensively studying the chaos via the period-doubling bifurcation cascade in radiative heat-loss-induced flame front instability by analytical methods based on dynamical systems theory and complex networks. Significant changes in flame front dynamics in the chaotic region, which cannot be seen in the bifurcation diagrams, were successfully extracted from recurrence quantification analysis and nonlinear forecasting and from the network entropy. The temporal dynamics of the fuel concentration in the well-developed chaotic region is much more complicated than that of the flame front temperature. It exhibits self-affinity as a result of the scale-free structure in the constructed visibility graph.

  13. Effects of mesenchymal stem cells conditioned medium on behavioral aspects of inflammatory arthritic pain induced by CFA adjuvant

    Directory of Open Access Journals (Sweden)

    Vida Nazemian

    2016-07-01

    Full Text Available Background: Rheumatoid arthritis is a type of inflammatory pain and is an autoimmune and chronic inflammatory disease which can lead to hyperalgesia, edema and decreased motor activity in affected area. Mesenchymal stem cells conditioned medium (MSC-CM has anti-inflammatory mediators which can regulate the immune responses, alleviate inflammatory symptoms and has a paracrine effects too. The aim of this study was to evaluate the effects of mesenchymal stem cells conditioned medium on behavioral aspects of inflammatory arthritic pain which induced by CFA adjuvant.Materials and Methods: Complete Freund’s adjuvant (CFA-induced arthritis (AA was caused by single subcutaneous injection of CFA into the rats hind paw on day zero. MSC-CM was administered daily and intraperitoneal during the 21 days of the study after CFA injection. Hyperalgesia and edema were assessed on days 0, 7, 14 and 21 of the study respectively with radian heat and plethysmometer instrument.Results: The results of this study indicated the significant roles of MSC-CM in betterment of inflammatory symptoms such as hyperalgesia and edema during different stages of inflammation caused by CFA. The continuing injection of MSC-CM could reduce the inflammatory symptoms.Conclusion: Long term treatment by MSC-CM can alleviate hyperalgesia and edema and decrease those to the level of the time before induction of inflammation.   

  14. Reproducibility of the heat/capsaicin skin sensitization model in healthy volunteers

    Directory of Open Access Journals (Sweden)

    Cavallone LF

    2013-11-01

    Full Text Available Laura F Cavallone,1 Karen Frey,1 Michael C Montana,1 Jeremy Joyal,1 Karen J Regina,1 Karin L Petersen,2 Robert W Gereau IV11Department of Anesthesiology, Washington University in St Louis, School of Medicine, St Louis, MO, USA; 2California Pacific Medical Center Research Institute, San Francisco, CA, USAIntroduction: Heat/capsaicin skin sensitization is a well-characterized human experimental model to induce hyperalgesia and allodynia. Using this model, gabapentin, among other drugs, was shown to significantly reduce cutaneous hyperalgesia compared to placebo. Since the larger thermal probes used in the original studies to produce heat sensitization are now commercially unavailable, we decided to assess whether previous findings could be replicated with a currently available smaller probe (heated area 9 cm2 versus 12.5–15.7 cm2.Study design and methods: After Institutional Review Board approval, 15 adult healthy volunteers participated in two study sessions, scheduled 1 week apart (Part A. In both sessions, subjects were exposed to the heat/capsaicin cutaneous sensitization model. Areas of hypersensitivity to brush stroke and von Frey (VF filament stimulation were measured at baseline and after rekindling of skin sensitization. Another group of 15 volunteers was exposed to an identical schedule and set of sensitization procedures, but, in each session, received either gabapentin or placebo (Part B.Results: Unlike previous reports, a similar reduction of areas of hyperalgesia was observed in all groups/sessions. Fading of areas of hyperalgesia over time was observed in Part A. In Part B, there was no difference in area reduction after gabapentin compared to placebo.Conclusion: When using smaller thermal probes than originally proposed, modifications of other parameters of sensitization and/or rekindling process may be needed to allow the heat/capsaicin sensitization protocol to be used as initially intended. Standardization and validation of

  15. TRPV1 receptor inhibition decreases CCL2-induced hyperalgesia

    Czech Academy of Sciences Publication Activity Database

    Špicarová, Diana; Adámek, Pavel; Kalynovska, Nataliia; Mrózková, Petra; Paleček, Jiří

    2014-01-01

    Roč. 81, JUN (2014), s. 75-84 ISSN 0028-3908 R&D Projects: GA ČR(CZ) GA305/09/1228; GA ČR(CZ) GPP303/12/P510; GA ČR(CZ) GBP304/12/G069; GA MŠk(CZ) LH12058 Grant - others:Univerzita Karlova(CZ) 253154 Institutional support: RVO:67985823 Keywords : pain * spinal cord * synaptic transmission * CCL2 * TRPV1 * EPSC Subject RIV: FH - Neurology Impact factor: 5.106, year: 2014

  16. Peripheral Glutamate Receptors Are Required for Hyperalgesia Induced by Capsaicin

    Directory of Open Access Journals (Sweden)

    You-Hong Jin

    2012-01-01

    Full Text Available Transient receptor potential vanilloid1 (TRPV1 and glutamate receptors (GluRs are located in small diameter primary afferent neurons (nociceptors, and it was speculated that glutamate released in the peripheral tissue in response to activation of TRPV1 might activate nociceptors retrogradely. But, it was not clear which types of GluRs are functioning in the nociceptive sensory transmission. In the present study, we examined the c-Fos expression in spinal cord dorsal horn following injection of drugs associated with glutamate receptors with/without capsaicin into the hindpaw. The subcutaneous injection of capsaicin or glutamate remarkably evoked c-Fos expression in ipsilateral sides of spinal cord dorsal horn. This capsaicin evoked increase of c-Fos expression was significantly prevented by concomitant administration of MK801, CNQX, and CPCCOEt. On the other hand, there were not any significant changes in coinjection of capsaicin and MCCG or MSOP. These results reveal that the activation of iGluRs and group I mGluR in peripheral afferent nerves play an important role in mechanisms whereby capsaicin evokes/maintains nociceptive responses.

  17. Nocebo-induced hyperalgesia during local anesthetic injection.

    Science.gov (United States)

    Varelmann, Dirk; Pancaro, Carlo; Cappiello, Eric C; Camann, William R

    2010-03-01

    Common practice during local anesthetic injection is to warn the patient using words such as: "You will feel a big bee sting; this is the worst part." Our hypothesis was that using gentler words for administration of the local anesthetic improves pain perception and patient comfort. One hundred forty healthy women at term gestation requesting neuraxial analgesia were randomized to either a "placebo" ("We are going to give you a local anesthetic that will numb the area and you will be comfortable during the procedure") or "nocebo" ("You are going to feel a big bee sting; this is the worst part of the procedure") group. Pain was assessed immediately after the local anesthetic skin injection using verbal analog scale scores of 0 to 10. Median verbal analog scale pain scores were lower when reassuring words were used compared with the harsher nocebo words (3 [2-4] vs 5 [3-6]; P words improves the subjective experience during invasive procedures.

  18. Development of Design Criteria for Fluid Induced Structural Vibrations in Steam Generators and Heat Exchangers

    International Nuclear Information System (INIS)

    Uvan Catton; Dhir, Vijay K.; Deepanjan Mitra; Omar Alquaddoomi; Pierangelo Adinolfi

    2004-01-01

    Flow-induced vibration in heat exchangers has been a major cause of concern in the nuclear industry for several decades. Many incidents of failure of heat exchangers due to apparent flow-induced vibration have been reported through the USNRC incident reporting system. Almost all heat exchangers have to deal with this problem during their operation. The phenomenon has been studied since the 1970s and the database of experimental studies on flow-induced vibration is constantly updated with new findings and improved design criteria for heat exchangers

  19. Repeated forced swim stress enhances CFA-evoked thermal hyperalgesia and affects the expressions of pCREB and c-Fos in the insular cortex.

    Science.gov (United States)

    Imbe, H; Kimura, A; Donishi, T; Kaneoke, Y

    2014-02-14

    Stress affects brain activity and promotes long-term changes in multiple neural systems. Exposure to stressors causes substantial effects on the perception and response to pain. In several animal models, chronic stress produces lasting hyperalgesia. The insular (IC) and anterior cingulate cortices (ACC) are the regions exhibiting most reliable pain-related activity. And the IC and ACC play an important role in pain modulation via the descending pain modulatory system. In the present study we examined the expression of phospho-cAMP response element-binding protein (pCREB) and c-Fos in the IC and ACC after forced swim stress (FS) and complete Freund's adjuvant (CFA) injection to clarify changes in the cerebral cortices that affect the activity of the descending pain modulatory system in the rats with stress-induced hyperalgesia. FS (day 1, 10min; days 2-3, 20min) induced an increase in the expression of pCREB and c-Fos in the anterior IC (AIC). CFA injection into the hindpaw after the FS shows significantly enhanced thermal hyperalgesia and induced a decrease in the expression of c-Fos in the AIC and the posterior IC (PIC). Quantitative image analysis showed that the numbers of c-Fos-immunoreactive neurons in the left AIC and PIC were significantly lower in the FS+CFA group (L AIC, 95.9±6.8; L PIC, 181.9±23.1) than those in the naive group (L AIC, 151.1±19.3, pCFA-induced thermal hyperalgesia through dysfunction of the descending pain modulatory system. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  20. Effects of propofol on damage of rat intestinal epithelial cells induced by heat stress and lipopolysaccharides

    Energy Technology Data Exchange (ETDEWEB)

    Tang, J.; Jiang, Y. [Southern Medical University, Nanfang Hospital, Department of Anesthesia, Guangzhou, China, Department of Anesthesia, Nanfang Hospital, Southern Medical University, Guangzhou (China); Tang, Y.; Chen, B. [Guangzhou General Hospital of Guangzhou Military Command, Department of Intensive Care Unit, Guangzhou, China, Department of Intensive Care Unit, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou (China); Sun, X. [Laboratory of Traditional Chinese Medicine Syndrome, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou (China); Su, L.; Liu, Z. [Guangzhou General Hospital of Guangzhou Military Command, Department of Intensive Care Unit, Guangzhou, China, Department of Intensive Care Unit, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou (China)

    2013-06-25

    Gut-derived endotoxin and pathogenic bacteria have been proposed as important causative factors of morbidity and death during heat stroke. However, it is still unclear what kind of damage is induced by heat stress. In this study, the rat intestinal epithelial cell line (IEC-6) was treated with heat stress or a combination of heat stress and lipopolysaccharide (LPS). In addition, propofol, which plays an important role in anti-inflammation and organ protection, was applied to study its effects on cellular viability and apoptosis. Heat stress, LPS, or heat stress combined with LPS stimulation can all cause intestinal epithelial cell damage, including early apoptosis and subsequent necrosis. However, propofol can alleviate injuries caused by heat stress, LPS, or the combination of heat stress and LPS. Interestingly, propofol can only mitigate LPS-induced intestinal epithelial cell apoptosis, and has no protective role in heat-stress-induced apoptosis. This study developed a model that can mimic the intestinal heat stress environment. It demonstrates the effects on intestinal epithelial cell damage, and indicated that propofol could be used as a therapeutic drug for the treatment of heat-stress-induced intestinal injuries.

  1. Effects of propofol on damage of rat intestinal epithelial cells induced by heat stress and lipopolysaccharides

    International Nuclear Information System (INIS)

    Tang, J.; Jiang, Y.; Tang, Y.; Chen, B.; Sun, X.; Su, L.; Liu, Z.

    2013-01-01

    Gut-derived endotoxin and pathogenic bacteria have been proposed as important causative factors of morbidity and death during heat stroke. However, it is still unclear what kind of damage is induced by heat stress. In this study, the rat intestinal epithelial cell line (IEC-6) was treated with heat stress or a combination of heat stress and lipopolysaccharide (LPS). In addition, propofol, which plays an important role in anti-inflammation and organ protection, was applied to study its effects on cellular viability and apoptosis. Heat stress, LPS, or heat stress combined with LPS stimulation can all cause intestinal epithelial cell damage, including early apoptosis and subsequent necrosis. However, propofol can alleviate injuries caused by heat stress, LPS, or the combination of heat stress and LPS. Interestingly, propofol can only mitigate LPS-induced intestinal epithelial cell apoptosis, and has no protective role in heat-stress-induced apoptosis. This study developed a model that can mimic the intestinal heat stress environment. It demonstrates the effects on intestinal epithelial cell damage, and indicated that propofol could be used as a therapeutic drug for the treatment of heat-stress-induced intestinal injuries

  2. Lipopolysaccharide-induced Pulpitis Up-regulates TRPV1 in Trigeminal Ganglia

    Science.gov (United States)

    Chung, M.-K.; Lee, J.; Duraes, G.; Ro, J.Y.

    2011-01-01

    Tooth pain often accompanies pulpitis. Accumulation of lipopolysaccharides (LPS), a product of Gram-negative bacteria, is associated with painful clinical symptoms. However, the mechanisms underlying LPS-induced tooth pain are not clearly understood. TRPV1 is a capsaicin- and heat-gated nociceptive ion channel implicated in thermosensation and hyperalgesia under inflammation or injury. Although TRPV1 is expressed in pulpal afferents, it is not known whether the application of LPS to teeth modulates TRPV1 in trigeminal nociceptors. By assessing the levels of protein and transcript of TRPV1 in mouse trigeminal ganglia, we demonstrate that dentinal application of LPS increases the expression of TRPV1. Our results suggest that the up-regulation of TRPV1 in trigeminal nociceptors following bacterial infection could contribute to hyperalgesia under pulpitis conditions. PMID:21712529

  3. Geldanamycin induces heat shock protein 70 and protects against MPTP-induced dopaminergic neurotoxicity in mice.

    Science.gov (United States)

    Shen, Hai-Ying; He, Jin-Cai; Wang, Yumei; Huang, Qing-Yuan; Chen, Jiang-Fan

    2005-12-02

    As key molecular chaperone proteins, heat shock proteins (HSPs) represent an important cellular protective mechanism against neuronal cell death in various models of neurological disorders. In this study, we investigated the effect as well as the molecular mechanism of geldanamycin (GA), an inhibitor of Hsp90, on 1-methyl-4-pheny-1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic neurotoxicity, a mouse model of Parkinson disease. Neurochemical analysis showed that pretreatment with GA (via intracerebral ventricular injection 24 h prior to MPTP treatment) increased residual dopamine content and tyrosine hydroxylase immunoreactivity in the striatum 24 h after MPTP treatment. To dissect out the molecular mechanism underlying this neuroprotection, we showed that the GA-mediated protection against MPTP was associated with a reduction of cytosolic Hsp90 and an increase in Hsp70, with no significant changes in Hsp40 and Hsp25 levels. Furthermore, in parallel with the induction of Hsp70, striatal nuclear HSF1 levels and HSF1 binding to heat shock element sites in the Hsp70 promoter were significantly enhanced by the GA pretreatment. Together these results suggested that the molecular cascade leading to the induction of Hsp70 is critical to the neuroprotection afforded by GA against MPTP-induced neurotoxicity in the brain and that pharmacological inhibition of Hsp90 may represent a potential therapeutic strategy for Parkinson disease.

  4. [Suppressive Effects of Extract of Cedar Wood on Heat-induced Expression of Cellular Heat Shock Protein].

    Science.gov (United States)

    Miyakoshi, Junji; Matsubara, Eri; Narita, Eijiro; Koyama, Shin; Shimizu, Yoko; Kawai, Shuichi

    2018-01-01

     In recent years, highly antimicrobial properties of cedar heartwood essential oil against the wood-rotting fungi and pathogenic fungi have been reported in several papers. Antimicrobial properties against oral bacteria by hinokitiol contained in Thujopsis have been also extensively studied. The relation of naturally derived components and human immune system has been studied in some previous papers. In the present study, we focused on Japanese cedar, which has the widest artificial afforestation site in the country among various tree species. Extract oil was obtained from mixture of sapwood and heartwood of about 40-year cedar grown in Oguni, Kumamoto, Japan. We examined the influence of extract components from Japanese cedar woods on the expression of heat shock protein 70 (Hsp70) during heating, and on the micronucleus formation induced by the treatment of bleomycin as a DNA damaging agent. Cell lines used in this study were human fetal glial cells (SVGp12) and human glioma cells (MO54). Remarkable suppression of the Hsp70 expression induced by heating at 43°C was detected by the treatment of cedar extract in both SVGp12 and MO54 cells. We also found that cedar extract had an inhibitory tendency to reduce the micronucleus formation induced by bleomycin. From these results, the extract components from Japanese cedar woods would have an inhibitory effect of the stress response as a suppression of the heat-induced Hsp70 expression, and might have a reductive effect on carcinogenicity.

  5. Weak light emission of soft tissues induced by heating

    Science.gov (United States)

    Spinelli, Antonello E.; Durando, Giovanni; Boschi, Federico

    2018-04-01

    The main goal of this work is to show that soft tissue interaction with high-intensity focused ultrasound (HIFU) or direct heating leads to a weak light emission detectable using a small animal optical imaging system. Our results show that the luminescence signal is detectable after 30 min of heating, resembling the time scale of delayed luminescence. The imaging of a soft tissue after heating it using an HIFU field shows that the luminescence pattern closely matches the shape of the cone typical of the HIFU beam. We conclude that heating a soft tissue using two different sources leads to the emission of a weak luminescence signal from the heated region with a decay half-life of a few minutes (4 to 6 min). The origin of such light emission needs to be further investigated.

  6. Photochemically-induced ischemia of the rat sciatic nerve produces a dose-dependent and highly reproducible mechanical, heat and cold allodynia, and signs of spontaneous pain.

    Science.gov (United States)

    Kupers, R; Yu, W; Persson, J K; Xu, X J; Wiesenfeld-Hallin, Z

    1998-05-01

    Sensory abnormalities and changes in spontaneous behavior were examined after a photochemically induced ischemic lesion of the rat sciatic nerve. Male adult rats were anesthetized and the sciatic nerve was exposed. After the intravenous injection of a photosensitizing dye, erythrosin B, the exposed nerve was irradiated just proximal to the nerve trifurcation with light from an argon laser. Three different irradiation times were used, 30 s, 1 and 2 min. In sham-operated rats, the exposed sciatic nerve was irradiated for 2 min without prior injection of the erythrosin B. Rats were tested for the presence of mechanical, cold and heat allodynia or hyperalgesia. All the animals in the 1- and 2-min irradiation groups developed mechanical, cold and heat allodynia after nerve irradiation. A significant dose-dependent effect of laser exposure time was observed for all modalities tested (2 min > 1 min > 30 s = sham). The maximum effects were observed at 3 and 7 days postirradiation and remained present for up to 10 weeks. No significant contralateral effects were observed in any of the groups. In three separate groups of rats (1, 2 and 4 min of laser exposure), the presence of possible signs of spontaneous pain (paw shaking, paw elevation and freezing behavior) was tested. A significant and exposure time-dependent increase in spontaneous paw elevation and paw shaking was observed which was maximal at week 1, but resolved at 4 weeks (4 min > 2 min > 1 min > sham). In addition, animals in all ischemic groups, but not in the sham group, showed a significant increase in freezing behavior up to 4 weeks after nerve irradiation. Light microscopic evaluation of nerves removed 7 days post-irradiation, i.e. when maximal allodynia was observed, showed clear evidence of demyelination of large myelinated fibers. These data indicate that photochemically-induced peripheral nerve ischemia is associated with abnormal pain-related behaviors, including mechanical, thermal and cold allodynia

  7. Buoyancy induced convective flow in porous media with heat source

    International Nuclear Information System (INIS)

    Hwang, I.T.

    1978-01-01

    An unbounded fluid layer in a porous medium with an internal heat source and uniformly heated from below is studied. The layer is in the gravitational field. Linear theory predicts that the disturbances of infinitesimal amplitude will start to grow when the Rayleigh number exceeds its critical value. These disturbances do not grow without limit; but by advecting heat and momentum, the disturbances alter their forms to achieve a finite amplitude. Just like infinitesimal amplitude disturbances the degeneracies of possible solutions persist for finite amplitude solutions. This study evaluates these various forms of solutions. The small parameter method of Poincare is used to treat the problem in successive order

  8. Local cooling does not prevent hyperalgesia following burn injury in humans

    DEFF Research Database (Denmark)

    Werner, Mads U; Lassen, Birgit Vibeke; Pedersen, Juri L

    2002-01-01

    One of the oldest methods of pain relief following a burn injury is local application of ice or cold water. Experimental data indicate that cooling may also reduce the severity of tissue injury and promote wound healing, but there are no controlled studies in humans evaluating the anti-inflammato......One of the oldest methods of pain relief following a burn injury is local application of ice or cold water. Experimental data indicate that cooling may also reduce the severity of tissue injury and promote wound healing, but there are no controlled studies in humans evaluating the anti...... and mechanical detection thresholds, thermal and mechanical pain responses, area of secondary hyperalgesia), first degree burn injuries were induced on both calves by contact thermodes (12.5 cm(2), 47 degrees C for 7 min). Eight minutes after the burn injury, contact thermodes (12.5 cm(2)) were again applied...... on the burns. One of the thermodes cooled the burn (8 degrees C for 30 min) whereas the other thermode was a non-active dummy on the control burn. Inflammatory and sensory variables were followed for 160 min after end of the cooling procedure. The burn injury induced significant increases in skin temperature...

  9. Slick (Kcnt2 Sodium-Activated Potassium Channels Limit Peptidergic Nociceptor Excitability and Hyperalgesia

    Directory of Open Access Journals (Sweden)

    Danielle L Tomasello

    2017-09-01

    Full Text Available The Slick (Kcnt2 sodium-activated potassium (K Na channel is a rapidly gating and weakly voltage-dependent and sodium-dependent potassium channel with no clearly defined physiological function. Within the dorsal root ganglia (DRGs, we show Slick channels are exclusively expressed in small-sized and medium-sized calcitonin gene–related peptide (CGRP-containing DRG neurons, and a pool of channels are localized to large dense-core vesicles (LDCV-containing CGRP. We stimulated DRG neurons for CGRP release and found Slick channels contained within CGRP-positive LDCV translocated to the neuronal membrane. Behavioral studies in Slick knockout (KO mice indicated increased basal heat detection and exacerbated thermal hyperalgesia compared with wild-type littermate controls during neuropathic and chronic inflammatory pain. Electrophysiologic recordings of DRG neurons from Slick KO mice revealed that Slick channels contribute to outward current, propensity to fire action potentials (APs, and to AP properties. Our data suggest that Slick channels restrain the excitability of CGRP-containing neurons, diminishing pain behavior after inflammation and injury.

  10. Inlet effect induced ''upstream'' critical heat flux in smooth tubes

    International Nuclear Information System (INIS)

    Kitto, J.B. Jr.

    1986-01-01

    An unusual form of ''upstream'' critical heat flux (CHF) has been observed and directly linked to the inlet flow pattern during an experimental study of high pressure (17 - 20 MPa) water flowing through a vertical 38.1 mm ID smooth bore tube with uniform axial and nonuniform circumferential heating. These upstream CHF data were characterized by temperature excursions which initially occurred at a relatively fixed axial location in the middle of the test section while the outlet and inlet heated lengths experienced no change. A rifled tube inlet flow conditioner could be substituted for a smooth tube section to generate the desired swirling inlet flow pattern. The upstream CHF data were found to match data from a uniformly heated smooth bore tube when the comparison was made using the peak local heat flux. The mechanism proposed to account for the upstream CHF observations involves the destructive interference between the decaying swirl flow and the secondary circumferential liquid flow field resulting from the one-sided heating

  11. Heat-induced whey protein isolate fibrils: Conversion, hydrolysis, and disulphide bond formation

    NARCIS (Netherlands)

    Bolder, S.G.; Vasbinder, A.; Sagis, L.M.C.; Linden, van der E.

    2007-01-01

    Fibril formation of individual pure whey proteins and whey protein isolate (WPI) was studied. The heat-induced conversion of WPI monomers into fibrils at pH 2 and low ionic strength increased with heating time and protein concentration. Previous studies, using a precipitation method, size-exclusion

  12. CELLS OVEREXPRESSING HSP27 SHOW ACCELERATED RECOVERY FROM HEAT-INDUCED NUCLEAR-PROTEIN AGGREGATION

    NARCIS (Netherlands)

    KAMPINGA, HH; BRUNSTING, JF; STEGE, GJJ; KONINGS, AWT; LANDRY, J

    1994-01-01

    Protein denaturation/aggregation upon cell exposure to heat shock is a likely cause of cell death. in the nucleus, protein aggregation has often been correlated to inhibition of nuclear located processes and heat-induced cell killing. in Chinese hamster 023 cells made thermotolerant by a prior

  13. Detailing Radio Frequency Heating Induced by Coronary Stents: A 7.0 Tesla Magnetic Resonance Study

    Science.gov (United States)

    Santoro, Davide; Winter, Lukas; Müller, Alexander; Vogt, Julia; Renz, Wolfgang; Özerdem, Celal; Grässl, Andreas; Tkachenko, Valeriy; Schulz-Menger, Jeanette; Niendorf, Thoralf

    2012-01-01

    The sensitivity gain of ultrahigh field Magnetic Resonance (UHF-MR) holds the promise to enhance spatial and temporal resolution. Such improvements could be beneficial for cardiovascular MR. However, intracoronary stents used for treatment of coronary artery disease are currently considered to be contra-indications for UHF-MR. The antenna effect induced by a stent together with RF wavelength shortening could increase local radiofrequency (RF) power deposition at 7.0 T and bears the potential to induce local heating, which might cause tissue damage. Realizing these constraints, this work examines RF heating effects of stents using electro-magnetic field (EMF) simulations and phantoms with properties that mimic myocardium. For this purpose, RF power deposition that exceeds the clinical limits was induced by a dedicated birdcage coil. Fiber optic probes and MR thermometry were applied for temperature monitoring using agarose phantoms containing copper tubes or coronary stents. The results demonstrate an agreement between RF heating induced temperature changes derived from EMF simulations versus MR thermometry. The birdcage coil tailored for RF heating was capable of irradiating power exceeding the specific-absorption rate (SAR) limits defined by the IEC guidelines by a factor of three. This setup afforded RF induced temperature changes up to +27 K in a reference phantom. The maximum extra temperature increase, induced by a copper tube or a coronary stent was less than 3 K. The coronary stents examined showed an RF heating behavior similar to a copper tube. Our results suggest that, if IEC guidelines for local/global SAR are followed, the extra RF heating induced in myocardial tissue by stents may not be significant versus the baseline heating induced by the energy deposited by a tailored cardiac transmit RF coil at 7.0 T, and may be smaller if not insignificant than the extra RF heating observed under the circumstances used in this study. PMID:23185498

  14. Detailing radio frequency heating induced by coronary stents: a 7.0 Tesla magnetic resonance study.

    Directory of Open Access Journals (Sweden)

    Davide Santoro

    Full Text Available The sensitivity gain of ultrahigh field Magnetic Resonance (UHF-MR holds the promise to enhance spatial and temporal resolution. Such improvements could be beneficial for cardiovascular MR. However, intracoronary stents used for treatment of coronary artery disease are currently considered to be contra-indications for UHF-MR. The antenna effect induced by a stent together with RF wavelength shortening could increase local radiofrequency (RF power deposition at 7.0 T and bears the potential to induce local heating, which might cause tissue damage. Realizing these constraints, this work examines RF heating effects of stents using electro-magnetic field (EMF simulations and phantoms with properties that mimic myocardium. For this purpose, RF power deposition that exceeds the clinical limits was induced by a dedicated birdcage coil. Fiber optic probes and MR thermometry were applied for temperature monitoring using agarose phantoms containing copper tubes or coronary stents. The results demonstrate an agreement between RF heating induced temperature changes derived from EMF simulations versus MR thermometry. The birdcage coil tailored for RF heating was capable of irradiating power exceeding the specific-absorption rate (SAR limits defined by the IEC guidelines by a factor of three. This setup afforded RF induced temperature changes up to +27 K in a reference phantom. The maximum extra temperature increase, induced by a copper tube or a coronary stent was less than 3 K. The coronary stents examined showed an RF heating behavior similar to a copper tube. Our results suggest that, if IEC guidelines for local/global SAR are followed, the extra RF heating induced in myocardial tissue by stents may not be significant versus the baseline heating induced by the energy deposited by a tailored cardiac transmit RF coil at 7.0 T, and may be smaller if not insignificant than the extra RF heating observed under the circumstances used in this study.

  15. ATF1 Modulates the Heat Shock Response by Regulating the Stress-Inducible Heat Shock Factor 1 Transcription Complex

    Science.gov (United States)

    Takii, Ryosuke; Fujimoto, Mitsuaki; Tan, Ke; Takaki, Eiichi; Hayashida, Naoki; Nakato, Ryuichiro; Shirahige, Katsuhiko

    2014-01-01

    The heat shock response is an evolutionally conserved adaptive response to high temperatures that controls proteostasis capacity and is regulated mainly by an ancient heat shock factor (HSF). However, the regulation of target genes by the stress-inducible HSF1 transcription complex has not yet been examined in detail in mammalian cells. In the present study, we demonstrated that HSF1 interacted with members of the ATF1/CREB family involved in metabolic homeostasis and recruited them on the HSP70 promoter in response to heat shock. The HSF1 transcription complex, including the chromatin-remodeling factor BRG1 and lysine acetyltransferases p300 and CREB-binding protein (CBP), was formed in a manner that was dependent on the phosphorylation of ATF1. ATF1-BRG1 promoted the establishment of an active chromatin state and HSP70 expression during heat shock, whereas ATF1-p300/CBP accelerated the shutdown of HSF1 DNA-binding activity during recovery from acute stress, possibly through the acetylation of HSF1. Furthermore, ATF1 markedly affected the resistance to heat shock. These results revealed the unanticipated complexity of the primitive heat shock response mechanism, which is connected to metabolic adaptation. PMID:25312646

  16. Measurement of heat pump processes induced by laser radiation

    Science.gov (United States)

    Garbuny, M.; Henningsen, T.

    1983-01-01

    A series of experiments was performed in which a suitably tuned CO2 laser, frequency doubled by a Tl3AsSe37 crystal, was brought into resonance with a P-line or two R-lines in the fundamental vibration spectrum of CO. Cooling or heating produced by absorption in CO was measured in a gas-thermometer arrangement. P-line cooling and R-line heating could be demonstrated, measured, and compared. The experiments were continued with CO mixed with N2 added in partial pressures from 9 to 200 Torr. It was found that an efficient collisional resonance energy transfer from CO to N2 existed which increased the cooling effects by one to two orders of magnitude over those in pure CO. Temperature reductions in the order of tens of degrees Kelvin were obtained by a single pulse in the core of the irradiated volume. These measurements followed predicted values rather closely, and it is expected that increase of pulse energies and durations will enhance the heat pump effects. The experiments confirm the feasibility of quasi-isentropic engines which convert laser power into work without the need for heat rejection. Of more immediate potential interest is the possibility of remotely powered heat pumps for cryogenic use, such applications are discussed to the extent possible at the present stage.

  17. Prostaglandin E synthase interacts with inducible heat shock protein 70 after heat stress in bovine primary dermal fibroblast cells.

    Science.gov (United States)

    Richter, Constanze; Viergutz, Torsten; Schwerin, Manfred; Weitzel, Joachim M

    2015-01-01

    Exposure to heat stress in dairy cows leads to undesired side effects that are reflected by complex alterations in endocrine parameters, such as reduced progesterone, estradiol, and thyroid hormone concentrations. These endocrine maladaptation leads to failure to resume cyclicity, a poor uterine environment and inappropriate immune responses in postpartum dairy cows. Prostaglandins (PG's) are lipid mediators, which serve as signal molecules in response to various external stimuli as well as to cell-specific internal signal molecules. A central role in PG synthesis plays prostaglandin E synthase (PGES) that catalyzes the isomerization of PGH2 to PGE2 .The present study was conducted to investigate heat stress associated PGES expression. Expression of PGES and inducible heat shock protein 70 (HSP70), as a putative chaperonic protein, was studied in bovine primary fibroblasts under different heat shock conditions. Bovine primary fibroblasts produce PGE2 at homoiothermical norm temperature (38.5°C in bovine), but reduce PGE2 production rates under extreme heat stress (at 45°C for 6 h). By contrast, PGE2 production rates are maintained after a milder heat stress (at 41.5°C for 6 h). PGE2 synthesis is abolished by application of cyclooxygenase inhibitor indomethacin, indicating de novo synthesis. Heat stress increases HSP70 but not PGES protein concentrations. HSP70 physically interacts with PGES and the PGES-HSP70 complex did not dissociate upon heat stress at 45°C even after returning the cells to 37°C. The PGE2 production negatively correlates with the portion of PGES-HSP70 complex. These results suggest a protein interaction between HSP70 and PGES in dermal fibroblast cells. Blockage of PGES protein by HSP70 seems to interfere with the regulatory processes essential for cellular adaptive protection. © 2014 International Society for Advancement of Cytometry. © 2014 International Society for Advancement of Cytometry.

  18. Heat-Induced Changes in Heat Shock Protein Genes Expression in Crossbred and Baladi Pregnant Cows and Their Offspring

    International Nuclear Information System (INIS)

    Khalil, W.K.B.; Nessim, M.Z.; El- Masry, K.A.

    2010-01-01

    The experiment was carried out during August (hot climate) on twelve pregnant cows of six crossbred (50% native Baladi and 50% Brown Swiss) and six native Baladi pregnant cows in the same age and the second parity during their mid-pregnancy as detected by rectal palpation. The experiment was repeated during December (mild climate) on similar twelve pregnant cows. Blood sample was obtained from each cow at the end of August (first group) and at the end of December (second group) to obtain heat shock protein genes expression (HSP72, HSP70.01, HSP70, HSP47, k Dalton and Actin) in pregnant cows under mild and hot climate to find out, which breed is more tolerant to heat stress and to estimate offspring birth weight and their growth performances during suckling period. Comparison was made between hot climate cows group and mild climate cows group to estimate heat- induced changes in both breeds in expression level of the Hsp genes and to compare with their neonate birth weight and growth performances during suckling period. The results revealed that expression level of the Hsp genes (Hsp72, Hsp70.1, Hsp70 and Hsp 47) was higher (p<0.01) in hot season compared to that of mild season. Expression level of the Hsp genes (Hsp70.1, Hsp70 and Hsp 47) was higher (p<0.05) in crossbred cows than in Baldi cows under summer hot season. This indicates that crossbred cows are less heat tolerant than Baladi cows under heat stress climate. Heat induced decrease (p<0.01) in offspring birth weight in Baladi and crossbred by 18.1% and 25%, respectively, in weaning weight by 14.61% and 23.14%, respectively and in body weight gain by 14.61% and 21.18%, respectively

  19. Role of capsaicin- and heat-sensitive afferents in stimulation of acupoint-induced pain and analgesia in humans.

    Science.gov (United States)

    Lei, Jing; Ye, Gang; Wu, Jiang-Tao; Pertovaara, Antti; You, Hao-Jun

    2017-09-01

    We investigated role of capsaicin-sensitive afferents within and without the areas of Zusanli (ST36)/Shangjuxu (ST37) acupoints along the stomach (ST) meridian in the perception and modulation of pain assessed by visual analog scale of pain and its distribution rated by subjects, pressure pain threshold (PPT), and heat pain threshold (HPT) in humans. Compared with the treatment of non-acupoint area, capsaicin (100µg/50µl) administered into either ST36 or ST37 acupoint caused the strongest pain intensity and the most extensive pain distribution, followed by rapid onset, bilateral, long-lasting secondary mechanical hyperalgesia and slower onset secondary heat hypoalgesia (1day after the capsaicin treatment). Between treatments of different acupoints, capsaicin administrated into the ST36 acupoint exhibited the stronger pain intensity and more widespread pain distribution compared with the treatment of ST37 acupoint. A period of 30- to 45-min, but not 15-min, 43°C heating-needle stimulation applied to the ST36 acupoint significantly enhanced the HPT, and had no effect on PPT. Upon trapezius muscle pain elicited by the i.m. injection of 5.8% saline, pre-emptive treatment of the contralateral ST36 acupoint with 43°C heating-needle stimulation alleviated the ongoing muscle pain, reduced painful area, and reversed the decrease in HPT. It is suggested that (1) pain elicited from the acupoint and non-acupoint areas differs significantly, which are supposed to be dependent on the different distributions and contributions of capsaicin-sensitive afferents. (2) Non-painful heat stimulation is a valid approach in prevention of ongoing muscle pain with associated post-effects of peripheral and central sensitization. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  20. Excision of x-ray-induced thymine damage in chromatin from heated cells

    International Nuclear Information System (INIS)

    Warters, R.L.; Roti Roti, J.L.

    1979-01-01

    Experiments were performed to distinguish between two possible modes of hyperthermia-induced inhibition of thymine base damage excision from the DNA of CHO cells: (1) heat denaturation of excision enzyme(s) or (2) heat-induced alteration of the substrate for damage excision (chromatin). While hyperthermia (45 0 C, 15 min) had no apparent effect on the capacity of the excision enzymes to excise damage from DNA it had a dramatic effect (ca. 80% inhibition) on the ability of chromatin to serve as a substrate for unheated enzymes. These results suggest that hyperthermia-induced radiosensitization of CHO cells may be due primarily to lesions in the cellular chromatin

  1. Comparison of the heat shock response induced by conventional heating and two methods of delivery of pulsed radiofrequency energy

    International Nuclear Information System (INIS)

    Laurence, J.A.; University of Sydney, NSW; McKenzie, D.R.; Veas, L.; French, P.W.

    2002-01-01

    Full text: In 2001, we published a (hypothetical) mechanism by which radiofrequency (RF) radiation from mobile phones could induce cancer, via the chronic induction of the heat shock response (HSR). This hypothesis provides the focus for our research. Other groups have reported induction of the HSR by RF at apparently non thermal levels. The aim of this study was to determine whether the HSR induced by RF is (a) truly non thermal and (b) quantitatively or qualitatively different from that induced by conventional heating of cells. A rat mast cell line, RBL-2H3, was chosen as the target RBL-2H3 cells were exposed in an air incubator at 41.1 deg C for 45 minutes and 75 minutes, and then returned to a 37 deg C incubator. Sham exposures were performed in the same air incubator at 37 deg C. Cells were exposed for 1 hour in the two pulsed RF exposure systems. The first was a converted 750W microwave oven that emits a short burst of 2.45GHz pulses at the start of each contiguous six minute period. This exposes cells to an average specific energy absorption rate (SAR) of 20W/kg. The second system was a TEM cell, which simulates. GSM pulses - the earner frequency is 0.9GHz pulse modulated at 217Hz. The SAR was approx 0.1W/kg. Both of these exposure systems are housed in incubators maintained at 37 deg C. Sham exposures were performed in the two systems with the same conditions but with no RF radiation present. Cell samples for the conventional heating and microwave exposures were taken 0, 2. 5, 5 and 20 hours after exposure, and expression of heat shock proteins hsp 110, 90, 70, 60 and 56 were determined by Western Blotting and compared between exposures

  2. Influences of buoyancy and thermal boundary conditions on heat transfer with naturally-induced flow

    International Nuclear Information System (INIS)

    Jackson, J.D.; Li, J.

    2002-01-01

    A fundamental study is reported of heat transfer from a vertical heated tube to air which is induced naturally upwards through it by the action of buoyancy. Measurements of local heat transfer coefficient were made using a specially designed computer-controlled power supply and measurement system for conditions of uniform wall temperature and uniform wall heat flux. The effectiveness of heat transfer proved to be much lower than for conditions of forced convection. It was found that the results could be correlated satisfactorily when presented in terms of dimensionless parameters similar to those used for free convection heat transfer from vertical surfaces provided that the heat transfer coefficients were evaluated using local fluid bulk temperature calculated utilising the measured values of flow rate induced through the system. Additional experiments were performed' with pumped flow. These covered the entire mixed convection region. It was found that the data for naturally-induced flow mapped onto the pumped flow data when presented in terms of Nusselt number ratio (mixed to forced) and buoyancy parameter. Computational simulations of the experiments were performed using an advanced computer code which incorporated a buoyancy-influenced, variable property, developing wall shear flow formulation and a low Reynolds number k-ε turbulence model. These reproduced observed behaviour quite well. (author)

  3. Testosterone Depletion by Castration May Protect Mice from Heat-Induced Multiple Organ Damage and Lethality

    Directory of Open Access Journals (Sweden)

    Ruei-Tang Cheng

    2010-01-01

    Full Text Available When the vehicle-treated, sham-operated mice underwent heat stress, the fraction survival and core temperature at +4 h of body heating were found to be 5 of 15 and 34.4∘C±0.3∘C, respectively. Castration 2 weeks before the start of heat stress decreased the plasma levels of testosterone almost to zero, protected the mice from heat-induced death (fraction survival, 13/15 and reduced the hypothermia (core temperature, 37.3∘C. The beneficial effects of castration in ameliorating lethality and hypothermia can be significantly reduced by testosterone replacement. Heat-induced apoptosis, as indicated by terminal deoxynucleotidyl- transferase- mediatedαUDP-biotin nick end-labeling staining, were significantly prevented by castration. In addition, heat-induced neuronal damage, as indicated by cell shrinkage and pyknosis of nucleus, to the hypothalamus was also castration-prevented. Again, the beneficial effects of castration in reducing neuronal damage to the hypothalamus as well as apoptosis in multiple organs during heatstroke, were significantly reversed by testosterone replacement. The data indicate that testosterone depletion by castration may protect mice from heatstroke-induced multiple organ damage and lethality.

  4. Complexity of MRI induced heating on metallic leads: Experimental measurements of 374 configurations

    Directory of Open Access Journals (Sweden)

    Mendoza Gonzalo

    2008-03-01

    Full Text Available Abstract Background MRI induced heating on PM leads is a very complex issue. The widely varying results described in literature suggest that there are many factors that influence the degree of heating and that not always are adequately addressed by existing testing methods. Methods We present a wide database of experimental measurements of the heating of metallic wires and PM leads in a 1.5 T RF coil. The aim of these measurements is to systematically quantify the contribution of some potential factors involved in the MRI induced heating: the length and the geometric structure of the lead; the implant location within the body and the lead path; the shape of the phantom used to simulate the human trunk and its relative position inside the RF coil. Results We found that the several factors are the primary influence on heating at the tip. Closer locations of the leads to the edge of the phantom and to the edge of the coil produce maximum heating. The lead length is the other crucial factor, whereas the implant area does not seem to have a major role in the induced temperature increase. Also the lead structure and the geometry of the phantom revealed to be elements that can significantly modify the amount of heating. Conclusion Our findings highlight the factors that have significant effects on MRI induced heating of implanted wires and leads. These factors must be taken into account by those who plan to study or model MRI heating of implants. Also our data should help those who wish to develop guidelines for defining safe medical implants for MRI patients. In addition, our database of the entire set of measurements can help those who wish to validate their numerical models of implants that may be exposed to MRI systems.

  5. Bromodomain-containing Protein 4 Activates Voltage-gated Sodium Channel 1.7 Transcription in Dorsal Root Ganglia Neurons to Mediate Thermal Hyperalgesia in Rats.

    Science.gov (United States)

    Hsieh, Ming-Chun; Ho, Yu-Cheng; Lai, Cheng-Yuan; Wang, Hsueh-Hsiao; Lee, An-Sheng; Cheng, Jen-Kun; Chau, Yat-Pang; Peng, Hsien-Yu

    2017-11-01

    Bromodomain-containing protein 4 binds acetylated promoter histones and promotes transcription; however, the role of bromodomain-containing protein 4 in inflammatory hyperalgesia remains unclear. Male Sprague-Dawley rats received hind paw injections of complete Freund's adjuvant to induce hyperalgesia. The dorsal root ganglia were examined to detect changes in bromodomain-containing protein 4 expression and the activation of genes involved in the expression of voltage-gated sodium channel 1.7, which is a key pain-related ion channel. The intraplantar complete Freund's adjuvant injections resulted in thermal hyperalgesia (4.0 ± 1.5 s; n = 7). The immunohistochemistry and immunoblotting results demonstrated an increase in the bromodomain-containing protein 4-expressing dorsal root ganglia neurons (3.78 ± 0.38 fold; n = 7) and bromodomain-containing protein 4 protein levels (2.62 ± 0.39 fold; n = 6). After the complete Freund's adjuvant injection, histone H3 protein acetylation was enhanced in the voltage-gated sodium channel 1.7 promoter, and cyclin-dependent kinase 9 and phosphorylation of RNA polymerase II were recruited to this area. Furthermore, the voltage-gated sodium channel 1.7-mediated currents were enhanced in neurons of the complete Freund's adjuvant rats (55 ± 11 vs. 19 ± 9 pA/pF; n = 4 to 6 neurons). Using bromodomain-containing protein 4-targeted antisense small interfering RNA to the complete Freund's adjuvant-treated rats, the authors demonstrated a reduction in the expression of bromodomain-containing protein 4 (0.68 ± 0.16 fold; n = 7), a reduction in thermal hyperalgesia (7.5 ± 1.5 s; n = 7), and a reduction in the increased voltage-gated sodium channel 1.7 currents (21 ± 4 pA/pF; n = 4 to 6 neurons). Complete Freund's adjuvant triggers enhanced bromodomain-containing protein 4 expression, ultimately leading to the enhanced excitability of nociceptive neurons and thermal hyperalgesia. This effect is

  6. Cold hyperalgesia as a prognostic factor in whiplash associated disorders: a systematic review.

    Science.gov (United States)

    Goldsmith, Robert; Wright, Chris; Bell, Sarah F; Rushton, Alison

    2012-10-01

    To review and critically evaluate the existing literature for the prognostic value of cold hyperalgesia in Whiplash Associated Disorders (WAD). Embase, PsycINFO, and Medline databases were systematically searched (from inception to 20th September 2011) for prospective studies investigating a prognostic ability for cold hyperalgesia in WAD. Reference lists and lead authors were cross-referenced. Two independent reviewers selected studies, and consensus was achieved via a third reviewer. The risk of bias in identified studies was systematically evaluated by two reviewers using previously published guidance. The influences of seven potential covariates of cold hyperalgesia were considered. Quantitative synthesis was planned and homogeneity assessed. A modified Grades of Recommendation, Assessment, Development, and Evaluation (GRADE) approach was used to qualitatively assess trials. The review screened 445 abstracts, from these 20 full text studies were retrieved and assessed for eligibility. Six prospective studies on four cohorts were identified and reviewed. Findings from all four cohorts supported cold hyperalgesia as a prognostic factor in WAD. There is moderate evidence supporting cold hyperalgesia as a prognostic factor for long-term pain and disability outcome in WAD. Further validation of the strength of this relationship and the influence of covariates are required. The mechanism for this relationship is unknown. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Heat Stress-Induced PI3K/mTORC2-Dependent AKT Signaling Is a Central Mediator of Hepatocellular Carcinoma Survival to Thermal Ablation Induced Heat Stress.

    Directory of Open Access Journals (Sweden)

    Scott M Thompson

    Full Text Available Thermal ablative therapies are important treatment options in the multidisciplinary care of patients with hepatocellular carcinoma (HCC, but lesions larger than 2-3 cm are plagued with high local recurrence rates and overall survival of these patients remains poor. Currently no adjuvant therapies exist to prevent local HCC recurrence in patients undergoing thermal ablation. The molecular mechanisms mediating HCC resistance to thermal ablation induced heat stress and local recurrence remain unclear. Here we demonstrate that the HCC cells with a poor prognostic hepatic stem cell subtype (Subtype HS are more resistant to heat stress than HCC cells with a better prognostic hepatocyte subtype (Subtype HC. Moreover, sublethal heat stress rapidly induces phosphoinositide 3-kinase (PI3K/mammalian target of rapamycin (mTOR dependent-protein kinase B (AKT survival signaling in HCC cells in vitro and at the tumor ablation margin in vivo. Conversely, inhibition of PI3K/mTOR complex 2 (mTORC2-dependent AKT phosphorylation or direct inhibition of AKT function both enhance HCC cell killing and decrease HCC cell survival to sublethal heat stress in both poor and better prognostic HCC subtypes while mTOR complex 1 (mTORC1-inhibition has no impact. Finally, we showed that AKT isoforms 1, 2 and 3 are differentially upregulated in primary human HCCs and that overexpression of AKT correlates with worse tumor biology and pathologic features (AKT3 and prognosis (AKT1. Together these findings define a novel molecular mechanism whereby heat stress induces PI3K/mTORC2-dependent AKT survival signaling in HCC cells and provide a mechanistic rationale for adjuvant AKT inhibition in combination with thermal ablation as a strategy to enhance HCC cell killing and prevent local recurrence, particularly at the ablation margin.

  8. Heat shock induced change in protein ubiquitination in Chlamydomonas

    International Nuclear Information System (INIS)

    Shimogawara, K.; Muto, S.

    1989-01-01

    Ubiquitin was purified from pea (Pisum sativum L.) and its antibody was produced. Western blot analysis showed that the antibody cross-reacted with ubiquitins from a green alga Chlamydomonas reinhardtii, a brown alga Laminaria angustata and a red alga Porphyridium cruentum but not with ubiquitin from a blue-green alga Synechococcus sp. In Chlamydomonas, the antibody also reacted with some ubiquitinated proteins including 28- and 31-kDa polypeptides. The isoelectric points of Chlamydomonas ubiquitin and the 28- and 31-kDa ubiquitinated proteins were 8.0, 8.9 and 10.3, respectively. The ubiquitinated proteins, including the 28- and 31-kDa polypeptides were detected after in vitro ATP-dependent ubiquitination of Chlamydomonas cell extract with l25 I-labeled bovine ubiquitin. Heat treatment of Chlamydomonas cells (>40°C) caused drastic increase of ubiquitinated proteins with high mol wt (>60kDa), and coordinated redistribution or decrease of other ubiquitinated proteins and free ubiquitin. Quantitative analysis revealed that the 28- and 31-kDa ubiquitinated proteins showed different responses against heat stress, i.e. the former being more sensitive than the latter. (author)

  9. Palm kernel cake extract exerts hepatoprotective activity in heat-induced oxidative stress in chicken hepatocytes.

    Science.gov (United States)

    Oskoueian, Ehsan; Abdullah, Norhani; Idrus, Zulkifli; Ebrahimi, Mahdi; Goh, Yong Meng; Shakeri, Majid; Oskoueian, Armin

    2014-10-02

    Palm kernel cake (PKC), the most abundant by-product of oil palm industry is believed to contain bioactive compounds with hepatoprotective potential. These compounds may serve as hepatoprotective agents which could help the poultry industry to alleviate adverse effects of heat stress on liver function in chickens. This study was performed to evaluate the hepatoprotective potential of PKC extract in heat-induced oxidative stress in chicken hepatocytes. The nature of the active metabolites and elucidation of the possible mechanism involved were also investigated. The PKC extract possessed free radical scavenging activity with values significantly (p < 0.05) lower than silymarin as the reference antioxidant. Heat-induced oxidative stress in chicken hepatocyte impaired the total protein, lipid peroxidation and antioxidant enzymes activity significantly (p < 0.05). Treatment of heat-induced hepatocytes with PKC extract (125 μg/ml) and silymarin as positive control increased these values significantly (p < 0.05). The real time PCR and western blot analyses revealed the significant (p < 0.05) up-regulation of oxidative stress biomarkers including TNF-like, IFN-γ and IL-1β genes; NF-κB, COX-2, iNOS and Hsp70 proteins expression upon heat stress in chicken hepatocytes. The PKC extract and silymarin were able to alleviate the expression of all of these biomarkers in heat-induced chicken hepatocytes. The gas chromatography-mass spectrometry analysis of PKC extract showed the presence of fatty acids, phenolic compounds, sugar derivatives and other organic compounds such as furfural which could be responsible for the observed hepatoprotective activity. Palm kernel cake extract could be a potential agent to protect hepatocytes function under heat induced oxidative stress.

  10. Oncostatin M induces heat hypersensitivity by gp130-dependent sensitization of TRPV1 in sensory neurons

    Directory of Open Access Journals (Sweden)

    Langeslag Michiel

    2011-12-01

    Full Text Available Abstract Oncostatin M (OSM is a member of the interleukin-6 cytokine family and regulates eg. gene activation, cell survival, proliferation and differentiation. OSM binds to a receptor complex consisting of the ubiquitously expressed signal transducer gp130 and the ligand binding OSM receptor subunit, which is expressed on a specific subset of primary afferent neurons. In the present study, the effect of OSM on heat nociception was investigated in nociceptor-specific gp130 knock-out (SNS-gp130-/- and gp130 floxed (gp130fl/fl mice. Subcutaneous injection of pathophysiologically relevant concentrations of OSM into the hind-paw of C57BL6J wild type mice significantly reduced paw withdrawal latencies to heat stimulation. In contrast to gp130fl/fl mice, OSM did not induce heat hypersensitivity in vivo in SNS-gp130-/- mice. OSM applied at the receptive fields of sensory neurons in in vitro skin-nerve preparations showed that OSM significantly increased the discharge rate during a standard ramp-shaped heat stimulus. The capsaicin- and heat-sensitive ion channel TRPV1, expressed on a subpopulation of nociceptive neurons, has been shown to play an important role in inflammation-induced heat hypersensitivity. Stimulation of cultured dorsal root ganglion neurons with OSM resulted in potentiation of capsaicin induced ionic currents. In line with these recordings, mice with a null mutation of the TRPV1 gene did not show any signs of OSM-induced heat hypersensitivity in vivo. The present data suggest that OSM induces thermal hypersensitivity by directly sensitizing nociceptors via OSMR-gp130 receptor mediated potentiation of TRPV1.

  11. Time-resolved x-ray laser induced photoelectron spectroscopy of isochoric heated copper

    International Nuclear Information System (INIS)

    Nelson, A.J.; Dunn, J.; Hunter, J.; Widmann, K.

    2005-01-01

    Time-resolved x-ray photoelectron spectroscopy is used to probe the nonsteady-state evolution of the valence band electronic structure of laser heated ultrathin (50 nm) copper. A metastable phase is studied using a 527 nm wavelength 400 fs laser pulse containing 0.1-2.5 mJ laser energy focused in a large 500x700 μm 2 spot to create heated conditions of 0.07-1.8x10 12 W cm -2 intensity. Valence band photoemission spectra are presented showing the changing occupancy of the Cu 3d level with heating are presented. These picosecond x-ray laser induced time-resolved photoemission spectra of laser-heated ultrathin Cu foil show dynamic changes in the electronic structure. The ultrafast nature of this technique lends itself to true single-state measurements of shocked and heated materials

  12. Fluid induced structural vibrations in steam generators and heat exchangers

    International Nuclear Information System (INIS)

    Catton, I.; Adinolfi, P.; Alquaddoomi, O.

    2003-01-01

    Fluid-elastic instability (FEI) in tube bundle heat exchangers was studied experimentally. The motion of an array of 15 stainless steel vibrating tubes (Φ 25.4mm) in water cross-flow, suspended using stainless steel piano wire has been recorded with a CCD camera. The individual motion and relative motion of the tubes are reported and can be used for computational model validation. The relative displacement of the tubes allows identification of the most potentially damaging patterns of tube bundle vibration. A critical reduced velocity may be determined by specification of an allowable limit on tube motion amplitude. Measurements were made for various tube array configurations, tube natural frequencies and flow conditions. (author)

  13. Exopolysaccharide Produced by Probiotic Strain Lactobacillus paraplantarum BGCG11 Reduces Inflammatory Hyperalgesia in Rats

    Directory of Open Access Journals (Sweden)

    Miroslav Dinić

    2018-01-01

    Full Text Available The aim of this study was to test the potential of high molecular weight exopolysaccharide (EPS produced by the putative probiotic strain Lactobacillus paraplantarum BGCG11 (EPS CG11 to alleviate inflammatory pain in Wistar rats. The EPS CG11 was isolated from bacterial surface and was subjected to Fourier-transform infrared spectroscopy (FTIR and thermal analysis. FTIR spectra confirmed the polysaccharide structure of isolated sample, while the thermal methods revealed good thermal properties of the polymer. The antihyperalgesic and antiedematous effects of the EPS CG11 were examined in the rat model of inflammation induced by carrageenan injection in hind paw. The results showed that the intraperitoneal administration of EPS CG11 produced a significant decrease in pain sensations (mechanical hyperalgesia and a paw swelling in a dose-dependent manner as it was measured using Von Frey anesthesiometer and plethysmometer, respectively. These effects were followed by a decreased expression of IL-1β and iNOS mRNAs in rat’s paw tissue suggesting that the antihyperalgesic and antiedematous effects of the EPS CG11 are related to the suppression of inflammatory response. Additionally, we demonstrated that EPS CG11 exhibits immunosuppressive properties in the peritonitis model induced by carrageenan. Expression levels of pro-inflammatory mediators IL-1β, TNF-α and iNOS were decreased, together with the enhanced secretion of anti-inflammatory IL-10 and IL-6 cytokines, while neutrophil infiltration was not changed. To the best of our knowledge, this is the first study which reports an antihyperalgesic effect as the novel property of bacterial EPSs. Given the high demands of pharmaceutical industry for the replacement of commonly used analgesics due to numerous side effects, this study describes a promising natural compound for the future pharmacological testing in the area.

  14. Continuous fever-range heat stress induces thermotolerance in odontoblast-lineage cells.

    Science.gov (United States)

    Morotomi, Takahiko; Kitamura, Chiaki; Okinaga, Toshinori; Nishihara, Tatsuji; Sakagami, Ryuji; Anan, Hisashi

    2014-07-01

    Heat shock during restorative procedures can trigger damage to the pulpodentin complex. While severe heat shock has toxic effects, fever-range heat stress exerts beneficial effects on several cells and tissues. In this study, we examined whether continuous fever-range heat stress (CFHS) has beneficial effects on thermotolerance in the rat clonal dental pulp cell line with odontoblastic properties, KN-3. KN-3 cells were cultured at 41°C for various periods, and the expression level of several proteins was assessed by Western blot analysis. After pre-heat-treatment at 41°C for various periods, KN-3 cells were exposed to lethal severe heat shock (LSHS) at 49°C for 10min, and cell viability was examined using the MTS assay. Additionally, the expression level of odontoblast differentiation makers in surviving cells was examined by Western blot analysis. CFHS increased the expression levels of several heat shock proteins (HSPs) in KN-3 cells, and induced transient cell cycle arrest. KN-3 cells, not pre-heated or exposed to CFHS for 1 or 3h, died after exposure to LSHS. In contrast, KN-3 cells exposed to CFHS for 12h were transiently lower on day 1, but increased on day 3 after LSHS. The surviving cells expressed odontoblast differentiation markers, dentine sialoprotein and dentine matrix protein-1. These results suggest that CFHS for 12h improves tolerance to LSHS by inducing HSPs expression and cell cycle arrest in KN-3 cells. The appropriate pretreatment with continuous fever-range heat stress can provide protection against lethal heat shock in KN-3 cells. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Generalized deep-tissue hyperalgesia in patients with chronic low-back pain

    DEFF Research Database (Denmark)

    O'Neill, Søren; Manniche, Claus; Graven-Nielsen, Thomas

    2007-01-01

    be demonstrated in a group of patients with chronic low-back pain with intervertebral disc herniation. Twelve patients with MRI confirmed lumbar intervertebral disc herniation and 12 age and sex matched controls were included. Subjects were exposed to quantitative nociceptive stimuli to the infraspinatus...... in the anterior tibialis muscle compared to controls. In conclusion, generalized deep-tissue hyperalgesia was demonstrated in chronic low-back pain patients with radiating pain and MRI confirmed intervertebral disc herniation, suggesting that this central sensitization should also be addressed in the pain......Some chronic painful conditions including e.g. fibromyalgia, whiplash associated disorders, endometriosis, and irritable bowel syndrome are associated with generalized musculoskeletal hyperalgesia. The aim of the present study was to determine whether generalized deep-tissue hyperalgesia could...

  16. Flow-induced vibration analysis of heat exchanger and steam generator designs

    International Nuclear Information System (INIS)

    Pettigrew, M.J.; Sylvestre, Y.; Campagna, A.O.

    1977-08-01

    Tube and shell heat exchange components such as steam generators, heat exchangers and condensers are essential parts of CANDU nuclear power stations. Excessive flow-induced vibration may cause tube failures by fatigue or more likely by fretting-wear. Such failures may lead to station shutdowns that are very undesirable in terms of lost production. Hence good performance and reliability dictate a thorough flow-induced vibration analysis at the design stage. This paper presents our approach and techniques in this respect. (author)

  17. Heat Shock Protein 70 Neutralizes Apoptosis-Inducing Factor

    Directory of Open Access Journals (Sweden)

    Guido Kroemer

    2001-01-01

    Full Text Available Programmed cell death (apoptosis is the physiological process responsible for the demise of superfluous, aged, damaged, mutated, and ectopic cells. Its normal function is essential both for embryonic development and for maintenance of adult tissue homeostasis. Deficient apoptosis participates in cancerogenesis, whereas excessive apoptosis leads to unwarranted cell loss accounting for disparate diseases including neurodegeneration and AIDS. One critical step in the process of apoptosis consists in the permeabilization of mitochondrial membranes, leading to the release of proteins which normally are secluded behind the outer mitochondrial membrane[1]. For example, cytochrome c, which is normally confined to the mitochondrial intermembrane space, is liberated from mitochondria and interacts with a cytosolic protein, Apaf-1, causing its oligomerization and constitution of the so-called apoptosome, a protein complex which activates a specific class of cysteine proteases, the caspases[2]. Another example concerns the so-called apoptosis-inducing factor (AIF, another mitochondrial intermembrane protein which can translocate to the nucleus where it induces chromatin condensation and DNA fragmentation[3].

  18. Heating induced microstructural changes in graphene/Cu nanocomposites

    International Nuclear Information System (INIS)

    Solá, F; Niu, J; Xia, Z H

    2013-01-01

    Dynamic heating experiments on graphene/Cu nanocomposites by in situ scanning electron microscopy were conducted to observe the evolution of the morphology and size of the Cu nanoparticles. Microstructural characterization showed that the graphene/Cu nanocomposites system consists of graphene sheets decorated with Cu-based nanoparticles with different chemistries (Cu, Cu 2 O), shapes (cube, rod, triangle, etc) and sizes. Evidence of neck evolution, coalescence, sublimation and Ostwald ripening were observed. Interestingly, some of the events occurred at the edges of the graphene sheets. The quantitative data of necking evolution deviates from the classical continuum theory indicating that intrinsic faceting and the shape of the nanoparticles played an important role in the necking process. This was supported by molecular dynamics simulations. Experimental data of liquid-spherical nanoparticles on graphene suggested that Cu did not wet graphene. Based on sublimation experiments and surface stability, we propose that graphene decorated with Cu nanoparticles enclosed by {111} facets are the most stable nanocomposite at high temperatures. The growth mechanism of nanoparticles on graphene is discussed.

  19. Experimental investigation of natural convection induced by internal heat generation

    International Nuclear Information System (INIS)

    Tasaka, Y; Kudoh, Y; Takeda, Y; Yanagisawa, T

    2005-01-01

    Dilatation of a convection cell with respect to its Rayleigh number, one of the problems in internally heated convection, was quantitatively investigated by analyzing temperature field in a cell. The temperature field visualized by a thermo-chromic liquid crystal (TLC) expresses the cell dilatation. A calibration system was developed to convert the visualized photographs of the temperature field to the temperature field. A calibration curve correlating color information extracted from the photograph and temperature was determined from the approximately linear temperature distribution in the horizontal fluid layer using the hue method. Photos taken at various internal Rayleigh numbers were converted to the temperature field by the obtained curve. Extracting individual cells from a temperature field achieves a quantitative expression of the cell dilatation as the variation of the wavenumber of the cell with Rayleigh number increases. The temperature profile in a cell shows that high temperature areas appear at the apexes of the cell, largely different from the profile obtained by linear theory

  20. Infrared thermography based studies on mobile phone induced heating

    Science.gov (United States)

    Lahiri, B. B.; Bagavathiappan, S.; Soumya, C.; Jayakumar, T.; Philip, John

    2015-07-01

    Here, we report the skin temperature rise due to the absorption of radio frequency (RF) energy from three handheld mobile phones using infrared thermography technique. Experiments are performed under two different conditions, viz. when the mobile phones are placed in soft touch with the skin surface and away from the skin surface. Additionally, the temperature rise of mobile phones during charging, operation and simultaneous charging and talking are monitored under different exposure conditions. It is observed that the temperature of the cheek and ear regions monotonically increased with time during the usage of mobile phones and the magnitude of the temperature rise is higher for the mobile phone with higher specific absorption rate. The increase in skin temperature is higher when the mobile phones are in contact with the skin surface due to the combined effect of absorption of RF electromagnetic power and conductive heat transfer. The increase in the skin temperature in non-contact mode is found to be within the safety limit of 1 °C. The measured temperature rise is in good agreement with theoretical predictions. The empirical equation obtained from the temperature rise on the cheek region of the subjects correlates well with the specific absorption rate of the mobile phones. Our study suggests that the use of mobile phones in non-contact mode can significantly lower the skin temperature rise during its use and hence, is safer compared to the contact mode.

  1. Quetiapine reverse paclitaxel-induced neuropathic pain in mice: Role of Alpha2- adrenergic receptors

    Directory of Open Access Journals (Sweden)

    Alireza Abed

    2017-11-01

    Full Text Available Objective(s: Paclitaxel-induced peripheral neuropathy is a common adverse effect of cancer chemo -therapy. This neuropathy has a profound impact on quality of life and patient’s survival. Preventing and treating paclitaxel-induced peripheral neuropathy is a major concern. First- and second-generation antipsychotics have shown analgesic effects both in humans and animals. Quetiapine is a novel atypical antipsychotic with low propensity to induce extrapyramidal or hyperprolactinemia side effects. The present study was designed to investigate the effects of quetiapine on the development and expression of neuropathic pain induced by paclitaxel in mice and the role of α2-adrenoceptors on its antinociception. Materials and Methods: Paclitaxel (2 mg/kg IP was injected for five consecutive days which resulted in thermal hyperalgesia and mechanical and cold allodynia. Results: Early administration of quetiapine from the 1st day until the 5th day (5, 10, and 15 mg/kg PO did not affect thermal, mechanical, and cold stimuli and could not prevent the development of neuropathic pain. In contrast, when quetiapine (10 and 15 mg/kg PO administration was started on the 6th day after the first paclitaxel injections, once the model had been established, and given daily until the 10th day, heat hyperalgesia and mechanical and cold allodynia were significantly attenuated. Also, the effect of quetiapine on heat hyperalgesia was reversed by pretreatment with yohimbine, as an alpha-2 adrenergic receptor antagonist. Conclusion: These results indicate that quetiapine, when administered after nerve injury can reverse the expression of neuropathic pain. Also, we conclude that α2-adrenoceptors participate in the antinociceptive effects of quetiapine.

  2. Heat-processed ginseng saponin ameliorates the adenine-induced renal failure in rats

    OpenAIRE

    Kim, Eun Jin; Oh, Hyun-A; Choi, Hyuck Jai; Park, Jeong Hill; Kim, Dong-Hyun; Kim, Nam Jae

    2013-01-01

    To evaluate the effect of the saponin of heat-processed ginseng (Sun ginseng, SG), we investigated the protective effect of SG total saponin fraction against adenine-induced chronic renal failure in rats. SG saponin significantly decreased the levels of urea nitrogen and creatinine in the serum, but increased the urinary excretion of urea nitrogen and creatinine, indicating an improvement of renal function. SG saponin also inhibited adenine-induced kidney hypertrophy and edema. SG saponin red...

  3. MRI-induced heating of deep brain stimulation leads

    International Nuclear Information System (INIS)

    Mohsin, Syed A; Sheikh, Noor M; Saeed, Usman

    2008-01-01

    The radiofrequency (RF) field used in magnetic resonance imaging is scattered by medical implants. The scattered field of a deep brain stimulation lead can be very intense near the electrodes stimulating the brain. The effect is more pronounced if the lead behaves as a resonant antenna. In this paper, we examine the resonant length effect. We also use the finite element method to compute the near field for (i) the lead immersed in inhomogeneous tissue (fat, muscle, and brain tissues) and (ii) the lead connected to an implantable pulse generator. Electric field, specific absorption rate and induced temperature rise distributions have been obtained in the brain tissue surrounding the electrodes. The worst-case scenario has been evaluated by neglecting the effect of blood perfusion. The computed values are in good agreement with in vitro measurements made in the laboratory.

  4. Development of Design Criteria for Fluid Induced Structural Vibrations in Steam Generators and Heat Exchangers

    International Nuclear Information System (INIS)

    Catton, Ivan; Dhir, Vijay K.; Alquaddoomi, O.S.; Mitra, Deepanjan; Adinolfi, Pierangelo

    2004-01-01

    OAK-B135 Flow-induced vibration in heat exchangers has been a major cause of concern in the nuclear industry for several decades. Many incidents of failure of heat exchangers due to apparent flow-induced vibration have been reported through the USNRC incident reporting system. Almost all heat exchangers have to deal with this problem during their operation. The phenomenon has been studied since the 1970s and the database of experimental studies on flow-induced vibration is constantly updated with new findings and improved design criteria for heat exchangers. In the nuclear industry, steam generators are often affected by this problem. However, flow-induced vibration is not limited to nuclear power plants, but to any type of heat exchanger used in many industrial applications such as chemical processing, refrigeration and air conditioning. Specifically, shell and tube type heat exchangers experience flow-induced vibration due to the high velocity flow over the tube banks. Flow-induced vibration in these heat exchangers leads to equipment breakdown and hence expensive repair and process shutdown. The goal of this research is to provide accurate measurements that can help modelers to validate their models using the measured experimental parameters and thereby develop better design criteria for avoiding fluid-elastic instability in heat exchangers. The research is divided between two primary experimental efforts, the first conducted using water alone (single phase) and the second using a mixture of air or steam and water as the working fluid (two phase). The outline of this report is as follows: After the introduction to fluid-elastic instability, the experimental apparatus constructed to conduct the experiments is described in Chapter 2 along with the measurement procedures. Chapter 3 presents results obtained on the tube array and the flow loop, as well as techniques used in data processing. The project performance is described and evaluated in Chapter 4 followed by

  5. Noxious heat and scratching decrease histamine-induced itch and skin blood flow.

    Science.gov (United States)

    Yosipovitch, Gil; Fast, Katharine; Bernhard, Jeffrey D

    2005-12-01

    The aim of this study was to assess the effect of thermal stimuli or distal scratching on skin blood flow and histamine-induced itch in healthy volunteers. Twenty-one healthy volunteers participated in the study. Baseline measurements of skin blood flow were obtained on the flexor aspect of the forearm. These measurements were compared with skin blood flow after various stimuli: heating the skin, cooling the skin, noxious cold 2 degrees C, noxious heat 49 degrees C, and scratching via a brush with controlled pressure. Afterwards histamine iontophoresis was performed and skin blood flow and itch intensity were measured immediately after the above-mentioned stimuli. Scratching reduced mean histamine-induced skin blood flow and itch intensity. Noxious heat pain increased basal skin blood flow but reduced histamine-induced maximal skin blood flow and itch intensity. Cold pain and cooling reduced itch intensity, but neither affected histamine-induced skin blood flow. Sub-noxious warming the skin did not affect the skin blood flow or itch intensity. These findings suggest that heat pain and scratching may inhibit itch through a neurogenic mechanism that also affects skin blood flow.

  6. Prostaglandins with antiproliferative activity induce the synthesis of a heat shock protein in human cells

    International Nuclear Information System (INIS)

    Santoro, M.G.; Garaci, E.; Amici, C.

    1989-01-01

    Prostaglandins (PGs)A 1 and J 2 were found to potently suppress the proliferation of human K562 erythroleukemia cells and to induce the synthesis of a 74-kDa protein (p74) that was identified as a heat shock protein related to the major 70-kDa heat shock protein group. p74 synthesis was stimulated at doses of PGA 1 and PGJ 2 that inhibited cell replication, and its accumulation ceased upon removal of the PG-induced proliferation block. PGs that did not affect K562 cell replication did not induce p74 synthesis. p74 was found to be localized mainly in the cytoplasm of PG-treated cells, but moderate amounts were found also in dense areas of the nucleus after PGJ 2 treatment. p74 was not necessarily associated with cytotoxicity or with inhibition of cell protein synthesis. The results described support the hypothesis that synthesis of the 70-kDa heat shock proteins is associated with changes in cell proliferation. The observation that PGs can induce the synthesis of heat shock proteins expands our understanding of the mechanism of action of these compounds whose regulatory role is well known in many physiological phenomena, including the control of fever production

  7. Heat- and radiation-induced radio- and thermo-tolerance of Zea mays seedlings

    International Nuclear Information System (INIS)

    Gikoshvili, T.I.; Vagabova, M.Eh.; Vilenchik, M.M.; Kuzin, A.M.

    1985-01-01

    It was shown that γ-irradiation of Zea mays seedlings with low doses (1-3 Gy) induced thermotolerance, and preheating up to 43 deg C increased their radioresistance and thermotolerance. A hypothesis of the formation of common protective proteins after exposure to low - level radiation and heat is discussed

  8. Circulating antibodies to inducible heat shock protein 70 in patients with uveitis

    NARCIS (Netherlands)

    de Smet, M. D.; Ramadan, A.

    2001-01-01

    Heat shock proteins with molecular weight 70 kDa (hsp70) are highly conserved immunogenic intracellular molecules. There are two main subtypes: one is expressed constitutively (hsc70), while the other is induced under stressful conditions (ihsp70). Using an ELISA directed against recombinant human

  9. Code ACTIVE for calculation of the transmutation, induced activity and decay heat in neutron irradiation

    International Nuclear Information System (INIS)

    Ioki, Kimihiro; Harada, Yuhei; Asami, Naoto.

    1976-03-01

    The computer code ACTIVE has been prepared for calculation of the transmutation rate, induced activity and decay heat. Calculations are carried out with activation chain and spatial distribution of neutron energy spectrum. The spatial distribution of secondary gamma-ray source due to the unstable nuclides is also obtainable. Special attension is paid to the short life decays. (auth.)

  10. Determination of Heating Value of Estonian Oil Shale by Laser-Induced Breakdown Spectroscopy

    Directory of Open Access Journals (Sweden)

    M. Aints

    2018-01-01

    Full Text Available The laser-induced breakdown spectroscopy (LIBS combined with multivariate regression analysis of measured data were utilised for determination of the heating value and the chemical composition of pellets made from Estonian oil shale samples with different heating values. The study is the first where the oil shale heating value is determined on the basis of LIBS spectra. The method for selecting the optimal number of spectral lines for ordinary multivariate least squares regression model is presented. The correlation coefficient between the heating value predicted by the regression model, and that measured by calorimetric bomb, was R2=0.98. The standard deviation of prediction was 0.24 MJ/kg. Concentrations of oil shale components predicted by the regression model were compared with those measured by ordinary methods.

  11. Oriented heat release in asphalt pavement induced by high-thermal-conductivity rods

    International Nuclear Information System (INIS)

    Du, Yinfei; Wang, Shengyue

    2015-01-01

    In this paper, a new principle of using aligned high-thermal-conductivity rods to enhance the oriented heat conduction in asphalt pavement was proposed. The results showed that the designed structure absorbed more heat during the day. The heat flow in the designed structure presented a non-uniform horizontal distribution. At the depth of 4 cm, the horizontal and vertical heat fluxes through steel rods were thirteen and ten times higher than those through asphalt mixture, respectively. The maximum temperature of the designed structure reduced by 3.6 °C–6.5 °C at the depth of 4 cm. The results of indoor irradiation test showed a trend consistent with those of numerical simulation. After 500 thousand times of standard axis load were applied, the rutting depth of the designed structure reduced by 43.4%. The principle proposed is expected to be used to induce an oriented heat release accumulated in asphalt pavement and reduce pavement temperature and rutting. - Highlights: • Steel rods were inserted in the middle and bottom layers to build thermal channels. • Steel rods absorbed heat from asphalt mixture and rapidly released them to subgrade. • The heat flux through asphalt mixture decreased and pavement temperature reduced.

  12. Differences in heat-induced cell killing as determined in three mammalian cell lines do not correspond with the extent of heat radiosensitization

    International Nuclear Information System (INIS)

    Kampinga, H.H.; Jorritsma, J.B.M.; Burgman, P.; Konings, A.W.T.

    1986-01-01

    Three different cell lines, Ehrlich ascites tumour (EAT) cells, HeLa S 3 cells and LM mouse fibroblasts, were used to investigate whether or not the extent of heat killing (44 0 C) and heat radio-sensitization (44 0 C before 0-6 Gy X-irradiation) are related. Although HeLa cells were the most heat-resistant cell line and showed the least heat radiosensitization, we found that the most heat-sensitive EAT cells (D 0 , EAT = 8.0 min; D 0 , LM = 10.0 min; D 0 , HeLa = 12.5 min) showed less radiosensitization than the more heat-resistant LM fibroblasts (TERsub(HeLa)< TERsub(EAT)< TERsub(LM)). Therefore, it is concluded that the routes leading to heat-induced cell death are not identical to those determining heat radiosensitization. Furthermore the inactivation of DNA polymerase α and β activities by heat seemed not to correlate with heat survival alone but showed a positive relationship to heat radiosensitization. The possibility of these enzymes being a determinant in heat radiosensitization is discussed. (author)

  13. Heat deposition on the first wall due to ICRF-induced loss of fast ions in JT-60U

    International Nuclear Information System (INIS)

    Kusama, Y.; Tobita, K.; Kimura, H.; Hamamatsu, K.; Fujii, T.; Nemoto, M.; Saigusa, M.; Moriyama, S.; Tani, K.; Koide, Y.; Sakasai, A.; Nishitani, T.; Ushigusa, K.

    1995-01-01

    In JT-60U, the heat deposition on the first wall due to the ICRF-induced loss of fast ions was investigated by changing the position of the resonance layer in the ripple-trapping region. A heat spot appears on the first wall of the same major radius as the resonance layer of the ICRF waves. The broadening of the heat spot in the major radius direction is consistent with that of the resonance layer due to the Doppler broadening. The heat spot is considered to be formed by the ICRF-induced ripple-trapped loss of fast ions. Although the total ICRF-induced loss power to the heat spot is as low as 2% of the total ICRF power, the additional heat flux will become a new issue because of the localized heat deposition on the first wall. ((orig.))

  14. A modified wake oscillator model for predicting vortex induced vibration of heat exchanger tube

    International Nuclear Information System (INIS)

    Feng Zhipeng; Zang Fenggang; Zhang Yixiong; Ye Xianhui

    2014-01-01

    Base on the classical wake oscillator model, a new modified wake oscillator model is proposed, for predicting vortex induced vibration of heat exchanger tube in uniform current. The comparison between the new wake oscillator model and experimental show that the present model can simulate the characteristics of vortex induced vibration of tube. Firstly, the research shows that the coupled fluid-structure dynamical system should be modeled by combined displacement and acceleration mode. Secondly, the empirical parameter in wake oscillator model depends on the material properties of the structure, instead of being a universal constant. Lastly, the results are compared between modified wake oscillator model and fluid-structure interaction numerical model. It shows the present, predicted results are compared to the fluid-structure interaction numerical data. The new modified wake oscillator model can predict the vortex induced heat exchanger tube vibration feasibly. (authors)

  15. Effects of a new foam formulation of ketoprofen lysine salt in experimental models of inflammation and hyperalgesia.

    Science.gov (United States)

    Daffonchio, L; Bestetti, A; Clavenna, G; Fedele, G; Ferrari, M P; Omini, C

    1995-05-01

    The anti-inflammatory and analgesic profile of a new topical foam formulation of ketoprofen lysine salt (CAS 57469-78-0, Artrosilene Schiuma, KLS-foam) was characterized in comparison with marketed gel formulations containing KLS (KLS-gel) or diclofenac diethylammonium salt (DCF-gel). KLS-foam dose-dependently inhibited oedema formation and hyperalgesia induced by subplantar injection of carrageenan or substance P, being more potent than KLS-gel. At equieffective anti-inflammatory doses, KLS-foam provided a more pronounced analgesic effect than DCF-gel. KLS-foam also markedly inhibited exudate formation and prostaglandin production induced by subcutaneous implantation of carrageenan soaked sponges. In carrageenan induced paw inflammation, KLS-foam provided the same anti-inflammatory effect as orally administered KLS, but induced significantly less gastric damages. Oral administration of KLS resulted in sustained systemic absorption of ketoprofen, whereas after topical application of KLS-foam no appreciable ketoprofen plasma levels were detected. These data support the anti-inflammatory and particularly the analgesic effectiveness of the new foam formulation of KLS, a finding that, together with the high gastric tolerability, further emphasizes the usefulness of KLS-foam in the treatment of localized flogistic diseases and associated pain.

  16. S-ketamine modulates hyperalgesia in patients with chronic pancreatitis pain

    NARCIS (Netherlands)

    Bouwense, S.A.W.; Buscher, H.C.J.L.; Goor, H. van; Wilder-Smith, O.H.G.

    2011-01-01

    BACKGROUND AND OBJECTIVES: Upper abdominal pain is a dominant feature of chronic pancreatitis. A key phenomenon in this context is hyperalgesia, typically associated with N-methyl-d-aspartate receptor activation. This exploratory study evaluates acute effects of S-ketamine, a noncompetitive

  17. Is development of hyperalgesia, allodynia and myoclonus related to morphine metabolism during long-term administration?

    DEFF Research Database (Denmark)

    Sjøgren, P; Thunedborg, L P; Christrup, Lona Louring

    1998-01-01

    Recently, clinical reports have suggested a relationship between the occurrence of hyperalgesia, allodynia and/or myoclonus and treatment with high doses of morphine in humans. Although few clinical descriptions of these phenomena are available, experimental work supports the notion that high dos...

  18. Insights into the Molecular Events That Regulate Heat-Induced Chilling Tolerance in Citrus Fruits.

    Science.gov (United States)

    Lafuente, María T; Establés-Ortíz, Beatriz; González-Candelas, Luis

    2017-01-01

    Low non-freezing temperature may cause chilling injury (CI), which is responsible for external quality deterioration in many chilling-sensitive horticultural crops. Exposure of chilling-sensitive citrus cultivars to non-lethal high-temperature conditioning may increase their chilling tolerance. Very little information is available about the molecular events involved in such tolerance. In this work, the molecular events associated with the low temperature tolerance induced by heating Fortune mandarin, which is very sensitive to chilling, for 3 days at 37°C prior to cold storage is presented. A transcriptomic analysis reveals that heat-conditioning has an important impact favoring the repression of genes in cold-stored fruit, and that long-term heat-induced chilling tolerance is an active process that requires activation of transcription factors involved in transcription initiation and of the WRKY family. The analysis also shows that chilling favors degradation processes, which affect lipids and proteins, and that the protective effect of the heat-conditioning treatment is more likely to be related to the repression of the genes involved in lipid degradation than to the modification of fatty acids unsaturation, which affects membrane permeability. Another major factor associated with the beneficial effect of the heat treatment on reducing CI is the regulation of stress-related proteins. Many of the genes that encoded such proteins are involved in secondary metabolism and in oxidative stress-related processes.

  19. Phenylephrine-induced elevations in arterial blood pressure are attenuated in heat-stressed humans

    Science.gov (United States)

    Cui, Jian; Wilson, Thad E.; Crandall, Craig G.

    2002-01-01

    To test the hypothesis that phenylephrine-induced elevations in blood pressure are attenuated in heat-stressed humans, blood pressure was elevated via steady-state infusion of three doses of phenylephrine HCl in 10 healthy subjects in both normothermic and heat stress conditions. Whole body heating significantly increased sublingual temperature by 0.5 degrees C, muscle sympathetic nerve activity (MSNA), heart rate, and cardiac output and decreased total peripheral vascular resistance (TPR; all P blood pressure (MAP; P > 0.05). At the highest dose of phenylephrine, the increase in MAP and TPR from predrug baselines was significantly attenuated during the heat stress [DeltaMAP 8.4 +/- 1.2 mmHg; DeltaTPR 0.96 +/- 0.85 peripheral resistance units (PRU)] compared with normothermia (DeltaMAP 15.4 +/- 1.4 mmHg, DeltaTPR 7.13 +/- 1.18 PRU; all P blood pressure, as well as the slope of the relationship between heart rate and systolic blood pressure, respectively, was similar between thermal conditions (each P > 0.05). These data suggest that phenylephrine-induced elevations in MAP are attenuated in heat-stressed humans without affecting baroreflex control of MSNA or heart rate.

  20. Insights into the Molecular Events That Regulate Heat-Induced Chilling Tolerance in Citrus Fruits

    Directory of Open Access Journals (Sweden)

    María T. Lafuente

    2017-06-01

    Full Text Available Low non-freezing temperature may cause chilling injury (CI, which is responsible for external quality deterioration in many chilling-sensitive horticultural crops. Exposure of chilling-sensitive citrus cultivars to non-lethal high-temperature conditioning may increase their chilling tolerance. Very little information is available about the molecular events involved in such tolerance. In this work, the molecular events associated with the low temperature tolerance induced by heating Fortune mandarin, which is very sensitive to chilling, for 3 days at 37°C prior to cold storage is presented. A transcriptomic analysis reveals that heat-conditioning has an important impact favoring the repression of genes in cold-stored fruit, and that long-term heat-induced chilling tolerance is an active process that requires activation of transcription factors involved in transcription initiation and of the WRKY family. The analysis also shows that chilling favors degradation processes, which affect lipids and proteins, and that the protective effect of the heat-conditioning treatment is more likely to be related to the repression of the genes involved in lipid degradation than to the modification of fatty acids unsaturation, which affects membrane permeability. Another major factor associated with the beneficial effect of the heat treatment on reducing CI is the regulation of stress-related proteins. Many of the genes that encoded such proteins are involved in secondary metabolism and in oxidative stress-related processes.

  1. Neurosteroid 3α-androstanediol efficiently counteracts paclitaxel-induced peripheral neuropathy and painful symptoms.

    Directory of Open Access Journals (Sweden)

    Laurence Meyer

    Full Text Available Painful peripheral neuropathy belongs to major side-effects limiting cancer chemotherapy. Paclitaxel, widely used to treat several cancers, induces neurological symptoms including burning pain, allodynia, hyperalgesia and numbness. Therefore, identification of drugs that may effectively counteract paclitaxel-induced neuropathic symptoms is crucial. Here, we combined histopathological, neurochemical, behavioral and electrophysiological methods to investigate the natural neurosteroid 3α-androstanediol (3α-DIOL ability to counteract paclitaxel-evoked peripheral nerve tissue damages and neurological symptoms. Prophylactic or corrective 3α-DIOL treatment (4 mg/kg/2 days prevented or suppressed PAC-evoked heat-thermal hyperalgesia, cold-allodynia and mechanical allodynia/hyperalgesia, by reversing to normal, decreased thermal and mechanical pain thresholds of PAC-treated rats. Electrophysiological studies demonstrated that 3α-DIOL restored control values of nerve conduction velocity and action potential peak amplitude significantly altered by PAC-treatment. 3α-DIOL also repaired PAC-induced nerve damages by restoring normal neurofilament-200 level in peripheral axons and control amount of 2',3'-cyclic-nucleotide-3'-phosphodiesterase in myelin sheaths. Decreased density of intraepidermal nerve fibers evoked by PAC-therapy was also counteracted by 3α-DIOL treatment. More importantly, 3α-DIOL beneficial effects were not sedation-dependent but resulted from its neuroprotective ability, nerve tissue repairing capacity and long-term analgesic action. Altogether, our results showing that 3α-DIOL efficiently counteracted PAC-evoked painful symptoms, also offer interesting possibilities to develop neurosteroid-based strategies against chemotherapy-induced peripheral neuropathy. This article shows that the prophylactic or corrective treatment with 3α-androstanediol prevents or suppresses PAC-evoked painful symptoms and peripheral nerve dysfunctions in

  2. Nanoimprinted polymer chips for light induced local heating of liquids in micro- and nanochannels

    DEFF Research Database (Denmark)

    Thamdrup, Lasse Højlund; Pedersen, Jonas Nyvold; Flyvbjerg, Henrik

    2010-01-01

    A nanoimprinted polymer chip with a thin near-infrared absorber layer that enables light-induced local heating (LILH) of liquids inside micro- and nanochannels is presented. An infrared laser spot and corresponding hot-spot could be scanned across the device. Large temperature gradients yield...... a 785 nm laser diode was focused from the backside of the chip to a spot diameter down to 5 ..m in the absorber layer, yielding a localized heating (Gaussian profile) and large temperature gradients in the liquid in the nanochannels. A laser power of 38 mW yielded a temperature of 40°C in the center...

  3. 3D numerical modeling of coupled phenomena in induced processes of heat treatment with malice

    Directory of Open Access Journals (Sweden)

    Triwong Peeteenut

    2008-01-01

    Full Text Available This paper describes a multi-method Malice package for three dimension coupled phenomena in induced processes of heat treatment by an algorithm weakly coupled with the Migen package integral method defining the electromagnetic model and the Flux-Expert package finite element method defining the thermal model. The integral method is well suited to inductive systems undergoing sinusoidal excitation at midrange or high frequency. The unknowns of both models are current density, scalar potential and temperature. Joule power in the electromagnetic model is generated by Eddy currents. It becomes the heat source in the thermal model.

  4. Heat-induced accumulation and futile cycling of trehalose in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Hottiger, T.; Schmutz, P.; Wiemken, A.

    1987-01-01

    Heat shock resulted in rapid accumulation of large amounts of trehalose in Saccharomyces cerevisiae. In cultures growing exponentially on glucose, the trehalose content of the cells increased from 0.01 to 1 g/g of protein within 1 h after the incubation temperature was shifted from 27 to 40 0 C. When the temperature was readjusted to 27 0 C, the accumulated trehalose was rapidly degraded. In parallel, the activity of the trehalose-phosphate synthase, the key enzyme of trehalose biosynthesis, increased about six fold during the heat shock and declined to normal level after readjustment of the temperature. Surprisingly, the activity of neutral trehalase, the key enzyme of trehalose degradation, also increased about threefold during the heat shock and remained almost constant during recovery of the cells at 27 0 C. In pulse-labeling experiments with [ 14 C] glucose, trehalose was found to be turned over rapidly in heat-shocked cells, indicating that both anabolic and catabolic enzymes of trehalose metabolism were active in vivo. Possible functions of the heat-induced accumulation of trehalose and its rapid turnover in an apparently futile cycle during heat shock are discussed

  5. Estradiol upregulates voltage-gated sodium channel 1.7 in trigeminal ganglion contributing to hyperalgesia of inflamed TMJ.

    Directory of Open Access Journals (Sweden)

    Rui-Yun Bi

    Full Text Available Temporomandibular disorders (TMDs have the highest prevalence in women of reproductive age. The role of estrogen in TMDs and especially in TMDs related pain is not fully elucidated. Voltage-gated sodium channel 1.7 (Nav1.7 plays a prominent role in pain perception and Nav1.7 in trigeminal ganglion (TG is involved in the hyperalgesia of inflamed Temporomandibular joint (TMJ. Whether estrogen could upregulate trigeminal ganglionic Nav1.7 expression to enhance hyperalgesia of inflamed TMJ remains to be explored.Estrous cycle and plasma levels of 17β-estradiol in female rats were evaluated with vaginal smear and enzyme linked immunosorbent assay, respectively. Female rats were ovariectomized and treated with 17β-estradiol at 0 μg, 20 μg and 80 μg, respectively, for 10 days. TMJ inflammation was induced using complete Freund's adjuvant. Head withdrawal thresholds and food intake were measured to evaluate the TMJ nociceptive responses. The expression of Nav1.7 in TG was examined using real-time PCR and western blot. The activity of Nav1.7 promoter was examined using luciferase reporter assay. The locations of estrogen receptors (ERα and ERβ, the G protein coupled estrogen receptor (GPR30, and Nav1.7 in TG were examined using immunohistofluorescence.Upregulation of Nav1.7 in TG and decrease in head withdrawal threshold were observed with the highest plasma 17β-estradiol in the proestrus of female rats. Ovariectomized rats treated with 80 μg 17β-estradiol showed upregulation of Nav1.7 in TG and decrease in head withdrawal threshold as compared with that of the control or ovariectomized rats treated with 0 μg or 20 μg. Moreover, 17β-estradiol dose-dependently potentiated TMJ inflammation-induced upregulation of Nav1.7 in TG and also enhanced TMJ inflammation-induced decrease of head withdrawal threshold in ovariectomized rats. In addition, the estrogen receptor antagonist, ICI 182,780, partially blocked the 17β-estradiol effect on Nav1

  6. Analysis of the beam induced heat loads on the LHC arc beam screens during Run 2

    CERN Document Server

    Iadarola, Giovanni; Dijkstal, Philipp; Mether, Lotta; CERN. Geneva. ATS Department

    2017-01-01

    During Run 2 the Large Hadron Collider (LHC) has been routinely operated with 25 ns bunch spacing. In these conditions large heat loads have been measured on the beam screens of the superconducting magnets, together with other observations indicating that an electron cloud develops in the beam chambers. The analysis of these heat loads has revealed several interesting features allowing to pinpoint peculiar characteristics of the observed beam-induced heating. This document describes the main findings of this analysis including the evolution taking place during the run, the observed dependence on the beam conditions and the results from special tests and dedicated instrumentation. The differences observed in the behavior of the eight LHC arcs are also discussed.

  7. Painful tonic heat stimulation induces GABA accumulation in the prefrontal cortex in man

    DEFF Research Database (Denmark)

    Kupers, Ron; Danielsen, Else R; Kehlet, Henrik

    2009-01-01

    Relatively little is known on pain-induced neurotransmitter release in the human cerebral cortex. We used proton magnetic resonance spectroscopy (1H-MRS) during tonic painful heat stimulation to test the hypothesis of increases in both glutamate and GABA, two neurotransmitters with a key role...... that GABA is released in the human cerebral cortex during painful stimulation. The results are in line with animal findings on the role of GABA in pain processing and with studies in humans showing analgesic efficacy of GABA-related drugs in clinical pain conditions....... in pain processing. Using a 3T MR scanner, we acquired spectra from the rostral anterior cingulate cortex (rACC) in 13 healthy right-handed subjects at rest and during painful heat stimulation. The painful stimulus consisted of a suprathreshold painful tonic heat pulse, which was delivered to the right...

  8. Fast switching of alkali atom dispensers using laser-induced heating

    International Nuclear Information System (INIS)

    Griffin, P.F.; Weatherill, K.J.; Adams, C.S.

    2005-01-01

    We show that by using an intense laser source to locally heat an alkali atom dispenser, one can generate a high flux of atoms followed by fast recovery (<100 ms) of the background pressure when the laser is extinguished. For repeated heating pulses a switch-on time for the atomic flux of 200 ms is readily attainable. This technique is suited to ultracold atom experiments using simple ultrahigh vacuum (UHV) chambers. Laser-induced heating provides a fast repetition of the experimental cycle, which, combined with low atom loss due to background gas collisions, is particularly useful for experiments involving far-off resonance optical traps, where sufficient laser power (0.5-4 W) is readily available

  9. Measurement of heat treatment induced residual stresses by using ESPI combined with hole-drilling method

    Directory of Open Access Journals (Sweden)

    Jie Cheng

    2010-08-01

    Full Text Available In this study, residual stresses in heat treated specimen were measured by using ESPI (Electronic Speckle-Pattern Interferometry combined with the hole-drilling method. The specimen, made of SUS 304 austenitic stainless steel, was quenched and water cooled to room temperature. Numerical simulation using a hybrid FDM/FEM package was also carried out to simulate the heat treatment process. As a result, the thermal stress fields were obtained from both the experiment and the numerical simulation. By comparision of stress fields, results from the experimental method and numerical simulation well agreed to each other, therefore, it is proved that the presented experimental method is applicable and reliable for heat treatment induced residual stress measurement.

  10. Identification of proteins whose synthesis in Saccharomyces cerevisiae is induced by DNA damage and heat shock

    International Nuclear Information System (INIS)

    Gailit, James

    1990-01-01

    Protein synthesis in Saccharomyces cerevisiae after exposure to ultraviolet light (UV) was examined by two-dimensional gel electrophoresis of pulse-labelled proteins. The synthesis of 12 distinct proteins was induced by treatment with UV doses of 10-200 J/m 2 . The induced proteins differed in minimum dose necessary for induction, maximum dose at which induction still occurred and constitutive level present in unirradiated cells. A chemical mutagen, 4-nitroquinoline-1-oxide, induced synthesis of the same proteins. Induction after UV treatment was observed in seven different yeast strains, including three mutants deficient in DNA repair. Synthesis of five of the proteins was also induced by brief heat shock treatment. These five may be members of a family of proteins whose synthesis is regulated by two different pathways responding to different types of stress. (author)

  11. Intermediate heat exchanger tube vibration induced by cross and parallel mixed flow

    International Nuclear Information System (INIS)

    Kawamura, Koji

    1986-01-01

    The characteristics of pool type LMFBR intermediate heat exchanger (IHX) tube vibrations induced by cross and parallel mixed flow were basically investigated. Secondary coolant in IHX tube bundle is mixed flow of parallel jit flow along the tube axis through flow holes in baffle plates and cross flow. By changing these two flow rate, flow distributions vary in the tube bundle. Mixed flow also induces vibrations which cause fretting wear and fatigue of tube. It is therefore very important to evaluate the tube vibration characteristics for estimating the tube integrity. The results show that the relationships between tube vibrations and flow distributions in the tube bundle were cleared, and mixed flow induced tube vibration could be evaluated on the base of the characteristics of both parallel and cross flow induced vibration. From these investigations it could be concluded that the characteristics of tube vibration for various flow distributions can be systematically evaluated. (author)

  12. Light induced cooling of a heated solid immersed in liquid helium I

    International Nuclear Information System (INIS)

    Lezak, D.; Brodie, L.C.; Semura, J.S.

    1984-01-01

    This chapter investigates the marked enhancement in the transient heat transfer from the heater-thermometer to the liquid helium immediately following the application of a flash of visible light. This ''light effect'' is associated with increased bubble activity, and it is possible that the light induces a rapid nucleation of bubbles in the superheated liquid at or near the heater surface. A summary of the light effect is presented and some potential uses to which this effect could be applied are suggested. Quantification of the light effect and properties of the light effect are discussed. It is determined that the light effect is an additional cooling due to a light induced enhancement of boiling in superheated liquid helium I. The effect could be applied in practical cryogenic engineering and for the acquisition of fundamental knowledge of boiling heat transfer and nucleation in cryogenic liquids

  13. [Heat shock protein 90--modulator of TNFalpha-induced apoptosis of Jurkat tumor cells].

    Science.gov (United States)

    Kaĭgorodova, E V; Riazantseva, N V; Novitskiĭ, V V; Moroshkina, A N; Belkina, M V; Iakushina, V D

    2011-01-01

    rTNFalpha-induced programmed death of Jurkat tumor cells cultured with 17-AAG, a selective inhibitor of heat shock protein (Hsp90), was studied by fluorescent microscopy with the use of FITC-labeled annexin V and propidium iodide. Caspase-3 and -8 activities were determined by spectrophotometry using a caspase- 3 and -8 colorimetric assay kit. It was shown that inhibition of Hsp90 leads to activation of Jurkat cell apoptosis while Hsp90 itself suppresses this process. 17-AAG enhances rTNFa-induced apoptosis of tumor cells.

  14. Heat priming induces trans-generational tolerance to high temperature stress in wheat

    Directory of Open Access Journals (Sweden)

    Xiao eWang

    2016-04-01

    Full Text Available Wheat plants are very sensitive to high temperature stress during grain filling. Effects of heat priming applied to the first generation on tolerance of the successive generation to post-anthesis high temperature stress were investigated. Compared with the progeny of non-heat primed plants (NH, the progeny of heat-primed plants (PH possessed higher grain yield, leaf photosynthesis and activities of antioxidant enzymes and lower cell membrane damage under high temperature stress. In the transcriptome profile, 1430 probes showed obvious difference in expression between PH and NH. These genes were related to signal transduction, transcription, energy, defense, and protein destination and storage, respectively. The gene encoding the lysine-specific histone demethylase 1 (LSD1 which was involved in histone demethylation related to epigenetic modification was up-regulated in the PH compared with NH. The proteome analysis indicated that the proteins involved in photosynthesis, energy production and protein destination and storage were up-regulated in the PH compared with NH. In short, thermos-tolerance was induced through heritable epigenetic alternation and signaling transduction, both processes further triggered prompt modifications of defense related responses in anti-oxidation, transcription, energy production, and protein destination and storage in the progeny of the primed plants under high temperature stress. It was concluded that trans-generation thermo-tolerance was induced by heat priming in the first generation, and this might be an effective measure to cope with severe high-temperature stresses during key growth stages in wheat production.

  15. Formation of tRNA granules in the nucleus of heat-induced human cells

    International Nuclear Information System (INIS)

    Miyagawa, Ryu; Mizuno, Rie; Watanabe, Kazunori; Ijiri, Kenichi

    2012-01-01

    Highlights: ► tRNAs are tranlocated into the nucleus in heat-induced HeLa cells. ► tRNAs form the unique granules in the nucleus. ► tRNA ganules overlap with nuclear stress granules. -- Abstract: The stress response, which can trigger various physiological phenomena, is important for living organisms. For instance, a number of stress-induced granules such as P-body and stress granule have been identified. These granules are formed in the cytoplasm under stress conditions and are associated with translational inhibition and mRNA decay. In the nucleus, there is a focus named nuclear stress body (nSB) that distinguishes these structures from cytoplasmic stress granules. Many splicing factors and long non-coding RNA species localize in nSBs as a result of stress. Indeed, tRNAs respond to several kinds of stress such as heat, oxidation or starvation. Although nuclear accumulation of tRNAs occurs in starved Saccharomyces cerevisiae, this phenomenon is not found in mammalian cells. We observed that initiator tRNA Met (Meti) is actively translocated into the nucleus of human cells under heat stress. During this study, we identified unique granules of Meti that overlapped with nSBs. Similarly, elongator tRNA Met was translocated into the nucleus and formed granules during heat stress. Formation of tRNA granules is closely related to the translocation ratio. Then, all tRNAs may form the specific granules.

  16. Influence of Joule heating on current-induced domain wall depinning

    Energy Technology Data Exchange (ETDEWEB)

    Moretti, Simone, E-mail: simone.moretti@usal.es; Raposo, Victor; Martinez, Eduardo [University of Salamanca, Plaza de los Caidos, 37008 Salamanca (Spain)

    2016-06-07

    The domain wall depinning from a notch in a Permalloy nanostrip on top of a SiO{sub 2}/Si substrate is studied theoretically under application of static magnetic fields and the injection of short current pulses. The influence of Joule heating on current-induced domain wall depinning is explored self-consistently by coupling the magnetization dynamics in the ferromagnetic strip to the heat transport throughout the system. Our results indicate that Joule heating plays a remarkable role in these processes, resulting in a reduction in the critical depinning field and/or in a temporary destruction of the ferromagnetic order for typically injected current pulses. In agreement with experimental observations, similar pinning-depinning phase diagrams can be deduced for both current polarities when the Joule heating is taken into account. These observations, which are incompatible with the sole contribution of spin transfer torques, provide a deeper understanding of the physics underlying these processes and establish the real scope of the spin transfer torque. They are also relevant for technological applications based on current-induced domain-wall motion along soft strips.

  17. Flow induced vibration characteristics in 2X3 bundle critical heat flux experiment

    International Nuclear Information System (INIS)

    Kim, Dae Hun; Chang, Soon Heung

    2005-01-01

    Above a certain heat flux, the liquid can no longer permanently wet the heater surface. This situation leads to an inordinate decrease in the surface heat transfer. This heat flux is commonly referred to as the critical heat flux (CHF). The CHF in nuclear reactors is one of the important thermal hydraulic parameters limiting the available power. Flow induced vibration (FIV) is the vibration caused by a fluid flowing around a body. In the fluid flowing system, FIV occurred by structures and flow condition. Many structures in nuclear power plant system are designed to prevent from structure failure due to FIV. Recently, Hibiki and Ishii (1998) carried out an experimental investigation on the effect of flow-induced vibration (FIV) on two-phase flow structure in vertical tube and reported that the FIV drastically changed the void fraction profiles. The void fraction profiles is one of the important parameter for determining CHF. Therefore, the investigation on the effect of FIV on CHF are needed. The research on FIV characteristics detection during CHF experiment in 2X3 bundle using R-134a has been carried out in KAIST. Using the results new FIV correlation in 2-pahse turbulent flow are suggested after finding out relation between CHF and dynamic pressure fluctuation value

  18. Light-Induced Local Heating for Thermophoretic Manipulation of DNA in Polymer Micro- and Nanochannels

    DEFF Research Database (Denmark)

    Thamdrup, Lasse Højlund; Larsen, Niels Bent; Kristensen, Anders

    2010-01-01

    We present a method for making polymer chips with a narrow-band near-infrared absorber layer that enables light-induced local heating of liquids inside fluidic micro- and nanochannels fabricated by thermal imprint in polymethyl methacrylate. We have characterized the resulting liquid temperature...... profiles in microchannels using the temperature dependent fluorescence of the complex [Ru(bpy)3]2+. We demonstrate thermophoretic manipulation of individual YOYO-1 stained T4 DNA molecules inside micro- and nanochannels....

  19. Unsteady free convection MHD flow between two heated vertical parallel plates in induced magnetic field

    International Nuclear Information System (INIS)

    Chakraborty, S.; Borkakati, A.K.

    1999-01-01

    An unsteady viscous incompressible free convection flow of an electrically conducting fluid between two heated vertical parallel plates is considered in presence of a uniform magnetic field applied transversely to the flow. The approximate analytical solutions for velocity, induced field and temperature distributions are obtained for small and large magnetic Reynolds number. The skin-friction on the two plates are obtained and plotted graphically. The problem is extended for thermometric case. (author)

  20. Activated platelets release sphingosine 1-phosphate and induce hypersensitivity to noxious heat stimuli in vivo

    Directory of Open Access Journals (Sweden)

    Daniela eWeth

    2015-04-01

    Full Text Available At the site of injury activated platelets release various mediators, one of which is sphingosine 1-phosphate (S1P. It was the aim of this study to explore whether activated human platelets had a pronociceptive effect in an in vivo mouse model and whether this effect was based on the release of S1P and subsequent activation of neuronal S1P receptors 1 or 3. Human platelets were prepared in different concentrations (105/µl, 106/µl, 107/µl and assessed in mice with different genetic backgrounds (WT, S1P1fl/fl, SNS-S1P1-/-, S1P3-/-. Intracutaneous injections of activated human platelets induced a significant, dose-dependent hypersensitivity to noxious thermal stimulation. The degree of heat hypersensitivity correlated with the platelet concentration as well as the platelet S1P content and the amount of S1P released upon platelet activation as measured with LC MS/MS. Despite the significant correlations between S1P and platelet count, no difference in paw withdrawal latency (PWL was observed in mice with a global null mutation of the S1P3 receptor or a conditional deletion of the S1P1 receptor in nociceptive primary afferents. Furthermore, neutralisation of S1P with a selective anti-S1P antibody did not abolish platelet induced heat hypersensitivity. Our results suggest that activated platelets release S1P and induce heat hypersensitivity in vivo. However, the platelet induced heat hypersensitivity was caused by mediators other than S1P.

  1. Tempo enhances heat-induced apoptosis by mitochondrial targeting of Bax

    International Nuclear Information System (INIS)

    Zhao, Q.-L.; Fujiwara, Y.; Kondo, T.

    2003-01-01

    A stable membrane-permeable nitroxide, Tempo, exerts an SOD-like antioxidant activity against ROS. Reportedly, Tempo inhibits ROS-induced thymocyte apoptosis, while 10 mM Tempo activates JNK1 to induce apoptosis in breast cancer cells. We have observed that nontoxic 5 mM Tempo enhances suboptimal hyperthermia (44 deg C/10 min)-induced apoptosis in U937 cells. Here we report the enhancing mechanism, focusing on activation and targeting of Bax to mitochondria and cytochrome c release. Methods: U937 cells were treated with either Tempo (5 mM, 37 deg C/10 min), heating (44 deg C/10 min), or Tempo-plus-heating, washed and incubated for various times up to 6 h, until assessing apoptosis, mitochondrial potential (ΔΨ>), and amount of superoxide by flow cytometry using Annexin V-FITC/PI, TMRM, and dihydroethidium, respectively. Bax, Bcl-2 and Bcl-XL, and cytochrome c were detected by western blotting, activated Bax was by immunoprecipitation, and ATP was by a luciferase assay. Bax targeting to and cytochrome c release from mitochorndria were also detected immunocytochemically under fluorescent microscopy. Results and Discussion: Treatment of U937 cells with 5 mM Tempo for 10 min at 37 deg C or suboptimal heating (44 deg C/ 10 min) alone did not induce apoptosis. The combined treatment with 5 mM Tempo and 44 deg C for 10 min dramatically induced ∼90% apoptosis in 6 h, as did the 44 deg C/30 min heating. During the enhanced apoptosis, cytochrome c release progressed. Although signals of Bcl-2, Bcl-XL and Bax in cell lysates were not altered, Bax was specifically activated and translocated to mitochondria after the combined treatment. Further, loss of ΔΨ>and decreases in superoxide and ATP progressed after the combined treatment, suggesting that the treatment may disturb mitochondrial electron transport. Thus, Tempo sensitizes the heat-induced apoptosis through (1) targeting of Bax to mitochondria and releasing cytochrome c, and (2) mitochondrial dysfunction

  2. Renoprotective effect of virgin coconut oil in heated palm oil diet-induced hypertensive rats.

    Science.gov (United States)

    Kamisah, Yusof; Ang, Shu-Min; Othman, Faizah; Nurul-Iman, Badlishah Sham; Qodriyah, Hj Mohd Saad

    2016-10-01

    Virgin coconut oil, rich in antioxidants, was shown to attenuate hypertension. This study aimed to investigate the effects of virgin coconut oil on blood pressure and related parameters in kidneys in rats fed with 5-times-heated palm oil (5HPO). Thirty-two male Sprague-Dawley rats were divided into 4 groups. Two groups were fed 5HPO (15%) diet and the second group was also given virgin coconut oil (1.42 mL/kg, oral) daily for 16 weeks. The other 2 groups were given basal diet without (control) and with virgin coconut oil. Systolic blood pressure was measured pre- and post-treatment. After 16 weeks, the rats were sacrificed and kidneys were harvested. Dietary 5HPO increased blood pressure, renal thiobarbituric acid reactive substance (TBARS), and nitric oxide contents, but decreased heme oxygenase activity. Virgin coconut oil prevented increase in 5HPO-induced blood pressure and renal nitric oxide content as well as the decrease in renal heme oxygenase activity. The virgin coconut oil also reduced the elevation of renal TBARS induced by the heated oil. However, neither dietary 5HPO nor virgin coconut oil affected renal histomorphometry. In conclusion, virgin coconut oil has a potential to reduce the development of hypertension and renal injury induced by dietary heated oil, possibly via its antioxidant protective effects on the kidneys.

  3. Neurotoxicity induced by arsenic in Gallus Gallus: Regulation of oxidative stress and heat shock protein response.

    Science.gov (United States)

    Zhao, Panpan; Guo, Ying; Zhang, Wen; Chai, Hongliang; Xing, Houjuan; Xing, Mingwei

    2017-01-01

    Arsenic, a naturally occurring heavy metal pollutant, is one of the functioning risk factors for neurological toxicity in humans. However, little is known about the effects of arsenic on the nervous system of Gallus Gallus. To investigate whether arsenic induce neurotoxicity and influence the oxidative stress and heat shock proteins (Hsps) response in chickens, seventy-two 1-day-old male Hy-line chickens were treated with different doses of arsenic trioxide (As 2 O 3 ). The histological changes, antioxidant enzyme activity, and the expressions of Hsps were detected. Results showed slightly histology changes were obvious in the brain tissues exposure to arsenic. The activities of Glutathione peroxidase (GSH-Px) and catalase (CAT) were decreased compared to the control, whereas the malondialdehyde (MDA) content was increased gradually along with increase in diet-arsenic. The mRNA levels of Hsps and protein expressions of Hsp60 and Hsp70 were up-regulated. These results suggested that sub-chronic exposure to arsenic induced neurotoxicity in chickens. Arsenic exposure disturbed the balance of oxidants and antioxidants. Increased heat shock response tried to protect chicken brain tissues from tissues damage caused by oxidative stress. The mechanisms of neurotoxicity induced by arsenic include oxidative stress and heat shock protein response in chicken brain tissues. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. The kinetics of removal of heat-induced excess nuclear protein

    International Nuclear Information System (INIS)

    Roti, J.L.R.; Uygur, N.; Higashikubo, R.

    1984-01-01

    To investigate the role of protein content, temperature and heating time in the removal of heat-induced excess protein associated with the isolated nucleus, the kinetics of protein removal was monitored for 6 to 8 hours following exposure to 7 hyperthermic protocols. Four of these (47 0 C-7.5 min., 46 0 C-15 min., 45 0 C-30 min., and 44 0 C-60 min.) resulted in a nuclear protein content approximately twice that of nuclei from unheated cells (2.05 +- .14) following heat exposure. Three protocols (45 0 C-15 min., 44 0 C-30 min. and 43 0 C-60 min.) resulted in a nuclear protein content approximately 1.6 times normal (1.63 +- .12). If nuclear protein content were the only determinant in the recovery rate, then the same half time for nuclear protein removal would be expected within each group of protocols. Rate constants for nuclear protein removal were obtained by regression analysis. The half-time for nuclear protein removal increased with decreasing temperature and increasing heating time for the same nuclear protein content. This result suggests that the heating time and temperature are more of a determinant in the removal kinetics than protein content alone. Extended kinetics of recovery (to 36 hours) showed incomplete recovery and a secondary increase in protein associated with the isolated nucleus. These results were due to cell-cycle rearrangement (G/sub 2/ block) and unbalanced growth

  5. Use of a laser-induced fluorescence thermal imaging system for film cooling heat transfer measurement

    Energy Technology Data Exchange (ETDEWEB)

    Chyu, M.K. [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    1995-10-01

    This paper describes a novel approach based on fluorescence imaging of thermographic phosphor that enables the simultaneous determination of both local film effectiveness and local heat transfer on a film-cooled surface. The film cooling model demonstrated consists of a single row of three discrete holes on a flat plate. The transient temperature measurement relies on the temperature-sensitive fluorescent properties of europium-doped lanthanum oxysulfide (La{sub 2}O{sub 2}S:EU{sup 3+}) thermographic phosphor. A series of full-field surface temperatures, mainstream temperatures, and coolant film temperatures were acquired during the heating of a test surface. These temperatures are used to calculate the heat transfer coefficients and the film effectiveness simultaneously. Because of the superior spatial resolution capability for the heat transfer data reduced from these temperature frames, the laser-induced fluorescence (LIF) imaging system, the present study observes the detailed heat transfer characteristics over a film-protected surface. The trend of the results agrees with those obtained using other conventional thermal methods, as well as the liquid crystal imaging technique. One major advantage of this technique is the capability to record a large number of temperature frames over a given testing period. This offers multiple-sample consistency.

  6. Beam-induced heating / bunch length / RF and lessons for 2012

    International Nuclear Information System (INIS)

    Metral, E.

    2012-01-01

    Beam-induced heating has been observed here and there during the 2011 run when the bunch/beam intensity was increased and/or the bunch length was reduced. These observations are first reviewed before mentioning the recent news/work performed during the shutdown. In fact, several possible sources of heating exist and only the RF heating (i.e. coming from the real part of the longitudinal impedance of the machine components) is discussed in some detail in the present paper: 1) comparing the case of a Broad-Band (BB) vs. a Narrow-Band (NB) impedance; 2) discussing the beam spectrum; 3) reminding the usual solutions to avoid/minimize the RF heating; 4) reviewing the different heat transfer mechanisms; 5) mentioning that the synchronous phase shift is a measurement of the power loss and effective impedance. The three current 'hot' topics for the LHC performance, which are the VMTSA, TDI and MKI, are then analyzed in detail and some lessons for 2012 (and after) are finally drawn

  7. Prediction of postoperative pain by preoperative nociceptive responses to heat stimulation

    DEFF Research Database (Denmark)

    Werner, Mads U; Duun, Preben; Kehlet, Henrik

    2004-01-01

    , secondary hyperalgesia area, thermal and mechanical pain perception, and pain thresholds. Postoperative analgesia consisted of ibuprofen and acetaminophen. Pain ratings (visual analog scale) at rest and during limb movement were followed for 10 days after surgery. RESULTS: The burn injury was associated......BACKGROUND: Despite major advances in the understanding of the neurobiologic mechanisms of pain, the wide variation in acute pain experience has not been well explained. Therefore, the authors investigated the potential of a preoperatively induced heat injury to predict subsequent postoperative...... pain ratings in patients undergoing knee surgery. METHODS: Twenty patients were studied. The burn injury was induced 6 days before surgery with a contact thermode (12.5 cm2, 47 degrees C for 7 min). The sensory testing, before and 1 h after the injury, included pain score during induction of the burn...

  8. Biologically Synthesized Gold Nanoparticles Ameliorate Cold and Heat Stress-Induced Oxidative Stress in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Xi-Feng Zhang

    2016-06-01

    Full Text Available Due to their unique physical, chemical, and optical properties, gold nanoparticles (AuNPs have recently attracted much interest in the field of nanomedicine, especially in the areas of cancer diagnosis and photothermal therapy. Because of the enormous potential of these nanoparticles, various physical, chemical, and biological methods have been adopted for their synthesis. Synthetic antioxidants are dangerous to human health. Thus, the search for effective, nontoxic natural compounds with effective antioxidative properties is essential. Although AuNPs have been studied for use in various biological applications, exploration of AuNPs as antioxidants capable of inhibiting oxidative stress induced by heat and cold stress is still warranted. Therefore, one goal of our study was to produce biocompatible AuNPs using biological methods that are simple, nontoxic, biocompatible, and environmentally friendly. Next, we aimed to assess the antioxidative effect of AuNPs against oxidative stress induced by cold and heat in Escherichia coli, which is a suitable model for stress responses involving AuNPs. The response of aerobically grown E. coli cells to cold and heat stress was found to be similar to the oxidative stress response. Upon exposure to cold and heat stress, the viability and metabolic activity of E. coli was significantly reduced compared to the control. In addition, levels of reactive oxygen species (ROS and malondialdehyde (MDA and leakage of proteins and sugars were significantly elevated, and the levels of lactate dehydrogenase activity (LDH and adenosine triphosphate (ATP significantly lowered compared to in the control. Concomitantly, AuNPs ameliorated cold and heat-induced oxidative stress responses by increasing the expression of antioxidants, including glutathione (GSH, glutathione S-transferase (GST, super oxide dismutase (SOD, and catalase (CAT. These consistent physiology and biochemical data suggest that AuNPs can ameliorate cold and

  9. Exercise-induced heat stress disrupts the shear-dilatory relationship.

    Science.gov (United States)

    Ives, Stephen J; Lefferts, Wesley K; Wharton, Margret; Fehling, Patricia C; Smith, Denise L

    2016-12-01

    What is the central question of this study? Although heat stress is known to increase cardiovascular strain, no study, to date, had explored the potential impact of exercise-induced heat stress on vascular function. What is the main finding and its importance? We found that acute exercise tended to reduce flow-mediated dilatation (FMD), owing in part to reduced reactive hyperaemia/shear stimulus; thus, when FMD is normalized to shear no postexercise deficit exists. Exercise-induced heat stress increased reactive hyperaemia, shear rate, coupled with a sustained FMD postexercise, suggests that exercise-induced heat stress increases the amount of shear stimulus to elicit a similar response, indicating reduced vascular responsiveness, or reserve, which might increase cardiovascular susceptibility. Heat stress increases cardiovascular strain and is of particular concern in occupations, such as firefighting, in which individuals are required to perform strenuous work while wearing personal protective equipment. Sudden cardiac events are associated with strenuous activity and are the leading cause of duty-related death among firefighters, accounting for ∼50% of duty-related fatalities per year. Understanding the acute effects of exercise-induced heat stress (EIHS) on vascular endothelial function may provide insight into the mechanisms precipitating acute coronary events in firefighters. The purpose of this study, therefore, was to determine the effects of EIHS on vascular endothelial function. Using a balanced crossover design, 12 healthy men performed 100 min of moderate-intensity, intermittent exercise with and without EIHS (personal protective equipment or cooling vest, respectively). Measurements of flow-mediated dilatation (FMD), reactive hyperaemia and shear rate area under the curve (SR AUC ) were performed pre- and postexercise. During EIHS, core temperature was significantly higher (38 ± 0.1 versus 37 ± 0.1°C). Postexercise FMD tended to be suppressed

  10. Selective activation of human heat shock gene transcription by nitrosourea antitumor drugs mediated by isocyanate-induced damage and activation of heat shock transcription factor.

    Science.gov (United States)

    Kroes, R A; Abravaya, K; Seidenfeld, J; Morimoto, R I

    1991-01-01

    Treatment of cultured human tumor cells with the chloroethylnitrosourea antitumor drug 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) selectively induces transcription and protein synthesis of a subset of the human heat shock or stress-induced genes (HSP90 and HSP70) with little effect on other stress genes or on expression of the c-fos, c-myc, or beta-actin genes. The active component of BCNU and related compounds appears to be the isocyanate moiety that causes carbamoylation of proteins and nucleic acids. Transcriptional activation of the human HSP70 gene by BCNU is dependent on the heat shock element and correlates with the level of heat shock transcription factor and its binding to the heat shock element in vivo. Unlike activation by heat or heavy metals, BCNU-mediated activation is strongly dependent upon new protein synthesis. This suggests that BCNU-induced, isocyanate-mediated damage to newly synthesized protein(s) may be responsible for activation of the heat shock transcription factor and increased transcription of the HSP90 and HSP70 genes. Images PMID:2052560

  11. Intergenic sequence between Arabidopsis caseinolytic protease B-cytoplasmic/heat shock protein100 and choline kinase genes functions as a heat-inducible bidirectional promoter.

    Science.gov (United States)

    Mishra, Ratnesh Chandra; Grover, Anil

    2014-11-01

    In Arabidopsis (Arabidopsis thaliana), the At1g74310 locus encodes for caseinolytic protease B-cytoplasmic (ClpB-C)/heat shock protein100 protein (AtClpB-C), which is critical for the acquisition of thermotolerance, and At1g74320 encodes for choline kinase (AtCK2) that catalyzes the first reaction in the Kennedy pathway for phosphatidylcholine biosynthesis. Previous work has established that the knockout mutants of these genes display heat-sensitive phenotypes. While analyzing the AtClpB-C promoter and upstream genomic regions in this study, we noted that AtClpB-C and AtCK2 genes are head-to-head oriented on chromosome 1 of the Arabidopsis genome. Expression analysis showed that transcripts of these genes are rapidly induced in response to heat stress treatment. In stably transformed Arabidopsis plants harboring this intergenic sequence between head-to-head oriented green fluorescent protein and β-glucuronidase reporter genes, both transcripts and proteins of the two reporters were up-regulated upon heat stress. Four heat shock elements were noted in the intergenic region by in silico analysis. In the homozygous transfer DNA insertion mutant Salk_014505, 4,393-bp transfer DNA is inserted at position -517 upstream of ATG of the AtClpB-C gene. As a result, AtCk2 loses proximity to three of the four heat shock elements in the mutant line. Heat-inducible expression of the AtCK2 transcript was completely lost, whereas the expression of AtClpB-C was not affected in the mutant plants. Our results suggest that the 1,329-bp intergenic fragment functions as a heat-inducible bidirectional promoter and the region governing the heat inducibility is possibly shared between the two genes. We propose a model in which AtClpB-C shares its regulatory region with heat-induced choline kinase, which has a possible role in heat signaling. © 2014 American Society of Plant Biologists. All Rights Reserved.

  12. Antinociceptive and antiallodynic effects of Momordica charantia L. in tibial and sural nerve transection-induced neuropathic pain in rats.

    Science.gov (United States)

    Jain, Vivek; Pareek, Ashutosh; Paliwal, Nishant; Ratan, Yashumati; Jaggi, Amteshwar Singh; Singh, Nirmal

    2014-02-01

    This study was designed to investigate the ameliorative potential of Momordica charantia L. (MC) in tibial and sural nerve transection (TST)-induced neuropathic pain in rats. TST was performed by sectioning tibial and sural nerve portions (2 mm) of the sciatic nerve, and leaving the common peroneal nerve intact. Acetone drop, pin-prick, hot plate, paint-brush, and walking track tests were performed to assess cold allodynia, mechanical and heat hyperalgesia, and dynamic mechanical allodynia and tibial functional index, respectively. The levels of tumour necrosis factor (TNF)-alpha and thio-barbituric acid reactive substances (TBARS) were measured in the sciatic nerve as an index of inflammation and oxidative stress. MC (all doses, orally, once daily) was administered to the rats for 24 consecutive days. TST led to significant development of cold allodynia, mechanical and heat hyperalgesia, dynamic mechanical allodynia, and functional deficit in walking along with rise in the levels of TBARS and TNF-alpha. Administration of MC (200, 400, and 800 mg/kg) significantly attenuated TST-induced behavioural and biochemical changes. Furthermore, pretreatment of BADGE (120 mg/kg, intraperitoneally) abolished the protective effect of MC in TST-induced neuropathic pain. Collectively, it is speculated that PPAR-gamma agonistic activity, anti-inflammatory, and antioxidative potential is critical for antinociceptive effect of MC in neuropathic pain.

  13. Secondary hyperalgesia phenotypes exhibit differences in brain activation during noxious stimulation

    DEFF Research Database (Denmark)

    Asghar, Mohammad Sohail; Pereira, Manuel Pedro; Werner, Mads Utke

    2015-01-01

    of the burn-injury) (p right (p = 0.001) and left caudate nucleus (p = 0.01) was detected....... To study differences in the propensity to develop central sensitization we examined differences in brain activity and anatomy according to individual phenotypical expression of secondary hyperalgesia by magnetic resonance imaging. Forty healthy volunteers received a first-degree burn-injury (47 °C, 7 min......, 9 cm(2)) on the non-dominant lower-leg. Areas of secondary hyperalgesia were assessed 100 min after the injury. We measured neuronal activation by recording blood-oxygen-level-dependent-signals (BOLD-signals) during mechanical noxious stimulation before burn injury and in both primary and secondary...

  14. Heat-induced accumulation of protein synthesis elongation factor 1A indicates an important role in heat tolerance in potato

    Science.gov (United States)

    Heat stress substantially reduces crop productivity worldwide, and will become more severe due to global warming. Identification of proteins involved in heat stress response may help develop varieties for heat tolerance. Eukaryotic elongation factor 1A (eEF1A) is a cytosolic, multifunctional protei...

  15. Simultaneous Propagation of Heat Waves Induced by Sawteeth and Electron-Cyclotron Heating Power Modulation in the Rtp Tokamak

    NARCIS (Netherlands)

    Gorini, G.; Mantica, P.; Hogeweij, G. M. D.; De Luca, F.; Jacchia, A.; Konings, J. A.; Cardozo, N. J. L.; Peters, M.

    1993-01-01

    The incremental electron heat diffusivity chi(inc) is determined in Rijnhuizen Tokamak Project plasmas by measurements of simultaneous heat pulses due to (1) the sawtooth instability and (2) modulated electron cyclotron heating. No systematic difference is observed between the two measured chi(inc)

  16. Duration and distribution of experimental muscular hyperalgesia in humans following combined infusions of serotonin and bradykinin

    DEFF Research Database (Denmark)

    Babenko, Victor; Svensson, Peter; Graven-Nielsen, Thomas

    2000-01-01

    -infusions interval of 3 min. Infusions of isotonic saline (NaCl, 0.9%) were given as control. Pain intensity was continuously scored on a visual analogue scale (VAS), and subjects drew the distribution of the pain areas on an anatomical map. Pressure pain thresholds (PPTs) were assessed with an electronic algometer....... In addition, PPTs were significantly decreased (Peffect of bradykinin in producing experimental muscle pain and muscle hyperalgesia to mechanical stimuli. The combination of serotonin and bradykinin can produce muscle...

  17. A study on the flow induced vibration in two phase flow under heating and non-heating conditions

    International Nuclear Information System (INIS)

    Kim, Dae Hun

    2007-02-01

    Critical heat flux (CHF) enhancement devices, like a spacer grid with mixing vane, cause flow-induced vibration (FIV) due to turbulence made by structural resistance. CHF enhancement and FIV reduction are usually studied separately. The main purpose of this article is to investigate the relationship between CHF and FIV. Information of flow-induced vibration due to wire coil design, is experimentally presented in this study by detecting flow-induced vibration under the two-phase flow condition with wire coil inserts. CHF experiments were performed in an upward vertical annulus tube under controlled vibration conditions to determine the effect of vibration on CHF. FIV was measured in an upward vertical tube with various wire coil inserts using air-water as flow material. CHF experiments were performed at one atmosphere with mechanically controlled vibration. A quartz tube (inner diameter of 17 mm, thickness of 2mm and length of 0.72 m) was used for outer tube and a SUS-304 tube (outer diameter of 6.35 mm, thickness of 0.89 mm and length of 0.7 m) was used for the inner heater. Vibration of the heater tube with an amplitude range of 0.1 mm to 0.5 mm and a frequency range of 10 Hz to 50 Hz was carried out at a mass flux of 115 kg/m 2 s and 215 kg/m 2 s. CHF was enhanced by vibration with a maximum ratio of 16.4 %. CHF was increased with increased amplitude and quality. The CHF correlation was developed with R (coefficient of correlation) of 0.903. FIV measuring experiments were performed at one atmosphere by changing the inserted wire coil type. An acrylic tube was used for the test section with inner diameter of 25 mm, thickness of 10 mm and length of 0.5 m. Four types of wire coil, which have a thickness of between 2 mm and 3 mm and pitch length of between 25 mm and 50 mm, were used. FIV and dynamic pressure were detected in water mass flux range of 100 ∼ 3060 kg/m 2 s and air mass flux range of 5.02 ∼ 60.3 kg/m 2 s. Vibration increased along with mass flux and

  18. Assessment of flow induced vibration in a sodium-sodium heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, V. [Fast Reactor Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu (India)], E-mail: prakash@igcar.gov.in; Thirumalai, M.; Prabhakar, R.; Vaidyanathan, G. [Fast Reactor Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu (India)

    2009-01-15

    The 500 MWe Prototype Fast Breeder Reactor (PFBR) is under construction at Kalpakkam. It is a liquid metal sodium cooled pool type fast reactor with all primary components located inside a sodium pool. The heat produced due to fission in the core is transported by primary sodium to the secondary sodium in a sodium to sodium Intermediate Heat Exchanger (IHX), which in turn is transferred to water in the steam generator. PFBR IHX is a shell and tube type heat exchanger with primary sodium on shell side and secondary sodium in the tube side. Since IHX is one of the critical components placed inside the radioactive primary sodium, trouble-free operation of the IHX is very much essential for power plant availability. To validate the design and the adequacy of the support system provided for the IHX, flow induced vibration (FIV) experiments were carried out in a water test loop on a 60 deg. sector model. This paper discusses the flow induced vibration measurements carried out in 60 deg. sector model of IHX, the modeling criteria, the results and conclusion.

  19. Investigation of the radiation properties of magnetospheric ELF waves induced by modulated ionospheric heating

    Science.gov (United States)

    Wang, Feng; Ni, Binbin; Zhao, Zhengyu; Zhao, Shufan; Zhao, Guangxin; Wang, Min

    2017-05-01

    Electromagnetic extremely low frequency (ELF) waves play an important role in modulating the Earth's radiation belt electron dynamics. High-frequency (HF) modulated heating of the ionosphere acts as a viable means to generate artificial ELF waves. The artificial ELF waves can reside in two different plasma regions in geo-space by propagating in the ionosphere and penetrating into the magnetosphere. As a consequence, the entire trajectory of ELF wave propagation should be considered to carefully analyze the wave radiation properties resulting from modulated ionospheric heating. We adopt a model of full wave solution to evaluate the Poynting vector of the ELF radiation field in the ionosphere, which can reflect the propagation characteristics of the radiated ELF waves along the background magnetic field and provide the initial condition of waves for ray tracing in the magnetosphere. The results indicate that the induced ELF wave energy forms a collimated beam and the center of the ELF radiation shifts obviously with respect to the ambient magnetic field with the radiation power inversely proportional to the wave frequency. The intensity of ELF wave radiation also shows a weak correlation with the size of the radiation source or its geographical location. Furthermore, the combination of ELF propagation in the ionosphere and magnetosphere is proposed on basis of the characteristics of the ELF radiation field from the upper ionospheric boundary and ray tracing simulations are implemented to reasonably calculate magnetospheric ray paths of ELF waves induced by modulated ionospheric heating.

  20. Transient, heat-induced thermal resistance in the small intestine of mouse

    International Nuclear Information System (INIS)

    Hume, S.P.; Marigold, J.C.L.

    1980-01-01

    Heat-induced thermal resistance has been investigated in mouse jejunum by assaying crypt survival 24 h after treatment. Hyperthermia was achieved by immersing an exteriorized loop of intestine in a bath of Krebs-Ringer solution. Two approaches have been used. In the first, thermal survival curves were obtained following single hyperthermal treatments at temperatures in the range 42 to 44 0 C. Transient thermal resistance, inducted by a plateau in the crypt survival curve, developed during heating at temperatures around 42.5 0 C after 60 to 80 min. In the second series of experiments, a priming heat treatment (40.0, 41.0, 41.5, or 42.0 0 C for 60 min) was followed at varying intervals by a test treatment at 43.0 0 C. A transient resistance to the second treatment was induced, the extent and time of development being dependent upon the priming treatment. Crypt survival curves for thermally resistant intestine showed an increase in thermal D 0 and a decrease in n compared with curves from previously unheated intestine

  1. Heat Stress Nephropathy From Exercise-Induced Uric Acid Crystalluria: A Perspective on Mesoamerican Nephropathy.

    Science.gov (United States)

    Roncal-Jimenez, Carlos; García-Trabanino, Ramón; Barregard, Lars; Lanaspa, Miguel A; Wesseling, Catharina; Harra, Tamara; Aragón, Aurora; Grases, Felix; Jarquin, Emmanuel R; González, Marvin A; Weiss, Ilana; Glaser, Jason; Sánchez-Lozada, Laura G; Johnson, Richard J

    2016-01-01

    Mesoamerican nephropathy (MeN), an epidemic in Central America, is a chronic kidney disease of unknown cause. In this article, we argue that MeN may be a uric acid disorder. Individuals at risk for developing the disease are primarily male workers exposed to heat stress and physical exertion that predisposes to recurrent water and volume depletion, often accompanied by urinary concentration and acidification. Uric acid is generated during heat stress, in part consequent to nucleotide release from muscles. We hypothesize that working in the sugarcane fields may result in cyclic uricosuria in which uric acid concentrations exceed solubility, leading to the formation of dihydrate urate crystals and local injury. Consistent with this hypothesis, we present pilot data documenting the common presence of urate crystals in the urine of sugarcane workers from El Salvador. High end-of-workday urinary uric acid concentrations were common in a pilot study, particularly if urine pH was corrected to 7. Hyperuricemia may induce glomerular hypertension, whereas the increased urinary uric acid may directly injure renal tubules. Thus, MeN may result from exercise and heat stress associated with dehydration-induced hyperuricemia and uricosuria. Increased hydration with water and salt, urinary alkalinization, reduction in sugary beverage intake, and inhibitors of uric acid synthesis should be tested for disease prevention. Copyright © 2016 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  2. Salinization in a stratified aquifer induced by heat transfer from well casings

    Science.gov (United States)

    van Lopik, Jan H.; Hartog, Niels; Zaadnoordijk, Willem Jan; Cirkel, D. Gijsbert; Raoof, Amir

    2015-12-01

    The temperature inside wells used for gas, oil and geothermal energy production, as well as steam injection, is in general significantly higher than the groundwater temperature at shallower depths. While heat loss from these hot wells is known to occur, the extent to which this heat loss may result in density-driven flow and in mixing of surrounding groundwater has not been assessed so far. However, based on the heat and solute effects on density of this arrangement, the induced temperature contrasts in the aquifer due to heat transfer are expected to destabilize the system and result in convection, while existing salt concentration contrasts in an aquifer would act to stabilize the system. To evaluate the degree of impact that may occur under field conditions, free convection in a 50-m-thick aquifer driven by the heat loss from penetrating hot wells was simulated using a 2D axisymmetric SEAWAT model. In particular, the salinization potential of fresh groundwater due to the upward movement of brackish or saline water in a stratified aquifer is studied. To account for a large variety of well applications and configurations, as well as different penetrated aquifer systems, a wide range of well temperatures, from 40 to 100 °C, together with a range of salt concentration (1-35 kg/m3) contrasts were considered. This large temperature difference with the native groundwater (15 °C) required implementation of a non-linear density equation of state in SEAWAT. We show that density-driven groundwater flow results in a considerable salt mass transport (up to 166,000 kg) to the top of the aquifer in the vicinity of the well (radial distance up to 91 m) over a period of 30 years. Sensitivity analysis showed that density-driven groundwater flow and the upward salt transport was particularly enhanced by the increased heat transport from the well into the aquifer by thermal conduction due to increased well casing temperature, thermal conductivity of the soil, as well as decreased

  3. Local and Widespread Hyperalgesia After Isolated Tibial Shaft Fractures Treated with Intramedullary Nailing

    DEFF Research Database (Denmark)

    Larsen, Peter; Elsøe, Rasmus; Graven-Nielsen, Thomas

    2016-01-01

    OBJECTIVES: Knee pain is accepted as a common complication to intramedullary nailing of tibial fractures. However, no studies have systematically studied the pain sequel following tibial fractures. The objective of this study was to assess pain and hyperalgesia from 6 weeks to 12 months postopera...... fracture treated with intramedullary nailing, although no widespread (extrasegmental) hyperalgesia was detected. Such observations may be important for developing the most adequate rehabilitation procedure following a tibial fracture.......OBJECTIVES: Knee pain is accepted as a common complication to intramedullary nailing of tibial fractures. However, no studies have systematically studied the pain sequel following tibial fractures. The objective of this study was to assess pain and hyperalgesia from 6 weeks to 12 months...... postoperatively after intramedullary nailing of tibial shaft fracture. METHODS: A total of 39 patients were included in this 12-month follow-up study. After 6 weeks, 3, 6, and 12 months postoperatively the pain intensity was measured on a visual analog scale (VAS) and the pressure pain sensitivity was assessed...

  4. Mechanical nociception thresholds in lame sows: evidence of hyperalgesia as measured by two different methods.

    Science.gov (United States)

    Nalon, E; Maes, D; Piepers, S; van Riet, M M J; Janssens, G P J; Millet, S; Tuyttens, F A M

    2013-11-01

    Lameness is a frequently occurring, painful condition of breeding sows that may result in hyperalgesia, i.e., an increased sensitivity to pain. In this study a mechanical nociception threshold (MT) test was used (1) to determine if hyperalgesia occurs in sows with naturally-occurring lameness; (2) to compare measurements obtained with a hand-held probe and a limb-mounted actuator connected to a digital algometer; and (3) to investigate the systematic left-to-right and cranial-to-caudal differences in MT. Twenty-eight pregnant sows were investigated, of which 14 were moderately lame and 14 were not lame. Over three testing sessions, repeated measurements were taken at 5 min intervals on the dorsal aspects of the metatarsi and metacarpi of all limbs. The MT was defined as the force in Newtons (N) that elicited an avoidance response, and this parameter was found to be lower in limbs affected by lameness than in normal limbs (Ptesting sessions (P<0.001), as well as between days (P<0.001). The findings provide evidence that lame sows experience hyperalgesia. Systematic differences between forelimb and hindlimb MT must be taken into account when such assessments are performed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Spectroscopic analysis of the role of extractives on heat-induced discoloration of black locust (Robinia pseudoacacia)

    Science.gov (United States)

    Yao Chen; Yongming Fan; Jianmin Gao; Mandla A. Tshabalala; Nicole M. Stark

    2012-01-01

    To investigate the role of extractives on heat-induced discoloration of wood, samples of black locust (Robinia pseudoacacia) wood flour were extracted with various solvents prior to heat-treatment. Analysis of their color parameters and chromophoric structures showed that the chroma value of the unextracted sample decreased while that of the...

  6. Reversible Heat-Induced Inactivation of Chimeric β-Glucuronidase in Transgenic Plants1

    Science.gov (United States)

    Almoguera, Concepción; Rojas, Anabel; Jordano, Juan

    2002-01-01

    We compared the expression patterns in transgenic tobacco (Nicotiana tabacum) of two chimeric genes: a translational fusion to β-glucuronidase (GUS) and a transcriptional fusion, both with the same promoter and 5′-flanking sequences of Ha hsp17.7 G4, a small heat shock protein (sHSP) gene from sunflower (Helianthus annuus). We found that immediately after heat shock, the induced expression from the two fusions in seedlings was similar, considering chimeric mRNA or GUS protein accumulation. Surprisingly, we discovered that the chimeric GUS protein encoded by the translational fusion was mostly inactive in such conditions. We also found that this inactivation was fully reversible. Thus, after returning to control temperature, the GUS activity was fully recovered without substantial changes in GUS protein accumulation. In contrast, we did not find differences in the in vitro heat inactivation of the respective GUS proteins. Insolubilization of the chimeric GUS protein correlated with its inactivation, as indicated by immunoprecipitation analyses. The inclusion in another chimeric gene of the 21 amino-terminal amino acids from a different sHSP lead to a comparable reversible inactivation. That effect not only illustrates unexpected post-translational problems, but may also point to sequences involved in interactions specific to sHSPs and in vivo heat stress conditions. PMID:12011363

  7. Heterogeneously Nd3+ doped single nanoparticles for NIR-induced heat conversion, luminescence, and thermometry.

    Science.gov (United States)

    Marciniak, Lukasz; Pilch, Aleksandra; Arabasz, Sebastian; Jin, Dayong; Bednarkiewicz, Artur

    2017-06-22

    The current frontier in nanomaterials engineering is to intentionally design and fabricate heterogeneous nanoparticles with desirable morphology and composition, and to integrate multiple functionalities through highly controlled epitaxial growth. Here we show that heterogeneous doping of Nd 3+ ions following a core-shell design already allows three optical functions, namely efficient (η > 72%) light-to-heat conversion, bright NIR emission, and sensitive (S R > 0.1% K -1 ) localized temperature quantification, to be built within a single ca. 25 nm nanoparticle. Importantly, all these optical functions operate within the transparent biological window of the NIR spectral region (λ exc ∼ 800 nm, λ emi ∼ 860 nm), in which light scattering and absorption by tissues and water are minimal. We find NaNdF 4 as a core is efficient in absorbing and converting 808 nm light to heat, while NaYF 4 :1%Nd 3+ as a shell is a temperature sensor based on the ratio-metric luminescence reading but an intermediate inert spacer shell, e.g. NaYF 4 , is necessary to insulate the heat convertor and thermometer by preventing the possible Nd-Nd energy relaxation. Moreover, we notice that while temperature sensitivity and luminescence intensity are optically stable, increased excitation intensity to generate heat above room temperature may saturate the sensing capacity of temperature feedback. We therefore propose a dual beam photoexcitation scheme as a solution for possible light-induced hyperthermia treatment.

  8. Heat-induced symmetry breaking in ant (Hymenoptera: Formicidae escape behavior.

    Directory of Open Access Journals (Sweden)

    Yuan-Kai Chung

    Full Text Available The collective egress of social insects is important in dangerous situations such as natural disasters or enemy attacks. Some studies have described the phenomenon of symmetry breaking in ants, with two exits induced by a repellent. However, whether symmetry breaking occurs under high temperature conditions, which are a common abiotic stress, remains unknown. In our study, we deposited a group of Polyrhachis dives ants on a heated platform and counted the number of escaping ants with two identical exits. We discovered that ants asymmetrically escaped through two exits when the temperature of the heated platform was >32.75°C. The degree of asymmetry increased linearly with the temperature of the platform. Furthermore, the higher the temperature of heated platform was, the more ants escaped from the heated platform. However, the number of escaping ants decreased for 3 min when the temperature was higher than the critical thermal limit (39.46°C, which is the threshold for ants to endure high temperature without a loss of performance. Moreover, the ants tended to form small groups to escape from the thermal stress. A preparatory formation of ant grouping was observed before they reached the exit, indicating that the ants actively clustered rather than accidentally gathered at the exits to escape. We suggest that a combination of individual and grouping ants may help to optimize the likelihood of survival during evacuation.

  9. Anti-hyperalgesic and anti-inflammatory effects of long termcalcium administrationduring adjuvant-induced arthritisin rats

    Directory of Open Access Journals (Sweden)

    Setareh Khashaee

    2015-12-01

    Full Text Available Introduction: Inflammation and edema Symptoms are physiological response to triggers that can be induced by different mediators such as cytokines. Rheumatoid arthritis is the most common form of arthritis which is characterized by chronic inflammation of the synovial membrane, severe and debilitating pain and progressive cartilage injury. It is clear that cytokines are involved in different stages of inflammation by inducing pro-inflammatory effects; TNF-α as a cytokine involved in the pathogenesis of rheumatoid arthritis. In this study we attempted to investigate the role of prescription of calcium to reduce inflammatory edema and serum TNF-α level during different stages of arthritic inflammation induced by Complete Freund Adjuvant (CFA injection in male Wistar rats.Methods:In this Applicable-Fundamental study, we used male Wistar rats and adjuvant arthritis was created by once subcutaneous injection of CFA in the right hindpaw of animals on day zero in experimental groups. Various doses of calcium were prepared and injected within 21 days of study. Hyperalgesia and paw volume changes wereassessed byradiant heat andplethysmometer over several days, respectively. The serum levels of TNF-α were studied by ELISA standard kit of rat during various phases and were measured according to the kit.Results:The results indicated dose related effects of long term calcium administration on edema, hyperalgesia and serum TNF-α level reduction. Daily treatment with effective dose of calcium (5 mg/kg in AA+ Ca group significantly decreased paw edema, hyperalgesia and serum TNF-α level incomparison to AA and AA+ Vehicle groups on days 7, 14 and 21 of study.Conclusions:Findings of this study showed;long term administration of calcium in the proper dosage can act as an anti-inflammatory agent and pain modulator during adjuvant-induced arthritis and a part of those effects may conducted by decreasing of serum TNF-α level.

  10. Evaluation of induced activity, decay heat and dose rate distribution after shutdown in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Maki, Koichi [Hitachi Ltd., Ibaraki (Japan). Hitachi Research Lab.; Satoh, Satoshi; Hayashi, Katsumi; Yamada, Koubun; Takatsu, Hideyuki; Iida, Hiromasa

    1997-03-01

    Induced activity, decay heat and dose rate distributions after shutdown were estimated for 1MWa/m{sup 2} operation in ITER. The activity in the inboard blanket one day after shutdown is 1.5x10{sup 11}Bq/cm{sup 3}, and the average decay heating rate 0.01w/cm{sup 3}. The dose rate outside the 120cm thick concrete biological shield is two order higher than the design criterion of 5{mu}Sv/h. This indicates that the biological shield thickness should be enhanced by 50cm in concrete, that is, total thickness 170cm for workers to enter the reactor room and to perform maintenance. (author)

  11. Heat transfer enhancement induced by electrically generated convection in a plane layer of dielectric liquid

    International Nuclear Information System (INIS)

    Traoré, P; Wu, J; Romat, H; Louste, C; Perez, A; Koulova, D

    2012-01-01

    The electro-thermo-convective motion in a plane horizontal dielectric liquid layer subjected to simultaneous action of electric field and thermal gradient is numerically investigated. We consider the case of a strong unipolar charge injection C = 10 from above or below. Therefore in this context, we only take into account the Coulomb force, disregarding the dielectric one. The effect of the electric field on the heat transfer is analyzed through the characterization of the time history of the Nusselt number as well as its evolution according to the characteristic dimensionless electric parameter T. It is demonstrated that the electric effects dominate the buoyancy ones resulting in an electrically induced convection which significantly enhance the heat transfer.

  12. Heat stress induced changes in metabolic regulators of donkeys from arid tracts in India

    Directory of Open Access Journals (Sweden)

    Kataria N.

    2012-05-01

    Full Text Available To find out heat stress induced changes in metabolic regulators of donkeys from arid tracts in India, blood samples were collected to harvest the serum during moderate and extreme hot ambiences. The metabolic enzymes determined were sorbitol dehydrogenase, malate dehydrogenase, glucose-6-phosphate dehydrogenase, glutamate dehydrogenase, ornithine carbamoyl transferase, gammaglutamayl transferase, 5’nucleotidase, glucose-6-phosphatase, arginase, and aldolase. The mean values of all the serum enzymes increased significantly (p≤0.05 during hot ambience as compared to respective values during moderate ambience. It was concluded that increased activity of all the enzymes in the serum was due to modulation of metabolic reactions to combat the effect of hot ambience on the animals. Activation of gluconeogenesis along with hexose monophosphate shunt and urea cycle probably helped the animals to combat the heat stress.

  13. Comparison of two mathematical models for describing heat-induced cell killing

    International Nuclear Information System (INIS)

    Roti Roti, J.L.; Henle, K.J.

    1980-01-01

    A computer-based minimization algorithm is utilized to obtain the optimum fits of two models to hyperthermic cell killing data. The models chosen are the multitarget, single-hit equation, which is in general use, and the linear-quadratic equation, which has been applied to cell killing by ionizing irradiation but not to heat-induced cell killing. The linear-quadratic equation fits hyperthermic cell killing data as well as the multitarget, single-hit equation. Both parameters of the linear-quadratic equation obey the Arrhenius law, whereas only one of the two parameters of the multitarget, single-hit equation obeys the Arrhenius law. Thus the linear-quadratic function can completely define cell killing as a function of both time and temperature. In addition, the linear-quadratic model will provide a simplified approach to the study of the synergism between heat and X irradiation

  14. Formation of tRNA granules in the nucleus of heat-induced human cells

    Energy Technology Data Exchange (ETDEWEB)

    Miyagawa, Ryu [Radioisotope Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan); Department of Biological Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654 (Japan); Mizuno, Rie [Radioisotope Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan); Watanabe, Kazunori, E-mail: watanabe@ric.u-tokyo.ac.jp [Radioisotope Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan); Ijiri, Kenichi [Radioisotope Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan); Department of Biological Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654 (Japan)

    2012-02-03

    Highlights: Black-Right-Pointing-Pointer tRNAs are tranlocated into the nucleus in heat-induced HeLa cells. Black-Right-Pointing-Pointer tRNAs form the unique granules in the nucleus. Black-Right-Pointing-Pointer tRNA ganules overlap with nuclear stress granules. -- Abstract: The stress response, which can trigger various physiological phenomena, is important for living organisms. For instance, a number of stress-induced granules such as P-body and stress granule have been identified. These granules are formed in the cytoplasm under stress conditions and are associated with translational inhibition and mRNA decay. In the nucleus, there is a focus named nuclear stress body (nSB) that distinguishes these structures from cytoplasmic stress granules. Many splicing factors and long non-coding RNA species localize in nSBs as a result of stress. Indeed, tRNAs respond to several kinds of stress such as heat, oxidation or starvation. Although nuclear accumulation of tRNAs occurs in starved Saccharomyces cerevisiae, this phenomenon is not found in mammalian cells. We observed that initiator tRNA{sup Met} (Meti) is actively translocated into the nucleus of human cells under heat stress. During this study, we identified unique granules of Meti that overlapped with nSBs. Similarly, elongator tRNA{sup Met} was translocated into the nucleus and formed granules during heat stress. Formation of tRNA granules is closely related to the translocation ratio. Then, all tRNAs may form the specific granules.

  15. Electroacupuncture Inhibition of Hyperalgesia in Rats with Adjuvant Arthritis: Involvement of Cannabinoid Receptor 1 and Dopamine Receptor Subtypes in Striatum

    Directory of Open Access Journals (Sweden)

    Yin Shou

    2013-01-01

    Full Text Available Electroacupuncture (EA has been regarded as an alternative treatment for inflammatory pain for several decades. However, the molecular mechanisms underlying the antinociceptive effect of EA have not been thoroughly clarified. Previous studies have shown that cannabinoid CB1 receptors are related to pain relief. Accumulating evidence has shown that the CB1 and dopamine systems sometimes interact and may operate synergistically in rat striatum. To our knowledge, dopamine D1/D2 receptors are involved in EA analgesia. In this study, we found that repeated EA at Zusanli (ST36 and Kunlun (BL60 acupoints resulted in marked improvements in thermal hyperalgesia. Both western blot assays and FQ-PCR analysis results showed that the levels of CB1 expression in the repeated-EA group were much higher than those in any other group (P=0.001. The CB1-selective antagonist AM251 inhibited the effects of repeated EA by attenuating the increases in CB1 expression. The two kinds of dopamine receptors imparted different actions on the EA-induced CB1 upregulation in AA rat model. These results suggested that the strong activation of the CB1 receptor after repeated EA resulted in the concomitant phenomenon of the upregulation of D1 and D2 levels of gene expression.

  16. Inhibition of inducible heat shock protein-70 (hsp72 enhances bortezomib-induced cell death in human bladder cancer cells.

    Directory of Open Access Journals (Sweden)

    Wei Qi

    Full Text Available The proteasome inhibitor bortezomib (Velcade is a promising new agent for bladder cancer therapy, but inducible cytoprotective mechanisms may limit its potential efficacy. We used whole genome mRNA expression profiling to study the effects of bortezomib on stress-induced gene expression in a panel of human bladder cancer cell lines. Bortezomib induced strong upregulation of the inducible HSP70 isoforms HSPA1A and HSPA1B isoforms of Hsp72 in 253J B-V and SW780 (HSPA1A(high cells, but only induced the HSPA1B isoform in UM-UC10 and UM-UC13 (HSPA1A(low cells. Bortezomib stimulated the binding of heat shock factor-1 (HSF1 to the HSPA1A promoter in 253JB-V but not in UM-UC13 cells. Methylation-specific PCR revealed that the HSPA1A promoter was methylated in the HSPA1A(low cell lines (UM-UC10 and UM-UC13, and exposure to the chromatin demethylating agent 5-aza-2'-deoxycytidine restored HSPA1A expression. Overexpression of Hsp72 promoted bortezomib resistance in the UM-UC10 and UM-UC13 cells, whereas transient knockdown of HSPA1B further sensitized these cells to bortezomib, and exposure to the chemical HSF1 inhibitor KNK-437 promoted bortezomib sensitivity in the 253J B-V cells. Finally, shRNA-mediated stable knockdown of Hsp72 in 253J B-V promoted sensitivity to bortezomib in vitro and in tumor xenografts in vivo. Together, our results provide proof-of-concept for using Hsp72 inhibitors to promote bortezomib sensitivity in bladder cancers and suggest that selective targeting of HSPA1B could produce synthetic lethality in tumors that display HSPA1A promoter methylation.

  17. Calculation of heat fluxes induced by radio frequency heating on the actively cooled protections of ion cyclotron resonant heating (ICRH) and lower hybrid (LH) antennas in Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Ritz, G., E-mail: Guillaume.ritz@gmail.com [CEA, Institut de la Recherche sur la Fusion Magnétique (IRFM), 13108 Saint Paul-lez-Durance (France); Corre, Y., E-mail: Yann.corre@cea.fr [CEA, Institut de la Recherche sur la Fusion Magnétique (IRFM), 13108 Saint Paul-lez-Durance (France); Rault, M.; Missirlian, M. [CEA, Institut de la Recherche sur la Fusion Magnétique (IRFM), 13108 Saint Paul-lez-Durance (France); Portafaix, C. [ITER Organization, Route de Vinon-sur-Verdon, 13115 Saint Paul-lez-Durance (France); Martinez, A.; Ekedahl, A.; Colas, L.; Guilhem, D.; Salami, M.; Loarer, T. [CEA, Institut de la Recherche sur la Fusion Magnétique (IRFM), 13108 Saint Paul-lez-Durance (France)

    2013-10-15

    Highlights: ► The heat flux generated by radiofrequency (RF) heating was calculated using Tore Supra's heating antennas. ► The highest heat flux value, generated by ions accelerated in RF-rectified sheath potentials, was 5 MW/m{sup 2}. ► The heat flux on the limiters of antennas was in the same order of magnitude as that on the toroidal pumping limiter. -- Abstract: Lower hybrid current drive (LHCD) and ion cyclotron resonance heating (ICRH) are recognized as important auxiliary heating and current drive methods for present and next step fusion devices. However, these radio frequency (RF) systems generate a heat flux up to several MW/m{sup 2} on the RF antennas during plasma operation. This paper focuses on the determination of the heat flux deposited on the lateral protections of the RF antennas in Tore Supra. The heat flux was calculated by finite element method (FEM) using a model of the lateral protection. The FEM calculation was based on surface temperature measurements using infrared cameras monitoring the RF antennas. The heat flux related to the acceleration of electrons in front of the LHCD grills (LHCD active) and to the acceleration of ions in RF-rectified sheath potentials (ICRH active) were calculated. Complementary results on the heat flux related to fast ions (ICRH active with a relatively low magnetic field) are also reported in this paper.

  18. Anomalous plasma heating induced by modulation of the current-density profile

    International Nuclear Information System (INIS)

    Lopes Cardozo, N.J.

    1985-05-01

    The usual plasma heating in a tokamak needs additional heating to reach ignition temperature (approx. 10 8 K). The method used in the TORTUR III experiment is to induce anomalous plasma resistivity by applying a short (10 microseconds) high-voltage pulse. A sharp rise of the plasma temperature is found almost simultaneously, but this effect, though considerable, is too short-lived to be of interest for a thermonuclear chain reaction. A second pulse gives a second rise of temperature, but this time a slow one, extending over several milliseconds. The mechanism of this delayed heating and the reservoir within the plasma supplying the energy are subjects of investigation in the TORTUR III experiments. Some conclusions concerning the plasma heating mechanism are presented. The conclusion is reached that the application of the high-voltage pulse results in a modulation of the current-density profile: the (normally already peaked) profile sharpens, the current concentrates in the centre of the plasma column. This is a non-equilibrium situation. It relaxes to the noraml current distribution within approximately 2 milliseconds. As long as this relaxation process is not finished, the dissipation is on an enhanced level and anomalous plasma heating is observed. Many plasma parameters are surveyed and evaluated: temperature (both of the ions and the electrons), density, emission spectrum (from microwaves to hard X-rays) and the fluctuation spectrum. Main subject of this report is the measurement and interpretation of the X-rays of the emission spectrum. Experimental results are presented and discussed

  19. Surface properties of heat-induced soluble soy protein aggregates of different molecular masses.

    Science.gov (United States)

    Guo, Fengxian; Xiong, Youling L; Qin, Fang; Jian, Huajun; Huang, Xiaolin; Chen, Jie

    2015-02-01

    Suspensions (2% and 5%, w/v) of soy protein isolate (SPI) were heated at 80, 90, or 100 °C for different time periods to produce soluble aggregates of different molecular sizes to investigate the relationship between particle size and surface properties (emulsions and foams). Soluble aggregates generated in these model systems were characterized by gel permeation chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Heat treatment increased surface hydrophobicity, induced SPI aggregation via hydrophobic interaction and disulfide bonds, and formed soluble aggregates of different sizes. Heating of 5% SPI always promoted large-size aggregate (LA; >1000 kDa) formation irrespective of temperature, whereas the aggregate size distribution in 2% SPI was temperature dependent: the LA fraction progressively rose with temperature (80→90→100 °C), corresponding to the attenuation of medium-size aggregates (MA; 670 to 1000 kDa) initially abundant at 80 °C. Heated SPI with abundant LA (>50%) promoted foam stability. LA also exhibited excellent emulsifying activity and stabilized emulsions by promoting the formation of small oil droplets covered with a thick interfacial protein layer. However, despite a similar influence on emulsion stability, MA enhanced foaming capacity but were less capable of stabilizing emulsions than LA. The functionality variation between heated SPI samples is clearly related to the distribution of aggregates that differ in molecular size and surface activity. The findings may encourage further research to develop functional SPI aggregates for various commercial applications. © 2015 Institute of Food Technologists®

  20. Heat pretreatment-induced activation of gadolinium surfaces towards the initial precipitation of hydrides

    International Nuclear Information System (INIS)

    Benamar, G.; Schweke, D.; Shamir, N.; Zalkind, S.; Livneh, T.; Danon, A.; Kimmel, G.; Mintz, M.H.

    2010-01-01

    A vacuum heat pretreatment is applied, in order to enhance the reactivity of hydride-forming metals towards hydrogen reaction. For gadolinium, as for other rare-earth metals and some actinides, pretreatment temperatures of about 470 K are sufficient to induce such activation. The different factors that may be involved in that activation mechanism are identified and analyzed for gadolinium and their role is evaluated. It is concluded that the most prominent effect is desorption of surface hydroxyl groups, which impede the dissociative chemisorptions of hydrogen.

  1. HEAT INDUCIBLE EXPRESSION OF ANTIFREEZE PROTEIN GENES FROM THE BEETLES Tenebrio molitor AND Microdera punctipennis.

    Science.gov (United States)

    Li, Jieqiong; Ma, Wenjing; Ma, Ji

    2016-01-01

    Antifreeze proteins (AFPs) play important roles in protecting poikilothermic organisms from cold damage. The expression of AFP genes (afps) is induced by low temperature. However, it is reported that heat can influence the expression of afps in the desert beetle Microdera punctipennis. To further detect whether heat also induce the expression of afps in other insects, and to determine the expression profiling of insect afps at different temperatures. The expression of antifreeze protein genes in the two beetles, Microdera punctipennis and Tenebrio molitor that have quite different living environment, under different temperatures were studied by using real-time quantitative PCR. Mild low temperatures (5~15 degree C), high temperature (38~47 degree C for M. punctipennis, or 37~42 degree C for T. molitor) and temperature difference (10~30 degree C) all stimulated strongly to the expression of AFP genes (Mpafps) in M. punctipennis which lives in the wild filed in desert. The mRNA level of Mpafps after M. punctipennis were exposed to these temperatures for 1h~5h was at least 30-fold of the control at 25 degree C. For T. molitor which is breeding in door with wheat bran all these temperatures stimulated significantly to the expression of Tmafps, while the extent and degree of the temperature stimulation on Tmafps expression were much lower than on Mpafps. After T. molitor were exposed to 5 degree C and 15 degree C for 1h~5h, the mRNA level of Tmafps was over 6-fold and 45-fold of the control at 25 degree C. High temperature (37~42 degree C) for 1h~3h treatments increased Tmafps mRNA level 4.8-fold of the control. Temperature difference of 10 degree C was effective in stimulating Tmafps expression. The expression of insect antifreeze protein genes both in M. punctipennis and T. molitor was induced by heat, suggesting that this phenomenon may be common in insects; the extent and degree of the influence differ in species that have different living conditions. The heat

  2. Kinetics of heat-induced color change of a tuna-vegetable mixture

    OpenAIRE

    Scherer, Erika; Sandoval, Aleida J; Barreiro, José A

    2009-01-01

    Heat induced color change kinetics in a tuna-vegetable mixture was evaluated by measuring color parameter "L" (Hunter-Lab) and 5-hydroxi-methyl-furfural (5-HMF) accumulation. For this purpose small reusable stainless steel TDT cans were used and the kinetic studies performed in a temperature range characteristic of thermal processing of low acid canned foods (110-125°C). The color parameter L was better described by a pseudo zero order while a pseudo first order reaction was found for 5-HMF a...

  3. Heat-shock-induced enhanced reactivation of UV-irradiated Herpesvirus

    Energy Technology Data Exchange (ETDEWEB)

    Yager, J.D.; Zurlo, J.; Penn, A.L.

    1985-09-01

    The objective of this study was to compare the ability of heat shock (HS) with that of another type of cellular stress, UV irradiation, to cause the induction of enhanced viral reactivation, a process that may represent an SOS-type repair process in mammalian cells. These results indicate that, like UV irradiation, HS at levels inhibitory to cell growth induced enhanced viral reactivation in Vero cells. The results also suggest that at least two proteins in the HS protein family are not necessary for this response to occur. (Auth.). 27 refs.; 5 figs.

  4. Generalized Hyperalgesia in Children and Adults Diagnosed With Hypermobility Syndrome and Ehlers-Danlos Syndrome Hypermobility Type: A Discriminative Analysis.

    Science.gov (United States)

    Scheper, M C; Pacey, V; Rombaut, L; Adams, R D; Tofts, L; Calders, P; Nicholson, L L; Engelbert, R H H

    2017-03-01

    Lowered pressure-pain thresholds have been demonstrated in adults with Ehlers-Danlos syndrome hypermobility type (EDS-HT), but whether these findings are also present in children is unclear. Therefore, the objectives of the study were to determine whether generalized hyperalgesia is present in children with hypermobility syndrome (HMS)/EDS-HT, explore potential differences in pressure-pain thresholds between children and adults with HMS/EDS-HT, and determine the discriminative value of generalized hyperalgesia. Patients were classified in 1 of 3 groups: HMS/EDS-HT, hypermobile (Beighton score ≥4 of 9), and healthy controls. Descriptive data of age, sex, body mass index, Beighton score, skin laxity, and medication usage were collected. Generalized hyperalgesia was quantified by the average pressure-pain thresholds collected from 12 locations. Confounders collected were pain locations/intensity, fatigue, and psychological distress. Comparisons between children with HMS/EDS-HT and normative values, between children and adults with HMS/EDS-HT, and corrected confounders were analyzed with multivariate analysis of covariance. The discriminative value of generalized hyperalgesia employed to differentiate between HMS/EDS-HT, hypermobility, and controls was quantified with logistic regression. Significantly lower pressure-pain thresholds were found in children with HMS/EDS-HT compared to normative values (range -22.0% to -59.0%; P ≤ 0.05). When applying a threshold of 30.8 N/cm 2 for males and 29.0 N/cm 2 for females, the presence of generalized hyperalgesia discriminated between individuals with HMS/EDS-HT, hypermobility, and healthy controls (odds ratio 6.0). Children and adults with HMS/EDS-HT are characterized by hypermobility, chronic pain, and generalized hyperalgesia. The presence of generalized hyperalgesia may indicate involvement of the central nervous system in the development of chronic pain. © 2016, American College of Rheumatology.

  5. Reduction in heat-induced gastrointestinal hyperpermeability in rats by bovine colostrum and goat milk powders.

    Science.gov (United States)

    Prosser, C; Stelwagen, K; Cummins, R; Guerin, P; Gill, N; Milne, C

    2004-02-01

    Male Sprague-Dawley rats were assigned to one of three dietary groups [standard diet (Cont; n = 8), standard diet plus bovine colostrum powder (BColost 1.7 g/kg; n = 8), or goat milk powder (GMilk 1.7 g/kg; n = 8)] to determine the ability of these supplements to reduce gastrointestinal hyperpermeability induced by heat. Raising core body temperature of rats to 41.5 degrees C increased transfer of (51)Cr-EDTA from gut into blood 34-fold relative to the ambient temperature value (P transferred into the blood of rats in either the BColost (27% of Cont) or GMilk group (10% of Cont) after heating, showing that prior supplementation with either bovine colostrum or goat milk powder significantly reduced the impact of heat stress on gastrointestinal permeability. The changes in the BColost group were not significantly different than those of the GMilk group. The potential mechanism of the protective effect of bovine colostrum and goat milk powders may involve modulation of tight junction permeability, because both powders were able to maintain transepithelial resistance in Madin Darby canine kidney cells challenged with EGTA compared with cells maintained in media only. The results show that bovine colostrum powder can partially alleviate the effects of hyperthermia on gastrointestinal permeability in the intact animal. Moreover, goat milk powder was equally as effective as bovine colostrum powder, and both may be of benefit in other situations where gastrointestinal barrier function is compromised.

  6. Gastrodin Inhibits Allodynia and Hyperalgesia in Painful Diabetic Neuropathy Rats by Decreasing Excitability of Nociceptive Primary Sensory Neurons

    Science.gov (United States)

    Ye, Xin; Han, Wen-Juan; Wang, Wen-Ting; Luo, Ceng; Hu, San-Jue

    2012-01-01

    Painful diabetic neuropathy (PDN) is a common complication of diabetes mellitus and adversely affects the patients’ quality of life. Evidence has accumulated that PDN is associated with hyperexcitability of peripheral nociceptive primary sensory neurons. However, the precise cellular mechanism underlying PDN remains elusive. This may result in the lacking of effective therapies for the treatment of PDN. The phenolic glucoside, gastrodin, which is a main constituent of the Chinese herbal medicine Gastrodia elata Blume, has been widely used as an anticonvulsant, sedative, and analgesic since ancient times. However, the cellular mechanisms underlying its analgesic actions are not well understood. By utilizing a combination of behavioral surveys and electrophysiological recordings, the present study investigated the role of gastrodin in an experimental rat model of STZ-induced PDN and to further explore the underlying cellular mechanisms. Intraperitoneal administration of gastrodin effectively attenuated both the mechanical allodynia and thermal hyperalgesia induced by STZ injection. Whole-cell patch clamp recordings were obtained from nociceptive, capsaicin-sensitive small diameter neurons of the intact dorsal root ganglion (DRG). Recordings from diabetic rats revealed that the abnormal hyperexcitability of neurons was greatly abolished by application of GAS. To determine which currents were involved in the antinociceptive action of gastrodin, we examined the effects of gastrodin on transient sodium currents (I NaT) and potassium currents in diabetic small DRG neurons. Diabetes caused a prominent enhancement of I NaT and a decrease of potassium currents, especially slowly inactivating potassium currents (I AS); these effects were completely reversed by GAS in a dose-dependent manner. Furthermore, changes in activation and inactivation kinetics of I NaT and total potassium current as well as I AS currents induced by STZ were normalized by GAS. This study provides a

  7. Mapping temperature-induced conformational changes in the Escherichia coli heat shock transcription factor sigma 32 by amide hydrogen exchange

    DEFF Research Database (Denmark)

    Rist, Wolfgang; Jørgensen, Thomas J D; Roepstorff, Peter

    2003-01-01

    Stress conditions such as heat shock alter the transcriptional profile in all organisms. In Escherichia coli the heat shock transcription factor, sigma 32, out-competes upon temperature up-shift the housekeeping sigma-factor, sigma 70, for binding to core RNA polymerase and initiates heat shock...... gene transcription. To investigate possible heat-induced conformational changes in sigma 32 we performed amide hydrogen (H/D) exchange experiments under optimal growth and heat shock conditions combined with mass spectrometry. We found a rapid exchange of around 220 of the 294 amide hydrogens at 37...... degrees C, indicating that sigma 32 adopts a highly flexible structure. At 42 degrees C we observed a slow correlated exchange of 30 additional amide hydrogens and localized it to a helix-loop-helix motif within domain sigma 2 that is responsible for the recognition of the -10 region in heat shock...

  8. IB4(+) nociceptors mediate persistent muscle pain induced by GDNF.

    Science.gov (United States)

    Alvarez, Pedro; Chen, Xiaojie; Bogen, Oliver; Green, Paul G; Levine, Jon D

    2012-11-01

    Skeletal muscle is a well-known source of glial cell line-derived neurotrophic factor (GDNF), which can produce mechanical hyperalgesia. Since some neuromuscular diseases are associated with both increased release of GDNF and intense muscle pain, we explored the role of GDNF as an endogenous mediator in muscle pain. Intramuscularly injected GDNF induced a dose-dependent (0.1-10 ng/20 μl) persistent (up to 3 wk) mechanical hyperalgesia in the rat. Once hyperalgesia subsided, injection of prostaglandin E(2) at the site induced a prolonged mechanical hyperalgesia (>72 h) compared with naïve rats (vibration increased muscle GDNF levels at 24 h, a time point where rats also exhibited marked muscle hyperalgesia. Intrathecal antisense oligodeoxynucleotides to mRNA encoding GFRα1, the canonical binding receptor for GDNF, reversibly inhibited eccentric exercise- and mechanical vibration-induced muscle hyperalgesia. Finally, electrophysiological recordings from nociceptors innervating the gastrocnemius muscle in anesthetized rats, revealed significant increase in response to sustained mechanical stimulation after local GDNF injection. In conclusion, these data indicate that GDNF plays a role as an endogenous mediator in acute and induction of chronic muscle pain, an effect likely to be produced by GDNF action at GFRα1 receptors located in IB4(+) nociceptors.

  9. Silver nanoparticles induced heat shock protein 70, oxidative stress and apoptosis in Drosophila melanogaster.

    Science.gov (United States)

    Ahamed, Maqusood; Posgai, Ryan; Gorey, Timothy J; Nielsen, Mark; Hussain, Saber M; Rowe, John J

    2010-02-01

    Due to the intensive commercial application of silver nanoparticles (Ag NPs), risk assessment of this nanoparticle is of great importance. Our previous in vitro study demonstrated that Ag NPs caused DNA damage and apoptosis in mouse embryonic stem cells and fibroblasts. However, toxicity of Ag NPs in vivo is largely lacking. This study was undertaken to examine the toxic effects of well-characterized polysaccharide coated 10 nm Ag NPs on heat shock stress, oxidative stress, DNA damage and apoptosis in Drosophila melanogaster. Third instar larvae of D. melanogaster were fed a diet of standard cornmeal media mixed with Ag NPs at the concentrations of 50 and 100 microg/ml for 24 and 48 h. Ag NPs up-regulated the expression of heat shock protein 70 and induced oxidative stress in D. melanogaster. Malondialdehyde level, an end product of lipid peroxidation was significantly higher while antioxidant glutathione content was significantly lower in Ag NPs exposed organisms. Activities of antioxidant enzyme superoxide dismutase and catalase were also significantly higher in the organisms exposed to Ag NPs. Furthermore, Ag NPs up-regulated the cell cycle checkpoint p53 and cell signaling protein p38 that are involved in the DNA damage repair pathway. Moreover, activities of caspase-3 and caspase-9, markers of apoptosis were significantly higher in Ag NPs exposed organisms. The results indicate that Ag NPs in D. melanogaster induce heat shock stress, oxidative stress, DNA damage and apoptosis. This study suggests that the organism is stressed and thus warrants more careful assessment of Ag NPs using in vivo models to determine if chronic exposure presents developmental and reproductive toxicity. Copyright 2009 Elsevier Inc. All rights reserved.

  10. Silver nanoparticles induced heat shock protein 70, oxidative stress and apoptosis in Drosophila melanogaster

    International Nuclear Information System (INIS)

    Ahamed, Maqusood; Posgai, Ryan; Gorey, Timothy J.; Nielsen, Mark; Hussain, Saber M.; Rowe, John J.

    2010-01-01

    Due to the intensive commercial application of silver nanoparticles (Ag NPs), risk assessment of this nanoparticle is of great importance. Our previous in vitro study demonstrated that Ag NPs caused DNA damage and apoptosis in mouse embryonic stem cells and fibroblasts. However, toxicity of Ag NPs in vivo is largely lacking. This study was undertaken to examine the toxic effects of well-characterized polysaccharide coated 10 nm Ag NPs on heat shock stress, oxidative stress, DNA damage and apoptosis in Drosophila melanogaster. Third instar larvae of D. melanogaster were fed a diet of standard cornmeal media mixed with Ag NPs at the concentrations of 50 and 100 μg/ml for 24 and 48 h. Ag NPs up-regulated the expression of heat shock protein 70 and induced oxidative stress in D. melanogaster. Malondialdehyde level, an end product of lipid peroxidation was significantly higher while antioxidant glutathione content was significantly lower in Ag NPs exposed organisms. Activities of antioxidant enzyme superoxide dismutase and catalase were also significantly higher in the organisms exposed to Ag NPs. Furthermore, Ag NPs up-regulated the cell cycle checkpoint p53 and cell signaling protein p38 that are involved in the DNA damage repair pathway. Moreover, activities of caspase-3 and caspase-9, markers of apoptosis were significantly higher in Ag NPs exposed organisms. The results indicate that Ag NPs in D. melanogaster induce heat shock stress, oxidative stress, DNA damage and apoptosis. This study suggests that the organism is stressed and thus warrants more careful assessment of Ag NPs using in vivo models to determine if chronic exposure presents developmental and reproductive toxicity.

  11. The measurement of gamma ray induced heating in a mixed neutron and gamma ray environment

    International Nuclear Information System (INIS)

    Chiu, H.K.

    1991-10-01

    The problem of measuring the gamma heating in a mixed DT neutron and gamma ray environment was explored. A new detector technique was developed to make this measurement. Gamma heating measurements were made in a low-Z assembly irradiated with 14-Mev neutrons and (n, n') gammas produced by a Texas Nuclear Model 9400 neutron generator. Heating measurements were made in the mid-line of the lattice using a proportional counter operating in the Continuously-varied Bias-voltage Acquisition mode. The neutron-induced signal was separated from the gamma-induced signal by exploiting the signal rise-time differences inherent to radiations of different linear energy transfer coefficient, which are observable in a proportional counter. The operating limits of this measurement technique were explored by varying the counter position in the low-Z lattice, hence changing the irradiation spectrum observed. The experiment was modelled numerically to help interpret the measured results. The transport of neutrons and gamma rays in the assembly was modelled using the one- dimensional radiation transport code ANISN/PC. The cross-section set used for these calculations was derived from the ENDF/B-V library using the code MC 2 -2 for the case of DT neutrons slowing down in a low-Z material. The calculated neutron and gamma spectra in the slab and the relevant mass-stopping powers were used to construct weighting factors which relate the energy deposition in the counter fill-gas to that in the counter wall and in the surrounding material. The gamma energy deposition at various positions in the lattice is estimated by applying these weighting factors to the measured gamma energy deposition in the counter at those locations

  12. Joule heating induced stream broadening in free-flow zone electrophoresis.

    Science.gov (United States)

    Dutta, Debashis

    2018-03-01

    The use of an electric field in free-flow zone electrophoresis (FFZE) automatically leads to Joule heating yielding a higher temperature at the center of the separation chamber relative to that around the channel walls. For small amounts of heat generated, this thermal effect introduces a variation in the equilibrium position of the analyte molecules due to the dependence of liquid viscosity and analyte diffusivity on temperature leading to a modification in the position of the analyte stream as well as the zone width. In this article, an analytic theory is presented to quantitate such effects of Joule heating on FFZE assays in the limit of small temperature differentials across the channel gap yielding a closed form expression for the stream position and zone variance under equilibrium conditions. A method-of-moments approach is employed to develop this analytic theory, which is further validated with numerical solutions of the governing equations. Interestingly, the noted analyses predict that Joule heating can drift the location of the analyte stream either way of its equilibrium position realized in the absence of any temperature rise in the system, and also tends to reduce zone dispersion. The extent of these modifications, however, is governed by the electric field induced temperature rise and three Péclet numbers evaluated based on the axial pressure-driven flow, transverse electroosmotic and electrophoretic solute velocities in the separation chamber. Monte Carlo simulations of the FFZE system further establish a time and a length scale over which the results from the analytic theory are valid. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Heat generation above break-even from laser-induced fusion in ultra-dense deuterium

    Directory of Open Access Journals (Sweden)

    Leif Holmlid

    2015-08-01

    Full Text Available Previous results from laser-induced processes in ultra-dense deuterium D(0 give conclusive evidence for ejection of neutral massive particles with energy >10 MeV u−1. Such particles can only be formed from nuclear processes like nuclear fusion at the low laser intensity used. Heat generation is of interest for future fusion energy applications and has now been measured by a small copper (Cu cylinder surrounding the laser target. The temperature rise of the Cu cylinder is measured with an NTC resistor during around 5000 laser shots per measured point. No heating in the apparatus or the gas feed is normally used. The fusion process is suboptimal relative to previously published studies by a factor of around 10. The small neutral particles HN(0 of ultra-dense hydrogen (size of a few pm escape with a substantial fraction of the energy. Heat loss to the D2 gas (at <1 mbar pressure is measured and compensated for under various conditions. Heat release of a few W is observed, at up to 50% higher energy than the total laser input thus a gain of 1.5. This is uniquely high for the use of deuterium as fusion fuel. With a slightly different setup, a thermal gain of 2 is reached, thus clearly above break-even for all neutronicity values possible. Also including the large kinetic energy which is directly measured for MeV particles leaving through a small opening gives a gain of 2.3. Taking into account the lower efficiency now due to the suboptimal fusion process, previous studies indicate a gain of at least 20 during long periods.

  14. Radiofrequency heating and magnetically induced displacement of dental magnetic attachments during 3.0 T MRI

    Science.gov (United States)

    Miyata, K; Hasegawa, M; Abe, Y; Tabuchi, T; Namiki, T; Ishigami, T

    2012-01-01

    Objective The aim of this study was to estimate the risk of injury from dental magnetic attachments due to their radiofrequency (RF) heating and magnetically induced displacement during 3.0 T MRI. Methods To examine the magnetic attachments, we adopted the American Society for Testing and Materials F2182-02a and F2052-06 standards in two MRI systems (Achieva 3.0 T Nova Dual; Philips, Tokyo, Japan, and Signa HDxt 3.0 T; GE Healthcare, Milwaukee, WI). The temperature change was measured in a cylindrical keeper (GIGAUSS D600; GC, Tokyo, Japan) with coping of the casting alloy and a keeper with a dental implant at the maximum specific absorption rate (SAR) for 20 min. To measure the magnetically induced displacement force, three sizes of keepers (GIGAUSS D400, D600 and D1000) were used in deflection angle tests conducted at the point of the maximum magnetic field strength. Results Temperature elevations of both coping and implant were higher in the Signa system than in the Achieva system. The highest temperature changes in the keeper with implant and keeper with coping were 0.6 °C and 0.8 °C in the Signa system, respectively. The temperature increase did not exceed 1.0 °C at any location. The deflection angle (α) was not measurable because it exceeded 90°. GIGAUSS D400 required an extra 3.0 g load to constrain the deflection angle to less than 45°; GIGAUSS D600 and D1000 required 5.0 and 9.0 g loads, respectively. Conclusions Dental magnetic attachments pose no risk due to RF heating and magnetically induced displacement at 3.0 T MRI. However, it is necessary to confirm that these keepers are securely attached to the prosthesis before imaging. PMID:22499128

  15. 14-3-3σ induces heat shock protein 70 expression in hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Liu, Chia-Chia; Wang, John; Shyue, Song-Kun; Sung, Li-Ying; Liou, Jun-Yang; Jan, Yee-Jee; Ko, Bor-Sheng; Wu, Yao-Ming; Liang, Shu-Man; Chen, Shyh-Chang; Lee, Yen-Ming; Liu, Tzu-An; Chang, Tzu-Ching

    2014-01-01

    14-3-3σ is implicated in promoting tumor development of various malignancies. However, the clinical relevance of 14-3-3σ in hepatocellular carcinoma (HCC) tumor progression and modulation and pathway elucidation remain unclear. We investigated 14-3-3σ expression in 109 HCC tissues by immunohistochemistry. Overexpression and knockdown experiments were performed by transfection with cDNA or siRNA. Protein expression and cell migration were determined by Western blot and Boyden chamber assay. In this study, we found that 14-3-3σ is abundantly expressed in HCC tumors. Stable or transient overexpression of 14-3-3σ induces the expression of heat shock factor-1α (HSF-1α) and heat shock protein 70 (HSP70) in HCC cells. Moreover, expression of 14-3-3σ significantly correlates with HSF-1α/HSP70 in HCC tumors and both 14-3-3σ and HSP70 overexpression are associated with micro-vascular thrombi in HCC patients, suggesting that 14-3-3σ/HSP70 expression is potentially involved in cell migration/invasion. Results of an in vitro migration assay indicate that 14-3-3σ promotes cell migration and that 14-3-3σ-induced cell migration is impaired by siRNA knockdown of HSP70. Finally, 14-3-3σ-induced HSF-1α/HSP70 expression is abolished by the knockdown of β-catenin or activation of GSK-3β. Our findings indicate that 14-3-3σ participates in promoting HCC cell migration and tumor development via β-catenin/HSF-1α/HSP70 pathway regulation. Thus, 14-3-3σ alone or combined with HSP70 are potential prognostic biomarkers for HCC

  16. Rikkunshito prevents paclitaxel-induced peripheral neuropathy through the suppression of the nuclear factor kappa B (NFκB phosphorylation in spinal cord of mice.

    Directory of Open Access Journals (Sweden)

    Junzo Kamei

    Full Text Available Peripheral neuropathy is the major side effect caused by paclitaxel, a microtubule-binding antineoplastic drug. Paclitaxel-induced peripheral neuropathy causes a long-term negative impact on the patient's quality of life. However, the mechanism underlying paclitaxel-induced peripheral neuropathy is still unknown, and there is no established treatment. Ghrelin is known to attenuate thermal hyperalgesia and mechanical allodynia in chronic constriction injury of the sciatic nerve, and inhibit the activation of nuclear factor kappa B (NFκB in the spinal dorsal horn. Rikkunshito (RKT, a kampo medicine, increases the secretion of ghrelin in rodents and humans. Thus, RKT may attenuate paclitaxel-induced peripheral neuropathy by inhibiting phosphorylated NFκB (pNFκB in the spinal cord. We found that paclitaxel dose-dependently induced mechanical hyperalgesia in mice. Paclitaxel increased the protein levels of spinal pNFκB, but not those of spinal NFκB. NFκB inhibitor attenuated paclitaxel-induced mechanical hyperalgesia suggesting that the activation of NFκB mediates paclitaxel-induced hyperalgesia. RKT dose-dependently attenuated paclitaxel-induced mechanical hyperalgesia. Ghrelin receptor antagonist reversed the RKT-induced attenuation of paclitaxel-induced mechanical hyperalgesia. RKT inhibited the paclitaxel-induced increase in the protein levels of spinal pNFκB. Taken together, the present study indicates that RKT exerts an antihyperalgesic effect in paclitaxel-induced neuropathic pain by suppressing the activation of spinal NFκB.

  17. Diabetes-induced microvascular complications at the level of the spinal cord; a contributing factor in diabetic neuropathic pain.

    Science.gov (United States)

    Ved, N; Da Vitoria Lobo, M E; Bestall, S M; L Vidueira, C; Beazley-Long, N; Ballmer-Hofer, K; Hirashima, M; Bates, D O; Donaldson, L F; Hulse, R P

    2018-05-17

    Abnormalities of neurovascular interactions within the central nervous system of diabetic patients is associated with the onset of many neurological disease states. However, to date, the link between the neurovascular network within the spinal cord and regulation of nociception has not been investigated despite neuropathic pain being common in diabetes. We hypothesised that hyperglycaemia-induced endothelial degeneration in the spinal cord, due to suppression of VEGF-A/VEGFR2 signalling, induces diabetic neuropathic pain. Nociceptive pain behaviour was investigated in a chemically induced model of type 1 diabetes (streptozotocin induced, insulin supplemented; either vehicle or VEGF-A 165 b treated) and an inducible endothelial knockdown of VEGFR2 (tamoxifen induced). Diabetic animals developed mechanical allodynia and heat hyperalgesia. This was associated with a reduction in the number of blood vessels and reduction in Evans blue extravasation in the lumbar spinal cord of diabetic animals versus age-matched controls. Endothelial markers occludin, CD31 and VE-cadherin were downregulated in the spinal cord of the diabetic group versus controls, as well as a concurrent reduction of VEGF-A 165 b expression. In diabetic animals, VEGF-A 165 b treatment (biweekly intraperitoneal, 20 ng g -1 ) restored normal Evans blue extravasation and prevented vascular degeneration, diabetes-induced central neuron activation and neuropathic pain. Inducible knockdown of VEGFR2 (tamoxifen treated Tie2CreER T2 -vegfr2 flfl mice) led to a reduction in blood vessel network volume in the lumbar spinal cord and development of heat hyperalgesia. These findings indicate that hyperglycaemia leads to a reduction in the VEGF-A/VEGFR2 signalling cascade resulting in endothelial dysfunction in the spinal cord, which could be an undiscovered contributing factor to diabetic neuropathic pain. This article is protected by copyright. All rights reserved. This article is protected by copyright. All

  18. Resveratrol induces antioxidant and heat shock protein mRNA expression in response to heat stress in black-boned chickens.

    Science.gov (United States)

    Liu, L L; He, J H; Xie, H B; Yang, Y S; Li, J C; Zou, Y

    2014-01-01

    This study investigated the effects of dietary resveratrol at 0, 200, 400, or 600 mg/kg of diet on the performance, immune organ growth index, serum parameters, and expression levels of heat shock protein (Hsp) 27, Hsp70, and Hsp90 mRNA in the bursa of Fabricius, thymus, and spleen of 42-d-old female black-boned chickens exposed to heat stress at 37 ± 2°C for 15 d. The results showed that heat stress reduced daily feed intake and BW gain; decreased serum glutathione (GSH), growth hormone, and insulin-like growth factor-1 levels; and inhibited GSH peroxidase (GSH-Px), superoxide dismutase (SOD), and catalase (CAT) activities compared with birds subjected to thermo-neutral circumstances. Chickens that were fed diets supplemented with resveratrol exhibited a linear increase in feed intake and BW gain (P stress. In contrast, serum malonaldehyde concentrations were decreased (P stress also reduced (P stress and coincided with an increase in supplemental resveratrol levels. The expression of Hsp27, Hsp70, and Hsp90 mRNA in the bursa of Fabricius and spleen were increased (P stress compared with no heat stress. Resveratrol attenuated the heat stress-induced overexpression of Hsp27, Hsp70, and Hsp90 mRNA in the bursa of Fabricius and spleen and increased the low expression of Hsp27 and Hsp90 mRNA in thymus upon heat stress. The results suggest that supplemental resveratrol improves growth performance and reduces oxidative stress in heat-stressed black-boned chickens by increasing serum growth hormone concentrations and modulating the expression of heat shock genes in organs of the immune system.

  19. Capsaicin-induced neurogenic inflammation in pig skin: A behavioural study

    DEFF Research Database (Denmark)

    di Giminiani, Pierpaolo; Petersen, Lars Jelstrup; Herskin, Mette S

    2014-01-01

    Topical capsaicin is a well-established model of experimental hyperalgesia. Its application to the study of animals has been limited to few species. The effect of topical capsaicin on hyperalgesia in porcine skin was evaluated as part of a study of inflammatory pain in the pig. Two experiments were...... carried out on pigs of 27 ± 5 kg (n = 8) and 57 ± 3 kg (n = 16). Thermal and mechanical noxious stimuli were provided (CO2 laser and Pressure Application Measurement device) to assess avoidance behaviours. Capsaicin induced significant thermal hyperalgesia in the smaller pigs (P

  20. Planetary-scale circulations in the presence of climatological and wave-induced heating

    Science.gov (United States)

    Salby, Murry L; Garcia, Rolando R.; Hendon, Harry H.

    1994-01-01

    Interaction between the large-scale circulation and the convective pattern is investigated in a coupled system governed by the linearized primitive equations. Convection is represented in terms of two components of heating: A 'climatological component' is prescribed stochastically to represent convection that is maintained by fixed distributions of land and sea and sea surface temperature (SST). An 'induced component' is defined in terms of the column-integrated moisture flux convergence to represent convection that is produced through feedback with the circulation. Each component describes the envelope organizing mesoscale convective activity. As SST on the equator is increased, induced heating amplifies in the gravest zonal wavenumbers at eastward frequencies, where positive feedback offsets dissipation. Under barotropic stratification, a critical SST of 29.5 C results in positive feedback exactly cancelling dissipation in wavenumber 1 for an eastward phase speed of 6 m/s. Sympathetic interaction between the circulation and the induced heating is the basis for 'frictional wave-Conditional Instability of the Second Kind (CISK)', which is distinguished from classical wave-CISK by rendering the gravest zonal dimensions most unstable. Under baroclinic stratification, the coupled system exhibits similar behavior. The critical SST is only 26.5 C for conditions representative of equinox, but in excess of 30 C for conditions representative of solstice. Having the form of an unsteady Walker circulation, the disturbance produced by frictional wave-CISK compares favorably with the observed life cycle of the Madden-Julian oscillation (MJO). SST above the critical value produces an amplifying disturbance in which enhanced convection coincides with upper-tropospheric westerlies and is positively correlated with temperature and surface convergence. Conversely, SST below the critical value produces a decaying disturbance in which enhanced convection coincides with upper

  1. The Vibration Analysis of Tube Bundles Induced by Fluid Elastic Excitation in Shell Side of Heat Exchanger

    Science.gov (United States)

    Bao, Minle; Wang, Lu; Li, Wenyao; Gao, Tianze

    2017-09-01

    Fluid elastic excitation in shell side of heat exchanger was deduced theoretically in this paper. Model foundation was completed by using Pro / Engineer software. The finite element model was constructed and imported into the FLUENT module. The flow field simulation adopted the dynamic mesh model, RNG k-ε model and no-slip boundary conditions. Analysing different positions vibration of tube bundles by selecting three regions in shell side of heat exchanger. The results show that heat exchanger tube bundles at the inlet of the shell side are more likely to be failure due to fluid induced vibration.

  2. Study of the effect induced by heating and irradiation stress on Salmonella

    International Nuclear Information System (INIS)

    Ghazouani, Sarra

    2013-01-01

    In this study, we evaluated the effect of exposure to a temperature of 55 degree for 30 min and to 2 kGy gamma irradiation dose (100 Gy/min) on the viability and gene expression of Salmonella. Our results indicate that the exposure to heat and irradiation showed levels of stress vary from one type of stress to another, a different serovars and even there is variability within the same serovars of different origins and isolation. They were able to induce a decrease in viability. The analysis of the differential expression of 16S rRNA genes by RT-PCR after exposure to stress showed that the level of mRNA expression of 16S rRNA is unstable during the exhibition, and may not be used as reference gene for the analysis of differential expression of genes of Salmonella.

  3. Numerical study on flow induced vibration characteristics of heat transfer tube

    International Nuclear Information System (INIS)

    Feng Zhipeng; Zang Fenggang; Zhang Yixiong

    2014-01-01

    The model presents a fully coupled approach with solving the fluid flow and the structure vibration simultaneously. The three-dimensional unsteady, viscous, incompressible Navier-Stokes equation and LES turbulence model were solved by the finite volume approach and the heat transfer structure was solved by finite element method combined with moving mesh control technique. The dynamic equilibrium equation was discretized according to the finite element theory and the mesh update was achieved by the dynamic mesh technology. Based on this model, flow induced vibration responses of the tube were thus investigated using response branch, phase angle, Lissajou diagram, trajectory, phase portrait and Poincare section mapping. Meanwhile, the limit cycle and bifurcation of lift coefficient and lateral displacement were analyzed. The results reveal that a quasi-upper branch is found in the fluid-structure interaction system, and there is no bifurcation of lift coefficient and lateral displacement occurred in three-dimensional flexible tube submitted to uniform turbulent flow. (authors)

  4. The effect of transcranial direct current stimulation on experimentally induced heat pain.

    Science.gov (United States)

    Aslaksen, Per M; Vasylenko, Olena; Fagerlund, Asbjørn J

    2014-06-01

    Transcranial direct current stimulation (tDCS) is a non-invasive neuromodulatory technique that can affect human pain perception. Placebo effects are present in most treatments and could therefore also interact with treatment effects in tDCS. The present study investigated whether short-term tDCS reduced heat pain intensity, stress, blood pressure and increased heat pain thresholds in healthy volunteers when controlling for placebo effects. Seventy-five (37 females) participants were randomized into three groups: (1) active tDCS group receiving anodal tDCS (2 mA) for 7 min to the primary motor cortex (M1), (2) placebo group receiving the tDCS electrode montage but only active tDCS stimulation for 30 s and (3) natural history group that got no tDCS montage but the same pain stimulation as the active tDCS and the placebo group. Heat pain was induced by a PC-controlled thermode attached to the left forearm. Pain intensity was significantly lower in the active tDCS group when examining change scores (pretest-posttest) for the 47 °C condition. The placebo group displayed lower pain compared with the natural history group, displaying a significant placebo effect. In the 43 and 45 °C conditions, the effect of tDCS could not be separated from placebo effects. The results revealed no effects on pain thresholds. There was a tendency that active tDCS reduced stress and systolic blood pressure, however, not significant. In sum, tDCS had an analgesic effect on high-intensity pain, but the effect of tDCS could not be separated from placebo effects for medium and low pain.

  5. Cellular stress induces cancer stem-like cells through expression of DNAJB8 by activation of heat shock factor 1.

    Science.gov (United States)

    Kusumoto, Hiroki; Hirohashi, Yoshihiko; Nishizawa, Satoshi; Yamashita, Masamichi; Yasuda, Kazuyo; Murai, Aiko; Takaya, Akari; Mori, Takashi; Kubo, Terufumi; Nakatsugawa, Munehide; Kanaseki, Takayuki; Tsukahara, Tomohide; Kondo, Toru; Sato, Noriyuki; Hara, Isao; Torigoe, Toshihiko

    2018-03-01

    In a previous study, we found that DNAJB8, a heat shock protein (HSP) 40 family member is expressed in kidney cancer stem-like cells (CSC)/cancer-initiating cells (CIC) and that it has a role in the maintenance of kidney CSC/CIC. Heat shock factor (HSF) 1 is a key transcription factor for responses to stress including heat shock, and it induces HSP family expression through activation by phosphorylation. In the present study, we therefore examined whether heat shock (HS) induces CSC/CIC. We treated the human kidney cancer cell line ACHN with HS, and found that HS increased side population (SP) cells. Western blot analysis and qRT-PCR showed that HS increased the expression of DNAJB8 and SOX2. Gene knockdown experiments using siRNAs showed that the increase in SOX2 expression and SP cell ratio depends on DNAJB8 and that the increase in DNAJB8 and SOX2 depend on HSF1. Furthermore, treatment with a mammalian target of rapamycin (mTOR) inhibitor, temsirolimus, decreased the expression of DNAJB8 and SOX2 and the ratio of SP cells. Taken together, the results indicate that heat shock induces DNAJB8 by activation of HSF1 and induces cancer stem-like cells. © 2018 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  6. Small heat shock proteins protect against α-synuclein-induced toxicity and aggregation

    International Nuclear Information System (INIS)

    Outeiro, Tiago Fleming; Klucken, Jochen; Strathearn, Katherine E.; Liu Fang; Nguyen, Paul; Rochet, Jean-Christophe; Hyman, Bradley T.; McLean, Pamela J.

    2006-01-01

    Protein misfolding and inclusion formation are common events in neurodegenerative diseases, such as Parkinson's disease (PD), Alzheimer's disease (AD) or Huntington's disease (HD). α-Synuclein (aSyn) is the main protein component of inclusions called Lewy bodies (LB) which are pathognomic of PD, Dementia with Lewy bodies (DLB), and other diseases collectively known as LB diseases. Heat shock proteins (HSPs) are one class of the cellular quality control system that mediate protein folding, remodeling, and even disaggregation. Here, we investigated the role of the small heat shock proteins Hsp27 and αB-crystallin, in LB diseases. We demonstrate, via quantitative PCR, that Hsp27 messenger RNA levels are ∼2-3-fold higher in DLB cases compared to control. We also show a corresponding increase in Hsp27 protein levels. Furthermore, we found that Hsp27 reduces aSyn-induced toxicity by ∼80% in a culture model while αB-crystallin reduces toxicity by ∼20%. In addition, intracellular inclusions were immunopositive for endogenous Hsp27, and overexpression of this protein reduced aSyn aggregation in a cell culture model

  7. Modeling of fuel vapor jet eruption induced by local droplet heating

    KAUST Repository

    Sim, Jaeheon

    2014-01-10

    The evaporation of a droplet by non-uniform heating is numerically investigated in order to understand the mechanism of the fuel-vapor jet eruption observed in the flame spread of a droplet array under microgravity condition. The phenomenon was believed to be mainly responsible for the enhanced flame spread rate through a droplet cloud at microgravity conditions. A modified Eulerian-Lagrangian method with a local phase change model is utilized to describe the interfacial dynamics between liquid droplet and surrounding air. It is found that the localized heating creates a temperature gradient along the droplet surface, induces the corresponding surface tension gradient, and thus develops an inner flow circulation commonly referred to as the Marangoni convection. Furthermore, the effect also produces a strong shear flow around the droplet surface, thereby pushing the fuel vapor toward the wake region of the droplet to form a vapor jet eruption. A parametric study clearly demonstrated that at realistic droplet combustion conditions the Marangoni effect is indeed responsible for the observed phenomena, in contrast to the results based on constant surface tension approximation

  8. Induction of Heat Shock Protein 70 Ameliorates Ultraviolet-Induced Photokeratitis in Mice

    Directory of Open Access Journals (Sweden)

    Yukihiro Horie

    2013-01-01

    Full Text Available Acute ultraviolet (UV B exposure causes photokeratitis and induces apoptosis in corneal cells. Geranylgeranylacetone (GGA is an acyclic polyisoprenoid that induces expression of heat shock protein (HSP70, a soluble intracellular chaperone protein expressed in various tissues, protecting cells against stress conditions. We examined whether induction of HSP70 has therapeutic effects on UV-photokeratitis in mice. C57 BL/6 mice were divided into four groups, GGA-treated (500 mg/kg/mouse and UVB-exposed (400 mJ/cm2, GGA-untreated UVB-exposed (400 mJ/cm2, GGA-treated (500 mg/kg/mouse but not exposed and naive controls. Eyeballs were collected 24 h after irradiation, and corneas were stained with hematoxylin and eosin (H&E and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL. HSP70, reactive oxygen species (ROS production, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB and protein kinase B (Akt expression were also evaluated. Irradiated corneal epithelium was significantly thicker in the eyes of mice treated with GGA compared with those given the vehicle alone (p < 0.01. Significantly fewer TUNEL-positive cells were observed in the eyes of GGA-treated mice than controls after irradiation (p < 0.01. Corneal HSP70 levels were significantly elevated in corneas of mice treated with GGA (p < 0.05. ROS signal was not affected by GGA. NF-κB activation was reduced but phospho-(Ser/Ther Akt substrate expression was increased in corneas after irradiation when treated with GGA. GGA-treatment induced HSP70 expression and ameliorated UV-induced corneal damage through the reduced NF-κB activation and possibly increased Akt phosphorilation.

  9. Heat induced fracturing of rock in an existing uniaxial stress field

    International Nuclear Information System (INIS)

    Mathis, J.; Stephansson, O.; Bjarnason, B.; Hakami, H.; Herdocia, A.; Mattila, U.; Singh, U.

    1986-01-01

    This study was initiated under the premise that it may be possible to determine the state of stress in the earth's crust by heat induced fracturing of the rock surrounding a borehole. The theory involved is superficially simple, involving the superposition of the stress field around a borehole due to the existing virgin stresses and the uniform stress field of thermally loaded rock as induced by a heater. Since the heat stress field is uniform, varying only in magnitude and gradient as a function of heater input, fracturing should be controlled by the non-uniform virgin stress field. To determine if the method was, in fact, feasible, a series of laboratory test were conducted. These tests consisted of physically loading center drilled cubes of rock, 0.3 m on a side, uniaxially from 0 to 25 MPa. The blocks were then thermally loaded with a nominally rated 3.7 kW heater until failure occurred. Results from these laboratory tests were then compared to analytical studies of the problem, i.e., finite element and discrete theoretical analysis. Overall, results were such that the method is likely eliminated as a stress measurement technique. The immediate development of a thermal compressive zone on the borehole wall overlaps the tensile zone created by the uniaxial stress field, forcing the failure is thus controlled largely by the power input of the heater, being retarded by the small compressive stresses genrated by the uniaxial stress field. This small retardation effect is of such low magnitude that the retardation effect is of such low magnitude that the fracture time is relatively insensitive to the local virgin stress field. (authors)

  10. An alternatively spliced heat shock transcription factor, OsHSFA2dI, functions in the heat stress-induced unfolded protein response in rice.

    Science.gov (United States)

    Cheng, Q; Zhou, Y; Liu, Z; Zhang, L; Song, G; Guo, Z; Wang, W; Qu, X; Zhu, Y; Yang, D

    2015-03-01

    As sessile organisms, plants have evolved a wide range of defence pathways to cope with environmental stress such as heat shock. However, the molecular mechanism of these defence pathways remains unclear in rice. In this study, we found that OsHSFA2d, a heat shock transcriptional factor, encodes two main splice variant proteins, OsHSFA2dI and OsHSFA2dII in rice. Under normal conditions, OsHSFA2dII is the dominant but transcriptionally inactive spliced form. However, when the plant suffers heat stress, OsHSFA2d is alternatively spliced into a transcriptionally active form, OsHSFA2dI, which participates in the heat stress response (HSR). Further study found that this alternative splicing was induced by heat shock rather than photoperiod. We found that OsHSFA2dI is localised to the nucleus, whereas OsHSFA2dII is localised to the nucleus and cytoplasm. Moreover, expression of the unfolded protein response (UNFOLDED PROTEIN RESPONSE) sensors, OsIRE1, OsbZIP39/OsbZIP60 and the UNFOLDED PROTEIN RESPONSE marker OsBiP1, was up-regulated. Interestingly, OsbZIP50 was also alternatively spliced under heat stress, indicating that UNFOLDED PROTEIN RESPONSE signalling pathways were activated by heat stress to re-establish cellular protein homeostasis. We further demonstrated that OsHSFA2dI participated in the unfolded protein response by regulating expression of OsBiP1. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  11. Heat-stress and light-stress induce different cellular pathologies in the symbiotic dinoflagellate during coral bleaching.

    Science.gov (United States)

    Downs, C A; McDougall, Kathleen E; Woodley, Cheryl M; Fauth, John E; Richmond, Robert H; Kushmaro, Ariel; Gibb, Stuart W; Loya, Yossi; Ostrander, Gary K; Kramarsky-Winter, Esti

    2013-01-01

    Coral bleaching is a significant contributor to the worldwide degradation of coral reefs and is indicative of the termination of symbiosis between the coral host and its symbiotic algae (dinoflagellate; Symbiodinium sp. complex), usually by expulsion or xenophagy (symbiophagy) of its dinoflagellates. Herein, we provide evidence that during the earliest stages of environmentally induced bleaching, heat stress and light stress generate distinctly different pathomorphological changes in the chloroplasts, while a combined heat- and light-stress exposure induces both pathomorphologies; suggesting that these stressors act on the dinoflagellate by different mechanisms. Within the first 48 hours of a heat stress (32°C) under low-light conditions, heat stress induced decomposition of thylakoid structures before observation of extensive oxidative damage; thus it is the disorganization of the thylakoids that creates the conditions allowing photo-oxidative-stress. Conversely, during the first 48 hours of a light stress (2007 µmoles m(-2) s(-1) PAR) at 25°C, condensation or fusion of multiple thylakoid lamellae occurred coincidently with levels of oxidative damage products, implying that photo-oxidative stress causes the structural membrane damage within the chloroplasts. Exposure to combined heat- and light-stresses induced both pathomorphologies, confirming that these stressors acted on the dinoflagellate via different mechanisms. Within 72 hours of exposure to heat and/or light stresses, homeostatic processes (e.g., heat-shock protein and anti-oxidant enzyme response) were evident in the remaining intact dinoflagellates, regardless of the initiating stressor. Understanding the sequence of events during bleaching when triggered by different environmental stressors is important for predicting both severity and consequences of coral bleaching.

  12. Heat-stress and light-stress induce different cellular pathologies in the symbiotic dinoflagellate during coral bleaching.

    Directory of Open Access Journals (Sweden)

    C A Downs

    Full Text Available Coral bleaching is a significant contributor to the worldwide degradation of coral reefs and is indicative of the termination of symbiosis between the coral host and its symbiotic algae (dinoflagellate; Symbiodinium sp. complex, usually by expulsion or xenophagy (symbiophagy of its dinoflagellates. Herein, we provide evidence that during the earliest stages of environmentally induced bleaching, heat stress and light stress generate distinctly different pathomorphological changes in the chloroplasts, while a combined heat- and light-stress exposure induces both pathomorphologies; suggesting that these stressors act on the dinoflagellate by different mechanisms. Within the first 48 hours of a heat stress (32°C under low-light conditions, heat stress induced decomposition of thylakoid structures before observation of extensive oxidative damage; thus it is the disorganization of the thylakoids that creates the conditions allowing photo-oxidative-stress. Conversely, during the first 48 hours of a light stress (2007 µmoles m(-2 s(-1 PAR at 25°C, condensation or fusion of multiple thylakoid lamellae occurred coincidently with levels of oxidative damage products, implying that photo-oxidative stress causes the structural membrane damage within the chloroplasts. Exposure to combined heat- and light-stresses induced both pathomorphologies, confirming that these stressors acted on the dinoflagellate via different mechanisms. Within 72 hours of exposure to heat and/or light stresses, homeostatic processes (e.g., heat-shock protein and anti-oxidant enzyme response were evident in the remaining intact dinoflagellates, regardless of the initiating stressor. Understanding the sequence of events during bleaching when triggered by different environmental stressors is important for predicting both severity and consequences of coral bleaching.

  13. Uncertainties in the estimation of specific absorption rate during radiofrequency alternating magnetic field induced non-adiabatic heating of ferrofluids

    Science.gov (United States)

    Lahiri, B. B.; Ranoo, Surojit; Philip, John

    2017-11-01

    Magnetic fluid hyperthermia (MFH) is becoming a viable cancer treatment methodology where the alternating magnetic field induced heating of magnetic fluid is utilized for ablating the cancerous cells or making them more susceptible to the conventional treatments. The heating efficiency in MFH is quantified in terms of specific absorption rate (SAR), which is defined as the heating power generated per unit mass. In majority of the experimental studies, SAR is evaluated from the temperature rise curves, obtained under non-adiabatic experimental conditions, which is prone to various thermodynamic uncertainties. A proper understanding of the experimental uncertainties and its remedies is a prerequisite for obtaining accurate and reproducible SAR. Here, we study the thermodynamic uncertainties associated with peripheral heating, delayed heating, heat loss from the sample and spatial variation in the temperature profile within the sample. Using first order approximations, an adiabatic reconstruction protocol for the measured temperature rise curves is developed for SAR estimation, which is found to be in good agreement with those obtained from the computationally intense slope corrected method. Our experimental findings clearly show that the peripheral and delayed heating are due to radiation heat transfer from the heating coils and slower response time of the sensor, respectively. Our results suggest that the peripheral heating is linearly proportional to the sample area to volume ratio and coil temperature. It is also observed that peripheral heating decreases in presence of a non-magnetic insulating shielding. The delayed heating is found to contribute up to ~25% uncertainties in SAR values. As the SAR values are very sensitive to the initial slope determination method, explicit mention of the range of linear regression analysis is appropriate to reproduce the results. The effect of sample volume to area ratio on linear heat loss rate is systematically studied and the

  14. Uncertainties in the estimation of specific absorption rate during radiofrequency alternating magnetic field induced non-adiabatic heating of ferrofluids

    International Nuclear Information System (INIS)

    Lahiri, B B; Ranoo, Surojit; Philip, John

    2017-01-01

    Magnetic fluid hyperthermia (MFH) is becoming a viable cancer treatment methodology where the alternating magnetic field induced heating of magnetic fluid is utilized for ablating the cancerous cells or making them more susceptible to the conventional treatments. The heating efficiency in MFH is quantified in terms of specific absorption rate (SAR), which is defined as the heating power generated per unit mass. In majority of the experimental studies, SAR is evaluated from the temperature rise curves, obtained under non-adiabatic experimental conditions, which is prone to various thermodynamic uncertainties. A proper understanding of the experimental uncertainties and its remedies is a prerequisite for obtaining accurate and reproducible SAR. Here, we study the thermodynamic uncertainties associated with peripheral heating, delayed heating, heat loss from the sample and spatial variation in the temperature profile within the sample. Using first order approximations, an adiabatic reconstruction protocol for the measured temperature rise curves is developed for SAR estimation, which is found to be in good agreement with those obtained from the computationally intense slope corrected method. Our experimental findings clearly show that the peripheral and delayed heating are due to radiation heat transfer from the heating coils and slower response time of the sensor, respectively. Our results suggest that the peripheral heating is linearly proportional to the sample area to volume ratio and coil temperature. It is also observed that peripheral heating decreases in presence of a non-magnetic insulating shielding. The delayed heating is found to contribute up to ∼25% uncertainties in SAR values. As the SAR values are very sensitive to the initial slope determination method, explicit mention of the range of linear regression analysis is appropriate to reproduce the results. The effect of sample volume to area ratio on linear heat loss rate is systematically studied and

  15. Role of peroxynitrite in the responses induced by heat stress in tobacco BY-2 cultured cells.

    Science.gov (United States)

    Malerba, Massimo; Cerana, Raffaella

    2018-07-01

    Temperatures above the optimum are sensed as heat stress (HS) by all living organisms and represent one of the major environmental challenges for plants. Plants can cope with HS by activating specific defense mechanisms to minimize damage and ensure cellular functionality. One of the most common effects of HS is the overproduction of reactive oxygen and nitrogen species (ROS and RNS). The role of ROS and RNS in the regulation of many plant physiological processes is well established. On the contrary, in plants very little is known about the physiological role of peroxynitrite (ONOO - ), the RNS species generated by the interaction between NO and O 2 - . In this work, the role of ONOO - on some of the stress responses induced by HS in tobacco BY-2 cultured cells has been investigated by measuring these responses both in the presence and in the absence of 2,6,8-trihydroxypurine (urate), a specific scavenger of ONOO - . The obtained results suggest a potential role for ONOO - in some of the responses induced by HS in tobacco cultured cells. In particular, ONOO - seems implicated in a form of cell death showing apoptotic features and in the regulation of the levels of proteins involved in the response to stress.

  16. The heat shock protein 90 inhibitor, 17-AAG, attenuates thioacetamide induced liver fibrosis in mice.

    Science.gov (United States)

    Abu-Elsaad, Nashwa M; Serrya, Marwa S; El-Karef, Amr M; Ibrahim, Tarek M

    2016-04-01

    Heat shock protein 90 (Hsp90) is proposed to be involved in liver disorders. This study was conducted to test effect of 17-N-allylamino-17-demethoxygeldanamycin (17-AAG), an inhibitor of Hsp90, on attenuating thioacetamide induced liver fibrosis in vivo. Four groups of Swiss albino male mice (CD-1 strain) were used as follows: control group; thioacetamide group (received 100mg/kg thioacetamide, ip injection, 3 times/week for 8 weeks); thioacetamide plus 17-AAG groups (received 100mg/kg thioacetamide, ip injection, 3 times/week for 8 weeks plus 25 or 50mg/kg 17-AAG, ip injection, 5 days/week along the last 4 weeks). Fibrosis was quantified by measuring hydroxyproline level and by morphometry and oxidative stress biomarkers were assigned. Relative hepatic mRNA expressions of α-smooth muscle actin (α-SMA), collagen-1-alpha-1 (Col1A1) and tissue inhibitor metalloproteinase-1 (TIMP-1) mRNAs were measured by RT-PCR. Levels of the apoptotic markers caspase-3, factor related apoptosis (Fas) and Hsp-90 were assigned in tissue homogenate. 17-AAG (50mg/kg) significantly decreased fibrosis percentage significantly (pAAG (50mg/kg) compared to other groups. The Hsp90 inhibitor, 17-AAG, can attenuate thioacetamide hepatotoxicity through oxidative stress counterbalance, reducing stellate cells activity and inducing apoptosis. Copyright © 2015 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  17. Topography induced spatial variations in diurnal cycles of assimilation and latent heat of Mediterranean forest

    Science.gov (United States)

    van der Tol, C.; Dolman, A. J.; Waterloo, M. J.; Raspor, K.

    2007-02-01

    The aim of this study is to explain topography induced spatial variations in the diurnal cycles of assimilation and latent heat of Mediterranean forest. Spatial variations of the fluxes are caused by variations in weather conditions and in vegetation characteristics. Weather conditions reflect short-term effects of climate, whereas vegetation characteristics, through adaptation and acclimation, long-term effects of climate. In this study measurements of plant physiology and weather conditions are used to explain observed differences in the fluxes. A model is used to study which part of the differences in the fluxes is caused by weather conditions and which part by vegetation characteristics. Data were collected at four experimental sub-Mediterranean deciduous forest plots in a heterogeneous terrain with contrasting aspect, soil water availability, humidity and temperature. We used a sun-shade model to scale fluxes from leaf to canopy, and calculated the canopy energy balance. Parameter values were derived from measurements of light interception, leaf chamber photosynthesis, leaf nitrogen content and 13C isotope discrimination in leaf material. Leaf nitrogen content is a measure of photosynthetic capacity, and 13C isotope discrimination of water use efficiency. For validation, sap-flux based measurements of transpiration were used. The model predicted diurnal cycles of transpiration and stomatal conductance, both their magnitudes and differences in afternoon stomatal closure between slopes of different aspect within the confidence interval of the validation data. Weather conditions mainly responsible for the shape of the diurnal cycles, and vegetation parameters for the magnitude of the fluxes. Although the data do not allow for a quantification of the two effects, the differences in vegetation parameters and weather among the plots and the sensitivity of the fluxes to them suggest that the diurnal cycles were more strongly affected by spatial variations in

  18. Topography induced spatial variations in diurnal cycles of assimilation and latent heat of Mediterranean forest

    Directory of Open Access Journals (Sweden)

    C. van der Tol

    2007-01-01

    Full Text Available The aim of this study is to explain topography induced spatial variations in the diurnal cycles of assimilation and latent heat of Mediterranean forest. Spatial variations of the fluxes are caused by variations in weather conditions and in vegetation characteristics. Weather conditions reflect short-term effects of climate, whereas vegetation characteristics, through adaptation and acclimation, long-term effects of climate. In this study measurements of plant physiology and weather conditions are used to explain observed differences in the fluxes. A model is used to study which part of the differences in the fluxes is caused by weather conditions and which part by vegetation characteristics. Data were collected at four experimental sub-Mediterranean deciduous forest plots in a heterogeneous terrain with contrasting aspect, soil water availability, humidity and temperature. We used a sun-shade model to scale fluxes from leaf to canopy, and calculated the canopy energy balance. Parameter values were derived from measurements of light interception, leaf chamber photosynthesis, leaf nitrogen content and 13C isotope discrimination in leaf material. Leaf nitrogen content is a measure of photosynthetic capacity, and 13C isotope discrimination of water use efficiency. For validation, sap-flux based measurements of transpiration were used. The model predicted diurnal cycles of transpiration and stomatal conductance, both their magnitudes and differences in afternoon stomatal closure between slopes of different aspect within the confidence interval of the validation data. Weather conditions mainly responsible for the shape of the diurnal cycles, and vegetation parameters for the magnitude of the fluxes. Although the data do not allow for a quantification of the two effects, the differences in vegetation parameters and weather among the plots and the sensitivity of the fluxes to them suggest that the diurnal cycles were more strongly affected by spatial

  19. Effect of a Traditional Herbal Prescription, Kyung-Ok-Ko, on Male Mouse Spermatogenic Ability after Heat-Induced Damage

    Directory of Open Access Journals (Sweden)

    Deok-Sang Hwang

    2015-01-01

    Full Text Available Kyung-Ok-Ko (KOK, a well-known traditional Korean medicinal formula, has long been used to invigorate the essential qi. This use of KOK may be associated with reproductive ability as a more modern concept. The protective effect of KOK was evaluated against deterioration of testicular function induced by heat exposure in male mice. Male fertility was disrupted by scrotal heat stress at 43°C for 5 weeks. KOK (0.25, 0.50, and 2.00 g/kg/day was administered orally at 3 h after the stress. To evaluate the protective effect of KOK, body weight, testicular weight, sperm count, sperm motility, and histopathological changes in the testes were evaluated. KOK-treated mice significantly recovered their general health, as evidenced by body weight. KOK-treated mice also showed significantly higher testes weights, sperm counts, and sperm motility than did the heat stress group. KOK-treated mice significantly recovered the morphological appearance of the seminiferous tubules and seminiferous epithelium. Furthermore, KOK-treated mice significantly increased antioxidant enzyme activities and reduced the protein expressions of apoptosis in the testes. KOK significantly protects against heat-induced damage to testicular function in male mice by inhibiting oxidative stress and apoptosis, indicating that KOK may be an effective agent for treatment of heat-induced male infertility.

  20. Psychosocial Stress-Induced Analgesia: An Examination of Effects on Heat Pain Threshold and Tolerance and of Neuroendocrine Mediation.

    Science.gov (United States)

    Gaab, Jens; Jiménez, Julia; Voneschen, Livia; Oschwald, Daniel; Meyer, Andrea H; Nater, Urs M; Krummenacher, Peter

    2016-01-01

    Stress-induced analgesia (SIA) is an adaptive response of reduced nociception following demanding acute internal and external stressors. Although a psychobiological understanding of this phenomenon is of importance for stress-related psychiatric and pain conditions, comparably little is known about the psychobiological mechanisms of SIA in humans. The aim of this study was to investigate the effects of acute psychosocial stress on heat pain perception and its possible neuroendocrine mediation by salivary cortisol levels and α-amylase activity in healthy men. Employing an intra-individual assessment of heat pain parameters, acute psychosocial stress did not influence heat pain threshold but significantly, albeit slightly, increased heat pain tolerance. Using linear mixed-model analysis, this effect of psychosocial stress on heat pain tolerance was not mediated by increases of salivary cortisol and state anxiety levels or by the activity of α-amylase. These results show that while psychosocial stress is selectively analgesic for heat pain tolerance, this observed effect is not mediated by stress-induced increases of salivary cortisol and α-amylase activity, as proxies of both the hypothalamus-pituitary-adrenal axis and the autonomic nervous system activation. © 2017 S. Karger AG, Basel.

  1. Mechanisms Mediating Vibration-induced Chronic Musculoskeletal Pain Analyzed in the Rat

    OpenAIRE

    Dina, Olayinka A.; Joseph, Elizabeth K.; Levine, Jon D.; Green, Paul G.

    2009-01-01

    While occupational exposure to vibration is a common cause of acute and chronic musculoskeletal pain, eliminating exposure produces limited symptomatic improvement, and re-exposure precipitates rapid recurrence or exacerbation. To evaluate mechanisms underlying these pain syndromes, we have developed a model in the rat, in which exposure to vibration (60–80 Hz) induces, in skeletal muscle, both acute mechanical hyperalgesia as well as long-term changes characterized by enhanced hyperalgesia t...

  2. TARGETED DELETION OF INDUCIBLE HEAT SHOCK PROTEIN 70 ABROGATES THE LATE INFARCT-SPARING EFFECT OF MYOCARDIAL ISCHEMIC PRECONDITIONING

    Science.gov (United States)

    Abstract submitted for 82nd annual meeting of the American Association for Thoracic Surgery, May 4-8, 2002 in Washington D.C.Targeted Deletion of Inducible Heat Shock Protein 70 Abrogates the Late Infarct-Sparing Effect of Myocardial Ischemic PreconditioningCraig...

  3. Effects of a heat shock protein inducer on the atrial fibrillation substrate caused by acute atrial ischaemia

    NARCIS (Netherlands)

    Sakabe, Masao; Shiroshita-Takeshita, Akiko; Maguy, Ange; Brundel, Bianca J. J. M.; Fujiki, Akira; Inoue, Hiroshi; Nattel, Stanley

    2008-01-01

    Aims Heat shock proteins (HSPs) are a set of endogenous cytoprotective factors activated by various pathological conditions. This study addressed the effects of geranylgeranylacetone (GGA), an orally active HSP inducer, on the atrial fibrillation (AF) substrate associated with acute atria( ischaemia

  4. Small-angle X-ray scattering studies of metastable intermediates of beta-lactoglobulin isolated after heat-induced aggregation

    DEFF Research Database (Denmark)

    Carrotta, R.; Arleth, L.; Pedersen, J.S.

    2003-01-01

    Small-angle x-ray scattering was used for studying intermediate species, isolated after heat-induced aggregation of the A variant of bovine P-lactoglobulin. The intermediates were separated in two fractions, the heated metastable dimer and heated metastable oligomers larger than the dimer. The pa...

  5. Tolerence for work-induced heat stress in men wearing liquidcooled garments

    Science.gov (United States)

    Blockley, W. V.; Roth, H. P.

    1971-01-01

    An investigation of the heat tolerance in men unable to dispose of metabolic heat as fast as it is produced within the body is discussed. Examinations were made of (a) the effect of work rate (metabolic rate) on tolerance time when body heat storage rate is a fixed quantity, and (b) tolerance time as a function of metabolic rate when heat loss is terminated after a thermal quasi-equilibrium was attained under comfortable conditions of heat transfer. The nature of the physiological mechanisms involved in such heat stress situations, and the possibility of using prediction techniques to establish standard procedures in emergencies involving cooling system failures are also discussed.

  6. Specific Genetic Immunotherapy Induced by Recombinant Vaccine Alpha-Fetoprotein-Heat Shock Protein 70 Complex

    Science.gov (United States)

    Wang, Xiaoping; Lin, Huanping; Wang, Qiaoxia

    Purposes: To construct a recombinant vaccine alpha-fetoprotein (AFP)-heat shock protein (HSP70) complex, and study its ability to induce specific CTL response and its protective effect against AFP-producing tumor. Material/Methods: A recombinant vaccine was constructed by conjugating mouse alpha-fetoprotein to heat shock protein 70. By way of intracutaneous injection, mice were primed and boosted with recombinant vaccine mAFP/HSP70, whereas single mAFP or HSP70 injection as controls. The ELISPOT and ELISA were used to measure the frequency of cells producing the cytokine IFN-γ in splenocytes and the level of anti-AFP antibody of serum from immunized mice respectively. In vivo tumor challenge were carried out to assess the immune effect of the recombinant vaccine. Results: By recombinant mAFP/HSP70 vaccine immunization, the results of ELISPOT and ELISA showed that the number of splenic cells producing IFN-γ and the level of anti-AFP antibody of serum were significantly higher in mAFP/HSP70 group than those in mAFP and HSP70 groups (108.50±11.70 IFN-γ spots/106 cells vs 41.60±10.40 IFN-γ spots/106 cells, 7.32±3.14 IFN-γ spots/106 cells, P<0.01; 156.32±10.42 μg/mL vs 66.52±7.35 μg/mL, 5.73±2.89 μg/mL, P<0.01). The tumor volume in mAFP/HSP70 group was significantly smaller than that in mAFP and HSP70 groups (42.44±7.14 mm3 vs 392.23±12.46 mm3, 838.63±13.84 mm3, P<0.01). Conclusions: The study further confirmed the function of heat shock protein 70's immune adjuvant. Sequential immunization with recombinant mAFP/HSP70 vaccine could generate effective antitumor immunity on AFP-producing tumor. The recombined mAFP/HSP70 vaccine may be suitable for serving as an immunotherapy for hepatocellular carcinoma.

  7. Rapid insight into heating-induced phase transformations in the solid state of the calcium salt of atorvastatin using multivariate data analysis

    DEFF Research Database (Denmark)

    Christensen, Niels Peter Aae; Van Eerdenbrugh, Bernard; Kwok, Kaho

    2013-01-01

    To investigate the heating-induced dehydration and melting behavior of the trihydrate phase of the calcium salt of atorvastatin.......To investigate the heating-induced dehydration and melting behavior of the trihydrate phase of the calcium salt of atorvastatin....

  8. A DOUBLE KNOCKOUT; A NOVEL APPROACH TO UNDERSTANDING STRESS-INDUCIBLE 70 KDA HEAT SHOCK PROTEINS (HSP70S) ON DEVELOPMENT AND REPRODUCTION

    Science.gov (United States)

    Heat and chemical toxicants which disrupt spermatogenesis and cause male infertility are thought to induce the expression of Hsp70-1 and 70-3, the major inducible heat shock proteins of the 70kDa family. Previous studies from several laboratories including our own have characteri...

  9. SPRINT-INTERVAL TRAINING INDUCES HEAT SHOCK PROTEIN 72 IN RAT SKELETAL MUSCLES

    Directory of Open Access Journals (Sweden)

    Yuji Ogura

    2006-06-01

    Full Text Available Previous studies have demonstrated that endurance exercise training increases the level of heat shock proteins (HSPs in skeletal muscles. However, little attention has been drawn to the effects of high intensity-short duration exercise, or sprint- interval training (SIT on HSP72 level in rat skeletal muscles. This study performed to test the hypothesis that the SIT would induce the HSP72 in fast and slow skeletal muscles of rats. Young male Wistar rats (8 weeks old were randomly assigned to a control (CON or a SIT group (n = 8/group. Animals in the SIT group were trained (1 min/sprint, 6~10 sets/day and 5~6 days/week on a treadmill for 9 weeks. After the training period, HSP72 levels in the plantaris (fast and soleus (slow muscles were analyzed by Western blotting method. Enzyme activities (hexokinase, phosphofructokinase and citrate synthase and histochemical properties (muscle fiber type compositions and cross sectional area in both muscles were also determined. The SIT resulted in significantly (p < 0.05 higher levels of HSP72 in both the plantaris and soleus muscles compared to the CON group, with the plantaris producing a greater HSP72 increase than the soleus (plantaris; 550 ± 116%, soleus; 26 ± 8%, p < 0.05. Further, there were bioenergetic improvements, fast-to-slow shift of muscle fiber composition and hypertrophy in the type IIA fiber only in the plantaris muscle. These findings indicate that the SIT program increases HSP72 level of the rat hindlimb muscles, and the SIT-induced accumulation of HSP72 differs between fast and slow muscles

  10. FLZ Attenuates α-Synuclein-Induced Neurotoxicity by Activating Heat Shock Protein 70.

    Science.gov (United States)

    Bao, Xiu-Qi; Wang, Xiao-Liang; Zhang, Dan

    2017-01-01

    Parkinson's disease (PD) is the second most prevalent neurodegenerative disease. The pathology of PD is caused by progressive degeneration of dopaminergic neurons and is characterized by the presence of intracellular inclusions known as Lewy bodies, composed mainly of α-synuclein. Heat shock proteins (HSPs) are crucial in protein quality control in cells. HSP70 in particular prevents the aggregation of protein aggregation, such as α-synuclein, providing a degree of protection against PD. The compound FLZ has been shown to protect several PD models in previous studies and was reported as an HSP inducer to protect against MPP + -induced neurotoxicity, but the mechanism remains unclear. In this study, we investigated the effects of FLZ-mediated HSP70 induction in α-synuclein transgenic mice and cells. FLZ treatment alleviated motor dysfunction and improved dopaminergic neuronal function in α-synuclein transgenic mice. HSP70 protein expression and transcriptional activity were increased by FLZ treatment, eliciting a reduction of α-synuclein aggregation and associated toxicity. The inhibition of HSP70 by quercetin or HSP70 siRNA markedly attenuated the neuroprotective effects of FLZ, confirming that FLZ exerted a neuroprotective effect through HSP70. We revealed that FLZ directly bound to and increased the expression of Hip, a cochaperone of HSP70, which in turn enhanced HSP70 activity. In conclusion, we defined a critical role for HSP70 and its cochaperones activated by FLZ in preventing neurodegeneration and proposed that targeting the HSP70 system may represent a potential therapy for α-synuclein-related diseases, such as PD.

  11. Involvement of DNA-PK and ATM in radiation- and heat-induced DNA damage recognition and apoptotic cell death

    International Nuclear Information System (INIS)

    Tomita, Masanori

    2010-01-01

    Exposure to ionizing radiation and hyperthermia results in important biological consequences, e.g. cell death, chromosomal aberrations, mutations, and DNA strand breaks. There is good evidence that the nucleus, specifically cellular DNA, is the principal target for radiation-induced cell lethality. DNA double-strand breaks (DSBs) are considered to be the most serious type of DNA damage induced by ionizing radiation. On the other hand, verifiable mechanisms which can lead to heat-induced cell death are damage to the plasma membrane and/or inactivation of heat-labile proteins caused by protein denaturation and subsequent aggregation. Recently, several reports have suggested that DSBs can be induced after hyperthermia because heat-induced phosphorylated histone H2AX (γ-H2AX) foci formation can be observed in several mammalian cell lines. In mammalian cells, DSBs are repaired primarily through two distinct and complementary mechanisms: non-homologous end joining (NHEJ), and homologous recombination (HR) or homology-directed repair (HDR). DNA-dependent protein kinase (DNA-PK) and ataxia-telangiectasia mutated (ATM) are key players in the initiation of DSB repair and phosphorylate and/or activate many substrates, including themselves. These phosphorylated substrates have important roles in the functioning of cell cycle checkpoints and in cell death, as well as in DSB repair. Apoptotic cell death is a crucial cell suicide mechanism during development and in the defense of homeostasis. If DSBs are unrepaired or misrepaired, apoptosis is a very important system which can protect an organism against carcinogenesis. This paper reviews recently obtained results and current topics concerning the role of DNA-PK and ATM in heat- or radiation-induced apoptotic cell death. (author)

  12. Influence of Orientation and Radiative Heat Transfer on Aluminum Foams in Buoyancy-Induced Convection

    Science.gov (United States)

    Billiet, Marijn; De Schampheleire, Sven; Huisseune, Henk; De Paepe, Michel

    2015-01-01

    Two differently-produced open-cell aluminum foams were compared to a commercially available finned heat sink. Further, an aluminum plate and block were tested as a reference. All heat sinks have the same base plate dimensions of four by six inches. The first foam was made by investment casting of a polyurethane preform and has a porosity of 0.946 and a pore density of 10 pores per linear inch. The second foam is manufactured by casting over a solvable core and has a porosity of 0.85 and a pore density of 2.5 pores per linear inch. The effects of orientation and radiative heat transfer are experimentally investigated. The heat sinks are tested in a vertical and horizontal orientation. The effect of radiative heat transfer is investigated by comparing a painted/anodized heat sink with an untreated one. The heat flux through the heat sink for a certain temperature difference between the environment and the heat sink’s base plate is used as the performance indicator. For temperature differences larger than 30 ∘C, the finned heat sink outperforms the in-house-made aluminum foam heat sink on average by 17%. Furthermore, the in-house-made aluminum foam dissipates on average 12% less heat than the other aluminum foam for a temperature difference larger than 40 ∘C. By painting/anodizing the heat sinks, the heat transfer rate increased on average by 10% to 50%. Finally, the thermal performance of the horizontal in-house-made aluminum foam heat sink is up to 18% larger than the one of the vertical aluminum foam heat sink. PMID:28793601

  13. Influence of Orientation and Radiative Heat Transfer on Aluminum Foams in Buoyancy-Induced Convection

    Directory of Open Access Journals (Sweden)

    Marijn Billiet

    2015-10-01

    Full Text Available Two differently-produced open-cell aluminum foams were compared to a commercially available finned heat sink. Further, an aluminum plate and block were tested as a reference. All heat sinks have the same base plate dimensions of four by six inches. The first foam was made by investment casting of a polyurethane preform and has a porosity of 0.946 and a pore density of 10 pores per linear inch. The second foam is manufactured by casting over a solvable core and has a porosity of 0.85 and a pore density of 2.5 pores per linear inch. The effects of orientation and radiative heat transfer are experimentally investigated. The heat sinks are tested in a vertical and horizontal orientation. The effect of radiative heat transfer is investigated by comparing a painted/anodized heat sink with an untreated one. The heat flux through the heat sink for a certain temperature difference between the environment and the heat sink’s base plate is used as the performance indicator. For temperature differences larger than 30 °C, the finned heat sink outperforms the in-house-made aluminum foam heat sink on average by 17%. Furthermore, the in-house-made aluminum foam dissipates on average 12% less heat than the other aluminum foam for a temperature difference larger than 40 °C. By painting/anodizing the heat sinks, the heat transfer rate increased on average by 10% to 50%. Finally, the thermal performance of the horizontal in-house-made aluminum foam heat sink is up to 18% larger than the one of the vertical aluminum foam heat sink.

  14. Pharmacological inhibition of eicosanoid synthesis and hyperalgesia in yeast-injected rat paws

    International Nuclear Information System (INIS)

    Opas, E.E.; Dallob, A.; Herold, E.; Luell, S.; Humes, J.L.

    1986-01-01

    Brewer's yeast caused an inflammation characterized by edema and hyperalgesia when injected into the hindpaw of a rat. These events were temporally distinct and each was associated with increases of specific arachidonic and oxygenation products. As determined by radioimmunoassay (RIA) on whole paw lipid extracts, the 5-lipoxygenase (5-LO) products, leukotrienes C 4 and D 4 and 5-hydroxyeicosatetraendic acid (5-HETE) were synthesized concurrently with the onset of edema (maximal at 15 minutes after yeast injection). The hyperalgesic phase of the inflammation (3-4 hr after yeast injection) was associated with increased tissue levels of the cyclooxygenase (CO) products, prostaglandin E 2 and thromboxane B 2 (TXB 2 ) as well as increases in levels of the 5-LO products, leukotriene B 4 (LTB 4 ) and 5-HETE. Pharmacological agents modulated the synthesis of eicosanoids and suppressed the hyperalgesic response

  15. Experimental knee pain evoke spreading hyperalgesia and facilitated temporal summation of pain

    DEFF Research Database (Denmark)

    Jørgensen, Tanja Schjødt; Henriksen, Marius; Danneskiold-Samsøe, Bente

    2013-01-01

    OBJECTIVES: This study evaluated the deep-tissue pressure pain sensitivity and temporal summation of pain within and around healthy knees exposed to experimental pain. DESIGN: The study was designed as a randomized crossover trial, with each subject tested on 1 day. SETTING: All tests were carried...... occasions: baseline, immediately after the injection, and when pain had vanished. Assessments sites were located in the peripatellar region, vastus lateralis, and tibialis anterior muscles. RESULTS: The experimental knee pain model demonstrated 1) hyperalgesia to pressure stimulation on the infrapatellar...... fat pad during experimental pain, and 2) facilitated temporal summation of pressure pain at the infrapatellar fat pad and knee-related muscles. CONCLUSION: The increased sensitivity and temporal summation found in this study were exclusive to deep -tissue with no contralateral decreased pain...

  16. Influence of Alpha Tocopherol on Heat Stress-Induced Changes in the Reproductive Function of Swiss Albino Mice

    International Nuclear Information System (INIS)

    AlEnazi, Maher M.

    2007-01-01

    The present study was carried out to investigate the influence of vitamin E (alpha-tocopherol) on heat stress-induced changes in the reproduction of Swiss albino mice. The evaluated parameters include: the estrous cycle, fertility, post-implantation losses of fetuses and estimation of progesterone levels in the serum. Eight groups of experimental mice (10 each) were used. Groups 1-4 (24 degree C) consisted of a control and alpha-tocopherol (100, 200 and 400 mg/kg) treated groups. Groups 5-8 (42 degree C) consisted of a positive control and alpha-tocopherol (100, 200 and 400 mg/kg) treated group. Heat-stress reduced significantly (p > 0.001) the number of fetuses and corpora lutea. There was also a significant decrease in the mean weights of fetuses (p > 0.001) and placenta (p > 0.01) in the heat-stress group with a decrease in their serum progesterone levels (p > 0.01). Heat-stress groups treated with high doses of alpha-tocopherol 200 and 400 mg/kg, showed protection against heat-stress related abnormalities. The results showed that alpha-tocopherol plays a role in protection against hyperthermia induced changes in the estrous cycle length, infertility, post-implantation losses and depletion in the serum level of progesterone. (author)

  17. Sensitization by wortmannin of heat- or X-ray induced cell death in cultured Chinese hamster V79 cells

    International Nuclear Information System (INIS)

    Tomita, Masanori; Suzuki, Norio; Matsumoto, Yoshihisa; Hirano, Kazuya; Umeda, Noriko; Sakai, Kazuo

    2000-01-01

    Here we found that wortmannin sensitized Chinese hamster V79 cells to hyperthermic treatment at 44.0 deg C as determined either by colony formation assay or by dye exclusion assay. Wortmannin enhanced heat-induced cell death accompanying cleavage of poly (ADP-ribose) polymerases (PARP). Additionally, the induction of heat shock protein HSP70 was suppressed and delayed in wortmannin-treated cells. Heat sensitizing effect of wortmannin was obvious at more than 5 or 10 μM of final concentrations, while radiosensitization was apparent at 5 μM. Requirement for high concentration of wortmannin, i.e., order of μM, suggests a possible role of certain protein kinases, such as DNA-PK and/or ATM among PI3-kinase family. The sensitization was minimal when wortmannin was added at the end of heat treatment. This was similar to the case of X-ray. Since heat-induced cell death and PARP cleavage preceded HSP70 induction phenomenon, the sensitization to the hyperthermic treatment was considered mainly caused by enhanced apoptotic cell death rather than secondary to suppression or delay by wortmannin of HSP70 induction. Further, in the present system radiosensitization by wortmannin was also at least partly mediated through enhancement of apoptotic cell death. (author)

  18. Diffusion induced nuclear reactions in metals: a possible source of heat in the core

    International Nuclear Information System (INIS)

    Hamza, V.M.; Iyer, S.S.S.

    1989-01-01

    It has recently been proposed that diffusion of light nuclei in metals can give rise to unusual electrical charge distributions in their lattice structures, inducing thereby certain nuclear reactions that are otherwise uncommon. In the light of these results we advance the hypothesis that such nuclear reactions take place in the metal rich core of the earth, based on following observations: 1 - The solubility of hydrogen in metals is relatively high compared to that in silicates. 2 - Studies of rare gas samples in intraplate volcanos and diamonds show that 3 He/ He ratio increases with depth in the mantle. 3 - There are indications that He is positively correlated with enrichment of metals in lavas. We propose that hydrogen incorporated into metallic phases at the time of planetary accretion was carried to the core by downward migration of metal rich melts during the early states of proto-earth. Preliminary estimates suggest that cold fusion reactions can give rise to an average rate of heat generation of 8.2x10 12 W and may thus serve as a supplementary source of energy for the geomagnetic dynamo. (author)

  19. Heat-induced-radiolabeling and click chemistry: A powerful combination for generating multifunctional nanomaterials.

    Directory of Open Access Journals (Sweden)

    Hushan Yuan

    Full Text Available A key advantage of nanomaterials for biomedical applications is their ability to feature multiple small reporter groups (multimodality, or combinations of reporter groups and therapeutic agents (multifunctionality, while being targeted to cell surface receptors. Here a facile combination of techniques for the syntheses of multimodal, targeted nanoparticles (NPs is presented, whereby heat-induced-radiolabeling (HIR labels NPs with radiometals and so-called click chemistry is used to attach bioactive groups to the NP surface. Click-reactive alkyne or azide groups were first attached to the nonradioactive clinical Feraheme (FH NPs. Resulting "Alkyne-FH" and "Azide-FH" intermediates, like the parent NP, tolerated 89Zr labeling by the HIR method previously described. Subsequently, biomolecules were quickly conjugated to the radioactive NPs by either copper-catalyzed or copper-free click reactions with high efficiency. Synthesis of the Alkyne-FH or Azide-FH intermediates, followed by HIR and then by click reactions for biomolecule attachment, provides a simple and potentially general path for the synthesis of multimodal, multifunctional, and targeted NPs for biomedical applications.

  20. Heat-induced reorganization of the structure of photosystem II membranes: role of oxygen evolving complex.

    Science.gov (United States)

    Busheva, Mira; Tzonova, Iren; Stoitchkova, Katerina; Andreeva, Atanaska

    2012-12-05

    The sensitivity of the green plants' photosystem II (PSII) to high temperatures is investigated in PSII enriched membranes and in membranes, from which the oxygen evolving complex is removed. Using steady-state 77 K fluorescence and resonance Raman spectroscopy we analyze the interdependency between the temperature-driven changes in structure and energy distribution in the PSII supercomplex. The results show that the heat treatment induces different reduction of the 77 K fluorescence emission in both types of investigated membranes: (i) an additional considerable decrease of the overall fluorescence emission in Tris-washed membranes as compared to the native membranes; (ii) a transition point at 42°C(,) observed only in native membranes; (iii) a sharp reduction of the PSII core fluorescence in Tris-washed membranes at temperatures higher than 50°C; (iv) a 3 nm red-shift of F700 band's maximum in Tris-washed membranes already at 20°C and its further shift by 1 nm at temperature increase. Both treatments intensified their action by increasing the aggregation and dissociation of the peripheral light harvesting complexes. The oxygen-evolving complex, in addition to its main function to produce O(2), increases the thermal stability of PSII core by strengthening the connection between the core and the peripheral antenna proteins and by keeping their structural integrity. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Caffeine Induces the Stress Response and Up-Regulates Heat Shock Proteins in Caenorhabditis elegans.

    Science.gov (United States)

    Al-Amin, Mohammad; Kawasaki, Ichiro; Gong, Joomi; Shim, Yhong-Hee

    2016-02-01

    Caffeine has both positive and negative effects on physiological functions in a dose-dependent manner. C. elegans has been used as an animal model to investigate the effects of caffeine on development. Caffeine treatment at a high dose (30 mM) showed detrimental effects and caused early larval arrest. We performed a comparative proteomic analysis to investigate the mode of action of high-dose caffeine treatment in C. elegans and found that the stress response proteins, heat shock protein (HSP)-4 (endoplasmic reticulum [ER] chaperone), HSP-6 (mitochondrial chaperone), and HSP-16 (cytosolic chaperone), were induced and their expression was regulated at the transcriptional level. These findings suggest that high-dose caffeine intake causes a strong stress response and activates all three stress-response pathways in the worms, including the ER-, mitochondrial-, and cytosolic pathways. RNA interference of each hsp gene or in triple combination retarded growth. In addition, caffeine treatment stimulated a food-avoidance behavior (aversion phenotype), which was enhanced by RNAi depletion of the hsp-4 gene. Therefore, up-regulation of hsp genes after caffeine treatment appeared to be the major responses to alleviate stress and protect against developmental arrest.

  2. Robust heat-inducible gene expression by two endogenous hsp70-derived promoters in transgenic Aedes aegypti

    Science.gov (United States)

    Carpenetti, Tiffany L. G.; Aryan, Azadeh; Myles, Kevin M.; Adelman, Zach N.

    2011-01-01

    Aedes aegypti is an important vector of the viruses that cause dengue fever, dengue hemorrhagic fever, and yellow fever. Reverse genetic approaches to the study of gene function in this mosquito have been limited by the lack of a robust inducible promoter to allow precise temporal control over a protein-encoding or hairpin RNA transgene. Likewise, investigations into the molecular and biochemical basis of vector competence would benefit from the ability to activate an anti-pathogen molecule at specific times during infection. We have characterized the ability of genomic sequences derived from two Ae. aegypti hsp70 genes to drive heat-inducible expression of a reporter in both transient and germline transformation contexts. AaHsp70-luciferase transcripts accumulated specifically after heat shock, and displayed a pattern of rapid induction and decay similar to endogenous AaHsp70 genes. Luciferase expression in transgenic Ae. aegypti increased by ∼25-50 fold in whole adults by four hours after heat-shock, with significant activity (∼20 fold) remaining at 24 hr. Heat-induced expression was even more dramatic in midgut tissues, with one strain showing a ∼2500-fold increase in luciferase activity. The AaHsp70 promoters described could be valuable for gene function studies as well as for the precise timing of the expression of anti-pathogen molecules. PMID:22142225

  3. Effects of rare sugar d-allulose on heat-induced gelation of surimi prepared from marine fish.

    Science.gov (United States)

    Ogawa, Masahiro; Inoue, Masaki; Hayakawa, Shigeru; O'Charoen, Siwaporn; Ogawa, Makiko

    2017-11-01

    d-Allulose (Alu), the C3-epimer of d-fructose, is a non-caloric sweetener (0.39 kcal g -1 ) with a suppressive effect on postprandial blood glucose elevation. The aim of this study was to investigate the effects of Alu used as a sweetener and gel improver instead of sucrose on heat-induced gelation of surimi. The puncture test of a heat-induced surimi gel showed that with 50 g kg -1 Alu the gel had 15% and 6% higher gel strength than the corresponding gel with sucrose (Suc) and with sorbitol (Sor), respectively. In addition, Alu-gel had 26% and 25% higher water-holding capacity (WHC) than Suc- and Sor-gel. Heating of myofibrillar protein with Alu, unlike Suc and Sor, facilitated the formation of both disulfide and non-disulfide crosslinks that might be associated with the mechanical properties and WHC of Alu-gel. Alu improves the mechanical properties and WHC of the heat-induced surimi gel. Furthermore, Alu is low in calories compared with Suc (4.0 kcal g -1 ) and Sor (3.0 kcal g -1 ). Thus Alu will be an alternative of Suc or Sor for developing surimi-based products with health benefits. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  4. Effects of Pressure, Temperature, Treatment Time, and Storage on Rheological, Textural, and Structural Properties of Heat-Induced Chickpea Gels

    Directory of Open Access Journals (Sweden)

    María Dolores Alvarez

    2015-04-01

    Full Text Available Pressure-induced gelatinization of chickpea flour (CF was studied in combination with subsequent temperature-induced gelatinization. CF slurries (with 1:5 flour-to-water ratio and CF in powder form were treated with high hydrostatic pressure (HHP, temperature (T, and treatment time (t at three levels (200, 400, 600 MPa; 10, 25, 50 °C; 5, 15, 25 min. In order to investigate the effect of storage (S, half of the HHP-treated CF slurries were immediately analyzed for changes in oscillatory rheological properties under isothermal heating at 75 °C for 15 min followed by cooling to 25 °C. The other half of the HHP-treated CF slurries were refrigerated (at 4 °C for one week and subsequently analyzed for changes in oscillatory properties under the same heating conditions as the unrefrigerated samples. HHP-treated CF in powder form was analyzed for changes in textural properties of heat-induced CF gels under isothermal heating at 90 °C for 5 min and subsequent cooling to 25 °C. Structural changes during gelatinization were investigated using microscopy. Pressure had a more significant effect on rheological and textural properties, followed by T and treatment t (in that order. Gel aging in HHP-treated CF slurries during storage was supported by rheological measurements.

  5. Effect of painless diabetic neuropathy on pressure pain hypersensitivity (hyperalgesia) after acute foot trauma

    Science.gov (United States)

    Wienemann, Tobias; Chantelau, Ernst A.; Koller, Armin

    2014-01-01

    Introduction and objective Acute injury transiently lowers local mechanical pain thresholds at a limb. To elucidate the impact of painless (diabetic) neuropathy on this post-traumatic hyperalgesia, pressure pain perception thresholds after a skeletal foot trauma were studied in consecutive persons without and with neuropathy (i.e. history of foot ulcer or Charcot arthropathy). Design and methods A case–control study was done on 25 unselected clinical routine patients with acute unilateral foot trauma (cases: elective bone surgery; controls: sprain, toe fracture). Cases were 12 patients (11 diabetic subjects) with severe painless neuropathy and chronic foot pathology. Controls were 13 non-neuropathic persons. Over 1 week after the trauma, cutaneous pressure pain perception threshold (CPPPT) and deep pressure pain perception threshold (DPPPT) were measured repeatedly, adjacent to the injury and at the opposite foot (pinprick stimulators, Algometer II®). Results In the control group, post-traumatic DPPPT (but not CPPPT) at the injured foot was reduced by about 15–25%. In the case group, pre- and post-operative CPPPT and DPPPT were supranormal. Although DPPPT fell post-operatively by about 15–20%, it remained always higher than the post-traumatic DPPPT in the control group: over musculus abductor hallucis 615 kPa (kilopascal) versus 422 kPa, and over metatarsophalangeal joint 518 kPa versus 375 kPa (medians; case vs. control group); CPPPT did not decrease post-operatively. Conclusion Physiological nociception and post-traumatic hyperalgesia to pressure are diminished at the foot with severe painless (diabetic) neuropathy. A degree of post-traumatic hypersensitivity required to ‘pull away’ from any one, even innocuous, mechanical impact in order to avoid additional damage is, therefore, lacking. PMID:25397867

  6. Effects of intrathecal lidocaine on hyperalgesia and allodynia following chronic constriction injury in rats.

    Science.gov (United States)

    Tian, Jie; Gu, Yiwen; Su, Diansan; Wu, Yichao; Wang, Xiangrui

    2009-02-01

    The present study investigated the effects of different doses of intrathecal lidocaine on established thermal hyperalgesia and tactile allodynia in the chronic constriction injury model of neuropathic pain, defined the effective drug dose range, the duration of pain-relief effects, and the influence of this treatment on the body and tissues. Male Sprague-Dawley rats were divided into five groups and received intrathecal saline or lidocaine (2, 6.5, 15, and 35 mg/kg) 7 days after loose sciatic ligation. Respiratory depression and hemodynamic instability were found to become more severe as doses of lidocaine increased during intrathecal therapy. Two animals in the group receiving 35 mg/kg lidocaine developed pulmonary oedema and died. Behavioral tests indicated that 6.5, 15, and 35 mg/kg intrathecal lidocaine showed different degrees of reversal of thermal hyperalgesia, and lasted for 2-8 days, while 2 mg/kg lidocaine did not. The inhibition of tactile allodynia was only observed in rats receiving 15 and 35 mg/kg lidocaine, and the anti-allodynic effects were identical in these two groups. Histopathologic examinations on the spinal cords revealed mild changes in rats receiving 2-15 mg/kg lidocaine. However, lesions were severe after administration of 35 mg/kg lidocaine. These findings indicate that intrathecal lidocaine has prolonged therapeutic effects on established neuropathic pain. The balance between sympathetic and parasympathetic nervous activities could be well preserved in most cases, except for 35 mg/kg. Considering the ratio between useful effects and side effects, doses of 15 mg/kg are suitable for intrathecal injection for relief of neuropathic pain.

  7. Effect of painless diabetic neuropathy on pressure pain hypersensitivity (hyperalgesia after acute foot trauma

    Directory of Open Access Journals (Sweden)

    Tobias Wienemann

    2014-11-01

    Full Text Available Introduction and objective: Acute injury transiently lowers local mechanical pain thresholds at a limb. To elucidate the impact of painless (diabetic neuropathy on this post-traumatic hyperalgesia, pressure pain perception thresholds after a skeletal foot trauma were studied in consecutive persons without and with neuropathy (i.e. history of foot ulcer or Charcot arthropathy. Design and methods: A case–control study was done on 25 unselected clinical routine patients with acute unilateral foot trauma (cases: elective bone surgery; controls: sprain, toe fracture. Cases were 12 patients (11 diabetic subjects with severe painless neuropathy and chronic foot pathology. Controls were 13 non-neuropathic persons. Over 1 week after the trauma, cutaneous pressure pain perception threshold (CPPPT and deep pressure pain perception threshold (DPPPT were measured repeatedly, adjacent to the injury and at the opposite foot (pinprick stimulators, Algometer II®. Results: In the control group, post-traumatic DPPPT (but not CPPPT at the injured foot was reduced by about 15–25%. In the case group, pre- and post-operative CPPPT and DPPPT were supranormal. Although DPPPT fell post-operatively by about 15–20%, it remained always higher than the post-traumatic DPPPT in the control group: over musculus abductor hallucis 615 kPa (kilopascal versus 422 kPa, and over metatarsophalangeal joint 518 kPa versus 375 kPa (medians; case vs. control group; CPPPT did not decrease post-operatively. Conclusion: Physiological nociception and post-traumatic hyperalgesia to pressure are diminished at the foot with severe painless (diabetic neuropathy. A degree of post-traumatic hypersensitivity required to ‘pull away’ from any one, even innocuous, mechanical impact in order to avoid additional damage is, therefore, lacking.

  8. Effect of painless diabetic neuropathy on pressure pain hypersensitivity (hyperalgesia) after acute foot trauma.

    Science.gov (United States)

    Wienemann, Tobias; Chantelau, Ernst A; Koller, Armin

    2014-01-01

    Acute injury transiently lowers local mechanical pain thresholds at a limb. To elucidate the impact of painless (diabetic) neuropathy on this post-traumatic hyperalgesia, pressure pain perception thresholds after a skeletal foot trauma were studied in consecutive persons without and with neuropathy (i.e. history of foot ulcer or Charcot arthropathy). A case-control study was done on 25 unselected clinical routine patients with acute unilateral foot trauma (cases: elective bone surgery; controls: sprain, toe fracture). Cases were 12 patients (11 diabetic subjects) with severe painless neuropathy and chronic foot pathology. Controls were 13 non-neuropathic persons. Over 1 week after the trauma, cutaneous pressure pain perception threshold (CPPPT) and deep pressure pain perception threshold (DPPPT) were measured repeatedly, adjacent to the injury and at the opposite foot (pinprick stimulators, Algometer II(®)). In the control group, post-traumatic DPPPT (but not CPPPT) at the injured foot was reduced by about 15-25%. In the case group, pre- and post-operative CPPPT and DPPPT were supranormal. Although DPPPT fell post-operatively by about 15-20%, it remained always higher than the post-traumatic DPPPT in the control group: over musculus abductor hallucis 615 kPa (kilopascal) versus 422 kPa, and over metatarsophalangeal joint 518 kPa versus 375 kPa (medians; case vs. control group); CPPPT did not decrease post-operatively. Physiological nociception and post-traumatic hyperalgesia to pressure are diminished at the foot with severe painless (diabetic) neuropathy. A degree of post-traumatic hypersensitivity required to 'pull away' from any one, even innocuous, mechanical impact in order to avoid additional damage is, therefore, lacking.

  9. Muscular heat and mechanical pain sensitivity after lengthening contractions in humans and animals.

    Science.gov (United States)

    Queme, Fernando; Taguchi, Toru; Mizumura, Kazue; Graven-Nielsen, Thomas

    2013-11-01

    Mechanical sensitivity of muscle nociceptors was previously shown to increase 2 days after lengthening contractions (LC), but heat sensitivity was not different despite nerve growth factor (NGF) being upregulated in the muscle during delayed-onset muscle soreness (DOMS). The discrepancy of these results and lack of other reports drove us to assess heat sensitivity during DOMS in humans and to evaluate the effect of NGF on the heat response of muscle C-fibers. Pressure pain thresholds and pain intensity scores to intramuscular injection of isotonic saline at 48°C and capsaicin were recorded in humans after inducing DOMS. The response of single unmyelinated afferents to mechanical and heat stimulations applied to their receptive field was recorded from muscle-nerve preparations in vitro. In humans, pressure pain thresholds were reduced but heat and capsaicin pain responses were not increased during DOMS. In rats, the mechanical but not the heat sensitivity of muscle C-fibers was increased in the LC group. NGF applied to the receptive field facilitated the heat sensitivity relative to the control. The absence of facilitated heat sensitivity after LC, despite the NGF sensitization, may be explained if the NGF concentration produced after LC is not sufficient to sensitize nociceptor response to heat. This article presents new findings on the basic mechanisms underlying hyperalgesia during DOMS, which is a useful model to study myofascial pain syndrome, and the role of NGF on muscular nociception. This might be useful in the search for new pharmacologic targets and therapeutic approaches. Copyright © 2013 American Pain Society. Published by Elsevier Inc. All rights reserved.

  10. Suppression of insolation heating induced by electromagnetic scatteringdue to fine spheres

    Science.gov (United States)

    Horie, J.; Mikada, H.; Goto, T.; Takekawa, J.; Manaka, Y.; Taniguchi, K.; Ashida, Y.

    2013-12-01

    The 2011 off the Pacific coast of Tohoku Earthquake, i.e., the greatest earthquake in the Japanese history, and the successive disaster at the Fukushima Daiichi Nuclear Power Plant have caused a fatal electric power shortage problem in summer in 2011. It is of key importance to reduce electricity demand and to save the energy. About one third of the total electricity demand at the peak consumption in summer is for the air-conditioning in the household and office sectors in Japan. It is, therefore, necessary to think deliberately of the reduction of electric power demand for air-conditioning. In fact, the temperature of materials rises when they are exposed to the sunlight (insolation heating) in particular in summer and the air-conditioning would become necessary for restoring the comfort in insolated housings. The energy for the air-conditioning is spent to pump out the heat changed in the materials of the insolated housings and would be proportional to the temperature to lower down. It is, therefore, clear that the reduction of the energy for the air-conditioning would strongly depend on relaxation of temperature rise or the insulation of insolated materials. Insolation heating could be suppressed when the materials are coated with paint admixed with fine silica spheres (insulating paint). By coating buildings' walls and roofs with such paint, the temperature of interior rooms could be kept lower without air-conditioning. These insulation effects are well known and have been utilized in the past, but have hardly been analyzed theoretically yet. Theoretical analysis would greatly enhance the effects of the suppression of insolation heating. In preceding studies, Ohkawa et al.(2009; 2011) and Mikada et al.(2011) focused on the electromagnetic wave scattering induced by fine spheres and developed the analytical method using superposition of scattered waves from each sphere (the first Born approximation), and indicated that the size of the spheres is one of the

  11. Opioid-Induced Hyperalgesia - Worsening Pain in Opioid-Dependent Patients

    Science.gov (United States)

    2013-02-01

    NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) United States Army Institute ofSurgical Research, JBSA Fort Sam Houston...distress and manifested no yawning, sweating, lacrimation , rhinorrhea, mydriasis, or piloerection. His abdomen was soft, nontender, and had a... functioning left lower quadrant colostomy with no signs of infection. He had bilateral AKAs without signs of infection. The remainder of the examination was

  12. Prolonged maintenance of capsaicin-induced hyperalgesia by brief daily vibration stimuli

    OpenAIRE

    Kim, Hee Kee; Schattschneider, Jörn; Lee, Inhyung; Chung, Kyungsoon; Baron, Ralf; Chung, Jin Mo

    2006-01-01

    This study tests the hypothesis that central sensitization initiated by nociceptive input can be maintained by repeated brief innocuous peripheral inputs. Capsaicin was injected intradermally into the hind paw of adult rats. Three different types of daily cutaneous mechanical stimulations (vibration, soft brush, or pressure) were applied to the capsaicin-injected paw for a period of 2 weeks. Daily stimulation consisted of a 10-second stimulation repeated every 30 seconds for 30 minutes. Foot ...

  13. Live and Heat-Killed Lactobacillus rhamnosus ATCC 7469 May Induce Modulatory Cytokines Profiles on Macrophages RAW 264.7

    OpenAIRE

    Jorj?o, Adeline Lacerda; de Oliveira, Felipe Eduardo; Le?o, Mariella Vieira Pereira; Carvalho, Cl?udio Antonio Talge; Jorge, Antonio Olavo Cardoso; de Oliveira, Luciane Dias

    2015-01-01

    This study aimed to evaluate the capacity of Lactobacillus rhamnosus and/or its products to induce the synthesis of cytokines (TNF-?, IL-1?, IL-4, IL-6, IL-10, and IL-12) by mouse macrophages (RAW 264.7). Three microorganism preparations were used: live L. rhamnosus (LLR) suspension, heat-killed L. rhamnosus (HKLR) suspension, and the supernatant of a heat-killed L. rhamnosus (SHKLR) suspension, which were cultured with macrophages (37?C, 5% CO2) for 2?h and 30?min. After that, cells were cul...

  14. Electron heating mode transition induced by mixing radio frequency and ultrahigh frequency dual frequency powers in capacitive discharges

    International Nuclear Information System (INIS)

    Sahu, B. B.; Han, Jeon G.

    2016-01-01

    Electron heating mode transitions induced by mixing the low- and high-frequency power in dual-frequency nitrogen discharges at 400 mTorr pressure are presented. As the low-frequency (13.56 MHz) power decreases and high-frequency (320 MHz) power increases for the fixed power of 200 W, there is a transition of electron energy distribution function (EEDF) from Druyvesteyn to bi-Maxwellian type characterized by a distinguished warm electron population. It is shown that this EEDF evolution is attributed to the transition from collisional to collisionless stochastic heating of the low-energy electrons.

  15. Expression of three sHSP genes involved in heat pretreatment-induced chilling tolerance in banana fruit.

    Science.gov (United States)

    He, Li-hong; Chen, Jian-ye; Kuang, Jian-fei; Lu, Wang-jin

    2012-07-01

    Banana fruit is highly susceptible to chilling injury. In previous research it was shown that heat pretreatment of banana fruit at 38 °C for 3 days before storage at a chilling temperature of 8 °C for 12 days prevented increases in visible chilling injury index, electrolyte leakage and malondialdehyde content and also decreases in lightness and chroma, indicating that heat pretreatment could effectively alleviate chilling injury of banana fruit. However, little is known about the role of small heat shock proteins (sHSPs) in postharvest chilling tolerance of banana fruit. In the present study, three cytosolic sHSP expression profiles in peel and pulp tissues of banana fruit during heat pretreatment and subsequent chilled storage (8 °C) were investigated in relation to heat pretreatment-induced chilling tolerance. Three full-length cDNAs of cytosolic sHSP genes, including two class I sHSP (CI sHSP) and one class II sHSP (CII sHSP) cDNAs, named Ma-CI sHSP1, Ma-CI sHSP2 and Ma-CII sHSP3 respectively, were isolated and characterised from harvested banana fruit. Accumulation of Ma-CI sHSP1 mRNA transcripts in peel and pulp tissues and Ma-CII sHSP3 mRNA transcripts in peel tissue increased during heat pretreatment. Expression of all three Ma-sHSP genes in peel and pulp tissues was induced during subsequent chilled storage. Furthermore, Ma-CI sHSP1 and Ma-CII sHSP3 mRNA transcripts in pulp tissue and Ma-CI sHSP2 mRNA transcripts in peel and pulp tissues were obviously enhanced by heat pretreatment at days 6 and 9 of subsequent chilled storage. These results suggested that heat pretreatment enhanced the expression of Ma-sHSPs, which might be involved in heat pretreatment-induced chilling tolerance of banana fruit. Copyright © 2012 Society of Chemical Industry.

  16. Heat Shock Protein 90 Inhibitor (17-AAG) Induces Apoptosis and Decreases Cell Migration/Motility of Keloid Fibroblasts.

    Science.gov (United States)

    Yun, In Sik; Lee, Mi Hee; Rah, Dong Kyun; Lew, Dae Hyun; Park, Jong-Chul; Lee, Won Jai

    2015-07-01

    The regulation of apoptosis, proliferation, and migration of fibroblasts is altered in keloids. The 90-kDa heat shock protein (heat shock protein 90) is known to play a key role in such regulation. Therefore, the authors investigated whether the inhibition of heat shock protein 90 in keloid fibroblasts could induce apoptosis and attenuate keloid fibroblast proliferation and migration. The authors evaluated heat shock protein 90 expression in keloid tissues with immunohistochemistry. The authors used cell viability [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assays and annexin V/propidium iodide staining for apoptosis, a wound healing model and cell tracking system to assess cell migration, and Akt Western blotting analysis in keloid fibroblasts after inhibition of heat shock protein 90 with 17-allylaminodemethoxygeldanamycin (17-AAG). The expression of heat shock protein 90 in keloid tissues was significantly increased compared with normal tissues. The 17-AAG-treated keloid fibroblasts showed significantly decreased proliferation, promotion of apoptosis, and decreased expression of Akt. Furthermore, a dose-dependent decrease in cell migration was noted after 17-AAG treatment of keloid fibroblasts. The 17-AAG-treated keloid fibroblasts had less directionality to the wound center and migrated a shorter distance. The authors confirmed that the inhibition of heat shock protein 90 in keloid fibroblasts could promote apoptosis and attenuate proliferation and migration of keloid fibroblasts. Therefore, the authors think that the inhibition of heat shock protein 90 is a key factor in the regulation of biological processes in keloids. With further preclinical study, the authors will be able to apply these results clinically for keloid treatment.

  17. Effect of patchouli alcohol on the regulation of heat shock-induced oxidative stress in IEC-6 cells.

    Science.gov (United States)

    Liu, Xiaoxi; Jiang, Linshu; Liu, Fenghua; Chen, Yuping; Xu, Lei; Li, Deyin; Ma, Yunfei; Li, Huanrong; Xu, Jianqin

    2016-08-01

    Purpose Patchouli alcohol (PA) is used to treat gastrointestinal dysfunction. The purpose of this study was to ascertain the function of PA in the regulated process of oxidative stress in rat intestinal epithelial cells (IEC-6). Materials and methods Oxidative stress was stimulated by exposing IEC-6 cells to heat shock (42 °C for 3 h). IEC-6 cells in treatment groups were pretreated with various concentrations of PA (10, 40, and 80 ng/mL) for 3 h before heat shock. Results Heat shock caused damage to the morphology of IEC-6 cells, and increased reactive oxygen species (ROS) level and malondialdehyde (MDA) content. Moreover, mRNA and protein expression by target genes related to oxidative stress in heat shock were also altered. Specifically, the mRNA expression by HSP70, HSP90, GSH-px, NRF2 nd HO-1were all increased, and Nrf2 and Keap1 protein expression were increased after heat shock. However, pretreatment with PA weakened the level of damage to the cellular morphology, and decreased the MDA content caused by heat shock, indicating PA had cytoprotective activities. Pretreatment with PA at high dose significantly increased generation of intracellular ROS. Compared with the heat shock group alone, PA pretreatment significantly decreased the mRNA expression by HSP70, HSP90, SOD, CAT, GSH-px, KEAP1 and HO-1. Furthermore, the high dose of PA significantly increased Nrf2 protein expression, while both the intermediate and high dose of PA significantly increased HO-1 protein expression. Conclusion Heat-shock-induced oxidative stress in IEC-6 cells, and PA could alleviate the Nrf2-Keap1 cellular oxidative stress responses.

  18. Phorbol ester tumor promoter induced the synthesis of two major cytoplasmic proteins: identity with two proteins induced under heat-shocked and glucose-starved conditions

    International Nuclear Information System (INIS)

    Zhang, H.; Chen, K.Y.; Liu, A.Y.C.

    1987-01-01

    The regulation of specific protein synthesis by the phorbol ester tumor promoter, 12-O-tetradecanoyl-phorbol-13-acetate (TPA), was evaluated using the L-8 and C-2 myoblast and the 3T3-L1 fibroblast cell cultures. TPA increased, by 2-4 fold, the synthesis rates of two cytoplasmic proteins with apparent molecular weights of 89,000 and 74,000 as determined by SDS-polyacrylamide gel electrophoresis and autoradiography. The concentration of TPA and the time of incubation needed to elicit this induction was determined to be 10 μg/ml and 20 hrs, respectively. Increasing the concentration of TPA to 100, 200, and 500 ng/ml did not result in a greater magnitude of induction. The possibility that these two TPA-induced proteins may be identical to proteins with similar molecular weights induced under heat-shocked or glucose-starved conditions was evaluated by 1-D and 2-D gel electrophoresis and autoradiography. Results provided evidence that the TPA-induced 89,000- and 74,000-dalton proteins were identical to hsp 89 and hsp 74, 2 out of a set of 8-9 proteins induced under heat shocked conditions. Furthermore, they are identical to two of the set of glucose-regulated proteins induced under a glucose-starved condition

  19. Direct measurements of sample heating by a laser-induced air plasma in pre-ablation spark dual-pulse laser-induced breakdown spectroscopy (LIBS).

    Science.gov (United States)

    Register, Janna; Scaffidi, Jonathan; Angel, S Michael

    2012-08-01

    Direct measurements of temperature changes were made using small thermocouples (TC), placed near a laser-induced air plasma. Temperature changes up to ~500 °C were observed. From the measured temperature changes, estimates were made of the amount of heat absorbed per unit area. This allowed calculations to be made of the surface temperature, as a function of time, of a sample heated by the air plasma that is generated during orthogonal pre-ablation spark dual-pulse (DP) LIBS measurements. In separate experiments, single-pulse (SP) LIBS emission and sample ablation rate measurements were performed on nickel at sample temperatures ranging from room temperature to the maximum surface temperature that was calculated using the TC measurement results (500 °C). A small, but real sample temperature-dependent increase in both SP LIBS emission and the rate of sample ablation was found for nickel samples heated up to 500 °C. Comparison of DP LIBS emission enhancement values for bulk nickel samples at room temperature versus the enhanced SP LIBS emission and sample ablation rates observed as a function of increasing sample temperature suggests that sample heating by the laser-induced air plasma plays only a minor role in DP LIBS emission enhancement.

  20. Development of linear projecting in studies of non-linear flow. Acoustic heating induced by non-periodic sound

    Energy Technology Data Exchange (ETDEWEB)

    Perelomova, Anna [Gdansk University of Technology, Faculty of Applied Physics and Mathematics, ul. Narutowicza 11/12, 80-952 Gdansk (Poland)]. E-mail: anpe@mif.pg.gda.pl

    2006-08-28

    The equation of energy balance is subdivided into two dynamics equations, one describing evolution of the dominative sound, and the second one responsible for acoustic heating. The first one is the famous KZK equation, and the second one is a novel equation governing acoustic heating. The novel dynamic equation considers both periodic and non-periodic sound. Quasi-plane geometry of flow is supposed. Subdividing is provided on the base of specific links of every mode. Media with arbitrary thermic T(p,{rho}) and caloric e(p,{rho}) equations of state are considered. Individual roles of thermal conductivity and viscosity in the heating induced by aperiodic sound in the ideal gases and media different from ideal gases are discussed.

  1. Development of linear projecting in studies of non-linear flow. Acoustic heating induced by non-periodic sound

    Science.gov (United States)

    Perelomova, Anna

    2006-08-01

    The equation of energy balance is subdivided into two dynamics equations, one describing evolution of the dominative sound, and the second one responsible for acoustic heating. The first one is the famous KZK equation, and the second one is a novel equation governing acoustic heating. The novel dynamic equation considers both periodic and non-periodic sound. Quasi-plane geometry of flow is supposed. Subdividing is provided on the base of specific links of every mode. Media with arbitrary thermic T(p,ρ) and caloric e(p,ρ) equations of state are considered. Individual roles of thermal conductivity and viscosity in the heating induced by aperiodic sound in the ideal gases and media different from ideal gases are discussed.

  2. Development of linear projecting in studies of non-linear flow. Acoustic heating induced by non-periodic sound

    International Nuclear Information System (INIS)

    Perelomova, Anna

    2006-01-01

    The equation of energy balance is subdivided into two dynamics equations, one describing evolution of the dominative sound, and the second one responsible for acoustic heating. The first one is the famous KZK equation, and the second one is a novel equation governing acoustic heating. The novel dynamic equation considers both periodic and non-periodic sound. Quasi-plane geometry of flow is supposed. Subdividing is provided on the base of specific links of every mode. Media with arbitrary thermic T(p,ρ) and caloric e(p,ρ) equations of state are considered. Individual roles of thermal conductivity and viscosity in the heating induced by aperiodic sound in the ideal gases and media different from ideal gases are discussed

  3. DNA damage-responsive Drosophila melanogaster gene is also induced by heat shock

    International Nuclear Information System (INIS)

    Vivino, A.A.; Smith, M.D.; Minton, K.W.

    1986-01-01

    A gene isolated by screening Drosophila melanogaster tissue culture cells for DNA damage regulation was also found to be regulated by heat shock. After UV irradiation or heat shock, induction is at the transcriptional level and results in the accumulation of a 1.0-kilobase polyadenylated transcript. The restriction map of the clone bears no resemblance to the known heat shock genes, which are shown to be uninduced by UV irradiation

  4. Planetary circulations in the presence of transient and self-induced heating

    Science.gov (United States)

    Salby, Murry L.; Garcia, Rolando R.

    1993-01-01

    . In these calculations, frictional convergence near the equator emerges as a key to feedback between the circulation and the convective pattern. At low latitudes, nearly geostrophic balance in the boundary layer gives way to frictional balance. This shifts the wave-induced convection into phase with the temperature anomaly and allows the attending heating to feed back positively onto the circulation. The calculations successfully reproduce the salient features of the MJO. They are being used to understand the growth and decay phases of the composite lifecycle and the conditions that favor amplification of the MJO.

  5. Wheat chloroplast targeted sHSP26 promoter confers heat and abiotic stress inducible expression in transgenic Arabidopsis Plants.

    Directory of Open Access Journals (Sweden)

    Neetika Khurana

    Full Text Available The small heat shock proteins (sHSPs have been found to play a critical role in physiological stress conditions in protecting proteins from irreversible aggregation. To characterize the hloroplast targeted sHSP26 promoter in detail, deletion analysis of the promoter is carried out and analysed via transgenics in Arabidopsis. In the present study, complete assessment of the importance of CCAAT-box elements along with Heat shock elements (HSEs in the promoter of sHSP26 was performed. Moreover, the importance of 5' untranslated region (UTR has also been established in the promoter via Arabidopsis transgenics. An intense GUS expression was observed after heat stress in the transgenics harbouring a full-length promoter, confirming the heat-stress inducibility of the promoter. Transgenic plants without UTR showed reduced GUS expression when compared to transgenic plants with UTR as was confirmed at the RNA and protein levels by qRT-PCR and GUS histochemical assays, thus suggesting the possible involvement of some regulatory elements present in the UTR in heat-stress inducibility of the promoter. Promoter activity was also checked under different abiotic stresses and revealed differential expression in different deletion constructs. Promoter analysis based on histochemical assay, real-time qPCR and fluorimetric analysis revealed that HSEs alone could not transcribe GUS gene significantly in sHSP26 promoter and CCAAT box elements contribute synergistically to the transcription. Our results also provide insight into the importance of 5`UTR of sHsp26 promoter thus emphasizing the probable role of imperfect CCAAT-box element or some novel cis-element with respect to heat stress.

  6. Heat-induced changes to lipid molecular structure in Vimy flaxseed: Spectral intensity and molecular clustering

    Science.gov (United States)

    Yu, Peiqiang; Damiran, Daalkhaijav

    2011-06-01

    Autoclaving was used to manipulate nutrient utilization and availability. The objectives of this study were to characterize any changes of the functional groups mainly associated with lipid structure in flaxseed ( Linum usitatissimum, cv. Vimy), that occurred on a molecular level during the treatment process using infrared Fourier transform molecular spectroscopy. The parameters included lipid CH 3 asymmetric (ca. 2959 cm -1), CH 2 asymmetric (ca. 2928 cm -1), CH 3 symmetric (ca. 2871 cm -1) and CH 2 symmetric (ca. 2954 cm -1) functional groups, lipid carbonyl C dbnd O ester group (ca. 1745 cm -1), lipid unsaturation group (CH attached to C dbnd C) (ca. 3010 cm -1) as well as their ratios. Hierarchical cluster analysis (CLA) and principal components analysis (PCA) were conducted to identify molecular spectral differences. Flaxseed samples were kept raw for the control or autoclaved in batches at 120 °C for 20, 40 or 60 min for treatments 1, 2 and 3, respectively. Molecular spectral analysis of lipid functional group ratios showed a significant decrease ( P 0.05) on lipid carbonyl C dbnd O ester group and lipid unsaturation group (CH attached to C dbnd C) (with average spectral peak area intensities of 138.3 and 68.8 IR intensity units, respectively). Multivariate molecular spectral analyses, CLA and PCA, were unable to make distinctions between the different treatment original spectra at the CH 3 and CH 2 asymmetric and symmetric region (ca. 2988-2790 cm -1). The results indicated that autoclaving had an impact to the mid-infrared molecular spectrum of flaxseed to identify heat-induced changes in lipid conformation. A future study is needed to quantify the relationship between lipid molecular structure changes and functionality/availability.

  7. Heat shock-induced interactions among nuclear HSFs detected by fluorescence cross-correlation spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Pack, Chan-Gi, E-mail: changipack@amc.seoul.kr [Asan Institute for Life Sciences, University of Ulsan, College of Medicine, Asan Medical Center, Seoul 138-736 (Korea, Republic of); Ahn, Sang-Gun [Dept. of Pathology, College of Dentistry, Chosun University, Seosuk-dong, Dong-gu, Gwangju 501-759 (Korea, Republic of)

    2015-07-31

    The cellular response to stress is primarily controlled in cells via transcriptional activation by heat shock factor 1 (HSF1). HSF1 is well-known to form homotrimers for activation upon heat shock and subsequently bind to target DNAs, such as heat-shock elements, by forming stress granules. A previous study demonstrated that nuclear HSF1 and HSF2 molecules in live cells interacted with target DNAs on the stress granules. However, the process underlying the binding interactions of HSF family in cells upon heat shock remains unclear. This study demonstrate for the first time that the interaction kinetics among nuclear HSF1, HSF2, and HSF4 upon heat shock can be detected directly in live cells using dual color fluorescence cross-correlation spectroscopy (FCCS). FCCS analyses indicated that the binding between HSFs was dramatically changed by heat shock. Interestingly, the recovery kinetics of interaction between HSF1 molecules after heat shock could be represented by changes in the relative interaction amplitude and mobility. - Highlights: • The binding interactions among nuclear HSFs were successfully detected. • The binding kinetics between HSF1s during recovery was quantified. • HSF2 and HSF4 strongly formed hetero-complex, even before heat shock. • Nuclear HSF2 and HSF4 bound to HSF1 only after heat shock.

  8. Pressure effects on the structure, kinetic, and thermodynamic properties of heat-induced aggregation of protein studied by FT-IR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Taniguchi, Y [Applied Chemistry Department, Ritsumeikan University, Kusatsu, Shiga 525-8577 (Japan); Okuno, A [Research Department 3, Central Research, Bridgestone Co. Kodaira, Tokyo 187-8531 (Japan); Kato, M, E-mail: taniguti@sk.ritsumei.ac.j [Pharmaceutical Sciences Department, Ritsumeikan University, Kusatsu, Shiga 525-8577 (Japan)

    2010-03-01

    Pressure can retrain the heat-induced aggregation and dissociate the heat-induced aggregates. We observed the aggregation-preventing pressure effect and the aggregates-dissociating pressure effect to characterize the heat-induced aggregation of equine serum albumin (ESA) by FT-IR spectroscopy. The results suggest the {alpha}-helical structure collapses at the beginning of heat-induced aggregation through the swollen structure, and then the rearrangement of structure to the intermolecular {beta}-sheet takes place through partially unfolded structure. We determined the activation volume for the heat-induced aggregation ({Delta}V'' = +93 ml/mol) and the partial molar volume difference between native state and heat-induced aggregates ({Delta}V=+32 ml/mol). This positive partial molar volume difference suggests that the heat-induced aggregates have larger internal voids than the native structure. Moreover, the positive volume change implies that the formation of the intermolecular {beta}-sheet is unfavorable under high pressure.

  9. The effect of air permeability characteristics of protective garments on the induced physiological strain under exercise-heat stress.

    Science.gov (United States)

    Epstein, Yoram; Heled, Yuval; Ketko, Itay; Muginshtein, Jeni; Yanovich, Ran; Druyan, Amit; Moran, Daniel S

    2013-08-01

    The high values of thermal resistance (Rct) and/or vapor resistance (Ret) of chemical protective clothing (CPC) induce a considerable thermal stress. The present study compared the physiological strain induced by CPCs and evaluates the relative importance of the fabrics' Rct, Ret, and air permeability in determining heat strain. Twelve young (20-30 years) healthy, heat-acclimated male subjects were exposed fully encapsulated for 3h daily to an exercise-heat stress (35°C and 30% relative humidity, walking on a motor-driven treadmill at a pace of 5 km h(1) and a 4% inclination, in a work-rest cycle of 45 min work and 15 min rest). Two bipack CPCs (PC1 and PC2) were tested and the results were compared with those attained by two control suits-a standard cotton military BDU (CO1) and an impermeable material suit (CO2). The physiological burden imposed by the two bilayer garments was within the boundaries set by the control conditions. Overall, PC2 induced a lower strain, which was closer to CO1, whereas PC1 was closer to CO2. Air permeability of the PC2 cloth was almost three times higher than that of PC1, enabling a better heat dissipation and consequently a lower physiological strain. Furthermore, air permeability characteristic of the fabrics, which is associated with its construction and weave, significantly correlated with the physiological strain, whereas the correlation with Rct, Ret, and weight was poor. The results emphasize the importance of air permeability in reducing the physiological strain induced by CPCs.

  10. Application of X-ray phase-contrast tomography in quantative studies of heat induced structural changes in meat

    DEFF Research Database (Denmark)

    Miklos, R.; Nielsen, M. S.; Einarsdottir, Hildur

    2013-01-01

    X-ray computed tomography is increasingly used in the studies of food structure. This paper describes the perspectives of use of phase contrast computed tomography in studies of heat induced structural changes in meat. From the data it was possible to obtain reconstructed images of the sample...... structure for visualization and qualitative studies of the sample structure. Further data segmentation allowed structural changes to be quantified....

  11. Yeast cell inactivation related to local heating induced by low-intensity electric fields with long-duration pulses.

    Science.gov (United States)

    Guyot, Stéphane; Ferret, Eric; Boehm, Jean-Baptiste; Gervais, Patrick

    2007-01-25

    The effects of electric field (EF) treatments on Saccharomyces cerevisiae viability were investigated using a PG200 electroporator (Hoefer Scientific Instrument, San Fransisco, CA, USA) with specific attention to induced thermal effects on cell death. Lethal electric fields (1.5 kV cm(-1) for 5 s) were shown to cause heat variations in the cell suspension medium (water+glycerol), while corresponding classical thermal treatments at equivalent temperatures had no effect on the cells viability. Variations of the electrical conductivity of the intra- and extracellular matrix caused by ions and solutes transfer across the membrane were shown to be involved in the observed heating. The results permitted to build a theoretical model for the temperature variations induced by electric fields. Using this model and the electrical conductivity of the different media, a plausible explanation of the cell death induced by low-intensity electric fields with long-duration pulses has been proposed. Indeed, cell mortality could in part be caused by direct and indirect effects of electric fields. Direct effects are related to well known electromechanical phenomena, whereas indirect effects are related to secondary thermal stress caused by plasma membrane thermoporation. This thermoporation was attributed to electrical conductivity variations and the corresponding intracellular heating.

  12. Live and Heat-Killed Lactobacillus rhamnosus ATCC 7469 May Induce Modulatory Cytokines Profiles on Macrophages RAW 264.7.

    Science.gov (United States)

    Jorjão, Adeline Lacerda; de Oliveira, Felipe Eduardo; Leão, Mariella Vieira Pereira; Carvalho, Cláudio Antonio Talge; Jorge, Antonio Olavo Cardoso; de Oliveira, Luciane Dias

    2015-01-01

    This study aimed to evaluate the capacity of Lactobacillus rhamnosus and/or its products to induce the synthesis of cytokines (TNF-α, IL-1β, IL-4, IL-6, IL-10, and IL-12) by mouse macrophages (RAW 264.7). Three microorganism preparations were used: live L. rhamnosus (LLR) suspension, heat-killed L. rhamnosus (HKLR) suspension, and the supernatant of a heat-killed L. rhamnosus (SHKLR) suspension, which were cultured with macrophages (37°C, 5% CO2) for 2 h and 30 min. After that, cells were cultured for 16 h. The supernatants were used for the quantitation of cytokines, by ELISA. The results were compared with the synthesis induced by lipopolysaccharide (LPS) and analysed, using ANOVA and Tukey test, 5%. LLR and HKLR groups were able to significantly increase the production of TNF-α, IL-6, and IL-10 (P 0.05). All the L. rhamnosus suspensions were not able to produce detectable levels of IL-1β or significant levels of IL-4 and IL-12 (P > 0.05). In conclusion, live and heat-killed L. rhamnosus suspensions were able to induce the synthesis of different cytokines with proinflammatory (TNF-α and IL-6) or regulatory (IL-10) functions, suggesting the role of strain L. rhamnosus ATCC 7469 in the modulation or in the stimulation of immune responses.

  13. Live and Heat-Killed Lactobacillus rhamnosus ATCC 7469 May Induce Modulatory Cytokines Profiles on Macrophages RAW 264.7

    Directory of Open Access Journals (Sweden)

    Adeline Lacerda Jorjão

    2015-01-01

    Full Text Available This study aimed to evaluate the capacity of Lactobacillus rhamnosus and/or its products to induce the synthesis of cytokines (TNF-α, IL-1β, IL-4, IL-6, IL-10, and IL-12 by mouse macrophages (RAW 264.7. Three microorganism preparations were used: live L. rhamnosus (LLR suspension, heat-killed L. rhamnosus (HKLR suspension, and the supernatant of a heat-killed L. rhamnosus (SHKLR suspension, which were cultured with macrophages (37°C, 5% CO2 for 2 h and 30 min. After that, cells were cultured for 16 h. The supernatants were used for the quantitation of cytokines, by ELISA. The results were compared with the synthesis induced by lipopolysaccharide (LPS and analysed, using ANOVA and Tukey test, 5%. LLR and HKLR groups were able to significantly increase the production of TNF-α, IL-6, and IL-10 (P0.05. All the L. rhamnosus suspensions were not able to produce detectable levels of IL-1β or significant levels of IL-4 and IL-12 (P>0.05. In conclusion, live and heat-killed L. rhamnosus suspensions were able to induce the synthesis of different cytokines with proinflammatory (TNF-α and IL-6 or regulatory (IL-10 functions, suggesting the role of strain L. rhamnosus ATCC 7469 in the modulation or in the stimulation of immune responses.

  14. Effect of heat-induced pain stimuli on pulse transit time and pulse wave amplitude in healthy volunteers.

    Science.gov (United States)

    van Velzen, Marit H N; Loeve, Arjo J; Kortekaas, Minke C; Niehof, Sjoerd P; Mik, Egbert G; Stolker, Robert J

    2016-01-01

    Pain is commonly assessed subjectively by interpretations of patient behaviour and/or reports from patients. When this is impossible the availability of a quantitative objective pain assessment tool based on objective physiological parameters would greatly benefit clinical practice and research beside the standard self-report tests. Vasoconstriction is one of the physiological responses to pain. The aim of this study was to investigate whether pulse transit time (PTT) and pulse wave amplitude (PWA) decrease in response to this vasoconstriction when caused by heat-induced pain. The PTT and PWA were measured in healthy volunteers, on both index fingers using photoplethysmography and electrocardiography. Each subject received 3 heat-induced pain stimuli using a Temperature-Sensory Analyzer thermode block to apply a controlled, increasing temperature from 32.0 °C to 50.0 °C to the skin. After reaching 50.0 °C, the thermode was immediately cooled down to 32.0 °C. The study population was divided into 2 groups with a time-interval between the stimuli 20s or 60s. The results showed a significant (p  Heat-induced pain causes a decrease of PTT and PWA. Consequently, it is expected that, in the future, PTT and PWA may be applied as objective indicators of pain, either beside the standard self-report test, or when self-report testing is impossible.

  15. Climate change-induced heat risks for migrant populations working at brick kilns in India: a transdisciplinary approach

    Science.gov (United States)

    Lundgren-Kownacki, Karin; Kjellberg, Siri M.; Gooch, Pernille; Dabaieh, Marwa; Anandh, Latha; Venugopal, Vidhya

    2018-03-01

    During the summer of 2015, India was hit by a scorching heat wave that melted pavements in Delhi and caused thousands of deaths, mainly among the most marginalized populations. One such group facing growing heat risks from both occupational and meteorological causes are migrant brick kiln workers. This study evaluates both current heat risks and the potential future impacts of heat caused by climate change, for the people working at brick kilns in India. A case study of heat stress faced by people working at brick kilns near Chennai, India, is the anchor point around which a transdisciplinary approach was applied. Around Chennai, the situation is alarming since occupational heat exposure in the hot season from March to July is already at the upper limits of what humans can tolerate before risking serious impairment. The aim of the study was to identify new pathways for change and soft solutions by both reframing the problem and expanding the solution space being considered in order to improve the quality of life for the migrant populations at the brick kilns. Technical solutions evaluated include the use of sun-dried mud bricks and other locally "appropriate technologies" that could mitigate the worsening of climate change-induced heat. Socio-cultural solutions discussed for empowering the people who work at the brick kilns include participatory approaches such as open re-localization, and rights-based approaches including the environmental sustainability and the human rights-based approach framework. Our analysis suggests that an integrative, transdisciplinary approach could incorporate a more holistic range of technical and socio-culturally informed solutions in order to protect the health of people threatened by India's brick kiln industry.

  16. Heat-induced chemical and color changes of extractive-free Black Locust (Rosinia Pseudoacacia) wood

    Science.gov (United States)

    Yao Chen; Jianmin Gao; Yongming Fan; Mandla A. Tshabalala; Nicole M. Stark

    2012-01-01

    To investigate chemical and color changes of the polymeric constituents of black locust (Robinia pseudoacacia) wood during heat treatment, extractive-free wood flour was conditioned to 30% initial moisture content (MC) and heated for 24 h at 120 °C in either an oxygen or nitrogen atmosphere. The color change was measured using the CIELAB color system. Chemical changes...

  17. Modelling the formation of heat-induced contaminants during thermal processing of food

    NARCIS (Netherlands)

    Nguyen, H.T.

    2015-01-01

    Many of our food products have undergone a heat-treatment before consumption, either at home or at the food industry. Heat treatments not only bring out desired characteristics of the food products such as flavour, texture, taste and safety aspects but also leads to the formation of undesired

  18. Riboflavin protects mice against liposaccharide-induced shock through expression of heat shock protein 25

    Science.gov (United States)

    Riboflavin (vitamin B2) is a water-soluble vitamin essential for normal cellular functions, growth and development. The study was aimed at investigating the effects of vitamin B2 on the survival rate, and expressions of tissue heat shock protein 25 (HSP25) and heat shock factor 1 (HSF1) in mice und...

  19. Salinization in a stratified aquifer induced by heat transfer from well casings

    NARCIS (Netherlands)

    van Lopik, J.H.; Hartog, N.; Zaadnoordijk, Willem Jan; Cirkel, D. Gijsbert; Raoof, A.

    2015-01-01

    The temperature inside wells used for gas, oil and geothermal energy production, as well as steam injection, is in general significantly higher than the groundwater temperature at shallower depths. While heat loss from these hot wells is known to occur, the extent to which this heat loss may result

  20. Effects of mantle rheologies on viscous heating induced by glacial isostatic adjustment

    NARCIS (Netherlands)

    Huang, Ping Ping; Wu, Patrick; van der Wal, W.

    2018-01-01

    It has been argued that viscous dissipation from mantle flow in response to surface loading during glacial cycles can result in short-term heating and thus trigger transient volcanism or changes in mantle properties, which may in turn affect mantle dynamics. Furthermore, heating near the Earth's

  1. The dimethylthiourea-induced attenuation of cisplatin nephrotoxicity is associated with the augmented induction of heat shock proteins

    International Nuclear Information System (INIS)

    Tsuji, Takayuki; Kato, Akihiko; Yasuda, Hideo; Miyaji, Takehiko; Luo, Jinghui; Sakao, Yukitoshi; Ito, Hideaki; Fujigaki, Yoshihide; Hishida, Akira

    2009-01-01

    Dimethylthiourea (DMTU), a potent hydroxyl radical scavenger, affords protection against cisplatin (CDDP)-induced acute renal failure (ARF). Since the suppression of oxidative stress and the enhancement of heat shock proteins (HSPs) are both reported to protect against CDDP-induced renal damage, we tested whether increased HSP expression is involved in the underlying mechanisms of the DMTU-induced renal protection. We examined the effect of DMTU treatment on the expression of HSPs in the kidney until day 5 following a single injection of CDDP (5 mg/kg BW). DMTU significantly inhibited the CDDP-induced increments of serum creatinine, the number of 8-hydroxyl-2'-deoxyguanosine (8-OHdG)- and terminal deoxynucleotidyl transferase nick-end labeling (TUNEL)-positive tubular cells, and tubular damage score (p < 0.05). CDDP significantly increased renal abundances of HO-1, HSP60, HSP72 and HSP90 at days 1, 3, and 5. DMTU significantly augmented only the expression of HSP60 expression mainly in the cytoplasm of the proximal tubular cells at days 1 and 3 in CDDP-induced ARF. DMTU also inhibited the CDDP-induced increment of Bax, a pro-apoptotic protein, in the fraction of organelles/membranes at day 3. The findings suggest that DMTU may afford protection against CDDP-induced ARF, partially through the early induction of cytoplasmic HSP60, thereby preventing the Bax-mediated apoptosis in renal tubular cells

  2. Transcutaneous Electrical Nerve Stimulation (TENS) reduces pain, fatigue, and hyperalgesia while restoring central inhibition in primary fibromyalgia

    OpenAIRE

    Dailey, Dana L; Rakel, Barbara A; Vance, Carol GT; Liebano, Richard E; Anand, Amrit S; Bush, Heather M; Lee, Kyoung S; Lee, Jennifer E; Sluka, Kathleen A

    2013-01-01

    Because TENS works by reducing central excitability and activating central inhibition pathways, we tested the hypothesis that TENS would reduce pain and fatigue and improve function and hyperalgesia in people with fibromyalgia who have enhanced central excitability and reduced inhibition. The current study used a double-blinded randomized, placebo controlled cross-over design to test effects of a single treatment of TENS in people with fibromyalgia. Three treatments were assessed in random or...

  3. [Influence of the occlusal interference time on masticatory muscle mechanical hyperalgesia in rats].

    Science.gov (United States)

    Liu, Cun-rui; Xu, Xiao-xiang; Cao, Ye; Xie, Qiu-fei

    2016-02-18

    To investigate the relationship between the removal time of 0.2 mm occlusal interference and the recovery of masticatory muscle mechanical hyperalgesia in rats. Forty male Sprague-Dawley rats (200-220 g) were randomly assigned to eight groups, with five rats in each group: (1) naive group: these rats were anesthetized and their mouths were forced open for about 5 min (the same duration as the other groups), but restorations were not applied; (2) sham-occlusal interference control group: bands were bonded to the right maxillary first molars which did not interfere with occlusion; (3)occlusal interference group: 0.2 mm thick crowns were bonded to the right maxillary first molars; (4) 2, 3, 4, 5, and 6 d removal of occlusal interference groups: 0.2 mm thick crowns were bonded to the right maxillary first molars and removed on days 2, 3, 4, 5, and 6. The naive group and sham-occlusal interference control group were control groups. The other groups were experimental groups. Bilateral masticatory muscle mechanical withdrawal thresholds were tested on pre-application days 1, 2, and 3, and on post-application days 1, 3, 5, 7, 10, 14, 21 and 28. The rats were weighed on pre-application day 1 and on post-application days 1, 2, 3, 4, 5, 6, and 7. Between the naive group and the sham-occlusal interference control group, there was no significant difference in the masticatory muscle mechanical withdrawal threshold of bilateral temporalis and masseters at each time point. No significant difference was detected between the contralateral side and ipsilateral side in experimental groups (P>0.05). In the 2, 3, 4, and 5 d removal of occlusal interference groups, the masticatory muscle mechanical withdrawal thresholds decreased after occlusal interference and increased after removal of the crowns and recovered to the baseline on days 7, 10, 14, and 14, respectively [the masticatory muscle mechanical withdrawal thresholds of right masseter muscle were (137.46 ± 2.08) g, (139.02 ± 2

  4. Accumulation of small heat shock proteins, including mitochondrial HSP22, induced by oxidative stress and adaptive response in tomato cells

    International Nuclear Information System (INIS)

    Banzet, N.; Richaud, C.; Deveaux, Y.; Kazmaier, M.; Gagnon, J.; Triantaphylides, C.

    1998-01-01

    Changes in gene expression, by application of H2O2, O2.- generating agents (methyl viologen, digitonin) and gamma irradiation to tomato suspension cultures, were investigated and compared to the well-described heat shock response. Two-dimensional gel protein mapping analyses gave the first indication that at least small heat shock proteins (smHSP) accumulated in response to application of H2O2 and gamma irradiation, but not to O2.- generating agents. While some proteins seemed to be induced specifically by each treatment, only part of the heat shock response was observed. On the basis of Northern hybridization experiments performed with four heterologous cDNA, corresponding to classes I-IV of pea smHSP, it could be concluded that significant amounts of class I and II smHSP mRNA are induced by H2O2 and by irradiation. Taken together, these results demonstrate that in plants some HSP genes are inducible by oxidative stresses, as in micro-organisms and other eukaryotic cells. HSP22, the main stress protein that accumulates following H2O2 action or gamma irradiation, was also purified. Sequence homology of amino terminal and internal sequences, and immunoreactivity with Chenopodium rubrum mitochondrial smHSP antibody, indicated that the protein belongs to the recently discovered class of plant mitochondrial smHSP. Heat shock or a mild H2O2 pretreatment was also shown to lead to plant cell protection against oxidative injury. Therefore, the synthesis of these stress proteins can be considered as an adaptive mechanism in which mitochondrial protection could be essential

  5. Charge-fluctuation-induced heating of dust particles in a plasma.

    Science.gov (United States)

    Vaulina, O S; Khrapak, S A; Nefedov, A P; Petrov, O F

    1999-11-01

    Random charge fluctuations are always present in dusty plasmas due to the discrete nature of currents charging the dust particle. These fluctuations can be a reason for the heating of the dust particle system. Such unexpected heating leading to the melting of the dust crystals was observed recently in several experiments. In this paper we show by analytical evaluations and numerical simulation that charge fluctuations provide an effective source of energy and can heat the dust particles up to several eV, in conditions close to experimental ones.

  6. Stress-induced heating in commercial conductors and its possible influence on magnet performance

    International Nuclear Information System (INIS)

    Easton, D.S.; Kroeger, D.M.; Moazed, A.

    1976-01-01

    Calorimetric measurements show that significant amounts of heat are generated when a multifilamentary composite conductor is stressed in tension to levels expected to occur in large, high-field magnet systems. When the stress on the conductor is repetitively cycled between zero and some maximum value, the amount of heat produced per cycle is constant after the first few cycles. Comparison is made between calorimetric determinations of heat injections and the work done on the specimen as indicated by stress-strain curves. Stress-strain curves for a number of commercial conductors indicate that the most important determinant of the magnitude of this effect is the choice of matrix material

  7. Investigation of Heat Transfer in Mini Channels using Planar Laser Induced Fluorescence

    DEFF Research Database (Denmark)

    Bøgild, Morten Ryge; Poulsen, Jonas Lundsted; Rath, Emil Zacho

    2012-01-01

    In this paper an experimental investigation of the heat transfer in mini channels with a hydraulic diameter of 889 m is conducted. The method used is planar laser induceduorescence (PLIF), which uses the principle of laser excitation of rhodamine B in water. The goal of this study is to validate...... the applicability of PLIF to determine the convective heat transfer coecient in mini channels against conventional correlations of the convective heat transfer coecient. The applicability of the conventional theory in micro and mini channels has been discussed by several researchers, but to the authors knowledge...

  8. Superoxide radicals mediate heptatoxicity induced by the heat shock protein 90 inhibitors benzoquinone ansamycins

    International Nuclear Information System (INIS)

    Goldstein, S.

    2011-01-01

    Complete text of publication follows. Geldanamycin (GM). a benzoquinone ansamycin antibiotic, is a natural product inhibitor of the heat shock protein 90 (Hsp90) with potent and broad anticancer properties. However, its progression to clinical trials was halted due to unacceptable levels of hepatotoxicity. Consequently, numerous less toxic analogs differing only in their 17-substituent have been synthesized including 17-AAG and the water soluble 17-DMAG (Alvespimycin), which have recently entered clinical trials. The different hepatotoxicity induced by GM and its analogs may reflect the redox active properties of the quinone moiety (Q) and possibly the extent of superoxide radical formation, which may stimulate cellular oxidative injury. Q ·- + Q 2 ↔ O 2 ·- + Q. Eq. 1 is established rapidly, and its actual position is governed by E 7 (Q/Q ·- ) and E 7 (O 2 /O 2 ·- ) and the relative concentrations of Q and O 2 . Using pulse radiolysis, E 7 (Q/Q ·- ) for 17-DMAG has been determined vs. O 2 , 1,4-naphthoquinone or menadione to be -194 ± 6 mV, which is somewhat lower than E 7 (O 2 /O 2 ·- ) = -180 mV (1 M O 2 ). Eq. 1 is well to the left in the case of 1,4-benzoquinone and substitution into the ring by electron-donating or -withdrawing groups reduces or increases, respectively, E 7 (Q/Q ·- ) in a predictable manner, e.g. linearly related to the Hammett sigma value of the substituents. Hence, E 7 (Q/Q ·- ) should follow the order GM 2 is more readily reduced to O 2 ·- by GM. It is demonstrated that O 2 ·- can be efficiently trapped by Tempol during the reduction of GM, 17-AAG and 17-DMAG by NADPH catalyzed by NADPH-cytochrome P450 reductase, and that O 2 ·- formation rate, which reflects the rate of NADPH oxidation, follows the order 17-DMAG > GM > 17-AAG. In the absence of O 2 ·- scavengers, the rate of NADPH oxidation follows the order 17-DMAG > 17-AAG > GM. The order of the drug cytotoxicity toward rat primary hepatocytes, as determined by their

  9. Alfvén Wave Turbulence as a Coronal Heating Mechanism: Simultaneously Predicting the Heating Rate and the Wave-induced Emission Line Broadening

    Energy Technology Data Exchange (ETDEWEB)

    Oran, R. [Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139 (United States); Landi, E.; Holst, B. van der; Sokolov, I. V.; Gombosi, T. I., E-mail: roran@mit.edu [Atmospheric, Oceanic and Atmospheric Sciences, University of Michigan, 2455 Hayward, Ann Arbor, MI, 48109 (United States)

    2017-08-20

    We test the predictions of the Alfvén Wave Solar Model (AWSoM), a global wave-driven magnetohydrodynamic (MHD) model of the solar atmosphere, against high-resolution spectra emitted by the quiescent off-disk solar corona. AWSoM incorporates Alfvén wave propagation and dissipation in both closed and open magnetic field lines; turbulent dissipation is the only heating mechanism. We examine whether this mechanism is consistent with observations of coronal EUV emission by combining model results with the CHIANTI atomic database to create synthetic line-of-sight spectra, where spectral line widths depend on thermal and wave-related ion motions. This is the first time wave-induced line broadening is calculated from a global model with a realistic magnetic field. We used high-resolution SUMER observations above the solar west limb between 1.04 and 1.34 R {sub ⊙} at the equator, taken in 1996 November. We obtained an AWSoM steady-state solution for the corresponding period using a synoptic magnetogram. The 3D solution revealed a pseudo-streamer structure transversing the SUMER line of sight, which contributes significantly to the emission; the modeled electron temperature and density in the pseudo-streamer are consistent with those observed. The synthetic line widths and the total line fluxes are consistent with the observations for five different ions. Further, line widths that include the contribution from the wave-induced ion motions improve the correspondence with observed spectra for all ions. We conclude that the turbulent dissipation assumed in the AWSoM model is a viable candidate for explaining coronal heating, as it is consistent with several independent measured quantities.

  10. Stochastic modeling of stock price process induced from the conjugate heat equation

    Science.gov (United States)

    Paeng, Seong-Hun

    2015-02-01

    Currency can be considered as a ruler for values of commodities. Then the price is the measured value by the ruler. We can suppose that inflation and variation of exchange rate are caused by variation of the scale of the ruler. In geometry, variation of the scale means that the metric is time-dependent. The conjugate heat equation is the modified heat equation which satisfies the heat conservation law for the time-dependent metric space. We propose a new model of stock prices by using the stochastic process whose transition probability is determined by the kernel of the conjugate heat equation. Our model of stock prices shows how the volatility term is affected by inflation and exchange rate. This model modifies the Black-Scholes equation in light of inflation and exchange rate.

  11. Solar-simulated radiation and heat treatment induced metalloproteinase-1 expression in cultured dermal fibroblasts via distinct pathways: implications on reduction of sun-associated aging.

    Science.gov (United States)

    Lan, Cheng-Che E; Wu, Ching-Shang; Yu, Hsin-Su

    2013-12-01

    Sun exposure is an important environmental factor affecting human beings. Most knowledge regarding solar aging focused on light radiation (photoaging), and little emphasis has been placed on heat, a factor that is also closely associated with sun exposure. This study was launched to evaluate the effects of simulated solar radiation (SSR) and environmental heat on skin fibroblasts in terms of dermal aging. Cultured human dermal fibroblasts were treated with moderate amount of SSR (200J/cm(2)) and heat (+2°C). The metalloproteinase-1 (MMP-1) expression was used as a surrogate marker for dermal aging and the involved regulatory mechanisms were explored. Both treatment conditions did not affect viability but significantly increased the expressions of MMP-1. In parallel, both treatments increased the intracellular levels of reactive oxygen species (ROS), but the increase induced by SSR is much greater than heat. In contrast, transient receptor potential vanilloid 1 (TRPV-1), the sensor of environmental heat, was upregulated by heat but not SSR treatment. Pretreating fibroblasts with antioxidant abrogated the SSR-induced MMP-1 but has limited effect on heat-induced MMP-1. On the other hand, TRPV-1 antagonist pretreatment reduced heat-induced MMP-1 in fibroblasts but not their SSR-treated counterparts. Both SSR and heat induced MMP-1 expression in dermal fibroblasts but through different pathways. As current strategies for reducing sun-related aging focused on filtering of light and use of antioxidants, future strategies design to reduce solar aging should also incorporate heat-induced aging into consideration. Copyright © 2013 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  12. Heating-induced glass-glass and glass-liquid transformations in computer simulations of water

    Science.gov (United States)

    Chiu, Janet; Starr, Francis W.; Giovambattista, Nicolas

    2014-03-01

    Water exists in at least two families of glassy states, broadly categorized as the low-density (LDA) and high-density amorphous ice (HDA). Remarkably, LDA and HDA can be reversibly interconverted via appropriate thermodynamic paths, such as isothermal compression and isobaric heating, exhibiting first-order-like phase transitions. We perform out-of-equilibrium molecular dynamics simulations of glassy water using the ST2 model to study the evolution of LDA and HDA upon isobaric heating. Depending on pressure, glass-to-glass, glass-to-crystal, glass-to-vapor, as well as glass-to-liquid transformations are found. Specifically, heating LDA results in the following transformations, with increasing heating pressures: (i) LDA-to-vapor (sublimation), (ii) LDA-to-liquid (glass transition), (iii) LDA-to-HDA-to-liquid, (iv) LDA-to-HDA-to-liquid-to-crystal, and (v) LDA-to-HDA-to-crystal. Similarly, heating HDA results in the following transformations, with decreasing heating pressures: (a) HDA-to-crystal, (b) HDA-to-liquid-to-crystal, (c) HDA-to-liquid (glass transition), (d) HDA-to-LDA-to-liquid, and (e) HDA-to-LDA-to-vapor. A more complex sequence may be possible using lower heating rates. For each of these transformations, we determine the corresponding transformation temperature as function of pressure, and provide a P-T "phase diagram" for glassy water based on isobaric heating. Our results for isobaric heating dovetail with the LDA-HDA transformations reported for ST2 glassy water based on isothermal compression/decompression processes [Chiu et al., J. Chem. Phys. 139, 184504 (2013)]. The resulting phase diagram is consistent with the liquid-liquid phase transition hypothesis. At the same time, the glass phase diagram is sensitive to sample preparation, such as heating or compression rates. Interestingly, at least for the rates explored, our results suggest that the LDA-to-liquid (HDA-to-liquid) and LDA-to-HDA (HDA-to-LDA) transformation lines on heating are related

  13. Heating-induced glass-glass and glass-liquid transformations in computer simulations of water

    International Nuclear Information System (INIS)

    Chiu, Janet; Giovambattista, Nicolas; Starr, Francis W.

    2014-01-01

    Water exists in at least two families of glassy states, broadly categorized as the low-density (LDA) and high-density amorphous ice (HDA). Remarkably, LDA and HDA can be reversibly interconverted via appropriate thermodynamic paths, such as isothermal compression and isobaric heating, exhibiting first-order-like phase transitions. We perform out-of-equilibrium molecular dynamics simulations of glassy water using the ST2 model to study the evolution of LDA and HDA upon isobaric heating. Depending on pressure, glass-to-glass, glass-to-crystal, glass-to-vapor, as well as glass-to-liquid transformations are found. Specifically, heating LDA results in the following transformations, with increasing heating pressures: (i) LDA-to-vapor (sublimation), (ii) LDA-to-liquid (glass transition), (iii) LDA-to-HDA-to-liquid, (iv) LDA-to-HDA-to-liquid-to-crystal, and (v) LDA-to-HDA-to-crystal. Similarly, heating HDA results in the following transformations, with decreasing heating pressures: (a) HDA-to-crystal, (b) HDA-to-liquid-to-crystal, (c) HDA-to-liquid (glass transition), (d) HDA-to-LDA-to-liquid, and (e) HDA-to-LDA-to-vapor. A more complex sequence may be possible using lower heating rates. For each of these transformations, we determine the corresponding transformation temperature as function of pressure, and provide a P-T “phase diagram” for glassy water based on isobaric heating. Our results for isobaric heating dovetail with the LDA-HDA transformations reported for ST2 glassy water based on isothermal compression/decompression processes [Chiu et al., J. Chem. Phys. 139, 184504 (2013)]. The resulting phase diagram is consistent with the liquid-liquid phase transition hypothesis. At the same time, the glass phase diagram is sensitive to sample preparation, such as heating or compression rates. Interestingly, at least for the rates explored, our results suggest that the LDA-to-liquid (HDA-to-liquid) and LDA-to-HDA (HDA-to-LDA) transformation lines on heating are related

  14. Heating-induced glass-glass and glass-liquid transformations in computer simulations of water

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, Janet; Giovambattista, Nicolas [Department of Physics, Brooklyn College of the City University of New York, Brooklyn, New York 11210 (United States); Starr, Francis W. [Department of Physics, Wesleyan University, Middletown, Connecticut 06459 (United States)

    2014-03-21

    Water exists in at least two families of glassy states, broadly categorized as the low-density (LDA) and high-density amorphous ice (HDA). Remarkably, LDA and HDA can be reversibly interconverted via appropriate thermodynamic paths, such as isothermal compression and isobaric heating, exhibiting first-order-like phase transitions. We perform out-of-equilibrium molecular dynamics simulations of glassy water using the ST2 model to study the evolution of LDA and HDA upon isobaric heating. Depending on pressure, glass-to-glass, glass-to-crystal, glass-to-vapor, as well as glass-to-liquid transformations are found. Specifically, heating LDA results in the following transformations, with increasing heating pressures: (i) LDA-to-vapor (sublimation), (ii) LDA-to-liquid (glass transition), (iii) LDA-to-HDA-to-liquid, (iv) LDA-to-HDA-to-liquid-to-crystal, and (v) LDA-to-HDA-to-crystal. Similarly, heating HDA results in the following transformations, with decreasing heating pressures: (a) HDA-to-crystal, (b) HDA-to-liquid-to-crystal, (c) HDA-to-liquid (glass transition), (d) HDA-to-LDA-to-liquid, and (e) HDA-to-LDA-to-vapor. A more complex sequence may be possible using lower heating rates. For each of these transformations, we determine the corresponding transformation temperature as function of pressure, and provide a P-T “phase diagram” for glassy water based on isobaric heating. Our results for isobaric heating dovetail with the LDA-HDA transformations reported for ST2 glassy water based on isothermal compression/decompression processes [Chiu et al., J. Chem. Phys. 139, 184504 (2013)]. The resulting phase diagram is consistent with the liquid-liquid phase transition hypothesis. At the same time, the glass phase diagram is sensitive to sample preparation, such as heating or compression rates. Interestingly, at least for the rates explored, our results suggest that the LDA-to-liquid (HDA-to-liquid) and LDA-to-HDA (HDA-to-LDA) transformation lines on heating are related

  15. Characterization of power induced heating and damage in fiber optic probes for near-field scanning optical microscopy

    Science.gov (United States)

    Dickenson, Nicholas E.; Erickson, Elizabeth S.; Mooren, Olivia L.; Dunn, Robert C.

    2007-05-01

    Tip-induced sample heating in near-field scanning optical microscopy (NSOM) is studied for fiber optic probes fabricated using the chemical etching technique. To characterize sample heating from etched NSOM probes, the spectra of a thermochromic polymer sample are measured as a function of probe output power, as was previously reported for pulled NSOM probes. The results reveal that sample heating increases rapidly to ˜55-60°C as output powers reach ˜50nW. At higher output powers, the sample heating remains approximately constant up to the maximum power studied of ˜450nW. The sample heating profiles measured for etched NSOM probes are consistent with those previously measured for NSOM probes fabricated using the pulling method. At high powers, both pulled and etched NSOM probes fail as the aluminum coating is damaged. For probes fabricated in our laboratory we find failure occurring at input powers of 3.4±1.7 and 20.7±6.9mW for pulled and etched probes, respectively. The larger half-cone angle for etched probes (˜15° for etched and ˜6° for pulled probes) enables more light delivery and also apparently leads to a different failure mechanism. For pulled NSOM probes, high resolution images of NSOM probes as power is increased reveal the development of stress fractures in the coating at a taper diameter of ˜6μm. These stress fractures, arising from the differential heating expansion of the dielectric and the metal coating, eventually lead to coating removal and probe failure. For etched tips, the absence of clear stress fractures and the pooled morphology of the damaged aluminum coating following failure suggest that thermal damage may cause coating failure, although other mechanisms cannot be ruled out.

  16. Heat and turbulent kinetic energy budgets for surface layer cooling induced by the passage of Hurricane Frances (2004)

    Science.gov (United States)

    Huang, Peisheng; Sanford, Thomas B.; Imberger, JöRg

    2009-12-01

    Heat and turbulent kinetic energy budgets of the ocean surface layer during the passage of Hurricane Frances were examined using a three-dimensional hydrodynamic model. In situ data obtained with the Electromagnetic-Autonomous Profiling Explorer (EM-APEX) floats were used to set up the initial conditions of the model simulation and to compare to the simulation results. The spatial heat budgets reveal that during the hurricane passage, not only the entrainment in the bottom of surface mixed layer but also the horizontal water advection were important factors determining the spatial pattern of sea surface temperature. At the free surface, the hurricane-brought precipitation contributed a negligible amount to the air-sea heat exchange, but the precipitation produced a negative buoyancy flux in the surface layer that overwhelmed the instability induced by the heat loss to the atmosphere. Integrated over the domain within 400 km of the hurricane eye on day 245.71 of 2004, the rate of heat anomaly in the surface water was estimated to be about 0.45 PW (1 PW = 1015 W), with about 20% (0.09 PW in total) of this was due to the heat exchange at the air-sea interface, and almost all the remainder (0.36 PW) was downward transported by oceanic vertical mixing. Shear production was the major source of turbulent kinetic energy amounting 88.5% of the source of turbulent kinetic energy, while the rest (11.5%) was attributed to the wind stirring at sea surface. The increase of ocean potential energy due to vertical mixing represented 7.3% of the energy deposited by wind stress.

  17. An improved Peltier effect-based instrument for critical temperature threshold measurement in cold- and heat-induced urticaria.

    Science.gov (United States)

    Magerl, M; Abajian, M; Krause, K; Altrichter, S; Siebenhaar, F; Church, M K

    2015-10-01

    Cold- and heat-induced urticaria are chronic physical urticaria conditions in which wheals, angioedema or both are evoked by skin exposure to cold and heat respectively. The diagnostic work up of both conditions should include skin provocation tests and accurate determination of critical temperature thresholds (CTT) for producing symptoms in order to be able to predict the potential risk that each individual patient faces and how this may be ameliorated by therapy. To develop and validate TempTest(®) 4, a simple and relatively inexpensive instrument for the accurate determination of CTT which may be used in clinical practice. TempTest(®) 4 has a single 2 mm wide 350 mm U-shaped Peltier element generating a temperature gradient from 4 °C to 44 °C along its length. Using a clear plastic guide placed over the skin after provocation, CTT values may be determined with an accuracy of ±1 °C. Here, TempTest(®) 4 was compared with its much more expensive predecessor, TempTest(®) 3, in inducing wheals in 30 cold urticaria patients. Both TempTest(®) 4 and TempTest(®) 3 induced wheals in all 30 patients between 8 ° and 28 °C. There was a highly significant (P < 0.0001) correlation between the instruments in the CTT values in individual patients. The TempTest(®) 4 is a simple, easy to use, licensed, commercially available and affordable instrument for the determination of CTTs in both cold- and heat-induced urticaria. © 2014 European Academy of Dermatology and Venereology.

  18. Mechanisms mediating vibration-induced chronic musculoskeletal pain analyzed in the rat.

    Science.gov (United States)

    Dina, Olayinka A; Joseph, Elizabeth K; Levine, Jon D; Green, Paul G

    2010-04-01

    While occupational exposure to vibration is a common cause of acute and chronic musculoskeletal pain, eliminating exposure produces limited symptomatic improvement, and reexposure precipitates rapid recurrence or exacerbation. To evaluate mechanisms underlying these pain syndromes, we have developed a model in the rat, in which exposure to vibration (60-80Hz) induces, in skeletal muscle, both acute mechanical hyperalgesia as well as long-term changes characterized by enhanced hyperalgesia to a proinflammatory cytokine or reexposure to vibration. Exposure of a hind limb to vibration-produced mechanical hyperalgesia measured in the gastrocnemius muscle of the exposed hind limb, which persisted for approximately 2 weeks. When nociceptive thresholds had returned to baseline, exposure to a proinflammatory cytokine or reexposure to vibration produced markedly prolonged hyperalgesia. The chronic prolongation of vibration- and cytokine-hyperalgesia was prevented by spinal intrathecal injection of oligodeoxynucleotide (ODN) antisense to protein kinase Cepsilon, a second messenger in nociceptors implicated in the induction and maintenance of chronic pain. Vibration-induced hyperalgesia was inhibited by spinal intrathecal administration of ODN antisense to receptors for the type-1 tumor necrosis factor-alpha (TNFalpha) receptor. Finally, in TNFalpha-pretreated muscle, subsequent vibration-induced hyperalgesia was markedly prolonged. These studies establish a model of vibration-induced acute and chronic musculoskeletal pain, and identify the proinflammatory cytokine TNFalpha and the second messenger protein kinase Cepsilon as targets against which therapies might be directed to prevent and/or treat this common and very debilitating chronic pain syndrome. Copyright 2010 American Pain Society. All rights reserved.

  19. Avoiding vibration-induced tube failures in shell and tube heat exchangers

    International Nuclear Information System (INIS)

    Franklin, R.E.; Soper, B.M.H.; Whittle, R.H.

    1979-01-01

    The past few years has seen a very significant increase of activity in heat exchangers tube vibration research, both analytical and experimental. Some of the results of this work are examined and discussed in the context of how best they may be applied in the assessment of heat exchangers at the design stage. Special attention is focussed on the overall picture and on the simplifications which can be made in many instances. (author)

  20. Heat-induced alterations in cashew allergen solubility and IgE binding

    Directory of Open Access Journals (Sweden)

    Christopher P. Mattison

    Full Text Available Cashew nuts are an increasingly common cause of food allergy. We compare the soluble protein profile of cashew nuts following heating. SDS-PAGE indicate that heating can alter the solubility of cashew nut proteins. The 11S legumin, Ana o 2, dominates the soluble protein content in ready to eat and mildly heated cashew nuts. However, we found that in dark-roasted cashew nuts, the soluble protein profile shifts and the 2S albumin Ana o 3 composes up to 40% of the soluble protein. Analysis of trypsin-treated extracts by LC/MS/MS indicate changes in the relative number and intensity of peptides. The relative cumulative intensity of the 5 most commonly observed Ana o 1 and 2 peptides are altered by heating, while those of the 5 most commonly observed Ana o 3 peptides remaine relatively constant. ELISA experiments indicate that there is a decrease in rabbit IgG and human serum IgE binding to soluble cashew proteins following heating. Our findings indicate that heating can alter the solubility of cashew allergens, resulting in altered IgE binding. Our results support the use of both Ana o 2 and Ana o 3 as potential cashew allergen diagnostic targets. Keywords: Cashew nut, Food allergy, Immunoglobulin E, Mass-spectrometry, Peptide, Solubility

  1. Reproductive responses to climatic heat induced by management systems in swamp buffaloes

    International Nuclear Information System (INIS)

    Dollah, M.A.; Ramakrishnan, N.; Nordin, Y.; Abdullah Sani, R.

    1990-01-01

    Climatic heat is one of the factors influencing the reproductive performance of swamp buffaloes. Any management system that imposes high climatic heat stress tends to reduce reproductive performance. Buffaloes grazing in an open hilly ranch system reached puberty later (at an age of 33 months) and at heavier body weight (365 kg) than animals raised in confinement (26 months and 289 kg). Physiological data (water metabolism and thyroid activity) indicated that grazing animals had to tolerate a higher heat load. High climatic temperatures were found to depress ovarian activity, especially during the dry season. The effect was observed only in cycling buffaloes denied wallow. Buffaloes having access to wallows were able to maintain their heat balance under various levels of heat load by adjusting their water requirements, mobilizing their body water and adjusting their metabolic rate (thyroid activity). It is concluded that stressful climatic temperatures can depress the reproductive performance of young heifers and adult swamp buffaloes, and that climatic heat stress directly depresses ovarian activity in swamp buffaloes. (author). 16 refs, 1 fig., 4 tabs

  2. Heat-Killed Lactobacillus salivarius and Lactobacillus johnsonii Reduce Liver Injury Induced by Alcohol In Vitro and In Vivo.

    Science.gov (United States)

    Chuang, Cheng-Hung; Tsai, Cheng-Chih; Lin, En-Shyh; Huang, Chin-Shiu; Lin, Yun-Yu; Lan, Chuan-Ching; Huang, Chun-Chih

    2016-10-31

    The aim of the present study was to determine whether Lactobacillus salivarius (LS) and Lactobacillus johnsonii (LJ) prevent alcoholic liver damage in HepG2 cells and rat models of acute alcohol exposure. In this study, heat-killed LS and LJ were screened from 50 Lactobacillus strains induced by 100 mM alcohol in HepG2 cells. The severity of alcoholic liver injury was determined by measuring the levels of aspartate transaminase (AST), alanine transaminase (ALT), gamma-glutamyl transferase (γ-GT), lipid peroxidation, triglyceride (TG) and total cholesterol. Our results indicated that heat-killed LS and LJ reduced AST, ALT, γ-GT and malondialdehyde (MDA) levels and outperformed other bacterial strains in cell line studies. We further evaluated these findings by administering these strains to rats. Only LS was able to reduce serum AST levels, which it did by 26.2%. In addition LS significantly inhibited serum TG levels by 39.2%. However, both strains were unable to inhibit ALT levels. In summary, we demonstrated that heat-killed LS and LJ possess hepatoprotective properties induced by alcohol both in vitro and in vivo.

  3. Heat-Killed Lactobacillus salivarius and Lactobacillus johnsonii Reduce Liver Injury Induced by Alcohol In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Cheng-Hung Chuang

    2016-10-01

    Full Text Available The aim of the present study was to determine whether Lactobacillus salivarius (LS and Lactobacillus johnsonii (LJ prevent alcoholic liver damage in HepG2 cells and rat models of acute alcohol exposure. In this study, heat-killed LS and LJ were screened from 50 Lactobacillus strains induced by 100 mM alcohol in HepG2 cells. The severity of alcoholic liver injury was determined by measuring the levels of aspartate transaminase (AST, alanine transaminase (ALT, gamma-glutamyl transferase (γ-GT, lipid peroxidation, triglyceride (TG and total cholesterol. Our results indicated that heat-killed LS and LJ reduced AST, ALT, γ-GT and malondialdehyde (MDA levels and outperformed other bacterial strains in cell line studies. We further evaluated these findings by administering these strains to rats. Only LS was able to reduce serum AST levels, which it did by 26.2%. In addition LS significantly inhibited serum TG levels by 39.2%. However, both strains were unable to inhibit ALT levels. In summary, we demonstrated that heat-killed LS and LJ possess hepatoprotective properties induced by alcohol both in vitro and in vivo.

  4. Alterations in the nuclear matrix protein mass correlate with heat-induced inhibition of DNA single-strand-break repair

    International Nuclear Information System (INIS)

    Warters, R.L.; Brizgys, L.M.; Lyons, B.W.

    1987-01-01

    The total protein mass co-isolating with the nuclear matrix or nucleoid from Chinese hamster ovary (CHO) cells was observed to increase in heated cells as a function of increasing exposure temperature between 43 0 C and 45 0 C or of exposure time at any temperature. The sedimentation distance of the CHO cell nucleoid in sucrose gradients increased with increasing exposure time at 45 0 C. Both these nuclear alterations correlated in a log-linear manner with heat-induced inhibition of DNA strand break repair. A two-fold threshold increase in nuclear matrix protein mass preceded any substantial inhibition of repair of DNA single-strand breaks. When preheated cells were incubated at 37 0 C the nuclear matrix protein mass and nucleoid sedimentation recovered with a half-time of about 5 h, while DNA single-strand-break repair recovered with a half-time of about 2 h. When preheated cells were placed at 41 0 C a further increase was observed in the nuclear matrix protein mass and the half-time of DNA strand break repair, while nucleoid sedimentation recovered toward control values. These results implicate alterations in the protein mass of the nuclear matrix in heat-induced inhibition of repair of DNA single-strand breaks. (author)

  5. Extremely low-frequency magnetic fields can impair spermatogenesis recovery after reversible testicular damage induced by heat.

    Science.gov (United States)

    Tenorio, Bruno Mendes; Ferreira Filho, Moisés Bonifacio Alves; Jimenez, George Chaves; de Morais, Rosana Nogueira; Peixoto, Christina Alves; Nogueira, Romildo de Albuquerque; da Silva Junior, Valdemiro Amaro

    2014-06-01

    Male infertility is often related to reproductive age couples experiencing fertility-related issues. Men may have fertility problems associated with reversible testicular damage. Considering that men have been increasingly exposed to extremely low-frequency magnetic fields generated by the production, distribution and use of electricity, this study analyzed whether 60 Hz and 1 mT magnetic field exposure may impair spermatogenesis recovery after reversible testicular damage induced by heat shock using rats as an experimental model. Adult male rats were subjected to a single testicular heat shock (HS, 43 °C for 12 min) and then exposed to the magnetic field for 15, 30 and 60 d after HS. Magnetic field exposure during the spermatogenesis recovery induced changes in testis components volume, cell ultrastructure and histomorphometrical parameters. Control animals had a reestablished and active spermatogenesis at 60 d after heat shock, while animals exposed to magnetic field still showed extensive testicular degeneration. Magnetic field exposure did not change the plasma testosterone. In conclusion, extremely low-frequency magnetic field may be harmful to fertility recovery in males affected by reversible testicular damage.

  6. Heat shock-induced accumulation of translation elongation and termination factors precedes assembly of stress granules in S. cerevisiae.

    Directory of Open Access Journals (Sweden)

    Tomas Grousl

    Full Text Available In response to severe environmental stresses eukaryotic cells shut down translation and accumulate components of the translational machinery in stress granules (SGs. Since they contain mainly mRNA, translation initiation factors and 40S ribosomal subunits, they have been referred to as dominant accumulations of stalled translation preinitiation complexes. Here we present evidence that the robust heat shock-induced SGs of S. cerevisiae also contain translation elongation factors eEF3 (Yef3p and eEF1Bγ2 (Tef4p as well as translation termination factors eRF1 (Sup45p and eRF3 (Sup35p. Despite the presence of the yeast prion protein Sup35 in heat shock-induced SGs, we found out that its prion-like domain is not involved in the SGs assembly. Factors eEF3, eEF1Bγ2 and eRF1 were accumulated and co-localized with Dcp2 foci even upon a milder heat shock at 42°C independently of P-bodies scaffolding proteins. We also show that eEF3 accumulations at 42°C determine sites of the genuine SGs assembly at 46°C. We suggest that identification of translation elongation and termination factors in SGs might help to understand the mechanism of the eIF2α factor phosphorylation-independent repression of translation and SGs assembly.

  7. Identification of subgroups of patients with tension type headache with higher widespread pressure pain hyperalgesia.

    Science.gov (United States)

    Fernández-de-Las-Peñas, César; Benito-González, Elena; Palacios-Ceña, María; Wang, Kelun; Castaldo, Matteo; Arendt-Nielsen, Lars

    2017-12-01

    Identification of subgroups of patients with different levels of sensitization and clinical features can help to identify groups at risk and the development of better therapeutic strategies. The aim of this study was to identify subgroups of patients with tension type headache (TTH) with different levels of sensitization, clinical pain features, and psychological outcomes. A total of 197 individuals with TTH participated. Headache intensity, frequency, and duration and medication intake were collected with a 4-weeks diary. Pressure pain thresholds were assessed bilaterally over the temporalis muscle, C5-C6 joint, second metacarpal and tibialis anterior muscle to determine widespread pressure pain hyperalgesia. The Hospital Anxiety and Depression Scale assessed anxiety and depression. The State-Trait Anxiety Inventory evaluated the state and trait levels of anxiety. The Headache Disability Inventory evaluated the burden of headache. Health-related quality of life was determined with the SF-36 questionnaire. Groups were considered as positive (three or more criteria) or negative (less than three criteria) on a clinical prediction rule: headache duration patients with TTH with higher sensitization, higher chronicity of headaches and worse quality of life but lower frequency and duration of headache episodes. This subgroup of individuals with TTH may need particular attention and specific therapeutic programs for avoiding potential chronification.

  8. Periodic driving control of Raman-induced spin-orbit coupling in Bose-Einstein condensates: The heating mechanisms

    Science.gov (United States)

    Gomez Llorente, J. M.; Plata, J.

    2016-06-01

    We focus on a technique recently implemented for controlling the magnitude of synthetic spin-orbit coupling (SOC) in ultracold atoms in the Raman-coupling scenario. This technique uses a periodic modulation of the Raman-coupling amplitude to tune the SOC. Specifically, it has been shown that the effect of a high-frequency sinusoidal modulation of the Raman-laser intensity can be incorporated into the undriven Hamiltonian via effective parameters, whose adiabatic variation can therefore be used to tune the SOC. Here, we characterize the heating mechanisms that can be relevant to this method. We identify the main mechanism responsible for the heating observed in the experiments as basically rooted in driving-induced transfer of population to excited states. Characteristics of that process determined by the harmonic trapping, the decay of the excited states, and the technique used for preparing the system are discussed. Additional heating, rooted in departures from adiabaticity in the variation of the effective parameters, is also described. Our analytical study provides some clues that may be useful in the design of strategies for curbing the effects of heating on the efficiency of the control methods.

  9. Potential Remedies for the High Synchrotron-Radiation-Induced Heat Load for Future Highest-Energy-Proton Circular Colliders

    CERN Document Server

    AUTHOR|(CDS)2084568; Baglin, Vincent; Schaefers, Franz

    2015-01-01

    We propose a new method for handling the high synchrotron radiation (SR) induced heat load of future circular hadron colliders (like FCC-hh). FCC-hh are dominated by the production of SR, which causes a significant heat load on the accelerator walls. Removal of such a heat load in the cold part of the machine, as done in the Large Hadron Collider, will require more than 100 MW of electrical power and a major cooling system. We studied a totally different approach, identifying an accelerator beam screen whose illuminated surface is able to forward reflect most of the photons impinging onto it. Such a reflecting beam screen will transport a significant part of this heat load outside the cold dipoles. Then, in room temperature sections, it could be more efficiently dissipated. Here we will analyze the proposed solution and address its full compatibility with all other aspects an accelerator beam screen must fulfill to keep under control beam instabilities as caused by electron cloud formation, impedance, dynamic...

  10. Tunable electron heating induced giant magnetoresistance in the high mobility GaAs/AlGaAs 2D electron system.

    Science.gov (United States)

    Wang, Zhuo; Samaraweera, R L; Reichl, C; Wegscheider, W; Mani, R G

    2016-12-07

    Electron-heating induced by a tunable, supplementary dc-current (I dc ) helps to vary the observed magnetoresistance in the high mobility GaAs/AlGaAs 2D electron system. The magnetoresistance at B = 0.3 T is shown to progressively change from positive to negative with increasing I dc , yielding negative giant-magnetoresistance at the lowest temperature and highest I dc . A two-term Drude model successfully fits the data at all I dc and T. The results indicate that carrier heating modifies a conductivity correction σ 1 , which undergoes sign reversal from positive to negative with increasing I dc , and this is responsible for the observed crossover from positive- to negative- magnetoresistance, respectively, at the highest B.

  11. Effect of Geranylgeranylacetone on Ultraviolet Radiation Type B-Induced Cataract in Heat-Shock Transcription Factor 1 Heterozygous Mouse.

    Science.gov (United States)

    Ogasawara, Satoshi; Hashizume, Kouhei; Okuno, Takashi; Imaizumi, Toshiyasu; Inomata, Yui; Tezuka, Yu; Sanbe, Atushi; Kurosaka, Daijiro

    2017-05-01

    We investigated whether heat-shock transcription factor 1 (HSF1) was involved in ultraviolet radiation type B (UVR-B)-induced lens opacity (cataract) using HSF1 heterozygous mice. We also examined the effects of geranylgeranylacetone (GGA), an inducer of heat-shock proteins via activation of HSF, on the UVR-B-induced cataract. Male HSF1 +/- and WT mice were unilaterally exposed to UVR-B (total: 1200mJ) at 16 weeks of age. At 48 h after the last UVR-B irradiation, the lens was isolated and the induction of the cataract was quantified as the cataract area ratio (opacity area/anterior capsule). GGA was orally administered at a dosage of 500 mg/kg once a day for two days before the first UVR-B exposure until the end of the experiment (21days in total). The HSF1 expression was more greatly decreased in the lens from HSF1 +/- mice than in that from WT mice (p B exposure could mainly induce cataracts in the anterior capsule in both HSF1 +/- and WT mice, while the opacity of the lens was markedly enhanced in HSF 1+/- mice compared to that in WT mice(p (0.01). GGA treatment could prevent the induction of lens opacity by UVR-B exposure in both WT and HSF1 +/- mice as compared with the non-administration group (p B radiation was seen in lens protein levels of αA-crystallin, αB-crystallin, or γ-crystallin with or without GGA administration among all groups of mice. In contrast to the crystallins, the lens protein level of HSP25 was decreased by UVR-B exposure in both HSF1 +/- and WT mice, and was significantly recovered in WT mice by the GGA treatment (p B-induced cataracts, possibly via regulation of HSPs such as HSP25.

  12. On the estimation of the worst-case implant-induced RF-heating in multi-channel MRI

    Science.gov (United States)

    Córcoles, Juan; Zastrow, Earl; Kuster, Niels

    2017-06-01

    The increasing use of multiple radiofrequency (RF) transmit channels in magnetic resonance imaging (MRI) systems makes it necessary to rigorously assess the risk of RF-induced heating. This risk is especially aggravated with inclusions of medical implants within the body. The worst-case RF-heating scenario is achieved when the local tissue deposition in the at-risk region (generally in the vicinity of the implant electrodes) reaches its maximum value while MRI exposure is compliant with predefined general specific absorption rate (SAR) limits or power requirements. This work first reviews the common approach to estimate the worst-case RF-induced heating in multi-channel MRI environment, based on the maximization of the ratio of two Hermitian forms by solving a generalized eigenvalue problem. It is then shown that the common approach is not rigorous and may lead to an underestimation of the worst-case RF-heating scenario when there is a large number of RF transmit channels and there exist multiple SAR or power constraints to be satisfied. Finally, this work derives a rigorous SAR-based formulation to estimate a preferable worst-case scenario, which is solved by casting a semidefinite programming relaxation of this original non-convex problem, whose solution closely approximates the true worst-case including all SAR constraints. Numerical results for 2, 4, 8, 16, and 32 RF channels in a 3T-MRI volume coil for a patient with a deep-brain stimulator under a head imaging exposure are provided as illustrative examples.

  13. Heat stress-induced neuroinflammation and aberration in monoamine levels in hypothalamus are associated with temperature dysregulation.

    Science.gov (United States)

    Chauhan, Nishant Ranjan; Kapoor, Medha; Prabha Singh, Laxmi; Gupta, Rajinder Kumar; Chand Meena, Ramesh; Tulsawani, Rajkumar; Nanda, Sarita; Bala Singh, Shashi

    2017-09-01

    Heat Stress (HS) induces diverse pathophysiological changes, which include brain ischemia, oxidative stress and neuronal damage. The present study was undertaken with the objective to ascertain whether neuroinflammation in Hypothalamus (HTH) caused under HS affects monoamine levels and hence, its physiological role in thermoregulation. Rats were exposed to HS in a heat simulation environmental chamber (Ambient temperature, Ta=45±0.5°C and Relative Humidity, RH=30±10%) with real-time measurement of core temperature (Tc) and skin temperature (Ts). Animals were divided into two subgroups: Moderate HS (MHS) (Tc=40°C) and Severe HS (SHS)/Heat stroke (Tc=42°C). Rats with MHS showed an increase in Mean Arterial Pressure (MAP) and Heart Rate (HR) while fall in MAP and rise in HR was observed in rats with SHS. In addition, oxidative stress and an increase in pyknotic neurons were observed in HTH. High levels of Adrenocorticotropic-hormone (ACTH), Epinephrine (EPI), Norepinephrine (NE) and Dopamine (DA) in the systemic circulation and progressive increase in EPI and DA levels in HTH were recorded after the thermal insult. Moreover, a substantial increase in Glutamate (Glu) level was observed in HTH as well as in systemic circulation of heat stroke rats. We found a rise in NE whereas a fall in Serotonin (5-HT) level in HTH at MHS, without perturbing inflammatory mediators. However, rats with SHS exhibited significant elevations in NF-kB, IL-1β, COX2, GFAP and Iba1 protein expression in HTH. In conclusion, the data suggest that SHS induces neuroinflammation in HTH, which is associated with monoamines and Glu imbalances, leading to thermoregulatory disruption. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  14. EFFECTS OF PALM VITAMIN E SUPPLEMENTATION ON EXERCISE-INDUCED OXIDATIVE STRESS AND ENDURANCE PERFORMANCE IN THE HEAT

    Directory of Open Access Journals (Sweden)

    Chen Chee Keong

    2006-12-01

    Full Text Available This study investigates the effects of tocotrienol-rich palm vitamin E supplementation on exercise-induced lipid peroxidation and endurance performance in the heat. In a double blind, cross-over study, eighteen healthy, male recreational athletes completed two endurance running trials, until exhaustion, on a motorized treadmill at 70% VO2max on two separate occasions following a 6-week supplementation regimen of either tocotrienol-rich palm vitamin E (E or placebo (P. Both trials were conducted in the heat (31oC, 70% relative humidity. During the trials, rectal temperature (Trec, ratings of perceived exertion (RPE and oxygen uptake (VO2 were recorded. Blood samples were collected for the determination of plasma volume changes (PVC, malondialdehyde (MDA, creatine kinase (CK, total antioxidant status (TAS and vitamin E. After the supplementation regimen, serum alpha-tocopherol increased ~33% but serum concentrations of tocotrienols were negligible. No significant differences were evident in mean Trec, RPE, VO2 or in the time to exhaustion between the E-supplemented and the placebo- supplemented groups. Similarly, mean PVC, CK and TAS were also not different between the two groups. Resting plasma mean MDA concentration in the E-supplemented group was significantly lower than that in the placebo-supplemented group. At exhaustion, plasma mean MDA was higher than the resting values in both groups. Although tocotrienol-rich palm vitamin E supplementation decreased lipid peroxidation at rest and, to some extent, during exercise in the heat, as evident from the lower MDA levels, it however did not enhance endurance running performance or prevent exercise-induced muscle damage or influenced body core temperature or plasma volume changes during exercise in the heat

  15. Characterization of residual stresses in heat treated Ti-6Al-4V forgings by machining induced distortion

    Directory of Open Access Journals (Sweden)

    Werner E.

    2010-06-01

    Full Text Available To provide a solid base for improved material exploitation in dimensioning calculations it is necessary to determine the stress state in the part prior to service loading. In order to achieve higher material strength at elevated temperatures, the surface temperature gradient with respect to time has to be sufficiently high during heat treatment. This results in non-negligable residual stresses that can reduce the allowable load level upon which yielding occurs. For titanium alloys there are two common heat treatments, namely solution treatment and mill annealing. The latter one is the method of choice within the presented project. Mill annealing is utilized in order to significantly reduce the residual stresses in the parts without loosing much of the improved strength at elevated temperatures. Quantification of residual stresses is done by solving an inverse problem. From the measurement of distortion, induced by dividing the investigated part, the residual stress state can be calculated via analytical modeling or correlation with finite element models. To assure a minimum perturbation of the residual stress state during specimen production, dividing of the part is accomplished by electric discharge machining. The parts of interest are v-shaped prisms with a length of approximatly 450 mm and a thickness in the cross sectional area from about 20 mm to 45 mm. Figure 1(a shows the forged part and 1(b the dimensions of the cross section in millimeters as well as the material properties considered in the finite element model. The heat exchange between the part and the environment is modelled as heat transfer by convection superimposed with heat radiation. Since the parts are exposed to air during forging and heat treatment, the surface develops a strongly adhesive oxide layer, the so called alpha-case. After forging the parts are cooled in air and heat treated at a temperature of 720° C for a duration of 120 min. Subsequent air cooling and

  16. The induced expression of heat shock proteins as a part of the early cellular response to gamma radiation

    International Nuclear Information System (INIS)

    Stankova, K.; Ivanova, K.; Georgieva, R.; Rupova, I.; Boteva, R.

    2008-01-01

    A variety of stressful stimuli including gamma radiation can induce increase in the synthesis of heat shock proteins (Hsp). This family of molecular chaperones includes members with molecular masses ranging from 10 to 150 kDa and has been identified in all organisms from bacteria to humans. Hsp70 chaperones are very important. The present study aimed to characterize the radiation-induced changes in Hsp70 synthesis in human lymphocytes as a part of the early cellular response to gamma irradiation. The expression of Hsp70 was determined with Western blot and the radiation-induced apoptotic changes were registered by staining with fluorescent dyes. Part of the experiments were performed in the presence of the organic solvent DMSO. At low concentrations this reagent shows antioxidant activity and can reduce the level of the radiation-induced oxidant stress which determines the predominant biological effects of the ionizing radiation. Irradiation with 0.5 to 8 Gy caused statistically significant increase in the synthesis of Hsp70 which was strongest after irradiation with 4 Gy. In the range 0.5-2 Gy the enhancement of the radiation-induced synthesis of Hsp70 reached 60%. Our experimental results characterize changes in the Hsp70 synthesis after gamma irradiation as a part of the early cellular stress response in lymphocytes. (authors)

  17. Effective Boundary Slip Induced by Surface Roughness and Their Coupled Effect on Convective Heat Transfer of Liquid Flow

    Directory of Open Access Journals (Sweden)

    Yunlu Pan

    2018-05-01

    Full Text Available As a significant interfacial property for micro/nano fluidic system, the effective boundary slip can be induced by the surface roughness. However, the effect of surface roughness on the effective slip is still not clear, both increased and decreased effective boundary slip were found with increased roughness. The present work develops a simplified model to study the effect of surface roughness on the effective boundary slip. In the created rough models, the reference position of the rough surfaces to determinate effective boundary slip was set based on ISO/ASME standard and the surface roughness parameters including Ra (arithmetical mean deviation of the assessed profile, Rsm (mean width of the assessed profile elements and shape of the texture varied to form different surface roughness. Then, the effective boundary slip of fluid flow through the rough surface was analyzed by using COMSOL 5.3. The results show that the effective boundary slip induced by surface roughness of fully wetted rough surface keeps negative and further decreases with increasing Ra or decreasing Rsm. Different shape of roughness texture also results in different effective slip. A simplified corrected method for the measured effective boundary slip was developed and proved to be efficient when the Rsm is no larger than 200 nm. Another important finding in the present work is that the convective heat transfer firstly increases followed by an unobvious change with increasing Ra, while the effective boundary slip keeps decreasing. It is believed that the increasing Ra enlarges the area of solid-liquid interface for convective heat transfer, however, when Ra is large enough, the decreasing roughness-induced effective boundary slip counteracts the enhancement effect of roughness itself on the convective heat transfer.

  18. Novel X-ray phase-contrast tomography method for quantitative studies of heat induced structural changes in meat

    DEFF Research Database (Denmark)

    Miklos, Rikke; Nielsen, Mikkel Schou; Einarsdottir, Hildur

    2014-01-01

    The objective of this study was to evaluate the use of X-ray phase-contrast tomography combined with 3D image segmentation to investigate the heat induced structural changes in meat. The measurements were performed at the Swiss synchrotron radiation light source using a grating interferometric...... and separated into a water phase and a gel phase formed by the sarcoplasmic proteins in the exudate. The results show that X-ray phase contrast tomography offers unique possibilities in studies both the meat structure and the different meat component such as water, fat, connective tissue and myofibrils...

  19. Beam-induced heat loads on the beam screens of the inner triplets for the HL-LHC

    CERN Document Server

    Skripka, Galina; CERN. Geneva. ATS Department

    2018-01-01

    The expected heat load induced on the beam screens has been evaluated for the triplet assemblies in the four experimental Insertion Regions (IRs) of the HL-LHC. The contribution from electron cloud effects has been estimated using PyECLOUD macroparticle simulations. The presence of a surface treatment for the reduction of the Secondary Electron Yield has been taken into account. The contribution from the impedance of the beam screen has been evaluated taking into account the impact of the temperature and of the magnetic field on the resistivity of the surface.

  20. HEAT-INDUCED CHANGES IN ALDOSTERONE LEVEL AND MINERAL BALANCE IN EGYPTIAN BUFFALO CALVES

    International Nuclear Information System (INIS)

    NESSIM, M.Z.; KAMAL, T.H.

    2010-01-01

    Eight male buffalo calves (13 months old) were used in the present study. The animals were maintained in metabolic cages inside a climatic chamber for 2 weeks under mild climate at 21 0 C and 73% RH for 6 hours daily as an adjustment period followed by 7 days at the same climatic conditions as a control period then followed by a heat exposure period for 7 days at 35-42 0 C and 40-50 % RH for 6 hours daily. The animals were fed individually on concentrates and wheat straw. Plasma aldosterone was estimated on the first day after 6 hours of each mild and hot exposure periods. Sodium, potassium, calcium, phosphorus and magnesium balances were estimated on the last three days of control and heat exposure periods. Rectal temperature and respiration rate were recorded daily during both periods. The rectal temperature was raised (P 0 C by the end of 6 hours heat exposure period. The respiration rate was increased (P<0.01) at the end of 6 hours of heat exposure from 25 to 110.81 breaths/minute. Aldosterone was increased (P<0.05) from 5.79 to 37.11 pg/ml whereas sodium, potassium, calcium, phosphorus and magnesium were decreased (P<0.01) by 19.16 %, 40.70%, 46.05 %, 35.69 % and 48.99%, respectively.

  1. Hyperthermia with rotating magnetic nanowires inducing heat into tumor by fluid friction

    Energy Technology Data Exchange (ETDEWEB)

    Egolf, Peter W.; Pawlowski, Anne-Gabrielle; Tsague, Paulin; Marco, Bastien de; Bovy, William; Tucev, Sinisa [Institute of Thermal Sciences and Engineering, University of Applied Sciences of Western Switzerland, CH 1401 Yverdon-les-Bains (Switzerland); Shamsudhin, Naveen, E-mail: snaveen@ethz.ch; Pané, Salvador; Pokki, Juho; Ansari, M. H. D.; Nelson, Bradley J. [Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zurich, CH 8092 Zurich (Switzerland); Vuarnoz, Didier [Ecole Polytechnique Fédérale de Lausanne (EPFL), EPFL Fribourg, CH 1701 Fribourg (Switzerland)

    2016-08-14

    A magnetic hyperthermia cancer treatment strategy that does not operate by means of conventional heating mechanisms is presented. The proposed approach consists of injecting a gel with homogeneously distributed magnetic nanowires into a tumor. Upon the application of a low-frequency rotating or circularly polarized magnetic field, nanowires spin around their center of viscous drag due to torque generated by shape anisotropy. As a result of external rotational forcing and fluid friction in the nanoparticle's boundary layer, heating occurs. The nanowire dynamics is theoretically and experimentally investigated, and different feasibility proofs of the principle by physical modeling, which adhere to medical guidelines, are presented. The magnetic nanorotors exhibit rotations and oscillations with quite a steady center of gravity, which proves an immobile behavior and guarantees a time-independent homogeneity of the spatial particle distribution in the tumor. Furthermore, a fluid dynamic and thermodynamic heating model is briefly introduced. This model is a generalization of Penne's model that for this method reveals theoretic heating rates that are sufficiently high, and fits well into medical limits defined by present standards.

  2. Treatment of Phlegm- and Heat-induced Insomnia by Acupuncture in 120 Cases

    Institute of Scientific and Technical Information of China (English)

    崔芮; 周德安

    2003-01-01

    @@ Clinical Data The 120 cases in this series were outpatients suffering from insomnia due to interior-stirring by phlegm-heat, ranging in age from 28 to 67 years. They were randomly divided into a treatment group and a control group.

  3. Theoretical analysis of the mode coupling induced by heat of large-pitch micro-structured fibers

    International Nuclear Information System (INIS)

    Zhang Hai-Tao; Hao Jie; Yan Ping; Gong Ma-Li; Chen Dan

    2015-01-01

    In this paper, a theoretical model to analyze the mode coupling induced by heat, when the fiber amplifier works at high power configuration, is proposed. The model mainly takes into consideration the mode field change due to the thermally induced refractive index change and the coupling between modes. A method to predict the largest average output power of fiber is also proposed according to the mode coupling theory. The largest average output power of a large pitch fiber with a core diameter of 190 μm and an available pulse energy of 100 mJ is predicted to be 540 W, which is the highest in large mode field fibers. (paper)

  4. DC heating induced shape transformation of Ge structures on ultraclean Si(5 5 12) surfaces.

    Science.gov (United States)

    Dash, J K; Rath, A; Juluri, R R; Raman, P Santhana; Müller, K; Rosenauer, A; Satyam, P V

    2011-04-06

    We report the growth of Ge nanostructures and microstructures on ultraclean, high vicinal angle silicon surfaces and show that self-assembled growth at optimum thickness of the overlayer leads to interesting shape transformations, namely from nanoparticle to trapezoidal structures, at higher thickness values. Thin films of Ge of varying thickness from 3 to 12 ML were grown under ultrahigh vacuum conditions on a Si(5 5 12) substrate while keeping the substrate at a temperature of 600 °C. The substrate heating was achieved by two methods: (i) by heating a filament under the substrate (radiative heating, RH) and (ii) by passing direct current through the samples in three directions (perpendicular, parallel and at 45° to the (110) direction of the substrate). We find irregular, more spherical-like island structures under RH conditions. The shape transformations have been found under DC heating conditions and for Ge deposition more than 8 ML thick. The longer sides of the trapezoid structures are found to be along (110) irrespective of the DC current direction. We also show the absence of such a shape transformation in the case of Ge deposition on Si(111) substrates. Scanning transmission electron microscopy measurements suggested the mixing of Ge and Si. This has been confirmed with a quantitative estimation of the intermixing using Rutherford backscattering spectrometry (RBS) measurements. The role of DC heating in the formation of aligned structures is discussed. Although the RBS simulations show the presence of a possible SiO(x) layer, under the experimental conditions of the present study, the oxide layer would not play a role in determining the formation of the various structures that were reported here.

  5. Ascorbic acid and melatonin reduce heat-induced performance inhibition and oxidative stress in Japanese quails.

    Science.gov (United States)

    Sahin, N; Onderci, M; Sahin, K; Gursu, M F; Smith, M O

    2004-02-01

    1. The effects of ascorbic acid (L-ascorbic acid) and melatonin supplementation on performance, carcase characteristics, malondialdehyde (MDA) as lipid peroxidation indicator, ascorbic acid, retinol, tocopherol and mineral status in the Japanese quail (Coturnix coturnix japonica) exposed to high ambient temperature were evaluated. 2. Two hundred and forty Japanese quails (10 d old) were randomly assigned to 8 treatment groups consisting of 10 replicates of three birds each. The birds were kept in a temperature-controlled room at 22 degrees C (Thermoneutral, TN groups) or 34 degrees C (for 8 h/d; 09:00 to 17:00 h; Heat stress, HS groups). Birds in both TN and HS were fed either a basal (control) diet or the basal diet supplemented with 250 mg of L-ascorbic acid/kg of diet (Ascorbic acid group), 40 mg of melatonin/kg of diet (Melatonin group) or both (Ascorbic acid + Melatonin group). 3. Supplementing heat-stressed quails with ascorbic acid and melatonin improved performance compared with the control group. Effects generally were greatest in quails supplemented with both ascorbic acid and melatonin. 4. Although supplementation did not consistently restore the concentrations of serum ascorbic acid, retinol and tocopherol to those of TN groups, these concentrations increased significantly with supplementation. Furthermore, serum and liver MDA and serum cholesterol and glucose concentrations were lower in the supplemented groups than in the heat-stressed controls. 5. Within each environment, excretion of Ca, P, Mg, Zn, Fe and Cr were lowest in the combination group and, in all cases, highest in the HS group. Interactions between diet and temperature were detected for live weight gain, cold carcase weight, MDA, ascorbic acid, tocopherol concentrations and excretion of zinc. 6. The results of the study indicate that ascorbic acid and melatonin supplementation attenuate the decline in performance and antioxidant and mineral status caused by heat stress and such

  6. Psychosocial factors partially mediate the relationship between mechanical hyperalgesia and self-reported pain.

    Science.gov (United States)

    Mason, Kayleigh J; O'Neill, Terence W; Lunt, Mark; Jones, Anthony K P; McBeth, John

    2018-01-26

    helplessness) and illness perceptions (consequences and concern) were significant partial mediators of the association with global pain intensity when loaded on to a latent mediator for: tender point count [75% total effect; 95% confidence interval (CI) 22%, 100%]; MPS at the knee (49%; 12%, 86%); and DMA at the knee (63%; 5%, 100%). Latent psychosocial factors were also significant partial mediators of the association between pain intensity at the tested knee with MPS at the knee (30%; 2%, 58%), but not for DMA at the knee. Measures of mechanical hyperalgesia at the most painful knee and pain-free opposite forearm were associated with increased knee and global pain indicative of altered central processing. Psychosocial factors were significant partial mediators, highlighting the importance of the central integration of emotional processing in pain perception. Associations between mechanical hyperalgesia at the forearm and knee, psychosocial factors and increased levels of clinical global and knee pain intensity provide evidence of altered central processing as a key mechanism in knee pain, with psychological factors playing a key role in the expression of clinical pain.

  7. Effect of Intramuscular Protons, Lactate, and ATP on Muscle Hyperalgesia in Rats.

    Directory of Open Access Journals (Sweden)

    Nicholas S Gregory

    Full Text Available Chronic muscle pain is a significant health problem leading to disability[1]. Muscle fatigue can exacerbate muscle pain. Metabolites, including ATP, lactate, and protons, are released during fatiguing exercise and produce pain in humans. These substances directly activate purinergic (P2X and acid sensing ion channels (ASICs on muscle nociceptors, and when combined, produce a greater increase in neuron firing than when given alone. Whether the enhanced effect of combining protons, lactate, and ATP is the sum of individual effects (additive or more than the sum of individual effects (synergistic is unknown. Using a rat model of muscle nociceptive behavior, we tested each of these compounds individually over a range of physiologic and supra-physiologic concentrations. Further, we combined all three compounds in a series of dilutions and tested their effect on muscle nociceptive behavior. We also tested a non-hydrolyzable form of ATP (α,β-meATP alone and in combination with lactate and acidic pH. Surprisingly, we found no dose-dependent effect on muscle nociceptive behavior for protons, lactate, or ATP when given alone. We similarly found no effect after application of each two-metabolite combination. Only pH 4 saline and α,β-meATP produced hyperalgesia when given alone. When all 3 substances were combined, however, ATP (2.4μm, lactate (10mM, and acidic pH (pH 6.0 produced an enhanced effect greater than the sum of the effects of the individual components, i.e. synergism. α,β me ATP (3nmol, on the other hand, showed no enhanced effects when combined with lactate (10mM or acidic pH (pH 6.0, i.e. additive. These data suggest that combining fatigue metabolites in muscle produces a synergistic effect on muscle nociception.

  8. Inducing Heat Shock Proteins Enhances the Stemness of Frozen-Thawed Adipose Tissue-Derived Stem Cells.

    Science.gov (United States)

    Shaik, Shahensha; Hayes, Daniel; Gimble, Jeffrey; Devireddy, Ram

    2017-04-15

    Extensive research has been performed to determine the effect of freezing protocol and cryopreservation agents on the viability of adipose tissue-derived stromal/stem cells (ASCs) as well as other cells. Unfortunately, the conclusion one may draw after decades of research utilizing fundamentally similar cryopreservation techniques is that a barrier exists, which precludes full recovery. We hypothesize that agents capable of inducing a subset of heat shock proteins (HSPs) and chaperones will reduce the intrinsic barriers to the post-thaw recovery of ASCs. ASCs were exposed to 43°C for 1 h to upregulate HSPs, and the temporal HSP expression profile postheat shock was determined by performing quantitative polymerase chain reaction (PCR) and western blotting assays. The expression levels of HSP70 and HSP32 were found to be maximum at 3 h after the heat shock, whereas HSP90 and HSP27 remain unchanged. The heat shocked ASCs cryopreserved during maximal HSPs expression exhibited increased post-thaw viability than the nonheat shocked samples. Histochemical staining and quantitative reverse transcription-PCR indicated that the ASC differentiation potential was retained. Thus, suggesting that the upregulation of HSPs before a freezing insult is beneficial to ASCs and a potential alternative to the use of harmful cryoprotective agents.

  9. Impact of filling scheme on beam induced RF heating in CERN LHC and HL-LHC

    CERN Document Server

    AUTHOR|(CDS)2241936; De Vito, Luca; Salvant, Benoit

    At CERN, after the first maintenance cycle (Long Shutdown 1, LS1) of the Large Hadron Collider (LHC), several sectors of the accelerator present a beam-induced heating much larger than expectations. This work compares data measured by cryogenic instrumentation with the expected heat load for various filling schemes and shows that impedance is not reasonably the major cause of the additional heat load. With this aim, the scaling of the power loss is analyzed carefully. In particular the scaling of the computed power loss from beam coupling impedance with the number of bunches is well understood only for a very broad band Impedance and for a very narrow band Impedance in ideal filling schemes that assume that the machine is full of equispaced bunches. This thesis analyzes also this dependence with number of bunches of the impedance of a resonator for a wide range of quality factors and more realistic filling schemes. The commonly assumed scaling with the square of number of bunches for narrow band resonator...

  10. Tribological changes on SS304 stainless steel induced by nitrogen plasma immersion ion implantation with and without auxiliary heating

    International Nuclear Information System (INIS)

    Mello, C.B.; Ueda, M.; Lepienski, C.M.; Reuther, H.

    2009-01-01

    In order to achieve quite thick treated layers with reasonable thickness uniformity in SS304 steel, the plasma immersion ion implantation (PIII) process was run in high-temperature, up to 350 deg. C, to induce high thermal diffusion but avoid the white layer formation. In these experiments, we heated the sample-holder with a shielded resistive wire properly wound around it and subjected the SS samples to nitrogen glow discharge PIII with relatively low voltages (10 kV) in different temperatures. We also treated the SS samples by the traditional PIII method, slowly increasing the high voltage pulse intensities, until 14 kV at the end of processing, reaching temperatures of up to 350 deg. C. These modes of treatments were compared with respect to nitrogen implantation profiles, X-ray diffraction, tribology and mechanical properties. X-ray diffraction results indicated a much higher efficiency of auxiliary heated PIII mode compared to the ordinary PIII. Very prominent γ N peaks were observed for the first mode, indicating large concentration of nitrogen in thick layers, confirmed by the nitrogen profiles measured by GDOS and AES. Improved mechanical and tribological properties were obtained for SS304 samples treated by the PIII with auxiliary heating, more than for ordinary PIII. Hardness was enhanced by up to 2.77 times, as seen by nanoindentation tests.

  11. Whole Body Hyperthermia in Mice Confers Delayed Radioprotection at Cellular and Tissue Levels: Inducible Heat Shock Proteins as Endogenous Radioprotectors

    International Nuclear Information System (INIS)

    Malytina, Y. V.; Sements, T. N.; Semina, O. V.; Mosin, A. F.; Kabakov, A.

    2004-01-01

    It was previously shown on heat shock protein (Hsp)-over expressing cell lines that the increased intracellular content of Hsp 70 or Hsp27 is associated with the elevated radioresistance. However, it was so far unknown whether the in vivo Fsp induction by stressful preconditioning can confer radioprotection at the tissue and cellular levels. In the present study, we examined how the in vivo up-regulation of the Hsp expression in response to mild whole body hyperthermia (42 degrees C, 10 min) in mice changes susceptibility of their bone marrow stem cells and thymocytes to subsequent gamma-irradiation. to assess the expectable contribution of stress-inducible Hsp we used injections with Quercetin, a flavonoid inhibiting the stress-responsive Hsp induction. The results demonstrate that the bone marrow stem cells and thymocytes from heat-preconditioned mice were more radioresistant than those from the non-preconditioned animals. the radioprotection was well manifested if mice or their isolated thymocytes were irradiated 18-25 h after the in vivo hyperthermia. This delayed radioprotection resulting from the heat preconditioning was suppressed in Quercetin-injected mice. The revealed correlation between the intracellular Hsp accumulation and the acquired Quercetin-sensitive radioprotection suggests a beneficial role of Hsps as of endogenous radioprotectors. Our finding discovers new ways for artificial modulation of effects of irradiation on target cells via manipulating the Hsp expression. (Author) 17 refs

  12. Incorporation of cooling-induced crystallisation into a 2-dimensional axisymmetric conduit heat flow model

    Science.gov (United States)

    Heptinstall, D. A.; Neuberg, J. W.; Bouvet de Maisonneuve, C.; Collinson, A.; Taisne, B.; Morgan, D. J.

    2015-12-01

    Heat flow models can bring new insights into the thermal and rheological evolution of volcanic systems. We shall investigate the thermal processes and timescales in a crystallizing, static magma column, with a heat flow model of Soufriere Hills Volcano (SHV), Montserrat. The latent heat of crystallization is initially computed with MELTS, as a function of pressure and temperature for an andesitic melt (SHV groundmass starting composition). Three fractional crystallization simulations are performed; two with initial pressures of 34MPa (runs 1 & 2) and one of 25MPa (run 3). Decompression rate was varied between 0.1MPa/°C (runs 1 & 3) and 0.2MPa/°C (run 2). Natural and experimental matrix glass compositions are accurately reproduced by all MELTS runs. The cumulative latent heat released for runs 1, 2 and 3 differs by less than 9% (8.69e5 J/kg*K, 9.32e5 J/kg*K, and 9.49e5 J/kg*K respectively). The 2D axisymmetric conductive cooling simulations consider a 30m-diameter conduit that extends from the surface to a depth of 1500m (34MPa). The temporal evolution of temperature is closely tracked at depths of 10m, 750m and 1400m in the center of the conduit, at the conduit walls, and 20m from the walls into the host rock. Following initial cooling by 7-15oC at 10m depth inside the conduit, the magma temperature rebounds through latent heat release by 32-35oC over 85-123 days to a maximum temperature of 1002-1005oC. At 10 m depth, it takes 4.1-9.2 years for the magma column to cool over 108-130oC and crystallize to 75wt%, at which point it cannot be easily remobilized. It takes 11-31.5 years to reach the same crystallinity at 750-1400m depth. We find a wide range in cooling timescales, particularly at depths of 750m or greater, attributed to the initial run pressure and dominant latent heat producing crystallizing phases (Quartz), where run 1 cools fastest and run 3 cools slowest. Surface cooling by comparison has the strongest influence on the upper tens of meters in all

  13. Incorporation of cooling-induced crystallization into a 2-dimensional axisymmetric conduit heat flow model

    Science.gov (United States)

    Heptinstall, David; Bouvet de Maisonneuve, Caroline; Neuberg, Jurgen; Taisne, Benoit; Collinson, Amy

    2016-04-01

    Heat flow models can bring new insights into the thermal and rheological evolution of volcanic 3 systems. We shall investigate the thermal processes and timescales in a crystallizing, static 4 magma column, with a heat flow model of Soufriere Hills Volcano (SHV), Montserrat. The latent heat of crystallization is initially computed with MELTS, as a function of pressure and temperature for an andesitic melt (SHV groundmass starting composition). Three fractional crystallization simulations are performed; two with initial pressures of 34MPa (runs 1 & 2) and one of 25MPa (run 3). Decompression rate was varied between 0.1MPa/° C (runs 1 & 3) and 0.2MPa/° C (run 2). Natural and experimental matrix glass compositions are accurately reproduced by all MELTS runs. The cumulative latent heat released for runs 1, 2 and 3 differs by less than 9% (8.69E5 J/kg*K, 9.32E5 J/kg*K, and 9.49E5 J/kg*K respectively). The 2D axisymmetric conductive cooling simulations consider a 30m-diameter conduit that extends from the surface to a depth of 1500m (34MPa). The temporal evolution of temperature is closely tracked at depths of 10m, 750m and 1400m in the centre of the conduit, at the conduit walls, and 20m from the walls into the host rock. Following initial cooling by 7-15oC at 10m depth inside the conduit, the magma temperature rebounds through latent heat release by 32-35oC over 85-123 days to a maximum temperature of 1002-1005oC. At 10m depth, it takes 4.1-9.2 years for the magma column to cool by 108-131oC and crystallize to 75wt%, at which point it cannot be easily remobilized. It takes 11-31.5 years to reach the same crystallinity at 750-1400m depth. We find a wide range in cooling timescales, particularly at depths of 750m or greater, attributed to the initial run pressure and the dominant latent heat producing crystallizing phase, Albite-rich Plagioclase Feldspar. Run 1 is shown to cool fastest and run 3 cool the slowest, with surface emissivity having the strongest cooling

  14. Heat transfer effects on a viscous dissipative fluid flow past a vertical plate in the presence of induced magnetic field

    Directory of Open Access Journals (Sweden)

    M.C. Raju

    2015-03-01

    Full Text Available A theoretical analysis is performed to study induced magnetic field effects on free convection flow past a vertical plate. The x¯-axis is taken vertically upwards along the plate, y¯-axis normal to the plate into the fluid region. It is assumed that the plate is electrically non-conducting and the applied magnetic field is of uniform strength (H0 and perpendicular to the plate. The magnetic Reynolds number of the flow is not taken to be small enough so that the induced magnetic field is taken into account. The coupled nonlinear partial differential equations are solved by Perturbation technique and the effects of various physical parameters on velocity, temperature, and induced magnetic fields are studied through graphs and tables. Variations in Skin friction and rate of heat transfer are also studied. It is observed that an increase in magnetic parameter decreases the velocity for both water and air. It is also seen that there is a fall in induced magnetic field as magnetic Prandtl number, and magnetic field parameter increase.

  15. Design specifications to ensure flow-induced vibration and fretting-wear performance in CANDU steam generators and heat exchangers

    International Nuclear Information System (INIS)

    Janzen, V.P.; Han, Y.; Pettigrew, M.J.

    2009-01-01

    Preventing flow-induced vibration and fretting-wear problems in steam generators and heat exchangers requires design specifications that bring together specific guidelines, analysis methods, requirements and appropriate performance criteria. This paper outlines the steps required to generate and support such design specifications for CANDU nuclear steam generators and heat exchangers, and relates them to typical steam-generator design features and computer modeling capabilities. It also describes current issues that are driving changes to flow-induced vibration and fretting-wear specifications that can be applied to the design process for component refurbishment, replacement or new designs. These issues include recent experimental or field evidence for new excitation mechanisms, e.g., the possibility of in-plane fluidelastic instability of U-tubes, the demand for longer reactor and component lifetimes, the need for better predictions of dynamic properties and vibration response, e.g., two-phase random-turbulence excitation, and requirements to consider system 'excursions' or abnormal scenarios, e.g., a main steam line break in the case of steam generators. The paper describes steps being taken to resolve these issues. (author)

  16. Bio-heat transfer model of electroconvulsive therapy: Effect of biological properties on induced temperature variation.

    Science.gov (United States)

    de Oliveira, Marilia M; Wen, Paul; Ahfock, Tony

    2016-08-01

    A realistic human head model consisting of six tissue layers was modelled to investigate the behavior of temperature profile and magnitude when applying electroconvulsive therapy stimulation and different biological properties. The thermo-electrical model was constructed with the use of bio-heat transfer equation and Laplace equation. Three different electrode montages were analyzed as well as the influence of blood perfusion, metabolic heat and electric and thermal conductivity in the scalp. Also, the effect of including the fat layer was investigated. The results showed that temperature increase is inversely proportional to electrical and thermal conductivity increase. Furthermore, the inclusion of blood perfusion slightly drops the peak temperature. Finally, the inclusion of fat is highly recommended in order to acquire more realistic results from the thermo-electrical models.

  17. Postponement of incipient collapse due to work-induced heat stress by limited cooling

    Science.gov (United States)

    Blockley, W. V.

    1973-01-01

    Four subjects completed five treadmill training sessions under comfortable to cool conditions and were calibrated to find an optimum combination of speed and grade on the treadmill which would produce a metabolic rate of 2000 Btu-hr. Dressed in an Apollo liquid cooling garment, each man underwent a total of four experiments in which the rate of heat extraction from the liquid cooling garment was adjusted to an amount which would cause a storage within the body of 1000 Btu/hr. Physiological measurements included skin temperature at 9 locations, rectal and ear canal probes, and heart rate. The increases in tolerance time for the various subjects and the various methods of emergency cooling, ranged from a low of six minutes to a high of 48 minutes, or from 8 to 102% of the baseline tolerance times. The largest gains were achieved in a subject whose tolerance endpoint was atypical, and whose baseline heat tolerance was unsually low.

  18. Heat Shock Protein-Inducing Property of Diarylheptanoid Containing Chalcone Moiety from Alpinia katsumadai

    Directory of Open Access Journals (Sweden)

    Joo-Won Nam

    2017-10-01

    Full Text Available A new diarylheptanoid containing a chalcone moiety, katsumain H (1, was isolated from the seeds of Alpinia katsumadai. The structure was elucidated using a combination of 1D/2D NMR spectroscopy and mass spectrometry data analysis. The absolute configurations of C-3, C-5, and C-7 in 1 were assigned based on its optical rotation and after comparing its NMR chemical shifts with those of its diastereoisomers, katsumain E and katsumain F, which were previously isolated from this plant and characterized. In this study, the stimulatory effects of compounds 1 and 2 were evaluated on heat shock factor 1 (HSF1, heat shock protein 27 (HSP27, and HSP70. Compounds 1 and 2 increased the expression of HSF1 (1.056- and 1.200-fold, respectively, HSP27 (1.312- and 1.242-fold, respectively, and HSP70 (1.234- and 1.271-fold, respectively, without increased cytotoxicity.

  19. Multiphysics model of thermomechanical and helium-induced damage of tungsten during plasma heat transients

    Energy Technology Data Exchange (ETDEWEB)

    Crosby, Tamer, E-mail: tcrosby@ucla.edu; Ghoniem, Nasr M., E-mail: ghoniem@ucla.edu

    2013-11-15

    A combination of transient heating and bombardment by helium and hydrogen atoms has been experimentally proven to lead to severe surface and sub-surface damage. We developed a computational model to determine the relationship between the thermomechanical loading conditions and the onset of damage and failure of tungsten surfaces. The model is based on a thermoelasticity fracture damage approach that was developed using the phase field method. The model simulates the distribution of helium bubbles inside the grains and on grain boundaries using space-dependent rate theory. In addition, the model is coupled with a transient heat conduction analysis for temperature distributions inside the material. The results show the effects of helium bubbles on reducing tungsten surface energy. Further, a temperature gradient in the material equals to 10 K/μm, resulted in deep cracks propagating from the tungsten surface.

  20. Phonon-induced anomalous specific heat of a model nanocrystal by computer simulation

    International Nuclear Information System (INIS)

    Wang, J.; Wolf, D.; Phillpot, S.R.; Gleiter, H.

    1994-10-01

    The authors construct a simple model of a nanocrystalline material in which all the grains are the same size and shape, and in which all the grain boundaries are crystallographically identical. The authors show that the model nanocrystal has a low-temperature specific-heat anomaly similar to that seen in experiment, which arises from the presence of low-frequency phonons localized at the grain boundaries

  1. Amelioration of Heat Stress Induced Disturbances of Antioxidant Defense System in Chicken by Brahma Rasayana

    Directory of Open Access Journals (Sweden)

    V. Ramnath

    2008-01-01

    Full Text Available Since the range of comfort zone or thermo neutral zone of domestic chickens is narrow, they become easily susceptible to heat and cold environmental stress. We evaluated Brahma Rasayana (BR supplementation on concentrations of certain oxidative stress markers associated with heat stress. A total of 48 egg type male chickens of local strain were divided into six groups (n = 8 for the study. Three groups were fed with BR orally at the rate of 2 g/kg bw daily for 10 days prior to and during the period of experiment. Two of the four groups that were exposed to heat stress (HST i.e. to a temperature of 40 ± 1°C and relative humidity of 80 ± 5% in an environmental chamber for 4 h daily for 5 or 10 days, received BR orally. The other two groups remained as BR treated and untreated non-heat stressed (NHST controls. There was a significant (P < 0.05 increase in the activities of antioxidant enzymes in blood such as catalase (CAT and superoxide dismutase (SOD, as well as liver CAT, glutathione peroxidase (GPX and glutathione reductase (GR in NHST-BR treated and HST-BR treated (both 5 and 10 days chickens when compared with untreated controls. A great deal of significant (P < 0.05 variations were seen in serum and liver reduced glutathione (GSH concentration in NHST-BR treated and HST-BR treated (both 5 and 10 days chickens. Serum and liver lipid peroxidation levels were found to be significantly (P < 0.05 higher in HST-untreated (both 5 and 10 days chickens when compared with other groups. Thus BR supplementation during HST brings about enhanced action of enzymatic and non-enzymatic antioxidants, which nullified the undesired side effects of free radicals that are generated during HST.

  2. Molecular Stress-inducing Compounds Increase Osteoclast Formation in a Heat Shock Factor 1 Protein-dependent Manner*

    Science.gov (United States)

    Chai, Ryan C.; Kouspou, Michelle M.; Lang, Benjamin J.; Nguyen, Chau H.; van der Kraan, A. Gabrielle J.; Vieusseux, Jessica L.; Lim, Reece C.; Gillespie, Matthew T.; Benjamin, Ivor J.; Quinn, Julian M. W.; Price, John T.

    2014-01-01

    Many anticancer therapeutic agents cause bone loss, which increases the risk of fractures that severely reduce quality of life. Thus, in drug development, it is critical to identify and understand such effects. Anticancer therapeutic and HSP90 inhibitor 17-(allylamino)-17-demethoxygeldanamycin (17-AAG) causes bone loss by increasing osteoclast formation, but the mechanism underlying this is not understood. 17-AAG activates heat shock factor 1 (Hsf1), the master transcriptional regulator of heat shock/cell stress responses, which may be involved in this negative action of 17-AAG upon bone. Using mouse bone marrow and RAW264.7 osteoclast differentiation models we found that HSP90 inhibitors that induced a heat shock response also enhanced osteoclast formation, whereas HSP90 inhibitors that did not (including coumermycin A1 and novobiocin) did not affect osteoclast formation. Pharmacological inhibition or shRNAmir knockdown of Hsf1 in RAW264.7 cells as well as the use of Hsf1 null mouse bone marrow cells demonstrated that 17-AAG-enhanced osteoclast formation was Hsf1-dependent. Moreover, ectopic overexpression of Hsf1 enhanced 17-AAG effects upon osteoclast formation. Consistent with these findings, protein levels of the essential osteoclast transcription factor microphthalmia-associated transcription factor were increased by 17-AAG in an Hsf1-dependent manner. In addition to HSP90 inhibitors, we also identified that other agents that induced cellular stress, such as ethanol, doxorubicin, and methotrexate, also directly increased osteoclast formation, potentially in an Hsf1-dependent manner. These results, therefore, indicate that cellular stress can enhance osteoclast differentiation via Hsf1-dependent mechanisms and may significantly contribute to pathological and therapeutic related bone loss. PMID:24692538

  3. Distortion of genetically modified organism quantification in processed foods: influence of particle size compositions and heat-induced DNA degradation.

    Science.gov (United States)

    Moreano, Francisco; Busch, Ulrich; Engel, Karl-Heinz

    2005-12-28

    Milling fractions from conventional and transgenic corn were prepared at laboratory scale and used to study the influence of sample composition and heat-induced DNA degradation on the relative quantification of genetically modified organisms (GMO) in food products. Particle size distributions of the obtained fractions (coarse grits, regular grits, meal, and flour) were characterized using a laser diffraction system. The application of two DNA isolation protocols revealed a strong correlation between the degree of comminution of the milling fractions and the DNA yield in the extracts. Mixtures of milling fractions from conventional and transgenic material (1%) were prepared and analyzed via real-time polymerase chain reaction. Accurate quantification of the adjusted GMO content was only possible in mixtures containing conventional and transgenic material in the form of analogous milling fractions, whereas mixtures of fractions exhibiting different particle size distributions delivered significantly over- and underestimated GMO contents depending on their compositions. The process of heat-induced nucleic acid degradation was followed by applying two established quantitative assays showing differences between the lengths of the recombinant and reference target sequences (A, deltal(A) = -25 bp; B, deltal(B) = +16 bp; values related to the amplicon length of the reference gene). Data obtained by the application of method A resulted in underestimated recoveries of GMO contents in the samples of heat-treated products, reflecting the favored degradation of the longer target sequence used for the detection of the transgene. In contrast, data yielded by the application of method B resulted in increasingly overestimated recoveries of GMO contents. The results show how commonly used food technological processes may lead to distortions in the results of quantitative GMO analyses.

  4. Molecular stress-inducing compounds increase osteoclast formation in a heat shock factor 1 protein-dependent manner.

    Science.gov (United States)

    Chai, Ryan C; Kouspou, Michelle M; Lang, Benjamin J; Nguyen, Chau H; van der Kraan, A Gabrielle J; Vieusseux, Jessica L; Lim, Reece C; Gillespie, Matthew T; Benjamin, Ivor J; Quinn, Julian M W; Price, John T

    2014-05-09

    Many anticancer therapeutic agents cause bone loss, which increases the risk of fractures that severely reduce quality of life. Thus, in drug development, it is critical to identify and understand such effects. Anticancer therapeutic and HSP90 inhibitor 17-(allylamino)-17-demethoxygeldanamycin (17-AAG) causes bone loss by increasing osteoclast formation, but the mechanism underlying this is not understood. 17-AAG activates heat shock factor 1 (Hsf1), the master transcriptional regulator of heat shock/cell stress responses, which may be involved in this negative action of 17-AAG upon bone. Using mouse bone marrow and RAW264.7 osteoclast differentiation models we found that HSP90 inhibitors that induced a heat shock response also enhanced osteoclast formation, whereas HSP90 inhibitors that did not (including coumermycin A1 and novobiocin) did not affect osteoclast formation. Pharmacological inhibition or shRNAmir knockdown of Hsf1 in RAW264.7 cells as well as the use of Hsf1 null mouse bone marrow cells demonstrated that 17-AAG-enhanced osteoclast formation was Hsf1-dependent. Moreover, ectopic overexpression of Hsf1 enhanced 17-AAG effects upon osteoclast formation. Consistent with these findings, protein levels of the essential osteoclast transcription factor microphthalmia-associated transcription factor were increased by 17-AAG in an Hsf1-dependent manner. In addition to HSP90 inhibitors, we also identified that other agents that induced cellular stress, such as ethanol, doxorubicin, and methotrexate, also directly increased osteoclast formation, potentially in an Hsf1-dependent manner. These results, therefore, indicate that cellular stress can enhance osteoclast differentiation via Hsf1-dependent mechanisms and may significantly contribute to pathological and therapeutic related bone loss.

  5. Do Australian Football players have sensitive groins? Players with current groin pain exhibit mechanical hyperalgesia of the adductor tendon.

    Science.gov (United States)

    Drew, Michael K; Lovell, Gregory; Palsson, Thorvaldur S; Chiarelli, Pauline E; Osmotherly, Peter G

    2016-10-01

    This is the first study to evaluate the mechanical sensitivity, clinical classifications and prevalence of groin pain in Australian football players. Case-control. Professional (n=66) and semi-professional (n=9) Australian football players with and without current or previous groin injuries were recruited. Diagnoses were mappe