WorldWideScience

Sample records for heat dissipation mechanism

  1. Effect of heat treatment on mechanical dissipation in Ta$_2$O$_5$ coatings

    CERN Document Server

    Martin, I W; Nawrodt, R; Fejer, M M; Gretarsson, A; Gustafson, E; Harry, G; Hough, J; MacLaren, I; Penn, S; Reid, S; Route, R; Rowan, S; Schwar, C; Seidel, P; Scott, J; Woodcraft, A L

    2010-01-01

    Thermal noise arising from mechanical dissipation in dielectric reflective coatings is expected to critically limit the sensitivity of precision measurement systems such as high-resolution optical spectroscopy, optical frequency standards and future generations of interferometric gravitational wave detectors. We present measurements of the effect of post-deposition heat treatment on the temperature dependence of the mechanical dissipation in ion-beam sputtered tantalum pentoxide between 11\\,K and 300\\,K. We find the temperature dependence of the dissipation is strongly dependent on the temperature at which the heat treatment was carried out, and we have identified three dissipation peaks occurring at different heat treatment temperatures. At temperatures below 200\\,K, the magnitude of the loss was found to increase with higher heat treatment temperatures, indicating that heat treatment is a significant factor in determining the level of coating thermal noise.

  2. Graphene heat dissipating structure

    Energy Technology Data Exchange (ETDEWEB)

    Washburn, Cody M.; Lambert, Timothy N.; Wheeler, David R.; Rodenbeck, Christopher T.; Railkar, Tarak A.

    2017-08-01

    Various technologies presented herein relate to forming one or more heat dissipating structures (e.g., heat spreaders and/or heat sinks) on a substrate, wherein the substrate forms part of an electronic component. The heat dissipating structures are formed from graphene, with advantage being taken of the high thermal conductivity of graphene. The graphene (e.g., in flake form) is attached to a diazonium molecule, and further, the diazonium molecule is utilized to attach the graphene to material forming the substrate. A surface of the substrate is treated to comprise oxide-containing regions and also oxide-free regions having underlying silicon exposed. The diazonium molecule attaches to the oxide-free regions, wherein the diazonium molecule bonds (e.g., covalently) to the exposed silicon. Attachment of the diazonium plus graphene molecule is optionally repeated to enable formation of a heat dissipating structure of a required height.

  3. On a Thermodynamic Mechanism of Dissipation of Mechanical Energy in Porous Elastomers as Applied to the Problem of Heating of Automobile Tires

    Science.gov (United States)

    Grinchuk, P. S.; Shnip, A. I.

    2016-11-01

    It has been shown that in the case of cyclic mechanical loads on a porous elastomer there are regimes in which irreversible processes of heat transfer between the gas and the elastomer are responsible for the appearance of a nonzero heat flux averaged over the period and directed from the gas into the condensed phase; this heat flux is compensated for with the dissipation of mechanical energy from the loading source. A possible influence of this mechanism of dissipation on the heating of automobile tires is assessed. Possible methods of recording of this effect are discussed.

  4. Dissipation effects in mechanics and thermodynamics

    CERN Document Server

    Guemez, Julio

    2016-01-01

    With the discussion of three examples, we aim at clarifying the concept of energy transfer associated with dissipation in mechanics and in thermodynamics. The dissipation effects due to dissipative forces, such as the friction force between solids or the drag force in motions in fluids, lead to an internal energy increase of the system and/or to a heat transfer to the surrounding. This heat flow is consistent with the second law, which states that the entropy of the universe should increase when those forces are present because of the irreversibility always associated with their actions. As far as mechanics is concerned the effects of the dissipative forces are include in the Newton's equations as impulses and pseudo-works.

  5. Dissipation effects in mechanics and thermodynamics

    Science.gov (United States)

    Güémez, J.; Fiolhais, M.

    2016-07-01

    With the discussion of three examples, we aim at clarifying the concept of energy transfer associated with dissipation in mechanics and in thermodynamics. The dissipation effects due to dissipative forces, such as the friction force between solids or the drag force in motions in fluids, lead to an internal energy increase of the system and/or to heat transfer to the surroundings. This heat flow is consistent with the second law, which states that the entropy of the universe should increase when those forces are present because of the irreversibility always associated with their actions. As far as mechanics is concerned, the effects of the dissipative forces are included in Newton’s equations as impulses and pseudo-works.

  6. Multiscale model of heat dissipation mechanisms during field emission from carbon nanotube fibers

    Science.gov (United States)

    Cahay, M.; Zhu, W.; Fairchild, S.; Murray, P. T.; Back, T. C.; Gruen, G. J.

    2016-01-01

    A multiscale model of field emission (FE) from carbon nanotube fibers (CNFs) is developed, which takes into account Joule heating within the fiber and radiative cooling and the Nottingham effect at the tip of the individual carbon nanotubes (CNTs) in the array located at the fiber tip. The model predicts the fraction of CNTs being destroyed as a function of the applied external electric field and reproduces many experimental features observed in some recently investigated CNFs, such as order of magnitude of the emission current (mA range), low turn on electric field (fraction of V/μm), deviation from pure Fowler-Nordheim behavior at large applied electric field, hysteresis of the FE characteristics, and a spatial variation of the temperature along the CNF axis with a maximum close to its tip of a few hundred °C.

  7. Multiscale model of heat dissipation mechanisms during field emission from carbon nanotube fibers

    Energy Technology Data Exchange (ETDEWEB)

    Cahay, M.; Zhu, W. [Spintronics and Vacuum Nanoelectronics Laboratory, University of Cincinnati, Cincinnati, Ohio 45221 (United States); Fairchild, S. [Materials and Manufacturing Directorate, Air Force Research Laboratory, WPAFB, Ohio 45433 (United States); Murray, P. T.; Back, T. C. [Research Institute, University of Dayton, Dayton, Ohio 45469-0170 (United States); Center of Excellence for Thin Film Research and Surface Engineering, University of Dayton, Dayton, Ohio 45469-0170 (United States); Gruen, G. J. [Research Institute, University of Dayton, Dayton, Ohio 45469-0170 (United States)

    2016-01-18

    A multiscale model of field emission (FE) from carbon nanotube fibers (CNFs) is developed, which takes into account Joule heating within the fiber and radiative cooling and the Nottingham effect at the tip of the individual carbon nanotubes (CNTs) in the array located at the fiber tip. The model predicts the fraction of CNTs being destroyed as a function of the applied external electric field and reproduces many experimental features observed in some recently investigated CNFs, such as order of magnitude of the emission current (mA range), low turn on electric field (fraction of V/μm), deviation from pure Fowler-Nordheim behavior at large applied electric field, hysteresis of the FE characteristics, and a spatial variation of the temperature along the CNF axis with a maximum close to its tip of a few hundred  °C.

  8. Dissipation, correlation and lags in heat engines

    Science.gov (United States)

    Campisi, Michele; Fazio, Rosario

    2016-08-01

    By modelling heat engines as driven multi-partite system we show that their dissipation can be expressed in terms of the lag (relative entropy) between the perturbed state of each partition and their equilibrium state, and the correlations that build up among the partitions. We show that the non-negativity of the overall dissipation implies Carnot formulation of the second law. We illustrate the rich interplay between correlations and lags with a two-qubit device driven by a quantum gate.

  9. A heat dissipating model for water cooling garments

    Directory of Open Access Journals (Sweden)

    Yang Kai

    2013-01-01

    Full Text Available A water cooling garment is a functional clothing used to dissipate human body’s redundant energy in extravehicular environment or other hot environment. Its heat dissipating property greatly affects body’s heat balance. In this paper, a heat dissipating model for the water cooling garment is established and verified experimentally using the experimental thermal-manikin.

  10. The Effect Of Mechanical Interactions Between The Casting And The Mold On The Conditions Of Heat Dissipation: A Numerical Model

    Directory of Open Access Journals (Sweden)

    Dyja R.

    2015-09-01

    Full Text Available We present a description of the effects of thermal interactions, which take into account formation of a shrinkage gap, that affect the level of stresses in a system casting – mold. Calculations were carried out in our own computer program which is an implementation of the finite element method used to solve the equations describing a thermo-elastic-plastic model of material and the heat conduction, including solidification. In the computing algorithm we use our own criteria for mechanical interaction between the casting and mold domains. Our model of mechanical interactions between the casting and the mold allows efficient modeling of stresses occurring in the casting and an impact of development of the shrinkage gap on cooling course.

  11. Optimization for entransy dissipation minimization in heat exchanger

    Institute of Scientific and Technical Information of China (English)

    XIA ShaoJun; CHEN LinGen; SUN FengRui

    2009-01-01

    A common of two-fluid flow heat exchanger, in which the heat transfer between high-and low-temperature sides obeys Newton's law [q∝△(T)], is studied in this paper. By taking entransy dissipation minimization as optimization objective, the optimum parameter distributions in the heat ex-changer are derived by using optimal control theory under the condition of fixed heat load. The condition corresponding to the minimum entransy dissipation is that corresponding to a constant heat flux density. Three kinds of heat exchangers, including parallel flow, condensing flow and counter-flow, are considered, and the results show that only the counter-flow heat exchanger can realize the entransy dissipation minimization in the heat transfer process. The obtained results for entransy dissipation minimization are also compared with those obtained for entropy generation minimization by numerical examples.

  12. Dissipation and Heating in Supersonic Hydrodynamic and MHD Turbulence

    CERN Document Server

    Lemaster, M Nicole

    2008-01-01

    We study energy dissipation and heating by supersonic MHD turbulence in molecular clouds using Athena, a new higher-order Godunov code. We analyze the dependence of the saturation amplitude, energy dissipation characteristics, power spectra, sonic scaling, and indicators of intermittency in the turbulence on factors such as the magnetic field strength, driving scale, energy injection rate, and numerical resolution. While convergence in the energies is reached at moderate resolutions, we find that the power spectra require much higher resolutions that are difficult to obtain. In a 1024^3 hydro run, we find a power law relationship between the velocity dispersion and the spatial scale on which it is measured, while for an MHD run at the same resolution we find no such power law. The time-variability and temperature intermittency in the turbulence both show a dependence on the driving scale, indicating that numerically driving turbulence by an arbitrary mechanism may not allow a realistic representation of these...

  13. Internal dissipation and heat leaks in quantum thermodynamic cycles

    Science.gov (United States)

    Correa, Luis A.; Palao, José P.; Alonso, Daniel

    2015-09-01

    The direction of the steady-state heat currents across a generic quantum system connected to multiple baths may be engineered to realize virtually any thermodynamic cycle. In spite of their versatility, such continuous energy-conversion systems are generally unable to operate at maximum efficiency due to non-negligible sources of irreversible entropy production. In this paper we introduce a minimal model of irreversible absorption chiller. We identify and characterize the different mechanisms responsible for its irreversibility, namely heat leaks and internal dissipation, and gauge their relative impact in the overall cooling performance. We also propose reservoir engineering techniques to minimize these detrimental effects. Finally, by looking into a known three-qubit embodiment of the absorption cooling cycle, we illustrate how our simple model may help to pinpoint the different sources of irreversibility naturally arising in more complex practical heat devices.

  14. Principle of equipartition of entransy dissipation for heat exchanger design

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In the present work,a principle of equipartition of entransy dissipation(EoED) for heat exchanger design is established,which says that for a heat exchanger design with given heat duty and heat transfer area,the total entransy dissipation rate reaches the minimum when the local entransy dissipation rate is uniformly distributed along the heat exchanger.When the heat transfer coefficient is unfixed,the total entransy dissipation obtained by the EoED principle is less than that obtained by the principle of equipartition of temperature difference(EoTD).Furthermore,the exchanger effectiveness obtained by the EoED principle is larger than that obtained by the EoTD principle.When the heat transfer coefficient is fixed,the EoED principle is equivalent to the EoTD principle.We show that the equipartition of entropy production(EoEP) and EoED principles give rise to difference in entropy generation and entransy dissipation for a heat exchanger optimization design.The discrepancies are caused by distinct features of entropy production minimization and entransy dissipation minimization principles,the former is to optimize the design of heat exchanger by making the lost available work minimum,while the latter is not involved with heat-work conversion.It is found that the entropy generation number is not suitable for evaluating heat exchanger performance,since it directly depends on the inlet and outlet temperatures of working fluids.On the contrary,the entransy dissipation number is not directly related to the inlet and outlet temperatures of working fluids.Therefore,the entransy dissipation number is more suitable for serving as a criterion to evaluate heat exchanger performance.

  15. Entransy dissipation analysis and optimization of separated heat pipe system

    Institute of Scientific and Technical Information of China (English)

    QIAN XiaoDong; LI Zhen; MENG JiAn; LI ZhiXin

    2012-01-01

    Seperated heat pipe systems are widely used in the fields of waste heat recovery and air conditioning due to their high heat transfer capability,and optimization of heat transfer process plays an important role in high-efficiency energy utilization and energy conservation.In this paper,the entransy dissipation analysis is conducted for the separated heat pipe system,and the result indicates that minimum thermal resistance principle is applicable to the optimization of the separated heat pipe system.Whether in the applications of waste heat recovery or air conditioning,the smaller the entransy-dissipation-based thermal resistance of the separated heat pipe system is,the better the heat transfer performance will be.Based on the minimum thermal resistance principle,the optimal area allocation relationship between evaporator and condenser is deduced,which is numerically verified in the optimation design of separated heat pipe system.

  16. INTRACORPOREAL HEAT DISSIPATION FROM A RADIOISOTOPE-POWERED ARTIFICIAL HEART.

    Science.gov (United States)

    Huffman, Fred N.; Hagen, Kenneth G.; Whalen, Robert L.; Fuqua, John M.; Norman, John C.

    1974-01-01

    The feasibility of radioisotope-fueled circulatory support systems depends on the ability of the body to dissipate the reject heat from the power source driving the blood pump as well as to tolerate chronic intracorporeal radiation. Our studies have focused on the use of the circulating blood as a heat sink. Initial in vivo heat transfer studies utilized straight tube heat exchangers (electrically and radioisotope energized) to replace a segment of the descending aorta. More recent studies have used a left ventricular assist pump as a blood-cooled heat exchanger. This approach minimizes trauma, does not increase the area of prosthetic interface with the blood, and minimizes system volume. Heat rejected from the thermal engine (vapor or gas cycle) is transported from the nuclear power source in the abdomen to the pump in the thoracic cavity via hydraulic lines. Adjacent tissue is protected from the fuel capsule temperature (900 to 1200 degrees F) by vacuum foil insulation and polyurethane foam. The in vivo thermal management problems have been studied using a simulated thermal system (STS) which approximates the heat rejection and thermal transport mechanisms of the nuclear circulatory support systems under development by NHLI. Electric heaters simulate the reject heat from the thermal engines. These studies have been essential in establishing the location, suspension, surgical procedures, and postoperative care for implanting prototype nuclear heart assist systems in calves. The pump has a thermal impedance of 0.12 degrees C/watt. Analysis of the STS data in terms of an electrical analog model implies a heat transfer coefficient of 4.7 x 10(-3) watt/cm(2) degrees C in the abdomen compared to a value of 14.9 x 10(-3) watt/cm(2) degrees C from the heat exchanger plenum into the diaphragm.

  17. Least dissipation principle of heat transport potential capacity and its application in heat conduction optimization

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    In the viewpoint of heat transfer, heat transport potential capacity and its dissipation are defined based on the essence of heat transport phenomenon. Respectively, their physical meanings are the overall heat transfer capabilityand the dissipation rate of the heat transfer capacity. Then the least dissipation principle of heat transport potential capacity is presented to enhance the heat conduction efficiency in the heat conduction optimization. The principle is,for a conduction process with the constant integral of the thermal conductivityover the region, the optimal distribution of thermal conductivity, which corresponds to the highest heat conduction efficiency, is characterized by the least dissipation of heat transport potential capacity. Finally the principle is applied to some cases in heat conduction optimization.

  18. Application of entransy dissipation extremum principle in radiative heat transfer optimization

    Institute of Scientific and Technical Information of China (English)

    WU Jing; LIANG XinGang

    2008-01-01

    The concepts of entransy flux and entransy dissipation in radiative heat transfer were introduced based on the analogy with heat conduction and heat convection processes. Entransy will be partially dissipated during the radiative heat transfer processes due to the irreversibility. The extremum principle of entransy dissipation was developed for optimizing radiative heat transfer processes. This principle states that for a fixed boundary temperature the radiative heat transfer is optimized when the entransy dissipation is maximized, while for a fixed boundary heat flux the radiative heat transfer process is optimized when the entransy dissipation is minimized. Finally, examples for the application of the entransy dissipation extre-mum principle are presented.

  19. Application of entransy dissipation extremum principle in radiative heat transfer optimization

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The concepts of entransy flux and entransy dissipation in radiative heat transfer were introduced based on the analogy with heat conduction and heat convection processes. Entransy will be partially dissipated during the radiative heat transfer processes due to the irreversibility. The extremum principle of entransy dissipation was developed for optimizing radiative heat transfer processes. This principle states that for a fixed boundary temperature the radiative heat transfer is optimized when the entransy dissipation is maximized, while for a fixed boundary heat flux the radiative heat transfer process is optimized when the entransy dissipation is minimized. Finally, examples for the application of the entransy dissipation extre- mum principle are presented.

  20. Heat dissipation during hovering and forward flight in hummingbirds.

    Science.gov (United States)

    Powers, Donald R; Tobalske, Bret W; Wilson, J Keaton; Woods, H Arthur; Corder, Keely R

    2015-12-01

    Flying animals generate large amounts of heat, which must be dissipated to avoid overheating. In birds, heat dissipation is complicated by feathers, which cover most body surfaces and retard heat loss. To understand how birds manage heat budgets during flight, it is critical to know how heat moves from the skin to the external environment. Hummingbirds are instructive because they fly at speeds from 0 to more than 12 m s(-1), during which they transit from radiative to convective heat loss. We used infrared thermography and particle image velocimetry to test the effects of flight speed on heat loss from specific body regions in flying calliope hummingbirds (Selasphorus calliope). We measured heat flux in a carcass with and without plumage to test the effectiveness of the insulation layer. In flying hummingbirds, the highest thermal gradients occurred in key heat dissipation areas (HDAs) around the eyes, axial region and feet. Eye and axial surface temperatures were 8°C or more above air temperature, and remained relatively constant across speeds suggesting physiological regulation of skin surface temperature. During hovering, birds dangled their feet, which enhanced radiative heat loss. In addition, during hovering, near-body induced airflows from the wings were low except around the feet (approx. 2.5 m s(-1)), which probably enhanced convective heat loss. Axial HDA and maximum surface temperature exhibited a shallow U-shaped pattern across speeds, revealing a localized relationship with power production in flight in the HDA closest to the primary flight muscles. We conclude that hummingbirds actively alter routes of heat dissipation as a function of flight speed.

  1. Nonequilibrium steady-state circulation and heat dissipation functional.

    Science.gov (United States)

    Qian, H

    2001-08-01

    A nonequilibrium steady-state (NESS), different from an equilibrium, is sustained by circular balance rather than detailed balance. The circular fluxes are driven by energy input and heat dissipation, accompanied by a positive entropy production. Based on a Master equation formalism for NESS, we show the circulation is intimately related to the recently studied Gallavotti-Cohen symmetry of heat dissipation functional, which in turn suggests a Boltzmann's formulalike relation between rate constants and energy in NESS. Expanding this unifying view on NESS to diffusion is discussed.

  2. Vasculature of the hive: heat dissipation in the honey bee ( Apis mellifera) hive

    Science.gov (United States)

    Bonoan, Rachael E.; Goldman, Rhyan R.; Wong, Peter Y.; Starks, Philip T.

    2014-06-01

    Eusocial insects are distinguished by their elaborate cooperative behavior and are sometimes defined as superorganisms. As a nest-bound superorganism, individuals work together to maintain favorable nest conditions. Residing in temperate environments, honey bees ( Apis mellifera) work especially hard to maintain brood comb temperature between 32 and 36 °C. Heat shielding is a social homeostatic mechanism employed to combat local heat stress. Workers press the ventral side of their bodies against heated surfaces, absorb heat, and thus protect developing brood. While the absorption of heat has been characterized, the dissipation of absorbed heat has not. Our study characterized both how effectively worker bees absorb heat during heat shielding, and where worker bees dissipate absorbed heat. Hives were experimentally heated for 15 min during which internal temperatures and heat shielder counts were taken. Once the heat source was removed, hives were photographed with a thermal imaging camera for 15 min. Thermal images allowed for spatial tracking of heat flow as cooling occurred. Data indicate that honey bee workers collectively minimize heat gain during heating and accelerate heat loss during cooling. Thermal images show that heated areas temporarily increase in size in all directions and then rapidly decrease to safe levels (heat shielding is reminiscent of bioheat removal via the cardiovascular system of mammals.

  3. Heat dissipation from carbon nano-electronics

    Science.gov (United States)

    Ong, Zhun Yong

    2011-12-01

    The incorporation of graphitic compounds such as carbon nanotubes (CNTs) and graphene into nano-electronic device packaging holds much promise for waste heat management given their high thermal conductivities. However, as these graphitic materials must be used in together with other semiconductor/insulator materials, it is not known how thermal transport is affected by the interaction. Using different simulation techniques, in this thesis, we evaluate the thermal transport properties --- thermal boundary conductance (TBC) and thermal conductivity --- of CNTs and single-layer graphene in contact with an amorphous SiO2 (a-SiO2) substrate. First, the theoretical methodologies and concepts used in our simulations are presented. In particular, two concepts are described in detail as they are necessary for the understanding of the subsequent chapters. The first is the linear response Green-Kubo (GK) theory of thermal boundary conductance (TBC), which we develop in this thesis, and the second is the spectral energy density method, which we use to directly compute the phonon lifetimes and thermal transport coefficients. After we set the conceptual foundations, the TBC of the CNT-SiO 2 interface is computed using non-equilibrium molecular dynamics (MD) simulations and the new Green-Kubo method that we have developed. Its dependence on temperature, the strength of the interaction with the substrate, and tube diameter are evaluated. To gain further insight into the phonon dynamics in supported CNTs, the scattering rates are computed using the spectral energy density (SED) method. With this method, we are able to distinguish the different scattering mechanisms (boundary and CNT-substrate phonon-phonon) and rates. The phonon lifetimes in supported CNTs are found to be reduced by contact with the substrate and we use that lifetime reduction to determine the change in CNT thermal conductivity. Next, we examine thermal transport in graphene supported on SiO 2. The phonon

  4. The Dissipation Mechanism in Collisionless Magnetic Reconnection

    Science.gov (United States)

    Hesse, Michael; Kuznetsova, M.; Birn, J.; Schindler, K.

    2006-01-01

    The dissipation mechanism of magnetic reconnection remains a subject of intense scientific interest. On one hand, one set of recent studies have shown that particle inertia-based processes, which include thermal and bulk inertial effects, provide the reconnection electric field in the diffusion region. On the other hand, a second set of studies emphasizes the role of wave-particle interactions in providing anomalous resistivity in the diffusion region. In this presentation, we present analytical theory results, as well as PIC simulations of guide-field magnetic reconnection. We will show that the thermal electron inertia-based dissipation mechanism, expressed through nongyrotropic electron pressure tensors, remains viable in three dimensions. We will demonstrate the thermal inertia effect through studies of electron distribution functions. Furthermore, we will show that the reconnection electric field provides a transient acceleration on particles traversing the inner reconnection region. This inertial effect can be described as a diffusion-like term of the current density, which matches key features of electron distribution functions.

  5. Surfaces for high heat dissipation with no Leidenfrost limit

    Science.gov (United States)

    Sajadi, Seyed Mohammad; Irajizad, Peyman; Kashyap, Varun; Farokhnia, Nazanin; Ghasemi, Hadi

    2017-07-01

    Heat dissipation from hot surfaces through cooling droplets is limited by the Leidenfrost point (LFP), in which an insulating vapor film prevents direct contact between the cooling droplet and the hot surface. A range of approaches have been developed to raise this limit to higher temperatures, but the limit still exists. Recently, a surface architecture, decoupled hierarchical structure, was developed that allows the suppression of LFP completely. However, heat dissipation by the structure in the low superheat region was inferior to other surfaces and the structure required an extensive micro/nano fabrication procedure. Here, we present a metallic surface structure with no LFP and high heat dissipation capacity in all temperature ranges. The surface features the nucleate boiling phenomenon independent of the temperature with an approximate heat transfer coefficient of 20 kW m-2 K-1. This surface is developed in a one-step process with no micro/nano fabrication. We envision that this metallic surface provides a unique platform for high heat dissipation in power generation, photonics/electronics, and aviation systems.

  6. Work Fluctuation-Dissipation Trade-Off in Heat Engines.

    Science.gov (United States)

    Funo, Ken; Ueda, Masahito

    2015-12-31

    Reducing work fluctuation and dissipation in heat engines or, more generally, information heat engines that perform feedback control, is vital to maximize their efficiency. The same problem arises when we attempt to maximize the efficiency of a given thermodynamic task that undergoes nonequilibrium processes for arbitrary initial and final states. We find that the most general trade-off relation between work fluctuation and dissipation applicable to arbitrary nonequilibrium processes is bounded from below by the information distance characterizing how far the system is from thermal equilibrium. The minimum amount of dissipation is found to be given in terms of the relative entropy and the Renyi divergence, both of which quantify the information distance between the state of the system and the canonical distribution. We give an explicit protocol that achieves the fundamental lower bound of the trade-off relation.

  7. The Dissipation Mechanism of Magnetic Reconnection

    Science.gov (United States)

    Hesse, Michael

    2008-01-01

    Magnetic reconnection is arguably the most efficient transport and energy conversion mechanism in almost ideal plasmas. Reconnection controls the overall dynamics in space and astrophysics plasmas, as well as in many laboratory plasma systems. Reconnection operates by means of a localized diffusion region, where deviations from the plasma idealness condition generate electric fields and permit plasma transport even far away from the diffusion region itself. Recent advances in analytic theory and computer modeling have begun to shed light on the internal dynamics of the diffusion region. In particular, we begin to understand the delicate nature of the force balance in the inner diffusion region, where particles can become unmagnetized and where electric field forces are important. This presentation will provide a brief introduction of the reconnection process and its applications. This introduction will be followed by a detailed analysis of the current understanding of dissipation region physics, and by an outlook toward future research.

  8. The acoustics of diagnostic microbubbles: dissipative effects and heat deposition

    NARCIS (Netherlands)

    Hilgenfeldt, Sascha; Lohse, Detlef

    2000-01-01

    We discuss the effectively detectable scattered intensity of ultrasound from diagnostic microbubble suspensions, taking dissipative mechanisms in the liquid medium into account. In particular, we conclude that neither non-linear wave steepening of the incident (driving) wave nor of the outgoing (sca

  9. Minimising the heat dissipation of quantum information erasure

    Science.gov (United States)

    Hamed Mohammady, M.; Mohseni, Masoud; Omar, Yasser

    2016-01-01

    Quantum state engineering and quantum computation rely on information erasure procedures that, up to some fidelity, prepare a quantum object in a pure state. Such processes occur within Landauer's framework if they rely on an interaction between the object and a thermal reservoir. Landauer's principle dictates that this must dissipate a minimum quantity of heat, proportional to the entropy reduction that is incurred by the object, to the thermal reservoir. However, this lower bound is only reachable for some specific physical situations, and it is not necessarily achievable for any given reservoir. The main task of our work can be stated as the minimisation of heat dissipation given probabilistic information erasure, i.e., minimising the amount of energy transferred to the thermal reservoir as heat if we require that the probability of preparing the object in a specific pure state ≤ft|{\\varphi }1\\right.> be no smaller than {p}{\\varphi 1}{max}-δ . Here {p}{\\varphi 1}{max} is the maximum probability of information erasure that is permissible by the physical context, and δ ≥slant 0 the error. To determine the achievable minimal heat dissipation of quantum information erasure within a given physical context, we explicitly optimise over all possible unitary operators that act on the composite system of object and reservoir. Specifically, we characterise the equivalence class of such optimal unitary operators, using tools from majorisation theory, when we are restricted to finite-dimensional Hilbert spaces. Furthermore, we discuss how pure state preparation processes could be achieved with a smaller heat cost than Landauer's limit, by operating outside of Landauer's framework.

  10. Analysis of slip flow heat transfer between two unsymmetrically heated parallel plates with viscous dissipation

    Indian Academy of Sciences (India)

    HARI MOHAN KUSHWAHA; SANTOSH K SAHU

    2016-06-01

    This paper presents an analytical investigation to study the heat transfer and fluid flow characteristics in the slip flow region for hydrodynamically and thermally fully developed flow between parallel plates.Both upper and lower plates are subjected to asymmetric heat flux boundary conditions. The effect of first ordervelocity slip, temperature jump, asymmetric heat flux ratio and viscous dissipation on the heat transfer performance is analyzed. Closed form expressions are obtained for the temperature distribution and Nusselt number. Present predictions are verified for the cases that neglect the viscous heating and microscale effects. The effect of asymmetric heat flux ratio with and without viscous dissipation on Nusselt number for both macroscale and microscale is highlighted. The heat transfer characteristics are found to depend on various modeling parameters, namely, modified Brinkman number, Knudsen number and heat flux ratio

  11. Entransy dissipation number and its application to heat exchanger performance evaluation

    Institute of Scientific and Technical Information of China (English)

    GUO JiangFeng; CHENG Lin; XU MingTian

    2009-01-01

    Based on the concept of the entransy which characterizes heat transfer ability,a new heat exchanger performance evaluation criterion termed the entransy dissipation number is established.Our analysis shows that the decrease of the entransy dissipation number always increases the heat exchanger effectiveness for fixed heat capacity rate ratio.Therefore,the smaller the entransy dissipation number,the better the heat exchanger performance is.The entransy dissipation number in terms of the number of exchanger heat transfer units or heat capacity rate ratio correctly exhibits the global performance of the counter-,cross-and parallel-flow heat exchangers.In comparison with the heat exchanger performance evaluation criteria based on entropy generation,the entransy dissipation number demonstrates some distinct advantages.Furthermore,the entransy dissipation number reflects the degree of irreversibility caused by flow imbalance.

  12. Critical review of wind tunnel modeling of atmospheric heat dissipation

    Energy Technology Data Exchange (ETDEWEB)

    Orgill, M.M.

    1977-05-01

    There is increasing concern by scientists that future proposed energy or power parks may significantly affect the environment by releasing large quantities of heat and water vapor to the atmosphere. A critical review is presented of the potential application of physical modeling (wind tunnels) to assess possible atmospheric effects from heat dissipation systems such as cooling towers. A short inventory of low-speed wind tunnel facilities is included in the review. The useful roles of wind tunnels are assessed and the state-of-the-art of physical modeling is briefly reviewed. Similarity criteria are summarized and present limitations in satisfying these criteria are considered. Current physical models are defined and limitations are discussed. Three experimental problems are discussed in which physical modeling may be able to provide data. These are: defining the critical atmospheric heat load; topographic and local circulation effects on thermal plumes; and plume rise and downstream effects.

  13. Fluctuation-dissipation theorem for frequency-dependent specific heat

    DEFF Research Database (Denmark)

    Dyre, Jeppe; Nielsen, Johannes K.

    1996-01-01

    A derivation of the fluctuation-dissipation (FD) theorem for the frequency-dependent specific heat of a system described by a master equation is presented. The FD theorem is illustrated by a number of simple examples, including a system described by a linear Langevin equation, a two-level system......, and a system described by the energy master equation. It is shown that for two quite different models with low-energy cutoffs—a collection of two-level systems and a system described by the energy master equation—the frequency-dependent specific heat in dimensionless units becomes universal at low temperatures......, i.e., independent of both energy distribution and temperature. These two models give almost the same universal frequency-dependent specific heat, which compares favorably to experiments on supercooled alcohols....

  14. Fully-developed heat transfer in annuli with viscous dissipation

    Energy Technology Data Exchange (ETDEWEB)

    Coelho, P.M. [Universidade do Porto, Porto (Portugal). Centro de Estudos de Fenomenos de Transporte, DEMEGI, Faculdade de Engenharia; Pinho, F.T. [Universidade do Porto, Porto (Portugal). Centro de Estudos de Fenomenos de Transporte, Faculdade de Engenharia

    2006-09-15

    For Newtonian concentric annular flows analytical solutions are obtained under imposed asymmetric constant wall heat fluxes as well as under imposed asymmetric constant wall temperatures, taking into account viscous dissipation and for fluid dynamic and thermally fully-developed conditions. Results for the special case of the heat flux ratio for identical wall temperatures and the critical Brinkman numbers marking changes of sign in wall heat fluxes are also derived. Equations are presented for the Nusselt numbers at the inner and outer walls, bulk temperature and normalised temperature distribution as a function of all relevant non-dimensional numbers. Given the complexity of the derived equations, simpler exact expressions are presented for the Nusselt numbers for ease of use, with their coefficients given in tables as a function of the radius ratio. (author)

  15. Modern thermodynamics from heat engines to dissipative structures

    CERN Document Server

    Kondepudi, Dilip

    2014-01-01

    Modern Thermodynamics: From Heat Engines to Dissipative Structures, Second Edition presents a comprehensive introduction to 20th century thermodynamics that can be applied to both equilibrium and non-equilibrium systems, unifying what was traditionally divided into 'thermodynamics' and 'kinetics' into one theory of irreversible processes. This comprehensive text, suitable for introductory as well as advanced courses on thermodynamics, has been widely used by chemists, physicists, engineers and geologists.  Fully revised and expanded, this new edition includes the following updates and featur

  16. Thermoelectric study of dissipative quantum-dot heat engines

    Science.gov (United States)

    De, Bitan; Muralidharan, Bhaskaran

    2016-10-01

    This paper examines the thermoelectric response of a dissipative quantum-dot heat engine based on the Anderson-Holstein model in two relevant operating limits, (i) when the dot phonon modes are out of equilibrium, and (ii) when the dot phonon modes are strongly coupled to a heat bath. In the first case, a detailed analysis of the physics related to the interplay between the quantum-dot level quantization, the on-site Coulomb interaction, and the electron-phonon coupling on the thermoelectric performance reveals that an n -type heat engine performs better than a p -type heat engine. In the second case, with the aid of the dot temperature estimated by incorporating a thermometer bath, it is shown that the dot temperature deviates from the bath temperature as electron-phonon interaction in the dot becomes stronger. Consequently, it is demonstrated that the dot temperature controls the direction of phonon heat currents, thereby influencing the thermoelectric performance. Finally, the conditions on the maximum efficiency with varying phonon couplings between the dot and all the other macroscopic bodies are analyzed in order to reveal the nature of the optimum junction.

  17. Analysis of Stability and Bifurcation in Nonlinear Mechanics with Dissipation

    Directory of Open Access Journals (Sweden)

    Claude Stolz

    2011-01-01

    Full Text Available The analysis of stability and bifurcation is studied in nonlinear mechanics with dissipative mechanisms: plasticity, damage, fracture. The description is based on introduction of a set of internal variables. This framework allows a systematic description of the material behaviour via two potentials: the free energy and the potential of dissipation. In the framework of standard generalized materials the internal state evolution is governed by a variational inequality which depends on the mechanism of dissipation. This inequality is obtained through energetic considerations in an unified description based upon energy and driving forces associated to the dissipative process. This formulation provides criterion for existence and uniqueness of the system evolution. Examples are presented for plasticity, fracture and for damaged materials.

  18. Dissipative heat and exchange dispersion on metastability of Gd{sub 5}Si{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Yazdani, A., E-mail: yazdania@modares.ac.i [Tarbiat Modares University, Tehran, P.O. Box 14115-175 (Iran, Islamic Republic of); Department of Physics and Astronomy, University of Delaware, Newark, DE (United States); Bonder, M.J. [Department of Physics and Astronomy, University of Delaware, Newark, DE (United States)

    2011-06-15

    The response of the magnetic and crystal structure of Gd{sub 5}Si{sub 4} to both 'isothermal' and 'thermo-mechanical' process is investigated by the dispersion exchange fluctuation, which can be the cause of the compound's metastability. The X-ray diffraction DTA, SEM and magnetization at room temperature are measured to explore the effect of annealing process (latent heat as isothermal) at different annealing temperatures. The discharge heat (exchange heat) by the annealing process, which is manifested by the thermal loop of DTA, is caused by the reduction in the lattice constant as well as in magnetization behavior measured at room temperature with no observable crystal phase transition. The exchange fluctuation (entropy), which is related to the DTA thermal loop, is increased by the sample's heat absorption (discharge heat) in the direction to lower the free energy of the crystal. The crystallographic slip is investigated by the dissipative heat through the high ball milling energy (HBME) to provide the nature and strength of the exchange. It is shown that the DTA thermal loop and SEM-crystallographic slip should be the character of the 'exchange heat' (discharge heat) and 'heat exchange' (absorption of heat through the wet environment of ball milling). - Research highlights: The response of the magnetic and crystal structure of Gd{sub 5}Si{sub 4} to both isothermal and thermo-mechanical processes is investigated. The discharge heat by annealing process is caused by the reduction of lattice constant as well as magnetization behavior. No crystal phase change was observed at room temperature. The crystallographic slip is investigated by dissipative heat to provide the strength and nature of the exchange.

  19. Identification of energy dissipation mechanisms in CNT-reinforced nanocomposites

    Science.gov (United States)

    Gardea, Frank; Glaz, Bryan; Riddick, Jaret; Lagoudas, Dimitris C.; Naraghi, Mohammad

    2016-03-01

    In this paper we present our recent findings on the mechanisms of energy dissipation in polymer-based nanocomposites obtained through experimental investigations. The matrix of the nanocomposite was polystyrene (PS) which was reinforced with carbon nanotubes (CNTs). To study the mechanical strain energy dissipation of nanocomposites, we measured the ratio of loss to storage modulus for different CNT concentrations and alignments. CNT alignment was achieved via hot-drawing of PS-CNT. In addition, CNT agglomeration was studied via a combination of SEM imaging and Raman scanning. We found that at sufficiently low strains, energy dissipation in composites with high CNT alignment is not a function of applied strain, as no interfacial slip occurs between the CNTs and PS. However, below the interfacial slip strain threshold, damping scales monotonically with CNT content, which indicates the prevalence of CNT-CNT friction dissipation mechanisms within agglomerates. At higher strains, interfacial slip also contributes to energy dissipation. However, the increase in damping with strain, especially when CNT agglomerates are present, does not scale linearly with the effective interface area between CNTs and PS, suggesting a significant contribution of friction between CNTs within agglomerates to energy dissipation at large strains. In addition, for the first time, a comparison between the energy dissipation in randomly oriented and aligned CNT composites was made. It is inferred that matrix plasticity and tearing caused by misorientation of CNTs with the loading direction is a major cause of energy dissipation. The results of our research can be used to design composites with high energy dissipation capability, especially for applications where dynamic loading may compromise structural stability and functionality, such as rotary wing structures and antennas.

  20. The effects of dissipation on topological mechanical systems

    Science.gov (United States)

    Xiong, Ye; Wang, Tianxiang; Tong, Peiqing

    2016-09-01

    We theoretically study the effects of isotropic dissipation in a topological mechanical system which is an analogue of Chern insulator in mechanical vibrational lattice. The global gauge invariance is still conserved in this system albeit it is destroyed by the dissipation in the quantum counterpart. The chiral edge states in this system are therefore robust against strong dissipation. The dissipation also causes a dispersion of damping for the eigenstates. It will modify the equation of motion of a wave packet by an extra effective force. After taking into account the Berry curvature in the wave vector space, the trace of a free wave packet in the real space should be curved, feinting to break the Newton’s first law.

  1. Entropy generation extremum and entransy dissipation extremum for heat exchanger optimization

    Institute of Scientific and Technical Information of China (English)

    LIU XiongBin; MENG JiAn; GUO ZengYuan

    2009-01-01

    The applicability of the extremum principles of entropy generation and entransy dissipation is studied for heat exchanger optimization. The extremum principle of entransy dissipation gives better optimization results when heat exchanger is only for the purpose of heating and cooling, while the extremum principle of entropy generation is better for the heat exchanger optimization when it works in the Brayton cycle. The two optimization principles are approximately equivalent when the temperature drops of the streams in a heat exchanger are small.

  2. Choking of optically thin spherical accreation by dissipative heating

    Energy Technology Data Exchange (ETDEWEB)

    Scharlemann, E.T.

    1981-05-15

    Dissipative heating can be sufficient to reduce the Mach number of supersonic spherical accretion to unity in the optically thin part of the flow: at a radius of order 10/sup 2/--10/sup 3/ Schwarzchild radii. If the flow at a larger radius is forced to be supersonic and cold, by some cooling process like collisional excitation of line radiation, the flow cannot be time-independent. The critical accretion rates below which accretion flows either are forced to be time dependent, or become optically thick before the minimum in the Mach number is reached, are determined. The implication for the time variability of quasars and active galactic nuclei is briefly discussed.

  3. Synthesis of dissipative output feedback controllers. Application to mechanical systems

    Energy Technology Data Exchange (ETDEWEB)

    Johannessen, Erling Aarsand

    1997-12-31

    This thesis presents new results on the synthesis of linear controllers with passivity, or more general, dissipativity properties. These methods may be applied to obtain more accurate control over mechanical systems and in the control of chemical processes that involve dissipative subsystems. The thesis presents two different approaches for synthesis of dissipative controllers: (1) A method that exploits the Riccati equation solution to the state space formulation of the H{sub {infinity}} control problem is investigated, illustrated by synthesising a controller for damping of flexible modes in a beam. (2) A more general method for dissipative control synthesis is developed that retains the well-known techniques of loop-shaping and frequency weighting in H{sub {infinity}}. A method is also presented for controller synthesis directly from frequency response data. 82 refs., 34 figs., 3 tabs.

  4. Characterization of a New Heat Dissipation Matric Potential Sensor

    Directory of Open Access Journals (Sweden)

    Rolf Krebs

    2013-01-01

    Full Text Available Soil moisture sensors can help to reduce the amount of water needed for irrigation. In this paper we describe the PlantCare soil moisture sensor as a new type of heat dissipation sensor, its calibration and the correction for temperature changes. With the PlantCare sensor it is possible to measure the matric potential indirectly to monitor or control irrigation. This sensor is based on thermal properties of a synthetic felt. After a defined heating phase the cooling time to a threshold temperature is a function of the water content in the synthetic felt. The water content in this porous matrix is controlled by the matric potential in the surrounding soil. Calibration measurements have shown that the sensor is most sensitive to −400 hPa and allows lower sensitivity measurements to −800 hPa. The disturbing effect of the temperature change during the measurement on the cooling time can be corrected by a linear function and the differences among sensors are minimized by a two point calibration.

  5. Spectroscopy of mechanical dissipation in micro-mechanical membranes

    CERN Document Server

    Jöckel, Andreas; Korppi, Maria; Camerer, Stephan; Hunger, David; Mader, Matthias; Treutlein, Philipp

    2011-01-01

    We measure the frequency dependence of the mechanical quality factor (Q) of SiN membrane oscillators and observe a resonant variation of Q by more than two orders of magnitude. The frequency of the fundamental mechanical mode is tuned reversibly by up to 40% through local heating with a laser. Several distinct resonances in Q are observed that can be explained by coupling to membrane frame modes. Away from the resonances, the background Q is independent of frequency and temperature in the measured range.

  6. Mechanical dissipation at elevated temperatures in tetrahedral amorphous carbon.

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, John P.; Friedmann, Thomas Aquinas; Czaplewski, David A.; Wendt, Joel Robert

    2005-05-01

    We have measured the temperature dependence of mechanical dissipation in tetrahedral amorphous carbon flexural and torsional resonators over the temperature range from 300 to 1023 K. The mechanical dissipation was found to be controlled by defects within the material, and the magnitude and temperature dependence of the dissipation were found to depend on whether flexural or torsional vibrational modes were excited. The defects that were active under flexural stresses have a relatively flat concentration from 0.4 to 0.7 eV with an ever increasing defect concentration up to 1.9 eV. Under shear stresses (torsion), the defect activation energies increase immediately beginning at 0.4 eV, with increasing defect concentration at higher energies.

  7. Spectral Theory for Dissipation Mechanism of Wind Waves

    CERN Document Server

    Polnikov, Vladislav G

    2010-01-01

    A systematic and full description of the theory for a dissipation mechanism of wind wave energy in a spectral representation is given. As a basis of the theory, the fundamental is stated that the most general dissipation mechanism for wind waves is provided by the viscosity due to interaction between wave motions and turbulence of the water upper layer. The latter, in turn, is supposed to be induced by the whole aggregate of dissipation processes taking place at the air-sea interface. In the frame of phenomenological constructions of nonlinear closure for Reynolds stresses, it is shown that the dissipation function is generally a power series with respect to wave spectrum, starting from a quadratic term. Attracting previous results of the author, a simplified parameterization of the general theoretical result is done. Physical meaning for parameters of the dissipation function and its compliance with the new experimental facts established in this field for the last 5-10 years is discussed. Summarized theoreti...

  8. Limits to sustained energy intake. XXIII. Does heat dissipation capacity limit the energy budget of lactating bank voles?

    Science.gov (United States)

    Sadowska, Edyta T; Król, Elżbieta; Chrzascik, Katarzyna M; Rudolf, Agata M; Speakman, John R; Koteja, Paweł

    2016-03-01

    Understanding factors limiting sustained metabolic rate (SusMR) is a central issue in ecological physiology. According to the heat dissipation limit (HDL) theory, the SusMR at peak lactation is constrained by the maternal capacity to dissipate body heat. To test that theory, we shaved lactating bank voles (Myodes glareolus) to experimentally elevate their capacity for heat dissipation. The voles were sampled from lines selected for high aerobic exercise metabolism (A; characterized also by increased basal metabolic rate) and unselected control lines (C). Fur removal significantly increased the peak-lactation food intake (mass-adjusted least square means ± s.e.; shaved: 16.3 ± 0.3 g day(-1), unshaved: 14.4 ± 0.2 g day(-1); Plines. Thus, the experimental evolution model did not reveal a difference in the limiting mechanism between animals with inherently different metabolic rates.

  9. On the dissipation and dispersion of entropy waves in heat transferring channel flows

    Science.gov (United States)

    Fattahi, A.; Hosseinalipour, S. M.; Karimi, N.

    2017-08-01

    This paper investigates the hydrodynamic and heat transfer effects on the dissipation and dispersion of entropy waves in non-reactive flows. These waves, as advected density inhomogeneities downstream of unsteady flames, may decay partially or totally before reaching the exit nozzle, where they are converted into sound. Attenuation of entropy waves dominates the significance of the subsequent acoustic noise generation. Yet, the extent of this decay process is currently a matter of contention and the pertinent mechanisms are still largely unexplored. To resolve this issue, a numerical study is carried out by compressible large eddy simulation of the wave advection in a channel subject to convective and adiabatic thermal boundary conditions. The dispersion, dissipation, and spatial correlation of the wave are evaluated by post-processing of the numerical results. This includes application of the classical coherence function as well as development of nonlinear quantitative measures of wave dissipation and dispersion. The analyses reveal that the high frequency components of the entropy wave are always strongly damped. The survival of the low frequency components heavily depends on the turbulence intensity and thermal boundary conditions of the channel. In general, high turbulence intensities and particularly heat transfer intensify the decay and destruction of the spatial coherence of entropy waves. In some cases, they can even result in the complete annihilation of the wave. The current work can therefore resolve the controversies arising over the previous studies of entropy waves with different thermal boundary conditions.

  10. Nonlinear Dissipation Heat Devices in Finite-Time Thermodynamics: An Analysis of the Trade-Off Optimization

    Science.gov (United States)

    Lu, Can-can; Bai, Long

    2017-06-01

    The nonlinear dissipation heat devices are proposed by means of generalizing the low-dissipation heat devices to the quadratic order case. The dimensionless formulas of the output (input) power and the efficiency (coefficient of performance) for the nonlinear dissipation heat engines (refrigerators) are derived in terms of characteristic parameters for heat devices and the dimensional analysis. Based on the trade-off criterion, the optimal performance of the nonlinear dissipation heat devices is discussed in depth, and some system-specific properties for the nonlinear dissipation heat devices under the trade-off optimization are also uncovered. Our results may provide practical insight for designing actual heat engines and refrigerators.

  11. Experimental Study of Effect of Air Duct Structures on Heat Dissipation of Heating-Only Fan Coil

    Institute of Scientific and Technical Information of China (English)

    WU Xiao-zhou; ZHAO Jia-ning

    2009-01-01

    Heating-only fan coil(HFC) is one of the suited end users.which is not only compact but also highly efficient.And the major factors affecting the heat dissipation performance of HFC include leakage through coil bypass,distance between fan and coil,fan structure and air inlet type.Under natural air convection or forced,experimental studies were made on the effects of these factors upon the heat dissipation performance of HFC.The results show that:1)After reducing the leakage through coil bypass,the heat dissipation of HFC in-creases 16.9%under natural convection,and increases 8.3%under forced convection.2)After the distance be-tween fan and coil be raised from 23.2cm to 41.7cm.the heat dissipation of HFC decreases 21.3%under natu-ral convection,but increasesl2.8%under forced convection.3)After changing the fan structure,the heat dissi-pation of HFC increases 41.8%under natural convection.and the heat dissipation per motor power increases 96.1%under forced convection.4)The heat dissipations of HFC with round pass,slit and strip type of air inlet are different,whose proportion is about 100%,110%,136%under natural convection,and 100%,105%,116%under forced convection.

  12. Mechanisms of Coronal Heating

    Indian Academy of Sciences (India)

    S. R. Verma

    2006-06-01

    The Sun is a mysterious star. The high temperature of the chromosphere and corona present one of the most puzzling problems of solar physics. Observations show that the solar coronal heating problem is highly complex with many different facts. It is likely that different heating mechanisms are at work in solar corona. Recent observations show that Magnetic Carpet is a potential candidate for solar coronal heating.

  13. Rate of Dissipation of the Energy of Low-Frequency Mechanical Disturbances in a Tire

    Science.gov (United States)

    Grinchuk, P. S.; Fisenko, S. P.

    2016-11-01

    An expression for the rate of dissipation of the energy of low-frequency mechanical disturbances in a tire, accounting for the tired wheel radius, velocity of motion, and loading, has been derived. After processing experimental data on heating the tread rubber of an oversize tire by the proposed method, it has been revealed that about 30% of the energy of deformations appearing in motion of a loaded tire is converted into heat, and the coefficient of heat transfer between the tire and air has been derived.

  14. Temporal niche switching and reduced nest attendance in response to heat dissipation limits in lactating common voles (Microtus arvalis)

    NARCIS (Netherlands)

    van der Vinne, Vincent; Simons, Mirre J.P.; Reimert, Inonge; Gerkema, Menno P.

    2014-01-01

    According to the heat dissipation limit theory, maximum metabolic turnover is limited by the capacity of the body to dissipate excess heat. Small mammals, including common voles (Microtus arvalis), face a heat dissipation limitation during lactation. Pup growth and milk production are reduced under

  15. Optimization study of using PTC for human body heating dissipation

    Directory of Open Access Journals (Sweden)

    Tiberiu Adrian SALAORU

    2014-06-01

    Full Text Available A better knowledge of the human body heat loses mechanisms is important for both diminishing the number of deaths during the surgical procedures of the patients under effect of full anaesthesia and increasing the efficiency of the Heating, Ventilation and Air Conditioning (HVAC systems. For these studies it is necessary to manufacture a human body mannequin having its surface temperature maintained on a value close to the real human body temperature. A number of PTC (Positive Temperature Coefficient thermistors placed on the entire external surface of the mannequin can be used for this purpose. This paper presents a study of the transient heating regime and the stability of the maintained temperature, performed on these devices.

  16. Generalized thermal resistance for convective heat transfer and its relation to entransy dissipation

    Institute of Scientific and Technical Information of China (English)

    CHEN Qun; REN JianXun

    2008-01-01

    In order to further analyze and optimize convective heat transfer process further, the concepts of heat flux weighted average heat temperature and heat flux weighted average heat temperature difference in multi-dimensional heat transfer system were introduced in this paper. The ratio of temperature difference to heat flux is defined as the generalized thermal resistance of convective heat transfer processes,and then the minimum thermal resistance theory for convective heat transfer optimization was developed. By analyzing the relationship between generalized thermal resistance and entansy dissipation in convective heat transfer processes, it can be concluded that the minimum thermal resistance theory equals the entransy dissipation extremum theory. Finally, a two-dimensional convective heat transfer process with constant wall temperature is taken as an example to illustrate the applicability of generalized thermal resistance to convective heat transfer process analysis and optimization.

  17. Resolving defence mechanisms: A perspective based on dissipative structure theory.

    Science.gov (United States)

    Zhang, Wei; Guo, Ben-Yu

    2017-04-01

    Theories and classifications of defence mechanisms are not unified. This study addresses the psychological system as a dissipative structure which exchanges information with the external and internal world. When using defence mechanisms, the cognitive-affective schema of an individual could remain stable and ordered by excluding psychological entropy, obtaining psychological negentropy or by dissipating the energy of self-presentation. From this perspective, defences can be classified into three basic types: isolation, compensation and self-dissipation. However, not every kind of defence mechanisms can actually help the individual. Non-adaptive defences are just functioning as an effective strategy in the short run but can be a harmful approach in the long run, while adaptive defences could instead help the individual as a long-term mechanism. Thus, we would like to suggest that it is more useful for the individual to use more adaptive defence mechanisms and seek out social or interpersonal support when undergoing psychic difficulties. As this model of defences is theoretical at present, we therefore aim to support and enrich this viewpoint with empirical evidence.

  18. Identification of a mechanism of photoprotective energy dissipation in higher plants.

    Science.gov (United States)

    Ruban, Alexander V; Berera, Rudi; Ilioaia, Cristian; van Stokkum, Ivo H M; Kennis, John T M; Pascal, Andrew A; van Amerongen, Herbert; Robert, Bruno; Horton, Peter; van Grondelle, Rienk

    2007-11-22

    Under conditions of excess sunlight the efficient light-harvesting antenna found in the chloroplast membranes of plants is rapidly and reversibly switched into a photoprotected quenched state in which potentially harmful absorbed energy is dissipated as heat, a process measured as the non-photochemical quenching of chlorophyll fluorescence or qE. Although the biological significance of qE is established, the molecular mechanisms involved are not. LHCII, the main light-harvesting complex, has an inbuilt capability to undergo transformation into a dissipative state by conformational change and it was suggested that this provides a molecular basis for qE, but it is not known if such events occur in vivo or how energy is dissipated in this state. The transition into the dissipative state is associated with a twist in the configuration of the LHCII-bound carotenoid neoxanthin, identified using resonance Raman spectroscopy. Applying this technique to study isolated chloroplasts and whole leaves, we show here that the same change in neoxanthin configuration occurs in vivo, to an extent consistent with the magnitude of energy dissipation. Femtosecond transient absorption spectroscopy, performed on purified LHCII in the dissipative state, shows that energy is transferred from chlorophyll a to a low-lying carotenoid excited state, identified as one of the two luteins (lutein 1) in LHCII. Hence, it is experimentally demonstrated that a change in conformation of LHCII occurs in vivo, which opens a channel for energy dissipation by transfer to a bound carotenoid. We suggest that this is the principal mechanism of photoprotection.

  19. A model of heat dissipation for MR based brake

    Energy Technology Data Exchange (ETDEWEB)

    Wiehe, A; Noack, V; Maas, J [Hochschule Ostwestfalen-Lippe - University of Applied Sciences, Control Engineering and Mechatronics, Liebigstrasse 87, D-32657 Lemgo (Germany)], E-mail: ansgar.wiehe@hs-owl.de

    2009-02-01

    In contrast to conventional brakes actuators based on magnetorheological fluids (MRF) offer an advantage in short term, peak load decelerating. The dissipation of a high amount of energy in a short period of time results in a thermal destruction of conventional brakes. Due to the volume based energy dissipation of MR actuators, instead of the surface based energy dissipation of conventional brakes, the rise of temperature and the distribution of energy shows significant advantages. In this paper a design rule for special peak load MR actuators is derived. Furthermore the simplified model, which is the basis of the design rule, is compared to several simulation models, with different levels of detail.

  20. Viscous dissipation effects on heat transfer in flow past a continuous moving plate

    Digital Repository Service at National Institute of Oceanography (India)

    Soundalgekar, V.M.; Murty, T.V.R.

    The study of thermal boundary layer on taking into account the viscous dissipative heat, on a continuously moving semi-infinite flat plate is presented here.Similarity solutions are derived and the resulting equations are integrated numerically...

  1. Using AlN-Coated Heat Sink to Improve the Heat Dissipation of LED Packages

    Directory of Open Access Journals (Sweden)

    Jean Ming-Der

    2016-01-01

    Full Text Available This study optimizes aluminum nitride (AlN ceramics, in order to enhance the thermal performance of light-emitting diode (LED packages. AlN coatings are grown on copper/ aluminum substrates as a heat interface material, using an electrostatic spraying process. The effect of the deposition parameters on the coatings is determined. The thermal performance of AlN coated Cu/Al substrates is evaluated in terms of the heat dissipated and compared by measuring the LED case temperature. The structure and properties of the coating are also examined a scanning electron microscopy (SEM. In sum, the thermal performance of the LED is increased and good heat resistance characteristics are obtained. The results show that using AlN ceramic coating on a copper/aluminum substrate increases the thermal performance.

  2. Heat dissipation and information flow for delayed bistable Langevin systems near coherence resonance

    Science.gov (United States)

    Xiao, Tiejun

    2016-11-01

    In this paper, stochastic thermodynamics of delayed bistable Langevin systems near coherence resonance is discussed. We calculate the heat dissipation rate and the information flow of a delayed bistable Langevin system under various noise intensities. Both the heat dissipation rate and the information flow are found to be bell-shaped functions of the noise intensity, which implies that coherence resonance manifests itself in the thermodynamic properties.

  3. Luminaries-level structure improvement of LEDs for heat dissipation enhancement under natural convection

    Indian Academy of Sciences (India)

    Ke Wu; Le Wang; Yi-Bo Yu; Zhi-Yi Huang; Pei Liang

    2013-12-01

    Heat dissipation enhancement of LED luminaries is of great significance to the large-scale application of LED. Luminaries-level structure improvement by the method of boring through-hole is adopted to intensify heat dissipation. Furthermore, the natural convection heat transfer process of LED luminaries is simulated by computational fluid dynamics (CFD) model before and after the structural modification. As shown by computational results, boring through-hole is beneficial to develop bottomto-top natural convection, eliminate local circumfluence, and finally form better flow pattern. Analysis based on field synergy principle shows that boring through-hole across LED luminaries improves the synergy between flow field and temperature field, and effectively decreases the thermal resistance of luminaries-level heat dissipation structure. Under the same computational conditions, by luminaries-level structure improvement the highest temperature of heat sink is decreased by about 8° C and the average heat transfer coefficient is increased by 45.8%.

  4. Deployable radiators for waste heat dissipation from Shuttle payloads

    Science.gov (United States)

    Cox, R. L.; Dietz, J. B.; Leach, J. W.

    1976-01-01

    Prototypes of two types of modularized, deployable radiator systems with a high degree of configuration and component commonality to minimize design, development and fabrication costs are currently under development for Shuttle payloads with high waste heat: a rigid radiator system which utilizes aluminum honeycomb panels that are deployed by a scissors mechanism; and two 'flexible' radiator systems which use panels constructed from flexible metal/dielectric composite materials that are deployed by 'unrolling' or 'extending' in orbit. Detail descriptions of these deployable radiator systems along with design and performance features are presented.

  5. Reply to comment of Bister and co-authors on the critique of the dissipative heat engine

    CERN Document Server

    Makarieva, Anastassia M; Li, Bai-Lian; Nobre, Antonio Donato

    2010-01-01

    The dissipative heat engine (DHE) is based on a Carnot cycle with external heat Qin received at temperature Ts and released at To < Ts. In contrast to the classical Carnot engine, mechanical work Ad in the DHE is not exported to external environment but dissipates to heat within the engine. Makarieva et al. (2010, hereafter MGLN) asserted that the laws of thermodynamics prohibit an increase of Ad beyond the Carnot limit: Ad <= epsilon Qin, epsilon = (Ts - To)/Ts. Bister et al. (2010, hereafter BRPE) counterargued that such an increase is possible and that hurricanes can be viewed as a natural DHE. Here we show that the arguments of BRPE are not consistent with the energy conservation law and thus do not refute MGLN's claims.

  6. Quantum mechanics of non-Hamiltonian and dissipative systems

    CERN Document Server

    Tarasov, Vasily

    2008-01-01

    Quantum Mechanics of Non-Hamiltonian and Dissipative Systems is self-contained and can be used by students without a previous course in modern mathematics and physics. The book describes the modern structure of the theory, and covers the fundamental results of last 15 years. The book has been recommended by Russian Ministry of Education as the textbook for graduate students and has been used for graduate student lectures from 1998 to 2006. Requires no preliminary knowledge of graduate and advanced mathematics Discusses the fundamental results of last 15 years in this theory Suitable for cours

  7. Heat dissipation for microprocessor using multiwalled carbon nanotubes based liquid.

    Science.gov (United States)

    Hung Thang, Bui; Trinh, Pham Van; Chuc, Nguyen Van; Khoi, Phan Hong; Minh, Phan Ngoc

    2013-01-01

    Carbon nanotubes (CNTs) are one of the most valuable materials with high thermal conductivity (2000 W/m · K compared with thermal conductivity of Ag 419 W/m · K). This suggested an approach in applying the CNTs in thermal dissipation system for high power electronic devices, such as computer processor and high brightness light emitting diode (HB-LED). In this work, multiwalled carbon nanotubes (MWCNTs) based liquid was made by COOH functionalized MWCNTs dispersed in distilled water with concentration in the range between 0.2 and 1.2 gram/liter. MWCNT based liquid was used in liquid cooling system to enhance thermal dissipation for computer processor. By using distilled water in liquid cooling system, CPU's temperature decreases by about 10°C compared with using fan cooling system. By using MWCNT liquid with concentration of 1 gram/liter MWCNTs, the CPU's temperature decreases by 7°C compared with using distilled water in cooling system. Theoretically, we also showed that the presence of MWCNTs reduced thermal resistance and increased the thermal conductivity of liquid cooling system. The results have confirmed the advantages of the MWCNTs for thermal dissipation systems for the μ -processor and other high power electronic devices.

  8. Heat Dissipation for Microprocessor Using Multiwalled Carbon Nanotubes Based Liquid

    Directory of Open Access Journals (Sweden)

    Bui Hung Thang

    2013-01-01

    Full Text Available Carbon nanotubes (CNTs are one of the most valuable materials with high thermal conductivity (2000 W/m·K compared with thermal conductivity of Ag 419 W/m·K. This suggested an approach in applying the CNTs in thermal dissipation system for high power electronic devices, such as computer processor and high brightness light emitting diode (HB-LED. In this work, multiwalled carbon nanotubes (MWCNTs based liquid was made by COOH functionalized MWCNTs dispersed in distilled water with concentration in the range between 0.2 and 1.2 gram/liter. MWCNT based liquid was used in liquid cooling system to enhance thermal dissipation for computer processor. By using distilled water in liquid cooling system, CPU’s temperature decreases by about 10°C compared with using fan cooling system. By using MWCNT liquid with concentration of 1 gram/liter MWCNTs, the CPU’s temperature decreases by 7°C compared with using distilled water in cooling system. Theoretically, we also showed that the presence of MWCNTs reduced thermal resistance and increased the thermal conductivity of liquid cooling system. The results have confirmed the advantages of the MWCNTs for thermal dissipation systems for the μ-processor and other high power electronic devices.

  9. Dissipation and entropy production in deterministic heat conduction of quasi-one-dimensional systems.

    Science.gov (United States)

    Morriss, Gary P; Truant, Daniel P

    2013-06-01

    We explore the consequences of a deterministic microscopic thermostat-reservoir contact mechanism. With different temperature reservoirs at each end of a two-dimensional system, a heat current is produced and the system has an anomalous thermal conductivity. The microscopic form for the local heat flux vector is derived and both the kinetic and potential contributions are calculated. The total heat flux vector is shown to satisfy the continuity equation. The properties of this nonequilibrium steady state are studied as functions of system size and temperature gradient, identifying key scaling relations for the local fluid properties and separating bulk and boundary effects. The local entropy density calculated from the local equilibrium distribution is shown to be a very good approximation to the entropy density calculated directly from the velocity distribution even for systems that are far from equilibrium. The dissipation and kinetic entropy production and flux are compared quantitatively and the differing mechanisms discussed within the Bhatnagar-Gross-Krook approximation. For equal-temperature reservoirs the entropy production near the reservoir walls is shown to be proportional to the local phase space contraction calculated from the tangent space dynamics. However, for unequal temperatures, the connection between local entropy production and local phase space contraction is more complicated.

  10. Heat dissipation analysis of bendable AlGaInP micro-LED arrays

    Science.gov (United States)

    Fang, Shiwei; Wang, Weibiao; Liang, Jingqiu; Liang, Zhongzhu; Qin, Yuxin; Lv, Jinguang

    2017-01-01

    A strategy for fabricating bendable AlGaInP light emitting diode (LED) arrays is presented in this paper. Sample LED arrays with 8 × 8 pixels were fabricated and subjected to bending. Bending only weakly affected the light output power and the current-voltage characteristics of the arrays. LED arrays suffer from a thermal problem owing to the energy loss during the electrical-to-optical energy conversion. We have designed a three-dimensional heat conduction model for analyzing the effect of the polymer substrate, the configuration of pixels, and the micro-structure on heat dissipation in bendable LED arrays. Thermal conductivity of the polymer substrate critically affected the heat dissipation, suggesting that the substrate thickness should be in the 500-1000 μ m range. A larger pixel distance yielded more distributed heat sources and more uniform temperature distribution. Micro-structured polymer substrates yielded lower temperature, especially for the fins array micro-structure. Based on enhancing the polymer's thermal conductivity and distributing LED pixels, optimizing the substrate's micro-structure is an effective method to improve heat dissipation in bendable LED arrays. Optimized heat dissipation could effectively reduce heat accumulation in LED arrays and alleviate an increase in the junction temperature, allowing to increase the output power of the device.

  11. LED lamp incorporating remote phosphor with heat dissipation features

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Tao; Letoquin, Ronan; Keller, Bernd; Tarsa, Eric

    2016-11-22

    An LED lamp or bulb is disclosed that comprises a light source, a heat sink structure and a remote planar phosphor carrier having at least one conversion material. The phosphor carrier can be remote to the light sources and mounted to the heat sink so that heat from the phosphor carrier spreads into the heat sink. The phosphor carrier can comprise a thermally conductive transparent material and a phosphor layer, with an LED based light source mounted to the heat sink such that light from the light source passes through the phosphor carrier. At least some of the LED light is converted by the phosphor carrier, with some lamp embodiments emitting a white light combination of LED and phosphor light. The phosphor arranged according to the present invention can operate at lower temperature to thereby operate at greater phosphor conversion efficiency and with reduced heat related damage to the phosphor.

  12. Continuous Carbon Nanotube-Based Fibers and Films for Applications Requiring Enhanced Heat Dissipation.

    Science.gov (United States)

    Liu, Peng; Fan, Zeng; Mikhalchan, Anastasiia; Tran, Thang Q; Jewell, Daniel; Duong, Hai M; Marconnet, Amy M

    2016-07-13

    The production of continuous carbon nanotube (CNT) fibers and films has paved the way to leverage the superior properties of individual carbon nanotubes for novel macroscale applications such as electronic cables and multifunctional composites. In this manuscript, we synthesize fibers and films from CNT aerogels that are continuously grown by floating catalyst chemical vapor deposition (FCCVD) and measure thermal conductivity and natural convective heat transfer coefficient from the fiber and film. To probe the mechanisms of heat transfer, we develop a new, robust, steady-state thermal characterization technique that enables measurement of the intrinsic fiber thermal conductivity and the convective heat transfer coefficient from the fiber to the surrounding air. The thermal conductivity of the as-prepared fiber ranges from 4.7 ± 0.3 to 28.0 ± 2.4 W m(-1) K(-1) and depends on fiber volume fraction and diameter. A simple nitric acid treatment increases the thermal conductivity by as much as a factor of ∼3 for the fibers and ∼6.7 for the thin films. These acid-treated CNT materials demonstrate specific thermal conductivities significantly higher than common metals with the same absolute thermal conductivity, which means they are comparatively lightweight, thermally conductive fibers and films. Beyond thermal conductivity, the acid treatment enhances electrical conductivity by a factor of ∼2.3. Further, the measured convective heat transfer coefficients range from 25 to 200 W m(-2) K(-1) for all fibers, which is higher than expected for macroscale materials and demonstrates the impact of the nanoscale CNT features on convective heat losses from the fibers. The measured thermal and electrical performance demonstrates the promise for using these fibers and films in macroscale applications requiring effective heat dissipation.

  13. [The design of heat dissipation of the field low temperature box for storage and transportation].

    Science.gov (United States)

    Wei, Jiancang; Suin, Jianjun; Wu, Jian

    2013-02-01

    Because of the compact structure of the field low temperature box for storage and transportation, which is due to the same small space where the compressor, the condenser, the control circuit, the battery and the power supply device are all placed in, the design for heat dissipation and ventilation is of critical importance for the stability and reliability of the box. Several design schemes of the heat dissipation design of the box were simulated using the FLOEFD hot fluid analysis software in this study. Different distributions of the temperature field in every design scheme were constructed intimately in the present study. It is well concluded that according to the result of the simulation analysis, the optimal heat dissipation design is decent for the field low temperature box for storage and transportation, and the box can operate smoothly for a long time using the results of the design.

  14. Effects of Joule Heating and Viscous Dissipation on MHD Marangoni Convection Boundary Layer Flow

    Directory of Open Access Journals (Sweden)

    Rohana Abdul Hamid

    2011-09-01

    Full Text Available An analysis is performed to study the effects of the Joule heating and viscous dissipation on the magnetohydrodynamics (MHD Marangoni convection boundary layer flow. The governing partial differential equations are reduced to a system of ordinary differential equations via the similarity transformations. Numerical results of the similarity equations are obtained using the Runge-Kutta-Fehlberg method. Effects of the magnetic field parameter, and the combined effects of the Joule heating and the viscous dissipation are investigated and the numerical results are tabulated in tables and figures. It is found that the magnetic field reduces the fluid velocity but increases the fluid temperature. On the other hand, the combined effects of the Joule heating and viscous dissipation have significantly influenced the surface temperature gradient.

  15. Substrate thermal conductivity effect on heat dissipation and lifetime improvement of organic light-emitting diodes

    Science.gov (United States)

    Chung, Seungjun; Lee, Jae-Hyun; Jeong, Jaewook; Kim, Jang-Joo; Hong, Yongtaek

    2009-06-01

    We report substrate thermal conductivity effect on heat dissipation and lifetime improvement of organic light-emitting diodes (OLEDs). Heat dissipation behavior of top-emission OLEDs fabricated on silicon, glass, and planarized stainless steel substrates was measured by using an infrared camera. Peak temperature measured from the backside of each substrate was saturated to be 21.4, 64.5, and 40.5 °C, 180 s after the OLED was operated at luminance of 10 000 cd/m2 and 80% luminance lifetime was about 198, 31, and 96 h, respectively. Efficient heat dissipation through the highly thermally conductive substrates reduced temperature increase, resulting in much improved OLED lifetime.

  16. Modular Heat Dissipation Technique for a CubeSat

    Science.gov (United States)

    2015-07-28

    box dimensions are decided, the heat dissipater was modeled in SOLIDWORKS ® and frequency analysis was conducted computationally by Mr. Philip D...Technical Drawing of the Heat Dissipater Box SolidWorks Educational License Instructional Use Only 3 . 819 PC1e4 layout CO!IITJACr: 0«!. ~~~1h...First Edge of the Heat Dissipater Box 3. 819 l-----l3 . 819f------l~PCle4 layout rT-----------------,~·~I.2sel ~--------------~---r SolidWorks

  17. Defect-related internal dissipation in mechanical resonators and the study of coupled mechanical systems.

    Energy Technology Data Exchange (ETDEWEB)

    Friedmann, Thomas Aquinas; Czaplewski, David A.; Sullivan, John Patrick; Modine, Normand Arthur; Wendt, Joel Robert; Aslam, Dean (Michigan State University, Lansing, MI); Sepulveda-Alancastro, Nelson (University of Puerto Rico, Mayaguez, PR)

    2007-01-01

    Understanding internal dissipation in resonant mechanical systems at the micro- and nanoscale is of great technological and fundamental interest. Resonant mechanical systems are central to many sensor technologies, and microscale resonators form the basis of a variety of scanning probe microscopies. Furthermore, coupled resonant mechanical systems are of great utility for the study of complex dynamics in systems ranging from biology to electronics to photonics. In this work, we report the detailed experimental study of internal dissipation in micro- and nanomechanical oscillators fabricated from amorphous and crystalline diamond materials, atomistic modeling of dissipation in amorphous, defect-free, and defect-containing crystalline silicon, and experimental work on the properties of one-dimensional and two-dimensional coupled mechanical oscillator arrays. We have identified that internal dissipation in most micro- and nanoscale oscillators is limited by defect relaxation processes, with large differences in the nature of the defects as the local order of the material ranges from amorphous to crystalline. Atomistic simulations also showed a dominant role of defect relaxation processes in controlling internal dissipation. Our studies of one-dimensional and two-dimensional coupled oscillator arrays revealed that it is possible to create mechanical systems that should be ideal for the study of non-linear dynamics and localization.

  18. Experimental Study of Heat Dissipation in Indoor Sports Shoes

    OpenAIRE

    Dessing, O.; A.J. Jansen; Leihitu, C.; Overhage, D.

    2014-01-01

    As indoor sports shoes are intensively used in a warm and sweaty environment for periods of up to three consecutive hours, the built-up heat inside is insufficiently released causing warm and perspiring feet. This results in an increased chance of blisters and skin irritations. Experimental research on the ventilation properties of the shoe was done using a controlled heat source, digital thermometer and thermo-graphic camera. A representative set of five volley- and handball shoes were subje...

  19. Cutting heat dissipation in high-speed machining of carbon steel based on the calorimetric method

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The cutting heat dissipation in chips,workpiece,tool and surroundings during the high-speed machining of carbon steel is quantitatively investigated based on the calorimetric method.Water is used as the medium to absorb the cutting heat;a self-designed container suitable for the high-speed lathe is used to collect the chips,and two other containers are adopted to absorb the cutting heat dissipated in the workpiece and tool,respectively.The temperature variations of the water,chips,workpiece,tool and surroundings during the closed high-speed machining are then measured.Thus,the cutting heat dissipated in each component of the cutting system,total cutting heat and heat flux are calculated.Moreover,the power resulting from the main cutting force is obtained according to the measured cutting force and predetermined cutting speed.The accuracy of cutting heat measurement by the calorimetric method is finally evaluated by comparing the total cutting heat flux with the power resulting from the main cutting force.

  20. Population equations for quantum systems in contact with dissipation mechanisms

    Science.gov (United States)

    Huang, X. Y.; Narducci, L. M.; Yuan, J. M.

    1981-06-01

    We discuss the construction of population equations for driven quantum systems in contact with dissipation mechanisms in the limit where the strength of the driving force is sufficiently weak that a suitable Born expansion can be carried out in powers of the coupling constant of the coherent interaction. The Zwanzig projector technique and the application of an appropriate eigenfunction-expansion method due to Weidlich lead to an elegant derivation of population equations. If the decay rates of the irreversible processes allow the application of the Markoff approximation, ordinary first-order differential equations for the level populations can be derived. The transition rates are constructed explicitly in terms of the coherent Liouville operator and the Weidlich eigenfunctions.

  1. Dissipation of contractile forces: the missing piece in cell mechanics

    Science.gov (United States)

    Kurzawa, Laetitia; Vianay, Benoit; Senger, Fabrice; Vignaud, Timothée; Blanchoin, Laurent; Théry, Manuel

    2017-01-01

    Mechanical forces are key regulators of cell and tissue physiology. The basic molecular mechanism of fiber contraction by the sliding of actin filament upon myosin leading to conformational change has been known for decades. The regulation of force generation at the level of the cell, however, is still far from elucidated. Indeed, the magnitude of cell traction forces on the underlying extracellular matrix in culture is almost impossible to predict or experimentally control. The considerable variability in measurements of cell-traction forces indicates that they may not be the optimal readout to properly characterize cell contractile state and that a significant part of the contractile energy is not transferred to cell anchorage but instead is involved in actin network dynamics. Here we discuss the experimental, numerical, and biological parameters that may be responsible for the variability in traction force production. We argue that limiting these sources of variability and investigating the dissipation of mechanical work that occurs with structural rearrangements and the disengagement of force transmission is key for further understanding of cell mechanics. PMID:28684608

  2. Composite superconducting bulks for efficient heat dissipation during pulse magnetization

    Science.gov (United States)

    Baskys, A.; Patel, A.; Hopkins, S.; Kenfaui, D.; Chaud, X.; Zhang, M.; Glowacki, B. A.

    2014-05-01

    Pulsed field magnetization is the most practical method of magnetizing a (RE)BCO bulk, however large heat generation limits the trapped field to significantly less than possible using field cooling. Modelling has been used to show that effective heat removal from the bulk interior, using embedded metallic structures, can enhance trapped field by increasing thermal stability. The reported results are for experimental pulsed magnetization of a thin walled YBCO sample with 55 vertical holes embedded with high thermal conductivity wires. A specially designed copper coldhead was used to increase the trapped field and flux of the perforated YBCO by about 12% at 35 K using a multi-pulse magnetization. Moreover, by filling the perforations with copper, the central trapped field was enhanced by 15% after a single-pulse at 35 K. 3D FEM computer model of a perforated YBCO bulk was also developed showing localised heating effects around the perforations during pulse magnetisation.

  3. Maximum efficiency of low-dissipation heat engines at arbitrary power

    Science.gov (United States)

    Holubec, Viktor; Ryabov, Artem

    2016-07-01

    We investigate maximum efficiency at a given power for low-dissipation heat engines. Close to maximum power, the maximum gain in efficiency scales as a square root of relative loss in power and this scaling is universal for a broad class of systems. For low-dissipation engines, we calculate the maximum gain in efficiency for an arbitrary fixed power. We show that engines working close to maximum power can operate at considerably larger efficiency compared to the efficiency at maximum power. Furthermore, we introduce universal bounds on maximum efficiency at a given power for low-dissipation heat engines. These bounds represent direct generalization of the bounds on efficiency at maximum power obtained by Esposito et al (2010 Phys. Rev. Lett. 105 150603). We derive the bounds analytically in the regime close to maximum power and for small power values. For the intermediate regime we present strong numerical evidence for the validity of the bounds.

  4. Experimental Study of Heat Dissipation in Indoor Sports Shoes

    NARCIS (Netherlands)

    Dessing, O.; Jansen, A.J.; Leihitu, C.; Overhage, D.

    2014-01-01

    As indoor sports shoes are intensively used in a warm and sweaty environment for periods of up to three consecutive hours, the built-up heat inside is insufficiently released causing warm and perspiring feet. This results in an increased chance of blisters and skin irritations. Experimental research

  5. Heat release mechanism of energetics

    Energy Technology Data Exchange (ETDEWEB)

    Kubota, N. [Third Research Center, Technical Research and development Institute (Japan)

    1996-12-31

    Determination of the heat release mechanism of energetic materials is a major subject of combustion study. In order to elucidate the combustion process of various types of energetic materials a generalized combustion wave structure was proposed and the heat release process was discussed. The heat release process was significantly different between the physical structures of the materials: homogeneous and heterogeneous materials. The thermal structure of an azide polymer was evaluated to demonstrate the heat release mechanism. (author) 6 refs.

  6. Cool Mist Irrigation Improves Heat Dissipation during Surgical Bone Drilling.

    Science.gov (United States)

    Siljander, Breana R; Wang, Anthony C; Zhang, Lihui; Shih, Albert J; Sullivan, Stephen E; Tai, Bruce L

    2014-08-01

    Objective High-speed drilling generates heat in small cavities and may pose a risk for neurovascular tissues. We hypothesize that a continuous pressurized cold mist could be an alternative approach for better cooling during drilling of bone to access cranial lesions. This study aims to examine this idea experimentally. Design Ex-vivo drilling tests with controlled speed, feed, and depth were performed on cortical bone samples. Thermocouples were embedded underneath the drilling path to compare the temperature rises under mist cooling (at 3°C,  800 mL/h). Results A significant difference exists between these two systems (p value < 0.05). The measured temperature was ∼ 4°C lower for mist cooling than for flood irrigation, even with less than a third of the flow rate. Conclusion Experimental data indicate the capability of mist cooling to reduce heat generation while simultaneously enabling flow reduction and targeted cooling. An improved field of view in an extremely narrow access corridor may be achieved with this technology.

  7. Plasma heating inside ICMEs by Alfvenic fluctuations dissipation

    CERN Document Server

    Li, Hui; He, Jiansen; Zhang, Lingqian; Richardson, John D; Belcher, John W; Tu, Cui

    2016-01-01

    Nonlinear cascade of low-frequency Alfvenic fluctuations (AFs) is regarded as one candidate of the energy sources to heat plasma during the non-adiabatic expansion of interplanetary coronal mass ejections (ICMEs). However, AFs inside ICMEs were seldom reported in the literature. In this study, we investigate AFs inside ICMEs using observations from Voyager 2 between 1 and 6 au. It is found that AFs with high degree of Alfvenicity frequently occurred inside ICMEs, for almost all the identified ICMEs (30 out of 33 ICMEs), and 12.6% of ICME time interval. As ICMEs expand and move outward, the percentage of AF duration decays linearly in general. The occurrence rate of AFs inside ICMEs is much less than that in ambient solar wind, especially within 4 au. AFs inside ICMEs are more frequently presented in the center and at the boundaries of ICMEs. In addition, the proton temperature inside ICME has a similar distribution. These findings suggest significant contribution of AFs on local plasma heating inside ICMEs.

  8. EXPERIMENTAL STUDY OF MEASUREMENT FOR DISSIPATION RATE SCALING EXPONENT IN HEATED WALL TURBULENCE

    Institute of Scientific and Technical Information of China (English)

    姜楠; 王玉春; 舒玮; 王振东

    2002-01-01

    Experimental investigations have been devoted to the study of scaling law of coarse-grained dissipation rate structure function for velocity and temperature fluctuation of non-isotropic and inhomogeneous turbulent flows at moderate Reynolds number. Much attention has been paid to the case of turbulent boundary layer, which is typically the nonistropic and inhomogeneous trubulence because of the dynamically important existence of organized coherent structure burst process in the near wall region. Longitudinal velocity and temperature have been measured at different vertical positions in turbulent boundary layer over a heated and unheated flat plate in a wind tunnel using hot wire anemometer. The influence of non-isotropy and inhomogeneity and heating the wall on the scaling law of the dissipation rate structure function is studied because of the existence of organized coherent structure burst process in the near wall region. The scaling law of coarse-grained dissipation rate structure function is found to be independent of the mean velocity shear strain and the heating wall boundary condition. The scaling law of the dissipation rate structure function is verified to be in agreement with the hierarchical structure model that has been verified valid for isotropic and homogeneous turbulence.

  9. Conditions for Photospherically Driven Alfvenic Oscillations to Heat the Solar Chromosphere by Pedersen Current Dissipation

    CERN Document Server

    Goodman, Michael L

    2014-01-01

    A magnetohydrodynamic model that includes a complete electrical conductivity tensor is used to estimate conditions for photospherically driven, linear, non-plane Alfvenic oscillations extending from the photosphere to the lower corona to drive a chromospheric heating rate due to Pedersen current dissipation that is comparable to the net chromospheric net radiative loss of $\\sim 10^7$ ergs-cm$^{-2}$-sec$^{-1}$. The heating rates due to electron current dissipation in the photosphere and corona are also computed. The wave amplitudes are computed self-consistently as functions of an inhomogeneous background (BG) atmosphere. The effects of the conductivity tensor are resolved numerically using a resolution of 3.33 m. The oscillations drive a chromospheric heating flux $F_{Ch} \\sim 10^7 - 10^8$ ergs-cm$^{-2}$-sec$^{-1}$ at frequencies $\

  10. Non-Markovian dissipative quantum mechanics with stochastic trajectories

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Werner

    2010-09-09

    All fields of physics - be it nuclear, atomic and molecular, solid state, or optical - offer examples of systems which are strongly influenced by the environment of the actual system under investigation. The scope of what is called ''the environment'' may vary, i.e., how far from the system of interest an interaction between the two does persist. Typically, however, it is much larger than the open system itself. Hence, a fully quantum mechanical treatment of the combined system without approximations and without limitations of the type of system is currently out of reach. With the single assumption of the environment to consist of an internally thermalized set of infinitely many harmonic oscillators, the seminal work of Stockburger and Grabert [Chem. Phys., 268:249-256, 2001] introduced an open system description that captures the environmental influence by means of a stochastic driving of the reduced system. The resulting stochastic Liouville-von Neumann equation describes the full non-Markovian dynamics without explicit memory but instead accounts for it implicitly through the correlations of the complex-valued noise forces. The present thesis provides a first application of the Stockburger-Grabert stochastic Liouville-von Neumann equation to the computation of the dynamics of anharmonic, continuous open systems. In particular, it is demonstrated that trajectory based propagators allow for the construction of a numerically stable propagation scheme. With this approach it becomes possible to achieve the tremendous increase of the noise sample count necessary to stochastically converge the results when investigating such systems with continuous variables. After a test against available analytic results for the dissipative harmonic oscillator, the approach is subsequently applied to the analysis of two different realistic, physical systems. As a first example, the dynamics of a dissipative molecular oscillator is investigated. Long time

  11. Research on the Heat Dissipation Characteristics of Lithium Battery Spatial Layout in an AUV

    Directory of Open Access Journals (Sweden)

    Zhaoyong Mao

    2016-01-01

    Full Text Available To meet the power demand requirements of autonomous underwater vehicles (AUVs, the power supply is generally composed of a large number of high-energy lithium battery groups. The lithium battery heat dissipation properties not only affect the underwater vehicle performance but also bring some security risks. Based on the widespread application of lithium batteries, lithium batteries in an AUV are taken as an example to investigate the heat dissipation characteristics of the lithium battery spatial layout in an AUV. With the aim of increasing the safety of lithium batteries, a model is developed for the heat transfer process based on the energy conservation equation, and the battery heat dissipation characteristics of the spatial layout are analyzed. The results indicate that the most suitable distance between the cells and the cross arrangement is better than the sequence arrangement in terms of cooling characteristics. The temperature gradient and the temperature change inside the cabin with time are primarily affected by the navigation speed, but they have little relationship with the environmental temperature.

  12. Thermodynamics of a tropical cyclone: generation and dissipation of mechanical energy in a self-driven convection system

    OpenAIRE

    OZAWA,Hisashi; SHIMOKAWA, Shinya

    2015-01-01

    The formation process of circulatory motion of a tropical cyclone is investigated from a thermodynamic viewpoint. The generation rate of mechanical energy by a fluid motion under diabatic heating and cooling, and the dissipation rate of this energy due to irreversible processes are formulated from the first and second laws of thermodynamics. This formulation is applied to a tropical cyclone, and the formation process of the circulatory motion is examined from a balance between the generation ...

  13. Use of the heat dissipation method for sap flow measurement in citrus nursery trees1

    Directory of Open Access Journals (Sweden)

    Eduardo Augusto Girardi

    2010-12-01

    Full Text Available Sap flow could be used as physiological parameter to assist irrigation of screen house citrus nursery trees by continuous water consumption estimation. Herein we report a first set of results indicating the potential use of the heat dissipation method for sap flow measurement in containerized citrus nursery trees. 'Valencia' sweet orange [Citrus sinensis (L. Osbeck] budded on 'Rangpur' lime (Citrus limonia Osbeck was evaluated for 30 days during summer. Heat dissipation probes and thermocouple sensors were constructed with low-cost and easily available materials in order to improve accessibility of the method. Sap flow showed high correlation to air temperature inside the screen house. However, errors due to natural thermal gradient and plant tissue injuries affected measurement precision. Transpiration estimated by sap flow measurement was four times higher than gravimetric measurement. Improved micro-probes, adequate method calibration, and non-toxic insulating materials should be further investigated.

  14. Fluctuation Theorems for Entropy Production and Heat Dissipation in Periodically Driven Markov Chains

    CERN Document Server

    Shargel, Benjamin Hertz

    2009-01-01

    Asymptotic fluctuation theorems are statements of a Gallavotti-Cohen symmetry in the rate function of either the time-averaged entropy production or heat dissipation of a process. Such theorems have been proved for various general classes of continuous-time deterministic and stochastic processes, but always under the assumption that the forces driving the system are time independent, and often relying on the existence of a limiting ergodic distribution. In this paper we extend the asymptotic fluctuation theorem for the first time to inhomogeneous continuous-time processes without a stationary distribution, considering specifically a finite state Markov chain driven by periodic transition rates. We find that for both entropy production and heat dissipation, the usual Gallavotti-Cohen symmetry of the rate function is generalized to an analogous relation between the rate functions of the original process and its corresponding backward process, in which the trajectory and the driving protocol have been time-rever...

  15. Extrema principles of entropy production and energy dissipation in fluid mechanics

    Science.gov (United States)

    Horne, W. Clifton; Karamcheti, Krishnamurty

    1988-01-01

    A survey is presented of several extrema principles of energy dissipation as applied to problems in fluid mechanics. An exact equation is derived for the dissipation function of a homogeneous, isotropic, Newtonian fluid, with terms associated with irreversible compression or expansion, wave radiation, and the square of the vorticity. By using entropy extrema principles, simple flows such as the incompressible channel flow and the cylindrical vortex are identified as minimal dissipative distributions. The principal notions of stability of parallel shear flows appear to be associated with a maximum dissipation condition. These different conditions are consistent with Prigogine's classification of thermodynamic states into categories of equilibrium, linear nonequilibrium, and nonlinear nonequilibrium thermodynamics; vortices and acoustic waves appear as examples of dissipative structures. The measurements of a typical periodic shear flow, the rectangular wall jet, show that direct measurements of the dissipative terms are possible.

  16. Extrema principles of entrophy production and energy dissipation in fluid mechanics

    Science.gov (United States)

    Horne, W. Clifton; Karamcheti, Krishnamurty

    1988-01-01

    A survey is presented of several extrema principles of energy dissipation as applied to problems in fluid mechanics. An exact equation is derived for the dissipation function of a homogeneous, isotropic, Newtonian fluid, with terms associated with irreversible compression or expansion, wave radiation, and the square of the vorticity. By using entropy extrema principles, simple flows such as the incompressible channel flow and the cylindrical vortex are identified as minimal dissipative distributions. The principal notions of stability of parallel shear flows appears to be associated with a maximum dissipation condition. These different conditions are consistent with Prigogine's classification of thermodynamic states into categories of equilibrium, linear nonequilibrium, and nonlinear nonequilibrium thermodynamics; vortices and acoustic waves appear as examples of dissipative structures. The measurements of a typical periodic shear flow, the rectangular wall jet, show that direct measurements of the dissipative terms are possible.

  17. The effect of flexible tube vibration on pressure drop and heat transfer in heat exchangers considering viscous dissipation effects

    Science.gov (United States)

    Shokouhmand, H.; Sangtarash, F.

    2008-04-01

    The pressure drop and heat transfer coefficient in tube bundle of shell and tube heat exchangers are investigated considering viscous dissipation effects. The governing equations are solved numerically. Because of temperature-dependent viscosity the equations should be solved simultaneously. The flexible tubes vibration is modeled in a quasi-static method by taking the first tube of the row to be in 20 asymmetric positions with respect to the rest of the tubes which are assumed to be fixed and time averaging the steady state solutions corresponding to each one of these positions .The results show that the eccentricity of the first tube increases pressure drop and heat transfer coefficients significantly comparing to the case of rigid tube bundles, symmetrically placed. In addition, these vibrations not only compensate the effect of viscous dissipations on heat transfer coefficient but also increase heat transfer coefficient. The constant viscosity results obtained from our numerical method have a good agreement with the available experimental data of constant viscosity for flexible tube heat exchangers.

  18. Dissipation Effects on MHD Nonlinear Flow and Heat Transfer Past a Porous Surface with Prescribed Heat Flux

    Directory of Open Access Journals (Sweden)

    S.P. Anjali Devi

    2010-01-01

    Full Text Available Viscous and Joule dissipation effects are considered on MHD nonlinear flow and heat transfer past a stretching porous surface embedded in a porous medium under a transverse magnetic field. Analytical solutions of highly nonlinear momentum equation and confluent hypergeometric similarity solution of heat transfer equations in the case when the plate stretches with velocity varying linearly with distance are obtained. The effect of various parameters like suction parameter, Prandtl number, Magnetic parameter, and Eckert number entering into the velocity field, temperature distribution and skin friction co-efficient at the wall are discussed with the aid of graphs.

  19. Dissipation and heating in solar wind turbulence: from the macro to the micro and back again.

    Science.gov (United States)

    Kiyani, Khurom H; Osman, Kareem T; Chapman, Sandra C

    2015-05-13

    The past decade has seen a flurry of research activity focused on discerning the physics of kinetic scale turbulence in high-speed astrophysical plasma flows. By 'kinetic' we mean spatial scales on the order of or, in particular, smaller than the ion inertial length or the ion gyro-radius--the spatial scales at which the ion and electron bulk velocities decouple and considerable change can be seen in the ion distribution functions. The motivation behind most of these studies is to find the ultimate fate of the energy cascade of plasma turbulence, and thereby the channels by which the energy in the system is dissipated. This brief Introduction motivates the case for a themed issue on this topic and introduces the topic of turbulent dissipation and heating in the solar wind. The theme issue covers the full breadth of studies: from theory and models, massive simulations of these models and observational studies from the highly rich and vast amount of data collected from scores of heliospheric space missions since the dawn of the space age. A synopsis of the theme issue is provided, where a brief description of all the contributions is discussed and how they fit together to provide an over-arching picture on the highly topical subject of dissipation and heating in turbulent collisionless plasmas in general and in the solar wind in particular.

  20. Thermodynamics of a tropical cyclone: generation and dissipation of mechanical energy in a self-driven convection system

    Directory of Open Access Journals (Sweden)

    Hisashi Ozawa

    2015-01-01

    Full Text Available The formation process of circulatory motion of a tropical cyclone is investigated from a thermodynamic viewpoint. The generation rate of mechanical energy by a fluid motion under diabatic heating and cooling, and the dissipation rate of this energy due to irreversible processes are formulated from the first and second laws of thermodynamics. This formulation is applied to a tropical cyclone, and the formation process of the circulatory motion is examined from a balance between the generation and dissipation rates of mechanical energy in the fluid system. We find from this formulation and data analysis that the thermodynamic efficiency of tropical cyclones is about 40% lower than the Carnot maximum efficiency because of the presence of thermal dissipation due to irreversible transport of sensible and latent heat in the atmosphere. We show that a tropical cyclone tends to develop within a few days through a feedback supply of mechanical energy when the sea surface temperature is higher than 300 K, and when the horizontal scale of circulation becomes larger than the vertical height of the troposphere. This result is consistent with the critical radius of 50 km and the corresponding central pressure of about 995 hPa found in statistical properties of typhoons observed in the western North Pacific.

  1. Coexistence of two dissipative mechanisms in two-dimensional turbulent flows

    Energy Technology Data Exchange (ETDEWEB)

    Yen, Romain Nguyen van [FB Mathematik und Informatik, Freie Universitaet, Berlin (Germany); Farge, Marie [LMD-CNRS-IPSL, ENS Paris (France); Schneider, Kai, E-mail: rnguyen@zedat.fu-berlin.de [M2P2-CNRS, Universite d' Aix-Marseille (France)

    2011-12-22

    Two distinct dissipative mechanisms occurring in two-dimensional fully developed turbulent flows in the limit of vanishing viscosity have been highlighted by means of direct numerical simulation. First, molecular energy dissipation is triggered by the production of localized vortices at the walls. Second, instabilities intrinsic to the flow itself generate a noisy component which can be quantified by wavelet analysis. The possibilities of competition and coexistence of the two mechanisms are discussed.

  2. Excess heat in the Greenland Ice Sheet: dissipation, temperate paleo-firn and cryo-hydrologic warming

    Directory of Open Access Journals (Sweden)

    M. P. Lüthi

    2014-10-01

    Full Text Available Ice temperature profiles from the Greenland Ice Sheet contain information on the deformation history, past climates and recent warming. We present full-depth temperature profiles from two drill sites on a flowline passing through Swiss Camp, West Greenland. Numerical modeling reveals that ice temperatures are considerably higher than would be expected from heat diffusion and dissipation alone. The possible causes for this excess heat are evaluated using a Lagrangian heat flow model. The model results reveal that the observations can be explained with a combination of different processes: enhanced dissipation (strain heating in ice-age ice, temperate paleo-firn, and cryo-hydrologic warming in deep crevasses.

  3. Excess heat in the Greenland Ice Sheet: dissipation, temperate paleo-firn and cryo-hydrologic warming

    Science.gov (United States)

    Lüthi, M. P.; Ryser, C.; Andrews, L. C.; Catania, G. A.; Funk, M.; Hawley, R. L.; Hoffman, M. J.; Neumann, T. A.

    2014-10-01

    Ice temperature profiles from the Greenland Ice Sheet contain information on the deformation history, past climates and recent warming. We present full-depth temperature profiles from two drill sites on a flowline passing through Swiss Camp, West Greenland. Numerical modeling reveals that ice temperatures are considerably higher than would be expected from heat diffusion and dissipation alone. The possible causes for this excess heat are evaluated using a Lagrangian heat flow model. The model results reveal that the observations can be explained with a combination of different processes: enhanced dissipation (strain heating) in ice-age ice, temperate paleo-firn, and cryo-hydrologic warming in deep crevasses.

  4. Heat sources within the Greenland Ice Sheet: dissipation, temperate paleo-firn and cryo-hydrologic warming

    Science.gov (United States)

    Lüthi, M. P.; Ryser, C.; Andrews, L. C.; Catania, G. A.; Funk, M.; Hawley, R. L.; Hoffman, M. J.; Neumann, T. A.

    2015-02-01

    Ice temperature profiles from the Greenland Ice Sheet contain information on the deformation history, past climates and recent warming. We present full-depth temperature profiles from two drill sites on a flow line passing through Swiss Camp, West Greenland. Numerical modeling reveals that ice temperatures are considerably higher than would be expected from heat diffusion and dissipation alone. The possible causes for this extra heat are evaluated using a Lagrangian heat flow model. The model results reveal that the observations can be explained with a combination of different processes: enhanced dissipation (strain heating) in ice-age ice, temperate paleo-firn, and cryo-hydrologic warming in deep crevasses.

  5. Time, entropy generation, and optimization in low-dissipation heat devices

    Science.gov (United States)

    Calvo Hernández, A.; Medina, A.; Roco, J. M. M.

    2015-07-01

    We present new results obtained from the Carnot-like low-dissipation model of heat devices when size- and time-constraints are taken into account, in particular those obtained from the total cycle time and the contact times of the working system with the external heat reservoirs. The influence of these constraints and of the characteristic time scale of the model on the entropy generation allows for a clear and unified interpretation of different energetic properties for both heat engines and refrigerators (REs). Some conceptual subtleties with regard to different optimization criteria, especially for REs, are discussed. So, the different status of power input, cooling power, and the unified figure of merit χ are analyzed on the basis of their absolute or local role as optimization criteria.

  6. Heat Dissipation from Suspended Carbon Nanotubes to their Surrounding Gas Environment

    Science.gov (United States)

    Hsu, I. Kai; Pettes, Michael T.; Aykol, Mehmet; Shi, Li; Cronin, Stephen

    2011-03-01

    The assistance of gas molecules to dissipate heat in 5- μ m-long, electrical heated suspended carbon nanotubes (CNTs) is observed by comparing the G band Raman phonon temperature profiles measured in different gas environments and in vacuum. The measurement results show that 50-60% of the heat generated in the CNT is carried away by its surrounding gas molecules. By analyzing the temperature profiles investigated in different gases, the thermal boundary conductance (TBC) between the gas molecules and the CNT can also be extracted. We find the TBC to be higher in carbon dioxide than in nitrogen, argon and helium. Moreover, we report another optical method to explore the heat spreading behavior on a longer suspended CNTs in air, in which one laser is used as a heat source while another laser is used as a local temperature probe. A fin-shape thermal transport model is applied to fit the exponentially decaying temperature profiles measured away from the heat source. These results yield a heat decay length and TBC for air to be around 6.5 μ m and 3 × 105 W/ m 2 K, respectively. I Kai Hsu et al. Journal of Applied Physics 2010, 108, (084307).

  7. Influence of Newtonian heating on three dimensional MHD flow of couple stress nanofluid with viscous dissipation and Joule heating.

    Directory of Open Access Journals (Sweden)

    Muhammad Ramzan

    Full Text Available The present exploration discusses the influence of Newtonian heating on the magnetohydrodynamic (MHD three dimensional couple stress nanofluid past a stretching surface. Viscous dissipation and Joule heating effects are also considered. Moreover, the nanofluid model includes the combined effects of thermophoresis and Brownian motion. Using an appropriate transformation, the governing non linear partial differential equations are converted into nonlinear ordinary differential equations. Series solutions using Homotopy Analysis method (HAM are computed. Plots are presented to portrait the arising parameters in the problem. It is seen that an increase in conjugate heating parameter results in considerable increase in the temperature profile of the stretching wall. Skin friction coefficient, local Nusselt and local Sherwood numbers tabulated and analyzed. Higher values of conjugate parameter, Thermophoresis parameter and Brownian motion parameter result in enhancement of temperature distribution.

  8. Heat dissipation performance of a high-brightness LED package assembly using high-thermal conductivity filler.

    Science.gov (United States)

    Yung, K C; Liem, H; Choy, H S

    2013-12-10

    This paper presents a thermal analysis and experimental validation of natural convective heat transfer of a high-brightness light-emitting diode (LED) package assembly. The substrate materials used in the LED package assembly were filled and doped using boron nitride (BN) filler. The thermal conductivity of the BN-filled substrate was measured. The temperature distribution and heat flow of the LED package were assessed by thermal profile measurement using an infrared (IR) camera and thermocouples. In addition, the heat transfer process of the LED package assembly in natural convection was also simulated using the computational fluid dynamics method. The optical performance of the LED package was monitored and investigated with various filler contents. The heat conduction mechanism in the substrate was analyzed. IR thermogram showed that the BN-doped substrate could effectively lower the surface temperature of the LED package by 21.5°C compared with the traditional FR4 substrate. According to the IESNA LM 80 lifetime testing method, reduction in LED temperature can prolong the LED's lifetime by 19,000 h. The optical performance of the LED package assembly was also found to be improved significantly in lighting power by 10%. As a result, the overall heat dissipation capability of the LED package to the surrounding is enhanced, which improves the LED's efficacy.

  9. Mechanisms of Ocean Heat Uptake

    Science.gov (United States)

    Garuba, Oluwayemi

    An important parameter for the climate response to increased greenhouse gases or other radiative forcing is the speed at which heat anomalies propagate downward in the ocean. Ocean heat uptake occurs through passive advection/diffusion of surface heat anomalies and through the redistribution of existing temperature gradients due to circulation changes. Atlantic meridional overturning circulation (AMOC) weakens in a warming climate and this should slow the downward heat advection (compared to a case in which the circulation is unchanged). However, weakening AMOC also causes a deep warming through the redistributive effect, thus increasing the downward rate of heat propagation compared to unchanging circulation. Total heat uptake depends on the combined effect of these two mechanisms. Passive tracers in a perturbed CO2 quadrupling experiments are used to investigate the effect of passive advection and redistribution of temperature anomalies. A new passive tracer formulation is used to separate ocean heat uptake into contributions due to redistribution and passive advection-diffusion of surface heating during an ocean model experiment with abrupt increase in surface temperature. The spatial pattern and mechanisms of each component are examined. With further experiments, the effects of surface wind, salinity and temperature changes in changing circulation and the resulting effect on redistribution in the individual basins are isolated. Analysis of the passive advection and propagation path of the tracer show that the Southern ocean dominates heat uptake, largely through vertical and horizontal diffusion. Vertical diffusion transports the tracer across isopycnals down to about 1000m in 100 years in the Southern ocean. Advection is more important in the subtropical cells and in the Atlantic high latitudes, both with a short time scale of about 20 years. The shallow subtropical cells transport the tracer down to about 500m along isopycnal surfaces, below this vertical

  10. Three-Dimensional Porous Copper-Graphene Heterostructures with Durability and High Heat Dissipation Performance.

    Science.gov (United States)

    Rho, Hokyun; Lee, Seungmin; Bae, Sukang; Kim, Tae-Wook; Lee, Dong Su; Lee, Hyun Jung; Hwang, Jun Yeon; Jeong, Tak; Kim, Sungmin; Ha, Jun-Seok; Lee, Sang Hyun

    2015-08-03

    Porous materials have historically been of interest for a wide range of applications in thermal management, for example, in heat exchangers and thermal barriers. Rapid progress in electronic and optoelectronic technology necessitates more efficient spreading and dissipation of the heat generated in these devices, calling for the development of new thermal management materials. Here, we report an effective technique for the synthesis of porous Cu-graphene heterostructures with pores of about 30 μm and a porosity of 35%. Graphene layers were grown on the surfaces of porous Cu, which was formed via the coalescence of molten Cu microparticles. The surface passivation with graphene layers resulted in a thermal conductivity higher than that of porous Cu, especially at high temperatures (approximately 40% at 1173 K). The improved heat dissipation properties of the porous structures were demonstrated by analysis of the thermal resistance and temperature distribution of LED chips mounted on the structures. The effective combination of the structural and material properties of porous Cu-graphene heterostructures provides a new material for effective thermal management of high-power electronic and optoelectronic devices.

  11. Running Performance While Wearing a Heat Dissipating Compression Garment in Male Recreational Runners.

    Science.gov (United States)

    Leoz-Abaurrea, Iker; Santos-Concejero, Jordan; Grobler, Lara; Engelbrecht, Louise; Aguado-Jiménez, Roberto

    2016-12-01

    Leoz-Abaurrea, I, Santos-Concejero, J, Grobler, L, Engelbrecht, L, and Aguado-Jiménez, R. Running performance while wearing a heat dissipating compression garment in male recreational runners. J Strength Cond Res 30(12): 3367-3372, 2016-The aim of this study was to investigate the effects of a heat dissipating compression garment (CG) during a running performance test. Ten male recreational runners (mean ± SD: age 23 ± 3 years; V[Combining Dot Above]O2max 55.8 ± 4.8 ml·kg·min) completed 2 identical sessions wearing either CG or conventional t-shirt (CON). Each trial included a 45-minute run at 60% of the peak treadmill speed (PTS) followed by a time to exhaustion (TTE) run at 80% of the PTS and a 10-minute recovery period. During the tests, thermoregulatory and cardiovascular responses were monitored. Participants wearing the CG displayed an impaired running performance (508 ± 281 vs. 580 ± 314 seconds, p = 0.046; effect size [ES] = 0.24). In addition, a higher respiratory exchange ratio (1.06 ± 0.04 vs. 1.02 ± 0.07, p = 0.01; ES = 0.70) was observed at TTE when wearing the CG in comparison to CON. Changes in core temperature did not differ between garments after the 45-minute run (p = 0.96; ES = 0.03) or TTE (1.97 ± 0.32 vs. 1.98 ± 0.38° C; p = 0.93; ES = 0.02) for CG and CON, respectively. During recovery, significantly higher heart rate and blood lactate values were observed when wearing CG (p ≤ 0.05). These findings suggest that the use of a heat dissipating CG may not improve running performance in male recreational runners during a running performance test to exhaustion.

  12. Efficiency at and near maximum power of low-dissipation heat engines.

    Science.gov (United States)

    Holubec, Viktor; Ryabov, Artem

    2015-11-01

    A universality in optimization of trade-off between power and efficiency for low-dissipation Carnot cycles is presented. It is shown that any trade-off measure expressible in terms of efficiency and the ratio of power to its maximum value can be optimized independently of most details of the dynamics and of the coupling to thermal reservoirs. The result is demonstrated on two specific trade-off measures. The first one is designed for finding optimal efficiency for a given output power and clearly reveals diseconomy of engines working at maximum power. As the second example we derive universal lower and upper bounds on the efficiency at maximum trade-off given by the product of power and efficiency. The results are illustrated on a model of a diffusion-based heat engine. Such engines operate in the low-dissipation regime given that the used driving minimizes the work dissipated during the isothermal branches. The peculiarities of the corresponding optimization procedure are reviewed and thoroughly discussed.

  13. Efficiency at and near maximum power of low-dissipation heat engines

    Science.gov (United States)

    Holubec, Viktor; Ryabov, Artem

    2015-11-01

    A universality in optimization of trade-off between power and efficiency for low-dissipation Carnot cycles is presented. It is shown that any trade-off measure expressible in terms of efficiency and the ratio of power to its maximum value can be optimized independently of most details of the dynamics and of the coupling to thermal reservoirs. The result is demonstrated on two specific trade-off measures. The first one is designed for finding optimal efficiency for a given output power and clearly reveals diseconomy of engines working at maximum power. As the second example we derive universal lower and upper bounds on the efficiency at maximum trade-off given by the product of power and efficiency. The results are illustrated on a model of a diffusion-based heat engine. Such engines operate in the low-dissipation regime given that the used driving minimizes the work dissipated during the isothermal branches. The peculiarities of the corresponding optimization procedure are reviewed and thoroughly discussed.

  14. Ohmic Heating and Viscous Dissipation Effects over a Vertical Plate in the Presence of Porous Medium

    Directory of Open Access Journals (Sweden)

    LOGANATHAN PARASURAM

    2016-01-01

    Full Text Available An analysis is performed to investigate the ohmic heating and viscous dissipation effects on an unsteady natural convective flow over an impulsively started vertical plate in the presence of porous medium with radiation and chemical reaction. Numerical solutions for the governing boundary layer equations are presented by finite difference scheme of the Crank Nicolson type. The influence of various parameters on the velocity, the temperature, the concentration, the skin friction, the Nusselt number and the Sherwood number are discussed. It is observed that velocity and temperature increases with increasing values of permeability and increasing values of Eckert number, whereas it decreases with increasing values of magnetic parameter. An increase in ohmic heating and viscous heating increases the velocity boundary layer. An increase in ohmic heating decreases the temperature. An increase in magnetic field reduces the temperature profile. The velocity profile is highly influenced by the increasing values of permeability. It is observed that permeability has strong effect on velocity. An enhancement in ohmic heating increases the shear stress, decreases the rate of heat transfer and induces the rate of mass transfer.

  15. Identification of a mechanism of photoprotective energy dissipation in higher plants

    NARCIS (Netherlands)

    Ruban, A.V.; Berera, R.; Ilioia, C.; Stokkum, van I.H.M.; Kennis, J.T.M.; Pascal, A.A.; Amerongen, van H.; Robert, B.; Horton, P.; Grondelle, van R.

    2007-01-01

    Under conditions of excess sunlight the efficient light-harvesting antenna1 found in the chloroplast membranes of plants is rapidly and reversibly switched into a photoprotected quenched state in which potentially harmful absorbed energy is dissipated as heat2, 3, a process measured as the non-photo

  16. Identification of a mechanism of photoprotective energy dissipation in higher plants

    NARCIS (Netherlands)

    Ruban, A.V.; Berera, R.; Ilioia, C.; Stokkum, van I.H.M.; Kennis, J.T.M.; Pascal, A.A.; Amerongen, van H.; Robert, B.; Horton, P.; Grondelle, van R.

    2007-01-01

    Under conditions of excess sunlight the efficient light-harvesting antenna1 found in the chloroplast membranes of plants is rapidly and reversibly switched into a photoprotected quenched state in which potentially harmful absorbed energy is dissipated as heat2, 3, a process measured as the

  17. Does the Rate of Collisionless Magnetic Reconnection Depend on the Dissipation Mechanism?

    Science.gov (United States)

    Aunai, Nicolas; Hesse, Michael; Black, Carrie; Evans, Rebekah; Kuznetsova, Maria

    2012-01-01

    The importance of the electron dissipation effect on the reconnection rate is investigated in the general case of asymmetric collisionless magnetic reconnection. Contrary to the standard collisionless reconnection model, it is found that the reconnection rate, and the macroscopic evolution of the reconnecting system, crucially depend on the nature of the dissipation mechanism and that the Hall effect alone is not able to sustain fast reconnection.

  18. Two mechanisms for dissipation of excess light in monomeric and trimeric light-harvesting complexes

    Energy Technology Data Exchange (ETDEWEB)

    Dall' Osto, Luca [Univ. di Verona, Verona (Italy). Dipartimento di Biotecnologie; Cazzaniga, Stefano [Univ. di Verona, Verona (Italy). Dipartimento di Biotecnologie; Bressan, Mauro [Univ. di Verona, Verona (Italy). Dipartimento di Biotecnologie; Paleček, David [Lund Univ. (Sweden). Dept. of Chemical Physics; Židek, Karel [Lund Univ. (Sweden). Dept. of Chemical Physics; Niyogi, Krishna K. [Univ. of California, Berkeley, CA (United States). Howard Hughes Medical Inst., Dept. of Plant and Microbial Biology; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Molecular Biophysics and Integrated Bioimaging Division; Fleming, Graham R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Molecular Biophysics and Integrated Bioimaging Division; Univ. of California, Berkeley, CA (United States). Dept. of Chemistry, Graduate Group in Applied Science and Technology; Zigmantas, Donatas [Lund Univ. (Sweden). Dept. of Chemical Physics; Bassi, Roberto [Univ. di Verona, Verona (Italy). Dipartimento di Biotecnologie; Consiglio Nazionale delle Ricerche (CNR), Firenze (Italy). Istituto per la Protezione delle Piante (IPP)

    2017-04-10

    Oxygenic photoautotrophs require mechanisms for rapidly matching the level of chlorophyll excited states from light harvesting with the rate of electron transport from water to carbon dioxide. These photoprotective reactions prevent formation of reactive excited states and photoinhibition. The fastest response to excess illumination is the so-called non-photochemical quenching which, in higher plants, requires the luminal pH sensor PsbS and other yet unidentified components of the photosystem II antenna. Both trimeric light-harvesting complex II (LHCII) and monomeric LHC proteins have been indicated as site(s) of the heat-dissipative reactions. Different mechanisms have been proposed: Energy transfer to a lutein quencher in trimers, formation of a zeaxanthin radical cation in monomers. Here, we report on the construction of a mutant lacking all monomeric LHC proteins but retaining LHCII trimers. Its non-photochemical quenching induction rate was substantially slower with respect to the wild type. A carotenoid radical cation signal was detected in the wild type, although it was lost in the mutant. Here, we conclude that non-photochemical quenching is catalysed by two independent mechanisms, with the fastest activated response catalysed within monomeric LHC proteins depending on both zeaxanthin and lutein and on the formation of a radical cation. Trimeric LHCII was responsible for the slowly activated quenching component whereas inclusion in supercomplexes was not required. Finally, this latter activity does not depend on lutein nor on charge transfer events, whereas zeaxanthin was essential.

  19. Magnetohydrodynamic mixed convective slip flow over an inclined porous plate with viscous dissipation and Joule heating

    Directory of Open Access Journals (Sweden)

    S. Das

    2015-06-01

    Full Text Available The combined effects of viscous dissipation and Joule heating on the momentum and thermal transport for the magnetohydrodynamic flow past an inclined plate in both aiding and opposing buoyancy situations have been carried out. The governing non-linear partial differential equations are transformed into a system of coupled non-linear ordinary differential equations using similarity transformations and then solved numerically using the Runge–Kutta fourth order method with shooting technique. Numerical results are obtained for the fluid velocity, temperature as well as the shear stress and the rate of heat transfer at the plate. The results show that there are significant effects of pertinent parameters on the flow fields.

  20. Fluctuation Theorems for Entropy Production and Heat Dissipation in Periodically Driven Markov Chains

    Science.gov (United States)

    Shargel, Benjamin Hertz; Chou, Tom

    2009-10-01

    Asymptotic fluctuation theorems are statements of a Gallavotti-Cohen symmetry in the rate function of either the time-averaged entropy production or heat dissipation of a process. Such theorems have been proved for various general classes of continuous-time deterministic and stochastic processes, but always under the assumption that the forces driving the system are time independent, and often relying on the existence of a limiting ergodic distribution. In this paper we extend the asymptotic fluctuation theorem for the first time to inhomogeneous continuous-time processes without a stationary distribution, considering specifically a finite state Markov chain driven by periodic transition rates. We find that for both entropy production and heat dissipation, the usual Gallavotti-Cohen symmetry of the rate function is generalized to an analogous relation between the rate functions of the original process and its corresponding backward process, in which the trajectory and the driving protocol have been time-reversed. The effect is that spontaneous positive fluctuations in the long time average of each quantity in the forward process are exponentially more likely than spontaneous negative fluctuations in the backward process, and vice-versa, revealing that the distributions of fluctuations in universes in which time moves forward and backward are related. As an additional result, the asymptotic time-averaged entropy production is obtained as the integral of a periodic entropy production rate that generalizes the constant rate pertaining to homogeneous dynamics.

  1. MHD Stagnation-Point Flow and Heat Transfer with Effects of Viscous Dissipation, Joule Heating and Partial Velocity Slip.

    Science.gov (United States)

    Yasin, Mohd Hafizi Mat; Ishak, Anuar; Pop, Ioan

    2015-12-09

    The steady two-dimensional stagnation-point flow and heat transfer past a permeable stretching/shrinking sheet with effects of viscous dissipation, Joule heating and partial velocity slip in the presence of a magnetic field is investigated. The partial differential equations are reduced to nonlinear ordinary differential equations by using a similarity transformation, before being solved numerically by shooting technique. Results indicate that the skin friction coefficient and the local Nusselt number increase as magnetic parameter increases. It is found that for the stretching sheet the solution is unique while for the shrinking sheet there exist nonunique solutions (dual solutions) in certain range of parameters. The stability analysis shows that the upper branch solution is stable while the lower branch solution is unstable.

  2. MHD Stagnation-Point Flow and Heat Transfer with Effects of Viscous Dissipation, Joule Heating and Partial Velocity Slip

    Science.gov (United States)

    Mat Yasin, Mohd Hafizi; Ishak, Anuar; Pop, Ioan

    2015-12-01

    The steady two-dimensional stagnation-point flow and heat transfer past a permeable stretching/shrinking sheet with effects of viscous dissipation, Joule heating and partial velocity slip in the presence of a magnetic field is investigated. The partial differential equations are reduced to nonlinear ordinary differential equations by using a similarity transformation, before being solved numerically by shooting technique. Results indicate that the skin friction coefficient and the local Nusselt number increase as magnetic parameter increases. It is found that for the stretching sheet the solution is unique while for the shrinking sheet there exist nonunique solutions (dual solutions) in certain range of parameters. The stability analysis shows that the upper branch solution is stable while the lower branch solution is unstable.

  3. Heat transfer analysis for magnetohydrodynamics axisymmetric flow between stretching disks in the presence of viscous dissipation and Joule heating

    Directory of Open Access Journals (Sweden)

    N. Khan

    2015-05-01

    Full Text Available The investigation of heat transfer analysis on steady MHD axi-symmetric flow between two infinite stretching disks in the presence of viscous dissipation and Joule heating is basic objective of this paper. Attention has been focused to acquire the similarity solutions of the equations governing the flow and thermal fields. The transformed boundary value problem is solved analytically using homotopy analysis method. The series solutions are developed and the convergence of these solutions is explicitly discussed. The analytical expressions for fluid velocity, pressure and temperature are constructed and analyzed for various set of parameter values. The numerical values for skin friction coefficient and the Nusselt number are presented in tabular form. Particular attention is given to the variations of Prandtl and Eckert numbers. We examined that the dimensionless temperature field is enhanced when we increase the values of Eckert number and Prandtl number.

  4. Combined lock-in thermography and heat flow measurements for analysing heat dissipation during fatigue crack propagation

    Directory of Open Access Journals (Sweden)

    J. Bär

    2015-10-01

    Full Text Available During fatigue crack propagation experiments with constant force as well as constant stress intensity lock in thermography and heat flow measurements with a new developed peltier sensor have been performed. With lock in thermography space resolved measurements are possible and the evaluation allows to distinguish between elastic and dissipated energies. The specimens have to be coated with black paint to enhance the emissivity. The thickness of the coating influences the results and therefore quantitative measurements are problematic. The heat flow measurements are easy to perform and provide quantitative results but only integral in an area given by the used peltier element. To get comparable results the values measured with thermography were summarized in an area equivalent to that of the peltier element. The experiments with constant force show a good agreement between the thermography and the heat flow measurements. In case of the experiments with a constant stress intensity some differences become visible. Whereas the thermography measurements show a linear decrease of the signal with rising crack length, the heat flow measurements show a clearly nonlinear dependency. Obviously the measured energies in thermography and peltier based heat flow measurement are not comparable

  5. The extrema of an action principle for dissipative mechanical systems

    CERN Document Server

    Lin, Tongling

    2013-01-01

    A least action principle for damping motion has been previously proposed with a Hamiltonian and a Lagrangian containing the energy dissipated by friction. Due to the space-time nonlocality of the Lagrangian, mathematical uncertainties persist about the appropriate variational calculus and the nature (maxima, minima and inflection) of the stationary action. The aim of this work is to make numerical simulation of damped motion and to compare the actions of different paths in order to get evidence of the existence and the nature of stationary action. The model is a small particle subject to conservative and friction forces. Two conservative forces and three friction forces are considered. The comparison of the actions of the perturbed paths with that of the Newtonian path reveals the existence of extrema of action which are minima for zero or very weak friction and shift to maxima when the motion is overdamped. In the intermediate case, the action of the Newtonian path is neither least nor most, meaning that the...

  6. Estimating sap flux densities in date palm trees using the heat dissipation method and weighing lysimeters.

    Science.gov (United States)

    Sperling, Or; Shapira, Or; Cohen, Shabtai; Tripler, Effi; Schwartz, Amnon; Lazarovitch, Naftali

    2012-09-01

    In a world of diminishing water reservoirs and a rising demand for food, the practice and development of water stress indicators and sensors are in rapid progress. The heat dissipation method, originally established by Granier, is herein applied and modified to enable sap flow measurements in date palm trees in the southern Arava desert of Israel. A long and tough sensor was constructed to withstand insertion into the date palm's hard exterior stem. This stem is wide and fibrous, surrounded by an even tougher external non-conducting layer of dead leaf bases. Furthermore, being a monocot species, water flow does not necessarily occur through the outer part of the palm's stem, as in most trees. Therefore, it is highly important to investigate the variations of the sap flux densities and determine the preferable location for sap flow sensing within the stem. Once installed into fully grown date palm trees stationed on weighing lysimeters, sap flow as measured by the modified sensors was compared with the actual transpiration. Sap flow was found to be well correlated with transpiration, especially when using a recent calibration equation rather than the original Granier equation. Furthermore, inducing the axial variability of the sap flux densities was found to be highly important for accurate assessments of transpiration by sap flow measurements. The sensors indicated no transpiration at night, a high increase of transpiration from 06:00 to 09:00, maximum transpiration at 12:00, followed by a moderate reduction until 08:00; when transpiration ceased. These results were reinforced by the lysimeters' output. Reduced sap flux densities were detected at the stem's mantle when compared with its center. These results were reinforced by mechanistic measurements of the stem's specific hydraulic conductivity. Variance on the vertical axis was also observed, indicating an accelerated flow towards the upper parts of the tree and raising a hypothesis concerning dehydrating

  7. Dissipative Effects in Hydromagnetic Boundary Layer Nanofluid Flow past a Stretching Sheet with Newtonian Heating

    Directory of Open Access Journals (Sweden)

    Bhupesh Kumar Mahatha

    2016-01-01

    Full Text Available Two dimensional steady hydromagnetic boundary layer flow of a viscous, incompressible, and electrically conducting nanofluid past a stretching sheet with Newtonian heating, in the presence of viscous and Joule dissipations is studied. The transport equations include the combined effects of Brownian motion and thermophoresis. The governing nonlinear partial differential equations are transformed to a set of nonlinear ordinary differential equations which are then solved using Spectral Relaxation Method (SRM and the results are validated by comparison with numerical approximations obtained using the Matlab in-built boundary value problem solver bvp4c, and with existing results available in literature. Numerical values of fluid velocity, fluid temperature and species concentration are displayed graphically versus boundary layer coordinate for various values of pertinent flow parameters whereas those of skin friction, rate of heat transfer and rate of mass transfer at the plate are presented in tabular form for various values of pertinent flow parameters. Such nanofluid flows are useful in many applications in heat transfer, including microelectronics, fuel cells, pharmaceutical processes, and hybrid-powered engines, engine cooling/vehicle thermal management, domestic refrigerator, chiller, heat exchanger, in grinding, machining and in boiler flue gas temperature reduction.

  8. Enhanced heat transfer is dependent on thickness of graphene films: the heat dissipation during boiling

    Science.gov (United States)

    Ahn, Ho Seon; Kim, Jin Man; Kim, TaeJoo; Park, Su Cheong; Kim, Ji Min; Park, Youngjae; Yu, Dong In; Hwang, Kyoung Won; Jo, HangJin; Park, Hyun Sun; Kim, Hyungdae; Kim, Moo Hwan

    2014-01-01

    Boiling heat transfer (BHT) is a particularly efficient heat transport method because of the latent heat associated with the process. However, the efficiency of BHT decreases significantly with increasing wall temperature when the critical heat flux (CHF) is reached. Graphene has received much recent research attention for applications in thermal engineering due to its large thermal conductivity. In this study, graphene films of various thicknesses were deposited on a heated surface, and enhancements of BHT and CHF were investigated via pool-boiling experiments. In contrast to the well-known surface effects, including improved wettability and liquid spreading due to micron- and nanometer-scale structures, nanometer-scale folded edges of graphene films provided a clue of BHT improvement and only the thermal conductivity of the graphene layer could explain the dependence of the CHF on the thickness. The large thermal conductivity of the graphene films inhibited the formation of hot spots, thereby increasing the CHF. Finally, the provided empirical model could be suitable for prediction of CHF. PMID:25182076

  9. Enhanced heat transfer is dependent on thickness of graphene films: the heat dissipation during boiling.

    Science.gov (United States)

    Ahn, Ho Seon; Kim, Jin Man; Kim, TaeJoo; Park, Su Cheong; Kim, Ji Min; Park, Youngjae; Yu, Dong In; Hwang, Kyoung Won; Jo, HangJin; Park, Hyun Sun; Kim, Hyungdae; Kim, Moo Hwan

    2014-09-03

    Boiling heat transfer (BHT) is a particularly efficient heat transport method because of the latent heat associated with the process. However, the efficiency of BHT decreases significantly with increasing wall temperature when the critical heat flux (CHF) is reached. Graphene has received much recent research attention for applications in thermal engineering due to its large thermal conductivity. In this study, graphene films of various thicknesses were deposited on a heated surface, and enhancements of BHT and CHF were investigated via pool-boiling experiments. In contrast to the well-known surface effects, including improved wettability and liquid spreading due to micron- and nanometer-scale structures, nanometer-scale folded edges of graphene films provided a clue of BHT improvement and only the thermal conductivity of the graphene layer could explain the dependence of the CHF on the thickness. The large thermal conductivity of the graphene films inhibited the formation of hot spots, thereby increasing the CHF. Finally, the provided empirical model could be suitable for prediction of CHF.

  10. Mechanical Autonomous Stochastic Heat Engine

    Science.gov (United States)

    Serra-Garcia, Marc; Foehr, André; Molerón, Miguel; Lydon, Joseph; Chong, Christopher; Daraio, Chiara

    2016-07-01

    Stochastic heat engines are devices that generate work from random thermal motion using a small number of highly fluctuating degrees of freedom. Proposals for such devices have existed for more than a century and include the Maxwell demon and the Feynman ratchet. Only recently have they been demonstrated experimentally, using, e.g., thermal cycles implemented in optical traps. However, recent experimental demonstrations of classical stochastic heat engines are nonautonomous, since they require an external control system that prescribes a heating and cooling cycle and consume more energy than they produce. We present a heat engine consisting of three coupled mechanical resonators (two ribbons and a cantilever) subject to a stochastic drive. The engine uses geometric nonlinearities in the resonating ribbons to autonomously convert a random excitation into a low-entropy, nonpassive oscillation of the cantilever. The engine presents the anomalous heat transport property of negative thermal conductivity, consisting in the ability to passively transfer energy from a cold reservoir to a hot reservoir.

  11. Thermal physiology. Keeping cool: Enhanced optical reflection and radiative heat dissipation in Saharan silver ants.

    Science.gov (United States)

    Shi, Norman Nan; Tsai, Cheng-Chia; Camino, Fernando; Bernard, Gary D; Yu, Nanfang; Wehner, Rüdiger

    2015-07-17

    Saharan silver ants, Cataglyphis bombycina, forage under extreme temperature conditions in the African desert. We show that the ants' conspicuous silvery appearance is created by a dense array of triangular hairs with two thermoregulatory effects. They enhance not only the reflectivity of the ant's body surface in the visible and near-infrared range of the spectrum, where solar radiation culminates, but also the emissivity of the ant in the mid-infrared. The latter effect enables the animals to efficiently dissipate heat back to the surroundings via blackbody radiation under full daylight conditions. This biological solution for a thermoregulatory problem may lead to the development of biomimetic coatings for passive radiative cooling of objects.

  12. Skin histology and its role in heat dissipation in three pinniped species

    Directory of Open Access Journals (Sweden)

    Khamas Wael A

    2012-08-01

    Full Text Available Abstract Background Pinnipeds have a thick blubber layer and may have difficulty maintaining their body temperature during hot weather when on land. The skin is the main thermoregulatory conduit which emits excessive body heat. Methods Thorough evaluation of the skin histology in three pinniped species; the California sea lion-Zalophus californianus, the Pacific harbor seal-Phoca vitulina richardsi, and the Northern elephant seal-Mirounga angustirostris, was conducted to identify the presence, location and distribution of skin structures which contribute to thermoregulation. These structures included hair, adipose tissue, sweat glands, vasculature, and arteriovenous anastomoses (AVA. Thermal imaging was performed on live animals of the same species to correlate histological findings with thermal emission of the skin. Results The presence and distribution of skin structures directly relates to emissivity of the skin in all three species. Emissivity of skin in phocids (Pacific harbor and Northern elephant seals follows a different pattern than skin in otariids (California sea lions. The flipper skin in phocids tends to be the most emissive region during hot weather and least emissive during cold weather. On the contrary in otariids, skin of the entire body has a tendency to be emissive during both hot and cold weather. Conclusion Heat dissipation of the skin directly relates to the presence and distribution of skin structures in all three species. Different skin thermal dissipation patterns were observed in phocid versus otariid seals. Observed thermal patterns can be used for proper understanding of optimum thermal needs of seals housed in research facilities, rescue centers and zoo exhibits.

  13. Boundary layer flow and heat transfer in a viscous fluid over a stretching sheet with viscous dissipation, internal heat generation and prescribed heat flux

    Science.gov (United States)

    Jamaludin, Anuar; Nazar, Roslinda; Shafie, Sharidan

    2017-08-01

    This study presents the numerical solutions of boundary layer flow and heat transfer over a stretching sheet with viscous dissipation and internal heat generation. Thermal boundary condition on the surface, namely prescribed heat flux (PHF) is used. The governing nonlinear partial differential equations are transformed into nonlinear ordinary differential equations by applying the similarity transformations before reduced to the system of first order ordinary differential equations. Then the system of first order ordinary differential equations is solved numerically using an implicit finite difference scheme, known as the Keller-box method. The numerical solutions are generated using MATLAB. Temperature profiles and the temperature gradient for some values of the Prandtl number, Eckert number and heat/source sink parameter are presented in figures and discussed in details.

  14. Spin morphologies and heat dissipation in spherical assemblies of magnetic nanoparticles

    Science.gov (United States)

    Anand, Manish; Carrey, Julian; Banerjee, Varsha

    2016-09-01

    Aggregates of magnetic nanoparticles (MNPs) exhibit unusual properties due to the interplay of small system size and long-range dipole-dipole interactions. Using the micromagnetic simulation software oommf, we study the spin morphologies and heat dissipation in micron-size spherical assemblies of MNPs. In particular, we examine the sensitivity of these properties to the dipolar strength, manipulated by the interparticle separation. As oommf is not designed for such a study, we have incorporated a novel scaling protocol for this purpose. We believe that it is essential for all studies where volume fractions are varied. Our main results are as follows: (i) Dense assemblies exhibit strong dipolar effects which yield local magnetic order in the core but not on the surface, where moments are randomly oriented. (ii) The probability distribution of ground-state energy exhibits a long high-energy tail for surface spins in contrast to small tails for the core spins. Consequently, there is a wide variation in the energy of surface spins but not the core spins. (iii) There is strong correlation between ground-state energy and heating properties on application of an oscillating magnetic field h (t ) =hocos2 π f t : the particles in the core heat uniformly, while those on the surface exhibit a wide range from cold to intensely hot. (iv) Specific choices of ho and f yield characteristic spatial heat distributions, e.g., hot surface and cold core, or vice versa. (iv) For all values of ho and f that we consider, heating was maximum at a specific volume fraction. These results are especially relevant in the context of contemporary applications such as hyperthermia and chemotherapy, and also for novel materials such as smart polymer beads and superspin glasses.

  15. Foundations of Quantum Mechanics: Derivation of a dissipative Schrödinger equation from first principles

    Energy Technology Data Exchange (ETDEWEB)

    Gonçalves, L.A.; Olavo, L.S.F., E-mail: olavolsf@gmail.com

    2017-05-15

    Dissipation in Quantum Mechanics took some time to become a robust field of investigation after the birth of the field. The main issue hindering developments in the field is that the Quantization process was always tightly connected to the Hamiltonian formulation of Classical Mechanics. In this paper we present a quantization process that does not depend upon the Hamiltonian formulation of Classical Mechanics (although still departs from Classical Mechanics) and thus overcome the problem of finding, from first principles, a completely general Schrödinger equation encompassing dissipation. This generalized process of quantization is shown to be nothing but an extension of a more restricted version that is shown to produce the Schrödinger equation for Hamiltonian systems from first principles (even for Hamiltonian velocity dependent potential). - Highlights: • A Quantization process independent of the Hamiltonian formulation of quantum Mechanics is proposed. • This quantization method is applied to dissipative or absorptive systems. • A Dissipative Schrödinger equation is derived from first principles.

  16. Mechanism of active transport: free energy dissipation and free energy transduction.

    OpenAIRE

    Tanford, C

    1982-01-01

    The thermodynamic pathway for "chemiosmotic" free energy transduction in active transport is discussed with an ATP-driven Ca2+ pump as an illustrative example. Two innovations are made in the analysis. (i) Free energy dissipated as heat is rigorously excluded from overall free energy bookkeeping by focusing on the dynamic equilibrium state of the chemiosmotic process. (ii) Separate chemical potential terms for free energy donor and transported ions are used to keep track of the thermodynamic ...

  17. Deformation quantization of noncommutative quantum mechanics and dissipation

    Energy Technology Data Exchange (ETDEWEB)

    Bastos, C [Departamento de Fisica, Instituto Superior Tecnico, Avenida Rovisco Pais 1, 1049-001 Lisbon (Portugal); Bertolami, O [Departamento de Fisica, Instituto Superior Tecnico, Avenida Rovisco Pais 1, 1049-001 Lisbon (Portugal); Dias, N C [Departamento de Matematica, Universidade Lusofona de Humanidades e Tecnologias, Avenida Campo Grande 376, 1749-024 Lisbon (Portugal); Prata, J N [Departamento de Matematica, Universidade Lusofona de Humanidades e Tecnologias, Avenida Campo Grande 376, 1749-024 Lisbon (Portugal)

    2007-05-15

    We review the main features of the Weyl-Wigner formulation of noncommutative quantum mechanics. In particular, we present a *-product and a Moyal bracket suitable for this theory as well as the concept of noncommutative Wigner function. The properties of these quasi-distributions are discussed as well as their relation to the sets of ordinary Wigner functions and positive Liouville probability densities. Based on these notions we propose criteria for assessing whether a commutative regime has emerged in the realm of noncommutative quantum mechanics. To induce this noncommutative-commutative transition, we couple a particle to an external bath of oscillators. The master equation for the Brownian particle is deduced.

  18. Bounds of Efficiency at Maximum Power for Normal-, Sub-and Super-Dissipative Carnot-Like Heat Engines

    Institute of Scientific and Technical Information of China (English)

    WANG Yang; TU Zhan-Chun

    2013-01-01

    The Carnot-like heat engines are classified into three types (normal-,sub-and,super-dissipative) according to relations between the minimum irreversible entropy production in the "isothermal" processes and the time for completing those processes.The efficiencies at maximum power of normal-,sub-and super-dissipative Carnot-like heat engines are proved to be bounded between ηc/2 and ηc/ (2-ηc),ηc/2 and ηc,0 and ηc/ (2-ηc),respectively.These bounds are also shared by linear,sub-and super-linear irreversible Carnot-like engines [Tu and Wang,Europhys.Lett.98 (2012) 40001] although the dissipative engines and the irreversible ones are inequivalent to each other.

  19. “Volume-Point” heat conduction constructal optimization with entransy dissipation minimization objective based on rectangular element

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    By taking equivalent thermal resistance, which reflects the average heat conduc- tion effect and is defined based on entransy dissipation, as optimization objective, the "volume to point" constructal problem of how to discharge the heat generated in a fixed volume to a heat sink on the border through relatively high conductive link is re-analyzed and re-optimized in this paper. The constructal shape of the control volume with the best average heat conduction effect is deduced. For the elemental area and the first order construct assembly, when the thermal current density in the high conductive link is linear with the length, the optimized shapes of assemble based on the minimization of entransy dissipation are the same as those based on minimization of maximum temperature difference, and the mean tem- perature difference is 2/3 of the maximum temperature difference. For the second and higher order construct assemblies, the thermal current densities in the high conductive link are not linear with the length, and the optimized shapes of assem- ble based on the minimization of entransy dissipation are different from those based on minimization of maximum temperature difference. For the same parame- ters, the constructs based on minimization of entransy dissipation and the con- structs based on minimization of maximum temperature difference are compared, and the results show that the constructs based on entransy dissipation can de- crease the mean temperature difference better than the constructs based on mini- mization of maximum temperature difference. But with the increase of the number of the order, the mean temperature difference does not always decrease, and there exist some fluctuations. Because the idea of entransy describes the heat transfer ability more suitably, all of the heat conduction constructal problems may be re-optimized based on it.

  20. The past, present, and future viscous heat dissipation available for Greenland subglacial conduit formation

    Science.gov (United States)

    Mankoff, Kenneth D.; Tulaczyk, Slawek M.

    2017-01-01

    Basal hydrology of the Greenland Ice Sheet (GIS) influences its dynamics and mass balance through basal lubrication and ice-bed decoupling or efficient water removal and ice-bed coupling. Variations in subglacial water pressure through the seasonal evolution of the subglacial hydrological system help control ice velocity. Near the ice sheet margin, large basal conduits are melted by the viscous heat dissipation (VHD) from surface runoff routed to the bed. These conduits may lead to efficient drainage systems that lower subglacial water pressure, increase basal effective stress, and reduce ice velocity. In this study we quantify the energy available for VHD historically at present and under future climate scenarios. At present, 345 km3 of annual runoff delivers 66 GW to the base of the ice sheet per year. These values are already ˜ 50 % more than the historical 1960-1999 value of 46 GW. By 2100 under IPCC AR5 RCP8.5 (RCP4.5) scenarios, 1278 (524) km3 of runoff may deliver 310 (110) GW to the ice sheet base. Hence, the ice sheet may experience a 5-to-7-fold increase in VHD in the near future which will enhance opening of subglacial conduits near the margin and will warm basal ice in the interior. The other significant basal heat source is geothermal heat flux (GHF), which has an estimated value of 36 GW within the present-day VHD area. With increasing surface meltwater penetration to the bed the basal heat budget in the active basal hydrology zone of the GIS will be increasingly dominated by VHD and relatively less sensitive to GHF, which may result in spatial changes in the ice flow field and in its seasonal variability.

  1. Dissection of Heat Tolerance Mechanisms in Maize

    Science.gov (United States)

    Heat stress severely limits plant productivity and causes extensive economic loss to US agriculture. Understanding heat adaptation mechanisms in crop plants is crucial to the success of developing heat tolerant varieties. Heat waves (heat stress) often occur sporadically during the growing season o...

  2. Estimation of viscous dissipative stresses induced by a mechanical heart valve using PIV data.

    Science.gov (United States)

    Li, Chi-Pei; Lo, Chi-Wen; Lu, Po-Chien

    2010-03-01

    Among the clinical complications of mechanical heart valves (MHVs), hemolysis was previously thought to result from Reynolds stresses in turbulent flows. A more recent hypothesis suggests viscous dissipative stresses at spatial scales similar in size to red blood cells may be related to hemolysis in MHVs, but the resolution of current instrumentation is insufficient to measure the smallest eddy sizes. We studied the St. Jude Medical (SJM) 27 mm valve in the aortic position of a pulsatile circulatory mock loop under physiologic conditions with particle image velocimetry (PIV). Assuming a dynamic equilibrium assumption between the resolved and sub-grid-scale (SGS) energy flux, the SGS energy flux was calculated from the strain rate tensor computed from the resolved velocity fields and the SGS stress was determined by the Smagorinsky model, from which the turbulence dissipation rate and then the viscous dissipative stresses were estimated. Our results showed Reynolds stresses up to 80 N/m2 throughout the cardiac cycle, and viscous dissipative stresses below 12 N/m2. The viscous dissipative stresses remain far below the threshold of red blood cell hemolysis, but could potentially damage platelets, implying the need for further study in the phenomenon of MHV hemolytic complications.

  3. Controllability for single-input mechanical control systems with dissipation

    Institute of Scientific and Technical Information of China (English)

    Jianling KANG; Hong WANG; Huawen YE

    2005-01-01

    Within the affine connection framework of Lagrangian control systems,based on the results of Sussmann on small-time locally controllability of single-input affine nonlinear control systems,the controllability results for mechanical control systems with single-input are extended to the case of the systems with isotropic damping,where the Lagrangian is the kinetic energy associated with a Riemannian metric.A sufficient condition of negative small-time locally controllability for the system is obtained.Then,it is demonstrated that such systems are small-time locally configuration controllable if and only if the dimension of the configuration manifold is one.Finally,two examples are given to illustrate the results.Lie bracketting of vector fields and the symmetric product show the advantages in the discussion.

  4. Energy Dissipation in Graphene Mechanical Resonators with and without Free Edges

    Directory of Open Access Journals (Sweden)

    Makoto Takamura

    2016-09-01

    Full Text Available Graphene-based nanoelectromechanical systems (NEMS have high future potential to realize sensitive mass and force sensors owing to graphene’s low mass density and exceptional mechanical properties. One of the important remaining issues in this field is how to achieve mechanical resonators with a high quality factor (Q. Energy dissipation in resonators decreases Q, and suppressing it is the key to realizing sensitive sensors. In this article, we review our recent work on energy dissipation in doubly-clamped and circular drumhead graphene resonators. We examined the temperature (T dependence of the inverse of a quality factor ( Q - 1 to reveal what the dominant dissipation mechanism is. Our doubly-clamped trilayer resonators show a characteristic Q - 1 -T curve similar to that observed in monolayer resonators: Q - 1 ∝ T 2 above ∼100 K and ∝ T 0.3 below ∼100 K. By comparing our results with previous experimental and theoretical results, we determine that the T 2 and T 0.3 dependences can be attributed to tensile strain induced by clamping metals and vibrations at the free edges in doubly-clamped resonators, respectively. The Q - 1 -T curve in our circular drumhead resonators indicates that removing free edges and clamping metal suppresses energy dissipation in the resonators, resulting in a linear T dependence of Q - 1 in a wide temperature range.

  5. David Adler Lectureship Award Talk: Friction and energy dissipation mechanisms in adsorbed molecules and molecularly thin films

    Science.gov (United States)

    Krim, Jacqueline

    2015-03-01

    Studies of the fundamental origins of friction have undergone rapid progress in recent years, with the development of new experimental and computational techniques for measuring and simulating friction at atomic length and time scales. The increased interest has sparked a variety of discussions and debates concerning the nature of the atomic-scale and quantum mechanisms that dominate the dissipative process by which mechanical energy is transformed into heat. Measurements of the sliding friction of physisorbed monolayers and bilayers can provide information on the relative contributions of these various dissipative mechanisms. Adsorbed films, whether intentionally applied or present as trace levels of physisorbed contaminants, moreover are ubiquitous at virtually all surfaces. As such, they impact a wide range of applications whose progress depends on precise control and/or knowledge of surface diffusion processes. Examples include nanoscale assembly, directed transport of Brownian particles, material flow through restricted geometries such as graphene membranes and molecular sieves, passivation and edge effects in carbon-based lubricants, and the stability of granular materials associated with frictional and frictionless contacts. Work supported by NSFDMR1310456.

  6. Heat Dissipation of Resonant Absorption in Metal Nanoparticle-Polymer Films Described at Particle Separation Near Resonant Wavelength

    Directory of Open Access Journals (Sweden)

    Jeremy R. Dunklin

    2017-01-01

    Full Text Available Polymer films containing plasmonic nanostructures are of increasing interest for development of responsive energy, sensing, and therapeutic systems. The present work evaluates heat dissipated from power absorbed by resonant gold (Au nanoparticles (NP with negligible Rayleigh scattering cross sections randomly dispersed in polydimethylsiloxane (PDMS films. Finite element analysis (FEA of heat transport was coordinated with characterization of resonant absorption by Mie theory and coupled dipole approximation (CDA. At AuNP particle separation greater than resonant wavelength, correspondence was observed between measured and CDA-predicted optical absorption and FEA-derived power dissipation. At AuNP particle separation less than resonant wavelength, measured extinction increased relative to predicted values, while FEA-derived power dissipation remained comparable to CDA-predicted power absorption before lagging observed extinguished power at higher AuNP content and resulting particle separation. Effects of isolated particles, for example, scattering, and particle-particle interactions, for example, multiple scattering, aggregation on observed optothermal activity were evaluated. These complementary approaches to distinguish contributions to resonant heat dissipation from isolated particle absorption and interparticle interactions support design and adaptive control of thermoplasmonic materials for a variety of implementations.

  7. Development of Heat Dissipation Measuring System for 1.2-kW BLDC Motor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Injun; Ye, Jungwoo; Lee, Daehun; Hwang, Pyung; Shim, Jaesool [Yeungnam Univ., Gyeongsan (Korea, Republic of)

    2013-11-15

    In this study, a heat dissipation measurement system is developed to analyze a 1.2-kW BLDC motor. It is important to check the temperature of the motor because an increase in temperature causes problems in the motor insulations, which in turn influences the motor life. A generator for a vehicle is installed to set up a load. We changed the load from 165 to 495 W. While the rpm varies from 2000 to 4000 under various load conditions, the changes in temperature were measured for the operating period by using a thermocouple. The results of experiments conducted under natural convection conditions suggest that the temperature was not stationary with the rpm, load, and coil of the motor and it kept increasing over 120 .deg. C. However, under forced convection conditions, the temperature stationarily reached 84 .deg. C after 4000 s. The difference between the maximum and the minimum temperatures was 10.26 .deg. C with an increase in the rpm and load. The orders of high temperature were as follows: motor coil, side of motor surface, inside of motor cap, upper side of motor surface, and inner wall of the motor.

  8. Efficient natural-convective heat transfer properties of carbon nanotube sheets and their roles on the thermal dissipation.

    Science.gov (United States)

    Jiang, Shaohui; Liu, Changhong; Fan, Shoushan

    2014-03-12

    In this work, we report our studies related to the natural-convective heat transfer properties of carbon nanotube (CNT) sheets. We theoretically derived the formulas and experimentally measured the natural-convective heat transfer coefficients (H) via electrical heating method. The H values of the CNT sheets containing different layers (1, 2, 3, and 1000) were measured. We found that the single-layer CNT sheet had a unique ability on heat dissipation because of its great H. The H value of the single-layer CNT sheet was 69 W/(m(2) K) which was about twice of aluminum foil in the same environment. As the layers increased, the H values dropped quickly to the same with that of aluminum foil. We also discussed its roles on thermal dissipation, and the results indicated that the convection was a significant way of dissipation when the CNT sheets were applied on macroscales. These results may give us a new guideline to design devices based on the CNT sheets.

  9. Heat conduction mechanism in nanofluids

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Changwei; Hong, Hi ki [Kyung Hee University, Yongin (Korea, Republic of); Kang, Yong Tae; Lee, Jae Won [Korea University, Seoul (Korea, Republic of)

    2014-07-15

    Nanofluids are produced by dispersing nanoparticles in basefluid. Given its superior thermo-physical properties, nanofluids are gaining increasing attention and are showing promising potential in various applications. Numerous studies have been conducted in the past decade to experimentally and theoretically investigate thermal conductivity. The experimental finding is briefly summarized in this study; however, we do not intend to present a systematic summary of the available references from the literature. The primary objective of this study is to review and summarize the most debated mechanisms for heat conduction in nanofluids, such as the effects of a nanolayer, the Brownian motion of nanoparticles and aggregation, as well as induced convection. Finally, at a low concentration of nanoparticles, nanoconvection is the leading contributor to thermal conductivity enhancement, whereas at a higher concentration, the natural thermal transport along the backbone would aggregate, and the effects of the nanolayer would become significant and become ineligible.

  10. Dissipative structure of mechanically stimulated reaction; Kikaiteki reiki hanno ni okeru san`itsu kozo

    Energy Technology Data Exchange (ETDEWEB)

    Hida, M. [Okayama Univ., Okayama (Japan). Faculty of Engineering

    1994-12-20

    Recently various studies have been conducted concerning the state changes of materials obtained through mechanical alloying (MA) or mechano-chemical (MC) processing. What is noticeable is the quasi-steady state of almost all the materials obtained through various processes including MA and MC, and that the super cooling, supersaturating and high residue distortion realized under unbalanced conditions have not been clarified. In other words, the tracing capability to the external binding conditions is low. In this report, the appearance of the high temperature phase and high pressure phase obtained through MA or MC processing, the forming of amorphous, the mesomerism of the amorphous materials, the interesting phenomena generated by combination between the mechanical disturbance and chemical reactions were discussed with concrete examples, and a steady dissipative organization theory was approached from the viewpoint of dissipative structure development which is equal to the forming process of the quasi-steady phase. 34 refs., 2 figs.

  11. Understanding of the dissipation mechanism in ternary fission for the system 197Au+197Au

    Science.gov (United States)

    Tian, Jun-Long; Li, Xian; Wu, Xi-Zhen; Li, Zhu-Xia; Yan, Shi-Wei

    2009-03-01

    The mass number distributions of three fragments from the ternary fission of the system 197Au+197Au are reproduced rather well by using the improved quantum molecular dynamics (ImQMD) model without any adjusting parameter. It is found that the probability of ternary fission evidently depends on the incident energy and the impact parameter, and the two-body dissipation is the main mechanism responsible for the formation of the third fragment with comparable mass.

  12. ZERO DISSIPATION LIMIT OF THE COMPRESSIBLE HEAT-CONDUCTING NAVIER-STOKES EQUATIONS IN HE PRESENCE OF THE SHOCK

    Institute of Scientific and Technical Information of China (English)

    Wang Yi

    2008-01-01

    The zero dissipation limit of the compressible heat-conducting Navier-Stokes equations in the presence of the shock is investigated. It is shown that when the heat ε→ 0 (see (1.3)), if the solution of the corresponding Euler equations is piecewise smooth with shock wave satisfying the Lax entropy condition, then there exists a smooth solution to the Navier-Stokes equations, which converges to the piecewise smooth shock solution of the Euler equations away from the shock discontinuity at a rate of ε. The proof is given by a combination of the energy estimates and the matched asymptotic analysis introduced in [3].

  13. Synthesis of dexterity measure of mechanisms by evolution of dissipative system

    Directory of Open Access Journals (Sweden)

    Grešl M.

    2007-11-01

    Full Text Available The paper deals with the new approach of solving traditional kinematical synthesis of mechanisms. The kinematical synthesis is reformulated as nonlinear dynamical problem. All searched parameters of the mechanism are in this dynamical dissipative system introduced as time-varying during motion of mechanism’s dimension iteration. The synthesis process is realized as the time evolution of such system. One of the most important objectives of the machine synthesis is the dexterity measure. The new approach is applied to optimization of this property.

  14. High thermally conductive and electrically insulating 2D boron nitride nanosheet for efficient heat dissipation of high-power transistors

    Science.gov (United States)

    Lin, Ziyuan; Liu, Chunru; Chai, Yang

    2016-12-01

    High-power transistors suffer greatly from inefficient heat dissipation of the hotspots, which elevate the local temperature and significantly degrade the performance and reliability of the high-power devices. Although various thermal management methods at package-level have been demonstrated, the heat dissipation from non-uniform hotspots at micro/nanoscale still persist in the high power transistors. Here, we develop a method for local thermal management using thermally conductive and electrical insulating few-layer hexagonal boron nitride (h-BN) as heat spreaders and thick counterpart as heat sinks. The electrically insulating characteristic of h-BN nanosheet allows it to be intimately contacted with the hotspot region that is located at the gate electrode edge near the drain side of a high-electron-mobility transistor (HEMT). The high thermal conductivity of h-BN nanosheet, which is quantitatively measured by Raman thermography, reduces the temperature of the hotspot by introducing an additional heat transporting pathway. Our DC and radio-frequency characterizations of the HEMT show the improvement of saturation current, cut-off frequency and maximum oscillation frequency. The finite element simulations show a temperature decrease of ∼32 °C at the hotspot with the use of h-BN nanosheet. This method can be further extended for the micro/nanoscale thermal management of other high-power devices.

  15. Peeling mechanism of tomato under infrared heating

    Science.gov (United States)

    Critical behaviors of peeling tomatoes using infrared heat are thermally induced peel loosening and subsequent cracking. However, the mechanism of peel loosening and cracking due to infrared heating remains unclear. This study aimed at investigating the mechanism of peeling tomatoes under infrared h...

  16. Mechanical autonomous stochastic heat engines

    Science.gov (United States)

    Serra-Garcia, Marc; Foehr, Andre; Moleron, Miguel; Lydon, Joseph; Chong, Christopher; Daraio, Chiara; . Team

    Stochastic heat engines extract work from the Brownian motion of a set of particles out of equilibrium. So far, experimental demonstrations of stochastic heat engines have required extreme operating conditions or nonautonomous external control systems. In this talk, we will present a simple, purely classical, autonomous stochastic heat engine that uses the well-known tension induced nonlinearity in a string. Our engine operates between two heat baths out of equilibrium, and transfers energy from the hot bath to a work reservoir. This energy transfer occurs even if the work reservoir is at a higher temperature than the hot reservoir. The talk will cover a theoretical investigation and experimental results on a macroscopic setup subject to external noise excitations. This system presents an opportunity for the study of non equilibrium thermodynamics and is an interesting candidate for innovative energy conversion devices.

  17. Dissipative heating of elastomers: a new modelling approach based on finite and coupled thermomechanics

    Science.gov (United States)

    Johlitz, Michael; Dippel, Benedikt; Lion, Alexander

    2016-07-01

    Especially in the automotive industries, elastomers take an important role. They are used in different types of bearings, where they inhibit vibration propagation and thereby significantly enhance driving performance and comfort. That is why several models have already been developed to simulate the material's mechanical response to stresses and strains. In many cases, these models are developed under isothermal conditions. Others include the temperature-dependent mechanical behaviour to represent lower stiffness's for higher temperatures. In this contribution it is shown by some exemplary experiments that viscoelastic material heats up under dynamic deformations. Hence, the material's properties change due to the influence of the temperature without changing the surrounding conditions. With some of these experiments, it is shown that a fully coupled material model is necessary to predict the behaviour of bearings under dynamic loads. The focus of this contribution lies on the modelling of the thermoviscoelastic behaviour of elastomers. In a first step, a twofold multiplicative split of the deformation gradient is performed to be able to describe both mechanical and thermal deformations. This concept introduces different configurations. The stress tensors existing on these configurations are used to formulate the stress power in the first law of thermodynamics which allows to simulate the material's self-heating. To formulate the temperature dependency of the mechanical behaviour, the non-equilibrium part of the Helmholtz free energy function is formulated as a function of the temperature and the deformation history. With the introduced model, some FE calculations are carried out to show the model's capability to represent the thermoviscoelastic behaviour including the coupling in both directions.

  18. HEAT DISSIPATION ON THE LATERAL SURFACE OF CYCLONE CHAMBER WITH ASYMMETRICAL TWO-WAY GAS INPUT AND OUTPUT

    Directory of Open Access Journals (Sweden)

    E. N. Saburov

    2014-01-01

    Full Text Available The heat dissipation on the lateral surface of the cyclone chamber working volume with asymmetrical input and output of gases is considered in the present paper in contrast to the previously executed [1–10]. The relative values of input gas flow and the relative diameters of the outlet are different in each of the halves of the working volume. The heat dissipation by convection to the swirling airflow was studied by the method of variation of the aggregate state of the heating agent – water vapor slightly superheated (at 2–3 °С condensation. Collecting the condensate produced from the work site through a water lock, providing maintaining of constant pressure in the calorimeter. The quantity of heat transmitted during the experiment was determined by the amount of collected condensate.In the experiments on the camera with two-sided asymmetric output relative gas outlet diameter on one side of the camera varied Relative diameter of the outlet on the other hand remained constant. In the experiences on the camera with the bilateral asymmetrical conditions for the introduction of gases the asymmetry of the introduction of flow was created due to a change in the relative entrance area whoo remained constant. Local heat transfer coefficient was determined for different values dimensionless longitudinal coordinate coinciding with the axis of the chamber, directed toward the outlet, measured from the middle section of the working volume. Еquations for calculation of heat transfer coefficients on the lateral surface of the howling cyclone chambers with unbalanced input and output gases, оbtained in this paper, give the satisfactory agreement of the calculated and experimental data that allows to recommend to their practical application.

  19. From dissipative dynamics to studies of heat transfer at the nanoscale: analysis of the spin-boson model.

    Science.gov (United States)

    Boudjada, Nazim; Segal, Dvira

    2014-11-26

    We study in a unified manner the dissipative dynamics and the transfer of heat in the two-bath spin-boson model. We use the Bloch-Redfield (BR) formalism, valid in the very weak system-bath coupling limit, the noninteracting-blip approximation (NIBA), applicable in the nonadiabatic limit, and iterative, numerically exact path integral tools. These methodologies were originally developed for the description of the dissipative dynamics of a quantum system, and here they are applied to explore the problem of quantum energy transport in a nonequilibrium setting. Specifically, we study the weak-to-intermediate system-bath coupling regime at high temperatures kBT/ħ > ε, with ε as the characteristic frequency of the two-state system. The BR formalism and NIBA can lead to close results for the dynamics of the reduced density matrix (RDM) in a certain range of parameters. However, relatively small deviations in the RDM dynamics propagate into significant qualitative discrepancies in the transport behavior. Similarly, beyond the strict nonadiabatic limit NIBA's prediction for the heat current is qualitatively incorrect: It fails to capture the turnover behavior of the current with tunneling energy and temperature. Thus, techniques that proved meaningful for describing the RDM dynamics, to some extent even beyond their rigorous range of validity, should be used with great caution in heat transfer calculations, because qualitative-serious failures develop once parameters are mildly stretched beyond the techniques' working assumptions.

  20. Experimental estimation of the heat energy dissipated in a volume surrounding the tip of a fatigue crack

    Directory of Open Access Journals (Sweden)

    G. Meneghetti

    2016-01-01

    Full Text Available Fatigue crack initiation and propagation involve plastic strains that require some work to be done on the material. Most of this irreversible energy is dissipated as heat and consequently the material temperature increases. The heat being an indicator of the intense plastic strains occurring at the tip of a propagating fatigue crack, when combined with the Neuber’s structural volume concept, it might be used as an experimentally measurable parameter to assess the fatigue damage accumulation rate of cracked components. On the basis of a theoretical model published previously, in this work the heat energy dissipated in a volume surrounding the crack tip is estimated experimentally on the basis of the radial temperature profiles measured by means of an infrared camera. The definition of the structural volume in a fatigue sense is beyond the scope of the present paper. The experimental crack propagation tests were carried out on hot-rolled, 6-mm-thick AISI 304L stainless steel specimens subject to completely reversed axial fatigue loading.

  1. Ambient temperature shapes reproductive output during pregnancy and lactation in the common vole (Microtus arvalis) : a test of the heat dissipation limit theory

    NARCIS (Netherlands)

    Simons, Mirre J. P.; Reimert, Inonge; van der Vinne, Vincent; Hambly, Catherine; Vaanholt, Lobke M.; Speakman, John R.; Gerkema, Menno P.

    2011-01-01

    The heat dissipation limit theory suggests that heat generated during metabolism limits energy intake and, thus, reproductive output. Experiments in laboratory strains of mice and rats, and also domestic livestock generally support this theory. Selection for many generations in the laboratory and in

  2. Analysis of Heat Transfer in Berman Flow of Nanofluids with Navier Slip, Viscous Dissipation, and Convective Cooling

    Directory of Open Access Journals (Sweden)

    O. D. Makinde

    2014-01-01

    Full Text Available Heat transfer characteristics of a Berman flow of water based nanofluids containing copper (Cu and alumina (Al2O3 as nanoparticles in a porous channel with Navier slip, viscous dissipation, and convective cooling are investigated. It is assumed that the exchange of heat with the ambient surrounding takes place at the channel walls following Newton’s law of cooling. The governing partial differential equations and boundary conditions are converted into a set of nonlinear ordinary differential equations using appropriate similarity transformations. These equations are solved analytically by regular perturbation methods with series improvement technique and numerically using an efficient Runge-Kutta Fehlberg integration technique coupled with shooting scheme. The effects of the governing parameters on the dimensionless velocity, temperature, skin friction, pressure drop, and Nusselt numbers are presented graphically and discussed quantitatively.

  3. REDBACK: an Open-Source Highly Scalable Simulation Tool for Rock Mechanics with Dissipative Feedbacks

    Science.gov (United States)

    Poulet, T.; Veveakis, M.; Paesold, M.; Regenauer-Lieb, K.

    2014-12-01

    Multiphysics modelling has become an indispensable tool for geoscientists to simulate the complex behaviours observed in their various fields of study where multiple processes are involved, including thermal, hydraulic, mechanical and chemical (THMC) laws. This modelling activity involves simulations that are computationally expensive and its soaring uptake is tightly linked to the increasing availability of supercomputing power and easy access to powerful nonlinear solvers such as PETSc (http://www.mcs.anl.gov/petsc/). The Multiphysics Object-Oriented Simulation Environment (MOOSE) is a finite-element, multiphysics framework (http://mooseframework.org) that can harness such computational power and allow scientists to develop easily some tightly-coupled fully implicit multiphysics simulations that run automatically in parallel on large clusters. This open-source framework provides a powerful tool to collaborate on numerical modelling activities and we are contributing to its development with REDBACK (https://github.com/pou036/redback), a module for Rock mEchanics with Dissipative feedBACKs. REDBACK builds on the tensor mechanics finite strain implementation available in MOOSE to provide a THMC simulator where the energetic formulation highlights the importance of all dissipative terms in the coupled system of equations. We show first applications of fully coupled dehydration reactions triggering episodic fluid transfer through shear zones (Alevizos et al, 2014). The dimensionless approach used allows focusing on the critical underlying variables which are driving the resulting behaviours observed and this tool is specifically designed to study material instabilities underpinning geological features like faulting, folding, boudinage, shearing, fracturing, etc. REDBACK provides a collaborative and educational tool which captures the physical and mathematical understanding of such material instabilities and provides an easy way to apply this knowledge to realistic

  4. A model of heat transfer in sapwood and implications for sap flux density measurements using thermal dissipation probes.

    Science.gov (United States)

    Wullschleger, Stan D; Childs, Kenneth W; King, Anthony W; Hanson, Paul J

    2011-06-01

    A variety of thermal approaches are used to estimate sap flux density in stems of woody plants. Models have proved valuable tools for interpreting the behavior of heat pulse, heat balance and heat field deformation techniques, but have seldom been used to describe heat transfer dynamics for the heat dissipation method. Therefore, to better understand the behavior of heat dissipation probes, a model was developed that takes into account the thermal properties of wood, the physical dimensions and thermal characteristics of the probes, and the conductive and convective heat transfer that occurs due to water flow in the sapwood. Probes were simulated as aluminum tubes 20 mm in length and 2 mm in diameter, whereas sapwood, heartwood and bark each had a density and water fraction that determined their thermal properties. Base simulations assumed a constant sap flux density with sapwood depth and no wounding or physical disruption of xylem beyond the 2 mm diameter hole drilled for probe installation. Simulations across a range of sap flux densities showed that the dimensionless quantity k [defined as (ΔT(m) -ΔT)/ΔT, where ΔT(m) is the temperature differential (ΔT) between the heated and unheated probe under zero-flow conditions] was dependent on the thermal conductivity of the sapwood. The relationship between sap flux density and k was also sensitive to radial gradients in sap flux density and to xylem disruption near the probe. Monte Carlo analysis in which 1000 simulations were conducted while simultaneously varying thermal conductivity and wound diameter revealed that sap flux density and k showed considerable departure from the original calibration equation used with this technique. The departure was greatest for variation in sap flux density typical of ring-porous species. Depending on the specific combination of thermal conductivity and wound diameter, use of the original calibration equation resulted in an 81% under- to 48% overestimation of sap flux density

  5. Force-gradient-induced mechanical dissipation of quartz tuning fork force sensors used in atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Castellanos-Gomez, A. [Departamento de Fisica de la Materia Condensada (C-III), Universidad Autonoma de Madrid, Campus de Cantoblanco, 28049 Madrid (Spain); Agrait, N. [Departamento de Fisica de la Materia Condensada (C-III), Universidad Autonoma de Madrid, Campus de Cantoblanco, 28049 Madrid (Spain); Instituto Universitario de Ciencia de Materiales ' Nicolas Cabrera' , Universidad Autonoma de Madrid, Campus de Cantoblanco, 28049 Madrid (Spain); Instituto Madrileno de Estudios Avanzados en Nanociencia, IMDEA-Nanociencia, 28049 Madrid (Spain); Rubio-Bollinger, G., E-mail: gabino.rubio@uam.es [Departamento de Fisica de la Materia Condensada (C-III), Universidad Autonoma de Madrid, Campus de Cantoblanco, 28049 Madrid (Spain); Instituto Universitario de Ciencia de Materiales ' Nicolas Cabrera' , Universidad Autonoma de Madrid, Campus de Cantoblanco, 28049 Madrid (Spain)

    2011-02-15

    We have studied the dynamics of quartz tuning fork resonators used in atomic force microscopy taking into account the mechanical energy dissipation through the attachment of the tuning fork base. We find that the tuning fork resonator quality factor changes even in the case of a purely elastic sensor-sample interaction. This is due to the effective mechanical imbalance of the tuning fork prongs induced by the sensor-sample force gradient, which in turn has an impact on dissipation through the attachment of the resonator base. This effect may yield a measured dissipation signal that can be different from the one exclusively related to the dissipation between the sensor and the sample. We also find that there is a second-order term in addition to the linear relationship between the sensor-sample force gradient and the resonance frequency shift of the tuning fork that is significant even for force gradients usually present in atomic force microscopy, which are in the range of tens of N/m. -- Research Highlights: {yields} Dynamics of miniature tuning fork force sensors: a mechanical model. {yields} Non-linear relationship between resonance frequency shift and applied force gradient. {yields} An apparent mechanical dissipation channel opens even for purely conservative tip-sample interactions. {yields} qPlus tuning forks configuration has lower Q factor but straightforward dynamics.

  6. A fresh look on the heating mechanisms of the Solar corona

    CERN Document Server

    Tsiklauri, D

    2006-01-01

    Recently using Particle-In-Cell simulations i.e. in the kinetic plasma description Tsiklauri et al. and G\\'enot et al. reported on a discovery of a new mechanism of parallel electric field generation, which results in electron acceleration. In this work we show that the parallel (to the uniform unperturbed magnetic field) electric field generation can be obtained in much simpler framework using ideal Magnetohydrodynamic (MHD) description, i.e. without resorting to complicated wave particle interaction effects such as ion polarisation drift and resulting space charge separation which seems to be an ultimate cause of the electron acceleration. Further, in the context of the coronal heating problem a new {\\it two stage mechanism} of the plasma heating is presented by putting emphasis, first, on the generation of parallel electric fields within {\\it ideal MHD} description directly, rather than focusing on the enhanced dissipation mechanisms of the Alfv\\'en waves and, second, dissipation of these parallel electric...

  7. CONFIGURATION CONTROLLABILITY FOR NON-ZERO POTENTIAL MECHANICAL CONTROL SYSTEMS WITH DISSIPATION

    Institute of Scientific and Technical Information of China (English)

    KANG Jian-ling; WANG Hong; YE Hua-wen

    2005-01-01

    Within the affine connection framework of Lagrangian control systems, based on the results of Sussmann on controllability of general affine control systems defined on a finite-dimensional manifold, a computable sufficient condition of configuration controllability for the simple mechanical control systems was extended to the case of systems with strictly dissipative energy terms of linear isotropic nature, and a sufficient condition of equilibrium controllability for the systems was also given, where Lagrangian is kinetic energy minus potential energy. Lie bracketting of vector fields in controllable Lie algebra, and the symmetric product associated with Levi-Civita connection show virtues in the discussion. Liouville vector field simplified the computation of controllable Lie algebra for the systems, although the terms of potential energy complicated the study of configuration controllability.

  8. A thermo-mechanically coupled finite strain model considering inelastic heat generation

    Science.gov (United States)

    Dunić, Vladimir; Busarac, Nenad; Slavković, Vukašin; Rosić, Bojana; Niekamp, Rainer; Matthies, Hermann; Slavković, Radovan; Živković, Miroslav

    2016-07-01

    The procedure for reuse of finite element method (FEM) programs for heat transfer and structure analysis to solve advanced thermo-mechanical problems is presented as powerful algorithm applicable for coupling of other physical fields (magnetic, fluid flow, etc.). In this case, nonlinear Block-Gauss-Seidel partitioned algorithm strongly couples the heat transfer and structural FEM programs by a component-based software engineering. Component template library provides possibility to exchange the data between the components which solve the corresponding subproblems. The structural component evaluates the dissipative energy induced by inelastic strain. The heat transfer component computes the temperature change due to the dissipation. The convergence is guaranteed by posing the global convergence criterion on the previously locally converged coupled variables. This enables reuse of software and allows the numerical simulation of thermo-sensitive problems.

  9. Heat dissipation for the Intel Core i5 processor using multiwalled carbon-nanotube-based ethylene glycol

    Energy Technology Data Exchange (ETDEWEB)

    Thang, Bui Hung; Trinh, Pham Van; Quang, Le Dinh; Khoi, Phan Hong; Minh, Phan Ngoc [Vietnam Academy of Science and Technology, Ho Chi Minh CIty (Viet Nam); Huong, Nguyen Thi [Hanoi University of Science, Hanoi (Viet Nam); Vietnam National University, Hanoi (Viet Nam)

    2014-08-15

    Carbon nanotubes (CNTs) are some of the most valuable materials with high thermal conductivity. The thermal conductivity of individual multiwalled carbon nanotubes (MWCNTs) grown by using chemical vapor deposition is 600 ± 100 Wm{sup -1}K{sup -1} compared with the thermal conductivity 419 Wm{sup -1}K{sup -1} of Ag. Carbon-nanotube-based liquids - a new class of nanomaterials, have shown many interesting properties and distinctive features offering potential in heat dissipation applications for electronic devices, such as computer microprocessor, high power LED, etc. In this work, a multiwalled carbon-nanotube-based liquid was made of well-dispersed hydroxyl-functional multiwalled carbon nanotubes (MWCNT-OH) in ethylene glycol (EG)/distilled water (DW) solutions by using Tween-80 surfactant and an ultrasonication method. The concentration of MWCNT-OH in EG/DW solutions ranged from 0.1 to 1.2 gram/liter. The dispersion of the MWCNT-OH-based EG/DW solutions was evaluated by using a Zeta-Sizer analyzer. The MWCNT-OH-based EG/DW solutions were used as coolants in the liquid cooling system for the Intel Core i5 processor. The thermal dissipation efficiency and the thermal response of the system were evaluated by directly measuring the temperature of the micro-processor using the Core Temp software and the temperature sensors built inside the micro-processor. The results confirmed the advantages of CNTs in thermal dissipation systems for computer processors and other high-power electronic devices.

  10. Lie group analysis of heat and mass transfer effects on steady MHD free convection dissipative fluid flow past an inclined porous surface with heat generation

    Directory of Open Access Journals (Sweden)

    Reddy Gnaneswara M.

    2012-01-01

    Full Text Available In this paper, an analysis has been carried out to study heat and mass transfer effects on steady two-dimensional flow of an electrically conducting incompressible dissipating fluid past an inclined semi-infinite porous surface with heat generation. A scaling group of transformations is applied to the governing equations. The system remains invariant due to some relations among the parameters of the transformations. After finding three absolute invariants, a third-order ordinary differential equation corresponding to the momentum equation, and two secondorder ordinary differential equations corresponding to energy and diffusion equations are derived. The coupled ordinary differential equations along with the boundary conditions are solved numerically. Many results are obtained and a representative set is displayed graphically to illustrate the influence of the various parameters on the dimensionless velocity, temperature and concentration profiles. Comparisons with previously published work are performed and the results are found to be in very good agreement.

  11. Using a heat pipe (TPTC for dissipating energy generated by an electronic circuit

    Directory of Open Access Journals (Sweden)

    Rodrigo Correa

    2010-07-01

    Full Text Available This paper presents an experimental investigation aimed at estimating the thermal efficiency of a heat pipe compared to the most common elements for removing heat from a circuit (i.e., an electric fan and a fin - extended surface. The input voltage frequency for a standard power circuit was changed for the experiments, whilst all the other parameters were kept constant. An experimental statistical design was used as an analytical tool. Unexpectedly, the heat pipe showed the lowest thermal efficiency for all the experiments, although it had the advantage of being a passive element having low volume and no mobile parts.

  12. Heat transfer mechanisms in microgravity flow boiling.

    Science.gov (United States)

    Ohta, Haruhiko

    2002-10-01

    The objective of this paper is to clarify the mechanisms of heat transfer and dryout phenomena in flow boiling under microgravity conditions. Liquid-vapor behavior in annular flow, encountered in the moderate quality region, has extreme significance for practical application in space. To clarify the gravity effect on the heat transfer observed for an upward flow in a tube, the research described here started from the measurement of pressure drop for binary gas-liquid mixture under various gravity conditions. The shear stress acting on the surface of the annular liquid film was correlated by an empirical method. Gravity effects on the heat transfer due to two-phase forced convection were investigated by the analysis of velocity and temperature profiles in the film. The results reproduce well the trends of heat transfer coefficients varying with the gravity level, quality, and mass velocity. Dryout phenomena in the moderate quality region were observed in detail by the introduction of a transparent heated tube. At heat fluxes just lower and higher than CHF value, a transition of the heat transfer coefficient was calculated from oscillating wall temperature, where a series of opposing heat transfer trends--the enhancement due to the quenching of dried areas or evaporation from thin liquid films and the deterioration due to the extension of dry patches--were observed between the passage of disturbance waves. The CHF condition that resulted from the insufficient decrease of wall temperature in the period of enhanced heat transfer was overcome by a temperature increase in the deterioration period. No clear effect of gravity on the mechanisms of dryout was observed within the range of experiments.

  13. The Mechanical Greenhouse: Burial of Heat by Turbulence in Hot Jupiter Atmospheres

    CERN Document Server

    Youdin, Andrew N

    2010-01-01

    The intense irradiation received by hot Jupiters suppresses convection in the outer layers of their atmospheres and lowers their cooling rates. "Inflated" hot Jupiters, i.e., those with anomalously large transit radii, require additional sources of heat or suppressed cooling. We consider the effect of forced turbulent mixing in the radiative layer, which could be driven by atmospheric circulation or by another mechanism. Due to stable stratification in the atmosphere, forced turbulence drives a downward flux of heat. Weak turbulent mixing slows the cooling rate by this process, as if the planet was irradiated more intensely. Stronger turbulent mixing buries heat into the convective interior, provided the turbulence extends to the radiative-convective boundary. This inflates the planet until a balance is reached between the heat buried into and radiated from the interior. We also include the direct injection of heat due to the dissipation of turbulence or other effects. Such heating is already known to slow pl...

  14. Calculations in fundamental physics mechanics and heat

    CERN Document Server

    Heddle, T

    2013-01-01

    Calculations in Fundamental Physics, Volume I: Mechanics and Heat focuses on the mechanisms of heat. The manuscript first discusses motion, including parabolic, angular, and rectilinear motions, relative velocity, acceleration of gravity, and non-uniform acceleration. The book then discusses combinations of forces, such as polygons and resolution, friction, center of gravity, shearing force, and bending moment. The text looks at force and acceleration, energy and power, and machines. Considerations include momentum, horizontal or vertical motion, work and energy, pulley systems, gears and chai

  15. Viscous Dissipation and Thermal Radiation effects in MHD flow of Jeffrey Nanofluid through Impermeable Surface with Heat Generation/Absorption

    Science.gov (United States)

    Sharma, Kalpna; Gupta, Sumit

    2017-06-01

    This paper investigates steady two dimensional flow of an incompressible magnetohydrodynamic (MHD) boundary layer flow and heat transfer of nanofluid over an impermeable surface in presence of thermal radiation and viscous dissipation. By using similarity transformation, the arising governing equations of momentum, energy and nanoparticle concentration are transformed into coupled nonlinear ordinary differential equations, which are than solved by homotopy analysis method (HAM). The effect of different physical parameters, namely, Prandtl number Pr, Eckert number Ec, Magnetic parameter M, Brownian motion parameter Nb, Thermophoresis parameter Nt, Lewis parameter Le and Radiation parameter Rd on the velocity, temperature and concentration profiles along with the Nusselt number and skin friction coefficient are discussed graphically and in tabular form in details. The present results are also compared with existing limiting solutions.

  16. Effects of ohmic heating and viscous dissipation on steady MHD flow near a stagnation point on an isothermal stretching sheet

    Directory of Open Access Journals (Sweden)

    Sharma Pushkar Raj

    2009-01-01

    Full Text Available Aim of the paper is to investigate effects of ohmic heating and viscous dissipation on steady flow of a viscous incompressible electrically conducting fluid in the presence of uniform transverse magnetic field and variable free stream near a stagnation point on a stretching non-conducting isothermal sheet. The governing equations of continuity, momentum, and energy are transformed into ordinary differential equations and solved numerically using Runge-Kutta fourth order with shooting technique. The velocity and temperature distributions are discussed numerically and presented through graphs. Skin-friction coefficient and the Nusselt number at the sheet are derived, discussed numerically, and their numerical values for various values of physical parameters are compared with earlier results and presented through tables.

  17. The heat is on: Molecular mechanisms of drug-induced hyperthermia

    OpenAIRE

    2014-01-01

    Thermoregulation is an essential homeostatic process in which critical mechanisms of heat production and dissipation are controlled centrally in large part by the hypothalamus and peripherally by activation of the sympathetic nervous system. Drugs that disrupt the components of this highly orchestrated multi-organ process can lead to life-threatening hyperthermia. In most cases, hyperthermic agents raise body temperature by increasing the central and peripheral release of thermoregulatory neu...

  18. Radiation and Mass Transfer Effects on MHD Free Convective Dissipative Fluid in the Presence of Heat Source/Sink

    Directory of Open Access Journals (Sweden)

    S. Suneetha

    2011-01-01

    Full Text Available Thermal radiation effects on MHD flow past an impulsively started vertical plate in the presence of heat source/sink is investigated, by taking into account the heat due to viscous dissipation. The governing boundary layer equations of the flow field are solved by an implicit finite difference method of Crank-Nicholson type. A parametric study is performed to illustrate the influence of radiation parameter, magnetic parameter, Grashof number, Prandtl number, Eckert number on the velocity, temperature and concentration profiles. Also, the local and average skin-friction, Nusselt number and Sherwood number are presented graphically. The numerical results reveal that the radiation induces a rise in both the velocity and temperature, and a decrease in the concentration. Also with an increase in the heat absorption/generation parameter the velocity increases whereas the temperature decreases. The model finds applications in solar energy collection systems, geophysics and astrophysics, aero space and also in the design of high temperature chemical process systems.

  19. Theory of substrate-directed heat dissipation for single-layer graphene and other two-dimensional crystals

    Science.gov (United States)

    Ong, Zhun-Yong; Cai, Yongqing; Zhang, Gang

    2016-10-01

    We present a theory of the phononic thermal (Kapitza) resistance at the interface between graphene or another single-layer two-dimensional (2D) crystal (e.g., MoS2) and a flat substrate, based on a modified version of the cross-plane heat transfer model by Persson, Volokitin, and Ueba [J. Phys.: Condens. Matter 23, 045009 (2011), 10.1088/0953-8984/23/4/045009]. We show how intrinsic flexural phonon damping is necessary for obtaining a finite Kapitza resistance and also generalize the theory to encased single-layer 2D crystals with a superstrate. We illustrate our model by computing the thermal boundary conductance (TBC) for bare and SiO2-encased single-layer graphene and MoS2 on a SiO2 substrate, using input parameters from first-principles calculation. The estimated room temperatures TBC for bare (encased) graphene and MoS2 on SiO2 are 34.6 (105) and 3.10 (5.07) MWK -1m-2 , respectively. The theory predicts the existence of a phonon frequency crossover point, below which the low-frequency flexural phonons in the bare 2D crystal do not dissipate energy efficiently to the substrate. We explain within the framework of our theory how the encasement of graphene with a top SiO2 layer introduces new low-frequency transmission channels, which significantly reduce the graphene-substrate Kapitza resistance. We emphasize that the distinction between bare and encased 2D crystals must be made in the analysis of cross-plane heat dissipation to the substrate.

  20. Improved heat dissipation in gallium nitride light-emitting diodes with embedded graphene oxide pattern.

    Science.gov (United States)

    Han, Nam; Cuong, Tran Viet; Han, Min; Ryu, Beo Deul; Chandramohan, S; Park, Jong Bae; Kang, Ji Hye; Park, Young-Jae; Ko, Kang Bok; Kim, Hee Yun; Kim, Hyun Kyu; Ryu, Jae Hyoung; Katharria, Y S; Choi, Chel-Jong; Hong, Chang-Hee

    2013-01-01

    The future of solid-state lighting relies on how the performance parameters will be improved further for developing high-brightness light-emitting diodes. Eventually, heat removal is becoming a crucial issue because the requirement of high brightness necessitates high-operating current densities that would trigger more joule heating. Here we demonstrate that the embedded graphene oxide in a gallium nitride light-emitting diode alleviates the self-heating issues by virtue of its heat-spreading ability and reducing the thermal boundary resistance. The fabrication process involves the generation of scalable graphene oxide microscale patterns on a sapphire substrate, followed by its thermal reduction and epitaxial lateral overgrowth of gallium nitride in a metal-organic chemical vapour deposition system under one-step process. The device with embedded graphene oxide outperforms its conventional counterpart by emitting bright light with relatively low-junction temperature and thermal resistance. This facile strategy may enable integration of large-scale graphene into practical devices for effective heat removal.

  1. MHD effects on heat transfer over stretching sheet embedded in porous medium with variable viscosity, viscous dissipation and heat source/sink

    Directory of Open Access Journals (Sweden)

    Hunegnaw Dessie

    2014-09-01

    Full Text Available In this analysis, MHD boundary layer flow and heat transfer of a fluid with variable viscosity through a porous medium towards a stretching sheet by taking in to the effects of viscous dissipation in presence of heat source/sink is considered. The symmetry groups admitted by the corresponding boundary value problem are obtained by using Lie’s scaling group of transformations. These transformations are used to convert the partial differential equations of the governing equations into self-similar non-linear ordinary differential equations. Numerical solutions of these equations are obtained by Runge-Kutta fourth order with shooting method. Numerical results obtained for different parameters such as viscosity variation parameter A, permeability parameter k1, heat source/sink parameter λ, magnetic field parameter M, Prandtl number Pr, and Eckert number Ec are drawn graphically and effects of different flow parameters on velocity and temperature profiles are discussed. The skin-friction coefficient -f″(0 and heat transfer coefficient −θ′(0 are presented in tables.

  2. Dissipated energy and entropy production for an unconventional heat engine: the stepwise `circular cycle'

    Science.gov (United States)

    di Liberto, Francesco; Pastore, Raffaele; Peruggi, Fulvio

    2011-05-01

    When some entropy is transferred, by means of a reversible engine, from a hot heat source to a colder one, the maximum efficiency occurs, i.e. the maximum available work is obtained. Similarly, a reversible heat pumps transfer entropy from a cold heat source to a hotter one with the minimum expense of energy. In contrast, if we are faced with non-reversible devices, there is some lost work for heat engines, and some extra work for heat pumps. These quantities are both related to entropy production. The lost work, i.e. ? , is also called 'degraded energy' or 'energy unavailable to do work'. The extra work, i.e. ? , is the excess of work performed on the system in the irreversible process with respect to the reversible one (or the excess of heat given to the hotter source in the irreversible process). Both quantities are analysed in detail and are evaluated for a complex process, i.e. the stepwise circular cycle, which is similar to the stepwise Carnot cycle. The stepwise circular cycle is a cycle performed by means of N small weights, dw, which are first added and then removed from the piston of the vessel containing the gas or vice versa. The work performed by the gas can be found as the increase of the potential energy of the dw's. Each single dw is identified and its increase, i.e. its increase in potential energy, evaluated. In such a way it is found how the energy output of the cycle is distributed among the dw's. The size of the dw's affects entropy production and therefore the lost and extra work. The distribution of increases depends on the chosen removal process.

  3. Heat Transfer Mechanisms and Clustering in Nanofluids

    Directory of Open Access Journals (Sweden)

    Kaufui V. Wong

    2010-01-01

    Full Text Available This paper surveys heat transfer in nanofluids. It summarizes and analyzes the theories regarding heat transfer mechanisms in nanofluids, and it discusses the effects of clustering on thermal conductivity. The heat transfer associated with conduction is presented through various experiments followed by a discussion of the theories developed. Relationships between thermal conductivity and various factors such as temperature, concentration, and particle size are also displayed along with a discussion on clustering. There is a brief discussion on convection where the number of studies is limited. There is research currently being performed on the manipulation of the properties governing the thermal conductivity of nanofluids—the particle size, shape, and surface area. Other factors that affect heat transfer are the material of the nanoparticle, particle volume concentration, and the fluid used. Although the interest in this relatively new class of fluids has generated many experimental studies, there is still disagreement over several aspects of heat transfer in nanofluids, primarily concerning the mechanisms behind the increased thermal conductivity. Although nanoparticles have greatly decreased the risks, there is still evidence of unwanted agglomeration which causes erosion and affect the overall conductivity. Research is currently being conducted to determine how to minimize this unwanted clustering.

  4. ANALYTICAL MODEL OF MHD MIXED CONVECTIVE RADIATING FLUID WITH VISCOUS DISSIPATIVE HEAT

    Directory of Open Access Journals (Sweden)

    Sahin Ahmed,

    2010-09-01

    Full Text Available The objective of this investigation is to study the influence of thermal radiation and magnetic Prandtl number on the steady MHD heat and mass transfer by mixed convection flow of a viscous, incompressible, electrically-conducting, Newtonian fluid which is an optically thin gray gas over a vertical porous plate taking into account the induced magnetic field. The similarity solutions of the transformed dimensionless governing equations are obtained by seriessolution. It is found that, velocity is reduced considerably with a rise in conduction-radiation parameter (R or Hartmann number (M whereas the rate of heat transfer is found to be markedly boosted with an increase in Hartmann number (M or radiation (R or Eckert number (

  5. Heat exchange between two interacting nanoparticles beyond the fluctuation-dissipation regime.

    Science.gov (United States)

    Pérez-Madrid, Agustin; Lapas, Luciano Calheiros; Rubí, J Miguel

    2009-07-24

    We show that the observed nonmonotonic behavior of the thermal conductance between two nanoparticles when they are brought into contact is originated by an intricate phase space dynamics. Here it is assumed that this dynamics results from the thermally activated jumping through a rough energy landscape. A hierarchy of relaxation times plays the key role in the description of this complex phase space behavior. Our theory enables us to analyze the heat transfer just before and at the moment of contact.

  6. Thermodynamics of a time-dependent and dissipative oval billiard: A heat transfer and billiard approach

    Science.gov (United States)

    Leonel, Edson D.; Galia, Marcus Vinícius Camillo; Barreiro, Luiz Antonio; Oliveira, Diego F. M.

    2016-12-01

    We study some statistical properties for the behavior of the average squared velocity—hence the temperature—for an ensemble of classical particles moving in a billiard whose boundary is time dependent. We assume the collisions of the particles with the boundary of the billiard are inelastic, leading the average squared velocity to reach a steady-state dynamics for large enough time. The description of the stationary state is made by using two different approaches: (i) heat transfer motivated by the Fourier law and (ii) billiard dynamics using either numerical simulations and theoretical description.

  7. Electronic excitation as a mode of heat dissipation in laser-driven cluster plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Rajeev, R.; Rishad, K. P. M.; Madhu Trivikram, T.; Krishnamurthy, M. [Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai-5 (India)

    2013-12-15

    Electrons streaming out of laser plasma are known for non-local heat transport and energy deposition by the ionization wave. At 100 eV electron temperature, since the electronic excitation cross section is comparable to that of ionization for Ar and CO{sub 2}, a non-local excitation wave akin to the ionization wave is envisaged where energy deposition in excitations forms a excited cluster sheath beyond the laser focus. Here, we show that nano-cluster systems have the right parameters to form such an exciton sheath and experimentally demonstrate this via charge transfer reactions.

  8. Investigation of heat transfer and viscous dissipation effects on the Jeffery-Hamel flow of nanofluids

    Directory of Open Access Journals (Sweden)

    Moradi Amir

    2015-01-01

    Full Text Available This article considers the influence of heat transfer on the nonlinear Jeffery-Hamel flow problem in a nanofluid. Analysis is performed for three types of nanoparticles namely copper Cu, alumina Al2O3 and titania TiO2 by considering water as a base fluid. The resulting nonlinear mathematical problems are solved for both analytic and numerical solutions. Analytic solution is developed by using differential transformation method (DTM whereas the numerical solution is presented by Runge-Kutta scheme. A comparative study between the analytical and numerical solutions is made. Dimensionless velocity and temperature, skin friction coefficient and Nusselt number are addressed for the involved pertinent parameters. It is observed that the influence of solid volume fraction of nanoparticles on the heat transfer and fluid flow parameters is more pronounced when compared with the type of nanoparticles. It is also found that skin friction coefficient and Nusselt number for Al2O3 nanofluid is highest in comparison to the other two nanoparticles.

  9. The Effects of Irradiation on Hot Jovian Atmospheres: Heat Redistribution and Energy Dissipation

    CERN Document Server

    Perna, Rosalba; Pont, Frederic

    2012-01-01

    Hot Jupiters, due to the proximity to their parent stars, are subjected to a strong irradiating flux which governs their radiative and dynamical properties. We compute a suite of 3D circulation models with dual-band radiative transfer, exploring a relevant range of irradiation temperatures (770K <~ Tirr <~ 3000K), both with and without temperature inversions. We find that, for irradiation temperatures Tirr <~ 2000K, heat redistribution is very efficient, producing comparable day- and night-side fluxes. For Tirr ~ 2200-2400K, redistribution starts to break down, resulting in a high day-night flux contrast. Our simulations support the physical intuition that the efficiency of heat transfer is primarily governed by the ratio of advective to radiative timescales. For the same Tirr, models with temperature inversions display a higher day-night contrast, but we find this opacity-driven effect to be secondary to irradiation. The hotspot offset from the substellar point is large when insolation is weak and r...

  10. Nature of turbulence, dissipation, and heating in space plasmas: From Alfvén waves to kinetic Alfvén waves

    Science.gov (United States)

    Wu, D. J.; Feng, H. Q.; Li, B.; He, J. S.

    2016-08-01

    The nature of turbulence, dissipation, and heating in plasma media has been an attractive and challenge problem in space physics as well as in basic plasma physics. A wide continuous spectrum of Alfvénic turbulence from large MHD-scale Alfvén waves (AWs) in the inertial turbulence regime to small kinetic-scale kinetic AWs (KAWs) in the dissipation turbulence regime is a typical paradigm of plasma turbulence. The incorporation of current remote observations of AWs in the solar atmosphere, in situ satellite measurements of Alfvénic turbulence in the solar wind, and experimental investigations of KAWs on large plasma devices in laboratory provides a chance synthetically to study the physics nature of plasma turbulence, dissipation, and heating. A session entitled "Nature of Turbulence, Dissipation, and Heating in Space Plasmas: From Alfvén Waves to Kinetic Alfvén Waves" was held as a part of the twelfth Asia Oceania Geosciences Society Annual Meeting, which took place in Singapore between 2 and 7 August 2015. This special section is organized based on the session.

  11. Turbulent heat fluxes by profile and inertial dissipation methods: analysis of the atmospheric surface layer from shipboard measurements during the SOFIA/ASTEX and SEMAPHORE experiments

    Directory of Open Access Journals (Sweden)

    H. Dupuis

    Full Text Available Heat flux estimates obtained using the inertial dissipation method, and the profile method applied to radiosonde soundings, are assessed with emphasis on the parameterization of the roughness lengths for temperature and specific humidity. Results from the inertial dissipation method show a decrease of the temperature and humidity roughness lengths for increasing neutral wind speed, in agreement with previous studies. The sensible heat flux estimates were obtained using the temperature estimated from the speed of sound determined by a sonic anemometer. This method seems very attractive for estimating heat fluxes over the ocean. However allowance must be made in the inertial dissipation method for non-neutral stratification. The SOFIA/ASTEX and SEMAPHORE results show that, in unstable stratification, a term due to the transport terms in the turbulent kinetic energy budget, has to be included in order to determine the friction velocity with better accuracy. Using the profile method with radiosonde data, the roughness length values showed large scatter. A reliable estimate of the temperature roughness length could not be obtained. The humidity roughness length values were compatible with those found using the inertial dissipation method.

  12. Cathode heating mechanisms in pseudospark plasma switches

    Science.gov (United States)

    Sommerer, Timothy J.; Pak, Hoyoung; Kushner, Mark J.

    1992-10-01

    Pseudosparks, and the back-lighted thyratron (BLT) in particular, are finding increasing application as pulse power switches. An attractive feature of BLTs is that high current densities (≥ tens of kA cm-2) can be sustained from metal cathodes without auxiliary heating. The source of this current is believed to be electric-field-enhanced thermionic emission resulting from heating of the cathode by ion bombardment during commutation which ultimately melts the surface of the cathode. It is proposed that a photon-driven ionization mechanism in the interelectrode gap of the BLT is responsible for initiating the observed patterns of cathode surface melting and electron emission. A 21/2-dimensional computer model is presented that incorporates a photo-induced ionization mechanism to spread the plasma into the interelectrode gap. It predicts a melting of the cathode in a pattern similar to that which is experimentally observed, and predicts a rate of field-enhanced thermionic electron emission that is sufficient to explain the high BLT conduction current density. In the absence of these mechanisms, the model does not predict the observed large-area melting of the face of the cathode. The cathode heating rate during the BLT switching phase is maximum for operating parameters that are very close to the limit for which the switch will close (that is, the smallest possible pressure-electrode spacing product and smallest possible electrode holes).

  13. Quantitative separation of mechanisms for power dissipation in solar cells by photoacoustic and photovoltaic measurements

    Energy Technology Data Exchange (ETDEWEB)

    Flaisher, H.; Wolf, M.; Cahen, D.

    1989-08-15

    Photoacoustics is used as a calorimetric method in conjunction with electrical measurements to determine which mechanisms are involved in the conversion of most of the absorbed radiation to thermal energy in (mainly Si /ital p/-/ital n/) solar cells. The major mechanisms that are identified and quantified include local cooling, near the junction of the cells. Quantification is made possible by the use of a model for internal energy fluxes in a photovoltaic cell, which takes into account the different spatial distributions of heat generated by photogenerated and injected carriers. The experimental results agree well with calculations based on the model also in the case of thin-film CdS/CuInSe/sub 2/ cells.

  14. Exploring the mechanism(s) of energy dissipation in the light harvesting complex of the photosynthetic algae Cyclotella meneghiniana.

    Science.gov (United States)

    Ramanan, Charusheela; Berera, Rudi; Gundermann, Kathi; van Stokkum, Ivo; Büchel, Claudia; van Grondelle, Rienk

    2014-09-01

    Photosynthetic organisms have developed vital strategies which allow them to switch from a light-harvesting to an energy dissipative state at the level of the antenna system in order to survive the detrimental effects of excess light illumination. These mechanisms are particularly relevant in diatoms, which grow in highly fluctuating light environments and thus require fast and strong response to changing light conditions. We performed transient absorption spectroscopy on FCPa, the main light-harvesting antenna from the diatom Cyclotella meneghiniana, in the unquenched and quenched state. Our results show that in quenched FCPa two quenching channels are active and are characterized by differing rate constants and distinct spectroscopic signatures. One channel is associated with a faster quenching rate (16ns⁻¹) and virtually no difference in spectral shape compared to the bulk unquenched chlorophylls, while a second channel is associated with a slower quenching rate (2.7ns⁻¹) and exhibits an increased population of red-emitting states. We discuss the origin of the two processes in the context of the models proposed for the regulation of photosynthetic light-harvesting. This article is part of a special issue entitled: photosynthesis research for sustainability: keys to produce clean energy.

  15. Dissipation of parallel and oblique Alfv\\'en-cyclotron waves: implications for minor ion heating in the solar wind

    CERN Document Server

    Maneva, Y G; Moya, Pablo S; Wicks, R; Poedts, S

    2015-01-01

    We perform 2.5D hybrid simulations with massless fluid electrons and kinetic particle-in-cell ions to study the temporal evolution of ion temperatures, temperature anisotropies and velocity distribution functions in relation to the dissipation and turbulent evolution of a broad-band spectrum of parallel and obliquely propagating Alfv\\'en-cyclotron waves. The purpose of this paper is to study the relative role of parallel versus oblique Alfv\\'en-cyclotron waves in the observed heating and acceleration of minor ions in the fast solar wind. We consider collisionless homogeneous multi-species plasma, consisting of isothermal electrons, isotropic protons and a minor component of drifting $\\alpha$ particles in a finite-$\\beta$ fast stream near the Earth. The kinetic ions are modeled by initially isotropic Maxwellian velocity distribution functions, which develop non-thermal features and temperature anisotropies when a broad-band spectrum of low-frequency non-resonant, $\\omega \\leq 0.34 \\Omega_p$, Alfv\\'en-cyclotron...

  16. Observational Consequences of Coronal Heating Mechanisms

    Science.gov (United States)

    Winebarger, Amy R.; Cirtain, Jonathan C.; Golub, Leon; Kobayashi, Ken

    2014-01-01

    The coronal heating problem remains unsolved today, 80 years after its discovery, despite 50 years of suborbital and orbital coronal observatories. Tens of theoretical coronal heating mechanisms have been suggested, but only a few have been able to be ruled out. In this talk, we will explore the reasons for the slow progress and discuss the measurements that will be needed for potential breakthrough, including imaging the solar corona at small spatial scales, measuring the chromospheric magnetic fields, and detecting the presence of high temperature, low emission measure plasma. We will discuss three sounding rocket instruments developed to make these measurements: the High resolution Resolution Coronal Imager (Hi-C), the Chromospheric Lyman-Alpha Spectropolarimeter (CLASP), and the Marshall Grazing Incidence X-ray Spectrometer (MaGIXS).

  17. Heat and mechanical resistance of zinc coating

    Directory of Open Access Journals (Sweden)

    Karel Horák

    2010-01-01

    Full Text Available The article is aimed at studying the effect of temperature on structure of intermetallic phases of the protective zinc layer. The main objective of the article is a description of the structure and the changes that can occur during the heating process. The first part of the article deals with the description of the structure and mechanical properties of the interfacial phases and their arrangement. The main part of the article is aimed at study of brittle intermetallic phases, which arise due to increased temperature. For this reason, a set of samples of steel CSN 11 321 (DC01 was prepared. These samples were subjected to thermal heating in the tempering furnace. Subsequently metallographic cross sections were prepared, observed and assessed using SEM microscopy and EDS analysis. Also accelerated corrosion tests and pull off bend tests were performed. Conclusion of the article is trying to explain the influence of intermetallic phases on degradation of the protective layer.

  18. Enceladus' tidal dissipation revisited

    Science.gov (United States)

    Tobie, Gabriel; Behounkova, Marie; Choblet, Gael; Cadek, Ondrej; Soucek, Ondrej

    2016-10-01

    A series of chemical and physical evidence indicates that the intense activity at Enceladus' South Pole is related to a subsurface salty water reservoir underneath the tectonically active ice shell. The detection of a significant libration implies that this water reservoir is global and that the average ice shell thickness is about 20-25km (Thomas et al. 2016). The interpretation of gravity and topography data further predicts large variations in ice shell thickness, resulting in a shell potentially thinner than 5 km in the South Polar Terrain (SPT) (Cadek et al. 2016). Such an ice shell structure requires a very strong heat source in the interior, with a focusing mechanism at the SPT. Thermal diffusion through the ice shell implies that at least 25-30 GW is lost into space by passive diffusion, implying a very efficient dissipation mechanism in Enceladus' interior to maintain such an ocean/ice configuration thermally stable.In order to determine in which conditions such a large dissipation power may be generated, we model the tidal response of Enceladus including variable ice shell thickness. For the rock core, we consider a wide range of rheological parameters representative of water-saturated porous rock materials. We demonstrate that the thinning toward the South Pole leads to a strong increase in heat production in the ice shell, with a optimal thickness obtained between 1.5 and 3 km, depending on the assumed ice viscosity. Our results imply that the heat production in the ice shell within the SPT may be sufficient to counterbalance the heat loss by diffusion and to power eruption activity. However, outside the SPT, a strong dissipation in the porous core is required to counterbalance the diffusive heat loss. We show that about 20 GW can be generated in the core, for an effective viscosity of 1012 Pa.s, which is comparable to the effective viscosity estimated in water-saturated glacial tills on Earth. We will discuss the implications of this revisited tidal

  19. Effect of Viscous Dissipation on MHD Free Convection Flow Heat and Mass Transfer of Non-Newtonian Fluids along a Continuously Moving Stretching Sheet

    Directory of Open Access Journals (Sweden)

    K.C. Saha

    2015-04-01

    Full Text Available The effects of MHD free convection heat and mass transfer of power-law Non-Newtonian fluids along a stretching sheet with viscous dissipation has been analyzed. This has been done under the simultaneous action of suction, thermal radiation and uniform transverse magnetic field. The stretching sheet is assumed to continuously moving with a power-law velocity and maintaining a uniform surface heat-flux. The governing non-linear partial differential equations are transformed into non-linear ordinary differential equations, using appropriate similarity transformations and the resulting problem is solved numerically using Nachtsheim-Swigert shooting iteration technique along with sixth order Runge-Kutta integration scheme. A parametric study of the parameters arising in the problem such as the Eckert number due to viscous dissipation, radiation number, buoyancy parameter, Schmidt number, Prandtl number etc are studied and the obtained results are shown graphically and the physical aspects of the problem are discussed.

  20. Magnetic reconnection as a chondrule heating mechanism

    Science.gov (United States)

    Lazerson, Samuel A.

    2010-12-01

    The origin of chondrules (sub-millimeter inclusions found in stony meteorites) remains today an open question despite over century of examination. The age of these proto-solar relics shows a well defined cutoff of around 4.5 billion years ago. This places them as the oldest solids in the solar system. Chemical examination indicates that they experienced heating events on the order of 5000 K/hr for periods of around 30 minutes, followed by extending periods of cooling. Additional examination indicates the presence of large magnetic fields during their formation. Most attempts to explain chondrule formation in the proto-solar nebula neglect the existence of a plasma environment, with even less mention of dust being a charge carrier (dusty plasma). Simulations of magnetic reconnection in a dusty plasma are forwarded as a mechanism for chondrule formation in the proto-solar nebula. Here large dust-neutral relative velocities are found in the reconnection region. These flows are associated with the dynamics of reconnection. The high Knudsen number of the dust particles allows for a direct calculation of frictional heating due to collisions with neutrals (allowing for the neglect of boundary layer formation around the particle). Test particle simulations produce heating equivalent to that recorded in the chondrule mineral record. It is shown that magnetic reconnection in a dusty plasma is of fundamental importance to the formation of the most primitive solids in the solar system.

  1. Heat and mass transfer for natural convection MHD flow over a permeable moving vertical plate with convective boundary condition in the presence of viscous dissipation

    Science.gov (United States)

    Shateyi, Stanford

    2017-07-01

    The spectral relaxation method is employed to examine natural convective heat and mass transfer, MHD flow over a permeable moving vertical plate with convective boundary condition in the presence of viscous dissipation, thermal radiation and chemical reaction. The governing partial differential equations were transformed into a system of nonlinear ordinary differential equations by using a similarity approach. The pertinent results are then displayed in tabular form and graphically.

  2. Dissipative Bohmian mechanics within the Caldirola–Kanai framework: A trajectory analysis of wave-packet dynamics in viscid media

    Energy Technology Data Exchange (ETDEWEB)

    Sanz, A.S., E-mail: asanz@iff.csic.es [Instituto de Física Fundamental (IFF-CSIC), Serrano 123, 28006 Madrid (Spain); Martínez-Casado, R. [Department of Chemistry, Imperial College London, South Kensington, London SW7 2AZ (United Kingdom); Peñate-Rodríguez, H.C.; Rojas-Lorenzo, G. [Instituto Superior de Tecnologías y Ciencias Aplicadas, Ave. Salvador Allende y Luaces, Quinta de Los Molinos, Plaza, La Habana 10600 (Cuba); Miret-Artés, S. [Instituto de Física Fundamental (IFF-CSIC), Serrano 123, 28006 Madrid (Spain)

    2014-08-15

    Classical viscid media are quite common in our everyday life. However, we are not used to find such media in quantum mechanics, and much less to analyze their effects on the dynamics of quantum systems. In this regard, the Caldirola–Kanai time-dependent Hamiltonian constitutes an appealing model, accounting for friction without including environmental fluctuations (as it happens, for example, with quantum Brownian motion). Here, a Bohmian analysis of the associated friction dynamics is provided in order to understand how a hypothetical, purely quantum viscid medium would act on a wave packet from a (quantum) hydrodynamic viewpoint. To this purpose, a series of paradigmatic contexts have been chosen, such as the free particle, the motion under the action of a linear potential, the harmonic oscillator, or the superposition of two coherent wave packets. Apart from their analyticity, these examples illustrate interesting emerging behaviors, such as localization by “quantum freezing” or a particular type of quantum–classical correspondence. The reliability of the results analytically determined has been checked by means of numerical simulations, which has served to investigate other problems lacking of such analyticity (e.g., the coherent superpositions). - Highlights: • A dissipative Bohmian approach is developed within the Caldirola–Kanai model. • Some simple yet physically insightful systems are then studied analytically. • Dissipation leads to spatial localization in free-force regimes. • Under the action of linear forces, dissipation leads to uniform motion. • In harmonic potentials, the system decays unavoidable to the well minimum.

  3. MHD Effects on Non-Newtonian Power-Law Fluid Past a Continuously Moving Porous Flat Plate with Heat Flux and Viscous Dissipation

    Science.gov (United States)

    Kishan, N.; Shashidar Reddy, B.

    2013-06-01

    The problem of a magneto-hydro dynamic flow and heat transfer to a non-Newtonian power-law fluid flow past a continuously moving flat porous plate in the presence of sucion/injection with heat flux by taking into consideration the viscous dissipation is analysed. The non-linear partial differential equations governing the flow and heat transfer are transformed into non-linear ordinary differential equations using appropriate transformations and then solved numerically by an implicit finite difference scheme. The solution is found to be dependent on various governing parameters including the magnetic field parameter M, power-law index n, suction/injection parameter ƒw, Prandtl number Pr and Eckert number Ec. A systematical study is carried out to illustrate the effects of these major parameters on the velocity profiles, temperature profile, skin friction coefficient and rate of heat transfer and the local Nusslet number.

  4. Mechanical properties of alumina porcelain during heating

    Science.gov (United States)

    Šín, Peter; Podoba, Rudolf; ŠtubÅa, Igor; Trník, Anton

    2014-11-01

    The mechanical strength and Young's modulus of green alumina porcelain (50 wt. % of kaolin, 25 wt. % of Al2O3, and 25 wt. % of feldspar) were measured during heating up to 900 °C and 1100 °C, respectively. To this end, we used the three point-bending method and modulated force thermomechanical analysis (mf-TMA). The loss liberation - of the physically bound water (20 - 250 °C) strengthens the sample and Young's modulus increases its values significantly. The dehydroxylation that takes place in the range of 400 - 650 °C causes a slight decrease in Young's modulus. On the other hand, the mechanical strength slightly increases in this temperature range, although it has a sudden drop at 420 °C. Beyond the dehydroxylation range, above 650 °C, both Young's modulus and mechanical strength increase. Above 950 °C, a sharp increase of Young's modulus is caused by the solid-state sintering and the new structure created by the high-temperature reactions in metakaolinite.

  5. NUCLEAR PHYSICS: Probing the Dissipation Mechanism in Ternary Reactions of 197Au+197Au by Mean Free Path of Nucleons

    Science.gov (United States)

    Tian, Jun-Long; Li, Xian; Yan, Shi-Wei; Wu, Xi-Zhen; Li, Zhu-Xia

    2009-08-01

    the collision of very heavy nuclei 197Au+197Au at 15 A MeV has been studied within the improved quantum molecular dynamics model. A class of ternary events satisfying nearly complete balance of mass numbers is selected. The experimental mass distributions for the system 197Au+197Au ternary fission fragments, the heaviest (A1), the intermediate (A2) and the lightest (A3), are reproduced well. The mean free path of nucleons in the reaction system is studied and the shorter mean free path is responsible for the ternary fission with three mass comparable fragments, in which the two-body dissipation mechanism plays a dominant role.

  6. A photophysical control mechanism for zeaxanthin-associated radiationless energy dissipation in photosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Frank, H.A.; Cua, A. [Connecticut Univ., Storrs, CT (United States). Dept. of Chemistry; Young, A. [Johns Moores Univ., Liverpool (United Kingdom). School of Biological and Earth Sciences; Gosztola, D.; Wasielewski, M.R. [Argonne National Lab., IL (United States)

    1994-09-01

    Understanding the way in which excess solar energy is dissipated by photosynthetic membranes under high light stress is a major problem in photosynthesis studies. This paper reports femtosecond time-resolved, fast-transient optical spectroscopic analyses of three important xanthophylls: violaxanthin, antheraxanthin, zeoaxanthin. The results support the notion that the enzymatic reactions that interconvert these xanthophylls act as a kind of ``molecular gear shift`` controlling whether the molecules function as light-harvesting pigments performing forward energy transfer or as fluorescence quenchers performing reverse energy transfer.

  7. A comparison of the heat and mechanical energy of a heat-pump wind turbine system

    Energy Technology Data Exchange (ETDEWEB)

    Aybek, A.; Arslan, S.; Yildiz, E.; Atik, K. [University of Kahramanmaras (Turkey). Dept. of Agricultural Machinery

    2000-07-01

    While a variety of applications of wind energy have been studied in Turkey, no significant efforts have been made to utilize heat pumps for heat generation. The use of heat pumps in wind energy systems is worth considering because of the high efficiency of heat production. In this study, a directly coupled wind turbine-heat pump system was designed, constructed, and tested. Measurements determined the mechanical energy of the rotors of the wind turbine and the heat energy generated by the heat pump driven by the rotor shaft. Based on the comparisons between the power generated by the heat pump and the power of the Savonius rotors, it was found that the heat energy gained by the heat pump was four times greater than the mechanical energy obtained from the turbine. It was suggested that heat pumps could be efficiently used in wind energy systems. (Author)

  8. Dissipative properties of materials with microplastic mechanism of damping under conditions of separate and joint action of static stresses and temperature

    Energy Technology Data Exchange (ETDEWEB)

    Shpak, D.E.

    1985-01-01

    Static stress and temperature are studied experimentally for their separate and joint effect on dissipative properties of VT3-1 and Ehp 718 alloys whose dissipation energy is conditioned by microplastic strains. The results of the study are presented. It is shown that for the materials studied in contrast to the materials with other basic damping mechanisms joint effect of static stresses and temperature is close to a simple summation of the separate effect of these factors without any changes in the character of energy dissipation dependence.

  9. Measurements of a low temperature mechanical dissipation peak in a single layer of Ta2O5 doped with TiO2

    CERN Document Server

    Martin, I; Comtet, C; Fejer, M M; Gretarsson, A; Harry, G; Hough, J; Mackowski, J-M M; MacLaren, I; Michel, C; Montorio, J-L; Morgado, N; Nawrodt, R; Penn, S; Reid, S; Remillieux, A; Route, R; Rowan, S; Schwarz, C; Seidel, P; Vodel, W; Zimmer, A

    2008-01-01

    Thermal noise arising from mechanical dissipation in oxide coatings is a major limitation to many precision measurement systems, including optical frequency standards, high resolution optical spectroscopy and interferometric gravity wave detectors. Presented here are measurements of dissipation as a function of temperature between 7 K and 290 K in ion-beam sputtered Ta2O5 doped with TiO2, showing a loss peak at 20 K. Analysis of the peak provides the first evidence of the source of dissipation in doped Ta2O5 coatings, leading to possibilities for the reduction of thermal noise effects.

  10. Soret-Dufour Effects on Hydromagnetic Non-Darcy Convective-Radiative Heat and Mass Transfer over a Stretching Sheet in Porous Medium with Viscous Dissipation and Ohmic Heating

    Directory of Open Access Journals (Sweden)

    Dulal Pal

    2014-01-01

    Full Text Available The present study is devoted to investigate the effects of Soret and Dufour on the mixed convection flow, heat and mass transfer over a stretching sheet in the presence of viscous dissipation, Ohmic heating, thermal radiation in porous medium. Numerical solutions for the coupled governing equations are obtained by using the fifth-order Runge-Kutta-Fehlberg method with shooting technique. Important features of flow, heat and mass transfer characteristics for different values of the physical parameters are analyzed and discussed. Numerical results reveal that the magnetic field and inertia coefficient reduce the skin friction but reverse effects are seen on local Nusselt number.

  11. Second-law analysis of laminar nonnewtonian gravity-driven liquid film along an inclined heated plate with viscous dissipation effect

    Directory of Open Access Journals (Sweden)

    S. Saouli

    2009-06-01

    Full Text Available A second-law analysis of a gravity-driven film of non-Newtonian fluid along an inclined heated plate is investigated. The flow is assumed to be steady, laminar and fully-developed. The upper surface of the liquid film is considered to be free and adiabatic. The effect of heat generation by viscous dissipation is included. Velocity, temperature and entropy generation profiles are presented. The effects of the flow behaviour index, the Brinkman number and the group parameter on velocity, temperature and entropy generation number are discussed. The results show that velocity profile depends largely on the flow behaviour index. They are flat near the free surface for pseudoplastic fluids and linear for dilatant fluids. Temperature profiles are higher for higher flow behaviour index and Brinkman number. The entropy generation number increases with Brinkman number and the group parameter because of the heat generated by the viscous dissipation effect. For pseudoplastic fluids, the irreversibility is dominated by heat transfer, whereas, for dilatant fluids, irreversibility due to fluid friction is more dominant.

  12. Development of flow and heat transfer in the vicinity of a vertical plate embedded in a porous medium with viscous dissipation effects

    KAUST Repository

    El-Amin, Mohamed

    2012-01-01

    In this paper, the effects of viscous dissipation on unsteady free convection from an isothermal vertical flat plate in a fluidsaturated porous medium are investigated. The Darcy-Brinkman model is employed to describe the flow field. A new model of viscous dissipation is used for the Darcy-Brinkman model of porous media. The simultaneous development of the momentum and thermal boundary layers is obtained by using a finite-difference method. Boundary layer and Boussinesq approximation have been incorporated. Numerical calculations are carried out for various parameters entering into the problem. Velocity and temperature profiles as well as the local friction factor and local Nusselt number are displayed graphically. It is found that as time approaches infinity, the values of the friction factor and heat transfer coefficient approach steady state. © 2012 by Begell House, Inc.

  13. Velocity slip effects on heat and mass fluxes of MHD viscous–Ohmic dissipative flow over a stretching sheet with thermal radiation

    Directory of Open Access Journals (Sweden)

    M. Kayalvizhi

    2016-06-01

    Full Text Available In the present article, we discussed the velocity slip effects on the heat and mass fluxes of a viscous electrically conducting fluid flow over a stretching sheet in the presence of viscous dissipation, Ohmic dissipation and thermal radiation. A system of governing nonlinear PDEs is converted into a set of nonlinear ODEs by suitable similarity transformations. The numerical and analytical solutions are presented for the governing non-dimensional ODEs using shooting method and hypergeometric function respectively. The results are discussed for skin friction coefficient, concentration field, non-dimensional wall temperature and non-dimensional wall concentration. The non-dimensional wall concentration increases with slip and magnetic parameters and decreases with Schmidt number. Furthermore, comparisons are found to be good with bench mark solutions.

  14. On the Influence of Soret and Dufour Effects on MHD Free Convective Heat and Mass Transfer Flow over a Vertical Channel with Constant Suction and Viscous Dissipation.

    Science.gov (United States)

    Uwanta, Ime Jimmy; Usman, Halima

    2014-01-01

    The present paper investigates the combined effects of Soret and Dufour on free convective heat and mass transfer on the unsteady one-dimensional boundary layer flow over a vertical channel in the presence of viscous dissipation and constant suction. The governing partial differential equations are solved numerically using the implicit Crank-Nicolson method. The velocity, temperature, and concentration distributions are discussed numerically and presented through graphs. Numerical values of the skin-friction coefficient, Nusselt number, and Sherwood number at the plate are discussed numerically for various values of physical parameters and are presented through tables. It has been observed that the velocity and temperature increase with the increase in the viscous dissipation parameter and Dufour number, while an increase in Soret number causes a reduction in temperature and a rise in the velocity and concentration.

  15. Physics of Limiting Phenomena in Superconducting Microwave Resonators: Vortex Dissipation, Ultimate Quench and Quality Factor Degradation Mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Checchin, Mattia [IIT, Chicago

    2016-01-01

    Superconducting niobium accelerating cavities are devices operating in radio-frequency and able to accelerate charged particles up to energy of tera-electron-volts. Such accelerating structures are though limited in terms of quality factor and accelerating gradient, that translates--in some cases--in higher capital costs of construction and operation of superconducting rf accelerators. Looking forward for a new generation of more affordable accelerators, the physical description of limiting mechanisms in superconducting microwave resonators is discussed. In particular, the physics behind the dissipation introduced by vortices in the superconductor, the ultimate quench limitations and the quality factor degradation mechanism after a quench are described in detail. One of the limiting factor of the quality factor is the dissipation introduced by trapped magnetic flux vortices. The radio-frequency complex response of trapped vortices in superconductors is derived by solving the motion equation for a magnetic flux line, assuming a bi-dimensional and mean free path-dependent Lorentzian-shaped pinning potential. The resulting surface resistance shows the bell-shaped trend as a function of the mean free path, in agreement with the experimental data observed. Such bell-shaped trend of the surface resistance is described in terms of the interplay of the two limiting regimes identified as pinning and flux flow regimes, for low and large mean free path values respectively. The model predicts that the dissipation regime--pinning- or flux-flow-dominated--can be tuned either by acting on the frequency or on the electron mean free path value. The effect of different configurations of pinning sites and strength on the vortex surface resistance are also discussed. Accelerating cavities are also limited by the quench of the superconductive state, which limits the maximum accelerating gradient achievable. The accelerating field limiting factor is usually associate d to the

  16. Physics of Limiting Phenomena in Superconducting Microwave Resonators: Vortex Dissipation, Ultimate Quench and Quality Factor Degradation Mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Checchin, Mattia [Illinois Inst. of Technology, Chicago, IL (United States)

    2016-12-01

    Superconducting niobium accelerating cavities are devices operating in radio-frequency and able to accelerate charged particles up to energy of tera-electron-volts. Such accelerating structures are though limited in terms of quality factor and accelerating gradient, that translates--in some cases--in higher capital costs of construction and operation of superconducting rf accelerators. Looking forward for a new generation of more affordable accelerators, the physical description of limiting mechanisms in superconducting microwave resonators is discussed. In particular, the physics behind the dissipation introduced by vortices in the superconductor, the ultimate quench limitations and the quality factor degradation mechanism after a quench are described in detail. One of the limiting factor of the quality factor is the dissipation introduced by trapped magnetic flux vortices. The radio-frequency complex response of trapped vortices in superconductors is derived by solving the motion equation for a magnetic flux line, assuming a bi-dimensional and mean free path-dependent Lorentzian-shaped pinning potential. The resulting surface resistance shows the bell-shaped trend as a function of the mean free path, in agreement with the experimental data observed. Such bell-shaped trend of the surface resistance is described in terms of the interplay of the two limiting regimes identified as pinning and flux flow regimes, for low and large mean free path values respectively. The model predicts that the dissipation regime--pinning- or flux-flow-dominated--can be tuned either by acting on the frequency or on the electron mean free path value. The effect of different configurations of pinning sites and strength on the vortex surface resistance are also discussed. Accelerating cavities are also limited by the quench of the superconductive state, which limits the maximum accelerating gradient achievable. The accelerating field limiting factor is usually associate d to the

  17. Dissipation by a crystallization process

    Science.gov (United States)

    Dorosz, Sven; Voigtmann, Thomas; Schilling, Tanja

    2016-01-01

    We discuss crystallization as a non-equilibrium process. In a system of hard spheres under compression at a constant rate, we quantify the amount of heat that is dissipated during the crystallization process. We interpret the dissipation as arising from the resistance of the system against phase transformation. An intrinsic compression rate is identified that separates a quasi-static regime from one of rapidly driven crystallization. In the latter regime the system crystallizes more easily, because new relaxation channels are opened, at the cost of forming a higher fraction of non-equilibrium crystal structures. We rationalize the change in the crystallization mechanism by analogy with shear thinning, in terms of a kinetic competition between near-equilibrium relaxation and external driving.

  18. Optimized ground coupled heat pump mechanical package

    Energy Technology Data Exchange (ETDEWEB)

    Catan, M.A.

    1987-01-01

    This project addresses the question of how well a ground coupled heat pump system could perform with a heat pump which was designed specifically for such systems operating in a northern climate. Conventionally, systems are designed around water source heat pumps which are not designed for ground coupled heat pump application. The objective of the project is to minimize the life cycle cost for a ground coupled system given the freedom to design the heat pump and the ground coil in concert. In order to achieve this objective a number of modeling tools were developed which will likely be of interest in their own right.

  19. Effects of Thermal Radiation on Mixed Convection Flow of a Micropolar Fluid from an Unsteady Stretching Surface with Viscous Dissipation and Heat Generation/Absorption

    Directory of Open Access Journals (Sweden)

    Khilap Singh

    2016-01-01

    Full Text Available A numerical model is developed to examine the effects of thermal radiation on unsteady mixed convection flow of a viscous dissipating incompressible micropolar fluid adjacent to a heated vertical stretching surface in the presence of the buoyancy force and heat generation/absorption. The Rosseland approximation is used to describe the radiative heat flux in the energy equation. The model contains nonlinear coupled partial differential equations which have been converted into ordinary differential equation by using the similarity transformations. The dimensionless governing equations for this investigation are solved by Runge-Kutta-Fehlberg fourth fifth-order method with shooting technique. Numerical solutions are then obtained and investigated in detail for different interesting parameters such as the local skin-friction coefficient, wall couple stress, and Nusselt number as well as other parametric values such as the velocity, angular velocity, and temperature.

  20. Influence of nonlinear thermal radiation and viscous dissipation on three-dimensional flow of Jeffrey nano fluid over a stretching sheet in the presence of Joule heating

    Science.gov (United States)

    Ganesh Kumar, K.; Rudraswamy, N. G.; Gireesha, B. J.; Krishnamurthy, M. R.

    2017-09-01

    Present exploration discusses the combined effect of viscous dissipation and Joule heating on three dimensional flow and heat transfer of a Jeffrey nanofluid in the presence of nonlinear thermal radiation. Here the flow is generated over bidirectional stretching sheet in the presence of applied magnetic field by accounting thermophoresis and Brownian motion of nanoparticles. Suitable similarity transformations are employed to reduce the governing partial differential equations into coupled nonlinear ordinary differential equations. These nonlinear ordinary differential equations are solved numerically by using the Runge-Kutta-Fehlberg fourth-fifth order method with shooting technique. Graphically results are presented and discussed for various parameters. Validation of the current method is proved by comparing our results with the existing results under limiting situations. It can be concluded that combined effect of Joule and viscous heating increases the temperature profile and thermal boundary layer thickness.

  1. Evaporative Heat Transfer Mechanisms within a Heat Melt Compactor

    Science.gov (United States)

    Golliher, Eric L.; Gotti, Daniel J.; Rymut, Joseph Edward; Nguyen, Brian K; Owens, Jay C.; Pace, Gregory S.; Fisher, John W.; Hong, Andrew E.

    2013-01-01

    This paper will discuss the status of microgravity analysis and testing for the development of a Heat Melt Compactor (HMC). Since fluids behave completely differently in microgravity, the evaporation process for the HMC is expected to be different than in 1-g. A thermal model is developed to support the design and operation of the HMC. Also, low-gravity aircraft flight data is described to assess the point at which water may be squeezed out of the HMC during microgravity operation. For optimum heat transfer operation of the HMC, the compaction process should stop prior to any water exiting the HMC, but nevertheless seek to compact as much as possible to cause high heat transfer and therefore shorter evaporation times.

  2. An Experimental Investigation of the Dissipation Mechanisms in the Suction Side Boundary Layer of a Turbine Blade

    Institute of Scientific and Technical Information of China (English)

    Fiancesca Satta; Daniele Simoni; Marina Ubaldi; Pietro Zunino

    2008-01-01

    The present work is part of an extensive experimental activity carried out by the authors in recent years aimed at investigating the boundary layer transition phenomenon in turbine blades. The large scale of the cascade and the use of advanced LDV instrumentation and precision probe traversing mechanism resulted in high degree of spa-tial resolution and high accuracy of measurements. The main dissipation mechanism determining the profile losses in turbomachinery blades is the work of deformation of the mean motion within the boundary layer oper-ated by both viscous and turbulent shear stresses. In the present paper, the local viscous and turbulent deformation works have been directly evaluated from the detailed measurements of boundary layer mean velocity and Rey-nolds shear stress. The results show the distributions and the relative importance of the viscous and turbulent con-tributions to the loss production, in relation with the boundary layer states occurring along the turbine profile.

  3. A low-frequency wave motion mechanism enables efficient energy transport in carbon nanotubes at high heat fluxes.

    Science.gov (United States)

    Zhang, Xiaoliang; Hu, Ming; Poulikakos, Dimos

    2012-07-11

    The great majority of investigations of thermal transport in carbon nanotubes (CNTs) in the open literature focus on low heat fluxes, that is, in the regime of validity of the Fourier heat conduction law. In this paper, by performing nonequilibrium molecular dynamics simulations we investigated thermal transport in a single-walled CNT bridging two Si slabs under constant high heat flux. An anomalous wave-like kinetic energy profile was observed, and a previously unexplored, wave-dominated energy transport mechanism is identified for high heat fluxes in CNTs, originated from excited low frequency transverse acoustic waves. The transported energy, in terms of a one-dimensional low frequency mechanical wave, is quantified as a function of the total heat flux applied and is compared to the energy transported by traditional Fourier heat conduction. The results show that the low frequency wave actually overtakes traditional Fourier heat conduction and efficiently transports the energy at high heat flux. Our findings reveal an important new mechanism for high heat flux energy transport in low-dimensional nanostructures, such as one-dimensional (1-D) nanotubes and nanowires, which could be very relevant to high heat flux dissipation such as in micro/nanoelectronics applications.

  4. 野战低温储运箱散热设计%The Design of Heat Dissipation of the Field Low Temperature Box for Storage and Transportation

    Institute of Scientific and Technical Information of China (English)

    魏建仓; 孙建军; 吴坚

    2013-01-01

    野战低温储运箱的结构设计紧凑,由于压缩机、冷凝器、控制电路、电池及电源部分置于同一狭小空间内,故散热及风场设计对箱体的可靠性和稳定性至关重要.本文采用FLOEFD流体传热分析软件对箱体散热设计的3种方案进行了仿真分析,详细构建了各种方案的温度场分布,并通过实验验证了仿真结果的正确性.根据仿真分析的结果,采用了最佳的散热设计方案,采用此设计方案的箱体长期运行稳定可靠.%Because of the compact structure of the field low temperature box for storage and transportation, which is due to the same small space where the compressor, the condenser, the control circuit, the battery and the power supply device are all placed in, the design for heat dissipation and ventilation is of critical importance for the stability and reliability of the box. Several design schemes of the heat dissipation design of the box were simulated using the FLOEFD hot fluid analysis software in this study. Different distributions of the temperature field in every design scheme were constructed intimately in the present study. It is well concluded that according to the result of the simulation analysis, the optimal heat dissipation design is decent for the field low temperature box for storage and transportation, and the box can operate smoothly for a long time using the results of the design.

  5. Mechanism and control of convective heat transfer-- Coordination of velocity and heat flow fields

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A second look has been given at the mechanism of convective heat transfer based on the analogy between convection and conduction with heat sources. The strength of convective heat transfer depends not only on the fluid velocity and fluid properties, but also on the coordination of fluid velocity and heat flow fields. Hence, based on the included angle of velocity and temperature gradient vectors, the presence of fluid motion may enhance or reduce heat transfer. With this concept, the known heat transfer phenomena may be understood in a deeper way. More important is that some novel approaches of heat transfer control can be developed.

  6. A comparative study on heat dissipation, morphological and magnetic properties of hyperthermia suitable nanoparticles prepared by co-precipitation and hydrothermal methods

    Indian Academy of Sciences (India)

    Md Shariful Islam; Yoshihumi Kusumoto; Junichi Kurawaki; Md Abdulla-Al-Mamun; Hirotaka Manaka

    2012-12-01

    Magnetite (Fe3O4) nanoparticles were prepared by co-precipitation and hydrothermal methods and their phase transfer was done successfully to compare their performances in different aspects. Synthesized nanoparticles were characterized for XRD, FE–SEM, TEM, UV-Vis absorption (reflectance) spectra, magnetic hysteresis loops and a.c. magnetic field induced hyperthermia. The magnetic nanoparticles prepared by the co-precipitation method show superior performances in respect of heat dissipation capability, saturation of magnetization values and particle size when compared to those prepared by the hydrothermal method.

  7. MHD Flow and Heat Transfer of Nanofluids through a Porous Media Due to a Stretching Sheet with Viscous Dissipation and Chemical Reaction Effects

    Science.gov (United States)

    Yirga, Y.; Shankar, B.

    2015-09-01

    This article investigates the convective heat and mass transfer in nanofluid flow through a porous media due to a stretching sheet subjected to magnetic field, viscous dissipation, chemical reaction, and Soret effects. The governing equations are reduced to ordinary differential equations using similarity transformations and then solved numerically by the Keller box method. Numerical results are obtained for the skin friction coefficient, Nusselt number, Sherwood number, as well as for the velocity, temperature, and concentration profiles for selected values of the governing parameters. Excellent validation of the present numerical results has been achieved with the earlier studies in the literature.

  8. Thermal mechanical analysis of applications with internal heat generation

    Science.gov (United States)

    Govindarajan, Srisharan Garg

    The radioactive tracer Technetium-99m is widely used in medical imaging and is derived from its parent isotope Molybedenum-99 (Mo-99) by radioactive decay. The majority of Molybdenum-99 (Mo-99) produced internationally is extracted from high enriched uranium (HEU) dispersion targets that have been irradiated. To alleviate proliferation risks associated with HEU-based targets, the use of non-HEU sources is being mandated. However, the conversion of HEU to LEU based dispersion targets affects the Mo-99 available for chemical extraction. A possible approach to increase the uranium density, to recover the loss in Mo-99 production-per-target, is to use an LEU metal foil placed within an aluminum cladding to form a composite structure. The target is expected to contain the fission products and to dissipate the generated heat to the reactor coolant. In the event of interfacial separation, an increase in the thermal resistance could lead to an unacceptable rise in the LEU temperature and stresses in the target. The target can be deemed structurally safe as long as the thermally induced stresses are within the yield strength of the cladding and welds. As with the thermal and structural safety of the annular target, the thermally induced deflection of the BORALRTM-based control blades, used by the University of Missouri Research Reactor (MURRRTM ), during reactor operation has been analyzed. The boron, which is the neutron absorber in BORAL, and aluminum mixture (BORAL meat) and the aluminum cladding are bonded together through powder metallurgy to establish an adherent bonded plate. As the BORAL absorbs both neutron particles and gamma rays, there is volumetric heat generation and a corresponding rise in temperature. Since the BORAL meat and aluminum cladding materials have different thermal expansion coefficients, the blade may have a tendency to deform as the blade temperature changes and the materials expand at different rates. In addition to the composite nature of the

  9. Enhanced heat transfer through filler-polymer interface by surface-coupling agent in heat-dissipation material: A non-equilibrium molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Kouichi [DENSO CORPORATION, Kariya, Aichi 448-8661 (Japan); Graduate School of Engineering, Nagoya Institute of Technology, Nagoya 466-8555 (Japan); Ogata, Shuji; Kobayashi, Ryo; Tamura, Tomoyuki [Graduate School of Engineering, Nagoya Institute of Technology, Nagoya 466-8555 (Japan); Kitsunezuka, Masashi; Shinma, Atsushi [DENSO CORPORATION, Kariya, Aichi 448-8661 (Japan)

    2013-11-21

    Developing a composite material of polymers and micrometer-sized fillers with higher heat conductance is crucial to realize modular packaging of electronic components at higher densities. Enhancement mechanisms of the heat conductance of the polymer-filler interfaces by adding the surface-coupling agent in such a polymer composite material are investigated through the non-equilibrium molecular dynamics (MD) simulation. A simulation system is composed of α-alumina as the filler, bisphenol-A epoxy molecules as the polymers, and model molecules for the surface-coupling agent. The inter-atomic potential between the α-alumina and surface-coupling molecule, which is essential in the present MD simulation, is constructed to reproduce the calculated energies with the electronic density-functional theory. Through the non-equilibrium MD simulation runs, we find that the thermal resistance at the interface decreases significantly by increasing either number or lengths of the surface-coupling molecules and that the effective thermal conductivity of the system approaches to the theoretical value corresponding to zero thermal-resistance at the interface. Detailed analyses about the atomic configurations and local temperatures around the interface are performed to identify heat-transfer routes through the interface.

  10. Visco-elastic MHD flow, heat and mass transfer over a porous stretching sheet with dissipation of energy and stress work

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Sujit Kumar; Abel, M. Subhas [Department of Mathematics, Gulbarga University, Gulbarga - 585 106, Karnataka (India); Sonth, Ravi M. [Department of Mathematics, K.C.T. Engineering College, Gulbarga - 585 104, Karnataka (India)

    2003-12-01

    The present paper deals with the study of momentum, heat and mass transfer characteristics in a viso-elastic fluid flow over a porous sheet, where the flow is generated due to linear stretching of the sheet and influenced by a uniform magnetic field applied vertically and a continuous injection of the fluid through porous boundary. In the flow region, heat balance is maintained with a temperature dependent heat source/sink, viscous dissipation, dissipation due to elastic deformation and stress work produced as the result of magnetic field on the non-Newtonian fluid. In mass transfer analysis we have taken into account the loss of mass of the chemically reactive diffusive species by means of first order chemical conversion rate. Using suitable similarity transformations on the highly non-linear partial differential equations we derive several closed form analytical solutions for non-dimensional temperature, concentration, heat flux, mass flux profiles in the form of confluent hyper geometric (Kummer's) functions and some other elementary functions as its special form, for two different cases of the boundary conditions, namely, (i) wall with prescribed second order power law temperature (PST) and prescribed second order power law concentration (ii) wall with prescribed second order power law heat flux (PHF) and prescribed second order power law mass flux. The effect of the non-dimensional magnetic parameter on momentum, heat and mass transfer characteristics for non-isothermal boundary condition and different physical situations of the fluid, having various degrees of visco-elasticity, Prandtl number, heat source/sink strength and Schmidt number, are discussed in detail. Some of the several important findings reported in this paper are: (i) The combined effect of magnetic field, visco-elasticity and impermeability of the wall is to increase skin-friction largely at the wall; (ii) maximum enhancement of wall-temperature profile due to the application of

  11. Dissipation in rocky planets for strong tidal forcing

    Science.gov (United States)

    Clausen, N.; Tilgner, A.

    2015-12-01

    Aims: We plan to reproduce a previously published calculation for the tidal dissipation in Io and extend the employed model to investigate the heat transport mechanism in Io and the thickness of Io's asthenosphere. Additionally, we apply this model to an exoplanet and obtain insights into the dependencies of the modified tidal quality factor (Q') on the size of the planet and its orbital eccentricity. Methods: Tidal dissipation depends on the heat transport mechanism. For strong tidal forcing an equilibrium between heat transport by convection and heat production by tidal dissipation can be obtained that determines the tidal dissipation. By this means, we checked whether convection is the dominant heat transport mechanism in Io. The tidal dissipation also depends on the interior model of Io. We considered various asthenosphere thicknesses and determined which of these gives results compatible with observations. We determined the modified tidal quality factors (Q') for Corot 7 b for various orbital parameters, but in a way that tidal forcing is strong. We used convection and melt migration as possible heat transport mechanism. We repeated this for a hypothetical planet with the size and density of Io on the orbit of Corot 7 b. Results: We find that a heat transport dominated by convection in Io is possible, but the grain sizes need to be smaller than 2.2 mm. For larger grain sizes melt migration is the dominant heat transport mechanism. Moreover, Io's asthenosphere needs to be thicker than 100 km. The computation of the modified tidal quality factors (Q') for Corot 7 b and a planet with the size and density of Io on the orbit of Corot 7 b show that Q' is scattered over several orders of magnitude, but a value of 100 for Q' is an acceptable estimate for a rocky planet under strong tidal forcing.

  12. Developing a New Appliance to Dissipate Mechanical Load on Teeth and Improve Limitation of Vertical Mouth Opening

    Directory of Open Access Journals (Sweden)

    Takashi Satomi

    2013-10-01

    Full Text Available Objectives: The principle of leverage to superpose the convex surfaces of two shells was applied to develop a device for treating limitation of mouth opening and called it the “shell-shaped mouth opener” and analyzed pressure on the teeth with the TheraBite® appliance and the shell-shaped mouth opening appliance. Material and Methods: To compare the TheraBite® appliance and the shell-shaped mouth opening appliance, pressure on the teeth in the dentition model with both devices was analyzed using the Inastomer® flexible conductive sensor. Results: The load was better dispersed to each tooth in the shell-shaped mouth opening appliance in the all quadrants compared to the TheraBite® appliance. Conclusions: The present study revealed that the shell-shaped mouth opening appliance which was originally invented in our lab, dissipated the mechanical load on teeth more evenly than the TheraBite® appliance.

  13. Efficient drug delivery mechanisms of liposomes with tethered biopolymer brushes in aqueous solution using dissipative particle dynamics simulations

    CERN Document Server

    Goicochea, A Gama; Klapp, J; Pastorino, C

    2013-01-01

    We undertake the investigation of model liposomes covered with polyethylene glycol brushes as a case study for the mechanisms of efficient drug delivery in biologically relevant situations.Extensive non- equilibrium, coarse grained dissipative particle dynamics simulations of polymer brushes of various lengths and shear rates are performed, having in mind polymer brushes covering the surfaces of drug carrying liposomes in the human circulatory system.In particular, we calculate the viscosity and the friction coefficient for polymer brushes as functions of the shear rate and polymerization degree under theta solvent conditions, and find that the liposome brushes experience considerable shear thinning at large shear rates. The viscosity is shown to obey a scaling law at high shear rate irrespective of the brushes degree of polymerization. A new general scaling relation is obtained for the viscosity at high shear rates. These results reproduce very well trends in recent drug delivering experiments.

  14. Radiation and mass transfer effects on an unsteady MHD free convection flow past a heated vertical plate in a porous medium with viscous dissipation

    Directory of Open Access Journals (Sweden)

    Prasad Ramachandra V.

    2007-01-01

    Full Text Available An unsteady, two-dimensional, hydromagnetic, laminar free convective boundary-layer flow of an incompressible, Newtonian, electrically-conducting and radiating fluid past an infinite heated vertical porous plate with heat and mass transfer is analyzed, by taking into account the effect of viscous dissipation. The dimensionless governing equations for this investigation are solved analytically using two-term harmonic and non-harmonic functions. Numerical evaluation of the analytical results is performed and graphical results for velocity, temperature and concentration profiles within the boundary layer and tabulated results for the skin-friction coefficient, Nusselt number and Sherwood number are presented and discussed. It is observed that, when the radiation parameter increases, the velocity and temperature decrease in the boundary layer, whereas when thermal and solutal Grashof increases the velocity increases.

  15. Optimized ground coupled heat pump mechanical package

    Energy Technology Data Exchange (ETDEWEB)

    Catan, M.A.

    1984-01-01

    The system which was optimized was a horizontal earth coil in a given house in the Pittsburgh area. The types of components used in the heat pump are essentially conventional. The method of this study is derived from one used to optimize an air-source heat pump for operation at standard steady state conditions. A computer model, created at Oak Ridge National Laboratory (ORNL), is used to predict heat pump performance for specified configuration and operating conditions. A predetermined set of design parameters is automatically altered by a constrained minimization program (a Numerical Algorithms Group library routine hereafter referred to as the optimizer) to find the combination for which the highest COP is predicted by the heat pump model. In the present study, the set of parameters to be varied include some pertaining to the ground coil as well as some pertaining to the heat pump. The optimizer, in this case, pursues a minimum life cycle cost which is calculated using the heat pump model, a ground coil model (called FTECM for Fast Transient Earth Coil model), and a parameterized cost model. The flow chart shows how the optimizer interacts with these programs to minimize life cycle cost.

  16. Importance of body-water circulation for body-heat dissipation in hot-humid climates: a distinctive body-water circulation in swamp buffaloes

    Directory of Open Access Journals (Sweden)

    S. Chanpongsang

    2010-02-01

    Full Text Available Thermo-regulation in swamp buffaloes has been investigated as an adaptive system to hot-humid climates, and several distinctive physiological responses were noted. When rectal temperature increased in hot conditions, blood volume, blood flow to the skin surface and skin temperature markedly increased in buffaloes relatively to cattle. On the other hand, the correlation between blood volume and plasma concentration of arginine vasopressin (AVP was compared between buffaloes and cattle under dehydration. Although plasma AVP in cattle increased immediately for reducing urine volume against a decrease in blood volume as well as the response observed in most animal species, the increase in plasma AVP was delayed in buffaloes, even after a large decrease in blood volume. In buffaloes, a marked increase in blood volume facilitated the dissipation of excess heat from the skin surface during wallowing. In addition, the change in plasma AVP observed in buffaloes was consistent with that of other animals living in habitats with the high availability of water. These results suggest that the thermo-regulatory system in buffaloes accelerates body-water circulation internally and externally. This system may be adaptive for heat dissipation in hot-humid climates, where an abundance of water is common.

  17. Circulation and Dissipation on Hot Jupiters

    Science.gov (United States)

    Li, J.; Goodman, J.

    2010-12-01

    Many global circulation models predict supersonic zonal winds and large vertical shears in the atmospheres of short-period Jovian exoplanets. Using linear analysis and nonlinear local simulations, we investigate hydrodynamic dissipation mechanisms to balance the thermal acceleration of these winds. The adiabatic Richardson criterion remains a good guide to linear stability, although thermal diffusion allows some modes to violate it at very long wavelengths and very low growth rates. Nonlinearly, wind speeds saturate at Mach numbers ≈2 and Richardson numbers lsim1/4 for a broad range of plausible diffusivities and forcing strengths. Turbulence and vertical mixing, though accompanied by weak shocks, dominate the dissipation, which appears to be the outcome of a recurrent Kelvin-Helmholtz instability. An explicit shear viscosity, as well as thermal diffusivity, is added to ZEUS to capture dissipation outside of shocks. The wind speed is neither monotonic nor single valued for a range of shear viscosities larger than about 10-3 of the sound speed times the pressure scale height. Coarsening the numerical resolution can also increase the speed. Hence global simulations that are incapable of representing vertical turbulence and shocks, either because of reduced physics or because of limited resolution, may overestimate wind speeds. We recommend that such simulations include artificial dissipation terms to control the Mach and Richardson numbers and to capture mechanical dissipation as heat.

  18. Entanglement generated by dissipation

    CERN Document Server

    Krauter, Hanna; Jensen, Kasper; Wasilewski, Wojciech; Petersen, Jonas M; Cirac, J Ignacio; Polzik, Eugene S

    2010-01-01

    Entanglement is not only one of the most striking features of Quantum Mechanics but also an essential ingredient in most applications in the field of Quantum Information. Unfortunately, this property is very fragile. In experiments conducted so far, coupling of the system to a quantum mechanical environment, commonly referred to as dissipation, either inhibits entanglement or prevents its generation. In this Letter, we report on an experiment in which dissipation induces entanglement between two atomic objects rather than impairing it. This counter-intuitive effect is achieved by engineering the dissipation by means of laser- and magnetic fields, and leads to entanglement which is very robust and therefore long-lived. Our system consists of two distant macroscopic ensembles containing about 10^{12} atoms coupled to the environment composed of the vacuum modes of the electromagnetic field. The two atomic objects are kept entangled by dissipation at room temperature for about 0.015s. The prospects of using this...

  19. Numerical simulation of mechanisms of deformation,failure and energy dissipation in porous rock media subjected to wave stresses

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The pore characteristics,mineral compositions,physical and mechanical properties of the subarkose sandstones were acquired by means of CT scan,X-ray diffraction and physical tests.A few physical models possessing the same pore characteristics and matrix properties but different porosities compared to the natural sandstones were developed.The 3D finite element models of the rock media with varied porosities were established based on the CT image processing of the physical models and the MIMICS software platform.The failure processes of the porous rock media loaded by the split Hopkinson pressure bar(SHPB) were simulated by satisfying the elastic wave propagation theory.The dynamic responses,stress transition,deformation and failure mechanisms of the porous rock media subjected to the wave stresses were analyzed.It is shown that an explicit and quantitative analysis of the stress,strain and deformation and failure mechanisms of porous rocks under the wave stresses can be achieved by using the developed 3D finite element models.With applied wave stresses of certain amplitude and velocity,no evident pore deformation was observed for the rock media with a porosity less than 15%.The deformation is dominantly the combination of microplasticity(shear strain),cracking(tensile strain) of matrix and coalescence of the cracked regions around pores.Shear stresses lead to microplasticity,while tensile stresses result in cracking of the matrix.Cracking and coalescence of the matrix elements in the neighborhood of pores resulted from the high transverse tensile stress or tensile strain which exceeded the threshold values.The simulation results of stress wave propagation,deformation and failure mechanisms and energy dissipation in porous rock media were in good agreement with the physical tests.The present study provides a reference for analyzing the intrinsic mechanisms of the complex dynamic response,stress transit mode,deformation and failure mechanisms and the disaster

  20. Heat transfer mechanisms during short-pulse laser heating of metals

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, T.Q.; Tien, C.L. (Univ. of California, Berkeley, CA (United States))

    1993-11-01

    This work studies heat transfer mechanisms during ultrafast laser heating of metals from a microscopic point of view. The heating process is composed of three processes: the deposition of radiation energy on electrons, the transport of energy by electrons, and the heating of the material lattice through electron-lattice interactions. The Boltzmann transport equation is used to model the transport of electrons and electron lattice interactions. The scattering term of the Boltzmann equation is evaluated from quantum mechanical considerations, which shows the different contributions of the elastic and inelastic electron-lattice scattering processes on energy transport. By solving the Boltzmann equation, a hyperbolic two-step radiation heating model is rigorously established. It reveals the hyperbolic nature of energy flux carried by electrons and the nonequilibrium between electrons and the lattice during fast heating processes. Predictions from the current model agree with available experimental data during subpicosecond laser heating. 20 refs., 7 figs., 2 tabs.

  1. Measurements of mechanical thermal noise and energy dissipation in optical dielectric coatings

    CERN Document Server

    Li, Tianjun; Geitner, Mickael; Cagnoli, Gianpietro; Dolique, Vincent; Degallaix, Jérôme; Flaminio, Raffaele; Forest, Danièle; Granata, Massimo; Michel, Christophe; Morgado, Nazario; Pinard, Laurent; Bellon, Ludovic

    2014-01-01

    In recent years an increasing number of devices and experiments are shown to be limited by mechanical thermal noise. In particular sub-Hertz laser frequency stabilization and gravitational wave detectors, that are able to measure fluctuations of 1E-18 m/rtHz or less, are being limited by thermal noise in the dielectric coatings deposited on mirrors. In this paper we present a new measurement of thermal noise in low absorption dielectric coatings deposited on micro-cantilevers and we compare it with the results obtained from the mechanical loss measurements. For the first time the coating thermal noise is measured on a wide range of frequencies with high signal to noise ratio. In addition we present a novel technique to deduce the coating mechanical losses from the measurement of the mechanical quality factor which does not rely on the knowledge of the coating and substrate Young moduli. The dielectric coatings are deposited by ion beam sputtering. The results presented here give a frequency independent loss a...

  2. Mechanical ventilation with heat recovery in cold climates

    DEFF Research Database (Denmark)

    Kragh, Jesper; Rose, Jørgen; Svendsen, Svend

    2005-01-01

    Building ventilation is necessary to achieve a healthy and comfortable indoor environment, but as energy prices continue to rise it is necessary to reduce the energy consumption. Using mechanical ventilation with heat recovery reduces the ventilation heat loss significantly, but in cold climates...... freezes to ice. The analysis of measurements from existing ventilation systems with heat recovery used in single-family houses in Denmark and a test of a standard heat recovery unit in the laboratory have clearly shown that this problem occurs when the outdoor temperature gets below approximately –5º......C. Due to the ice problem mechanical ventilation systems with heat recovery are often installed with an extra preheating system reducing the energy saving potential significantly. New designs of high efficient heat recovery units capable of continuously defrosting the ice without using extra energy...

  3. Nonequilibrium thermodynamics of fuel cells: Heat release mechanisms and voltage

    Energy Technology Data Exchange (ETDEWEB)

    Wilemski, G.

    1980-01-01

    Nonequilibrium thermodynamics is used to analyze the spatial distribution of heat release mechanisms occurring in fuel cells operating under load in nonisothermal steady states. Novel contributions to heat release in the bulk electrolyte are found which are analogous to Peltier and Thomson effects in metallic conductors. Expresions for the heat release at individual electrodes are presented. An equation for the voltage of these cells is also derived.

  4. Scaling group analysis on MHD effects on heat transfer near a stagnation point on a linearly stretching sheet with variable viscosity and thermal conductivity, viscous dissipation and heat source/sink

    Directory of Open Access Journals (Sweden)

    Dessie Hunegnaw

    2015-01-01

    Full Text Available The effects of variable viscosity and thermal conductivity on MHD heat transfer flow of viscous incompressible electrically conducting fluid near stagnation point flow on non-conducting stretching sheet in presence of uniform transfer magnetic field with heat source/sink and viscous dissipation has been analyzed. The governing partial differential equations are transformed into ordinary differential equations using a special form of Lie group transformations and then solved using Fourth order Runge-Kutta Method. Effects of different physical parameters on the flow and heat transfer characteristics are analyzed. Variations of different parameters on skin fiction coefficient-f′′(0 and temperature gradient −θ′(0 are presented in tabular form.

  5. 照明用大功率LED射灯散热建模研究%Heat Dissipation Modeling Research of High Power LED Spot Lamp for Lighting

    Institute of Scientific and Technical Information of China (English)

    陈杰; 陈忠; 李小红; 沈亚锋; 熊敬康; 王阳夏

    2013-01-01

    Heat dissipation is one of the key problems need to be solved for LED lamps as a new generation of lighting light. A heat dissipation modeling method was presented for the LED lamp. The LED spot lamp was selected for dissipative research, 3D models were established by modeling softwares, then the models were transferred into finite element thermal analysis software (CFD) for simulation. Several key aspects such as thermal resistance setting, heat load calculation and boundary conditions were considered in the analysis process, and the simulation result was compared with laboratory test data. The results show that the method can be used for accurate thermal analysis simulation of indoor LED lighting, with the temperature error less than 4 ℃, and the simulation result is of a great reference value for lighting design.%散热问题是LED灯具成为新一代照明光源亟待解决的关键问题之一.提出一种LED灯具散热建模方法:选用LED射灯作为代表产品进行散热建模研究,采用三维造型软件建立LED灯具产品三维模型,然后导入有限元流体热分析软件(CFD)进行热仿真.研究散热仿真过程中的热阻设置、热量载荷计算和边界条件设定等关键问题,并求解LED射灯的工作温度分布情况;将仿真分析结果与实验室测试数据进行对比分析研究.研究结果表明,运用该方法可以对室内照明LED灯具进行较为准确的散热分析,仿真温度误差在4℃左右,仿真结果对灯具开发设计具有重要参考价值.

  6. Students' Misconceptions about Heat Transfer Mechanisms and Elementary Kinetic Theory

    Science.gov (United States)

    Pathare, S. R.; Pradhan, H. C.

    2010-01-01

    Heat and thermodynamics is a conceptually rich area of undergraduate physics. In the Indian context in particular there has been little work done in this area from the point of view of misconceptions. This prompted us to undertake a study in this area. We present a study of students' misconceptions about heat transfer mechanisms, i.e. conduction,…

  7. Science 101: What Are the Earth's Heating and Cooling Mechanisms?

    Science.gov (United States)

    Robertson, Bill

    2015-01-01

    In this article, author Bill Robertson attempts to help readers understand some of the Earth's heating and cooling mechanisms and how they relate to global warming. Figures are provided to help facilitate learning.

  8. Interplay between linear, dissipative and permanently critical mechanical processes in Arctic sea ice

    Directory of Open Access Journals (Sweden)

    A. Chmel

    2010-08-01

    Full Text Available Mechanical processes in the Arctic ice pack result in fragmented sea ice cover, the regular geometry of which could be described in main features in terms of the conventional mechanics. However, the size distribution of sea ice floes does not exhibit the random (poissonian-like statistics and follows the power law typical for self-similar (fractal structures. The analysis of ice floe oscillations in the frequency range specific for cracking, shearing and stick-slip motion evidences the self-organized dynamics of sea ice fracturing, which manifests itself in scaling distributions of both the discrete energy discharges in fracture events and the recurrence times between that one. So determined space-time-energy self-similarity characterises the ice pack as the non-equilibrium, nonlinear thermodynamic system where the synergic relations are established through conventional long propagating wave/oscillations. The presented experimental data were collected at the Russian ice-research camp "North Pole 35" drifting on the Arctic ice pack in 2008.

  9. Dissipation of tidal energy and Love numbers on Enceladus

    Science.gov (United States)

    Shoji, D.; Hussmann, H.; Kurita, K.; Sohl, F.

    2011-10-01

    In this work, by using free oscillation theory, we calculated energy dissipation in Enceladus by considering the several inner structure models and rheologies. We also estimated Love and Shida numbers with and without the liquid layer, which is effective way to consider the heat mechanism and design future missions.

  10. Mechanism of Heat and Irradiation Synergism.

    Science.gov (United States)

    1979-09-11

    Gomez Assistant Professor of Food Mic obiology LEVEL( i~~~u u U.S. Army Research Of~~ce Contract Nu~ DAAcC’29—76—C-Ø,~d34 Department of Nutrition and...76-C-0034 I. PERFORMING ORGANIZATION NAM E AND ADDRESS IC. PROGRAM ELEMENT. PROJECT . TA S,~ Department of Nutrition and Food Sciend~eMassachusetts...can be sensitized to heat by gai~ua radiation treatments. The study employed spores of the public health significant anaerobic microorganism

  11. MHD convective flow through porous medium in a horizontal channel with insulated and impermeable bottom wall in the presence of viscous dissipation and Joule heating

    Directory of Open Access Journals (Sweden)

    K.V.S. Raju

    2014-06-01

    Full Text Available This paper deals with a steady MHD forced convective flow of a viscous fluid of finite depth in a saturated porous medium over a fixed horizontal channel with thermally insulated and impermeable bottom wall in the presence of viscous dissipation and joule heating. The governing equations are solved in the closed form and the exact solutions are obtained for velocity and temperature distributions when the temperatures on the fixed bottom and on the free surface are prescribed. The expressions for flow rate, mean velocity, temperature, mean temperature, mean mixed temperature in the flow region and the Nusselt number on the free surface have been obtained. The cases of large and small values of porosity coefficients have been obtained as limiting cases. Further, the cases of small depth (shallow fluid and large depth (deep fluid are also discussed. The results are presented and discussed with the help of graphs.

  12. Effects of Thermal Diffusion and Viscous Dissipation on Unsteady MHD Free Convection Flow Past a Vertical Porous Plate Under Oscillatory Suction Velocity with Heat Sink

    Directory of Open Access Journals (Sweden)

    Prabhakar Reddy B.

    2014-05-01

    Full Text Available The thermal diffusion and viscous dissipation effects on an unsteady MHD free convection heat and mass transfer flow of an incompressible, electrically conducting, fluid past an infinite vertical porous plate embedded in a porous medium of time dependent permeability under oscillatory suction velocity in the presence of a heat absorbing sink have been studied. It is considered that the influence of a uniform magnetic field acts normal to the flow and the permeability of the porous medium fluctuates with time. The dimensionless governing equations for this investigation have been solved numerically by using the efficient Galerkin finite element method. The numerical results obtained have been presented through graphs and tables for the thermal Grashof number (Gr > 0 corresponding to the cooling of the porous plate and (Gr < 0 corresponding to heating of the porous plate to observe the effects of various material parameters encountered in the problem under investigation. Numerical data for skin-friction, Nusselt and Sherwood numbers are tabulated and then discussed.

  13. Mechanical energy dissipation induced by sloshing and wave breaking in a fully coupled angular motion system. Part I: Theoretical formulation and Numerical Investigation

    CERN Document Server

    Bouscasse, Benjamin; Souto-Iglesias, Antonio; Pita, José Luis Cercós

    2013-01-01

    A single degree of freedom angular motion dynamical system involving the coupling of a moving mass that creates an external torque, a rigid tank, driven by this torque, and fluid which partially fills the tank, is analyzed in the present paper series. The analysis of such a system is relevant for understanding the energy dissipation mechanisms resulting from fluid sloshing and wave breaking. Understanding such mechanisms poses open problems in the fluid mechanics field, and they are relevant for the design of a wide range of Tuned Liquid Damper devices of substantial industrial applicability. In Part I the dynamical system is described in detail to show its nonlinear features both in terms of mechanical and fluid dynamical aspects. A semi-analytical model of the energy dissipated by the fluid, based on a hydraulic jump solution and valid for small oscillation angles, is developed. In order to extend the analysis to large oscillation angles, a Smoothed Particle Hydrodynamics solver is also developed, adapting ...

  14. 槽式太阳能系统导热油储罐的散热特性%Heat-dissipation characteristics of storage tank for heat conducting oil in trough solar energy system

    Institute of Scientific and Technical Information of China (English)

    王康; 陆建峰; 丁静; 杨建平

    2013-01-01

    The heat-dissipation characteristics of heat conducting oil storage tank in trough solar energy system was experimentally investigated.Its dissipation amount would the heat loss of storage drop with the oil temperature decreasing,and the tank outer wall temperature was remarkably dependent upon the tank structure and environment temperature.Therefore,a calculation method for heat loss was proposed based on the average temperature of tank outer wall surface.The thermal resistance of the tank includes the resistance of insulation layer inside the tank and the resistance of the radiation and natural convection outside the tank.According to the experimental result and the calculation one,the heat transfer correlations of the insulation layer inside the tank,thermal loss correlation of outer wall radiation,and natural convection heat dissipation correlation outside the tank were presented,providing basic data for investigation of thermal storage in trough solar energy system.%实验研究槽式太阳能系统中导热油储罐的散热特性.储罐散热量随导热油降温而逐渐减小,储罐外壁面温度受储罐结构和环境温度影响很大,由此提出以储罐外壁表面平均温度为基础的热损失计算方法.储罐总热阻包括罐内保温层和罐外热阻,罐外热阻主要由辐射和自然对流组成.结合实验结果与表面平均温度计算法,提出罐内保温层传热关联式、储罐外壁辐射热损失关联武、罐外大空间自然对流散热关联式,为槽武太阳能储热系统的研究提供基础数据.

  15. Plasma proteins adsorption mechanism on polyethylene-grafted poly(ethylene glycol) surface by quartz crystal microbalance with dissipation.

    Science.gov (United States)

    Jin, Jing; Jiang, Wei; Yin, Jinghua; Ji, Xiangling; Stagnaro, Paola

    2013-06-04

    Protein adsorption has a vital role in biomaterial surface science because it is directly related to the hemocompatibility of blood-contacting materials. In this study, monomethoxy poly(ethylene glycol) (mPEG) with two different molecular weights was grafted on polyethylene as a model to elucidate the adsorption mechanisms of plasma protein through quartz crystal microbalance with dissipation (QCM-D). Combined with data from platelet adhesion, whole blood clotting time, and hemolysis rate, the blood compatibility of PE-g-mPEG film was found to have significantly improved. Two adsorption schemes were developed for real-time monitoring of protein adsorption. Results showed that the preadsorbed bovine serum albumin (BSA) on the surfaces of PE-g-mPEG films could effectively inhibit subsequent adsorption of fibrinogen (Fib). Nonspecific protein adsorption of BSA was determined by surface coverage, not by the chain length of PEG. Dense PEG brush could release more trapped water molecules to resist BSA adsorption. Moreover, the preadsorbed Fib could be gradually displaced by high-concentration BSA. However, the adsorption and displacement of Fib was determined by surface hydrophilicity.

  16. Prolonged AICAR-induced AMP-kinase activation promotes energy dissipation in white adipocytes: novel mechanisms integrating HSL and ATGL.

    Science.gov (United States)

    Gaidhu, Mandeep P; Fediuc, Sergiu; Anthony, Nicole M; So, Mandy; Mirpourian, Mani; Perry, Robert L S; Ceddia, Rolando B

    2009-04-01

    This study was designed to investigate the effects of prolonged activation of AMP-activated protein kinase (AMPK) on lipid partitioning and the potential molecular mechanisms involved in these processes in white adipose tissue (WAT). Rat epididymal adipocytes were incubated with 5'-aminoimidasole-4-carboxamide-1-beta-d-ribofuranoside (AICAR;0.5 mM) for 15 h. Also, epididymal adipocytes were isolated 15 h after AICAR was injected (i.p. 0.7 g/kg body weight) in rats. Adipocytes were utilized for various metabolic assays and for determination of gene expression and protein content. Time-dependent in vivo plasma NEFA concentrations were determined. AICAR treatment significantly increased AMPK activation, inhibited lipogenesis, and increased FA oxidation. This was accompanied by upregulation of peroxisome proliferator-activated receptor (PPAR)alpha, PPARdelta, and PPARgamma-coactivator-1alpha (PGC-1alpha) mRNA levels. Lipolysis was first suppressed, but then increased, both in vitro and in vivo, with prolonged AICAR treatment. Exposure to AICAR increased adipose triglyceride lipase (ATGL) content and FA release, despite inhibition of basal and epinephrine-stimulated hormone-sensitive lipase (HSL) activity. Here, we provide evidence that prolonged AICAR-induced AMPK activation can remodel adipocyte metabolism by upregulating pathways that favor energy dissipation versus lipid storage in WAT. Additionally, we show novel time-dependent effects of AICAR-induced AMPK activation on lipolysis, which involves antagonistic modulation of HSL and ATGL.

  17. EDITORIAL: Focus on Quantum Dissipation in Unconventional Environments FOCUS ON QUANTUM DISSIPATION IN UNCONVENTIONAL ENVIRONMENTS

    Science.gov (United States)

    Grifoni, Milena; Paladino, Elisabetta

    2008-11-01

    Quantum dissipation has been the object of study within the physics and chemistry communities for many years. Despite this, the field is in constant evolution, largely due to the fact that novel systems where the understanding of dissipation and dephasing processes is of crucial importance have become experimentally accessible in recent years. Among the ongoing research themes, we mention the defeat of decoherence in solid state-based quantum bits (qubits) (e.g. superconducting qubits or quantum dot based qubits), or dissipation due to non-equilibrium Fermi reservoirs, as is the case for quantum transport through meso- and nanoscale structures. A close inspection of dissipation in such systems reveals that one has to deal with 'unconventional' environments, where common assumptions of, for example, linearity of the bath and/or equilibrium reservoir have to be abandoned. Even for linear baths at equilibrium it might occur that the bath presents some internal structure, due, for example, to the presence of localized bath modes. A large part of this focus issue is devoted to topics related to the rapidly developing fields of quantum computation and information with solid state nanodevices. In these implementations, single and two-qubit gates as well as quantum information transmission takes place in the presence of broadband noise that is typically non-Markovian and nonlinear. On both the experimental and theory side, understanding and defeating such noise sources has become a crucial step towards the implementation of efficient nanodevices. On a more fundamental level, electron and spin transport through quantum dot nanostructures may suffer from 'unconventional' dissipation mechanisms such as the simultaneous presence of spin relaxation and fermionic dissipation, or may represent themselves out of equilibrium baths for nearby mesoscopic systems. Finally, although not expected from the outset, the present collection of articles has revealed that different

  18. Large size superelastic SMA bars: heat treatment strategy, mechanical property and seismic application

    Science.gov (United States)

    Wang, Wei; Fang, Cheng; Liu, Jia

    2016-07-01

    This paper reports a comprehensive study on the mechanical performance of large size superelastic shape memory alloy (SMA) bars, with the main focus given to their potential applications for seismic-resistant connections. A series of practical issues, including heat treatment, mechanical property assessment, and connection design/evaluation, were discussed aiming to benefit both material and civil engineering communities. The study commenced with a detailed discussion on the heat treatment strategy for SMA bars and the resulting mechanical properties including strength/stiffness, self-centring ability, energy dissipation, and fractural resistance. It was observed that the mechanical performance of the bars were quite sensitive to both annealing temperature and duration, and size effect was also evident, resulting in different appropriate heat treatment procedures for the bars with varying diameters. The optimally heat-treated SMA bars were machined to the bolt form and were then used for two types of practical self-centring connections, namely, connection with all SMA bars and that with combined angles and SMA bars. Through conducting full-scale tests, both connections were shown to have stable and controllable hysteretic responses till 5% loading drift. Up to 3% drift, the self-centring performance was satisfactory for both connection types, but beyond that the presence of the angles could lead to accumulated residual rotation. Importantly, for both connections, the deformation was accommodated by the SMA bolts or angles, whereas no plastic deformation was observed at any other structural members. This confirmed the feasibility of using such connections for highly resilient structures where minimal repair work is required after earthquakes.

  19. Effects of thermophoresis particle deposition and of the thermal conductivity in a porous plate with dissipative heat and mass transfer

    Institute of Scientific and Technical Information of China (English)

    Joaquín Zueco; O. Anwar Bég; L.M. López-Ochoa

    2011-01-01

    Network simulation method (NSM) is used to solve the laminar heat and mass transfer of an electricallyconducting, heat generating/absorbing fluid past a perforated horizontal surface in the presence of viscous and Joule heating problem. The governing partial differential equations are non-dimensionalized and transformed into a system of nonlinear ordinary differential similarity equations, in a single independent variable, η. The resulting coupled, nonlinear equations are solved under appropriate transformed boundary conditions. Computations are performed for a wide range of the governing flow parameters, viz Prandtl number, thermophoretic coefficient (a function of Knudsen number), thermal conductivity parameter, wall transpiration parameter and Schmidt number. The numerical details are discussed with relevant applications. The present problem finds applications in optical fiber fabrication, aerosol filter precipitators, particle deposition on hydronautical blades, semiconductor wafer design, thermo-electronics and problems including nuclear reactor safety.

  20. Enhancing the radiative heat dissipation from high-temperature SF6 gas plasma by using selective absorbers

    Science.gov (United States)

    Tsuda, Shinichiro; Horinouchi, Katsuhiko; Yugami, Hiroo

    2017-09-01

    Radiative cooling accomplished by tailoring the properties of spectral thermal emission is an interesting method for energy harvesting and high-efficiency passive cooling of terrestrial structures. This strategy, however, has not been extended to cool enclosed heat sources, common in engineering applications, and heat sources in high-temperature environments where radiative transfer plays a dominant role. Here we show a radiative cooling scheme for a high-temperature gaseous medium, using radiative heat extraction with selective absorbers matched to the gas-selective emission properties. We used SF6 gas plasma as a model, because this gas is used in gas circuit breakers, which require effective cooling of the hot insulating gas. Our theoretical analysis confirms that a copper photonic absorber, matched to the ultraviolet-to-near-infrared-selective emission properties of the gas, effectively extracts heat from the high-temperature gas plasma and lowers the radiative equilibrium gas temperature by up to 1270 K, exceeding both blackbody-like and metallic surfaces in practical operating conditions.

  1. OSCAR - Oceanographic and Seismic Characterisation of heat dissipation and alteration by hydrothermal fluids at an Axial Ridge

    Science.gov (United States)

    Hobbs, Richard

    2017-04-01

    The interdisciplinary OSCAR project is examining the heat and mass fluxes in the solid Earth and overlying ocean at the Costa Rica mid-ocean Ridge (CRR) in the Panama Basin. The 3500 m deep Panama basin is isolated from the wider Pacific Ocean below 2000 m by the Cocos and Carnegie Ridges except for a deep water channel along the Ecuador trench. This channel supplies cold abyssal water into the Basin at a rate of 0.35 Sv (million cubic metres per second)) at a temperature of 1.75°C. Within the basin the water is heated to 2°C. The energy for this heating is dominated by geothermal effects with a smaller contribution from mainly tidal induced mixing over the ridges. The main geophysical transect for the OSCAR survey links the CRR with the ODP 504B borehole which is drilled 2111 m into 5.9 Ma oceanic crust. Changes in the solid Earth properties from the CRR to 504B are mapped using a combination of seismic 2D- and 3D-refraction and synthetic-aperture reflection, magnetics, gravity, magnetotelluric data, swath bathymetry and heat-flow. Results show that the properties of layer 2 are variable and are more likely a function of changes in magma supply at the ridge rather than the effects of ageing. Of particular note is the abrupt change at 5 Ma. Older crust has a higher velocity and lower topography when compared with younger crust. Also the heat-flow over the older crust is largely through conduction whereas in the younger crust it is largely by advection. The physical oceanography data include conductivity temperature depth (CTD) casts, micro-structure casts, helium and other isotope data, together with seabed and moored temperature, pressure and Doppler current measurements. The inflowing water along the Ecuador trench initially mix with with the warmer water as it enters the basin. Mixing and heating continues as the water circulates into the western part of the basin where it shows no vertical density gradient for over 1000 m and an overall temperature increase

  2. Revealing the complex conduction heat transfer mechanism of nanofluids.

    Science.gov (United States)

    Sergis, A; Hardalupas, Y

    2015-12-01

    Nanofluids are two-phase mixtures consisting of small percentages of nanoparticles (sub 1-10 %vol) inside a carrier fluid. The typical size of nanoparticles is less than 100 nm. These fluids have been exhibiting experimentally a significant increase of thermal performance compared to the corresponding carrier fluids, which cannot be explained using the classical thermodynamic theory. This study deciphers the thermal heat transfer mechanism for the conductive heat transfer mode via a molecular dynamics simulation code. The current findings are the first of their kind and conflict with the proposed theories for heat transfer propagation through micron-sized slurries and pure matter. The authors provide evidence of a complex new type of heat transfer mechanism, which explains the observed abnormal heat transfer augmentation. The new mechanism appears to unite a number of popular speculations for the thermal heat transfer mechanism employed by nanofluids as predicted by the majority of the researchers of the field into a single one. The constituents of the increased diffusivity of the nanoparticle can be attributed to mismatching of the local temperature profiles between parts of the surface of the solid and the fluid resulting in increased local thermophoretic effects. These effects affect the region surrounding the solid manifesting interfacial layer phenomena (Kapitza resistance). In this region, the activity of the fluid and the interactions between the fluid and the nanoparticle are elevated. Isotropic increased nanoparticle mobility is manifested as enhanced Brownian motion and diffusion effects.

  3. Biological effects of implanted nuclear energy sources for artificial heart devices. Progress report, September 1, 1975--August 31, 1976. [Heat dissipation from /sup 238/Pu power sources implanted in dogs

    Energy Technology Data Exchange (ETDEWEB)

    Kallfelz, F.A.; Wentworth, R.A.; Cady, K.B.

    1976-01-01

    A total of sixty dogs were implanted with radioisotope-powered artificial heart systems producing radiation fluxes similar to that of plutonium-238, but having no associated heat, at levels of from one to seventy times the radiation flux expected from a 30-watt plutonium-238 source. Results from studies lasting up to 6 years after implantation indicate that these animals, and by inference human beings, may be able to tolerate the radiation flux from 30-watt /sup 238/Pu power sources. Results of heat dissipation studies in calves indicate that it may be possible to induce a vascularized connective tissue capsule sufficient to dissipate 30 watts of additional heat from a surface area of approximately 500 cm sq., allowing a heat flux of 0.06 watts per cm sq.

  4. Mechanical ventilation with heat recovery in cold climates

    DEFF Research Database (Denmark)

    Kragh, Jesper; Rose, Jørgen; Svendsen, Svend

    2005-01-01

    like the Northern Europe or in arctic climate like in Greenland or Alaska these ventilation systems will typically face problems with ice formation in the heat exchanger. When the warm humid room air comes in contact with the cold surfaces inside the exchanger (cooled by the outside air), the moisture......Building ventilation is necessary to achieve a healthy and comfortable indoor environment, but as energy prices continue to rise it is necessary to reduce the energy consumption. Using mechanical ventilation with heat recovery reduces the ventilation heat loss significantly, but in cold climates...... freezes to ice. The analysis of measurements from existing ventilation systems with heat recovery used in single-family houses in Denmark and a test of a standard heat recovery unit in the laboratory have clearly shown that this problem occurs when the outdoor temperature gets below approximately –5º...

  5. Development of a hybrid chemical/mechanical heat pump

    Science.gov (United States)

    Grzyll, Lawrence R.; Silvestri, John J.; Scaringe, Robert P.

    1991-01-01

    The authors present the current development status of a hybrid chemical/mechanical heat pump for low-lift applications. The heat pump provides electronics cooling by evaporating a pure refrigerant from an absorbent/refrigerant mixture in a generator/cold plate. The current development focused on evaluation of absorbent/refrigerant pairs, corrosion testing, pump and compressor design, and electronic cold plate design. Two cycle configurations were considered. The first configuration utilized a standard mechanical compressor and pump. The second cycle configuration investigated pumps and compressors with non-moving parts. An innovative generator/cold plate design is also presented. The development to date shows that this cycle has about the same performance as standard vapor compression heat pumps with standard refrigerants but may have some performance and reliability advantages over vapor compression heat pumps.

  6. Development of a hybrid chemical/mechanical heat pump

    Science.gov (United States)

    Grzyll, Lawrence R.; Silvestri, John J.; Scaringe, Robert P.

    1991-01-01

    The authors present the current development status of a hybrid chemical/mechanical heat pump for low-lift applications. The heat pump provides electronics cooling by evaporating a pure refrigerant from an absorbent/refrigerant mixture in a generator/cold plate. The current development focused on evaluation of absorbent/refrigerant pairs, corrosion testing, pump and compressor design, and electronic cold plate design. Two cycle configurations were considered. The first configuration utilized a standard mechanical compressor and pump. The second cycle configuration investigated pumps and compressors with non-moving parts. An innovative generator/cold plate design is also presented. The development to date shows that this cycle has about the same performance as standard vapor compression heat pumps with standard refrigerants but may have some performance and reliability advantages over vapor compression heat pumps.

  7. Heat dissipation sensors of variable length for the measurement of sap flow in trees with deep sapwood.

    Science.gov (United States)

    James, Shelley A; Clearwater, Michael J; Meinzer, Frederick C; Goldstein, Guillermo

    2002-03-01

    Robust thermal dissipation sensors of variable length (3 to 30 cm) were developed to overcome limitations to the measurement of radial profiles of sap flow in large-diameter tropical trees with deep sapwood. The effective measuring length of the custom-made sensors was reduced to 1 cm at the tip of a thermally nonconducting shaft, thereby minimizing the influence of nonuniform sap flux density profiles across the sapwood. Sap flow was measured at different depths and circumferential positions in the trunks of four trees at the Parque Natural Metropolitano canopy crane site, Panama City, Republic of Panama. Sap flow was detected to a depth of 24 cm in the trunks of a 1-m-diameter Anacardium excelsum (Bertero & Balb. ex Kunth) Skeels tree and a 0.65-m-diameter Ficus insipida Willd. tree, and to depths of 7 cm in a 0.34-m-diameter Cordia alliodora (Ruiz & Pav.) Cham. trunk, and 17 cm in a 0.47-m-diameter Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin trunk. Sap flux density was maximal in the outermost 4 cm of sapwood and declined with increasing sapwood depth. Considerable variation in sap flux density profiles was observed both within and among the trees. In S. morototoni, radial variation in sap flux density was associated with radial variation in wood properties, particularly vessel lumen area and distribution. High variability in radial and circumferential sap flux density resulted in large errors when measurements of sap flow at a single depth, or a single radial profile, were used to estimate whole-plant water use. Diurnal water use ranged from 750 kg H2O day-1 for A. excelsum to 37 kg H2O day-1 for C. alliodora.

  8. Effect of viscous dissipation on hydromagnetic fluid flow and heat transfer of nanofluid over an exponentially stretching sheet with fluid-particle suspension

    Directory of Open Access Journals (Sweden)

    M.R. Krishnamurthy

    2015-12-01

    Full Text Available This paper considers the problem of steady, boundary layer flow and heat transfer of a nanofluid with fluid-particle suspension over an exponentially stretching surface in the presence of transverse magnetic field and viscous dissipation. The stretching velocity and wall temperature are assumed to vary according to specific exponential form. The governing equations in partial forms are reduced to a system of coupled non-linear ordinary differential equations using suitable similarity transformations. An effective Runge–Kutta–Fehlberg (RKF-45 is used to solve the obtained differential equations with the help of a symbolic software MAPLE. The effects of flow parameters—such as nanofluid interaction parameter, magnetic parameter, solid volume fraction of nanoparticle parameter, Prandtl number and Eckert number—on the flow field and heat-transfer characteristics were obtained and are tabulated. Useful discussions were carried out with the help of plotted graphs and tables. Under the limiting cases, comparison with the existing results was made and found to be in good agreement. The results demonstrate that the skin friction coefficient increases for both magnetic and solid volume fraction nanoparticle parameters. However, dusty fluid with copper (Cu nanoparticles has the appreciable cooling performance than other fluids.

  9. Magneto-Hydro Dynamic Flow and Heat Transfer of Nonnewtonian Power-Law Fluid Over a Non-Linear Stretching Surface with Viscous Dissipation

    Directory of Open Access Journals (Sweden)

    Kishan N.

    2014-05-01

    Full Text Available A fluid flow and heat transfer analysis of an electrically conducting non-Newtonian power law fluid flowing over a non-linear stretching surface in the presence of a transverse magnetic field taking into consideration viscous dissipation effects is investigated. The stretching velocity, the temperature and the transverse magnetic field are assumed to vary in a power-law with the distance from the origin. The flow is induced due to an infinite elastic sheet which is stretched in its own plane. The governing equations are reduced to non-linear ordinary differential equations by means of similarity transformations. By using quasi-linearization techniques first linearize the non linear momentum equation is linearized and then the coupled ordinary differential equations are solved numerically by an implicit finite difference scheme. The numerical solution is found to be dependent on several governing parameters, including the magnetic field parameter, power-law index, Eckert number, velocity exponent parameter, temperature exponent parameter, modified Prandtl number and heat source/sink parameter. A systematic study is carried out to illustrate the effects of these parameters on the fluid velocity and the temperature distribution in the boundary layer. The results for the local skin-friction coefficient and the local Nusselt number are tabulated and discussed.

  10. Based on Longson3A Processor Package Heat Dissipation Design%龙芯3A处理器封装的散热设计

    Institute of Scientific and Technical Information of China (English)

    张瑾; 王剑

    2009-01-01

    With the microprocessor performance becomes more and more high, the processor package become a critical issue in processor applications. A high-quality package can not only protect processor IC from electrostatic interference, moisture environment, but also transform the heat to outside air generated by processor. This paper proposes a package solution to Loongson3A processor. It analyzes the requirement of Loongson3A and chooses FC-BGA1121 package for Loongson3A to solve the heat dissipation issue.%随着处理器的性能越来越高,处理器的功耗和温度也随之攀升,这就对处理器的封装提出了更高的要求.本文针对龙芯3A高性能处理器对封装的散热问题,根据成熟的工艺水平选择了FC-BGA封装形式,并对散热和外加散热措施的方法进行了分析和研究.实验模拟结果表明,FC-BGA的封装形式完全能满足龙芯3A处理器对封装散热的要求.

  11. Radiation, Heat Generation and Viscous Dissipation Effects on MHD Boundary Layer Flow for the Blasius and Sakiadis Flows with a Convective Surface Boundary Condition

    Directory of Open Access Journals (Sweden)

    K. GANGADHAR

    2015-01-01

    Full Text Available This study is devoted to investigate the radiation, heat generation viscous dissipation and magnetohydrodynamic effects on the laminar boundary layer about a flat-plate in a uniform stream of fluid (Blasius flow, and about a moving plate in a quiescent ambient fluid (Sakiadis flow both under a convective surface boundary condition. Using a similarity variable, the governing nonlinear partial differential equations have been transformed into a set of coupled nonlinear ordinary differential equations, which are solved numerically by using shooting technique alongside with the forth order of Runge-Kutta method and the variations of dimensionless surface temperature and fluid-solid interface characteristics for different values of Magnetic field parameter M, Grashof number Gr, Prandtl number Pr, radiation parameter NR, Heat generation parameter Q, Convective parameter  and the Eckert number Ec, which characterizes our convection processes are graphed and tabulated. Quite different and interesting behaviors were encountered for Blasius flow compared with a Sakiadis flow. A comparison with previously published results on special cases of the problem shows excellent agreement.

  12. Effects of Soret and Non-Uniform Heat Source on MHD Non-Darcian Convective Flow over a Stretching Sheet in a Dissipative Micropolar Fluid with Radiation

    Directory of Open Access Journals (Sweden)

    Fazle Mabood

    2016-01-01

    Full Text Available This study presents a numerical analysis on the effects of Soret, variable thermal conductivity, viscous-Ohmic dissipation, non-uniform heat sources, on steady two-dimensional hydromagnetic mixed convective heat and mass transfer flow of a micropolar fluid over a stretching sheet embedded in a non-Darcian porous medium with thermal radiation and chemical reaction. The governing differential equations are transformed into a set of non-linear coupled ordinary differential equations which are then solved numerically by using the fifth-order Runge-Kutta-Fehlberg method with shooting technique. Numerical solutions are obtained for the velocity, angular velocity, temperature and concentration profiles for various parametric values, and then results are presented graphically as well as skin-friction coefficient, and also local Nusselt number and local Sherwood number for different physical parameters are shown graphically and in tabular form. A critical analysis with earlier published papers was done, and the results were found to be in accordance with each other.

  13. Predicted optimum ambient temperatures for broiler chickens to dissipate metabolic heat do not affect performance or improve breast muscle quality.

    Science.gov (United States)

    Zahoor, I; Mitchell, M A; Hall, S; Beard, P M; Gous, R M; De Koning, D J; Hocking, P M

    2016-01-01

    An experiment was conducted to test the hypothesis that muscle damage in fast-growing broiler chickens is associated with an ambient temperature that does not permit the birds to lose metabolic heat resulting in physiological heat stress and a reduction in meat quality. The experiment was performed in 4 climate chambers and was repeated in 2 trials using a total of 200 male broiler chickens. Two treatments compared the recommended temperature profile and a cool regimen. The cool regimen was defined by a theoretical model that determined the environmental temperature that would enable heat generated by the bird to be lost to the environment. There were no differences in growth rate or feed intake between the two treatments. Breast muscles from birds on the recommended temperature regimen were lighter, less red and more yellow than those from the cool temperature regimen. There were no differences in moisture loss or shear strength but stiffness was greater in breast muscle from birds housed in the cool compared to the recommended regimen. Histopathological changes in the breast muscle were similar in both treatments and were characterised by mild to severe myofibre degeneration and necrosis with regeneration, fibrosis and adipocyte infiltration. There was no difference in plasma creatine kinase activity, a measure of muscle cell damage, between the two treatments consistent with the absence of differences in muscle pathology. It was concluded that breast muscle damage in fast-growing broiler chickens was not the result of an inability to lose metabolic heat at recommended ambient temperatures. The results suggest that muscle cell damage and breast meat quality concerns in modern broiler chickens are related to genetic selection for muscle yields and that genetic selection to address breast muscle integrity in a balanced breeding programme is imperative.

  14. ENERGY DISSIPATION PROCESSES IN SOLAR WIND TURBULENCE

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y.; Wei, F. S.; Feng, X. S.; Sun, T. R.; Zuo, P. B. [SIGMA Weather Group, State Key Laboratory for Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing 100190 (China); Xu, X. J. [Space Science Institute, Macau University of Science and Technology, Macao (China); Zhang, J., E-mail: yw@spaceweather.ac.cn [School of Physics, Astronomy and Computational Sciences, George Mason University, 4400 University Drive, MSN 3F3, Fairfax, Virginia 22030 (United States)

    2015-12-15

    Turbulence is a chaotic flow regime filled by irregular flows. The dissipation of turbulence is a fundamental problem in the realm of physics. Theoretically, dissipation ultimately cannot be achieved without collisions, and so how turbulent kinetic energy is dissipated in the nearly collisionless solar wind is a challenging problem. Wave particle interactions and magnetic reconnection (MR) are two possible dissipation mechanisms, but which mechanism dominates is still a controversial topic. Here we analyze the dissipation region scaling around a solar wind MR region. We find that the MR region shows unique multifractal scaling in the dissipation range, while the ambient solar wind turbulence reveals a monofractal dissipation process for most of the time. These results provide the first observational evidences for intermittent multifractal dissipation region scaling around a MR site, and they also have significant implications for the fundamental energy dissipation process.

  15. MHD dissipative flow and heat transfer of Casson fluids due to metachronal wave propulsion of beating cilia with thermal and velocity slip effects under an oblique magnetic field

    Science.gov (United States)

    Akbar, Noreen Sher; Tripathi, D.; Bég, O. Anwar; Khan, Z. H.

    2016-11-01

    A theoretical investigation of magnetohydrodynamic (MHD) flow and heat transfer of electrically-conducting viscoplastic fluids through a channel is conducted. The robust Casson model is implemented to simulate viscoplastic behavior of fluids. The external magnetic field is oblique to the fluid flow direction. Viscous dissipation effects are included. The flow is controlled by the metachronal wave propagation generated by cilia beating on the inner walls of the channel. The mathematical formulation is based on deformation in longitudinal and transverse velocity components induced by the ciliary beating phenomenon with cilia assumed to follow elliptic trajectories. The model also features velocity and thermal slip boundary conditions. Closed-form solutions to the non-dimensional boundary value problem are obtained under physiological limitations of low Reynolds number and large wavelength. The influence of key hydrodynamic and thermo-physical parameters i.e. Hartmann (magnetic) number, Casson (viscoplastic) fluid parameter, thermal slip parameter and velocity slip parameter on flow characteristics are investigated. A comparative study is also made with Newtonian fluids (corresponding to massive values of plastic viscosity). Stream lines are plotted to visualize trapping phenomenon. The computations reveal that velocity increases with increasing the magnitude of Hartmann number near the channel walls whereas in the core flow region (center of the channel) significant deceleration is observed. Temperature is elevated with greater Casson parameter, Hartmann number, velocity slip, eccentricity parameter, thermal slip and also Brinkmann (dissipation) number. Furthermore greater Casson parameter is found to elevate the quantity and size of the trapped bolus. In the pumping region, the pressure rise is reduced with greater Hartmann number, velocity slip, and wave number whereas it is enhanced with greater cilia length.

  16. Mechanical analysis of a heat-shock induced developmental defect

    Science.gov (United States)

    Crews, Sarah M.; McCleery, W. Tyler; Hutson, M. Shane

    2014-03-01

    Embryonic development in Drosophila is a complex process involving coordinated movements of mechanically interacting tissues. Perturbing this system with a transient heat shock can result in a number of developmental defects. In particular, a heat shock applied during the earliest morphogenetic movements of gastrulation can lead to apparent recovery, but then subsequent morphogenetic failure 5-6 hours later during germ band retraction. The process of germ band retraction requires an intact amnioserosa - a single layered extra-embryonic epithelial tissue - and heat shock at gastrulation can induce the later opening of holes in the amnioserosa. These holes are highly correlated with failures of germ band retraction. These holes could be caused by a combination of mechanical weakness in the amnioserosa or local increases in mechanical stress. Here, we assess the role of mechanical stress using confocal imaging to compare cell and tissue morphology in the amnioserosa of normal and heat-shocked embryos and laser hole drilling to map the stress field around the times and locations at which heat-shock induced holes open.

  17. Quantum Dissipative Systems

    CERN Document Server

    Weiss, Ulrich

    2008-01-01

    Major advances in the quantum theory of macroscopic systems, in combination with stunning experimental achievements, have brightened the field and brought it to the attention of the general community in natural sciences. Today, working knowledge of dissipative quantum mechanics is an essential tool for many physicists. This book - originally published in 1990 and republished in 1999 as an enlarged second edition - delves much deeper than ever before into the fundamental concepts, methods, and applications of quantum dissipative systems, including the most recent developments. In this third edi

  18. 热消散式流量传感器的建模仿真与研究%Simulation and research of heat-dissipation type flow sensor

    Institute of Scientific and Technical Information of China (English)

    田丰; 高振斌; 孙以材

    2011-01-01

    根据能量守恒定律和流量测量原理,使用流体计算软件建立了热消散式流量传感器的数学模型并进行了数值分析.模拟了管内传感器与流体的湍流换热过程,计算出在不同流速下的传感器探头温度分布情况,分析了流体温度、传感器封装材料、加热功率以及安装方式对传感器测量精度和适用量程的影响.计算结果对热式流量传感器的设计和优化提供了重要的参考依据.%According to the conservation law of energy and the principle of flow rate measurement, the numerical simulation of heat-dissipation type flow sensor was established by Fluent software in this paper. The process of turbulent heat transfer between sensor and fluid in the flow pipe was simulated, and the temperature distribution of the sensor was investigated under conditions of various flow velocities. The influences of the fluid temperature, package material of sensor, heating power and installation way on measurement accuracy and measurement range were analyzed. The present results could provide reference for design and optimization of thermal type flow sensor.

  19. Mechanisms of heat transport across a nano-scale gap in heat assisted magnetic recording

    Science.gov (United States)

    Budaev, Bair V.; Bogy, David B.

    2012-06-01

    This paper compares different mechanisms of heat transport across nano-scale gaps and discusses the role of electromagnetic phenomena in heat transport in general nano-scale layered structures. The results of the analysis suggest that heat transfer across sub-5 nm gaps like that appearing in prototypes of heat assisted magnetic recording (HAMR) systems is dominated by direct intermolecular interactions between the separated bodies and is little affected by electromagnetic radiation. The analysis further suggests that local heating for HAMR with sub-5 nm spacing can be more efficiently achieved by a Joule heater that is simpler to fabricate than laser-based optical systems and is less destructive for the nano-scale transducers than laser radiation, which may lead to their structural damage and short duration life of nanoscale transducers.

  20. A Viscous Heating Mechanism for the Hot Plasma in the Galactic Center Region

    CERN Document Server

    Belmont, R

    2006-01-01

    In addition to lines originating in a soft phase at ~0.8 keV and to cold molecular clouds, the X-ray spectra from the Galactic center region also exhibit properties similar to those of a diffuse, thin, very hot plasma at 8 keV on a scale of hundreds of parsecs. This phase is surprising for more than one reason. First, such a hot plasma should not be bound to the Galactic plane and the power needed to sustain the escaping matter would be higher then any known source. Second, there is no known mechanism able to heat the plasma to more than a few keV. Recently we have suggested that, hydrogen having escaped, the hot plasma could be a helium plasma, heavy enough to be gravitationally confined. In this case, the required power is much more reasonable. We present here a possible heating mechanism which taps the gravitational energy of the molecular clouds. We note that the 8 keV plasma is highly viscous and we show how viscous friction of molecular clouds flowing within the hot phase can dissipate energy in the gas...

  1. The effects of thermal radiation and viscous dissipation on MHD heat and mass diffusion flow past an oscillating vertical plate embedded in a porous medium with variable surface conditions

    Directory of Open Access Journals (Sweden)

    Kishore P.M.

    2012-01-01

    Full Text Available This investigation is undertaken to study the hydromagnetic flow of a viscous incompressible fluid past an oscillating vertical plate embedded in a porous medium with radiation, viscous dissipation and variable heat and mass diffusion. Governing equations are solved by unconditionally stable explicit finite difference method of DuFort - Frankel’s type for concentration, temperature, vertical velocity field and skin - friction and they are presented graphically for different values of physical parameters involved. It is observed that plate oscillation, variable mass diffusion, radiation, viscous dissipation and porous medium affect the flow pattern significantly.

  2. Cafeteria diet induce changes in blood flow that are more related with heat dissipation than energy accretion.

    Science.gov (United States)

    Sabater, David; Agnelli, Silvia; Arriarán, Sofía; Romero, María Del Mar; Fernández-López, José Antonio; Alemany, Marià; Remesar, Xavier

    2016-01-01

    Background. A "cafeteria" diet is a self-selected high-fat diet, providing an excess of energy, which can induce obesity. Excess of lipids in the diet hampers glucose utilization eliciting insulin resistance, which, further limits amino acid oxidation for energy. Methods. Male Wistar rats were exposed for a month to "cafeteria" diet. Rats were cannulated and fluorescent microspheres were used to determine blood flow. Results. Exposure to the cafeteria diet did not change cardiac output, but there was a marked shift in organ irrigation. Skin blood flow decreased to compensate increases in lungs and heart. Blood flow through adipose tissue tended to increase in relation to controls, but was considerably increased in brown adipose tissue (on a weight basis). Discussion. The results suggest that the cafeteria diet-induced changes were related to heat transfer and disposal.

  3. Cafeteria diet induce changes in blood flow that are more related with heat dissipation than energy accretion

    Directory of Open Access Journals (Sweden)

    David Sabater

    2016-08-01

    Full Text Available Background. A “cafeteria” diet is a self-selected high-fat diet, providing an excess of energy, which can induce obesity. Excess of lipids in the diet hampers glucose utilization eliciting insulin resistance, which, further limits amino acid oxidation for energy. Methods. Male Wistar rats were exposed for a month to “cafeteria” diet. Rats were cannulated and fluorescent microspheres were used to determine blood flow. Results. Exposure to the cafeteria diet did not change cardiac output, but there was a marked shift in organ irrigation. Skin blood flow decreased to compensate increases in lungs and heart. Blood flow through adipose tissue tended to increase in relation to controls, but was considerably increased in brown adipose tissue (on a weight basis. Discussion. The results suggest that the cafeteria diet-induced changes were related to heat transfer and disposal.

  4. Mechanical ventilation with heat recovery in arctic climate

    DEFF Research Database (Denmark)

    Kragh, Jesper; Svendsen, Svend

    2005-01-01

    Mechanical ventilations systems with highly effective heat recovery units in arctic climate have problems with condensing water from the extracted humid indoor air. If the condensing water freezes to ice in the heat recovery unit, the airflow rate will quickly diminish due to the increasing...... pressure drop. Preheating the inlet air (outdoor air) to a temperature just above 0ºC is typically used to solve the problem. To minimize the energy cost, a more efficient solution to the problem is therefore desirable. In this project a new design of a heat recovery unit has been developed to the low......-energy house in Sisimiut, which is capable of continuously defrosting itself. The disadvantage of the unit is that it is quite big compared with other units. In this paper the new heat recovery unit is described and laboratory measurements are presented showing that the unit is capable of continuously...

  5. Pharmaco-nutritional approaches to combat heat stress-induced intestinal barrier dysfunction

    NARCIS (Netherlands)

    Varasteh, S.

    2017-01-01

    Climate changes have increased the prevalence and intensity of environmental and exertional heat stress (HS) conditions. Under HS conditions the thermoregulatory mechanism of the body shifts the splanchnic blood flow towards the peripheral circulation in order to facilitate heat dissipation.

  6. Heat transfer mechanisms in bubbly Rayleigh-Bénard convection

    NARCIS (Netherlands)

    Oresta, Paolo; Verzicco, Roberto; Lohse, Detlef; Presperetti, Andrea

    2009-01-01

    The heat transfer mechanism in Rayleigh-Bénard convection in a liquid with a mean temperature close to its boiling point is studied through numerical simulations with pointlike vapor bubbles, which are allowed to grow or shrink through evaporation and condensation and which act back on the flow both

  7. boundary dissipation

    Directory of Open Access Journals (Sweden)

    Mehmet Camurdan

    1998-01-01

    are coupled by appropriate trace operators. This overall model differs from those previously studied in the literature in that the elastic chamber floor is here more realistically modeled by a hyperbolic Kirchoff equation, rather than by a parabolic Euler-Bernoulli equation with Kelvin-Voight structural damping, as in past literature. Thus, the hyperbolic/parabolic coupled system of past literature is replaced here by a hyperbolic/hyperbolic coupled model. The main result of this paper is a uniform stabilization of the coupled PDE system by a (physically appealing boundary dissipation.

  8. Dissipative slip flow along heat and mass transfer over a vertically rotating cone by way of chemical reaction with Dufour and Soret effects

    Science.gov (United States)

    Bilal, S.; Rehman, Khalil Ur; Jamil, Hamayun; Malik, M. Y.; Salahuddin, T.

    2016-12-01

    An attempt has been constructed in the communication to envision heat and mass transfer characteristics of viscous fluid over a vertically rotating cone. Thermal transport in the fluid flow is anticipated in the presence of viscous dissipation. Whereas, concentration of fluid particles is contemplated by incorporating the diffusion-thermo (Dufour) and thermo-diffusion (Soret) effects. The governing equations for concerning problem is first modelled and then nondimensionalized by implementing compatible transformations. The utilization of these transformations yields ordinary differential system which is computed analytically through homotopic procedure. Impact of velocity, temperature and concentration profiles are presented through fascinating graphics. The influence of various pertinent parameters on skin friction coefficient, Nusselt number and Sherwood number are interpreted through graphical and tabular display. After comprehensive examination of analysis, it is concluded that temperature of fluid deescalates for growing values of Soret parameter whereas it shows inciting attitude towards Dufour parameter and similar agreement is observed for the behavior of concentration profile with respect to these parameters. Furthermore, the affirmation of present work is established by developing comparison with previously published literature. An excellent agreement is found which shows the credibility and assurance of present analysis.

  9. Dissipative slip flow along heat and mass transfer over a vertically rotating cone by way of chemical reaction with Dufour and Soret effects

    Directory of Open Access Journals (Sweden)

    S. Bilal

    2016-12-01

    Full Text Available An attempt has been constructed in the communication to envision heat and mass transfer characteristics of viscous fluid over a vertically rotating cone. Thermal transport in the fluid flow is anticipated in the presence of viscous dissipation. Whereas, concentration of fluid particles is contemplated by incorporating the diffusion-thermo (Dufour and thermo-diffusion (Soret effects. The governing equations for concerning problem is first modelled and then nondimensionalized by implementing compatible transformations. The utilization of these transformations yields ordinary differential system which is computed analytically through homotopic procedure. Impact of velocity, temperature and concentration profiles are presented through fascinating graphics. The influence of various pertinent parameters on skin friction coefficient, Nusselt number and Sherwood number are interpreted through graphical and tabular display. After comprehensive examination of analysis, it is concluded that temperature of fluid deescalates for growing values of Soret parameter whereas it shows inciting attitude towards Dufour parameter and similar agreement is observed for the behavior of concentration profile with respect to these parameters. Furthermore, the affirmation of present work is established by developing comparison with previously published literature. An excellent agreement is found which shows the credibility and assurance of present analysis.

  10. Nonlinear Landau damping and Alfven wave dissipation

    Science.gov (United States)

    Vinas, Adolfo F.; Miller, James A.

    1995-01-01

    Nonlinear Landau damping has been often suggested to be the cause of the dissipation of Alfven waves in the solar wind as well as the mechanism for ion heating and selective preacceleration in solar flares. We discuss the viability of these processes in light of our theoretical and numerical results. We present one-dimensional hybrid plasma simulations of the nonlinear Landau damping of parallel Alfven waves. In this scenario, two Alfven waves nonresonantly combine to create second-order magnetic field pressure gradients, which then drive density fluctuations, which in turn drive a second-order longitudinal electric field. Under certain conditions, this electric field strongly interacts with the ambient ions via the Landau resonance which leads to a rapid dissipation of the Alfven wave energy. While there is a net flux of energy from the waves to the ions, one of the Alfven waves will grow if both have the same polarization. We compare damping and growth rates from plasma simulations with those predicted by Lee and Volk (1973), and also discuss the evolution of the ambient ion distribution. We then consider this nonlinear interaction in the presence of a spectrum of Alfven waves, and discuss the spectrum's influence on the growth or damping of a single wave. We also discuss the implications for wave dissipation and ion heating in the solar wind.

  11. Unsteady three-dimensional MHD flow of a nano Eyring-Powell fluid past a convectively heated stretching sheet in the presence of thermal radiation, viscous dissipation and Joule heating

    Directory of Open Access Journals (Sweden)

    B. Mahanthesh

    2017-06-01

    Full Text Available The purpose of this study is to investigate the unsteady magnetohydrodynamic three-dimensional flow induced by a stretching surface. An incompressible electrically conducting Eyring-Powell fluid fills the convectively heated stretching surface in the presence of nanoparticles. The effects of thermal radiation, viscous dissipation and Joule heating are accounted in heat transfer equation. The model used for the nanofluid includes the effects of Brownian motion and thermophoresis. The highly nonlinear partial differential equations are reduced to ordinary differential equations with the help of similarity method. The reduced complicated two-point boundary value problem is treated numerically using Runge–Kutta–Fehlberg 45 method with shooting technique. A comparison of the obtained numerical results with existing results in a limiting sense is also presented. At the end, the effects of influential parameters on velocity, temperature and nanoparticles concentration fields are also discussed comprehensively. Further, the physical quantities of engineering interest such as the Nusselt number and Sherwood number are also calculated.

  12. Energy dissipation processes in solar wind turbulence

    CERN Document Server

    Wang, Y; Feng, X S; Xu, X J; Zhang, J; Sun, T R; Zuo, P B

    2015-01-01

    Turbulence is a chaotic flow regime filled by irregular flows. The dissipation of turbulence is a fundamental problem in the realm of physics. Theoretically, dissipation cannot be ultimately achieved without collisions, and so how turbulent kinetic energy is dissipated in the nearly collisionless solar wind is a challenging problem. Wave particle interactions and magnetic reconnection are two possible dissipation mechanisms, but which mechanism dominates is still a controversial topic. Here we analyze the dissipation region scaling around a solar wind magnetic reconnection region. We find that the magnetic reconnection region shows a unique multifractal scaling in the dissipation range, while the ambient solar wind turbulence reveals a monofractal dissipation process for most of the time. These results provide the first observational evidences for the intermittent multifractal dissipation region scaling around a magnetic reconnection site, and they also have significant implications for the fundamental energy...

  13. Optimizing the microstructure of dissipative materials

    DEFF Research Database (Denmark)

    Andreassen, Erik; Lazarov, Boyan Stefanov; Jensen, Jakob Søndergaard

    The aim of this work is to present a method to design material microstructures with high dissipation using topology optimization. In order to compute the macroscopic energy dissipation in periodic structures, we focus both on capturing the physical dissipation mechanism and to find the effective...

  14. Shoreline dissipation of infragravity waves

    Science.gov (United States)

    de Bakker, A. T. M.; Tissier, M. F. S.; Ruessink, B. G.

    2014-01-01

    Infragravity waves (0.005-0.05 Hz) have recently been observed to dissipate a large part of their energy in the short-wave (0.05-1 Hz) surf zone, however, the underlying mechanism is not well understood. Here, we analyse two new field data sets of near-bed pressure and velocity at up to 13 cross-shore locations in ≲2.5 m depth on a ≈1:80 and a ≈1:30 sloping beach to quantify infragravity-wave dissipation close to the shoreline and to identify the underlying dissipation mechanism. A frequency-domain Complex Eigenfunction analysis demonstrated that infragravity-wave dissipation was frequency dependent. Infragravity waves with a frequency larger than ≈0.0167-0.0245 Hz were predominantly onshore progressive, indicative of strong dissipation of the incoming infragravity waves. Instead, waves with a lower frequency showed the classic picture of cross-shore standing waves with minimal dissipation. Bulk infragravity reflection coefficients at the shallowest position (water depth ≈0.7 m) were well below 1 (≈0.20), implying that considerable dissipation took place close to the shoreline. We hypothesise that for our data sets infragravity-wave breaking is the dominant dissipation mechanism close to the shoreline, because the reflection coefficient depends on a normalised bed slope, with the higher infragravity frequencies in the mild-sloping regime where breaking is known to dominate dissipation. Additional numerical modelling indicates that, close to the shoreline of a 1:80 beach, bottom friction contributes to infragravity-wave dissipation to a limited extent, but that non-linear transfer of infragravity energy back to sea-swell frequencies is unimportant.

  15. Mechanical Properties of Heat Exchanger Tube Materials at Elevated Temperatures

    Science.gov (United States)

    Kahl, Sören; Zajac, Jozefa; Ekström, Hans-Erik

    Since automotive heat exchangers are operated at elevated temperatures and under varying pressures, both static and dynamic mechanical properties should be known at the relevant temperatures. We have collected elevated-temperature tensile test data, elevated-temperature stress amplitude-fatigue life data, and creep-rupture data in a systematic fashion over the past years. For thin, soft, and braze-simulated heat exchanger tube materials tested inside closed furnaces, none of the well-established methods for crack detection and observation can be applied. In our contribution, we present a simple statistical method to estimate the time required for crack initiation.

  16. Flow mechanism and heat transfer enhancement in longitudinal-flow tube bundle of shell-and-tube heat exchanger

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The flow disturbance and heat transfer mechanism in the tube bundle of rod baffle shell-and-tube heat exchanger were analyzed, on the basis of which and combined with the concept of heat transfer enhancement in the core flow, a new type of shell-and-tube heat exchanger with combination of rod and van type spoiler was designed. Corresponding mathematical and physical models on the shell side about the new type heat exchanger were established, and fluid flow and heat transfer characteristics were numerically analyzed. The simulation results showed that heat transfer coefficient of the new type of heat exchanger approximated to that of rod baffle heat exchanger, but flow pressure drop was much less than the latter, indicating that comprehensive performance of the former is superior to that of the latter. Compared with rod baffle heat exchanger, heat transfer coefficient of the heat exchanger under investigation is higher under same pressure drop, especially under the high Reynolds numbers.

  17. Power dissipation and temperature distribution in piezoelectric ceramic slabs.

    Science.gov (United States)

    Thomas, D; Ebenezer, D D; Srinivasan, Sivakumar M

    2010-10-01

    A method is presented to determine power dissipation in one-dimensional piezoelectric slabs with internal losses and the resulting temperature distribution. The length of the slab is much greater than the lateral dimensions. Losses are represented using complex piezoelectric coefficients. It is shown that the spatially non-uniform power dissipation density in the slab can be determined by considering either hysteresis loops or the Poynting vector. The total power dissipated in the slab is obtained by integrating the power dissipation density over the slab and is shown to be equal to the power input to the slab for special cases of mechanically and electrically excited slabs. The one-dimensional heat equation that includes the effect of conduction and convection, and the boundary conditions, are then used to determine the temperature distribution. When the analytical expression for the power dissipation density is simple, direct integration is used. It is shown that a modified Fourier series approach yields the same results. For other cases, the temperature distribution is determined using only the latter approach. Numerical results are presented to illustrate the effects of internal losses, heat conduction and convection coefficients, and boundary conditions on the temperature distribution.

  18. The Mechanisms of Electron Heating and Acceleration during Magnetic Reconnection

    CERN Document Server

    Dahlin, J T; Swisdak, M

    2014-01-01

    The heating of electrons in collisionless magnetic reconnection is explored in particle-in-cell (PIC) simulations with non-zero guide fields so that electrons remain magnetized. In this regime electric fields parallel to B accelerate particles directly while those perpendicular to B do so through gradient-B and curvature drifts. The curvature drift drives parallel heating through Fermi reflection while the gradient B drift changes the perpendicular energy through betatron acceleration. We present simulations in which we evaluate each of these mechanisms in space and time in order to quantify their role in electron heating. For a case with a small guide field (20 % of the magnitude of the reconnecting component) the curvature drift is the dominant source of electron heating. However, for a larger guide field (equal to the magnitude of the reconnecting component) electron acceleration by the curvature drift is comparable to that of the parallel electric field. In both cases the heating by the gradient B drift i...

  19. Performance of a hybrid chemical/mechanical heat pump

    Science.gov (United States)

    Silvestri, John J.; Scaringe, Robert P.; Grzyll, Lawrence R.

    1990-01-01

    The authors present the design and preliminary results of the performance of a hybrid chemical/mechanical, low-lift (20 C) heat pump. Studies have indicated that this heat pump has several advantages over the traditional single fluid vapor compression (reverse Rankine) heat pump. Included in these benefits are: 1) increased COPc due to the approximation of the cycle to the Lorenz cycle and due to the availability of the heat of solution, along with the heat of vaporization, to provide cooling; and 2) ease of variation in system cooling capacity by changing the fluid composition. The system performance is predicted for a variety of refrigerant-absorbent pairs. Cooling capacity is determined for systems operating with ammonia as the refrigerant and lithium nitrate and sodium thiocyanate as the absorbents and also with water as the refrigerant and magnesium chloride, potassium hydroxide, lithium bromide, sodium hydroxide, and sulfuric acid as the absorbents. Early indications have shown that the systems operating with water as the refrigerant operate at 2-4 times the capacity of the ammonia-refrigerant-based systems. Using existing working fluids in the proposed innovative design, a coefficient-of-performance improvement of 21 percent is possible when compared to the best vapor compression systems analyzed.

  20. Performance of a hybrid chemical/mechanical heat pump

    Science.gov (United States)

    Silvestri, John J.; Scaringe, Robert P.; Grzyll, Lawrence R.

    1990-01-01

    The authors present the design and preliminary results of the performance of a hybrid chemical/mechanical, low-lift (20 C) heat pump. Studies have indicated that this heat pump has several advantages over the traditional single fluid vapor compression (reverse Rankine) heat pump. Included in these benefits are: 1) increased COPc due to the approximation of the cycle to the Lorenz cycle and due to the availability of the heat of solution, along with the heat of vaporization, to provide cooling; and 2) ease of variation in system cooling capacity by changing the fluid composition. The system performance is predicted for a variety of refrigerant-absorbent pairs. Cooling capacity is determined for systems operating with ammonia as the refrigerant and lithium nitrate and sodium thiocyanate as the absorbents and also with water as the refrigerant and magnesium chloride, potassium hydroxide, lithium bromide, sodium hydroxide, and sulfuric acid as the absorbents. Early indications have shown that the systems operating with water as the refrigerant operate at 2-4 times the capacity of the ammonia-refrigerant-based systems. Using existing working fluids in the proposed innovative design, a coefficient-of-performance improvement of 21 percent is possible when compared to the best vapor compression systems analyzed.

  1. 沼气池散热量与内部温度场的数值模拟研究%Numerical Simulation of Heat Dissipating Capacity and Internal Temperature Field for Biogas Digester

    Institute of Scientific and Technical Information of China (English)

    张富强; 孟祥睿; 魏新利

    2012-01-01

    The heat dissipating capacity of insulation layer with different materials and different thicknesses and the internal temperature field of biogas digester were numerically simulated by using the Fluent software based on the climatic conditions in Zhengzhou. The results showed that when the others conditions were the same, the heat dissipating capacity of concrete biogas digester was about 4.66 times of that of heat dissipation of foaming cement biogas digester, so the material with small coefficient of thermal conductivity can be chosen as the insulation layer; the thickness of the insulation layer had few influence on the heat dissipating capacity of biogas digester, so the thickness of insulation layer should be chosen according to actual conditions; the temperature field in the biogas digester distributed unevenly and can not reach the set temperature for biogas fermentation, so the digester needed to add the mixer to achieve the purpose of uniform mixing.%以郑州地区的气象条件为参数,使用Fluent软件对沼气池不同材料、不同厚度的保温层及沼气池内部温度场的数值进行了模拟研究.结果表明:其他条件一定时,混凝土沼气池的散热量约为发泡水泥沼气池的4.66倍,可选择导热系数小的材料作为保温层;保温层的厚度对沼气池的散热量影响不大,根据实际条件选择厚度;池内温度场的分布不均匀,没有达到沼气发酵设定的温度,因此需要增加搅拌器以达到混合均匀的目的.

  2. Heat conduction in nanoscale materials: a statistical-mechanics derivation of the local heat flux.

    Science.gov (United States)

    Li, Xiantao

    2014-09-01

    We derive a coarse-grained model for heat conduction in nanoscale mechanical systems. Starting with an all-atom description, this approach yields a reduced model, in the form of conservation laws of momentum and energy. The model closure is accomplished by introducing a quasilocal thermodynamic equilibrium, followed by a linear response approximation. Of particular interest is the constitutive relation for the heat flux, which is expressed nonlocally in terms of the spatial and temporal variation of the temperature. Nanowires made of copper and silicon are presented as examples.

  3. Comparison of tissue heat balance- and thermal dissipation-derived sap flow measurements in ring-porous oaks and a pine.

    Science.gov (United States)

    Renninger, Heidi J; Schäfer, Karina V R

    2012-01-01

    Sap flow measurements have become integral in many physiological and ecological investigations. A number of methods are used to estimate sap flow rates in trees, but probably the most popular is the thermal dissipation (TD) method because of its affordability, relatively low power consumption, and ease of use. However, there have been questions about the use of this method in ring-porous species and whether individual species and site calibrations are needed. We made concurrent measurements of sap flow rates using TD sensors and the tissue heat balance (THB) method in two oak species (Quercus prinus Willd. and Quercus velutina Lam.) and one pine (Pinus echinata Mill.). We also made concurrent measurements of sap flow rates using both 1 and 2-cm long TD sensors in both oak species. We found that both the TD and THB systems tended to match well in the pine individual, but sap flow rates were underestimated by 2-cm long TD sensors in five individuals of the two ring-porous oak species. Underestimations of 20-35% occurred in Q. prinus even when a "Clearwater" correction was applied to account for the shallowness of the sapwood depth relative to the sensor length and flow rates were underestimated by up to 50% in Q. velutina. Two centimeter long TD sensors also underestimated flow rates compared with 1-cm long sensors in Q. prinus, but only at large flow rates. When 2-cm long sensor data in Q. prinus were scaled using the regression with 1-cm long data, daily flow rates matched well with the rates measured by the THB system. Daily plot level transpiration estimated using TD sap flow rates and scaled 1 cm sensor data averaged about 15% lower than those estimated by the THB method. Therefore, these results suggest that 1-cm long sensors are appropriate in species with shallow sapwood, however more corrections may be necessary in ring-porous species.

  4. Non-Markovian expansion in quantum dissipative systems

    CERN Document Server

    Fraga, E S; Palhares, L F

    2009-01-01

    We consider the non-Markovian Langevin evolution of a dissipative dynamical system in quantum mechanics in the path integral formalism. After discussing the role of the frequency cutoff for the interaction of the system with the heat bath and the kernel and noise correlator that follow from the most common choices, we derive an analytic expansion for the exact non-Markovian dissipation kernel and the corresponding colored noise in the general case that is consistent with the fluctuation-dissipation theorem and incorporates systematically non-local corrections. We illustrate the modifications to results obtained using the traditional (Markovian) Langevin approach in the case of the exponential kernel and analyze the case of the non-Markovian Brownian motion.

  5. Measurements of a low-temperature mechanical dissipation peak in a single layer of Ta{sub 2}O{sub 5} doped with TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Martin, I; Hough, J; MacLaren, I; Reid, S; Rowan, S [SUPA, University of Glasgow, Glasgow G12 8QQ, Scotland (United Kingdom); Armandula, H [LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States); Comtet, C; Mackowski, J-M M; Michel, C; Montorio, J-L; Morgado, N; Remillieux, A [Laboratoire des Materiaux Avances, LMA, CNRS-IN2P3 (France); Fejer, M M; Route, R [Edward L Ginzton Laboratory, Stanford University, Stanford, CA 94305-4088 (United States); Gretarsson, A [Embry-Riddle Aeronautical University, Prescott, AZ 86301 (United States); Harry, G [LIGO Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Nawrodt, R; Schwarz, C; Seidel, P [Friedrich-Schiller University, Jena, PF 07737 Jena (Germany); Penn, S [Department of Physics, Hobart and William Smith Colleges, Geneva, New York, 14456 (United States)], E-mail: i.martin@physics.gla.ac.uk (and others)

    2008-03-07

    Thermal noise arising from mechanical dissipation in oxide coatings is a major limitation to many precision measurement systems, including optical frequency standards, high-resolution optical spectroscopy and interferometric gravity wave detectors. Presented here are measurements of dissipation as a function of temperature between 7 K and 290 K in ion-beam-sputtered Ta{sub 2}O{sub 5} doped with TiO{sub 2}, showing a loss peak at 20 K. Analysis of the peak provides the first evidence of the source of dissipation in doped Ta{sub 2}O{sub 5} coatings, leading to possibilities for the reduction of thermal noise effects.

  6. Mechanical Properties of Heat Affected Zone of High Strength Steels

    Science.gov (United States)

    Sefcikova, K.; Brtnik, T.; Dolejs, J.; Keltamaki, K.; Topilla, R.

    2015-11-01

    High Strength Steels became more popular as a construction material during last decade because of their increased availability and affordability. On the other hand, even though general use of Advanced High Strength Steels (AHSS) is expanding, the wide utilization is limited because of insufficient information about their behaviour in structures. The most widely used technique for joining steels is fusion welding. The welding process has an influence not only on the welded connection but on the area near this connection, the so-called heat affected zone, as well. For that reason it is very important to be able to determine the properties in the heat affected zone (HAZ). This area of investigation is being continuously developed in dependence on significant progress in material production, especially regarding new types of steels available. There are currently several types of AHSS on the world market. Two most widely used processes for AHSS production are Thermo-Mechanically Controlled Processing (TMCP) and Quenching in connection with Tempering. In the presented study, TMCP and QC steels grade S960 were investigated. The study is focused on the changes of strength, ductility, hardness and impact strength in heat affected zone based on the used amount of heat input.

  7. Heat transfer mechanisms in poplar wood undergoing torrefaction

    Science.gov (United States)

    Sule, Idris O.; Mahmud, Shohel; Dutta, Animesh; Tasnim, Syeda Humaira

    2016-03-01

    Torrefaction, a thermal treatment process of biomass, has been proved to improve biomass combustible properties. Torrefaction is defined as a thermochemical process in reduced oxygen condition and at temperature range from 200 to 300 °C for shorter residence time whereby energy yield is maximized, can be a bridging technology that can lead the conventional system (e.g. coal-fired plants) towards a sustainable energy system. In efforts to develop a commercial operable torrefaction reactor, the present study examines the minimum input condition at which biomass is torrefied and explores the heat transfer mechanisms during torrefaction in poplar wood samples. The heat transfer through the wood sample is numerically modeled and analyzed. Each poplar wood is torrefied at temperature of 250, 270, and 300 °C. The experimental study shows that the 270 °C-treatment can be deduced as the optimal input condition for torrefaction of poplar wood. A good understanding of heat transfer mechanisms can facilitate the upscaling and downscaling of torrefaction process equipment to fit the feedstock input criteria and can help to develop treatment input specifications that can maximize process efficiency.

  8. Mixing and dissipation in a geostrophic buoyancy-driven circulation

    Science.gov (United States)

    Vreugdenhil, Catherine A.; Gayen, Bishakhdatta; Griffiths, Ross W.

    2016-08-01

    Turbulent mixing and energy dissipation have important roles in the global circulation but are not resolved by ocean models. We use direct numerical simulations of a geostrophic circulation, resolving turbulence and convection, to examine the rates of dissipation and mixing. As a starting point, we focus on circulation in a rotating rectangular basin forced by a surface temperature difference but no wind stress. Emphasis is on the geostrophic regime for the horizontal circulation, but also on the case of strong buoyancy forcing (large Rayleigh number), which implies a turbulent convective boundary layer. The computed results are consistent with existing scaling theory that predicts dynamics and heat transport dependent on the relative thicknesses of thermal and Ekman boundary layers, hence on the relative roles of buoyancy and rotation. Scaling theory is extended to describe the volume-integrated rate of mixing, which is proportional to heat transport and decreases with increasing rotation rate or decreasing temperature difference. In contrast, viscous dissipation depends crucially on whether the thermal boundary layer is laminar or turbulent, with no direct Coriolis effect on the turbulence unless rotation is extremely strong. For strong forcing, in the geostrophic regime, the mechanical energy input from buoyancy goes primarily into mixing rather than dissipation. For a buoyancy-driven circulation in a basin comparable to the North Atlantic we estimate that the total rate of mixing accounts for over 95% of the mechanical energy supply, implying that buoyancy is an efficient driver of mixing in the oceans.

  9. Study on the specific heat of wood by statistical mechanics

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    From the microstructure of wood, theoretical expressions of the wood specific heat were derived by statistical mechanics. With the theoretical expressions derived, the theoretical values of specific heat for 33 tree species, with different moisture contents and under varied temperature conditions were calculated and comparison was also made to the experimental values under the same conditions. The results showed that the maximum error and mean error by the theoretical expressions of this paper are only 7.8% and 2.5% respectively, while those error of the theoretical values for 33 tree species calculated with Dunlap's empiric equation were 15.2% (max.) and 9.3% (mean), and forКириллов empiric equation, they were 20% (max.) and 11% (mean).

  10. Quantum dissipative Higgs model

    Energy Technology Data Exchange (ETDEWEB)

    Amooghorban, Ehsan, E-mail: Ehsan.amooghorban@sci.sku.ac.ir; Mahdifar, Ali, E-mail: mahdifar_a@sci.sku.ac.ir

    2015-09-15

    By using a continuum of oscillators as a reservoir, we present a classical and a quantum-mechanical treatment for the Higgs model in the presence of dissipation. In this base, a fully canonical approach is used to quantize the damped particle on a spherical surface under the action of a conservative central force, the conjugate momentum is defined and the Hamiltonian is derived. The equations of motion for the canonical variables and in turn the Langevin equation are obtained. It is shown that the dynamics of the dissipative Higgs model is not only determined by a projected susceptibility tensor that obeys the Kramers–Kronig relations and a noise operator but also the curvature of the spherical space. Due to the gnomonic projection from the spherical space to the tangent plane, the projected susceptibility displays anisotropic character in the tangent plane. To illuminate the effect of dissipation on the Higgs model, the transition rate between energy levels of the particle on the sphere is calculated. It is seen that appreciable probabilities for transition are possible only if the transition and reservoir’s oscillators frequencies to be nearly on resonance.

  11. Mechanical reinforcement of bioceramics scaffolds via fracture energy dissipation induced by sliding action of MoS2 nanoplatelets.

    Science.gov (United States)

    Shuai, Cijun; Sun, Hang; Gao, Chengde; Feng, Pei; Guo, Wang; Yang, Youwen; Zhao, Mingchun; Yang, Sheng; Yuan, Fulai; Peng, Shuping

    2017-07-20

    The inherent brittleness of bioceramics restricts their applications in load bearing implant, although they possess good biocompatibility and bioactivity. In this study, molybdenum disulfide nanoplatelets (MSNPs) were used to reinforce bioceramics (Mg2SiO4/CaSiO3) scaffolds fabricated by selective laser sintering (SLS). The fracture mode of scaffolds was transformed from transgranular to mixed trans- and intergranular. It could be explained that MSNPs could slide easily due to their weak interlayer van der Waals interactions and provide elastic deformation due to their high elastic modulus. Such sliding action and elastic deformation synergistically induced crack bridging, crack deflection, pull-out and break of MSNPs. Those effects effectively increased the fracture energy dissipation and strain capacity as well as changed the fracture mode, contributing to high fracture toughness and compression strength. Additionally, the scaffolds with MSNPs not only formed a bioactive apatite layer in simulated body fluid, but also supported cell adhesion and proliferation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Quantum dissipative systems

    CERN Document Server

    Weiss, Ulrich

    1993-01-01

    This book deals with the statistical mechanics and dynamics of open quantum systems moving irreversibly under the influence of a dissipative environment. The basic concepts and methods are described on the basis of a microscopic description with emphasis on the functional integral approach. The general theory for the time evolution of the density matrix of the damped system is developed. Many of the sophisticated ideas in the field are explained with simple models. The discussion includes, among others, the interplay between thermal and quantum fluctuations, quantum statistical decay, macrosco

  13. The Research of Ion Beam Process Heat Dissipation and Integrated Processing for Main and Third Mirror%主、三镜离子束一体化加工散热方法研究

    Institute of Scientific and Technical Information of China (English)

    许艳军; 赵宇宸; 沙巍; 张帆

    2014-01-01

    离子束加工过程中,由于热能的传递会导致光学元件内部产生热应力和热变形,影响加工精度,严重时甚至会导致光学元件的损坏。本文提出了一种新型的主、三镜一体化离子束加工方式。在一体化加工的基础上利用UG/TMG有限元分析软件,对无散热和铜带散热两种加工状态下的光学元件表面温度场的分布进行了仿真分析。对比结果数据可以看出铜带散热可以使加工过程中最高温度降低10℃。最后通过实际加工过程,对热分析进行了验证。%In ion beam process, due to the transfer of heat, the optical elements cause an internal thermal stress and thermal deformation which affect machining precision, and can even lead serious damage to the optical element. This paper presents a new ion beam integration processing method for main and third mirror. On the basis of integration method,use finite element analysis software UG/TMG to analysis and simulation optical element thermal distribution in two processing state which include no heat dissipation and cooper dissipation. Comparison with data which shows cooper heat dissipation reduce the maximum temperature during processing by 10℃. Finally,adopt of the actual process to ver-ify the thermal analysis.

  14. Experimental investigation and mechanism of critical heat flux enhancement in pool boiling heat transfer with nanofluids

    Science.gov (United States)

    Kamatchi, R.; Venkatachalapathy, S.; Nithya, C.

    2016-11-01

    In the present study, reduced graphene oxide (rGO) is synthesized from graphite using modified Hummer and chemical reduction methods. Various characterizations techniques are carried out to study the in-plane crystallite size, number of layers, presence of functional groups and surface morphology. Different concentrations of 0.01, 0.1, and 0.3 g/l of rGO/water nanofluids are prepared by dispersing the flakes in DI water. The colloidal stability of 0.3 g/l concentration is measured after 5 days using Zetasizer and found to be stable. The rGO/water nanofluids are then used to study the effect on the enhancement of critical heat flux (CHF) in pool boiling heat transfer. Results indicate an enhancement in CHF ranging from 145 to 245 % for the tested concentrations. The mechanisms of CHF enhancement are analyzed based on surface wettability, surface roughness, and porous layer thickness. The macrolayer dryout model sufficiently supports the mechanism of CHF enhancement of thin wire with rGO deposits, which is not reported yet.

  15. Condensate removal mechanisms in a constrained vapor bubble heat exchanger.

    Science.gov (United States)

    Zheng, Ling; Wang, Yingxin; Wayner, Peter C; Plawsky, Joel L

    2002-10-01

    Microgravity experiments on the constrained vapor bubble heat exchanger (CVB) are being developed for the space station. Herein, ground-based experimental studies on condensate removal in the condenser region of the vertical CVB were conducted and the mechanism of condensate removal in microgravity was found to be the capillary force. The effects of curvature and contact angle on the driving forces for condensate removal is studied. The Nusselt correlations are derived for the film condensation and the flow from the drop to the meniscus at the moment of merging. These new correlations scale as forced convection with h proportional to L(1/2) or h proportional to L(1/2)(cd). For the partially wetting ethanol system studied, the heat transfer coefficient for film condensation was found to be 4.25 x 10(4) W/m(2)K; for dropwise condensation at moment of merging it was found to be 9.64 x 10(4) W/m(2)K; and for single drops it was found to be 1.33 x 10(5) W/m(2)K.

  16. The effect of polysaccharides on the ability of whey protein gels to either store or dissipate energy upon mechanical deformation

    NARCIS (Netherlands)

    Darizu Munialo, C.; Linden, E. van der; Ako, K.; Nieuwland, M.; As, H. van; Jongh, H.H.J. de

    2016-01-01

    The addition of polysaccharides to proteins during gel formation can alter the mechanical and textural properties of the resultant gels. However, the effect of addition of different polymers on mechanical properties of whey protein (WP) gels including their ability to elastically store energy, often

  17. The effect of polysaccharides on the ability of whey protein gels to either store or dissipate energy upon mechanical deformation

    NARCIS (Netherlands)

    Munialo, C.D.; Linden, van der E.; Ako, K.; Nieuwland, M.; As, van H.; Jongh, de H.H.J.

    2016-01-01

    The addition of polysaccharides to proteins during gel formation can alter the mechanical and textural properties of the resultant gels. However, the effect of addition of different polymers on mechanical properties of whey protein (WP) gels including their ability to elastically store energy, often

  18. Effect of mechanical force, rotation and moving internal heat source on a two-temperature fiber-reinforced thermoelastic medium with two theories

    Science.gov (United States)

    Said, Samia M.; Othman, Mohamed I. A.

    2016-09-01

    In the present paper, the three-phase-lag model and Green-Naghdi theory without energy dissipation are used to study the effect of a mechanical force and a rotation on the wave propagation in a two-temperature fiber-reinforced thermoelastic problem for a medium with an internal heat source that is moving with a constant speed. The methodology applied here is the use of the normal mode analysis to solve the problem of a thermal shock problem to obtain the exact expressions of the displacement components, force stresses, thermal temperature, and conductivity temperature. Numerical results for the considered variables are given and illustrated graphically in the absence and presence of a rotation as well as a mechanical force. A comparison is made with the results in the context of the two theories in the absence and presence of a moving internal heat source.

  19. COUPLED ELECTRICAL-THERMAL MECHANICAL ANALYSIS FOR ELECTRICAL/LASER HEATING ASSISTED BLANKING

    Institute of Scientific and Technical Information of China (English)

    PENG Xianghe; QIN Yi

    2006-01-01

    A coupled electrical-thermal-mechanical analysis is conducted for electrical/laser heating assisted blanking. Two novel localized-heating methods, electrical heating and laser-heating, recently proposed for small-part blanking, are investigated with FE simulations. Results show that electrical heating would result in an advantageous distribution of temperature in a 316 stainless steel work-material. A desired temperature distribution may also be achievable for a copper work-material,if laser beam is used. Both electrical heating and laser-heating enable to reduce the blanking force and increase the aspect ratio achievable by blanking. The simulation also demonstrates that both electrical heating and laser-heating can result in desired temperature-distributions at sufficiently high heating-rates, ease of implementation and application. Comparatively, electrical heating could generate more favorable temperature distribution for small-part blanking.

  20. Dissipation-induced instabilities and symmetry

    Institute of Scientific and Technical Information of China (English)

    Oleg N. Kirillov; Ferdinand Verhulst

    2011-01-01

    The paradox of destabilization of a conservative or non-conservative system by small dissipation, or Ziegler's paradox (1952), has stimulated a growing interest in the sensitivity of reversible and Hamiltonian systems with respect to dissipative perturbations. Since the last decade it has been widely accepted that dissipation-induced instabilities are closely related to singularities arising on the stability boundary, associated with Whitney's umbrella. The first explanation of Ziegler's paradox was given (much earlier) by Oene Bottema in 1956. The aspects of the mechanics and geometry of dissipation-induced instabilities with an application to rotor dynamics are discussed.

  1. Quantum bouncer with dissipation

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, G.; Gonzalez, G. [Departamento de Fisica de la Universidad de Guadalajara, AP 4-137, 44410 Guadalajara, Jalisco (Mexico)

    2006-07-01

    Effects on the spectra of the quantum bouncer due to dissipation are given when a linear o quadratic dissipation in the velocity of the particle is taken into account. Classical constants of motion and Hamiltonians are deduced for these systems and their quantized eigenvalues are estimated through perturbation theory. Differences were found comparing the eigenvalues of the constants of motion and the eigenvalues of the Hamiltonians. The cases when the dissipation parameters go to zero are compared with the non dissipative cases. (Author)

  2. Indoor temperatures for calculating room heat loss and heating capacity of radiant heating systems combined with mechanical ventilation systems

    DEFF Research Database (Denmark)

    Wu, Xiaozhou; Olesen, Bjarne W.; Fang, Lei;

    2016-01-01

    system were determined according to the principle of heat transfer. A model to predict indoor temperatures in the room was proposed, and it was determined that the predicted indoor temperatures agreed well with the measured data. Qualitative analyses of the effects of heated surface temperature and air...... change rates on the indoor temperatures were performed using the proposed model. When heated surface temperatures and air change rates were from 21.0 to 29.0 degrees C and from 0.5 to 4.0 h-1, the indoor temperatures for calculating the transmission heat loss and ventilation heat loss were between 20.......8% for calculating the transmission heat loss and ventilation heat loss, respectively, and between 16.0% and 17.4% for calculating the heating capacity of the hybrid system. Due to large relative calculation errors, it is necessary to consider the effect of heated surface and cool supply air on indoor temperatures...

  3. [Mechanism of heat transfer in various regions of human body].

    Science.gov (United States)

    Luchakov, Iu I; Nozdrachev, A D

    2009-01-01

    The processes of heat transfer in a human body were studied with the use of a mathematical model. It has been shown that only conductive or only convective heat transfer may occur in different body areas. The rate of blood-mediated heat transfer in the presence of blood circulation is many times higher than heat transfer due to temperature gradient; therefore, the convective process prevails over the conductive process. The body core contains a variety of blood vessels, and the bulk of blood concentrates there in the norm. Hence, heat transfer in it is mainly convective. In surface tissues, where the rate of blood circulation is lower and the vasculature has certain specific features, heat transfer is mainly conductive. Hence, the core and surface tissues are absolutely different body zones in terms of heat transfer.

  4. Characterization of Heat Waves in the Sahel and associated mechanisms

    Science.gov (United States)

    Oueslati, Boutheina; Pohl, Benjamin; Moron, Vincent; Rome, Sandra

    2016-04-01

    Large efforts are made to investigate the heat waves (HW) in developed countries because of their devastating impacts on society, economy and environment. This interest increased after the intense event over Europe during summer 2003. However, HWs are still understudied over developing countries. This is particularly true in West Africa, and especially in the Sahel, where temperatures recurrently reach critical values, such as during the 2010 HW event. Understanding the Sahelian HWs and associated health risks constitute the main objective of ACASIS, a 4-year project funded by the French Agence Nationale de la Recherche. Our work contributes to this project and aims at characterizing the Sahelian HWs and understanding the mechanisms associated with such extreme events. There is no universal definition of a HW event, since it is highly dependent on the sector (human health, agriculture, transport...) and region of interest. In our case, a HW is defined when the heat index of the day and of the night exceeds the 90th percentile for at least 3 consecutive days (Rome et al. 2016, in preparation). This index combines temperature and relative humidity in order to determine the human-perceived equivalent temperature (definition adapted from Steadman, 1979). Intrinsic properties of Sahelian HW are analyzed from the Global Summary of the Day (GSOD) synoptic observations and ERA-interim reanalyses over 1979-2014 during boreal spring seasons (April-May-June), the warmest period of the year in the Central Sahel. ERA-interim captures well the observed interannual variability and seasonal cycle at the regional scale, as well as the 1979-2014 increasing linear trend of springtime HW occurrences in the Sahel. Reanalyses, however, overestimate the duration, spatial extent of HW, and underestimate their intensity. For both GSOD and ERA-interim, we show that, over the last three decades, Sahelian HWs tend to become more frequent, last longer, cover larger areas and reach higher

  5. Heat Transfer Mechanism of a Vertical Wall Inside a Two-Phase Closed Thermosiphon Evaporator and Its Estimation

    Science.gov (United States)

    O-Uchi, Masaki; Hirose, Koichi; Saito, Futami

    The inside heat transfer coefficient, overall heat transfer coefficient, and heat flow rate at the heating section of the thermosiphon were determined for each heating method. In order to observe the heat transfer mechanism in the evaporator, a thermosiphon unit made of glass was assembled and conducted separately. The results of these experiments with these two units are summarized as follows. (1) Nucleate boiling due to the internal heat transfer mechanism improves the heat transfer characteristics of the thermosiphon unit. Under the specific heating conditions with dropwise condensation, there are two types of heat transfer mechanism occur in the evaporator accompanying nucleate boiling, i. e. latent heat transfer and sensible heat transfer. (2) In the case of latent heat transfer, the inside heat transfer coefficient has an upper limit which can be used as a criterion to determine the type of internal heat transfer mechanism.

  6. Comparison of the temperature dependence of the mechanical dissipation in thin films of Ta{sub 2}O{sub 5} and Ta{sub 2}O{sub 5} doped with TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Martin, I W; Chalkley, E; Nawrodt, R; Bassiri, R; Hough, J; MacLaren, I; Reid, S; Rowan, S [SUPA - Scottish Universities Physics Alliance, Department of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ (United Kingdom); Armandula, H [LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States); Comtet, C; Michel, C; Montorio, J-L; Morgado, N [Laboratoire des Materiaux Avances, LMA, CNRS-IN2P3 (France); Fejer, M M; Route, R [Edward L Ginzton Laboratory, Stanford University, Stanford, CA 94305-4088 (United States); Gretarsson, A [Embry-Riddle Aeronautical University, Prescott, AZ 86301 (United States); Harry, G [LIGO Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Heinert, D; Schwarz, C [Institute of Solid State Physics, University of Jena, Helmholtzweg 5, D-07743 Jena (Germany); Penn, S, E-mail: i.martin@physics.gla.ac.u [Department of Physics, Hobart and William Smith Colleges, Geneva, NY14456 (United States)

    2009-08-07

    Here we report the first results comparing the temperature dependence of the mechanical dissipation in thin films of Ta{sub 2}O{sub 5} and Ta{sub 2}O{sub 5} doped with TiO{sub 2}, of a type suitable for use in the multilayer optical coatings for advanced gravitational wave detectors. The results indicate that doping Ta{sub 2}O{sub 5} with TiO{sub 2} can significantly alter the distribution of activation energies associated with the low-temperature dissipation peak.

  7. Nondestructive evaluation of dissipative behavior of reinforced concrete structure

    Energy Technology Data Exchange (ETDEWEB)

    Luong, M.P. [Ecole Polytechnique, LMS, CNRS, 91 - Palaiseau (France)

    2001-07-01

    Current technological developments tend toward increased exploitation of materials strengths and toward tackling extreme loads and environmental actions such as offshore structures subject to wind and wave loading, or buildings in seismic area. Concrete is widely used as a construction material because of its high strength-cost ratio in many applications. Experience of earthquakes and laboratory tests has shown that well designed and detailed reinforced concrete is suitable for earthquake resistant structures. The most severe likely earthquake can be survived if the members are sufficiently ductile to absorb and dissipate seismic energy by inelastic deformation. This requires a designer to assess realistically the acceptable levels of strength and to ensure adequate dissipation. This paper proposes the use of infrared thermography as a nondestructive, noncontact and real-time technique to examine diverse mechanisms of dissipation and to illustrate the onset of damage process, stress concentration and heat dissipation localization in loaded zone. In addition, this technique can be used as a nondestructive method for evaluating the fatigue limit of concrete structure subject to repeated loading.

  8. The mechanical measuring method of welding heat source efficiency

    Institute of Scientific and Technical Information of China (English)

    Zhang Jianqiang; Zhang Guodong; He Jie; Wang Chengquan; Chen Bingquan

    2007-01-01

    Based on the principle of residual deformation induced by superposition of the welding residual stress and working stress, the welding heat source efficiency has been determined by measuring displacement changes of specimens under loading and unloading in tensile tests, and combining with calculating welding parameters. Meanwhile, the welding heat source efficiencies obtained are compared with those of the measuring-calculating method. The research results show that the welding heat source efficiencies are almost the same as those obtained by the measuring-calculating method. Therefore, the welding heat source efficiency can be determined accurately by this method, and a new determining method of the heat source efficiency for the welding heat process calculating has been provided.

  9. Decoherence and dissipation of a spin-zero bosons system using the Weyl representation of quantum mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Reis, Mauricio [Universidade Federal de Sao Joao del Rey (UFSJ), MG (Brazil); Faria, J.G. Peixoto de [CEFET-MG (Brazil); Nemes, M.C. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil); Almeida, A.M. Ozorio de [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)

    2011-07-01

    Full text. One of the first experiments showing quantum mechanical behavior was the Plank's Black Body radiation spectra. After Planck, several experiments allowed the development of important technology using the quantum properties of identical particles systems. On the other hand, one of the many types of classical limit of quantum mechanics is supposed to be achieved in the large-N limit of its dynamics. To explain classical behaviour, many scenarios are possible, one of them is to take account of the unavoidable interaction of a system with its surroundings and consider the irreversible lost of quantum information to the environment, which is sometimes called The Decoherence Program. In this case, a question naturally arises: how is that interaction and why it allows the appearance of a classical world with few quantum features, like the peculiar statistical distribution for a system composed of N-identical bosons? In this work, we address that question by setting up an Investigation upon a system composed of N-identical bosons, using the Weyl representation. In the literature, the Weyl representation is a general term which identifies the traditional Wigner function and its Fourier Transform, known as the Chord function. Due to its relation with the Classic Phase Space, the Weyl representation becomes a very suitable tool to study some dynamics properties of quantum systems as well their classical limits, and some properties of a simple system, composed of two identical bosons is studied

  10. Functionalized biocompatible polyelectrolyte multilayers for drug delivery: In situ investigation of mechanical properties by dissipative quartz crystal microbalance

    Energy Technology Data Exchange (ETDEWEB)

    Habibi, Neda [Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genova, Genova (Italy); Nanotechnology and Advanced Material Institute, Isfahan University of Technology, Isfahan (Iran, Islamic Republic of); Pastorino, Laura, E-mail: laura.pastorino@unige.it [Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genova, Genova (Italy); Ruggiero, Carmelina [Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genova, Genova (Italy)

    2014-02-01

    Nanostructured polymeric capsules have been applied in different fields, and specifically are regarded as promising for smart drug delivery applications. The physical–chemical and mechanical properties, and thus the permeability of the polyelectrolyte multilayer shell, play an important role in efficient delivery. Quartz crystal microbalance working in liquid has been used for the characterization of the buildup process and of the viscoelastic properties of biocompatible multilayers and of their functionalization by S-layer proteins. Optical and scanning electron microscopy have been used for the morphological characterization of nanostructured capsules obtained at physiological conditions by the assembly of the characterized multilayers onto spherical cores and by their subsequent removal. The proposed functionalized biocompatible capsules can be regarded as promising candidates for smart drug delivery applications. - Graphical abstract: SEM image of nanostructured polymeric capsules made by 4 bilayers of collagen/alginate at pH 7.4. - Highlights: • Build-up of biocompatible multilayers and functionalization by S-layer proteins • Characterization of multilayer growth and mechanical properties by QCM • Fabrication of S-layer functionalized biocompatible capsules.

  11. Design and heat dissipation performance simulation of EPS brushless motor ECU structure%EPS无刷电机控制器结构设计与散热性能试验

    Institute of Scientific and Technical Information of China (English)

    吴高峰; 冉振云; 陈奇志

    2014-01-01

    为解决汽车电动助力转向系统大功率无刷电机控制器发热过大所致的功率MOSFET管损坏问题,结合固体结构热传导原理对控制器结构进行设计。运用有限体积法的控制器三维温度场模型,对该汽车电动助力转向系统(EPS)无刷控制器结构散热性能进行数值模拟,对控制器大电流、高温运行的情况下电路板温升进行试验测定,对比试验数据与数值计算结果,新型控制器结构设计合理,散热性能最好。数值模拟对新型EPS无刷控制器的批量生产具有重要实际意义。%Based on heat conduction principle,the EPS(electric power steering)brushless motor ECU(electronic control units) structure was designed to eliminate the power Mosfet damage caused by overheating of EPS system’s brushless motor ECU. By using ECU 3D temperature field model of the finite volume method,the heat dissipation performance of the brushless motor ECU structure was simulated and analyzed. PCB temperature rise was measured under the condition of large current and high temperature. The comparison between test values and numerical simulation results show that the design of the new type ECU structure is reasonable and its heat dissipation performance is best. The numerical simulation has the important practical significance for mass production of new EPS brushless ECU.

  12. Material Systems for Blast-Energy Dissipation

    Energy Technology Data Exchange (ETDEWEB)

    James Schondel; Henry S. Chu

    2010-10-01

    Lightweight panels have been designed to protect buildings and vehicles from blast pressures by activating energy dissipation mechanisms under the influence of blast loading. Panels were fabricated which featured a variety of granular materials and hydraulic dissipative deformation mechanisms and the test articles were subjected to full-scale blast loading. The force time-histories transmitted by each technology were measured by a novel method that utilized inexpensive custom-designed force sensors. The array of tests revealed that granular materials can effectively dissipate blast energy if they are employed in a way that they easily crush and rearrange. Similarly, hydraulic dissipation can effectively dissipate energy if the panel features a high fraction of porosity and the panel encasement features low compressive stiffness.

  13. Theory of harmonic dissipation in disordered solids

    Science.gov (United States)

    Damart, T.; Tanguy, A.; Rodney, D.

    2017-02-01

    Mechanical spectroscopy, i.e., cyclic deformations at varying frequencies, is used theoretically and numerically to compute dissipation in model glasses. From a normal mode analysis, we show that in the high-frequency terahertz regime where dissipation is harmonic, the quality factor (or loss angle) can be expressed analytically. This expression is validated through nonequilibrium molecular dynamics simulations applied to a model of amorphous silica (SiO2). Dissipation is shown to arise from nonaffine relaxations triggered by the applied strain through the excitation of vibrational eigenmodes that act as damped harmonic oscillators. We discuss an asymmetry vector field, which encodes the information about the structural origin of dissipation computed by mechanical spectroscopy. In the particular case of silica, we find that the motion of oxygen atoms, which induce a deformation of the Si-O-Si bonds, is the main contributor to harmonic energy dissipation.

  14. Kolmogorov Dissipation scales in Weakly Ionized Plasmas

    CERN Document Server

    Krishan, V

    2009-01-01

    In a weakly ionized plasma, the evolution of the magnetic field is described by a "generalized Ohm's law" that includes the Hall effect and the ambipolar diffusion terms. These terms introduce additional spatial and time scales which play a decisive role in the cascading and the dissipation mechanisms in magnetohydrodynamic turbulence. We determine the Kolmogorov dissipation scales for the viscous, the resistive and the ambipolar dissipation mechanisms. The plasma, depending on its properties and the energy injection rate, may preferentially select one of the these dissipation scales. thus determining the shortest spatial scale of the supposedly self-similar spectral distribution of the magnetic field. The results are illustrated taking the partially ionized part of the solar atmosphere as an example. Thus the shortest spatial scale of the supposedly self-similar spectral distribution of the solar magnetic field is determined by any of the four dissipation scales given by the viscosity, the Spizer resistivity...

  15. 根部开孔对直翅片散热强化的实验研究%Experimental Study on Heat Dissipation of the Opening Hole in Straight Fin Root

    Institute of Scientific and Technical Information of China (English)

    孟祥睿; 马新灵; 魏新利

    2012-01-01

    根据温度恒定时输入热量与输出热量相等的原理,提出了一种简单方便的测量热沉散热功率的方法,并搭建了实验台。通过测量输入电热丝中的电压、电流以及通电时间即可得到热沉的散热功率,并通过数理分析确定实验测量周期,以保证实验结果误差在5%以内。实验表明在热沉翅片根部开孔可以有效提高热沉散热功率,对测试所用热沉而言最高可提高16.3%。但随着开孔数量的增多,热沉的散热功率先上升达到一个极值后再下降。究其原因在于开孔增多的同时,减少了热沉内部热量自热沉底部向热沉顶部传递的面积,增加了热沉内部的传热阻力。%Based on the principle that the heat output is equal to the heat input when the temperature is constant, a measure method of the heat sink cooling power was proposed, and a test platform was built. The heat sink cooling power was obtained by measuring the voltage, current and power-on time of the input heating wire. Test period could be determined by mathematical analysis, so as the error can be controlled within 5%. Experimental results show that the cooling power can be effectively improved by opening holes at the heat sink fin root, and the maximum increase can reach 16. 3%. But with the number increase of the holes, heat dissipation first increases to an extreme and then decreases. The reason is that more holes will reduce the internal heat transfer area from the bottom to the top of the heat sink as well as increase the heat transfer resistance inside the heat sink.

  16. The heat transfer mechanisms in fluidized beds; Laemmoensiirtomekanismit leijukerroksessa

    Energy Technology Data Exchange (ETDEWEB)

    Fogelholm, C.J.; Blomster, A.M.; Kojola, H. [Helsinki Univ. of Technology, Espoo (Finland)

    1996-12-01

    The goal of the research project is to improve the accuracy of the heat transfer correlation in circulating fluidized beds and to define how the heat transfer is distributed in radiation and convection in the different parts of the fluidized bed. This will be carried out by studying the behaviour and heat transfer of the fluidized bed in the boundary layer near the wall. The total and radiative heat transfer as well as the particle concentration will be measured. Based on the data a correlation will be created. Two different measurement systems are used. The particle concentration is measured by a image-analysis system. A video camera and a Super VHS recorder are used to capture live images from the bed. The images are digitized and stored on a PC. The system has been used in previous research projects at our laboratory. In earlier projects all measurements have been carried out in cold environments. In this project the system will be modified for hot environments. The radiative heat transfer is measured by a radiative heat transfer probe connected to a PC via an A/D converter. The probe consists of a heat flow detector which is isolated from the bed by a sapphire window so that only the radiative part of the heat transfer is detected. The probe will be calibrated in a black body oven so that the effect of the conduction and the sapphire window can be separated. (author)

  17. Light-induced energetic decoupling as a mechanism for phycobilisome-related energy dissipation in red algae: a single molecule study.

    Directory of Open Access Journals (Sweden)

    Lu-Ning Liu

    Full Text Available BACKGROUND: Photosynthetic organisms have developed multiple protective mechanisms to prevent photodamage in vivo under high-light conditions. Cyanobacteria and red algae use phycobilisomes (PBsomes as their major light-harvesting antennae complexes. The orange carotenoid protein in some cyanobacteria has been demonstrated to play roles in the photoprotective mechanism. The PBsome-itself-related energy dissipation mechanism is still unclear. METHODOLOGY/PRINCIPAL FINDINGS: Here, single-molecule spectroscopy is applied for the first time on the PBsomes of red alga Porphyridium cruentum, to detect the fluorescence emissions of phycoerythrins (PE and PBsome core complex simultaneously, and the real-time detection could greatly characterize the fluorescence dynamics of individual PBsomes in response to intense light. CONCLUSIONS/SIGNIFICANCE: Our data revealed that strong green-light can induce the fluorescence decrease of PBsome, as well as the fluorescence increase of PE at the first stage of photobleaching. It strongly indicated an energetic decoupling occurring between PE and its neighbor. The fluorescence of PE was subsequently observed to be decreased, showing that PE was photobleached when energy transfer in the PBsomes was disrupted. In contrast, the energetic decoupling was not observed in either the PBsomes fixed with glutaraldehyde, or the mutant PBsomes lacking B-PE and remaining b-PE. It was concluded that the energetic decoupling of the PBsomes occurs at the specific association between B-PE and b-PE within the PBsome rod. Assuming that the same process occurs also at the much lower physiological light intensities, such a decoupling process is proposed to be a strategy corresponding to PBsomes to prevent photodamage of the photosynthetic reaction centers. Finally, a novel photoprotective role of gamma-subunit-containing PE in red algae was discussed.

  18. 水轮发电机转子系统磁悬浮承重装置散热研究%Study on heat dissipation of magnetic-levitation bearing device for rotor system of hydraulic turbine-generator unit

    Institute of Scientific and Technical Information of China (English)

    马宏忠; 郭晓宁; 陈远俊

    2011-01-01

    由于水轮发电机轴向重力负荷电磁悬浮承重系统的励磁线圈密封在装置内部,无法与外界空气对流,从而会出现温升过高.为解决此问题,提出了分别在该系统电磁铁的上铁心和衔铁(推力盘)上设置一定数量的通风孔,以便使线圈表面形成对流散热.针对通风孔设计,选用适合此模型结构的对流散热数值模型,推导出对流散热系数的数值,并利用有限元分析软件Ansys进行了温度和磁场仿真分析.结果显示,在满足水轮机组承重要求的前提下,合理设计通风孔可以使电磁悬浮装置线圈温度大大降低,满足系统应用要求.%Since the excitation coils of electromagnetic-levitation bearing system for the axial load of hydraulic turbine-generator are sealed inside of the system, the heat inside is difficult to be dissipated, and then over-high temperature rise would occur therein.For solving this problem, it is put forward that a few vents are respectively arranged on both the electromagnet core and the armature ( thrust disc) of the system, so as to create a convection heat dissipation on the surface of coils.So far as the design of the vent is concerned, suitable numerical models are selected for this model along with the deduction of the coefficient of convection heat dissipation, and then the simulation analysis on the temperature and the magnetic field is made with the softwareAnsys.The results show that under the premise to satisfy the bearing requirement of hydraulic turbine-generator unit, the temperature of the coils can be greatly lowered with the reasonably designed vents, therefore, the application requirement of the system can be met as well.

  19. Heat, work and subtle fluids: a commentary on Joule (1850) 'On the mechanical equivalent of heat'.

    Science.gov (United States)

    Young, John

    2015-04-13

    James Joule played the major role in establishing the conservation of energy, or the first law of thermodynamics, as a universal, all-pervasive principle of physics. He was an experimentalist par excellence and his place in the development of thermodynamics is unarguable. This article discusses Joule's life and scientific work culminating in the 1850 paper, where he presented his detailed measurements of the mechanical equivalent of heat using his famous paddle-wheel apparatus. Joule's long series of experiments in the 1840s leading to his realisation that the conservation of energy was probably of universal validity is discussed in context with the work of other pioneers, notably Sadi Carnot, who effectively formulated the principle of the second law of thermodynamics a quarter of a century before the first law was accepted. The story of Joule's work is a story of an uphill struggle against a critical scientific establishment unwilling to accept the mounting evidence until it was impossible to ignore. His difficulties in attracting funding and publishing in reputable journals despite the quality of his work will resonate with many young scientists and engineers of the present day. This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society.

  20. Generation Mechanism and Prediction Model for Low Frequency Noise Induced by Energy Dissipating Submerged Jets during Flood Discharge from a High Dam

    Directory of Open Access Journals (Sweden)

    Jijian Lian

    2016-06-01

    Full Text Available As flood water is discharged from a high dam, low frequency (i.e., lower than 10 Hz noise (LFN associated with air pulsation is generated and propagated in the surrounding areas, causing environmental problems such as vibrations of windows and doors and discomfort of residents and construction workers. To study the generation mechanisms and key influencing factors of LFN induced by energy dissipation through submerged jets at a high dam, detailed prototype observations and analyses of LFN are conducted. The discharge flow field is simulated using a gas-liquid turbulent flow model, and the vorticity fluctuation characteristics are then analyzed. The mathematical model for the LFN intensity is developed based on vortex sound theory and a turbulent flow model, verified by prototype observations. The model results reveal that the vorticity fluctuation in strong shear layers around the high-velocity submerged jets is highly correlated with the on-site LFN, and the strong shear layers are the main regions of acoustic source for the LFN. In addition, the predicted and observed magnitudes of LFN intensity agree quite well. This is the first time that the LFN intensity has been shown to be able to be predicted quantitatively.

  1. Mechanism of negative hydrogen ion emission from heated saline hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Kawano, Hiroyuki; Serizawa, Naoshi; Takeda, Makiko; Hasegawa, Seiji [Ehime Univ., Matsuyama (Japan). Faculty of Science

    1997-02-01

    To find a clue to the mechanism of negative hydrogen ion emission from a heated sample ({approx}10 mg) of powdery saline hydride (LiH or CaH{sub 2}) deposited on a molybdenum ribbon ({approx}0.1 cm{sup 2}), both the ionic and electronic emission currents were measured as a function of sample temperature ({approx}700 - 800 K), thereby yielding {approx}10{sup -15} - 10{sup -12} A of H{sup -} after mass analysis and {approx}10{sup -7} - 10{sup -5} A of thermal electron. Thermophysical analysis of these data indicates that the desorption energy (E{sup -}) of H{sup -} and work function ({phi}) of the emitting sample surface are 5.1 {+-} 0.3 and 3.1 {+-} 0.2 eV for LiH, respectively, while E{sup -} is 7.7 {+-} 0.3 eV and {phi} is 5.0 {+-} 0.2 eV for CaH{sub 2}. Thermochemical analysis based on our simple model on the emissions indicates that the values of E{sup -} - {phi} are 2.35 and 2.31 eV for LiH and CaH{sub 2}, respectively, which are in fair agreement with the respective values (2.1 {+-} 0.3 and 2.6 {+-} 0.3 eV) determined experimentally. This agreement indicates that the emission of H{sup -} is reasonably explained by our model from the viewpoint of reaction energy. (author)

  2. Effect of Heat Treatment on Mechanical Property of High Cr-W Cast Iron

    Institute of Scientific and Technical Information of China (English)

    Liu Jianping; Li Lixia

    2007-01-01

    The microstructure of high Cr-W cast iron after heat treatment were analyzed, and the effect of various heat treatment temperature and time on mechanical properties of high Cr-W cast iron were studied, and the best process parameter of heat treatment was provided in this paper. The results show that the heat treatment can improve the mechanical property of high Cr-W cast iron, and higher synthetic mechanical property of high Cr-W cast iron can be obtained when treated with normalization at 980℃ for 2h and tempered at 400℃ for 2h.

  3. Analysis of mechanical behavior and hysteresis heat generating mechanism of PDM motor

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Changshuai; Zhu, Xiaohua; Tang, Liping [Southwest Petroleum University, Chengdu (China); Deng, Juan [Avic Chengdu Engine (Group) Co.,Ltd, Chengdu (China)

    2017-03-15

    Positive displacement motor (PDM), which is prone to high temperature fatigue failure, can be weakened in its application in deep and superdeep well. In order to study the forced state, deformation regularity and thermal hysteresis of PDM motor, the paper established the three-dimensional thermal-mechanical coupled Finite element model (FEM). Based on the theoretical research, experimental study and numerical simulation, the study found that the displacement of stator lining shows a sinusoidal variation under internal pressure, when adapting the general form of sine function to fitting inner contour line deformation function. Then the paper analyzed the hysteresis heat generating mechanism of the motor, learning that hysteresis thermogenous of stator lining occurs due to the viscoelastic of rubber material and cyclic loading of stator lining. A heartburn happens gradually in the center of the thickest part of the stator lining as temperature increases, which means work efficiency and service life of PDM will be decreased when used in deep or superdeep well. In this paper, we established a theory equation for the choice of interference fit and motor line type optimization design, showing hysteresis heat generating analyzing model and method are reasonable enough to significantly improve PDM’s structure and help better use PDM in deep and surdeep well.

  4. A novel compact heat exchanger using gap flow mechanism

    Science.gov (United States)

    Liang, J. S.; Zhang, Y.; Wang, D. Z.; Luo, T. P.; Ren, T. Q.

    2015-02-01

    A novel, compact gap-flow heat exchanger (GFHE) using heat-transfer fluid (HTF) was developed in this paper. The detail design of the GFHE coaxial structure which forms the annular gap passage for HTF is presented. Computational fluid dynamics simulations were introduced into the design to determine the impacts of the gap width and the HTF flow rate on the GFHE performance. A comparative study on the GFHE heating rate, with the gap widths ranged from 0.1 to 1.0 mm and the HTF flow rates ranged from 100 to 500 ml/min, was carried out. Results show that a narrower gap passage and a higher HTF flow rate can yield a higher average heating rate in GFHE. However, considering the compromise between the GFHE heating rate and the HTF pressure drop along the gap, a 0.4 mm gap width is preferred. A testing loop was also set up to experimentally evaluate the GFHE capability. The testing results show that, by using 0.4 mm gap width and 500 ml/min HTF flow rate, the maximum heating rate in the working chamber of the as-made GFHE can reach 18 °C/min, and the average temperature change rates in the heating and cooling processes of the thermal cycle test were recorded as 6.5 and 5.4 °C/min, respectively. These temperature change rates can well satisfy the standard of IEC 60068-2-14:2009 and show that the GFHE developed in this work has sufficient heat exchange capacity and can be used as an ideal compact heat exchanger in small volume desktop thermal fatigue test apparatus.

  5. Mechanical Properties of Heat-treated Carbon Fibers

    Science.gov (United States)

    Effinger, Michael R.; Patel, Bhavesh; Koenig, John; Cuneo, Jaques; Neveux, Michael G.; Demos, Chrystoph G.

    2004-01-01

    Carbon fibers are selected for ceramic matrix composites (CMC) are based on their as-fabricated properties or on "that is what we have always done" technical culture while citing cost and availability when there are others with similar cost and availability. However, the information is not available for proper selection of carbon fibers since heat-treated properties are not known for the fibers on the market currently. Heat-treating changes the fiber's properties. Therefore, an effort was undertaken to establish fiber properties on 19 different types of fibers from six different manufactures for both PAN and pitch fibers. Heat-treating has been done at three different temperatures.

  6. Temperature increase of Zircaloy-4 cladding tubes due to plastic heat dissipation during tensile tests at 0.1-10 s-1 strain rates

    Science.gov (United States)

    Hellouin de Menibus, Arthur; Auzoux, Quentin; Besson, Jacques; Crépin, Jérôme

    2014-11-01

    This study is focused on the impact of rapid Reactivity Initiated Accident (RIA) representative strain rates (about 1 s-1 NEA, 2010) on the behavior and fracture of unirradiated cold work stress relieved Zircaloy-4 cladding tubes. Uniaxial ring tests (HT) and plane strain ring tensile tests (PST) were performed in the 0.1-10 s-1 strain rate range, at 25 °C. The local temperature increase due to plastic dissipation was measured with a high-speed infrared camera. Limited temperature increases were measured at 0.1 s-1 strain rate. Limited but not strongly localized temperature increases were measured at 1 s-1. Large temperature increase were measured at 5 and 10 s-1 (142 °C at 5 s-1 strain rate in HT tests). The local temperature increase induced heterogeneous temperature fields, which enhanced strain localization and resulted in a reduction of the plastic elongation at fracture.

  7. Dissipative processes in superfluid quark matter

    CERN Document Server

    Mannarelli, M; Manuel, C

    2010-01-01

    We present some results about dissipative processes in fermionic superfluids that are relevant for compact stars. At sufficiently low temperatures the transport properties of a superfluid are dominated by phonons. We report the values of the bulk viscosity, shear viscosity and thermal conductivity of phonons in quark matter at extremely high density and low temperature. Then, we present a new dissipative mechanism that can operate in compact stars and that is named "rocket term". The effect of this dissipative mechanism on superfluid r-mode oscillations is sketched.

  8. Nanoscale structural and mechanical analysis of Bacillus anthracis spores inactivated with rapid dry heating.

    Science.gov (United States)

    Xing, Yun; Li, Alex; Felker, Daniel L; Burggraf, Larry W

    2014-03-01

    Effective killing of Bacillus anthracis spores is of paramount importance to antibioterrorism, food safety, environmental protection, and the medical device industry. Thus, a deeper understanding of the mechanisms of spore resistance and inactivation is highly desired for developing new strategies or improving the known methods for spore destruction. Previous studies have shown that spore inactivation mechanisms differ considerably depending upon the killing agents, such as heat (wet heat, dry heat), UV, ionizing radiation, and chemicals. It is believed that wet heat kills spores by inactivating critical enzymes, while dry heat kills spores by damaging their DNA. Many studies have focused on the biochemical aspects of spore inactivation by dry heat; few have investigated structural damages and changes in spore mechanical properties. In this study, we have inactivated Bacillus anthracis spores with rapid dry heating and performed nanoscale topographical and mechanical analysis of inactivated spores using atomic force microscopy (AFM). Our results revealed significant changes in spore morphology and nanomechanical properties after heat inactivation. In addition, we also found that these changes were different under different heating conditions that produced similar inactivation probabilities (high temperature for short exposure time versus low temperature for long exposure time). We attributed the differences to the differential thermal and mechanical stresses in the spore. The buildup of internal thermal and mechanical stresses may become prominent only in ultrafast, high-temperature heat inactivation when the experimental timescale is too short for heat-generated vapor to efficiently escape from the spore. Our results thus provide direct, visual evidences of the importance of thermal stresses and heat and mass transfer to spore inactivation by very rapid dry heating.

  9. Based Self-Heating Dissipation Flow Velocity Sensor of the Liquid Injected into the Oil Well%自热耗散式油井注入液体流速传感器

    Institute of Scientific and Technical Information of China (English)

    方华军; 温殿忠

    2000-01-01

    Taking into consideration the characteristics of the under- well measurement of flow velocity, this paper discusses a new sensor for measurement of flow velocity of the injected liquid into the oil well that is low in velocity and high in viscosity, suitable for the under - well measurement. This sensor is based the theory on self-heating dissipation of PTCR. It solved the measurement problem that is little under- well space, high liquid viscosity and high operation temperature. We designed and made the entire under- well PTCR heated dissipation velocity sensor. Experiment states this sensor is good in performance, and there are great useful value for oil produce.%结合油田井下流速测量的特点,论述了一种适用于井下测量的低流速、高粘度油井注入液体流速检测的新型传感器。该传感器采用PTCR自热耗散原理检测油井注入液体流速。解决了井下空间狭窄、流体粘度大、工作温度偏高、环境压力偏大等测量难题。设计并制造了井下PTCR热耗散式流速传感器。实验和试用结果表明,该传感器具有良好的重复性和可靠性,对石油测井具有很大使用价值。

  10. Ventilation and Heat Dissipation of Construction Integration PV Modules%建筑一体化太阳能光伏组件的通风散热分析

    Institute of Scientific and Technical Information of China (English)

    邬振武

    2012-01-01

    More and more attention has been paid to the development and utilization of green solar energy,especially the utilization of integrative solar architecture technology.These types of PV modules are conventionally installed fixedly,but due to various conditional limitations in installation and design,fixed PV modules leads to the problem in ventilation and heat dissipation,especially the underside of PV modules.In combination with the PV module layout of Shanghai Hongqiao Railway Station,the computational fluid dynamics(CFD) software was used to simulate the heat dissipation of various module layouts,and some optimization suggestions are proposed,with a view to providing some reference for solving this problem.%作为绿色能源,太阳能的开发利用日益受到人们的重视,而与建筑一体化的太阳能开发利用型式,更是得到了大力发展。该型式的光伏组件大多数采用固定式的安装方式,由于在安装和设计时受到种种条件限制,固定式光伏组件通风散热问题不易解决,尤其是下侧板面,问题更为严峻。结合上海虹桥高铁火车站屋面光伏组件的布置,利用CFD(计算流体力学)模拟软件对不同组件布置型式进行散热模拟,并给出优化建议,以期为解决组件的散热问题提供参考。

  11. Mechanisms of reaction and energy dissipation in the nucleus-nucleus symmetric collisions at 25 to 74 MeV/u: contribution of exclusive measurements of the INDRA multidetector; Mecanismes de reaction et de dissipation de l`energie dans les collisions symetriques noyau-noyau de 25 a 74 MeV/u: apport des mesures exclusives du multidetecteur INDRA

    Energy Technology Data Exchange (ETDEWEB)

    Metivier, V. [Caen Univ., 14 (France). Lab. de Physique Corpusculaire

    1995-04-01

    This work is about the first experimental results obtained with the INDRA multidetector. First, the characterization of reaction mechanisms is performed. For complete events, global description of the collision is performed and compared with theoretical calculations. Dissipative binary mechanisms represent the largest part of the cross section for violent collisions whatever the bombarding energy (from 25 to 74 MeV/u) for the studied systems (Ar + KCl and Xe + Sn). The two outgoing products decay takes place through light charged particle and fragment emission. The reconstruction of the two primary sources is achieved, allowing thus the study of the evolution of the energy dissipation. Excitation energies exceeding 10 MeV/u are reached. The decay of the primary outgoing partners can be understood in a statistical model approach and the role of collective modes like expansion energy seems to be negligible. The study of the angular distributions points out angular momentum effects, `proximity effect` and a dynamical ternary process corresponding to the emission of a light fragment in between the two heavier products. For the most violent collisions, events can also be interpreted in terms of the multifragmentation of a single source, at least for the Xe + Sn system at 50 MeV/u (80 m barn). For the lower incident energies, fusion residues associated to the largest dissipations are recognized, but the cross sections is small (35 m barn for the Ar + KCl system at 32 MeV/u). (author) 91 refs.

  12. Optimal Analysis of Irreversible Carnot Cycle Based on Entransy Dissipation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyoung Hoon [Kumoh Nat’l Institute of Technology, Gumi (Korea, Republic of)

    2017-02-15

    The concept of entransy has been proposed recently as a potential heat transfer mechanism and could be useful in analyzing and optimizing the heat-work conversion systems. This work presents an entransy analysis for the irreversible Carnot cycle by systematic balance formulations of the entransy loss, work entransy, and entransy dissipations, which are consistent with exergy balances. Additionally, several forms of system efficiency are introduced based on entransy for the appreciation of the optimal system performance. The effects of the source temperature and irreversible efficiencies on the optimal conditions for system efficiencies are systematically investigated for both dumping and non-dumping cases of used source fluid. The results show different trends in entransy efficiencies when compared to the conventional efficiencies of energy and exergy, and represent another method to assess the effective use of heat source in power generation systems.

  13. Heat adaptations in reptiles and the mechanism of their formation

    Directory of Open Access Journals (Sweden)

    Cherlin Vladimir

    2015-03-01

    Full Text Available This article deals with the main concepts and other aspects of thermobiology of reptiles that must be taken into account considering the problems of reptiles’ thermal adaptation. The difference between the "thermobiological features” and "thermal adaptation" often used as synonyms is defined. It is shown, that in adapting reptiles to external conditions the complex of thermophysiological indicators and reactions responsible for the conditions of full activity is of great importance. The connection between the thermophysiological features defining the condition of full activity and the parameters of environment is not always unequivocal. There is an important intermediary between them - the behavioral and physiological thermoregulation, which significantly disturbs the unambiguity of this connection. Due to these thermoregulation reactions (basically behavioral the mesophilic species can successfully inhabit hot regions, but some reptiles, which need regular heating up to 30-34˚C, can inhabit cold regions. The significance of behavioral regulatory reactions, physiological temperature-dependent and thermoregulatory, temperature-controlling reactions in the complex of reptiles’ thermal adaptation is analyzed. It is determined, that the complex of thermophysiological, stabile (geographically and seasonally invariable thermoregulating indicators of homeostasis is of key value in reptiles’ adaptation to natural climatic conditions. The mechanisms forming space-time structure of daily and seasonal activity and regulation of endogenous annual feeding and breeding cycles are described. It is shown that the individual reptiles adapt to the thermal environment mainly not owing to modification of thermophysiological features, but due to the fine adjustment of space-time structures of daily and seasonal activity. It occurs with the help of behavioral regulatory reactions, which allow the homeostatic characters, included in the physiological

  14. Seismic heating signatures in the Japan Trench subduction plate-boundary fault zone : evidence from a preliminary rock magnetic 'geothermometer'

    NARCIS (Netherlands)

    Yang, T.; Dekkers, M.J.|info:eu-repo/dai/nl/073463744; Zhang, Bo

    2016-01-01

    Frictional heating during earthquake rupture reveals important information on earthquake mechanisms and energy dissipation. The amount of annealing varies widely and is, as yet, poorly constrained. Here we use magnetic susceptibility versus temperature measurements during cycling to increasingly ele

  15. Effects of Thermophoresis, Viscous Dissipation and Joule Heating on Steady MHD Flow over an Inclined Radiative Isothermal Permeable Surface with Variable Thermal Conductivity

    Directory of Open Access Journals (Sweden)

    Machireddy Gnaneswara Reddy

    2014-01-01

    Full Text Available A two-dimensional mathematical model is presented for the laminar heat and mass transfer of an electrically-conducting, viscous and Joule (Ohmic heating fluid over an inclined radiate isothermal permeable surface in the presence of the variable thermal conductivity, thermophoresis and heat generation. The Talbot- Cheng-Scheffer-Willis formulation (1980 is used to introduce a thermophoretic coefficient into the concentration boundary layer equation. The governing partial differential equations are non-dimensionalized and transformed into a system of nonlinear ordinary differential similarity equations, in a single independent variable . The resulting coupled nonlinear equations are solved under appropriate transformed boundary conditions using the Runge-Kutta fourth order along with shooting method. Comparisons with previously published work are performed and the results are found to be in very good agreement. Computations are performed for a wide range of the governing flow parameters, viz., magnetic field parameter, thermophoretic coefficient (a function of Knudsen number, Eckert number (viscous heating effect, angle of inclination, thermal conductivity parameter, heat generation parameter and Schmidt number. The present problem finds applications in optical fiber fabrication, aerosol filter precipitators, particle deposition on hydronautical blades, semiconductor wafer design, thermo-electronics and magnetohydrodynamic energy generators.

  16. Dissipation function in a magnetic field (Review)

    Science.gov (United States)

    Gurevich, V. L.

    2015-07-01

    The dissipation function is introduced to describe the behavior of the system of harmonic oscillations interacting with the environment (thermostat). This is a quadratic function of generalized velocities, which determines the rate of dissipation of the mechanical energy in the system. It was assumed earlier (Landau, Lifshitz) that the dissipation function can be introduced only in the absence of magnetic field. In the present review based on the author's studies, it has been shown how the dissipation function can be introduced in the presence of a magnetic field B. In a magnetic field, both dissipative and nondissipative responses arise as a response to perturbation and are expressed in terms of kinetic coefficients. The matrix of nondissipative coefficients can be obtained to determine an additional term formally including it into the equations of motion, which still satisfy the energy conservation law. Then, the dissipative part of the matrix can be considered in exactly the same way as without magnetic field, i.e., it defines the dissipation loss. As examples, the propagation and absorption of ultrasound in a metal or a semiconductor in a magnetic field have been considered using two methods: (i) the method based on the phenomenological theory using the equations of the theory of elasticity and (ii) the method based on the microscopic approach by analyzing and solving the kinetic equation. Both examples are used to illustrate the approach with the dissipation function.

  17. Microstructural and mechanical properties of camel longissimus dorsi muscle during roasting, braising and microwave heating.

    Science.gov (United States)

    Yarmand, M S; Nikmaram, P; Djomeh, Z Emam; Homayouni, A

    2013-10-01

    This study was conducted to investigate the effects of various heating methods, including roasting, braising and microwave heating, on mechanical properties and microstructure of longissimus dorsi (LD) muscle of the camel. Shear value and compression force increased during microwave heating more than roasting and braising. Results obtained from scanning electron microscopy (SEM) showed more damage from roasting than in either braising or microwave heating. Granulation and fragmentation were clear in muscle fibers after roasting. The perimysium membrane of connective tissue was damaged during braising, while roasting left the perimysium membrane largely intact. The mechanical properties and microstructure of muscle can be affected by changes in water content during cooking.

  18. Heat Transfer Analysis for Peristaltic Mechanism in Variable Viscosity Fluid

    Institute of Scientific and Technical Information of China (English)

    T.Hayat; F.M.Abbasi; Awatif A.Hendi

    2011-01-01

    An analysis is carried out for a peristaltic flow of a third-order fluid with heat transfer and variable viscosity when no-slip condition does not hold. Perturbation solution is discussed and a comparative study between the cases of constant and variable viscosities is presented and analyzed.%@@ An analysis is carried out for a peristaltic flow of a third-order fluid with heat transfer and variable viscosity when no-slip condition does not hold.Perturbation solution is discussed and a comparative stuity between the cases of constant and variable viscosities is presented and analyzed.

  19. Mechanical ventilation with heat recovery in arctic climate

    DEFF Research Database (Denmark)

    Kragh, Jesper; Svendsen, Svend

    2005-01-01

    pressure drop. Preheating the inlet air (outdoor air) to a temperature just above 0ºC is typically used to solve the problem. To minimize the energy cost, a more efficient solution to the problem is therefore desirable. In this project a new design of a heat recovery unit has been developed to the low......-energy house in Sisimiut, which is capable of continuously defrosting itself. The disadvantage of the unit is that it is quite big compared with other units. In this paper the new heat recovery unit is described and laboratory measurements are presented showing that the unit is capable of continuously...

  20. Dissipative Boussinesq equations

    CERN Document Server

    Dutykh, D; Dias, Fr\\'{e}d\\'{e}ric; Dutykh, Denys

    2007-01-01

    The classical theory of water waves is based on the theory of inviscid flows. However it is important to include viscous effects in some applications. Two models are proposed to add dissipative effects in the context of the Boussinesq equations, which include the effects of weak dispersion and nonlinearity in a shallow water framework. The dissipative Boussinesq equations are then integrated numerically.

  1. Frictional heat transfer regularity of the fluid film in mechanical seals

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The frictional heat transfer regularity in the mechanical seal system consisting of the rotating ring, the stationary ring, the fluid film in the end faces and the sealed medium was investigated. The primary factors affecting the frictional heat transfer regularity, such as the heat transfer coefficients from the rings to the sealed medium, the frictional heat flux, the frictional heat distribution ratio and so on, were discussed. The equations for calculating the temperature field both in the sealing members and in the fluid film were derived. The coupling analysis of the frictional heat of the fluid film and the thermal deformation of the two end faces of the rings was carried out to obtain the separation angle of the two deformed end faces in consideration of the viscosity change of the fluid film. The results indicate that the frictional heat of the fluid film heavily affects its characteristic and the sealing performance of mechanical seals. The frictional heat changes not only the shape of the gap between the end faces but also the viscosity of the fluid film, and thereupon leads to the increase of the leakage rate. The maximum temperature of the system is at the inner radius of the fluid film, and most of the frictional heat is conducted by the rotating ring. Based on the heat transfer analysis method put forward in this paper, the parameterized design of mechanical seals can be realized to determine the best geometrical parameters and to select the appropriate material of the sealing members.

  2. Influence of Heat Leak on Efficiency at Maximum Power and Its Bounds of Low-dissipation Carnot Heat Engine%热漏对低耗散卡诺热机最大功率下效率及边界的影响

    Institute of Scientific and Technical Information of China (English)

    张艳超; 何济洲

    2014-01-01

    在低耗散卡诺热机模型的基础上,进一步研究热漏对低耗散卡诺热机最大功率下效率及其边界的影响。在类卡诺热机循环条件下,考虑等温膨胀与等温压缩过程中高低温热源之间存在热漏,推导出存在热漏时低耗散卡诺热机最大功率下效率的表达式,并且在对称情况下与经典CA(Curzon-Ahlborn)效率进行比较。发现当不存在热漏时,低耗散卡诺热机最大功率下的效率等于CA效率。当存在热漏时,低耗散卡诺热机最大功率下的效率低于CA效率,并随着热漏的增加而降低。在非对称下得到存在热漏时低耗散卡诺热机最大功率下效率的上下限和可观测范围,并与不同种类实际的热机效率进行比较,结果表明考虑热漏时低耗散卡诺热机的效率及其边界更加符合实际热机的观测值。%Based on the low-dissipation Carnot heat engine model, the influence of heat leak on the efficiency at maximum power and its bounds of low-dissipation Carnot heat engine are further discussed. Under the condition of Carnot-like heat engine cycle, the expressions for the efficiency at maximum power of the quantum dot engine are derived in the presence of heat leak between hot reservoir and cold reservoir of the isothermal expansion and the isothermal compression process, and compared with the classical CA efficiency in the symmetric case. It is found that, when there is no heat leak, the efficiency at maximum power of the low-dissipation Carnot heat engine is equal to the CA efficiency. In the presence of heat leak, the efficiency at maximum power of the low-dissipation Carnot heat engine is lower than the CA efficiency, and decreases with the increases of heat leak. In the case of asymmetric, the upper bound and lower bound of efficiency at maximum power are obtained, and compared with different kinds of actual engine efficiency. The results show that the efficiency at maximum power and its

  3. Asymptotics for dissipative nonlinear equations

    CERN Document Server

    Hayashi, Nakao; Kaikina, Elena I; Shishmarev, Ilya A

    2006-01-01

    Many of problems of the natural sciences lead to nonlinear partial differential equations. However, only a few of them have succeeded in being solved explicitly. Therefore different methods of qualitative analysis such as the asymptotic methods play a very important role. This is the first book in the world literature giving a systematic development of a general asymptotic theory for nonlinear partial differential equations with dissipation. Many typical well-known equations are considered as examples, such as: nonlinear heat equation, KdVB equation, nonlinear damped wave equation, Landau-Ginzburg equation, Sobolev type equations, systems of equations of Boussinesq, Navier-Stokes and others.

  4. Dissipation Assessments During Dynamic Very High Cycle Fatigue Tests

    OpenAIRE

    2015-01-01

    International audience; This paper presents an experimental device developed to detect and estimate dissipated energy during very high cycle fatigue tests (VHCF) at high loading frequency (20 kHz) and low stress (i.e. far below the yield stress). Intrinsic dissipation is computed using local expressions of the heat diffusion equation and thermal data fields provided by an infrared focal plane array camera. The results obtained from tests performed on pure copper specimens show that dissipated...

  5. The dissipation of solar wind turbulent fluctuations at electron scales

    CERN Document Server

    Camporeale, Enrico

    2011-01-01

    We present two-dimensional fully-kinetic Particle-in-Cell simulations of decaying electromagnetic fluctuations. The computational box is such that wavelengths ranging from electron to ion gyroradii are resolved. The parameters used are realistic for the solar wind, and the ion to electron mass ratio is physical. The understanding of the dissipation of turbulent fluctuations at small scales is thought to be a crucial mechanism for solar wind acceleration and coronal heating. The computational results suggest that a power law cascade of magnetic fluctuations could be sustained up to scales of the electron Larmor radius and smaller. We analyse the simulation results in the light of the Vlasov linear theory, and we comment on the particle heating. The dispersion curves of lightly damped modes in this regime suggest that a linear mechanism could be responsible for the observed steepening of power spectra at electron scales, but a straightforward identification of turbulent fluctuations as an ensemble of linear mod...

  6. Shoreline dissipation of infragravity waves

    NARCIS (Netherlands)

    de Bakker, A.T.M.; Tissier, M.F.S.; Ruessink, B.G.

    2014-01-01

    Infragravity waves (0.005–0.05 Hz) have recently been observed to dissipate a large part of their energy in the short-wave (0.05–1 Hz) surf zone, however, the underlying mechanism is not well understood. Here, we analyse two new field data sets of near-bed pressure and velocity at up to 13 cross-sho

  7. Shoreline dissipation of infragravity waves

    NARCIS (Netherlands)

    de Bakker, A.T.M.|info:eu-repo/dai/nl/371573734; Tissier, M.F.S.|info:eu-repo/dai/nl/36447887X; Ruessink, B.G.|info:eu-repo/dai/nl/169093360

    2014-01-01

    Infragravity waves (0.005–0.05 Hz) have recently been observed to dissipate a large part of their energy in the short-wave (0.05–1 Hz) surf zone, however, the underlying mechanism is not well understood. Here, we analyse two new field data sets of near-bed pressure and velocity at up to 13 cross-sho

  8. Influence of thermophoresis and Soret–Dufour on magnetohydrodynamic heat and mass transfer over a non-isothermal wedge with thermal radiation and Ohmic dissipation

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Dulal, E-mail: dulalp123@rediffmail.com [Department of Mathematics, Siksha-Bhavana, Visva-Bharati University, Santiniketan, West Bengal-731235 (India); Mondal, Hiranmoy, E-mail: hiranmoymondal@yahoo.co.in [Department of Mathematics, Bengal Institute of Technology and Management, Santiniketan, West Bengal-731236 (India)

    2013-04-15

    The present paper deals with the thermophoresis particle deposition and Soret–Dufour effects on the convective flow, heat and mass transfer characteristics of an incompressible Newtonian electrically conducting fluid having temperature-dependent viscosity over a non-isothermal wedge in the presence of thermal radiation. The governing boundary layer equations are written into a dimensionless form by similarity transformations. The transformed coupled non-linear ordinary differential equations are solved numerically. The effects of various important physical parameters are analyzed in detail. It is found that the skin friction coefficient and the local Sherwood number increase with increase in the values of thermal radiation parameter in the presence of heat generation/absorption whereas reverse effect is seen on the local Nusselt number. -- Highlights: ► The effect of thermophoresis of particle deposition is to increase the concentration. ► Temperature in the thermal boundary layer decreases with increasing Soret number. ► Skin friction increases with increase in the thermal radiation and heat generation/absorption. ► Local Sherwood number increases with increase in the thermal radiation and heat generation/absorption. ► Local Nusselt number decreases with increase in the thermal radiation.

  9. Boiling Heat Transfer Mechanisms in Earth and Low Gravity: Boundary Condition and Heater Aspect Ratio Effects

    Science.gov (United States)

    Kim, Jungho

    2004-01-01

    Boiling is a complex phenomenon where hydrodynamics, heat transfer, mass transfer, and interfacial phenomena are tightly interwoven. An understanding of boiling and critical heat flux in microgravity environments is of importance to space based hardware and processes such as heat exchange, cryogenic fuel storage and transportation, electronic cooling, and material processing due to the large amounts of heat that can be removed with relatively little increase in temperature. Although research in this area has been performed in the past four decades, the mechanisms by which heat is removed from surfaces in microgravity are still unclear. Recently, time and space resolved heat transfer data were obtained in both earth and low gravity environments using an array of microheaters varying in size between 100 microns to 700 microns. These heaters were operated in both constant temperature as well as constant heat flux mode. Heat transfer under nucleating bubbles in earth gravity were directly measured using a microheater array with 100 m resolution operated in constant temperature mode with low and high subcooled bulk liquid along with images from below and from the side. The individual bubble departure diameter and energy transfer were larger with low subcooling but the departure frequency increased at high subcooling, resulting in higher overall heat transfer. The bubble growth for both subcoolings was primarily due to energy transfer from the superheated liquid layer relatively little was due to wall heat transfer during the bubble growth process. Oscillating bubbles and sliding bubbles were also observed in highly subcooled boiling. Transient conduction and/or microconvection was the dominant heat transfer mechanism in the above cases. A transient conduction model was developed and compared with the experimental data with good agreement. Data was also obtained with the heater array operated in a constant heat flux mode and measuring the temperature distribution across

  10. Improvement of the organizational-economic mechanism of developing heat supply city system

    Directory of Open Access Journals (Sweden)

    Doroshenko, Valentina

    2012-05-01

    Full Text Available The article examines a complex of social and economic problems that accompany the development of heat supply systems in Ukraine. It is determined that the negative effects of district heating in the cities and towns are caused by the failure of current management mechanism to ensure the solution of basic problems and implement the heat supply system as life support system. The main goal of study was the development of theoretical, methodological and methodical principles of organizational-economic mechanism of development of heat supply system based on the analysis of problems and reserves of its formation and implementation. Application of the systematic approach methodology has allowed to conclude that the effectiveness of heat supply is determined by the interaction of a complex of interrelated and interdependent components that form the theoretical, methodological and methodical basis of its ensuring - concepts, strategies, programs, the mechanism of formation and development of heat supply system. The result of the study was developing of the conceptual foundations of improvement of organizational-economic mechanism of heat supply system development, based on the principles of civilized paradigm, methodology to improve its main basic elements - the mechanisms of information, organizational, infrastructural, legal, financial support, tariff setting, energy saving motivation, optimal development of heat supply system so as to satisfy individual requirements of consumers with high effectiveness as a combination of social, economic, energy, environmental effects.

  11. Burgulence and Alfv\\'en waves heating mechanism of solar corona

    CERN Document Server

    Mishonov, T M

    2006-01-01

    Heating of magnetized turbulent plasma is calculated in the framework of Burgers turbulence [A.M. Polyakov, Phys. Rev. E. 52, 6183, (1995)]. There is calculated the energy flux of Alfv\\'en waves along the magnetic field. The Alfven waves are considered as intermediary between the turbulent energy and the heat. The derived results are related to wave channel of the heating of solar corona. After incorporating dissipation of convective plasma waves instabilities [G.D. Chagelishvili, R.G. Chanishvili, T.S. Hristov, and J.G. Lominadze, Phys. Rev. E 47, 366 (1993)] and [A.D. Rogava, S.M. Mahajan, G. Bodo, and S. Marsaglia, Astronomy & Astrophysics, 399, 421-431 (2003)] the suggested model of heating can be applied to analysis of the missing viscosity of accretion discs and to reveal why the quasars are the most powerful sources of light in the universe. We suppose that applied Langevin-Burgers approach to turbulence can be helpful for other systems where we have intensive interaction between a stochastic turbu...

  12. The mechanism of heat-induced damage of endothelial cells and its effect on vital organs

    Directory of Open Access Journals (Sweden)

    Lei SU

    2017-06-01

    Full Text Available As an important organ of the human body, vascular endothelial cells (VECs play a vital role in heat stress-induced tissue damage. Its integrity not only serves as a barrier for maintaining vascular permeability but also has major impact on cellular structure and function during acute phase response to heat stress. In heat stroke, a series of acute and complicated pathophysiological changes, including microcirculation change, damage VECs and thereby induce or aggravate multiple organ dysfunction syndrome (MODS. Meanwhile, studies have shown that, during heat stroke, VECs are the major responding cells and one of the most common cells that experience morphological and functional changes. Therefore, VECs damage might be an important mechanism involved in heat stroke. This article reviews the mechanism of heat-induced damage of VECs and its effect on vital organs. DOI: 10.11855/j.issn.0577-7402.2017.04.01

  13. Analytical Study on Thermal and Mechanical Design of Printed Circuit Heat Exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Su-Jong [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sabharwall, Piyush [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kim, Eung-Soo [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2013-09-01

    The analytical methodologies for the thermal design, mechanical design and cost estimation of printed circuit heat exchanger are presented in this study. In this study, three flow arrangements of parallel flow, countercurrent flow and crossflow are taken into account. For each flow arrangement, the analytical solution of temperature profile of heat exchanger is introduced. The size and cost of printed circuit heat exchangers for advanced small modular reactors, which employ various coolants such as sodium, molten salts, helium, and water, are also presented.

  14. Thermal protection mechanism of heat pipe in leading edge under hypersonic conditions

    OpenAIRE

    Peng Wengen; He Yurong; Wang Xinzhi; Zhu Jiaqi; Han Jiecai

    2015-01-01

    Sharp local structure, like the leading edge of hypersonic aircraft, confronts a severe aerodynamic heating environment at a Mach number greater than 5. To eliminate the danger of a material failure, a semi-active thermal protection system is proposed by integrating a metallic heat pipe into the structure of the leading edge. An analytical heat-balance model is established from traditional aerodynamic theories, and then thermal and mechanical characteristics of the structure are studied at Ma...

  15. Study of the relation between evaluation of strain distribution on superconducting coil and mechanical heat generation

    Science.gov (United States)

    Seino, Hiroshi; Kurihara, Minoru; Herai, Toshiki; Suzuki, Eiji

    2002-10-01

    In the superconducting Maglev system, on-board superconducting magnets (SCMs) are vibrated at various frequencies according to the train speed by the electromagnetic disturbance which is caused when the train passes over ground coils. Then a mechanical loss is generated inside the inner vessel in the SCM. This phenomenon increases the heat load on the cryogenic equipment in the SCM. It has been surmised that the mechanical heat inside the inner vessel is generated by the frictional heat caused by the relative microscopic slips between fasteners and superconducting coil (SC coil). Nevertheless, heat generation mechanisms inside the inner vessel have not been studied sufficiently. In this study, we suggest a hypothesis that the frictional heat generated by the relative microscopic slips between fasteners and a SC coil will be indicated if the calculated strain distribution on the SC coil is evaluated. The results of this study supported this hypothesis.

  16. Mechanisms of Aerobic Performance Impairment With Heat Stress and Dehydration

    Science.gov (United States)

    2010-08-01

    uptake ( VO2max ), which leads to higher relative exercise intensity and an exponential decline in aerobic performance at any given exercise workload...reductions, which combine to accentuate cardiovascular strain and reduce VO2max . Importantly, the negative performance consequences of dehydration...environmental heat stress on aerobic exercise “performance” has been evaluated using time to exhaustion (TTE) tests (incremental or constant work rate) and

  17. The heat transfer mechanisms in fluidized beds; Laemmoensiirtomekanismit leijukerroksessa

    Energy Technology Data Exchange (ETDEWEB)

    Fogelholm, C.J.; Blomster, A.M.; Kojola, H. [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Energy Technology and Environmental Protection

    1997-10-01

    The goal of the research project is to improve the accuracy of the heat transfer correlation in circulating fluidized beds and to define how the heat transfer is distributed in radiation and convection in the different parts of the fluidized bed. This will be carried out by studying the behaviour and the heat transfer of the fluidized bed in the boundary layer near the wall. During the project the concentration and the velocity of the sand particles are measured. The particle concentration and the particle velocity are measured by an image analysis system. A video camera and a Super VHS recorder are used to capture live images from the bed. The images are digitized and stored on a PC. The measured particle concentration was at highest slightly over 20 % on the straight wall. As expected, the velocity of the fluidizing gas had the most important role on the particle concentration. The experimental studies of the particle velocity were started last autumn 1996. The velocities of the particles were measured by using a multiple exposure technique. Afterwards the images captured were analyzed by performing a Fourier transform analysis. So far the results have been encouraging and the analyzing work will be ended this spring. (orig.)

  18. Molecular dissipation in the nonlinear eddy viscosity in the Navier-Stokes equations: modelling of accretion discs

    CERN Document Server

    Lanzafame, Giuseppe

    2012-01-01

    Physical damping, regarding the nonlinear Navier-Stokes viscous flow dynamics, refers to a tensorial turbulent dissipation term, attributed to adjacent moving macroscopic flow components. Mutual dissipation among these parts of fluid is described by a braking term in the momentum equation together with a heating term in the energy equation, both responsible of the damping of the momentum variation and of the viscous conversion of mechanical energy into heat. A macroscopic mixing scale length is currently the only characteristic length needed in the nonlinear modelling of viscous fluid dynamics describing the nonlinear eddy viscosity through the kinematic viscosity coefficient in the viscous stress tensor, without any reference to the chemical composition and to the atomic dimensions. Therefore, in this paper, we write a new formulation for the kinematic viscosity coefficient to the turbulent viscous physical dissipation in the Navier-Stokes equations, where molecular parameters are also included. Results of 2...

  19. The mechanisms of electrical heating for the recovery of bitumen from oil sands

    Energy Technology Data Exchange (ETDEWEB)

    McGee, B.C.W. [McMillan-McGee Corp., Edmonton, AB (Canada); Vermeulen, F.E. [Alberta Univ., Edmonton, AB (Canada)

    2004-07-01

    This paper described the Electro-Thermal Dynamic Stripping Process (ET-DSP), a thermal recovery process in which oil sands are electrically heated. This technology has evolved since the 1970s as an alternative to steam assisted gravity drainage (SAGD) and surface mining of Alberta's oil sands. The heat and mass transfer mechanisms associated with electrical heating were examined along with the gravity forces to better understand how the heated bitumen is recovered from the oil sand. Initially, all fluids are immobile. Heat is created in the oil sand as a current flows through the connate water. This results in a pressure and temperature distribution that is characteristic to an electrical heating process. The electrical heating process changes as the temperature of the oil sand increases and as the bitumen is produced. The heat, mass and electromagnetic fields are strongly coupled and are in a transient state throughout the recovery process. This paper presented the main mechanism for electrical heating in terms of equations. A 3-dimensional quasi-harmonic finite element electromagnetic model was coupled to a mass and energy equation and solved in time. A thermal recovery strategy was then presented in terms of electrode spacing, duration of heating, energy supply and ideal operating conditions.

  20. Mechanisms of direct detonation initiation via thermal explosion of radiatively heated gas-particles layer

    Science.gov (United States)

    Efremov, V. P.; Ivanov, M. F.; Kiverin, A. D.; Yakovenko, I. S.

    Conceptual approach of detonation wave direct initiation by external radiative heating of microparticles locally suspended in flammable gaseous mixture is proposed. Combustion waves and detonation initiation mechanisms in the congestion regions of microparticles heated by radiation are studied numerically. Necessary criteria on geometrical scales of gas-particles layer and spatial uniformity of particles distribution for successful detonation initiation are formulated.

  1. Thermodynamic dissipation theory for the origin of life

    Science.gov (United States)

    Michaelian, K.

    2011-03-01

    Understanding the thermodynamic function of life may shed light on its origin. Life, as are all irreversible processes, is contingent on entropy production. Entropy production is a measure of the rate of the tendency of Nature to explore available microstates. The most important irreversible process generating entropy in the biosphere and, thus, facilitating this exploration, is the absorption and transformation of sunlight into heat. Here we hypothesize that life began, and persists today, as a catalyst for the absorption and dissipation of sunlight on the surface of Archean seas. The resulting heat could then be efficiently harvested by other irreversible processes such as the water cycle, hurricanes, and ocean and wind currents. RNA and DNA are the most efficient of all known molecules for absorbing the intense ultraviolet light that penetrated the dense early atmosphere and are remarkably rapid in transforming this light into heat in the presence of liquid water. From this perspective, the origin and evolution of life, inseparable from water and the water cycle, can be understood as resulting from the natural thermodynamic imperative of increasing the entropy production of the Earth in its interaction with its solar environment. A mechanism is proposed for the reproduction of RNA and DNA without the need for enzymes, promoted instead through UV light dissipation and diurnal temperature cycling of the Archean sea-surface.

  2. Heat transfer augmentation in double pipe heat exchanger using mechanical turbulators

    Science.gov (United States)

    Kamboj, Kushal; Singh, Gurjeet; Sharma, Rohit; Panchal, Dilbagh; Hira, Jaspreet

    2017-02-01

    The work presented here focuses on heat transfer augmentation by means of divergent-convergent spring turbulator (the enhancement device). Aim of the present work is to find such an optimum pitch at which the augmentation in heat transfer is maximum and the amount of power consumption is minimum, so that an economic design can be created with maximum thermal efficiency. So, the concept of pitch variation is introduced, which is defined as the horizontal distance between two consecutive turbulators. It describes that, the lesser is the pitch the more number of turbulators that can be inserted in inner pipe of double pipe heat exchanger, hence more will be the friction factor. This physics increases convective ability of the heat transfer process from the surface of inner pipe. There is a certain limit to which a pitch can be decreased, lesser the pitch the more the pressure drop and friction factor and hence the more will be the pumping power requirement to maintain a desired mass flow rate of hot water. Analysis of thermal factors such as Nusselts number, friction factor, with different pitches of divergent convergent spring turbulators of circular cross-section 15, 10, and 5 cm at Reynolds's number ranging between 9000 < Re < 40,000 is done graphically.

  3. Simulation of laser induced thermo-mechanical changes in tissue using RF heating method

    Science.gov (United States)

    Protsenko, Dmitriy E.; Zemek, Allison; Wong, Brian J. F.

    2007-02-01

    Successful application of laser cartilage reshaping (LCR) for the in-situ treatment of structural deformities in the nasal septum, external ear and trachea requires a better understanding of the evolution of cartilage mechanical properties with temperature. We develop a method of Radio Frequency (RF) heating for reliable evaluation of mechanical changes in septal cartilage undergoing heating and used obtained data to model the mechanical changes in cartilage at steady state following laser heating. Cartilage specimens harvested from porcine septum were secured between two flat parallel copper platens connected to a surgical radiofrequency source. The current was user-selectable and controlled to achieve any desired heating rate mimicking heating rate obtained during laser irradiation. Surface and internal temperatures were monitored by an IR camera and embedding a small electrically insulated thermocouple inside the specimen. Cylindrical and rectangular samples were fashioned from the heated specimens and their equilibrium elastic modulus was measured in a step unconfined compression and tension experiments, respectively. Functional dependencies of the elastic modulus and maximum temperature were interpolated from the measurements. The calculated elastic modulus profiles were incorporated into a numerical model of uniaxial unconfined compression and tension of laser irradiated samples. The reaction force to a 0.1 strain was calculated and compared with the reaction force obtained in analogous mechanical measurements experiment. The results of the numerical simulation of uniaxial compression of laser heated samples demonstrate good correlation with experimentally obtained reaction force. Generalization of this methodology to incorporate orthogonal mechanical properties may aid in optimizing clinical LCR procedures.

  4. The Mechanism and Influencing Factors of Corrosion in a Gas Heating-Furnace

    Institute of Scientific and Technical Information of China (English)

    YANG Zhi-gang; ZHANG Ning-sheng; WU Xin-min

    2005-01-01

    Natural gas should be heated and throttled for the purpose of purification and transportation at the first gas production factory of the Changqing field. The safe use and heat-transfer efficiency of a heating-furnace affect the safe and smooth production of natural gas directly. At gas collecting stations now, no measures of anticorrosion have been adopted in heating furnaces which erode and scale badly.In order to solve the corrosive problem of heating-furnaces, prolong operating life of heating-furnaces,assure safe and smooth production of natural gas, the mechanism and influencing factors of corrosion of the heating-furnace were analyzed and some corresponding measures were brought forward based on a field investigation of usage behavior and present operational status of heating-furnaces at the first gas production factory. The results show that the corrosive ion and soluble CO2 and O2 in water erode metal badly at the condition of being heated. Corrosion of a heating-furnace are mostly oxygen corrosion, corrosive ion corrosion, acid corrosion, iron encrustation corrosion, dry and wet interface corrosion, caustic corrosion, etc; The influencing factors of corrosion mainly include soluble O2 and CO2 in water, pH value, heat loading, corrosive ion, soluble solid (salinity) and non-flowing character of water, etc.

  5. Energy Dissipation in Molecular Systems

    CERN Document Server

    Tramer, André; Lahmani, Fran oise

    2005-01-01

    Energy Dissipation in Molecular Systems analyzes experimental data on the redistribution and dissipation of energy injected into molecular systems by radiation or charged particles. These processes, competing with such practically important relaxation channels as chemical reaction or stimulated emission (laser action), are the primary focus in this monograph. Among other topics, the book treats vibrational redistribution and electronic relaxation in isolated molecules and the effects of inter-molecular interactions (collisions, complex formation, solvent effects) on the relaxation paths. Primary photo-chemical processes (such as isomerization, proton or hydrogen-atom transfer, electron transfer and ionization) are also treated as particular cases of vibrational or electronic relaxation. Only a basic knowledge of quantum mechanics and spectroscopy is assumed and calculations are kept to a strict minimum, making the book more accessible to students.

  6. Mechanisms of aerobic performance impairment with heat stress and dehydration.

    Science.gov (United States)

    Cheuvront, Samuel N; Kenefick, Robert W; Montain, Scott J; Sawka, Michael N

    2010-12-01

    Environmental heat stress can challenge the limits of human cardiovascular and temperature regulation, body fluid balance, and thus aerobic performance. This minireview proposes that the cardiovascular adjustments accompanying high skin temperatures (T(sk)), alone or in combination with high core body temperatures (T(c)), provide a primary explanation for impaired aerobic exercise performance in warm-hot environments. The independent (T(sk)) and combined (T(sk) + T(c)) effects of hyperthermia reduce maximal oxygen uptake (Vo(2max)), which leads to higher relative exercise intensity and an exponential decline in aerobic performance at any given exercise workload. Greater relative exercise intensity increases cardiovascular strain, which is a prominent mediator of rated perceived exertion. As a consequence, incremental or constant-rate exercise is more difficult to sustain (earlier fatigue) or requires a slowing of self-paced exercise to achieve a similar sensation of effort. It is proposed that high T(sk) and T(c) impair aerobic performance in tandem primarily through elevated cardiovascular strain, rather than a deterioration in central nervous system (CNS) function or skeletal muscle metabolism. Evaporative sweating is the principal means of heat loss in warm-hot environments where sweat losses frequently exceed fluid intakes. When dehydration exceeds 3% of total body water (2% of body mass) then aerobic performance is consistently impaired independent and additive to heat stress. Dehydration augments hyperthermia and plasma volume reductions, which combine to accentuate cardiovascular strain and reduce Vo(2max). Importantly, the negative performance consequences of dehydration worsen as T(sk) increases.

  7. Investigation of Mechanical Loss Components and Heat Transfer in an Axial-Flux PM Machine

    OpenAIRE

    Wrobel, Rafal; Vaniel, Gyula; Copeland, Colin; Duda, Tomasz; Staton, David; Mellor, Phil

    2015-01-01

    This paper investigates components of mechanical loss together with heat transfer effects in an axial-flux permanent-magnet motor. The mechanical loss components generated within electrical machines are well known; however, their prediction or derivation has not been widely reported in the literature. These, together with the electromagnetic loss sources and heat transfer effects, are crucial and must be accounted for when considering high-power-density, high-speed, and/or compact machine des...

  8. Fluid Mechanics and Heat Transfer in Transitional Boundary Layers

    Science.gov (United States)

    Wang, Ting

    2007-01-01

    Experiments have been performed to investigate the effects of elevated free-stream turbulence and streamwise acceleration on flow and thermal structures in transitional boundary layers. The free-stream turbulence ranges from 0.5 to 6.4% and the streamwise acceleration ranges from K = 0 to 0.8 x 10(exp -6). The onset of transition, transition length and the turbulent spot formation rate are determined. The statistical results and conditionally sampled results of th streamwise and cross-stream velocity fluctuations, temperature fluctuations, Reynolds stress and Reynolds heat fluxes are presented.

  9. Ohmic Dissipation in Mini-Neptunes

    Science.gov (United States)

    Pu, Bonan; Valencia, Diana

    2017-09-01

    In the presence of a magnetic field and weakly ionizing winds, ohmic dissipation is expected to take place in the envelopes of Jovian and lower-mass planets alike. While the process has been investigated on the former, there have been no studies done on mini-Neptunes so far. From structure and thermal evolution models, we determine that the required energy deposition for halting the contraction of mini-Neptunes increases with planetary mass and envelope fraction. Scaled to the insolation power, the ohmic heating needed is small: ∼ {10}-5 orders of magnitude lower than for exo-Jupiters ∼ {10}-2. Conversely, from solving the magnetic induction equation, we find that ohmic energy is dissipated more readily for lower-mass planets and those with larger envelope fractions. Combining these two trends, we find that ohmic dissipation in hot mini-Neptunes is strong enough to inflate their radii (∼ {10}15 W for {T}{eq}=1400 {{K}}). The implication is that the radii of hot mini-Neptunes may be attributed in part to ohmic heating. Thus, there is a trade-off between ohmic dissipation and H/He content for hot mini-Neptunes, adding a new degeneracy for the interpretation of the composition of such planets. In addition, ohmic dissipation would make mini-Neptunes more vulnerable to atmospheric evaporation.

  10. Core-Shell Fibers Electrospun from Phase-Separated Blend Solutions: Fiber Formation Mechanism and Unique Energy Dissipation for Synergistic Fiber Toughness.

    Science.gov (United States)

    Wang, Chi; Hsiue, Ting-Ting

    2017-09-11

    Through single-tube electrospinning, the biodegradable core-shell fibers of poly(3-hydroxybutyrate) (PHB) and poly(d,l-lactic acid) (PDLLA) were obtained from blend solutions with different compositions at a total polymer concentration of 7 wt %. Regardless whether PHB is the major or minor component (PHB/PDLLA = 90/10, 75/25, 50/50, and 25/75 wt. ratio), these phase-separated solutions all yielded core-shell fibers with PHB as core and PDLLA as shell. A new scenario of core-shell fiber formation was proposed on the basis of the relative magnitude of the intrinsic relaxation rate of fluids and external extension rate during electrospinning. The effects of blend compositions on the morphologies of the Taylor cone, whipping jet, and as-spun fibers were investigated. The diameters of core-shell fibers can be tailored by simply varying the PHB/PDLLA ratios. Two scaling laws describing the apparent viscosity (ηo) dependence of the outer fiber diameter (dfo) and core fiber diameter (dfc) were derived. That is, dfo ∼ ηo(0.38) and dfc ∼ ηo(0.86). The microstructures of the as-spun fibers were determined by differential scanning calorimetry, Fourier transform infrared spectroscopy, and synchrotron wide-angle and small-angle X-ray scatterings. Results showed that the PDLLA component was in the amorphous state, and the crystallizability of PHB component remained unchanged, except the amorphous 10/90 fibers electrospun from a miscible solution state. The synergistic mechanical properties of the core-shell fibers were obtained, along with the ductile PDLLA shell enclosing the brittle PHB core. The enhanced toughness was attributed to the fragmentation of the brittle PHB core and necking fracture of the ductile PDLLA shell, which served as an effective route for energy dissipation. Compared with the neat PHB fiber, the 90/10 and 75/25 core-shell fibers possessed larger elastic moduli, which was attributed to the high PHB crystal orientation in their core sections despite

  11. Dissipative soliton comb

    CERN Document Server

    Podivilov, Evgeniy V; Bednyakova, Anastasia E; Fedoruk, Mikhail P; Babin, Sergey A

    2016-01-01

    Dissipative solitons are stable localized coherent structures with linear frequency chirp generated in normal-dispersion mode-locked lasers. The soliton energy in fiber lasers is limited by the Raman effect, but implementation of intracavity feedback for the Stokes wave enables synchronous generation of a coherent Raman dissipative soliton. Here we demonstrate a new approach for generating chirped pulses at new wavelengths by mixing in a highly-nonlinear fiber of two frequency-shifted dissipative solitons, as well as cascaded generation of their clones forming a "dissipative soliton comb" in the frequency domain. We observed up to eight equidistant components in a 400-nm interval demonstrating compressibility from ~10 ps to ~300 fs. This approach, being different from traditional frequency combs, can inspire new developments in fundamental science and applications.

  12. Demons: Maxwell's demon, Szilard's engine and Landauer's erasure-dissipation

    CERN Document Server

    Kish, Laszlo B; Khatri, Sunil P; Wen, He

    2014-01-01

    This talk addressed the following questions in the public debate at HoTPI: (i) energy dissipation limits of switches, memories and control; (ii) whether reversible computers are possible, or does their concept violate thermodynamics; (iii) Szilard's engine, Maxwell's demon and Landauer's principle: corrections to their exposition in the literature; (iv) whether Landauer's erasure-dissipation principle is valid, if the same energy dissipation holds for writing information, or if it is invalid; and (v) whether (non-secure) erasure of memories, or the writing of the same amount of information, dissipates most heat.

  13. [Heat-responsive mechanisms in plants revealed by proteomic analysis: A review].

    Science.gov (United States)

    Liu, Jun-ming; Zhao, Qi; Yin, Ze-peng; Xu, Chen-xi; Wang, Quan-hua; Dai, Shao-jun

    2015-08-01

    Heat stress is a major abiotic stress that limits plant growth and productivity. In recent years, proteomic investigations provide more information for understanding the sophisticated heat-responsive molecular mechanism in plants at systematic biological level. The heat-responsive proteomic patterns in several plants, i. e., model plants (Arabidopsis thaliana), staple food crops (soybean, rice and wheat), heat-tolerant plants (Agrostis stolonifera, Portulaca oleracea, and Carissa spinarum), grapevine, Populus euphratica, Medicago sativa, and Pinellia ternate, were reported. A total of 838 heat-responsive proteins have been identified in these studies. Among them, 534 proteins were induced and the expression of 304 proteins was reduced in plants under heat stress. In this paper, the diverse protein patterns in plants under various heat stress conditions (30-45 °C for 0-10 d) were analyzed integratively. This provided new evidences and clues for further interpreting the signaling and metabolic pathways, e.g., signaling, stress and defense, carbohydrate and energy metabolism, photosynthesis, transcription, protein synthesis and fate, membrane and transport, in heat-responsive networks, and laid a foundation for a holistic understanding of the molecular regulatory mechanism in plants in response to heat stress.

  14. Heat protective role and mechanism of heat shock protein Hpc60

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A cytosolic heat shock protein named Hpc60 has been purified by immunoaffinity chromatography from pea leaves and its function has been examined in vitro. Results show that Hpc60 may suppress the aggregation of luciferase (LUC), protect lactate dehydrogenase (LDH) and ascorbate peroxidase (APX) from thermal inactivation. It also shows that Mg2+, ATP and pH affect the protective function of Hpc60 in different manners.

  15. MECHANICAL CHARACTERIZATION OF HEAT-TREATED ASH WOOD IN RELATION WITH STRUCTURAL TIMBER STANDARDS

    Directory of Open Access Journals (Sweden)

    Simon HANNOUZ

    2015-06-01

    Full Text Available Heat treatment is an attractive method to enhance wood durability, and valorize local hardwood species with natural low durability. Yet no standard allows the certification of such products. This study first aims to observe the influence of heat treatment on the different mechanical properties. The standard mechanical tests; bending, tension parallel and perpendicular to grain, compression parallel and perpendicular to grain and shear, have been performed on native and heat-treated woods samples. The measurements are then compared to values of EN 338 standard. Results reveal that shear strength is the property most affected by heat treatment and that the modulus of elasticity perpendicular to grain is increased. The values given by EN 338 standard are generally safe with the exception of shear strength which is underestimated by current relationships. It is suggested that new relationships have to be provided for heat-treated wood, taking into account the loss of shear resistance.

  16. Study of Heat Dissipation of the Power Transformer with Nano Oil-based Magnetic Fluid%纳米磁液在电力变压器中散热效果的研究

    Institute of Scientific and Technical Information of China (English)

    王信平; 郑敏华

    2015-01-01

    Oil-immersed power transformer is one of important electric power equipment in power supply and distribution system of the industrial and mining enterprises and civil building. Because the gap between different parts in the transformer oil tank has the effect of cooling and heat dissipation , the performance of the transformer depends on the oil to a large extent. The stable transformer oil-based magnetic liquid was made through adding about 10% ferromagnetic particles by surfactant packages with nanoscale to the transformer oil in this study. The results showed that nano oil-based magnetic fluid can significantly improve the heat dissipation capability of transformer oil, reduce the volume, lower the cost and power loss, improve the working efficiency based on without changing the insulation performance and the physical and chemical properties of transformer oil.%油浸式电力变压器是工矿企业与民用建筑供配电系统中的重要电力设备之一,变压器油充满油箱内各部件之间的间隙起到冷却和散热的作用,因此油的好坏很大程度上也决定了变压器的性能。通过在变压器油中添加10%左右纳米级的经表面活性剂包裹的铁磁性微粒制成稳定的变压器油基磁性液体。实验表明:在不改变变压器油的绝缘性能和理化性能的基础上,能明显提高变压器油的散热效果,减少体积,降低成本,降低电能损耗,提高工效。

  17. Analysis of the Thermal Characteristics of Lithium Battery Model and the Heat Dissipation Characteristics%锂电池热特性及散热特性分析

    Institute of Scientific and Technical Information of China (English)

    张高胜; 丁晓红; 周吉

    2015-01-01

    It is very necessary to set the method to estimate internal temperature of the lithium battery when making lithium battery.The main problems of the battery module are:keep consistent constant temperature between single battery of the battery module,avoid reaching the peak temperature required by the battery itself,causing the worsening of battery performance and safety issue.Through single battery electrochemistry reaction to estimate heat generation rate of battery power,in order to achieve this aim,taking the charging and discharging experiment to obtain the characteristic parameter in the discharging process.Test was conducted under constant temperature,simulation setting constant temperature,natural convection.Through thermal model calculate heat power.Then verify the valid of the thermal model and take the model for simple thermal analysis,conclude that increasing the air convection coefficient can reduce the temperature obviously,which laid the foundation for later heat analysis.%在制造锂电池时,设定方法来估算锂电池内部温度是十分必要的。电池模块解决的主要问题是:保持电池模块内单体电池之间一致恒定的温度,避免达到电池本身所要求的温度峰值,引起电池性能的恶化及安全问题。通过单体电池的电化学反应来估算电池的热产生率,为实现这一目的,进行充放电实验来获得电池放电过程中的特性参数。测试是在恒温下进行,模拟仿真设置条件为恒温,自然对流。热产生率是通过热模型方程进行计算的。随后证实热模型的有效性,并将该模型进行简单的散热分析,得出增大空气对流系数可以明显降低温度,这为以后的散热分析奠定了基础。

  18. Control of distributed heat transfer mechanisms in membrane distillation plants

    KAUST Repository

    Laleg-Kirati, Taous-Meriem

    2017-01-05

    Various examples are provided that are related to boundary control in membrane distillation (MD) processes. In one example, a system includes a membrane distillation (MD) process comprising a feed side and a permeate side separated by a membrane boundary layer; and processing circuitry configured to control a water production rate of the MD process based at least in part upon a distributed heat transfer across the membrane boundary layer. In another example, a method includes determining a plurality of estimated temperature states of a membrane boundary layer separating a feed side and a permeate side of a membrane distillation (MD) process; and adjusting inlet flow rate or inlet temperature of at least one of the feed side or the permeate side to maintain a difference temperature along the membrane boundary layer about a defined reference temperature based at least in part upon the plurality of estimated temperature states.

  19. A mechanism for deep chromospheric heating during solar flares

    Science.gov (United States)

    Machado, M. E.; Emslie, A. G.; Mauas, P. J.

    1986-01-01

    The role of the negative hydrogen ion, H(-), in the energy balance of the deep solar chromosphere is reexamined and it is found, in contrast with earlier authors, that H(-) is a source of heating at these levels. The response of this region to an ionizing flux of flare-associated UV radiation (1500 to 1900 A) is then addressed: it is found that the excess ionization of Si to Si(+) increases the local electron number density considerably, since most species are largely neutral at deep chromospheric levels. This in turn increases the electron-hydrogen atom association rate, the H(-) abundance, and the rate of absorption of photospheric radiation by this ion. It is found that the excess absorption by this process may lead to a substantial temperature enhancement at temperature minimum levels during flares.

  20. Effects of induction heat treatment on mechanical properties of TiAl-based alloy

    Institute of Scientific and Technical Information of China (English)

    彭超群; 黄伯云; 贺跃辉

    2002-01-01

    The effects of rapid heating cyclic heat treatment on mechanical properties of a TiAl-based alloy (Ti-33Al-3Cr) were studied by means of an induction heating machine. The results show that: 1) fine fully-lamellar microstructure with colony size of about 50 μm and lamellar spacing of about 0.12 μm can be obtained; 2) the compression mechanical properties can be improved to a large extent and the best comprehensive compression mechanical properties can reach the yield stress 745 MPa, the large flow stress 1 672 MPa and the compression ratio 19.4%; and 3) the compression fracture at room temperature after induction heat treatment and aging is still typical cleavage fracture.

  1. An estimate of energy dissipation due to soil-moisture hysteresis

    KAUST Repository

    McNamara, H.

    2014-01-01

    Processes of infiltration, transport, and outflow in unsaturated soil necessarily involve the dissipation of energy through various processes. Accounting for these energetic processes can contribute to modeling hydrological and ecological systems. The well-documented hysteretic relationship between matric potential and moisture content in soil suggests that one such mechanism of energy dissipation is associated with the cycling between wetting and drying processes, but it is challenging to estimate the magnitude of the effect in situ. The Preisach model, a generalization of the Independent Domain model, allows hysteresis effects to be incorporated into dynamical systems of differential equations. Building on earlier work using such systems with field data from the south-west of Ireland, this work estimates the average rate of hysteretic energy dissipation. Through some straightforward assumptions, the magnitude of this rate is found to be of O(10-5) W m-3. Key Points Hysteresis in soil-water dissipates energy The rate of dissipation can be estimated directly from saturation data The rate of heating caused is significant ©2013. American Geophysical Union. All Rights Reserved.

  2. Anisotropic dissipation in lattice metamaterials

    Directory of Open Access Journals (Sweden)

    Dimitri Krattiger

    2016-12-01

    Full Text Available Plane wave propagation in an elastic lattice material follows regular patterns as dictated by the nature of the lattice symmetry and the mechanical configuration of the unit cell. A unique feature pertains to the loss of elastodynamic isotropy at frequencies where the wavelength is on the order of the lattice spacing or shorter. Anisotropy may also be realized at lower frequencies with the inclusion of local resonators, especially when designed to exhibit directionally non-uniform connectivity and/or cross-sectional geometry. In this paper, we consider free and driven waves within a plate-like lattice−with and without local resonators−and examine the effects of damping on the isofrequency dispersion curves. We also examine, for free waves, the effects of damping on the frequency-dependent anisotropy of dissipation. Furthermore, we investigate the possibility of engineering the dissipation anisotropy by tuning the directional properties of the prescribed damping. The results demonstrate that uniformly applied damping tends to reduce the intensity of anisotropy in the isofrequency dispersion curves. On the other hand, lattice crystals and metamaterials are shown to provide an excellent platform for direction-dependent dissipation engineering which may be realized by simple changes in the spatial distribution of the damping elements.

  3. Leaf Proteome Analysis Reveals Prospective Drought and Heat Stress Response Mechanisms in Soybean

    Directory of Open Access Journals (Sweden)

    Aayudh Das

    2016-01-01

    Full Text Available Drought and heat are among the major abiotic stresses that affect soybean crops worldwide. During the current investigation, the effect of drought, heat, and drought plus heat stresses was compared in the leaves of two soybean varieties, Surge and Davison, combining 2D-DIGE proteomic data with physiology and biochemical analyses. We demonstrated how 25 differentially expressed photosynthesis-related proteins affect RuBisCO regulation, electron transport, Calvin cycle, and carbon fixation during drought and heat stress. We also observed higher abundance of heat stress-induced EF-Tu protein in Surge. It is possible that EF-Tu might have activated heat tolerance mechanisms in the soybean. Higher level expressions of heat shock-related protein seem to be regulating the heat tolerance mechanisms. This study identifies the differential expression of various abiotic stress-responsive proteins that regulate various molecular processes and signaling cascades. One inevitable outcome from the biochemical and proteomics assays of this study is that increase of ROS levels during drought stress does not show significant changes at the phenotypic level in Davison and this seems to be due to a higher amount of carbonic anhydrase accumulation in the cell which aids the cell to become more resistant to cytotoxic concentrations of H2O2.

  4. Phase change driving mechanism and modeling for heat pipe with porous wick

    Institute of Scientific and Technical Information of China (English)

    LIU Wei; LIU ZhiChun; YANG Kun; TU ZhengKai

    2009-01-01

    According to heat pipe theory,capillary force is the only driving force for the circle of working fluid in heat pipe with porous wick.By developing a simulating circuit of liquid and vapor flow in heat pipe with porous wick,this paper presents a new driving mechanism which is from phase change of fluid.Furthermore,by analyzing transport process of working fluid between evaporation and condensation in terfaces,a mathematical model is developed to describe this driving mechanism.Besides,calculating examples are given for heat pipe with water as working fluid to predict its driving force and flow resis tance.By applying the model presented in the paper,thermal design and calculation for heat pipe with porous wick,especially for miniature heat pipe,can be made correctly,and phase change driving me chanism of working fluid can be explained,which thereby leads to a better understanding of heat transfer limitation of heat pipe with porous wick.

  5. Spatiotemporal study of gas heating mechanisms in a radio-frequency electrothermal plasma micro-thruster

    Directory of Open Access Journals (Sweden)

    Amelia eGreig

    2015-10-01

    Full Text Available A spatiotemporal study of neutral gas temperature during the first 100 s of operation for a radio-frequency electrothermal plasma micro-thruster operating on nitrogen at 60 W and 1.5 Torr is performed to identify the heating mechanisms involved. Neutral gas temperature is estimated from rovibrational band fitting of the nitrogen second positive system. A set of baffles are used to restrict the optical image and separate the heating mechanisms occurring in the central bulk discharge region and near the thruster walls.For each spatial region there are three distinct gas heating mechanisms being fast heating from ion-neutral collisions with timescales of tens of milliseconds, intermediate heating with timescales of 10 s from ion bombardment on the inner thruster tube surface creating wall heating, and slow heating with timescales of 100 s from gradual warming of the entire thruster housing. The results are discussed in relation to optimising the thermal properties of future thruster designs.

  6. Packed bed heat storage: Continuum mechanics model and validation

    Science.gov (United States)

    Knödler, Philipp; Dreißigacker, Volker; Zunft, Stefan

    2016-05-01

    Thermal energy storage (TES) systems are key elements for various types of new power plant concepts. As possible cost-effective storage inventory option, packed beds of miscellaneous material come into consideration. However, high technical risks arise due to thermal expansion and shrinking of the packed bed's particles during cyclic thermal operation, possibly leading to material failure. Therefore, suitable tools for designing the heat storage system are mandatory. While particle discrete models offer detailed simulation results, the computing time for large scale applications is inefficient. In contrast, continuous models offer time-efficient simulation results but are in need of effective packed bed parameters. This work focuses on providing insight into some basic methods and tools on how to obtain such parameters and on how they are implemented into a continuum model. In this context, a particle discrete model as well as a test rig for carrying out uniaxial compression tests (UCT) is introduced. Performing of experimental validation tests indicate good agreement with simulated UCT results. In this process, effective parameters required for a continuous packed bed model were identified and used for continuum simulation. This approach is validated by comparing the simulated results with experimental data from another test rig. The presented method significantly simplifies subsequent design studies.

  7. Constructal multidisciplinary optimization of electromagnet based on entransy dissipation minimization

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Based on entransy dissipation, the mean temperature difference of solenoid (electromagnet) with high thermal conductivity material inserted is deduced, which can be taken as the fundament for heat transfer optimization using the extremum principle of entransy dissipation. Then, the electromagnet working at steady state (constant magnetic field, constant heat generating rate per unit volume) is optimized for entransy dissipation minimization (i.e. mean temperature difference minimization) with and without volume constraint. Besides, the effect of high thermal conductivity material on the magnetic field is analyzed, and the minimum mean temperature versus volume and magnetic induction characteristic are also studied.

  8. MHD Flow and Heat Transfer of a Generalized Burgers’ Fluid Due to an Exponential Accelerating Plate with Effects of the Second Order Slip and Viscous Dissipation

    Science.gov (United States)

    Zhang, Yan; Zhao, Hao-Jie; Bai, Yu

    2017-06-01

    In classical study on generalized viscoelastic fluid, the momentum equation was derived by considering the fractional constitutive model, while the energy equation was ignored its effect. This paper presents an investigation for the magnetohydrodynamic (MHD) flow and heat transfer of an incompressible generalized Burgers’ fluid due to an exponential accelerating plate with the effect of the second order velocity slip. The energy equation and momentum equation are coupled by the fractional Burgers’ fluid constitutive model. Numerical solutions for velocity, temperature and shear stress are obtained using the modified implicit finite difference method combined with the G1-algorithm, whose validity is confirmed by the comparison with the analytical solution. Our results show that the influences of the fractional parameters α and β on the flow are opposite each other, which is just like the effects of the two parameters on the temperature. Moreover, the impact trends of the relaxation time λ 1 and retardation time λ 3 on the velocity are opposite each other. Increasing the boundary parameter will promote the temperature, but has little effect on the temperature boundary layer thickness. Supported by the National Natural Science Foundations of China under Grant Nos. 21576023, 51406008, and the National Key Research Program of China under Grant Nos. 2016YFC0700601, 2016YFC0700603, and 2016YFE0115500

  9. A Full Eulerian Vlasov-Maxwell Study of Turbulent Dynamics and Dissipation

    Science.gov (United States)

    TenBarge, J. M.; Juno, J.; Hakim, A.

    2016-12-01

    The development of a detailed understanding of turbulence in magnetized plasmas has been a long standing goal of the broader scientific community, both as a fundamental physics process and because of its applicability to a wide variety of phenomena. Turbulence in a magnetized plasma is the primary mechanism responsible for transforming energy at large injection scales into small-scale motions, which are ultimately dissipated as heat in systems such as the solar corona and wind. At large scales, the turbulence is well described by fluid models of the plasma; however, understanding the processes responsible for heating a weakly collisional plasma such as the solar wind requires a kinetic description. We present the first fully kinetic Eulerian Vlasov-Maxwell study of turbulence using the Gkeyll simulation code. We focus on the pristine distribution function dynamics that are possible with the Eulerian approach. We also present the signatures and form of dissipation as diagnosed via field-particle correlation functions.

  10. Effect of heat treatments on precipitate microstructure and mechanical properties of CuCrZr alloy

    DEFF Research Database (Denmark)

    Singh, B.N; Edwards, D.J.; Tähtinen, S.

    2004-01-01

    A number of specimens of CuCrZr alloy was prime aged and then overaged at 600oC for 1, 2 and 4 hours and for 4 hours at 700 and 850oC. After different heat treatments, both the precipitate microstructure and mechanical properties were characterized.Mechanical properties were determined at 50...

  11. Finite element procedures for coupled linear analysis of heat transfer, fluid and solid mechanics

    Science.gov (United States)

    Sutjahjo, Edhi; Chamis, Christos C.

    1993-01-01

    Coupled finite element formulations for fluid mechanics, heat transfer, and solid mechanics are derived from the conservation laws for energy, mass, and momentum. To model the physics of interactions among the participating disciplines, the linearized equations are coupled by combining domain and boundary coupling procedures. Iterative numerical solution strategy is presented to solve the equations, with the partitioning of temporal discretization implemented.

  12. The Effects of Variable Viscosity, Viscous Dissipation and Chemical Reaction on Heat and Mass Transfer Flow of MHD Micropolar Fluid along a Permeable Stretching Sheet in a Non-Darcian Porous Medium

    Directory of Open Access Journals (Sweden)

    A. M. Salem

    2013-01-01

    Full Text Available A numerical model is developed to study the effects of temperature-dependent viscosity on heat and mass transfer flow of magnetohydrodynamic(MHD micropolar fluids with medium molecular weight along a permeable stretching surface embedded in a non-Darcian porous medium in the presence of viscous dissipation and chemical reaction. The governing boundary equations for momentum, angular momentum (microrotation, and energy and mass transfer are transformed to a set of nonlinear ordinary differential equations by using similarity solutions which are then solved numerically by shooting technique. A comparison between the analytical and the numerical solutions has been included. The effects of the various physical parameters entering into the problem on velocity, microrotation, temperature and concentration profiles are presented graphically. Finally, the effects of pertinent parameters on local skin-friction coefficient, local Nusselt number and local Sherwood number are also presented graphically. One important observation is that for some kinds of mixtures (e.g., H2, air with light and medium molecular weight, the magnetic field and temperature-dependent viscosity effects play a significant role and should be taken into consideration as well.

  13. Analysis of Sakiadis Flow of Nanofluids With Viscous Dissipation and Newtonian Heating%纳米流体在粘性耗散和Newton传热组合影响下的Sakiadis流动分析

    Institute of Scientific and Technical Information of China (English)

    O·D·梅金德; 张晓庆

    2012-01-01

    The combined effects of viscous dissipation and Newtonian heating on boundary layer flow over a moving flat plate for two types of water-based Newtonian nanofluids containing metallic or nonmetallic nanoparticles such as copper (Cu) and titania (TiO2) were investigated. The governing partial differential equations were transformed into ordinary differential e-quations using a similarity transformation and solved numerically by a Runge-Kutta-Fehlberg method with a shooting technique. The conclusion is drawn that the heat transfer rate at the moving plate surface increases with the increase in the nanoparticle volume fraction and the Newtonian heating, while it decreases with the Brinkmann number. Moreover, the heat transfer rate at the moving plate surface with Cu-water is higher than that with TiO2-water as the working nanofluid.%就两类以水为基本流体的Newton纳米流体:内含金属颗粒铜(Cu),或者非金属颗粒二氧化钛(TiO2),研究粘性耗散和Newton传热对移动平板边界层流动的组合影响.利用相似变换,将偏微分的控制方程转换为常微分方程组,并用Runge-Kutta-Fehlberg法和打靶法,对其进行数值求解.由此得到结论,随着纳米颗粒体积分数和Newton传热的增加,移动平板表面的热交换率也增加,但是,随着Brinkmann数的增加,移动平板表面的热交换率反而减小.此外,纳米工作流体Cu-水的移动平板表面热交换率,高于纳米工作流体TiO2-水.

  14. Simulation of Carbon Nanotube-based Heat Dissipation of High Power LED Lamp%碳纳米管在大功率LED灯具中的散热模拟

    Institute of Scientific and Technical Information of China (English)

    黄海波; 王元樟; 李爱玉; 程再军; 刘正达

    2016-01-01

    A finite element simulation of carbon nanotubes function in high power LED thermal management was conducted using FloEFD software in order to find out how carbon nanotube functions in heat dissipation of high power electronic devices. A simplified heat conduction model of multi⁃walled carbon nanotube arrays was established, and effective thermal conductivity of the multi⁃walled carbon nanotube array calculated based on the model. The steady⁃state temperature distributions of the LED with different thermal interface materials were then compared. It is shown that carbon nanotube arrays can greatly improve the thermal management performance of lamps, and that carbon nanotube polyurethane composite coating can greatly reduce the junction temperature.%用基于有限元方法的FloEFD软件,对碳纳米管在大功率发光二极管( LED)热管理中的应用进行模拟。建立起一个多壁碳纳米管阵列热传导的简化模型,据此模型对多壁碳纳米管阵列的等效热导率进行了计算。通过对采用不同热界面材料后LED灯具的稳态温度场分布的比较,发现碳纳米管阵列能大大提高灯具的热管理性能。模拟结果显示,采用聚氨酯碳纳米管复合材料涂层能大大降低结温。

  15. Thermal Reservoir coupled to External Field and Quantum Dissipation

    CERN Document Server

    Patriarca, M; Patriarca, Fabrizio Illuminati & Marco

    1992-01-01

    In the framework of the Caldeira-Leggett model of dissipative quantum mechanics, we investigate the effects of the interaction of the thermal reservoir with an external field. In particular, we discuss how the interaction modifies the conservative dynamics of the central particle, and the mechanism of dissipation. We briefly comment on possible observable consequencies.

  16. STUDY ON PREPARATION AND PERFORMANCE OF HEAT CONDUCTION MEDIUM MATERIAL USED ON ALUMINUM SUBSTRATE FOR HEAT DISSIPATION OF LED%LED散热铝基板用导热介质材料的制备与性能研究

    Institute of Scientific and Technical Information of China (English)

    马振辉; 黄金亮; 殷镖; 顾永军; 陈冠羽

    2011-01-01

    Epoxy / Si3N4 composites were fabricated by casting method. The effects of the Si3N4 content on thermal and mechanical properties of the composites were investigated. The results indicated that with the Si3N4 content increasing, the thermal conductivity and heating rate of the composites increased. When the volume fraction of Si3N4 was 25%, the thermal conductivity was 0.511 W/(m·K). And the average coefficient of linear thermal expansion decreased with the Si3N4 content increasing. When the volume fraction of Si3N4 was 25%, the average coefficient of linear thermal expansion was 49.18×10-6/℃. The shear strength of the composites increased first and then decreased with the Si,N4 content increasing up to 4.76 Mpa.%通过浇注工艺制备环氧树脂(EP)/Si3N4复合材料,研究Si3N4含量对复合材料的热学和力学性能的影响.结果表明,复合材料的热导率和升温速率随Si3N4含量的增加而增大,当Si3N4体积分数为25%时,热导率达到0.511W/(m·K),平均线性热膨胀系数随Si3N4含量的增加不断下降,在Si3N4体积分数为25%时,平均线性热膨胀系数为49.18×10-6/℃,而EP/Si3N4复合材料的剪切强度则随着Si3N4的含量的增加先升高后下降,最高达47.6 MPa.

  17. Physical and mechanical characteristics of poor-quality wood after heat treatment

    Directory of Open Access Journals (Sweden)

    Romagnoli M

    2015-12-01

    Full Text Available Poor-quality Corsican pine (Pinus nigra subsp. laricio (Poir. Maire and Douglas fir (Pseudotsuga menziesii (Mirb. Franco wood samples were heat treated with the aim of testing the improvement of wood quality that could increase their economic value. Wood properties were measured to assess quality in treated and non-treated materials, including density, hardness, anti-swelling efficiency (ASE, modulus of elasticity (MOE, modulus of rupture (MOR, and compression strength. The results showed higher dimensional stability in heat-treated wood, yet mechanical performance in compression and bending strength were only marginally affected by loss of density. Despite having a re­latively low density after heat treatment, Corsican pine sapwood has potential in manufacturing higher-value products. In contrast, heat treatment applied to Douglas fir wood did not appear economically viable; insufficient differences were detected between the naturally desirable characteristics of this species and heat-treated samples.

  18. Fundamental mechanisms that influence the estimate of heat transfer to gas turbine blades

    Science.gov (United States)

    Graham, R. W.

    1979-01-01

    Estimates of the heat transfer from the gas to stationary (vanes) or rotating blades poses a major uncertainty due to the complexity of the heat transfer processes. The gas flow through these blade rows is three dimensional with complex secondary viscous flow patterns that interact with the endwalls and blade surfaces. In addition, upstream disturbances, stagnation flow, curvature effects, and flow acceleration complicate the thermal transport mechanisms in the boundary layers. Some of these fundamental heat transfer effects are discussed. The chief purpose of the discussion is to acquaint those in the heat transfer community, not directly involved in gas turbines, of the seriousness of the problem and to recommend some basic research that would improve the capability for predicting gas-side heat transfer on turbine blades and vanes.

  19. The Effect of Heat Treatment and Mechanical Polishing on Nitinol Stent

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Soo; Lee, Se Chol; Kim, Kyu Suk; Choi, Seong Hoon; Park, Chan Soo [Eulji University, Daejeon (Korea, Republic of); Yoon, Chang Jin; Kang, Sung Gwon [Seoul National University Bundang Hospital, Seongnam (Korea, Republic of); Park, Jae Hyung [Seoul National University Hospital, Seoul (Korea, Republic of)

    2009-09-15

    To understand the effect of heat treatment and mechanical polishing of a Nitinol wire on the chemical composition and physical morphology of the wire surface. Stents with a diameter of 1.0 cm, length of 8-10 cm, and composed of a Nitinol wire, were heat-treated at 500 .deg. C for 30 minutes, and mechanically polished with walnut shell granules. The wire surface morphology was studied with both an optical and a scanning electron microscope (SEM). In addition, an elemental analysis was performed by Energy Dispersive X-ray spectroscopy (EDX). Long microcracks along the wire direction and short microcracks across the wire were observed by SEM from the raw Nitinol wire. Upon heat treatment, the color of the wire turned blue, and Na, K, Cl, Si, Al atoms were seen from the EDX of the heat treated wire, which were absent in the original wire. The microcracks disappeared with the mechanical polishing, and the Na, K, Cl, Si, Al atoms all disappeared after the mechanical polishing. Mechanical polishing using walnut shell granules effectively removed the microcracks of a nitinol wire and impurities produced from the heat treatment.

  20. Mechanical Alterations Associated with Repeated Treadmill Sprinting under Heat Stress

    Science.gov (United States)

    Brocherie, Franck; Morin, Jean-Benoit; Racinais, Sébastien; Millet, Grégoire P.; Périard, Julien D.

    2017-01-01

    Purpose Examine the mechanical alterations associated with repeated treadmill sprinting performed in HOT (38°C) and CON (25°C) conditions. Methods Eleven recreationally active males performed a 30-min warm-up followed by three sets of five 5-s sprints with 25-s recovery and 3-min between sets in each environment. Constant-velocity running for 1-min at 10 and 20 km.h-1 was also performed prior to and following sprinting. Results Mean skin (37.2±0.7 vs. 32.7±0.8°C; P<0.001) and core (38.9±0.2 vs. 38.8±0.3°C; P<0.05) temperatures, together with thermal comfort (P<0.001) were higher following repeated sprinting in HOT vs. CON. Step frequency and vertical stiffness were lower (-2.6±1.6% and -5.5±5.5%; both P<0.001) and contact time (+3.2±2.4%; P<0.01) higher in HOT for the mean of sets 1–3 compared to CON. Running distance per sprint decreased from set 1 to 3 (-7.0±6.4%; P<0.001), with a tendency for shorter distance covered in HOT vs. CON (-2.7±3.4%; P = 0.06). Mean vertical (-2.6±5.5%; P<0.01), horizontal (-9.1±4.4%; P<0.001) and resultant ground reaction forces (-3.0±2.8%; P<0.01) along with vertical stiffness (-12.9±2.3%; P<0.001) and leg stiffness (-8.4±2.7%; P<0.01) decreased from set 1 to 3, independently of conditions. Propulsive power decreased from set 1 to 3 (-16.9±2.4%; P<0.001), with lower propulsive power values in set 2 (-6.6%; P<0.05) in HOT vs. CON. No changes in constant-velocity running patterns occurred between conditions, or from pre-to-post repeated-sprint exercise. Conclusions Thermal strain alters step frequency and vertical stiffness during repeated sprinting; however without exacerbating mechanical alterations. The absence of changes in constant-velocity running patterns suggests a strong link between fatigue-induced velocity decrements during sprinting and mechanical alterations. PMID:28146582

  1. Effect of cladding procedures on mechanical properties of heat treated dissimilar joint

    Directory of Open Access Journals (Sweden)

    B. Mateša

    2012-10-01

    Full Text Available The specimens plated by different cladding procedures (hot rolling, submerged arc welding surfacing using strip electrode (SAW and explosion welding were heat treated by annealing (650 ºC through 2 hours. Charpy impact energy testing, as well as shear strength testing of clad joints were performed. Testing results indicated significance of cladding procedure and determined heat treatment infl uences on stated mechanical properties.

  2. Heat Loss Mechanisms In Transparent Insulation With Honeycomb Structures

    Science.gov (United States)

    Wittwer, V.; Stahl, W.; Pfluger, A.; Goetzberger, A.; Schmid, J.

    1983-12-01

    The development of highly transparent insulation materials is an important step in raising the efficiency of flat plate collectors and for passive use of solar energy in buildings. The problem in combining selective absorbers and honeycomb structures is that the radiation losses due to thermal emission of the material of the structure may be larger than the losses due to convection which are present without the structure. Therefore a thorough analysis of the different loss mechanisms has been made. There are two possibilities for overcoming these difficulties. The first is the use of materials with low absorptance in the infrared or with selective surfaces for the honeycomb structure. The second possibility is the use of highly IR-absorbing materials. In the latter case a selective absorber is not needed. Results from both approaches will be presented.

  3. Entransy dissipation minimization for liquid-solid phase change processes

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The liquid-solid phase change process of a simple one-dimensional slab is studied in this paper.By taking entransy dissipation minimization as optimization objective,the optimal external reservoir temperature profiles are derived by using optimal control theory under the condition of a fixed freezing or melting time.The entransy dissipation corresponding to the optimal heat exchange strategies of minimum entransy dissipation is 8/9 of that corresponding to constant reservoir temperature operations,which is independent of all system parameters.The obtained results for entransy dissipation minimization are also compared with those obtained for the optimal heat exchange strategies of minimum entropy generation and constant reservoir temperature operations by numerical examples.The obtained results can provide some theoretical guidelines for the choice of optimal cooling or heating strategy in practical liquid-solid phase change processes.

  4. Unravelling tidal dissipation in gaseous giant planets

    CERN Document Server

    Guenel, Mathieu; Remus, Françoise

    2014-01-01

    Tidal dissipation in planetary interiors is one of the key physical mechanisms that drive the evolution of star-planet and planet-moon systems. New constraints are now obtained both in the Solar and exoplanetary systems. Tidal dissipation in planets is intrinsically related to their internal structure. In particular, fluid and solid layers behave differently under tidal forcing. Therefore, their respective dissipation reservoirs have to be compared. In this letter, we compute separately the contributions of the potential dense rocky/icy core and the convective fluid envelope of gaseous giant planets, as a function of core size and mass. We then compare the associated dissipation reservoirs, by evaluating the frequency-average of the imaginary part of the Love numbers $k^2_2$ in each region. In the case of Jupiter and Saturn-like planets, we show that the viscoelastic dissipation in the core could dominate the turbulent friction acting on tidal inertial waves in the envelope. However, the fluid dissipation wou...

  5. 动力锂离子电池模块散热结构仿真研究%Simulation research of heat dissipation structure for automotive lithium-ion battery packs

    Institute of Scientific and Technical Information of China (English)

    程昀; 李劼; 贾明; 汤依伟; 宋文锋; 张治安; 张凯

    2015-01-01

    Due to the heat dissipation problem of power lithium-ion battery packs, 12 series-10A∙h lithium iron phosphate battery packs were taken as the research object. A three dimensional thermal simulation model for lithium ion battery packs was established based on the finite element commercial software COMSOL MULTIPHYSICS and validated by infrared imaging technology to analyze the influence of the air forced convection cooling and cold plate cooling on the heat dissipation of battery packs. The result shows that with the convection heat transfer coefficient increasing from 5 W/(m2·K) to 100 W/(m2·K), the center temperature of packs reduces only 0.2 K, but the temperature difference reaches 10 K. It can be concluded that the ability about lowering temperature of forced convection cooling is limited, and the forced convection cooling aggravates the temperature uniformity of packs. The maximum and minimum temperatures of battery pack with 5C discharge rate are 318.91 and 317.19 K, respectively, which is superior to forced convection cooling. It can be concluded that the cold plate cooling can balance the pack temperature. Increasing the thickness of cold plate and the number of external cooling fins can reduce the temperature and temperature uniformity of battery packs, but it is not obvious under natural convection cooling.%针对目前动力锂离子电池模块散热困难的问题,以12串10 A∙h磷酸铁锂动力电池为研究对象,基于COMSOL MULTIPHYSICS平台建立其三维热仿真模型,并应用红外成像技术进行验证;定量分析不同工况下空气强制对流冷却和冷却板冷却对电池模块散热性能的影响。结果表明:空气强制对流冷却降低电池温度的能力有限,且造成电池模块温度均匀性变差。对流换热系数从5 W/(m2·K)变化至100 W/(m2·K)进行5C放电时,电池模块中心温度仅降低0.2 K,电池温差达到10 K;冷却板冷却具有平衡电池模块温度场的作用,

  6. Dissipative structures and chaos

    CERN Document Server

    Mori, Hazime

    1998-01-01

    This monograph consists of two parts and gives an approach to the physics of open nonequilibrium systems. Part I derives the phenomena of dissipative structures on the basis of reduced evolution equations and includes Bénard convection and Belousov-Zhabotinskii chemical reactions. Part II discusses the physics and structures of chaos. While presenting a construction of the statistical physics of chaos, the authors unify the geometrical and statistical descriptions of dynamical systems. The shape of chaotic attractors is characterized, as are the mixing and diffusion of chaotic orbits and the fluctuation of energy dissipation exhibited by chaotic systems.

  7. Perspectives on deciphering mechanisms underlying plant heat stress response and thermotolerance

    Directory of Open Access Journals (Sweden)

    Kamila Lucia Bokszczanin

    2013-08-01

    Full Text Available Global warming is a major threat for agriculture and food safety and in many cases the negative effects are already apparent. The current challenge of basic and applied plant science is to decipher the molecular mechanisms of heat stress response and thermotolerance in detail and use this information to identify genotypes that will withstand unfavorable environmental conditions. Nowadays X-omics approaches complement the findings of previous targeted studies and highlight the complexity of heat stress response mechanisms giving information for so far unrecognized genes, proteins and metabolites as potential key players of thermotolerance. Even more, roles of epigenetic mechanisms and the involvement of small RNAs in thermotolerance are currently emerging and thus open new directions of yet unexplored areas of plant heat stress response. In parallel it is emerging that although the whole plant is vulnerable to heat, specific organs are particularly sensitive to elevated temperatures. This has redirected research from the vegetative to generative tissues. The sexual reproduction phase is considered as the most sensitive to heat and specifically pollen exhibits the highest sensitivity and frequently an elevation of the temperature just a few degrees above the optimum during pollen development can have detrimental effects for crop production. Compared to our knowledge on heat stress response of vegetative tissues, the information on pollen is still scarce. Nowadays, several techniques for high-throughput X-omics approaches provide major tools to explore the principles of pollen heat stress response and thermotolerance mechanisms in specific genotypes. The collection of such information will provide an excellent support for improvement of breeding programs to facilitate the development of tolerant cultivars. The review aims at describing the current knowledge of thermotolerance mechanisms and the technical advances which will foster new insights into

  8. Mechanism of financial support in reforming the heat supply sphere: problems and prospects of improvement

    Directory of Open Access Journals (Sweden)

    Doroshenko, Valentina Viktorivna

    2012-11-01

    Full Text Available The problems of financial support for reforming the heat supply sphere arediscussed in the article. The current state of heat supply sphere causes aggravation of many socioeconomicproblems, connected with low quality, low reliability and excessive power consumption ofheat supply system. The main reason for this is the high level of depreciation of main funds at allstages of the production cycle – from production to consumption of heat energy. The currentlegislation defined the priority of modernization of heat supply sphere, but it requires the significantamount of financial resources for the implementation of relevant investment projects. Due to theanalysis the domestic sources of financial support are very limited, but the use of foreign fundsincreases the financial dependence on external borrowings. This situation provides a high relevance of searching for domestic funds and it became the main objective of this research. Thefinal goal was to make a set of suggestions on improving the current mechanism of financialsupport for reforming the heat supply sphere at the expense of implementation of reserve not beinginvolved nowadays, namely, public funds. People are eager and able to spend their own savings tointroduce the most effective modern energy saving technology – per-apartment heating. Accordingto the wide experience, this technology meets each person needs in heat with a significantreduction of natural gas consumption spent on heating (including solving the problem of energytariffs, budget funds for compensation benefits, subsidies, difference in fees, for finance investmentprojects, etc.

  9. Mechanisms and efficacy of heat and cold therapies for musculoskeletal injury.

    Science.gov (United States)

    Malanga, Gerard A; Yan, Ning; Stark, Jill

    2015-01-01

    Nonpharmacological treatment strategies for acute musculoskeletal injury revolve around pain reduction and promotion of healing in order to facilitate a return to normal function and activity. Heat and cold therapy modalities are often used to facilitate this outcome despite prevalent confusion about which modality (heat vs cold) to use and when to use it. Most recommendations for the use of heat and cold therapy are based on empirical experience, with limited evidence to support the efficacy of specific modalities. This literature review provides information for practitioners on the use of heat and cold therapies based on the mechanisms of action, physiological effects, and the medical evidence to support their clinical use. The physiological effects of cold therapy include reductions in pain, blood flow, edema, inflammation, muscle spasm, and metabolic demand. There is limited evidence from randomized clinical trials (RCTs) supporting the use of cold therapy following acute musculoskeletal injury and delayed-onset muscle soreness (DOMS). The physiological effects of heat therapy include pain relief and increases in blood flow, metabolism, and elasticity of connective tissues. There is limited overall evidence to support the use of topical heat in general; however, RCTs have shown that heat-wrap therapy provides short-term reductions in pain and disability in patients with acute low back pain and provides significantly greater pain relief of DOMS than does cold therapy. There remains an ongoing need for more sufficiently powered high-quality RCTs on the effects of cold and heat therapy on recovery from acute musculoskeletal injury and DOMS.

  10. Estimativa da transpiração em cafeeiros utilizando-se sensores de dissipação térmica Estimation of transpiration in coffee crop using heat dissipation sensors

    Directory of Open Access Journals (Sweden)

    Jussálvia da S. Pimentel

    2010-02-01

    Full Text Available Alguns métodos são capazes de determinar diretamente a quantidade de água consumida por uma planta, entre eles o "método de dissipação de calor" ou método de Granier. Neste trabalho se propôs, como objetivo, construir e calibrar sensores de dissipação térmica, avaliar a transpiração em função da posição de inserção do sensor na planta (Norte, Sul, Leste ou Oeste e comparar os resultados com os elementos meteorológicos e a evapotranspiração de referência. Em 24 cafeeiros se instalaram sensores de dissipação térmica, adaptados de Granier (1985, em que o conjunto termopar e resistência foi inserido na agulha. Obteve-se a densidade de fluxo de seiva a partir da variação da diferença de temperatura entre as sondas e se acompanhou a transpiração, em função da transição entre os períodos diurno e noturno. O experimento foi avaliado em 3 períodos: antecedente à floração, na floração e no início da frutificação. Não houve diferença significativamente entre os ângulos de inserção para o fluxo de seiva. Quanto aos elementos meteorológicos, a radiação e a umidade relativa foram os fatores mais determinantes da transpiração obtendo-se, por análises de regressão coeficientes r² entre 0,84 e 0,80.Some methods are capable of directly determining the amount of water consumed by a plant, among them, the "heat dissipation method" or Granier method. This study aimed to: build and calibrate sensors of thermal dissipation; to evaluate the transpiration as a function of the position of insertion of the sensor in the plant (North, South, East or West and to compare the results with the meteorological elements and the evapotranspiration of reference. In 24 coffee plants, thermal dissipation sensors adapted from Granier (1985 were installed, where the whole thermocouple and resistance were inserted into the needle. Density of the sap flow was obtained from the variation of the difference in temperature between

  11. Experimental research on the mechanical property of prestressing steel wire during and after heating

    Institute of Scientific and Technical Information of China (English)

    ZHENG Wenzhong; HU Qiong; ZHANG Haoyu

    2007-01-01

    The mechanical property of prestressing steel wire during and after heating is the key factor in the design of fire resistance and after-fire damage evaluation of prestressed structures. Tensile experiment of 16 prestressing steel wires (fptk= 1770 N/mm2, d = 5 mm, low relaxation of stress) at high temperature and tensile experiment of 14 prestressed steel wires after heating are carried out. According to the experiment, the shapes of stress-strain curves of steel wire at high temperature go smooth and the mechanical property indexes of the steel wire such as strength, modulus of elastic- ity, etc., degenerate continuously as temperature increased. According to the experiment after heating, the mechanical property of steel wire varies little when the highest tempera- ture that the steel wire has ever been heated to is lower than 300℃; while the stress-strain curves of steel wire become more ductile and the mechanical property indexes of the steel wire degenerate gradually when the highest temperature is higher than 300℃. By applying the theory of viscoelastic mechanics, stress-strain curves of steel wire at high tempera- tures without loading rate influence are obtained. The law of mechanical property indexes of the wire is presented. The mathematical models of the stress-strain relationship of the pre-stressed steel wire are established. All can serve as basic data for the analysis of fire resistance and after-fire damage evaluation ofpre-stressed structures.

  12. Dissipation Bound for Thermodynamic Control

    Science.gov (United States)

    Machta, Benjamin B.

    2015-12-01

    Biological and engineered systems operate by coupling function to the transfer of heat and/or particles down a thermal or chemical gradient. In idealized deterministically driven systems, thermodynamic control can be exerted reversibly, with no entropy production, as long as the rate of the protocol is made slow compared to the equilibration time of the system. Here we consider fully realizable, entropically driven systems where the control parameters themselves obey rules that are reversible and that acquire directionality in time solely through dissipation. We show that when such a system moves in a directed way through thermodynamic space, it must produce entropy that is on average larger than its generalized displacement as measured by the Fisher information metric. This distance measure is subextensive but cannot be made small by slowing the rate of the protocol.

  13. Global scale-invariant dissipation in collisionless plasma turbulence.

    Science.gov (United States)

    Kiyani, K H; Chapman, S C; Khotyaintsev, Yu V; Dunlop, M W; Sahraoui, F

    2009-08-14

    A higher-order multiscale analysis of the dissipation range of collisionless plasma turbulence is presented using in situ high-frequency magnetic field measurements from the Cluster spacecraft in a stationary interval of fast ambient solar wind. The observations, spanning five decades in temporal scales, show a crossover from multifractal intermittent turbulence in the inertial range to non-Gaussian monoscaling in the dissipation range. This presents a strong observational constraint on theories of dissipation mechanisms in turbulent collisionless plasmas.

  14. Thermophysical property data - Who needs them. [similarity principle applications in fluid mechanics and heat transfer

    Science.gov (United States)

    Hendricks, R. C.

    1979-01-01

    Specific examples are cited herein to illustrate the universal needs and demands for thermophysical property data. Applications of the principle of similarity in fluid mechanics and heat transfer and extensions of the principle to fluid mixtures are discussed. It becomes quite clear that no matter how eloquent theories or experiments in fluid mechanics or heat transfer are, the results of their application can be no more accurate than the thermophysical properties required to transform these theories into practice, or in the case of an experiment, to reduce the data. Present-day projects take place on such a scale that the need for international standards and mutual cooperation is evident.

  15. Methods for Increasing Power Efficiency of Heating Furnaces Applied in Metallurgical and Mechanical Engineering Industries

    Directory of Open Access Journals (Sweden)

    M. L. German

    2011-01-01

    Full Text Available  The paper analyzes experimental data and results of balance tests of two continuous heating furnaces applied in mechanical engineering and metallurgical industries. Furnace power technological characteristics  and dependences of these characteristics on equipment productivity have been determined in the paper. The analysis has made it possible to reveal reasons of higher efficiency of a heating furnace used at BSW Rolling Mill-320 and formulate recommendations on reduction of fuel consumption in operating and designed combustion furnaces applied in mechanical engineering and metallurgical industries.

  16. Expression of HSPs: an adaptive mechanism during long-term heat stress in goats ( Capra hircus)

    Science.gov (United States)

    Dangi, Satyaveer Singh; Gupta, Mahesh; Dangi, Saroj K.; Chouhan, Vikrant Singh; Maurya, V. P.; Kumar, Puneet; Singh, Gyanendra; Sarkar, Mihir

    2015-08-01

    Menacing global rise in surface temperature compelled more focus of research over understanding heat stress response mechanism of animals and mitigation of heat stress. Twenty-four goats divided into four groups ( n = 6) such as NHS (non-heat-stressed), HS (heat-stressed), HS + VC (heat-stressed administered with vitamin C), and HS + VE + Se (heat-stressed administered with vitamin E and selenium). Except NHS group, other groups were exposed to repeated heat stress (42 °C) for 6 h on 16 consecutive days. Blood samples were collected at the end of heat exposure on days 1, 6, 11, and 16. When groups compared between days, expression of all heat shock proteins (HSPs) showed a similar pattern as first peak on day 1, reached to basal level on the sixth day, and followed by second peak on day 16. The relative messenger RNA (mRNA) and protein expression of HSP 60, HSP70, and HSP90 was observed highest ( P < 0.05) in HS group, followed by antioxidant-administered group on days 1 and 16, which signifies that antioxidants have dampening effect on HSP expression. HSP105/110 expression was highest ( P < 0.05) on day 16. We conclude that HSP expression pattern is at least two-peak phenomenon, i.e., primary window of HSP protection on the first day followed by second window of protection on day 16. HSP60, HSP70, and HSP90 play an important role during the initial phase of heat stress acclimation whereas HSP105/110 joins this cascade at later phase. Antioxidants may possibly attenuate the HSP expression by reducing the oxidative stress.

  17. Development, Testing, and Failure Mechanisms of a Replicative Ice Phase Change Material Heat Exchanger

    Science.gov (United States)

    Leimkuehler, Thomas O.; Hansen, Scott; Stephan, Ryan A.

    2010-01-01

    Phase change materials (PCM) may be useful for thermal control systems that involve cyclical heat loads or cyclical thermal environments such as Low Earth Orbit (LEO) and Low Lunar Orbit (LLO). Thermal energy can be stored in the PCM during peak heat loads or in adverse thermal environments. The stored thermal energy can then be released later during minimum heat loads or in more favorable thermal environments. One advantage that PCM's have over evaporators in this scenario is that they do not use a consumable. Wax PCM units have been baselined for the Orion thermal control system and also provide risk mitigation for the Altair Lander. However, the use of water as a PCM has the potential for significant mass reduction since the latent heat of formation of water is approximately 70% greater than that of wax. One of the potential drawbacks of using ice as a PCM is its potential to rupture its container as water expands upon freezing. In order to develop a space qualified ice PCM heat exchanger, failure mechanisms must first be understood. Therefore, a methodical experimental investigation has been undertaken to demonstrate and document specific failure mechanisms due to ice expansion in the PCM. An ice PCM heat exchanger that replicates the thermal energy storage capacity of an existing wax PCM unit was fabricated and tested. Additionally, methods for controlling void location in order to reduce the risk of damage due to ice expansion are investigated. This paper presents the results to date of this investigation. Nomenclature

  18. Testing and Failure Mechanisms of Ice Phase Change Material Heat Exchangers

    Science.gov (United States)

    Leimkuehler, Thomas O.; Stephan, Ryan A.; Hawkins-Reynolds, Ebony

    2011-01-01

    Phase change materials (PCM) may be useful for thermal control systems that involve cyclical heat loads or cyclical thermal environments such as specific spacecraft orientations in Low Earth Orbit (LEO) and low beta angle Low Lunar Orbit (LLO). Thermal energy can be stored in the PCM during peak heat loads or in adverse thermal environments. The stored thermal energy can then be released later during minimum heat loads or in more favorable thermal environments. One advantage that PCM s have over evaporators in this scenario is that they do not use a consumable. The use of water as a PCM rather than the more traditional paraffin wax has the potential for significant mass reduction since the latent heat of formation of water is approximately 70% greater than that of wax. One of the potential drawbacks of using ice as a PCM is its potential to rupture its container as water expands upon freezing. In order to develop a space qualified ice PCM heat exchanger, failure mechanisms must first be understood. Therefore, a methodical experimental investigation has been undertaken to demonstrate and document specific failure mechanisms due to ice expansion in the PCM. A number of ice PCM heat exchangers were fabricated and tested. Additionally, methods for controlling void location in order to reduce the risk of damage due to ice expansion were investigated. This paper presents the results of testing that occurred from March through September of 2010 and builds on testing that occurred during the previous year.

  19. Evaluation of major heat waves' mechanisms in EURO-CORDEX RCMs over Central Europe

    Science.gov (United States)

    Lhotka, Ondřej; Kyselý, Jan; Plavcová, Eva

    2017-09-01

    The main aim of the study is to evaluate the capability of EURO-CORDEX regional climate models (RCMs) to simulate major heat waves in Central Europe and their associated meteorological factors. Three reference major heat waves (1994, 2006, and 2015) were identified in the E-OBS gridded data set, based on their temperature characteristics, length and spatial extent. Atmospheric circulation, precipitation, net shortwave radiation, and evaporative fraction anomalies during these events were assessed using the ERA-Interim reanalysis. The analogous major heat waves and their links to the aforementioned factors were analysed in an ensemble of EURO-CORDEX RCMs driven by various global climate models in the 1970-2016 period. All three reference major heat waves were associated with favourable circulation conditions, precipitation deficit, reduced evaporative fraction and increased net shortwave radiation. This joint contribution of large-scale circulation and land-atmosphere interactions is simulated with difficulties in majority of the RCMs, which affects the magnitude of modelled major heat waves. In some cases, the seemingly good reproduction of major heat waves' magnitude is erroneously achieved through extremely favourable circulation conditions compensated by a substantial surplus of soil moisture or vice versa. These findings point to different driving mechanisms of major heat waves in some RCMs compared to observations, which should be taken into account when analysing and interpreting future projections of these events.

  20. Thermo-Mechanical Behavior of Textile Heating Fabric Based on Silver Coated Polymeric Yarn

    Directory of Open Access Journals (Sweden)

    Anura Fernando

    2013-03-01

    Full Text Available This paper presents a study conducted on the thermo-mechanical properties of knitted structures, the methods of manufacture, effect of contact pressure at the structural binding points, on the degree of heating. The test results also present the level of heating produced as a function of the separation between the supply terminals. The study further investigates the rate of heating and cooling of the knitted structures. The work also presents the decay of heating properties of the yarn due to overheating. Thermal images were taken to study the heat distribution over the surface of the knitted fabric. A tensile tester having constant rate of extension was used to stretch the fabric. The behavior of temperature profile of stretched fabric was observed. A comparison of heat generation by plain, rib and interlock structures was studied. It was observed from the series of experiments that there is a minimum threshold force of contact at binding points of a knitted structure is required to pass the electricity. Once this force is achieved, stretching the fabric does not affect the amount of heat produced.

  1. Modelling the mechanical response of an idealized ice stream to variations in geothermal heat flux

    Science.gov (United States)

    Smith-Johnsen, Silje; de Fleurian, Basile; Hestnes Nisancioglu, Kerim

    2017-04-01

    The spatial distribution of geothermal heat flux beneath the Greenland Ice Sheet is largely unknown partly due to difficulties in accessing the bed, and bore hole data providing point measurements only. Studies using tectonic, seismic and magnetic models to retrieve the geothermal heat flux show very different results indicating large uncertainties. However, modelling studies point to a geothermal heat flux anomaly that may influence the Northeast Greenland Ice Stream (NEGIS). Previous studies have investigated the impact of the uncertainty in geothermal heatflux on ice dynamics. These studies are mainly focusing on the impact on the ice rheology as the basal condition are derived from inverse modelling methods (including the geothermal heat flux variability in the variability of the friction coefficient). Another important feedback is the increase in subglacial meltwater production which may affect the sliding velocities of an ice stream, and has not been taken into account in preceding studies. In this study we investigate the impact of variations in geothermal heat flux on ice dynamics by analysing the mechanical response of a synthetic ice stream simulating NEGIS using the Ice Sheet System Model (Larour et al. 2012). We present results from model experiments using different heat flux configurations, friction laws and a hydrology model, showing the importance of geothermal heat flux on basal conditions of fast flowing ice.

  2. Mechanism and numerical analysis of heat transfer enhancement in the core flow along a tube

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The present study introduces the principles of enhanced heat transfer in the core flow to form an equivalent thermal boundary layer in the fully developed laminar tube flow, which consequently enlarges the temperature gradient of the fluid near the tube wall, and thereby enhances the heat transfer between the fluid and the tube wall. At the same time, the increase of flow resistance in the tube is not so obvious. Mechanism analysis and numerical calculation based on air and water have been carried out to verify the principle and method presented in this paper, which may bring positive effects to the design of heat exchanger with high heat transfer efficiency and low flow resistance.

  3. Wind- and stack-assisted mechanical ventilation with heat recovery and night cooling

    DEFF Research Database (Denmark)

    Hviid, Christian Anker; Svendsen, Svend

    presented the outline of a heat recovery concept suitable for stack and wind-assisted mechanical ventilation systems with total system pressure losses of 74Pa. The heat recovery concept is based on two air-to-water exchangers connected by a liquid loop powered by a pump. The core element of the concept......, a prototype of a heat exchanger, was developed based on design criteria about pressure drop, eciency and production concerns. The exchanger is based on banks of plastic tubing cris-crossing the air flow, thus creating approximate counter flow between air and water. Round PE plastic tubing is used. The tubing...... fittings. Multiple design proposals were modeled and investigated to determine the optimal solution with respect to pressure drop, heat transfer, and production feasibility. Software models were developed to simulate the temperature distribution within the tube bank. The final design involves two parallel...

  4. Noninvasive induction implant heating: an approach for contactless altering of mechanical properties of shape memory implants.

    Science.gov (United States)

    Pfeifer, Ronny; Hustedt, Michael; Wesling, Volker; Hurschler, Christoph; Olender, Gavin; Mach, Martin; Gösling, Thomas; Müller, Christian W

    2013-01-01

    This article shows an approach to change the properties of an orthopaedic shape memory implant within biological tissue, using contactless induction heating. Due to inducing the one way-memory effect, triggered by the rise of temperature within the implant, the geometry and hence the mechanical properties of the implant itself, are altered. The power uptake of the implant, depending on the induction parameters as well as on its position within the induction coil, is shown. Thermographic measurements are carried out in order to determine the surface temperature distribution of the implant. In order to simulate biological tissue, the implant was embedded in agarose gel. Suitable heating parameters, in terms of a short heating process in combination with a reduced heat impact on the surrounding environment, were determined.

  5. Experimental Investigation of Mechanical Properties of PVC Polymer under Different Heating and Cooling Conditions

    Directory of Open Access Journals (Sweden)

    Sarkawt Rostam

    2016-01-01

    Full Text Available Due to a widely increasing usage of polymers in various industrial applications, there should be a continuous need in doing research investigations for better understanding of their properties. These applications require the usage of the polymer in different working environments subjecting the material to various temperature ranges. In this paper, an experimental investigation of mechanical properties of polyvinyl chloride (PVC polymer under heating and cooling conditions is presented. For this purpose standard samples are prepared and tested in laboratory using universal material testing apparatus. The samples are tested under different conditions including the room temperature environment, cooling in a refrigerator, and heating at different heating temperatures. It is observed that the strength of the tested samples decreases with the increasing of heating temperature and accordingly the material becomes softer. Meanwhile the cooling environments give a clear increasing to the strength of the material.

  6. Emission Baselines for Clean Development Mechanism Projects: Residential Heating Case in Beijing

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    To explore emission baseline, technically the most difficult issue for Clean Development Mechanism (CDM) project development, as well as to examine whether CDM is a possible way to help Beijing restructure its heating energy consumption, this paper conducts a CDM baseline case study on residential heating in Beijing. Based on investigation, energy consumption forecast and economic analysis of future technology options, the technology benchmark and site-specific baselines for both retrofit projects and new heating projects have been discussed. The results indicate that fuel switching from coal to natural gas can meet the additionality criteria in many cases and will be the main type of CDM project. In addition, it also proves that the technology benchmark and the case-by-case baseline setting approach are applicable for future CDM cooperation projects on heating in Beijing.

  7. Heat dissipation performance of electric farm-oriented vehicle with horizontal battery pack%电动农用车横向电池包的散热性能

    Institute of Scientific and Technical Information of China (English)

    徐晓明; 胡志超; 袁寿其; 谢焕雄; 张萌

    2016-01-01

    ,选用纵向进风口模式将提高电池包强迫风冷散热性能。上述结论为电动农用车电池包进风口模式的选择和结构优化设计提供了参考依据。%The forced air cooling was widely used as the cooling method of battery pack with natural wind or air-conditioning wind, the research mainly focused on how to balance the flow condition of every modes of battery pack. Because the forced air cooling had the characteristics of simple structure, low cost and high maintainability, so it could better meet the operating requirements of modern electric farm-oriented vehicle. Different inlet modes of battery pack would affect the heat dissipation performance of forced air cooling, through the simulation calculation method to study it’s effects on the heat dissipation performance of different inlet modes;it would generate great significance for choosing inlet mode and structure optimization design. Combination with thermal power of 55 Ah lithium-ion battery monomer at different charge and discharge rates, the paper selected the horizontal battery pack with forced air cooling as study object, and researched on the influence of inlet mode to the heat dissipation performance at different conditions (including sustained acceleration, sustained deceleration, pause and pulse discharge processing, electric vehicle practical work) with FLOEFD software, the results showed that:the temperature rising of horizontal battery pack was significantly higher than temperature difference based on different conditions, in the case of longitudinal inlet mode, the maximum temperature rising and temperature difference of battery pack at the end time of sustained acceleration were 3.91℃and 2.24℃;the maximum temperature rising and temperature difference of battery pack at the end time of sustained deceleration were 4.91℃and 3.70℃;the maximum temperature rising and temperature difference of battery pack at the end time of pause and pulse discharge processing

  8. Effects of material properties on the competition mechanism of heat transfer of a granular bed in rotary cylinders

    Institute of Scientific and Technical Information of China (English)

    Xie Zhi-Yin; Feng Jun-Xiao

    2013-01-01

    Mixing and heat transfer processes of the granular materials within rotary cylinders play a key role in industrial processes.The numerical simulation is carried out by using the discrete element method (DEM) to investigate the influences of material properties on the bed mixing and heat transfer process,including heat conductivity,heat capacity,and shear modulus.Moreover,a new Péclet number is derived to determine the dominant mechanism of the heating rate within the particle bed,which is directly related to thermal and mechanical properties.The system exhibits a faster heating rate with the increase of ratio of thermal conductivity and heat capacity,or the decrease of shear modulus when inter-particle conduction dominates the heating rate; conversely,it shows a fast-mixing bed when particle convection governs the heating rate.The simulation results show good agreement with the theoretical predictions.

  9. Quantum chaotic attractor in a dissipative system

    CERN Document Server

    Liu, W V; Schieve, William C.

    1997-01-01

    A dissipative quantum system is treated here by coupling it with a heat bath of harmonic oscillators. Through quantum Langevin equations and Ehrenfest's theorem, we establish explicitly the quantum Duffing equations with a double-well potential chosen. A quantum noise term appears the only driving force in dynamics. Numerical studies show that the chaotic attractor exists in this system while chaos is certainly forbidden in the classical counterpart.

  10. Distinct Testicular Steroidogenic Response Mechanisms Between Neonatal and Adult Heat-Acclimated Male Rats

    Directory of Open Access Journals (Sweden)

    Beata Kurowicka

    2015-03-01

    Full Text Available Background: In comparison to short-term gonad heat exposure, little is known about the molecular mechanisms that regulate testicular steroidogenesis during long-term whole body heat acclimation. Material and Methods: Testicular slices from neonatal (NHA and adult (AHA heat-acclimated Wistar rats were analysed in vitro to assess the mRNA expression and enzymatic activity of steroidogenic enzymes under basal and luteinising hormone (LH or prolactin (PRL stimulated conditions compared with control rats (CR. Furthermore, a de-acclimated group (DA was created by transferring adult NHA rats to control conditions. Results: Heat acclimation significantly increased plasma LH levels in the AHA group and LH and PRL in the NHA group compared with the CR group; however, after heat acclimation, the T and E2 levels did not differ from the control levels. All heat-acclimated groups showed high basal intra-testicular steroid production in vitro. Moreover, basal Cyp11a1 and Hsd3b1 levels were upregulated in vitro in the NHA and DA groups versus the CR group. LH in vitro stimulation upregulated Cyp11a1 expression in the NHA and AHA groups and PRL stimulation upregulated Cyp17a1 levels in the NHA and DA groups compared with the basal expression levels. In the AHA group, decreased basal Star and CYP11A activities but increased HSD3B1 and CYP17A1 activities were found. Conclusion: Our data revealed that despite the similar steroid levels in plasma and secreted in vitro by neonatal and adult heat-acclimated rat testicular slices, the molecular mechanisms underlying the steroidogenic response to heat acclimation during these different developmental stages were distinct.

  11. Flow mechanism and heat transfer enhancement in longitudinal-flow tube bundle of shell-and-tube heat exchanger

    Institute of Scientific and Technical Information of China (English)

    LIU Wei; LIU ZhiChun; WANG YingShuang; HUANG SuYi

    2009-01-01

    ormer is superior to that of the latter.Compared with rod baffle heat exchanger,heat transfer coefficient of the heat exchanger under investigation is higher under same pressure drop,especially under the high Reynolds numbers.

  12. Variation of Mechanical Properties of High RRR And Reactor Grade Niobium With Heat Treatments

    Energy Technology Data Exchange (ETDEWEB)

    Ganapati Myneni; H. Umezawa

    2003-06-01

    Superconducting rf cavities used as accelerating structures in particle accelerators are made from high purity niobium with residual resistance ratios greater than 250. Reactor grade niobium is also used to make wave-guide and/or end group components for these accelerating structures. The major impurities in this type of niobium are interstitially dissolved gases such as hydrogen, nitrogen, and oxygen in addition to carbon. After fabricating the niobium accelerating structures, they are subjected to heat treatments for several hours in vacuum at temperatures of up to 900 C for degassing hydrogen or up to 1400 C for improving the thermal conductivity of niobium considerably. These heat treatments are affecting the mechanical properties of niobium drastically. In this paper the variation of the mechanical properties of high purity and reactor grade niobium with heat treatments in a vacuum of {approx} 10{sup -6} Torr and temperatures from 600 C to 1250 C for periods of 10 to 6 hours are presented.

  13. Effect of Heat Treatment on Mechanical Properties and Corrosion Performance of Cold-Sprayed Tantalum Coatings

    Science.gov (United States)

    Kumar, S.; Vidyasagar, V.; Jyothirmayi, A.; Joshi, S. V.

    2016-04-01

    The cold-spray technique is of significant interest to deposit refractory metals with relatively high melting point for a variety of demanding applications. In the present study, mechanical properties of cold-sprayed tantalum coatings heat treated at different temperatures were investigated using microtensile testing, scratch testing, and nanoindentation. The corrosion performance of heat-treated coatings was also evaluated in 1 M KOH solution, and potentiodynamic polarization as well as impedance spectroscopy studies were carried out. Assessment of structure-property correlations was attempted based on microstructure, porosity, and intersplat bonding state, together with mechanical and corrosion properties of the heat-treated cold-sprayed tantalum coatings. Coatings annealed at 1500 °C, which is very close to the recrystallization temperature of tantalum, were found to perform almost as bulk tantalum, with exciting implications for various applications.

  14. Thermal and mechanical effect during rapid heating of astroloy for improving structural integrity

    Energy Technology Data Exchange (ETDEWEB)

    Popoolaa, A.P.I., E-mail: popoolaapi@tut.ac.za [Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Pretoria (South Africa); Oluwasegun, K.M. [Department of Materials Science and Engineering, Obafemi Awolowo University (Nigeria); Olorunniwo, O.E., E-mail: segun_nniwo@yahoo.com [Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Pretoria (South Africa); Department of Materials Science and Engineering, Obafemi Awolowo University (Nigeria); Atanda, P.O. [Department of Materials Science and Engineering, Obafemi Awolowo University (Nigeria); Aigbodion, V.S. [Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Pretoria (South Africa); Department of Metallurgical and Materials Engineering, University of Nigeria, Nsukka (Nigeria)

    2016-05-05

    The behaviour of γ′ phase to thermal and mechanical effects during rapid heating of Astroloy(Turbine Disc alloy) a Powder metallurgy (PM) nickel base superalloy has been investigated. The thermo-mechanical affected zone (TMAZ) and heat affected zone (HAZ) microstructure of an inertia friction welded Astroloy were simulated using a Gleeble thermo-mechanical simulation system. Detailed microstructural examination of the simulated TMAZ and HAZ and those present in actual inertial friction welded specimens showed that γ′ particles persisted during rapid heating up to a temperature where the formation of liquid is thermodynamically favoured, and subsequently re-solidified eutectically. The result obtained showed that forging during the thermo-mechanical simulation significantly enhanced resistance to weld liquation cracking of the alloy. This is attributable to strain-induced rapid isothermal dissolution of the constitutional liquation products within 150 μm from the centre of the forged sample. This was not observed in purely thermally simulated samples. The microstructure within the TMAZ of the as-welded alloy is similar to the microstructure in the forged Gleeble specimens. - Highlights: • The behaviour of γ′ phase to thermal and mechanical effects during rapid heating of Astrology • The thermo-mechanical affected zone (TMAZ) and heat affected zone (HAZ). • significantly enhanced resistance to weld liquation cracking of the alloy. • This was not observed in purely thermally simulated samples. • The microstructure within the TMAZ of the as-welded alloy is similar to the microstructure in the forged Gleeble specimens.

  15. Viscous Dissipation and Criticality of Subducting Slabs

    Science.gov (United States)

    Riedel, Mike; Karato, Shun; Yuen, Dave

    2016-04-01

    Rheology of subducting lithosphere appears to be complicated. In the shallow part, deformation is largely accomodated by brittle failure, whereas at greater depth, at higher confining pressures, ductile creep is expected to control slab strength. The amount of viscous dissipation ΔQ during subduction at greater depth, as constrained by experimental rock mechanics, can be estimated on the basis of a simple bending moment equation [1,2] 2ɛ˙0(z) ∫ +h/2 2 M (z) = h ṡ -h/2 4μ(y,z)y dy , (1) for a complex multi-phase rheology in the mantle transition zone, including the effects of a metastable phase transition as well as the pressure, temperature, grain-size and stress dependency of the relevant creep mechanisms; μ is here the effective viscosity and ɛ˙0(z) is a (reference) strain rate. Numerical analysis shows that the maximum bending moment, Mcrit, that can be sustained by a slab is of the order of 1019 Nm per m according to Mcrit˜=σp ∗h2/4, where σp is the Peierl's stress limit of slab materials and h is the slab thickness. Near Mcrit, the amount of viscous dissipation grows strongly as a consequence of a lattice instability of mantle minerals (dislocation glide in olivine), suggesting that thermo-mechanical instabilities become prone to occur at places where a critical shear-heating rate is exceeded, see figure. This implies that the lithosphere behaves in such cases like a perfectly plastic solid [3]. Recently available detailed data related to deep seismicity [4,5] seems to provide support to our conclusion. It shows, e.g., that thermal shear instabilities, and not transformational faulting, is likely the dominating mechanism for deep-focus earthquakes at the bottom of the transition zone, in accordance with this suggested "deep criticality" model. These new findings are therefore briefly outlined and possible implications are discussed. References [1] Riedel, M. R., Karato, S., Yuen, D. A. Criticality of Subducting Slabs. University of Minnesota

  16. Temporal intermittency of energy dissipation in magnetohydrodynamic turbulence.

    Science.gov (United States)

    Zhdankin, Vladimir; Uzdensky, Dmitri A; Boldyrev, Stanislav

    2015-02-13

    Energy dissipation in magnetohydrodynamic (MHD) turbulence is known to be highly intermittent in space, being concentrated in sheetlike coherent structures. Much less is known about intermittency in time, another fundamental aspect of turbulence which has great importance for observations of solar flares and other space or astrophysical phenomena. In this Letter, we investigate the temporal intermittency of energy dissipation in numerical simulations of MHD turbulence. We consider four-dimensional spatiotemporal structures, "flare events," responsible for a large fraction of the energy dissipation. We find that although the flare events are often highly complex, they exhibit robust power-law distributions and scaling relations. We find that the probability distribution of dissipated energy has a power-law index close to α≈1.75, similar to observations of solar flares, indicating that intense dissipative events dominate the heating of the system. We also discuss the temporal asymmetry of flare events as a signature of the turbulent cascade.

  17. Effects of Heat-treatments on the Mechanical Strength of Coated YSZ: An Experimental Assessment

    DEFF Research Database (Denmark)

    Toftegaard, Helmuth Langmaack; Sørensen, Bent F.; Linderoth, Søren;

    2009-01-01

    The mechanical strength of thin, symmetric sandwich specimens consisting of a dense yttria-stabilized zirconia (YSZ) substrate coated with a porous NiO–YSZ layer at both major faces was investigated. Specimens were loaded in uniaxial tension to failure following heat treatments at various...

  18. Star formation in extreme environments : The effects of cosmic rays and mechanical heating

    NARCIS (Netherlands)

    Meijerink, R.; Spaans, M.; Loenen, A. F.; van der Werf, Paul P.

    Context. The molecular interstellar medium in extreme environments, such as Arp 220, but also NGC 253 appears to have extremely high cosmic ray (CR) rates (10(3)-10(4) x Milky Way) and substantial mechanical heating from supernova driven turbulence. Aims. We explore the consequences of high CR rates

  19. Fluctuation-dissipation theorem and quantum tunneling with dissipation

    CERN Document Server

    Fujikawa, K

    1998-01-01

    We suggest to take the fluctuation-dissipation theorem of Callen and Welton as a basis to study quantum dissipative phenomena (such as macroscopic quantum tunneling) in a manner analogous to the Nambu-Goldstone theorem for spontaneous symmetry breakdown. It is shown that the essential physical contents of the Caldeira-Leggett model such as the suppression of quantum coherence by Ohmic dissipation are derived from general principles only, namely, the fluctuation-dissipation theorem and unitarity and causality (i.e., dispersion relations), without referring to an explicit form of the Lagrangian. An interesting connection between quantum tunneling with Ohmic dissipation and the Anderson's orthogonality theorem is also noted.

  20. Dissipative Shocks behind Bacteria Gliding

    CERN Document Server

    Virga, Epifanio G

    2014-01-01

    Gliding is a means of locomotion on rigid substrates utilized by a number of bacteria includingmyxobacteria and cyanobacteria. One of the hypotheses advanced to explain this motility mechanism hinges on the role played by the slime filaments continuously extruded from gliding bacteria. This paper solves in full a non-linear mechanical theory that treats as dissipative shocks both the point where the extruded slime filament comes in contact with the substrate, called the filament's foot, and the pore on the bacterium outer surface from where the filament is ejected. We prove that kinematic compatibility for shock propagation requires that the bacterium uniform gliding velocity (relative to the substrate) and the slime ejecting velocity (relative to the bacterium) must be equal, a coincidence that seems to have already been observed.

  1. Curvature-induced dissipation

    CERN Document Server

    Debus, J -D; Succi, S; Herrmann, H J

    2015-01-01

    By inspecting the effect of curvature on a moving fluid, we find that local sources of curvature not only exert inertial forces on the flow, but also generate viscous stresses as a result of the departure of streamlines from the idealized geodesic motion. The curvature-induced viscous forces are shown to cause an indirect and yet appreciable energy dissipation. As a consequence, the flow converges to a stationary equilibrium state solely by virtue of curvature-induced dissipation. In addition, we show that flow through randomly-curved media satisfies a non-linear transport law, resembling Darcy-Forchheimer's law, due to the viscous forces generated by the spatial curvature. It is further shown that the permeability can be characterized in terms of the average metric perturbation.

  2. Dissipative Boussinesq equations

    OpenAIRE

    2007-01-01

    40 pages, 15 figures, published in C. R. Mecanique 335 (2007) Other author's papers can be downloaded at http://www.cmla.ens-cachan.fr/~dutykh; International audience; The classical theory of water waves is based on the theory of inviscid flows. However it is important to include viscous effects in some applications. Two models are proposed to add dissipative effects in the context of the Boussinesq equations, which include the effects of weak dispersion and nonlinearity in a shallow water fr...

  3. Wave Dissipation by Vegetation

    Science.gov (United States)

    2011-09-01

    Coastal and Hydraulics Engineering Technical Note (CHETN) provides a literature review of wave dissipation by vegetation. INTRODUCTION: Flooding...coastal mangrove forests of Vietnam (Quartel et al. 2007, Mazda et al. 2006, Mazda et al. 1997), salt marshes of the United States (Bradley and...et al. 2007, Mazda et al. 2006, Cooper 2005, Möller and Spencer 2002, Möller et al. 1999). A year-long study by Cooper (2005) found that wave

  4. On the Tidal Dissipation of Obliquity

    CERN Document Server

    Rogers, T M

    2013-01-01

    We investigate tidal dissipation of obliquity in hot Jupiters. Assuming an initial random orientation of obliquity and parameters relevant to the observed population, the obliquity of hot Jupiters does not evolve to purely aligned systems. In fact, the obliquity evolves to either prograde, retrograde or 90^{o} orbits where the torque due to tidal perturbations vanishes. This distribution is incompatible with observations which show that hot jupiters around cool stars are generally aligned. This calls into question the viability of tidal dissipation as the mechanism for obliquity alignment of hot Jupiters around cool stars.

  5. Dissipative fragmentation in a phase space approach

    Energy Technology Data Exchange (ETDEWEB)

    Adorno, A.; Di Toro, M.; Bonasera, A.; Gregoire, C.; Gulminelli, F.

    Semi-classical approaches have evidenced the role of one and two-body dissipation in nucleus-nucleus collisions. On the other hand, a substantial energy dissipation and some angular momentum transfer have been observed at moderate energy where a fragmentation process is the dominant reaction mechanism. In order to analyse main features of these reactions, we developed a phenomenological model taking into account phase space constraints. The transition between deep inelastic collisions and abrasion-like fragmentation is described and a general agreement with available data is found.

  6. Heating mechanisms in the low solar atmosphere through magnetic reconnection in current sheets

    CERN Document Server

    Ni, Lei; Roussev, Ilia I; Schmieder, Brigitte

    2016-01-01

    We simulate several magnetic reconnection processes in the low solar chromosphere/photosphere, the radiation cooling, heat conduction and ambipolar diffusion are all included. Our numerical results indicate that both the high temperature($ \\gtrsim 8\\times10^4$~K) and low temperature($\\sim 10^4$~K) magnetic reconnection events can happen in the low solar atmosphere ($100\\sim600$~km above the solar surface). The plasma $\\beta$ controlled by plasma density and magnetic fields is one important factor to decide how much the plasma can be heated up. The low temperature event is formed in a high $\\beta$ magnetic reconnection process, Joule heating is the main mechanism to heat plasma and the maximum temperature increase is only several thousand Kelvin. The high temperature explosions can be generated in a low $\\beta$ magnetic reconnection process, slow and fast-mode shocks attached at the edges of the well developed plasmoids are the main physical mechanisms to heat the plasma from several thousand Kelvin to over $8...

  7. Mechanism of Water Infiltration and Defiltration through ZSM-5 Zeolite: Heating and Sodium Chloride Concentration Effect

    Directory of Open Access Journals (Sweden)

    Yueting Sun

    2013-01-01

    Full Text Available Hydrophobic nanoporous material and wetting liquid together comprise a system with promising energy related applications. The mechanism of the interaction between liquid and solid phase is not fully explored. In this paper, based on the quasistatic compression experiments on investigating the mechanical behavior of ZSM-5 zeolite/NaCl solution system, the effects of two key parameters, that is, the pretreatment temperature of ZSM-5 zeolite and NaCl concentration, are parametrically and quantitatively investigated based on Laplace-Washburn equation. Results show that both pretreatment temperature and NaCl concentration raise the infiltration pressure and NaCl can also promote defiltration. The advancing contact and receding contact angle of zeolite-NaCl-air system increase with both pretreatment temperature and NaCl concentration, and the contact angle hysteresis decreases with NaCl concentration. Results may provide fundamental explanation to the nanoconfined liquid behavior and liquid-solid interaction, thus, to smartly control the mechanical properties of the liquid spring and bumpers for energy dissipation function.

  8. Characteristics of the Heat Island Effect in Shanghai and Its Possible Mechanism

    Institute of Scientific and Technical Information of China (English)

    陈隆勋; 朱文琴; 周秀骥; 周自江

    2003-01-01

    The characteristics of the urban heat island effect and the climate change in Shanghai and its possible mechanism are analyzed based on monthly meteorological data from 1961 to 1997 at 16 stations in Shanghai and its adjacent areas. The results indicate that Shanghai City has the characteristics of a heat island of air temperature and maximum and minimum air temperature, a cold island of surface soil temperature, a weak rainy island of precipitation, and a turbid island of minimum visibility and aerosols, with centers at or near Longhua station (the urban station of Shanghai). Besides theses, the characteristics of a cloudy island and sunshine duration island are also obvious, but their centers are located in the southern part of the urban area and in the southern suburbs. A linear trend analysis suggests that all of the above urban effects intensified from 1961 to 1997. So far as the heat island effect is concerned, the heat island index (difference of annual temperature between Longhua and Songjiang stations) strengthens (weakens) as the economic development increases (decreases). The authors suggest that the heating increase caused by increasing energy consumption due to economic development is a main factor in controlling the climate change of Shanghai besides natural factors. On the other hand, increasing pollution aerosols contribute to the enhancement of the turbid island and cooling. On the whole, the heating effect caused by increasing energy consumption is stronger than the cooling effect caused by the turbid island and pollution aerosols.

  9. Heating and melting mechanism of stainless steelmaking dust pellet in liquid slag

    Institute of Scientific and Technical Information of China (English)

    PENG ji; TANG Mo-tang; PENG Bing; YU Di; J.A.KOZINSKl; TANG Chao-bo

    2007-01-01

    The heating and melting mechanisms of the pellets immersed in liquid slag were investigated. and the effect of the pellet heating and the melting conditions were studied. The results show that the dust component in the pellet is melted from the surface and no metallic elements are melted before the dust component, the time for the pellet completely melted is reduced as the iron powder content increases since the metallic iron has high thermal conductivity. These are four stages of heating and melting of pellet in liquid slag, they are the growth and melt of solid slag shell, penetration of liquid slag, dissolving of dust component and melring of reduced metals.The lifetime of the solid slag shell is in the range of 7-16 s and increasing the pre-heating temperature of the pellet and the slag temperature can shorten the slag shell liretime. The time for the dust component in the pellet to be melted completely is in the range of 20-45 s and increasing the pre-heating temperature, especially in the range of 600-800 ℃.can obviously reduce the melting time. A higher slag temperature can also improvethe pellet melting and the melting time is reduced by l0-15 s when the slag temperature is increased from 1 450 to 1 550 ℃.The pellet with higher content of iron powder is beneficial to the melting by improving the heat conductivity.

  10. Heating Mechanisms in the Low Solar Atmosphere through Magnetic Reconnection in Current Sheets

    Science.gov (United States)

    Ni, Lei; Lin, Jun; Roussev, Ilia I.; Schmieder, Brigitte

    2016-12-01

    We simulate several magnetic reconnection processes in the low solar chromosphere/photosphere; the radiation cooling, heat conduction and ambipolar diffusion are all included. Our numerical results indicate that both the high temperature (≳8 × 104 K) and low temperature (˜104 K) magnetic reconnection events can happen in the low solar atmosphere (100-600 km above the solar surface). The plasma β controlled by plasma density and magnetic fields is one important factor to decide how much the plasma can be heated up. The low temperature event is formed in a high β magnetic reconnection process, Joule heating is the main mechanism to heat plasma and the maximum temperature increase is only several thousand Kelvin. The high temperature explosions can be generated in a low β magnetic reconnection process, slow and fast-mode shocks attached at the edges of the well developed plasmoids are the main physical mechanisms to heat the plasma from several thousand Kelvin to over 8 × 104 K. Gravity in the low chromosphere can strongly hinder the plasmoid instability and the formation of slow-mode shocks in a vertical current sheet. Only small secondary islands are formed; these islands, however, are not as well developed as those in the horizontal current sheets. This work can be applied to understand the heating mechanism in the low solar atmosphere and could possibly be extended to explain the formation of common low temperature Ellerman bombs (˜104 K) and the high temperature Interface Region Imaging Spectrograph (IRIS) bombs (≳8 × 104) in the future.

  11. Characterizing pesticide dissipation in food crops

    DEFF Research Database (Denmark)

    Fantke, Peter; Juraske, R.; Jolliet, O.

    2013-01-01

    Ingestion of residues via consumption of food crops is the predominant exposure route of the general population toward pesticides. However, pesticide dissipation in crops constitutes a main source of uncertainty in estimating residues in harvested crop parts and subsequent human exposure. Neverth......Ingestion of residues via consumption of food crops is the predominant exposure route of the general population toward pesticides. However, pesticide dissipation in crops constitutes a main source of uncertainty in estimating residues in harvested crop parts and subsequent human exposure....... Nevertheless, dissipation is a key mechanism in models assessing pesticide distribution in the cropenvironment and the magnitude of residues in harvest. We provide a consistent framework for characterizing pesticide dissipation in food crops for use in modeling approaches applied in health risk and impact...... assessment. We collected 4,482 unique dissipation half-lives for 341 substances applied to 182 different crop species and fully characterize these data by describing their variance, distribution and uncertainty as well as by identifying the influence of substance, crop and environmental characteristics. We...

  12. Dynamics of quasi-stable dissipative systems

    CERN Document Server

    Chueshov, Igor

    2015-01-01

    This book is  devoted to background material and recently developed mathematical methods in the study of infinite-dimensional dissipative systems. The theory of such systems is motivated by the long-term goal to establish rigorous mathematical models for turbulent and chaotic phenomena. The aim here is to offer general methods and abstract results pertaining to fundamental dynamical systems properties related to dissipative long-time behavior. The book systematically presents, develops and uses the quasi-stability method while substantially extending it by including for consideration new classes of models and PDE systems arising in Continuum Mechanics. The book can be used as a textbook in dissipative dynamics at the graduate level.   Igor Chueshov is a Professor of Mathematics at Karazin Kharkov National University in Kharkov, Ukraine.

  13. Circulation and Dissipation on Hot Jupiters

    CERN Document Server

    Li, Jason

    2010-01-01

    Many global circulation models predict supersonic zonal winds and large vertical shears in the atmospheres of short-period jovian exoplanets. Using linear analysis and nonlinear local simulations, we investigate hydrodynamic dissipation mechanisms to balance the thermal acceleration of these winds. The adiabatic Richardson criterion remains a good guide to linear stability, although thermal diffusion allows some modes to violate it at very long wavelengths and very low growth rates. Nonlinearly, wind speeds saturate at Mach numbers $\\approx 2$ and Richardson numbers $\\lesssim 1/4$ for a broad range of plausible diffusivities and forcing strengths. Turbulence and vertical mixing, though accompanied by weak shocks, dominate the dissipation, which appears to be the outcome of a recurrent Kelvin-Helmholtz instability. An explicit shear viscosity, as well as thermal diffusivity, is added to ZEUS to capture dissipation outside of shocks. The wind speed is not monotonic nor single valued for shear viscosities larger...

  14. Energy dissipation through wind-generated breaking waves

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shuwen; CAO Ruixue; XIE Lingling

    2012-01-01

    Wave breaking is an important process that controls turbulence properties and fluxes of heat and mass in the upper oceanic layer.A model is described for energy dissipation per unit area at the ocean surface attributed to wind-generated breaking waves,in terms of ratio of energy dissipation to energy input,windgenerated wave spectrum,and wave growth rate.Also advanced is a vertical distribution model of turbulent kinetic energy,based on an exponential distribution method.The result shows that energy dissipation rate depends heavily on wind speed and sea state.Our results agree well with predictions of previous works.

  15. EFFECT OF STEAM-HEAT TREATMENT ON MECHANICAL PROPERTIES OF CHINESE FIR

    Directory of Open Access Journals (Sweden)

    Yongjian Cao

    2012-01-01

    Full Text Available Heat treatment often brings about some negative effects on mechanical properties of wood. Chinese fir is currently underutilized due to some inherent properties that limit its further applications. Using steam as a heating medium and a shielding gas, the heartwood and sapwood of Chinese fir were treated at a temperature ranging from 170ºC to 230ºC and time from 1 to 5 hours in an airtight chamber. Both the modulus of rupture (MOR and modulus of elasticity (MOE were increased for the sapwood specimens under the temperature less than 200ºC for short treatment times. The hardness was increased for both two kinds of specimens under the temperature less than or about 200ºC, compared to the untreated specimens. The temperature has a stronger effect on mechanical properties of wood than the time, and the temperature of 200 ºC is a critical point in modifying mechanical properties of wood.

  16. Enhancing water repellence and mechanical properties of antibacterialgelatin/Ce(lll) fiber by heat treatment

    Institute of Scientific and Technical Information of China (English)

    LIU Lin; WANG Shiqi; HUANG Yaqin; ZHOU Yating; TONG Yuanjian; CHEN Xiaonong

    2011-01-01

    The water repellence and mechanical properties of the gelatin/Ce(Ⅲ) fiber (GCe fiber) were improved by heat treatment,which was an easy and non-toxic method.The microscopic morphology,mechanical properties,antibacterial activity,and cell culture of the GCe fibers by heat treatment (HGCe fiber) were investigated.It was found that the water repellence and mechanical properties of the HGCe fibers increased significantly along with temperature increase.SEM observation showed that HGCe fibers had a fairly smooth surface and a compact structure.Detailed characterization revealed that the HGCe fibers exhibited similar antibacterial activity with the GCe fibers against Staphylococcus aureus.In addition,the results of cell culture by morphological assessment and methylthiazolyl tetrazolium assay (MTT assay)indicated the good biocompatibility of GCe fibers.Therefore,the HGCe fibers could be a promising candidate biomaterial for biomedicine applications.

  17. Strong tidal dissipation in Io and Jupiter from astrometric observations.

    Science.gov (United States)

    Lainey, Valéry; Arlot, Jean-Eudes; Karatekin, Ozgür; Van Hoolst, Tim

    2009-06-18

    Io is the volcanically most active body in the Solar System and has a large surface heat flux. The geological activity is thought to be the result of tides raised by Jupiter, but it is not known whether the current tidal heat production is sufficiently high to generate the observed surface heat flow. Io's tidal heat comes from the orbital energy of the Io-Jupiter system (resulting in orbital acceleration), whereas dissipation of energy in Jupiter causes Io's orbital motion to decelerate. Here we report a determination of the tidal dissipation in Io and Jupiter through its effect on the orbital motions of the Galilean moons. Our results show that the rate of internal energy dissipation in Io (k(2)/Q = 0.015 +/- 0.003, where k(2) is the Love number and Q is the quality factor) is in good agreement with the observed surface heat flow, and suggest that Io is close to thermal equilibrium. Dissipation in Jupiter (k(2)/Q = (1.102 +/- 0.203) x 10(-5)) is close to the upper bound of its average value expected from the long-term evolution of the system, and dissipation in extrasolar planets may be higher than presently assumed. The measured secular accelerations indicate that Io is evolving inwards, towards Jupiter, and that the three innermost Galilean moons (Io, Europa and Ganymede) are evolving out of the exact Laplace resonance.

  18. Is there a layer deep in the Earth that uncouples heat from mechanical work?

    Directory of Open Access Journals (Sweden)

    S. J. Burns

    2014-02-01

    Full Text Available The thermal expansion coefficient is presented as the coupling between heat energy and mechanical work. It is shown that when heat and work are uncoupled then very unusual material properties occurs: for example, acoustic p waves are not damped and heat is not generated from mechanical motion. It is found that at pressures defined by the bulk modulus divided by the Anderson–Grüneisen parameter, then the thermal expansion coefficient approaches zero in linear-elastic models. Very large pressures always reduce thermal expansion coefficients; the importance of a very small or even negative thermal expansion coefficient is discussed in relation to physical processes deep in the core and mantle of Earth. Models of the thermal expansion coefficients based on interatomic potentials which are always relegated to isometric conditions preclude any changes in volume due to temperature changes. However, it is known that the pressures in the Earth are large enough to effectively reduce thermal expansion coefficients to near zero which decouples heat from mechanical work.

  19. Exploring the molecular mechanism of acute heat stress exposure in broiler chickens using gene expression profiling.

    Science.gov (United States)

    Luo, Q B; Song, X Y; Ji, C L; Zhang, X Q; Zhang, D X

    2014-08-10

    The process of heat regulation is complex and its exact molecular mechanism is not fully understood. In this study, to investigate the global gene regulation response to acute heat exposure, gene microarrays were exploited to analyze the effects of heat stress on three tissues (brain, liver, leg muscle) of the yellow broiler chicken (Gallus gallus). We detected 166 differentially expressed genes (DEGs) in the brain, 219 in the leg muscle and 317 in the liver. Six of these genes were differentially expressed in all three tissues and were validated by qRT-PCR, and included heat shock protein genes (HSPH1, HSP25), apoptosis-related genes (RB1CC1, BAG3), a cell proliferation and differentiation-related gene (ID1) and the hunger and energy metabolism related gene (PDK). All these genes might be important factors in chickens suffering from heat stress. We constructed gene co-expression networks using the DEGs of the brain, leg muscle and liver and two, four and two gene co-expression modules were identified in these tissues, respectively. Functional enrichment of these gene modules revealed that various functional clusters were related to the effects of heat stress, including those for cytoskeleton, extracellular space, ion binding and energy metabolism. We concluded that these genes and functional clusters might be important factors in chickens under acute heat stress. Further in-depth research on the newly discovered heat-related genes and functional clusters is required to fully understand their molecular functions in thermoregulation. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Study on Heat Hardening Mechanism of Starch Composite Binder for Sand Mold (Core) by IR Spectra

    Institute of Scientific and Technical Information of China (English)

    Xia ZHOU; Jinzong YANG; Qin GAO; Guohui QU

    2001-01-01

    The heat hardening mechanism of starch composite binder for sand mold (core) was studied by way of IR spectra. It is thought that the bonding strength of molding sand is mainly depended on the strength of the adhesive membrane itself. During heating the binder at certain temperature between 160~200℃ for one hour, a special composite structure is formed because of the interactions between different components, thus, it has higher low-temperature drying strength,better humidity resistance and higher high-temperature strength.

  1. Nanostructures obtained from a mechanically alloyed and heat treated molybdenum carbide

    Energy Technology Data Exchange (ETDEWEB)

    Diaz Barriga Arceo, L. [Programa de Ingenieria Molecular, I.M.P. Lazaro Cardenas 152, C.P. 07730 D.F. Mexico (Mexico) and ESIQIE-UPALM, IPN Apdo Postal 118-395, C.P. 07051 D.F. Mexico (Mexico)]. E-mail: luchell@yahoo.com; Orozco, E. [Instituto de Fisica UNAM, Apdo Postal 20-364, C.P. 01000 D.F. Mexico (Mexico)]. E-mail: eorozco@fisica.unam.mx; Mendoza-Leon, H. [ESIQIE-UPALM, IPN Apdo Postal 118-395, C.P. 07051 D.F. Mexico (Mexico)]. E-mail: luchell@yahoo.com; Palacios Gonzalez, E. [Programa de Ingenieria Molecular, I.M.P. Lazaro Cardenas 152, C.P. 07730 D.F. Mexico (Mexico)]. E-mail: epalacio@imp.mx; Leyte Guerrero, F. [Programa de Ingenieria Molecular, I.M.P. Lazaro Cardenas 152, C.P. 07730 D.F. Mexico (Mexico)]. E-mail: fleyte@imp.mx; Garibay Febles, V. [Programa de Ingenieria Molecular, I.M.P. Lazaro Cardenas 152, C.P. 07730 D.F. Mexico (Mexico)]. E-mail: vgaribay@imp.mx

    2007-05-31

    Mechanical alloying was used to prepare molybdenum carbide. Microstructural characterization of samples was performed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) methods. Molybdenum carbide was heated at 800 {sup o}C for 15 min in order to produce carbon nanotubes. Nanoparticles of about 50-140 nm in diameter and nanotubes with diameters of about 70-260 nm and 0.18-0.3 {mu}m in length were obtained after heating at 800 {sup o}C, by means of this process.

  2. MICROSTRUCTURAL AND MECHANICAL STUDY OF ALUMINIUM ALLOYS SUBMITTED TO DISTINCT SOAKING TIMES DURING SOLUTION HEAT TREATMENT

    Directory of Open Access Journals (Sweden)

    Valmir Martins Monteiro

    2014-12-01

    Full Text Available This work studies the microstructural characteristics and mechanical properties for different aluminium alloys (1100, 3104 and 8011 hot rolled sheets that were subjected to a solution heat treatment with distinct soaking times, in order to promote microstructural and mechanical changes on these alloys with solute fractions slightly above the maximum solubility limit. Scanning Electronic Microscopy (SEM / Energy Dispersive Spectroscopy X-Ray (EDS, X-Ray Diffraction (XRD and Hardness Tests were employed to observe the microstructural / compositional and mechanical evaluation. For the 1100 and 8011 alloys the more suitable soaking time occur between 1 and 2 hours, and for the 3104 alloy occurs between 2 and 3 hours.

  3. Microscopic description for the emergence of collective dissipation in extended quantum systems

    Science.gov (United States)

    Galve, Fernando; Mandarino, Antonio; Paris, Matteo G. A.; Benedetti, Claudia; Zambrini, Roberta

    2017-02-01

    Practical implementations of quantum technology are limited by unavoidable effects of decoherence and dissipation. With achieved experimental control for individual atoms and photons, more complex platforms composed by several units can be assembled enabling distinctive forms of dissipation and decoherence, in independent heat baths or collectively into a common bath, with dramatic consequences for the preservation of quantum coherence. The cross-over between these two regimes has been widely attributed in the literature to the system units being farther apart than the bath’s correlation length. Starting from a microscopic model of a structured environment (a crystal) sensed by two bosonic probes, here we show the failure of such conceptual relation, and identify the exact physical mechanism underlying this cross-over, displaying a sharp contrast between dephasing and dissipative baths. Depending on the frequency of the system and, crucially, on its orientation with respect to the crystal axes, collective dissipation becomes possible for very large distances between probes, opening new avenues to deal with decoherence in phononic baths.

  4. Microscopic description for the emergence of collective dissipation in extended quantum systems

    Science.gov (United States)

    Galve, Fernando; Mandarino, Antonio; Paris, Matteo G. A.; Benedetti, Claudia; Zambrini, Roberta

    2017-01-01

    Practical implementations of quantum technology are limited by unavoidable effects of decoherence and dissipation. With achieved experimental control for individual atoms and photons, more complex platforms composed by several units can be assembled enabling distinctive forms of dissipation and decoherence, in independent heat baths or collectively into a common bath, with dramatic consequences for the preservation of quantum coherence. The cross-over between these two regimes has been widely attributed in the literature to the system units being farther apart than the bath’s correlation length. Starting from a microscopic model of a structured environment (a crystal) sensed by two bosonic probes, here we show the failure of such conceptual relation, and identify the exact physical mechanism underlying this cross-over, displaying a sharp contrast between dephasing and dissipative baths. Depending on the frequency of the system and, crucially, on its orientation with respect to the crystal axes, collective dissipation becomes possible for very large distances between probes, opening new avenues to deal with decoherence in phononic baths. PMID:28176835

  5. Galactic structure explained with dissipative mirror dark matter

    CERN Document Server

    Foot, R

    2013-01-01

    Dissipative dark matter, such as mirror dark matter and related hidden sector dark matter candidates, requires an energy source to stabilize dark matter halos in spiral galaxies. It has been proposed previously that supernovae might be the source of this energy. Recently, it has been argued that this mechanism might explain two galactic scaling relations inferred from observations of spiral galaxies. One of which is that $\\rho_0 r_0$ is roughly constant, and another relates the galactic luminosity to $r_0$. [$\\rho_0$ is the dark matter central density and $r_0$ is the core radius.] Here we derive equations for the heating of the halo via supernova energy, and the cooling of the halo via thermal bremsstrahlung. These equations are numerically solved to obtain constraints on the $\\rho_0, \\ r_0$ parameters appropriate for spiral galaxies. These constraints are in remarkable agreement with the aforementioned scaling relations. We examine also constraints on the dark matter halo parameters of dwarf spheroidal gala...

  6. Harvesting dissipated energy with a mesoscopic ratchet.

    Science.gov (United States)

    Roche, B; Roulleau, P; Jullien, T; Jompol, Y; Farrer, I; Ritchie, D A; Glattli, D C

    2015-04-01

    The search for new efficient thermoelectric devices converting waste heat into electrical energy is of major importance. The physics of mesoscopic electronic transport offers the possibility to develop a new generation of nanoengines with high efficiency. Here we describe an all-electrical heat engine harvesting and converting dissipated power into an electrical current. Two capacitively coupled mesoscopic conductors realized in a two-dimensional conductor form the hot source and the cold converter of our device. In the former, controlled Joule heating generated by a voltage-biased quantum point contact results in thermal voltage fluctuations. By capacitive coupling the latter creates electric potential fluctuations in a cold chaotic cavity connected to external leads by two quantum point contacts. For unequal quantum point contact transmissions, a net electrical current is observed proportional to the heat produced.

  7. The negative feedback molecular mechanism which regulates excitation level in the plant photosynthetic complex LHCII: towards identification of the energy dissipative state.

    Science.gov (United States)

    Zubik, Monika; Luchowski, Rafal; Puzio, Michal; Janik, Ewa; Bednarska, Joanna; Grudzinski, Wojciech; Gruszecki, Wieslaw I

    2013-03-01

    Overexcitation of the photosynthetic apparatus is potentially dangerous because it can cause oxidative damage. Photoprotection realized via the feedback de-excitation in the pigment-protein light-harvesting complex LHCII, embedded in the chloroplast lipid environment, was studied with use of the steady-state and time-resolved fluorescence spectroscopy techniques. Illumination of LHCII results in the pronounced singlet excitation quenching, demonstrated by decreased quantum yield of the chlorophyll a fluorescence and shortening of the fluorescence lifetimes. Analysis of the 77K chlorophyll a fluorescence emission spectra reveals that the light-driven excitation quenching in LHCII is associated with the intensity increase of the spectral band in the region of 700nm, relative to the principal band at 680nm. The average chlorophyll a fluorescence lifetime at 700nm changes drastically upon temperature decrease: from 1.04ns at 300K to 3.63ns at 77K. The results of the experiments lead us to conclude that: (i) the 700nm band is associated with the inter-trimer interactions which result in the formation of the chlorophyll low-energy states acting as energy traps and non-radiative dissipation centers; (ii) the Arrhenius analysis, supported by the results of the FTIR measurements, suggests that the photo-reaction can be associated with breaking of hydrogen bonds. Possible involvement of photo-isomerization of neoxanthin, reported previously (Biochim. Biophys. Acta 1807 (2011) 1237-1243) in generation of the low-energy traps in LHCII is discussed.

  8. Energy dissipation in biomolecular machines

    Energy Technology Data Exchange (ETDEWEB)

    Lervik, Anders

    2012-07-01

    thermodynamic efficiency is found to be low (< 13 %) in all cases for the experimental conditions considered, which means that a large amount of the energy released from the ATP-hydrolysis is dissipated as heat. A complementary molecular dynamics study targeted on a bilayer for which the protein shows a relatively large efficiency (compared to other bilayers) shows that membrane deformation and large efficiency are not mutually exclusive. Overall, this thesis highlights the usefulness of the mesoscopic non-equilibrium thermodynamic framework applied to molecular machines and energy transduction and dissipation in these. The main result is that the mesoscopic nonequilibrium thermodynamic framework is applicable to molecular pumps and can be extended to include heat effects. This framework is general and can be applied to other molecular machines as well. Further, the results also support the notion that the calcium pump may contribute to non-shivering thermogenesis in certain tissues.(Author)

  9. Non-Equilibrium Statistical Mechanics of Anharmonic Chains Coupled to Two Heat Baths at Different Temperatures

    CERN Document Server

    Eckmann, Jean-Pierre; Rey-Bellet, L; Eckmann, Jean-Pierre; Pillet, Claude-Alain; Rey-Bellet, Luc

    1999-01-01

    We study the statistical mechanics of a finite-dimensional non-linear Hamiltonian system (a chain of anharmonic oscillators) coupled to two heat baths (described by wave equations). Assuming that the initial conditions of the heat baths are distributed according to the Gibbs measures at two different temperatures we study the dynamics of the oscillators. Under suitable assumptions on the potential and on the coupling between the chain and the heat baths, we prove the existence of an invariant measure for any temperature difference, i.e., we prove the existence of steady states. Furthermore, if the temperature difference is sufficiently small, we prove that the invariant measure is unique and mixing. In particular, we develop new techniques for proving the existence of invariant measures for random processes on a non-compact phase space. These techniques are based on an extension of the commutator method of Hörmander used in the study of hypoelliptic differential operators.

  10. Effects of heat treatments on the microstructure and mechanical properties of a 6061 aluminium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Maisonnette, D. [Universite de Lyon, CNRS, INSA-Lyon, LaMCoS UMR5259, F-69621 (France); Suery, M. [Universite de Grenoble, SIMaP, UMR CNRS 5266, BP46, Domaine Universitaire, 38402 Saint Martin d' Heres Cedex (France); Nelias, D., E-mail: daniel.nelias@insa-lyon.fr [Universite de Lyon, CNRS, INSA-Lyon, LaMCoS UMR5259, F-69621 (France); Chaudet, P. [Universite de Lyon, CNRS, INSA-Lyon, LaMCoS UMR5259, F-69621 (France); Epicier, T. [Universite de Lyon, CNRS, INSA-Lyon, Mateis UMR5510, F-69621 (France)

    2011-03-15

    Research highlights: {yields} Description of the mechanical behavior of AA6061-T6 at RT after various thermal histories. {yields} A fast-heating device has been designed to reproduce those thermal histories on tensile specimens. {yields} The thermal loadings are representative of the temperature change observed in the HAZ during welding. {yields} The variation of mechanical properties is the result of metallurgical evolution observed by TEM. {yields} The yield stress at RT decreases with the maximum temperature reached during the thermal cycle. - Abstract: This paper describes the mechanical behavior of the 6061-T6 aluminium alloy at room temperature for various previous thermal histories representative of an electron beam welding. A fast-heating device has been designed to control and apply thermal loadings on tensile specimens. Tensile tests show that the yield stress at ambient temperature decreases if the maximum temperature reached increases or if the heating rate decreases. This variation of the mechanical properties is the result of microstructural changes which have been observed by Transmission Electron Microscopy (TEM).

  11. Effect of different heating methods on deformation of metal plate under upsetting mechanism in laser forming

    Science.gov (United States)

    Shi, Yongjun; Liu, Yancong; Yi, Peng; Hu, Jun

    2012-03-01

    In a laser forming process, different forming mechanisms have different deformation behaviors. The aim of laser forming is to acquire plane strain under an upsetting mechanism, while a plate undergoes a small bending deformation. In some industrial applications, the bending strain should not occur. To achieve high-precision forming, the deformation behaviors of a metal plate when an upsetting mechanism plays a dominant role are studied in the paper. Several heating methods are proposed to reduce the plane strain difference along the thickness direction and little bending deformation resulting from a small temperature difference between the top and bottom surfaces of the plate. The results show that negligible bending deformation and a uniform plastic plane strain field can be obtained by simultaneously heating the top and bottom surfaces with the same process parameters. A conventional scanning method needs a larger spot diameter and slower scanning speed under the upsetting mechanism, but a smaller spot diameter and quicker scanning speed may be selected using the simultaneous heating method, which can greatly widen the potential scope of process parameters.

  12. A new method to select appropriate countermeasures against heat-island effects according to the regional characteristics of heat balance mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Kiyoshi [Institute of Technology, SHIMIZU Corporation, 3-4-17 Etchujima, Koto-ku, Tokyo 135-8530 (Japan); Mochida, Akashi; Yoshino, Hiroshi [Graduate School of Engineering, Tohoku University, Aoba 6-6-11-1202, Aramaki, Aoba-ku, Sendai 980-8579 (Japan); Watanabe, Hironori [Department of Architecture, Tohoku Institute of Technology, 35-1 Kasumi-cho, Yagiyama, Taihaku-ku, Sendai 982-8577 (Japan); Yoshida, Tomohiro [Tokyo Electric Power Company, 1-1-11 Babadori, Utsunomiya, Tochigi 320-0026 (Japan)

    2008-10-15

    This study aims at clarifying the regional heat balance characteristics in an urban space of a city. CFD analyses of mesoscale climates of Tokyo, Sendai and Haramachi were carried out. The influence of regional characteristics on urban climates was examined, based on the results of CFD analyses, by considering the heat balance mechanism in the central part of each city. It was confirmed that the factors greatly contributing to air temperature increasing and decreasing in each city was different. Furthermore, the spatial distribution of heat budget inside Sendai city was drawn, as 'Heat Balance Map'. The map illustrated the areas where influence of sea breeze was significant in contrast with heat generated from ground surfaces and anthropogenic heat release in this city. (author)

  13. Mechanical properties and development of supersolvus heat treated new nickel base superalloy AD730TM

    Directory of Open Access Journals (Sweden)

    Devaux A.

    2014-01-01

    Full Text Available The enhancement of efficiency in power generation gas turbine requires the development of new superalloys capable of withstanding higher temperatures. The development of AD730TM superalloy was achieved to provide to this new cast & wrought (C&W superalloy a higher combination between mechanical properties, microstructural stability and cost than that of other C&W superalloys with a temperature capability up to 750 ∘C. Supersolvus heat-treatment of AD730TM was studied to improve the creep properties of fine grain AD730TM superalloy which were not high enough to reach the foreseen conditions of future power generation gas turbine disks. Firstly, the grain growth was studied to select the supersolvus temperature 1120 ∘C and to obtain a homogeneous coarse grain microstructure. Then, various supersolvus heat-treatments with different cycles were tested and applied on a forged pancake with a section representative of power generation gas turbine disk. The average grain size was evaluated to be close to 200 μm for all heat-treatments. Tensile, creep, fatigue and fatigue crack growth tests were performed to compare the various heat-treatments. FEG-SEM examinations were also realized to discuss the relationships between heat-treatment, intragranular gamma prime precipitation and mechanical properties. Finally, a comparison made with other supersolvus heat treated C&W superalloys shows that AD730TM properties obtained with coarse grain microstructure are at the expected level and enable applications for power generation gas turbine discs.

  14. A dimensionless model of impact piezoelectric energy harvesting with dissipation

    Science.gov (United States)

    Fu, Xinlei; Liao, Wei-Hsin

    2016-04-01

    Impact excitation is common in the environment. Impact piezoelectric energy harvesting could realize frequency up-conversion. However, the dissipation mechanism in impact piezoelectric energy harvesting has not been investigated so far. There is no comprehensive model to be able to analyze the impact piezoelectric energy harvesting thoroughly. This paper is aimed to develop a generalized model that considers dissipation mechanism of impact piezoelectric energy harvesting. In this electromechanical model, Hertzian contact theory and impact dissipation mechanism are identified as constitutive mechanisms. The impact force is compared and the energy distribution is analyzed so that input energy corresponds to impact dissipated energy, structural damping dissipated energy and harvested electrical energy. We then nondimensionalize the developed model and define five dimensionless parameters with attributed physical meanings, including dimensionless parameters of impact dissipation, mass ratio, structural damping, electromechanical coupling, and electrical load. We conclude it is more accurate to consider impact dissipation mechanism to predict impact force and harvested energy. The guideline for improving harvested energy based on parametric studies of dimensionless model is to increase mass ratio, to minimize structural damping, to maximize electromechanical coupling, to use optimal load resistance for impedance matching, and to choose proper impact velocity .

  15. Observational Evidence of How Magnetofluid Turbulence in the Solar Wind Dissipates

    Science.gov (United States)

    Goldstein, Melvyn L.

    2011-01-01

    The solar wind appears to be a fully developed turbulent magnetofluid. As this magnetofluid expands into the heliosphere, it cools significantly less rapidly than would be expected of an adiabatically expanding gas. The evolution of the temperature with distance is roughly what would be expected if the turbulence dissipated by heating the thermal plasma. Several physical mechanisms have been proposed, including resonance absorption of waves and Landau damping. Recently, high-time resolution magnetic field data from the four Cluster spacecraft have illustrated damping of the fluctuations out to the electron inertial scale. Use of the wave telescope/k-filtering technique during two intervals of busrt mode data suggests that dissipation of the fluctuations is due to Landau damping, first on protons, then on electrons.

  16. Intercalated water layers promote thermal dissipation at bio-nano interfaces

    Science.gov (United States)

    Wang, Yanlei; Qin, Zhao; Buehler, Markus J.; Xu, Zhiping

    2016-09-01

    The increasing interest in developing nanodevices for biophysical and biomedical applications results in concerns about thermal management at interfaces between tissues and electronic devices. However, there is neither sufficient knowledge nor suitable tools for the characterization of thermal properties at interfaces between materials of contrasting mechanics, which are essential for design with reliability. Here we use computational simulations to quantify thermal transfer across the cell membrane-graphene interface. We find that the intercalated water displays a layered order below a critical value of ~1 nm nanoconfinement, mediating the interfacial thermal coupling, and efficiently enhancing the thermal dissipation. We thereafter develop an analytical model to evaluate the critical value for power generation in graphene before significant heat is accumulated to disturb living tissues. These findings may provide a basis for the rational design of wearable and implantable nanodevices in biosensing and thermotherapic treatments where thermal dissipation and transport processes are crucial.

  17. Shock Formation and Energy Dissipation of Slow Magnetosonic Waves in Coronal Plumes

    Science.gov (United States)

    Cuntz, M.; Suess, S. T.

    2003-01-01

    We study the shock formation and energy dissipation of slow magnetosonic waves in coronal plumes. The wave parameters and the spreading function of the plumes as well as the base magnetic field strength are given by empirical constraints mostly from SOHO/UVCS. Our models show that shock formation occurs at low coronal heights, i.e., within 1.3 bun, depending on the model parameters. In addition, following analytical estimates, we show that scale height of energy dissipation by the shocks ranges between 0.15 and 0.45 Rsun. This implies that shock heating by slow magnetosonic waves is relevant at most heights, even though this type of waves is apparently not a solely operating energy supply mechanism.

  18. Study on eruption of heat for Escherichia coil B aroused by lanthanum nitrate and its mechanism

    Institute of Scientific and Technical Information of China (English)

    Guosheng LIU; Zhilin RAN; Hailei WANG; Yi LIU; Ping SHEN; Yan LU

    2008-01-01

    Biological effect of rare-earth lanthanum nitrate on the growth of Escherichia coli B was studied using the calorimetric method. There were exceptional changes on the growth thermogenic curves for high concentrations of lanthanum nitrate. For example, the peak high, the total quantity of heat (Q) of cultures and the growth rate constants (k) are evidently increased when compared with normal E. Coli B cultures. When the concentration of lanthanum nitrate was at 300 mg/L and 500 rag/L, the Q of the cultures reached 3.89 and 2.54 times of normal cultures, respectively. The survivability of cells and the biomass of the cultures were measured using biological methods and the results show that the growth and multiplication of cells were inhibited and that the biomass decreased at high concentration of lanthanum nitrate. These revealed that the inhibiting cells discharged more quantity of heat than the normal growing cells. We named this phenomenon as "eruption of heat". It was suggested that the mechanism for the eruption of heat was that La3+ ion damages the outer cell membrane and increases its permeability and the proton-electron poten-tial energy across the cell membrane was reduced or couldn't even be initiated. Energy could not be translated into ATP effectively in the course of oxidative phosphor-ylation resulting in heat release. So, the growth of the cells was inhibited due to scarceness of energy ATP.

  19. Heat flux reduction mechanism induced by a combinational opposing jet and cavity concept in supersonic flows

    Science.gov (United States)

    Huang, Wei; Jiang, Yan-ping; Yan, Li; Liu, Jun

    2016-04-01

    The thermal protection on the surface of hypersonic vehicles attracts an increasing attention worldwide, especially when the vehicle enters the atmosphere at high speed. In the current study, the Reynolds-averaged Navier-Stokes (RANS) equations coupled with the Menter's shear stress transport (SST) model have been employed to investigate the heat flux reduction mechanism induced by the variations of the cavity configuration, the jet pressure ratio and the injectant molecular weight in the combinational opposing jet and cavity concept. The length of the cavity is set to be 6 mm, 8 mm and 10 mm in order to make sure that the cavity configuration is the "open" cavity, and the jet pressure ratio is set to be 0.4, 0.6 and 0.8 in order to make sure that the flow field is steady. The injectant is set to be nitrogen and helium. The obtained results show that the aft angle of the cavity only has a slight impact on the heat flux reduction, and the heat flux peak decreases with the decrease of the length of the cavity. The design of the thermal protection system for the hypersonic blunt body is a multi-objective design exploration problem, and the heat flux distribution depends on the jet pressure ratio, the aft wall of the cavity and the injectant molecular weight. The heat flux peak decreases with the increase of the jet pressure ratio when the aft angle of the cavity is large enough, and this value is 45°.

  20. Keeping your cool: possible mechanisms for enhanced exercise performance in the heat with internal cooling methods.

    Science.gov (United States)

    Siegel, Rodney; Laursen, Paul B

    2012-02-01

    Exercising in hot environments results in a rise in core body temperature; an effect associated with impaired performance over a variety of exercise modes and durations. Precooling has become a popular strategy to combat this impairment, as evidence has shown it to be an effective method for lowering pre-exercise core temperature, increasing heat storage capacity and improving exercise performance in the heat. To date, the majority of precooling manoeuvres have been achieved via external means, such as cold water immersion and the application of cooling garments. However, these methods have been criticized for their lack of practicality for use in major sporting competitions. Recent evidence has shown that internal or endogenous cooling methods, such as drinking cold fluids or ice slurries, are able to lower core temperature and enhance endurance performance in the heat. These methods may be more advantageous than current forms of precooling, as ingesting cold fluids or ice slurries can be easily implemented in the field and provide the additional benefit of hydrating athletes. While the precise mechanisms responsible for these performance enhancements are yet to be fully explained, the effect of ice ingestion on brain temperature, internal thermoreception and sensory responses may be involved. This article addresses the evidence supporting the use of endogenous cooling methods for improving endurance performance in the heat, as well as discussing the potential mechanisms behind the improvements observed and providing practical recommendations to optimize their success.