Sample records for heat application integration

  1. Thermodynamic analysis and performance assessment of an integrated heat pump system for district heating applications

    Soltani, Reza; Dincer, Ibrahim; Rosen, Marc A.


    A Rankine cycle-driven heat pump system is modeled for district heating applications with superheated steam and hot water as products. Energy and exergy analyses are performed, followed by parametric studies to determine the effects of varying operating conditions and environmental parameters on the system performance. The district heating section is observed to be the most inefficient part of system, exhibiting a relative irreversibility of almost 65%, followed by the steam evaporator and the condenser, with relative irreversibilities of about 18% and 9%, respectively. The ambient temperature is observed to have a significant influence on the overall system exergy destruction. As the ambient temperature decreases, the system exergy efficiency increases. The electricity generated can increase the system exergy efficiency at the expense of a high refrigerant mass flow rate, mainly due to the fact that the available heat source is low quality waste heat. For instance, by adding 2 MW of excess electricity on top of the targeted 6 MW of product heat, the refrigerant mass flow rate increases from 12 kg/s (only heat) to 78 kg/s (heat and electricity), while the production of 8 MW of product heat (same total output, but in form of heat) requires a refrigerant mass flow rate of only 16 kg/s. - Highlights: • A new integrated heat pump system is developed for district heating applications. • An analysis and assessment study is undertaken through exergy analysis methodology. • A comparative efficiency evaluation is performed for practical applications. • A parametric study is conducted to investigate how varying operating conditions and state properties affect energy and exergy efficiencies.

  2. An Integrated Control System for Heating and Indoor Climate Applications

    Tahersima, Fatemeh


    which geothermal heat pump, solar driven heat pumps and the other types are categorized as renewable or renewable energy sources. In the present study, we investigated modeling and control of hydronic heat emitters integrated with a ground-source heat pump. Optimization of the system performance...... in terms of energy efficiency, associated energy cost and occupants’ thermal comfort is the main objective to be fulfilled via design of an integrated controller. We also proposed control strategies to manage energy consumption of the building to turn domestic heat demands into a flexible load in the smart...... in order to maximize the heat pump’s efficiency and by this means reduce the power consumption of the heat pump. The hypothesis is that such an optimal point coincides with saturation of at least one of the subsystems control valves. The idea is implemented experimentally using simple PI and on...

  3. Building integration of concentrating solar systems for heating applications

    Tsoutsou, Sapfo; Infante Ferreira, Carlos; Krieg, Jan; Ezzahiri, Mohamed


    A new solar collection system integrated on the façade of a building is investigated for Dutch climate conditions. The solar collection system includes a solar façade, a receiver tube and 10 Fresnel lenses. The Fresnel lenses Fresnel lenses considered were linear, non-imaging, line – focused with a system tracking the position of the sun that ensures vertical incidence of the direct solar radiation on the lenses. For the heating system a double-effect absorption heat pump, which requires high temperature of the heating fluid, was used, working with water and lithium-bromide as refrigerant and solution respectively. The Fresnel lens system is connected with the absorption heat pump through a thermal energy storage tank which accumulates the heat from the Fresnel lens system to provide it to the high pressure generator of the absorption heat pump. - Highlights: • The integration of Fresnel lenses in solar thermal building façades is investigated. • Using building integrated Fresnel lenses, 43% heating energy can be saved. • Energy savings in Mediterranean countries are significantly larger. • The absorption heat pump could make great contribution to energy savings for Dutch climate conditions

  4. Process Integration Study of Cache Valley Cheese Plant [Advanced Industrial Heat Pump Applications and Evaluations

    Eastwood, A.


    This work has carried out in two phases: Phase 1; identification of opportunities for heat pumps in industrial applications and Phase 2; evaluation of heat pumps in industrial applications. In Phase 1, pinch analysis was applied to several industrial sites to identify the best opportunities for heat pumping and other forms of heat integration. In Phase 2, more detailed analyses were undertaken, including the evaluation of a heat pump installed as a recommendation of Phase 1.

  5. Heat and work integration: Fundamental insights and applications to carbon dioxide capture processes

    Fu, Chao; Gundersen, Truls


    Highlights: • The problem definition of heat and work integration is introduced. • The fundamental insights of heat and work integration are presented. • The design methodology is illustrated with two small test examples. • Applications of to three carbon dioxide capture processes are presented. - Abstract: The integration of heat has achieved a notable success in the past decades. Pinch Analysis is a well-established methodology for heat integration. Work is an equally important thermodynamic parameter. The enthalpy of a process stream can be changed by the transfer of heat and/or work. Heat and work are actually interchangeable and can thus be integrated. For example, compression processes consume more work at higher temperatures, however, the compression heat may be upgraded and utilized; expansion processes produce more work at higher temperatures, however, more heat may be required. The classical heat integration problem is thus extended to a new research topic about the integration of both heat and work. The aim of this paper is to present the problem definition, fundamental thermodynamic insights and industrial applications of heat and work integration. The results from studies on the three carbon dioxide capture processes show that significant energy savings can be achieved by proper heat and work integration. In the oxy-combustion process, the work consumption for cryogenic air separation is reduced by 10.1%. In the post-combustion membrane separation process, the specific work consumption for carbon dioxide separation is reduced by 12.9%. In the membrane air separation process, the net work consumption (excluding heat consumption) is reduced by 90%.

  6. Application of heat-balance integral method to conjugate thermal explosion

    Novozhilov Vasily


    Full Text Available Conjugate thermal explosion is an extension of the classical theory, proposed and studied recently by the author. The paper reports application of heat-balance integral method for developing phase portraits for systems undergoing conjugate thermal explosion. The heat-balance integral method is used as an averaging method reducing partical differential equation problem to the set of first-order ordinary differential equations. The latter reduced problem allows natural interpretation in appropriately chosen phase space. It is shown that, with the help of heat-balance integral technique, conjugate thermal explosion problem can be described with a good accuracy by the set of non-linear first-order differential equations involving complex error function. Phase trajectories are presented for typical regimes emerging in conjugate thermal explosion. Use of heat-balance integral as a spatial averaging method allows efficient description of system evolution to be developed.

  7. Dynamic Complexity Study of Nuclear Reactor and Process Heat Application Integration

    Taylor, J'Tia Patrice; Shropshire, David E.


    This paper describes the key obstacles and challenges facing the integration of nuclear reactors with process heat applications as they relate to dynamic issues. The paper also presents capabilities of current modeling and analysis tools available to investigate these issues. A pragmatic approach to an analysis is developed with the ultimate objective of improving the viability of nuclear energy as a heat source for process industries. The extension of nuclear energy to process heat industries would improve energy security and aid in reduction of carbon emissions by reducing demands for foreign derived fossil fuels. The paper begins with an overview of nuclear reactors and process application for potential use in an integrated system. Reactors are evaluated against specific characteristics that determine their compatibility with process applications such as heat outlet temperature. The reactor system categories include light water, heavy water, small to medium, near term high-temperature, and far term high temperature reactors. Low temperature process systems include desalination, district heating, and tar sands and shale oil recovery. High temperature processes that support hydrogen production include steam reforming, steam cracking, hydrogen production by electrolysis, and far-term applications such as the sulfur iodine chemical process and high-temperature electrolysis. A simple static matching between complementary systems is performed; however, to gain a true appreciation for system integration complexity, time dependent dynamic analysis is required. The paper identifies critical issues arising from dynamic complexity associated with integration of systems. Operational issues include scheduling conflicts and resource allocation for heat and electricity. Additionally, economic and safety considerations that could impact the successful integration of these systems are considered. Economic issues include the cost differential arising due to an integrated system

  8. Dynamic Complexity Study of Nuclear Reactor and Process Heat Application Integration

    J' Tia Patrice Taylor; David E. Shropshire


    Abstract This paper describes the key obstacles and challenges facing the integration of nuclear reactors with process heat applications as they relate to dynamic issues. The paper also presents capabilities of current modeling and analysis tools available to investigate these issues. A pragmatic approach to an analysis is developed with the ultimate objective of improving the viability of nuclear energy as a heat source for process industries. The extension of nuclear energy to process heat industries would improve energy security and aid in reduction of carbon emissions by reducing demands for foreign derived fossil fuels. The paper begins with an overview of nuclear reactors and process application for potential use in an integrated system. Reactors are evaluated against specific characteristics that determine their compatibility with process applications such as heat outlet temperature. The reactor system categories include light water, heavy water, small to medium, near term high-temperature, and far term high temperature reactors. Low temperature process systems include desalination, district heating, and tar sands and shale oil recovery. High temperature processes that support hydrogen production include steam reforming, steam cracking, hydrogen production by electrolysis, and far-term applications such as the sulfur iodine chemical process and high-temperature electrolysis. A simple static matching between complementary systems is performed; however, to gain a true appreciation for system integration complexity, time dependent dynamic analysis is required. The paper identifies critical issues arising from dynamic complexity associated with integration of systems. Operational issues include scheduling conflicts and resource allocation for heat and electricity. Additionally, economic and safety considerations that could impact the successful integration of these systems are considered. Economic issues include the cost differential arising due to an integrated

  9. A new graphical method for Pinch Analysis applications: Heat exchanger network retrofit and energy integration

    Gadalla, Mamdouh A.


    Energy integration is a key solution in chemical process and crude refining industries to minimise external fuel consumption and to face the impact of growing energy crises. Typical energy integration projects can reach a reduction of heating fuels and cold utilities by up to 40% compared with original designs or existing installations. Pinch Analysis is a leading tool and regarded as an efficient method to increase energy efficiency and minimise fuel flow consumptions. It is valid for both natures of design, grassroots and retrofit situations. It can practically be applied to synthesise a HEN (heat exchanger network) or modify an existing preheat train for minimum energy consumption. Heat recovery systems or HENs are networks for exchanging heat between hot and cold process sources. All heat transferred from hot process sources into cold process sinks represent the scope for energy integration. On the other hand, energies required beyond this integrated amount are to be satisfied by external utilities. Graphical representations of Pinch Analysis, such as Composite and Grand Composite Curves are very useful for grassroots designs. Nevertheless, in retrofit situation the analysis is not adequate and besides it is graphically tedious to represent existing exchangers on such graphs. This research proposes a new graphical method for the analysis of heat recovery systems, applicable to HEN retrofit. The new graphical method is based on plotting temperatures of process hot streams versus temperatures of process cold streams. A new graph is constructed for representing existing HENs. For a given network, each existing exchanger is represented by a straight line, whose slope is proportional to the ratio of heat capacities and flows. Further, the length of each exchanger line is related to the heat flow transferred across this exchanger. This new graphical representation can easily identify exchangers across the pinch, Network Pinch, pinching matches and improper placement

  10. Application of fuel cells with heat recovery for integrated utility systems

    Shields, V.; King, J. M., Jr.


    This paper presents the results of a study of fuel cell powerplants with heat recovery for use in an integrated utility system. Such a design provides for a low pollution, noise-free, highly efficient integrated utility. Use of the waste heat from the fuel cell powerplant in an integrated utility system for the village center complex of a new community results in a reduction in resource consumption of 42 percent compared to conventional methods. In addition, the system has the potential of operating on fuels produced from waste materials (pyrolysis and digester gases); this would provide further reduction in energy consumption.

  11. From Modules to a Generator: An Integrated Heat Exchanger Concept for Car Applications of a Thermoelectric Generator

    Bosch, Henry


    A heat exchanger concept for a thermoelectric generator with integrated planar modules for passenger car applications is introduced. The module housings, made of deep drawn stainless steel sheet metal, are brazed onto the exhaust gas channel to achieve an optimal heat transfer on the hot side of the modules. The cooling side consists of winding fluid channels, which are mounted directly onto the cold side of the modules. Only a thin foil separates the cooling media from the modules for an almost direct heat contact on the cooling side. Thermoelectric generators with up to 20 modules made of PbTe and Bi2Te3, respectively, are manufactured and tested on a hot gas generator to investigate electrical power output and performance of the thermoelectric generator. The proof of concept of the light weight heat exchanger design made of sheet metal with integrated modules is positively accomplished.

  12. Application of the Lion's integral to calculate heat transfer with the N2O4 turbulent flow in a tube

    Petrovich, V.Yu.; Tverkovkin, B.E.; Nesterenko, V.B.


    When carrying out engineering calculation of heat transfer in the case of turbulent flow of non-equilibrium reacting gas in a tube, it is necessary to dispose of criterion dependence to calculate Nusselt number. As a rule, dependences obtained by empirical methods are not widely adopted. It is proposed that the integral of Lion type be used for the heat transfer calculation in the form of which an expression for Nusselt number has been written under the conditions of turbulent flow with a non-equilibrium chemical reaction. On calculating turbulent fluctuations Millionshchikov two-layer model is used. A simple approximation of source-discharge of the mass of mixture components is suggested for the sake of simplification of Lion integral. The proposed theoretical dependences for the heat transfer calculation when chemical reactions are available substantially extend the field of application of Lion integral and may be used designing equipment with a chemically reacting coolant

  13. Annual performance of building-integrated photovoltaic/water-heating system for warm climate application

    Chow, T.T.; Chan, A.L.S.; Fong, K.F.; Lin, Z.; He, W.; Ji, J.


    A building-integrated photovoltaic/water-heating (BiPVW) system is able to generate higher energy output per unit collector area than the conventional solar systems. Through computer simulation with energy models developed for this integrative solar system in Hong Kong, the results showed that the photovoltaic/water-heating (PVW) system has economic advantages over the conventional photovoltaic (PV) installation. The system thermal performance under natural water circulation was found better than the pump-circulation mode. For a specific BiPVW system at a vertical wall of a fully air-conditioned building and with collectors equipped with flat-box-type thermal absorber and polycrystalline silicon cells, the year-round thermal and cell conversion efficiencies were found respectively 37.5% and 9.39% under typical Hong Kong weather conditions. The overall heat transmission through the PVW wall is reduced to 38% of the normal building facade. When serving as a water pre-heating system, the economical payback period was estimated around 14 years. This greatly enhances the PV market opportunities. (author)

  14. Integrated computer-aided framework for chemical product and process application design and optimization for waste heat recovery

    Cignitti, Stefano; Woodley, John M.; Abildskov, Jens


    This contribution presents an integrated framework for product-process design. The framework integrates the two design problems into one and finds the optimal solution through simultaneous optimization. The framework consists of four hierarchical steps and uses a set of methods, tools and databases...... for property prediction, novel fluid design and mathematical programming. The application of the framework is targeted for waste heat recovery design systems, where the sensitivity of product and process design variables is high and the simultaneous design is necessary. The sustainable design solutions...... are showcased in this paper for mixed refrigeration design....

  15. Ultrasonic test application in geothermal heat exchangers and civil works to monitor the grout integrity (TUC)

    Mandrone, Giuseppe; Comina, Cesare; Giuliani, Andrea


    The working of a vertical geothermal probe, realized with a pipe U-tubes of high-density-polyethylene (HDPE) inserted in a grouted boreholes, is linked to the possibility to exchange heat with the surrounding soil. The concrete material useful for the borehole heat exchangers allows to satisfy a double purpose: sealing the polyethylene pipes from groundwater in the event of loss and increasing the thermal properties of the whole probe to provide a greater interaction with the underground. If this operation is not performed properly, the complete system may not satisfy the required heat demand, even with a well dimensioned installation, wasting the value of the entire carried out work. This paper offers to a wide group of professional actors a possible ultrasonic method of a draft and economically sustainable investigation for the identification of defects that could be present in the cementation realized inside a geothermal probe, but also in the realization of sonic piles. The instrument used for this type of test (TUC - Test Ultrasonic Cementation) has been designed and tested by the technicians of AG3, a Spin Off Company of Torino University, in collaboration with 3DM Electric and PASI companies, then subjected to patenting procedure (Patent Pending TO2011A000036). The main innovative feature of this approach has been the miniaturization of the equipment, able to investigate the geothermal probes with U-tubes with standard dimension (the maximum overall dimensions of the instruments detectors is 26 mm), maintaining a sampling rate appropriate to investigate the cementation and the early centimetres of the surrounding soil. The processing of the recorded data was performed by a dedicated Matlab software. In the first part of the article is presented the calibration process, that it was carried out through ad hoc creation of two situations likely to be investigated, while in the second part the paper reports the results obtained by the application of the TUC

  16. A fundamental numerical analysis for noninvasive thermometry integrated in a heating applicator based on the reentrant cavity

    Ohwada, Hiroshi; Ishihara, Yasutoshi


    To improve the efficacy of hyperthermia treatment, a novel method of noninvasive measurement of body temperature change is proposed. The proposed technology, thermometry, is based on changes in the electromagnetic field distribution inside the heating applicator with temperature changes and the temperature dependence of the dielectric constant. In addition, an image of the temperature change distribution inside a body is reconstructed by applying a computed tomography (CT) algorithm. The proposed thermometry method can serve as a possible noninvasive method to monitor the temperature change distribution inside the body without the use of enormous thermometers such as in the case of magnetic resonance imaging (MRI). Furthermore, this temperature monitoring method can be easily combined with a heating applicator based on a cavity resonator, and the novel integrated treatment system can possibly be used to treat cancer effectively while noninvasively monitoring the heating effect. In this paper, the phase change distributions of the electromagnetic field with temperature changes are simulated by numerical analysis using the finite difference time domain (FDTD) method. Moreover, to estimate the phase change distributions inside a target body, the phase change distributions with temperature changes are reconstructed by a filtered back-projection. In addition, the reconstruction accuracy of the converted temperature change distribution from the phase change is evaluated. (author)

  17. Heat integration in processes with diverse production lines: A comprehensive framework and an application in food industry

    Miah, J.H.; Griffiths, A.; McNeill, R.; Poonaji, I.; Martin, R.; Yang, A.; Morse, S.


    Highlights: • A new practical heat integration framework was developed for complex and diverse production lines. • Heat recovery was maximised by direct and indirect heat integration at zonal and factory levels. • A novel approach to stream data extraction was proposed to account for both stream capacity and availability. • A case study was carried out on a multi-product confectionery factory. - Abstract: Heat integration is a key measure to improving energy efficiency and maximising heat recovery. Since the advent of Pinch analysis in the 1980s, direct and indirect integration approaches have developed in separate domains with very few examples where both approaches are utilised together to maximise heat recovery. This paper presents a novel decision-making framework for heat integration in complex and diverse production lines, with the aim to provide the user with a step-by-step guide to evaluate all heat recovery opportunities through a combination of direct and indirect heat integration. This framework involves analysis at both the zonal level and the factory level. The proposed framework was applied to a case study based on a confectionery factory in the UK that manufactured multiple products across a diverse range of food technologies. It demonstrates that the framework can effectively identify the significant streams to be considered in the heat integration analysis, and address practical factors such as diverse production times, geographical proximity, and potential of compromise to product quality when the direct and indirect heat integration opportunities are proposed and assessed both within and between production zones. This practical framework has the potential to benefit the wider food industry and beyond

  18. The Integration Of Process Heat Applications To High Temperature Gas Reactors

    McKellar, Michael G.


    A high temperature gas reactor, HTGR, can produce industrial process steam, high-temperature heat-transfer gases, and/or electricity. In conventional industrial processes, these products are generated by the combustion of fossil fuels such as coal and natural gas, resulting in significant emissions of greenhouse gases such as carbon dioxide. Heat or electricity produced in an HTGR could be used to supply process heat or electricity to conventional processes without generating any greenhouse gases. Process heat from a reactor needs to be transported by a gas to the industrial process. Two such gases were considered in this study: helium and steam. For this analysis, it was assumed that steam was delivered at 17 MPa and 540 C and helium was delivered at 7 MPa and at a variety of temperatures. The temperature of the gas returning from the industrial process and going to the HTGR must be within certain temperature ranges to maintain the correct reactor inlet temperature for a particular reactor outlet temperature. The returning gas may be below the reactor inlet temperature, ROT, but not above. The optimal return temperature produces the maximum process heat gas flow rate. For steam, the delivered pressure sets an optimal reactor outlet temperature based on the condensation temperature of the steam. ROTs greater than 769.7 C produce no additional advantage for the production of steam.

  19. An ideal internally heat integrated batch distillation with a jacketed still with application to a reactive system

    Jana, Amiya K.; Maiti, Debadrita


    Batch distillation is an irreversible process and consumes many times the theoretical minimum energy requirement. The present work focuses on the development of an internally heat integrated batch distillation with a jacketed still (IHIBDJS) aiming to reduce the degree of irreversibility towards zero. The IHIBDJS scheme consists of a rectifying tower equipped with an overhead condenser and a still pot or reboiler that surrounds the tower concentrically. For improving the energy efficiency by the reduction of external energy input, the rectifier is operated at an elevated pressure so that a thermal driving force should exist between the rectifying tower and the concentric still. For this purpose, an isentropic compression system is mounted in the reboiled vapor line. Aiming to reduce further the degree of process irreversibility, we propose an additional thermal arrangement into the IHIBDJS configuration that couples the overhead vapor with the reboiler liquid, thereby reducing further the external heat consumption. It is investigated for a reactive batch distillation column that the effective use of internal heat sources would make the heat integrated column an independent scheme of external heat source. - Highlights: • An internal heat integration approach is developed for batch distillation. • Further intensification is made by thermally coupling top vapor with still liquid. • A reactive system is used to illustrate the proposed scheme

  20. Stepwise integral scaling method for severe accident analysis and its application to corium dispersion in direct containment heating

    Ishii, M.; Zhang, G.; No, H. C.; Eltwila, F.


    Accident sequences which lead to severe core damage and to possible radioactive fission products into the environment have a very low probability. However, the interest in this area increased significantly due to the occurrence of the small break loss-of-coolant accident at TMI-2 which led to partial core damage, and of the Chernobyl accident in the former USSR which led to extensive core disassembly and significant release of fission products over several countries. In particular, the latter accident raised the international concern over the potential consequences of severe accidents in nuclear reactor systems. One of the significant shortcomings in the analyses of severe accidents is the lack of well-established and reliable scaling criteria for various multiphase flow phenomena. However, the scaling criteria are essential to the severe accident, because the full scale tests are basically impossible to perform. They are required for (1) designing scaled down or simulation experiments, (2) evaluating data and extrapolating the data to prototypic conditions, and (3) developing correctly scaled physical models and correlations. In view of this, a new scaling method is developed for the analysis of severe accidents. Its approach is quite different from the conventional methods. In order to demonstrate its applicability, this new stepwise integral scaling method has been applied to the analysis of the corium dispersion problem in the direct containment heating. ((orig.))

  1. Flexible heat pipes with integrated bioinspired design

    Chao Yang


    Full Text Available In this work we report the facile fabrication and performance evaluation of flexible heat pipes that have integrated bioinspired wick structures and flexible polyurethane polymer connector design between the copper condenser and evaporator. Inside the heat pipe, a bioinspired superhydrophilic strong-base-oxidized copper mesh with multi-scale micro/nano-structures was used as the wicking material and deionized water was selected as working fluid. Thermal resistances of the fabricated flexible heat pipes charged with different filling ratios were measured under thermal power inputs ranging from 2 W to 12 W while the device was bent at different angles. The fabricated heat pipes with a 30% filling ratio demonstrated a low thermal resistance less than 0.01 K/W. Compared with the vertically oriented straight heat pipes, bending from 30° up to 120° has negligible influence on the heat-transfer performance. Furthermore, repeated heating tests indicated that the fabricated flexible heat pipes have consistent and reliable heat-transfer performance, thus would have important applications for advanced thermal management in three dimensional and flexible electronic devices.

  2. Application of the heat-balance and refined integral methods to the Korteweg-de Vries equation

    Myers Timothy G.


    Full Text Available In this paper we consider approximate travelling wave solutions to the Korteweg-de Vries equation. The heat-balance integral method is first applied to the problem, using two different quartic approximating functions, and then the refined integral method is investigated. We examine two types of solution, chosen by matching the wave speed to that of the exact solution and by imposing the same area. The first set of solutions is generally better with an error that is fixed in time. The second set of solutions has an error that grows with time. This is shown to be due to slight discrepancies in the wave speed.

  3. Performance Analysis of an Integrated Heat Pump with Air-Conditioning System for the Existing Hospital Building Application

    Chen-Yu Chiang


    Full Text Available In this study, a complete evaluation procedure of energy-saving and efficiency improvement for a large-scale hospital retrofit project has been established and successfully validated in Taiwan. The retrofit scheme, in integrating the alternative hot water system, namely, a water source heat pump (WSHP, with the existing HVAC (Heating, Ventilating, and Air-Conditioning system, enables the capability to meet the cooling and hot water demand simultaneously with a larger safety margin as well as saving energy. In addition, it has been found that the integrated system provides a new source for cooling which can be utilized as a system redundancy in avoiding system shutdown. This is very useful when considering in specific areas in the hospital, such as intensive care unit, or operation rooms, where cooling should not be interrupted on any occasion. In this study, it is validated that the coefficient of performance (COP of the newly added WSHP system, under heating and cooling mode, is 3.62 and 2.62, respectively. The recorded annual cost reduction by this integrated system is $102,564, with a payback of 1.2 years. The hospital after retrofit has been operating safer, with more redundancy, and more energy-efficient which warrants tremendous potential for implementation in the industry.

  4. Heat integrated ethanol dehydration flowsheets

    Hutahaean, L.S.; Shen, W.H.; Brunt, V. Van [Univ. of South Carolina, Columbia, SC (United States)


    zA theoretical evaluation of heat-integrated heterogeneous-azeotropic ethanol-water distillation flowsheets is presented. Simulations of two column flowsheets using several different hydrocarbon entrainers reveal a region of potential heat integration and substantial reduction in operating energy. In this paper, methods for comparing hydrocarbon entrainers are shown. Two aspects of entrainers are related to operating and capital costs. The binary azeotropic composition of the entrainer-ethanol mixture is related to the energy requirements of the flowsheet. A temperature difference in the azeotrophic column is related to the size of the column and overall process staging requirements. Although the hydrophobicity of an entrainer is essential for specification of staging in the dehydration column, no substantial increase in operating energy results from an entrainer that has a higher water content. Likewise, liquid-liquid equilibria between several entrainer-ethanol-water mixtures have no substantial effect on either staging or operation. Rather, increasing the alcohol content of the entrainer-ethanol azeotrope limits its recovery in the dehydration column, and increases the recycle and reflux streams. These effects both contribute to increasing the separation energy requirements and reducing the region of potential heat integration. A cost comparison with a multieffect extractive distillation flowsheet reveals that the costs are comparable; however, the extractive distillation flowsheet is more cost effective as operating costs increase.

  5. Unprecedented Integral-Free Debye Temperature Formulas: Sample Applications to Heat Capacities of ZnSe and ZnTe

    R. Pässler


    Full Text Available Detailed analytical and numerical analyses are performed for combinations of several complementary sets of measured heat capacities, for ZnSe and ZnTe, from the liquid-helium region up to 600 K. The isochoric (harmonic parts of heat capacities, CVh(T, are described within the frame of a properly devised four-oscillator hybrid model. Additional anharmonicity-related terms are included for comprehensive numerical fittings of the isobaric heat capacities, Cp(T. The contributions of Debye and non-Debye type due to the low-energy acoustical phonon sections are represented here for the first time by unprecedented, integral-free formulas. Indications for weak electronic contributions to the cryogenic heat capacities are found for both materials. A novel analytical framework has been constructed for high-accuracy evaluations of Debye function integrals via a couple of integral-free formulas, consisting of Debye’s conventional low-temperature series expansion in combination with an unprecedented high-temperature series representation for reciprocal values of the Debye function. The zero-temperature limits of Debye temperatures have been detected from published low-temperature Cp(T data sets to be significantly lower than previously estimated, namely, 270 (±3 K for ZnSe and 220 (±2 K for ZnTe. The high-temperature limits of the “true” (harmonic lattice Debye temperatures are found to be 317 K for ZnSe and 262 K for ZnTe.

  6. Heat pipe applications workshop report

    Ranken, W.A.


    The proceedings of the Heat Pipe Applications Workshop, held at the Los Alamos Scientific Laboratory October 20-21, 1977, are reported. This workshop, which brought together representatives of the Department of Energy and of a dozen industrial organizations actively engaged in the development and marketing of heat pipe equipment, was convened for the purpose of defining ways of accelerating the development and application of heat pipe technology. Recommendations from the three study groups formed by the participants are presented. These deal with such subjects as: (1) the problem encountered in obtaining support for the development of broadly applicable technologies, (2) the need for applications studies, (3) the establishment of a heat pipe technology center of excellence, (4) the role the Department of Energy might take with regard to heat pipe development and application, and (5) coordination of heat pipe industry efforts to raise the general level of understanding and acceptance of heat pipe solutions to heat control and transfer problems

  7. Solar Heating System with Building-Integrated Heat Storage

    Heller, Alfred


    Traditional solar heating systems cover between 5 and 10% of the heat demand fordomestic hot water and comfort heating. By applying storage capacity this share can beincreased much. The Danish producer of solar heating systems, Aidt-Miljø, markets such a system including storage of dry sand heated...... by PP-pipe heat exchanger. Heat demand is reduced due to direct solar heating, and due to storage. Heat demand is reduced due to direct solar heating, due to storage and due to lower heat losses through the ground. In theory, by running the system flow backwards through the sand storage, active heating...... can be achieved.The objective of the report is to present results from measured system evaluation andcalculations and to give guidelines for the design of such solar heating systems with building integrated sand storage. The report is aimed to non-technicians. In another report R-006 the main results...

  8. Integrated Heat Air & Moisture Modeling and control

    Schijndel, van A.W.M.


    The paper presents a recently developed Heat Air & Moisture Laboratory in SimuLink. The simulation laboratory facilitates the integration of the following models: (1) a whole building model; (2) Heating Venting and Air-Conditioning and primary systems; (3) 2D indoor airflow, 3D Heat Air & Moisture

  9. Maximising the recovery of low grade heat: An integrated heat integration framework incorporating heat pump intervention for simple and complex factories

    Miah, J.H.; Griffiths, A.; McNeill, R.; Poonaji, I.; Martin, R.; Leiser, A.; Morse, S.; Yang, A.; Sadhukhan, J.


    Highlights: • A new practical heat integration framework incorporating heat pump technology for simple and complex food factories. • A decision making procedure was proposed to select process or utility heat integration in complex and diverse factories. • New stream classifications proposed to identify and compare streams linked between process and utility, especially waste heat. • A range of ‘Heat Pump Thresholds’ to identify and compare heat pump configurations with steam generation combustion boiler. - Abstract: The recovery of heat has long been a key measure to improving energy efficiency and maximising the heat recovery of factories by Pinch analysis. However, a substantial amount of research has been dedicated to conventional heat integration where low grade heat is often ignored. Despite this, the sustainability challenges facing the process manufacturing community are turning interest on low grade energy recovery systems to further advance energy efficiency by technological interventions such as heat pumps. This paper presents a novel heat integration framework incorporating technological interventions for both simple and complex factories to evaluate all possible heat integration opportunities including low grade and waste heat. The key features of the framework include the role of heat pumps to upgrade heat which can significantly enhance energy efficiency; the selection process of heat pump designs which was aided by the development of ‘Heat Pump Thresholds’ to decide if heat pump designs are cost-competitive with steam generation combustion boiler; a decision making procedure to select process or utility heat integration in complex and diverse factories; and additional stream classifications to identify and separate streams that can be practically integrated. The application of the framework at a modified confectionery factory has yielded four options capable of delivering a total energy reduction of about 32% with an economic payback

  10. Geothermal Direct Heat Application Potential

    Lienau, Paul J


    The geothermal direct-use industry growth trends, potential, needs, and how they can be met, are addressed. Recent investigations about the current status of the industry and the identification of institutional and technical needs provide the basis on which this paper is presented. Initial drilling risk is the major obstacle to direct-use development. The applications presented include space and district heating projects, heat pumps (heating and cooling), industrial processes, resorts and pools, aquaculture and agriculture.

  11. Integrated application of combined cooling, heating and power poly-generation PV radiant panel system of zero energy buildings

    Yin, Baoquan


    A new type of combined cooling, heating and power of photovoltaic radiant panel (PV/R) module was proposed, and applied in the zero energy buildings in this paper. The energy system of this building is composed of PV/R module, low temperature difference terminal, energy storage, multi-source heat pump, energy balance control system. Radiant panel is attached on the backside of the PV module for cooling the PV, which is called PV/R module. During the daytime, the PV module was cooled down with the radiant panel, as the temperature coefficient influence, the power efficiency was increased by 8% to 14%, the radiant panel solar heat collecting efficiency was about 45%. Through the nocturnal radiant cooling, the PV/R cooling capacity could be 50 W/m2. For the multifunction energy device, the system shows the versatility during the heating, cooling and power used of building utilization all year round.

  12. Experience and Prospects of Nuclear Heat Application

    Woite, G.; Konishi, T.; Kupitz, J.


    Relevant technical characteristics of nuclear reactors and heat application facilities for district heating, process heat and seawater desalination are presented and discussed. The necessity of matching the characteristics of reactors and heat applications has consequences for their technical and economic viability. The world-wide operating experience with nuclear district heating, process heating, process heat and seawater desalination is summarised and the prospects for these nuclear heat applications are discussed. (author)

  13. Application of heat pipes in nuclear reactors for passive heat removal

    Haque, Z.; Yetisir, M., E-mail: [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)


    This paper introduces a number of potential heat pipe applications in passive (i.e., not requiring external power) nuclear reactor heat removal. Heat pipes are particularly suitable for small reactors as the demand for heat removal is significantly less than commercial nuclear power plants, and passive and reliable heat removal is required. The use of heat pipes has been proposed in many small reactor designs for passive heat removal from the reactor core. This paper presents the application of heat pipes in AECL's Nuclear Battery design, a small reactor concept developed by AECL. Other potential applications of heat pipes include transferring excess heat from containment to the atmosphere by integrating low-temperature heat pipes into the containment building (to ensure long-term cooling following a station blackout), and passively cooling spent fuel bays. (author)

  14. Integration between electric heat pump and PV system to increase self-consumption of an office application

    Roselli Carlo


    Full Text Available The paper examines a solar electric driven heat pump serving an office building located in southern Italy. To satisfy space heating and cooling demand a heat pump activated by electric energy available from solar photovoltaic plant is here considered. In order to improve the self-consumption of electricity available from photovoltaic system different configurations were considered introducing an electric storage and an electric vehicle. Dynamic simulations to evaluate energy performance of the system varying photovoltaic peak power (4.5–7.5 kW have been carried out. The proposed system achieves a fossil fuel primary energy saving up to about 96% in comparison to the reference conventional system based on a natural gas fired boiler, an electric chiller and the national electric grid. The results show that fossil fuel primary energy saving is higher when there are no storage battery and electric vehicle.

  15. Integrated Temperature Sensors based on Heat Diffusion

    Van Vroonhoven, C.P.L.


    This thesis describes the theory, design and implementation of a new class of integrated temperature sensors, based on heat diffusion. In such sensors, temperature is sensed by measuring the time it takes for heat to diffuse through silicon. An on-chip thermal delay can be determined by geometry and

  16. Dissipation of heat from building integrated PV

    Taylor, C.M.L.


    The objectives of the project were to investigate methods for improving heat transfer and the reflection of heat from PV modules in building integrated situations and to develop the design of a building integrated PV element with improved heat transfer characteristics, with the aim of reducing the operating temperature of the PV cells. The prototypes developed for improving heat transfer have only shown small reductions in the PV cell operating temperature and these results have not been fully quantified due to problems associated with experimental testing. The improvement in the overall electrical performance of PV modules operating at lower temperatures is consequently even smaller. As a result, none of the prototypes can be considered to be economically viable. Based upon the theoretical and experimental results of this work, it is the recommendation of this project that no further work be conducted in improving BIPV performance through improved heat transfer of BIPV. (Author)

  17. Heat integration and analysis of decarbonised IGCC sites

    Ng, K.S.; Lopez, Y.; Campbell, G.M.; Sadhukhan, J. [University of Manchester, Manchester (United Kingdom). School of Chemical Engineering & Analytical Science


    Integrated gasification combined cycle (IGCC) power generation systems have become of interest due to their high combined heat and power (CHP) generation efficiency and flexibility to include carbon capture and storage (CCS) in order to reduce CO{sub 2} emissions. However, IGCC's biggest challenge is its high cost of energy production. In this study, decarbonised coal IGCC sites integrated with CCS have been investigated for heat integration and economic value analyses. It is envisaged that the high energy production cost of an IGCC site can be offset by maximising site-wide heat recovery and thereby improving the cost of electricity (COE) of CHP generation. Strategies for designing high efficiency CHP networks have been proposed based on thermodynamic heuristics and pinch theory. Additionally, a comprehensive methodology to determine the COE from a process site has been developed. In this work, we have established thermodynamic and economic comparisons between IGCC sites with and without CCS and a trade-off between the degree of decarbonisation and the COE from the heat integrated IGCC sites. The results show that the COE from the heat integrated decarbonised IGCC sites is significantly lower compared to IGCC sites without heat integration making application of CCS in IGCC sites economically competitive.

  18. Integration of Heat Exchangers with Thermoelectric Modules

    Rezaniakolaei, Alireza


    processes wherein the critical system components such as the TEG module and the heat exchangers are thermally coupled. The optimization techniques of the TEG systems coupled with the heat transfer through the system using a maximum efficiency-power map for waste heat recovery applications offer maximum...... thermally interdependent in the system designs. This chapter studies the effect of the heat exchangers design on system performance, and discusses the challenges through accurate analyses techniques while introducing proper cooling technologies. Proper design of a TEG system involves design optimization...

  19. High temperature heat exchange: nuclear process heat applications

    Vrable, D.L.


    The unique element of the HTGR system is the high-temperature operation and the need for heat exchanger equipment to transfer nuclear heat from the reactor to the process application. This paper discusses the potential applications of the HTGR in both synthetic fuel production and nuclear steel making and presents the design considerations for the high-temperature heat exchanger equipment

  20. Thermoelectricity from wasted heat of integrated circuits

    Fahad, Hossain M.


    We demonstrate that waste heat from integrated circuits especially computer microprocessors can be recycled as valuable electricity to power up a portion of the circuitry or other important accessories such as on-chip cooling modules, etc. This gives a positive spin to a negative effect of ever increasing heat dissipation associated with increased power consumption aligned with shrinking down trend of transistor dimension. This concept can also be used as an important vehicle for self-powered systemson- chip. We provide theoretical analysis supported by simulation data followed by experimental verification of on-chip thermoelectricity generation from dissipated (otherwise wasted) heat of a microprocessor.

  1. Thermodynamic analysis of application of organic Rankine cycle for heat recovery from an integrated DIR-MCFC with pre-reformer

    Vatani, Ali; Khazaeli, Ali; Roshandel, Ramin; Panjeshahi, Mohammad Hassan


    Highlights: ► Using an integrated pre-reformer before feeding a DIR-MCFC is proposed. ► An ORC with different working fluid is used for waste heat recovery from the proposed plant. ► Performance of compound system is evaluated by thermodynamic analysis. ► An improvement on simultaneously heat integration between the units and waste heat recovery is performed. ► Overall energy and exergy efficiencies are found to be 60.45% and 57.75%. - Abstract: This work deals with waste heat recovery from a proposed direct internal reforming molten carbonate fuel cell (DIR-MCFC), including an integrated pre-reformer. In this regard, some advantages are attainable over exhaust gas recycling. For instance, due to low temperature in the pre-reformer, carbon deposition and coke formation resulting from higher hydrocarbons can be eliminated. In this study, the cathode outlet provides the heat requirement for the pre-reforming process. After partial heat recovery from the cathode outlet, the stream still has a considerable energy and exergy (352.55 °C and 83.687 kW respectively). This study investigates waste heat recovery from the proposed DIR-MCFC, using an organic Rankine cycle (ORC) with two different configurations. In the first case, the cathode outlet provides the heat requirement for the pre-reforming process; then, it enters the heat recovery vapor generator of the organic Rankine cycle. In the second case, the cathode outlet is split into two streams for using in an ORC and supplying the pre-reforming process required heat. Several substances are selected as working fluids in order to compare their performance in the waste heat recovery system. The overall results at optimum conditions indicate that the energy and exergy efficiencies of the compound system are increased and its exergy loss is decreased with cathode splitting for all substances (1.1% average over all fluids). It is concluded that cathode splitting has a significant impact on the substances which

  2. Measuring weld heat to evaluate weld integrity

    Schauder, V., E-mail: [HKS-Prozesstechnik GmbH, Halle (Germany)


    Eddy current and ultrasonic testing are suitable for tube and pipe mills and have been used for weld seam flaw detection for decades, but a new process, thermography, is an alternative. By measuring the heat signature of the weld seam as it cools, it provides information about weld integrity at and below the surface. The thermal processes used to join metals, such as plasma, induction, laser, and gas tungsten arc welding (GTAW), have improved since they were developed, and they get better with each passing year. However, no industrial process is perfect, so companies that conduct research in flaw detection likewise continue to develop and improve the technologies used to verify weld integrity: ultrasonic testing (UT), eddy current testing (ET), hydrostatic, X-ray, magnetic particle, and liquid penetrant are among the most common. Two of these are used for verifying the integrity of the continuous welds such as those used on pipe and tube mills: UT and ET. Each uses a transmitter to send waves of ultrasonic energy or electrical current through the material and a receiver (probe) to detect disturbances in the flow. The two processes often are combined to capitalize on the strengths of each. While ET is good at detecting flaws at or near the surface, UT penetrates the material, detecting subsurface flaws. One drawback is that sound waves and electrical current waves have a specific direction of travel, or an alignment. A linear defect that runs parallel to the direction of travel of the ultrasonic sound wave or a flaw that is parallel to the coil winding direction of the ET probe can go undetected. A second drawback is that they don't detect cold welds. An alternative process, thermography, works in a different fashion: It monitors the heat of the material as the weld cools. Although it measures the heat at the surface, the heat signature provides clues about cooling activity deep in the material, resulting in a thorough assessment of the weld's integrity It

  3. Integral representation of nonlinear heat transport

    Kishimoto, Y.; Mima, K.; Haines, M.G.


    The electron distribution function in a plasma with steep temperature gradient is obtained from a Fokker-Planck equation by Green's function method. The formula describes the nonlocal effects on thermal transport over the range, λ e /L e /L → 0. As an example, the heat wave is analyzed numerically by the integral formula and it is found that the previous simulation results are well reproduced. (author)

  4. High-performance heat pipes for heat recovery applications

    Saaski, E. W.; Hartl, J. H.


    Methods to improve the performance of reflux heat pipes for heat recovery applications were examined both analytically and experimentally. Various models for the estimation of reflux heat pipe transport capacity were surveyed in the literature and compared with experimental data. A high transport capacity reflux heat pipe was developed that provides up to a factor of 10 capacity improvement over conventional open tube designs; analytical models were developed for this device and incorporated into a computer program HPIPE. Good agreement of the model predictions with data for R-11 and benzene reflux heat pipes was obtained.

  5. Total Site Heat Integration Considering Pressure Drops

    Kew Hong Chew


    Full Text Available Pressure drop is an important consideration in Total Site Heat Integration (TSHI. This is due to the typically large distances between the different plants and the flow across plant elevations and equipment, including heat exchangers. Failure to consider pressure drop during utility targeting and heat exchanger network (HEN synthesis may, at best, lead to optimistic energy targets, and at worst, an inoperable system if the pumps or compressors cannot overcome the actual pressure drop. Most studies have addressed the pressure drop factor in terms of pumping cost, forbidden matches or allowable pressure drop constraints in the optimisation of HEN. This study looks at the implication of pressure drop in the context of a Total Site. The graphical Pinch-based TSHI methodology is extended to consider the pressure drop factor during the minimum energy requirement (MER targeting stage. The improved methodology provides a more realistic estimation of the MER targets and valuable insights for the implementation of the TSHI design. In the case study, when pressure drop in the steam distribution networks is considered, the heating and cooling duties increase by 14.5% and 4.5%.

  6. Development of an Air-Source Heat Pump Integrated with a Water Heating / Dehumidification Module

    Rice, C Keith [ORNL; Uselton, Robert B. [Lennox Industries, Inc; Shen, Bo [ORNL; Baxter, Van D [ORNL; Shrestha, Som S [ORNL


    A residential-sized dual air-source integrated heat pump (AS-IHP) concept is under development in partnership between ORNL and a manufacturer. The concept design consists of a two-stage air-source heat pump (ASHP) coupled on the air distribution side with a separate novel water heating/dehumidification (WH/DH) module. The motivation for this unusual equipment combination is the forecast trend for home sensible loads to be reduced more than latent loads. Integration of water heating with a space dehumidification cycle addresses humidity control while performing double-duty. This approach can be applied to retrofit/upgrade applications as well as new construction. A WH/DH module capable of ~1.47 L/h water removal and ~2 kW water heating capacity was assembled by the manufacturer. A heat pump system model was used to guide the controls design; lab testing was conducted and used to calibrate the models. Performance maps were generated and used in a TRNSYS sub-hourly simulation to predict annual performance in a well-insulated house. Annual HVAC/WH energy savings of ~35% are predicted in cold and hot-humid U.S. climates compared to a minimum efficiency baseline.

  7. Nuclear heat sources for cryogenic refrigerator applications

    Raab, B.; Schock, A.; King, W.G.; Kline, T.; Russo, F.A.


    Spacecraft cryogenic refrigerators require thermal inputs on the order of 1000 W. First, the characteristics of solar-electric and radioisotope heat source systems for supplying this thermal input are compared. Then the design of a 238 Pu heat source for this application is described, and equipment for shipping and handling the heat source is discussed. (LCL)

  8. Emerging large-scale solar heating applications

    Wong, W.P.; McClung, J.L.


    Currently the market for solar heating applications in Canada is dominated by outdoor swimming pool heating, make-up air pre-heating and domestic water heating in homes, commercial and institutional buildings. All of these involve relatively small systems, except for a few air pre-heating systems on very large buildings. Together these applications make up well over 90% of the solar thermal collectors installed in Canada during 2007. These three applications, along with the recent re-emergence of large-scale concentrated solar thermal for generating electricity, also dominate the world markets. This paper examines some emerging markets for large scale solar heating applications, with a focus on the Canadian climate and market. (author)

  9. Emerging large-scale solar heating applications

    Wong, W.P.; McClung, J.L. [Science Applications International Corporation (SAIC Canada), Ottawa, Ontario (Canada)


    Currently the market for solar heating applications in Canada is dominated by outdoor swimming pool heating, make-up air pre-heating and domestic water heating in homes, commercial and institutional buildings. All of these involve relatively small systems, except for a few air pre-heating systems on very large buildings. Together these applications make up well over 90% of the solar thermal collectors installed in Canada during 2007. These three applications, along with the recent re-emergence of large-scale concentrated solar thermal for generating electricity, also dominate the world markets. This paper examines some emerging markets for large scale solar heating applications, with a focus on the Canadian climate and market. (author)

  10. Integrated multiscale simulation of combined heat and power based district heating system

    Li, Peifeng; Nord, Natasa; Ertesvåg, Ivar Ståle; Ge, Zhihua; Yang, Zhiping; Yang, Yongping


    Highlights: • Simulation of power plant, district heating network and heat users in detail and integrated. • Coupled calculation and analysis of the heat and pressure losses of the district heating network. • District heating is not preferable for very low heat load due to relatively high heat loss. • Lower design supply temperatures of the district heating network give higher system efficiency. - Abstract: Many studies have been carried out separately on combined heat and power and district heating. However, little work has been done considering the heat source, the district heating network and the heat users simultaneously, especially when it comes to the heating system with large-scale combined heat and power plant. For the purpose of energy conservation, it is very important to know well the system performance of the integrated heating system from the very primary fuel input to the terminal heat users. This paper set up a model of 300 MW electric power rated air-cooled combined heat and power plant using Ebsilon software, which was validated according to the design data from the turbine manufacturer. Then, the model of heating network and heat users were developed based on the fundamental theories of fluid mechanics and heat transfer. Finally the combined heat and power based district heating system was obtained and the system performances within multiscale scope of the system were analyzed using the developed Ebsilon model. Topics with regard to the heat loss, the pressure drop, the pump power consumption and the supply temperatures of the district heating network were discussed. Besides, the operational issues of the integrated system were also researched. Several useful conclusions were drawn. It was found that a lower design primary supply temperature of the district heating network would give a higher seasonal energy efficiency of the integrated system throughout the whole heating season. Moreover, it was not always right to relate low design

  11. Experimental investigation on an integrated thermal management system with heat pipe heat exchanger for electric vehicle

    Zou, Huiming; Wang, Wei; Zhang, Guiying; Qin, Fei; Tian, Changqing; Yan, Yuying


    An integrated thermal management system combining a heat pipe battery cooling/preheating system with the heat pump air conditioning system is presented to fulfill the comprehensive energy utilization for electric vehicles. A test bench with battery heat pipe heat exchanger and heat pump air conditioning for a regular five-chair electric car is set up to research the performance of this integrated system under different working conditions. The investigation results show that as the system is d...

  12. Wind power integration in Aalborg Municipality using compression heat pumps and geothermal absorption heat pumps

    Østergaard, Poul Alberg


    -temperature geothermal resources. The analyses have also demonstrated that the municipality will still rely heavily on surrounding areas for electric load balancing assistance. With a departure in a previously elaborated 100% renewable energy scenario, this article investigates how absorption heat pumps (AHP......Aalborg Municipality, Denmark is investigating ways of switching to 100% renewable energy supply over the next 40 years. Analyses so far have demonstrated a potential for such a transition through energy savings, district heating (DH) and the use of locally available biomass, wind power and low......) and compression heat pumps (HP) for the supply of DH impact the integration of wind power. Hourly scenario-analyses made using the EnergyPLAN model reveal a boiler production and electricity excess which is higher with AHPs than with HPs whereas condensing mode power generation is increased by the application...

  13. Waste heat recovery for offshore applications

    Pierobon, Leonardo; Kandepu, Rambabu; Haglind, Fredrik


    vary in the range 20-30%. There are several technologies available for onshore gas turbines (and low/medium heat sources) to convert the waste heat into electricity. For offshore applications it is not economical and practical to have a steam bottoming cycle to increase the efficiency of electricity...... production, due to low gas turbine outlet temperature, space and weight restrictions and the need for make-up water. A more promising option for use offshore is organic Rankine cycles (ORC). Moreover, several oil and gas platforms are equipped with waste heat recovery units to recover a part of the thermal...... energy in the gas turbine off-gas using heat exchangers, and the recovered thermal energy acts as heat source for some of the heat loads on the platform. The amount of the recovered thermal energy depends on the heat loads and thus the full potential of waste heat recovery units may not be utilized...

  14. Photovoltaic and Hydrogen Plant Integrated with a Gas Heat Pump for Greenhouse Heating: A Mathematical Study

    Alexandros Sotirios Anifantis


    Full Text Available Nowadays, the traditional energy sources used for greenhouse heating are fossil fuels such as LPG, diesel and natural gas. The global energy demand will continue to grow and alternative technologies need to be developed in order to improve the sustainability of crop production in protected environments. Innovative solutions are represented by renewable energy plants such as photovoltaic, wind and geothermal integrated systems, however, these technologies need to be connected to the power grid in order to store the energy produced. On agricultural land, power grids are not widespread and stand-alone renewable energy systems should be investigated especially for greenhouse applications. The aim of this research is to analyze, by means of a mathematical model, the energy efficiency of a photovoltaic (8.2 kW, hydrogen (2.5 kW and ground source gas heat pump (2.2 kW integrated in a stand-alone system used for heating an experimental greenhouse tunnel (48 m2 during the winter season. A yearlong energy performance analysis was conducted for three different types of greenhouse cover materials, a single layer polyethylene film, an air inflated-double layer polyethylene film, and a double acrylic or polycarbonate. The results of one year showed that the integrated system had a total energy efficiency of 14.6%. Starting from the electric energy supplied by the photovoltaic array, the total efficiency of the hydrogen and ground source gas heat pump system was 112% if the coefficient of the performance of the heat pump is equal to 5. The heating system increased the greenhouse air temperatures by 3–9 °C with respect to the external air temperatures, depending on the greenhouse cover material used.

  15. Optimum heat storage design for heat integrated multipurpose batch plants

    Stamp, J


    Full Text Available procedure is presented tha journal homepage: www All rights reserved. ajozi T, Optimum heat storage grated multipurpose batch plants , South Africa y usage in multipurpose batch plants has been in published literature most present methods, time... � 2pL?u?kins ? 1 h3A3?u?cu?U (36) The internal area for heat loss by convection from the heat transfer medium is given by Constraint (37) and the area for convective heat transfer losses to the environment is given in Constraint (38). A1?u? ? 2...

  16. Observing integrals of heat kernels from a distance

    Heat kernels have integrals such as Brownian motion mean exit time, potential capacity, and torsional rigidity. We show how to obtain bounds on these values - essentially by observing their behaviour in terms of the distance function from a point and then comparing with corresponding values in ta...... and discussed as test cases. The talk is based on joint work with Vicente Palmer....... in tailor-made warped product spaces. The results will be illustrated by applications to the so-called 'type' problem: How to decide if a given manifold or surface is transient (hyperbolic) or recurrent (parabolic). Specific examples of minimal surfaces and constant pressure dry foams will be shown...

  17. Heights integrated model as instrument for simulation of hydrodynamic, radiation transport, and heat conduction phenomena of laser-produced plasma in EUV applications.

    Sizyuk, V.; Hassanein, A.; Morozov, V.; Sizyuk, T.; Mathematics and Computer Science


    The HEIGHTS integrated model has been developed as an instrument for simulation and optimization of laser-produced plasma (LPP) sources relevant to extreme ultraviolet (EUV) lithography. The model combines three general parts: hydrodynamics, radiation transport, and heat conduction. The first part employs a total variation diminishing scheme in the Lax-Friedrich formulation (TVD-LF); the second part, a Monte Carlo model; and the third part, implicit schemes with sparse matrix technology. All model parts consider physical processes in three-dimensional geometry. The influence of a generated magnetic field on laser plasma behavior was estimated, and it was found that this effect could be neglected for laser intensities relevant to EUV (up to {approx}10{sup 12} W/cm{sup 2}). All applied schemes were tested on analytical problems separately. Benchmark modeling of the full EUV source problem with a planar tin target showed good correspondence with experimental and theoretical data. Preliminary results are presented for tin droplet- and planar-target LPP devices. The influence of three-dimensional effects on EUV properties of source is discussed.

  18. Advances in Nuclear Power Process Heat Applications


    Following an IAEA coordinated research project, this publication compiles the findings of research and development activities related to practical nuclear process heat applications. An overview of current progress on high temperature gas cooled reactors coupling schemes for different process heat applications, such as hydrogen production and desalination is included. The associated safety aspects are also highlighted. The summary report documents the results and conclusions of the project.

  19. Heat pipes theory, design and applications

    Reay, David; Kew, Peter


    Heat Pipes, 6th Edition, takes a highly practical approach to the design and selection of heat pipes, making it an essential guide for practicing engineers and an ideal text for postgraduate students. This new edition has been revised to include new information on the underlying theory of heat pipes and heat transfer, and features fully updated applications, new data sections, and updated chapters on design and electronics cooling. The book is a useful reference for those with experience and an accessible introduction for those approaching the topic for the first time. Contains all informat

  20. Active Disturbance Rejection Control of a Heat Integrated Distillation Column

    Al-Kalbani, Fahad; Zhang, Jie; Bisgaard, Thomas


    pressure. However, the control of some HiDC processesis generally difficult due to the strong control loop interaction, high purity of the components and undesired disturbances. Active disturbance rejection control (ADRC) is used in this paperto control a simulated HiDC for separating benzene-toluene......Heat integrated distillation column (HiDC) is the most energy efficient distillation approach making efficient utilization of internal heat integration through heat pump. The rectifying section acts as a heat source with high pressure, while the stripping section operates as a heat sink with low...

  1. Simultaneous integrated optimal energy flow of electricity, gas, and heat

    Shabanpour-Haghighi, Amin; Seifi, Ali Reza


    Highlights: • Integration of electrical, natural gas, and district heating networks is studied. • Part-load performances of units are considered in modeling. • A modified teaching–learning based optimization is used to solve the problem. • Results show the advantages of the integrated optimization approach. - Abstract: In this paper, an integrated approach to optimize electrical, natural gas, and district heating networks simultaneously is studied. Several interdependencies between these infrastructures are considered in details including a nonlinear part-load performance for boilers and CHPs besides the valve-point effect for generators. A novel approach based on selecting an appropriate set of state-variables for the problem is proposed that eliminates the addition of any new variable to convert irregular equations into a regular set while the optimization problem is still solvable. As a large optimization problem, the optimal solution cannot be achieved by conventional mathematical techniques. Hence, it is better to use evolutionary algorithms instead. In this paper, the well-known modified teaching–learning based optimization algorithm is utilized to solve the multi-period optimal power flow problem of multi-carrier energy networks. The proposed scheme is implemented and applied to a typical multi-carrier energy network. Results are compared with some other conventional heuristic algorithms and the applicability and superiority of the proposed methodology is verified

  2. Integrated heat exchanger design for a cryogenic storage tank

    Fesmire, J. E.; Bonner, T.; Oliveira, J. M.; Johnson, W. L.; Notardonato, W. U. [NASA Kennedy Space Center, Cryogenics Test Laboratory, NE-F6, KSC, FL 32899 (United States); Tomsik, T. M. [NASA Glenn Research Center, 21000 Brookpark Road, Cleveland, OH 44135 (United States); Conyers, H. J. [NASA Stennis Space Center, Building 3225, SSC, MS 39529 (United States)


    Field demonstrations of liquid hydrogen technology will be undertaken for the proliferation of advanced methods and applications in the use of cryofuels. Advancements in the use of cryofuels for transportation on Earth, from Earth, or in space are envisioned for automobiles, aircraft, rockets, and spacecraft. These advancements rely on practical ways of storage, transfer, and handling of liquid hydrogen. Focusing on storage, an integrated heat exchanger system has been designed for incorporation with an existing storage tank and a reverse Brayton cycle helium refrigerator of capacity 850 watts at 20 K. The storage tank is a 125,000-liter capacity horizontal cylindrical tank, with vacuum jacket and multilayer insulation, and a small 0.6-meter diameter manway opening. Addressed are the specific design challenges associated with the small opening, complete modularity, pressure systems re-certification for lower temperature and pressure service associated with hydrogen densification, and a large 8:1 length-to-diameter ratio for distribution of the cryogenic refrigeration. The approach, problem solving, and system design and analysis for integrated heat exchanger are detailed and discussed. Implications for future space launch facilities are also identified. The objective of the field demonstration will be to test various zero-loss and densified cryofuel handling concepts for future transportation applications.

  3. Integral methods of solving boundary-value problems of nonstationary heat conduction and their comparative analysis

    Kot, V. A.


    The modern state of approximate integral methods used in applications, where the processes of heat conduction and heat and mass transfer are of first importance, is considered. Integral methods have found a wide utility in different fields of knowledge: problems of heat conduction with different heat-exchange conditions, simulation of thermal protection, Stefantype problems, microwave heating of a substance, problems on a boundary layer, simulation of a fluid flow in a channel, thermal explosion, laser and plasma treatment of materials, simulation of the formation and melting of ice, inverse heat problems, temperature and thermal definition of nanoparticles and nanoliquids, and others. Moreover, polynomial solutions are of interest because the determination of a temperature (concentration) field is an intermediate stage in the mathematical description of any other process. The following main methods were investigated on the basis of the error norms: the Tsoi and Postol’nik methods, the method of integral relations, the Gudman integral method of heat balance, the improved Volkov integral method, the matched integral method, the modified Hristov method, the Mayer integral method, the Kudinov method of additional boundary conditions, the Fedorov boundary method, the method of weighted temperature function, the integral method of boundary characteristics. It was established that the two last-mentioned methods are characterized by high convergence and frequently give solutions whose accuracy is not worse that the accuracy of numerical solutions.

  4. Modular Micromachined Si Heat Removal (MOMS Heat Removal): Electronic Integration and System Test

    Brown, Elliott


    ...: (1) insulated-gated bipolar transistors (IGBTs), and (2) laterally-diffused (LD) MOSFETs. Heat pipes were found to provide little or no advantage over conventional copper-based heat spreaders in both device applications...

  5. Optimal Placement of A Heat Pump in An Integrated Power and Heat Energy System

    Klyapovskiy, Sergey; You, Shi; Bindner, Henrik W.


    With the present trend towards Smart Grids and Smart Energy Systems it is important to look for the opportunities for integrated development between different energy sectors, such as electricity, heating, gas and transportation. This paper investigates the problem of optimal placement of a heat...... pump – a component that links electric and heating utilities together. The system used to demonstrate the integrated planning approach has two neighboring 10kV feeders and several distribution substations with loads that require central heating from the heat pump. The optimal location is found...

  6. Heat pipe thermodynamic cycle and its applications

    Kobayashi, Y.


    A new type of thermodynamic cycle originating from extended application of the heat pipe principle is proposed and its thermal cycle is discussed from the viewpoint of theoretical thermal efficiency and Coefficient of Performance. An idealized structure that will meet the basic function for thermal systems is also suggested. A significant advantage of these systems is their use with lowtemperature energy sources found in nature or heat rejected from industrial sites

  7. Wind power integration using individual heat pumps – Analysis of different heat storage options

    Hedegaard, Karsten; Mathiesen, Brian Vad; Lund, Henrik


    Significant installations of individual heat pumps are expected in future energy systems due to their economic competitiveness. This case study of the Danish energy system in 2020 with 50% wind power shows that individual heat pumps and heat storages can contribute to the integration of wind power....... Heat accumulation tanks and passive heat storage in the construction are investigated as two alternative storage options in terms of their ability to increase wind power utilisation and to provide cost-effective fuel savings. Results show that passive heat storage can enable equivalent to larger...... reductions in excess electricity production and fuel consumption than heat accumulation tanks. Moreover, passive heat storage is found to be significantly more cost-effective than heat accumulation tanks. In terms of reducing fuel consumption of the energy system, the installation of heat pumps is the most...

  8. Combined cycle power plant with integrated low temperature heat (LOTHECO)

    Kakaras, E.; Doukelis, A.; Leithner, R.; Aronis, N.


    The major driver to enhance the efficiency of the simple gas turbine cycle has been the increase in process conditions through advancements in materials and cooling methods. Thermodynamic cycle developments or cycle integration are among the possible ways to further enhance performance. The current paper presents the possibilities and advantages from the LOTHECO natural gas-fired combined cycle concept. In the LOTHECO cycle, low-temperature waste heat or solar heat is used for the evaporation of injected water droplets in the compressed air entering the gas turbine's combustion chamber. Following a description of this innovative cycle, its advantages are demonstrated by comparison between different gas turbine power generation systems for small and large-scale applications, including thermodynamic and economic analysis. A commercial gas turbine (ALSTOM GT10C) has been selected and computed with the heat mass balance program ENBIPRO. The results from the energy analysis are presented and the features of each concept are discussed. In addition, the exergy analysis provides information on the irreversibilities of each process and suggested improvements. Finally, the economic analysis reveals that the combined cycle plant with a heavy-duty gas turbine is the most efficient and economic way to produce electricity at base load. However, on a smaller scale, innovative designs, such as the LOTHECO concept, are required to reach the same level of performance at feasible costs

  9. Parallel heat transport in integrable and chaotic magnetic fields

    Castillo-Negrete, D. del; Chacon, L. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-8071 (United States)


    The study of transport in magnetized plasmas is a problem of fundamental interest in controlled fusion, space plasmas, and astrophysics research. Three issues make this problem particularly challenging: (i) The extreme anisotropy between the parallel (i.e., along the magnetic field), {chi}{sub ||} , and the perpendicular, {chi}{sub Up-Tack }, conductivities ({chi}{sub ||} /{chi}{sub Up-Tack} may exceed 10{sup 10} in fusion plasmas); (ii) Nonlocal parallel transport in the limit of small collisionality; and (iii) Magnetic field lines chaos which in general complicates (and may preclude) the construction of magnetic field line coordinates. Motivated by these issues, we present a Lagrangian Green's function method to solve the local and non-local parallel transport equation applicable to integrable and chaotic magnetic fields in arbitrary geometry. The method avoids by construction the numerical pollution issues of grid-based algorithms. The potential of the approach is demonstrated with nontrivial applications to integrable (magnetic island), weakly chaotic (Devil's staircase), and fully chaotic magnetic field configurations. For the latter, numerical solutions of the parallel heat transport equation show that the effective radial transport, with local and non-local parallel closures, is non-diffusive, thus casting doubts on the applicability of quasilinear diffusion descriptions. General conditions for the existence of non-diffusive, multivalued flux-gradient relations in the temperature evolution are derived.

  10. Heat transfer applications for the practicing engineer

    Theodore, Louis


    This book serves as a training tool for individuals in industry and academia involved with heat transfer applications. Although the literature is inundated with texts emphasizing theory and theoretical derivations, the goal of this book is to present the subject of heat transfer from a strictly pragmatic point of view. The book is divided into four Parts: Introduction, Principles, Equipment Design Procedures and Applications, and ABET-related Topics. The first Part provides a series of chapters concerned with introductory topics that are required when solving most engineering problems, inclu

  11. An optimisation framework for thermal energy storage integration in a residential heat pump heating system

    Renaldi, R.; Kiprakis, A.; Friedrich, D.


    Highlights: • An integrated framework for the optimal design of low carbon heating systems. • Development of a synthetic heat demand model with occupancy profiles. • Linear model of a heat pump with thermal energy storage heating system. • Evaluation of domestic heating system from generally available input parameters. • The lower carbon heating system can be cost competitive with conventional systems. - Abstract: Domestic heating has a large share in the UK total energy consumption and significant contribution to the greenhouse gas emissions since it is mainly fulfilled by fossil fuels. Therefore, decarbonising the heating system is essential and an option to achieve this is by heating system electrification through heat pumps (HP) installation in combination with renewable power generation. A potential increase in performance and flexibility can be achieved by pairing HP with thermal energy storage (TES), which allows the shifting of heat demand to off peak periods or periods with surplus renewable electricity. We present a design and operational optimisation model which is able to assess the performance of HP–TES relative to conventional heating systems. The optimisation is performed on a synthetic heat demand model which requires only the annual heat demand, temperature and occupancy profiles. The results show that the equipment and operational cost of a HP system without TES are significantly higher than for a conventional system. However, the integration of TES and time-of-use tariffs reduce the operational cost of the HP systems and in combination with the Renewable Heating Incentive make the HP systems cost competitive with conventional systems. The presented demand model and optimisation procedure will enable the design of low carbon district heating systems which integrate the heating system with the variable renewable electricity supply.

  12. Integrated design and optimization of technologies for utilizing low grade heat in process industries

    Kwak, Dong-Hun; Binns, Michael; Kim, Jin-Kuk


    Highlights: • Implementation of a modeling and design framework for the utilization of low grade heat. • Application of process simulator and optimization techniques for the design of technologies for heat recovery. • Systematic and holistic exploitation for the recovery of industrial low grade heat. • Demonstration of the applicability and benefit of integrated design and optimization framework through a case study. - Abstract: The utilization of low grade heat in process industries has significant potential for improving site-wide energy efficiency. This paper focuses on the techno-economic analysis of key technologies for energy recovery and re-use, namely: Organic Rankine Cycles (ORC), boiler feed water heating, heat pumping and absorption refrigeration in the context of process integration. Process modeling and optimization in a holistic manner identifies the optimal integrated configuration of these technologies, with rigorous assessment of costs and technical feasibility of these technologies. For the systematic screening and evaluation of design options, detailed process simulator models are evaluated and optimization proceeds subject to design constraints for the particular economic scenarios where technology using low grade heat is introduced into the process site. Case studies are presented to illustrate how the proposed modeling and optimization framework can be useful and effective in practice, in terms of providing design guidelines and conceptual insights for the application of technologies using low grade heat. From the case study, the best options during winter are the ORC giving a 6.4% cost reduction for the ideal case with low grade heat available at a fixed temperature and boiler feed water heating giving a 2.5% cost reduction for the realistic case with low grade heat available at a range of temperatures. Similarly during summer boiler feed water heating was found to be the best option giving a 3.1% reduction of costs considering a

  13. Air source absorption heat pump in district heating: Applicability analysis and improvement options

    Wu, Wei; Shi, Wenxing; Li, Xianting; Wang, Baolong


    Highlights: • Applicability of air source absorption heat pump (ASAHP) district heating is studied. • Return temperature and energy saving rate (ESR) in various conditions are optimized. • ASAHP is more suitable for shorter distance or lower temperature district heating. • Two options can reduce the primary return temperature and improve the applicability. • The maximum ESR is improved from 13.6% to 20.4–25.6% by compression-assisted ASAHP. - Abstract: The low-temperature district heating system based on the air source absorption heat pump (ASAHP) was assessed to have great energy saving potential. However, this system may require smaller temperature drop leading to higher pump consumption for long-distance distribution. Therefore, the applicability of ASAHP-based district heating system is analyzed for different primary return temperatures, pipeline distances, pipeline resistances, supplied water temperatures, application regions, and working fluids. The energy saving rate (ESR) under different conditions are calculated, considering both the ASAHP efficiency and the distribution consumption. Results show that ASAHP system is more suitable for short-distance district heating, while for longer-distance heating, lower supplied hot water temperature is preferred. In addition, the advantages of NH 3 /H 2 O are inferior to those of NH 3 /LiNO 3 , and the advantages for warmer regions and lower pipeline resistance are more obvious. The primary return temperatures are optimized to obtain maximum ESRs, after which the suitable distances under different acceptable ESRs are summarized. To improve the applicability of ASAHP, the integration of cascaded heat exchanger (CHX) and compression-assisted ASAHP (CASAHP) are proposed, which can reduce the primary return temperature. The integration of CHX can effectively improve the applicability of ASAHP under higher supplied water temperatures. As for the utilization of CASAHP, higher compression ratio (CR) is better in

  14. Experimental investigation on an integrated thermal management system with heat pipe heat exchanger for electric vehicle

    Zou, Huiming; Wang, Wei; Zhang, Guiying; Qin, Fei; Tian, Changqing; Yan, Yuying


    Highlights: • An integrated thermal management system is proposed for electric vehicle. • The parallel branch of battery chiller can supply additional cooling capacity. • Heat pipe performance on preheating mode is better than that on cooling mode. • Heat pipe heat exchanger is a feasible choice for battery thermal management. - Abstract: An integrated thermal management system combining a heat pipe battery cooling/preheating system with the heat pump air conditioning system is presented to fulfill the comprehensive energy utilization for electric vehicles. A test bench with battery heat pipe heat exchanger and heat pump air conditioning for a regular five-chair electric car is set up to research the performance of this integrated system under different working conditions. The investigation results show that as the system is designed to meet the basic cabinet cooling demand, the additional parallel branch of battery chiller is a good way to solve the battery group cooling problem, which can supply about 20% additional cooling capacity without input power increase. Its coefficient of performance for cabinet heating is around 1.34 at −20 °C out-car temperature and 20 °C in-car temperature. The specific heat of the battery group is tested about 1.24 kJ/kg °C. There exists a necessary temperature condition for the heat pipe heat exchanger to start action. The heat pipe heat transfer performance is around 0.87 W/°C on cooling mode and 1.11 W/°C on preheating mode. The gravity role makes the heat transfer performance of the heat pipe on preheating mode better than that on cooling mode.

  15. Integration of Decentralized Thermal Storages Within District Heating (DH Networks

    Schuchardt Georg K.


    Full Text Available Thermal Storages and Thermal Accumulators are an important component within District Heating (DH systems, adding flexibility and offering additional business opportunities for these systems. Furthermore, these components have a major impact on the energy and exergy efficiency as well as the heat losses of the heat distribution system. Especially the integration of Thermal Storages within ill-conditioned parts of the overall DH system enhances the efficiency of the heat distribution. Regarding an illustrative and simplified example for a DH system, the interactions of different heat storage concepts (centralized and decentralized and the heat losses, energy and exergy efficiencies will be examined by considering the thermal state of the heat distribution network.

  16. Dielectric heating. Industrial applications; Chauffage dielectrique. Applications industrielles

    Roussy, G. [Nancy-1 Univ. Henri Poincare, Dir. de Recherche 54 (France); Rochas, J.F. [Societe Sairem, 75 - Paris (France); Oberlin, C. [Electricite de France (EDF), Div. de Recherche, 75 - Paris (France)


    The heating of insulating or badly power conducting products using high frequency (HF) electromagnetic waves and microwaves (MW) is used in several industrial applications. This article presents some examples of conventional or recent applications of dielectric heating in the industry: 1 - selection criteria between HF and MW heating systems; 2 - HF applications: traditional applications (wood forming and sticking, welding of thermoplastic materials, drying of textile materials, correction of the humidity profile in the paper industry, end-baking of biscuits in the food industry), recent applications (over-moulding of automotive glazing materials, gluing and moulding of plastic parts in the automotive industry, drying of the coating of textile ropes), innovative applications; 3 - microwave applications: traditional applications (moderating of frozen meat by 915 MHz microwaves, drying of coatings on polystyrene or sand core models for foundry, pre-vulcanization of rubber sections, 2450 MHz pasteurization of pumpable products with morsels), examples of recent applications (continuous dehydration in vacuum, MW assisted granulator-dryers in the pharmaceutical industry, decontamination of hospital wastes), examples of innovative applications in the chemical sector, applications in progress; 4 - conclusion. (J.S.)

  17. A solar air collector with integrated latent heat thermal storage

    Klimes Lubomir


    Full Text Available Simulations of the behaviour of a solar air collector with integrated latent heat thermal storage were performed. The model of the collector was created with the use of coupling between TRNSYS 17 and MATLAB. Latent heat storage (Phase Change Material - PCM was integrated with the solar absorber. The model of the latent heat storage absorber was created in MATLAB and the model of the solar air collector itself was created in TRNSYS with the use of TYPE 56. The model of the latent heat storage absorber allows specification of the PCM properties as well as other parameters. The simulated air collector was the front and back pass collector with the absorber in the middle of the air cavity. Two variants were considered for comparison; the light-weight absorber made of sheet metal and the heat-storage absorber with the PCM. Simulations were performed for the climatic conditions of the Czech Republic (using TMY weather data.

  18. HTR's role in process heat applications

    Kuhr, Reiner


    Advanced high-temperature nuclear reactors create a number of new opportunities for nuclear process heat applications. These opportunities are based on the high-temperature heat available, smaller reactor sizes, and enhanced safety features that allow siting close to process plants. Major sources of value include the displacement of premium fuels and the elimination of CO 2 emissions from combustion of conventional fuels and their use to produce hydrogen. High value applications include steam production and cogeneration, steam methane reforming, and water splitting. Market entry by advanced high-temperature reactor technology is challenged by the evolution of nuclear licensing requirements in countries targeted for early applications, by the development of a customer base not familiar with nuclear technology and related issues, by convergence of oil industry and nuclear industry risk management, by development of public and government policy support, by resolution of nuclear waste and proliferation concerns, and by the development of new business entities and business models to support commercialization. New HTR designs may see a larger opportunity in process heat niche applications than in power given competition from larger advanced light water reactors. Technology development is required in many areas to enable these new applications, including the commercialization of new heat exchangers capable of operating at high temperatures and pressures, convective process reactors and suitable catalysts, water splitting system and component designs, and other process-side requirements. Key forces that will shape these markets include future fuel availability and pricing, implementation and monetization of CO 2 emission limits, and the formation of international energy and environmental policy that will support initiatives to provide the nuclear licensing frameworks and risk distribution needed to support private investment. This paper was developed based on a plenary

  19. Integral transforms and their applications

    Debnath, Lokenath


    Keeping the style, content, and focus that made the first edition a bestseller, Integral Transforms and their Applications, Second Edition stresses the development of analytical skills rather than the importance of more abstract formulation. The authors provide a working knowledge of the analytical methods required in pure and applied mathematics, physics, and engineering. The second edition includes many new applications, exercises, comments, and observations with some sections entirely rewritten. It contains more than 500 worked examples and exercises with answers as well as hints to selecte

  20. Integration of large-scale heat pumps in the district heating systems of Greater Copenhagen

    Bach, Bjarne; Werling, Jesper; Ommen, Torben Schmidt


    This study analyses the technical and private economic aspects of integrating a large capacity of electric driven HP (heat pumps) in the Greater Copenhagen DH (district heating) system, which is an example of a state-of-the-art large district heating system with many consumers and suppliers....... The analysis was based on using the energy model Balmorel to determine the optimum dispatch of HPs in the system. The potential heat sources in Copenhagen for use in HPs were determined based on data related to temperatures, flows, and hydrography at different locations, while respecting technical constraints...

  1. Solar-assisted heat pump – A sustainable system for low-temperature water heating applications

    Chaturvedi, S.K.; Gagrani, V.D.; Abdel-Salam, T.M.


    Highlights: • DX-SAHP water heaters systems are economical as well as energy conserving. • The economic analysis is performed using the life cycle cost (LCC) analysis. • LCC can be optimized with respect to the collector area at a specific temperature. • For high load temperature range a two stage heat pump system is more appropriate. - Abstract: Direct expansion solar assisted heat pump systems (DX-SAHP) have been widely used in many applications including water heating. In the DX-SAHP systems the solar collector and the heat pump evaporator are integrated into a single unit in order to transfer the solar energy to the refrigerant. The present work is aimed at studying the use of the DX-SAHP for low temperature water heating applications. The novel aspect of this paper involves a detailed long-term thermo-economic analysis of the energy conservation potential and economic viability of these systems. The thermal performance is simulated using a computer program that incorporates location dependent radiation, collector, economic, heat pump and load data. The economic analysis is performed using the life cycle cost (LCC) method. Results indicate that the DX-SAHP water heaters systems when compared to the conventional electrical water heaters are both economical as well as energy conserving. The analysis also reveals that the minimum value of the system life cycle cost is achieved at optimal values of the solar collector area as well as the compressor displacement capacity. Since the cost of SAHP system presents a barrier to mass scale commercialization, the results of the present study indicating that the SAHP life cycle cost can be minimized by optimizing the collector area would certainly be helpful in lowering, if not eliminating, the economic barrier to these systems. Also, at load temperatures higher than 70 °C, the performance of the single stage heat pump degrades to the extent that its cost and efficiency advantages over the electric only system are

  2. Heat pipes. Design and industrial applications

    Semeria, R.


    Heat pipes are thermosiphons with vaporization where we can distinguish a boiler, a condenser, and eventually an adiabatic zone. To insure the returning liquid flow from the condenser to the boiler, surface tension forces, associated with the gravity forces, if need be, are used. For this, the condensing liquid is sucked by a capillary structure, generally situated against the inner wall. The review of the design methods, and particularly the prediction of the maximal performances shows the advantages and limitations of such devices. The main difficulties are technological for the heat pipes with high temperature liquid metals. The thermohydrodynamical limitations are: the maximum power which can be calculated by a balance between the friction forces and the active ones, the maximum heat flux leading to the dry-out of the evaporator, the critical conditions for the start up associated with the sonic conditions in the vapour phase. The description of heat pipes designed for some industrial applications (mainly for space) is given [fr

  3. Building Space Heating with a Solar-Assisted Heat Pump Using Roof-Integrated Solar Collectors

    Zhiyong Yang


    Full Text Available A solar assisted heat pump (SAHP system was designed by using a roof-integrated solar collector as the evaporator, and then it was demonstrated to provide space heating for a villa in Tianjin, China. A building energy simulation tool was used to predict the space heating load and a three dimensional theoretical model was established to analyze the heat collection performance of the solar roof collector. A floor radiant heating unit was used to decrease the energy demand. The measurement results during the winter test period show that the system can provide a comfortable living space in winter, when the room temperature averaged 18.9 °C. The average COP of the heat pump system is 2.97 and with a maximum around 4.16.

  4. Industrial Heat Pump for a High Temperature District Heating Application

    Poulsen, Claus Nørgaard

    by excess thermal energy from thermal solar panels. An industrial heat pump system using the natural refrigerant ammonia, is extracting the thermal energy from the storage when needed, and produce hot water at 85°C, for the district heating grid. The heat pump also acts as contributor to electricity grid...

  5. Consistency among integral measurements of aggregate decay heat power

    Takeuchi, H.; Sagisaka, M.; Oyamatsu, K.; Kukita, Y. [Nagoya Univ. (Japan)


    Persisting discrepancies between summation calculations and integral measurements force us to assume large uncertainties in the recommended decay heat power. In this paper, we develop a hybrid method to calculate the decay heat power of a fissioning system from those of different fissioning systems. Then, this method is applied to examine consistency among measured decay heat powers of {sup 232}Th, {sup 233}U, {sup 235}U, {sup 238}U and {sup 239}Pu at YAYOI. The consistency among the measured values are found to be satisfied for the {beta} component and fairly well for the {gamma} component, except for cooling times longer than 4000 s. (author)

  6. Integration of design applications with building models

    Eastman, C. M.; Jeng, T. S.; Chowdbury, R.


    This paper reviews various issues in the integration of applications with a building model... (Truncated.)......This paper reviews various issues in the integration of applications with a building model... (Truncated.)...

  7. Phase change heat transfer device for process heat applications

    Sabharwall, Piyush; Patterson, Mike; Utgikar, Vivek; Gunnerson, Fred


    The next generation nuclear plant (NGNP) will most likely produce electricity and process heat, with both being considered for hydrogen production. To capture nuclear process heat, and transport it to a distant industrial facility requires a high temperature system of heat exchangers, pumps and/or compressors. The heat transfer system is particularly challenging not only due to the elevated temperatures (up to ∼1300 K) and industrial scale power transport (≥50 MW), but also due to a potentially large separation distance between the nuclear and industrial plants (100+ m) dictated by safety and licensing mandates. The work reported here is the preliminary analysis of two-phase thermosyphon heat transfer performance with alkali metals. A thermosyphon is a thermal device for transporting heat from one point to another with quite extraordinary properties. In contrast to single-phased forced convective heat transfer via 'pumping a fluid', a thermosyphon (also called a wickless heat pipe) transfers heat through the vaporization/condensing process. The condensate is further returned to the hot source by gravity, i.e., without any requirement of pumps or compressors. With this mode of heat transfer, the thermosyphon has the capability to transport heat at high rates over appreciable distances, virtually isothermally and without any requirement for external pumping devices. Two-phase heat transfer by a thermosyphon has the advantage of high enthalpy transport that includes the sensible heat of the liquid, the latent heat of vaporization, and vapor superheat. In contrast, single-phase forced convection transports only the sensible heat of the fluid. Additionally, vapor-phase velocities within a thermosyphon are much greater than single-phase liquid velocities within a forced convective loop. Thermosyphon performance can be limited by the sonic limit (choking) of vapor flow and/or by condensate entrainment. Proper thermosyphon requires analysis of both.

  8. Enterprise Application Integration Using Java Technologies

    Alexandru BARBULESCU


    Full Text Available The current article points out some of the tasks and challenges companies must face in order to integrate their computerized systems and applications and then to place them on the Web. Also, the article shows how the Java 2 Enterprise Edition Platform and architecture helps the Web integration of applications. By offering standardized integration contracts, J2EE Platform allows application servers to play a key role in the process of Web integration of the applications.

  9. High Temperature Heat Pump Integration using Zeotropic Working Fluids for Spray Drying Facilities

    Zühlsdorf, Benjamin; Bühler, Fabian; Mancini, Roberta


    source and sink best possibly. Therefore, a set of six common working fluids is defined and the possible binary mixtures of these fluids are analyzed. The performance of the fluids is evaluated based on the energetic performance (COP) and the economic potential (NPV). The results show...... and show a large potential to reuse the excess heat from exhaust gases. This study analyses a heat pump application with an improved integration by choosing the working fluid as a mixture in such a way, that the temperature glide during evaporation and condensation matches the temperature glide of the heat...

  10. Heat-pump-centered integrated community energy systems

    Schaetzle, W.J.; Brett, C.E.; Seppanen, M.S.


    The heat-pump-centered integrated community energy system (HP-ICES) supplies district heating and cooling using heat pumps and a thermal energy storage system which is provided by nature in underground porous formations filled with water, i.e., aquifers. The energy is transported by a two-pipe system, one for warm water and one for cool water, between the aquifers and the controlled environments. Each energy module contains the controlled environments, an aquifer, wells for access to the aquifer, the two pipe water distribution system and water source heat pumps. The heat pumps upgrade the energy in the distribution system for use in the controlled environments. Economically, the system shows improvement on both energy usage and capital costs. The system saves over 60% of the energy required for resistance heating; saves over 30% of the energy required for most air-source heat pumps and saves over 60% of the energy required for gas, coal, or oil heating, when comparing to energy input required at the power plant for heat pump usage. The proposed system has been analyzed as demonstration projects for a downtown portion of Louisville, Kentucky, and a section of Fort Rucker, Alabama. The downtown Louisville demonstration project is tied directly to major buildings while the Fort Rucker demonstration project is tied to a dispersed subdivision of homes. The Louisville project shows a payback of approximately 3 y, while Fort Rucker is approximately 30 y. The primary difference is that at Fort Rucker new heat pumps are charged to the system. In Louisville, either new construction requiring heating and cooling systems or existing chillers are utilized. (LCL)

  11. From heat integration targets toward implementation – A TSA (total site analysis)-based design approach for heat recovery systems in industrial clusters

    Hackl, Roman; Harvey, Simon


    The European process industry is facing major challenges to decrease production costs. One strategy to achieve this is by increasing energy efficiency. Single chemical processes are often well-integrated and the tools to target and design such measures are well developed. Site-wide heat integration based on total site analysis tools can be used to identify opportunities to further increase energy efficiency. However, the methodology has to be developed further in order to enable identification of practical heat integration measures in a systematic way. Designing site-wide heat recovery systems across an industrial cluster is complex and involves aspects apart from thermal process and utility flows. This work presents a method for designing a roadmap of heat integration investments based on total site analysis. The method is applied to a chemical cluster in Sweden. The results of the case study show that application of the proposed method can achieve up to 42% of the previously targeted hot utility savings of 129 MW. A roadmap of heat integration systems is suggested, ranging from less complex systems that achieve a minor share of the heat recovery potential to sophisticated, strongly interdependent systems demanding large investments and a high level of collaboration. - Highlights: • Methodology focused on the practical implementation of site-wide heat recovery. • Algorithm to determine a roadmap of heat integration investments. • Case study: 42% hot utility savings potential at a pay-back period of 3.9y.

  12. Organic rankine cycle waste heat applications

    Brasz, Joost J.; Biederman, Bruce P.


    A machine designed as a centrifugal compressor is applied as an organic rankine cycle turbine by operating the machine in reverse. In order to accommodate the higher pressures when operating as a turbine, a suitable refrigerant is chosen such that the pressures and temperatures are maintained within established limits. Such an adaptation of existing, relatively inexpensive equipment to an application that may be otherwise uneconomical, allows for the convenient and economical use of energy that would be otherwise lost by waste heat to the atmosphere.

  13. Intermediate heat exchanger for HTR process heat application

    Crambes, M.


    In the French study on the nuclear gasification of coal, the following options were recommended: Coal hydrogenation, the hydrogen being derived from CH 4 reforming under the effects of HTR heat; the use of an intermediate helium circuit between the nuclear plant and the reforming plant. The purpose of the present paper is to describe the heat exchanger designed to transfer heat from the primary to the intermediate circuit

  14. A Modeling Framework for Conventional and Heat Integrated Distillation Columns

    Bisgaard, Thomas; Huusom, Jakob Kjøbsted; Abildskov, Jens


    In this paper, a generic, modular model framework for describing fluid separation by distillation is presented. At present, the framework is able to describe a conventional distillation column and a heat-integrated distillation column, but due to a modular structure the database can be further...

  15. Diamond-based heat spreaders for power electronic packaging applications

    Guillemet, Thomas

    As any semiconductor-based devices, power electronic packages are driven by the constant increase of operating speed (higher frequency), integration level (higher power), and decrease in feature size (higher packing density). Although research and innovation efforts have kept these trends continuous for now more than fifty years, the electronic packaging technology is currently facing a challenge that must be addressed in order to move toward any further improvements in terms of performances or miniaturization: thermal management. Thermal issues in high-power packages strongly affect their reliability and lifetime and have now become one of the major limiting factors of power modules development. Thus, there is a strong need for materials that can sustain higher heat flux levels while safely integrating into the electronic package architecture. In such context, diamond is an attractive candidate because of its outstanding thermal conductivity, low thermal expansion, and high electrical resistivity. Its low heat capacity relative to metals such as aluminum or copper makes it however preferable for heat spreading applications (as a heat-spreader) rather than for dissipating the heat flux itself (as a heat sink). In this study, a dual diamond-based heat-spreading solution is proposed. Polycrystalline diamond films were grown through laser-assisted combustion synthesis on electronic substrates (in the U.S) while, in parallel, diamond-reinforced copper-matrix composite films were fabricated through tape casting and hot pressing (in France). These two types of diamond-based heat-spreading films were characterized and their microstructure and chemical composition were related to their thermal performances. Particular emphasize was put on the influence of interfaces on the thermal properties of the materials, either inside a single material (grain boundaries) or between dissimilar materials (film/substrate interface, matrix/reinforcement interface). Finally, the packaging

  16. Continuous Integration in PHP web applications development

    Hujer, Martin


    This work deals with continuous integration of web applications, especially those in PHP language. The main objective is the selection of the server for continuous integration, its deployment and configuration for continuous integration of PHP web applications. The first chapter describes the concept of continuous integration and its individual techniques. The second chapter deals with the choice of server for continuous integration and its basic settings. The third chapter contains an overvi...

  17. Wind power integration with heat pumps, heat storages, and electric vehicles - Energy systems analysis and modelling

    Hedegaard, K.


    This PhD investigates to which extent heat pumps, heat storages, and electric vehicles can support the integration of wind power. Considering the gaps in existing research, the main focus is put on individual heat pumps in the residential sector (one-family houses) and the possibilities for flexible operation, using the heat storage options available. Several energy systems analyses are performed using the energy system models, Balmorel, developed at the former TSO, ElkraftSystem, and, EnergyPLAN, developed at Aalborg University. The Danish energy system towards 2030, with wind power penetrations of up to 60 %, is used as a case study in most of the analyses. Both models have been developed further, resulting in an improved representation of individual heat pumps and heat storages. An extensive model add-on for Balmorel renders it possible to optimise investment and operation of individual heat pumps and different types of heat storages, in integration with the energy system. Total costs of the energy system are minimised in the optimisation. The add-on incorporates thermal building dynamics and covers various different heat storage options: intelligent heat storage in the building structure for houses with radiator heating and floor heating, respectively, heat accumulation tanks on the space heating circuit, as well as hot water tanks. In EnergyPLAN, some of the heat storage options have been modelled in a technical optimisation that minimises fuel consumption of the energy system and utilises as much wind power as possible. The energy systems analyses reveal that in terms of supporting wind power integration, the installation of individual heat pumps is an important step, while adding heat storages to the heat pumps is less influential. When equipping the heat pumps with heat storages, only moderate system benefits can be gained. Hereof, the main system benefit is that the need for peak/reserve capacity investments can be reduced through peak load shaving; in

  18. Technical review of process heat applications using the HTGR

    Brierley, G.


    The demand for process heat applications is surveyed. Those applications which can be served only by the high temperature gas-cooled reactor (HTGR) are identified and the status of process heat applications in Europe, USA, and Japan in December 1975 is discussed. Technical problems associated with the HTGR for process heat applications are outlined together with an appraisal of the safety considerations involved. (author)

  19. Efficient heat recovery: Integrated circuit systems and heat pipes; Gezielte Waermerueckgewinnung: KV-Systeme und Waermerohr

    Kaup, C. [Howatherm, Bruecken (Germany)


    Integrated circuit systems and heat pipes are both known to be low-efficiency systems, but this shortcoming can be eliminated by constructive measures. (orig.) [Deutsch] Die beiden Verfahren - Kreislaufverbundsystem und das Waermerohr - sind als WRG-Systeme mit geringen Wirkungsgraden bekannt. Doch dieser Nachteil kann durch spezielle Konstruktionsmassnahmen eliminiert werden. (orig.)

  20. Heat-balance integral method for heat transfer in superfluid helium

    Baudouy Bertrand


    Full Text Available The heat-balance integral method is used to solve the non-linear heat diffusion equation in static turbulent superfluid helium (He II. Although this is an approximate method, it has proven that it gives solutions with fairly good accuracy in non-linear fluid dynamics and heat transfer. Using this method, it has been possible to develop predictive solutions that reproduce analytical solution and experimental data. We present the solutions of the clamped heat flux case and the clamped temperature case in a semi-infinite using independent variable transformation to take account of temperature dependency of the thermophysical properties. Good accuracy is obtained using the Kirchhoff transform whereas the method fails with the Goodman transform for larger temperature range.

  1. Development and application of soil coupled heat pump

    Liu, Lu


    Soil coupled heat pump technology is a new clean heating mode, is the world's most energy efficient heating one of the ways. And because of the use of renewable geothermal resources with high heating performance so more and more people's attention. Although the use of soil-coupled heat pumps has been in use for more than 50 years (the first application in the United States), the market penetration of this technology is still in its infancy. This paper will focus on the development, characteristics and application of the coupled heat pump.

  2. New configurations of a heat recovery absorption heat pump integrated with a natural gas boiler for boiler efficiency improvement

    Qu, Ming; Abdelaziz, Omar; Yin, Hongxi


    Highlights: • Thermal and heat transfer models of absorption heat pumps driven by exhaust gas, hot water, or natural gas. • Natural gas boiler combustion model. • Heat exchanger for condensing. • Experimental data of a hot water absorption heat pump. • Economic assessment of heat recovery absorption heat pump for improving natural gas boilers. - Abstract: Conventional natural gas-fired boilers exhaust flue gas direct to the atmosphere at 150–200 °C, which, at such temperatures, contains large amount of energy and results in relatively low thermal efficiency ranging from 70% to 80%. Although condensing boilers for recovering the heat in the flue gas have been developed over the past 40 years, their present market share is still less than 25%. The major reason for this relatively slow acceptance is the limited improvement in the thermal efficiency of condensing boilers. In the condensing boiler, the temperature of the hot water return at the range of 50–60 °C, which is used to cool the flue gas, is very close to the dew point of the water vapor in the flue gas. Therefore, the latent heat, the majority of the waste heat in the flue gas, which is contained in the water vapor, cannot be recovered. This paper presents a new approach to improve boiler thermal efficiency by integrating absorption heat pumps with natural gas boilers for waste heat recovery (HRAHP). Three configurations of HRAHPs are introduced and discussed. The three configurations are modeled in detail to illustrate the significant thermal efficiency improvement they attain. Further, for conceptual proof and validation, an existing hot water-driven absorption chiller is operated as a heat pump at operating conditions similar to one of the devised configurations. An overall system performance and economic analysis are provided for decision-making and as evidence of the potential benefits. These three configurations of HRAHP provide a pathway to achieving realistic high-efficiency natural

  3. Coupled heat conduction and thermal stress formulation using explicit integration

    Marchertas, A.H.; Kulak, R.F.


    The formulation needed for the conductance of heat by means of explicit integration is presented. The implementation of these expressions into a transient structural code, which is also based on explicit temporal integration, is described. Comparisons of theoretical results with code predictions are given both for one-dimensional and two-dimensional problems. The coupled thermal and structural solution of a concrete crucible, when subjected to a sudden temperature increase, shows the history of cracking. The extent of cracking is compared with experimental data

  4. Supervisory Model Predictive Control of the Heat Integrated Distillation Column

    Meyer, Kristian; Bisgaard, Thomas; Huusom, Jakob Kjøbsted


    This paper benchmarks a centralized control system based on model predictive control for the operation of the heat integrated distillation column (HIDiC) against a fully decentralized control system using the most complete column model currently available in the literature. The centralized control...... system outperforms the decentralized system, because it handles the interactions in the HIDiC process better. The integral absolute error (IAE) is reduced by a factor of 2 and a factor of 4 for control of the top and bottoms compositions, respectively....

  5. Design of internally heat-integrated distillation column (HIDiC): Uniform heat transfer area versus uniform heat distribution

    Suphanit, B. [Department of Chemical Engineering, Faculty of Engineering, King Mongkut' s University of Technology Thonburi, Pracha Utit Rd., Tungkru, Bangkok 10140 (Thailand)


    The internally heat-integrated distillation column (HIDiC) is a complex column configuration which is more energy efficient than the equivalent conventional column or the distillation column with direct vapor recompression scheme (VRC). Exploiting the heat integration between two diabatic sections operating at different pressures of the HIDiC can greatly enhance the energy performance of the system. On the other hand, the design and optimization of HIDiC is more difficult than those of the conventional distillation column or the column with VRC. The former involves many design parameters, and the most critical one is the pressure ratio between both diabatic sections. However, the heat distribution along the diabatic sections is also another significant factor not yet thoroughly investigated. In this work, two typical distribution schemes, i.e. uniform heat transfer area and uniform heat distribution, are studied by applying a novel approach to solve the simulation problem in Aspen Plus 2004.1. The comparison of both distributing schemes is discussed via two widely-used case studies, namely benzene-toluene separation and propylene-propane splitter. (author)

  6. A feasible system integrating combined heating and power system with ground-source heat pump

    Li, HongQiang; Kang, ShuShuo; Yu, Zhun; Cai, Bo; Zhang, GuoQiang


    A system integrating CHP (combined heating and power) subsystem based on natural gas and GSHP (ground-source heat pump subsystem) in series is proposed. By help of simulation software-Aspen Plus, the energy performance of a typical CHP and GSHP-S (S refers to ‘in series’) system was analyzed. The results show that the system can make a better use of waste heat in flue gas from CHP (combined heating and power subsystem). The total system energy efficiency is 123% and the COP (coefficient of performance) of GSHP (ground-source heat pump) subsystem is 5.3. A referenced CHP and GSHP-P (P refers to ‘in parallel’) system is used for comparison; its total system energy efficiency and COP of GSHP subsystem are 118.6% and 3.5 respectively. Compared with CHP and GSHP-P system with different operating parameters, the CHP and GSHP-S system can increase total system energy efficiency by 0.8–34.7%, with related output ratio of heat to power (R) from 1.9 to 18.3. Furthermore, the COP of GSHP subsystem can be increased between the range 3.6 and 6, which is much higher than that in conventional CHP and GSHP-P system. This study will be helpful for other efficient GSHP systems integrating if there is waste heat or other heat resources with low temperature. - Highlights: • CHP system based on natural gas and ground source heat pump. • The new system can make a better utilization of waste heat in flue gas by a special way. • The proposed system can realize energy saving potential from 0.8 to 34.7%. • The coefficient of performance of ground source heat pump subsystem is significantly improved from 3.5 to 3.6–6. • Warm water temperature and percentage of flue gas used to reheat are key parameters

  7. Ohmic Heating: Concept and Applications-A Review.

    Kaur, Nimratbir; Singh, A K


    Ohmic heating, also known as Joule heating, electrical resistance heating, and direct electrical resistance heating, is a process of heating the food by passing electric current. In ohmic heating the energy is dissipated directly into the food. Electrical conductivity is a key parameter in the design of an effective ohmic heater. A large number of potential applications exist for ohmic heating, including blanching, evaporation, dehydration, fermentation, sterilization, pasteurization, and heating of foods. Beyond heating, applied electric field under ohmic heating causes electroporation of cell membranes, which increase extraction rates, and reduce gelatinization temperature and enthalpy. Ohmic heating results in faster heating of food along with maintenance of color and nutritional value of food. Water absorption index, water solubility index, thermal properties, and pasting properties are altered with the application of ohmic heating. Ohmic heating results in pre-gelatinized starches, which reduce energy requirement during processing. But its higher initial cost, lack of its applications in foods containing fats and oils, and less awareness limit its use.

  8. Development of an integrated heat pipe-thermal storage system for a solar receiver

    Keddy, E. S.; Sena, J. T.; Merrigan, M. A.; Heidenreich, G.; Johnson, S.


    The Organic Rankine Cycle (ORC) Solar Dynamic Power System (SDPS) is one of the candidates for Space Station prime power application. In the low Earth orbit of the Space Station approximately 34 minutes of the 94-minute orbital period is spent in eclipse with no solar energy input to the power system. For this period the SDPS will use thermal energy storage (TES) material to provide a constant power output. An integrated heat-pipe thermal storage receiver system is being developed as part of the ORC-SDPS solar receiver. This system incorporates potassium heat pipe elements to absorb and transfer the solar energy within the receiver cavity. The heat pipes contain the TES canisters within the potassium vapor space with the toluene heater tube used as the condenser region of the heat pipe. During the insolation period of the Earth orbit, solar energy is delivered to the heat pipe in the ORC-SDPS receiver cavity. The heat pipe transforms the non-uniform solar flux incident in the heat pipe surface within the receiver cavity to an essentially uniform flux at the potassium vapor condensation interface in the heat pipe. During solar insolation, part of the thermal energy is delivered to the heater tube and the balance is stored in the TES units. During the eclipse period of the orbit, the balance stored in the TES units is transferred by the potassium vapor to the toluene heater tube.

  9. Development of an integrated heat pipe-thermal storage system for a solar receiver

    Keddy, E. S.; Sena, J. T.; Merrigan, M. A.; Heidenreich, G.; Johnson, S.


    The Organic Rankine Cycle (ORC) Solar Dynamic Power System (SDPS) is one of the candidates for Space Station prime power application. In the low Earth orbit of the Space Station approximately 34 minutes of the 94-minute orbital period is spent in eclipse with no solar energy input to the power system. For this period the SDPS will use thermal energy storage (TES) material to provide a constant power output. An integrated heat-pipe thermal storage receiver system is being developed as part of the ORC-SDPS solar receiver. This system incorporates potassium heat pipe elements to absorb and transfer the solar energy within the receiver cavity. The heat pipes contain the TES canisters within the potassium vapor space with the toluene heater tube used as the condenser region of the heat pipe. During the insolation period of the Earth orbit, solar energy is delivered to the heat pipe in the ORC-SDPS receiver cavity. The heat pipe transforms the non-uniform solar flux incident in the heat pipe surface within the receiver cavity to an essentially uniform flux at the potassium vapor condensation interface in the heat pipe. During solar insolation, part of the thermal energy is delivered to the heater tube and the balance is stored in the TES units. During the eclipse period of the orbit, the balance stored in the TES units is transferred by the potassium vapor to the toluene heater tube.

  10. Modular control of fusion power heating applications

    Demers, D. R.


    This work is motivated by the growing demand for auxiliary heating on small and large machines worldwide. Numerous present and planned RF experiments (EBW, Lower Hybrid, ICRF, and ECH) are increasingly complex systems. The operational challenges are indicative of a need for components of real-time control that can be implemented with a moderate amount of effort in a time- and cost-effective fashion. Such a system will improve experimental efficiency, enhance experimental quality, and expedite technological advancements. The modular architecture of this control-suite serves multiple purposes. It facilitates construction on various scales from single to multiple controller systems. It enables expandability of control from basic to complex via the addition of modules with varying functionalities. It simplifies the control implementation process by reducing layers of software and electronic development. While conceived with fusion applications in mind, this suite has the potential to serve a broad range of scientific and industrial applications. During the Phase-I research effort we established the overall feasibility of this modular control-suite concept. We developed the fundamental modules needed to implement open-loop active-control and demonstrated their use on a microwave power deposition experiment

  11. Low-temperature nuclear heat applications: Nuclear power plants for district heating


    The IAEA reflected the needs of its Member States for the exchange of information in the field of nuclear heat application already in the late 1970s. In the early 1980s, some Member States showed their interest in the use of heat from electricity producing nuclear power plants and in the development of nuclear heating plants. Accordingly, a technical committee meeting with a workshop was organized in 1983 to review the status of nuclear heat application which confirmed both the progress made in this field and the renewed interest of Member States in an active exchange of information about this subject. In 1985 an Advisory Group summarized the Potential of Low-Temperature Nuclear Heat Application; the relevant Technical Document reviewing the situation in the IAEA's Member States was issued in 1986 (IAEA-TECDOC-397). Programme plans were made for 1986-88 and the IAEA was asked to promote the exchange of information, with specific emphasis on the design criteria, operating experience, safety requirements and specifications for heat-only reactors, co-generation plants and power plants adapted for heat application. Because of a growing interest of the IAEA's Member States about nuclear heat employment in the district heating domaine, an Advisory Group meeting was organized by the IAEA on ''Low-Temperature Nuclear Heat Application: Nuclear Power Plants for District Heating'' in Prague, Czechoslovakia in June 1986. The information gained up to 1986 and discussed during this meeting is embodied in the present Technical Document. 22 figs, 11 tabs

  12. Radioisotopes for heat-source applications

    Hoisington, J.E.


    Potential DOD requirements for noninterruptable power sources could total 1 MW thermal by FY 1990. Of the three isotopes considered, ( 90 Sr, 147 Pm, 238 Pu) 90 Sr is the only one available in sufficient amounts to meet this requirement. To meet the DOD FY 1990 requirements, it would be necessary to undertake 90 Sr recovery operations from spent fuel reprocessing at SRP, Hanford, and the Barnwell Nuclear Fuels Plant (BNFP). 90 Sr recovery from the existing alkaline high level waste (HLW) at Hanford and SRP is not attractive because the isotopic purity of the 90 Sr is below that required for DOD applications. Without reprocessing LWR spent fuel, SRP and Hanford could not supply the demand of 1 MW thermal until FY 1996. Between FY 1983 and FY 1996, SRP and Hanford could supply approximately 0.70 MW of 90 Sr and 0.15 MW of 147 Pm. SRP could supply an additional 0.15 MW from the production and recovery of 238 Pu. Strontium-90 is the most economical of the three heat source radionuclides considered. The 90 Sr unit recovery cost from SRP fresh acid waste would be $180/watt. The BNFP 90 Sr recovery cost would be $130/watt to $235/watt depending on the age and burnup of the LWR spent fuel. Hanford 90 Sr recovery costs form Purex fresh acid waste are unavailable, but they are expected to be comparable to the SRP costs. 147 Pm and 238 Pu are considerably more expensive heat source materials. 147 Pm recovery costs at SRP are estimated to be $450/watt. As with 90 Sr, the Hanford 147 Pm recovery costs are expected to be comparabl to the SRP costs. Production of high assay (93.5%) 238 Pu at SRP from excess 231 Np would cost about $1160/watt, while recovery of low assay (27%) 238 Pu from the waste stream is estimated at $1850/watt

  13. The magnetic fluid for heat transfer applications

    Nakatsuka, K.; Jeyadevan, B.; Neveu, S.; Koganezawa, H.


    Real-time visual observation of boiling water-based and ionic magnetic fluids (MFs) and heat transfer characteristics in heat pipe using ionic MF stabilized by citrate ions (JC-1) as working liquid are reported. Irrespective of the presence or absence of magnetic field water-based MF degraded during boiling. However, the degradation of JC-1 was avoided by heating the fluid in magnetic field. Furthermore, the heat transfer capacity of JC-1 heat pipe under applied magnetic field was enhanced over the no field case

  14. Heat pump dryers theory, design and industrial applications

    Alves-Filho, Odilio


    Explore the Social, Technological, and Economic Impact of Heat Pump Drying Heat pump drying is a green technology that aligns with current energy, quality, and environmental concerns, and when compared to conventional drying, delivers similar quality at a lower cost. Heat Pump Dryers: Theory, Design and Industrial Applications details the progression of heat pump drying-from pioneering research and demonstration work to an applied technology-and establishes principles and theories that can aid in the successful design and application of heat pump dryers. Based on the author's personal experience, this book compares heat pump dryers and conventional dryers in terms of performance, quality, removal rate, energy utilization, and the environmental effect of both drying processes. It includes detailed descriptions and layouts of heat pump dryers, outlines the principles of operation, and explains the equations, diagrams, and procedures used to form the basis for heat pump dryer dimensioning and design. The author ...

  15. Integrated evaluation of radiative heating systems for residential buildings

    Anastaselos, Dimitrios; Theodoridou, Ifigeneia; Papadopoulos, Agis M.; Hegger, Manfred


    Based on the need to reduce CO 2 emissions and minimize energy dependency, the EU Member States have set ambitious energy policies goals and have developed respective, specific regulations, in order to improve the energy performance of the building sector. Thus, specific measures regarding the buildings' envelope, the use of efficient HVAC technologies and the integration of renewable energy systems are being constantly studied and promoted. The effective combination of these three main aspects will consequently result in maximum energy efficiency. Germany has played a key role in this development, with intensive work focusing in the improvement of the energy behaviour of the residential building stock. In this paper, the use of radiative heating systems placing special emphasis on infrared is being studied as part of the energy renovation of residential buildings from the 1970's. This is done by applying an integrated assessment model to evaluate specific interventions regarding the improvement of the energy behaviour of the buildings' envelope and the use of radiative heating systems, based on a thorough Life Cycle Analysis according to criteria of energy, economic and environmental performance, as well as thermal comfort. -- Highlights: → Assessment of energy, economic and environmental performance of heating systems. → Life Cycle Analysis in combination with the quality of thermal comfort. → Effectiveness of interventions in already partially insulated buildings.

  16. Integrated systems innovations and applications


    This book presents the results of discussions and presentation from the latest ISDT event (2014) which was dedicated to the 94th birthday anniversary of Prof. Lotfi A. Zade, father of Fuzzy logic. The book consists of three main chapters, namely: Chapter 1: Integrated Systems Design Chapter 2: Knowledge, Competence and Business Process Management Chapter 3: Integrated Systems Technologies Each article presents novel and scientific research results with respect to the target goal of improving our common understanding of KT integration.

  17. Laboratory Performance Evaluation of Residential Integrated Heat Pump Water Heaters

    Sparn, B.; Hudon, K.; Christensen, D.


    This paper explores the laboratory performance of five integrated Heat Pump Water Heaters (HPWHs) across a wide range of operating conditions representative of U.S. climate regions. HPWHs are expected to provide significant energy savings in certain climate zones when compared to typical electric resistance water heaters. Results show that this technology is a viable option in most climates, but differences in control schemes and design features impact the performance of the units tested. Tests were conducted to map heat pump performance across the operating range and to determine the logic used to control the heat pump and the backup electric heaters. Other tests performed include two unique draw profile tests, reduced air flow performance tests and the standard DOE rating tests. The results from all these tests are presented here for all five units tested. The results of these tests will be used to improve the EnergyPlus heat pump water heater for use in BEopt™ whole-house building simulations.

  18. Laboratory Performance Evaluation of Residential Integrated Heat Pump Water Heaters

    Sparn, B.; Hudon, K.; Christensen, D.


    This paper explores the laboratory performance of five integrated Heat Pump Water Heaters (HPWHs) across a wide range of operating conditions representative of US climate regions. HPWHs are expected to provide significant energy savings in certain climate zones when compared to typical electric resistance water heaters. Results show that this technology is a viable option in most climates, but differences in control schemes and design features impact the performance of the units tested. Tests were conducted to map heat pump performance across the operating range and to determine the logic used to control the heat pump and the backup electric heaters. Other tests performed include two unique draw profile tests, reduced air flow performance tests and the standard DOE rating tests. The results from all these tests are presented here for all five units tested. The results of these tests will be used to improve the EnergyPlus heat pump water heater for use in BEopt(tm) whole-house building simulations.

  19. Hydrogen and renewable energy sources integrated system for greenhouse heating

    Ileana Blanco


    Full Text Available A research is under development at the Department of Agro- Environmental Sciences of the University of Bari “Aldo Moro” in order to investigate the suitable solutions of a power system based on solar energy (photovoltaic and hydrogen, integrated with a geothermal heat pump for powering a self sustained heated greenhouse. The electrical energy for heat pump operation is provided by a purpose-built array of solar photovoltaic modules, which supplies also a water electrolyser system controlled by embedded pc; the generated dry hydrogen gas is conserved in suitable pressured storage tank. The hydrogen is used to produce electricity in a fuel cell in order to meet the above mentioned heat pump power demand when the photovoltaic system is inactive during winter night-time or the solar radiation level is insufficient to meet the electrical demand. The present work reports some theoretical and observed data about the electrolyzer operation. Indeed the electrolyzer has required particular attention because during the experimental tests it did not show a stable operation and it was registered a performance not properly consistent with the predicted performance by means of the theoretical study.

  20. Integration of Heat Transfer, Stress, and Particle Trajectory Simulation

    Thuc Bui; Michael Read; Lawrence ives


    Calabazas Creek Research, Inc. developed and currently markets Beam Optics Analyzer (BOA) in the United States and abroad. BOA is a 3D, charged particle optics code that solves the electric and magnetic fields with and without the presence of particles. It includes automatic and adaptive meshing to resolve spatial scales ranging from a few millimeters to meters. It is fully integrated with CAD packages, such as SolidWorks, allowing seamless geometry updates. The code includes iterative procedures for optimization, including a fully functional, graphical user interface. Recently, time dependent, particle in cell capability was added, pushing particles synchronically under quasistatic electromagnetic fields to obtain particle bunching under RF conditions. A heat transfer solver was added during this Phase I program. Completed tasks include: (1) Added a 3D finite element heat transfer solver with adaptivity; (2) Determined the accuracy of the linear heat transfer field solver to provide the basis for development of higher order solvers in Phase II; (3) Provided more accurate and smoother power density fields; and (4) Defined the geometry using the same CAD model, while maintaining different meshes, and interfacing the power density field between the particle simulator and heat transfer solvers. These objectives were achieved using modern programming techniques and algorithms. All programming was in C++ and parallelization in OpenMP, utilizing state-of-the-art multi-core technology. Both x86 and x64 versions are supported. The GUI design and implementation used Microsoft Foundation Class.

  1. Heat pipe applications for future Air Force spacecraft

    Mahefkey, T.; Barthelemy, R.R.


    This paper summarizes the envisioned, future usage of high and low temperature heat pipes in advanced Air Force spacecraft. Thermal control requirements for a variety of communications, surveillance, and space defense missions are forecast. Thermal design constraints implied by survivability to potential weapons effects are outlined. Applications of heat pipes to meet potential low and high power spacecraft mission requirements and envisioned design constraints are suggested. A brief summary of past Air Force sponsored heat pipe development efforts is presented and directions for future development outlined, including those applicable to advanced photovoltaic and nuclear power subsystem applications of heat pipes

  2. Seminar on heat pump research and applications: proceedings

    Steele, R.V. Jr. (ed.)


    This volume is a compilation of papers prepared by speakers at a seminar on heat pumps. The seminar was organized by the Electric Power Research Institute (EPRI) in cooperation with Louisiana Power and Light Company and New Orleans Public Service, Inc. The seminar's purpose was to inform utility managers and engineers of the most recent developments in residential heat pump technology and applications. Statements by invited panelists on the outlook for heat pump technology are also included. The speakers, who represented key organizations in the heat pump area, including utilities, industry associations, manufacturers, independent research institutes, government, and EPRI, addressed the following topics: status of heat pump research and development, heat pump testing and rating; field monitoring of heat pumps; heat pump water heaters; heat pump reliability; and marketing programs for pumps. All papers, total of sixteen have been processed for inclusion in the Energy Data Base.

  3. Research on application of carbon fiber heating material in clothing

    Yang, Huanhong


    With the development of society, the way of keeping warm clothing is also developing. Carbon fiber has the advantages of high efficiency, safety, mobility and comfort. As a heating element, it has good application prospect. In this paper, the main technology, application issues and design method of carbon fiber heating garment are analyzed, and the key problems in industrialization are also put forward.

  4. Integrated solar-assisted heat pumps for water heating coupled to gas burners; control criteria for dynamic operation

    Scarpa, F.; Tagliafico, L.A.; Tagliafico, G.


    A direct expansion integrated solar-assisted heat pump (ISAHP) is compared to a traditional flat plate solar panel for low temperature (45 deg. C) water heating applications. The (simulated) comparison is accomplished assuming both the devices are energy supplemented with an auxiliary standard gas burner, to provide the typical heat duty of a four-member family. Literature dynamical models of the systems involved have been used to calculate the main performance figures in a context of actual climatic conditions and typical stochastic user demand. The paper highlights new heat pump control concepts, needed when maximum energy savings are the main goal of the apparatus for given user demand. Simulations confirm the high collector efficiency of the ISAHP when its panel/evaporator works at temperature close to the ambient one. The device, with respect to a flat plate solar water heater, shows a doubled performance, so that it can do the same task just using an unglazed panel with roughly half of the surface.

  5. Integrating wind power using intelligent electric water heating

    Fitzgerald, Niall; Foley, Aoife M.; McKeogh, Eamon


    Dwindling fossil fuel resources and pressures to reduce greenhouse gas emissions will result in a more diverse range of generation portfolios for future electricity systems. Irrespective of the portfolio mix the overarching requirement for all electricity suppliers and system operators is to instantaneously meet demand, to operate to standards and reduce greenhouse gas emissions. Therefore all electricity market participants will ultimately need to use a variety of tools to balance the power system. Thus the role of demand side management with energy storage will be paramount to integrate future diverse generation portfolios. Electric water heating has been studied previously, particularly at the domestic level to provide load control, peak shave and to benefit end-users financially with lower bills, particularly in vertically integrated monopolies. In this paper a number of continuous direct load control demand response based electric water heating algorithms are modelled to test the effectiveness of wholesale electricity market signals to study the system benefits. The results are compared and contrasted to determine which control algorithm showed the best potential for energy savings, system marginal price savings and wind integration.

  6. Integral equations and their applications

    Rahman, M


    For many years, the subject of functional equations has held a prominent place in the attention of mathematicians. In more recent years this attention has been directed to a particular kind of functional equation, an integral equation, wherein the unknown function occurs under the integral sign. The study of this kind of equation is sometimes referred to as the inversion of a definite integral. While scientists and engineers can already choose from a number of books on integral equations, this new book encompasses recent developments including some preliminary backgrounds of formulations of integral equations governing the physical situation of the problems. It also contains elegant analytical and numerical methods, and an important topic of the variational principles. Primarily intended for senior undergraduate students and first year postgraduate students of engineering and science courses, students of mathematical and physical sciences will also find many sections of direct relevance. The book contains eig...

  7. Integrating CLIPS applications into heterogeneous distributed systems

    Adler, Richard M.


    SOCIAL is an advanced, object-oriented development tool for integrating intelligent and conventional applications across heterogeneous hardware and software platforms. SOCIAL defines a family of 'wrapper' objects called agents, which incorporate predefined capabilities for distributed communication and control. Developers embed applications within agents and establish interactions between distributed agents via non-intrusive message-based interfaces. This paper describes a predefined SOCIAL agent that is specialized for integrating C Language Integrated Production System (CLIPS)-based applications. The agent's high-level Application Programming Interface supports bidirectional flow of data, knowledge, and commands to other agents, enabling CLIPS applications to initiate interactions autonomously, and respond to requests and results from heterogeneous remote systems. The design and operation of CLIPS agents are illustrated with two distributed applications that integrate CLIPS-based expert systems with other intelligent systems for isolating and mapping problems in the Space Shuttle Launch Processing System at the NASA Kennedy Space Center.

  8. DOE Heat Pump Centered Integrated Community Energy Systems Project

    Calm, J. M.


    The Heat Pump Centered Integrated Community Energy Systems (HP-ICES) Project is a multiphase undertaking seeking to demonstrate one or more operational HP-ICES by the end of 1983. The seven phases include System Development, Demonstration Design, Design Completion, HP-ICES Construction, Operation and Data Acquisition, HP-ICES Evaluation, and Upgraded Continuation. This project is sponsored by the Community Systems Branch, Office of Buildings and Community Systems, Assistant Secretary for Conservation and Solar Applicaions, U.S. Department of Energy (DOE). It is part of the Community Systems Program and is managed by the Energy and Environmental Systems Division of Argonne Natinal Laboratory.

  9. Technology, applications and modelling of ohmic heating: a review.

    Varghese, K Shiby; Pandey, M C; Radhakrishna, K; Bawa, A S


    Ohmic heating or Joule heating has immense potential for achieving rapid and uniform heating in foods, providing microbiologically safe and high quality foods. This review discusses the technology behind ohmic heating, the current applications and thermal modeling of the process. The success of ohmic heating depends on the rate of heat generation in the system, the electrical conductivity of the food, electrical field strength, residence time and the method by which the food flows through the system. Ohmic heating is appropriate for processing of particulate and protein rich foods. A vast amount of work is still necessary to understand food properties in order to refine system design and maximize performance of this technology in the field of packaged foods and space food product development. Various economic studies will also play an important role in understanding the overall cost and viability of commercial application of this technology in food processing. Some of the demerits of the technology are also discussed.

  10. Application of combined heat and power in Malaysia Industrial Sector

    Zaredah Hashim; Faridah Mohd Taha


    Malaysia is still working on continuing its economic growth especially in the industrial sector in order to achieve vision 2020. The rapid industrialization process has caused increment in the energy demand, which simultaneously increases carbon dioxide (CO 2 ) emissions. Energy efficient technologies are strongly needed for reducing the energy requirement and to avoid the depleting of energy resources. This project focused on the application of integrated resource planning (IRP) in industrial sector using Combined Heat and Power (CHP), as a strategy for Demand Side Management (DSM). This approach is another way for meeting near and future energy requirement in Malaysia's industrial sector. Two scenarios which are Business As Usual (BAU) and CHP were developed using End Use Model EUM), to forecast the energy demand and CO 2 emission in Malaysia's industries. The effectiveness of the proposed method is then simulated using Long Range Energy Alternative Planning System (LEAP) software and Comparative Model for Projects of Engineering Economics and Energy Environmental Development (COMPEED) analysis. Evaluations were based on the potential of energy saving and CO 2 reduction. Scope of research was limited to pulp and paper industrial sub sector. The research data were extracted from Energy Audit Reports conducted by Malaysia Energy Center (PTM). An engineering calculation was demonstrated. Two designs of CHP applications for the pulp and paper industrial sector are according to heating and electricity sizing. It was found that the most energy efficient and CO 2 reduction for Malaysia's industrial sector is the CHP based on heating requirement. The method was found to be able of save fuel and GHG emission compared to the reference case. (author)

  11. Thermochemical heat storage for high temperature applications. A review

    Felderhoff, Michael [Max-Planck-Institut fuer Kohlenforschung, Muelheim an der Ruhr (Germany); Urbanczyk, Robert; Peil, Stefan [Institut fuer Energie- und Umwelttechnik e.V. (IUTA), Duisburg (Germany)


    Heat storage for high temperature applications can be performed by several heat storage techniques. Very promising heat storage methods are based on thermochemical gas solid reactions. Most known systems are metal oxide/steam (metal hydroxides), carbon dioxide (metal carbonates), and metal/hydrogen (metal hydrides) systems. These heat storage materials posses high gravimetric and volumetric heat storage densities and because of separation of the reaction products and their storage in different locations heat losses can be avoided. The reported volumetric heat storage densities are 615, 1340 and 1513 [ kWh m{sup -3}] for calcium hydroxide Ca(OH){sub 2}, calcium carbonate CaCO{sub 3} and magnesium iron hydride Mg{sub 2}FeH{sub 6} respectively. Additional demands for gas storage decrease the heat storage density, but metal hydride systems can use available hydrogen storage possibilities for example caverns, pipelines and chemical plants. (orig.)

  12. Integration of services into workflow applications

    Czarnul, Pawel


    Describing state-of-the-art solutions in distributed system architectures, Integration of Services into Workflow Applications presents a concise approach to the integration of loosely coupled services into workflow applications. It discusses key challenges related to the integration of distributed systems and proposes solutions, both in terms of theoretical aspects such as models and workflow scheduling algorithms, and technical solutions such as software tools and APIs.The book provides an in-depth look at workflow scheduling and proposes a way to integrate several different types of services

  13. Techniques and applications of path integration

    Schulman, L S


    A book of techniques and applications, this text defines the path integral and illustrates its uses by example. It is suitable for advanced undergraduates and graduate students in physics; its sole prerequisite is a first course in quantum mechanics. For applications requiring specialized knowledge, the author supplies background material.The first part of the book develops the techniques of path integration. Topics include probability amplitudes for paths and the correspondence limit for the path integral; vector potentials; the Ito integral and gauge transformations; free particle and quadra

  14. Thulium heat sources for space power applications

    Alderman, C.J.


    Reliable power supplies for use in transportation and remote systems will be an important part of space exploration terrestrial activities. A potential power source is available in the rare earth metal, thulium. Fuel sources can be produced by activating Tm-169 targets in the space station reactor. The resulting Tm-170 heat sources can be used in thermoelectric generators to power instrumentation and telecommunications located at remote sites such as weather stations. As the heat source in a dynamic Sterling or Brayton cycle system, the heat source can provide a lightweight power source for rovers or other terrestrial transportation systems

  15. Applications guide for waste heat recovery

    Moynihan, P. I.


    The state-of-the-art of commercially available organic Rankine cycle (ORC) hardware from a literature search and industry survey is assessed. Engineering criteria for applying ORC technology are established, and a set of nomograms to enable the rapid sizing of the equipment is presented. A comparison of an ORC system with conventional heat recovery techniques can be made with a nomogram developed for a recuperative heat exchanger. A graphical technique for evaluating the economic aspects of an ORC system and conventional heat recovery method is discussed: also included is a description of anticipated future trends in organic Rankine cycle R&D.

  16. Optimal operation of integrated processes. Studies on heat recovery systems

    Glemmestad, Bjoern


    Separators, reactors and a heat exchanger network (HEN) for heat recovery are important parts of an integrated plant. This thesis deals with the operation of HENs, in particular, optimal operation. The purpose of heat integration is to save energy, but the HEN also introduces new interactions and feedback into the overall plant. A prerequisite for optimisation is that there are extra degrees of freedom left after regulatory control is implemented. It is shown that extra degrees of freedom may not always be utilized for energy optimisation, and a quantitative expression for the degrees of freedom that can be so utilized are presented. A simplified expression that is often valid is also deduced. The thesis presents some improvements and generalisations of a structure based method that has been proposed earlier. Structural information is used to divide possible manipulations into three categories depending on how each manipulation affects the utility consumption. By means of these categories and two heuristic rules for operability, the possible manipulations are ordered in a priority table. This table is used to determine which manipulation should be preferred and which manipulation should be selected if an active manipulation is saturated. It is shown that the method may correspond to split-range control. A method that uses parametric information in addition to structural information is proposed. In this method, the optimal control structure is found through solving an integer programming problem. The thesis also proposes a method that combines the use of steady state optimisation and optimal selection of measurements. 86 refs., 46 figs., 8 tabs.

  17. Reliability of ceramics for heat engine applications


    The advantages and disadvantages associated with the use of monolithic ceramics in heat engines are discussed. The principle gaps in the state of understanding of ceramic material, failure origins, nondestructive tests as well as life prediction are included.

  18. Theoretical model of an evacuated tube heat pipe solar collector integrated with phase change material

    Naghavi, M.S.; Ong, K.S.; Badruddin, I.A.; Mehrali, M.; Silakhori, M.; Metselaar, H.S.C.


    The purpose of this paper is to model theoretically a solar hot water system consisting of an array of ETHPSC (evacuated tube heat pipe solar collectors) connected to a common manifold filled with phase change material and acting as a LHTES (latent heat thermal energy storage) tank. Solar energy incident on the ETHPSC is collected and stored in the LHTES tank. The stored heat is then transferred to the domestic hot water supply via a finned heat exchanger pipe placed inside the tank. A combination of mathematical algorithms is used to model a complete process of the heat absorption, storage and release modes of the proposed system. The results show that for a large range of flow rates, the thermal performance of the ETHPSC-LHTES system is higher than that of a similar system without latent heat storage. Furthermore, the analysis shows that the efficiency of the introduced system is less sensitive to the draw off water flowrate than a conventional system. Analysis indicates that this system could be applicable as a complementary part to conventional ETHPSC systems to be able to produce hot water at night time or at times with weak radiation. - Highlights: • The ETHPSC is integrated with PCM at manifold side for night hot water demands. • The thermal performance of the ETHPSC-PCM is often higher than the baseline model. • The efficiency of the proposed model is stable for different flow rates. • Using PCM as thermal storage increases reliability on the performance of the system.

  19. Industrial implementation issues of Total Site Heat Integration

    Chew, Kew Hong; Klemeš, Jiří Jaromír; Wan Alwi, Sharifah Rafidah; Abdul Manan, Zainuddin


    Heat Integration has been a well-established energy conservation strategy in the industry. Total Site Heat Integration (TSHI) has received growing interest since its inception in the 90s. The methodology has been used with certain simplifications to solve TSHI problems. This paper investigates the main issues that can influence the practical implementation of TSHI in the industry. The main aim is to provide an assessment and possible guidance for future development and extension of the TSHI methodology from the industrial perspective. Several key issues have been identified as being of vital importance for the industries: design, operation, reliability/availability/maintenance, regulatory/policy and economics. Design issues to consider include plant layout, pressure drop, etc. For operation, issues such as startup and shutdown need to be considered. Reliability, availability and maintenance (RAM) are important as they directly affect the production. Relevant government policy and incentives are also important when considering the options for TSHI. Finally, a TSHI system needs to be economically viable. This paper highlights the key issues to be considered for a successful implementation of TSHI. The impacts of these issues on TS integration are summarised in a matrix, which forms a basis for an improved and closer-to-real-life implementation of the TSHI methodology. Highlights: ► Current TSHI methodology has been used for solving models with certain simplifications. ► Several issues that can influence practical implementation of TSHI are identified. ► Impacts of these issues on safety, environment and economics are evaluated. ► The findings form a basis for an improved and practical implementation of TSHI

  20. Integrating Web Services into Map Image Applications

    Tu, Shengru


    Web services have been opening a wide avenue for software integration. In this paper, we have reported our experiments with three applications that are built by utilizing and providing web services for Geographic Information Systems (GIS...

  1. Abel integral equations analysis and applications

    Gorenflo, Rudolf


    In many fields of application of mathematics, progress is crucially dependent on the good flow of information between (i) theoretical mathematicians looking for applications, (ii) mathematicians working in applications in need of theory, and (iii) scientists and engineers applying mathematical models and methods. The intention of this book is to stimulate this flow of information. In the first three chapters (accessible to third year students of mathematics and physics and to mathematically interested engineers) applications of Abel integral equations are surveyed broadly including determination of potentials, stereology, seismic travel times, spectroscopy, optical fibres. In subsequent chapters (requiring some background in functional analysis) mapping properties of Abel integral operators and their relation to other integral transforms in various function spaces are investi- gated, questions of existence and uniqueness of solutions of linear and nonlinear Abel integral equations are treated, and for equatio...

  2. Thermionic integrated circuit technology for high power space applications

    Yadavalli, S.R.


    Thermionic triode and integrated circuit technology is in its infancy and it is emerging. The Thermionic triode can operate at relatively high voltages (up to 2000V) and at least tens of amperes. These devices, including their use in integrated circuitry, operate at high temperatures (800 0 C) and are very tolerant to nuclear and other radiations. These properties can be very useful in large space power applications such as that represented by the SP-100 system which uses a nuclear reactor. This paper presents an assessment of the application of thermionic integrated circuitry with space nuclear power system technology. A comparison is made with conventional semiconductor circuitry considering a dissipative shunt regulator for SP-100 type nuclear power system rated at 100 kW. The particular advantages of thermionic circuitry are significant reductions in size and mass of heat dissipation and radiation shield subsystems

  3. Experimental results of a 3 k Wh thermochemical heat storage module for space heating application

    Finck, C.J.; Henquet, E.M.R.; Soest, C.F.L. van; Oversloot, H.P.; Jong, A.J. de; Cuypers, R.; Spijker, J.C. van 't


    A 3 kWh thermochemical heat storage (TCS) module was built as part of an all-in house system implementation focusing on space heating application at a temperature level of 40 ºC and a temperature lift of 20 K. It has been tested and measurements showed a maximum water circuit temperature span

  4. Heat pipes and solid sorption transformations fundamentals and practical applications

    Vasiliev, LL


    Developing clean energy and utilizing waste energy has become increasingly vital. Research targeting the advancement of thermally powered adsorption cooling technologies has progressed in the past few decades, and the awareness of fuel cells and thermally activated (heat pipe heat exchangers) adsorption systems using natural refrigerants and/or alternatives to hydrofluorocarbon-based refrigerants is becoming ever more important. Heat Pipes and Solid Sorption Transformations: Fundamentals and Practical Applications concentrates on state-of-the-art adsorption research and technologies for releva

  5. Survey of heat-pipe application under nuclear environment

    Tsuyuzaki, Noriyoshi; Saito, Takashi; Okamoto, Yoshizo; Hishida, Makoto; Negishi, Kanji.


    Heat pipes today are employed in a wide variety of special heat transfer applications including nuclear reactor. In this nuclear technology area in Japan, A headway speed of the heat pipe application technique is not so high because of safety confirmation and investigation under each developing step. Especially, the outline of space craft is a tendency to increase the size. Therefore, the power supply is also tendency to increase the outlet power and keep the long life. Under SP-100 project, the development of nuclear power supply system which power is 1400 - 1600 KW thermal and 100 KW electric power is steadily in progress. Many heat pipes are adopted for thermionic conversion and coolant system in order to construct more safety and light weight system for the project. This paper describes the survey of the heat pipe applications under the present and future condition for nuclear environment. (author)

  6. A mixed integer linear programming model for integrating thermodynamic cycles for waste heat exploitation in process sites

    Oluleye, Gbemi; Smith, Robin


    Highlights: • MILP model developed for integration of waste heat recovery technologies in process sites. • Five thermodynamic cycles considered for exploitation of industrial waste heat. • Temperature and quantity of multiple waste heat sources considered. • Interactions with the site utility system considered. • Industrial case study presented to illustrate application of the proposed methodology. - Abstract: Thermodynamic cycles such as organic Rankine cycles, absorption chillers, absorption heat pumps, absorption heat transformers, and mechanical heat pumps are able to utilize wasted thermal energy in process sites for the generation of electrical power, chilling and heat at a higher temperature. In this work, a novel systematic framework is presented for optimal integration of these technologies in process sites. The framework is also used to assess the best design approach for integrating waste heat recovery technologies in process sites, i.e. stand-alone integration or a systems-oriented integration. The developed framework allows for: (1) selection of one or more waste heat sources (taking into account the temperatures and thermal energy content), (2) selection of one or more technology options and working fluids, (3) selection of end-uses of recovered energy, (4) exploitation of interactions with the existing site utility system and (5) the potential for heat recovery via heat exchange is also explored. The methodology is applied to an industrial case study. Results indicate a systems-oriented design approach reduces waste heat by 24%; fuel consumption by 54% and CO_2 emissions by 53% with a 2 year payback, and stand-alone design approach reduces waste heat by 12%; fuel consumption by 29% and CO_2 emissions by 20.5% with a 4 year payback. Therefore, benefits from waste heat utilization increase when interactions between the existing site utility system and the waste heat recovery technologies are explored simultaneously. The case study also shows

  7. Integration of solar installations in heating technology; Integration der Solaranlage in die Heizungstechnik

    Jaeger, H. [Solvis Energiesysteme GmbH und Co KG, Braunschweig (Germany)


    Future heating systems must be geared to the task of providing the comfort of warm rooms and warm water while giving due consideration to the consequences this has for the environment. The present paper discusses the development of heating energy demand, the integration and adjustment of the heating circuit for solar energy, and the dimensioning and layout of a solar installation for water warming. It also deals with the testing of solar buffer storages. [Deutsch] Wie kann der Komfort warmer Raeume und warmem Wassers erreicht werden und welche Konsquenzen hat das fuer die Umwelt, dies sind die Kriterien an denen sich die Waermeversorgung der Zukunft orientieren muss. Die Entwicklung des Heizenergiebedarfs, die Einbindung und Abstimmung des Heizkrieses fuer Solarenergie sowie die Dimensionierung und Auslegung einer Solaranlage zur Warmwassererw armung werden erlaeutert. Ein weiterer Punkt betrifft den Test von Solarpufferspeichern.

  8. Applications of Radiative Heating for Space Exploration

    Brandis, Aaron


    Vehicles entering planetary atmospheres at high speeds (6 - 12 kms) experience intense heating by flows with temperatures of the order 10 000K. The flow around the vehicle experiences significant dissociation and ionization and is characterized by thermal and chemical non-equilibrium near the shock front, relaxing toward equilibrium. Emission from the plasma is intense enough to impart a significant heat flux on the entering spacecraft, making it necessary to predict the magnitude of radiative heating. Shock tubes represent a unique method capable of characterizing these processes in a flight-similar environment. The Electric Arc Shock tube (EAST) facility is one of the only facilities in its class, able to produce hypersonic flows at speeds up to Mach 50. This talk will review the characterization of radiation measured in EAST with simulations by the codes DPLR and NEQAIR, and in particular, focus on the impact these analyses have on recent missions to explore the solar system.

  9. Neutral-beam-heating applications and development

    Menon, M.M.


    The technique of heating the plasma in magnetically confined fusion devices by the injection of intense beams of neutral atoms is described. The basic principles governing the physics of neutral beam heating and considerations involved in determining the injection energy, power, and pulse length required for a fusion reactor are discussed. The pertinent experimental results from various fusion devices are surveyed to illustrate the efficacy of this technique. The second part of the paper is devoted to the technology of producing the neutral beams. A state-of-the-art account o the development of neutral injectors is presented, and the prospects for utilizing neutral injection to heat the plasma in a fusion reactor are examined

  10. Techno-economic evaluation for the heat integration of vaporisation cold energy in natural gas processing

    Koku, Oludolapo; Perry, Simon; Kim, Jin-Kuk


    Highlights: • Development of thermal integration modelling framework for the utilisation of LNG cold energy. • Feasibility study for various design options for the integration of low-temperature cold energy. • Provision of a design approach for achieving efficient use of cold energy in LNG terminals. • Understanding of techno-economic impacts associated with the thermal integration of LNG cold energy. - Abstract: This paper addresses a conceptual study investigating the techno-economic feasibility for the thermal Integration of LNG cold vaporisation energy in power generation applications. In conventional regasification systems, this valuable LNG cold energy is often being wasted to ambient heat sources, representing a thermodynamic inefficient process with a significant thermal impact on the local environment. A combined facility consisting of a non-integrated Combined Cycle Power Plant (CCPP) and an LNG receiving terminal employing traditional Open Rack Vaporisers (ORV) technology, has been modelled, as a base case. Retrofit strategies for the integration of LNG cold energy have been investigated, and their impacts on power production and system efficiency are systematically compared. Retrofit design options considered in this work include the use of a propane Rankine cycle coupled with the direct expansion of natural gas, the integration of a closed-loop water cycle or open-loop water circuit with a steam Rankine cycle, and the facilitation of integrated air cooling for a gas turbine

  11. Study on Gas-liquid Falling Film Flow in Internal Heat Integrated Distillation Column

    Liu, Chong


    Gas-liquid internally heat integrated distillation column falling film flow with nonlinear characteristics, study on gas liquid falling film flow regulation control law, can reduce emissions of the distillation column, and it can improve the quality of products. According to the distribution of gas-liquid mass balance internally heat integrated distillation column independent region, distribution model of heat transfer coefficient of building internal heat integrated distillation tower is obtained liquid distillation falling film flow in the saturated vapour pressure of liquid water balance, using heat transfer equation and energy equation to balance the relationship between the circulating iterative gas-liquid falling film flow area, flow parameter information, at a given temperature, pressure conditions, gas-liquid flow falling film theory makes the optimal parameters to achieve the best fitting value with the measured values. The results show that the geometric gas-liquid internally heat integrated distillation column falling film flow heat exchange area and import column thermostat, the average temperature has significant. The positive correlation between the heat exchanger tube entrance due to temperature difference between inside and outside, the heat flux is larger, with the increase of internal heat integrated distillation column temperature, the slope decreases its temperature rise, which accurately describes the internal gas-liquid heat integrated distillation tower falling film flow regularity, take appropriate measures to promote the enhancement of heat transfer. It can enhance the overall efficiency of the heat exchanger.

  12. Applications of New Chemical Heat Sources Phase 1

    Bell, William


    Report developed under Small Business Innovative Research (SBIR) contract. This project has examined the application of new chemical heat sources, with emphasis on portable heaters for military field rations...

  13. Integrated Thermal Protection Systems and Heat Resistant Structures

    Pichon, Thierry; Lacoste, Marc; Glass, David E.


    In the early stages of NASA's Exploration Initiative, Snecma Propulsion Solide was funded under the Exploration Systems Research & Technology program to develop integrated thermal protection systems and heat resistant structures for reentry vehicles. Due to changes within NASA's Exploration Initiative, this task was cancelled early. This presentation provides an overview of the work that was accomplished prior to cancellation. The Snecma team chose an Apollo-type capsule as the reference vehicle for the work. They began with the design of a ceramic aft heatshield (CAS) utilizing C/SiC panels as the capsule heatshield, a C/SiC deployable decelerator and several ablators. They additionally developed a health monitoring system, high temperature structures testing, and the insulation characterization. Though the task was pre-maturely cancelled, a significant quantity of work was accomplished.

  14. Heating, ventilating, and air-conditioning applications



    This book covers: Comfort air conditioning and heating of residences: Space HVAC systems; Industrial and special air conditioning and ventilation for nuclear facilities, and for mines; Energy sources, such as Geothermal energy, solar utilization, and energy resources; Building operation and maintenance; energy management, and Thermal storage

  15. Integration of the time-dependent heat equation in the fuel rod performance program IAMBUS

    West, G.


    An iterative numerical method for integration of the time-dependent heat equation is described. No presuppositions are made for the dependency of the thermal conductivity and heat capacity on space, time and temperature. (orig.) [de

  16. NGNP Process Heat Applications: Hydrogen Production Accomplishments for FY2010

    Charles V Park


    This report summarizes FY10 accomplishments of the Next Generation Nuclear Plant (NGNP) Engineering Process Heat Applications group in support of hydrogen production technology development. This organization is responsible for systems needed to transfer high temperature heat from a high temperature gas-cooled reactor (HTGR) reactor (being developed by the INL NGNP Project) to electric power generation and to potential industrial applications including the production of hydrogen.

  17. Correct integration of compressors and expanders in above ambient heat exchanger networks

    Fu, Chao; Gundersen, Truls


    The Appropriate Placement concept (also referred to as Correct Integration) is fundamental in Pinch Analysis. The placement of reactors, distillation columns, evaporators, heat pumps and heat engines in heat exchanger networks is well established. The placement of pressure changing equipment such as compressors and expanders is complex and less discussed in literature. A major difficulty is that both heat and work (not only heat) are involved. The integration of compressors and expanders separately into heat exchanger networks was recently investigated. A set of theorems were proposed for assisting the design. The problem is even more complex when both compressors and expanders are to be integrated. An important concern is about the sequence of integration with compressors and expanders, i.e. should compressors or expanders be implemented first. This problem is studied and a new theorem is formulated related to the Correct Integration of both compressors and expanders in above ambient heat exchanger networks. The objective is to minimize exergy consumption for the integrated processes. A graphical design methodology is developed for the integration of compressors and expanders into heat exchanger networks above ambient temperature. - Highlights: • The correct integration of compressors and expanders in heat exchanger networks is studied. • A theorem is proposed for heat integration between compressors and expanders. • The total exergy consumption is minimized.

  18. HTR process heat applications, status of technology and economical potential

    Barnet, H.


    The technical and industrial feasibility of the production of high temperature heat from nuclear fuel is presented. The technical feasibility of high temperature heat consuming processes is reviewed and assessed. The conclusion is drawn that the next technological step for pilot plant scale demonstration is the nuclear heated steam reforming process. The economical potential of HTR process heat applications is reviewed: It is directly coupled to the economical competitiveness of HTR electricity production. Recently made statements and pre-conditions on the economic competitiveness in comparison to world market coal are reported. (author). 8 figs

  19. An ecofriendly graphene-based nanofluid for heat transfer applications

    Mehrali, Mohammad; Sadeghinezhad, Emad; Akhiani, Amir Reza


    including chemical stability, viscosity, wettability, electrical conductivity and thermal conductivity were investigated in a comprehensive manner. A significant thermal conductivity enhancement amounting to 45.1% was obtained for a volume fraction of 4%. In addition, the convective heat transfer...... that the generated nanofluid will open a new avenue in the pursuit of ecofriendly thermal conductors for heat transfer applications....... coefficient of the nanofluid in a laminar flow regime with uniform wall heat flux was investigated to estimate its cooling capabilities. These results, firmly confirm that the generated graphene-based nanofluid is a formidable transporter of heat and yet ecofriendly. Therefore, it's anticipate...

  20. Investigation of Heat Sink Efficiency for Electronic Component Cooling Applications

    Staliulionis, Ž.; Zhang, Zhe; Pittini, Riccardo


    Research and optimisation of cooling of electronic components using heat sinks becomes increasingly important in modern industry. Numerical methods with experimental real-world verification are the main tools to evaluate efficiency of heat sinks or heat sink systems. Here the investigation...... of relatively simple heat sink application is performed using modeling based on finite element method, and also the potential of such analysis was demonstrated by real-world measurements and comparing obtained results. Thermal modeling was accomplished using finite element analysis software COMSOL and thermo...

  1. Ground Source Integrated Heat Pump (GS-IHP) Development

    Baxter, V. D. [ORNL; Rice, K. [ORNL; Murphy, R. [ORNL; Munk, J. [ORNL; Ally, Moonis [ORNL; Shen, Bo [ORNL; Craddick, William [ORNL; Hearn, Shawn A. [ClimateMaster, Inc.


    Between October 2008 and May 2013 ORNL and ClimateMaster, Inc. (CM) engaged in a Cooperative Research and Development Agreement (CRADA) to develop a groundsource integrated heat pump (GS-IHP) system for the US residential market. A initial prototype was designed and fabricated, lab-tested, and modeled in TRNSYS (SOLAR Energy Laboratory, et al, 2010) to predict annual performance relative to 1) a baseline suite of equipment meeting minimum efficiency standards in effect in 2006 (combination of air-source heat pump (ASHP) and resistance water heater) and 2) a state-of-the-art (SOA) two-capacity ground-source heat pump with desuperheater water heater (WH) option (GSHPwDS). Predicted total annual energy savings, while providing space conditioning and water heating for a 2600 ft{sup 2} (242 m{sup 2}) house at 5 U.S. locations, ranged from 52 to 59%, averaging 55%, relative to the minimum efficiency suite. Predicted energy use for water heating was reduced 68 to 78% relative to resistance WH. Predicted total annual savings for the GSHPwDS relative to the same baseline averaged 22.6% with water heating energy use reduced by 10 to 30% from desuperheater contributions. The 1st generation (or alpha) prototype design for the GS-IHP was finalized in 2010 and field test samples were fabricated for testing by CM and by ORNL. Two of the alpha units were installed in 3700 ft{sup 2} (345 m{sup 2}) houses at the ZEBRAlliance site in Oak Ridge and field tested during 2011. Based on the steady-state performance demonstrated by the GS-IHPs it was projected that it would achieve >52% energy savings relative to the minimum efficiency suite at this specific site. A number of operational issues with the alpha units were identified indicating design changes needed to the system before market introduction could be accomplished. These were communicated to CM throughout the field test period. Based on the alpha unit test results and the diagnostic information coming from the field test

  2. Wind power integration with heat pumps, heat storages, and electric vehicles – Energy systems analysis and modelling

    Hedegaard, Karsten

    The fluctuating and only partly predictable nature of wind challenges an effective integration of large wind power penetrations. This PhD thesis investigates to which extent heat pumps, heat storages, and electric vehicles can support the integration of wind power. Considering the gaps in existing...... in an energy system context. Energy systems analyses reveal that the heat pumps can even without flexible operation contribute significantly to facilitating larger wind power investments and reducing system costs, fuel consumption, and CO2 emissions. When equipping the heat pumps with heat storages, only...... moderate additional benefits are achieved. Hereof, the main benefit is that the need for investing in peak/reserve capacities can be reduced through peak load shaving. It is more important to ensure flexible operation of electric vehicles than of individual heat pumps, due to differences in the load...

  3. Prospects of HTGR process heat application and role of HTTR

    Shiozawa, S.; Miyamoto, Y.


    At Japan Atomic Energy Research Institute, an effort on development of process heat application with high temperature gas cooled reactor (HTGR) has been continued for providing a future clean alternative to the burning of fossil energy for the production of industrial process heat. The project is named 'HTTR Heat Utilization Project', which includes a demonstration of hydrogen production using the first Japanese HTGR of High Temperature Engineering Test Reactor (HTTR). In the meantime, some countries, such as China, Indonesia, Russia and South Africa are trying to explore the HTGR process heat application for industrial use. One of the key issues for this application is economy. It has been recognized for a long time and still now that the HTGR heat application system is not economically competitive to the current fossil ones, because of the high cost of the HTGR itself. However, the recent movement on the HTGR development, as represented by South Africa Pebble Beds Modular Reactor (SA-PBMR) Project, has revealed that the HTGRs are well economically competitive in electricity production to fossil fuel energy supply under a certain condition. This suggests that the HTGR process heat application will also possibly get economical in the near future. In the present paper, following a brief introduction describing the necessity of the HTGRs for the future process heat application, Japanese activities and prospect of the development on the process heat application with the HTGRs are described in relation with the HTTR Project. In conclusion, the process heat application system with HTGRs is thought technically and economically to be one of the most promising applications to solve the global environmental issues and energy shortage which may happen in the future. However, the commercialization for the hydrogen production system from water, which is the final goal of the HTGR process heat application, must await the technology development to be completed in 2030's at the

  4. Control assessment for heat integrated systems. An industrial case study for ethanol recovery

    Mauricio Iglesias, Miguel; Huusom, Jakob Kjøbsted; Sin, Gürkan


    Heat integration is essential for reducing the energy consumption of process industries. However, it may render the dynamic operation more interactive and difficult to control. This paper assesses the implications of heat integration in controllability and performance in energy reduction....... The assessment, both on open loop and closed loop, was carried out based on an industrial case study and compared to a modified case without heat integration. Although the heat integrated system displayed a certain deterioration of controllability, the control system made possible an efficient operation....... The reduction of energy consumption achieved thanks to heat integration was considerably larger than the losses due to poor control of the process, confirming the importance of heat integration in energy intensive processes....

  5. Investigation on Solar Heating System with Building-Integrated Heat Storage

    Heller, Alfred


    Traditional solar heating systems cover between 5 and 10% of the heat demand fordomestic hot water and comfort heating. By applying storage capacity this share can beincreased much. The Danish producer of solar heating systems, Aidt-Miljø, markets such a system including storage of dry sand heated...... by PP-pipe heat exchanger. Heat demand is reduced due to direct solar heating and due to storage. The storage affects the heat demand passively due to higher temperatures. Hence heat loss is reduced and passive heating is optioned. In theory, by running the system flow backwards, active heating can...... solar collector area of the system, was achieved. Active heating from the sand storage was not observed. The pay-back time for the system can be estimated to be similar to solar heated domestic hot water systems in general. A number of minor improvements on the system could be pointed out....

  6. Integrated Applications with Laser Technology

    Octavian DOSPINESCU


    Full Text Available The introduction of new materials as Power Point presentations are the most convenient way of teaching a course or to display a scientific paper. In order to support this function, most schools, universities, institutions, are equipped with projectors and computers. For controlling the presentation of the materials, the persons that are in charge with the presentation use, in most cases, both the keyboard of the computer as well as the mouse for the slides, thing that burdens, in a way, the direct communication (face to face with the audience. Of course, the invention of the wireless mouse allowed a sort of freedom in controlling from the distance the digital materials. Although there seems to appear a certain impediment: in order to be used, the mouse requires to be placed on a flat surface. This article aims at creating a new application prototype that will manipulate, only through the means of a light-beam instrument (laser fascicle, both the actions of the mouse as well as some of the elements offered by the keyboard on a certain application or presentation. The light fascicle will be „connected” to a calculus system only through the images that were captured by a simple webcam.

  7. Computer simulation of heat pump application in distillation towers

    Pedram, B.; Kharrat, R.


    Distillation columns rank among the largest industrial energy users today. Almost 30-60% of the total energy demand in the chemical and petrochemical industry is needed to heat distillation columns. Hence, researchers decided to optimize energy consumption to make its application more efficient. One of the recommended way is to use heat pumps. Several works have been reported in the literature in which comparisons of energy consumption between conventional and heat pump distillation for two or three component systems have been investigated. However, the concluded results are not sufficient. In this work, a case study was considered in which different heat pump configurations were applied and the optimum configuration was selected. The cost of each configuration was found to be depending on the cold temperature approach of the heat pump. Therefore, an optimum value was found for each configuration. In addition, the cost of the heat pump was found to be sensitive to the compression and condensation of the process fluid

  8. Absorption heat pump for space applications

    Nguyen, Tuan; Simon, William E.; Warrier, Gopinath R.; Woramontri, Woranun


    In the first part, the performance of the Absorption Heat Pump (AHP) with water-sulfuric acid and water-magnesium chloride as two new refrigerant-absorbent fluid pairs was investigated. A model was proposed for the analysis of the new working pairs in a heat pump system, subject to different temperature lifts. Computer codes were developed to calculate the Coefficient of Performance (COP) of the system with the thermodynamic properties of the working fluids obtained from the literature. The study shows the potential of water-sulfuric acid as a satisfactory replacement for water-lithium bromide in the targeted temperature range. The performance of the AHP using water-magnesium chloride as refrigerant-absorbent pair does not compare well with those obtained using water-lithium bromide. The second part concentrated on the design and testing of a simple ElectroHydrodynamic (EHD) Pump. A theoretical design model based on continuum electromechanics was analyzed to predict the performance characteristics of the EHD pump to circulate the fluid in the absorption heat pump. A numerical method of solving the governing equations was established to predict the velocity profile, pressure - flow rate relationship and efficiency of the pump. The predicted operational characteristics of the EHD pump is comparable to that of turbomachinery hardware; however, the overall efficiency of the electromagnetic pump is much lower. An experimental investigation to verify the numerical results was conducted. The pressure - flow rate performance characteristics and overall efficiency of the pump obtained experimentally agree well with the theoretical model.

  9. A review of waste heat recovery technologies for maritime applications

    Singh, Dig Vijay; Pedersen, Eilif


    Highlights: • Major waste heat sources available on ships have been reviewed. • A review of suitable waste heat recovery systems was conducted for marine vessels. • Technologies have been compared for their potential and suitability for marine use. • Kalina cycle offers the highest potential for marine waste heat recovery. • Turbo compound system most suitable for recovering diesel exhaust pressure energy. - Abstract: A waste heat recovery system produces power by utilizing the heat energy lost to the surroundings from thermal processes, at no additional fuel input. For marine vessels, about 50 percent of the total fuel energy supplied to diesel power-plant aboard is lost to the surroundings. While the total amount of wasted energy is considerable, the quality of this energy is quite low due to its low temperature and has limited potential for power production. Effective waste heat recovery systems use the available low temperature waste heat to produce mechanical/electrical power with high efficiency value. In this study a review of different waste heat recovery systems has been conducted, to lay out the potential recovery efficiencies and suitability for marine applications. This work helps in identifying the most suitable heat recovery technologies for maritime use depending on the properties of shipboard waste heat and achievable recovery efficiencies, whilst discussing the features of each type of system.

  10. Application of intensified heat transfer for the retrofit of heat exchanger network

    Wang, Yufei; Pan, Ming; Bulatov, Igor; Smith, Robin; Kim, Jin-Kuk


    Highlights: → Novel design approach for the retrofit of HEN based on intensified heat transfer. → Development of a mathematical model to evaluate shell-and-tube heat exchanger performances. → Identification of the most appropriate heat exchangers requiring heat transfer enhancements in the heat exchanger network. -- Abstract: A number of design methods have been proposed for the retrofit of heat exchanger networks (HEN) during the last three decades. Although considerable potential for energy savings can be identified from conventional retrofit approaches, the proposed solutions have rarely been adopted in practice, due to significant topology modifications required and resulting engineering complexities during implementation. The intensification of heat transfer for conventional shell-and-tube heat exchangers can eliminate the difficulties of implementing retrofit in HEN which are commonly restricted by topology, safety and maintenance constraints, and includes high capital costs for replacing equipment and pipelines. This paper presents a novel design approach to solve HEN retrofit problems based on heat transfer enhancement. A mathematical model has been developed to evaluate shell-and-tube heat exchanger performances, with which heat-transfer coefficients and pressure drops for both fluids in tube and shell sides are obtained. The developed models have been compared with the Bell-Delaware, simplified Tinker and Wills-Johnston methods and tested with the HTRI (registered) and HEXTRAN (registered) software packages. This demonstrates that the new model is much simpler but can give reliable results in most cases. For the debottlenecking of HEN, four heuristic rules are proposed to identify the most appropriate heat exchangers requiring heat transfer enhancements in the HEN. The application of this new design approach allows a significant improvement in energy recovery without fundamental structural modifications to the network.

  11. Lauric and palmitic acids eutectic mixture as latent heat storage material for low temperature heating applications

    Tuncbilek, Kadir; Sari, Ahmet; Tarhan, Sefa; Erguenes, Gazanfer; Kaygusuz, Kamil


    Palmitic acid (PA, 59.8 deg. C) and lauric acid (LA, 42.6 deg. C) are phase change materials (PCM) having quite high melting temperatures which can limit their use in low temperature solar applications such as solar space heating and greenhouse heating. However, their melting temperatures can be tailored to appropriate value by preparing a eutectic mixture of the lauric and the palmitic acids. In the present study, the thermal analysis based on differential scanning calorimetry (DSC) technique shows that the mixture of 69.0 wt% LA and 31 wt% PA forms a eutectic mixture having melting temperature of 35.2 deg. C and the latent heat of fusion of 166.3 J g -1 . This study also considers the experimental determination of the thermal characteristics of the eutectic mixture during the heat charging and discharging processes. Radial and axial temperature distribution, heat transfer coefficient between the heat transfer fluid (HTF) pipe and the PCM, heat recovery rate and heat charging and discharging fractions were experimentally established employing a vertical concentric pipe-in-pipe energy storage system. The changes of these characteristics were evaluated with respect to the effect of inlet HTF temperature and mass flow rate. The DSC thermal analysis and the experimental results indicate that the LA-PA eutectic mixture can be a potential material for low temperature thermal energy storage applications in terms of its thermo-physical and thermal characteristics

  12. Integrated Heat Exchange For Recuperation In Gas Turbine Engines


    combustion engines conduct heat transfer in the exhaust system. The exhaust valves have hollow stems containing sodium, which act as heat pipes the use of heat pipes in internal combustion engines . Internal combustion engines have combustion chambers with temperatures as high as 2700 K...accomplished using evaporative heat pipes . This study explores the feasibility of embedding this heat exchange system within engines using a

  13. Geothermal Direct Heat Applications Program Summary



    Because of the undefined risk in the development and use of geothermal energy as a thermal energy source, the Department of Energy Division of Geothermal Energy solicited competitive proposals for field experiments in the direct use of geothermal energy. Twenty-two proposals were selected for cost-shared funding with one additional project co-funded by the State of New Mexico. As expected, the critical parameter was developing a viable resource. So far, of the twenty resources drilled, fourteen have proved to be useful resources. These are: Boise, Idaho; Elko heating Company in Nevada; Pagosa Springs, Colorado; Philip School, Philip, South Dakota; St. Mary's Hospital, Pierre, South Dakota; Utah Roses near Salt Lake City; Utah State Prison, Utah; Warm Springs State Hospital, Montana; T-H-S Hospital, Marlin, Texas; Aquafarms International in the Cochella Valley, California; Klamath County YMCA and Klamath Falls in Oregon; Susanville, California and Monroe, utah. Monroe's 164 F and 600 gpm peak flow was inadequate for the planned project, but is expected to be used in a private development. Three wells encountered a resource insufficient for an economical project. These were Madison County at Rexburg, Idaho; Ore-Ida Foods at Ontario, Oregon and Holly Sugar at Brawley, California. Three projects have yet to confirm their resource. The Navarro College well in Corsicana, Texas is being tested; the Reno, Moana, Nevada well is being drilled and the El Centro, California well is scheduled to be drilled in January 1982. The agribusiness project at Kelly Hot Springs was terminated because a significant archeological find was encountered at the proposed site. The Diamond Ring Ranch in South Dakota, and the additional project, Carrie Tingley Hospital in Truth or Consequences, New Mexico both used existing wells. The projects that encountered viable resources have proceeded to design, construct, and in the most advanced projects, to operate geothermal systems for

  14. Integration of Space Heating and Hot Water Supply in Low Temperature District Heating

    Elmegaard, Brian; Ommen, Torben Schmidt; Markussen, Michael


    pipes, where the water is at the highest temperature. The heat loss may be lowered by decreasing the temperatures in the network for which reason low temperature networks are proposed as a low loss solution for future district heating. However, the heating demand of the consumers involve both domestic......District heating makes it possible to provide heat for many consumers in an efficient manner. In particular, district heating based on combined heat and power production is highly efficient. One disadvantage of district heating is that there is a significant heat loss from the pipes...... to the surrounding ground. In larger networks involving both transmission and distribution systems, the heat loss is most significant from the distribution network. An estimate is that about 80-90 % of the heat loss occurs in the distribution system. In addition, the heat loss is naturally highest from the forward...

  15. Integration of space heating and hot water supply in low temperature district heating

    Elmegaard, Brian; Ommen, Torben Schmidt; Markussen, Michael


    District heating may supply many consumers efficiently, but the heat loss from the pipes to the ground is a challenge. The heat loss may be lowered by decreasing the network temperatures for which reason low temperature networks are proposed for future district heating. The heating demand...... of the consumers involves both domestic hot water and space heating. Space heating may be provided at low temperature in low energy buildings. Domestic hot water, however, needs sufficient temperatures to avoid growth of legionella. If the network temperature is below the demand temperature, supplementary heating...... is required by the consumer. We study conventional district heating at different temperatures and compare the energy and exergetic efficiency and annual heating cost to solutions that utilize electricity for supplementary heating of domestic hot water in low temperature district heating. This includes direct...

  16. Application of transient analysis methodology to heat exchanger performance monitoring

    Rampall, I.; Soler, A.I.; Singh, K.P.; Scott, B.H.


    A transient testing technique is developed to evaluate the thermal performance of industrial scale heat exchangers. A Galerkin-based numerical method with a choice of spectral basis elements to account for spatial temperature variations in heat exchangers is developed to solve the transient heat exchanger model equations. Testing a heat exchanger in the transient state may be the only viable alternative where conventional steady state testing procedures are impossible or infeasible. For example, this methodology is particularly suited to the determination of fouling levels in component cooling water system heat exchangers in nuclear power plants. The heat load on these so-called component coolers under steady state conditions is too small to permit meaningful testing. An adequate heat load develops immediately after a reactor shutdown when the exchanger inlet temperatures are highly time-dependent. The application of the analysis methodology is illustrated herein with reference to an in-situ transient testing carried out at a nuclear power plant. The method, however, is applicable to any transient testing application

  17. New Integrals Arising in the Samara-Valencia Heat Transfer Model in Grinding

    J. L. González-Santander


    Full Text Available The Samara-Valencia model for heat transfer in grinding has been recently used for calculating nontabulated integrals. Based on these results, new infinite integrals can be calculated, involving the Macdonald function and the modified Struve function.

  18. Potentialities and type of integrating nuclear heating stations into district heating systems

    Munser, H.; Reetz, B.; Schmidt, G.


    Technical and economical potentialities of applying nuclear heating stations in district heating systems are discussed considering the conditions of the GDR. Special attention is paid to an optimum combination of nuclear heating stations with heat sources based on organic fuels. Optimum values of the contribution of nuclear heating stations to such combined systems and the economic power range of nuclear heating stations are estimated. Final considerations are concerned with the effect of siting and safety concepts of nuclear heating stations on the structure of the district heating system. (author)

  19. Influence of individual heat pumps on wind power integration – Energy system investments and operation

    Hedegaard, Karsten; Münster, Marie


    Highlights: • Individual heat pumps can significantly support the integration of wind power. • The heat pumps significantly reduce fuel consumption, CO 2 emissions, and costs. • Heat storages for the heat pumps can provide only moderate system benefits. • Main benefit of flexible heat pump operation is a lower peak/reserve capacity need. • Socio-economic feasibility only identified for some heat storages to some extent. - Abstract: Individual heat pumps are expected to constitute a significant electricity demand in future energy systems. This demand becomes flexible if investing in complementing heat storage capabilities. In this study, we analyse how the heat pumps can influence the integration of wind power by applying an energy system model that optimises both investments and operation, and covers various heat storage options. The Danish energy system by 2030 with around 50–60% wind power is used as a case study. Results show that the heat pumps, even without flexible operation, can contribute significantly to facilitating larger wind power investments and reducing system costs, fuel consumption, and CO 2 emissions. Investments in heat storages can provide only moderate system benefits in these respects. The main benefit of the flexible heat pump operation is a reduced need for peak/reserve capacity, which is also crucial for the feasibility of the heat storages. Socio-economic feasibility is identified for control equipment enabling intelligent heat storage in the building structure and in existing hot water tanks. In contrast, investments in new heat accumulation tanks are not found competitive

  20. High Efficiency Heat Exchanger for High Temperature and High Pressure Applications

    Sienicki, James J. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Lv, Qiuping [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Moisseytsev, Anton [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division


    CompRex, LLC (CompRex) specializes in the design and manufacture of compact heat exchangers and heat exchange reactors for high temperature and high pressure applications. CompRex’s proprietary compact technology not only increases heat exchange efficiency by at least 25 % but also reduces footprint by at least a factor of ten compared to traditional shell-and-tube solutions of the same capacity and by 15 to 20 % compared to other currently available Printed Circuit Heat Exchanger (PCHE) solutions. As a result, CompRex’s solution is especially suitable for Brayton cycle supercritical carbon dioxide (sCO2) systems given its high efficiency and significantly lower capital and operating expenses. CompRex has already successfully demonstrated its technology and ability to deliver with a pilot-scale compact heat exchanger that was under contract by the Naval Nuclear Laboratory for sCO2 power cycle development. The performance tested unit met or exceeded the thermal and hydraulic specifications with measured heat transfer between 95 to 98 % of maximum heat transfer and temperature and pressure drop values all consistent with the modeled values. CompRex’s vision is to commercialize its compact technology and become the leading provider for compact heat exchangers and heat exchange reactors for various applications including Brayton cycle sCO2 systems. One of the limitations of the sCO2 Brayton power cycle is the design and manufacturing of efficient heat exchangers at extreme operating conditions. Current diffusion-bonded heat exchangers have limitations on the channel size through which the fluid travels, resulting in excessive solid material per heat exchanger volume. CompRex’s design allows for more open area and shorter fluid proximity for increased heat transfer efficiency while sustaining the structural integrity needed for the application. CompRex is developing a novel improvement to its current heat exchanger design where fluids are directed to alternating

  1. Model of a thermal energy storage device integrated into a solar assisted heat pump system for space heating

    Badescu, Viorel


    Details about modelling a sensible heat thermal energy storage (TES) device integrated into a space heating system are given. The two main operating modes are described. Solar air heaters provide thermal energy for driving a vapor compression heat pump. The TES unit ensures a more efficient usage of the collected solar energy. The TES operation is modeled by using two non-linear coupled partial differential equations for the temperature of the storage medium and heat transfer fluid, respectively. Preliminary results show that smaller TES units provide a higher heat flux to the heat pump vaporiser. This makes the small TES unit discharge more rapidly during time periods with higher thermal loads. The larger TES units provide heat during longer time periods, even if the heat flux they supply is generally smaller. The maximum heat flux is extracted from the TES unit during the morning. Both the heat pump COP and exergy efficiency decrease when the TES unit length increases. Also, the monthly thermal energy stored by the TES unit and the monthly energy necessary to drive the heat pump compressor are increased by increasing the TES unit length

  2. Small reactors for low-temperature nuclear heat applications


    In accordance with the Member States' calls for information exchange in the field of nuclear heat application (NHA) two IAEA meetings were organized already in 1976 and 1977. After this ''promising period'', the development of relevant programmes in IAEA Member States was slowed down and therefore only after several years interruption a new Technical Committee Meeting with a Workshop was organized in late 1983, to review the status of NHA, after a few new specific plans appeared in some IAEA Member States in the early 1980's for the use of heat from existing or constructed NPPs and for developing nuclear heating plants (NHP). In June 1987 an Advisory Group Meeting was convened in Winnipeg, Canada, to discuss and formulate a state-of-the-art review on ''Small Reactors for Low Temperature Nuclear Heat Application''. Information on this subject gained up to 1987 in the Member States whose experts attended this meeting is embodied in the present Technical Report. Figs and tabs

  3. Simultaneous heat integration and techno-economic optimization of Organic Rankine Cycle (ORC) for multiple waste heat stream recovery

    Yu, Haoshui; Eason, John; Biegler, Lorenz T.; Feng, Xiao


    In the past decades, the Organic Rankine Cycle (ORC) has become a promising technology for low and medium temperature energy utilization. In refineries, there are usually multiple waste heat streams to be recovered. From a safety and controllability perspective, using an intermedium (hot water) to recover waste heat before releasing heat to the ORC system is more favorable than direct integration. The mass flowrate of the intermediate hot water stream determines the amount of waste heat recovered and the final hot water temperature affects the thermal efficiency of ORC. Both, in turn, exert great influence on the power output. Therefore, the hot water mass flowrate is a critical decision variable for the optimal design of the system. This study develops a model for techno-economic optimization of an ORC with simultaneous heat recovery and capital cost optimization. The ORC is modeled using rigorous thermodynamics with the concept of state points. The task of waste heat recovery using the hot water intermedium is modeled using the Duran-Grossmann model for simultaneous heat integration and process optimization. The combined model determines the optimal design of an ORC that recovers multiple waste heat streams in a large scale background process using an intermediate heat transfer stream. In particular, the model determines the optimal heat recovery approach temperature (HRAT), the utility load of the background process, and the optimal operating conditions of the ORC simultaneously. The effectiveness of this method is demonstrated with a case study that uses a refinery as the background process. Sensitivity of the optimal solution to the parameters (electricity price, utility cost) is quantified in this paper. - Highlights: • A new model for Organic Rankine cycle design optimization is presented. • Process heat integration and ORC are considered simultaneously. • Rigorous equation oriented models of the ORC are used for accurate results. • Impact of working

  4. Potential of low-temperature nuclear heat applications


    At present, more than one third of the fossil fuel currently used is being consumed to produce space heating and to meet industrial needs in many countries of the world. Imported oil still represents a large portion of this fossil fuel and despite its present relatively low price future market evolutions with consequent upward cost revisions cannot be excluded. Thus the displacement of the fossil fuel by cheaper low-temperature heat produced in nuclear power plants is a matter which deserves careful consideration. Technico-economic studies in many countries have shown that the use of nuclear heat is fully competitive with most of fossil-fuelled plants, the higher investment costs being offset by lower production cost. Another point in favour of heat generation by nuclear source is its indisputable advantage in terms of benefits to the environment. The IAEA activity plans for 1985-86 concentrate on information exchange with specific emphasis on the design criteria, operating experience, safety requirements and specifications of heat-only reactors, co-generation plants and existing power plants backfitted for additional heat applications. The information gained up to 1985 was discussed during the Advisory Group Meeting on the Potential of Low-Temperature Nuclear Heat Applications held in the Federal Institute for Reactor Research, Wuerenlingen, Switzerland in September 1985 and, is included in the present Technical Document

  5. Alternative Procedure of Heat Integration Tehnique Election between Two Unit Processes to Improve Energy Saving

    Santi, S. S.; Renanto; Altway, A.


    The energy use system in a production process, in this case heat exchangers networks (HENs), is one element that plays a role in the smoothness and sustainability of the industry itself. Optimizing Heat Exchanger Networks (HENs) from process streams can have a major effect on the economic value of an industry as a whole. So the solving of design problems with heat integration becomes an important requirement. In a plant, heat integration can be carried out internally or in combination between process units. However, steps in the determination of suitable heat integration techniques require long calculations and require a long time. In this paper, we propose an alternative step in determining heat integration technique by investigating 6 hypothetical units using Pinch Analysis approach with objective function energy target and total annual cost target. The six hypothetical units consist of units A, B, C, D, E, and F, where each unit has the location of different process streams to the temperature pinch. The result is a potential heat integration (ΔH’) formula that can trim conventional steps from 7 steps to just 3 steps. While the determination of the preferred heat integration technique is to calculate the potential of heat integration (ΔH’) between the hypothetical process units. Completion of calculation using matlab language programming.

  6. Integrating virtual reality applications in nuclear safeguards

    Barletta, Michael; Crete, Jean-Maurice; Pickett, Susan


    Virtual reality (VR) tools have already been developed and deployed in the nuclear industry, including in nuclear power plant construction, project management, equipment and system design, and training. Recognized as powerful tools for, inter alia, integration of data, simulation of activities, design of facilities, validation of concepts and mission planning, their application in nuclear safeguards is still very limited. However, VR tools may eventually offer transformative potential for evolving the future safeguards system to be more fully information-driven. The paper focuses especially on applications in the area of training that have been underway in the Department of Safeguards of the International Atomic Energy Agency. It also outlines future applications envisioned for safeguards information and knowledge management, and information-analytic collaboration. The paper identifies some technical and programmatic pre-requisites for realizing the integrative potential of VR technologies. If developed with an orientation to integrating applications through compatible platforms, software, and models, virtual reality tools offer the long-term potential of becoming a real 'game changer,' enabling a qualitative leap in the efficiency and effectiveness of nuclear safeguards. The IAEA invites Member States, industry, and academia to make proposals as to how such integrating potential in the use of virtual reality technology for nuclear safeguards could be realized. (author)

  7. Survey of high-temperature nuclear heat application

    Kirch, N.; Schaefer, M.


    Nuclear heat application at high temperatures can be divided into two areas - use of high-temperature steam up to 550 deg. C and use of high-temperature helium up to about 950 deg. C. Techniques of high-temperature steam and heat production and application are being developed in several IAEA Member States. In all these countries the use of steam for other than electricity production is still in a project definition phase. Plans are being discussed about using steam in chemical industries, oil refineries and for new synfuel producing plants. The use of nuclear generated steam for oil recovery from sands and shale is also being considered. High-temperature nuclear process heat production gives new possibilities for the application of nuclear energy - hard coals, lignites, heavy oils, fuels with problems concerning transport, handling and pollution can be converted into gaseous or liquid energy carriers with no loss of their energy contents. The main methods for this conversion are hydrogasification with hydrogen generated by nuclear heated steam reformers and steam gasification. These techniques will allow countries with large coal resources to replace an important part of their natural gas and oil consumption. Even countries with no fossil fuels can benefit from high-temperature nuclear heat - hydrogen production by thermochemical water splitting, nuclear steel making, ammonia production and the chemical heat-pipe system are examples in this direction. (author)

  8. Exergy analysis of a combined heat and power plant with integrated lignocellulosic ethanol production

    Lythcke-Jørgensen, Christoffer Ernst; Haglind, Fredrik; Clausen, Lasse Røngaard


    produces ethanol, solid biofuel, molasses, and is able to produce district heating hot water. Considering all products equally valuable, the exergy efficiency of the ethanol facility was found to be 0.790 during integrated operation with zero district heating production, and 0.852 during integrated...

  9. Plasma heating - a comparative overview for future applications

    Wilhelm, R.


    Successful plasma heating is essential in present fusion experiments, for the demonstration of D-T burn in future devices and finally for the fusion reactor itself. This paper discusses the common heating system with respect to their present performance and their applicability to future fusion devices. The comparative discussion is oriented to the various functions of heating, which are: Plasma heating to fusion-relevant parameters and to ignition in future machines, non-inductive, steady-state current drive, plasma profile control, neutral gas breakdown and plasma build-up. In view of these different functions, the potential of neutral beam injection (NBI) and the various schemes of wave heating (ECRH, LH, ICRH and Alfven wave heating) is analyzed in more detail. The analysis includes assessments of the present physical and technical state of these heating methods, and makes suggestions for future developments and about outstanding problems. Specific attention is given to the still critical problem of efficient current drive, especially with respect to further extrapolation towards an economically operating tokamak reactor. Remarks on issues such as reliability, maintenance and economy conclude this comparative overview on plasma heating systems. (orig.)

  10. Some Problems of the Integration of Heat Pump Technology into a System of Combined Heat and Electricity Production

    G. Böszörményi


    Full Text Available The closure of a part of the municipal combined heat and power (CHP plant of Košice city would result in the loss of 200 MW thermal output within a realtively short period of time. The long term development plan for the Košice district heating system concentrates on solving this problem. Taking into account the extremely high (90 % dependence of Slovakia on imported energy sources and the desirability of reducing the emission of pollutantst the alternative of supplying of 100 MW thermal output from geothermal sources is attractive. However the indices of economic efficiency for this alternative are unsatisfactory. Cogeneration of electricity and heat in a CHP plant, the most efficient way of supplying heat to Košice at the present time. If as planned, geothermal heat is fed directly into the district heating network the efficiency would be greatly reduced. An excellent solution of this problem would be a new conception, preferring the utilization of geothermal heat in support of a combined electricity and heat production process. The efficiency of geothermal energy utilization could be increased through a special heat pump. This paper deals with several aspects of the design of a heat pump to be integrated into the system of the CHP plant.

  11. Integral and discrete inequalities and their applications

    Qin, Yuming


    This book focuses on one- and multi-dimensional linear integral and discrete Gronwall-Bellman type inequalities. It provides a useful collection and systematic presentation of known and new results, as well as many applications to differential (ODE and PDE), difference, and integral equations. With this work the author fills a gap in the literature on inequalities, offering an ideal source for researchers in these topics. The present volume is part 1 of the author’s two-volume work on inequalities. Integral and discrete inequalities are a very important tool in classical analysis and play a crucial role in establishing the well-posedness of the related equations, i.e., differential, difference and integral equations.

  12. Heat recovery subsystem and overall system integration of fuel cell on-site integrated energy systems

    Mougin, L. J.


    The best HVAC (heating, ventilating and air conditioning) subsystem to interface with the Engelhard fuel cell system for application in commercial buildings was determined. To accomplish this objective, the effects of several system and site specific parameters on the economic feasibility of fuel cell/HVAC systems were investigated. An energy flow diagram of a fuel cell/HVAC system is shown. The fuel cell system provides electricity for an electric water chiller and for domestic electric needs. Supplemental electricity is purchased from the utility if needed. An excess of electricity generated by the fuel cell system can be sold to the utility. The fuel cell system also provides thermal energy which can be used for absorption cooling, space heating and domestic hot water. Thermal storage can be incorporated into the system. Thermal energy is also provided by an auxiliary boiler if needed to supplement the fuel cell system output. Fuel cell/HVAC systems were analyzed with the TRACE computer program.

  13. Regional heating patterns of RF hyperthermia applicators in phantoms

    Kantor, G.; Ruggera, P.S.; Samulski, T.V.


    An elliptical phantom (20 cm by 30 cm cross-section and 40 cm long) with a 1 cm fat layer filled with muscle material was used to compare the induced heating patterns of the NCDRH helical coil, a Henry Medical Magnetrode coil, both with a diameter of 35.6 cm, and the BSD Annular Phased Array System (APAS). Temperature profiles were taken in the midplane cross-sectional slice along the major and minor axes of the phantom. These profiles were measured with a Vitek thermistor probe and the associated specific absorption rates (SAR) were determined from this data. SAR curves for each applicator were obtained along the major and minor axes of the phantom. The depths of heating of the Magnetrode applicator are considerably smaller than those for the helical applicator. Heating patterns for the APAS can be highly variable and asymmetric depending on the frequency of operation and the location of the phantom within the APAS aperture. While the APAS requires a water bolus for good coupling, the NCDRH and Magnetrode coils need only to be air coupled for good phantom coupling. Both the helical applicator and APAS can provide significant heating in the central region of the phantom. However, the heating of the helical coil does not critically depend on the phantom loading

  14. Progress Report for Diffusion Welding of the NGNP Process Application Heat Exchangers

    R.E. Mizia; D.E. Clark; M.V. Glazoff; T.E. Lister; T.L. Trowbridge


    The NGNP Project is currently investigating the use of metallic, diffusion welded, compact heat exchangers to transfer heat from the primary (reactor side) heat transport system to the secondary heat transport system. The intermediate heat exchanger will transfer this heat to downstream applications such as hydrogen production, process heat, and electricity generation. The channeled plates that make up the heat transfer surfaces of the intermediate heat exchanger will have to be assembled into an array by diffusion welding.

  15. Main results of assessing integrity of RNPP-3 steam generator heat exchange tubes in accident management

    Shugajlo, Al-j P.; Mustafin, M.A.; Shugajlo, Al-r P.; Ryzhov, D.I.; Zhabin, O.I.


    Tubes integrity evaluation under accident conditions considering drain of SG and current technical state of steam exchange tubes is an important question regarding SG long-term operation and improvement of accident management strategy.The main investigation results prepared for heat exchange surface of RNPP-3 steam generator are presented in this research aimed at assessing integrity of heat exchange tubes under accident conditions, which lead to full or partial drain of heat exchange surface, in particular during station blackout.

  16. Manufacturing of tailored tubes with a process integrated heat treatment

    Hordych, Illia; Boiarkin, Viacheslav; Rodman, Dmytro; Nürnberger, Florian


    The usage of work-pieces with tailored properties allows for reducing costs and materials. One example are tailored tubes that can be used as end parts e.g. in the automotive industry or in domestic applications as well as semi-finished products for subsequent controlled deformation processes. An innovative technology to manufacture tubes is roll forming with a subsequent inductive heating and adapted quenching to obtain tailored properties in the longitudinal direction. This processing offers a great potential for the production of tubes with a wide range of properties, although this novel approach still requires a suited process design. Based on experimental data, a process simulation is being developed. The simulation shall be suitable for a virtual design of the tubes and allows for gaining a deeper understanding of the required processing. The model proposed shall predict microstructural and mechanical tube properties by considering process parameters, different geometries, batch-related influences etc. A validation is carried out using experimental data of tubes manufactured from various steel grades.

  17. Liquid Salt Heat Exchanger Technology for VHTR Based Applications

    Anderson, Mark; Sridhara, Kumar; Allen, Todd; Peterson, Per


    The objective of this research is to evaluate performance of liquid salt fluids for use as a heat carrier for transferring high-temperature process heat from the very high-temperature reactor (VHTR) to chemical process plants. Currently, helium is being considered as the heat transfer fluid; however, the tube size requirements and the power associated with pumping helium may not be economical. Recent work on liquid salts has shown tremendous potential to transport high-temperature heat efficiently at low pressures over long distances. This project has two broad objectives: To investigate the compatibility of Incoloy 617 and coated and uncoated SiC ceramic composite with MgCl2-KCl molten salt to determine component lifetimes and aid in the design of heat exchangers and piping; and, To conduct the necessary research on the development of metallic and ceramic heat exchangers, which are needed for both the helium-to-salt side and salt-to-process side, with the goal of making these heat exchangers technologically viable. The research will consist of three separate tasks. The first task deals with material compatibility issues with liquid salt and the development of techniques for on-line measurement of corrosion products, which can be used to measure material loss in heat exchangers. Researchers will examine static corrosion of candidate materials in specific high-temperature heat transfer salt systems and develop an in situ electrochemical probe to measure metallic species concentrations dissolved in the liquid salt. The second task deals with the design of both the intermediate and process side heat exchanger systems. Researchers will optimize heat exchanger design and study issues related to corrosion, fabrication, and thermal stresses using commercial and in-house codes. The third task focuses integral testing of flowing liquid salts in a heat transfer/materials loop to determine potential issues of using the salts and to capture realistic behavior of the salts in a

  18. Basic study for development of nuclear heat application systems

    Inaba, Yoshitomo; Fumizawa, Motoo; Hishida, Makoto [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others


    We need to intensely investigate real possibilities of nuclear heat application systems which exploit high potential of nuclear energy as a promising candidate of the future energy resource in the world. In this report, special interest was placed on coal reforming systems because we thought a compact heat source of nuclear power with a very high energy density might compensate the environmental problem caused by burning a great amount of coal. First, we reviewed state-of-the-art technologies for coal reforming technology with a special attention on coal gasification technologies. Based on these basic data, we proposed several nuclear coal reforming systems and discussed advantages and disadvantages of the systems. We also explored a model with which we could analyze nuclear heat application systems all together. In addition, we investigated possibility and effects of nuclear heat utilization systems producing chemical materials from carbon dioxide in flue gas of fossil fuel power plant. As a result, we showed nuclear heat application systems were useful. (author).

  19. Compact heat exchanger technologies for the HTRs recuperator application

    Thonon, B.; Breuil, E.


    Modern HTR nuclear power plants which are now under development (projects GT-MHR, PBMR) are based on the direct cycle concept. This concept leads to a more important efficiency compared to the steam cycle but requires the use of high performance components such as an helium/helium heat exchanger called recuperator to guarantee the cycle efficiency. Using this concept, a net plant efficiency of around 50% can be achieved in the case of an electricity generating plant. As geometric constraints are particularly important for such a gas reactor to limit the size of the primary vessels, compact heat exchangers operating at high pressure and high temperature are attractive potential solutions for the recuperator application. In this frame, Framatome and CEA have reviewed the various technologies of compact heat exchangers used in industry. The first part of the paper will give a short description of the heat exchangers technologies and their ranges of application. In a second part, a selection of potential compact heat exchangers technologies are proposed for the recuperator application. This selection will be based upon their capabilities to cope with the operating conditions parameters (pressure, temperature, flow rate) and with other parameters such as fouling, corrosion, compactness, weight, maintenance and reliability. (author)

  20. Polymeric film application for phase change heat transfer

    Bart, Hans-Jörg; Dreiser, Christian


    The paper gives a concise review on polymer film heat exchangers (PFHX) with a focus on polyether ether ketone (PEEK) foil as heat transfer element, mechanically supported by a grid structure. In order to promote PFHX applications, heat transfer performance and wetting behavior are studied in detail. Surface modifications to improve wetting are discussed and correlations are presented for critical Reynolds numbers to sustain a stable liquid film. Scaling phenomena related to surface properties and easily adaptable cleaning-in-place (CIP) procedures are further content. The contribution of the foil thickness and material selection on thermal performance is quantified and a correlation for enhanced aqueous film heat transfer for the grid supported PFHX is given. The basic research results and the design criteria enable early stage material selection and conceptual apparatus design.

  1. Application of dynamic response analysis to JET heat pulse data

    Griguoli, A.; Sips, A.C.C.


    The plasma dynamic response can be used to study transport processes in a tokamak plasma. A method has been developed for the application of dynamic response analysis to study perturbations away from the plasma equilibrium. In this report perturbations on the electron temperature following a sawtooth collapse in the center of the plasma are considered. The method has been used to find mathematical description of a series of heat pulses at the Joint European Torus project (JET). From the plasma dynamic response, the time constants which characterise the heat pulse are obtained. These time constants are compared to the transport coefficients found in previous analysis of the JET heat pulse data. Various methods are discussed for applying dynamic response analysis to JET heat pulse data. (author)

  2. A gamma heating calculation methodology for research reactor application

    Lee, Y.K.; David, J.C.; Carcreff, H.


    Gamma heating is an important issue in research reactor operation and fuel safety. Heat deposition in irradiation targets and temperature distribution in irradiation facility should be determined so as to obtain the optimal irradiation conditions. This paper presents a recently developed gamma heating calculation methodology and its application on the research reactors. Based on the TRIPOLI-4 Monte Carlo code under the continuous-energy option, this new calculation methodology was validated against calorimetric measurements realized within a large ex-core irradiation facility of the 70 MWth OSIRIS materials testing reactor (MTR). The contributions from prompt fission neutrons, prompt fission γ-rays, capture γ-rays and inelastic γ-rays to heat deposition were evaluated by a coupled (n, γ) transport calculation. The fission product decay γ-rays were also considered but the activation γ-rays were neglected in this study. (author)

  3. Polymeric film application for phase change heat transfer

    Bart, Hans-Jörg; Dreiser, Christian


    The paper gives a concise review on polymer film heat exchangers (PFHX) with a focus on polyether ether ketone (PEEK) foil as heat transfer element, mechanically supported by a grid structure. In order to promote PFHX applications, heat transfer performance and wetting behavior are studied in detail. Surface modifications to improve wetting are discussed and correlations are presented for critical Reynolds numbers to sustain a stable liquid film. Scaling phenomena related to surface properties and easily adaptable cleaning-in-place (CIP) procedures are further content. The contribution of the foil thickness and material selection on thermal performance is quantified and a correlation for enhanced aqueous film heat transfer for the grid supported PFHX is given. The basic research results and the design criteria enable early stage material selection and conceptual apparatus design.

  4. High temperature reactor and application to nuclear process heat

    Schulten, R; Kugeler, K [Kernforschungsanlage Juelich G.m.b.H. (Germany, F.R.)


    The principle of high temperature nuclear process heat is explained and the main applications (hydrogasification of coal, nuclear chemical heat pipe, direct reduction of iron ore, coal gasification by steam and water splitting) are described in more detail. The motivation for the introduction of nuclear process heat to the market, questions of cost, of raw material resources and environmental aspects are the next point of discussion. The new technological questions of the nuclear reactor and the status of development are described, especially information about the fuel elements, the hot gas ducts, the contamination and some design considerations are added. Furthermore the status of development of helium heated steam reformers, the main results of the work until now and the further activities in this field are explained.

  5. Heat pumps for geothermal applications: availability and performance. Final report

    Reistad, G.M.; Means, P.


    A study of the performance and availability of water-source heat pumps was carried out. The primary purposes were to obtain the necessary basic information required for proper evaluation of the role of water-source heat pumps in geothermal energy utilization and/or to identify the research needed to provide this information. The Search of Relevant Literature considers the historical background, applications, achieved and projected performance evaluations and performance improvement techniques. The commercial water-source heat pump industry is considered in regard to both the present and projected availability and performance of units. Performance evaluations are made for units that use standard components but are redesigned for use in geothermal heating.

  6. Geometry, heat equation and path integrals on the Poincare upper half-plane

    Kubo, Reijiro.


    Geometry, heat equation and Feynman's path integrals are studied on the Poincare upper half-plane. The fundamental solution to the heat equation δf/δt = Δ H f is expressed in terms of a path integral defined on the upper half-plane. It is shown that Kac's proof that Feynman's path integral satisfies the Schroedinger equation is also valid for our case. (author)

  7. Geometry, Heat Equation and Path Integrals on the Poincare Upper Half-Plane

    Reijiro, KUBO; Research Institute for Theoretical Physics Hiroshima University


    Geometry, heat equation and Feynman's path integrals are studied on the Poincare upper half-plane. The fundamental solution to the heat equation ∂f/∂t=Δ_Hf is expressed in terms of a path integral defined on the upper half-plane. It is shown that Kac's statement that Feynman's path integral satisfies the Schrodinger equation is also valid for our case.

  8. A totally heat-integrated distillation column (THIDiC) - the effect of feed pre-heating by distillate

    Huang Kejin [School of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029 (China)], E-mail:; Shan Lan; Zhu Qunxiong [School of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029 (China); Qian Jixin [School of Information Science and Technology, Zhejiang University, Zhejiang 300027 (China)


    An ideal heat-integrated distillation column (ideal HIDiC) is characterized by external zero-reflux and zero-reboil ratio operation. Since the distillate is a high-pressure vapor phase flow, it can be used to pre-heat the feed to be separated, thereby giving rise to a totally heat-integrated distillation column (THIDiC). Although the THIDiC is more thermodynamically efficient than the ideal HIDiC, it is found that the heat integration between the distillate and feed turns it into an open-loop integrating process and poses additional difficulties to process operation. Therefore, a careful decision must be made on the selection between the ideal HIDiC and the THIDiC during process development. In this paper, separation of a binary equimolar mixture of benzene and toluene is selected as an illustrative example. Both process design and operability analysis are conducted, with special emphasis focused on the characteristics of feed pre-heating with distillate. The results obtained show deep insight into the design and operation of the THIDiC.

  9. A totally heat-integrated distillation column (THIDiC) - the effect of feed pre-heating by distillate

    Huang Kejin; Shan Lan; Zhu Qunxiong; Qian Jixin


    An ideal heat-integrated distillation column (ideal HIDiC) is characterized by external zero-reflux and zero-reboil ratio operation. Since the distillate is a high-pressure vapor phase flow, it can be used to pre-heat the feed to be separated, thereby giving rise to a totally heat-integrated distillation column (THIDiC). Although the THIDiC is more thermodynamically efficient than the ideal HIDiC, it is found that the heat integration between the distillate and feed turns it into an open-loop integrating process and poses additional difficulties to process operation. Therefore, a careful decision must be made on the selection between the ideal HIDiC and the THIDiC during process development. In this paper, separation of a binary equimolar mixture of benzene and toluene is selected as an illustrative example. Both process design and operability analysis are conducted, with special emphasis focused on the characteristics of feed pre-heating with distillate. The results obtained show deep insight into the design and operation of the THIDiC

  10. Advances in Integrated Heat Pipe Technology for Printed Circuit Boards

    Wits, Wessel Willems; te Riele, Gert Jan


    Designing thermal control systems for electronic products has become very challenging due to the continuous miniaturization and increasing performance demands. Two-phase cooling solutions, such as heat pipes or vapor chambers, are increasingly used as they offer higher thermal coefficients for heat

  11. Heat pump centered integrated community energy systems: system development. Georgia Institute of Technology final report

    Wade, D.W.; Trammell, B.C.; Dixit, B.S.; McCurry, D.C.; Rindt, B.A.


    Heat Pump Centered-Integrated Community Energy Systems (HP-ICES) show the promise of utilizing low-grade thermal energy for low-quality energy requirements such as space heating and cooling. The Heat Pump - Wastewater Heat Recovery (HP-WHR) scheme is one approach to an HP-ICES that proposes to reclaim low-grade thermal energy from a community's wastewater effluent. This report develops the concept of an HP-WHR system, evaluates the potential performance and economics of such a system, and examines the potential for application. A thermodynamic performance analysis of a hypothetical system projects an overall system Coefficient of Performance (C.O.P.) of from 2.181 to 2.264 for waste-water temperatures varying from 50/sup 0/F to 80/sup 0/F. Primary energy source savings from the nationwide implementation of this system is projected to be 6.0 QUADS-fuel oil, or 8.5 QUADS - natural gas, or 29.7 QUADS - coal for the period 1980 to 2000, depending upon the type and mix of conventional space conditioning systems which could be displaced with the HP-WHR system. Site-specific HP-WHR system designs are presented for two application communities in Georgia. Performance analyses for these systems project annual cycle system C.O.P.'s of 2.049 and 2.519. Economic analysis on the basis of a life cycle cost comparison shows one site-specific system design to be cost competitive in the immediate market with conventional residential and light commercial HVAC systems. The second site-specific system design is shown through a similar economic analysis to be more costly than conventional systems due mainly to the current low energy costs for natural gas. It is anticipated that, as energy costs escalate, this HP-WHR system will also approach the threshold of economic viability.

  12. Discussion on application of water source heat pump technology to uranium mines

    An Qiang


    Application of water source heat pump units in recovering waste heat from uranium mines is discussed, and several forms of waste heat recovery are introduced. The problems in the application of water source heat pump technology are analyzed. Analysis results show that the water source heat pump technology has broad application prospects in uranium mines, and it is a way to exchange existing structure of heat and cold sources in uranium mines. (authors)

  13. Performance Characteristics of a Modularized and Integrated PTC Heating System for an Electric Vehicle

    Yoon Hyuk Shin


    Full Text Available A modularized positive temperature coefficient heating system has controller-integrated heater modules. Such a heating system that uses a high-voltage power of 330 V was developed in the present study for use in electric vehicles. Four heater modules and one controller with an input power of 5.6 kW were integrated in the modularized system, which was designed for improved heating power density and light weight compared to the conventional heating system, in which the controller is separated. We experimentally investigated the performance characteristics, namely, the heating capacity, energy efficiency, and pressure drop, of a prototype of the developed heating system and found it to have satisfactory performance. The findings of this study will contribute to the development of heating systems for electric vehicles.

  14. Integrated system of nuclear reactor and heat exchanger

    McDonald, B.N.; Schluderberg, D.C.


    The invention concerns PWRs in which the heat exchanger is associated with a pressure vessel containing the core and from which it can be selectively detached. This structural configuration applies to electric power generating uses based on land or on board ships. An existing reactor of this kind is fitted with a heat exchanger in which the tubes are 'U' shaped. This particular design of heat exchangers requires that the ends of the curved tubes be solidly maintained in a tube plate of great thickness, hence difficult to handle and to fabricate and requiring unconventional fine control systems for the control rods and awkward coolant pump arrangements. These complications limit the thermal power of the system to level below 100 megawatts. On the contrary, the object of this invention is to provide a one-piece PWR reactor capable of reaching power levels of 1500 thermal megawatts at least. For this, a pressure vessel is provided in the cylindrical assembly with not only a transversal separation on a plane located between the reactor and the heat exchanger but also a cover selectively detachable which supports the fine control gear of the control rods. Removing the cover exposes a part of the heat exchanger for easy inspection and maintenance. Further, the heat exchanger can be removed totally from the pressure vessel containing the core by detaching the cylindrical part, which composes the heat exchanger section, from the part that holds the reactor core on a level with the transversal separation [fr

  15. Study of non-domestic applications for active solar heating

    Stammers, J.R.


    The UK Department of Trade and Industry (through ETSU) commissioned this study as part of its active solar programme. It was carried out from October 1996 to June 1997. The objective was to assess the potential for the use of active solar heating in non-domestic applications. The study was carried out by searching the literature, carrying out case studies and interviewing members of the solar industry and experts in other fields. There are currently about 45-50 active solar non-domestic schemes in operation in the UK, mostly for heating tap water in buildings of different types. The biggest potential for future non-domestic sales also lies in solar water heating for buildings. Most of the opportunities seem to be in the following building types: ablutions blocks in caravan and holiday camps, sheltered flats and hostels, nursing homes, office buildings, hotels and guest houses, and schools occupied during the summer. There are some other building types which might present niche markets for solar water heating. The market for active solar systems in space heating and cooling appears to be negligible. There is one other market for active solar heating in the non-domestic building sector. This is for warming water used to maintain stand-by generators at a temperature which allows them to kick in without delay in the event of a mains power failure. The main market is in buildings housing computers which control the provision of vital services, e.g. electricity, water and gas. (author)

  16. Literature survey of heat transfer enhancement techniques in refrigeration applications

    Jensen, M.K.; Shome, B. [Rensselaer Polytechnic Inst., Troy, NY (United States). Dept. of Mechanical Engineering, Aeronautical Engineering and Mechanics


    A survey has been performed of the technical and patent literature on enhanced heat transfer of refrigerants in pool boiling, forced convection evaporation, and condensation. Extensive bibliographies of the technical literature and patents are given. Many passive and active techniques were examined for pure refrigerants, refrigerant-oil mixtures, and refrigerant mixtures. The citations were categorized according to enhancement technique, heat transfer mode, and tube or shell side focus. The effects of the enhancement techniques relative to smooth and/or pure refrigerants were illustrated through the discussion of selected papers. Patented enhancement techniques also are discussed. Enhanced heat transfer has demonstrated significant improvements in performance in many refrigerant applications. However, refrigerant mixtures and refrigerant-oil mixtures have not been studied extensively; no research has been performed with enhanced refrigerant mixtures with oil. Most studies have been of the parametric type; there has been inadequate examination of the fundamental processes governing enhanced refrigerant heat transfer, but some modeling is being done and correlations developed. It is clear that an enhancement technique must be optimized for the refrigerant and operating condition. Fundamental processes governing the heat transfer must be examined if models for enhancement techniques are to be developed; these models could provide the method to optimize a surface. Refrigerant mixtures, with and without oil present, must be studied with enhancement devices; there is too little known to be able to estimate the effects of mixtures (particularly NARMs) with enhanced heat transfer. Other conclusions and recommendations are offered.

  17. A new divided-wall heat integrated distillation column (HIDiC) for batch processing: Feasibility and analysis

    Jana, Amiya K.


    Highlights: • A novel heat integrated configuration is proposed for batch distillation. • The shell is divided into two closed semi-cylinders by a metal wall. • An open-loop variable manipulation policy is formulated. • The column improves its energy efficiency and economic performance. - Abstract: This work introduces a new heat integrated distillation column (HIDiC) for batch processing. Under this scheme, the entire cylindrical shell is proposed to divide vertically by a metal wall into two closed semi-cylinders. Aiming to generate an internal heat source, a heat pump system is employed over the left hand division to elevate the pressure of the right hand part with the application of HIDiC concept. This new divided-wall HIDiC column utilizes its own energy source by transferring heat from the high pressure (HP) to low pressure (LP) side, thereby reducing the utility consumption in both the still and condenser. To make this thermal integration technology more effective, a typical tray configuration is proposed in both sides of the divided-wall. Unlike the continuous flow distillation, the batch column shows unsteady state process characteristics that make its operation more challenging. With this, an open-loop variable manipulation policy is formulated so that the dynamics of the heat integrated column remain close, if not same, with its conventional counterpart. This is a necessary condition required for a fair comparison between them. Finally, the proposed configuration is illustrated by a binary column, showing an improvement in energy savings, entropy generation and cost over its conventional analogous. This thermally integrated configuration is relatively simple than the traditional HIDiC in terms of design and operation.


    Zhanna Mingaleva


    Full Text Available The solar energy is widely used around the world for electricity generation and heating systems in municipal services. But its use is complicated in the number of territories with uneven receipts of solar radiation on the earth’s surface and large number of cloudy days during a year. A hypothesis on the possibility of application of individual solar collectors for heating of houses in the number of cities of Russia has been tested. The existing designs of solar collectors and checking the possibility of their application in northern territories of Russia are investigated. The analysis was carried out taking into account features of relief and other climatic conditions of the Perm and Sverdlovsk regions. As the result of research, the basic recommended conditions for application of solar batteries in houses of the northern Russian cities have been resumed.

  19. Application of nanofluids in plate heat exchanger: A review

    Kumar, Vikas; Tiwari, Arun Kumar; Ghosh, Subrata Kumar


    Highlights: • Use of nanofluid improves the heat transfer performance of plate heat exchanger. • Thermo-physical properties of the nanofluid have been discussed. • Optimum particle concentrations for maximum heat transfer is found to exist. - Abstract: Writing, or even making an attempt to write anything on or about Plate Heat Exchangers (Henceforth, PHE) would be no more than a futile effort to reassert and glorify an already stronghold state of PHEs, as is evident with the kind of multilayered and multi-tasked functions it performs, obviously in different forms, in various domains of work & walks of life, since a good long time. Nonetheless, in a bid to bring about a certain makeshift in the way the PHE has been functioning and sustaining, there was a need to revisit the structural pattern and the fluids that contribute to the performance of PHE. Summarily, this brings the researcher and designers to shift the focus not only from the conventional design but also to introduce a new substance which could further contribute to enhance the performance of the PHE. That is why, in recent times, the miniaturization of PHE and energy efficiency have become focal point of attention, discourse and research. While exploring for better alternates, the nanofluids have surfaced as probable (replaceable) substitutes. The Nanofluid is a relatively recent (in contrast with the PHEs) finding that promises, pronouncedly, greater heat absorbing and heat transport ability. The review article attempts to take a sneak peak into some of the important published articles that deal with the function and performance of PHEs using nanofluids. The first section of the paper presents observations by several authors on experimental and numerical results regarding thermal conductivity, viscosity, specific heat and heat transfer coefficients. The second section talks of application of nanofluids in plate heat exchangers. It has also examined the utility of nanofluids, particularly in PHEs

  20. Signal Integrity Applications of an EBG Surface



    Full Text Available Electromagnetic band-gap (EBG surfaces have found applications in mitigation of parallel-plate noise that occurs in high speed circuits. A 2D periodic structure previously introduced by the same authors is dimensioned here for adjusting EBG parameters in view of meeting applications requirements by decreasing the phase velocity of the propagating waves. This adjustment corresponds to decreasing the lower bound of the EBG spectra. The positions of the EBGs' in frequency are determined through full-wave simulation, by solving the corresponding eigenmode equation and by imposing the appropriate boundary conditions on all faces of the unit cell. The operation of a device relying on a finite surface is also demonstrated. Obtained results show that the proposed structure fits for the signal integrity related applications as verified also by comparing the transmission along a finite structure of an ideal signal line and one with an induced discontinuity.

  1. Integrating Solar Heating into an Air Handling Unit to Minimize Energy Consumption

    Wilson, Scott A


    The purpose of this project was to test a method of integrating solar heating with a small commercial air handling unit (AHU). In order to accomplish this a heat exchanger was placed in the reheat position of the AHU and piped to the solar heating system. This heat exchanger is used to supplement or replace the existing electric reheat. This method was chosen for its ability to utilize solar energy on a more year round basis when compared to a traditional heating system. It allows solar h...

  2. The role of large‐scale heat pumps for short term integration of renewable energy

    Mathiesen, Brian Vad; Blarke, Morten; Hansen, Kenneth


    technologies is focusing on natural working fluid hydrocarbons, ammonia, and carbon dioxide. Large-scale heat pumps are crucial for integrating 50% wind power as anticipated to be installed in Denmark in 2020, along with other measures. Also in the longer term heat pumps can contribute to the minimization...... savings with increased wind power and may additionally lead to economic savings in the range of 1,500-1,700 MDKK in total in the period until 2020. Furthermore, the energy system efficiency may be increased due to large heat pumps replacing boiler production. Finally data sheets for large-scale ammonium......In this report the role of large-scale heat pumps in a future energy system with increased renewable energy is presented. The main concepts for large heat pumps in district heating systems are outlined along with the development for heat pump refrigerants. The development of future heat pump...

  3. Design aspects of integrated compact thermal storage system for solar dryer applications

    Rajaraman, R.; Velraj, R.; Renganarayanan, S.


    Solar energy is an excellent source for drying of crops, fruits, vegetables and other agricultural and forest products. Though the availability of solar energy is plenty, it is time dependent in nature. The energy need for some applications is also time dependent, but in a different pattern and phase from the solar energy supply. This implies that the solar dryer should be integrated with an efficient thermal storage system to match the time-dependent supply and end-use requirements. Based on the studies carried out on Latent Heat Thermal Storage (LHTS) Systems, it is observed that when air is used as the heat transfer fluid in LHTS system, nearly uniform surface heat flux can be achieved. Hence the LHTS systems are most suitable for air based solar drying applications. In the present work some major conclusions arrived from the investigations on LHTS systems and the design considerations for the integrated latent heat thermal storage for the solar dryer are reported. (Author)

  4. Combined Heat and Power Dispatch Considering Heat Storage of Both Buildings and Pipelines in District Heating System for Wind Power Integration

    Ping Li


    Full Text Available The strong coupling between electric power and heat supply highly restricts the electric power generation range of combined heat and power (CHP units during heating seasons. This makes the system operational flexibility very low, which leads to heavy wind power curtailment, especially in the region with a high percentage of CHP units and abundant wind power energy such as northeastern China. The heat storage capacity of pipelines and buildings of the district heating system (DHS, which already exist in the urban infrastructures, can be exploited to realize the power and heat decoupling without any additional investment. We formulate a combined heat and power dispatch model considering both the pipelines’ dynamic thermal performance (PDTP and the buildings’ thermal inertia (BTI, abbreviated as the CPB-CHPD model, emphasizing the coordinating operation between the electric power and district heating systems to break the strong coupling without impacting end users’ heat supply quality. Simulation results demonstrate that the proposed CPB-CHPD model has much better synergic benefits than the model considering only PDTP or BTI on wind power integration and total operation cost savings.

  5. Process integration in bioprocess indystry: waste heat recovery in yeast and ethyl alcohol plant

    Raskovic, P.; Anastasovski, A.; Markovska, Lj.; Mesko, V.


    The process integration of the bioprocess plant for production of yeast and alcohol was studied. Preliminary energy audit of the plant identified the huge amount of thermal losses, caused by waste heat in exhausted process streams, and reviled the great potential for energy efficiency improvement by heat recovery system. Research roadmap, based on process integration approach, is divided on six phases, and the primary tool used for the design of heat recovery network was Pinch Analysis. Performance of preliminary design are obtained by targeting procedure, for three process stream sets, and evaluated by the economic criteria. The results of process integration study are presented in the form of heat exchanger networks which fulfilled the utilization of waste heat and enable considerable savings of energy in short payback period.

  6. High-temperature process heat applications with an HTGR

    Quade, R.N.; Vrable, D.L.


    An 842-MW(t) HTGR-process heat (HTGR-PH) design and several synfuels and energy transport processes to which it could be coupled are described. As in other HTGR designs, the HTGR-PH has its entire primary coolant system contained in a prestressed concrete reactor vessel (PCRV) which provides the necessary biological shielding and pressure containment. The high-temperature nuclear thermal energy is transported to the externally located process plant by a secondary helium transport loop. With a capability to produce hot helium in the secondary loop at 800 0 C (1472 0 F) with current designs and 900 0 C (1652 0 F) with advanced designs, a large number of process heat applications are potentially available. Studies have been performed for coal liquefaction and gasification using nuclear heat

  7. Heat recovery in compost piles for building applications

    Walther Edouard


    Full Text Available This work proposes an estimation of the possible heat recovery of self-heating compost piles for building applications. The energy released during the aerobic composting of lignin and cellulose-based materials is computed by solving an inverse problem. The method consists first in an experimental phase with measurement of the temperature within the heap, then a numerical procedure allows for the inverse identification of the heat production due to the chemical reaction of composting. The simulation results show a good accordance with the experiments for the chosen source-term model. Comparing the results to the theoretical values for the energy released by aerobic composting provides an estimate for the efficiency of the reaction. The reached temperatures and recovered energy fit with the order of magnitude of building needs.

  8. Heat-pump-centered integrated community energy systems. System development, Consolidated Natural Gas Service Company, interim report

    Tison, R.R.; Baker, N.R.; Yudow, B.D.; Sala, D.L.; Donakowski, T.D.; Swenson, P.F.


    Heat-pump-centered integrated community energy systems are energy systems for communities that provide heating, cooling, and/or other thermal energy services through the use of heat pumps. Since heat pumps primarily transfer energy from existing and otherwise probably unused sources, rather than convert it from electrical or chemical to thermal form, HP-ICES offer a significant potential for energy savings. Results of the System Development Phase of the HP-ICES Project are given. The heat-actuated (gas) heat-pump incorporated into this HP-ICES concept is under current development and demonstration. The concurrent program was redirected in September 1977 toward large-tonnage applications; it is currently focusing on 60- to 400-ton built-up systems for multi-zone applications. This study evaluates the performance of a HAHP-ICES as applied to a community of residential and commercial buildings. To permit a general assessment of the concept in non-site-specific terms, the sensitivity of the system's performance and economics to climate, community size, utility rate structures, and economic assumptions is explored. (MCW)

  9. Study on boiling heat transfer from diode elements in an integrated circuit chip

    Hijikata, Kunio; Nagasaki, Takao; Kurata, Naoki (Tokyo Institute of Technology Faculty of Engineering (Japan))


    By temperature measurement of elements in boiling experiments with diodes in an integrated circuit (IC) chip, characteristics of boiling heat transfer from tiny heat generating elements in an IC chip and thermal transfer characteristics of multiple heating elements adjoining positioned were studied. The Package of an IC was removed by acid to expose the IC chip. Electricity is applied to the diode in the IC to study the heat transfer properties. The heat transfer rate from a tiny heating element on an IC is greater than that from the conventional continual heated surface. In the case of heat generation by two adjoining elements, the relationship between the total amount of heat and the temperature of elements shows the same characteristics as in the case with a single element. The boiling heat transfer properties of an element in an IC chip are influenced by such microstructure surrounding the element as the pattern of wiring. Heat transfer increases with the decreasing size of the heating element by the heat transfer to the substrate beneath the element. 10 refs., 15 figs.

  10. Application specific integrated circuit for high temperature oil well applications

    Fallet, T.; Gakkestad, J.; Forre, G.


    This paper describes the design of an integrated BiCMOS circuit for high temperature applications. The circuit contains Pierce oscillators with automatic gain control, and measurements show that it is operating up to 266{sup o}C. The relative frequency variation up to 200 {sup o}C is less than 60 ppm caused mainly by the crystal element itself. 4 refs., 7 figs.

  11. Nanofluid application: liquid sublayer structure and heat transfer mechanism

    Bang, In Cheol; Chang, Soon Heung


    Boiling has important modern applications for macroscopic heat transfer exchangers, such as those in nuclear and fossil power plants, and for microscopic heat transfer devices, such as heat pipes and microchannels for cooling electronic chips. The use of boiling is limited by critical heat flux which is characterized by both its highest efficient heat transport capability and the initiation of surface damage caused by suddenly deteriorating heat transfer. For instance, damage can be directly related to the physical burnout of the materials of a heat exchanger. However, the physical mechanism of this limitation has not been understood clearly. In relation to the mechanisms, there is a general consensus that fully developed nucleate boiling on a heated solid surface is characterized by the existence of a liquid film on the heated solid surface. The occurrence of the boiling limitation, the so-called critical heat flux (CHF) has been linked closely to the behavior of the liquid film. This liquid film is generally referred to as the 'thin liquid layer' or the 'macrolayer' to distinguish it from the microlayer that exists under the base of discrete nucleating bubbles. The question to be answered is whether a stable thin liquid layer under a vapor boiling environment could actually exist. If so, what precisely is the role of such a liquid film in relation to the boiling limitation? Reliable answers will depend on direct experimental observations. Currently, there has been no direct observation of the liquid layer. Numerous subsequent studies have failed to provide a direct confirmation of a stable thin liquid layer under a vapor boiling environment. In 1977, Yu and Mesler offered a hypothesis of the existence of the layer, as illustrated in Figure 1. Katto and Yokoya demonstrated the importance of Yu and Mesler's hypothesis; they used it to show that it is possible to approach the very complicated boiling limitation phenomenon with a relatively simple liquid layer

  12. Cyber integrated MEMS microhand for biological applications

    Weissman, Adam; Frazier, Athena; Pepen, Michael; Lu, Yen-Wen; Yang, Shanchieh Jay


    Anthropomorphous robotic hands at microscales have been developed to receive information and perform tasks for biological applications. To emulate a human hand's dexterity, the microhand requires a master-slave interface with a wearable controller, force sensors, and perception displays for tele-manipulation. Recognizing the constraints and complexity imposed in developing feedback interface during miniaturization, this project address the need by creating an integrated cyber environment incorporating sensors with a microhand, haptic/visual display, and object model, to emulates human hands' psychophysical perception at microscale.

  13. Integral and finite difference inequalities and applications

    Pachpatte, B G


    The monograph is written with a view to provide basic tools for researchers working in Mathematical Analysis and Applications, concentrating on differential, integral and finite difference equations. It contains many inequalities which have only recently appeared in the literature and which can be used as powerful tools and will be a valuable source for a long time to come. It is self-contained and thus should be useful for those who are interested in learning or applying the inequalities with explicit estimates in their studies.- Contains a variety of inequalities discovered which find numero

  14. Thermal performance of a PCB embedded pulsating heat pipe for power electronics applications

    Kearney, Daniel J.; Suleman, Omar; Griffin, Justin; Mavrakis, Georgios


    Highlights: • Planar, compact PCB embedded pulsating heat pipe for heat spreading applications. • Embedded heat pipe operates at sub-ambient pressure with environmentally. • Compatible fluids. • Range of optimum operating conditions, orientations and fill ratios identified. - Abstract: Low voltage power electronics applications (<1.2 kV) are pushing the design envelope towards increased functionality, better reliability, low profile and reduced cost. One packaging method to enable these constraints is the integration of active power electronic devices into the printed circuit board improving electrical and thermal performance. This development requires a reliable passive thermal management solution to mitigate hot spots due to the increased heat flux density. To this end, a 44 channel open looped pulsating heat pipe (OL-PHP) is experimentally investigated for two independent dielectric working fluids – Novec"T"M 649 and Novec"T"M 774 – due to their lower pressure operation and low global warming potential compared to traditional two-phase coolants. The OL-PHP is investigated in vertical (90°) orientation with fill ratios ranging from 0.30 to 0.70. The results highlight the steady state operating conditions for each working fluid with instantaneous plots of pressure, temperature, and thermal resistance; the minimum potential bulk thermal resistance for each fill ratio and the effective thermal conductivity achievable for the OL-PHP.

  15. Microwave integrated circuits for space applications

    Leonard, Regis F.; Romanofsky, Robert R.


    Monolithic microwave integrated circuits (MMIC), which incorporate all the elements of a microwave circuit on a single semiconductor substrate, offer the potential for drastic reductions in circuit weight and volume and increased reliability, all of which make many new concepts in electronic circuitry for space applications feasible, including phased array antennas. NASA has undertaken an extensive program aimed at development of MMICs for space applications. The first such circuits targeted for development were an extension of work in hybrid (discrete component) technology in support of the Advanced Communication Technology Satellite (ACTS). It focused on power amplifiers, receivers, and switches at ACTS frequencies. More recent work, however, focused on frequencies appropriate for other NASA programs and emphasizes advanced materials in an effort to enhance efficiency, power handling capability, and frequency of operation or noise figure to meet the requirements of space systems.

  16. Adding rectifying/stripping section type heat integration to a pressure-swing distillation (PSD) process

    Huang Kejin; Shan Lan; Zhu Qunxiong; Qian Jixin


    This paper studies the economical effect of considering rectifying/stripping section type heat integration in a pressure-swing distillation (PSD) process separating a binary homogeneous pressure-sensitive azeotrope. The schemes for arranging heat integration between the rectifying section and the stripping section of the high- and low-pressure distillation columns, respectively, are derived and an effective procedure is devised for the conceptual process design of the heat-integrated PSD processes. In terms of the separation of a binary azeotropic mixture of acetonitrile and water, intensive comparisons are made between the conventional and heat-integrated PSD processes. It is demonstrated that breaking a pressure-sensitive azeotropic mixture can be made more economical than the current practice with the conventional PSD process. For boosting further the thermodynamic efficiency of a PSD process, it is strongly suggested to consider simultaneously the condenser/reboiler type heat integration with the rectifying/stripping section type heat integration in process synthesis and design

  17. Adding rectifying/stripping section type heat integration to a pressure-swing distillation (PSD) process

    Huang Kejin [School of Information Science and Technology, Beijing University of Chemical Technology, Chaoyang-qu, Beijing-shi, Beijing 100029 (China)], E-mail:; Shan Lan; Zhu Qunxiong [School of Information Science and Technology, Beijing University of Chemical Technology, Chaoyang-qu, Beijing-shi, Beijing 100029 (China); Qian Jixin [School of Information Science and Technology, Zhejiang University, Xihu-qu, Hangzhou-shi, Zhejiang 300027 (China)


    This paper studies the economical effect of considering rectifying/stripping section type heat integration in a pressure-swing distillation (PSD) process separating a binary homogeneous pressure-sensitive azeotrope. The schemes for arranging heat integration between the rectifying section and the stripping section of the high- and low-pressure distillation columns, respectively, are derived and an effective procedure is devised for the conceptual process design of the heat-integrated PSD processes. In terms of the separation of a binary azeotropic mixture of acetonitrile and water, intensive comparisons are made between the conventional and heat-integrated PSD processes. It is demonstrated that breaking a pressure-sensitive azeotropic mixture can be made more economical than the current practice with the conventional PSD process. For boosting further the thermodynamic efficiency of a PSD process, it is strongly suggested to consider simultaneously the condenser/reboiler type heat integration with the rectifying/stripping section type heat integration in process synthesis and design.

  18. Benefits of Integrating Geographically Distributed District Heating Systems

    Dominkovic, Dominik Franjo; Bačeković, I.; Sveinbjörnsson, Dadi Þorsteinn


    Although liberalization of the electricity day-ahead markets has gained pace throughout the Europe, district heating markets are often dominated by lack of competition between suppliers, which curbs the potential of having cheaper systems in terms of socio-economic costs, and technically better s...

  19. Building with integral solar-heat storage--Starkville, Mississippi


    Column supporting roof also houses rock-storage bin of solar-energy system supplying more than half building space heating load. Conventional heaters supply hot water. Since bin is deeper and narrower than normal, individual pebble size was increased to keep airflow resistance at minimum.

  20. Progress on conformal microwave array applicators for heating chestwall disease

    Stauffer, P. R.; Maccarini, P. F.; Juang, T.; Jacobsen, S. K.; Gaeta, C. J.; Schlorff, J. L.; Milligan, A. J.


    Previous studies have reported the computer modeling, CAD design, and theoretical performance of single and multiple antenna arrays of Dual Concentric Conductor (DCC) square slot radiators driven at 915 and 433 MHz. Subsequently, practical CAD designs of microstrip antenna arrays constructed on thin and flexible printed circuit board (PCB) material were reported which evolved into large Conformal Microwave Array (CMA) sheets that could wrap around the surface of the human torso for delivering microwave energy to large areas of superficial tissue. Although uniform and adjustable radiation patterns have been demonstrated from multiple element applicators radiating into simple homogeneous phantom loads, the contoured and heterogeneous tissue loads typical of chestwall recurrent breast cancer have required additional design efforts to achieve good coupling and efficient heating from the increasingly larger conformal array applicators used to treat large area contoured patient anatomy. Thus recent work has extended the theoretical optimization of DCC antennas to improve radiation efficiency of each individual aperture and reduce mismatch reflections, radiation losses, noise, and cross coupling of the feedline distribution network of large array configurations. Design improvements have also been incorporated into the supporting bolus structure to maintain effective coupling of DCC antennas into contoured anatomy and to monitor and control surface temperatures under the entire array. New approaches for non-invasive monitoring of surface and sub-surface tissue temperatures under each independent heat source are described that make use of microwave radiometry and flexible sheet grid arrays of thermal sensors. Efforts to optimize the clinical patient interface and move from planar rectangular shapes to contoured vest applicators that accommodate entire disease in a larger number of patients are summarized. By applying heat more uniformly to large areas of contoured anatomy

  1. Influence of individual heat pumps on wind power integration – Energy system investments and operation

    Hedegaard, Karsten; Münster, Marie


    Individual heat pumps are expected to constitute a significant electricity demand in future energy systems. This demand becomes flexible if investing in complementing heat storage capabilities. In this study, we analyse how the heat pumps can influence the integration of wind power by applying...... an energy system model that optimises both investments and operation, and covers various heat storage options. The Danish energy system by 2030 with around 50–60% wind power is used as a case study. Results show that the heat pumps, even without flexible operation, can contribute significantly...... to facilitating larger wind power investments and reducing system costs, fuel consumption, and CO2 emissions. Investments in heat storages can provide only moderate system benefits in these respects. The main benefit of the flexible heat pump operation is a reduced need for peak/reserve capacity, which is also...

  2. Copper alloys for high heat flux structure applications

    Zinkle, S.J.; Fabritsiev, S.A.


    The mechanical and physical properties of copper alloys are reviewed and compared with the requirements for high heat flux structural applications in fusion reactors. High heat flux structural materials must possess a combination of high thermal conductivity and high mechanical strength. The three most promising copper alloys at the present time are oxide dispersion-strengthened copper (Cu-Al 2 O 3 ) and two precipitation-hardened copper alloys (Cu-Cr-Zr and Cu-Ni-Be). These three alloys are capable of room temperature yield strengths >400 MPa and thermal conductivities up to 350 W/m-K. All of these alloys require extensive cold working to achieve their optimum strength. Precipitation-hardened copper alloys such Cu-Cr-Zr are susceptible to softening due to precipitate overaging and recrystallization during brazing, whereas the dislocation structure in Cu-Al 2 O 3 remains stabilized during typical high temperature brazing cycles. All three alloys exhibit good resistance to irradiation-induced softening and void swelling at temperatures below 300 degrees C. The precipitation-strengthened allows typically soften during neutron irradiation at temperatures above about 300 degrees C and therefore should only be considered for applications operating at temperatures 2 O 3 ) is considered to be the best candidate for high heat flux structural applications

  3. Exergy analysis of a combined heat and power plant with integrated lignocellulosic ethanol production

    Lythcke-Jørgensen, Christoffer; Haglind, Fredrik; Clausen, Lasse R.


    Highlights: • We model a system where lignocellulosic ethanol production is integrated with a combined heat and power (CHP) plant. • We conduct an exergy analysis for the ethanol production in six different system operation points. • Integrated operation, district heating (DH) production and low CHP loads all increase the exergy efficiency. • Separate operation has the largest negative impact on the exergy efficiency. • Operation is found to have a significant impact on the exergy efficiency of the ethanol production. - Abstract: Lignocellulosic ethanol production is often assumed integrated in polygeneration systems because of its energy intensive nature. The objective of this study is to investigate potential irreversibilities from such integration, and what impact it has on the efficiency of the integrated ethanol production. An exergy analysis is carried out for a modelled polygeneration system in which lignocellulosic ethanol production based on hydrothermal pretreatment is integrated in an existing combined heat and power (CHP) plant. The ethanol facility is driven by steam extracted from the CHP unit when feasible, and a gas boiler is used as back-up when integration is not possible. The system was evaluated according to six operation points that alternate on the following three different operation parameters: Load in the CHP unit, integrated versus separate operation, and inclusion of district heating production in the ethanol facility. The calculated standard exergy efficiency of the ethanol facility varied from 0.564 to 0.855, of which the highest was obtained for integrated operation at reduced CHP load and full district heating production in the ethanol facility, and the lowest for separate operation with zero district heating production in the ethanol facility. The results suggest that the efficiency of integrating lignocellulosic ethanol production in CHP plants is highly dependent on operation, and it is therefore suggested that the

  4. Development of a new distillation unit combined with compressed heat pump (heat integrated distillation column (HIDiC)) (eco-energy city project)

    Nakanishi, Toshinari; Aso, Kazumasa [Kimura Chemical Plants Co., Ltd., Amagasaki City, Hyogo (Japan); Takamatsu, Takeichiro [Research Inst. of Industrial Technology, Suita-City, Osaka (Japan); Nakaiwa, Masaru [National Inst. of Materials and Chemical Research, Tsukuba, Ibaraki (Japan); Noda, Hideo; Kuratani, Nobuyuki [Kansai Chemical Engineearing Co., Ltd., Amagasaki-city, Hyogo (Japan); Yoshida, Kazufumi [Maruzen Petrochemical Co., Ltd., 25-10, Tokyo (Japan)


    To reduce the irreversible loss the Heat Integrated Distillation Column (HIDiC) is proposed by application of heat-pump technology. (Distillation column, which is an energy consuming separation unit, has been widely used in oil refinery and the other chemical-related plants. The reason why it is a major energy consumer is that a large amount of irreversible loss occurs in heat transfer within the process.) In this paper, current results on the study of HIDiC in both simulations and experiments are shown. HIDiC must be operated at a higher pressure in the rectifying section so as to make its temperature higher than that of the stripping section which stands parallel with the rectifying section. That makes heat transfer from the rectifying section to the stripping section. Because of vaporization in the stripping section and condensation in the rectifying section, the energy for the reboiler can be saved. The degree of energy saving can be expected to be much more than 30%, although the exact value depends on the characteristics of mixture to be separated. (The degree of energy saving is higher than the above, if the exhaust vapor from the HIDiC is used to heat the feed or the other processes.) To save energy by the HIDiC, high separation performances and heat transfer capabilities are required. It has been found out that the HIDiC, whose shape is like vertical shell and tube heat exchanger was enough to be practical use of the HIDiC from the static design principle points of view. (orig.)

  5. Chicken hepatic response to chronic heat stress using integrated transcriptome and metabolome analysis.

    Sara F Jastrebski

    Full Text Available The liver plays a central role in metabolism and is important in maintaining homeostasis throughout the body. This study integrated transcriptomic and metabolomic data to understand how the liver responds under chronic heat stress. Chickens from a rapidly growing broiler line were heat stressed for 8 hours per day for one week and liver samples were collected at 28 days post hatch. Transcriptome analysis reveals changes in genes responsible for cell cycle regulation, DNA replication, and DNA repair along with immune function. Integrating the metabolome and transcriptome data highlighted multiple pathways affected by heat stress including glucose, amino acid, and lipid metabolism along with glutathione production and beta-oxidation.

  6. Application of solar radiation for heating and preparation of warm water in an individual house

    Kozak, Tadeeusz; Majchrzycka, Anna


    The paper is aimed at analysis of application of the solar collectors array for preparing of warm water and space heating in an individual house. Keywords: application of solar radiation, preparation of warm water, heating

  7. Case-study application of venture analysis: the integrated energy utility. Volume 3. Appendices

    Fein, E; Gordon, T J; King, R; Kropp, F G; Shuchman, H L; Stover, J; Hausz, W; Meyer, C


    The appendices for a case-study application of venture analysis for an integrated energy utility for commercialization are presented. The following are included and discussed: utility interviews; net social benefits - quantitative calculations; the financial analysis model; market penetration decision model; international district heating systems; political and regulatory environment; institutional impacts.

  8. Applications of ASTEC integral code on a generic CANDU 6

    Radu, Gabriela, E-mail: [Institute for Nuclear Research, Campului 1, 115400 Mioveni, Arges (Romania); Prisecaru, Ilie [Power Engineering Department, University “Politehnica” of Bucharest, 313 Splaiul Independentei, Bucharest (Romania)


    Highlights: • Short overview of the models included in the ASTEC MCCI module. • MEDICIS/CPA coupled calculations for a generic CANDU6 reactor. • Two cases taking into account different pool/concrete interface models. - Abstract: In case of a hypothetical severe accident in a nuclear power plant, the corium consisting of the molten reactor core and internal structures may flow onto the concrete floor of containment building. This would cause an interaction between the molten corium and the concrete (MCCI), in which the heat transfer from the hot melt to the concrete would cause the decomposition and the ablation of the concrete. The potential hazard of this interaction is the loss of integrity of the containment building and the release of fission products into the environment due to the possibility of a concrete foundation melt-through or containment over-pressurization by the gases produced from the decomposition of the concrete or by the inflammation of combustible gases. In the safety assessment of nuclear power plants, it is necessary to know the consequences of such a phenomenon. The paper presents an example of application of the ASTECv2 code to a generic CANDU6 reactor. This concerns the thermal-hydraulic behaviour of the containment during molten core–concrete interaction in the reactor vault. The calculations were carried out with the help of the MEDICIS MCCI module and the CPA containment module of ASTEC code coupled through a specific prediction–correction method, which consists in describing the heat exchanges with the vault walls and partially absorbent gases. Moreover, the heat conduction inside the vault walls is described. Two cases are presented in this paper taking into account two different heat transfer models at the pool/concrete interface and siliceous concrete. The corium pool configuration corresponds to a homogeneous configuration with a detailed description of the upper crust.

  9. Optimization of a High Temperature PEMFC micro-CHP System by Formulation and Application of a Process Integration Methodology

    Arsalis, Alexandros; Nielsen, Mads Pagh; Kær, Søren Knudsen


    A 1 kWe micro combined heat and power (CHP) system based on high temperature proton exchange membrane fuel cell (PEMFC) technology is modeled and optimized by formulation and application of a process integration methodology. The system can provide heat and electricity for a singlefamily household...

  10. Thermal management of a multiple mini-channel heat sink by the integration of a thermal responsive shape memory material

    Di Maio, E.; Mastrullo, R.; Mauro, A.W.; Toto, D.


    In this paper, a novel application of a thermo-responsive shape memory polymer (SMP) is proposed to smart-control the forced flow of water in a multi mini-channel heat sink. In particular, it is reported that millimeter-sized cylinders made of SMP could be used to smartly obstruct the fluid flow by adapting the flow cross section to the heat load to be removed. By integrating the sensing, the control and the actuation functions within a unique, millimeter-sized device, these micro-valves, unlike the traditional actuators normally used for flow control, could be easily embedded into small heat sinks, with significant space and energy saving, useful, in particular, in systems where several miniaturized components have to be cooled concurrently, such as the modern mainframes or the concentrated photovoltaic solar cells. Two possible configurations for the SMP were considered in this study: an “open” configuration, without any obstruction of the water flow free and an “obstructed” configuration, with the millimeter-sized cylinder partially occupying the mini-channel. A numerical, steady state analysis was carried out with water in single-phase forced convection, to determine the effect of these two states on the internal fluid flow characteristics under different conditions of heat flux and pressure drop and to evaluate the overall thermal behavior of the smart-controlled multiple mini-channel heat sink in terms of ability to control the temperature of the system and to reduce the energy consumption. -- Highlights: • A novel application of a SMP material is investigated for the thermal management of a heat sink. • Numerical simulations to find the matching of the heat sink and material system after regulation were carried out. • The investigated system is able to control the heat sink temperature. • Further analysis for system stability are required

  11. Counter flow cooling drier with integrated heat recovery

    Shivvers, Steve D [Prole, IA


    A drier apparatus for removing water or other liquids from various materials includes a mixer, drying chamber, separator and regenerator and a method for use of the apparatus. The material to be dried is mixed with a heated media to form a mixture which then passes through the chamber. While passing through the chamber, a comparatively cool fluid is passed counter current through the mixture so that the mixture becomes cooler and drier and the fluid becomes hotter and more saturated with moisture. The mixture is then separated into drier material and media. The media is transferred to the regenerator and heated therein by the hot fluid from the chamber and supplemental heat is supplied to bring the media to a preselected temperature for mixing with the incoming material to be dried. In a closed loop embodiment of the apparatus, the fluid is also recycled from the regenerator to the chamber and a chiller is utilized to reduce the temperature of the fluid to a preselected temperature and dew point temperature.

  12. Energy efficiency analysis of styrene production by adiabatic ethylbenzene dehydrogenation using exergy analysis and heat integration

    Ali Emad


    Full Text Available Styrene is a valuable commodity for polymer industries. The main route for producing styrene by dehydrogenation of ethylbenzene consumes a substantial amount of energy because of the use of high-temperature steam. In this work, the process energy requirements and recovery are studied using Exergy analysis and Heat Integration (HI based on Pinch design method. The amount of steam plays a key role in the trade-off between Styrene yield and energy savings. Therefore, optimizing the operating conditions for energy reduction is infeasible. Heat integration indicated an insignificant reduction in the net energy demand and exergy losses, but 24% and 34% saving in external heating and cooling duties, respectively. When the required steam is generated by recovering the heat of the hot reactor effluent, a considerable saving in the net energy demand, as well as the heating and cooling utilities, can be achieved. Moreover, around 68% reduction in the exergy destruction is observed.

  13. Integrated Energy & Emission Management for Heavy-Duty Diesel Engines with Waste Heat Recovery System

    Willems, F.P.T.; Kupper, F.; Cloudt, R.P.M.


    This study presents an integrated energy and emission management strategy for an Euro-VI diesel engine with Waste Heat Recovery (WHR) system. This Integrated Powertrain Control (IPC) strategy optimizes the CO2-NOx trade-off by minimizing the operational costs associated with fuel and AdBlue

  14. Integrated energy and emission management for heavy-duty diesel engines with waste heat recovery system

    Willems, F.P.T.; Kupper, F.; Cloudt, R.P.M.


    This study presents an integrated energy and emission management strategy for an Euro-VI diesel engine with Waste Heat Recovery (WHR) system. This Integrated Powertrain Control (IPC) strategy optimizes the CO2-NOx trade-off by minimizing the operational costs associated with fuel and AdBlue

  15. Application study of the heat pipe to the passive decay heat removal system of the modular HTR

    Ohashi, K.; Okamoto, F.; Hayakawa, H.; Hayashi, T.


    To investigate the applicability of the heat pipe to the decay hat removal (DHR) system of the modular HTRs, preliminary study of the Heat Pipe DHR System was performed. The results show that the Heat Pipe DHR System is applicable to the modular HTRs and its heat removal capability is sufficient. Especially by applying the variable conductance heat pipe, the possibility of a fully passive DHR system with lower heat loss during normal operation is suggested. The experiments to obtain the fundamental characteristics data of the variable conductance heat pipe were carried out. The experimental results show very clear features of self-control characteristics. The experimental results and the experimental analysis results are also shown. (author)

  16. An application program for fission product decay heat calculations

    Pham, Ngoc Son; Katakura, Jun-ichi


    The precise knowledge of decay heat is one of the most important factors in safety design and operation of nuclear power facilities. Furthermore, decay heat data also play an important role in design of fuel discharges, fuel storage and transport flasks, and in spent fuel management and processing. In this study, a new application program, called DHP (Decay Heat Power program), has been developed for exact decay heat summation calculations, uncertainty analysis, and for determination of the individual contribution of each fission product. The analytical methods were applied in the program without any simplification or approximation, in which all of linear and non-linear decay chains, and 12 decay modes, including ground state and meta-stable states, are automatically identified, and processed by using a decay data library and a fission yield data file, both in ENDF/B-VI format. The window interface of the program is designed with optional properties which is very easy for users to run the code. (author)

  17. Integration of a magnetocaloric heat pump in a low-energy residential building

    Johra, Hicham


    The EnovHeat project aims at developing an innovative heat pump system based on the magnetocaloric effect and active magnetic regenerator technology to provide for the heating needs of a single family house in Denmark. Unlike vapor-compression devices, magnetocaloric heat pumps use the reversible...... heat pump can deliver 2600 W of heating power with an appreciable average seasonal system COP of 3.93. On variable part-load operation with a simple fluid flow controller, it can heat up an entire house with an average seasonal system COP of 1.84....... magnetocaloric effect of a solid refrigerant to build a cooling/heating cycle. It has the potential for high coefficient of performance, more silent operation and efficient part-load control. After presenting the operation principles of the magnetocaloric device and the different models used in the current...... numerical study, this article demonstrates for the first time the possibility to utilize this novel heat pump in a building. This device can be integrated in a single hydronic loop including a ground source heat exchanger and a radiant under-floor heating system. At maximum capacity, this magnetocaloric...

  18. Optimal Operation System of the Integrated District Heating System with Multiple Regional Branches

    Kim, Ui Sik; Park, Tae Chang; Kim, Lae-Hyun; Yeo, Yeong Koo

    This paper presents an optimal production and distribution management for structural and operational optimization of the integrated district heating system (DHS) with multiple regional branches. A DHS consists of energy suppliers and consumers, district heating pipelines network and heat storage facilities in the covered region. In the optimal management system, production of heat and electric power, regional heat demand, electric power bidding and sales, transport and storage of heat at each regional DHS are taken into account. The optimal management system is formulated as a mixed integer linear programming (MILP) where the objectives is to minimize the overall cost of the integrated DHS while satisfying the operation constraints of heat units and networks as well as fulfilling heating demands from consumers. Piecewise linear formulation of the production cost function and stairwise formulation of the start-up cost function are used to compute nonlinear cost function approximately. Evaluation of the total overall cost is based on weekly operations at each district heat branches. Numerical simulations show the increase of energy efficiency due to the introduction of the present optimal management system.

  19. Probabilistic Steady-State Operation and Interaction Analysis of Integrated Electricity, Gas and Heating Systems

    Lun Yang


    Full Text Available The existing studies on probabilistic steady-state analysis of integrated energy systems (IES are limited to integrated electricity and gas networks or integrated electricity and heating networks. This paper proposes a probabilistic steady-state analysis of integrated electricity, gas and heating networks (EGH-IES. Four typical operation modes of an EGH-IES are presented at first. The probabilistic energy flow problem of the EGS-IES considering its operation modes and correlated uncertainties in wind/solar power and electricity/gas/heat loads is then formulated and solved by the Monte Carlo method based on Latin hypercube sampling and Nataf transformation. Numerical simulations are conducted on a sample EGH-IES working in the “electricity/gas following heat” mode to verify the probabilistic analysis proposed in this paper and to study the effects of uncertainties and correlations on the operation of the EGH-IES, especially uncertainty transmissions among the subnetworks.


    Umesh Kumar, Dr. A K Prasad, Sourabh Kumar Soni


    Based on the principles of heat integration, the present work investigates the design and operational modifications which can lead to efficient energy integration in an electric arc furnace being operated with direct reduction process. This process is one of the oldest and most widely applied processes amongst the commercially used process in India. For the purpose of energy integration stream data is extracted from the actual flow sheet of the plant, which consists of supply and target tempe...

  1. Heat sinking of highly integrated photonic and electronic circuits

    van Rijn, M.B.J.; Smit, M.K.


    Dense integration of photonic and electronic circuits poses high requirements on thermal management. In this paper we present analysis of temperature distributions in PICs in InP membranes on top of a BiCMOS chip, which contain hot spots in both the photonic and the electronic layer (lasers, optical

  2. Visual Learning in Application of Integration

    Bt Shafie, Afza; Barnachea Janier, Josefina; Bt Wan Ahmad, Wan Fatimah

    Innovative use of technology can improve the way how Mathematics should be taught. It can enhance student's learning the concepts through visualization. Visualization in Mathematics refers to us of texts, pictures, graphs and animations to hold the attention of the learners in order to learn the concepts. This paper describes the use of a developed multimedia courseware as an effective tool for visual learning mathematics. The focus is on the application of integration which is a topic in Engineering Mathematics 2. The course is offered to the foundation students in the Universiti Teknologi of PETRONAS. Questionnaire has been distributed to get a feedback on the visual representation and students' attitudes towards using visual representation as a learning tool. The questionnaire consists of 3 sections: Courseware Design (Part A), courseware usability (Part B) and attitudes towards using the courseware (Part C). The results showed that students demonstrated the use of visual representation has benefited them in learning the topic.

  3. Experimental and numerical study of latent heat thermal energy storage systems assisted by heat pipes for concentrated solar power application

    Tiari, Saeed

    A desirable feature of concentrated solar power (CSP) with integrated thermal energy storage (TES) unit is to provide electricity in a dispatchable manner during cloud transient and non-daylight hours. Latent heat thermal energy storage (LHTES) offers many advantages such as higher energy storage density, wider range of operating temperature and nearly isothermal heat transfer relative to sensible heat thermal energy storage (SHTES), which is the current standard for trough and tower CSP systems. Despite the advantages mentioned above, LHTES systems performance is often limited by low thermal conductivity of commonly used, low cost phase change materials (PCMs). Research and development of passive heat transfer devices, such as heat pipes (HPs) to enhance the heat transfer in the PCM has received considerable attention. Due to its high effective thermal conductivity, heat pipe can transport large amounts of heat with relatively small temperature difference. The objective of this research is to study the charging and discharging processes of heat pipe-assisted LHTES systems using computational fluid dynamics (CFD) and experimental testing to develop a method for more efficient energy storage system design. The results revealed that the heat pipe network configurations and the quantities of heat pipes integrated in a thermal energy storage system have a profound effect on the thermal response of the system. The optimal placement of heat pipes in the system can significantly enhance the thermal performance. It was also found that the inclusion of natural convection heat transfer in the CFD simulation of the system is necessary to have a realistic prediction of a latent heat thermal storage system performance. In addition, the effects of geometrical features and quantity of fins attached to the HPs have been studied.

  4. Wallboard with Latent Heat Storage for Passive Solar Applications; TOPICAL

    Kedl, R.J.


    Conventional wallboard impregnated with octadecane paraffin[melting point-23 C (73.5 F)] is being developed as a building material with latent heat storage for passive solar and other applications. Impregnation was accomplished simply by soaking the wallboard in molten wax. Concentrations of wax in the combined product as high as 35% by weight can be achieved. Scale-up of the soaking process, from small laboratory samples to full-sized 4- by 8-ft sheets, has been successfully accomplished. The required construction properties of wallboard are maintained after impregnation, that is, it can be painted and spackled. Long-term, high-temperature exposure tests and thermal cycling tests showed no tendency of the paraffin to migrate within the wallboard, and there was no deterioration of thermal energy storage capacity. In support of this concept, a computer model was developed to handle thermal transport and storage by a phase change material (PCM) dispersed in a porous media. The computer model was confirmed by comparison with known analytical solutions and also by comparison with temperatures measured in wallboard during an experimentally generated thermal transient. Agreement between the model and known solution was excellent. Agreement between the model and thermal transient was good, only after the model was modified to allow the PCM to melt over a temperature range, rather than at a specific melting point. When the melting characteristics of the PCM (melting point, melting range, and heat of fusion), as determined from a differential scanning calorimeter plot, were used in the model, agreement between the model and transient data was very good. The confirmed computer model may now be used in conjunction with a building heating and cooling code to evaluate design parameters and operational characteristics of latent heat storage wallboard for passive solar applications

  5. Thermodynamic evaluation of CHP (combined heat and power) plants integrated with installations of coal gasification

    Ziębik, Andrzej; Malik, Tomasz; Liszka, Marcin


    Integration of a CHP steam plant with an installation of coal gasification and gas turbine leads to an IGCC-CHP (integrated gasification combined cycle-combined heat and power). Two installations of coal gasification have been analyzed, i.e. pressurized entrained flow gasifier – case 1 and pressurized fluidized bed gasifier with CO_2 recirculation – case 2. Basing on the results of mathematical modelling of an IGCC-CHP plant, the algorithms of calculating typical energy indices have been derived. The following energy indices are considered, i.e. coefficient of heat performance and relative savings of chemical energy of fuels. The results of coefficients of heat performance are contained between 1.87 and 2.37. Values exceeding 1 are thermodynamically justified because the idea of cogeneration of heat and electricity based on combining cycles of the heat engine and heat pump the efficiency of which exceeds 1. Higher values concerning waste heat replace more thermodynamically effective sources of heat in CHP plants. Relative savings of the chemical energy of fuels are similar in both cases of IGCC-CHP plants and are contained between the lower value of the CHP (combined heat and power) plants fuelled with coal and higher value of CHP plants fired with natural gas. - Highlights: • Energy savings of fuel is an adequate measure of cogeneration. • Relative energy savings of IGCC-CHP is near the result of a gas and steam CHP. • COHP (coefficient of heat performance) can help to divide fuel between heat fluxes. • Higher values of COHP in the case of waste heat recovery result from the lower thermal parameters.

  6. Integrated NEMS and optoelectronics for sensor applications.

    Czaplewski, David A.; Serkland, Darwin Keith; Olsson, Roy H., III; Bogart, Gregory R. (Symphony Acoustics, Rio Rancho, NM); Krishnamoorthy, Uma; Warren, Mial E.; Carr, Dustin Wade (Symphony Acoustics, Rio Rancho, NM); Okandan, Murat; Peterson, Kenneth Allen


    This work utilized advanced engineering in several fields to find solutions to the challenges presented by the integration of MEMS/NEMS with optoelectronics to realize a compact sensor system, comprised of a microfabricated sensor, VCSEL, and photodiode. By utilizing microfabrication techniques in the realization of the MEMS/NEMS component, the VCSEL and the photodiode, the system would be small in size and require less power than a macro-sized component. The work focused on two technologies, accelerometers and microphones, leveraged from other LDRD programs. The first technology was the nano-g accelerometer using a nanophotonic motion detection system (67023). This accelerometer had measured sensitivity of approximately 10 nano-g. The Integrated NEMS and optoelectronics LDRD supported the nano-g accelerometer LDRD by providing advanced designs for the accelerometers, packaging, and a detection scheme to encapsulate the accelerometer, furthering the testing capabilities beyond bench-top tests. A fully packaged and tested die was never realized, but significant packaging issues were addressed and many resolved. The second technology supported by this work was the ultrasensitive directional microphone arrays for military operations in urban terrain and future combat systems (93518). This application utilized a diffraction-based sensing technique with different optical component placement and a different detection scheme from the nano-g accelerometer. The Integrated NEMS LDRD supported the microphone array LDRD by providing custom designs, VCSELs, and measurement techniques to accelerometers that were fabricated from the same operational principles as the microphones, but contain proof masses for acceleration transduction. These devices were packaged at the end of the work.

  7. An Innovative VHTR Waste Heat Integration with Forward Osmosis Desalination Process

    Park, Min Young; Kim, Eung Soo [Seoul National Univ., Seoul (Korea, Republic of)


    The integration concept implies the coupling of the waste heat from VHTR with the draw solute recovery system of FO process. By integrating these two novel technologies, advantages, such as improvement of total energy utilization, and production of fresh water using waste heat, can be achieved. In order to thermodynamically analyze the integrated system, the FO process and power conversion system of VHTR are simulated using chemical process software UNISIM together with OLI property package. In this study, the thermodynamic analysis on the VHTR and FO integrated system has been carried out to assess the feasibility of the concept. The FO process including draw solute recovery system is calculated to have a higher GOR compared to the MSF and MED when reasonable FO performance can be promised. Furthermore, when FO process is integrated with the VHTR to produce potable water from waste heat, it still shows a comparable GOR to typical GOR values of MSF and MED. And the waste heat utilization is significantly higher in FO than in MED and MSF. This results in much higher water production when integrated to the same VHTR plant. Therefore, it can be concluded that the suggested integrated system of VHTR and FO is a very promising and strong system concept which has a number of advantages over conventional technologies.

  8. Integrated power-heat-cold-coupling by switchable Stirling-Vuilleumier-Hybrid-Machines

    Kuehl, Hans-Detlev


    A Stirling engine consists in its so-called Gamma type on the one hand of a thermal compressor in which a double-acting displacer is the working gas between a ''hot'' and a ''warm'' (ie located on the heat use temperature level of the CHP application) cylinder chamber isochoric via a regenerator periodically shuffled back and forth. On the other hand, he has a spatially separated, one-sided working piston-cylinder system, which is connected to the ''warm'' side of the thermal compressor through an overflow and thus is at a similar temperature level. If an additional regenerator is inserted into this overflow channel, then the temperature levels are separated, since the heat output of the process takes place primarily via the warm cylinder space of the displacer system, while the cylinder space of the working piston constitutes a heat sink. This so-called ''hybrid'' process is still characterized by a - compared to the Stirling mode only slightly reduced - mechanical power output, but in addition by a theoretically equal to this magnitude, recorded on the cylinder at ''cold'' temperature cooling capacity, It thus represents an integrated system for power-heat-cold-coupling, which can be realized by a single thermodynamic process. Turning this process in the warm temperature range in addition to another, lying on the back of the working cylinder cylinder space, so that the former becomes a second, double-acting displacer, we finally get the known as a thermally driven heat pump or chiller Vuilleumier process that Ideally, no mechanical power gives or absorbs. At the Chair of Thermodynamics of the TU Dortmund, a research machine was developed and measured in a meanwhile completed research project funded by the DFG, which can switch between the three described processes and thus be adapted to changing power, heat and cooling requirements. In order to reduce the

  9. Application of a finite element method to leak before break (LBB) of a heat exchanger

    Lee, Choon-Yeol; Kwon, Jae-Do; Lee, Yong-Sun


    The leak before break (LBB) concept is difficult to apply to a structure with a thin tube that is immersed in a water environment. A heat exchanger in a nuclear power plant is such a structure. The present paper addresses an application of the LBB concept to a heat exchanger in a nuclear power plant. The minimum leaked coolant amount containing the radioactive material which can activate the radiation detector device installed near the heat exchanger is assumed. The postulated initial flaw size that cannot grow to the critical flaw size within the time period to activate the radiation detector is justified. In this case, the radiation detector can activate the warning signal caused by coolant leakage from initially postulated flaws of the heat exchanger. The nuclear plant can safely shutdown when this occurs. Since the postulated initial flaw size can not grow to the critical flaw size, the structural integrity of the heat exchanger is not impeded. Particularly the informational scenario presented in this paper discusses an actual nuclear plant. (author)

  10. Reducing CO2 emissions and energy consumption of heat-integrated distillation systems.

    Gadalla, Mamdouh A; Olujic, Zarko; Jansens, Peter J; Jobson, Megan; Smith, Robin


    Distillation systems are energy and power intensive processes and contribute significantly to the greenhouse gases emissions (e.g. carbon dioxide). Reducing CO2 emissions is an absolute necessity and expensive challenge to the chemical process industries in orderto meetthe environmental targets as agreed in the Kyoto Protocol. A simple model for the calculation of CO2 emissions from heat-integrated distillation systems is introduced, considering typical process industry utility devices such as boilers, furnaces, and turbines. Furnaces and turbines consume large quantities of fuels to provide electricity and process heats. As a result, they produce considerable amounts of CO2 gas to the atmosphere. Boilers are necessary to supply steam for heating purposes; besides, they are also significant emissions contributors. The model is used in an optimization-based approach to optimize the process conditions of an existing crude oil atmospheric tower in order to reduce its CO2 emissions and energy demands. It is also applied to generate design options to reduce the emissions from a novel internally heat-integrated distillation column (HIDiC). A gas turbine can be integrated with these distillation systems for larger emissions reduction and further energy savings. Results show that existing crude oil installations can save up to 21% in energy and 22% in emissions, when the process conditions are optimized. Additionally, by integrating a gas turbine, the total emissions can be reduced further by 48%. Internal heat-integrated columns can be a good alternative to conventional heat pump and other energy intensive close boiling mixtures separations. Energy savings can reach up to 100% with respect to reboiler heat requirements. Emissions of these configurations are cut down by up to 83%, compared to conventional units, and by 36%, with respect to heat pump alternatives. Importantly, cost savings and more profit are gained in parallel to emissions minimization.

  11. Heat-pump-centered integrated community energy systems: system development summary

    Calm, J.M.


    An introduction to district heating systems employing heat pumps to enable use of low-temperature energy sources is presented. These systems operate as thermal utilities to provide space heating and may also supply space cooling, service-water heating, and other thermal services. Otherwise-wasted heat from industrial and commercial processes, natural sources including solar and geothermal heat, and heat stored on an annual cycle from summer cooling may be effectively utilized by the systems described. These sources are abundant, and their use would conserve scarce resources and reduce adverse environmental impacts. More than one-quarter of the energy consumed in the United States is used to heat and cool buildings and to heat service water. Natural gas and oil provide approximately 83% of this energy. The systems described show potential to reduce net energy consumption for these services by 20 to 50% and to allow fuel substitution with less-scarce resources not practical in smaller, individual-building systems. Seven studies performed for the system development phase of the Department of Energy's Heat-Pump-Centered Integrated Community Energy Systems Project and to related studies are summarized. A concluding chapter tabulates data from these separately published studies.

  12. Power generation and heating performances of integrated system of ammonia–water Kalina–Rankine cycle

    Zhang, Zhi; Guo, Zhanwei; Chen, Yaping; Wu, Jiafeng; Hua, Junye


    Highlights: • Integrated system of ammonia–water Kalina–Rankine cycle (AWKRC) is investigated. • Ammonia–water Rankine cycle is operated for cogenerating room heating-water in winter. • Kalina cycle with higher efficiency is operated for power generation in other seasons. • Power recovery efficiency accounts thermal efficiency and waste heat absorbing ratio. • Heating water with 70 °C and capacity of 55% total reclaimed heat load is cogenerated. - Abstract: An integrated system of ammonia–water Kalina–Rankine cycle (AWKRC) for power generation and heating is introduced. The Kalina cycle has large temperature difference during evaporation and small one during condensation therefore with high thermal efficiency for power generation, while the ammonia–water Rankine cycle has large temperature difference during condensation as well as evaporation, thus it can be adopted to generate heating-water as a by-product in winter. The integrated system is based on the Kalina cycle and converted to the Rankine cycle with a set of valves. The performances of the AWKRC system in different seasons with corresponding cycle loops were studied and analyzed. When the temperatures of waste heat and cooling water are 300 °C and 25 °C respectively, the thermal efficiency and power recovery efficiency of Kalina cycle are 20.9% and 17.4% respectively in the non-heating seasons, while these efficiencies of the ammonia–water Rankine cycle are 17.1% and 13.1% respectively with additional 55.3% heating recovery ratio or with comprehensive efficiency 23.7% higher than that of the Kalina cycle in heating season

  13. Applicability of copper alloys for DEMO high heat flux components

    Zinkle, Steven J.


    The current state of knowledge of the mechanical and thermal properties of high-strength, high conductivity Cu alloys relevant for fusion energy high heat flux applications is reviewed, including effects of thermomechanical and joining processes and neutron irradiation on precipitation- or dispersion-strengthened CuCrZr, Cu-Al2O3, CuNiBe, CuNiSiCr and CuCrNb (GRCop-84). The prospects for designing improved versions of wrought copper alloys and for utilizing advanced fabrication processes such as additive manufacturing based on electron beam and laser consolidation methods are discussed. The importance of developing improved structural materials design criteria is also noted.

  14. Integral Representations of the Catalan Numbers and Their Applications

    Feng Qi


    Full Text Available In the paper, the authors survey integral representations of the Catalan numbers and the Catalan–Qi function, discuss equivalent relations between these integral representations, supply alternative and new proofs of several integral representations, collect applications of some integral representations, and present sums of several power series whose coefficients involve the Catalan numbers.

  15. Exergy analysis of a combined heat and power plant with integrated lignocellulosic ethanol production

    Lythcke-Jørgensen, Christoffer Ernst; Haglind, Fredrik; Clausen, Lasse Røngaard


    production. An exergy analysis is carried out for a modelled polygeneration system in which lignocellulosic ethanol production based on hydrothermal pretreatment is integrated in an existing combined heat and power (CHP) plant. The ethanol facility is driven by steam extracted from the CHP unit when feasible...... district heating production in the ethanol facility. The results suggest that the efficiency of integrating lignocellulosic ethanol production in CHP plants is highly dependent on operation, and it is therefore suggested that the expected operation pattern of such polygeneration system is taken......Lignocellulosic ethanol production is often assumed integrated in polygeneration systems because of its energy intensive nature. The objective of this study is to investigate potential irreversibilities from such integration, and what impact it has on the efficiency of the integrated ethanol...

  16. Biodiesel production process from microalgae oil by waste heat recovery and process integration.

    Song, Chunfeng; Chen, Guanyi; Ji, Na; Liu, Qingling; Kansha, Yasuki; Tsutsumi, Atsushi


    In this work, the optimization of microalgae oil (MO) based biodiesel production process is carried out by waste heat recovery and process integration. The exergy analysis of each heat exchanger presented an efficient heat coupling between hot and cold streams, thus minimizing the total exergy destruction. Simulation results showed that the unit production cost of optimized process is 0.592$/L biodiesel, and approximately 0.172$/L biodiesel can be avoided by heat integration. Although the capital cost of the optimized biodiesel production process increased 32.5% and 23.5% compared to the reference cases, the operational cost can be reduced by approximately 22.5% and 41.6%. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. European research and development on HTGR process heat applications

    Verfondern, Karl; Lensa, Werner von


    The High-Temperature Gas-Cooled Reactor represents a suitable and safe concept of a future nuclear power plant with the potential to produce process heat to be utilized in many industrial processes such as reforming of natural gas, coal gasification and liquefaction, heavy oil recovery to serve for the production of the storable commodities hydrogen or energy alcohols as future transportation fuels. The paper will include a description of the broad range of applications for HTGR process heat and describe the results of the German long-term projects ''Prototype Nuclear Process Heat Reactor Project'' (PNP), in which the technical feasibility of an HTGR in combination with a chemical facility for coal gasification processes has been proven, and ''Nuclear Long-Distance Energy Transportation'' (NFE), which was the demonstration and verification of the closed-cycle, long-distance energy transmission system EVA/ADAM. Furthermore, new European research initiatives are shortly described. A particular concern is the safety of a combined nuclear/chemical facility requiring a concept against potential fire and explosion hazards. (author)

  18. Integral Method for the Assessment of U-RANS Effectiveness in Non-Equilibrium Flows and Heat Transfer

    Pond, Ian; Edabi, Alireza; Dubief, Yves; White, Christopher


    Reynolds Average Navier Stokes (RANS) modeling has established itself as a critical design tool in many engineering applications, thanks to its superior computational efficiency. The drawbacks of RANS models are well known, but not necessarily well understood: poor prediction of transition, non equilibrium flows, mixing and heat transfer, to name the ones relevant to our study. In the present study, we use a DNS of a reciprocating channel flow driven by an oscillating pressure gradient to test several low- and high-Reynolds RANS models. Temperature is introduced as a passive scalar to study heat transfer modeling. Low-Reynolds models manage to capture the overall physics of wall shear and heat flux well, yet with some phase discrepancies, whereas high Reynolds models fail. Under the microscope of the integral method for wall shear and wall heat flux, the qualitative agreement appears more serendipitous than driven by the ability of the models to capture the correct physics. The integral method is shown to be more insightful in the benchmarking of RANS models than the typical comparisons of statistical quantities. The authors acknowledges the support of NSF and DOE under grant NSF/DOE 1258697 (VT) and 1258702 (NH).

  19. Is Swedish district heating operating on an integrated market? – Differences in pricing, price convergence, and marketing strategy between public and private district heating companies

    Åberg, M.; Fälting, L.; Forssell, A.


    The deregulation of the Swedish electricity market in 1996 made it possible to operate municipal district heating commercially. Until that time district heating had been organized mainly as municipal utilities. After 1996 district heating is instead expected to function on a market. In competitive and integrated markets, prices are expected to be equal, or converging. To find out if district heating operates on an integrated market the differences in price levels, price convergence, price strategy, and business goals, among municipal, private and state owned district heating companies are investigated. Price statistics was used along with results from a questionnaire that was answered by representatives for 109 Swedish district heating companies. The results show that prices among district heating systems do not converge significantly and that variations in prices among municipal systems are larger than among private and state owned systems. Furthermore, despite the fact that district heating is supposed to be commercial, a vast majority of district heating companies apply cost-based pricing and not market pricing. The municipal companies give priority to political goals before financial goals. The conclusion is that a Swedish integrated market for heat has not yet evolved, and some district heating price-controlling mechanism is necessary. - Highlights: • Price statistics and owner type data were used along with results from a questionnaire. • Results show that prices among district heating systems do not converge. • Municipal district heating companies still apply cost-based pricing to a large extent. • District heating companies are not operating on an integrated market for heat. • Some price-controlling mechanism for district heating is necessary.

  20. An integrated heat pipe-thermal storage design for a solar receiver

    Keddy, E.; Sena, J. T.; Woloshun, K.; Merrigan, M. A.; Heidenreich, G.

    Light-weight heat pipe wall elements that incorporate a thermal storage subassembly within the vapor space are being developed as part of the Organic Rankine Cycle Solar Dynamic Power System (ORC-SDPS) receiver for the Space Station application. The operating temperature of the heat pipe elements is in the 770 to 810 K range with a design power throughput of 4.8 kW per pipe. The total heat pipe length is 1.9 M. The Rankine cycle boiler heat transfer surfaces are positioned within the heat pipe vapor space, providing a relatively constant temperature input to the vaporizer. The heat pipe design employs axial arteries and distribution wicked thermal storage units with potassium as the working fluid. Performance predictions for this configuration have been conducted and the design characterized as a function of artery geometry, distribution wick thickness, porosity, pore size, and permeability.

  1. Development program on HTTR heat application systems at JAERI

    Ogawa, M.; Inagaki, Y.; Nishihara, T.; Shimizu, S.; Shiozawa, S.; Miyamoto, Y.


    using nuclear heat. Stable hydrogen production of 0.001 Nm 3 /hr has been successfully demonstrated for 48 hours in a laboratory scale experiment. The study has been just started to head for the next engineering step aiming at 0.05 Nm 3 /hr from this year. After the demonstration test of the steam reforming process, the steam reforming process is planned to be replaced with the IS process in the HTTR. The research and development on the nuclear heat application systems was consigned by Science and Technology Agency since January in 1997. In the presentation, an overview of the HTTR heat application systems at JAERI is described with an emphasis of technical subjects to be solved for commercialization as well as technical achievement obtained so far. (author)

  2. Fuel-efficiency of hydrogen and heat storage technologies for integration of fluctuating renewable energy sources

    Mathiesen, Brian Vad; Lund, Henrik


    This paper presents the methodology and results of analysing the use of different energy storage technologies in the task of integration of fluctuating renewable energy sources (RES) into the electricity supply. The analysis is done on the complete electricity system including renewable energy...... sources as well as power plants and CHP (Combined heat and power production). Emphasis is put on the need for ancillary services. Devices to store electricity as well as devices to store heat can be used to help the integration of fluctuating sources. Electricity storage technologies can be used...... to relocate electricity production directly from the sources, while heat storage devices can be used to relocate the electricity production from CHP plants and hereby improve the ability to integrate RES. The analyses are done by advanced computer modelling and the results are given as diagrams showing...

  3. Landau-Placzek ratio for heat density dynamics and its application to heat capacity of liquids.

    Bryk, Taras; Ruocco, Giancarlo; Scopigno, Tullio


    Exact relation for contributions to heat capacity of liquids is obtained from hydrodynamic theory. It is shown from analysis of the long-wavelength limit of heat density autocorrelation functions that the heat capacity of simple liquids is represented as a sum of two contributions due to "phonon-like" collective excitations and heat relaxation. The ratio of both contributions being the analogy of Landau-Placzek ratio for heat processes depends on the specific heats ratio. The theory of heat density autocorrelation functions in liquids is verified by computer simulations. Molecular dynamics simulations for six liquids having the ratio of specific heats γ in the range 1.1-2.3, were used for evaluation of the heat density autocorrelation functions and predicted Landau-Placzek ratio for heat processes. The dependence of contributions from collective excitations and heat relaxation process to specific heat on γ is shown to be in excellent agreement with the theory.

  4. Design and analysis of heat exchanger networks for integrated Ca-looping systems

    Lara, Yolanda; Lisbona, Pilar; Martínez, Ana; Romeo, Luis M.


    Highlights: • Heat integration is essential to minimize energy penalties in calcium looping cycles. • A design and analysis of four heat exchanger networks is stated. • New design with higher power, lower costs and lower destroyed exergy than base case. - Abstract: One of the main challenges of carbon capture and storage technologies deals with the energy penalty associated with CO 2 separation and compression processes. Thus, heat integration plays an essential role in the improvement of these systems’ efficiencies. CO 2 capture systems based on Ca-looping process present a great potential for residual heat integration with a new supercritical power plant. The pinch methodology is applied in this study to define the minimum energy requirements of the process and to design four configurations for the required heat exchanger network. The Second Law of Thermodynamics represents a powerful tool for reducing the energy demand since identifying the exergy losses of the system serves to allocate inefficiencies. In parallel, an economic analysis is required to asses the cost reduction achieved by each configuration. This work presents a combination of pinch methodology with economic and exergetic analyses to select the more appropriate configuration of heat exchanger network. The lower costs and minor destroyed exergy obtained for the best proposed network result in a of 0.91% global energy efficiency increase

  5. Regional Energy Planning Tool for Renewable Integrated Low-Energy District Heating Systems

    Tol, Hakan; Dincer, Ibrahim; Svendsen, Svend


    Low-energy district heating systems, operating at low temperature of 55 °C as supply and 25°C as return, can be the energy solution as being the prevailing heating infrastructure in urban areas, considering future energy schemesaiming at increased exploitation of renewable energy sources together...... with low-energy houses in focus with intensified energy efficiency measures. Employing low-temperature operation allows the ease to exploit not only any type of heat source but also low-grade sources, i.e., renewable and industrial waste heat, which would otherwise be lost. In this chapter, a regional...... energy planning tool is described considered with various energy conversion systems based on renewable energy sources to be supplied to an integrated energy infrastructure involving a low-energy district heating, a district cooling, and an electricity grid. The developed tool is performed for two case...

  6. Integrated Optoelectronic Networks for Application-Driven Multicore Computing


    AFRL-AFOSR-VA-TR-2017-0102 Integrated Optoelectronic Networks for Application- Driven Multicore Computing Sudeep Pasricha COLORADO STATE UNIVERSITY...AND SUBTITLE Integrated Optoelectronic Networks for Application-Driven Multicore Computing 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA9550-13-1-0110 5c...and supportive materials with innovative architectural designs that integrate these components according to system-wide application needs. 15

  7. Naval application of battery optimized reactor integral system

    Kim, N. H.; Kim, T. W.; Son, H. M.; Suh, K. Y.


    Past civilian N.S. Savanna (80 MW t h), Otto-Hahn (38 MW t h) and Mutsu (36 MW t h) experienced stable operations under various sea conditions to prove that the reactors were stable and suitable for ship power source. Russian nuclear icebreakers such as Lenin (90 MW t h x2), Arukuchika (150 MW t h x2) showed stable operations under severe conditions during navigation on the Arctic Sea. These reactor systems, however, should be made even more efficient, compact, safe and long life, because adding support from the land may not be available on the sea. In order to meet these requirements, a compact, simple, safe and innovative integral system named Naval Application Vessel Integral System (NAVIS) is being designed with such novel concepts as a primary liquid metal coolant, a secondary supercritical carbon dioxide (SCO 2 ) coolant, emergency reactor cooling system, safety containment and so on. NAVIS is powered by Battery Optimized Reactor Integral System (BORIS). An ultra-small, ultra-long-life, versatile-purpose, fast-spectrum reactor named BORIS is being developed for a multi-purpose application such as naval power source, electric power generation in remote areas, seawater desalination, and district heating. NAVIS aims to satisfy special environment on the sea with BORIS using the lead (Pb) coolant in the primary system. NAVIS improves the economical efficiency resorting to the SCO 2 Brayton cycle for the secondary system. BORIS is operated by natural circulation of Pb without needing pumps. The reactor power is autonomously controlled by load-following operation without an active reactivity control system, whereas B 4 C based shutdown control rod is equipped for an emergency condition. SCO 2 promises a high power conversion efficiency of the recompression Brayton cycle due to its excellent compressibility reducing the compression work at the bottom of the cycle and to a higher density than helium or steam decreasing the component size. Therefore, the SCO 2 Brayton

  8. Application of the Guided Wave Technique to the Heat Exchanger Tube in NPP

    Yang, Dong Soon; Kim, Hyung Nam; Yoo, Hyun Joo


    The heat exchanger tube is examined by the method of eddy current test(ECT) to identify the integrity of the nuclear power plant. Because ECT probe is moved through the tube inside to identify flaws, the ECT probe should be exchanged periodically due to the wear of probe surface in order to remove the noise form the ECT signal. Moreover, it is impossible to examine the tube by ECT method because the ECT probe can not move through the inside due to the deformation such as dent. Recently, the theory of guided wave was established and the equipment applying the theory has been actively developed so as to overcome the limitation of ECT method for the tube inspection of heater exchanger in nuclear power plant. The object of this study is to know the application of the guided wave technique to heat exchanger tube in NPP

  9. Air source integrated heat pump simulation model for EnergyPlus

    Shen, Bo; New, Joshua; Baxter, Van


    An Air Source Integrated Heat Pump (AS-IHP) is an air source, multi-functional spacing conditioning unit with water heating function (WH), which can lead to great energy savings by recovering the condensing waste heat for domestic water heating. This paper summarizes development of the EnergyPlus AS-IHP model, introducing the physics, sub-models, working modes, and control logic. Based on the model, building energy simulations were conducted to demonstrate greater than 50% annual energy savings, in comparison to a baseline heat pump with electric water heater, over 10 US cities, using the EnergyPlus quick-service restaurant template building. We assessed water heating energy saving potentials using AS-IHP versus both gas and electric baseline systems, and pointed out climate zones where AS-IHPs are promising. In addition, a grid integration strategy was investigated to reveal further energy saving and electricity cost reduction potentials, via increasing the water heating set point temperature during off-peak hours and using larger water tanks.

  10. Energy and exergy analyses of an integrated solar heat pump system

    Suleman, F.; Dincer, I.; Agelin-Chaab, M.


    An integrated solar and heat pump based system for industrial heating is developed in this study. The system comprises heat pump cycle for process heating water and solar energy for another industrial heating process. Comprehensive energy and exergy analyses are performed on the system. These analyses generated some compelling results as expected because of the use of green and environmentally friendly energy sources. The results show that the energy efficiency of the process is 58% while the exergy efficiency is 75%. Energetic COP of the heat pump cycle is 3.54 whereas the exergy efficiency is 42.5%. Moreover, the energetic COP of the system is 2.97 and the exergy efficiency of the system is 35.7%. In the parametric study, a different variation such as changing the temperature and pressure of the condenser also shows positive results. - Highlights: • An integrated system is analysed using renewable energy source which can be used in textile industry. • Energy losses and exergy destructions are calculated at all major components. • Energy and exergy efficiencies of all subunits, subsystems and overall system are determined. • A parametric study shows the effect of environment and operating conditions on efficiencies. • Solar energy for heating in textile industry is efficient and environmentally friendly

  11. Detailed comparison between decay heat data calculated by the summation method and integral measurements

    Rudstam, G.


    The fission product library FPLIB has been used for a calculation of the decay heat effect in nuclear fuel. The results are compared with integral determinations and with results obtained using the ENDF/BIV data base. In the case of the beta part, and also for the total decay heat, the FPLIB-data seem to be superior to the ENDF/BIV-data. The experimental integral data are in many cases reproduced within the combined limits of error of the methods. (author)


    Hale AS


    Full Text Available In recent years the most popular subject in Information System area is Enterprise Application Integration (EAI. It can be defined as a process of forming a standart connection between different systems of an organization?s information system environment. The incorporating, gaining and marriage of corporations are the major reasons of popularity in Enterprise Application Integration. The main purpose is to solve the application integrating problems while similar systems in such corporations continue working together for a more time. With the help of XML technology, it is possible to find solutions to the problems of application integration either within the corporation or between the corporations.

  13. Estimation of Residential Heat Pump Consumption for Flexibility Market Applications

    Kouzelis, Konstantinos; Tan, Zheng-Hua; Bak-Jensen, Birgitte


    load of a flexible device, namely a Heat Pump (HP), out of the aggregated energy consumption of a house. The main idea for accomplishing this, is a comparison of the flexible consumer with electrically similar non-flexible consumers. The methodology is based on machine learning techniques, probability...... theory and statistics. After presenting this methodology, the general trend of the HP consumption is estimated and an hour-ahead forecast is conducted by employing Seasonal Autoregressive Integrated Moving Average modeling. In this manner, the flexible consumption is predicted, establishing the basis......Recent technological advancements have facilitated the evolution of traditional distribution grids to smart grids. In a smart grid scenario, flexible devices are expected to aid the system in balancing the electric power in a technically and economically efficient way. To achieve this, the flexible...

  14. Application of Service Oriented Architecture for Sensors and Actuators in District Heating Substations

    Gustafsson, Jonas; Kyusakov, Rumen; Mäkitaavola, Henrik; Delsing, Jerker


    Hardwired sensor installations using proprietary protocols found in today's district heating substations limit the potential usability of the sensors in and around the substations. If sensor resources can be shared and re-used in a variety of applications, the cost of sensors and installation can be reduced, and their functionality and operability can be increased. In this paper, we present a new concept of district heating substation control and monitoring, where a service oriented architecture (SOA) is deployed in a wireless sensor network (WSN), which is integrated with the substation. IP-networking is exclusively used from sensor to server; hence, no middleware is needed for Internet integration. Further, by enabling thousands of sensors with SOA capabilities, a System of Systems approach can be applied. The results of this paper show that it is possible to utilize SOA solutions with heavily resource-constrained embedded devices in contexts where the real-time constrains are limited, such as in a district heating substation. PMID:25196165

  15. Heat integration of fractionating systems in para-xylene plants based on column optimization

    Chen, Ting; Zhang, Bingjian; Chen, Qinglin


    In this paper, the optimization of xylene fractionation and disproportionation units in a para-xylene plant is performed through a new method for systematic design based on GCC (grand composite curve) and CGCC (column grand composite curve). The distillation columns are retrofitted by CGCC firstly. Heat Integration between the columns and the background xylene separation process are then explored by GCC. We found that potential retrofits for columns suggested by CGCC provide better possibilities for further Heat Integration. The effectiveness of the retrofits is finally evaluated by means of thermodynamics and economic analysis. The results show that energy consumption of the retrofitted fractionating columns decreases by 7.13 MW. With the improved thermodynamic efficiencies, all columns operate with less energy requirements. Coupled with Heat Integration, the energy input of the para-xylene plant is reduced by 30.90 MW, and the energy outputs are increased by 17 MW and 58 MW for generation of the 3.5 MPa and 2.5 MPa steams. The energy requirement after the Heat Integration is reduced by 12% compared to the original unit. The retrofits required a fixed capital cost of 6268.91 × 10 3  $ and saved about 24790.74 × 10 3  $/year worth of steam. The payback time is approximately 0.26 year for the retrofits. - Highlights: • A new method for systematic design is proposed to improve energy saving of the PX plant in retrofit scenarios. • An optimization approach is developed to identify maximum heat recovery in distillation columns. • An efficient Heat Integration procedure of the PX plant is addressed based on the optimal retrofitted distillation columns. • The energy consumption is reduced by 12% after improvement to an industrial case

  16. Applications of artificial neural networks for thermal analysis of heat exchangers - A review

    Mohanraj, M.; Jayaraj, S.; Muraleedharan, C.


    Artificial neural networks (ANN) have been widely used for thermal analysis of heat exchangers during the last two decades. In this paper, the applications of ANN for thermal analysis of heat exchangers are reviewed. The reported investigations on thermal analysis of heat exchangers are categorized into four major groups, namely (i) modeling of heat exchangers, (ii) estimation of heat exchanger parameters, (iii) estimation of phase change characteristics in heat exchangers and (iv) control of heat exchangers. Most of the papers related to the applications of ANN for thermal analysis of heat exchangers are discussed. The limitations of ANN for thermal analysis of heat exchangers and its further research needs in this field are highlighted. ANN is gaining popularity as a tool, which can be successfully used for the thermal analysis of heat exchangers with acceptable accuracy. (authors)

  17. Applications of heat pipes for HVAC dehumidification at Walt Disney World

    Allen, P.J.; Dinh, K.


    This paper presents the theory and application of heat pipes for HVAC dehumidification purposes. In HVAC applications, a heat pipe is used as a heat exchanger that transfers heat from the return air directly to the supply air. The air is pre-cooled entering the cooling coil and reheated using the same heat removed from the return air. While consuming no energy, the heat pipe lets the evaporator coil operate at a lower temperature, increasing the moisture removal capabilities of the HVAC system by 50% to 100%. WALT DISNEY WORLD is currently testing several heat pipe applications ranging from 1 to 240 tons. The applications include (1) water attractions (2) museums/artifacts areas (3) resort guest rooms and (4) locker rooms. Actual energy usage and relative humidity reductions are shown to determine the effectiveness of the heat pipe as an energy efficient method of humidity control

  18. Candidate thermal energy storage technologies for solar industrial process heat applications

    Furman, E. R.


    A number of candidate thermal energy storage system elements were identified as having the potential for the successful application of solar industrial process heat. These elements which include storage media, containment and heat exchange are shown.

  19. Integral analysis of debris material and heat transport in reactor vessel lower plenum

    Suh, K.Y.; Henry, R.E.


    An integral, fast-running, two-region model has been developed to characterize the debris material and heat transport in the reactor lower plenum under severe accident conditions. The debris bed is segregated into the oxidic pool and an overlying metallic layer. Debris crusts can develop on three surfaces: the top of the molten pool, the RPV wall, and the internal structures. To account for the decay heat generation, the crust temperature profile is assumed to be parabolic. The oxidic debris pool is homogeneously mixed and has the same material composition, and hence the same thermophysical properties, as the crusts, while the metallic constituents are assumed to rise to the top of the debris pool. Steady-state relationships are used to describe the heat transfer rates, with the assessment of solid or liquid state, and the liquid superheat in the pool being based on the average debris temperature. Natural convection heat transfer from the molten debris pool to the upper, lower and embedded crusts is calculated based on the pool Rayleigh number with the conduction heat transfer from the crusts being determined by the crust temperature profile. The downward heat flux is transferred to the lowest part of the RPV lower head through a crust-to-RPV contact resistance. The sideward heat flux is transferred to the upper regions of the RPV lower head as well as to the internal structures. The upward heat flux goes to the metal layer, water, or available heat sink structures above. Quenching due to water ingression is modeled separately from the energy transfer through the crust. The RPV wall temperature distribution and the primary system pressure are utilized to estimate challenges to the RPV integrity. ((orig.))




    This paper presents modelling and simulation of high frequency inverter for induction heating applications. Induction heating has advantages like higher efficiency, controlled heating, safety and pollution free therefore this technology is used in industrial, domestic and medical applications. The high frequency full bridge inverter is used for induction heating, also MOSFET is used as a switching device for inverter and the control strategy used for inverter is Bipolar PWM control. The size ...

  1. Stand-alone photovoltaic (PV) integrated with earth to air heat exchanger (EAHE) for space heating/cooling of adobe house in New Delhi (India)

    Chel, Arvind; Tiwari, G.N.


    This paper deals with an experimental outdoor annual performance evaluation of 2.32 kW P photovoltaic (PV) power system located at solar energy park in New Delhi composite climatic conditions. This PV system operates the daily electrical load nearly 10 kW h/day which comprises of various applications such as electric air blower of an earth to air heat exchanger (EAHE) used for heating/cooling of adobe house, ceiling fan, fluorescent tube-light, computer, submersible water pump, etc. The outdoor efficiencies, power generated and lost in PV system components were determined using hourly experimental measured data for 1 year on typical clear day in each month. These realistic data are useful for design engineers for outdoor assessment of PV system components. The energy conservation, mitigation of CO 2 emission and carbon credit potential of the existing PV integrated EAHE system is presented in this paper. Also, the energy payback time (EPBT) and unit cost of electricity were determined for both stand-alone PV (SAPV) and building roof integrated PV (BIPV) systems.

  2. Application of Predictive Control in District Heating Systems

    Palsson, Olafur Petur; Madsen, Henrik; Søgaard, Henning Tangen


    In district heating systems, and in particular if the heat production cakes place at a combined heat and power (CHP) plant, a reasonable control strategy is to keep the supply temperature from the district heating plant as low as possible. However, the control is subject to some restrictions, for...

  3. Integration of a PAFC-Cogeneration Plant into an existing District-Heating-System

    Wagner, Ulrich; Geiger, Bernd; Grohmann, Juergen


    The Studiengesellschaft Brennstoffzellen e. V. assigned in the middle of 1995 the Institutions ''Lehrstuhl fir Energiewirtschaft mid Kraftwerkstechnik (IfE)'' to design a concept to integrate an ONSI-PAFC Model C in an existing district heating system. The fuel cell generates about 200 kW electrical and 215 kW thermal power consuming 500 kW natural gas. In the case of complete use of thermal power the fuel cell surpasses the efficiency of conventional systems by about 30 %. The possibilities to install the fuel cell were investigated at three locations, two housing areas, one with 36.000 m2 the other with 60.000 m2 heated area, and one indoor pool. The heating systems are representative of the Federal Republic of Germany. It turned out that the integration of the fuel cell into the existing heating system might be difficult at each location, either the annual consumption of thermal energy was too low or the heating system was operating at a temperature level reducing the usable thermal power of the fuel cell. After further studies the larger housing area was selected, with the intention of using the thermal power of the fuel cell during the whole year and to get high thermal load factors. Some difficulties are caused by the temperature level of the heating system, which is 70/55 o C. (author)

  4. Integrated energy and emission management for heavy-duty diesel engines with waste heat recovery system

    Willems, F.P.T.; Kupper, F.; Rascanu, G.; Feru, E.


    Rankine-cycleWasteHeatRecovery (WHR)systems are promising solutions to reduce fuel consumption for trucks. Due to coupling between engine andWHR system, control of these complex systems is challenging. This study presents an integrated energy and emission management strategy for an Euro-VI Diesel

  5. Integrated energy and emission management for diesel engines with waste heat recovery using dynamic models

    Willems, F.P.T.; Kupper, F.; Rascanu, G.C.; Feru, E.


    Rankine-cycle Waste Heat Recovery (WHR) systems are promising solutions to reduce fuel consumption for trucks. Due to coupling between engine and WHR system, control of these complex systems is challenging. This study presents an integrated energy and emission management strategy for an Euro-VI

  6. Energylab Nordhavn: An integrated community energy system towards green heating and e-mobility

    Wang, Jiawei; You, Shi; Zong, Yi


    This paper analyzes the green potential of a newly developed urban community, i.e., Nordhavn, in Copenhagen, Denmark from a planning perspective, wherein the energy sector of power, heat and transportation will be developed as an integrated energy system solution. Based on an hour-by-hour analysi...

  7. Optimal Operation and Stabilising Control of the Concentric Heat-Integrated Distillation Column

    Bisgaard, Thomas; Skogestad, Sigurd; Huusom, Jakob Kjøbsted


    A systematic control structure design method is applied on the concentric heat integrated distillation column (HIDiC) separating benzene and toluene. A degrees of freedom analysis is provided for identifying potential manipulated and controlled variables. Optimal operation is mapped and active...

  8. Optimal Operation of the Integrated Electrical and Heating Systems to Accommodate the Intermittent Renewable Sources

    Li, Jinghua; Fang, Jiakun; Zeng, Qing


    The integration of electrical and heating systems has great potential to enhance the flexibility of power systems to accommodate more renewable power such as the wind and solar. This study was to investigate an optimal way to integrate the energy of both systems in urban areas. The amount of energy...... the effectiveness of the proposed solution. The results showed that coordinated optimization of the energy distribution have significant benefits for reducing wind curtailment, operation cost, and energy losses. The proposed model and methodology could help system operators with decision support in the emerging...... conversion between the electrical system and heating system was optimally decided so that the demand within both systems could be met at the least operational cost. Besides, the best node to join with the electrical system and heating system was chosen by consideration of the energy transmission loss...

  9. Conductive Cotton Fabrics for Motion Sensing and Heating Applications

    Mengyun Yang


    Full Text Available Conductive cotton fabric was prepared by coating single-wall carbon nanotubes (CNTs on a knitted cotton fabric surface through a “dip-and-dry” method. The combination of CNTs and cotton fabric was analyzed using scanning electron microscopy (SEM and Raman scattering spectroscopy. The CNTs coating improved the mechanical properties of the fabric and imparted conductivity to the fabric. The electromechanical performance of the CNT-cotton fabric (CCF was evaluated. Strain sensors made from the CCF exhibited a large workable strain range (0~100%, fast response and great stability. Furthermore, CCF-based strain sensors was used to monitor the real-time human motions, such as standing, walking, running, squatting and bending of finger and elbow. The CCF also exhibited strong electric heating effect. The flexible strain sensors and electric heaters made from CCF have potential applications in wearable electronic devices and cold weather conditions.

  10. Designing interaction behaviour in service-oriented enterprise application integration

    Dirgahayu, T.; Quartel, Dick; van Sinderen, Marten J.

    In this paper we present an approach for designing interaction behaviour in service-oriented enterprise application integration. The approach enables business analysts to actively participate in the design of an integration solution. In this way, we expect that the solution meets its integration

  11. Integration with respect to the Euler characteristic and its applications

    Gusein-Zade, Sabir M [M. V. Lomonosov Moscow State University, Moscow (Russian Federation)


    The notion of integration with respect to the Euler characteristic and its generalizations are discussed: integration over the infinite-dimensional spaces of arcs and functions, motivic integration. The author describes applications of these notions to the computation of monodromy zeta functions, Poincare series of multi-index filtrations, generating series of classes of certain moduli spaces, and so on. Bibliography: 70 titles.

  12. Radiative heat transfer in turbulent combustion systems theory and applications

    Modest, Michael F


    This introduction reviews why combustion and radiation are important, as well as the technical challenges posed by radiation. Emphasis is on interactions among turbulence, chemistry and radiation (turbulence-chemistry-radiation interactions – TCRI) in Reynolds-averaged and large-eddy simulations. Subsequent chapters cover: chemically reacting turbulent flows; radiation properties, Reynolds transport equation (RTE) solution methods, and TCRI; radiation effects in laminar flames; TCRI in turbulent flames; and high-pressure combustion systems. This Brief presents integrated approach that includes radiation at the outset, rather than as an afterthought. It stands as the most recent developments in physical modeling, numerical algorithms, and applications collected in one monograph.

  13. On the optimal design of shell and tube heat exchanger for nuclear applications

    Abd Rabbo, F.M.M.; Fatb Allab, A.; El-Fawal, M.


    In nuclear industry, heat exchanger plays an important role in the transfer of heat from reactor core, where heat is generated, to the ultimate heat sink UHS, and then is dissipated. The actual design of heat exchanger not only relies on thermohydraulic considerations but also on economical aspects and radiological safety considerations. For optimal design of heat exchanger for a specific application a compromise should be made for determining the important factors affecting the design. In this paper, an optimization model is presented for shell and tube heat exchanger, which could be considered as a tool for computer aided design. A case study is presented to explore the present adopted model. 3 figs

  14. Heat pumps: Industrial applications. (Latest citations from the NTIS bibliographic database). Published Search



    The bibliography contains citations concerning design, development, and applications of heat pumps for industrial processes. Included are thermal energy exchanges based on air-to-air, ground-coupled, air-to-water, and water-to-water systems. Specific applications include industrial process heat, drying, district heating, and waste processing plants. Other Published Searches in this series cover heat pump technology and economics, and heat pumps for residential and commercial applications. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  15. Heat pumps: Industrial applications. (Latest citations from the NTIS bibliographic database). Published Search



    The bibliography contains citations concerning design, development, and applications of heat pumps for industrial processes. Included are thermal energy exchanges based on air-to-air, ground-coupled, air-to-water, and water-to-water systems. Specific applications include industrial process heat, drying, district heating, and waste processing plants. Other Published Searches in this series cover heat pump technology and economics, and heat pumps for residential and commercial applications. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  16. The design of integrated cooling processes in district heating systems; Kylprocessers design i fjaerrvaermesystem

    Martin, Viktoria [Royal Inst. of Technology, Stockholm (SE). Dept. of Chemical Engineering and Technology; Setterwall, Fredrik [Fredrik Setterwall Konsult AB, Sollentuna (Sweden); Andersson, Mikael [AB Berglunds Rostfria, Boden (Sweden)


    This report presents the results from an investigation regarding the design of integrated cooling processes in district heating systems. Increasing investment levels in district heating networks combined with expanding comfort cooling demand makes heat-driven cooling processes extremely interesting. This solution has a great potential tbe cost effective. At the same time, the problem with the environmentally harmful refrigerants used in conventional vapor compression chillers is avoided. In many cases it is beneficial for the district heating provider to lower the supply and/or return temperatures in the network, at least for part of the year. In combined heat and power generation (CHP) a lower supply temperature means that the electricity yield increases. In this context, it is important to consider that conventional absorption chillers are designed to run on 120 deg C heat. However,they can work on heat with temperature as low as 80 deg C if a chiller with a large enough generator area is used, although this has a negative impact on the dimensions of other components and leads ta lower coefficient of performance. For these reasons low temperature driven absorption chillers have been developed in recent years. Two concepts (from different manufacturers) are now available on the market. Factors that affect the choice of district heat-integrated cooling processes have been investigated in this study. Key system aspects that embody a holistic view on the production of heating, cooling and power are especially highlighted. Important tasks have been: To quantify the following effects on the design of an integrated cooling process: the temperatures in the district heating net, available cooling water temperature (to cool the absorber and condenser), electricity price, and the composition of the energy system (e.g. fuel and CHP or power-only mode of operation). To analyze the potential of the low temperature driven chiller concept with regards to energy and cost

  17. Cold reservoir integrated into a brine circuit of energy roofing, coupled to a heat pump

    Schroeder, M.


    Model studies are presented in which the economic effects of a cold reservoir integrated in a heat pump system were established. Cold reservoirs have the following advantages: 1. The absolute annual savings increase with the storage volume. Storage volumes of 1 to 10 m/sup 3/ are economical, depending on the mode of operation. 2. If the storage volume is sufficiently large, the heat pump (operated in a bivalent, parallel system) can supply a considerable amount of the required even below the design temperature. 3. With a sufficiently large storage volume, the heat pump may be operated in more or less monovalent mode even if the heat pump has not been designed for a minimum ambient temperature.

  18. More Wind Power Integration with Adjusted Energy Carriers for Space Heating in Northern China

    Jianjun He


    Full Text Available In Northern China, due to the high penetration of coal-fired cogeneration facilities, which are generally equipped with extraction-condensing steam turbines, lots of wind power resources may be wasted during the heating season. In contrast, considerable coal is consumed in the power generation sector. In this article, firstly it is revealed that there exists a serious divergence in the ratio of electrical to thermal energy between end users’ demand and the cogenerations’ production during off-peak load at night, which may negate active power-balancing of the electric power grid. Secondly, with respect to this divergence only occurring during off-peak load at night, a temporary proposal is given so as to enable the integration of more wind power. The authors suggest that if the energy carrier for part of the end users’ space heating is switched from heating water to electricity (e.g., electric heat pumps (EHPs can provide space heating in the domestic sector, the ratio of electricity to heating water load should be adjusted to optimize the power dispatch between cogeneration units and wind turbines, resulting in fuel conservation. With this proposal, existing infrastructures are made full use of, and no additional ones are required. Finally a numerical simulation is performed in order to illustrate both the technical and economic feasibility of the aforementioned proposal, under ongoing infrastructures as well as electricity and space heating tariff conditions without changing participants’ benefits. The authors aim to persuade Chinese policy makers to enable EHPs to provide space heating to enable the integration of more wind power.

  19. Thermal mechanical analysis of applications with internal heat generation

    Govindarajan, Srisharan Garg

    control blade, spatial variations in temperature within the control blade occur from the non-uniform heat generation within the BORAL as a result of the non-uniform thermal neutron flux along the longitudinal direction when the control blade is partially withdrawn. There is also variation in the heating profile through the thickness and about the circumferential width of the control blade. Mathematical curve-fits are generated for the non-uniform volumetric heat generation profile caused by the thermal neutron absorption and the functions are applied as heating conditions within a finite element model of the control blade built using the commercial finite element code Abaqus FEA. The finite element model is solved as a fully coupled thermal mechanical problem as in the case of the annular target. The resulting deflection is compared with the channel gap to determine if there is a significant risk of the control blade binding during reactor operation. Hence, this dissertation will consist of two sections. The first section will seek to present the thermal and structural safety analyses of the annular targets for the production of molybdenum-99. Since there hasn't been any detailed, documented, study on these annular targets in the past, the work complied in this dissertation will help to understand the thermal-mechanical behavior and failure margins of the target during in-vessel irradiation. As the work presented in this dissertation provides a general performance analysis envelope for the annular target, the tools developed in the process can also be used as useful references for future analyses that are specific to any reactor. The numerical analysis approach adopted and the analytical models developed, can also be applied to other applications, outside the Mo-99 project domain, where internal heat generation exists such as in electronic components and nuclear reactor control blades. The second section will focus on estimating the thermally induced deflection and hence

  20. Comparative Evaluation of Integrated Waste Heat Utilization Systems for Coal-Fired Power Plants Based on In-Depth Boiler-Turbine Integration and Organic Rankine Cycle

    Shengwei Huang


    Full Text Available To maximize the system-level heat integration, three retrofit concepts of waste heat recovery via organic Rankine cycle (ORC, in-depth boiler-turbine integration, and coupling of both are proposed, analyzed and comprehensively compared in terms of thermodynamic and economic performances. For thermodynamic analysis, exergy analysis is employed with grand composite curves illustrated to identify how the systems are fundamentally and quantitatively improved, and to highlight key processes for system improvement. For economic analysis, annual revenue and investment payback period are calculated based on the estimation of capital investment of each component to identify the economic feasibility and competitiveness of each retrofit concept proposed. The results show that the in-depth boiler-turbine integration achieves a better temperature match of heat flows involved for different fluids and multi-stage air preheating, thus a significant improvement of power output (23.99 MW, which is much larger than that of the system with only ORC (6.49 MW. This is mainly due to the limitation of the ultra-low temperature (from 135 to 75 °C heat available from the flue gas for ORC. The thermodynamic improvement is mostly contributed by the reduction of exergy destruction within the boiler subsystem, which is eventually converted to mechanical power; while the exergy destruction within the turbine system is almost not changed for the three concepts. The selection of ORC working fluids is performed to maximize the power output. Due to the low-grade heat source, the cycle with R11 offers the largest additional net power generation but is not significantly better than the other preselected working fluids. Economically, the in-depth boiler-turbine integration is the most economic completive solution with a payback period of only 0.78 year. The ORC concept is less attractive for a sole application due to a long payback time (2.26 years. However, by coupling both

  1. Heat treatment of nuclear reactor pump part in integrated furnace facility



    A flexible heat treating system is meeting strict work specifications while accommodating the production flow pattern requirements and floor space needs of Advanced Metal Treating, Inc., Butler, Wis. Modular design and appropriate furnace configurations allow realization of the most efficient heat treat processing and energy use in a relatively small production area. The totally-integrated system (Pacemaker--manufactured by Lindberg, A Unit of General Signal, Chicago) consists of an electric integral-quench furnace with companion draw furnaces, washer unit and a material transfer car. With its one-side, inout configuration, the furnace operates with a minimum of drawing and washing equipment. The integral-quench furnace has a work chamber dimension of 30 by 48 by 30 inches (76.2 x 122 x 76.2 cm). The firm has two of these units, plus three in-out draw furnaces, one washer, one transfer car and two endothermic gas generators

  2. Integrated Heat Pump HVAC Systems for Near-Zero-Energy Homes - Business Case Assessment

    Baxter, Van D [ORNL


    The long range strategic goal of the Department of Energy's Building Technologies (DOE/BT) Program is to create, by 2020, technologies and design approaches that enable the construction of net-zero energy homes at low incremental cost (DOE/BT 2005). A net zero energy home (NZEH) is a residential building with greatly reduced needs for energy through efficiency gains, with the balance of energy needs supplied by renewable technologies. While initially focused on new construction, these technologies and design approaches are intended to have application to buildings constructed before 2020 as well resulting in substantial reduction in energy use for all building types and ages. DOE/BT's Emerging Technologies (ET) team is working to support this strategic goal by identifying and developing advanced heating, ventilating, air-conditioning, and water heating (HVAC/WH) technology options applicable to NZEHs. Although the energy efficiency of heating, ventilating, and air-conditioning (HVAC) equipment has increased substantially in recent years, new approaches are needed to continue this trend. Dramatic efficiency improvements are necessary to enable progress toward the NZEH goals, and will require a radical rethinking of opportunities to improve system performance. The large reductions in HVAC energy consumption necessary to support the NZEH goals require a systems-oriented analysis approach that characterizes each element of energy consumption, identifies alternatives, and determines the most cost-effective combination of options. In particular, HVAC equipment must be developed that addresses the range of special needs of NZEH applications in the areas of reduced HVAC and water heating energy use, humidity control, ventilation, uniform comfort, and ease of zoning. In FY05 ORNL conducted an initial Stage 1 (Applied Research) scoping assessment of HVAC/WH systems options for future NZEHs to help DOE/BT identify and prioritize alternative approaches for further

  3. Process heat transfer principles, applications and rules of thumb

    Serth, Robert W


    Process Heat Transfer is a reference on the design and implementation of industrial heat exchangers. It provides the background needed to understand and master the commercial software packages used by professional engineers in the design and analysis of heat exchangers. This book focuses on types of heat exchangers most widely used by industry: shell-and-tube exchangers (including condensers, reboilers and vaporizers), air-cooled heat exchangers and double-pipe (hairpin) exchangers. It provides a substantial introduction to the design of heat exchanger networks using pinch technology, the mos

  4. Transportation fuel production from gasified biomass integrated with a pulp and paper mill – Part A: Heat integration and system performance

    Isaksson, Johan; Jansson, Mikael; Åsblad, Anders; Berntsson, Thore


    Production of transportation fuels from biorefineries via biomass gasification has been suggested as a way of introducing renewable alternatives in the transportation system with an aim to reduce greenhouse gas emissions to the atmosphere. By co-locating gasification-based processes within heat demanding industries, excess heat from the gasification process can replace fossil or renewable fuels. The objective of this study was to compare the heat integration potential of four different gasification-based biorefinery concepts with a chemical pulp and paper mill. The results showed that the choice of end-product which was either methanol, Fischer-Tropsch crude, synthetic natural gas or electricity, can have significant impact on the heat integration potential with a pulp and paper mill and that the heat saving measures implemented in the mill in connection to integration of a gasification process can increase the biomass resource efficiency by up to 3%-points. Heat saving measures can reduce the necessary biomass input to the biorefinery by 50% if the sizing constraint is to replace the bark boiler with excess heat from the biorefinery. A large integrated gasification process with excess steam utilisation in a condensing turbine was beneficial only if grid electricity is produced at below 30% electrical efficiency. - Highlights: • Biomass gasification integrated with a pulp and paper mill. • Different sizing constraints of integrated biofuel production. • The biofuel product largely influence the heat integration potential. • An oversized gasifier for increased power production could be favourable.

  5. Integrated heat transport simulation of high ion temperature plasma of LHD

    Murakami, S.; Yamaguchi, H.; Sakai, A.


    A first dynamical simulation of high ion temperature plasma with carbon pellet injection of LHD is performed by the integrated simulation GNET-TD + TASK3D. NBI heating deposition of time evolving plasma is evaluated by the 5D drift kinetic equation solver, GNET-TD and the heat transport of multi-ion species plasma (e, H, He, C) is studied by the integrated transport simulation code, TASK3D. Achievement of high ion temperature plasma is attributed to the 1) increase of heating power per ion due to the temporal increase of effective charge, 2) reduction of effective neoclassical transport with impurities, 3) reduction of turbulence transport. The reduction of turbulence transport is most significant contribution to achieve the high ion temperature and the reduction of the turbulent transport from the L-mode plasma (normal hydrogen plasma) is evaluated to be a factor about five by using integrated heat transport simulation code. Applying the Z effective dependent turbulent reduction model we obtain a similar time behavior of ion temperature after the C pellet injection with the experimental results. (author)

  6. Bed geometries, fueling strategies and optimization of heat exchanger designs in metal hydride storage systems for automotive applications: A review

    Mazzucco, Andrea; Dornheim, Martin; Sloth, Michael


    This review presents recent developments for effective heat management systems to be integrated in metal hydride storage tanks, and investigates the performance improvements and limitations of each particular solution. High pressures and high temperatures metal hydrides can lead to different design...... given to metal hydride storage tanks for light duty vehicles, since this application is the most promising one for such storage materials and has been widely studied in the literature. Enhancing cooling/heating during hydrogen uptake and discharge has found to be essential to improve storage systems...

  7. Integrative production technology theory and applications

    Özdemir, Denis


    This contributed volume contains the research results of the Cluster of Excellence “Integrative Production Technology for High-Wage Countries”, funded by the German Research Society (DFG). The approach to the topic is genuinely interdisciplinary, covering insights from fields such as engineering, material sciences, economics and social sciences. The book contains coherent deterministic models for integrative product creation chains as well as harmonized cybernetic models of production systems. The content is structured into five sections: Integrative Production Technology, Individualized Production, Virtual Production Systems, Integrated Technologies, Self-Optimizing Production Systems and Collaboration Productivity.The target audience primarily comprises research experts and practitioners in the field of production engineering, but the book may also be beneficial for graduate students. .

  8. A Multiple Iterated Integral Inequality and Applications

    Zongyi Hou


    Full Text Available We establish new multiple iterated Volterra-Fredholm type integral inequalities, where the composite function w(u(s of the unknown function u with nonlinear function w in integral functions in [Ma, QH, Pečarić, J: Estimates on solutions of some new nonlinear retarded Volterra-Fredholm type integral inequalities. Nonlinear Anal. 69 (2008 393–407] is changed into the composite functions w1(u(s,w2(u(s,…, wn (u(s of the unknown function u with different nonlinear functions w1,w2,…,wn, respectively. By adopting novel analysis techniques, the upper bounds of the embedded unknown functions are estimated explicitly. The derived results can be applied in the study of solutions of ordinary differential equations and integral equations.

  9. Nuclear heat applications in Russia: Experience, status and prospects

    Mitenkov, F.M.; Kusmartsev, E.V.


    The extensive experience gained with nuclear district heating in Russia is described. Most of the WWER reactors in Russia are cogeneration plants. Steam is extracted through LP turbine bleeders and condensed in intermediate heat exchangers to hot water which is then supplied to DH grids. Also some small dedicated nuclear heating plants are operated. (author)

  10. Heat pump applications in Dutch flower bulb farms

    Wit, J.B. de


    Increasing numbers of flower bulb fanns in the Netherlands are using heat pumps for conditioning bulbs. The main advantage of the (electric) heat pump is that it combines all conditioning steps (drying, cooling and heating) in one device. Another advantage is that it makes process control simple and

  11. Application of Abaqus to analysis of the temperature field in elements heated by moving heat sources

    W. Piekarska


    Full Text Available Numerical analysis of thermal phenomena occurring during laser beam heating is presented in this paper. Numerical models of surface andvolumetric heat sources were presented and the influence of different laser beam heat source power distribution on temperature field wasanalyzed. Temperature field was obtained by a numerical solution the transient heat transfer equation with activity of inner heat sources using finite element method. Temperature distribution analysis in welded joint was performed in the ABAQUS/Standard solver. The DFLUXsubroutine was used for implementation of the movable welding heat source model. Temperature-depended thermophysical properties for steelwere assumed in computer simulations. Temperature distribution in laser beam surface heated and butt welded plates was numericallyestimated.

  12. Application of heat pump by using the earth temperature gradient for winter heating and summer cooling

    Gacevski, Marijan; Tanev, Pepi


    Because of the rapid technique development as well as modern human life, in order to satisfy the energy needs it is necessary to use a new apparatus and devices. In this manner, the electric power consumption, especially for heating and cooling, rapidly increases. One of the possible ways to reduce the consumption of electric energy for heating and cooling is that, to use heat pumps. In this paper a heat pump that uses the heat of the earth by a horizontal polyethylene pipe heat exchanger is proposed. Also, all parameters are examined and comparison with already existing ones is done. The heat gradient of the earth in spite of saving electrical energy is analyzed as well. (Original)

  13. Technical and economical feasibility of the hybrid adsorption compression heat pump concept for industrial applications

    Pal, Michel van der; Wemmers, Anton; Smeding, Simon; Boer, Robert de


    Heat pump technologies offer a significant potential for primary energy savings in industrial processes. Thermally driven heat pumps can use waste heat as driving energy source to provide either heating or cooling. A chemi-sorption heat transformer can upgrade a waste heat source to temperatures of 150–200 °C. The specific heat transformer process however requires waste heat temperatures in the range of 120 °C, whereas waste heat sources of lower temperatures are more abundant. Using this lower temperature waste heat, and still reach the desired higher output temperatures can be achieved by the integration of a chemisorption and mechanical compression step in a single hybrid heat pump concept. This concept can offer an increased flexibility in temperatures, both for the waste heat source as for the heat delivery. The technical and economical feasibility of the proposed hybrid heat pump concept is evaluated. The range of operating temperatures of different chemi-sorption working pairs for as heat driven and as hybrid systems are defined, as well as their energy efficiencies. Investment costs for the hybrid systems are derived and payback times are calculated. The range of payback times is from 2 to 9 years and are strongly influenced by the number of operating hours, the electrical COP of the compression stage, and the energy prices

  14. Transrectal ultrasound applicator for prostate heating monitored using MRI thermometry

    Smith, Nadine Barrie; Buchanan, Mark T.; Hynynen, Kullervo


    Purpose: For potential localized hyperthermia treatment of tumors within the prostate, an ultrasound applicator consisting entirely of nonmagnetic materials for use with magnetic resonance imaging (MRI) has been developed and tested on muscle tissue ex vivo and in vivo. Methods and Materials: A partial-cylindrical intracavitary transducer consisting of 16 elements in a 4 x 4 pattern was constructed. It produced a radially propagating acoustic pressure field. Each element of this array (1.5 x 0.75 cm), operating at 1.5 MHz, could be separately powered to produce a desired energy deposition pattern within a target volume. Spatial and temporal temperature elevations were determined using the temperature-dependent proton resonant frequency (PRF) shift and phase subtraction of MR images acquired during ultrasonic heating. Four rabbits were exposed to the ultrasound to raise the local tissue temperature to 45 deg. C for 25 minutes. Six experiments compared thermocouple temperature results to PRF shift temperature results. Results: The tests showed that the multi-element ultrasound applicator was MRI-compatible and allowed imaging during sonication. The induced temperature distribution could be controlled by monitoring the RF power to each transducer element. Therapeutic temperature elevations were easily achieved in vivo at power levels that were about 16% of the maximum system power. From the six thermocouple experiments, comparison between the thermocouple temperature and the PRF temperature yielded an average error of 0.34 ± 0.36 deg. C. Conclusions: The MRI-compatible intracavitary applicator and driving system was able to control the ultrasound field and temperature pattern in vivo. MRI thermometry using the PRF shift can provide adequate temperature accuracy and stability for controlling the temperature distribution

  15. 40 CFR 463.10 - Applicability; description of the contact cooling and heating water subcategory.


    ... contact cooling and heating water subcategory. 463.10 Section 463.10 Protection of Environment... SOURCE CATEGORY Contact Cooling and Heating Water Subcategory § 463.10 Applicability; description of the contact cooling and heating water subcategory. This subpart applies to discharges of pollutants from...

  16. Fractional Differential and Integral Inequalities with Applications


    Dynamic Systems and Applications (07 2013) Aghalaya S. Vatsala, Bhuvaneswari Sambandham. Laplace Transform Method for Sequential CaputoFractional...coupled minimal and maximal solutions for such an equation and a numerical example is provided as an application of the theoretical results. The... Applications The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official Department of

  17. Vertical integration of local fuel producers into rural district heating systems – Climate impact and production costs

    Kimming, M.; Sundberg, C.; Nordberg, Å.; Hansson, P.-A.


    Farmers can use their own agricultural biomass residues for heat production in small-scale systems, enabling synergies between the district heating (DH) sector and agriculture. The barriers to entry into the Swedish heat market were extremely high as long as heat distribution were considered natural monopoly, but were recently lowered due to the introduction of a regulated third party access (TPA) system in the DH sector. This study assesses the potential impact on greenhouse gas emissions and cost-based heat price in the DH sector when farmers vertically integrate into the heat supply chain and introduce more local and agricultural crops and residues into the fuel mix. Four scenarios with various degree of farmer integration, were assessed using life cycle assessment (LCA) methodology, and by analysis of the heat production costs. The results show that full integration of local farm and forest owners in the value chain can reduce greenhouse gas emissions and lower production costs/heat price, if there is an incentive to utilise local and agricultural fuels. The results imply that farmer participation in the DH sector should be encouraged by e.g. EU rural development programmes. - Highlights: • Five DH production systems based on different fuels and ownership were analysed. • Lower GHG emissions were obtained when farmers integrate fully into the DH chain. • Lower heat price was obtained by full vertical integration of farmers. • Salix and straw-based production resulted in the lowest GHG and heat price

  18. Energetic and Exergetic Analysis of Low and Medium Temperature District Heating Network Integration

    Li, Hongwei; Svendsen, Svend

    In this paper, energetic and exergetic approaches were applied to an exemplary low temperature district heating (LTDH) network with supply/return water temperature at 55oC/25 oC. The small LTDH network is annexed to a large medium temperature district heating (MTDH) network. The LTDH network can ...... will reduce the amount of water supply from the MTDH network and improve the system energy conversion efficiency. Through the simulation, the system energetic and exergetic efficiencies based on the two network integration approaches were calculated and evaluated.......In this paper, energetic and exergetic approaches were applied to an exemplary low temperature district heating (LTDH) network with supply/return water temperature at 55oC/25 oC. The small LTDH network is annexed to a large medium temperature district heating (MTDH) network. The LTDH network can...... be supplied through upgrading the return water from the MTDH network with a small centralized heat pump. Alternatively, the supply and return water from the MTDH network can be mixed with a shunt at the junction point to supply the LTDH network. Comparing with the second approach, the heat pump system...

  19. A three-region conduction-controlled rewetting analysis by the Heat Balance Integral Method

    Sahu, S.K.; Das, P.K.; Bhattacharyya, S.


    Conduction-controlled rewetting of two-dimensional objects is analyzed by the Heat Balance Integral Method (HBIM) considering three distinct regions: a dry region ahead of wet front, the sputtering region immediately behind the wet front and a continuous film region further upstream. The HBIM yields solutions for wet front velocity, sputtering length and temperature field with respect to wet front. Employing this method, it is seen that heat transfer mechanism is dependent upon two temperature parameters. One of them characterizes the initial wall temperature while the other specifies the range of temperature for sputtering region. Additionally, the mechanism of heat transfer is found to be dependent on two Biot numbers comprising a convective heat transfer in the wet region and a boiling heat transfer in the sputtering region. The present solution exactly matches with the one-dimensional analysis of K.H. Sun, G.E. Dix, C.L. Tien [Cooling of a very hot vertical surface by falling liquid film, ASME J. Heat Transf. 96 (1974) 126-131] for low Biot numbers. Good agreement with experimental results is also observed. (authors)

  20. Solar water heating and its prospect for timber drying application

    Yin, B T


    The technical requirements for timber drying are discussed, and the possibility of using a solar water heating system to substitute for conventional fuel in a modern kiln is looked into from heat transfer considerations. At the moment, conventional fuel is used to generate steam for the heating of air in a kiln. If hot water is to be substitued for steam as the heating medium, the heating coil size required is larger. This size is determined relative to that of a steam coil for similar kiln operating temperatures. 5 references.

  1. Heat pipes with variable thermal conductance property for space applications

    Kravets, V.; Alekseik, Ye.; Alekseik, O.; Khairnasov, S. [National Technical University of Ukraine, Kyiv (Ukraine); Baturkin, V.; Ho, T. [Explorationssysteme RY-ES, Bremen (Germany); Celotti, L. [Active Space Technologies GmbH, Berlin (Germany)


    The activities presented in this paper demonstrate a new approach to provide passive thermal control using heat pipes, as demonstrated on the electronic unit of DLR’s MASCOT lander, which embarked on the NEA sample return mission Hayabusa 2 (JAXA). The focus is on the development and testing of heat pipes with variable thermal conductance in a predetermined temperature range. These heat pipes act as thermal switches. Unlike standard gasloaded heat pipes and thermal-diode heat pipes construction of presented heat pipes does not include any additional elements. Copper heat pipes with metal fibrous wicks were chosen as baseline design. We obtained positive results by choosing the heat carrier and structural parameters of the wick (i.e., pore diameter, porosity, and permeability). The increase in the thermal conductivity of the heat pipes from 0.04 W/K to 2.1 W/K was observed in the temperature range between −20 °C and +55 °C. Moreover, the heat pipes transferred the predetermined power of not less than 10 W within the same temperature range. The heat pipes have been in flight since December 2014, and the supporting telemetry data were obtained in September 2015. The data showed the nominal operation of the thermal control system.

  2. The New S-RAM Air Variable Compressor/Expander for Heat Pump and Waste Heat to Power Application

    Dehoff, Ryan R [ORNL; Jestings, Lee [S-RAM Dynamics; Conde, Ricardo [S-RAM Dynamics


    S-RAM Dynamics (S-RAM) has designed an innovative heat pump system targeted for commercial and industrial applications. This new heat pump system is more efficient than anything currently on the market and utilizes air as the refrigerant instead of hydrofluorocarbon (HFC) refrigerants, leading to lower operating costs, minimal environmental costs or concerns, and lower maintenance costs. The heat pumps will be manufactured in the United States. This project was aimed at determining the feasibility of utilizing additive manufacturing to make the heat exchanger device for the new heat pump system. ORNL and S-RAM Dynamics collaborated on determining the prototype performance and subsequently printing of the prototype using additive manufacturing. Complex heat exchanger designs were fabricated using the Arcam electron beam melting (EBM) powder bed technology using Ti-6Al-4V material. An ultrasonic welding system was utilized in order to remove the powder from the small openings of the heat exchanger. The majority of powder in the small chambers was removed, however, the amount of powder remaining in the heat exchanger was a function of geometry. Therefore, only certain geometries of heat exchangers could be fabricated. SRAM Dynamics evaluated a preliminary heat exchanger design. Although the results of the additive manufacturing of the heat exchanger were not optimum, a less complex geometry was demonstrated. A sleeve valve was used as a demonstration piece, as engine designs from S-RAM Dynamics require the engine to have a very high density. Preliminary designs of this geometry were successfully fabricated using the EBM technology.

  3. A Quick Overview of Compact Air-Cooled Heat Sinks Applicable for Electronic Cooling—Recent Progress

    Chi-Chuan Wang


    Full Text Available This study provides an overview regarding enhancement of an air-cooled heat sink applicable for electronic cooling subject to cross-flow forced convection. Some novel designs and associated problems in air-cooled heat sinks are discussed, including the drawback of adding surfaces, utilization of porous surfaces such as metal foam or carbon foam, problems and suitable applicable range of highly interrupted surfaces (louver or slit and longitudinal vortex generator. Though the metal foam may accommodate significant surface area, it is comparatively ineffective for air-cooling application due to its much lower fin efficiency, and this shortcoming can be improved by integrating with solid fin. For highly dense fin spacing (e.g., <1.0 mm, cannelure or grooved surface may be a better choice, and fin structure with periodic contraction and expansion may not be suitable for it introduces additional pressure drop penalty. The partial bypass concept, which manipulates a larger temperature difference at the trailing part of heat sink, can be implemented to significantly reduce the pressure drop. Through some certain niche operation, t the thermal resistance of the partial bypass heat sink may be superior to the conventional heat sink. The trapezoid fin surface featuring easier manufacturing and a smaller weight is shown to have competitive performance against traditional rectangular fin geometry. The IPFM (Interleaved Parallelogram Fin Module design which combines two different geometrical fins with the odd number fins being rectangular shape, and parallelogram shape in even fin numbers, shows 8%–12% less surface than conventional design but still offers a lower thermal resistance than the conventional rectangular heat sink in lower flowrate operation. The cross-cut design shows appreciable improvements as compared to the conventional plate fin design especially in high velocity regime and the single cross-cut heat sinks are superior to multiple cross

  4. Review, modeling, Heat Integration, and improved schemes of Rectisol®-based processes for CO2 capture

    Gatti, Manuele; Martelli, Emanuele; Marechal, François; Consonni, Stefano


    The paper evaluates the thermodynamic performances and the energy integration of alternative schemes of a methanol absorption based acid gas removal process designed for CO 2 Capture and Storage. More precisely, this work focuses the attention on the Rectisol ® process specifically designed for the selective removal of H 2 S and CO 2 from syngas produced by coal gasification. The study addresses the following issues: (i) perform a review of the Rectisol ® schemes proposed by engineers and researchers with the purpose of determining the best one for CO 2 capture and storage; (ii) calibrate the PC-SAFT equation of state for CH 3 OH–CO 2 –H 2 S–H 2 –CO mixtures at conditions relevant to the Rectisol ® process; (iii) evaluate the thermodynamic performances and optimize the energy integration of a “Reference” scheme derived from those available in the literature; (iv) identify and assess alternative Rectisol ® schemes with optimized performance for CO 2 Capture and Storage and Heat Integration with utilities. On the basis of the analysis of the Composite Curves of the integrated process, we propose some possible improvements at the level of the process configuration, like the introduction of mechanical vapor recompression and the development of a two stage regeneration arrangement. - Highlights: • Comprehensive review of the Rectisol ® process configurations and applications. • Calibration of PC-SAFT equation of state for Rectisol ® -relevant mixtures. • Detailed process simulation and optimized Heat Integration, and utility design. • Development of alternative Rectisol ® schemes optimized for CO 2 Capture

  5. Application of sorption heat pumps for increasing of new power sources efficiency

    Vasiliev, L.; Filatova, O.; Tsitovich, A.


    In the 21st century the way to increase the efficiency of new sources of energy is directly related with extended exploration of renewable energy. This modern tendency ensures the fuel economy needs to be realized with nature protection. The increasing of new power sources efficiency (cogeneration, trigeneration systems, fuel cells, photovoltaic systems) can be performed by application of solid sorption heat pumps, regrigerators, heat and cold accumulators, heat transformers, natural gas and hydrogen storage systems and efficient heat exchangers.

  6. A new methodology for greenhouse gas reduction in industry through improved heat exchanging and/or integration of combined heat and power

    Axelsson, H.; Asblad, A.; Berntsson, T.


    This paper presents a method that identifies economically optimal combinations of enhanced heat recovery, integration of combined heat and power (CHP), and fuel switching, in an existing industrial energy system at various emission levels. Novel types of composite curves based on pinch technology, representing the existing temperature levels for supplying heat and the possible ones that may be attained after retrofitting, are used as tools for estimating the opportunities for CHP and the trade-off between improved heat exchanging and CHP. The method is explained by an example. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  7. Elliptic polylogarithms and iterated integrals on elliptic curves. II. An application to the sunrise integral

    Broedel, Johannes; Duhr, Claude; Dulat, Falko; Tancredi, Lorenzo


    We introduce a class of iterated integrals that generalize multiple polylogarithms to elliptic curves. These elliptic multiple polylogarithms are closely related to similar functions defined in pure mathematics and string theory. We then focus on the equal-mass and non-equal-mass sunrise integrals, and we develop a formalism that enables us to compute these Feynman integrals in terms of our iterated integrals on elliptic curves. The key idea is to use integration-by-parts identities to identify a set of integral kernels, whose precise form is determined by the branch points of the integral in question. These kernels allow us to express all iterated integrals on an elliptic curve in terms of them. The flexibility of our approach leads us to expect that it will be applicable to a large variety of integrals in high-energy physics.

  8. Simulation of temperature in office with building integrated heating and cooling system

    Weitzmann, Peter


    In this paper a numerical investigation of the thermal indoor environment has been performed for an office with building integrated hydronic heating and cooling system. Today office buildings are designed in such a way, and have such high internal heat loads and solar gains, that some kind...... of cooling is normally necessary for most of the year. Even in as cool climates as in the Nordic countries. The way the cooling is often achieved is through air conditioning. This can in many cases lead to sick building syndrome (SBS) symptoms, and furthermore it results in high energy consumption periods...... the temperature of the concrete to a level slightly below the desired room temperature, the concrete will work as an absorber for the excess heat in the office. This can significantly reduce the need for air conditioning, which will give both improved indoor climate and lower energy costs in the building...

  9. Development of an integral computer code for simulation of heat exchangers

    Horvat, A.; Catton, I.


    Heat exchangers are one of the basic installations in power and process industries. The present guidelines provide an ad-hoc solution to certain design problems. A unified approach based on simultaneous modeling of thermal-hydraulics and structural behavior does not exist. The present paper describes the development of integral numerical code for simulation of heat exchangers. The code is based on Volume Averaging Technique (VAT) for porous media flow modeling. The calculated values of the whole-section drag and heat transfer coefficients show an excellent agreement with already published values. The matching results prove the correctness of the selected approach and verify the developed numerical code used for this calculation.(author)

  10. Experimental investigation on AC unit integrated with sensible heat storage (SHS)

    Aziz, N. A.; Amin, N. A. M.; Majid, M. S. A.; Hussin, A.; Zhubir, S.


    The growth in population and economy has increases the energy demand and raises the concerns over the sustainable energy source. Towards the sustainable development, energy efficiency in buildings has become a prime objective. In this paper, the integration of thermal energy storage was studied. This paper presents an experimental investigation on the performance of an air conditioning unit integrated with sensible heat storage (SHS) system. The results were compared to the conventional AC systems in the terms of average electricity usage, indoor temperature and the relative humidity inside the experimented room (cabin container). Results show that the integration of water tank as an SHS reduces the electricity usage by 5%, while the integration of well-insulated water tank saves up to 8% of the electricity consumption.

  11. Modeling and analysis of conventional and heat-integrated distillation columns

    Bisgaard, Thomas; Huusom, Jakob Kjøbsted; Abildskov, Jens


    A generic model that can cover diabatic and adiabatic distillation column configurations is presented, with the aim ofproviding a consistent basis for comparison of alternative distillation column technologies. Both a static and a dynamic formulation of the model, together with a model catalogue...... consisting of the conventional, the heat-integrated and the mechanical vapor recompression distillation columns are presented. The solution procedure of the model is outlined and illustrated in three case studies. One case study being a benchmark study demonstrating the size of the model and the static...... properties of two different heat-integrated distillation column (HIDiC) schemes and the mechanical vapor recompression column. The second case study exemplifies the difference between a HIDiC and a conventional distillation column in the composition profiles within a multicomponent separation, whereas...

  12. Application of metal foam heat exchangers for a high-performance liquefied natural gas regasification system

    Kim, Dae Yeon; Sung, Tae Hong; Kim, Kyung Chun


    The intermediate fluid vaporizer has wide applications in the regasification of LNG (liquefied natural gas). The heat exchanger performance is one of the main contributors to the thermodynamic and cost effectiveness of the entire LNG regasification system. Within the paper, the authors discuss a new concept for a compact heat exchanger with a micro-cellular structure medium to minimize volume and mass and to increase thermal efficiency. Numerical calculations have been conducted to design a metal-foam filled plate heat exchanger and a shell-and-tube heat exchanger using published experimental correlations. The geometry of both heat exchangers was optimized using the conditions of thermolators in LNG regasification systems. The heat transfer and pressure drop performance was predicted to compare the heat exchangers. The results show that the metal-foam plate heat exchanger has the best performance at different channel heights and mass flow rates of fluid. In the optimized configurations, the metal-foam plate heat exchanger has a higher heat transfer rate and lower pressure drop than the shell-and-tube heat exchanger as the mass flow rate of natural gas is increased. - Highlights: • A metal foam heat exchanger is proposed for LNG regasification system. • Comparison was made with a shell and tube heat exchanger. • Heat transfer and pressure drop characteristics were estimated. • The geometry of both heat exchangers is optimized for thermolators. • It can be used as a compact and high performance thermolators.

  13. Recovery of flue gas energy in heat integrated IGCC power plants using the contact economizer system

    Madzivhandila, V


    Full Text Available Asia Pacific Confederation of APCChE 2010 Chemical Engineering Congress October 5-8, 2010, Taipei � �� Recovery of flue gas energy in heat integrated IGCC power plants using the contact economizer system Vhutshilo Madzivhandilaa, Thokozani... temperature and the thermal efficiency of the plant. The 13th Asia Pacific Confederation of APCChE 2010 Chemical Engineering Congress October 5-8, 2010, Taipei � �� 1. Introduction The IGCC (Integrated Gasification Combined Cycle) is one...

  14. New Integral Inequalities through Invexity with Applications

    Shahid Qaisar


    Full Text Available In this paper, we obtain some inequalities of Simpson’s inequality type for functions whose derivatives absolute values are quasi-preinvex function. Applications to some special means are considered.

  15. Heat-pipe transient model for space applications

    Tournier, J.; El-Genk, M.S.; Juhasz, A.J.


    A two-dimensional model is developed for simulating heat pipes transient performance following changes in the input/rejection power or in the evaporator/condenser temperatures. The model employs the complete form of governing equations and momentum and energy jump conditions at the liquid-vapor interface. Although the model is capable of handling both cylindrical and rectangular geometries, the results reported are for a circular heat pipe with liquid lithium as the working fluid. The model incorporates a variety of other working fluids, such as water, ammonia, potassium, sodium, and mercury, and offers combinations of isothermal, isoflux, convective and radiative heating/cooling conditions in the evaporator and condenser regions of the heat pipe. Results presented are for lithium heat pipes with exponential heating of the evaporator and isothermal cooling of the condenser

  16. Applications of thermoelectric modules on heat flow detection.

    Leephakpreeda, Thananchai


    This paper presents quantitative analysis and practical scenarios of implementation of the thermoelectric module for heat flow detection. Mathematical models of the thermoelectric effects are derived to describe the heat flow from/to the detected media. It is observed that the amount of the heat flow through the thermoelectric module proportionally induces the conduction heat owing to the temperature difference between the hot side and the cold side of the thermoelectric module. In turn, the Seebeck effect takes place in the thermoelectric module where the temperature difference is converted to the electric voltage. Hence, the heat flow from/to the detected media can be observed from both the amount and the polarity of the voltage across the thermoelectric module. Two experiments are demonstrated for viability of the proposed technique by the measurements of the heat flux through the building wall and thermal radiation from the outdoor environment during daytime. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  17. Integral transform method for solving time fractional systems and fractional heat equation

    Arman Aghili


    Full Text Available In the present paper, time fractional partial differential equation is considered, where the fractional derivative is defined in the Caputo sense. Laplace transform method has been applied to obtain an exact solution. The authors solved certain homogeneous and nonhomogeneous time fractional heat equations using integral transform. Transform method is a powerful tool for solving fractional singular Integro - differential equations and PDEs. The result reveals that the transform method is very convenient and effective.

  18. 77 FR 33486 - Certain Integrated Circuit Packages Provided With Multiple Heat-Conducting Paths and Products...


    ...Notice is hereby given that the U.S. International Trade Commission has received a complaint entitled Certain Integrated Circuit Packages Provided With Multiple Heat-Conducting Paths and Products Containing Same, DN 2899; the Commission is soliciting comments on any public interest issues raised by the complaint or complainant's filing under section 210.8(b) of the Commission's Rules of Practice and Procedure (19 CFR 210.8(b)).

  19. Application of induction heating in food processing and cooking: A Review

    Induction heating is an electromagnetic heating technology that has several advantages such as high safety, scalability, and high energy efficiency. It has been applied for a long time in metal processing, medical applications, and cooking. However, the application of this technology in the food pro...

  20. High-heat-flux testing of helium-cooled heat exchangers for fusion applications

    Youchison, D.L.; Izenson, M.G.; Baxi, C.B.; Rosenfeld, J.H.


    High-heat-flux experiments on three types of helium-cooled divertor mock-ups were performed on the 30-kW electron beam test system and its associated helium flow loop at Sandia National Laboratories. A dispersion-strengthened copper alloy (DSCu) was used in the manufacture of all the mock-ups. The first heat exchanger provides for enhanced heat transfer at relatively low flow rates and much reduced pumping requirements. The Creare sample was tested to a maximum absorbed heat flux of 5.8 MW/m 2 . The second used low pressure drops and high mass flow rates to achieve good heat removal. The GA specimen was tested to a maximum absorbed heat flux of 9 MW/m 2 while maintaining a surface temperature below 400 degree C. A second experiment resulted in a maximum absorbed heat flux of 34 MW/m 2 and surface temperatures near 533 degree C. The third specimen was a DSCu, axial flow, helium-cooled divertor mock-up filled with a porous metal wick which effectively increases the available heat transfer area. Low mass flow and high pressure drop operation at 4.0 MPa were characteristic of this divertor module. It survived a maximum absorbed heat flux of 16 MW/m 2 and reached a surface temperature of 740 degree C. Thermacore also manufactured a follow-on, dual channel porous metal-type heat exchanger, which survived a maximum absorbed heat flux of 14 MW/m 2 and reached a maximum surface temperature of 690 degree C. 11refs., 20 figs., 3 tabs

  1. Integrated graphene-based devices for optoelectronic applications

    Xiao, Sanshui

    Graphene opens up for novel optoelectronic applications thanks to its high carrier mobility, ultralarge absorption bandwidth, and extremely fast material response. Here I present novel integrated grapheneplasmonic waveguide modulator showing high modulation depth, thus giving a promising way...

  2. High-power condensation turbine application to district heating

    Virchenko, M.A.; Arkad'ev, B.A.; Ioffe, V.Yu.


    In general outline the role of condensation turbines in NPP district heating is considered. The expediency of expansion of central heating loading of turbines of operating as well as newly designed condensation power plants on the basis of the WWER-1000-type reactors is shown. The principle heat flowsheet of the 1000 MW power turbine is given. An advantage in using turbines with uncontrolled steam bleeding is pointed out [ru

  3. Application of EoEP principle with variable heat transfer coefficient in minimizing entropy production in heat exchangers

    Balkan, F.


    A more realistic application of the entropy minimization principle EoEP is presented. This principle dictates uniform local entropy generations along the heat exchanger in order to minimize the total entropy generation rate due only to heat transfer. For a certain heat duty and area of an existing exchanger, this is done by changing the temperatures of one fluid while the temperatures of the other fluid are held constant. Since the heat duty is fixed, the change in the temperatures of the fluid after the change, however, may sometimes cause a drastic change in its flow rate. This may cause considerable changes in the overall heat transfer coefficient (U) and, consequently, in the entropy generation rate. Depending on the choice of the fluid for changing, the new entropy generation rates may be higher or lower than those based on constant U as is the case in papers recently published. So, the classical application of the EoEP principle needs to be modified to achieve more realistic entropy generation rates. In this study, the principle of EoEP with variable U is applied to some cases of heat exchange, and a simple method is presented as a criterion for the proper choice of the fluid to be changed

  4. Heat Analysis of Liquid piston Compressor for Hydrogen Applications

    Kermani, Nasrin Arjomand; Rokni, Masoud


    A new hydrogen compression technology using liquid as the compression piston is investigated from heat transfer point of view. A thermodynamic model, simulating a single compression stroke, is developed to investigate the heat transfer phenomena inside the compression chamber. The model is develo......A new hydrogen compression technology using liquid as the compression piston is investigated from heat transfer point of view. A thermodynamic model, simulating a single compression stroke, is developed to investigate the heat transfer phenomena inside the compression chamber. The model...

  5. Application of 'SPICE' to predict temperature distribution in heat pipes

    Li, H M; Liu, Y; Damodaran, M [Nanyang Technological Univ., Singapore (SG). School of Mechanical and Production Engineering


    This article presents a new alternative approach to predict temperature distribution in heat pipes. In this method, temperature distribution in a heat pipe, modelled as an analogous electrical circuit, is predicted by applying SPICE, a general-purpose circuit simulation program. SPICE is used to simulate electrical circuit designs before the prototype is assembled. Useful predictions are obtained for heat pipes with and without adiabatic sections and for heat pipes with various evaporator and condenser lengths. Comparison of the predicted results with experiments demonstrates fairly good agreement. It is also shown how interdisciplinary developments could be used appropriately. (author).

  6. Heat stress and reduced plane of nutrition decreases intestinal integrity and function in pigs.

    Pearce, S C; Mani, V; Weber, T E; Rhoads, R P; Patience, J F; Baumgard, L H; Gabler, N K


    Heat stress can compromise intestinal integrity and induce leaky gut in a variety of species. Therefore, the objectives of this study were to determine if heat stress (HS) directly or indirectly (via reduced feed intake) increases intestinal permeability in growing pigs. We hypothesized that an increased heat-load causes physiological alterations to the intestinal epithelium, resulting in compromised barrier integrity and altered intestinal function that contributes to the overall severity of HS-related illness. Crossbred gilts (n=48, 43±4 kg BW) were housed in constant climate controlled rooms in individual pens and exposed to 1) thermal neutral (TN) conditions (20°C, 35-50% humidity) with ad libitum intake, 2) HS conditions (35°C, 20-35% humidity) with ad libitum feed intake, or 3) pair-fed in TN conditions (PFTN) to eliminate confounding effects of dissimilar feed intake. Pigs were sacrificed at 1, 3, or 7 d of environmental exposure and jejunum samples were mounted into modified Ussing chambers for assessment of transepithelial electrical resistance (TER) and intestinal fluorescein isothiocyanate (FITC)-labeled lipopolysaccharide (LPS) permeability (expressed as apparent permeability coefficient, APP). Further, gene and protein markers of intestinal integrity and stress were assessed. Irrespective of d of HS exposure, plasma endotoxin levels increased 45% (Pwarm summer months.

  7. Integrated polymer micro-ring resonators for optical sensing applications

    Girault , Pauline; Lorrain , Nathalie; Poffo , Luiz; Guendouz , Mohammed; Lemaitre , Jonathan; Carré , Christiane; Gadonna , Michel; Bosc , Dominique; Vignaud , Guillaume


    International audience; Micro-resonators (MR) have become a key element for integrated optical sensors due to their integration capability and their easy fabrication with low cost polymer materials. Nowadays, there is a growing need on MRs as highly sensitive and selective functions especially in the areas of food and health. The context of this work is to implement and study integrated micro-ring resonators devoted to sensing applications. They are fabricated by processing SU8 polymer as cor...

  8. Business Level Service-Oriented Enterprise Application Integration

    Pokraev, S.; Quartel, Dick; Steen, Maarten W.A.; Wombacher, Andreas; Reichert, M.U.


    In this paper we propose a new approach for service-oriented enterprise application integration (EAI). Unlike current EAI solutions, which mainly focus on technological aspects, our approach allows business domain experts to get more involved in the integration process. First, we provide a technique

  9. Energy Optimization for Transcritical CO2 Heat Pump for Combined Heating and Cooling and Thermal Storage Applications

    Do Carmo, Carolina Madeira Ramos; Blarke, Morten; Yazawa, Kazuaki


    A transcritical heat pump (THP) cycle using carbon dioxide (CO2) as the refrigerant is known to feature an excellent coefficient of performance (COP) as a thermodynamic system. Using this feature, we are designing and building a system that combines a water-to-water CO2 heat pump with both hot....... The usability and the cost effectiveness are critical for smart grid policies on large-scale integration of intermittent renewables. In this paper, we present an analytic thermodynamic model that predicts the effect of temperature and flow rate of hot and cold water circulation on system COP. The analytical...

  10. A high performance cocurrent-flow heat pipe for heat recovery applications

    Saaski, E. W.; Hartl, J. C.


    By the introduction of a plate-and-tube separator assembly into a heat pipe vapor core, it has been demonstrated that axial transport capacity in reflux mode can be improved by up to a factor of 10. This improvement is largely the result of eliminating the countercurrent shear that commonly limits reflux heat pipe axial capacity. With benzene, axial heat fluxes up to 1800 W/sq cm were obtained in the temperature range 40 to 80 C, while heat flux densities up to 3000 W/sq cm were obtained with R-11 over the temperature range 40 to 80 C. These very high axial capacities compare favorably with liquid metal limits; the sonic limit for liquid sodium, for example, is 3000 W/sq cm at 657 C. Computational models developed for these cocurrent flow heat pipes agreed with experimental data within + or - 25%.

  11. Integral method for transient He II heat transfer in a semi-infinite domain

    Baudouy, B.


    Integral methods are suited to solve a non-linear system of differential equations where the non-linearity can be found either in the differential equations or in the boundary conditions. Though they are approximate methods, they have proven to give simple solutions with acceptable accuracy for transient heat transfer in He II. Taking in account the temperature dependence of thermal properties, direct solutions are found without the need of adjusting a parameter. Previously, we have presented a solution for the clamped heat flux and in the present study this method is used to accommodate the clamped-temperature problem. In the case of constant thermal properties, this method yields results that are within a few percent of the exact solution for the heat flux at the axis origin. We applied this solution to analyze recovery from burnout and find an agreement within 10% at low heat flux, whereas at high heat flux the model deviates from the experimental data suggesting the need for a more refined thermal model.

  12. Integral method for transient He II heat transfer in a semi-infinite domain

    Baudouy, B.


    Integral methods are suited to solve a non-linear system of differential equations where the non-linearity can be found either in the differential equations or in the boundary conditions. Though they are approximate methods, they have proven to give simple solutions with acceptable accuracy for transient heat transfer in He II. Taking in account the temperature dependence of thermal properties, direct solutions are found without the need of adjusting a parameter. Previously, we have presented a solution for the clamped heat flux and in the present study this method is used to accommodate the clamped-temperature problem. In the case of constant thermal properties, this method yields results that are within a few percent of the exact solution for the heat flux at the axis origin. We applied this solution to analyze recovery from burnout and find an agreement within 10% at low heat flux, whereas at high heat flux the model deviates from the experimental data suggesting the need for a more refined thermal model

  13. Three-dimensional analyses of fluid flow and heat transfer for moderator integrity assessment in PHWR

    Yu, S.-O.; Kim, M.; Kim, H.-J.


    A CANDU reactor has the unique features and the intrinsic safety related characteristics that distinguish it from other water-cooled thermal reactors. If there is the loss of coolant accident (LOCA) and a coincident failure of the emergency coolant injection (ECI) system, the heavy water moderator is continuously cooled, providing a heat sink for decay heat produced in the fuel. Therefore, it is one of major concerns to estimate the local subcooling of moderator inside the calandria vessel under postulated accident in CANDU safety analyses. The Canadian Nuclear Safety Commission (CNSC), a regulatory body in Canada, categorized the integrity of moderator as a generic safety issue and recommended that a series of experimental works be performed to verify the safety evaluation codes for individual simulated condition of nuclear power plant, comparing with the results of three-dimensional experimental data. In this study, three-dimensional analyses of fluid flow and heat transfer have been performed to assess thermal-hydraulic characteristics for moderator simulation conducted by SPEL (Sheridan Park Experimental Laboratory) experimental facility. The parametric study has also carried out to investigate the effect of major parameters such as flowrate, temperature, and heat load generated from the heaters on the temperature and flow distribution inside the moderator. Three flow patterns have been identified in the moderator with flowrate, heat generation, or both. As the transition of fluid flow is progressed, it is found that the dimensionless numbers (Ar) and the ratio of buoyancy to inertia forces are constant. (author)

  14. Numerical investigation of premixed combustion in a porous burner with integrated heat exchanger

    Farzaneh, Meisam; Shafiey, Mohammad; Shams, Mehrzad [K.N. Toosi University of Technology, Department of Mechanical Engineering, Tehran (Iran, Islamic Republic of); Ebrahimi, Reza [K.N. Toosi University of Technology, Department of Aerospace Engineering, Tehran (Iran, Islamic Republic of)


    In this paper, we perform a numerical analysis of a two-dimensional axisymmetric problem arising in premixed combustion in a porous burner with integrated heat exchanger. The physical domain consists of two zones, porous and heat exchanger zones. Two dimensional Navier-Stokes equations, gas and solid energy equations, and chemical species transport equations are solved and heat release is described by a multistep kinetics mechanism. The solid matrix is modeled as a gray medium, and the finite volume method is used to solve the radiative transfer equation to calculate the local radiation source/sink in the solid phase energy equation. Special attention is given to model heat transfer between the hot gas and the heat exchanger tube. Thus, the corresponding terms are added to the energy equations of the flow and the solid matrix. Gas and solid temperature profiles and species mole fractions on the burner centerline, predicted 2D temperature fields, species concentrations and streamlines are presented. Calculated results for temperature profiles are compared to experimental data. It is shown that there is good agreement between the numerical solutions and the experimental data and it is concluded that the developed numerical program is an excellent tool to investigate combustion in porous burner. (orig.)

  15. FY 17 Q1 Commercial integrated heat pump with thermal storage milestone report

    Abu-Heiba, Ahmad [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Baxter, Van D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shen, Bo [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Rice, C. Keith [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)


    The commercial integrated heat pump with thermal storage (AS-IHP) offers significant energy saving over a baseline heat pump with electric water heater. The saving potential is maximized when the AS-IHP serves coincident high water heating and high space cooling demands. A previous energy performance analysis showed that the AS-IHP provides the highest benefit in the hot-humid and hot-dry/mixed dry climate regions. Analysis of technical potential energy savings for these climate zones based on the BTO Market calculator indicated that the following commercial building market segments had the highest water heating loads relative to space cooling and heating loads education, food service, health care, lodging, and mercantile/service. In this study, we focused on these building types to conservatively estimate the market potential of the AS-IHP. Our analysis estimates maximum annual shipments of ~522,000 units assuming 100% of the total market is captured. An early replacement market based on replacement of systems in target buildings between 15 and 35 years old was estimated at ~136,000 units. Technical potential energy savings are estimated at ~0.27 quad based on the maximum market estimate, equivalent to ~13.9 MM Ton CO2 emissions reduction.

  16. ASPEN Plus simulation of coal integrated gasification combined blast furnace slag waste heat recovery system

    Duan, Wenjun; Yu, Qingbo; Wang, Kun; Qin, Qin; Hou, Limin; Yao, Xin; Wu, Tianwei


    Highlights: • An integrated system of coal gasification with slag waste heat recovery was proposed. • The goal of BF slag heat saving and emission reduction was achieved by this system. • The optimal parameters were obtained and the waste heat recovery rate reached 83.08%. • About 6.64 kmol/min syngas was produced when using one ton BF slag to provide energy. - Abstract: This article presented a model for the system of coal gasification with steam and blast furnace slag waste heat recovery by using the ASPEN Plus as the simulating and modeling tool. Constrained by mass and energy balance for the entire system, the model included the gasifier used to product syngas at the chemical equilibrium based on the Gibbs free energy minimization approach and the boiler used to recover the heat of the blast furnace slag (BF slag) and syngas. Two parameters of temperature and steam to coal ratio (S/C) were considered to account for their impacts on the Datong coal (DT coal) gasification process. The carbon gasification efficiency (CE), cold gasification efficiency (CGE), syngas product efficiency (PE) and the heating value of syngas produced by 1 kg pulverized coal (HV) were adopted as the indicators to examine the gasification performance. The optimal operating temperature and S/C were 800 °C and 1.5, respectively. At this condition, CE reached above 90% and the maximum values of the CGE, PE and HV were all obtained. Under the optimal operating conditions, 1000 kg/min BF slag, about 40.41 kg/min DT pulverized coal and 77.94 kg/min steam were fed into the gasifier and approximate 6.64 kmol/min syngas could be generated. Overall, the coal was converted to clean syngas by gasification reaction and the BF slag waste heat was also recovered effectively (reached up to 83.08%) in this system, achieving the objective of energy saving and emission reduction

  17. Integrated development environment for fuzzy logic applications

    Pagni, Andrea; Poluzzi, Rinaldo; Rizzotto, GianGuido; Lo Presti, Matteo


    During the last five years, Fuzzy Logic has gained enormous popularity, both in the academic and industrial worlds, breaking up the traditional resistance against changes thanks to its innovative approach to problems formalization. The success of this new methodology is pushing the creation of a brand new class of devices, called Fuzzy Machines, to overcome the limitations of traditional computing systems when acting as Fuzzy Systems and adequate Software Tools to efficiently develop new applications. This paper aims to present a complete development environment for the definition of fuzzy logic based applications. The environment is also coupled with a sophisticated software tool for semiautomatic synthesis and optimization of the rules with stability verifications. Later it is presented the architecture of WARP, a dedicate VLSI programmable chip allowing to compute in real time a fuzzy control process. The article is completed with two application examples, which have been carried out exploiting the aforementioned tools and devices.

  18. Efficiently-cooled plasmonic amorphous silicon solar cells integrated with a nano-coated heat-pipe plate

    Zhang, Yinan; Du, Yanping; Shum, Clifford; Cai, Boyuan; Le, Nam Cao Hoai; Chen, Xi; Duck, Benjamin; Fell, Christopher; Zhu, Yonggang; Gu, Min


    Solar photovoltaics (PV) are emerging as a major alternative energy source. The cost of PV electricity depends on the efficiency of conversion of light to electricity. Despite of steady growth in the efficiency for several decades, little has been achieved to reduce the impact of real-world operating temperatures on this efficiency. Here we demonstrate a highly efficient cooling solution to the recently emerging high performance plasmonic solar cell technology by integrating an advanced nano-coated heat-pipe plate. This thermal cooling technology, efficient for both summer and winter time, demonstrates the heat transportation capability up to ten times higher than those of the metal plate and the conventional wickless heat-pipe plates. The reduction in temperature rise of the plasmonic solar cells operating under one sun condition can be as high as 46%, leading to an approximate 56% recovery in efficiency, which dramatically increases the energy yield of the plasmonic solar cells. This newly-developed, thermally-managed plasmonic solar cell device significantly extends the application scope of PV for highly efficient solar energy conversion.

  19. Application of least-squares method to decay heat evaluation

    Schmittroth, F.; Schenter, R.E.


    Generalized least-squares methods are applied to decay-heat experiments and summation calculations to arrive at evaluated values and uncertainties for the fission-product decay-heat from the thermal fission of 235 U. Emphasis is placed on a proper treatment of both statistical and correlated uncertainties in the least-squares method

  20. Thermal Peak Management Using Organic Phase Change Materials for Latent Heat Storage in Electronic Applications

    Maxa, Jacob; Novikov, Andrej; Nowottnick, Mathias


    Modern high power electronics devices consists of a large amount of integrated circuits for switching and supply applications. Beside the benefits, the technology exhibits the problem of an ever increasing power density. Nowadays, heat sinks that are directly mounted on a device, are used to reduce the on-chip temperature and dissipate the thermal energy to the environment. This paper presents a concept of a composite coating for electronic components on printed circuit boards or electronic assemblies that is able to buffer a certain amount of thermal energy, dissipated from a device. The idea is to suppress temperature peaks in electronic components during load peaks or electronic shorts, which otherwise could damage or destroy the device, by using a phase change material to buffer the thermal energy. The phase change material coating could be directly applied on the chip package or the PCB using different mechanical retaining jigs.

  1. Thermal Peak Management Using Organic Phase Change Materials for Latent Heat Storage in Electronic Applications

    Jacob Maxa


    Full Text Available Modern high power electronics devices consists of a large amount of integrated circuits for switching and supply applications. Beside the benefits, the technology exhibits the problem of an ever increasing power density. Nowadays, heat sinks that are directly mounted on a device, are used to reduce the on-chip temperature and dissipate the thermal energy to the environment. This paper presents a concept of a composite coating for electronic components on printed circuit boards or electronic assemblies that is able to buffer a certain amount of thermal energy, dissipated from a device. The idea is to suppress temperature peaks in electronic components during load peaks or electronic shorts, which otherwise could damage or destroy the device, by using a phase change material to buffer the thermal energy. The phase change material coating could be directly applied on the chip package or the PCB using different mechanical retaining jigs.

  2. Heat transfer analysis of liquid piston compressor for hydrogen applications

    Kermani, Nasrin Arjomand; Rokni, Masoud


    A hydrogen compression technology using liquid as the compression piston is investigated from heat transfer point of view. A thermodynamic model, simulating a single compression stroke, is developed to investigate the heat transfer phenomena inside the compression chamber. The model is developed...... and through the walls, is investigated and compared with the adiabatic case. The results show that depending on heat transfer correlation, the hydrogen temperature reduces slightly between 0.2% and 0.4% compared to the adiabatic case, at 500bar, due to the large wall resistance and small contact area...... at the interface. Moreover, the results of the sensitivity analysis illustrates that increasing the total heat transfer coefficients at the interface and the wall, together with compression time, play key roles in reducing the hydrogen temperature. Increasing the total heat transfer coefficient at the interface...

  3. The Application of Discontinuous Galerkin Methods in Conjugate Heat Transfer Simulations of Gas Turbines

    Zeng-Rong Hao


    Full Text Available The performance of modern heavy-duty gas turbines is greatly determined by the accurate numerical predictions of thermal loading on the hot-end components. The purpose of this paper is: (1 to present an approach applying a novel numerical technique—the discontinuous Galerkin (DG method—to conjugate heat transfer (CHT simulations, develop the engineering-oriented numerical platform, and validate the feasibility of the methodology and tool preliminarily; and (2 to utilize the constructed platform to investigate the aerothermodynamic features of a typical transonic turbine vane with convection cooling. Fluid dynamic and solid heat conductive equations are discretized into explicit DG formulations. A centroid-expanded Taylor basis is adopted for various types of elements. The Bassi-Rebay method is used in the computation of gradients. A coupled strategy based on a data exchange process via numerical flux on interface quadrature points is simply devised. Additionally, various turbulence Reynolds-Averaged-Navier-Stokes (RANS models and the local-variable-based transition model γ-Reθ are assimilated into the integral framework, combining sophisticated modelling with the innovative algorithm. Numerical tests exhibit good consistency between computational and analytical or experimental results, demonstrating that the presented approach and tool can handle well general CHT simulations. Application and analysis in the turbine vane, focusing on features around where there in cluster exist shock, separation and transition, illustrate the effects of Bradshaw’s shear stress limitation and separation-induced-transition modelling. The general overestimation of heat transfer intensity behind shock is conjectured to be associated with compressibility effects on transition modeling. This work presents an unconventional formulation in CHT problems and achieves its engineering applications in gas turbines.

  4. [Application of holistic integrative medicine in orthodontics].

    Wang, L


    Holistic integrative medicine (HIM) is a new medical knowledge system, which is formed based on the theory of HIM. HIM treats people as a whole by combining the results of basic medical research, clinical practice and clinical research during the treatment process. The concept of HIM runs through the education and treatment of orthodontics. HIM is the trending norm of both modern medicine and orthodontics. This review is about the concept of HIM and the advantages and disadvantages of specialization. Moreover, this review also discusses the vital role of HIM in orthodontic treatment and development.

  5. Integrated conjugate heat transfer analysis method for in-vessel retention with external reactor vessel cooling - 15477

    Park, J.W.; Bae, J.H.; Seol, W.C.


    An integrated conjugate heat transfer analysis method for the thermal integrity of a reactor vessel under external reactor vessel cooling conditions is developed to resolve light metal layer focusing effect issue. The method calculates steady-state 3-dimensional temperature distribution of a reactor vessel using coupled conjugate heat transfer between in-vessel 3-layered stratified corium (metallic pool, oxide pool and heavy metal) and polar-angle dependent boiling heat transfer at the outer surface of a reactor vessel. The 3-layer corium heat transfer model is utilizing lumped-parameter thermal-resistance circuit method and ex-vessel boiling regimes are parametrically considered. The thermal integrity of a reactor vessel is addressed in terms of un-molten thickness profile. The vessel 3-dimensional heat conduction is validated against a commercial code. It is found that even though the internal heat flux from the metal layer goes far beyond critical heat flux (CHF) the heat flux from the outermost nodes of the vessel may be maintained below CHF due to massive vessel heat diffusion. The heat diffusion throughout the vessel is more pronounced for relatively low heat generation rate in an oxide pool. Parametric calculations are performed considering thermal conditions such as peak heat flux from a light metal layer, heat generation in an oxide pool and external boiling conditions. The major finding is that the most crucial factor for success of in-vessel retention is not the mass of the molten light metal above the oxide pool but the heat generation rate inside the oxide pool and the 3-dimensional vessel heat transfer provides a much larger minimum vessel wall thickness. (authors)

  6. Hybrid Heat Pipes for Lunar and Martian Surface and High Heat Flux Space Applications

    Ababneh, Mohammed T.; Tarau, Calin; Anderson, William G.; Farmer, Jeffery T.; Alvarez-Hernandez, Angel R.


    Novel hybrid wick heat pipes are developed to operate against gravity on planetary surfaces, operate in space carrying power over long distances and act as thermosyphons on the planetary surface for Lunar and Martian landers and rovers. These hybrid heat pipes will be capable of operating at the higher heat flux requirements expected in NASA's future spacecraft and on the next generation of polar rovers and equatorial landers. In addition, the sintered evaporator wicks mitigate the start-up problems in vertical gravity aided heat pipes because of large number of nucleation sites in wicks which will allow easy boiling initiation. ACT, NASA Marshall Space Flight Center, and NASA Johnson Space Center, are working together on the Advanced Passive Thermal experiment (APTx) to test and validate the operation of a hybrid wick VCHP with warm reservoir and HiK"TM" plates in microgravity environment on the ISS.

  7. Heat transfer capacity of heat pipes: An application in coalfield wildfire in China

    Li, Bei; Deng, Jun; Xiao, Yang; Zhai, Xiaowei; Shu, Chi-Min; Gao, Wei


    Coalfield wildfires are serious catastrophes associated with mining activities. Generally, the coal wildfire areas have tremendous heat accumulation regions. Eliminating the internal heat is an effective method for coal wildfire control. In this study, high thermal conductivity component of a heat pipe (HP) was used for enhancing the heat dissipation efficiency and impeding heat accumulation. An experimental system was set up to analyze the thermal resistance network of the coal-HP system. A coal-HP heat removal model was also established for studying the heat transfer performance of HP on the coal pile. The HP exhibited outstanding cooling performance in the initial period, resulting in the highest temperature difference between the coal pile and ambient temperature. However, the effect of the HP on the distribution temperature of coal piles decreased with increasing distance. The largest decline in the coal temperature occurred in a 20-mm radius of the HP; the temperature decreased from 84.3 to 50.9 °C, a decline of 39.6%. The amount of energy transfer by the HP after 80 h was 1.0865, 2.1680, and 3.3649 MJ under the initial heat source temperatures of 100, 150, and 200 °C, respectively. The coal was governed below 80 °C with the HP under the experimental conditions. It revealed that the HP had a substantial effect on thermal removal and inhibited spontaneous coal combustion. In addition, this paper puts forward the technological path of HP to control typical coalfield wildfire. [Figure not available: see fulltext.

  8. Design of the steam reformer for the HTR-10 high temperature process heat application

    Ju Huaiming; Xu Yuanhui; Jia Haijun


    The 10 MW High Temperature Reactor Test Module (HTR-10) is being constructed now and planned to be operational in 2000. One of the objectives is to develop the high temperature process heat application. The methane steam reformer is one of the key-facilities for the nuclear process heat application system. The paper describes the conceptual design of the HTR-10 Steam Reformer with He heating, and the design optimization computer code. It can be used to perform sensitivity analysis for parameters, and to improve the design. Principal parameters and construction features of the HTR-10 reformer heated by He are introduced. (author)

  9. Integrated identification, modeling and control with applications

    Shi, Guojun

    This thesis deals with the integration of system design, identification, modeling and control. In particular, six interdisciplinary engineering problems are addressed and investigated. Theoretical results are established and applied to structural vibration reduction and engine control problems. First, the data-based LQG control problem is formulated and solved. It is shown that a state space model is not necessary to solve this problem; rather a finite sequence from the impulse response is the only model data required to synthesize an optimal controller. The new theory avoids unnecessary reliance on a model, required in the conventional design procedure. The infinite horizon model predictive control problem is addressed for multivariable systems. The basic properties of the receding horizon implementation strategy is investigated and the complete framework for solving the problem is established. The new theory allows the accommodation of hard input constraints and time delays. The developed control algorithms guarantee the closed loop stability. A closed loop identification and infinite horizon model predictive control design procedure is established for engine speed regulation. The developed algorithms are tested on the Cummins Engine Simulator and desired results are obtained. A finite signal-to-noise ratio model is considered for noise signals. An information quality index is introduced which measures the essential information precision required for stabilization. The problems of minimum variance control and covariance control are formulated and investigated. Convergent algorithms are developed for solving the problems of interest. The problem of the integrated passive and active control design is addressed in order to improve the overall system performance. A design algorithm is developed, which simultaneously finds: (i) the optimal values of the stiffness and damping ratios for the structure, and (ii) an optimal output variance constrained stabilizing

  10. Integration of a wood pellet burner and a Stirling engine to produce residential heat and power

    Cardozo, Evelyn; Erlich, Catharina; Malmquist, Anders; Alejo, Lucio


    The integration a Stirling engine with a pellet burner is a promising alternative to produce heat and power for residential use. In this context, this study is focused on the experimental evaluation of the integration of a 20 kW th wood pellet burner and a 1 kW e Stirling engine. The thermal power not absorbed by the engine is used to produce hot water. The evaluation highlights the effects of pellet type, combustion chamber length and cycling operation on the Stirling engine temperatures and thermal power absorbed. The results show that the position of the Stirling engine is highly relevant in order to utilize as much as possible of the radiative heat from the burner. Within this study, only a 5 cm distance change between the Stirling engine and the pellet burner could result in an increase of almost 100 °C in the hot side of the engine. However, at a larger distance, the temperature of the hot side is almost unchanged suggesting dominating convective heat transfer from the hot flue gas. Ash accumulation decreases the temperature of the hot side of the engine after some cycles of operation when a commercial pellet burner is integrated. The temperature ratio, which is the relation between the minimum and maximum temperatures of the engine, decreases when using Ø8 mm wood pellets in comparison to Ø6 mm pellets due to higher measured temperatures on the hot side of the engine. Therefore, the amount of heat supplied to the engine is increased for Ø8 mm wood pellets. The effectiveness of the engine regenerator is increased at higher pressures. The relation between temperature of the hot side end and thermal power absorbed by the Stirling engine is nearly linear between 500 °C and 660 °C. Higher pressure inside the Stirling engine has a positive effect on the thermal power output. Both the chemical and thermal losses increase somewhat when integrating a Stirling engine in comparison to a stand-alone boiler for only heat production. The overall efficiency

  11. Project Integration Architecture: Inter-Application Propagation of Information

    Jones, William Henry


    A principal goal of the Project Integration Architecture (PIA) is to facilitate the meaningful inter-application transfer of application-value-added information. Such exchanging applications may be largely unrelated to each other except through their applicability to an overall project; however, the PIA effort recognizes as fundamental the need to make such applications cooperate despite wide disparaties either in the fidelity of the analyses carried out, or even the disciplines of the analysis. This paper discusses the approach and techniques applied and anticipated by the PIA project in treating this need.

  12. Reduced risk HTGR concept for industrial heat application

    Boardman, C.E.; Lipps, A.J.


    The industrial process heat market has been identified as major market for the High Temperature Gas-Cooled Reactor (HTGR), however, this market introduces stringent availability requirements on the reactor system relative to electric plants which feed a large existing grid. The characteristics and requirements of the industrial heat markets are summarized; the risks associated with serving this market with a single large HTGR will be discussed; and the modular concept, which has the potential to reduce both safety and investment risks, will be described. The reference modular concept described consists of several small, relatively benign nuclear heat sources linked together to supply heat energy to a balance-of-plant incorporating a process gas train/thermochemical pipe line system and a normal steam-electric plant

  13. Tracking heat flux sensors for concentrating solar applications

    Andraka, Charles E; Diver, Jr., Richard B


    Innovative tracking heat flux sensors located at or near the solar collector's focus for centering the concentrated image on a receiver assembly. With flux sensors mounted near a receiver's aperture, the flux gradient near the focus of a dish or trough collector can be used to precisely position the focused solar flux on the receiver. The heat flux sensors comprise two closely-coupled thermocouple junctions with opposing electrical polarity that are separated by a thermal resistor. This arrangement creates an electrical signal proportional to heat flux intensity, and largely independent of temperature. The sensors are thermally grounded to allow a temperature difference to develop across the thermal resistor, and are cooled by a heat sink to maintain an acceptable operating temperature.

  14. SrF2 capsule design for heat engine applications

    Lester, D.H.


    A number of design changes were considered to improve heat transfer characteristics of the WESF capsule. This capsule was evaluated in a design concept for use as a heat source in a helium-working fluid, Stirling heat engine. Throughout the study a heat block concept was used. The helium was assumed to be at 1200 0 F and 200 atm. The upper temperature limit at the fuel-metal interface was assumed to be 800 0 C because of material compatibility considerations. A 0.6-in. thick outer can was considered since it may be required for impact resistance and high pressure accident environments. The modifications considered were: (1) filling all gaps with helium rather than air, (2) filling gaps with powdered metal, and (3) adding a third can to the existing capsule. Also, enhancement of emissivity on metal surfaces was considered as a possible modification

  15. Laser application of heat pipe technology in energy related programs

    Carbone, R.J.


    The design and operating parameters for a heat pipe laser utilizing metal vapors are proposed. The laser would be applied to laser induced fusion, laser induced chemistry, laser isotope separation, and power transport using optical beams. (U.S.)

  16. Influence of the heat losses and accumulated heat upon the evolution of the thermohydraulic processes in the transients as applied to the ISB-WWER integral test facility

    Gashenko, I.V.; Melikhov, O.I.; Shmal, I.I.; Kouznetsov, V.D.


    The results of the calculational study using the RELAP5/MOD3.2 thermalhydraulic code performed on the influence of the heat losses to the ambient and the heat accumulated in the pipelines walls upon the evolution of the thermalhydraulic processes in the primary circuit of the integral test facility ISB-WWER when simulating the transients caused by the loss of the coolant are presented in the paper. (authors)

  17. Thermionic Power Cell To Harness Heat Energies for Geothermal Applications

    Manohara, Harish; Mojarradi, Mohammad; Greer, Harold F.


    A unit thermionic power cell (TPC) concept has been developed that converts natural heat found in high-temperature environments (460 to 700 C) into electrical power for in situ instruments and electronics. Thermionic emission of electrons occurs when an emitter filament is heated to gwhite hot h temperatures (>1,000 C) allowing electrons to overcome the potential barrier and emit into the vacuum. These electrons are then collected by an anode, and transported to the external circuit for energy storage.

  18. Heat integration options based on pinch and exergy analyses of a thermosolar and heat pump in a fish tinning industrial process

    Quijera, José Antonio; García, Araceli; Alriols, María González; Labidi, Jalel


    Thermosolar technology is being inserted gradually in industrial activities. In order to reach high energy efficiency, thermosolar can be linked to heat pump technology, combining more efficient conventional and renewable energy support for processes. Their integration in complex processes can be improved systematically through well established analytical tools, like pinch and exergy analyses. This work presents a methodological procedure for the analysis of different options of heat integration of a solar thermal and heat pump technologies in a tuna fish tinning process. The plant is located in a climatic zone where diffuse irradiation contributes more energy to the process than beam irradiation does. Pinch and exergy analyses are applied in the context of a low and middle temperatures, where the process demands big amounts of hot water and middle pressure steam. In order to recover internal heat, pinch analysis allows to understand the complexity of the heat exchange network of the process and to define thermal tendency objectives for energy optimization. Exergy analysis quantifies the variation that the quality of energy undergoes while it is used in the process according to the different way of integration. Both analytical tools, in combination with economical variables, provide a powerful methodological procedure finding the most favourable heat integration and, by this, they help in the technological decision making and in the design phase. - Highlights: ► Integration of solar thermal energy in batch canning process was assessed. ► Pinch and exergy analyses were used to determine the optimal energy supply configuration. ► Combination of heat pump and solar thermal energy improves the energy efficiency and reduces fossil fuel consumption

  19. Integration of Heat Transfer, Stress, and Particle Trajectory Simulation. Final report

    Bui, Thuc; Read, Michael; Ives, Lawrence


    Calabazas Creek Research, Inc. developed and currently markets Beam Optics Analyzer (BOA) in the United States and abroad. BOA is a 3D, charged particle optics code that solves the electric and magnetic fields with and without the presence of particles. It includes automatic and adaptive meshing to resolve spatial scales ranging from a few millimeters to meters. It is fully integrated with CAD packages, such as SolidWorks, allowing seamless geometry updates. The code includes iterative procedures for optimization, including a fully functional, graphical user interface. Recently, time dependent, particle in cell capability was added, pushing particles synchronically under quasistatic electromagnetic fields to obtain particle bunching under RF conditions. A heat transfer solver was added during this Phase I program. Completed tasks include: (1) Added a 3D finite element heat transfer solver with adaptivity; (2) Determined the accuracy of the linear heat transfer field solver to provide the basis for development of higher order solvers in Phase II; (3) Provided more accurate and smoother power density fields; and (4) Defined the geometry using the same CAD model, while maintaining different meshes, and interfacing the power density field between the particle simulator and heat transfer solvers. These objectives were achieved using modern programming techniques and algorithms. All programming was in C++ and parallelization in OpenMP, utilizing state-of-the-art multi-core technology. Both x86 and x64 versions are supported. The GUI design and implementation used Microsoft Foundation Class.

  20. Evaluation and Design of Downhole Heat Exchangers for Direct Application

    Culver, G [Oregon Institute of Technology, Klamath Falls, Oregon; Reistad, G M [Oregon State University, Corvallis, Oregon


    Over 400 wells with downhole heat exchangers are in use in Klamath Falls, Oregon. Some have been in use for nearly 30 years. Despite the large number and the long experience, the exact nature of the mechanism of heat exchange and, therefore, the maximum output was not known, except that it had been theorized that convection cells were established in the well. Oregon Institute of Technology and Oregon State University are jointly involved in a project to study the heat exchange process and economics of the downhole heat exchanger system. The existence of significant convection cell circulation has been established and measured using a “spinner,” hot film anemometer, and by energy balance calculations. Based on these measurements, analytical models have been developed which predict heat extraction rates within 15% of actual measured values. The existence of significant mixing of “new” and circulating well fluid has been established and can be calculated, although at this time not accurately predicted before testing a well. Based on the analytical models, multi-tube heat exchangers have been designed and very recently tested with outputs within 15% of predicted values. Economic analyses shows that for small to moderate extraction rates, about 300 kW thermal, and shallow wells, DHEs may be more economical than pumped systems when surface discharge is not acceptable.

  1. Integrated Safety Culture Model and Application

    汪磊; 孙瑞山; 刘汉辉


    A new safety culture model is constructed and is applied to analyze the correlations between safety culture and SMS. On the basis of previous typical definitions, models and theories of safety culture, an in-depth analysis on safety culture's structure, composing elements and their correlations was conducted. A new definition of safety culture was proposed from the perspective of sub-cuhure. 7 types of safety sub-culture, which are safety priority culture, standardizing culture, flexible culture, learning culture, teamwork culture, reporting culture and justice culture were defined later. Then integrated safety culture model (ISCM) was put forward based on the definition. The model divided safety culture into intrinsic latency level and extrinsic indication level and explained the potential relationship between safety sub-culture and all safety culture dimensions. Finally in the analyzing of safety culture and SMS, it concluded that positive safety culture is the basis of im-plementing SMS effectively and an advanced SMS will improve safety culture from all around.

  2. Geothermal electricity generation and desalination: an integrated process design to conserve latent heat with operational improvements

    Missimer, Thomas M.


    A new process combination is proposed to link geothermal electricity generation with desalination. The concept involves maximizing the utilization of harvested latent heat by passing the turbine exhaust steam into a multiple effect distillation system and then into an adsorption desalination system. Processes are fully integrated to produce electricity, desalted water for consumer consumption, and make-up water for the geothermal extraction system. Further improvements in operational efficiency are achieved by adding a seawater reverse osmosis system to the site to utilize some of the generated electricity and using on-site aquifer storage and recovery to maximize water production with tailoring of seasonal capacity requirements and to meet facility maintenance requirements. The concept proposed conserves geothermally harvested latent heat and maximizes the economics of geothermal energy development. Development of a fully renewable energy electric generation-desalination-aquifer storage campus is introduced within the framework of geothermal energy development. © 2016 The Author(s). Published by Taylor & Francis

  3. Geothermal electricity generation and desalination: an integrated process design to conserve latent heat with operational improvements

    Missimer, Thomas M.; Ng, Kim Choon; Thuw, Kyaw; Wakil Shahzad, Muhammad


    A new process combination is proposed to link geothermal electricity generation with desalination. The concept involves maximizing the utilization of harvested latent heat by passing the turbine exhaust steam into a multiple effect distillation system and then into an adsorption desalination system. Processes are fully integrated to produce electricity, desalted water for consumer consumption, and make-up water for the geothermal extraction system. Further improvements in operational efficiency are achieved by adding a seawater reverse osmosis system to the site to utilize some of the generated electricity and using on-site aquifer storage and recovery to maximize water production with tailoring of seasonal capacity requirements and to meet facility maintenance requirements. The concept proposed conserves geothermally harvested latent heat and maximizes the economics of geothermal energy development. Development of a fully renewable energy electric generation-desalination-aquifer storage campus is introduced within the framework of geothermal energy development. © 2016 The Author(s). Published by Taylor & Francis

  4. Heat integration of an Olefins Plant: Pinch Analysis and mathematical optimization working together

    M. Beninca


    Full Text Available This work explores a two-step, complexity reducing methodology, to analyze heat integration opportunities of an existing Olefins Plant, identify and quantify reduction of energy consumption, and propose changes of the existing heat exchanger network to achieve these goals. Besides the analysis of plant design conditions, multiple operational scenarios were considered to propose modifications for handling real plant operation (flexibility. On the strength of plant complexity and large dimension, work methodology was split into two parts: initially, the whole plant was evaluated with traditional Pinch Analysis tools. Several opportunities were identified and modifications proposed. Modifications were segregated to represent small and independent portions of the original process. One of them was selected to be re-analyzed, considering two scenarios. Reduction of problem dimension allowed mathematical methodologies (formulation with decomposition, applying LP, MILP and NLP optimization methods to synthesize flexible networks to be applied, generating a feasible modification capable of fulfilling the proposed operational scenarios.

  5. Process integration and waste heat recovery in Lithuanian and Danish industry. Final report phase 1



    The present document forms the Final Report for the first phase of the project `Process Integration and Waste Heat Recovery in Lithuanian and Danish Industry`. The project is carried out in the period 1995-1998 in a co-operation between the COWI offices in Lyngby and Vilnius, The Technical University of Denmark (Institute for Energetics), Kaunas University of Technology (CIPAI) and Vilnius Technical University, financed by The Danish Ministry of Energy`s EFP-95-programme, Lithuanian Energy Agency as well as the participants. The first phase of the project has comprised the establishment of the CIPAI centre (Centre for Industrial Process Analysis and Integration) at Kaunas University of Technology, training and knowledge transfer as well as elaboration of 6 industrial case-studies within the area of `Process Integration and waste Heat Recovery`. The second phase of the project has comprised R and D activities in this area in order to present general conclusions from the project as well as to present new and improved methods and tools for PI-analysis. The aim of the Final Report for the first phase of the project is to summarise project activities and the achieved results from case-studies and from the operation of the CIPAI-centre in general. (au)




    Full Text Available A total loss of all heat sinks is considered a severe accident with a low probability of occurrence. Following a total loss of all heat sinks, the degasser/condenser relief valves (DCRV become the sole means available for the depressurization of the primary heat transport system. If a nuclear power plant has a total loss of heat sinks accident, high-temperature steam and differential pressure between the primary heat transport system (PHTS and the steam generator (SG secondary side can cause a SG tube creep rupture. To protect the PHTS during a total loss of all heat sinks accident, a sufficient depressurization capability of the degasser/condenser relief valve and the SG tube integrity is very important. Therefore, an accurate estimation of the discharge through these valves is necessary to assess the impact of the PHTS overprotection and the SG tube integrity of the primary circuit. This paper describes the analysis of DCRV discharge capacity and the SG tube integrity under a total loss of all heat sink using the CATHENA code. It was found that the DCRV's discharge capacity is enough to protect the overpressure in the PHTS, and the SG tube integrity is maintained in a total loss of all heat accident.

  7. Steam Generator Tube Integrity Analysis of A Total Loss of all Heat Sinks Accident for Wolsong NPP Unit 1

    Lim, Heoksoon; Song, Taeyoung; Chi, Moongoo [Korea Htydro and Nuclear Power Co., Ltd., Daejeon (Korea, Republic of); Kim, Seoungrae [Nuclear Engineering Service and Solution, Daejeon (Korea, Republic of)


    A total loss of all heat sinks is considered a severe accident with a low probability of occurrence. Following a total loss of all heat sinks, the degasser/condenser relief valves (DCRV) become the sole means available for the depressurization of the primary heat transport system. If a nuclear power plant has a total loss of heat sinks accident, high-temperature steam and differential pressure between the primary heat transport system (PHTS) and the steam generator (SG) secondary side can cause a SG tube creep rupture. To protect the PHTS during a total loss of all heat sinks accident, a sufficient depressurization capability of the degasser/condenser relief valve and the SG tube integrity is very important. Therefore, an accurate estimation of the discharge through these valves is necessary to assess the impact of the PHTS overprotection and the SG tube integrity of the primary circuit. This paper describes the analysis of DCRV discharge capacity and the SG tube integrity under a total loss of all heat sink using the CATHENA code. It was found that the DCRV's discharge capacity is enough to protect the overpressure in the PHTS, and the SG tube integrity is maintained in a total loss of all heat accident.

  8. Steam Generator Tube Integrity Analysis of A Total Loss of all Heat Sinks Accident for Wolsong NPP Unit 1

    Lim, Heoksoon; Song, Taeyoung; Chi, Moongoo; Kim, Seoungrae


    A total loss of all heat sinks is considered a severe accident with a low probability of occurrence. Following a total loss of all heat sinks, the degasser/condenser relief valves (DCRV) become the sole means available for the depressurization of the primary heat transport system. If a nuclear power plant has a total loss of heat sinks accident, high-temperature steam and differential pressure between the primary heat transport system (PHTS) and the steam generator (SG) secondary side can cause a SG tube creep rupture. To protect the PHTS during a total loss of all heat sinks accident, a sufficient depressurization capability of the degasser/condenser relief valve and the SG tube integrity is very important. Therefore, an accurate estimation of the discharge through these valves is necessary to assess the impact of the PHTS overprotection and the SG tube integrity of the primary circuit. This paper describes the analysis of DCRV discharge capacity and the SG tube integrity under a total loss of all heat sink using the CATHENA code. It was found that the DCRV's discharge capacity is enough to protect the overpressure in the PHTS, and the SG tube integrity is maintained in a total loss of all heat accident

  9. Comparative ex vivo study on humidifying function of three speaking valves with integrated heat and moisture exchanger for tracheotomised patients

    van den Boer, C.; Lansaat, L.; Muller, S.H.; van den Brekel, M.W.M.; Hilgers, F.J.M.


    Objective Assessment of humidifying function of tracheotomy speaking valves with integrated heat and moisture exchanger. Design Ex vivo measurement of water exchange and storage capacity of three tracheotomy speaking valves: Humidiphon Plus, Spiro and ProTrach DualCare (with two different heat and

  10. Comparative ex vivo study on humidifying function of three speaking valves with integrated heat and moisture exchanger for tracheotomised patients

    van den Boer, C.; Lansaat, L.; Muller, S. H.; van den Brekel, M. W. M.; Hilgers, F. J. M.


    Assessment of humidifying function of tracheotomy speaking valves with integrated heat and moisture exchanger. Ex vivo measurement of water exchange and storage capacity of three tracheotomy speaking valves: Humidiphon Plus, Spiro and ProTrach DualCare (with two different heat and moisture

  11. Air-Source Integrated Heat Pump System Development – Final Report

    Baxter, Van D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Rice, C. Keith [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Munk, Jeffrey D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ally, Moonis R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shen, Bo [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Uselton, R. B. [Lennox Industries, Inc., Knoxville, TN (United States)


    Between October 2007 and September 2017, Oak Ridge National Laboratory (ORNL) and Lennox Industries, Inc. (Lennox) engaged in a Cooperative Research and Development Agreement (CRADA) to develop an air-source integrated heat pump (AS-IHP) system for the US residential market. The Lennox AS-IHP concept consisted of a high-efficiency air-source heat pump (ASHP) for space heating and cooling services and a separate heat pump water heater/dehumidifier (WH/DH) module for domestic water heating and dehumidification (DH) services. A key feature of this system approach with the separate WH/DH is capability to pretreat (i.e., dehumidify) ventilation air and dedicated whole-house DH independent of the ASHP. Two generations of laboratory prototype WH/DH units were designed, fabricated, and lab tested. Performance maps for the system were developed using the latest research version of the US Department of Energy/ORNL heat pump design model (Rice 1992; Rice and Jackson 2005; Shen et al. 2012) as calibrated against the lab test data. These maps served as the input to TRNSYS (Solar Energy Laboratory et al. 2010) to predict annual performance relative to a baseline suite of equipment meeting minimum efficiency standards in effect in 2006 (i.e., a combination of an ASHP with a seasonal energy efficiency ratio (SEER) of 13 and resistance water heater with an energy factor (EF) of 0.9). Predicted total annual energy savings (based on use of a two-speed ASHP and the second-generation WH/DH prototype for the AS-IHP), while providing space conditioning, water heating, and dehumidification for a tight, well-insulated 2600 ft2 (242 m2) house at three US locations, ranged from 33 to 36%, averaging 35%, relative to the baseline system. The lowest savings were seen at the cold-climate Chicago location. Predicted energy use for water heating was reduced by about 50 to 60% relative to a resistance WH.

  12. Application of miniature heat pipe for notebook PC cooling

    Moon, S.H.; Hwang, G.; Choy, T.G. [Electronics and Telecommunications research Institute, Taejeon (Korea)


    Miniature heat pipe(MHP) with woven-wired wick was used to cool the CPU of a notebook PC. The pipe with circular cross-section was pressed and bent for packaging the MHP into a notebook PC with very limited compact packaging space. A cross-sectional area of the pipe is reduced about 30% as the MHP with 4 mm diameter is pressed to 2 mm thickness. In the present study a performance test has been performed in order to review varying of operating performance according to pressed thickness variation and heat dissipation capacity of MHP cooling module that is packaged on a notebook PC. New wick type was considered for overcoming low heat transfer limit when MHP is pressed to thin-plate. The limiting thickness of pressing is shown to be within the range of 2 mm {approx} 2.5 mm through the performance test with varying the pressing thickness. When the wall thickness of 0.4 mm is reduced to 0.25 mm for minimizing conductive thermal resistance through the wall of heat pipe, heat transfer limit and thermal resistance of MHP were improved about 10%. In the meantime, it is shown that the thermal resistance and heat transfer limit for the MHP with central wick type are higher than those of MHP with existing wick types. The results of performance test for MHP cooling modules with woven-wired wick to cool notebook PC shows the stability as cooling system since T{sub j}(Temperature of Processor Junction) satisfy a demand condition of 0 {approx} 100 deg.C under 11.5 W of CPU heat. (author). 6 refs., 7 figs.

  13. Ohmic Heating Technology and Its Application in Meaty Food: A Review

    Rishi Richa; N. C. Shahi; Anupama Singh; U. C. Lohani; P. K. Omre; Anil Kumar; T. K. Bhattacharya


    The purpose of the current review paper is to investigate and analyze about the effects of ohmic heating (OH) different application in the field of fish, meat and its product and compare it with other conventional thermal methods of food processing such as thawing, heating, cooking etc. Food quality, food safety, convenience, freshness, healthy food, natural flavor and taste with extended shelf-life are the main criteria for the demand made by today’s consumers. Ohmic heating is a substitute ...

  14. The effectiveness of absorption heat pumps application for the increase of economic efficiency of CHP operation

    Luzhkovoy Dmitriy S.


    Full Text Available The article deals with a comparative analysis of CHP operational efficiency in various working modes before and after the absorption heat pumps installation. The calculation was performed using a mathematical model of the extraction turbine PT- 80/100-130/13. Absorption heat pumps of LLC “OKB Teplosibmash” were used as AHP models for the analysis. The most effective way of absorption lithium-bromide heat pumps application as a part of the turbine PT-80/100-130/13 turned out to be their usage in a heat-producing mode during a non-heating season with a load of hot water supply. For this mode the dependence of the turbine heat efficiency on the heat load of the external consumer at a given throttle flow was analyzed.

  15. Usage of Heat Pump Dryer in Food Drying Process and Apple Drying Application

    Gökhan Gürlek


    Full Text Available In Turkey, drying is achieved natural method by spreading out the material on the ground. In this way, there are many disadvantages like low quality and hygienic problems. The resulting loss of food quality in the dried products may have effect negatively trade potential and economical worth. For preventing the deterioration of the materials different types of drying methods have been developed. Low energy consumption applications are important for drying industry besides high product quality. For this purpose, heat pump dryer is gaining importance day by day in drying applications. In this study, the working principle of the heat pump dryer, heat pump types in the drying process and the heat pump dryer performance criteria will be considered. An example of application will be described using obtained results from apple drying operation that is conducted in the heat pump dryer.

  16. Low temperature heat capacities and thermodynamic functions described by Debye-Einstein integrals.

    Gamsjäger, Ernst; Wiessner, Manfred


    Thermodynamic data of various crystalline solids are assessed from low temperature heat capacity measurements, i.e., from almost absolute zero to 300 K by means of semi-empirical models. Previous studies frequently present fit functions with a large amount of coefficients resulting in almost perfect agreement with experimental data. It is, however, pointed out in this work that special care is required to avoid overfitting. Apart from anomalies like phase transformations, it is likely that data from calorimetric measurements can be fitted by a relatively simple Debye-Einstein integral with sufficient precision. Thereby, reliable values for the heat capacities, standard enthalpies, and standard entropies at T  = 298.15 K are obtained. Standard thermodynamic functions of various compounds strongly differing in the number of atoms in the formula unit can be derived from this fitting procedure and are compared to the results of previous fitting procedures. The residuals are of course larger when the Debye-Einstein integral is applied instead of using a high number of fit coefficients or connected splines, but the semi-empiric fit coefficients keep their meaning with respect to physics. It is suggested to use the Debye-Einstein integral fit as a standard method to describe heat capacities in the range between 0 and 300 K so that the derived thermodynamic functions are obtained on the same theory-related semi-empiric basis. Additional fitting is recommended when a precise description for data at ultra-low temperatures (0-20 K) is requested.

  17. Integration of USB and firewire cameras in machine vision applications

    Smith, Timothy E.; Britton, Douglas F.; Daley, Wayne D.; Carey, Richard


    Digital cameras have been around for many years, but a new breed of consumer market cameras is hitting the main stream. By using these devices, system designers and integrators will be well posited to take advantage of technological advances developed to support multimedia and imaging applications on the PC platform. Having these new cameras on the consumer market means lower cost, but it does not necessarily guarantee ease of integration. There are many issues that need to be accounted for like image quality, maintainable frame rates, image size and resolution, supported operating system, and ease of software integration. This paper will describe briefly a couple of the consumer digital standards, and then discuss some of the advantages and pitfalls of integrating both USB and Firewire cameras into computer/machine vision applications.

  18. Optimization model of a system of crude oil distillation units whit heat integration and meta modeling

    Lopez, Diana C; Mahecha, Cesar A; Hoyos, Luis J; Acevedo, Leonardo; Villamizar Jaime F


    The process of crude distillation impacts the economy of any refinery in a considerable manner. Therefore, it is necessary to improve it taking good advantage of the available infrastructure, generating products that conform to the specifications without violating the equipment operating constraints or plant restrictions at industrial units. The objective of this paper is to present the development of an optimization model for a Crude Distillation Unit (CDU) system at a ECOPETROL S.A. refinery in Barrancabermeja, involving the typical restrictions (flow according to pipeline capacity, pumps, distillation columns, etc) and a restriction that has not been included in bibliographic reports for this type of models: the heat integration of streams from Atmospheric Distillation Towers (ADTs) and Vacuum Distillation Towers (VDT) with the heat exchanger networks for crude pre-heating. On the other hand, ADTs were modeled with Meta models in function of column temperatures and pressures, pumparounds flows and return temperatures, stripping steam flows, Jet EBP ASTM D-86 and Diesel EBP ASTM D-86. Pre-heating trains were modeled with mass and energy balances, and design equation of each heat exchanger. The optimization model is NLP, maximizing the system profit. This model was implemented in GAMSide 22,2 using the CONOPT solver and it found new operating points with better economic results than those obtained with the normal operation in the real plants. It predicted optimum operation conditions of 3 ADTs for constant composition crude and calculated the yields and properties of atmospheric products, additional to temperatures and duties of 27 Crude Oil exchangers.

  19. Optimization model of a system of crude oil distillation units with heat integration and metamodeling

    Lopez, Diana C; Mahecha, Cesar A; Hoyos, Luis J; Acevedo, Leonardo; Villamizar Jaime F


    The process of crude distillation impacts the economy of any refinery in a considerable manner. Therefore, it is necessary to improve it taking good advantage of the available infrastructure, generating products that conform to the specifications without violating the equipment operating constraints or plant restrictions at industrial units. The objective of this paper is to present the development of an optimization model for a Crude Distillation Unit (CDU) system at a ECOPETROL S.A. refinery in Barrancabermeja, involving the typical restrictions (flow according to pipeline capacity, pumps, distillation columns, etc) and a restriction that has not been included in bibliographic reports for this type of models: the heat integration of streams from Atmospheric Distillation Towers (ADTs) and Vacuum Distillation Towers (VDT) with the heat exchanger networks for crude pre-heating. On the other hand, ADTs were modeled with Metamodels in function of column temperatures and pressures, pump a rounds flows and return temperatures, stripping steam flows, Jet EBP ASTM D-86 and Diesel EBP ASTM D-86. Pre-heating trains were modeled with mass and energy balances, and design equation of each heat exchanger. The optimization model is NLP, maximizing the system profit. This model was implemented in GAMSide 22,2 using the CONOPT solver and it found new operating points with better economic results than those obtained with the normal operation in the real plants. It predicted optimum operation conditions of 3 ADTs for constant composition crude and calculated the yields and properties of atmospheric products, additional to temperatures and duties of 27 Crude Oil exchangers.

  20. Energy saving in multicomponent separation using an internally heat-integrated distillation column (HIDiC)

    Iwakabe, Koichi [Department of Chemical Engineering, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro, Tokyo 152-8552 (Japan); Nakaiwa, Masaru; Huang, Kejin; Ohmori, Takao; Endo, Akira; Yamamoto, Takuji [Energy-Efficient Chemical Systems Group, Research Institute for Innovation in Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology, Tsukuba Central 5, 1-1-1, Higashi, Tsukuba, Ibaraki 305-8565 (Japan); Nakanishi, Toshinari [R and D Department, Kimura Chemical Plants Co., Ltd, 2-1-2, Terajima Kuise, Amagasaki, Hyogo 660-8567 (Japan); Roesjorde, Audun [Department of Chemistry, Norwegian University of Science and Technology, 7491 Tronheim (Norway)


    Energy savings by an internally heat-integrated distillation column (HIDiC) for the separation of multicomponent mixtures were studied. The design and the operating variables of a HIDiC were defined for this purpose, and were systematically varied to carry out a sensitivity analysis. Benzene-toluene-p-xylene (BTX) mixture and 12-component hydrocarbons (12HC) mixture were chosen as model systems. Sensitivity analysis showed that the HIDiC is able to reduce energy consumption by about 30% for the BTX system and an even better 50% for the 12HC system. The effects on energy consumption of the design and the operating variables were also examined. (author)

  1. Enterprise Portals und Enterprise Application Integration - Begriffsbestimmung und Integrationskonzeptionen

    Schelp, Joachim; Winter, Robert


    Unter den Stichworten »Enterprise Portals« und »Enterprise Application Integration« werden neue Herausforderungen an die Applikationsarchitektur der Unternehmungen gestellt. Bei beiden spielt die Integration vorhandener und das Einfügen neuer Applikationen eine große Rolle. Beiden Themen ist gemein, dass sie die Diskussion bestimmter technischer Konzepte aus den vergangenen Jahren fortsetzen: Portale stellen das moderne Frontend dar, über das die verschiedenen E-Business-Konzepte umgesetzt we...

  2. Irreversible thermodynamic analysis and application for molecular heat engines

    Lucia, Umberto; Açıkkalp, Emin


    Is there a link between the macroscopic approach to irreversibility and microscopic behaviour of the systems? Consumption of free energy keeps the system away from a stable equilibrium. Entropy generation results from the redistribution of energy, momentum, mass and charge. This concept represents the essence of the thermodynamic approach to irreversibility. Irreversibility is the result of the interaction between systems and their environment. The aim of this paper is to determine lost works in a molecular engine and compare results with macro (classical) heat engines. Firstly, irreversible thermodynamics are reviewed for macro and molecular cycles. Secondly, irreversible thermodynamics approaches are applied for a quantum heat engine with -1/2 spin system. Finally, lost works are determined for considered system and results show that macro and molecular heat engines obey same limitations. Moreover, a quantum thermodynamic approach is suggested in order to explain the results previously obtained from an atomic viewpoint.

  3. A new fractional derivative without singular kernel: Application to the modelling of the steady heat flow

    Yang Xiao-Jun


    Full Text Available In this article we propose a new fractional derivative without singular kernel. We consider the potential application for modeling the steady heat-conduction problem. The analytical solution of the fractional-order heat flow is also obtained by means of the Laplace transform.

  4. Field Demonstration of Ground-Source Integrated Heat Pump - Final Report

    Baxter, Van D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Munk, Jeffrey D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gehl, Anthony C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)


    Reducing energy consumption in buildings is key to reducing or limiting the negative environmental impacts from the building sector. According to the United States (U.S.) Energy Information Administration (EIA), in 2013, commercial buildings consumed 18.1 quads of primary energy, which was 18.6% of the total U.S. primary energy consumption. The primary energy consumption in the commercial sector is projected to increase by 2.8 quads from 2013 to 2040, the second largest increase after the industrial sector. Further space heating, space cooling, and ventilation (HVAC) services accounted for 31% of the energy consumption in commercial buildings. The technical objective of this project is to demonstrate the capability of the new GS-IHP system to reduce overall energy use for space heating, space cooling, and water heating by at least 45% vs. a conventional electric RTU and electric WH in a light commercial building application. This project supports the DOE-Building Technologies Office (BTO) goals of reducing HVAC energy use by 20% and water heating by 60% by 2030.

  5. Heat transfer simulation for industrial applications. Needs, limitations, expectations

    Peniguel, C.


    The goal of this paper is to present a few problems and difficulties to which heat transfer engineers are confronted. Then, possible ways used to tackle these problems are exposed. The paper shows that in many occasions the approaches used are not completely satisfactory and that some aspects should be improved. It is also the opportunity to underline that even if turbulent heat transfer modelling is very important, from the industrial point of view, it represents often only one part of the problems which need to be addressed to perform a complete numerical simulation. (K.A.)

  6. On-Line Monitoring and Diagnostics of the Integrity of Nuclear Plant Steam Generators and Heat Exchangers, Volumes 1, 2

    Upadhyaya, Belle R. [Univ. of Tennessee, Knoxville, TN (United States); Hines, J. Wesley [Univ. of Tennessee, Knoxville, TN (United States); Lu, Baofu [Univ. of Tennessee, Knoxville, TN (United States)


    The overall purpose of this Nuclear Engineering Education Research (NEER) project was to integrate new, innovative, and existing technologies to develop a fault diagnostics and characterization system for nuclear plant steam generators (SG) and heat exchangers (HX). Issues related to system level degradation of SG and HX tubing, including tube fouling, performance under reduced heat transfer area, and the damage caused by stress corrosion cracking, are the important factors that influence overall plant operation, maintenance, and economic viability of nuclear power systems. The research at The University of Tennessee focused on the development of techniques for monitoring process and structural integrity of steam generators and heat exchangers. The objectives of the project were accomplished by the completion of the following tasks. All the objectives were accomplished during the project period. This report summarizes the research and development activities, results, and accomplishments during June 2001 September 2004. Development and testing of a high-fidelity nodal model of a U-tube steam generator (UTSG) to simulate the effects of fouling and to generate a database representing normal and degraded process conditions. Application of the group method of data handling (GMDH) method for process variable prediction. Development of a laboratory test module to simulate particulate fouling of HX tubes and its effect on overall thermal resistance. Application of the GMDH technique to predict HX fluid temperatures, and to compare with the calculated thermal resistance.Development of a hybrid modeling technique for process diagnosis and its evaluation using laboratory heat exchanger test data. Development and testing of a sensor suite using piezo-electric devices for monitoring structural integrity of both flat plates (beams) and tubing. Experiments were performed in air, and in water with and without bubbly flow. Development of advanced signal processing methods using

  7. Complexity of Configurators Relative to Integrations and Field of Application

    Kristjansdottir, Katrin; Shafiee, Sara; Battistello, Loris

    . Moreover, configurators are commonly integrated to various IT systems within companies. The complexity of configurators is an important factor when it comes to performance, development and maintenance of the systems. A direct comparison of the complexity based on the different application...... integrations to other IT systems. The research method adopted in the paper is based on a survey followed with interviews where the unit of analysis is based on operating configurators within a company.......Configurators are applied widely to automate the specification processes at companies. The literature describes the industrial application of configurators supporting both sales and engineering processes, where configurators supporting the engineering processes are described more challenging...

  8. Application of advanced model of radiative heat transfer in a rod geometry to QUENCH and PARAMETER tests

    Vasiliev, A.D.; Kobelev, G.V.; Astafieva, V.O.


    Radiative heat transfer is very important in different fields of mechanical engineering and related technologies including nuclear reactors, heat transfer in furnaces, aerospace, different high-temperature assemblies. In particular, in the course of a hypothetical severe accident at PWR-type nuclear reactor the temperatures inside the reactor vessel reach high values at which taking into account of radiative heat exchange between the structures of reactor (including core and other reactor vessel elements) gets important. Radiative heat transfer dominates the late phase of severe accident because radiative heat fluxes (proportional to T4, where T is the temperature) are generally considerably higher than convective and conductive heat fluxes in a system. In particular, heat transfer due to radiation determines the heating and degradation of the core and surrounding steel in-vessel structures and finally influences the composition, temperature and mass of materials pouring out of the reactor vessel after its loss of integrity. Existing models of radiative heat exchange use many limitations and approximations: approximate estimation of view factors and beam lengths; the geometry change in the course of the accident is neglected; the database for emissivities of materials is not complete; absorption/emission by steam-noncondensable medium is taken into account approximately. The module MRAD was developed in this paper to model the radiative heat exchange in rod-like geometry typical of PWR-type reactor. Radiative heat exchange is computed using dividing on zones (zonal method) as in existing radiation models implemented to severe accident numerical codes such as ICARE, SCDAP/RELAP, MELCOR but improved in following aspects: new approach to evaluation of view factors and mean beam length; detailed evaluation of gas absorptivity and emissivity; account of effective radiative thermal conductivity for the large core; account of geometry modification in the course of severe

  9. Numerical and experimental analysis of heat pipes with application in concentrated solar power systems

    Mahdavi, Mahboobe

    Thermal energy storage systems as an integral part of concentrated solar power plants improve the performance of the system by mitigating the mismatch between the energy supply and the energy demand. Using a phase change material (PCM) to store energy increases the energy density, hence, reduces the size and cost of the system. However, the performance is limited by the low thermal conductivity of the PCM, which decreases the heat transfer rate between the heat source and PCM, which therefore prolongs the melting, or solidification process, and results in overheating the interface wall. To address this issue, heat pipes are embedded in the PCM to enhance the heat transfer from the receiver to the PCM, and from the PCM to the heat sink during charging and discharging processes, respectively. In the current study, the thermal-fluid phenomenon inside a heat pipe was investigated. The heat pipe network is specifically configured to be implemented in a thermal energy storage unit for a concentrated solar power system. The configuration allows for simultaneous power generation and energy storage for later use. The network is composed of a main heat pipe and an array of secondary heat pipes. The primary heat pipe has a disk-shaped evaporator and a disk-shaped condenser, which are connected via an adiabatic section. The secondary heat pipes are attached to the condenser of the primary heat pipe and they are surrounded by PCM. The other side of the condenser is connected to a heat engine and serves as its heat acceptor. The applied thermal energy to the disk-shaped evaporator changes the phase of working fluid in the wick structure from liquid to vapor. The vapor pressure drives it through the adiabatic section to the condenser where the vapor condenses and releases its heat to a heat engine. It should be noted that the condensed working fluid is returned to the evaporator by the capillary forces of the wick. The extra heat is then delivered to the phase change material

  10. Heat pipes. Dictionary of terms, design, technology and application. Fiz. -energ. in-t. Obminsk. (Prepr. )

    Strozhkov, A I; Zayets, V V


    Types of capillary-porous structures, their advantages and shortcomings, and technology of fabrication are examined. Methods are described for regulating the heat pipes, their configuration and area of application.

  11. Near-term viability of solar heat applications for the federal sector

    Williams, T. A.


    Solar thermal technologies are capable of providing heat across a wide range of temperatures, making them potentially attractive for meeting energy requirements for industrial process heat applications and institutional heating. The energy savings that could be realized by solar thermal heat are quite large, potentially several quads annually. Although technologies for delivering heat at temperatures above 100 C currently exist within industry, only a fairly small number of commercial systems have been installed to date. The objective of this paper is to investigate and discuss the prospects for near term solar heat sales to federal facilities as a mechanism for providing an early market niche to the aid the widespread development and implementation of the technology. The specific technical focus is on mid-temperature (100 to 350 C) heat demands that could be met with parabolic trough systems. Federal facilities have several features relative to private industry that may make them attractive for solar heat applications relative to other sectors. Key features are specific policy mandates for conserving energy, a long term planning horizon with well defined decision criteria, and prescribed economic return criteria for conservation and solar investments that are generally less stringent than the investment criteria used by private industry. Federal facilities also have specific difficulties in the sale of solar heat technologies that are different from those of other sectors, and strategies to mitigate these difficulties will be important. For the baseline scenario developed in this paper, the solar heat application was economically competitive with heat provided by natural gas. The system levelized energy cost was $5.9/MBtu for the solar heat case, compared to $6.8/MBtu for the life cycle fuel cost of a natural gas case. A third-party ownership would also be attractive to federal users, since it would guarantee energy savings and would not need initial federal funds.

  12. Application of microwave heating to a polyesterification plant

    Komorowska-Durka, M.


    Utilizing microwave irradiation, a fundamentally different method of the energy transfer, to the chemical process units can potentially be advantageous compared to the conventional heating, inter alia due to the selective nature of interaction of the microwaves with the matter. This doctoral

  13. Application of microjet in heat treatment of aluminium bronzes

    Z. Górny


    Full Text Available Mechanical properties of a CuAl10Fe4Ni4 bronze subjected to solution heat treatment and toughening were examined. In solution heattreatment, a microjet was used to raise the cooling rate. A slight increase of mechanical properties was observed.

  14. Parametric analysis of geothermal residential heating and cooling application

    Sagia, Zoi N.; Stegou, Athina B.; Rakopoulos, Constantinos D. [National Technical University of Athens, School of Mechanical Engineering, Department of Thermal Engineering, Heroon Polytechniou 9, 15780, Zografou, Attiki (Greece)


    A study is carried out to evaluate the efficiency of a Ground Source Heat Pump (GSHP) system with vertical heat exchangers applied to a three-storey terraced building, with total heated area 271.56 m2, standing on Hellinikon, Athens. The estimation of building loads is made with TRNSYS 16.1 using climatic data calculated by Meteonorm 6.1. The GSHP system is modeled with two other packages GLD 2009 and GLHEPRO 4.0. A comparison of the mean fluid temperature (fluid temperature in the borehole calculated as the average of exiting and entering fluid temperature), computed by above software, shows how close the results are. In addition, a parametric analysis is done to examine the influence of undisturbed ground temperature, ground heat exchanger (GHE) length and borehole separation distance to system’s operational characteristics so as to cover building loads. Finally, a 2D transient simulation is performed by means of COMSOL Multiphysics 4.0a. The carrier fluid in the borehole is modeled as a solid with extremely high thermal conductivity, extracting from and injecting to the ground the hourly load profile calculated by TRNSYS. The mean fluid temperature and the borehole wall temperature are computed for an entire year and compared with the values calculated by GLD.

  15. Biomass pyrolysis and combustion integral and differential reaction heats with temperatures using thermogravimetric analysis/differential scanning calorimetry.

    Shen, Jiacheng; Igathinathane, C; Yu, Manlu; Pothula, Anand Kumar


    Integral reaction heats of switchgrass, big bluestem, and corn stalks were determined using thermogravimetric analysis/differential scanning calorimetry (TGA/DSC). Iso-conversion differential reaction heats using TGA/DSC pyrolysis and combustion of biomass were not available, despite reports available on heats required and released. A concept of iso-conversion differential reaction heats was used to determine the differential reaction heats of each thermal characteristics segment of these materials. Results showed that the integral reaction heats were endothermic from 30 to 700°C for pyrolysis of switchgrass and big bluestem, but they were exothermic for corn stalks prior to 587°C. However, the integral reaction heats for combustion of the materials followed an endothermic to exothermic transition. The differential reaction heats of switchgrass pyrolysis were predominantly endothermic in the fraction of mass loss (0.0536-0.975), and were exothermic for corn stalks (0.0885-0.850) and big bluestem (0.736-0.919). Study results provided better insight into biomass thermal mechanism. Published by Elsevier Ltd.

  16. Smart Power: New power integrated circuit technologies and their applications

    Kuivalainen, Pekka; Pohjonen, Helena; Yli-Pietilae, Timo; Lenkkeri, Jaakko


    Power Integrated Circuits (PIC) is one of the most rapidly growing branches of the semiconductor technology. The PIC markets has been forecast to grow from 660 million dollars in 1990 to 1658 million dollars in 1994. It has even been forecast that at the end of the 1990's the PIC markets would correspond to the value of the whole semiconductor production in 1990. Automotive electronics will play the leading role in the development of the standard PIC's. Integrated motor drivers (36 V/4 A), smart integrated switches (60 V/30 A), solenoid drivers, integrated switch-mode power supplies and regulators are the latest standard devices of the PIC manufactures. ASIC (Application Specific Integrated Circuits) PIC solutions are needed for the same reasons as other ASIC devices: there are no proper standard devices, a company has a lot of application knowhow, which should be kept inside the company, the size of the product must be reduced, and assembly costs are wished to be reduced by decreasing the number of discrete devices. During the next few years the most probable ASIC PIC applications in Finland will be integrated solenoid and motor drivers, an integrated electronic lamp ballast circuit and various sensor interface circuits. Application of the PIC technologies to machines and actuators will strongly be increased all over the world. This means that various PIC's, either standard PIC's or full custom ASIC circuits, will appear in many products which compete with the corresponding Finnish products. Therefore the development of the PIC technologies must be followed carefully in order to immediately be able to apply the latest development in the smart power technologies and their design methods.

  17. Progress Report for Diffusion Welding of the NGNP Process Application Heat Exchangers

    R.E. Mizia; D.E. Clark; M.V. Glazoff; T.E. Lister; T.L. Trowbridge


    The U.S. Department of Energy selected the high temperature gas-cooled reactor as the basis for the Next Generation Nuclear Plant (NGNP). The NGNP will demonstrate the use of nuclear power for electricity, hydrogen production, and process heat applications. The NGNP Project is currently investigating the use of metallic, diffusion welded, compact heat exchangers to transfer heat from the primary (reactor side) heat transport system to the secondary heat transport system. An intermediate heat exchanger will transfer this heat to downstream applications such as hydrogen production, process heat, and electricity generation. The channeled plates that make up the heat transfer surfaces of the intermediate heat exchanger will have to be assembled into an array by diffusion welding. This report describes the preliminary results of a scoping study that evaluated the diffusion welding process parameters and the resultant mechanical properties of diffusion welded joints using Alloy 800H. The long-term goal of the program is to progress towards demonstration of small heat exchanger unit cells fabricated with diffusion welds. Demonstration through mechanical testing of the unit cells will support American Society of Mechanical Engineers rules and standards development, reduce technical risk, and provide proof of concept for heat exchanger fabrication methods needed to deploy heat exchangers in several potential NGNP configurations.1 Researchers also evaluated the usefulness of modern thermodynamic and diffusion computational tools (Thermo-Calc and Dictra) in optimizing the parameters for diffusion welding of Alloy 800H. The modeling efforts suggested a temperature of 1150 C for 1 hour with an applied pressure of 5 MPa using 15 {micro}m nickel foil as joint filler to reduce chromium oxidation on the welded surfaces. Good agreement between modeled and experimentally determined concentration gradients was achieved

  18. Integral transform solution of natural convection in a square cavity with volumetric heat generation

    C. An


    Full Text Available The generalized integral transform technique (GITT is employed to obtain a hybrid numerical-analytical solution of natural convection in a cavity with volumetric heat generation. The hybrid nature of this approach allows for the establishment of benchmark results in the solution of non-linear partial differential equation systems, including the coupled set of heat and fluid flow equations that govern the steady natural convection problem under consideration. Through performing the GITT, the resulting transformed ODE system is then numerically solved by making use of the subroutine DBVPFD from the IMSL Library. Therefore, numerical results under user prescribed accuracy are obtained for different values of Rayleigh numbers, and the convergence behavior of the proposed eigenfunction expansions is illustrated. Critical comparisons against solutions produced by ANSYS CFX 12.0 are then conducted, which demonstrate excellent agreement. Several sets of reference results for natural convection with volumetric heat generation in a bi-dimensional square cavity are also provided for future verification of numerical results obtained by other researchers.

  19. Electrolyzer Performance Analysis of an Integrated Hydrogen Power System for Greenhouse Heating. A Case Study

    Simone Pascuzzi


    Full Text Available A greenhouse containing an integrated system of photovoltaic panels, a water electrolyzer, fuel cells and a geothermal heat pump was set up to investigate suitable solutions for a power system based on solar energy and hydrogen, feeding a self-sufficient, geothermal-heated greenhouse. The electricity produced by the photovoltaic source supplies the electrolyzer; the manufactured hydrogen gas is held in a pressure tank. In these systems, the electrolyzer is a crucial component; the technical challenge is to make it work regularly despite the irregularity of the solar source. The focus of this paper is to study the performance and the real energy efficiency of the electrolyzer, analyzing its operational data collected under different operating conditions affected by the changeable solar radiant energy characterizing the site where the experimental plant was located. The analysis of the measured values allowed evaluation of its suitability for the agricultural requirements such as greenhouse heating. On the strength of the obtained result, a new layout of the battery bank has been designed and exemplified to improve the performance of the electrolyzer. The evaluations resulting from this case study may have a genuine value, therefore assisting in further studies to better understand these devices and their associated technologies.

  20. Ionic liquids as heat transfer fluids: comparison with known systems, possible applications, advantages and disadvantages

    Chernikova, E A; Glukhov, L M; Krasovskiy, V G; Kustov, L M; Vorobyeva, M G; Koroteev, A A


    The practical aspects and prospects of application of ionic liquids as heat transfer fluids are discussed. The physicochemical properties of ionic liquids (heat capacity, thermal conductivity, thermal and radiation stability, viscosity, density, saturated vapour pressure and corrosion activity) are compared with the properties of some commercial heat transfer fluids. The issues of toxicity of ionic liquids are considered. Much attention is paid to known organosilicon heat transfer fluids, which are considered to have much in common with ionic liquids in the set of properties and are used in the review as reference materials. The bibliography includes 132 references

  1. Integrated Heat, Air and Moisture Modeling and Simulation in Hamlab, Reference: A41-T3-NL-05-2

    Schijndel, van A.W.M.


    This paper gives an overview of recent developments and results of a new integrated heat, air and moisture (HAM) modeling toolkit in Matlab named HAMLab. The recent developments include integration of a whole building model with building systems and controllers, 2D/3D HAM transport in constructions

  2. Performance of a forced convection solar drier integrated with gravel as heat storage material

    Mohanraj, M. [Dr Mahalingam College of Engineering and Technology, Pollachi (India). Dept. of Mechanical Engineering; Chandrasekar, P. [Swinburne Univ. of Technology, Sarawak (Malaysia). School of Engineering Sciences


    Sun drying is the most common method used in India to dry agricultural products such as grains, fruits and vegetables. The rate of drying depends on solar radiation, ambient temperature, wind velocity, relative humidity, initial moisture content, type of crops, crop absorptivity and mass product per unit exposed area. However, this method of spreading the crop in a thin layer on the ground has several disadvantages. This paper reported on a study that focused on developing a forced convection solar drier integrated with heat storage materials for drying various agricultural crops. The indirect forced convection solar drier, integrated with gravel as a sensible heat material, was used to dry pineapple slices under conditions similar to those found in Pollachi, India. The performance of the system was discussed along with the drying characteristics, drying rate, and specific moisture extraction rate. The results showed that the moisture content (wet basis) of pineapple was reduced from about 87.5 to 14.5 per cent (equilibrium moisture content) in about 29 hours in the bottom tray and 32 hours in the top tray. The thermal efficiency of the solar air heater was also reviewed. 9 refs., 5 figs.

  3. Allowable peak heat-up cladding temperature for spent fuel integrity during interim-dry storage

    Ki-Nam Jang


    Full Text Available To investigate allowable peak cladding temperature and hoop stress for maintenance of cladding integrity during interim-dry storage and subsequent transport, zirconium alloy cladding tubes were hydrogen-charged to generate 250 ppm and 500 ppm hydrogen contents, simulating spent nuclear fuel degradation. The hydrogen-charged specimens were heated to four peak temperatures of 250°C, 300°C, 350°C, and 400°C, and then cooled to room temperature at cooling rates of 0.3 °C/min under three tensile hoop stresses of 80 MPa, 100 MPa, and 120 MPa. The cool-down specimens showed that high peak heat-up temperature led to lower hydrogen content and that larger tensile hoop stress generated larger radial hydride fraction and consequently lower plastic elongation. Based on these out-of-pile cladding tube test results only, it may be said that peak cladding temperature should be limited to a level < 250°C, regardless of the cladding hoop stress, to ensure cladding integrity during interim-dry storage and subsequent transport.

  4. Use of integral experiments to improve neutron propagation and gamma heating calculations

    Oceraies, Y.; Caumette, P.; Devillers, C.; Bussac, J.


    1) The studies to define and improve the accuracies of neutron propagation and gamma heating calculations from integral experiments are encompassed in the field of the fast reactor physics program at CEA. 2) A systematic analysis of neutron propagation in Fe-Na clean media, with variable volumic composition between 0 and 100% in sodium, has been performed on the HARMONIE source reactor. Gamma heating traverses in the core, the blankets and several control rods, have been measured in the R Z core program at MASURCA. The experimental techniques, the accuracies and the results obtained are given. The approximations of the calculational methods used to analyse these experiments and to predict the corresponding design parameters are also described. 3) Particular emphasis is given to the methods planned to improve fundamental data used in neutron propagation calculations, using the discrepancies observed between measured and calculated results in clean integral experiments. One of these approaches, similar to the techniques used in core physics, relies upon sensitivity studies and eventually on adjustment techniques applied to neutron propagation. (author)

  5. Direct heat applications of geothermal energy in The Geysers/Clear Lake region. Volume I. Geotechnical assessment, agribusiness applications, socioeconomic assessment, engineering assessment. Final report


    Discussion is presented under the following section headings: background and some technical characteristics of geothermal resources; geology and geohydrology, geophysics, and, conclusions regarding availability of geothermal energy for nonelectric uses; agricultural assessment of Lake County, site assessment for potential agricultural development, analysis of potential agricultural applications, special application of low cost geothermal energy to algae harvesting, development of an integrated agribusiness, geothermal complex in Lake County, analysis of individual enterprises, and, recommendations for subsequent work; demographic characteristics, economic condition and perspective of Lake County, economic impact of geothermal in Lake County, social and economic factors related to geothermal resource development, socioeconomic impact of nonelectric uses of geothermal energy, and, identification of direct heat applications of geothermal energy for Lake County based on selected interviews; cost estimate procedure, example, justification of procedure, and, typical costs and conclusions; and, recommended prefeasibility and feasibility studies related to construction of facilities for nonelectric applications of geothermal resource utilization. (JGB)

  6. The application of ground source heat pumps to a subdivision-wide district heating system

    Ciavaglia, L.


    Design guidelines for economic ground source heat pumps (GSHP) in district energy systems were presented. The broad economics of using central GSHP in a community district energy system were examined. Design parameters needed to utilize GSHP in district energy system were outlined. The sensitivity of energy prices and the costs of major capital were reviewed. District heating load duration curves were outlined. It was suggested that varying GSHP capacity from 0 to 100 per cent of load was advisable. In addition, capacity should be balanced with gas boiler technology. The amortizing of capital within energy costs was recommended. It was suggested that the best scenario was a minimum of 50 per cent ground energy. Details of pipings and heat exchanger costs were presented, along with costs for gas boilers and gas costs for the district energy system. Charts of current costing and reduction of piping capital were included. It was concluded that GSHP can be a viable component of a district energy system, as a GSHP based district energy system can provide more stable energy prices than conventional fossil fuel systems. It was suggested that sizing of GSHP at, or near, 40 per cent of peak demand provided optimal conditions with respect to energy cost and use of earth energy. tabs., figs

  7. Experimental Study of Single Phase Flow in a Closed-Loop Cooling System with Integrated Mini-Channel Heat Sink

    Lei Ma


    Full Text Available The flow and heat transfer characteristics of a closed-loop cooling system with a mini-channel heat sink for thermal management of electronics is studied experimentally. The heat sink is designed with corrugated fins to improve its heat dissipation capability. The experiments are performed using variable coolant volumetric flow rates and input heating powers. The experimental results show a high and reliable thermal performance using the heat sink with corrugated fins. The heat transfer capability is improved up to 30 W/cm2 when the base temperature is kept at a stable and acceptable level. Besides the heat transfer capability enhancement, the capability of the system to transfer heat for a long distance is also studied and a fast thermal response time to reach steady state is observed once the input heating power or the volume flow rate are varied. Under different input heat source powers and volumetric flow rates, our results suggest potential applications of the designed mini-channel heat sink in cooling microelectronics.

  8. Status of non-electric nuclear heat applications: Technology and safety


    Nuclear energy plays an important role in electricity generation, producing 16% of the world's electricity at the beginning of 1999. It has proven to be safe, reliable, economical and has only a minimal impact on the environment. Most of the world's energy consumption, however, is in the form of heat. The market potential for nuclear heat was recognized early. Some of the first reactors were used for heat supply, e.g. Calder Hall (United Kingdom), Obninsk (Russian Federation), and Agesta (Sweden). Now, over 60 reactors are supplying heat for district heating, industrial processes and seawater desalination. But the nuclear option could be better deployed if it would provide a larger share of the heat market. In particular, seawater desalination using nuclear heat is of increasing interest to some IAEA Member States. In consideration of the growing experience being accumulated, the IAEA periodically reviews the progress and new developments in the field of nuclear heat applications. This publication summarizes the recent activities among Member States presented at a Technical Committee meeting in April 1999. The purpose of the meeting was to provide a forum for the exchange of up to date information on the prospect, design, safety and licensing aspects, and development of non-electrical applications of nuclear heat for industrial use. This mainly included seawater desalination and hydrogen production

  9. Energy models. Integrated heating and cooling in different sports fields and halls; Energiamalli. Urheilupaikkojen integroitu laemmitys ja jaeaehdytys (UPILAEJAE)

    Aittomaeki, A.; Maekinen, A.


    The efficient use of energy is playing an increasing role in saving natural resources and in maintaining competitiveness. The system integration plays an essential role when efficiency is maximized. Expressed in thermodynamical terms the question is about minimizing the loss of energy. When planning the integration of heating and cooling the impacts of different coupling possibilities and measurements should be compared. In this report the modeling or simulation of energy balances studies in different systems is described. In the system integration of different sports buildings the modeling parts are the following: office space with heating systems, indoor ice-skating rink, skiing tunnel, indoor swimming pool, sports-field and sport center

  10. Heat transfer and fluid flow in biological processes advances and applications

    Becker, Sid


    Heat Transfer and Fluid Flow in Biological Processes covers emerging areas in fluid flow and heat transfer relevant to biosystems and medical technology. This book uses an interdisciplinary approach to provide a comprehensive prospective on biofluid mechanics and heat transfer advances and includes reviews of the most recent methods in modeling of flows in biological media, such as CFD. Written by internationally recognized researchers in the field, each chapter provides a strong introductory section that is useful to both readers currently in the field and readers interested in learning more about these areas. Heat Transfer and Fluid Flow in Biological Processes is an indispensable reference for professors, graduate students, professionals, and clinical researchers in the fields of biology, biomedical engineering, chemistry and medicine working on applications of fluid flow, heat transfer, and transport phenomena in biomedical technology. Provides a wide range of biological and clinical applications of fluid...

  11. Centrifugal LabTube platform for fully automated DNA purification and LAMP amplification based on an integrated, low-cost heating system.

    Hoehl, Melanie M; Weißert, Michael; Dannenberg, Arne; Nesch, Thomas; Paust, Nils; von Stetten, Felix; Zengerle, Roland; Slocum, Alexander H; Steigert, Juergen


    This paper introduces a disposable battery-driven heating system for loop-mediated isothermal DNA amplification (LAMP) inside a centrifugally-driven DNA purification platform (LabTube). We demonstrate LabTube-based fully automated DNA purification of as low as 100 cell-equivalents of verotoxin-producing Escherichia coli (VTEC) in water, milk and apple juice in a laboratory centrifuge, followed by integrated and automated LAMP amplification with a reduction of hands-on time from 45 to 1 min. The heating system consists of two parallel SMD thick film resistors and a NTC as heating and temperature sensing elements. They are driven by a 3 V battery and controlled by a microcontroller. The LAMP reagents are stored in the elution chamber and the amplification starts immediately after the eluate is purged into the chamber. The LabTube, including a microcontroller-based heating system, demonstrates contamination-free and automated sample-to-answer nucleic acid testing within a laboratory centrifuge. The heating system can be easily parallelized within one LabTube and it is deployable for a variety of heating and electrical applications.

  12. An application of the gas-fired chilling and heating units to domestic houses

    Choi, J.H.; Yang, Y.M.; Chae, J.M.; Bang, H.S.; Kwon, O.B.; Yoo, S.I.; Kim, T.H. [R and D Center, Korea Gas Co. (Korea); Lee, T.W.; Kim, T.H.; Kim, B.H.; Hwang, I.J.; Kim, J.Y.; Kim, C.D.; Park, S.J. [Korea Institute of Construction Technology (Korea)


    Following researches and considerations were performed in this study for an efficient application of gas-fired chilling and heating units to the residential buildings. (1) Status of domestic cooling and heating for residential building. (2) Various introduction schemes of outdoor unit. (3) Design exclusive area for the gas appliance and installation of it. (4) Ventilation of exhaust gas and heat. (5) Prepare the installation specifications or standards for gas-fired chilling and heating units. (6) Design technique of plumbing for cooling and heating. (7) Evaluation of unit's capacity considering the thermal load of domestic buildings. (8) Cooling and heating system with the unit. (9) Fundamental test for evaluation of applicability. (10) Actual design and construction of experimental house for an application and a demonstration of the developed gas units. (11) Field test for cooling and heating. (12) Evaluation of economic efficiency. (13) Establish a business potential. (14) Establishment of legal and systematic support, energy rate. (15) Troubleshooting in the course of development and application of the new gas appliance. 41 refs., 214 figs., 52 tabs.

  13. Geothermal district heating applications in Turkey: a case study of Izmir-Balcova

    Hepbasli, A. [Ege Univ., Dept. of Mechanical Engineering, Izmir (Turkey); Canakci, C. [Izmir-Balcova Geothermal Energy Inc., Izmir (Turkey)


    Turkey is located on the Mediterranean sector of the Alpine-Himalayan Tectonic Belt and is among the first seven countries in abundance of geothermal resources around the world. However, the share of its potential used is only about 2%. This means that considerable studies on geothermal energy could be conducted in order to increase the energy supply and to reduce atmospheric pollution in Turkey. The main objective in doing the present study is twofold, namely: (a) to overview the status and future aspects of geothermal district heating applications in Turkey and (b) to present the Izmir-Balcova geothermal district heating system, which is one example of the high temperature district heating applications in Turkey. The first geothermal heating application was applied in 1981 to the Izmir-Balcova thermal facilities, where the downhole heat exchanger was also used for the first time. Besides this, the first city based geothermal district heating system has been operated in Balikesir-Gonen since 1987. Recently, the total installed capacity has reached 820 MW{sub t} for direct use. An annual average growth of 23% of the residences connected to geothermal district heating systems has been achieved since 1983 in the country, representing a decrease of 5% in the last three years. Present applications have shown that in Turkey, geothermal energy is much cheaper than the other energy sources, like fossil fuels, and can make a significant contribution towards reducing the emission of greenhouse gases. (Author)

  14. Applicability of Solid Solution Heat Treatments to Aluminum Foams

    Miguel Rodríguez-Pérez


    Full Text Available Present research work evaluates the influence of both density and size on the treatability of Aluminum-based (6000 series foam-parts subjected to a typical solid solution heat treatment (water quenching. The results are compared with those obtained for the bulk alloy, evaluating the fulfilment of cooling requirements. Density of the foams was modeled by tomography analysis and the thermal properties calculated, based on validated density-scaled models. With this basis, cooling velocity maps during water quenching were predicted by finite element modeling (FEM in which boundary conditions were obtained by solving the inverse heat conduction problem. Simulations under such conditions have been validated experimentally. Obtained results address incomplete matrix hardening for foam-parts bigger than 70 mm in diameter with a density below 650 kg/m3. An excellent agreement has been found in between the predicted cooling maps and final measured microhardness profiles.

  15. Integration trends in monolithic power ICs: Application and technology challenges

    Rose, M.; Bergveld, H.J.


    This paper highlights the general trend towards further monolithic integration in power applications by enabling power management and interfacing solutions in advanced CMOS nodes. The need to combine high-density digital circuits, power-management circuits, and robust interfaces in a single

  16. Inter-enterprise system and application integration: a reality check

    Cardoso, J.; Aalst, van der W.M.P.; Bussler, C.; Sheth, A.P.; Sandkuhl, K.; Filipe, J.; Cordeiro, J.; Cardoso, J.


    This paper structures the summary of the panel held at the 9th International Conference on Enterprise Information Systems, Funchal, Madeira, 12-16 June 2007 that addressed the following question: "Are you still working on Inter-Enterprise System and Application Integration?" The panel aggregated

  17. On the applicability of schema integration techniques to database interoperation

    Vermeer, Mark W.W.; Apers, Peter M.G.


    We discuss the applicability of schema integration techniques developed for tightly-coupled database interoperation to interoperation of databases stemming from different modelling contexts. We illustrate that in such an environment, it is typically quite difficult to infer the real-world semantics

  18. Application of integrated modeling technique for data services ...

    This paper, therefore, describes the application of the integrated simulation technique for deriving the optimum resources required for data services in an asynchronous transfer mode (ATM) based private wide area network (WAN) to guarantee specific QoS requirement. The simulation tool drastically cuts the simulation ...

  19. Heat-pipe assisted thermoelectric generators for exhaust gas applications

    Gonçalves, L. M.; Martins, Jorge; Antunes, Joaquim; Rocha, Romeu; Brito, F. P.


    Millions of hybrid cars are already running on our roads with the purpose of reducing fossil fuel dependence. One of their main advantages is the recovery of wasted energy, namely by brake recovery. However, there are other sources of wasted energy in a car powered by an internal combustion engine, such as the heat lost through the cooling system, lubrication system (oil coolers) and in the exhaust system. These energies can be recuperated by the use of thermoelectric generators (TEG) based o...

  20. Application of heat in postcook meat chillers reduces Listeria.

    Eglezos, Sofroni; Dykes, Gary A


    Electrical air-blowing heaters were used to heat and dry out holding chillers used for postcook commercial processed meats in an attempt to control the presence of Listeria. A baseline study of the prevalence of Listeria in holding chillers in seven facilities was undertaken. Listeria was detected in four of the seven chillers, and swab samples showed Listeria prevalence ranging from 7 (7.8%) of 90 to 6 (20%) of 30, depending on the facility. Two of the facilities with established Listeria contamination (A and E) were chosen for further studies. The heating trials consisted of three individual heating interventions at each of the two facilities, with 2 weeks of postintervention sampling after each treatment. The initial Listeria prevalence in chiller A was 19 (10.6%) of 180, and treatment at 37°C for 36 h reduced prevalence to 3 (1.7%) of 180. The initial Listeria prevalence in chiller E was 7 (7.8%) of 90, and treatment at 50°C for 2 h reduced prevalence to 0 of 90. Both reductions were statistically significant at P prevalence of Listeria in chillers.

  1. On-Line Monitoring and Diagnostics of the Integrity of Nuclear Plant Steam Generators and Heat Exchangers

    Upadhyaya, Belle R.; Wesley Hines, J.


    The overall purpose of this Nuclear Engineering Education Research (NEER) project was to integrate new, innovative, and existing technologies to develop a fault diagnostics and characterization system for nuclear plant steam generators (SG) and heat exchangers (HX). Issues related to system level degradation of SG and HX tubing, including tube fouling, performance under reduced heat transfer area, and the damage caused by stress corrosion cracking, are the important factors that influence overall plant operation, maintenance, and economic viability of nuclear power systems. The research at The University of Tennessee focused on the development of techniques for monitoring process and structural integrity of steam generators and heat exchangers. The objectives of the project were accomplished by the completion of the following tasks. All the objectives were accomplished during the project period. This report summarizes the research and development activities, results, and accomplishments during June 2001-September 2004. (1) Development and testing of a high-fidelity nodal model of a U-tube steam generator (UTSG) to simulate the effects of fouling and to generate a database representing normal and degraded process conditions. Application of the group method of data handling (GMDH) method for process variable prediction. (2) Development of a laboratory test module to simulate particulate fouling of HX tubes and its effect on overall thermal resistance. Application of the GMDH technique to predict HX fluid temperatures, and to compare with the calculated thermal resistance. (3) Development of a hybrid modeling technique for process diagnosis and its evaluation using laboratory heat exchanger test data. (4) Development and testing of a sensor suite using piezo-electric devices for monitoring structural integrity of both flat plates (beams) and tubing. Experiments were performed in air, and in water with and without bubbly flow. (5) Development of advanced signal

  2. On-Line Monitoring and Diagnostics of the Integrity of Nuclear Plant Steam Generators and Heat Exchangers.

    Belle R. Upadhyaya; J. Wesley Hines


    The overall purpose of this Nuclear Engineering Education Research (NEER) project was to integrate new, innovative, and existing technologies to develop a fault diagnostics and characterization system for nuclear plant steam generators (SG) and heat exchangers (HX). Issues related to system level degradation of SG and HX tubing, including tube fouling, performance under reduced heat transfer area, and the damage caused by stress corrosion cracking, are the important factors that influence overall plant operation, maintenance, and economic viability of nuclear power systems. The research at The University of Tennessee focused on the development of techniques for monitoring process and structural integrity of steam generators and heat exchangers. The objectives of the project were accomplished by the completion of the following tasks. All the objectives were accomplished during the project period. This report summarizes the research and development activities, results, and accomplishments during June 2001-September 2004. (1) Development and testing of a high-fidelity nodal model of a U-tube steam generator (UTSG) to simulate the effects of fouling and to generate a database representing normal and degraded process conditions. Application of the group method of data handling (GMDH) method for process variable prediction. (2) Development of a laboratory test module to simulate particulate fouling of HX tubes and its effect on overall thermal resistance. Application of the GMDH technique to predict HX fluid temperatures, and to compare with the calculated thermal resistance. (3) Development of a hybrid modeling technique for process diagnosis and its evaluation using laboratory heat exchanger test data. (4) Development and testing of a sensor suite using piezo-electric devices for monitoring structural integrity of both flat plates (beams) and tubing. Experiments were performed in air, and in water with and without bubbly flow. (5) Development of advanced signal

  3. Integration of biomass into urban energy systems for heat and power. Part I: An MILP based spatial optimization methodology

    Pantaleo, Antonio M.; Giarola, Sara; Bauen, Ausilio; Shah, Nilay


    Highlights: • MILP tool for optimal sizing and location of heating and CHP plants to serve residential energy demand. • Trade-offs between local vs centralized heat generation, district heating vs natural gas distribution systems. • Assessment of multi-biomass supply chains and biomass to biofuel processing technologies. • Assessment of the key factors influencing the use of biomass and district heating in residential areas. - Abstract: The paper presents a mixed integer linear programming (MILP) approach to optimize multi-biomass and natural gas supply chain strategic design for heat and power generation in urban areas. The focus is on spatial and temporal allocation of biomass supply, storage, processing, transport and energy conversion (heat and CHP) to match the heat demand of residential end users. The main aim lies on the representation of the relationships between the biomass processing and biofuel energy conversion steps, and on the trade-offs between centralized district heating plants and local heat generation systems. After a description of state of the art and research trends in urban energy systems and bioenergy modelling, an application of the methodology to a generic case study is proposed. With the assumed techno-economic parameters, biomass based thermal energy generation results competitive with natural gas, while district heating network results the main option for urban areas with high thermal energy demand density. Potential further applications of this model are also described, together with main barriers for development of bioenergy routes for urban areas

  4. Integrated biomass gasification using the waste heat from hot slags: Control of syngas and polluting gas releases

    Sun, Yongqi; Seetharaman, Seshadri; Liu, Qianyi; Zhang, Zuotai; Liu, Lili; Wang, Xidong


    In this study, the thermodynamics of a novel strategy, i.e., biomass/CO 2 gasification integrated with heat recovery from hot slags in the steel industry, were systemically investigated. Both the target syngas yield and the polluting gas release were considered where the effect of gasifying conditions including temperature, pressure and CO 2 reacted was analyzed and then the roles of hot slags were further clarified. The results indicated that there existed an optimum temperature for the maximization of H 2 production. Compared to blast furnace slags, steel slags remarkably increased the CO yield at 600–1400 °C due to the existence of iron oxides and decreased the S-containing gas releases at 400–700 °C, indicating potential desulfurizing ability. The identification of biomass/CO 2 gasification thermodynamics in presence of slags could thus provide important clues not only for the deep understanding of biomass gasification but also for the industrial application of this emerging strategy from the viewpoint of syngas optimization and pollution control. - Highlights: • Biomass/CO 2 gasification was integrated with the heat recovery from hot slags. • Both syngas yield and polluting gas release during gasification were determined. • There existed an optimum temperature for the maximization of H 2 production. • Steel slags increased CO yield at 600–1400 °C due to the existence of iron oxides. • Steel slags remarkably decreased the releases of S-containing gas at 400–700 °C.

  5. Integrated 3D printing and corona poling process of PVDF piezoelectric films for pressure sensor application

    Kim, Hoejin; Torres, Fernando; Wu, Yanyu; Villagran, Dino; Lin, Yirong; Tseng, Tzu-Liang(Bill


    This paper presents a novel process to fabricate piezoelectric films from polyvinylidene fluoride (PVDF) polymer using integrated fused deposition modeling (FDM) 3D printing and corona poling technique. Corona poling is one of many effective poling processes that has received attention to activate PVDF as a piezoelectric responsive material. The corona poling process occurs when a PVDF polymer is exposed to a high electric field created and controlled through an electrically charged needle and a grid electrode under heating environment. FDM 3D printing has seen extensive progress in fabricating thermoplastic materials and structures, including PVDF. However, post processing techniques such as poling is needed to align the dipoles in order to gain piezoelectric properties. To further simplify the piezoelectric sensors and structures fabrication process, this paper proposes an integrated 3D printing process with corona poling to fabricate piezoelectric PVDF sensors without post poling process. This proposed process, named ‘Integrated 3D Printing and Corona poling process’ (IPC), uses the 3D printer’s nozzle and heating bed as anode and cathode, respectively, to create poling electric fields in a controlled heating environment. The nozzle travels along the programmed path with fixed distance between nozzle tip and sample’s top surface. Simultaneously, the electric field between the nozzle and bottom heating pad promotes the alignment of dipole moment of PVDF molecular chains. The crystalline phase transformation and output current generated by printed samples under different electric fields in this process were characterized by a Fourier transform infrared spectroscopy and through fatigue load frame. It is demonstrated that piezoelectric PVDF films with enhanced β-phase percentage can be fabricated using the IPC process. In addition, mechanical properties of printed PVDF was investigated by tensile testing. It is expected to expand the use of additive

  6. Proportional and Integral Thermal Control System for Large Scale Heating Tests

    Fleischer, Van Tran


    The National Aeronautics and Space Administration Armstrong Flight Research Center (Edwards, California) Flight Loads Laboratory is a unique national laboratory that supports thermal, mechanical, thermal/mechanical, and structural dynamics research and testing. A Proportional Integral thermal control system was designed and implemented to support thermal tests. A thermal control algorithm supporting a quartz lamp heater was developed based on the Proportional Integral control concept and a linearized heating process. The thermal control equations were derived and expressed in terms of power levels, integral gain, proportional gain, and differences between thermal setpoints and skin temperatures. Besides the derived equations, user's predefined thermal test information generated in the form of thermal maps was used to implement the thermal control system capabilities. Graphite heater closed-loop thermal control and graphite heater open-loop power level were added later to fulfill the demand for higher temperature tests. Verification and validation tests were performed to ensure that the thermal control system requirements were achieved. This thermal control system has successfully supported many milestone thermal and thermal/mechanical tests for almost a decade with temperatures ranging from 50 F to 3000 F and temperature rise rates from -10 F/s to 70 F/s for a variety of test articles having unique thermal profiles and test setups.

  7. Effect of Radio Frequency Heating on Yoghurt, I: Technological Applicability, Shelf-Life and Sensorial Quality

    Siefarth, Caroline; Tran, Thi Bich Thao; Mittermaier, Peter; Pfeiffer, Thomas; Buettner, Andrea


    This first part of a two-part study focuses on the technical feasibility of applying radio frequency (RF) heating at different temperatures (58, 65 and 72 °C) to a stirred yoghurt gel after culturing. For comparison, a convectional (CV) heating process was also applied. The aim was to increase the yoghurt shelf-life, by preventing post-acidification and the growth of yeasts and molds. At the same time, the viability of lactic acid bacteria (LAB) was investigated in view of existing legal regulations for yoghurts. Additionally, the yoghurt color, aroma and taste profiles were evaluated. It was found that the application of RF heating was effective for the rapid attainment of homogenous temperatures of 58 and 65 °C, respectively. For RF heating at 72 °C, it was not possible to establish a stable heating regime, since in some cases, there was significant overheating followed by strong contraction of the yoghurt curd and whey separation. Hence, it was decided not to continue with the RF heating series at 72 °C. In the case of CV heating, heat transfer limitations were observed, and prolonged heating was required. Nevertheless, we showed that yeasts and molds survived neither the RF nor CV heat treatment. LAB were found not to survive the CV treatment, but these beneficial microorganisms were still present in reduced numbers after RF heating to 58 and 65 °C. This important observation is most likely related to the mildness of RF treatment. While post-acidification was not observed on yoghurt storage, slight color changes occurred after heat treatment. The flavor and taste profiles were shown to be similar to the reference product. Furthermore, a trained sensory panel was not able to distinguish between, for example, the reference yoghurt and the RF 65 °C sample by triangular testing (α = 5%), showing the potential of novel strategies for further improvements of heat-treated yoghurt. PMID:28234322

  8. Exergoenvironmental analysis for a geothermal district heating system: An application

    Keçebaş, Ali


    Energy sources are of great importance in relation to pollution of the world. The use of renewable energy resources and the creation of more efficient energy systems make great contributions to the prevention of greenhouse gases. Recently, many studies indicate that the energy conversion systems have many advantages in terms of technical and economic point of view. In near future, environmental impact is going to play an important role in the selection/design of such energy resources and systems. In this study, the Afyon GDHS (geothermal district heating system) having actual operating conditions is investigated at the component level in terms of environmental impact by using exergoenvironmental analysis. Moreover, the effects of ambient and wellhead temperatures on the environmental impacts of the system are discussed. The results show that a great part of total environmental impact of the system occurs from the exergy destructions of the components. Therefore, the environmental impacts can be reduced by improving their exergetic efficiencies instead of design changes of the system components. The environmental impacts of the system are reduced when the ambient temperature decreases and the wellhead temperature increases. Thus, it might not be necessary to conduct separately the exergoenvironmental analysis for different ambient temperatures. - Highlights: • Using exergoenvironmental analysis in a geothermal district heating for the first time. • Evaluating environmental impact of a geothermal district heating system. • Discussing the effects of ambient and wellhead temperatures on the environmental impact. • Total environmental impact of the system occurs from exergy destructions of components. • The exergoenvironmental analysis can be done only once for all the ambient temperatures.

  9. Biomass gasification systems for residential application: An integrated simulation approach

    Prando, Dario; Patuzzi, Francesco; Pernigotto, Giovanni; Gasparella, Andrea; Baratieri, Marco


    The energy policy of the European member States is promoting high-efficiency cogeneration systems by means of the European directive 2012/27/EU. Particular facilitations have been implemented for the small-scale and micro-cogeneration units. Furthermore, the directive 2010/31/EU promotes the improvement of energy performance of buildings and use of energy from renewable sources for the building sector. In this scenario, systems based on gasification are considered a promising technological solution when dealing with biomass and small scale systems. In this paper, an integrated approach has been implemented to assess the energy performance of combined heat and power (CHP) systems based on biomass gasification and installed in residential blocks. The space-heating loads of the considered building configurations have been simulated by means of EnergyPlus. The heat load for domestic hot water demand has been calculated according to the average daily profiles suggested by the Italian and European technical standards. The efficiency of the whole CHP system has been evaluated supplementing the simulation of the gasification stage with the energy balance of the cogeneration set (i.e., internal combustion engine) and implementing the developed routines in the Matlab-Simulink environment. The developed model has been used to evaluate the primary energy saving (PES) of the CHP system compared to a reference case of separate production of heat and power. Economic analyses are performed either with or without subsidizations for the generated electricity. The results highlight the capability of the integrated approach to estimate both energy and economic performances of CHP systems applied to the residential context. Furthermore, the importance of the generated heat valorisation and the proper system sizing have been discussed. - Highlights: • CHP system based on biomass gasification to meet household energy demand is studied. • Influence of CHP size and operation time on

  10. Biomass application for heating primary schools in Portugal

    Pires, A.; Cordeiro, M.


    The use of renewable energies for heating the schools, hospitals, public and agricultural buildings and even houses must constitute a principal option instead a second choice. The life quality of the people, in this case the students of primary schools, must be concern for all the people whose working in the energy subject. All the people must be aware that the life quality must be tried by the use of the renewable energies and in this case the biomass. This work pretends to be a good contribution for using of this type of energy. (Author)

  11. Design of the HTGR for process heat applications

    Vrable, D.L.; Quade, R.N.


    This paper discusses a design study of an advanced 842-MW(t) HTGR with a reactor outlet temperature of 850 0 C (1562 0 F), coupled with a chemical process whose product is hydrogen (or a mixture of hydrogen and carbon monoxide) generated by steam reforming of a light hydrocarbon mixture. This paper discusses the plant layout and design for the major components of the primary and secondary heat transfer systems. Typical parametric system study results illustrate the capability of a computer code developed to model the plant performance and economics


    Lundberg, W. L.; Christenson, James A.


    A project is discussed in which the possibilities for economical waste heat recovery and utilization in the food industry were examined. Waste heat availability and applications surveys were performed at two manufacturing plants engaged in low temperature (freezing) and high temperature (cooking, sterilizing, etc.) food processing. The surveys indicate usable waste heat is available in significant quantities which could be applied to existing, on-site energy demands resulting in sizable reductions in factory fuel and energy usage. At the high temperature plant, the energy demands involve the heating of fresh water for boiler make-up, for the food processes and for the daily clean-up operation. Clean-up poses an opportunity for thermal energy storage since waste heat is produced during the one or two production shifts of each working day while the major clean-up effort does not occur until food production ends. At the frozen food facility, the clean-up water application again exists and, in addition, refrigeration waste heat could also be applied to warm the soil beneath the ground floor freezer space. Systems to recover and apply waste heat in these situations were developed conceptually and thermal/economic performance predictions were obtained. The results of those studies indicate the economics of waste heat recovery can be attractive for facilities with high energy demand levels. Small factories, however, with relatively low energy demands may find the economics marginal although, percentagewise, the fuel and energy savings are appreciable.

  13. Advanced variable speed air source integrated heat pump (AS-IHP) development - CRADA final report

    Baxter, Van D. [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); Rice, C. Keith [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); Munk, Jeffrey D. [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); Ally, Moonis Raza [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); Shen, Bo [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)


    Between August 2011 and September 2015, Oak Ridge National Laboratory (ORNL) and Nordyne, LLC (now Nortek Global HVAC LLC, NGHVAC) engaged in a Cooperative Research and Development Agreement (CRADA) to develop an air-source integrated heat pump (AS-IHP) system for the US residential market. Two generations of laboratory prototype systems were designed, fabricated, and lab-tested during 2011-2013. Performance maps for the system were developed using the latest research version of the DOE/ORNL Heat Pump Design Model, or HPDM, (Rice 1991; Rice and Jackson 2005; Shen et al 2012) as calibrated against the lab test data. These maps were the input to the TRNSYS (SOLAR Energy Laboratory, et al, 2010) system to predict annual performance relative to a baseline suite of equipment meeting minimum efficiency standards in effect in 2006 (combination of 13 SEER air-source heat pump (ASHP) and resistance water heater with Energy Factor (EF) of 0.9). Predicted total annual energy savings, while providing space conditioning and water heating for a tight, well insulated 2600 ft2 (242 m2) house at 5 U.S. locations, ranged from 46 to 61%, averaging 52%, relative to the baseline system (lowest savings at the cold-climate Chicago location). Predicted energy use for water heating was reduced 62 to 76% relative to resistance WH. Based on these lab prototype test and analyses results a field test prototype was designed and fabricated by NGHVAC. The unit was installed in a 2400 ft2 (223 m2) research house in Knoxville, TN and field tested from May 2014 to April 2015. Based on the demonstrated field performance of the AS-IHP prototype and estimated performance of a baseline system operating under the same loads and weather conditions, it was estimated that the prototype would achieve ~40% energy savings relative to the minimum efficiency suite. The estimated WH savings were >60% and SC mode savings were >50%. But estimated SH savings were only about 20%. It is believed that had the test

  14. Thermostructural applications of heat pipes for cooling leading edges of high-speed aerospace vehicles

    Camarda, Charles J.; Glass, David E.


    Heat pipes have been considered for use on wing leading edge for over 20 years. Early concepts envisioned metal heat pipes cooling a metallic leading edge. Several superalloy/sodium heat pipes were fabricated and successfully tested for wing leading edge cooling. Results of radiant heat and aerothermal testing indicate the feasibility of using heat pipes to cool the stagnation region of shuttle-type space transportation systems. The test model withstood a total seven radiant heating tests, eight aerothermal tests, and twenty-seven supplemental radiant heating tests. Cold-wall heating rates ranged from 21 to 57 Btu/sq ft-s and maximum operating temperatures ranged from 1090 to 1520 F. Follow-on studies investigated the application of heat pipes to cool the stagnation regions of single-stage-to-orbit and advanced shuttle vehicles. Results of those studies indicate that a 'D-shaped' structural design can reduce the mass of the heat-pipe concept by over 44 percent compared to a circular heat-pipe geometry. Simple analytical models for heat-pipe startup from the frozen state (working fluid initially frozen) were adequate to approximate transient, startup, and steady-state heat-pipe performance. Improvement in analysis methods has resulted in the development of a finite-element analysis technique to predict heat-pipe startup from the frozen state. However, current requirements of light-weight design and reliability suggest that metallic heat pipes embedded in a refractory composite material should be used. This concept is the concept presently being evaluated for NASP. A refractory-composite/heat-pipe-cooled wing leading edge is currently being considered for the National Aero-Space Plane (NASP). This concept uses high-temperature refractory-metal/lithium heat pipes embedded within a refractory-composite structure and is significantly lighter than an actively cooled wing leading edge because it eliminates the need for active cooling during ascent and descent. Since the

  15. Experimental and numerical study of heat transfer phenomena, inside a flat-plate integrated collector storage solar water heater (ICSSWH), with indirect heat withdrawal

    Gertzos, K.P.; Pnevmatikakis, S.E.; Caouris, Y.G.


    The thermal behavior of a particular flat-plate integrated collector storage solar water heater (ICSSWH) is examined, experimentally and numerically. The particularity consists of the indirect heating of the service hot water, through a heat exchanger incorporated into front and back major surfaces of the ICSSWH. Natural and forced convection mechanisms are both examined. A prototype tank was fabricated and experimental data of temperature profiles are extracted, during various energy withdrawals. A 3D computational fluid dynamics (CFD) model was developed and validated against experimental results. Numerical predictions are found highly accurate, providing thus the use of the 3D CFD model for the optimization of this and similar devices

  16. Tritium Removal by Laser Heating and Its Application to Tokamaks

    Skinner, C.H.; Gentile, C.A.; Guttadora, G.; Carpe, A.; Langish, S.; Young, K.M.; Nishi, M.; Shu, W.


    A novel laser heating technique has recently been applied to removing tritium from carbon tiles that had been exposed to deuterium-tritium (DT) plasmas in the Tokamak Test Fusion Reactor (TFTR). A continuous wave neodymium laser, of power up to 300 watts, was used to heat the surface of the tiles. The beam was focused to an intensity, typically 8 kW/cm 2 , and rapidly scanned over the tile surface by galvanometer-driven scanning mirrors. Under the laser irradiation, the surface temperature increased dramatically, and temperatures up to 2,300 degrees C were recorded by an optical pyrometer. Tritium was released and circulated in a closed-loop system to an ionization chamber that measured the tritium concentration. Most of the tritium (up to 84%) could be released by the laser scan. This technique appears promising for tritium removal in a next-step DT device as it avoids oxidation, the associated deconditioning of the plasma facing surfaces, and the expense of processing large quantities of tritium oxide. Some engineering aspects of the implementation of this method in a next-step fusion device will be discussed

  17. Application of the free piston concept to Vuilleumier heat pumps

    Ruether, J.; Kuehl, H.D.; Schulz, S. [Dortmund Univ. (Germany). Inst. fuer Thermodynamik


    In this contribution the 64 different possible set-ups of the oscillation system for the two displacers of a {beta}-type free piston Vuilleumier heat pump are discussed. Many of these alternatives can be disregarded as they are unable to oscillate in a self-sustaining mode. To decide about this ability the differential equations describing the system dynamics are derived. For simplicity reasons damping is neglected. Furthermore some practical aspects and the starting behaviour of the machine are taken into account. Based on this analysis the best configuration was chosen to be realised as a modification of the FPV2 free piston Vuilleumier heat pump. The new design is described and first experimental results of the modified version are presented. (orig.) [German] Ausgehend von der Gesamtheit aller moeglichen Schwingungssysteme fuer das Kolbensystem einer Freikolben-Vuilleumier-Waermepumpe wird der Weg zu einem fuer den Einsatz in der Heizungstechnik geeigneten Konzept beschrieben. Wesentliches Kriterium ist dabei die Faehigkeit zur selbsterregten Schwingung, die anhand der die Kinematik des Systems beschreibenden Differentialgleichungen beurteilt wird. Dabei kann der Einfluss der Daempfung unberuecksichtigt bleiben. Praktische Ueberlegungen und insbesondere das Startverhalten der entsprechenden Konfigurationen werden ebenfalls beruecksichtigt. Das auf Grundlage der obigen Kriterien ausgewaehlte Kolbensystem wird durch Modifikation der FPV2 Freikolben-Vuilleumier-Waermepumpe realisiert. Entsprechende Umbauarbeiten sowie erste Betriebserfahrungen und Messdaten werden vorgestellt. (orig.)

  18. Modeling and optimization of a heat-pump-assisted high temperature proton exchange membrane fuel cell micro-combined-heat-and-power system for residential applications

    Arsalis, Alexandros; Kær, Søren Knudsen; Nielsen, Mads Pagh


    In this study a micro-combined-heat-and-power (micro-CHP) system is coupled to a vapor-compression heat pump to fulfill the residential needs for heating (space heating and water heating) and electricity in detached single-family households in Denmark. Such a combination is assumed to be attractive...... for application, since both fuel cell technology and electric heat pumps are found to be two of the most efficient technologies for generation/conversion of useful energy. The micro-CHP system is fueled with natural gas and includes a fuel cell stack, a fuel processor and other auxiliary components. The micro......-CHP system assumes heat-led operation, to avoid dumping of heat and the use of complicated thermal energy storage. The overall system is grid-interconnected to allow importing and exporting of electricity as necessary. In this study emphasis is given on the operational characterization of the system...

  19. An application to H2+ of Laplace type integral transform

    Primorac, M.; Kovacevic, K.


    Laplace type integral transformation (LIT) has been applied to wavefunctions. The effect of the inverse transform is also discussed. LIT wavefunctions are tested in the calculation of the ground-state energy of H 2 + , where the untransformed functions were 1s, 12s, 123s and 1234s-STO. The results presented here show that LIT wavefunctions are applicable in molecular computations. The analytical formulae for two-centre one-electron integrals over LIT wavefunctions are derived by use of a Barnett-Coulson-like expansion of rsub(b)sup(N)(rsub(b)+p)sup(-ν). (orig.)

  20. Conception of a heat storage system for household applications. Category: New product innovations

    Schmidt, Thomas [Leuphana Univ. Lueneburg (Germany); Rammelberg, Holger U.; Roennebeck, Thomas [and others


    Almost 90% of the energy consumption of private households in Germany is used for heating. Thus, an efficient, sustainable and reliable heat management is one of the main challenges in the future. Heat storage will become a key technology when considering the daily, weekly, seasonal and unpredictable fluctuations of energy production with renewables. The storage of heat is much more volume- and energy-efficient as well as more economical than electricity storage. However, transport of heat over long distances is coupled with high losses, compared with electricity transport. Therefore, we propose the use of micro CHP in combination with volume-efficient and nearly loss-free heat storage to counteract electricity fluctuations. Focus of this contribution the conception of the large-scale project ''Thermal Battery'', funded by the European Union and the Federal State of Lower Saxony. The underlying principle is the utilization of reversible thermochemical reactions, such as dehydration and rehydration of salt hydrates for heat storage. The main goal is the development of a prototypical storage tank, which is capable of storing 80 kWh of heat with a system volume of less than 1 m{sup 3}. Importantly, the Vattenfall New Energy Services as a collaboration partner will support the development of an application-oriented heat storage device. This project is being carried out by an interdisciplinary team of engineers, chemists, physicists and environmental scientists.

  1. Theory of energy level and its application in water-loop heat pump system

    Yu, Qi Dong


    Highlights: • Novel theory of saving energy and its application in water loop heat pump. • Reverse energy caused by units to water loop and its solution. • New method for determining the energy-saving range of water loop heat pump. • Capacity model of auxiliary heat source and its size for all building types. • Advice for reducing total energy consumption of water loop heat pump. - Abstract: It is a difficult problem to how to determine the reverse energy caused by units to water loop when a water-loop heat pump (WLHP) is in cooling and heating simultaneous mode, which not only has a great impact on energy-saving rate but also decides the use of auxiliary heat source in winter. This paper presents a theory of energy level to improve the research on WLHP system by using the relationship among building, circulating water and units. In this theory, the circulating water replaces building load as a new method to convert the reverse energy into energy change of circulating water and the equation of energy level also is built to determine the energy-saving range of WLHP system and report the capacity model of auxiliary heat source for all building types. An office building with different auxiliary powers is tested to analyze system operation characteristic and the effect of auxiliary heat source on unit and system and the results validate previous conclusions and suggest that an energy balance should be considered between units and auxiliary power to improve overall operation.

  2. Integration of biomass fast pyrolysis and precedent feedstock steam drying with a municipal combined heat and power plant

    Kohl, Thomas; Laukkanen, Timo P.; Järvinen, Mika P.


    Biomass fast pyrolysis (BFP) is a promising pre-treatment technology for converting biomass to transport fuel and in the future also for high-grade chemicals. BFP can be integrated with a municipal combined heat and power (CHP) plant. This paper shows the influence of BFP integration on a CHP plant's main parameters and its effect on the energetic and environmental performance of the connected district heating network. The work comprises full- and part-load operation of a CHP plant integrated with BFP and steam drying. It also evaluates different usage alternatives for the BFP products (char and oil). The results show that the integration is possible and strongly beneficial regarding energetic and environmental performance. Offering the possibility to provide lower district heating loads, the operation hours of the plant can be increased by up to 57%. The BFP products should be sold rather than applied for internal use as this increases the district heating network's primary energy efficiency the most. With this integration strategy future CHP plants can provide valuable products at high efficiency and also can help to mitigate global CO 2 emissions. - Highlights: • Part load simulation of a cogeneration plant integrated with biomas fast pyrolysis. • Analysis of energetic and environmental performance. • Assessment of different uses of the pyrolysis products

  3. Comparison of heating deposition patterns for stacked linear phased array and fixed focus ultrasonic hyperthermia applicators

    Ocheltree, K.B.; Benkeser, P.J.; Frizzell, L.A.; Cain, C.A.


    An ultrasonic stacked linear phased array applicator for hyperthermia has been designed to heat tumors at depths from 5 to 10 cm. The power deposition pattern for this applicator is compared to that for a fixed focus applicator for several different scan paths. The power deposition pattern for the stacked linear phased array shows hot spots that are not observed for the mechanically scanned fixed focus applicator. These hot spots are related to the skewed power deposition pattern resulting from scanning the focus off the center of the linear arrays. The overall performance of the stacked linear phased array applicator is compared to that of a fixed focus applicator

  4. Optimal design and placement of serpentine heat exchangers for indirect heat withdrawal, inside flat plate integrated collector storage solar water heaters (ICSSWH)

    Gertzos, K.P.; Caouris, Y.G.; Panidis, T. [Dept. of Mechanical Engineering and Aeronautics, University of Patras, 265 00 Patras (Greece)


    Parameters that affect the temperature at which service hot water (SHW) is offered by an immersed tube heat exchanger (HX), inside a flat plate Integrated Collector Storage Solar Water Heater (ICSSWH), are examined numerically, by means of Computational Fluid Dynamics (CFD) analysis. The storage water is not refreshed and serves for heat accumulation. Service hot water is drawn off indirectly, through an immersed serpentine heat exchanger. For the intensification of the heat transfer process, the storage water is agitated by recirculation through a pump, which goes on only when service water flows inside the heat exchanger. Three main factors, which influence the performance, are optimized: The position of the HX relative to tank walls, the HX length and the tube diameter. All three factors are explored so that to maximize the service water outlet temperature. The settling time of the optimum configuration is also computed. Various 3-D CFD models were developed using the FLUENT package. The heat transfer rate between the two circuits of the optimum configuration is maintained at high levels, leading to service water outlet temperatures by 1-7 C lower than tank water temperatures, for the examined SHW flow rates. The settling time is retained at sufficient law values, such as 20 s. The optimal position was found to lay the HX in contact with the front and back walls of the tank, with an optimum inner tube diameter of 16 mm, while an acceptable HX length was found to be about 21.5 m. (author)

  5. 77 FR 39735 - Certain Integrated Circuit Packages Provided With Multiple Heat-Conducting Paths and Products...


    ...Notice is hereby given that a complaint was filed with the U.S. International Trade Commission on May 31, 2012, under section 337 of the Tariff Act of 1930, as amended, on behalf of Industrial Technology Research Institute of Taiwan and ITRI International of San Jose, California. The complaint alleges violations of section 337 based upon the importation into the United States, the sale for importation, and the sale within the United States after importation of certain integrated circuit packages provided with multiple heat-conducting paths and products containing same by reason of infringement of certain claims of U.S. Patent No. 5,710,459 (``the `459 patent''). The complaint further alleges that an industry in the United States exists as required by subsection (a)(2) of section 337. The complainants request that the Commission institute an investigation and, after the investigation, issue an exclusion order and cease and desist order.

  6. Convection heat transfer

    Bejan, Adrian


    Written by an internationally recognized authority on heat transfer and thermodynamics, this second edition of Convection Heat Transfer contains new and updated problems and examples reflecting real-world research and applications, including heat exchanger design. Teaching not only structure but also technique, the book begins with the simplest problem solving method (scale analysis), and moves on to progressively more advanced and exact methods (integral method, self similarity, asymptotic behavior). A solutions manual is available for all problems and exercises.

  7. Passive Decay Heat Removal Strategy of Integrated Passive Safety System (IPSS) for SBO-combined Accidents

    Kim, Sang Ho; Chang, Soon Heung; Jeong, Yong Hoon [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)


    The weak points of nuclear safety would be in outmoded nuclear power plants like the Fukushima reactors. One of the systems for the safety enhancement is integrated passive safety system (IPSS) proposed after the Fukushima accidents. It has the five functions for the prevention and mitigation of a severe accident. Passive decay heat removal (PDHR) strategy using IPSS is proposed for coping with SBO-combined accidents in this paper. The two systems for removing decay heat before core-melt were applied in the strategy. The accidents were simulated by MARS code. The reference reactor was OPR1000, specifically Ulchin-3 and 4. The accidents included loss-of-coolant accidents (LOCA) because the coolant losses could be occurred in the SBO condition. The examples were the stuck open of PSV, the abnormal open of SDV and the leakage of RCP seal water. Also, as LOCAs with the failure of active safety injection systems were considered, various LOCAs were simulated in SBO. Based on the thermal hydraulic analysis, the probabilistic safety analysis was carried out for the PDHR strategy to estimate the safety enhancement in terms of the variation of core damage frequency. AIMS-PSA developed by KAERI was used for calculating CDF of the plant. The IPSS was applied in the PDHR strategy which was developed in order to cope with the SBO-combined accidents. The estimation for initiating SGGI or PSIS was based on the pressure in RCS. The simulations for accidents showed that the decay heat could be removed for the safety duration time in SBO. The increase of safety duration time from the strategy provides the increase of time for the restoration of AC power.

  8. Energetic performances of an optimized passive Solar Heating Prototype used for Tunisian buildings air-heating application

    Mehdaoui, Farah; Hazami, Majdi; Naili, Nabiha; Farhat, Abdelhamid


    Highlights: • The study of a Solar Heating Prototype to prevail the buildings air-heating needs. • A parametric study of the system was achieved by means of the TRNSYS program. • The monthly internal temperature during cold months ranges between 22 and 25 °C. • The results shows that the relative humidity inside the monozone room of about 40%. - Abstract: This paper deals with the energetic performances of a Solar Heating Prototype (SHP) conceived in our laboratory to prevail the Tunisian households’ air-heating needs. The conceived SHP mainly consists of a flat-plate solar collector, solar hot water tank and an active layer integrated inside a single room. Firstly, a complete model is formulated taking into account various modes of heat transfer in the SHP by means of the TRNSYS simulation program. To validate the TRNSYS model, experimental tests under local weather conditions were performed for 2 days spread over 2 months (March and April 2013). Predicted results were compared to the measurements in order to determine the accuracy of the simulation program. A parametric study was then achieved by means of the TRNSYS program in order to optimize SHP design parameters (Collector area, collector mass flow rate, floor mass flow rate, storage tank volume and thickness of the active layer). The optimization of all design parameters shows that to achieve a maximum performances from the SHP it is essential to use a solar collector with an area equal to 6 m 2 area, a collector mass flow rate equal to 100 kg h −1 and a hot water storage tank with a capacity equal to 450 l. Concerning the floor heating, the optimal values of mass flow rate and the active layer thickness are 200 kg h −1 and 0.06 m, respectively. The long-term SHP performances were afterward evaluated by means of the Typical Meteorological Year (TMY) data relative to Tunis, Tunisia. Results showed that for an annual total solar insolation of about 6493.37 MJ m −2 the average solar fraction

  9. Integration of solar process heat into an existing thermal desalination plant in Qatar

    Dieckmann, S.; Krishnamoorthy, G.; Aboumadi, M.; Pandian, Y.; Dersch, J.; Krüger, D.; Al-Rasheed, A. S.; Krüger, J.; Ottenburger, U.


    The water supply of many countries in the Middle East relies mainly on water desalination. In Qatar, the water network is completely fed with water from desalination plants. One of these power and desalination plants is located in Ras Abu Fontas, 20 km south of the capital Doha. The heat required for thermal desalination is provided by steam which is generated in waste heat recovery boilers (HRB) connected to gas turbines. Additionally, gas fired boilers or auxiliary firing in the HRBs are used in order to decouple the water generation from the electricity generation. In Ras Abu Fontas some auxiliary boilers run 24/7 because the HRB capacity does not match the demand of the desalination units. This paper contains the techno-economic analysis of two large-scale commercial solar field options, which could reduce the fuel consumption significantly. Both options employ parabolic trough technology with a nominal saturated steam output of 350 t/h at 15 bar (198°C, 240 MW). The first option uses direct steam generation without storage while the second relies on common thermal oil in combination with a molten salt thermal storage with 6 hours full-load capacity. The economic benefit of the integration of solar power depends mainly on the cost of the fossil alternative, and thus the price (respectively opportunity costs) of natural gas. At a natural gas price of 8 US-/MMBtu the internal rate of return on equity (IRR) is expected at about 5%.

  10. Shape optimization of turbine blades with the integration of aerodynamics and heat transfer

    Rajadas J. N.


    Full Text Available A multidisciplinary optimization procedure, with the integration of aerodynamic and heat transfer criteria, has been developed for the design of gas turbine blades. Two different optimization formulations have been used. In the first formulation, the maximum temperature in the blade section is chosen as the objective function to be minimized. An upper bound constraint is imposed on the blade average temperature and a lower bound constraint is imposed on the blade tangential force coefficient. In the second formulation, the blade average and maximum temperatures are chosen as objective functions. In both formulations, bounds are imposed on the velocity gradients at several points along the surface of the airfoil to eliminate leading edge velocity spikes which deteriorate aerodynamic performance. Shape optimization is performed using the blade external and coolant path geometric parameters as design variables. Aerodynamic analysis is performed using a panel code. Heat transfer analysis is performed using the finite element method. A gradient based procedure in conjunction with an approximate analysis technique is used for optimization. The results obtained using both optimization techniques are compared with a reference geometry. Both techniques yield significant improvements with the multiobjective formulation resulting in slightly superior design.

  11. Thermal modeling of a greenhouse integrated to an aquifer coupled cavity flow heat exchanger system

    Sethi, V.P. [Department of Mechanical Engineering, Punjab Agricultural University, Ludhiana 141 008, Punjab (India); Sharma, S.K. [Energy Research Centre, Panjab University, Chandigarh 160 017, Punjab (India)


    A thermal model is developed for heating and cooling of an agricultural greenhouse integrated with an aquifer coupled cavity flow heat exchanger system (ACCFHES). The ACCFHES works on the principal of utilizing deep aquifer water available at the ground surface through an irrigation tube well already installed in every agricultural field at constant year-round temperature of 24 C. The analysis is based on the energy balance equations for different components of the greenhouse. Using the derived analytical expressions, a computer program is developed in C{sup ++} for computing the hourly greenhouse plant and room air temperature for various design and climatic parameters. Experimental validation of the developed model is carried out using the measured plant and room air temperature data of the greenhouse (in which capsicum is grown) for the winter and summer conditions of the year 2004-2005 at Chandigarh (31 N and 78 E), Punjab, India. It is observed that the predicted and measured values are in close agreement. Greenhouse room air and plant temperature is maintained 6-7 K and 5-6 K below ambient, respectively for an extreme summer day and 7-8 K and 5-6 K above ambient, respectively for an extreme winter night. Finally, parametric studies are conducted to observe the effect of various operating parameters such as mass of the plant, area of the plant, mass flow rate of the circulating air and area of the ACCFHES on the greenhouse room air and plant temperature. (author)

  12. Standard partial molar heat capacities and enthalpies of formation of aqueous aluminate under hydrothermal conditions from integral heat of solution measurements

    Coulier, Yohann; Tremaine, Peter R.


    integral heat of solution method in a commercial calorimeter to be reported in the literature

  13. Classical and Quantum Nonlinear Integrable Systems: Theory and Application

    Brzezinski, Tomasz


    This is a very interesting collection of introductory and review articles on the theory and applications of classical and quantum integrable systems. The book reviews several integrable systems such as the KdV equation, vertex models, RSOS and IRF models, spin chains, integrable differential equations, discrete systems, Ising, Potts and other lattice models and reaction--diffusion processes, as well as outlining major methods of solving integrable systems. These include Lax pairs, Baecklund and Miura transformations, the inverse scattering method, various types of the Bethe Ansatz, Painleve methods, the dbar method and fusion methods to mention just a few. The book is divided into two parts, each containing five chapters. The first part is devoted to classical integrable systems and introduces the subject through the KdV equation, and then proceeds through Painleve analysis, discrete systems and two-dimensional integrable partial differential equations, to culminate in the review of solvable lattice models in statistical physics, solved through the coordinate and algebraic Bethe Ansatz methods. The second part deals with quantum integrable systems, and begins with an outline of unifying approaches to quantum, statistical, ultralocal and non-ultralocal systems. The theory and methods of solving quantum integrable spin chains are then described. Recent developments in applying Bethe Ansatz methods in condensed matter physics, including superconductivity and nanoscale physics, are reviewed. The book concludes with an introduction to diffusion-reaction processes. Every chapter is devoted to a different subject and is self-contained, and thus can be read separately. A reader interesting in classical methods of solitons, such as the methods of solving the KdV equation, can start from Chapter 1, while a reader interested in the Bethe Ansatz method can immediately proceed to Chapter 5, and so on. Thus the book should appeal and be useful to a wide range of theoretical

  14. Comparison of three different collectors for process heat applications

    Brunold, Stefan; Frey, R.; Frei, Ulrich


    In general vacuum tube collectors are used in solar process heat systems. Another possibility is to use transparent insulated flat plate collectors. A critical point however, is that most of the common transparent insulating materials can not withstand high temperatures because they consist of plastics. Thus, temperature resistive collector covers combining a high tranmisivity with a low U-value are required. One possibility is to use capillaries made of glass instead of plastics. Measurement results of collector efficiency and incident angle modifier will be presented as well as calculated energy gains for three different collectors: a vacuum tube collector (Giordano Ind., France), a CPC vacuum tube collector (microtherm Energietechnik Germany; a new flat plate collector using glass capillary as transparent insulation (SET, Germany).

  15. Application of newly developed heat resistant materials for USC boilers

    Sato, T.; Tamura, K.; Fukuda, Y.; Matsuda, J.


    This paper describes the research on the development and improvement of new high strength heat resistant steels such as SUPER304H (18Cr-9Ni-3Cu-Nb-N), NF709 (20Cr-25Ni-1.5Mo-Nb-Ti-N) and HR3C (25Cr-20Ni-Nb-N) as boiler tube, and NF616 (9Cr-0.5Mo-1.8W-Nb-V) and HCM12A (11Cr-0.4Mo-2W-Nb-V-Cu) as thick section pipe. The latest manufacturing techniques applied for these steels are introduced. In addition the high temperature strength of Alloy617 (52Ni-22Cr-13Co-9Mo-Ti-Al) that is one of the candidate materials for the next generation 700 □ USC boilers is described. (orig.)

  16. Technologies for waste heat recovery in off-shore applications

    Pierobon, Leonardo; Haglind, Fredrik; Kandepu, Rambabu


    different technologies are presented, considering the Draugen platform in the North Sea as a base case. The Turboden 65-HRS unit is considered as representative of the organic Rankine cycle technology. Air bottoming cycles are analyzed and optimal design pressure ratios are selected. We also study a one...... pressure level steam Rankine cycle employing the once-through heat recovery steam generator without bypass stack. We compare the three technologies considering the combined cycle thermal efficiency, the weight, the net present value, the profitability index and payback time. Both incomes related to CO2...... of the unit is expected to be around 250 ton. The air bottoming cycle without intercooling is also a possible alternative due to its low weight (76 ton) and low investment cost (8.8 M$). However, cycle performance and profitability index are poorer, 12.1% and 0.75. Furthermore, the results suggest...

  17. DEAP actuator and its high voltage driver for heating valve application

    Huang, Lina; Nørmølle, L. F.; Sarban, R.


    Due to the advantages of DEAP (Dielectric Electro Active Polymer) material, such as light weight, noise free operation, high energy and power density and fast response speed, it can be applied in a variety of applications to replace the conventional transducers or actuators. This paper introduces...... DEAP actuator to the heating valve system and conducts a case study to discuss the feasible solution in designing DEAP actuator and its driver for heating valve application. First of all, the heating valves under study are briefly introduced. Then the design and the development for DEAP actuator...... is illustrated in detail, and followed by the detailed investigation of the HV driver for DEAP actuator. In order to verify the implementation, the experimental measurements are carried out for DEAP actuator, its HV driver as well as the entire heating valve system....

  18. Design and Implementation of a Discrete-Time Proportional Integral (PI) Controller for the Temperature Control of a Heating Pad.

    Khan, Pathan Fayaz; Sengottuvel, S; Patel, Rajesh; Gireesan, K; Baskaran, R; Mani, Awadhesh


    Contact heat evoked potentials (CHEPs) are recorded from the brain by giving thermal stimulations through heating pads kept on the surface of the skin. CHEP signals have crucial diagnostic implications in human pain activation studies. This work proposes a novel design of a digital proportional integral (PI) controller based on Arduino microcontroller with a view to explore the suitability of an electric heating pad for use as a thermode in a custom-made, cost-effective CHEP stimulator. The purpose of PI controller is to set, regulate, and deliver desired temperatures on the surface of the heating pad in a user-defined pattern. The transfer function of the heating system has been deduced using the parametric system identification method, and the design parameters of the controller have been identified using the root locus technique. The efficiency of the proposed PI controller in circumventing the well-known integrator windup problem (error in the integral term builds excessively, leading to large transients in the controller output) in tracking the reference input and the controller effort (CE) in rejecting output disturbances to maintain the set temperature of the heating pad have been found to be superior compared with the conventional PI controller and two of the existing anti-windup models.

  19. Integration Telegram Bot on E-Complaint Applications in College

    Rosid, M. A.; Rachmadany, A.; Multazam, M. T.; Nandiyanto, A. B. D.; Abdullah, A. G.; Widiaty, I.


    Internet of Things (IoT) has influenced human life where IoT internet connectivity extending from human-to-humans to human-to-machine or machine-to-machine. With this research field, it will be created a technology and concepts that allow humans to communicate with machines for a specific purpose. This research aimed to integrate between application service of the telegram sender with application of e-complaint at a college. With this application, users do not need to visit the Url of the E-compliant application; but, they can be accessed simply by submitting a complaint via Telegram, and then the complaint will be forwarded to the E-complaint Application. From the test results, e-complaint integration with Telegram Bot has been run in accordance with the design. Telegram Bot is made able to provide convenience to the user in this academician to submit a complaint, besides the telegram bot provides the user interaction with the usual interface used by people everyday on their smartphones. Thus, with this system, the complained work unit can immediately make improvements since all the complaints process can be delivered rapidly.

  20. Multiphase numerical analysis of heat pipe with different working fluids for solar applications

    Aswath, S.; Netaji Naidu, V. H.; Padmanathan, P.; Raja Sekhar, Y.


    Energy crisis is a prognosis predicted in many cases with the indiscriminate encroachment of conventional energy sources for applications on a massive scale. This prediction, further emboldened by the marked surge in global average temperatures, attributed to climate change and global warming, the necessity to conserve the environment and explore alternate sources of energy is at an all-time high. Despite being among the lead candidates for such sources, solar energy is utilized far from its vast potential possibilities due to predominant economic constraints. Even while there is a growing need for solar panels at more affordable rates, the other options to harness better out of sun’s energy is to optimize and improvise existing technology. One such technology is the heat pipe used in Evacuated Tube Collectors (ETC). The applications of heat pipe have been gaining momentum in various fields since its inception and substantial volumes of research have explored optimizing and improving the technology which is proving effective in heat recovery and heat transfer better than conventional systems. This paper carries out a computational analysis on a comparative simulation between two working fluids within heat pipe of same geometry. It further endeavors to study the multiphase transitions within the heat pipe. The work is carried out using ANSYS Fluent with inputs taken from solar data for the location of Vellore, Tamil Nadu. A wickless, gravity-assisted heat pipe (GAHP) is taken for the simulation. Water and ammonia are used as the working fluids for comparative multiphase analysis to arrive at the difference in heat transfer at the condenser section. It is demonstrated that a heat pipe ETC with ammonia as working fluid showed higher heat exchange (temperature difference) as against that of water as working fluid. The multiphase model taken aided in study of phase transitions within both cases and supported the result of ammonia as fluid being a better candidate.