WorldWideScience

Sample records for heart assist pump

  1. Design and performance of heart assist or artificial heart control systems

    Science.gov (United States)

    Webb, J. A., Jr.; Gebben, V. D.

    1978-01-01

    The factors leading to the design of a controlled driving system for either a heart assist pump or artificial heart are discussed. The system provides square pressure waveform to drive a pneumatic-type blood pump. For assist usage the system uses an R-wave detector circuit that can detect the R-wave of the electrocardiogram in the presence of electrical disturbances. This circuit provides a signal useful for synchronizing an assist pump with the natural heart. It synchronizes a square wave circuit, the output of which is converted into square waveforms of pneumatic pressure suitable for driving both assist device and artificial heart. The pressure levels of the driving waveforms are controlled by means of feedback channels to maintain physiological regulation of the artificial heart's output flow. A more compact system that could achieve similar regulatory characteristics is also discussed.

  2. VENTRICLE ASSIST DEVICE: PAST, PRESENT, AND FUTURE NONPULSATILE PUMPS

    Directory of Open Access Journals (Sweden)

    G. Р. Itkin

    2009-01-01

    Full Text Available The article briefly describes the history of the non-pulsating type blood pumps for ventricular assist circulation and heart-lung machine. Disclosed the main advantages of these pumps before pulsating type, especially for implantable systems development. However, disadvantages of these pumps and the directions of minimize or eliminate ones have shown. Specific examples of our implantable centrifugal and axial pump developments are presented. Declare the ways to further improve the pumps

  3. Heart Motion Prediction in Robotic-Assisted Beating Heart Surgery: A Nonlinear Fast Adaptive Approach

    Directory of Open Access Journals (Sweden)

    Fan Liang

    2013-01-01

    Full Text Available Off-pump Coronary Artery Bypass Graft (CABG surgery outperforms traditional on-pump surgery because the assisted robotic tools can alleviate the relative motion between the beating heart and robotic tools. Therefore, it is possible for the surgeon to operate on the beating heart and thus lessens post surgery complications for the patients. Due to the highly irregular and non-stationary nature of heart motion, it is critical that the beating heart motion is predicted in the model-based track control procedures. It is technically preferable to model heart motion in a nonlinear way because the characteristic analysis of 3D heart motion data through Bi-spectral analysis and Fourier methods demonstrates the involved nonlinearity of heart motion. We propose an adaptive nonlinear heart motion model based on the Volterra Series in this paper. We also design a fast lattice structure to achieve computational-efficiency for real-time online predictions. We argue that the quadratic term of the Volterra Series can improve the prediction accuracy by covering sharp change points and including the motion with sufficient detail. The experiment results indicate that the adaptive nonlinear heart motion prediction algorithm outperforms the autoregressive (AR and the time-varying Fourier-series models in terms of the root mean square of the prediction error and the prediction error in extreme cases.

  4. Identification and Management of Pump Thrombus in the HeartWare Left Ventricular Assist Device System: A Novel Approach Using Log File Analysis.

    Science.gov (United States)

    Jorde, Ulrich P; Aaronson, Keith D; Najjar, Samer S; Pagani, Francis D; Hayward, Christopher; Zimpfer, Daniel; Schlöglhofer, Thomas; Pham, Duc T; Goldstein, Daniel J; Leadley, Katrin; Chow, Ming-Jay; Brown, Michael C; Uriel, Nir

    2015-11-01

    The study sought to characterize patterns in the HeartWare (HeartWare Inc., Framingham, Massachusetts) ventricular assist device (HVAD) log files associated with successful medical treatment of device thrombosis. Device thrombosis is a serious adverse event for mechanical circulatory support devices and is often preceded by increased power consumption. Log files of the pump power are easily accessible on the bedside monitor of HVAD patients and may allow early diagnosis of device thrombosis. Furthermore, analysis of the log files may be able to predict the success rate of thrombolysis or the need for pump exchange. The log files of 15 ADVANCE trial patients (algorithm derivation cohort) with 16 pump thrombus events treated with tissue plasminogen activator (tPA) were assessed for changes in the absolute and rate of increase in power consumption. Successful thrombolysis was defined as a clinical resolution of pump thrombus including normalization of power consumption and improvement in biochemical markers of hemolysis. Significant differences in log file patterns between successful and unsuccessful thrombolysis treatments were verified in 43 patients with 53 pump thrombus events implanted outside of clinical trials (validation cohort). The overall success rate of tPA therapy was 57%. Successful treatments had significantly lower measures of percent of expected power (130.9% vs. 196.1%, p = 0.016) and rate of increase in power (0.61 vs. 2.87, p file parameters can potentially predict the likelihood of successful tPA treatments and if validated prospectively, could substantially alter the approach to thrombus management. Copyright © 2015 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  5. Leaky valves : New operation improves the heart's pumping action

    NARCIS (Netherlands)

    Pistecky, P.; Havlik, P.; Van Kasteren, J.

    2003-01-01

    The action of any pump will start to decline when the valves no longer close properly. The same goes for the heart, the pump that maintains the circulation in our vascular system. Consequently, a major field of focus of open heart surgery is the repair or replacement of heart valves. Petr Havl a

  6. Design and principle of operation of the HeartMate PHP (percutaneous heart pump)

    NARCIS (Netherlands)

    Mieghem, N.M. van; Daemen, J.; Uil, C. den; Dur, O.; Joziasse, L.; Maugenest, A.M.; Fitzgerald, K.; Parker, C.; Muller, P.; Geuns, R.J.M. van

    2018-01-01

    The HeartMate PHP (percutaneous heart pump) is a second-generation transcatheter axial flow circulatory support system. The collapsible catheter pump is inserted through a 14 Fr sheath, deployed across the aortic valve expanding to 24 Fr and able to deliver up to 5 L/min blood flow at minimum

  7. New concepts and new design of permanent maglev rotary artificial heart blood pumps.

    Science.gov (United States)

    Qian, K X; Zeng, P; Ru, W M; Yuan, H Y

    2006-05-01

    According to tradition, permanent maglev cannot achieve stable equilibrium. The authors have developed, to the contrary, two stable permanent maglev impeller blood pumps. The first pump is an axially driven uni-ventricular assist pump, in which the rotor with impeller is radially supported by two passive magnetic bearings, but has one point contact with the stator axially at standstill. As the pump raises its rotating speed, the increasing hydrodynamic force of fluid acting on the impeller will make the rotor taking off from contacting point and disaffiliate from the stator. Then the rotor becomes fully suspended. The second pump is a radially driven bi-ventricular assist pump, i.e., an impeller total artificial heart. Its rotor with two impellers on both ends is supported by two passive magnetic bearings, which counteract the attractive force between rotor magnets and stator coil iron core. The rotor is affiliated to the stator radially at standstill and becomes levitated during rotation. Therefore, the rotor keeps concentric with stator during rotation but eccentric at standstill, as is confirmed by rotor position detection with Honeywell sensors. It concludes that the permanent maglev needs action of a non-magnetic force to achieve stability but a rotating magnetic levitator with high speed and large inertia can maintain its stability merely with passive magnetic bearings.

  8. Is our heart a well-designed pump? The heart along animal evolution.

    Science.gov (United States)

    Bettex, Dominique A; Prêtre, René; Chassot, Pierre-Guy

    2014-09-07

    A carrier system for gases and nutrients became mandatory when primitive animals grew larger and developed different organs. The first circulatory systems are peristaltic tubes pushing slowly the haemolymph into an open vascular tree without capillaries (worms). Arthropods developed contractile bulges on the abdominal aorta assisted by accessory hearts for wings or legs and by abdominal respiratory motions. Two-chamber heart (atrium and ventricle) appeared among mollusks. Vertebrates have a multi-chamber heart and a closed circulation with capillaries. Their heart has two chambers in fishes, three chambers (two atria and one ventricle) in amphibians and reptiles, and four chambers in birds and mammals. The ventricle of reptiles is partially divided in two cavities by an interventricular septum, leaving only a communication of variable size leading to a variable shunt. Blood pressure increases progressively from 15 mmHg (worms) to 170/70 mmHg (birds) according to the increase in metabolic rate. When systemic pressure exceeds 50 mmHg, a lower pressure system appears for the circulation through gills or lungs in order to improve gas exchange. A four-chamber heart allows a complete separation of systemic and pulmonary circuits. This review describes the circulatory pumping systems used in the different classes of animals, their advantages and failures, and the way they have been modified with evolution. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: journals.permissions@oup.com.

  9. Numerical Analysis of Blood Damage Potential of the HeartMate II and HeartWare HVAD Rotary Blood Pumps.

    Science.gov (United States)

    Thamsen, Bente; Blümel, Bastian; Schaller, Jens; Paschereit, Christian O; Affeld, Klaus; Goubergrits, Leonid; Kertzscher, Ulrich

    2015-08-01

    Implantable left ventricular assist devices (LVADs) became the therapy of choice in treating end-stage heart failure. Although survival improved substantially and is similar in currently clinically implanted LVADs HeartMate II (HM II) and HeartWare HVAD, complications related to blood trauma are frequently observed. The aim of this study was to compare these two pumps regarding their potential blood trauma employing computational fluid dynamics. High-resolution structured grids were generated for the pumps. Newtonian flow was calculated, solving Reynolds-averaged Navier-Stokes equations with a sliding mesh approach and a k-ω shear stress transport turbulence model for the operating point of 4.5 L/min and 80 mm Hg. The pumps were compared in terms of volumes subjected to certain viscous shear stress thresholds, below which no trauma was assumed (von Willebrand factor cleavage: 9 Pa, platelet activation: 50 Pa, and hemolysis: 150 Pa), and associated residence times. Additionally, a hemolysis index was calculated based on a Eulerian transport approach. Twenty-two percent of larger volumes above 9 Pa were observed in the HVAD; above 50 Pa and 150 Pa the differences between the two pumps were marginal. Residence times were higher in the HVAD for all thresholds. The hemolysis index was almost equal for the HM II and HVAD. Besides the gap regions in both pumps, the inlet regions of the rotor and diffuser blades have a high hemolysis production in the HM II, whereas in the HVAD, the volute tongue is an additional site for hemolysis production. Thus, in this study, the comparison of the HM II and the HVAD using numerical methods indicated an overall similar tendency to blood trauma in both pumps. However, influences of turbulent shear stresses were not considered and effects of the pivot bearing in the HM II were not taken into account. Further in vitro investigations are required. Copyright © 2015 International Center for Artificial Organs and Transplantation and

  10. Heat pump assisted drying of agricultural produce-an overview.

    Science.gov (United States)

    Patel, Krishna Kumar; Kar, Abhijit

    2012-04-01

    This review paper included the recent progress made in heat pump assisted drying, its principle, mechanism and efficiency, type and its application for drying of agricultural produce. Heat pump assisted drying provides a controllable drying environment (temperature and humidity) for better products quality at low energy consumption. It has remarkable future prospects and revolutionaries ability. The heat pump system consists of an expansion valve, two heat exchangers (evaporator and condenser), and a compressor, which are connected by using copper tubes. In this paper we also provided a review discussion on different type of heat pump assisted drying system ready for remarkable and commercial use in different type of food industries. Here we also have given some major advantage and disadvantage of heat pump assisted drying.

  11. Control system for an artificial heart

    Science.gov (United States)

    Gebben, V. D.; Webb, J. A., Jr.

    1970-01-01

    Inexpensive industrial pneumatic components are combined to produce control system to drive sac-type heart-assistance blood pump with controlled pulsatile pressure that makes pump rate of flow sensitive to venous /atrial/ pressure, while stroke is centered about set operating point and pump is synchronized with natural heart.

  12. Heart failure - surgeries and devices

    Science.gov (United States)

    ... surgery; HF - surgery; Intra-aortic balloon pumps - heart failure; IABP - heart failure; Catheter based assist devices - heart failure ... problem may cause heart failure or make heart failure worse. Heart valve surgery may be needed to repair or ...

  13. Pumping of methane by an ionization assisted Zr/Al getter pump

    International Nuclear Information System (INIS)

    Shen, G.L.

    1987-01-01

    The pumping of methane by an ionization assisted Zr/Al getter pump has been investigated. This pump consists of 12 pieces of ring getters. A spiral shape W filament is located within the ring getters. A bias voltage is applied across the filament and the getter itself. The experiments have shown that (1) when the bias voltage is turned off, the pumping speed of the getter pump for methane increases exponentially with the filament temperature; (2) when the filament temperature is held constant, its pumping speed varies directly with the ionization electron current; (3) when the filament temperature is 2063 0 C and the electron current is 57 mA, the pumping speed of the Zr/Al getter pump is 475 ml/s, and the specific speed is 16.8 ml/s cm 2 ; and (4) an activation energy and critical temperature measured for methane molecules decomposition are, respectively, 47.4 kcal/mol and about 1700 0 C. Analysis of the results indicates that methane is pumped by an ionization assisted Zr/Al getter pump not because of the adsorption and the diffusion of methane molecules directly, but because methane molecules are decomposed as C and H 2 through a catalysis of the hot W filament, carbon is adsorbed on the surface of the W filament, and is diffused into the interior of the W lattice. H 2 is immediately absorbed by the Zr/Al getters. Besides, electron impact with CH 4 would result in the additional decomposition and ionization, then the effect of electron bombardment enhances methane pumping by the Zr/Al getters

  14. Design and principle of operation of the HeartMate PHP (percutaneous heart pump).

    Science.gov (United States)

    Van Mieghem, Nicolas M; Daemen, Joost; den Uil, Corstiaan; Dur, Onur; Joziasse, Linda; Maugenest, Anne-Marie; Fitzgerald, Keif; Parker, Chris; Muller, Paul; van Geuns, Robert-Jan

    2018-02-20

    The HeartMate PHP (percutaneous heart pump) is a second-generation transcatheter axial flow circulatory support system. The collapsible catheter pump is inserted through a 14 Fr sheath, deployed across the aortic valve expanding to 24 Fr and able to deliver up to 5 L/min blood flow at minimum haemolytic risk. As such, this device may be a valuable adjunct to percutaneous coronary intervention (PCI) of challenging lesions in high-risk patients or treatment of cardiogenic shock. This technical report discusses: (i) the HeartMate PHP concept, (ii) the implantation technique, (iii) the haemodynamic performance in an in vitro cardiovascular flow testing set-up, and (iv) preliminary clinical experience. An update on the device, produced by St. Jude Medical/Abbott Laboratories, can be found in the Appendix.

  15. Improved Approach With Subcostal Exchange of the HeartMate II Left Ventricular Assist Device: Difference in On and Off Pump?

    Science.gov (United States)

    Gaffey, Ann C; Chen, Carol W; Chung, Jennifer J; Phillips, Emily; Wald, Joyce; Williams, Matthew L; Low, David W; Acker, Michael A; Atluri, Pavan

    2017-11-01

    The HeartMate II (St. Jude Medical, Inc, St. Paul, MN [previously Thoratec]) left ventricular assist device (LVAD) exchange has traditionally involved a redo sternotomy. Alternate minimally invasive subcostal approaches have the advantage of avoiding sternal reentry, excessive bleeding, and prolonged recovery. This retrospective review included patients who underwent an exchange from May 2009 to March 2016. The patients were divided into three cohorts: (1) redo sternotomy, (2) subcostal approach involving cardiopulmonary bypass (CPB) (ON-CPB SC), and (3) subcostal approach off the CPB pump (OFF-CPB SC). Data pertaining to patients' baseline characteristics and outcomes were collected and analyzed. From May 1, 2009 to July 31, 2016, 33 HeartMate II LVAD exchanges were performed. There were 11 redo sternotomies and 22 subcostal exchanges, 12 of which were in the OFF-CPB SC group. There was no significant difference among the groups in terms of age (p = 0.75), sex (p = 0.95), and indication for exchange (p = 0.94). There was a higher red blood cell transfusion requirement within the sternotomy cohort (p rates were equivalent among the cohorts. Exchange of the HeartMate II LVAD can be accomplished with significantly improved recovery time and transfusion requirement through a less invasive subcostal approach when compared with sternotomy. The subcostal approach can be performed safely both on and off cardiopulmonary bypass. Copyright © 2017 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  16. Developments in control systems for rotary left ventricular assist devices for heart failure patients: a review.

    Science.gov (United States)

    AlOmari, Abdul-Hakeem H; Savkin, Andrey V; Stevens, Michael; Mason, David G; Timms, Daniel L; Salamonsen, Robert F; Lovell, Nigel H

    2013-01-01

    From the moment of creation to the moment of death, the heart works tirelessly to circulate blood, being a critical organ to sustain life. As a non-stopping pumping machine, it operates continuously to pump blood through our bodies to supply all cells with oxygen and necessary nutrients. When the heart fails, the supplement of blood to the body's organs to meet metabolic demands will deteriorate. The treatment of the participating causes is the ideal approach to treat heart failure (HF). As this often cannot be done effectively, the medical management of HF is a difficult challenge. Implantable rotary blood pumps (IRBPs) have the potential to become a viable long-term treatment option for bridging to heart transplantation or destination therapy. This increases the potential for the patients to leave the hospital and resume normal lives. Control of IRBPs is one of the most important design goals in providing long-term alternative treatment for HF patients. Over the years, many control algorithms including invasive and non-invasive techniques have been developed in the hope of physiologically and adaptively controlling left ventricular assist devices and thus avoiding such undesired pumping states as left ventricular collapse caused by suction. In this paper, we aim to provide a comprehensive review of the developments of control systems and techniques that have been applied to control IRBPs.

  17. Developments in control systems for rotary left ventricular assist devices for heart failure patients: a review

    International Nuclear Information System (INIS)

    AlOmari, Abdul-Hakeem H; Savkin, Andrey V; Lovell, Nigel H; Stevens, Michael; Mason, David G; Timms, Daniel L; Salamonsen, Robert F

    2013-01-01

    From the moment of creation to the moment of death, the heart works tirelessly to circulate blood, being a critical organ to sustain life. As a non-stopping pumping machine, it operates continuously to pump blood through our bodies to supply all cells with oxygen and necessary nutrients. When the heart fails, the supplement of blood to the body's organs to meet metabolic demands will deteriorate. The treatment of the participating causes is the ideal approach to treat heart failure (HF). As this often cannot be done effectively, the medical management of HF is a difficult challenge. Implantable rotary blood pumps (IRBPs) have the potential to become a viable long-term treatment option for bridging to heart transplantation or destination therapy. This increases the potential for the patients to leave the hospital and resume normal lives. Control of IRBPs is one of the most important design goals in providing long-term alternative treatment for HF patients. Over the years, many control algorithms including invasive and non-invasive techniques have been developed in the hope of physiologically and adaptively controlling left ventricular assist devices and thus avoiding such undesired pumping states as left ventricular collapse caused by suction. In this paper, we aim to provide a comprehensive review of the developments of control systems and techniques that have been applied to control IRBPs. (topical review)

  18. Implantation of a HeartMate II left ventricular assist device via left thoracotomy.

    Science.gov (United States)

    Cho, Yang Hyun; Deo, Salil V; Schirger, John A; Pereira, Naveen L; Stulak, John M; Park, Soon J

    2012-11-01

    Left thoracotomy was used as an approach for the implantation of pulsatile ventricular assist devices. Avoiding the standard approach of median sternotomy is attractive in patients undergoing complicated redo cardiac surgery, especially with prior mediastinal radiation. We report a case of the use of left thoracotomy for the implantation of the HeartMate II axial-flow pump. Copyright © 2012 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  19. Late outcomes of subcostal exchange of the HeartMate II left ventricular assist device: a word of caution.

    Science.gov (United States)

    Yu, Sarah N; Takayama, Hiroo; Han, Jiho; Garan, Arthur R; Kurlansky, Paul; Yuzefpolskaya, Melana; Colombo, Paolo C; Naka, Yoshifumi; Takeda, Koji

    2018-04-10

    Previous studies have shown the usefulness of the subcostal exchange of the HeartMate II left ventricular assist device for device malfunction. However, long-term data are still limited. Between March 2004 and July 2017, 41 of 568 (7.2%) patients who had received a HeartMate II implant at our institution had a device exchange via a subcostal incision. We summarized early and late outcomes. Forty-one patients had a total of 48 subcostal pump exchanges. Indications for device exchange included device thrombosis (n = 31, 76%), driveline infection (n = 2, 5%) and driveline injury (n = 8, 19%). All of the procedures were successful, and there were no in-hospital deaths. A Kaplan-Meier survival curve showed 30-day and 1-year survival rates after subcostal exchange of 100% and 94.6%, respectively. However, 10 (25%) patients had left ventricular assist device-related infections following subcostal exchange that included 7 pump pocket infections and 3 driveline infections. Freedom from left ventricular assist device-related infection at 1 year after subcostal exchange was 79.3%. Thirteen (32%) patients had device malfunction due to pump thrombosis that required a 2nd device exchange. Seven patients had recurrent thrombosis. Three (7%) patients had a stroke. Freedom from device thrombosis and from a stroke event at 1 year was 74.4%. Subcostal pump exchange can be safely performed. However, there is a substantial risk of infection and recurrent thrombosis. Careful follow-up for late complications is mandatory.

  20. State-of-the-art implantable cardiac assist device therapy for heart failure: bridge to transplant and destination therapy.

    Science.gov (United States)

    Park, S J; Kushwaha, S S; McGregor, C G A

    2012-01-01

    Congestive heart failure is associated with poor quality of life (QoL) and low survival rates. The development of state-of-the-art cardiac devices holds promise for improved therapy in patients with heart failure. The field of implantable cardiac assist devices is changing rapidly with the emergence of continuous-flow pumps (CFPs). The important developments in this field, including pertinent clinical trials, registry reports, innovative research, and potential future directions are discussed in this paper.

  1. Beneficial aspects of real time flow measurements for the management of acute right ventricular heart failure following continuous flow ventricular assist device implantation

    Directory of Open Access Journals (Sweden)

    Spiliopoulos Sotirios

    2012-11-01

    Full Text Available Abstract Background Optimal management of acute right heart failure following the implantation of a left ventricular assist device requires a reliable estimation of left ventricular preload and contractility. This is possible by real-time pump blood flow measurements. Clinical case We performed implantation of a continuous flow left ventricular assist device in a 66 years old female patient with an end-stage heart failure on the grounds of a dilated cardiomyopathy. Real-time pump blood flow was directly measured by an ultrasonic flow probe placed around the outflow graft. Diagnosis The progressive decline of real time flow and the loss of pulsatility were associated with an increase of central venous pressure, inotropic therapy and progressive renal failure suggesting the presence of an acute right heart failure. Diagnosis was validated by echocardiography and thermodilution measurements. Treatment Temporary mechanical circulatory support of the right ventricle was successfully performed. Real time flow measurement proved to be a useful tool for the diagnosis and ultimately for the management of right heart failure including the weaning from extracorporeal membrane oxygenation.

  2. A mini axial and a permanent maglev radial heart pump.

    Science.gov (United States)

    Qian, Kun-Xi; Ru, Wei-Min; Wang, Hao; Jing, Teng

    2007-05-31

    The implantability and durability have been for decades the focus of artificial heart R&D. A mini axial and a maglev radial pump have been developed to meet with such requirements.The mini axial pump weighing 27g (incl.5g rotor) has an outer diameter of 21mm and a length of 10mm in its largest point, but can produce a maximal blood flow of 6l/min with 50mmHg pressure increase. Therefore, it is suitable for the patients of 40-60kg body weight. For other patients of 60-80kg or 80-100kg body weight, the mini axial pumps of 23mm and 25mm outer diameter had been developed before, these devices were acknowledged to be the world smallest LVADs by Guinness World Record Center in 2004.The permanent maglev radial pump weighing 150g is a shaft-less centrifugal pump with permanent magnetic bearings developed by the author. It needs no second coil for suspension of the rotor except the motor coil, different from all other maglev pumps developed in USA, Japan, European, etc. Thus no detecting and controlling systems as well as no additional power supply for maglev are necessary. The pump can produce a blood flow up to as large as 10l/min against 100mmHg pressure.An implantable and durable blood pump will be a viable alternative to natural donor heart for transplantation.

  3. Radionuclide kineventriculographic evaluation of the heart pump function in valvular prosthesis

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Zh; Shejretova, E; Trindev, P; Topalov, V; Denchev, S; Khadzhikostova, Kh

    1986-01-01

    The heart pump function was investigated by the methods of radionuclide kineventriculography, standart opaque ventryculography and echocardiography. The statistical analysis revealed lack of correlation for the ejection fraction, determined by the three methods. The methodological advantages of radionuclide kineventriculography are pointed out for exact and objective evaluation of the ejection fraction of the left cardiac ventricle, as well as some limitations in the application of this index in the clinical assessment of the heart pump function in patients, indicated for valvular prosthesis.

  4. A Mini Axial and a Permanent Maglev Radial Heart Pump§

    Science.gov (United States)

    Qian, Kun-Xi; Ru, Wei-Min; Wang, Hao; Jing, Teng

    2007-01-01

    The implantability and durability have been for decades the focus of artificial heart R&D. A mini axial and a maglev radial pump have been developed to meet with such requirements. The mini axial pump weighing 27g (incl.5g rotor) has an outer diameter of 21mm and a length of 10mm in its largest point, but can produce a maximal blood flow of 6l/min with 50mmHg pressure increase. Therefore, it is suitable for the patients of 40-60kg body weight. For other patients of 60-80kg or 80-100kg body weight, the mini axial pumps of 23mm and 25mm outer diameter had been developed before, these devices were acknowledged to be the world smallest LVADs by Guinness World Record Center in 2004. The permanent maglev radial pump weighing 150g is a shaft-less centrifugal pump with permanent magnetic bearings developed by the author. It needs no second coil for suspension of the rotor except the motor coil, different from all other maglev pumps developed in USA, Japan, European, etc. Thus no detecting and controlling systems as well as no additional power supply for maglev are necessary. The pump can produce a blood flow up to as large as 10l/min against 100mmHg pressure. An implantable and durable blood pump will be a viable alternative to natural donor heart for transplantation. PMID:19662120

  5. Immediate extubation versus standard postoperative ventilation: Our experience in on pump open heart surgery

    Directory of Open Access Journals (Sweden)

    Srikanta Gangopadhyay

    2010-01-01

    Full Text Available Elective postoperative ventilation in patients undergoing "on pump" open heart surgery has been a standard practice. Ultra fast-track extubation in the operating room is now an accepted technique for "off pump" coronary artery bypass grafting. We tried to incorporate these experiences in on pump open heart surgery and compare the haemodynamic and respiratory parameters in the immediate postoperative period, in patients on standard postoperative ventilation for 8-12 hours. After ethical committee′s approval and informed consent were obtained, 72 patients, between 28 and 45 years of age, undergoing on pump open heart surgery, were selected for our study. We followed same standard anaesthetic, cardiopulmonary bypass (CPB and cardioplegic protocol. Thirty-six patients (Group E were randomly allocated for immediate extubation following operation, after fulfillment of standard extubation criteria. Those who failed to meet these criteria were not extubated and were excluded from the study. The remaining 36 patients (Group V were electively ventilated and extubated after 8-12 hours. Standard monitoring for on pump open heart surgery, including bispectral index was done. The demographic data, surgical procedures, preoperative parameters, aortic cross clamp and cardiopulmonary bypass times were comparable in both the groups. Extubation was possible in more than 88% of cases (n=32 out of 36 cases in Group E and none required reintubation for respiratory insufficiency. Respiratory, haemodynamic parameters and postoperative complications were comparable in both the groups in the postoperative period. Therefore, we can safely conclude that immediate extubation in the operating room after on pump open heart surgery is an alternative acceptable method to avoid postoperative ventilation and its related complications in selected patients.

  6. Ambient hemolysis and activation of coagulation is different between HeartMate II and HeartWare left ventricular assist devices.

    Science.gov (United States)

    Birschmann, Ingvild; Dittrich, Marcus; Eller, Thomas; Wiegmann, Bettina; Reininger, Armin J; Budde, Ulrich; Strüber, Martin

    2014-01-01

    Thromboembolic and bleeding events in patients with a left ventricular assist device (LVAD) are still a major cause of complications. Therefore, the balance between anti-coagulant and pro-coagulant factors needs to be tightly controlled. The principle hypothesis of this study is that different pump designs may have an effect on hemolysis and activation of the coagulation system. Referring to this, the HeartMate II (HMII; Thoratec Corp, Pleasanton, CA) and the HeartWare HVAD (HeartWare International Inc, Framingham, MA) were investigated. For 20 patients with LVAD support (n = 10 each), plasma coagulation, full blood count, and clinical chemistry parameters were measured. Platelet function was monitored using platelet aggregometry, platelet function analyzer-100 system ( Siemens, Marburg, Germany), vasodilator-stimulated phosphoprotein phosphorylation assay, immature platelet fraction, platelet-derived microparticles, and von Willebrand diagnostic. Acquired von Willebrand syndrome could be detected in all patients. Signs of hemolysis, as measured by lactate dehydrogenase levels (mean, 470 U/liter HMII, 250 U/liter HVAD; p < 0.001), were more pronounced in the HMII patients. In contrast, D-dimer analysis indicated a significantly higher activation of the coagulation system in HVAD patients (mean, 0.94 mg/liter HMII, 2.01 mg/liter HVAD; p < 0.01). The efficacy of anti-platelet therapy using clopidogrel was not sufficient in more than 50% of the patients. Our results support the finding that all patients with rotary blood pumps suffered from von Willebrand syndrome. In addition, a distinct footprint of effects on hemolysis and the coagulation system can be attributed to different devices. As a consequence, the individual status of the coagulation system needs to be controlled in long-term patients. © 2013 Published by International Society for the Heart and Lung Transplantation on behalf of International Society for Heart and Lung Transplantation.

  7. The medical physics of ventricular assist devices

    International Nuclear Information System (INIS)

    Wood, Houston G; Throckmorton, Amy L; Untaroiu, Alexandrina; Song Xinwei

    2005-01-01

    Millions of patients, from infants to adults, are diagnosed with congestive heart failure each year all over the world. A limited number of donor hearts available for these patients results in a tremendous demand for alternative, supplemental circulatory support in the form of artificial heart pumps or ventricular assist devices (VADs). The development procedure for such a device requires careful consideration of biophysical factors, such as biocompatibility, haemolysis, thrombosis, implantability, physiologic control feasibility and pump performance. Conventional pump design equations based on Newton's law and computational fluid dynamics (CFD) are readily used for the initial design of VADs. In particular, CFD can be employed to predict the pressure-flow performance, hydraulic efficiencies, flow profile through the pump, stress levels and biophysical factors, such as possible blood cell damage. These computational flow simulations may involve comprehensive steady and transient flow analyses. The transient simulations involve time-varying boundary conditions and virtual modelling of the impeller rotation in the blood pumps. After prototype manufacture, laser flow measurements with sophisticated optics and mock circulatory flow loop testing assist with validation of pump design and identification of irregular flow patterns for optimization. Additionally, acute and chronic animal implants illustrate the blood pump's ability to support life physiologically. These extensive design techniques, coupled with fundamental principles of physics, ensure a reliable and effective VAD for thousands of heart failure patients each year

  8. [Schemes for implanting shovel pumps for assisted circulation].

    Science.gov (United States)

    Shumakov, V I; Tolpekin, V E; Melemuka, I V; Khaustov, A I; Eremin, V N; Degtiarev, V G; Romanov, O V

    1992-01-01

    The authors propose a design of an axial shovel pump for extracorporeal circulation. They show how to introduce it into various cardiovascular segments and make a comparative assessment of its efficacy in relation to the type and severity of heart failure, surgical access, and treatment policy.

  9. An analysis of solar assisted ground source heat pumps in cold climates

    International Nuclear Information System (INIS)

    Emmi, Giuseppe; Zarrella, Angelo; De Carli, Michele; Galgaro, Antonio

    2015-01-01

    Highlights: • The work focuses on solar assisted ground source heat pump in cold climates. • Multi-year simulations of SAGSHP, are carried out in six cold locations. • GSHP and SAGSHP are compared. • The effect of total borehole length on the heat pump energy efficiency is studied. • A dedicated control strategy is used to manage both solar and ground loops. - Abstract: Exploiting renewable energy sources for air-conditioning has been extensively investigated over recent years, and many countries have been working to promote the use of renewable energy to decrease energy consumption and CO_2 emissions. Electrical heat pumps currently represent the most promising technology to reduce fossil fuel usage. While ground source heat pumps, which use free heat sources, have been taking significant steps forward and despite the fact that their energy performance is better than that of air source heat pumps, their development has been limited by their high initial investment cost. An alternative solution is one that uses solar thermal collectors coupled with a ground source heat pump in a so-called solar assisted ground source heat pump. A ground source heat pump system, used to heat environments located in a cold climate, was investigated in this study. The solar assisted ground source heat pump extracted heat from the ground by means of borehole heat exchangers and it injected excess solar thermal energy into the ground. Building load profiles are usually heating dominated in cold climates, but when common ground source heat pump systems are used only for heating, their performance decreases due to an unbalanced ground load. Solar thermal collectors can help to ensure that systems installed in cold zones perform more efficiently. Computer simulations using a Transient System Simulation (TRNSYS) tool were carried out in six cold locations in order to investigate solar assisted ground source heat pumps. The effect of the borehole length on the energy efficiency of

  10. Pump speed modulations and sub-maximal exercise tolerance in left ventricular assist device recipients

    DEFF Research Database (Denmark)

    Jung, Mette Holme; Houston, Brian; Russell, Stuart D

    2017-01-01

    of the 2 sub-maximal tests was determined by randomization. Both patient and physician were blinded to the sequence. Exercise duration, oxygen consumption (VO2) and rate of perceived exertion (RPE), using the Borg scale (score 6 to 20), were recorded. RESULTS: Nineteen patients (all with a HeartMate II...... ventricular assist device) completed 57 exercise tests. Baseline pump speed was 9,326 ± 378 rpm. At AT, workload was 63 ± 26 W (25 to 115 W) and VO2 was 79 ± 14% of maximum. Exercise duration improved by 106 ± 217 seconds (~13%) in Speedinc compared with Speedbase (837 ± 358 vs 942 ± 359 seconds; p = 0...

  11. Ramp Study Hemodynamics, Functional Capacity, and Outcome in Heart Failure Patients with Continuous-Flow Left Ventricular Assist Devices

    DEFF Research Database (Denmark)

    Jung, Mette H; Gustafsson, Finn; Houston, Brian

    2016-01-01

    Ramp studies-measuring changes in cardiac parameters as a function of serial pump speed changes (revolutions per minute [rpm])-are increasingly used to evaluate function and malfunction of continuous-flow left ventricular assist devices (CF-LVADs). We hypothesized that ramp studies can predict...... patients (HeartMate II, Thoratec Corporation, Pleasanton, CA). Functional status was evaluated in 70% (31/44); average 6 minute walk test (6MWT) was 312 ± 220 min, New York Heart Association (NYHA) I-II/III-IV (70/30%) and activity scores very low-low/moderate-very high (55/45%). Decrease in pulmonary...

  12. Experimental study of a photovoltaic solar-assisted heat-pump/heat-pipe system

    International Nuclear Information System (INIS)

    Fu, H.D.; Pei, G.; Ji, J.; Long, H.; Zhang, T.; Chow, T.T.

    2012-01-01

    A practical design for a heat pump with heat-pipe photovoltaic/thermal (PV/T) collectors is presented. The hybrid system is called the photovoltaic solar-assisted heat-pump/heat-pipe (PV-SAHP/HP) system. To focus on both actual demand and energy savings, the PV-SAHP/HP system was designed to be capable of operating in three different modes, namely, the heat-pipe, solar-assisted heat pump, and air-source heat-pump modes. Based on solar radiation, the system operates in an optimal mode. A series of experiments were conducted in Hong Kong to study the performance of the system when operating in the heat-pipe and the solar-assisted heat-pump modes. Moreover, energy and exergy analyses were used to investigate the total PV/T performance of the system. - Highlights: ► A novel PV-SAHP/HP system with three different operating modes was proposed. ► Performance of the PV-SAHP/HP system was studied experimentally. ► A optimal operating mode of the PV-SAHP/HP system was suggested in this paper.

  13. Effects of dietary magnesium on sodium-potassium pump action in the heart of rats

    International Nuclear Information System (INIS)

    Fischer, P.W.; Giroux, A.

    1987-01-01

    Sprague-Dawley rats were fed a basal AIN-76 diet containing 80, 200, 350, 500 or 650 mg of magnesium per kilogram of diet for 6 wk. Ventricular slices, as well as microsomal fractions, were prepared from the hearts and were used to determine sodium-potassium pump activity. Sodium-potassium pump activity was assessed in the microsomal membranes by determining the ouabain-inhibitable Na+, K+-ATPase activity and [ 3 H]ouabain binding, and in the ventricular slices, by determining ouabain-sensitive 86 Rb uptake under K+-free conditions. The ATPase activity increased with increasing dietary magnesium, so that in the hearts of those animals that were fed 500 and 650 mg of magnesium/kg diet, it was significantly greater than the activity in the hearts of the animals fed 80 and 200 mg/kg diet. Similarly, 86 Rb uptake by heart slices from rats fed 500 and 650 mg of magnesium/kg diet was significantly greater than the uptake by heart slices from animals fed 80 and 200 mg/kg diet. [ 3 H]Ouabain binding did not change with increasing dietary magnesium. Thus, magnesium deficiency appears to have no effect on the number of sodium-potassium pump sites, but does decrease the activity of the pump. It is suggested that this leads to an increase in intracellular Na+, resulting in a change in the membrane potential, and may contribute to the arrhythmias associated with magnesium deficiency

  14. Artificial heart system thermal converter and blood pump component research and development

    International Nuclear Information System (INIS)

    Pouchot, W.D.; Bifano, N.J.; Hanson, J.P.

    1975-01-01

    A bench model version of a nuclear-powered artificial heart system to be used as a replacement for the natural heart was constructed and tested as a part of a broader U. S. ERDA program. The objective of the broader program has been to develop a prototype of a fully implantable nuclear-powered total artificial heart system powered by the thermal energy of plutonium-238 and having minimum weight and volume and a minimum life of ten years. As a forward step in this broader program, component research and development has been carried out directed towards a fully implantable and advanced version of the bench model (IVBM). Some of the results of the component research and development effort on a Stirling engine, blood pump drive mechanisms, and coupling mechanisms are presented. The Stirling-mechanical system under development is shown. There are three major subassemblies: the thermal converter, the coupling mechanism, and the blood pump drive mechanism. The thermal converter uses a Stirling cycle to convert the heat of the plutonium-238 fueled heat source to a rotary shaft power output. The coupling mechanism changes the orientation of the output shaft by 90 degrees and transmits the pumping power by wire-wound core flexible shafting to the pumping mechanism. The coupling mechanism also provides routing of the coolant lines which carry the cycle waste heat from the thermal converter to the blood pump. The change in orientation of the thermal converter output shaft is for convenience in implanting in a calf. This orientation of thermal converter to blood pump seemed to give the best overall system fit in a calf based on fit trials with wooden models in a calf cadaver

  15. Review on advanced of solar assisted chemical heat pump dryer for agriculture produce

    International Nuclear Information System (INIS)

    Fadhel, M.I.; Sopian, K.; Daud, W.R.W.; Alghoul, M.A.

    2011-01-01

    Over the past three decades there has been nearly exponential growth in drying R and D on a global scale. Improving of the drying operation to save energy, improve product quality as well as reduce environmental effect remained as the main objectives of any development of drying system. A solar assisted chemical heat pump dryer is a new solar drying system, which have contributed to better cost-effectiveness and better quality dried products as well as saving energy. A solar collector is adapted to provide thermal energy in a reactor so a chemical reaction can take place. This reduces the dependency of the drying technology on fossil energy for heating. In this paper a review on advanced of solar assisted chemical heat pump dryer is presented (the system model and the results from experimental studies on the system performance are discussed). The review of heat pump dryers and solar assisted heat pump dryer is presented. Description of chemical heat pump types and the overview of chemical heat pump dryer are discussed. The combination of chemical heat pump and solar technology gives extra efficiency in utilizing energy. (author)

  16. Solar-assisted heat pump system for cost-effective space heating and cooling

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, J W; Kush, E A; Metz, P D

    1978-03-01

    The use of heat pumps for the utilization of solar energy is studied. Two requirements for a cost-effective system are identified: (1) a special heat pump whose coefficient of performance continues to rise with source temperature over the entire range appropriate for solar assist, and (2) a low-cost collection and storage subsystem able to supply solar energy to the heat pump efficiently at low temperatures. Programs leading to the development of these components are discussed. A solar assisted heat pump system using these components is simulated via a computer, and the results of the simulation are used as the basis for a cost comparison of the proposed system with other solar and conventional systems.

  17. Mechanical circulatory assist device development at the Texas Heart Institute: a personal perspective.

    Science.gov (United States)

    Frazier, O H

    2014-01-01

    In December 2013, we performed our 1000th ventricular assist device implantation at the Texas Heart Institute. In my professional career, I have been fortunate to see the development of numerous mechanical circulatory support devices for the treatment of patients with advanced heart failure. In fact, most of the cardiac pumps in wide use today were developed in the Texas Heart Institute research laboratories in cooperation with the National Heart, Lung and Blood Institute or device innovators and manufacturers and implanted clinically at our partner St. Luke's Episcopal Hospital. My early involvement in this field was guided by my mentors, Dr Michael E. DeBakey and, especially, Dr Denton A. Cooley. Also, many of the advances are directly attributable to my ongoing clinical experience. What I learned daily in my surgical practice allowed me to bring insights to the development of this technology that a laboratory researcher alone might not have had. Young academic surgeons interested in this field might be well served to be active not only in laboratory research but also in clinical practice. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Management of single-ventricle patients with Berlin Heart EXCOR Ventricular Assist Device: single-center experience.

    Science.gov (United States)

    Mackling, Tracey; Shah, Tejas; Dimas, Vivian; Guleserian, Kristine; Sharma, Mahesh; Forbess, Joseph; Ardura, Monica; Gross-Toalson, Jami; Lee, Ying; Journeycake, Janna; Barnes, Aliessa

    2012-06-01

    There are minimal data regarding chronic management of single-ventricle ventricular assist device (VAD) patients. This study aims to describe our center's multidisciplinary team management of single-ventricle patients supported long term with the Berlin Heart EXCOR Pediatric VAD. Patient #1 was a 4-year-old with double-outlet right ventricle with aortic atresia, L-looped ventricles, and heart block who developed heart failure 1 year after Fontan. She initially required extracorporeal membrane oxygenation support and was transitioned to Berlin Heart systemic VAD. She was supported for 363 days (cardiac intensive care unit [CICU] 335 days, floor 28 days). The postoperative course was complicated by intermittent infection including methicillin-resistant Staphylococcus aureus, intermittent hepatic and renal insufficiencies, and transient antithrombin, protein C, and protein S deficiencies resulting in multiple thrombi. She had a total of five pump changes over 10 months. Long-term medical management included anticoagulation with enoxaparin, platelet inhibition with aspirin and dipyridamole, and antibiotic prophylaxis using trimethoprim/sulfamethoxazole. She developed sepsis of unknown etiology and subsequently died from multiorgan failure. Patient #2 was a 4-year-old with hypoplastic left heart syndrome who developed heart failure 2 years after bidirectional Glenn shunt. At systemic VAD implantation, he was intubated with renal insufficiency. Post-VAD implantation, his renal insufficiency resolved, and he was successfully extubated to daytime nasal cannula and biphasic positive airway pressure at night. He was supported for 270 days (CICU 143 days, floor 127 days). The pump was upsized to a 50-mL pump in May 2011 for increased central venous pressures (29 mm Hg). Long-term medical management included anticoagulation with warfarin and single-agent platelet inhibition using dipyridamole due to aspirin resistance. He developed increased work of breathing requiring

  19. Open-heart surgery using a centrifugal pump: a case of hereditary spherocytosis.

    Science.gov (United States)

    Matsuzaki, Yuichi; Tomioka, Hideyuki; Saso, Masaki; Azuma, Takashi; Saito, Satoshi; Aomi, Shigeyuki; Yamazaki, Kenji

    2016-08-26

    Hereditary spherocytosis is a genetic, frequently familial hemolytic blood disease characterized by varying degrees of hemolytic anemia, splenomegaly, and jaundice. There are few reports on adult open-heart surgery for patients with hereditary spherocytosis. We report a rare case of an adult open-heart surgery associated with hereditary spherocytosis. A 63-year-old man was admitted for congestive heart failure due to bicuspid aortic valve, aortic valve regurgitation, and sinus of subaortic aneurysm. The family history, the microscopic findings of the blood smear, and the characteristic osmotic fragility confirmed the diagnosis of hereditary spherocytosis. Furthermore, splenectomy had not been undertaken preoperatively. The patient underwent a successful operation by means of a centrifugal pump. Haptoglobin was used during the cardiopulmonary bypass, and a biological valve was selected to prevent hemolysis. No significant hemolysis occurred intraoperatively or postoperatively. There are no previous reports of patients with hereditary spherocytosis, and bicuspid aortic valve. We have successfully performed an adult open-heart surgery using a centrifugal pump in an adult patient suffering from hereditary spherocytosis and bicuspid aortic valve.

  20. Experimental evaluation of mechanical heart support system based on viscous friction disc pump

    Directory of Open Access Journals (Sweden)

    A. M. Chernyavskiy

    2017-01-01

    Full Text Available Aim. Experimental evaluation of the viscous friction disk pump efficiency, studying the relationship between inter-disk clearance and sizes of input and output ports and pump performance parameters.Materials and methods. To assess the characteristics and to optimize the disk friction pump design the pump model and experimental stand were created. Pump dimensions were set on the basis of medical and biological requirements for mechanical heart support systems and with due consideration of the experimental studies of our colleagues from Pennsylvania. Flow volume of the working fluid was measured by float rotameter Krohne VA-40 with measurement error of not more than 1%. The pressure values in the hydrodynamic circuit were measured using a monitor manufactured by Biosoft-M. Expansion device allowed changing the flow resistance of the system simulating the total peripheral resistance of the circulatory system.Results. Linear direct correlation between the pump performance and the pressure drop of liquid being created at the inlet and outlet of the pump was obtained. The required flow rate (5–7 l/min and pressure (90–100 mmHg were reached when the rotor speed was in the range of 2500–3000 rev/min. It has been shown that the increase of the inlet diameter to 15 mm has not resulted in a significant increase in the pump performance, and that the highest efficiency values can be obtained for the magnitude of inter-disk gap of 0.4–0.5 mm.Conclusion. Designed and manufactured experimental disc pump model for pumping fluid has showed the fundamental possibility to use this model as a system for mechanical support of the heart.

  1. Variations in battery life of a heart-lung machine using different pump speeds, pressure loads, boot material, centrifugal pump head, multiple pump usage, and battery age.

    LENUS (Irish Health Repository)

    Marshall, Cornelius

    2012-02-03

    Electrical failure during cardiopulmonary bypass (CPB) has previously been reported to occur in 1 of every 1500 cases. Most heart-lung machine pump consoles are equipped with built-in battery back-up units. Battery run times of these devices are variable and have not been reported. Different conditions of use can extend battery life in the event of electrical failure. This study was designed to examine the run time of a fully charged battery under various conditions of pump speed, pressure loads, pump boot material, multiple pump usage, and battery life. Battery life using a centrifugal pump also was examined. The results of this study show that battery life is affected by pump speed, circuit pressure, boot stiffness, and the number of pumps in service. Centrifugal pumps also show a reduced drain on battery when compared with roller pumps. These elements affect the longevity and performance of the battery. This information could be of value to the individual during power failure as these are variables that can affect the battery life during such a challenging scenario.

  2. Left Ventricular Assist Devices: The Adolescence of a Disruptive Technology.

    Science.gov (United States)

    Pinney, Sean P

    2015-10-01

    Clinical outcomes for patients with advanced heart failure receiving left ventricular assist devices are driven by appropriate patient selection, refined surgical technique, and coordinated medical care. Perhaps even more important is innovative pump design. The introduction and widespread adoption of continuous-flow ventricular assist devices has led to a paradigm shift within the field of mechanical circulatory support, making the promise of lifetime device therapy closer to reality. The disruption caused by this new technology, on the one hand, produced meaningful improvements in patient survival and quality of life, but also introduced new clinical challenges, such as bleeding, pump thrombosis, and acquired valvular heart disease. Further evolution within this field will require financial investment to sustain innovation leading to a fully implantable, durable, and cost-effective pump for a larger segment of patients with advanced heart failure. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Redox-dependent regulation of the Na⁺-K⁺ pump: new twists to an old target for treatment of heart failure.

    Science.gov (United States)

    Liu, Chia-Chi; Fry, Natasha A S; Hamilton, Elisha J; Chia, Karin K M; Garcia, Alvaro; Karimi Galougahi, Keyvan; Figtree, Gemma A; Clarke, Ronald J; Bundgaard, Henning; Rasmussen, Helge H

    2013-08-01

    By the time it was appreciated that the positive inotropic effect of cardiac glycosides is due to inhibition of the membrane Na(+)-K(+) pump, glycosides had been used for treatment of heart failure on an empiric basis for ~200 years. The subsequent documentation of their lack of clinical efficacy and possible harmful effect largely coincided with the discovery that a raised Na(+) concentration in cardiac myocytes plays an important role in the electromechanical phenotype of heart failure syndromes. Consistent with this, efficacious pharmacological treatments for heart failure have been found to stimulate the Na(+)-K(+) pump, effectively the only export route for intracellular Na(+) in the heart failure. A paradigm has emerged that implicates pump inhibition in the raised Na(+) levels in heart failure. It invokes protein kinase-dependent activation of nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase) and glutathionylation, a reversible oxidative modification, of the Na(+)-K(+) pump molecular complex that inhibits its activity. Since treatments of proven efficacy reverse the oxidative Na(+)-K(+) pump inhibition, the pump retains its status as a key pharmacological target in heart failure. Its role as a target is well integrated with the paradigms of neurohormonal abnormalities, raised myocardial oxidative stress and energy deficiency implicated in the pathophysiology of the failing heart. We propose that targeting oxidative inhibition of the pump is useful for the exploration of future treatment strategies. This article is part of a Special Issue entitled "Na(+)Regulation in Cardiac Myocytes". Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Solar Assisted Ground Source Heat Pump Performance in Nearly Zero Energy Building in Baltic Countries

    Science.gov (United States)

    Januševičius, Karolis; Streckienė, Giedrė

    2013-12-01

    In near zero energy buildings (NZEB) built in Baltic countries, heat production systems meet the challenge of large share domestic hot water demand and high required heating capacity. Due to passive solar design, cooling demand in residential buildings also needs an assessment and solution. Heat pump systems are a widespread solution to reduce energy use. A combination of heat pump and solar thermal collectors helps to meet standard requirements and increases the share of renewable energy use in total energy balance of country. The presented paper describes a simulation study of solar assisted heat pump systems carried out in TRNSYS. The purpose of this simulation was to investigate how the performance of a solar assisted heat pump combination varies in near zero energy building. Results of three systems were compared to autonomous (independent) systems simulated performance. Different solar assisted heat pump design solutions with serial and parallel solar thermal collector connections to the heat pump loop were modelled and a passive cooling possibility was assessed. Simulations were performed for three Baltic countries: Lithuania, Latvia and Estonia.

  5. Current Trends in Implantable Left Ventricular Assist Devices

    Directory of Open Access Journals (Sweden)

    Jens Garbade

    2011-01-01

    Full Text Available The shortage of appropriate donor organs and the expanding pool of patients waiting for heart transplantation have led to growing interest in alternative strategies, particularly in mechanical circulatory support. Improved results and the increased applicability and durability with left ventricular assist devices (LVADs have enhanced this treatment option available for end-stage heart failure patients. Moreover, outcome with newer pumps have evolved to destination therapy for such patients. Currently, results using nonpulsatile continuous flow pumps document the evolution in outcomes following destination therapy achieved subsequent to the landmark Randomized Evaluation of Mechanical Assistance for the Treatment of Congestive Heart Failure Trial (REMATCH, as well as the outcome of pulsatile designed second-generation LVADs. This review describes the currently available types of LVADs, their clinical use and outcomes, and focuses on the patient selection process.

  6. Parametric sensitivity study for solar-assisted heat-pump systems

    Science.gov (United States)

    White, N. M.; Morehouse, J. H.

    1981-07-01

    The engineering and economic parameters affecting life-cycle costs for solar-assisted heat pump systems are investigted. The change in energy usage resulting from each engineering parameter varied was developed from computer simulations, and is compared with results from a stand-alone heat pump system. Three geographical locations are considered: Washington, DC, Fort Worth, TX, and Madison, WI. Results indicate that most engineering changes to the systems studied do not provide significant energy savings. The most promising parameters to ary are the solar collector parameters tau (-) and U/sub L/ the heat pump capacity at design point, and the minimum utilizable evaporator temperature. Costs associated with each change are estimated, and life-cycle costs computed for both engineering parameters and economic variations in interest rate, discount rate, tax credits, fuel unit costs and fuel inflation rates. Results indicate that none of the feasibile engineering changes for the system configuration studied will make these systems economically competitive with the stand-alone heat pump without a considerable tax credit.

  7. Computational fluid dynamics analysis of a maglev centrifugal left ventricular assist device.

    Science.gov (United States)

    Burgreen, Greg W; Loree, Howard M; Bourque, Kevin; Dague, Charles; Poirier, Victor L; Farrar, David; Hampton, Edward; Wu, Z Jon; Gempp, Thomas M; Schöb, Reto

    2004-10-01

    The fluid dynamics of the Thoratec HeartMate III (Thoratec Corp., Pleasanton, CA, U.S.A.) left ventricular assist device are analyzed over a range of physiological operating conditions. The HeartMate III is a centrifugal flow pump with a magnetically suspended rotor. The complete pump was analyzed using computational fluid dynamics (CFD) analysis and experimental particle imaging flow visualization (PIFV). A comparison of CFD predictions to experimental imaging shows good agreement. Both CFD and experimental PIFV confirmed well-behaved flow fields in the main components of the HeartMate III pump: inlet, volute, and outlet. The HeartMate III is shown to exhibit clean flow features and good surface washing across its entire operating range.

  8. A new beating-heart off-pump coronary artery bypass grafting training model

    NARCIS (Netherlands)

    Bouma, Wobbe; Kuijpers, Michiel; Bijleveld, Aanke; De Maat, Gijs E.; Koene, Bart M.; Erasmus, Michiel E.; Natour, Ehsan; Mariani, Massimo A.

    OBJECTIVES: Training models are essential in mastering the skills required for off-pump coronary artery bypass grafting (OPCAB). We describe a new, high-fidelity, effective and reproducible beating-heart OPCAB training model in human cadavers. METHODS: Human cadavers were embalmed according to the

  9. Theoretical energy and exergy analyses of solar assisted heat pump space heating system

    Directory of Open Access Journals (Sweden)

    Atmaca Ibrahim

    2014-01-01

    Full Text Available Due to use of alternative energy sources and energy efficient operation, heat pumps come into prominence in recent years. Especially in solar-assisted heat pumps, sizing the required system is difficult and arduous task in order to provide optimum working conditions. Therefore, in this study solar assisted indirect expanded heat pump space heating system is simulated and the results of the simulation are compared with available experimental data in the literature in order to present reliability of the model. Solar radiation values in the selected region are estimated with the simulation. The case study is applied and simulation results are given for Antalya, Turkey. Collector type and storage tank capacity effects on the consumed power of the compressor, COP of the heat pump and the overall system are estimated with the simulation, depending on the radiation data, collector surface area and the heating capacity of the space. Exergy analysis is also performed with the simulation and irreversibility, improvement potentials and exergy efficiencies of the heat pump and system components are estimated.

  10. Physiological control of dual rotary pumps as a biventricular assist device using a master/slave approach.

    Science.gov (United States)

    Stevens, Michael C; Wilson, Stephen; Bradley, Andrew; Fraser, John; Timms, Daniel

    2014-09-01

    Dual rotary left ventricular assist devices (LVADs) can provide biventricular mechanical support during heart failure. Coordination of left and right pump speeds is critical not only to avoid ventricular suction and to match cardiac output with demand, but also to ensure balanced systemic and pulmonary circulatory volumes. Physiological control systems for dual LVADs must meet these objectives across a variety of clinical scenarios by automatically adjusting left and right pump speeds to avoid catastrophic physiological consequences. In this study we evaluate a novel master/slave physiological control system for dual LVADs. The master controller is a Starling-like controller, which sets flow rate as a function of end-diastolic ventricular pressure (EDP). The slave controller then maintains a linear relationship between right and left EDPs. Both left/right and right/left master/slave combinations were evaluated by subjecting them to four clinical scenarios (rest, postural change, Valsalva maneuver, and exercise) simulated in a mock circulation loop. The controller's performance was compared to constant-rotational-speed control and two other dual LVAD control systems: dual constant inlet pressure and dual Frank-Starling control. The results showed that the master/slave physiological control system produced fewer suction events than constant-speed control (6 vs. 62 over a 7-min period). Left/right master/slave control had lower risk of pulmonary congestion than the other control systems, as indicated by lower maximum EDPs (15.1 vs. 25.2-28.4 mm Hg). During exercise, master/slave control increased total flow from 5.2 to 10.1 L/min, primarily due to an increase of left and right pump speed. Use of the left pump as the master resulted in fewer suction events and lower EDPs than when the right pump was master. Based on these results, master/slave control using the left pump as the master automatically adjusts pump speed to avoid suction and increases pump flow

  11. A novel approach in extracorporeal circulation: individual, integrated, and interactive heart-lung assist (I3-Assist).

    Science.gov (United States)

    Wagner, Georg; Schlanstein, Peter; Fiehe, Sandra; Kaufmann, Tim; Kopp, Rüdger; Bensberg, Ralf; Schmitz-Rode, Thomas; Steinseifer, Ulrich; Arens, Jutta

    2014-04-01

    Extracorporeal life support (ECLS) is a well-established technique for the treatment of different cardiac and pulmonary diseases, e.g., congenital heart disease and acute respiratory distress syndrome. Additionally, severely ill patients who cannot be weaned from the heart-lung machine directly after surgery have to be put on ECLS for further therapy. Although both systems include identical components, a seamless transition is not possible yet. The adaption of the circuit to the patients' size and demand is limited owing to the components available. The project I³-Assist aims at a novel concept for extracorporeal circulation. To better match the patient's therapeutic demand of support, an individual number of one-size oxygenators and heat exchangers will be combined. A seamless transition between cardiopulmonary bypass and ECLS will be possible as well as the exchange of components during therapy to enhance circuit maintenance throughout long-term support. Until today, a novel oxygenator and heat exchanger along with a simplified manufacturing protocol have been established. The first layouts of the unit to allow the spill- and bubble-free connection and disconnection of modules as well as improved cannulas and a rotational pump are investigated using computational fluid dynamics. Tests were performed according to current guidelines in vitro and in vivo. The test results show the feasibility and potential of the concept.

  12. Mushroom drying with solar assisted heat pump system

    International Nuclear Information System (INIS)

    Şevik, Seyfi; Aktaş, Mustafa; Doğan, Hikmet; Koçak, Saim

    2013-01-01

    Highlights: • Experimental investigation of a simple and cost effective solar assisted heat pump system. • Developing of a computer program for a drying system with different scenarios by using PLC. • Obtained less energy input with high coefficients of performance of system and more quality products. • Determination of mushroom drying properties such as moisture content, moisture ratio and drying ratio. - Abstract: In this study, a simple and cost effective solar assisted heat pump system (SAHP) with flat plate collectors and a water source heat pump has been proposed. Mushroom drying was examined experimentally in the drying system. Solar energy (SE) system and heat pump (HP) system can be used separately or together. A computer program has been developed for the system. Drying air temperature, relative humidity, weight of product values, etc. were monitored and controlled with different scenarios by using PLC. This system is cheap, good quality and sustainable and it is modeled for good quality product and increased efficiency. Thus, products could be dried with less energy input and more controlled conditions. Mushrooms were dried at 45 °C and 55 °C drying air temperature and 310 kg/h mass flow rate. Mushrooms were dried from initial moisture content 13.24 g water/g dry matter (dry basis) to final moisture content 0.07 g water/g dry matter (dry basis). Mushrooms were dried by using HP system, SE system and SAHP system respectively at 250–220 min, at 270–165 min and at 230–190 min. The coefficients of performance of system (COP) are calculated in a range from 2.1 to 3.1 with respect to the results of experiments. The energy utilization ratios (EURs) were found to vary between 0.42 and 0.66. Specific moisture extraction rate (SMER) values were found to vary between 0.26 and 0.92 kg/kW h

  13. Jet pump assisted artery

    Science.gov (United States)

    1975-01-01

    A procedure for priming an arterial heat pump is reported; the procedure also has a means for maintaining the pump in a primed state. This concept utilizes a capillary driven jet pump to create the necessary suction to fill the artery. Basically, the jet pump consists of a venturi or nozzle-diffuser type constriction in the vapor passage. The throat of this venturi is connected to the artery. Thus vapor, gas, liquid, or a combination of the above is pumped continuously out of the artery. As a result, the artery is always filled with liquid and an adequate supply of working fluid is provided to the evaporator of the heat pipe.

  14. Screening for heart transplantation and left ventricular assist system

    DEFF Research Database (Denmark)

    Lund, Lars H; Trochu, Jean-Noel; Meyns, Bart

    2018-01-01

    BACKGROUND: Heart transplantation (HTx) and implantable left ventricular assist systems (LVAS) improve outcomes in advanced heart failure but may be underutilized. We hypothesized that screening can identify appropriate candidates. METHODS AND RESULTS: The ScrEEning for advanced Heart Failure...... treatment (SEE-HF) study was a multicentre prospective study screening patients with existing cardiac resynchronization therapy (CRT) and/or implantable cardioverter-defibrillator (ICD) for ejection fraction ≤40% and New York Heart Association (NYHA) class III-IV, and subsequently for guideline-based HTx...

  15. Exercise physiology with a left ventricular assist device: Analysis of heart-pump interaction with a computational simulator.

    Science.gov (United States)

    Fresiello, Libera; Rademakers, Frank; Claus, Piet; Ferrari, Gianfranco; Di Molfetta, Arianna; Meyns, Bart

    2017-01-01

    Patients with a Ventricular Assist Device (VAD) are hemodynamically stable but show an impaired exercise capacity. Aim of this work is to identify and to describe the limiting factors of exercise physiology with a VAD. We searched for data concerning exercise in heart failure condition and after VAD implantation from the literature. Data were analyzed by using a cardiorespiratory simulator that worked as a collector of inputs coming from different papers. As a preliminary step the simulator was used to reproduce the evolution of hemodynamics from rest to peak exercise (ergometer cycling) in heart failure condition. Results evidence an increase of cardiac output of +2.8 l/min and a heart rate increase to 67% of the expected value. Then, we simulated the effect of a continuous-flow VAD at both rest and exercise. Total cardiac output increases of +3.0 l/min (+0.9 l/min due to the VAD and +2.1 l/min to the native ventricle). Since the left ventricle works in a non-linear portion of the diastolic stiffness line, we observed a consistent increase of pulmonary capillary wedge pressure (from 14 to 20 mmHg) for a relatively small increase of end-diastolic volume (from 182 to 189 cm3). We finally increased VAD speed during exercise to the maximum possible value and we observed a reduction of wedge pressure (-4.5 mmHg), a slight improvement of cardiac output (8.0 l/min) and a complete unloading of the native ventricle. The VAD can assure a proper hemodynamics at rest, but provides an insufficient unloading of the left ventricle and does not prevent wedge pressure from rising during exercise. Neither the VAD provides major benefits during exercise in terms of total cardiac output, which increases to a similar extend to an unassisted heart failure condition. VAD speed modulation can contribute to better unload the ventricle but the maximal flow reachable with the current devices is below the cardiac output observed in a healthy heart.

  16. Initial in vitro testing of a paediatric continuous-flow total artificial heart.

    Science.gov (United States)

    Fukamachi, Kiyotaka; Karimov, Jamshid H; Horvath, David J; Sunagawa, Gengo; Byram, Nicole A; Kuban, Barry D; Moazami, Nader

    2018-06-01

    Mechanical circulatory support has become standard therapy for adult patients with end-stage heart failure; however, in paediatric patients with congenital heart disease, the options for chronic mechanical circulatory support are limited to paracorporeal devices or off-label use of devices intended for implantation in adults. Congenital heart disease and cardiomyopathy often involve both the left and right ventricles; in such cases, heart transplantation, a biventricular assist device or a total artificial heart is needed to adequately sustain both pulmonary and systemic circulations. We aimed to evaluate the in vitro performance of the initial prototype of our paediatric continuous-flow total artificial heart. The paediatric continuous-flow total artificial heart pump was downsized from the adult continuous-flow total artificial heart configuration by a scale factor of 0.70 (1/3 of total volume) to enable implantation in infants. System performance of this prototype was evaluated using the continuous-flow total artificial heart mock loop set to mimic paediatric circulation. We generated maps of pump performance and atrial pressure differences over a wide range of systemic vascular resistance/pulmonary vascular resistance and pump speeds. Performance data indicated left pump flow range of 0.4-4.7 l/min at 100 mmHg delta pressure. The left/right atrial pressure difference was maintained within ±5 mmHg with systemic vascular resistance/pulmonary vascular resistance ratios between 1.4 and 35, with/without pump speed modulation, verifying expected passive self-regulation of atrial pressure balance. The paediatric continuous-flow total artificial heart prototype met design requirements for self-regulation and performance; in vivo pump performance studies are ongoing.

  17. Power flow control based solely on slow feedback loop for heart pump applications.

    Science.gov (United States)

    Wang, Bob; Hu, Aiguo Patrick; Budgett, David

    2012-06-01

    This paper proposes a new control method for regulating power flow via transcutaneous energy transfer (TET) for implantable heart pumps. Previous work on power flow controller requires a fast feedback loop that needs additional switching devices and resonant capacitors to be added to the primary converter. The proposed power flow controller eliminates these additional components, and it relies solely on a slow feedback loop to directly drive the primary converter to meet the heart pump power demand and ensure zero voltage switching. A controlled change in switching frequency varies the resonant tank shorting period of a current-fed push-pull resonant converter, thus changing the magnitude of the primary resonant voltage, as well as the tuning between primary and secondary resonant tanks. The proposed controller has been implemented successfully using an analogue circuit and has reached an end-to-end power efficiency of 79.6% at 10 W with a switching frequency regulation range of 149.3 kHz to 182.2 kHz.

  18. Kinking and Torsion Can Significantly Improve the Efficiency of Valveless Pumping in Periodically Compressed Tubular Conduits. Implications for Understanding of the Form-Function Relationship of Embryonic Heart Tubes

    Directory of Open Access Journals (Sweden)

    Florian Hiermeier

    2017-11-01

    Full Text Available Valveless pumping phenomena (peristalsis, Liebau-effect can generate unidirectional fluid flow in periodically compressed tubular conduits. Early embryonic hearts are tubular conduits acting as valveless pumps. It is unclear whether such hearts work as peristaltic or Liebau-effect pumps. During the initial phase of its pumping activity, the originally straight embryonic heart is subjected to deforming forces that produce bending, twisting, kinking, and coiling. This deformation process is called cardiac looping. Its function is traditionally seen as generating a configuration needed for establishment of correct alignments of pulmonary and systemic flow pathways in the mature heart of lung-breathing vertebrates. This idea conflicts with the fact that cardiac looping occurs in all vertebrates, including gill-breathing fishes. We speculate that looping morphogenesis may improve the efficiency of valveless pumping. To test the physical plausibility of this hypothesis, we analyzed the pumping performance of a Liebau-effect pump in straight and looped (kinked configurations. Compared to the straight configuration, the looped configuration significantly improved the pumping performance of our pump. This shows that looping can improve the efficiency of valveless pumping driven by the Liebau-effect. Further studies are needed to clarify whether this finding may have implications for understanding of the form-function relationship of embryonic hearts.

  19. Prediction of the external work of the native heart from the dynamic H-Q curves of the rotary blood pumps during left heart bypass.

    Science.gov (United States)

    Yokoyama, Yoshimasa; Kawaguchi, Osamu; Kitao, Takashi; Kimura, Taro; Steinseifer, Ulrich; Takatani, Setsuo

    2010-09-01

    The ventricular performance is dependent on the drainage effect of rotary blood pumps (RBPs) and the performance of RBPs is affected by the ventricular pulsation. In this study, the interaction between the ventricle and RBPs was examined using the pressure-volume (P-V) diagram of the ventricle and dynamic head pressure-bypass flow (H-Q) curves (H, head pressure: arterial pressure minus ventricular pressure vs. Q, bypass flow) of the RBPs. We first investigated the relationships in a mock loop with a passive fill ventricle, followed by validation in ex vivo animal experiments. An apical drainage cannula with a micro-pressure sensor was especially fabricated to obtain ventricular pressure, while three pairs of ultrasonic crystals placed on the heart wall were used to derive ventricular volume. The mock loop-configured ventricular apical-descending aorta bypass revealed that the external work of the ventricle expressed by the area inside the P-V diagrams (EW(Heart) ) correlated strongly with the area inside dynamic H-Q curves (EW(VAD)), with the coefficients of correlation being R² = 0.869 ∼ 0.961. The results in the mock loop were verified in the ex vivo studies using three Shiba goats (10-25 kg in body weight), showing the correlation coefficients of R² = 0.802 ∼ 0.817. The linear regression analysis indicated that the increase in the bypass flow reduced pulsatility in the ventricle expressed in EW(Heart) as well as in EW(VAD) . Experimental results, both mock loop and animal studies, showed that the interaction between cardiac external work and H-Q performance of RBPs can be expressed by the relationships "EW(Heart) versus EW(VAD) ." The pulsatile nature of the native heart can be expressed in the area underneath the H-Q curves of RBPs EW(VAD) during left heart bypass indicating the status of the level of assistance by RBPs and the native heart function. © 2010, Copyright the Authors. Artificial Organs © 2010, International Center for Artificial Organs and

  20. Heartmate 3 fully magnetically levitated left ventricular assist device for the treatment of advanced heart failure -1 year results from the Ce mark trial.

    Science.gov (United States)

    Krabatsch, Thomas; Netuka, Ivan; Schmitto, Jan D; Zimpfer, Daniel; Garbade, Jens; Rao, Vivek; Morshuis, Michiel; Beyersdorf, Friedhelm; Marasco, Silvana; Damme, Laura; Pya, Yuriy

    2017-04-04

    The HeartMate 3 Left Ventricular Assist System (LVAS) (St. Jude Medical Inc., St Paul, MN) with full magnetic levitation allows for wide and consistent blood flow paths and an artificial pulse designed for enhanced hemocompatibility. The HeartMate 3 received market approval in the European Union in 2015 following completion of a multicenter study. After reaching the 6-month study endpoint, patients continue to be followed for 2 years with the 1-year results presented herein. A prospective, non-randomized study included adults with advanced heart failure and ejection fraction (EF) ≤ 25%, cardiac index (CI) ≤ 2.2 L/min/m2 while not on inotropes, or inotrope dependent, or on optimal medical management for 45/60 days. Fifty patients-54% bridge to transplant (BTT) and 46% destination therapy (DT)-were enrolled and implanted with the HeartMate 3. At baseline, 92% of the patients were INTERMACS profiles 2-4, with cardiac index 1.8 + 0.5 L/min/m 2 and 58% were supported with inotropes. At 1 year, 74% of the patients remain on support, 18% expired, 6% transplanted, and 2% explanted. The adverse events include 12% gastrointestinal bleeding, 16% driveline infections, 18% strokes, and 2% outflow graft thrombosis. There was no hemolysis, pump thrombosis or pump malfunction through 1 year. The six-minute walk test distance increased from a mean of 273 m to 371 m (P <0.0001). EQ-5D quality-of-life score increased from a mean of 52.7 to 70.8 (P = 0.0006). The 1-year HeartMate 3 LVAS results show survival and adverse-event profile are similar to other approved devices, with no pump thrombosis or pump failure. Patient's functional status and quality of life significantly improved over time. Clinicaltrials.gov registration number: NCT02170363 . Registered June 19, 2014.

  1. The Total Artificial Heart in End-Stage Congenital Heart Disease.

    Science.gov (United States)

    Villa, Chet R; Morales, David L S

    2017-01-01

    The development of durable ventricular assist devices (VADs) has improved mortality rates and quality of life in patients with end stage heart failure. While the use of VADs has increased dramatically in recent years, there is limited experience with VAD implantation in patients with complex congenital heart disease (CHD), despite the fact that the number of patients with end stage CHD has grown due to improvements in surgical and medical care. VAD use has been limited in patients with CHD and end stage heart failure due to anatomic (systemic right ventricle, single ventricle, surgically altered anatomy, valve dysfunction, etc.) and physiologic constraints (diastolic dysfunction). The total artificial heart (TAH), which has right and left sided pumps that can be arranged in a variety of orientations, can accommodate the anatomic variation present in CHD patients. This review provides an overview of the potential use of the TAH in patients with CHD.

  2. A solar assisted heat-pump dryer and water heater

    International Nuclear Information System (INIS)

    Hawlader, M.N.A.; Chou, S.K.; Jahangeer, K.A.; Rahman, S.M.A.

    2006-01-01

    Growing concern about the depletion of conventional energy resources has provided impetus for considerable research and development in the area of alternative energy sources. A solar assisted heat pump dryer and water heater found to be one of the solutions while exploring for alternative energy sources. The heat pump system is used for drying and water heating applications with the major share of the energy derived from the sun and the ambient. The solar assisted heat pump dryer and water heater has been designed, fabricated and tested. The performance of the system has been investigated under the meteorological conditions of Singapore. The system consists of a variable speed reciprocating compressor, evaporator-collector, storage tank, air cooled condenser, auxiliary heater, blower, dryer, dehumidifier, and air collector. The drying medium used is air and the drying chamber is configured to carry out batch drying of good grains. A water tank connected in series with the air cooled condenser delivers hot water for domestic applications. The water tank also ensures complete condensation of the refrigerant vapour. A simulation program is developed using Fortran language to evaluate the performance of the system and the influence of different variables. The performance indices considered to evaluate the performance of the system are: Solar Fraction (SF), Coefficient of Performance (COP) and Specific Moisture Extraction Rate (SMER). A COP value of 7.5 for a compressor speed of 1800 rpm was observed. Maximum collector efficiencies of 0.86 and 0.81 have been found for evaporator-collector and air collector, respectively. A value of the SMER of 0.79 has been obtained for a load of 20 kg and a compressor speed of 1200 rpm

  3. Optimization of solar assisted heat pump systems via a simple analytic approach

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, J W

    1980-01-01

    An analytic method for calculating the optimum operating temperature of the collector/storage subsystem in a solar assisted heat pump is presented. A tradeoff exists between rising heat pump coefficient of performance and falling collector efficiency as this temperature is increased, resulting in an optimum temperature whose value increases with increasing efficiency of the auxiliary energy source. Electric resistance is shown to be a poor backup to such systems. A number of options for thermally coupling the system to the ground are analyzed and compared.

  4. Na-K pump site density and ouabain binding affinity in cultured chick heart cells

    International Nuclear Information System (INIS)

    Lobaugh, L.A.; Lieberman, M.

    1987-01-01

    The possible existence of multiple [ 3 H]ouabain binding sites and the relationship between ouabain binding and Na-K pump inhibition in cardiac muscle were studied using cultured embryonic chick heart cells. [ 3 H]ouabain bound to a single class of sites in 0.5 mM K (0.5 Ko) with an association rate constant (k+1) of 3.4 X 10(4) M-1.s-1 and a dissociation rate constant (k-1) of 0.0095 s. Maximal specific [ 3 H]ouabain binding RT to myocyte-enriched cultures is 11.7 pmol/mg protein and Kd is 0.43 microM in 0.5 Ko, whereas Kd,apparent is 6.6 microM in 5.4 Ko. The number of binding sites per myocyte was calculated by correcting for the contribution of fibroblasts in myocyte-enriched cultures using data from homogeneous fibroblast cultures (RT = 3.3 pmol/mg protein; Kd = 0.19 microM in 0.5 Ko). Equivalence of [ 3 H]ouabain binding sites and Na-K pumps was implied by agreement between maximal specific binding of [ 3 H]ouabain and 125 I-labeled monoclonal antibody directed against Na+-K+-ATPase (approximately 2 X 10(6) sites/cell). However, [ 3 H]ouabain binding occurred at lower concentrations than inhibition of ouabain-sensitive 42 K uptake in 0.5 Ko. Further studies in both 0.5 K and 5.4 Ko showed that ouabain caused cell Na content Nai to increase over the same range of concentrations that binding occurred, implying that increased Nai may stimulate unbound Na-K pumps and prevent a proportional decrease in 42 K uptake rate. The results show that Na-K pump inhibition occurs as a functional consequence of specific ouabain binding and indicate that the Na-K pump is the cardiac glycoside receptor in cultured heart cells

  5. Application of Adaptive Starling-Like Controller to Total Artificial Heart Using Dual Rotary Blood Pumps.

    Science.gov (United States)

    Ng, Boon C; Smith, Peter A; Nestler, Frank; Timms, Daniel; Cohn, William E; Lim, Einly

    2017-03-01

    The successful clinical applicability of rotary left ventricular assist devices (LVADs) has led to research interest in devising a total artificial heart (TAH) using two rotary blood pumps (RBPs). The major challenge when using two separately controlled LVADs for TAH support is the difficulty in maintaining the balance between pulmonary and systemic blood flows. In this study, a starling-like controller (SLC) hybridized with an adaptive mechanism was developed for a dual rotary LVAD TAH. The incorporation of the adaptive mechanism was intended not only to minimize the risk of pulmonary congestion and atrial suction but also to match cardiac demand. A comparative assessment was performed between the proposed adaptive starling-like controller (A-SLC) and a conventional SLC as well as a constant speed controller. The performance of all controllers was evaluated by subjecting them to three simulated scenarios [rest, exercise, head up tilt (HUT)] using a mock circulation loop. The overall results showed that A-SLC was superior in matching pump flow to cardiac demand without causing hemodynamic instabilities. In contrast, improper flow regulation by the SLC resulted in pulmonary congestion during exercise. From resting supine to HUT, overpumping of the RBPs at fixed speed (FS) caused atrial suction, whereas implementation of SLC resulted in insufficient flow. The comparative study signified the potential of the proposed A-SLC for future TAH implementation particularly among outpatients, who are susceptible to variety of clinical scenarios.

  6. Understanding the C-pulse device and its potential to treat heart failure.

    Science.gov (United States)

    Sales, Virna L; McCarthy, Patrick M

    2010-03-01

    The Sunshine Heart C-Pulse (C-Pulse; Sunshine Heart Inc., Tustin, CA) device is an extra-aortic implantable counterpulsation pump designed as a non-blood contacting ambulatory heart assist device, which may provide relief from symptoms for class II-III congestive heart failure patients. It has a comparable hemodynamic augmentation to intra-aortic balloon counterpulsation devices. The C-Pulse cuff is implanted through a median sternotomy, secured around the ascending aorta, and pneumatically driven by an external system controller. Pre-clinical studies in the acute pig model, and initial temporary clinical studies in patients undergoing off-pump coronary bypass surgery have shown substantial increase in diastolic perfusion of the coronary vessels, which translated to a favorable improvement in ventricular function. A U.S. prospective multi-center trial to evaluate the safety and efficacy of the C-Pulse in class III patients with moderate heart failure is now in progress.

  7. Numerical simulation of a heat pump assisted regenerative solar still with PCM heat storage for cold climates of Kazakhstan

    Directory of Open Access Journals (Sweden)

    Shakir Yessen

    2017-01-01

    Full Text Available A numerical model has been proposed in this work for predicting the energy performances of the heat pump assisted regenerative solar still with phase changing material heat storage under Kazakhstan climates. The numerical model is based on energy and mass balance. A new regenerative heat pump configuration with phase changing material heat storage is proposed to improve the performance. A comparison of results has been made between the conventional solar still and heat pump assisted regenerative solar still with phase changing material. The numerical simulation was performed for wide range of ambient temperatures between -30 and 30°C with wide range of solar intensities between 100 and 900 W/m2. The numerical simulation results showed that heat pump assisted regenerative solar still is more energy efficient and produce better yield when compared to the conventional simple solar still. The influences of solar intensity, ambient temperature, different phase changing materials, heat pump operating temperatures are discussed. The predicted values were found to be in good agreement with experimental results reported in literature.

  8. Thermocompressor powered artificial heart assist system

    International Nuclear Information System (INIS)

    Moise, J.C.; Rudnicki, M.I.; Faeser, R.J.

    1975-01-01

    The development of a fully implantable, left ventricular assist system is described. The system utilizes a radioisotope-powered Stirling cycle thermocompressor and an all-pneumatic actuation and control system to drive a pusher-plate type blood pump. This basic approach has been shown to be efficient and workable by implantation experiments on calves. The recent effort has been directed toward the fabrication and development of a fourth-generation system, designed to reduce weight, volume and isotope inventory. Extensive endurance and accelerated-life testing has been undertaken. The improved design concepts utilized in the system and pertinent test results are discussed

  9. Computer-assisted instruction; MR imaging of congenital heart disease

    International Nuclear Information System (INIS)

    Choi, Young Hi; Yu, Pil Mun; Lee, Sang Hoon; Choe, Yeon Hyeon; Kim, Yang Min

    1996-01-01

    To develop a software program for computer-assisted instruction on MR imaging of congenital heart disease for medical students and residents to achieve repetitive and effective self-learning. We used a film scanner(Scan Maker 35t) and IBM-PC(486 DX-2, 60 MHz) for acquisition and storage of image data. The accessories attached to the main processor were CD-ROM drive(Sony), sound card(Soundblaster-Pro), and speaker. We used software of Adobe Photoshop(v 3.0) and paint shop-pro(v 3.0) for preprocessing image data, and paintbrush from microsoft windows 3.1 for labelling. The language used for programming was visual basic(v 3.0) from microsoft corporation. We developed a software program for computer-assisted instruction on MR imaging of congenital heart disease as an effective educational tool

  10. Electromagnetically induced two-dimensional grating assisted by incoherent pump

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yu-Yuan; Liu, Zhuan-Zhuan; Wan, Ren-Gang, E-mail: wrg@snnu.edu.cn

    2017-04-25

    We propose a scheme for realizing electromagnetically induced two-dimensional grating in a double-Λ system driven simultaneously by a coherent field and an incoherent pump field. In such an atomic configuration, the absorption is suppressed owing to the incoherent pumping process and the probe can be even amplified, while the refractivity is mainly attributed to the dynamically induced coherence. With the help of a standing-wave pattern coherent field, we obtain periodically modulated refractive index without or with gain, and therefore phase grating or gain-phase grating which diffracts a probe light into high-order direction efficiently can be formed in the medium via appropriate manipulation of the system parameters. The diffraction efficiency attainable by the present gratings can be controlled by tuning the coherent field intensity or the interaction length. Hence, the two-dimensional grating can be utilized as all-optical splitter or router in optical networking and communication. - Highlights: • Two-dimensional grating is coherently induced in four-level atoms. • Phase and gain-phase gratings are obtained assisted by incoherent pump. • The diffraction power is improved due to the enhanced refraction modulation. • The gratings can be utilized as multi-channel all-optical splitter and router.

  11. [Improved design of permanent maglev impeller assist heart].

    Science.gov (United States)

    Qian, Kunxi; Zeng, Pei; Ru, Weimin; Yuan, Haiyu

    2002-12-01

    Magnetic bearing has no mechanical contact between the rotor and stator. And a rotary pump with magnetic bearing has therefore no mechanical wear and thrombosis due to bearing. The available magnetic bearings, however, are devised with electric magnets, need complicated control and remarkable energy consumption. Resultantly, it is difficult to apply an electric magnetic bearing to rotary pump without disturbing its simplicity, implantability and reliability. The authors have developed a levitated impeller pump merely with permanent magnets. The rotor is supported by permanent magnetic forces radially. On one side of the rotor, the impeller is fixed; and on the other side of the rotor, the driven magnets are mounted. Opposite to this driven magnets, a driving motor coil with iron corn magnets is fastened to the motor axis. Thereafter, the motor drives the rotor via a rotating magnetic field. By laboratory tests with saline, if the rotor stands still or rotates under 4,000 rpm, the rotor has one-point contact axially with the driving motor coil. The contacting point is located in the center of the rotor. As the rotating speed increases gradually to more than 4,000 rpm, the rotor will detache from the stator axially. Then the rotor will be fully levitated. Since the axial levitation is produced by hydraulic force and the driven magnets have a gyro-effect, the rotor rotates very steadly during levitation. As a left ventricular assist device, the pump works in a rotating speed range of 5,000-8,000 rpm, the levitation of the impeller hence is ensured by practical use of the pump.

  12. Energetic and financial evaluation of solar assisted heat pump space heating systems

    International Nuclear Information System (INIS)

    Bellos, Evangelos; Tzivanidis, Christos; Moschos, Konstantinos; Antonopoulos, Kimon A.

    2016-01-01

    Highlights: • Four solar heating systems are presented in this work. • Various combinations between solar collectors and heat pumps are presented. • The systems are compared energetically and financially. • The use of PV and an air source heat pump is the best choice financially. • The use of PVT with a water source heat pump is the best solution energetically. - Abstract: Using solar energy for space heating purposes consists an alternative way for substituting fossil fuel and grid electricity consumption. In this study, four solar assisted heat pump heating systems are designed, simulated and evaluated energetically and financially in order to determine the most attractive solution. The use of PV collectors with air source heat pump is compared to the use of FPC, PVT and FPC with PV coupled with a water source heat pump. A sensitivity analysis for the electricity cost is conducted because of the great variety of this parameter over the last years. The final results proved that for electricity cost up to 0.23 €/kW h the use of PV coupled with an air source heat pump is the most sustainable solution financially, while for higher electricity prices the coupling of PVT with an water source heat pump is the best choice. For the present electricity price of 0.2 €/kW h, 20 m"2 of PV is able to drive the air source heat pump with a yearly solar coverage of 67% leading to the most sustainable solution. Taking into account energetic aspects, the use of PVT leads to extremely low grid electricity consumption, fact that makes this technology the most environmental friendly.

  13. Measurement of blood flow from an assist ventricle by computation of pneumatic driving parameters.

    Science.gov (United States)

    Qian, K X

    1992-03-01

    The measurement of blood flow from an assist ventricle is important but sometimes difficult in artificial heart experiments. Along with the development of a pneumatic cylinder-piston driver coupled with a ventricular assist device, a simplified method for measuring pump flow was established. From driving parameters such as the piston (or cylinder) displacement and air pressure, the pump flow could be calculated by the use of the equation of state for an ideal gas. The results of this method are broadly in agreement with electromagnetic and Doppler measurements.

  14. Future Prospects for the Total Artificial Heart.

    Science.gov (United States)

    Sunagawa, Gengo; Horvath, David J; Karimov, Jamshid H; Moazami, Nader; Fukamachi, Kiyotaka

    2016-01-01

    A total artificial heart (TAH) is the sole remaining option for patients with biventricular failure who cannot be rescued by left ventricular assist devices (LVADs) alone. However, the pulsatile TAH in clinical use today has limitations: large pump size, unknown durability, required complex anticoagulation regimen, and association with significant postsurgical complications. That pump is noisy; its large pneumatic driving lines traverse the body, with bulky external components for its drivers. Continuous-flow pumps, which caused a paradigm shift in the LVAD field, have already contributed to the rapidly evolving development of TAHs. Novel continuous-flow TAHs are only in preclinical testing or developmental stages. We here review the current state of TAHs, with recommended requirements for the TAH of the future.

  15. Hemolysis research of implantable axial flow pump for two -step heart transplantation in children

    Directory of Open Access Journals (Sweden)

    O. Yu. Dmitrieva

    2017-01-01

    Full Text Available Introduction. One of the main indicators characterizing mechanical circulatory support devices (artificial valve, implantable pumps, etc. is trauma of blood cells. Therefore, while developing new pumps, one of the key studies in vitro is to evaluate blood hemolysis. For an objective hemolysis analysis of pump it is required to create a standardized methodology of hemolysis studies. The object of the study in this paper is implantable axial pump DON for two-step heart transplantation in children.The aim of study is to develop a standardized methodology of hemolysis studies of blood pumps and to conduct research of pediatric axial pump DON.Materials and methods. To conduct hemolysis research we created a mock circulatory system consisting of a reservoir placed in water bath maintaining a constant working fluid (blood temperature, hydrodynamic resistance, connecting tubes, ports for blood sampling and pressure and flow measurement systems, and research pump. Test method is to estimate levels of free hemoglobin pHb obtained by blood samples during pump working in operating mode (for pediatric pump: blood flow 2.5 l/min, pressure difference 80 mmHg. Using the data obtained the standardized indices of hemolysis NIH and MIH are calculated based on pHb values, hematocrit, total hemoglobin, blood flow and working pump time.Results. We developed and realized a standardized methodology of hemolysis research by which we evaluated hemolysis of pediatric axial pump. The results of hemolysis tests allowed us to optimize the design of DON. Obtained values of hemolysis of the latest version of pediatric pump DON-3 have shown that they do conform to the requirements of minimum blood injury and it allows us to proceed to the next step of pediatric pump research – animal experiments.Conclusion. Developed methods and evaluation tools of hemolysis allow us to provide objective information on one of the most important indicators of developing

  16. Mechanical Circulatory Support for Advanced Heart Failure: Are We about to Witness a New "Gold Standard"?

    Science.gov (United States)

    Capoccia, Massimo

    2016-12-12

    The impact of left ventricular assist devices (LVADs) for the treatment of advanced heart failure has played a significant role as a bridge to transplant and more recently as a long-term solution for non-eligible candidates. Continuous flow left ventricular assist devices (CF-LVADs), based on axial and centrifugal design, are currently the most popular devices in view of their smaller size, increased reliability and higher durability compared to pulsatile flow left ventricular assist devices (PF-LVADs). The trend towards their use is increasing. Therefore, it has become mandatory to understand the physics and the mathematics behind their mode of operation for appropriate device selection and simulation set up. For this purpose, this review covers some of these aspects. Although very successful and technologically advanced, they have been associated with complications such as pump thrombosis, haemolysis, aortic regurgitation, gastro-intestinal bleeding and arterio-venous malformations. There is perception that the reduced arterial pulsatility may be responsible for these complications. A flow modulation control approach is currently being investigated in order to generate pulsatility in rotary blood pumps. Thrombus formation remains the most feared complication that can affect clinical outcome. The development of a preoperative strategy aimed at the reduction of complications and patient-device suitability may be appropriate. Patient-specific modelling based on 3D reconstruction from CT-scan combined with computational fluid dynamic studies is an attractive solution in order to identify potential areas of stagnation or challenging anatomy that could be addressed to achieve the desired outcome. The HeartMate II (axial) and the HeartWare HVAD (centrifugal) rotary blood pumps have been now used worldwide with proven outcome. The HeartMate III (centrifugal) is now emerging as the new promising device with encouraging preliminary results. There are now enough pumps on

  17. PRINCIPLES OF DEVELOPMENT MATHEMATICAL MODEL FOR RESEARCHING OF NONPULSATILE FLOW PUMP AND CARDIAC SYSTEM

    Directory of Open Access Journals (Sweden)

    I. V. Bykov

    2013-01-01

    Full Text Available Aim. The presented research uncovers the using of mathematical modeling methods for cardio-vascular system and axial blood pump interaction analysis under heart failure with combined valve pathology. The research will pro- vide data for automated pump control algorithm synthesis. Materials and methods. Mathematical model is build up by using experiments results from mock cardio-vascular circulation loop and mathematical representation of Newtonian fluid dynamics in pulsing circulation loop. The model implemented in modeling environment Simulink (Matlab. Results. Authors implemented mathematical model which describe cardio-vascular system and left-ven- tricular assistive device interaction for intact conditions. Values of parameters for intact conditions were acquired in the experiments on animals with implanted axial pump, experiments were conducted in FRCTAO. The model was verified by comparison of instantaneous blood flowrate values in experiments and in model. Conclusion. The paper present implemented mathematical model of cardio-vascular system and axial pump interaction for intact conditions, where the pump connected between left ventricle and aorta. In the next part of research authors will use the presented model to evaluate using the biotechnical system in conditions of heart failure and valve pathology. 

  18. Generating pulsatility by pump speed modulation with continuous-flow total artificial heart in awake calves.

    Science.gov (United States)

    Fukamachi, Kiyotaka; Karimov, Jamshid H; Sunagawa, Gengo; Horvath, David J; Byram, Nicole; Kuban, Barry D; Dessoffy, Raymond; Sale, Shiva; Golding, Leonard A R; Moazami, Nader

    2017-12-01

    The purpose of this study was to evaluate the effects of sinusoidal pump speed modulation of the Cleveland Clinic continuous-flow total artificial heart (CFTAH) on hemodynamics and pump flow in an awake chronic calf model. The sinusoidal pump speed modulations, performed on the day of elective sacrifice, were set at ±15 and ± 25% of mean pump speed at 80 bpm in four awake calves with a CFTAH. The systemic and pulmonary arterial pulse pressures increased to 12.0 and 12.3 mmHg (±15% modulation) and to 15.9 and 15.7 mmHg (±25% modulation), respectively. The pulsatility index and surplus hemodynamic energy significantly increased, respectively, to 1.05 and 1346 ergs/cm at ±15% speed modulation and to 1.51 and 3381 ergs/cm at ±25% speed modulation. This study showed that it is feasible to generate pressure pulsatility with pump speed modulation; the platform is suitable for evaluating the physiologic impact of pulsatility and allows determination of the best speed modulations in terms of magnitude, frequency, and profiles.

  19. Modeling and Optimization of a CoolingTower-Assisted Heat Pump System

    Directory of Open Access Journals (Sweden)

    Xiaoqing Wei

    2017-05-01

    Full Text Available To minimize the total energy consumption of a cooling tower-assisted heat pump (CTAHP system in cooling mode, a model-based control strategy with hybrid optimization algorithm for the system is presented in this paper. An existing experimental device, which mainly contains a closed wet cooling tower with counter flow construction, a condenser water loop and a water-to-water heat pump unit, is selected as the study object. Theoretical and empirical models of the related components and their interactions are developed. The four variables, viz. desired cooling load, ambient wet-bulb temperature, temperature and flow rate of chilled water at the inlet of evaporator, are set to independent variables. The system power consumption can be minimized by optimizing input powers of cooling tower fan, spray water pump, condenser water pump and compressor. The optimal input power of spray water pump is determined experimentally. Implemented on MATLAB, a hybrid optimization algorithm, which combines the Limited memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS algorithm with the greedy diffusion search (GDS algorithm, is incorporated to solve the minimization problem of energy consumption and predict the system’s optimal set-points under quasi-steady-state conditions. The integrated simulation tool is validated against experimental data. The results obtained demonstrate the proposed operation strategy is reliable, and can save energy by 20.8% as compared to an uncontrolled system under certain testing conditions.

  20. Mechanical Circulatory Support for Advanced Heart Failure: Are We about to Witness a New “Gold Standard”?

    Directory of Open Access Journals (Sweden)

    Massimo Capoccia

    2016-12-01

    Full Text Available The impact of left ventricular assist devices (LVADs for the treatment of advanced heart failure has played a significant role as a bridge to transplant and more recently as a long-term solution for non-eligible candidates. Continuous flow left ventricular assist devices (CF-LVADs, based on axial and centrifugal design, are currently the most popular devices in view of their smaller size, increased reliability and higher durability compared to pulsatile flow left ventricular assist devices (PF-LVADs. The trend towards their use is increasing. Therefore, it has become mandatory to understand the physics and the mathematics behind their mode of operation for appropriate device selection and simulation set up. For this purpose, this review covers some of these aspects. Although very successful and technologically advanced, they have been associated with complications such as pump thrombosis, haemolysis, aortic regurgitation, gastro-intestinal bleeding and arterio-venous malformations. There is perception that the reduced arterial pulsatility may be responsible for these complications. A flow modulation control approach is currently being investigated in order to generate pulsatility in rotary blood pumps. Thrombus formation remains the most feared complication that can affect clinical outcome. The development of a preoperative strategy aimed at the reduction of complications and patient-device suitability may be appropriate. Patient-specific modelling based on 3D reconstruction from CT-scan combined with computational fluid dynamic studies is an attractive solution in order to identify potential areas of stagnation or challenging anatomy that could be addressed to achieve the desired outcome. The HeartMate II (axial and the HeartWare HVAD (centrifugal rotary blood pumps have been now used worldwide with proven outcome. The HeartMate III (centrifugal is now emerging as the new promising device with encouraging preliminary results. There are now

  1. Simulation of Hybrid Photovoltaic Solar Assisted Loop Heat Pipe/Heat Pump System

    Directory of Open Access Journals (Sweden)

    Nannan Dai

    2017-02-01

    Full Text Available A hybrid photovoltaic solar assisted loop heat pipe/heat pump (PV-SALHP/HP water heater system has been developed and numerically studied. The system is the combination of loop heat pipe (LHP mode and heat pump (HP mode, and the two modes can be run separately or compositely according to the weather conditions. The performances of independent heat pump (HP mode and hybrid loop heat pipe/heat pump (LHP/HP mode were simulated and compared. Simulation results showed that on typical sunny days in spring or autumn, using LHP/HP mode could save 40.6% power consumption than HP mode. In addition, the optimal switchover from LHP mode to HP mode was analyzed in different weather conditions for energy saving and the all-year round operating performances of the system were also simulated. The simulation results showed that hybrid LHP/HP mode should be utilized to save electricity on sunny days from March to November and the system can rely on LHP mode alone without any power consumption in July and August. When solar radiation and ambient temperature are low in winter, HP mode should be used

  2. Predictors of sudden death and death from pump failure in congestive heart failure are different. Analysis of 24 h Holter monitoring, clinical variables, blood chemistry, exercise test and radionuclide angiography

    DEFF Research Database (Denmark)

    Madsen, B K; Rasmussen, Verner; Hansen, J F

    1997-01-01

    Association class II and 44% in III. Total mortality after 1 year was 21%, after 2 years 32%. Of 60 deaths, 33% were sudden and 49% due to pump failure. Multivariate analyses identified totally different risk factors for sudden death: ventricular tachycardia, s-sodium ....6 mmol/l, s-potassium sudden death and for death from progressive pump failure........80 mmol/l, s-creatinine > 121 mumol/l, and maximal change in heart rate during exercise death from progressive pump failure: New York Heart Association class III + IV, delta heart rate over 24 h 7...

  3. Clinical and hemodynamic effects of intra-aortic balloon pump therapy in chronic heart failure patients with cardiogenic shock.

    Science.gov (United States)

    Fried, Justin A; Nair, Abhinav; Takeda, Koji; Clerkin, Kevin; Topkara, Veli K; Masoumi, Amirali; Yuzefpolskaya, Melana; Takayama, Hiroo; Naka, Yoshifumi; Burkhoff, Daniel; Kirtane, Ajay; Dimitrios Karmpaliotis, S M; Moses, Jeffrey; Colombo, Paolo C; Garan, A Reshad

    2018-03-20

    The role of the intra-aortic balloon pump (IABP) in acute decompensated heart failure (HF) with cardiogenic shock (CS) is largely undefined. In this study we sought to assess the hemodynamic and clinical response to IABP in chronic HF patients with CS and identify predictors of response to this device. We retrospectively reviewed all patients undergoing IABP implantation from 2011 to 2016 at our institution to identify chronic HF patients with acute decompensation and CS (cardiac index <2.2 liters/min/m 2 and systolic blood pressure <90 mm Hg or need for vasoactive medications to maintain this level). Clinical deterioration on IABP was defined as failure to bridge to either discharge on medical therapy or durable heart replacement therapy (HRT; durable left ventricular assist device or heart transplant) with IABP alone. We identified 132 chronic HF patients with IABP placed after decompensation with hemodynamic evidence of CS. Overall 30-day survival was 84.1%, and 78.0% of patients were successfully bridged to HRT or discharge without need for escalation of device support. The complication rate during IABP support was 2.3%. Multivariable analysis identified ischemic cardiomyopathy (odds ratio [OR] 3.24, 95% confidence interval [CI] 1.16 to 9.06; p = 0.03) and pulmonary artery pulsatility index (PAPi) <2.0 (OR 5.04, 95% CI 1.86 to 13.63; p = 0.001) as predictors of clinical deterioration on IABP. Overall outcomes with IABP in acute decompensated chronic HF patients are encouraging, and IABP is a reasonable first-line device for chronic HF patients with CS. Baseline right ventricular function, as measured by PAPi, is a major predictor of outcomes with IABP in this population. Copyright © 2018 International Society for the Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.

  4. Methods of stabilizing a permanent maglev rotator in heart pumps and other rotary machines

    Directory of Open Access Journals (Sweden)

    kun-xi qian

    2014-10-01

    Full Text Available Permanent maglev rotator in a rotary machine could be stabilized according to the author’s experiences, by use of a non-PM (permanent magnetic force acting together with the PM force, and a non-PM bearing functioning together with the PM bearing, or a so-called gyro-effect which can stabilize all rotators including permanent maglev rotator. This paper presents both axially and radially driven permanent maglev centrifugal heart pumps, as well as a permanent maglev turbine machine and an industrially used permanent maglev centrifugal pump. In all this devices permanent maglev rotators achieve stable equilibrium by different approaches described in detail. Finally, the principle exhibition of gyro-effect and the route chart to stabilization of permanent maglev rotator are presented.

  5. Optimal Timing of Heart Transplant After HeartMate II Left Ventricular Assist Device Implantation.

    Science.gov (United States)

    Steffen, Robert J; Blackstone, Eugene H; Smedira, Nicholas G; Soltesz, Edward G; Hoercher, Katherine J; Thuita, Lucy; Starling, Randall C; Mountis, Maria; Moazami, Nader

    2017-11-01

    Optimal timing of heart transplantation in patients supported with second-generation left ventricular assist devices (LVADs) is unknown. Despite this, patients with LVADs continue to receive priority on the heart transplant waiting list. Our objective was to determine the optimal timing of transplantation for patients bridged with continuous-flow LVADs. A total of 301 HeartMate II LVADs (Thoratec Corp, Pleasanton, CA) were implanted in 285 patients from October 2004 to June 2013, and 86 patients underwent transplantation through the end of follow-up. Optimal transplantation timing was the product of surviving on LVAD support and surviving transplant. Three-year survival after both HeartMate II implantation and heart transplantation was unchanged when transplantation occurred within 9 months of implantation. Survival decreased as the duration of support exceeded this. Preoperative risk factors for death on HeartMate II support were prior valve operation, prior coronary artery bypass grafting, low albumin, low glomerular filtration rate, higher mean arterial pressure, hypertension, and earlier date of implant. Survival for patients without these risk factors was lowest when transplant was performed within 3 months but was relatively constant with increased duration of support. Longer duration of support was associated with poorer survival for patients with many of these risk factors. Device reimplantation, intracranial hemorrhage, and postimplant dialysis during HeartMate II support were associated with decreased survival. Survival of patients supported by the HeartMate II is affected by preoperative comorbidities and postoperative complications. Transplantation before complications is imperative in optimizing survival. Copyright © 2017 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  6. From Shuttle Main Engine to the Human Heart: A Presentation to the Federal Lab Consortium for Technology Transfer

    Science.gov (United States)

    Fogarty, Jennifer A.

    2010-01-01

    A NASA engineer received a heart transplant performed by Drs. DeBakey and Noon after suffering a serious heart attack. 6 months later that engineer returned to work at NASA determined to use space technology to help people with heart disease. A relationship between NASA and Drs. DeBakey and Noon was formed and the group worked to develop a low cost, low power implantable ventricular assist device (VAD). NASA patented the method to reduce pumping damage to red blood cells and the design of a continuous flow heart pump (#5,678,306 and #5,947,892). The technology and methodology were licensed exclusively to MicroMed Technology, Inc.. In late 1998 MicroMed received international quality and electronic certifications and began clinical trials in Europe. Ventricular assist devices were developed to bridge the gap between heart failure and transplant. Early devices were cumbersome, damaged red blood cells, and increased the risk of developing dangerous blood clots. Application emerged from NASA turbopump technology and computational fluid dynamics analysis capabilities. To develop the high performance required of the Space Shuttle main engines, NASA pushed the state of the art in the technology of turbopump design. NASA supercomputers and computational fluid dynamics software developed for use in the modeling analysis of fuel and oxidizer flow through rocket engines was used in the miniaturization and optimization of a very small heart pump. Approximately 5 million people worldwide suffer from chronic heart failure at a cost of 40 billion dollars In the US, more than 5000 people are on the transplant list and less than 3000 transplants are performed each year due to the lack of donors. The success of ventricular assist devices has led to an application as a therapeutic destination as well as a bridge to transplant. This success has been attributed to smaller size, improved efficiency, and reduced complications such as the formation of blood clots and infection.

  7. Heart Failure

    Science.gov (United States)

    Heart failure is a condition in which the heart can't pump enough blood to meet the body's needs. Heart failure does not mean that your heart has stopped ... and shortness of breath Common causes of heart failure are coronary artery disease, high blood pressure and ...

  8. Healthy Body, Happy Heart: Improve Your Heart Health

    Science.gov (United States)

    ... November 2017 Print this issue Healthy Body, Happy Heart Improve Your Heart Health En español Send us your comments Every moment of the day, your heart is pumping blood throughout your body. In silent ...

  9. Off-pump versus on-pump coronary artery bypass grafting for ischaemic heart disease

    DEFF Research Database (Denmark)

    Møller, Christian H; Penninga, Luit; Wetterslev, Jørn

    2012-01-01

    Coronary artery bypass grafting (CABG) is performed both without and with cardiopulmonary bypass, referred to as off-pump and on-pump CABG respectively. However, the preferable technique is unclear.......Coronary artery bypass grafting (CABG) is performed both without and with cardiopulmonary bypass, referred to as off-pump and on-pump CABG respectively. However, the preferable technique is unclear....

  10. A novel solar-assisted heat pump driven by photovoltaic/thermal collectors: Dynamic simulation and thermoeconomic optimization

    International Nuclear Information System (INIS)

    Calise, Francesco; Dentice d'Accadia, Massimo; Figaj, Rafal Damian; Vanoli, Laura

    2016-01-01

    This paper presents a dynamic simulation model and a thermo-economic analysis of a novel polygeneration system based on a solar-assisted heat pump and an adsorption chiller, both driven by PVT (photovoltaic/thermal) collectors. The aim of this work is to design and dynamically simulate a novel ultra-high efficient solar heating and cooling system. The overall plant layout is designed to supply electricity, space heating and cooling and domestic hot water for a small residential building. The system combines solar cooling, solar-assisted heat pump and photovoltaic/thermal collector technologies in a novel solar polygeneration system. In fact, the polygeneration system is based on a PVT solar field, coupled with a water-to-water electric heat pump or to an adsorption chiller. PVT collectors simultaneously produce electricity and thermal energy. During the winter, hot water produced by PVT collectors primarily supplies the evaporator of the heat pump, whereas in summer, solar energy supplies an adsorption chiller providing the required space cooling. All year long, solar thermal energy in excess is converted into DHW (domestic hot water). The system model was developed in TRNSYS environment. 1-year dynamic simulations are performed for different case studies in various weather conditions. The results are analysed on different time bases presenting energetic, environmental and economic performance data. Finally, a sensitivity analysis and a thermoeconomic optimization were performed, in order to determine the set of system design/control parameters that minimize the simple pay-back period. The results showed a total energy efficiency of the PVT of 49%, a heat pump yearly coefficient of performance for heating mode above 4 and a coefficient of performance of the adsorption chiller of 0.55. Finally, it is also concluded that system performance is highly sensitive to the PVT field area. The system is profitable when a capital investment subsidy of 50% is considered

  11. Totally implantable total artificial heart and ventricular assist device with multipurpose miniature electromechanical energy system.

    Science.gov (United States)

    Takatani, S; Orime, Y; Tasai, K; Ohara, Y; Naito, K; Mizuguchi, K; Makinouchi, K; Damm, G; Glueck, J; Ling, J

    1994-01-01

    A multipurpose miniature electromechanical energy system has been developed to yield a compact, efficient, durable, and biocompatible total artificial heart (TAH) and ventricular assist device (VAD). Associated controller-driver electronics were recently miniaturized and converted into hybrid circuits. The hybrid controller consists of a microprocessor and controller, motor driver, Hall sensor, and commutation circuit hybrids. The sizing study demonstrated that all these components can be incorporated in the pumping unit of the TAH and VAD, particularly in the centerpiece of the TAH and the motor housing of the VAD. Both TAH and VAD pumping units will start when their power line is connected to either the internal power pack or the external battery unit. As a redundant driving and diagnostic port, an emergency port was newly added and will be placed in subcutaneous location. In case of system failure, the skin will be cut down, and an external motor drive or a pneumatic driver will be connected to this port to run the TAH. This will minimize the circulatory arrest time. Overall efficiency of the TAH without the transcutaneous energy transmission system was 14-18% to deliver pump outputs of 4-9 L/min against the right and left afterload pressures of 25 and 100 mm Hg. The internal power requirement ranged from 6 to 13 W. The rechargeable batteries such as NiCd or NiMH with 1 AH capacity can run the TAH for 30-45 min. The external power requirement, when TETS efficiency of 75% was assumed, ranged from 8 to 18 W. The accelerated endurance test in the 42 degrees C saline bath demonstrated stable performance over 4 months. Long-term endurance and chronic animal studies will continue toward a system with 5 years durability by the year 2000.

  12. Dynamics and control of a heat pump assisted extractive dividing-wall column for bioethanol dehydration

    NARCIS (Netherlands)

    Patraşcu, Iulian; Bildea, Costin Sorin; Kiss, Anton A.

    Recently, a novel heat-pump-assisted extractive distillation process taking place in a dividing-wall column was proposed for bioethanol dehydration. This integrated design combines three distillation columns into a single unit that allows over 40% energy savings and low specific energy requirements

  13. Management issues during HeartWare left ventricular assist device implantation and the role of transesophageal echocardiography

    Directory of Open Access Journals (Sweden)

    Sanjay Orathi Patangi

    2013-01-01

    Full Text Available Left ventricular assist devices (LVAD are increasingly used for mechanical circulatory support of patients with severe heart failure, primarily as a bridge to heart transplantation. Transesophageal echocardiography (TEE plays a major role in the clinical decision making during insertion of the devices and in the post-operative management of these patients. The detection of structural and device-related mechanical abnormalities is critical for optimal functioning of assist device. In this review article, we describe the usefulness of TEE for optimal perioperative management of patients presenting for HeartWare LVAD insertion.

  14. 3D force control for robotic-assisted beating heart surgery based on viscoelastic tissue model.

    Science.gov (United States)

    Liu, Chao; Moreira, Pedro; Zemiti, Nabil; Poignet, Philippe

    2011-01-01

    Current cardiac surgery faces the challenging problem of heart beating motion even with the help of mechanical stabilizer which makes delicate operation on the heart surface difficult. Motion compensation methods for robotic-assisted beating heart surgery have been proposed recently in literature, but research on force control for such kind of surgery has hardly been reported. Moreover, the viscoelasticity property of the interaction between organ tissue and robotic instrument further complicates the force control design which is much easier in other applications by assuming the interaction model to be elastic (industry, stiff object manipulation, etc.). In this work, we present a three-dimensional force control method for robotic-assisted beating heart surgery taking into consideration of the viscoelastic interaction property. Performance studies based on our D2M2 robot and 3D heart beating motion information obtained through Da Vinci™ system are provided.

  15. Prolonged utilization of proton pump inhibitors in patients with ischemic and valvular heart disease is associated with surgical treatments, weight loss and aggravates anemia.

    Science.gov (United States)

    Boban, Marko; Zulj, Marinko; Persic, Viktor; Medved, Igor; Zekanovic, Drazen; Vcev, Aleksandar

    2016-09-15

    Proton pump inhibitors (PPIs) are among the commonest drugs used nowadays. The aim of our study was to analyze prolonged utilization of proton pump inhibitors in medical therapy of patients with ischemic and valvular heart disease. Secondly, profile of utilization was scrutinized to patient characteristics and type of cardiovascular treatments. The study included consecutive patients scheduled for cardiovascular rehabilitation 2-6months after index cardiovascular treatment. Two hundred ninety-four patients (n=294/604; 48.7%) have been using proton pump inhibitor in their therapy after index cardiovascular treatment. Cardiovascular treatments were powerfully connected with utilization of PPIs; surgery 5.77 (95%-confidence intervals [CI]: 4.05-8.22; pvalvular heart disease utilized proton pump inhibitor in prolonged courses. Prolonged courses of PPIs were connected with existence and worsening of red blood count indexes, older age, lesser weight of patients and underutilization of cardioprotective drugs. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Evaluation of a Prototype Hybrid Vacuum Pump to Provide Vacuum-Assisted Suspension for Above-Knee Prostheses.

    Science.gov (United States)

    Major, Matthew J; Caldwell, Ryan; Fatone, Stefania

    2015-12-01

    Vacuum-assisted suspension (VAS) of prosthetic sockets utilizes a pump to evacuate air from between the prosthetic liner and socket, and are available as mechanical or electric systems. This technical note describes a hybrid pump that benefits from the advantages of mechanical and electric systems, and evaluates a prototype as proof-of-concept. Cyclical bench testing of the hybrid pump mechanical system was performed using a materials testing system to assess the relationship between compression cycles and vacuum pressure. Phase 1 in vivo testing of the hybrid pump was performed by an able-bodied individual using prosthesis simulator boots walking on a treadmill, and phase 2 involved an above-knee prosthesis user walking with the hybrid pump and a commercial electric pump for comparison. Bench testing of 300 compression cycles produced a maximum vacuum of 24 in-Hg. In vivo testing demonstrated that the hybrid pump continued to pull vacuum during walking, and as opposed to the commercial electric pump, did not require reactivation of the electric system during phase 2 testing. The novelty of the hybrid pump is that while the electric system provides rapid, initial vacuum suspension, the mechanical system provides continuous air evacuation while walking to maintain suspension without reactivation of the electric system, thereby allowing battery power to be reserved for monitoring vacuum levels.

  17. Development and evaluation of totally implantable ventricular assist system using a vibrating flow pump and transcutaneous energy transmission system with amorphous fibers.

    Science.gov (United States)

    Yambe, T; Hashimoto, H; Kobayashi, S; Sonobe, T; Naganuma, S; Nanka, S S; Matsuki, H; Yoshizawa, M; Tabayashi, K; Takayasu, H; Takeda, H; Nitta, S

    1997-01-01

    We have developed a vibrating flow pump (VFP) that can generate oscillated blood flow with a relatively high frequency (10-50 Hz) for a totally implantable ventricular assist system (VAS). To evaluate the newly developed VAS, left heart bypasses, using the VFP, were performed in chronic animal experiments. Hemodynamic parameters were recorded in a data recorder in healthy adult goats during an awake condition and analyzed in a personal computer system through an alternating-direct current converter. Basic performance of the total system with a transcutaneous energy transmission system were satisfactory. During left ventricular assistance with the VFP, Mayer wave fluctuations of hemodynamics were decreased in the power spectrum, the fractal dimensions of the hemodynamics were significantly decreased, and peripheral vascular resistance was significantly decreased. These results suggest that cardiovascular regulatory nonlinear dynamics, which mediate the hemodynamics, may be affected by left ventricular bypass with oscillated flow. The decreased power of the Mayer wave in the spectrum caused the limit cycle attractor of the hemodynamics and decreased peripheral resistance. These results suggest that this newly developed VAS is useful for the totally implantable system with unique characteristics that can control hemodynamic properties.

  18. Heat Generation in Axial and Centrifugal Flow Left Ventricular Assist Devices.

    Science.gov (United States)

    Yost, Gardner; Joseph, Christine Rachel; Royston, Thomas; Tatooles, Antone; Bhat, Geetha

    Despite increasing use of left ventricular assist devices (LVADs) as a surgical treatment for advanced heart failure in an era of improved outcomes with LVAD support, the mechanical interactions between these pumps and the cardiovascular system are not completely understood. We utilized an in vitro mock circulatory loop to analyze the heat production incurred by operation of an axial flow and centrifugal flow LVAD. A HeartMate II and a HeartWare HVAD were connected to an abbreviated flow loop and were implanted in a viscoelastic gel. Temperature was measured at the surface of each LVAD. Device speed and fluid viscosity were altered and, in the HeartMate II, as artificial thrombi were attached to the inflow stator, impeller, and outflow stator. The surface temperatures of both LVADs increased in all trials and reached a plateau within 80 minutes of flow initiation. Rate of heat generation and maximum system temperature were greater when speed was increased, when viscosity was increased, and when artificial thrombi were attached to the HeartMate II impeller. Normal operation of these two widely utilized LVADs results in appreciable heat generation in vitro. Increased pump loading resulted in more rapid heat generation, which was particularly severe when a large thrombus was attached to the impeller of the HeartMate II. While heat accumulation in vivo is likely minimized by greater dissipation in the blood and soft tissues, focal temperature gains with the pump housing of these two devices during long-term operation may have negative hematological consequences.

  19. Fluoroscopy-Guided Resolution of Ingested Thrombus Leading to Functional Disturbance of a Continuous-Flow Left Ventricular Assist Device

    Directory of Open Access Journals (Sweden)

    Jens Garbade

    2012-01-01

    Full Text Available The third generation of left ventricular assist devices (LVADs has been shown to improve outcome and quality of life in patients suffering from acute and chronic heart failure. However, VAD-associated complications are still a challenge in the clinical practice. Here we report the resolution of a mobile thrombus formation in the proximity of the inflow cannula of a third generation of LVADs (HVAD Pump, HeartWare, Inc. in a patient with chronic heart failure 4 months after implantation.

  20. BIOMATERIALS FOR ROTARY BLOOD PUMPS

    NARCIS (Netherlands)

    VANOEVEREN, W

    Rotary blood pumps are used for cardiac assist and cardiopulmonary support since mechanical blood damage is less than with conventional roller pumps. The high shear rate in the rotary pump and the reduced anticoagulation of the patient during prolonged pumping enforces high demands on the

  1. Estimation of Filling and Afterload Conditions by Pump Intrinsic Parameters in a Pulsatile Total Artificial Heart.

    Science.gov (United States)

    Cuenca-Navalon, Elena; Laumen, Marco; Finocchiaro, Thomas; Steinseifer, Ulrich

    2016-07-01

    A physiological control algorithm is being developed to ensure an optimal physiological interaction between the ReinHeart total artificial heart (TAH) and the circulatory system. A key factor for that is the long-term, accurate determination of the hemodynamic state of the cardiovascular system. This study presents a method to determine estimation models for predicting hemodynamic parameters (pump chamber filling and afterload) from both left and right cardiovascular circulations. The estimation models are based on linear regression models that correlate filling and afterload values with pump intrinsic parameters derived from measured values of motor current and piston position. Predictions for filling lie in average within 5% from actual values, predictions for systemic afterload (AoPmean , AoPsys ) and mean pulmonary afterload (PAPmean ) lie in average within 9% from actual values. Predictions for systolic pulmonary afterload (PAPsys ) present an average deviation of 14%. The estimation models show satisfactory prediction and confidence intervals and are thus suitable to estimate hemodynamic parameters. This method and derived estimation models are a valuable alternative to implanted sensors and are an essential step for the development of a physiological control algorithm for a fully implantable TAH. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  2. The Feasibility of Using the BrightHearts Biofeedback-Assisted Relaxation Application for the Management of Pediatric Procedural Pain: A Pilot Study.

    Science.gov (United States)

    Burton, Karen L O; Morrow, Angela M; Beswick, Brooke V; Khut, George P

    2018-04-17

    The objective of this pilot study was to assess the acceptability and feasibility of using BrightHearts, a biofeedback-assisted relaxation application (app), in children undergoing painful procedures. Thirty children 7 to 18 years of age undergoing a medical procedure (peripheral blood collection, botulinum toxin injection, or intravenous cannula insertion) participated. Participants used BrightHearts, a heart rate-controlled biofeedback-assisted relaxation training app delivered via an iPad with heart rate measured through a pulse oximeter worn on the ear or thumb. Feasibility was assessed through observations and patient, parent/carer, and healthcare professional feedback. Patient, parent/carer, and healthcare professional satisfaction with BrightHearts was rated using investigator-developed surveys. Eighty-three percent of child participants reported that they found BrightHearts helpful during the procedure and that they would use BrightHearts again. All parents and 96% of healthcare professionals indicated they would use BrightHearts again. Sixty-four percent of healthcare providers perceived that BrightHearts assisted with the ease of performing the procedure. Qualitative analyses found 2 themes: (1) BrightHearts calms through providing distraction and biofeedback and (2) the impact of BrightHearts on the procedure. This pilot study demonstrates the feasibility of using biofeedback-assisted relaxation delivered via the BrightHearts app in children undergoing peripheral blood collection and cannulation. Future studies are required to evaluate BrightHearts' efficacy in reducing pain and anxiety during painful procedures and distinguish the effects of a biofeedback-mediated app from distraction. © 2018 World Institute of Pain.

  3. Action of ouabain and an amino-cardenolide on Na+-pump function and contractility of isolated canine heart cells

    International Nuclear Information System (INIS)

    Porterfield, L.M.; Songu-Mize, E.; Chryssanthis, T.; Caldwell, R.W.

    1986-01-01

    Viable, rod-shaped, Ca ++ -tolerant cells were isolated from the cardiac ventricle of adult mongrel dogs, a digitalis-sensitive species. These cells do not contract spontaneously but contractions were driven by electrical field stimulation. Changes in contractile amplitude were assessed by computer-assisted analysis of recorded phase contrast images. Addition of a polar aminocardenolide (AC), ASI-222, produced a dose-related increase in contractility with a concentration producing a 50% maximal response (RC 50 ) of 4 x 10 -8 M. For ouabain (OB) the RC 50 was 7 x 10 -7 M. Cellular Na + -pump (NaP) function was determined as digitalis-sensitive 86 Rb + -uptake. Addition of AC and OB to these cells produced a dose-related decrease in 86 Rb + -uptake; concentrations which produced a 50% inhibition (IC 50 ) of NaP function were of 6 x 10 -8 M and 1.2 x 10 -6 M for AC and OB, respectively. Their data indicates that in isolated dog heart cells AC is both a more potent inotropic agent and an inhibitor of NaP function by 15-20 fold than OB. The RC 50 and IC 50 for these processes correlate for each glycoside

  4. Wave Intensity Analysis of Right Ventricular Function during Pulsed Operation of Rotary Left Ventricular Assist Devices.

    Science.gov (United States)

    Bouwmeester, J Christopher; Park, Jiheum; Valdovinos, John; Bonde, Pramod

    2018-05-29

    Changing the speed of left ventricular assist devices (LVADs) cyclically may be useful to restore aortic pulsatility; however, the effects of this pulsation on right ventricular (RV) function are unknown. This study investigates the effects of direct ventricular interaction by quantifying the amount of wave energy created by RV contraction when axial and centrifugal LVADs are used to assist the left ventricle. In 4 anesthetized pigs, pressure and flow were measured in the main pulmonary artery and wave intensity analysis was used to identify and quantify the energy of waves created by the RV. The axial pump depressed the intensity of waves created by RV contraction compared with the centrifugal pump. In both pump designs, there were only minor and variable differences between the continuous and pulsed operation on RV function. The axial pump causes the RV to contract with less energy compared with a centrifugal design. Diminishing the ability of the RV to produce less energy translates to less pressure and flow produced, which may lead to LVAD-induced RV failure. The effects of pulsed LVAD operation on the RV appear to be minimal during acute observation of healthy hearts. Further study is necessary to uncover the effects of other modes of speed modulation with healthy and unhealthy hearts to determine if pulsed operation will benefit patients by reducing LVAD complications.

  5. A microfluidic circulatory system integrated with capillary-assisted pressure sensors.

    Science.gov (United States)

    Chen, Yangfan; Chan, Ho Nam; Michael, Sean A; Shen, Yusheng; Chen, Yin; Tian, Qian; Huang, Lu; Wu, Hongkai

    2017-02-14

    The human circulatory system comprises a complex network of blood vessels interconnecting biologically relevant organs and a heart driving blood recirculation throughout this system. Recreating this system in vitro would act as a bridge between organ-on-a-chip and "body-on-a-chip" and advance the development of in vitro models. Here, we present a microfluidic circulatory system integrated with an on-chip pressure sensor to closely mimic human systemic circulation in vitro. A cardiac-like on-chip pumping system is incorporated in the device. It consists of four pumping units and passive check valves, which mimic the four heart chambers and heart valves, respectively. Each pumping unit is independently controlled with adjustable pressure and pump rate, enabling users to control the mimicked blood pressure and heartbeat rate within the device. A check valve is located downstream of each pumping unit to prevent backward leakage. Pulsatile and unidirectional flow can be generated to recirculate within the device by programming the four pumping units. We also report an on-chip capillary-assisted pressure sensor to monitor the pressure inside the device. One end of the capillary was placed in the measurement region, while the other end was sealed. Time-dependent pressure changes were measured by recording the movement of the liquid-gas interface in the capillary and calculating the pressure using the ideal gas law. The sensor covered the physiologically relevant blood pressure range found in humans (0-142.5 mmHg) and could respond to 0.2 s actuation time. With the aid of the sensor, the pressure inside the device could be adjusted to the desired range. As a proof of concept, human normal left ventricular and arterial pressure profiles were mimicked inside this device. Human umbilical vein endothelial cells (HUVECs) were cultured on chip and cells can respond to mechanical forces generated by arterial-like flow patterns.

  6. Characterisation of the sarcolemmal calcium pump in guinea pig hearts and its influence through g-strophanthin. Charakterisierung der sarkolemmalen Calciumpumpe des Meerschweinchenherzens und ihre Beeinflussung durch g-Strophanthin

    Energy Technology Data Exchange (ETDEWEB)

    Lell, R.

    1982-11-25

    In this work the sarcolemmal calcium transport of the guinea pig heart is studied with the help of the micropore filtration method on the sarcolemmal vesicles. The calcium ATPase could be better characterised by its ability to accumulate calcium in the sarcolemmal vesicles. The calcium pump is magnesium-dependent and positively activated by sodium and potassium. The pH-optimum of the activity lies around 6.8-7.0 depending on intracellular conditions. Up until a concentration of 30 micrograms protein per ml of reaction mixture the calcium accumulation increased proportionally. With higher concentrations it came to a relative decrease. The addition of digitoxin and g-strophanthin to the reaction mixture did not change the activity of the calcium pump. With a perfusion of the heart with a toxic concentration of 10/sup 06/ M g-strophanthin a glycoside intoxication on the beating heart was caused and a time-dependent inhibition of the calcium pump of sarcolemmal vesicles was detectable.

  7. Energy dashboard for real-time evaluation of a heat pump assisted solar thermal system

    Science.gov (United States)

    Lotz, David Allen

    The emergence of net-zero energy buildings, buildings that generate at least as much energy as they consume, has lead to greater use of renewable energy sources such as solar thermal energy. One example is a heat pump assisted solar thermal system, which uses solar thermal collectors with an electrical heat pump backup to supply space heating and domestic hot water. The complexity of such a system can be somewhat problematic for monitoring and maintaining a high level of performance. Therefore, an energy dashboard was developed to provide comprehensive and user friendly performance metrics for a solar heat pump system. Once developed, the energy dashboard was tested over a two-week period in order to determine the functionality of the dashboard program as well as the performance of the heating system itself. The results showed the importance of a user friendly display and how each metric could be used to better maintain and evaluate an energy system. In particular, Energy Factor (EF), which is the ratio of output energy (collected energy) to input energy (consumed energy), was a key metric for summarizing the performance of the heating system. Furthermore, the average EF of the solar heat pump system was 2.29, indicating an efficiency significantly higher than traditional electrical heating systems.

  8. Hemodynamics of a functional centrifugal-flow total artificial heart with functional atrial contraction in goats.

    Science.gov (United States)

    Shiga, Takuya; Shiraishi, Yasuyuki; Sano, Kyosuke; Taira, Yasunori; Tsuboko, Yusuke; Yamada, Akihiro; Miura, Hidekazu; Katahira, Shintaro; Akiyama, Masatoshi; Saiki, Yoshikatsu; Yambe, Tomoyuki

    2016-03-01

    Implantation of a total artificial heart (TAH) is one of the therapeutic options for the treatment of patients with end-stage biventricular heart failure. There is no report on the hemodynamics of the functional centrifugal-flow TAH with functional atrial contraction (fCFTAH). We evaluated the effects of pulsatile flow by atrial contraction in acute animal models. The goats received fCFTAH that we created from two centrifugal-flow ventricular assist devices. Some hemodynamic parameters maintained acceptable levels: heart rate 115.5 ± 26.3 bpm, aortic pressure 83.5 ± 10.1 mmHg, left atrial pressure 18.0 ± 5.9 mmHg, pulmonary pressure 28.5 ± 9.7 mmHg, right atrial pressure 13.6 ± 5.2 mmHg, pump flow 4.0 ± 1.1 L/min (left) 3.9 ± 1.1 L/min (right), and cardiac index 2.13 ± 0.14 L/min/m(2). fCFTAH with atrial contraction was able to maintain the TAH circulation by forming a pulsatile flow in acute animal experiments. Taking the left and right flow rate balance using the low internal pressure loss of the VAD pumps may be easier than by other pumps having considerable internal pressure loss. We showed that the remnant atrial contraction effected the flow rate change of the centrifugal pump, and the atrial contraction waves reflected the heart rate. These results indicate that remnant atria had the possibility to preserve autonomic function in fCFTAH. We may control fCFTAH by reflecting the autonomic function, which is estimated with the flow rate change of the centrifugal pump.

  9. Radionuclide assessment of left ventricular function in patients requiring intraoperative balloon pump assistance

    International Nuclear Information System (INIS)

    Davies, R.A.; Laks, H.; Wackers, F.J.; Berger, H.J.; Williams, B.; Hammond, G.L.; Geha, A.S.; Gottschalk, A.; Zaret, B.L.

    1982-01-01

    Twenty-three surviving patients who were weaned from cardiopulmonary bypass with intraaortic balloon pump assistance returned for follow-up radionuclide left ventricular (LV) function and thallium 201 perfusion studies at a mean of 23 +/- 3 months following operation. It was found that despite profound intraoperative myocardial depression requiring intraaortic balloon assistance, 13 patients had no change (within 10%) in the resting LV ejection fraction compared with the preoperative measurement. Among all 23 patients, there was no difference between mean (+/- standard error of the mean) preoperative and postoperative resting LV ejection fraction (48 +/- 4 vs 46 +/- 4%, p . not significant [NS]). Only 11 patients had perioperative myocardial infarction documented by new Q waves in the electrocardiogram, by elevation of creatine kinase-MB fraction, or by defects on thallium 201 imaging not explained by documented myocardial infarction before operation. Overall, postoperative resting LV ejection fraction was not different from the preoperative value in patients with perioperative myocardial infarction (44 +/- 7 vs 47 +/- 5%, p . NS). Postoperative resting LV ejection fraction rose by greater than 10% compared with preoperative values in 4 patients (3 with aortic valve replacement), remained within the 10% limit in 9 patients, and fell by greater than 10% in 10 patients (7 with perioperative myocardial infarction). Only 4 out of 16 patients studied at follow-up with exercise radionuclide studies demonstrated a normal LV response to exercise (greater than 5% increase in LV ejection fraction). Thus, among survivors requiring intraaortic balloon pump assistance for weaning from cardiopulmonary bypass, LV performance at rest is frequently preserved. In addition, 11 of the 23 patients had evidence of perioperative myocardial infarction, indicating a component of reversible intraoperative LV dysfunction

  10. Heart bypass surgery

    Science.gov (United States)

    Off-pump coronary artery bypass; OPCAB; Beating heart surgery; Bypass surgery - heart; CABG; Coronary artery bypass graft; Coronary artery bypass surgery; Coronary bypass surgery; Coronary artery disease - CABG; CAD - CABG; Angina - ...

  11. Building Space Heating with a Solar-Assisted Heat Pump Using Roof-Integrated Solar Collectors

    Directory of Open Access Journals (Sweden)

    Zhiyong Yang

    2011-03-01

    Full Text Available A solar assisted heat pump (SAHP system was designed by using a roof-integrated solar collector as the evaporator, and then it was demonstrated to provide space heating for a villa in Tianjin, China. A building energy simulation tool was used to predict the space heating load and a three dimensional theoretical model was established to analyze the heat collection performance of the solar roof collector. A floor radiant heating unit was used to decrease the energy demand. The measurement results during the winter test period show that the system can provide a comfortable living space in winter, when the room temperature averaged 18.9 °C. The average COP of the heat pump system is 2.97 and with a maximum around 4.16.

  12. Benefits of ambulatory axillary intra-aortic balloon pump for circulatory support as bridge to heart transplant.

    Science.gov (United States)

    Umakanthan, Ramanan; Hoff, Steven J; Solenkova, Natalia; Wigger, Mark A; Keebler, Mary E; Lenneman, Andrew; Leacche, Marzia; Disalvo, Thomas G; Ooi, Henry; Naftilan, Allen J; Byrne, John G; Ahmad, Rashid M

    2012-05-01

    Axillary intra-aortic balloon pump therapy has been described as a bridge to transplant. Advantages over femoral intra-aortic balloon pump therapy include reduced incidence of infection and enhanced patient mobility. We identified the patients who would benefit most from this therapy while awaiting heart transplantation. We conducted a single-center, retrospective observational study to evaluate outcomes from axillary intra-aortic balloon pump therapy. These included hemodynamic parameters, duration of support, and success in bridging to transplant. We selected patients on the basis of history of sternotomy, elevated panel-reactive antibody, and small body habitus. Patients were made to ambulate aggressively beginning on postoperative day 1. Between September 2007 and September 2010, 18 patients underwent axillary intra-aortic balloon pump therapy. All patients had the devices placed through the left axillary artery with a Hemashield side graft (Boston Scientific, Natick, Mass). Before axillary placement, patients underwent femoral placement to demonstrate hemodynamic benefit. Duration of support ranged from 5 to 63 days (median = 19 days). There was marked improvement in ambulatory potential and hemodynamic parameters, with minimal blood transfusion requirements. There were no device-related infections. Some 72% of the patients (13/18) were successfully bridged to transplantation. Axillary intra-aortic balloon pump therapy provides excellent support for selected patients as a bridge to transplant. The majority of the patients were successfully bridged to transplant and discharged. Although this therapy has been described in previous studies, this is the largest series to incorporate a regimen of aggressive ambulation with daily measurements of distances walked. Copyright © 2012. Published by Mosby, Inc.

  13. Mathematical modelling of flow in disc friction LVAD pump

    Science.gov (United States)

    Medvedev, A. E.; Fomin, V. M.; Prikhodko, Yu. M.; Cherniavskiy, A. M.; Fomichev, V. P.; Fomichev, A. V.; Chekhov, V. P.; Ruzmatov, T. M.

    2017-10-01

    The need for blood circulation support systems in the treatment of chronic heart failure is constantly increasing as 20% of patients on the waiting list die every year. Despite the great need for mechanical heart support systems the use of available systems is limited by the high cost. Therefore, further research in the field of circulatory support systems is appropriate taking into account medical and technical requirements. One of the new research areas is viscous friction disk pumps for transporting liquids based on the Tesla pump principle. The experimental model of LVAD disk pump is developed. Analytical dependencies are obtained to optimize the hydraulic parameters of the pump. On their basis, the experimental model of LVAD disk pump was designed and created. The results of analytical and experimental studies of such a pump are presented.

  14. Development of real-time and quantitative monitoring of thrombus formation in an extracorporeal centrifugal blood pump

    Science.gov (United States)

    Sakota, Daisuke; Fujiwara, Tatsuki; Ohuchi, Katsuhiro; Kuwana, Katsuyuki; Yamazaki, Hiroyuki; Kosaka, Ryo; Maruyama, Osamu

    2018-02-01

    We developed an optical detector of thrombus formed on the pivot bearing of an extracorporeal centrifugal blood pump (MERA HCF-MP23; Senko Medical Instrument Mfg. Co., Ltd., Tokyo, Japan) which is frequently used for long-term extracorporeal circulation support to bridge to an implantable artificial heart, which in turn is used for bridge to heart transplantation in Japan. In this study, we investigated the quantitative performance of the thrombus formation in acute animal experiments. A total of three experiments of extracorporeal left ventricular assist using Japanese specific pathogen-free pigs were conducted. The optical fibers were set in the pump driver unit. The incident light at nearinfrared wavelength aiming at the pivot bearing and the resulting scattered light were guided to respective fibers. The detected signal was analyzed to obtain thrombus formation level (TFL) calculated by a specially developed software. When the increase in TFL was confirmed, the pump was exchanged and the extracorporeal circulation was restarted. The number of pump exchanges were four times at each experiment so a total of twelve pumps were evaluated. 3-dimentional data surrounding the pivot bearing and the adhered thrombus was captured by a 3-dimantional surface measurement system to calculate the thrombus surface area (TSA) formed on the pivot bearing. As a result, the correlation coefficient between TFL and TSA was 0.878. The accuracy of TSA estimated by the optical detector was 3.6+/-2.3 mm2. This was small enough to not have the pump exchanged in clinical judgement. The developed detector would be useful for optimal anti-coagulation management.

  15. Performance of evaporator-collector and air collector in solar assisted heat pump dryer

    International Nuclear Information System (INIS)

    Hawlader, M.N.A.; Rahman, S.M.A.; Jahangeer, K.A.

    2008-01-01

    A solar assisted heat pump dryer has been designed, fabricated and tested. This paper presents the performance of the evaporator-collector and the air collector when operated under the same meteorological conditions. ASHRAE standard procedure for collector testing has been followed. The evaporator-collector of the heat pump is acting directly as the solar collector, and the temperature of the refrigerant at the inlet to the evaporator-collector always remained below the ambient temperature. Because of the rejection of sensible and latent heats of air at the dehumidifier, the temperature at the inlet to the air collector is lower than that of the ambient air. Hence, the thermal efficiency of the air collector also increases due to a reduction of losses from the collector. The efficiencies of the evaporator-collector and the air collector were found to vary between 0.8-0.86 and 0.7-0.75, respectively, when operated under the meteorological conditions of Singapore

  16. Effects of dexmedetomidine on heart arrhythmia prevention in off-pump coronary artery bypass surgery: A randomized clinical trial.

    Science.gov (United States)

    Soltani, Ghasem; Jahanbakhsh, Saeed; Tashnizi, Mohammad Abbasi; Fathi, Mehdi; Amini, Shahram; Zirak, Nahid; Sheybani, Shima

    2017-10-01

    Arrhythmia occurring during and after surgery is one of the major complications in open-heart surgery. Dexmedetomidine is an intravenous alpha-2 agonist and very specific short-acting drug to protect the various organs against ischemic injuries and blood reflow. However, the effect of dexmedetomidine for preventing intraoperative heart arrhythmias has not been recognized. This study aimed to determine the effect of dexmedetomidine on the incidence rate of heart arrhythmias and anesthetic required in off-pump coronary artery bypass surgery. This randomized clinical trial was conducted on patients who were candidates for off-pump coronary artery bypass referring to Imam Reza Hospital of Mashhad, Iran, from July 2016 through January 2017. The patients were randomly assigned to two groups of intervention (infusion of 0.5 mcg/kg/h dexmedetomidine together with induction followed by infusion of 0.5 mcg/kg/h by the end of the surgery) or control (saline infusion). Mean arterial pressure (MAP) and heart rate (HR) were measured before induction, during surgery operation and ICU admission. Data were analyzed by SPSS version 18 using Chi Square and independent-samples t-test. A total of 76 patients with a mean age of 59.8 ± 8.2 years (in two groups of 38) were studied. The two groups had no statistically significant difference in terms of background variables. The MAP and HR values before induction, during surgery and ICU admission were significantly higher in the control group than in the intervention group (p=0.001). Out of the studied arrhythmias, the values of PAC (55.2% vs. 15.7%), PVC (81.5% vs. 21.0%), AF (26.3% vs. 7.8%), VTAC (21.0% vs. 2.6%) were significantly lower in dexmedetomidine group (p=0.001). It seems that dexmedetomidine administration during induction and surgery can cause significant reduction in most of the common arrhythmias in off-pump coronary bypass surgery. The use of dexmedetomidine maintains MAP and HR at significantly lower values, and changes

  17. The pharmacotherapy implications of ventricular assist device in the patient with end-stage heart failure.

    Science.gov (United States)

    Von Ruden, Serena A S; Murray, Margaret A; Grice, Jennifer L; Proebstle, Amy K; Kopacek, Karen J

    2012-04-01

    Advances in mechanical circulatory support, such as the use of ventricular assist devices (VADs), have become a means for prolonging survival in end-stage heart failure (HF). VADs decrease the symptoms of HF and improve quality of life by replacing some of the work of a failing heart. They unload the ventricle to provide improved cardiac output and end-organ perfusion, resulting in improvement in cardiorenal syndromes and New York Heart Association functional class rating. VADs are currently used asa bridge to heart transplantation, a bridge to recovery of cardiac function, or as destination therapy. Complications of VAD include bleeding, infections, arrhythmias, multiple organ failure, right ventricular failure, and neurological dysfunction. Patients with VAD have unique pharmacotherapeutic requirements in terms of anticoagulation, appropriate antibiotic selection, and continuation of HF medications. Pharmacists in acute care and community settings are well prepared to care for the patient with VAD. These patients require thorough counseling and follow-up with regard to prevention and treatment of infections, appropriate levels of anticoagulation, and maintenance of fluid balance. A basic understanding of this unique therapy can assist pharmacists in attending to the needs of patients with VAD.

  18. Air Pump-Assisted Graft Centration, Graft Edge Unfolding, and Graft Uncreasing in Young Donor Graft Pre-Descemet Endothelial Keratoplasty.

    Science.gov (United States)

    Jacob, Soosan; Narasimhan, Smita; Agarwal, Amar; Agarwal, Athiya; A I, Saijimol

    2017-08-01

    To assess an air pump-assisted technique for graft centration, graft edge unfolding, and graft uncreasing while performing pre-Descemet endothelial keratoplasty (PDEK) using young donor grafts. Continuous pressurized air infusion was used for graft centration, graft edge unfolding, and graft unwrinkling. Ten eyes of 10 patients underwent PDEK with donors aged below 40 years. In all eyes, the donor scrolled into tight scrolls. In all cases, the air pump-assisted technique was effective in positioning and centering the graft accurately and in straightening infolded graft edges and smoothing out graft creases and wrinkles. Endothelial cell loss was 38.6%. Postoperative best-corrected visual acuity at 6 months was 0.66 ± 0.25 in decimal equivalent. Continuous pressurized air infusion acted as a third hand providing a continuous pressure head that supported the graft and prevented graft dislocation as well as anterior chamber collapse during intraocular maneuvering. Adequate maneuvering space was available in all cases, and bleeding, if any, was tamponaded successfully in all cases. Although very young donor grafts may be used for PDEK, they are difficult to center and unroll completely before floating against host stroma. An air pump-assisted technique using continuous pressurized air infusion allows successful final graft positioning even with very young donor corneas. It thus makes surgery easier as several key steps are made easier to handle. It additionally helps in tamponading hemorrhage during peripheral iridectomy, increasing surgical space, preventing fluctuations in the anterior chamber depth, and promoting graft adherence.

  19. Assessment of turbulence models for pulsatile flow inside a heart pump.

    Science.gov (United States)

    Al-Azawy, Mohammed G; Turan, A; Revell, A

    2016-02-01

    Computational fluid dynamics (CFD) is applied to study the unsteady flow inside a pulsatile pump left ventricular assist device, in order to assess the sensitivity to a range of commonly used turbulence models. Levels of strain and wall shear stress are directly relevant to the evaluation of risk from haemolysis and thrombosis, and thus understanding the sensitivity to these turbulence models is important in the assessment of uncertainty in CFD predictions. The study focuses on a positive displacement or pulsatile pump, and the CFD model includes valves and moving pusher plate. An unstructured dynamic layering method was employed to capture this cyclic motion, and valves were simulated in their fully open position to mimic the natural scenario, with in/outflow triggered at control planes away from the valves. Six turbulence models have been used, comprising three relevant to the low Reynolds number nature of this flow and three more intended to investigate different transport effects. In the first group, we consider the shear stress transport (SST) [Formula: see text] model in both its standard and transition-sensitive forms, and the 'laminar' model in which no turbulence model is used. In the second group, we compare the one equation Spalart-Almaras model, the standard two equation [Formula: see text] and the full Reynolds stress model (RSM). Following evaluation of spatial and temporal resolution requirements, results are compared with available experimental data. The model was operated at a systolic duration of 40% of the pumping cycle and a pumping rate of 86 BPM (beats per minute). Contrary to reasonable preconception, the 'transition' model, calibrated to incorporate additional physical modelling specifically for these flow conditions, was not noticeably superior to the standard form of the model. Indeed, observations of turbulent viscosity ratio reveal that the transition model initiates a premature increase of turbulence in this flow, when compared with

  20. Heart failure - fluids and diuretics

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000112.htm Heart failure - fluids and diuretics To use the sharing features ... to Expect at Home When you have heart failure, your heart does not pump out enough blood. This causes ...

  1. What is Broken Heart Syndrome

    Science.gov (United States)

    ... pumping action and blood flow, go to the Health Topics How the Heart Works article.) Researchers are trying to identify the precise way in which the stress hormones affect the heart. Broken heart syndrome may result from ...

  2. Using medical imaging for the detection of adverse events ("incidents") during the utilization of left ventricular assist devices in adult patients with advanced heart failure.

    Science.gov (United States)

    Kaufmann, Friedrich; Krabatsch, Thomas

    2016-05-01

    Ventricular assist devices (VAD) are used for mechanical support of the terminally failing heart. Failure of these life supporting systems can be fatal. Early and reliable detection of any upcoming problems is mandatory and is crucial for the outcome. Medical imaging methods are described within this review, which are not only essential for diagnosis of typically VAD-related complications but also for the detection or verification of technical issues. Within this review the utilization of medical imaging equipment for the diagnosis of technical malfunctions or damages of implanted system components is discussed. A newly developed specialized acoustic imaging method for pump thrombosis detection will also be described along with the most common VAD-related medical complications and their respective imaging methods and the limitations induced by the use of the VAD-system.

  3. Valveless pumping mechanics of the embryonic heart during cardiac looping: Pressure and flow through micro-PIV.

    Science.gov (United States)

    Bark, D L; Johnson, B; Garrity, D; Dasi, L P

    2017-01-04

    Cardiovascular development is influenced by the flow-induced stress environment originating from cardiac biomechanics. To characterize the stress environment, it is necessary to quantify flow and pressure. Here, we quantify the flow field in a developing zebrafish heart during the looping stage through micro-particle imaging velocimetry and by analyzing spatiotemporal plots. We further build upon previous methods to noninvasively quantify the pressure field at a low Reynolds number using flow field data for the first time, while also comparing the impact of viscosity models. Through this method, we show that the atrium builds up pressure to ~0.25mmHg relative to the ventricle during atrial systole and that atrial expansion creates a pressure difference of ~0.15mmHg across the atrium, resulting in efficient cardiac pumping. With these techniques, it is possible to noninvasively fully characterize hemodynamics during heart development. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Minimally Invasive Procedures - Direct and Video-Assisted Forms in the Treatment of Heart Diseases

    International Nuclear Information System (INIS)

    Castro, Josué Viana Neto; Melo, Emanuel Carvalho; Silva, Juliana Fernandes; Rebouças, Leonardo Lemos; Corrêa, Larissa Chagas; Germano, Amanda de Queiroz; Machado, João José Aquino

    2014-01-01

    Minimally invasive cardiovascular procedures have been progressively used in heart surgery. To describe the techniques and immediate results of minimally invasive procedures in 5 years. Prospective and descriptive study in which 102 patients were submitted to minimally invasive procedures in direct and video-assisted forms. Clinical and surgical variables were evaluated as well as the in hospital follow-up of the patients. Fourteen patients were operated through the direct form and 88 through the video-assisted form. Between minimally invasive procedures in direct form, 13 had aortic valve disease. Between minimally invasive procedures in video-assisted forms, 43 had mitral valve disease, 41 atrial septal defect and four tumors. In relation to mitral valve disease, we replaced 26 and reconstructed 17 valves. Aortic clamp, extracorporeal and procedure times were, respectively, 91,6 ± 21,8, 112,7 ± 27,9 e 247,1 ± 20,3 minutes in minimally invasive procedures in direct form. Between minimally invasive procedures in video-assisted forms, 71,6 ± 29, 99,7 ± 32,6 e 226,1 ± 42,7 minutes. Considering intensive care and hospitalization times, these were 41,1 ± 14,7 hours and 4,6 ± 2 days in minimally invasive procedures in direct and 36,8 ± 16,3 hours and 4,3 ± 1,9 days in minimally invasive procedures in video-assisted forms procedures. Minimally invasive procedures were used in two forms - direct and video-assisted - with safety in the surgical treatment of video-assisted, atrial septal defect and tumors of the heart. These procedures seem to result in longer surgical variables. However, hospital recuperation was faster, independent of the access or pathology

  5. Stirling/hydraulic artificial heart power source

    International Nuclear Information System (INIS)

    Johnston, R.P.; Bennett, A.; Emigh, S.G.; Griffith, W.R.; Noble, J.E.; Perrone, R.E.; White, M.A.; Martini, W.R.; Alexander, J.E.

    1977-01-01

    The REL power source combines the high efficiency of Stirling engines with the reliability, efficiency, and flexibility of hydraulic power transfer and control to ensure long system life and physiological effectiveness. Extended life testing has been achieved with an engine (2.6 years) and hydraulic actuator/controller (1.6 years). Peak power source efficiency is 15.5 percent on 5 to 10 watts delivered to the blood pump push plate with 33 watts steady thermal input. Planned incorporation of power source output control is expected to reduce daily average thermal input to 18 watts. Animal in-vivo tests with an assist heart have consistently demonstrated required performance by biological synchronization and effective ventricle relief. Volume and weight are 0.93 liter and 2.4 kg (excluding blood pump) with an additional 0.4 liter of low temperature foam insulation required to preclude tissue thermal damage. Carefully planned development of System 7 is expected to produce major reductions in size

  6. A monitoring device for pressurised-air-driven diaphragm-based artificial heart assist devices

    NARCIS (Netherlands)

    Hoeben, F.P.; Hoeben, F.P.; de Mul, F.F.M.; Stokkink, J.S.D.; Stokkink, H.S.D.; Koelink, M.H.; Koelink, M.H.; Greve, Jan

    1992-01-01

    A non-invasive device has been developed to monitor the diaphragm position and the blood flow in artificial heart assist devices equipped with a pressurised-air-driven diaphragm. Light scattering from the diaphragm is used as a mechanism for measuring. Information about the position of several

  7. Association of HeartMate II left ventricular assist device flow estimate with thermodilution cardiac output.

    Science.gov (United States)

    Hasin, Tal; Huebner, Marianne; Li, Zhuo; Brown, Daniel; Stulak, John M; Boilson, Barry A; Joyce, Lyle; Pereira, Naveen L; Kushwaha, Sudhir S; Park, Soon J

    2014-01-01

    Cardiac output (CO) assessment is important in treating patients with heart failure. Durable left ventricular assist devices (LVADs) provide essentially all CO. In currently used LVADs, estimated device flow is generated by a computerized algorithm. However, LVAD flow estimate may be inaccurate in tracking true CO. We correlated LVAD (HeartMate II) flow with thermodilution CO during postoperative care (day 2-10 after implant) in 81 patients (5,616 paired measurements). Left ventricular assist device flow and CO correlated with a low correlation coefficient (r = 0.42). Left ventricular assist device readings were lower than CO measurements by approximately 0.36 L/min, trending for larger difference with higher values. Left ventricular assist device flow measurements showed less temporal variability compared with CO. Grouping for simultaneous measured blood pressure (BP device flow generally trends with measured CO, but large variability exists, hence flow measures should not be assumed to equal with CO. Clinicians should take into account variables such as high CO, BP, and opening of the aortic valve when interpreting LVAD flow readout. Direct flow sensors incorporated in the LVAD system may allow for better estimation.

  8. A new "twist" on right heart failure with left ventricular assist systems.

    Science.gov (United States)

    Houston, Brian A; Shah, Keyur B; Mehra, Mandeep R; Tedford, Ryan J

    2017-07-01

    Despite significant efforts to predict and prevent right heart failure, it remains a leading cause of morbidity and mortality after implantation of left ventricular assist systems (LVAS). In this Perspective, we review the underappreciated anatomic and physiologic principles that govern the relationship between left and right heart function and contribute to this phenomenon. This includes the importance of considering the right ventricle (RV) and pulmonary arterial circuit as a coupled system; the contribution of the left ventricle (LV) to RV contractile function and the potential negative impact of acutely unloading the LV; the influence of the pericardium and ventricular twist on septal function; the role of RV deformation in reduced mechanical efficiency after device placement; and the potential of ongoing stressors of an elevated right-sided preload. We believe an appreciation of these complex issues is required to fully understand the expression of the unique phenotypes of right heart failure after LVAS implantation and for developing better prognostic and therapeutic strategies. Copyright © 2017 International Society for the Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.

  9. Evaluation of a focussed protocol for hand-held echocardiography and computer-assisted auscultation in detecting latent rheumatic heart disease in scholars.

    Science.gov (United States)

    Zühlke, Liesl J; Engel, Mark E; Nkepu, Simpiwe; Mayosi, Bongani M

    2016-08-01

    Introduction Echocardiography is the diagnostic test of choice for latent rheumatic heart disease. The utility of echocardiography for large-scale screening is limited by high cost, complex diagnostic protocols, and time to acquire multiple images. We evaluated the performance of a brief hand-held echocardiography protocol and computer-assisted auscultation in detecting latent rheumatic heart disease with or without pathological murmur. A total of 27 asymptomatic patients with latent rheumatic heart disease based on the World Heart Federation criteria and 66 healthy controls were examined by standard cardiac auscultation to detect pathological murmur. Hand-held echocardiography using a focussed protocol that utilises one view - that is, the parasternal long-axis view - and one measurement - that is, mitral regurgitant jet - and a computer-assisted auscultation utilising an automated decision tool were performed on all patients. The sensitivity and specificity of computer-assisted auscultation in latent rheumatic heart disease were 4% (95% CI 1.0-20.4%) and 93.7% (95% CI 84.5-98.3%), respectively. The sensitivity and specificity of the focussed hand-held echocardiography protocol for definite rheumatic heart disease were 92.3% (95% CI 63.9-99.8%) and 100%, respectively. The test reliability of hand-held echocardiography was 98.7% for definite and 94.7% for borderline disease, and the adjusted diagnostic odds ratios were 1041 and 263.9 for definite and borderline disease, respectively. Computer-assisted auscultation has extremely low sensitivity but high specificity for pathological murmur in latent rheumatic heart disease. Focussed hand-held echocardiography has fair sensitivity but high specificity and diagnostic utility for definite or borderline rheumatic heart disease in asymptomatic patients.

  10. Economic optimization of heat pump-assisted distillation columns in methanol-water separation

    International Nuclear Information System (INIS)

    Shahandeh, Hossein; Jafari, Mina; Kasiri, Norollah; Ivakpour, Javad

    2015-01-01

    Finding efficient alternative to CDiC (Conventional Distillation Column) for methanol-water separation has been an attractive field of study in literature. In this work, five heat pump-assisted schemes are proposed and compared to each other to find the optimal one; (1) VRC (Vapor Recompression Column), (2) external HIDiC (Heat-Integrated Distillation Column), (3) intensified HIDiC with feed preheater, (4) double compressor intensified HIDiC-1, and (5) double compressor intensified HIDiC-2. GA (Genetic Algorithm) is then implemented for optimization of the schemes when TAC (Total Annual Cost) is its objective function. During optimization, two new variables are added for using only appropriate amount of the overhead stream in VRC and double compressor intensified HIDiCs, and another new binary variable is also used for considering feed preheating. Although TAC of the intensified HIDiC with feed preheater is found higher than CDiC by 25.0%, all optimal VRC, external HIDiC, double compressor intensified HIDiCs schemes are reached lower optimal TAC by 3.1%, 27.2%, 24.4%, and 34.2%. Introduced for the first time, the optimal scheme is the double compressor intensified HIDiC-2 with 34.2% TAC saving, 70.4% TEC (Total Energy Consumption) reduction with payback period of 3.30 years. - Highlights: • Study of an industrial distillation unit in methanol-water separation. • Optimization of different heat pump-assisted distillation columns. • Implementation of genetic algorithm during optimization. • Economic and thermodynamic comparisons of optimal results with the industrial case

  11. Thermal performance analysis of a direct-expansion solar-assisted heat pump water heater

    International Nuclear Information System (INIS)

    Kong, X.Q.; Zhang, D.; Li, Y.; Yang, Q.M.

    2011-01-01

    A direct-expansion solar-assisted heat pump water heater (DX-SAHPWH) is described, which can supply hot water for domestic use during the whole year. The system mainly employs a bare flat-plate collector/evaporator with a surface area of 4.2 m 2 , an electrical rotary-type hermetic compressor, a hot water tank with the volume of 150 L and a thermostatic expansion valve. R-22 is used as working fluid in the system. A simulation model based on lumped and distributed parameter approach is developed to predict the thermal performance of the system. Given the structure parameters, meteorological parameters, time step and final water temperature, the numerical model can output operational parameters, such as heat capacity, system COP and collector efficiency. Comparisons between the simulation results and the experimental measurements show that the model is able to give satisfactory predictions. The effect of various parameters, including solar radiation, ambient temperature, wind speed and compressor speed, has been analyzed on the thermal performance of the system. -- Highlights: ► A direct-expansion solar-assisted heat pump water heater (DX-SAHPWH) is described. ► A simulation model based on lumped and distributed parameter approach is developed to predict the thermal performance of the system. ► The numerical model can output operational parameters, such as heat capacity, system COP and collector efficiency. ► Comparisons between the simulation results and the experimental measurements show that the model is able to give satisfactory predictions. ► The effect of various parameters has been analyzed on the thermal performance of the system.

  12. Successful Implantation of a Left Ventricular Assist Device After Treatment With the Paracor HeartNet.

    Science.gov (United States)

    Schweiger, Martin; Stepanenko, Alexander; Potapov, Evgenji; Drews, Thorsten; Hetzer, Roland; Krabatsch, Thomas

    2010-01-01

    The Paracor HeartNet, a ventricular constraint device for the treatment of heart failure (HF), is implanted through a left lateral thoracotomy. It envelopes the heart like a mesh "bag." This method of application raises the question of whether adhesions with the pericardium allow the safe implantation of a left ventricular assist device (LVAD) if HF worsens. A male patient who had undergone implantation of the Paracor HeartNet 42 months earlier presented with advanced HF for cardiac transplantation. The patient's condition deteriorated, and because no suitable organ for transplantation was available, implantation of an LVAD became necessary. Surgery was performed via a median sternotomy without complications. No severe adhesions were found. This is the first report on "how to do" LVAD implantation after Paracor HeartNet implantation with images and information about cutting the constraint. Because the Paracor HeartNet is "wrapped" around the heart, concerns persist that severe adhesions with the pericardium might occur. In this case, LVAD implantation after therapy with the Paracor HeartNet was without complications, and the expected massive adhesions were absent.

  13. A Passively-Suspended Tesla Pump Left Ventricular Assist Device

    Science.gov (United States)

    Izraelev, Valentin; Weiss, William J.; Fritz, Bryan; Newswanger, Raymond K.; Paterson, Eric G.; Snyder, Alan; Medvitz, Richard B.; Cysyk, Joshua; Pae, Walter E.; Hicks, Dennis; Lukic, Branka; Rosenberg, Gerson

    2009-01-01

    The design and initial test results of a new passively suspended Tesla type LAVD blood pump are described. CFD analysis was used in the design of the pump. Overall size of the prototype device is 50 mm in diameter and 75 mm in length. The pump rotor has a density lower than that of blood and when spinning inside the stator in blood it creates a buoyant centering force that suspends the rotor in the radial direction. The axial magnetic force between the rotor and stator restrain the rotor in the axial direction. The pump is capable of pumping up to 10 liters/min at a 70 mmHg head rise at 8000 RPM. The pump has demonstrated a normalized index of hemolysis level below .02 mg/dL for flows between 2 and 9.7 L/min. An inlet pressure sensor has also been incorporated into the inlet cannula wall and will be used for control purposes. One initial in vivo study showed an encouraging result. Further CFD modeling refinements are planned as well as endurance testing of the device. PMID:19770799

  14. Impact of left ventricular assist device speed adjustment on exercise tolerance and markers of wall stress.

    Science.gov (United States)

    Hayward, Christopher S; Salamonsen, Robert; Keogh, Anne M; Woodard, John; Ayre, Peter; Prichard, Roslyn; Kotlyar, Eugene; Macdonald, Peter S; Jansz, Paul; Spratt, Phillip

    2015-09-01

    Left ventricular assist devices are crucial in rehabilitation of patients with end-stage heart failure. Whether cardiopulmonary function is enhanced with higher pump output is unknown. 10 patients (aged 39±16 years, mean±SD) underwent monitored adjustment of pump speed to determine minimum safe low speed and maximum safe high speed at rest. Patients were then randomized to these speed settings and underwent three 6-minute walk tests (6MWT) and symptom-limited cardiopulmonary stress tests (CPX) on separate days. Pump speed settings (low, normal and high) resulted in significantly different resting pump flows of 4.43±0.6, 5.03±0.94, and 5.72±1.2 l/min (Pexercise (Pexercise time (p=.27). Maximum workload achieved and peak oxygen consumption were significantly different comparing low to high pump speed settings only (Prelease was significantly reduced at higher pump speed with exercise (Prelease consistent with lower myocardial wall stress. This did not, however, improve exercise tolerance.

  15. Microwave blanching and drying characteristics of Centella asiatica (L.) urban leaves using tray and heat pump-assisted dehumidified drying.

    Science.gov (United States)

    Trirattanapikul, W; Phoungchandang, S

    2014-12-01

    The appropriate stage of maturity of Centella asiatica (L.) Urban leaves was investigated. Mature leaves with large diameter contained high total phenolics and % inhibition. Microwave blanching for 30 s retained the highest total phenolics and the microwave blanching for 30 s and 45 s retained the highest % inhibition. Modified Henderson and Modified Chung-Pfost models showed the best fit to both fresh and blanched leaves for equilibrium moisture content, Xe = f(RHe, T) and equilibrium relative humidity, RHe = f(Xe, T), respectively. The Modified Page model was the most effective model in describing the leaf drying. All drying was in the falling rate period. The drying constant was related to drying air temperature using the Arrhenius model. Effective moisture diffusivities increased with increasing temperature and blanching treatments as well as dehumidification by heat pump-assisted dehumidified dryer. The heat pump-assited dehumidified drying incorporated by the microwave blanching could reduce the drying time at 40 °C by 31.2 % and increase % inhibition by 6.1 %. Quality evaluation by total phenolics, % inhibition and rehydration ratio showed the best quality for C. asiatica leaves pretreated by microwave blanching and dried at 40 °C in heat pump-assisted dehumidified dryer.

  16. Biomechanical regulation of in vitro cardiogenesis for tissue-engineered heart repair.

    Science.gov (United States)

    Zimmermann, Wolfram-Hubertus

    2013-01-01

    The heart is a continuously pumping organ with an average lifespan of eight decades. It develops from the onset of embryonic cardiogenesis under biomechanical load, performs optimally within a defined range of hemodynamic load, and fails if acutely or chronically overloaded. Unloading of the heart leads to defective cardiogenesis in utero, but can also lead to a desired therapeutic outcome (for example, in patients with heart failure under left ventricular assist device therapy). In light of the well-documented relevance of mechanical loading for cardiac physiology and pathology, it is plausible that tissue engineers have integrated mechanical stimulation regimens into protocols for heart muscle construction. To achieve optimal results, physiological principles of beat-to-beat myocardial loading and unloading should be simulated. In addition, heart muscle engineering, in particular if based on pluripotent stem cell-derived cardiomyocytes, may benefit from staggered tonic loading protocols to simulate viscoelastic properties of the prenatal and postnatal myocardial stroma. This review will provide an overview of heart muscle mechanics, summarize observations on the role of mechanical loading for heart development and postnatal performance, and discuss how physiological loading regimens can be exploited to advance myocardial tissue engineering towards a therapeutic application.

  17. Dynamics and control of a heat pump assisted extractive dividing-wall column for bioethanol dehydration

    OpenAIRE

    Patraşcu, Iulian; Bildea, Costin Sorin; Kiss, Anton A.

    2017-01-01

    Recently, a novel heat-pump-assisted extractive distillation process taking place in a dividing-wall column was proposed for bioethanol dehydration. This integrated design combines three distillation columns into a single unit that allows over 40% energy savings and low specific energy requirements of 1.24 kWh/kg ethanol. However, these economic benefits are possible only if this highly integrated system is also controllable to ensure operational availability. This paper is the first to addre...

  18. Artificial heart for humanoid robot

    Science.gov (United States)

    Potnuru, Akshay; Wu, Lianjun; Tadesse, Yonas

    2014-03-01

    A soft robotic device inspired by the pumping action of a biological heart is presented in this study. Developing artificial heart to a humanoid robot enables us to make a better biomedical device for ultimate use in humans. As technology continues to become more advanced, the methods in which we implement high performance and biomimetic artificial organs is getting nearer each day. In this paper, we present the design and development of a soft artificial heart that can be used in a humanoid robot and simulate the functions of a human heart using shape memory alloy technology. The robotic heart is designed to pump a blood-like fluid to parts of the robot such as the face to simulate someone blushing or when someone is angry by the use of elastomeric substrates and certain features for the transport of fluids.

  19. Suppression of the endoplasmic reticulum calcium pump during zebrafish gastrulation affects left-right asymmetry of the heart and brain.

    Science.gov (United States)

    Kreiling, Jill A; Balantac, Zaneta L; Crawford, Andrew R; Ren, Yuexin; Toure, Jamal; Zchut, Sigalit; Kochilas, Lazaros; Creton, Robbert

    2008-01-01

    Vertebrate embryos generate striking Ca(2+) patterns, which are unique regulators of dynamic developmental events. In the present study, we used zebrafish embryos as a model system to examine the developmental roles of Ca(2+) during gastrulation. We found that gastrula stage embryos maintain a distinct pattern of cytosolic Ca(2+) along the dorsal-ventral axis, with higher Ca(2+) concentrations in the ventral margin and lower Ca(2+) concentrations in the dorsal margin and dorsal forerunner cells. Suppression of the endoplasmic reticulum Ca(2+) pump with 0.5 microM thapsigargin elevates cytosolic Ca(2+) in all embryonic regions and induces a randomization of laterality in the heart and brain. Affected hearts, visualized in living embryos by a subtractive imaging technique, displayed either a reversal or loss of left-right asymmetry. Brain defects include a left-right reversal of pitx2 expression in the dorsal diencephalon and a left-right reversal of the prominent habenular nucleus in the brain. Embryos are sensitive to inhibition of the endoplasmic reticulum Ca(2+) pump during early and mid gastrulation and lose their sensitivity during late gastrulation and early segmentation. Suppression of the endoplasmic reticulum Ca(2+) pump during gastrulation inhibits expression of no tail (ntl) and left-right dynein related (lrdr) in the dorsal forerunner cells and affects development of Kupffer's vesicle, a ciliated organ that generates a counter-clockwise flow of fluid. Previous studies have shown that Ca(2+) plays a role in Kupffer's vesicle function, influencing ciliary motility and translating the vesicle's counter-clockwise flow into asymmetric patterns of gene expression. The present results suggest that Ca(2+) plays an additional role in the formation of Kupffer's vesicle.

  20. Surface Modifications of Polymeric Materials for Application in Artificial Heart and Circulatory Assist Devices

    NARCIS (Netherlands)

    Feijen, J.; Engbers, G.H.M.; Terlingen, J.G.A.; van Delden, C.J.; Poot, A.A.; Vaudaux, P.; Akutsu, Tetsuzo; Koyanagi, Hitoshi

    1996-01-01

    Several methods have been developed to modify the surfaces of materials used in artificial hearts and circulatory assist devices to suppress the host response, especially with respect to the occurrence of clotting, cellular damage, and infections. In this review, special attention is paid to

  1. Taking radionuclides to heart

    International Nuclear Information System (INIS)

    Kleynhans, P.H.T.; Lotter, M.G.; Van Aswegen, A.; Minnaar, P.C.; Iturralde, M.; Herbst, C.P.; Marx, D.

    1980-01-01

    Ischaemic heart disease is a main cause of death in South Africa. Non-invasive ECG gated radionuclide bloodpool imaging plays an increasingly useful role in the evalution of the function of the heart as a pump, and the extent of heart muscle perfusion defects is further pinpointed by invasive krypton-81m studies to improve patient management

  2. Rotary piston blood pumps: past developments and future potential of a unique pump type.

    Science.gov (United States)

    Wappenschmidt, Johannes; Autschbach, Rüdiger; Steinseifer, Ulrich; Schmitz-Rode, Thomas; Margreiter, Raimund; Klima, Günter; Goetzenich, Andreas

    2016-08-01

    The design of implantable blood pumps is either based on displacement pumps with membranes or rotary pumps. Both pump types have limitations to meet the clinical requirements. Rotary piston blood pumps have the potential to overcome these limitations and to merge the benefits. Compared to membrane pumps, they are smaller and with no need for wear-affected membranes and valves. Compared to rotary pumps, the blood flow is pulsatile instead of a non-physiological continuous flow. Furthermore, the risk of flow-induced blood damage and platelet activation may be reduced due to low shear stress to the blood. The past developments of rotary piston blood pumps are summarized and the main problem for long-term application is identified: insufficient seals. A new approach with seal-less drives is proposed and current research on a simplified rotary piston design is presented. Expert commentary: The development of blood pumps focuses mainly on the improvement of rotary pumps. However, medical complications indicate that inherent limitations of this pump type remain and restrict the next substantial step forward in the therapy of heart failure patients. Thus, research on different pump types is reasonable. If the development of reliable drives and bearings succeeds, rotary piston blood pumps become a promising alternative.

  3. Cannula Tip With Integrated Volume Sensor for Rotary Blood Pump Control: Early-Stage Development.

    Science.gov (United States)

    Cysyk, Joshua; Newswanger, Ray; Popjes, Eric; Pae, Walter; Jhun, Choon-Sik; Izer, Jenelle; Weiss, William; Rosenberg, Gerson

    2018-05-10

    The lack of direct measurement of left ventricular unloading is a significant impediment to the development of an automatic speed control system for continuous-flow left ventricular assist devices (cf-LVADs). We have developed an inlet cannula tip for cf-LVADs with integrated electrodes for volume sensing based on conductance. Four platinum-iridium ring electrodes were installed into grooves on a cannula body constructed from polyetheretherketone (PEEK). A sinusoidal current excitation waveform (250 μA pk-pk, 50 kHz) was applied across one pair of electrodes, and the conductance-dependent voltage was sensed across the second pair of electrodes. The conductance catheter was tested in an acute ovine model (n = 3) in conjunction with the HeartMate II rotary blood pump to provide circulatory support and unload the ventricle. Echocardiography was used to measure ventricular size during pump support for verification for the conductance measurements. The conductance measurements correlated linearly with the echocardiography dimension measurements more than the full range of pump support from minimum support to suction. This cannula tip will enable the development of automatic control systems to optimize pump support based on a real-time measurement of ventricular size.

  4. Left ventricular assist device management in patients chronically supported for advanced heart failure.

    Science.gov (United States)

    Cowger, Jennifer; Romano, Matthew A; Stulak, John; Pagani, Francis D; Aaronson, Keith D

    2011-03-01

    This review summarizes management strategies to reduce morbidity and mortality in heart failure patients supported chronically with implantable left ventricular assist devices (LVADs). As the population of patients supported with long-term LVADs has grown, patient selection, operative technique, and patient management strategies have been refined, leading to improved outcomes. This review summarizes recent findings on LVAD candidate selection, and discusses outpatient strategies to optimize device performance and heart failure management. It also reviews important device complications that warrant close outpatient monitoring. Managing patients on chronic LVAD support requires regular patient follow-up, multidisciplinary care teams, and frequent laboratory and echocardiographic surveillance to ensure optimal outcomes.

  5. Robot-assisted training for heart failure patients - a small pilot study.

    Science.gov (United States)

    Schoenrath, Felix; Markendorf, Susanne; Brauchlin, Andreas Emil; Frank, Michelle; Wilhelm, Markus Johannes; Saleh, Lanja; Riener, Robert; Schmied, Christian Marc; Falk, Volkmar

    2015-12-01

    The objective of this study was assess robot-assisted gait therapy with the Lokomat® system in heart failure patients. Patients (n = 5) with stable heart failure and a left ventricular ejection fraction of less than 45% completed a four-week aerobic training period with three trainings per week and an integrated dynamic resistance training of the lower limbs. Patients underwent testing of cardiac and inflammatory biomarkers. A cardiopulmonary exercise test, a quality of life score and an evaluation of the muscular strength by measuring the peak quadriceps force was performed. No adverse events occurred. The combined training resulted in an improvement in peak work rate (range: 6% to 36%) and peak quadriceps force (range: 3% to 80%) in all participants. Peak oxygen consumption (range: –3% to + 61%) increased in three, and oxygen pulse (range: –7% to + 44%) in four of five patients. The quality of life assessment indicated better well-being in all participants. NT-ProBNP (+233 to –733 ng/ml) and the inflammatory biomarkers (hsCRP and IL6) decreased in four of five patients (IL 6: +0.5 to –2 mg/l, hsCRP: +0.2 to –6.5 mg/l). Robot-assisted gait therapy with the Lokomat® System is feasible in heart failure patients and was safe in this trial. The combined aerobic and resistance training intervention with augmented feedback resulted in benefits in exercise capacity, muscle strength and quality of life, as well as an improvement of cardiac (NT-ProBNP) and inflammatory (IL6, hsCRP) biomarkers. Results can only be considered as preliminary and need further validation in larger studies. (ClinicalTrials.gov number, NCT 02146196)

  6. Off-pump supra-arterial myotomy for myocardial bridging.

    Science.gov (United States)

    Crespo, Alejandro; Aramendi, José I; Hamzeh, Gadah; Voces, Roberto

    2008-09-01

    We report the results of surgery and midterm outcome in two patients with symptomatic myocardial bridging who underwent off-pump supra-arterial myotomy. Both patients were operated upon through a median sternotomy. The anterior wall of the heart was exposed in the same manner as in off-pump CABG. The left anterior descending coronary artery is unroofed from its myocardial bridge with the aid of a heart stabilizer and a blower. Neither heparin nor blood transfusion was required. Both patients survived the operation and are asymptomatic. Postoperative coronary angiogram showed good resolution of the muscle bridge in one patient. We conclude that in symptomatic patients with myocardial bridging despite medical therapy, surgical myotomy can be considered an adequate therapy. It can be safely done off-pump.

  7. Novel regulation of cardiac Na pump via phospholemman.

    Science.gov (United States)

    Pavlovic, Davor; Fuller, William; Shattock, Michael J

    2013-08-01

    As the only quantitatively significant Na efflux pathway from cardiac cells, the Na/K ATPase (Na pump) is the primary regulator of intracellular Na. The transmembrane Na gradient it establishes is essential for normal electrical excitability, numerous coupled-transport processes and, as the driving force for Na/Ca exchange, thus setting cardiac Ca load and contractility. As Na influx varies with electrical excitation, heart rate and pathology, the dynamic regulation of Na efflux is essential. It is now widely recognized that phospholemman, a 72 amino acid accessory protein which forms part of the Na pump complex, is the key nexus linking cellular signaling to pump regulation. Phospholemman is the target of a variety of post-translational modifications (including phosphorylation, palmitoylation and glutathionation) and these can dynamically alter the activity of the Na pump. This review summarizes our current understanding of the multiple regulatory mechanisms that converge on phospholemman and govern NA pump activity in the heart. The corrected Fig. 4 is reproduced below. The publisher would like to apologize for any inconvenience caused. [corrected]. Copyright © 2013. Published by Elsevier Ltd.

  8. Investigating perioperative heart migration during robot-assisted coronary artery bypass grafting interventions.

    Science.gov (United States)

    Linte, Cristian A; Cho, Daniel S; Wedlake, Chris; Moore, John; Chen, Elvis; Bainbridge, Daniel; Patel, Rajni; Peters, Terry; Kiaii, Bob B

    2011-09-01

    : For robot-assisted coronary artery bypass graft interventions, surgeons typically use a preoperative thoracic computed tomography scan of the patient to plan the procedure. However, the cardiac anatomy is prone to changes induced perioperatively in the effort to access the heart and surgical targets, which, in turn, may invalidate the initial plan. This article presents a method to estimate the perioperative heart migration, information which can be further exploited to refine the preoperative surgical plan. : Tracked transesophageal ultrasound images of four patients' hearts were acquired at each stage in the procedure: before lung deflation, after lung deflation, and after both lung deflation and CO2 thoracic insufflation. Anatomic features of interest-the mitral and aortic valves-were identified from each dataset, and their movement between the different procedure stages was recorded and used to estimate the global heart displacement. Moreover, the local morphology of the features of interest was investigated to provide insight on the extent of the deformation the heart has undergone during the workflow. : The study suggested that the heart does undergo substantial displacement-on the order of 10 to 15 mm in each direction (axial, coronal, and sagittal) after lung deflation and CO2 thoracic insufflation. However, no significant differences (P > 0.1) were observed in the morphologic characteristics of the features of interest across the multiple workflow stages, suggesting that local deformations occur at a much smaller scale compared with the global migration. : The quantification of the perioperatively induced changes is critical to track the displacement of the heart and surgical targets. The recorded migration patterns should not be ignored but rather be used to update the surgical plan to better suit the intraoperative environment.

  9. Effect of pump limiter throat on pumping efficiency

    International Nuclear Information System (INIS)

    Ghendrih, P.; Grosman, A.; Samain, A.; Capes, H.; Morera, J.P.

    1988-01-01

    The necessary control of plasma edge density has led to the development of pump limiters to achieve this task. On Tore Supra, where a large part of the program is devoted to plasma edge studies, two types of such density control apparatus have been implemented, a set of pump limiters and the pumps associated to the ergodic divertor (magnetically assisted pump limiters). Generally two different kinds of pump limiters can be used, those with a throat which drives the plasma from the open edge plasma (SOL) to the neutralizer plate, and those without or with a very short throat. We are interested here in this aspect of the pump limiter concept, i.e. on the throat effect on neutral density build-up in the vicinity of the pumping plates (and hence on pumping efficieny). The underlying idea of this throat effect can be readily understood; indeed while the neutral capture in pump limiters without throats is only a ballistic effect, on expects the plasma to improve the efficiency of pump-limiters via plasma-neutral-sidewall interactions in the throat. This problem has been studied both numerically and analytically. The paper is divided as follows. In section 2, we describe the basic features of pump-limiters which are modelized by the numerical code Cezanne. Section 3 is devoted to the throat length effect considering in particular the neutral density profile in the throat and the neutral density buil-up as a function of the throat lenght. In section 4, we show that the plugging effect occurs for reasonnable values of throat lengths. An analytical value of the plugging length is discussed and compared to the values obtained numerically

  10. Solar-assisted heat pump – A sustainable system for low-temperature water heating applications

    International Nuclear Information System (INIS)

    Chaturvedi, S.K.; Gagrani, V.D.; Abdel-Salam, T.M.

    2014-01-01

    Highlights: • DX-SAHP water heaters systems are economical as well as energy conserving. • The economic analysis is performed using the life cycle cost (LCC) analysis. • LCC can be optimized with respect to the collector area at a specific temperature. • For high load temperature range a two stage heat pump system is more appropriate. - Abstract: Direct expansion solar assisted heat pump systems (DX-SAHP) have been widely used in many applications including water heating. In the DX-SAHP systems the solar collector and the heat pump evaporator are integrated into a single unit in order to transfer the solar energy to the refrigerant. The present work is aimed at studying the use of the DX-SAHP for low temperature water heating applications. The novel aspect of this paper involves a detailed long-term thermo-economic analysis of the energy conservation potential and economic viability of these systems. The thermal performance is simulated using a computer program that incorporates location dependent radiation, collector, economic, heat pump and load data. The economic analysis is performed using the life cycle cost (LCC) method. Results indicate that the DX-SAHP water heaters systems when compared to the conventional electrical water heaters are both economical as well as energy conserving. The analysis also reveals that the minimum value of the system life cycle cost is achieved at optimal values of the solar collector area as well as the compressor displacement capacity. Since the cost of SAHP system presents a barrier to mass scale commercialization, the results of the present study indicating that the SAHP life cycle cost can be minimized by optimizing the collector area would certainly be helpful in lowering, if not eliminating, the economic barrier to these systems. Also, at load temperatures higher than 70 °C, the performance of the single stage heat pump degrades to the extent that its cost and efficiency advantages over the electric only system are

  11. Experimental study of a solar-assisted ground-coupled heat pump system with solar seasonal thermal storage in severe cold areas

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiao; Zheng, Maoyu; Zhang, Wenyong; Zhang, Shu; Yang, Tao [School of Municipal and Environmental Engineering, Harbin Institute of Technology, NO 202 Haihe Road, Harbin, Hei Longjiang 150090 (China)

    2010-11-15

    This paper presents the experimental study of a solar-assisted ground-coupled heat pump system (SAGCHPS) with solar seasonal thermal storage installed in a detached house in Harbin. The solar seasonal thermal storage was conducted throughout the non-heating seasons. In summer, the soil was used as the heat sink to cool the building directly. In winter, the solar energy was used as a priority, and the building was heated by a ground-coupled heat pump (GCHP) and solar collectors alternately. The results show that the system can meet the heating-cooling energy needs of the building. In the heating mode, the heat directly supplied by solar collectors accounted for 49.7% of the total heating output, and the average coefficient of performance (COP) of the heat pump and the system were 4.29 and 6.55, respectively. In the cooling mode, the COP of the system reached 21.35, as the heat pump was not necessary to be started. After a year of operation, the heat extracted from the soil by the heat pump accounted for 75.5% of the heat stored by solar seasonal thermal storage. The excess heat raised the soil temperature to a higher level, which was favorable for increasing the COP of the heat pump. (author)

  12. 直膨式太阳能热泵系统仿真%Simulation of Direct Expansion Solar Assisted Heat Pump System

    Institute of Scientific and Technical Information of China (English)

    汪坤海; 闫金州; 邢琳; 关欣

    2017-01-01

    随着太阳能热利用和热泵技术的成熟及商品化,直膨式太阳能热泵技术将太阳能资源的清洁性、可再生性等特点和热泵系统的节能、高效的优点相结合,极具研究价值.但是目前直膨式太阳能热泵不能产品化推广的主要限制因素是系统设计不合理、运行不稳定、整体性能不佳等问题.现以直膨式太阳能热泵系统的优化和设计匹配为研究目标,同时,建立压缩机、集热器/蒸发器、热力膨胀阀、冷凝器及储热水箱的数学模型.从理论上分析集热器中集热面积、太阳能辐照度、环境温度、压缩机容积及冷凝温度等因素对直膨式太阳能热泵系统热工性能的影响,通过系统仿真及实验研究系统的整体热力性能,并在此基础上给出改善系统性能的建议.%With the use of solar thermal energy and the development and commercialization of heat pump technology, the direct - expansion solar - assisted heat pump which combines both the clean, renewable and other properties of solar energy resources with energy-saving and high efficient advantages of heat pump system, has great research values. But now major limiting factors of the direct-expansion solar- assisted heat pump cannot be promoted include the unreasonable system design, the unstable operation, the overall poor performance and other issues. The optimization and design matching of the direct-expansion solar-assisted heat pump system are researched; at the same time, a mathematical model of the heat collector/evaporator, compressor, thermostatic expansion valve, condenser and heat storage water tank is established. The area of heat, solar irradiance, ambient temperature, volume of compressor and condensation temperature and other factors on the effect of direct expansion solar-assisted heat pump system of the thermal performance are analyzed from the theory analysis; the overall thermal performance of the system is simulated and studied with

  13. 太阳能辅助地源热泵供暖实验研究%Experimental study of a solar assisted ground source heat pump for heating

    Institute of Scientific and Technical Information of China (English)

    赵忠超; 丰威仙; 巩学梅; 米浩君; 成华; 云龙

    2014-01-01

    An experimental study is performed to determine the performance of the solar assisted ground source heat pump(SAGSHP)by using a solar-ground source heat pump hybrid system in the city of Ningbo. The result shows that comparing with the ground source heat pump(GSHP),when the ratio of solar energy to the whole en-ergy is 41. 9% ,the coefficient of performance( COP)of the heat pump and system can improve 15. 1% and 7. 7% respectively. Therefore,the solar assisted ground source heat pump has a significant performance advan-tage according to the experimental result.%选取宁波某公用建筑的太阳能-地源热泵复合系统为实验系统,对太阳能辅助地源热泵( solar assisted ground source heat pump,SAGSHP)供暖进行了实验研究.研究结果表明:与单一的地源热泵(ground source heat pump,GSHP)相比,当太阳能承担41.9%负荷时,热泵机组和整个系统的能效比(coefficient of performance,COP)分别提高了15.1%和7.7%, SAGSHP 供暖运行模式具有明显的性能优势.

  14. Risk assessment and comparative effectiveness of left ventricular assist device and medical management in ambulatory heart failure patients: design and rationale of the ROADMAP clinical trial.

    Science.gov (United States)

    Rogers, Joseph G; Boyle, Andrew J; O'Connell, John B; Horstmanshof, Douglas A; Haas, Donald C; Slaughter, Mark S; Park, Soon J; Farrar, David J; Starling, Randall C

    2015-02-01

    Mechanical circulatory support is now a proven therapy for the treatment of patients with advanced heart failure and cardiogenic shock. The role for this therapy in patients with less severe heart failure is unknown. The objective of this study is to examine the impact of mechanically assisted circulation using the HeartMate II left ventricular assist device in patients who meet current US Food and Drug Administration-defined criteria for treatment but are not yet receiving intravenous inotropic therapy. This is a prospective, nonrandomized clinical trial of 200 patients treated with either optimal medical management or a mechanical circulatory support device. This trial will be the first prospective clinical evaluation comparing outcomes of patients with advanced ambulatory heart failure treated with either ongoing medical therapy or a left ventricular assist device. It is anticipated to provide novel insights regarding relative outcomes with each treatment and an understanding of patient and provider acceptance of the ventricular assist device therapy. This trial will also provide information regarding the risk of events in "stable" patients with advanced heart failure and guidance for the optimal timing of left ventricular assist device therapy. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Human Aorta Is a Passive Pump

    Science.gov (United States)

    Pahlevan, Niema; Gharib, Morteza

    2012-11-01

    Impedance pump is a simple valveless pumping mechanism that operates based on the principles of wave propagation and reflection. It has been shown in a zebrafish that a similar mechanism is responsible for the pumping action in the embryonic heart during early stages before valve formation. Recent studies suggest that the cardiovascular system is designed to take advantage of wave propagation and reflection phenomena in the arterial network. Our aim in this study was to examine if the human aorta is a passive pump working like an impedance pump. A hydraulic model with different compliant models of artificial aorta was used for series of in-vitro experiments. The hydraulic model includes a piston pump that generates the waves. Our result indicates that wave propagation and reflection can create pumping mechanism in a compliant aorta. Similar to an impedance pump, the net flow and the flow direction depends on the frequency of the waves, compliance of the aorta, and the piston stroke.

  16. Total Artificial Heart as Rescue Therapy for Primary Graft Failure in an Infant.

    Science.gov (United States)

    Ziegler, Luke A; Sainathan, Sandeep; Morell, Victor O; Sharma, Mahesh S

    2018-04-01

    An infant unable to be weaned from cardiopulmonary bypass after orthotopic heart transplantation was cannulated for extracorporeal membrane oxygenation. During the next 3 days, allograft failure and intracardiac thrombosis necessitated cardiectomy. To provide acute mechanical circulatory support, artificial atrial chambers were constructed with Gore-Tex conduits and PediMag centrifugal pumps were connected to each by Berlin Heart EXCOR cannulae. The PediMag pumps were subsequently exchanged for 10-mL Berlin Heart EXCOR pumps. After 60 days of support by total artificial heart, the patient was bridged successfully to a second heart transplant. Copyright © 2018 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  17. Optical pumping-assisted electromagnetically induced transparency

    International Nuclear Information System (INIS)

    Jiang Wei; Chen Qunfeng; Zhang Yongsheng; Guo, G.-C.

    2006-01-01

    In this paper we report an observation of the two-photon absorption in a four-level system in hot 87 Rb vapor based on the proposal of Harris and Yamamoto [Phys. Rev. Lett. 81, 3611 (1998)]. We show that this effect is reduced in hot atoms due to the non-Doppler-free nature of this scheme. Then we report a phenomenon that could be used in the same application of Harris and Yamamoto. The main result is a great enhancement of electromagnetically induced transparency (EIT) effect in hot 87 Rb vapor caused by optical pumping. We find that when the single photon detuning is near zero the EIT signal is dramatically enhanced by an optical pumping field. More interestingly when the single photon detuning is larger the signal can be changed from a sharp Raman peak to a sharp EIT dip. The full width at half maximum of the peak and dip are narrow and subnatural

  18. Comparison of energy expenditure and heart rate responses between three commercial group fitness classes.

    Science.gov (United States)

    Wickham, James B; Mullen, Nicholas J; Whyte, Douglas G; Cannon, Jack

    2017-07-01

    The objectives of this study were to compare the energy expenditure and heart rate responses between three commercial group fitness classes (group resistance exercise [PUMP]; indoor stationary cycling [RIDE]; and step aerobics [STEP]). One-Way Repeated Measures incorporating a Latin Square Design for class randomisation. Ten participants (5 males and 5 females) completed each group fitness class in random order with energy expenditure and heart rate determined using an Actiheart monitor. STEP and RIDE produced significantly (pheart rates (HR avg ) (85.8±5.1% and 86.4±4.3% of HR max , respectively) compared to PUMP (73.7±7% of HR max ). HR peak was also significantly (pexpenditure (TEE), both absolute and relative, were significantly (pexpenditure was highly comparable between RIDE and STEP, which suggests these group fitness classes are more effective for developing cardiovascular fitness and assisting with weight management compared with group resistance exercise classes when performed on a regular basis. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  19. Reduction of Energy Consumption and CO2 Emissions in Domestic Water Heating by Means of Direct Expansion Solar Assisted Heat Pump

    International Nuclear Information System (INIS)

    Baleta, J.; Curko, T.; Cutic, T.; Pasanec, J.; Soldo, V.

    2012-01-01

    Domestic water heating in households sector is usually performed by either fossil fuel fired or electric boilers. Both the combustion process of the former and large electricity consumption of the latter strongly influence overall greenhouse gas emissions. Moreover, very high specific heat of water requires large quantity of energy for water heating making a significant impact on the overall energy consumption in the households sector whose total consumption of 80,81 PJ equals to 19,6% of total primary energy supply in Croatia in 2010. Considering the mentioned impact on energy consumption and CO 2 emissions as well as goals set by European Commission (so called 20-20-20), new technologies based on renewable energy sources are more than welcome in the field of domestic water heating. Direct expansion solar assisted heat pump is presented in this paper. Its working principle is based on single-stage vapour-compression cycle. Representing a gradual step to commercial application with a water tank of 300 l, the developed mobile unit is designed as a test rig enabling all necessary measurements to evaluate potential of solar irradiation for domestic water heating on various locations. Besides the unit description, trial testing results are presented and analyzed as well as a basic comparison of CO 2 emissions between solar assisted heat pump and conventionally used water heating systems. Taking into account both the decentralized water heating and favourable climatic conditions (especially along the Croatian Adriatic coast) as well as rising fossil fuel prices, it is expected that solar assisted heat pumps will be commercialized in the near future.(author)

  20. Assessment of solar-assisted gas-fired heat pump systems

    Science.gov (United States)

    Lansing, F. L.

    1981-01-01

    As a possible application for the Goldstone Energy Project, the performance of a 10 ton heat pump unit using a hybrid solar gas energy source was evaluated in an effort to optimize the solar collector size. The heat pump system is designed to provide all the cooling and/or heating requirements of a selected office building. The system performance is to be augmented in the heating mode by utilizing the waste heat from the power cycle. A simplified system analysis is described to assess and compute interrrelationships of the engine, heat pump, and solar and building performance parameters, and to optimize the solar concentrator/building area ratio for a minimum total system cost. In addition, four alternative heating cooling systems, commonly used for building comfort, are described; their costs are compared, and are found to be less competitive with the gas solar heat pump system at the projected solar equipment costs.

  1. Left ventricular assist device exchange: the Toronto General Hospital experience.

    Science.gov (United States)

    Tsubota, Hideki; Ribeiro, Roberto V P; Billia, Filio; Cusimano, Robert J; Yau, Terrence M; Badiwala, Mitesh V; Stansfield, William E; Rao, Vivek

    2017-08-01

    As support times for left ventricular assist devices (LVADs) become longer, several complications requiring device exchange may occur. To our knowledge, this is the first Canadian report regarding implantable LVAD exchange. We retrospectively reviewed the cases of consecutive, unique patients implanted with an LVAD between June 2006 and October 2015 at Toronto General Hospital. In total, 122 patients were impanted with an LVAD during the study period. Eight patients required LVAD exchange, and 1 patient had 2 replacements (9 of 122, 7.3%). There were 7 HeartMate II (HMII), 1 HVAD and 1 DuraHeart pumps exchanged. Two of these exchanges occurred early at the time of initial implant, whereas 7 occurred late (range 8-623 d). Six exchanges were made owing to pump thrombosis. Of the 3 exchanges made for other causes, 1 HMII exchange was owing to a driveline fracture, 1 DuraHeart patient had early inflow obstruction requiring exchange to HMII at the initial implant, and the third had a suspected inflow obstruction with no evidence of thrombosis at the time of the procedure. The mean support time before exchange was 225 days, and time from exchange to transplant, death or ongoing support was 245 days. Three patients were successfully bridged to transplant, and at the time of data collection 2 were supported awaiting transplant. Three patients died after a mean duration of 394.3 days (range 78-673 d) of support postreplacement. Four cases were successfully performed using a subcostal approach. Pump thrombosis is the most common cause for LVAD exchange, which can be performed with acceptable morbidity and mortality. The subcostal approach may be the preferred procedure for an HMII exchange when indicated.

  2. Verification of a computational cardiovascular system model comparing the hemodynamics of a continuous flow to a synchronous valveless pulsatile flow left ventricular assist device.

    Science.gov (United States)

    Gohean, Jeffrey R; George, Mitchell J; Pate, Thomas D; Kurusz, Mark; Longoria, Raul G; Smalling, Richard W

    2013-01-01

    The purpose of this investigation is to use a computational model to compare a synchronized valveless pulsatile left ventricular assist device with continuous flow left ventricular assist devices at the same level of device flow, and to verify the model with in vivo porcine data. A dynamic system model of the human cardiovascular system was developed to simulate the support of a healthy or failing native heart from a continuous flow left ventricular assist device or a synchronous pulsatile valveless dual-piston positive displacement pump. These results were compared with measurements made during in vivo porcine experiments. Results from the simulation model and from the in vivo counterpart show that the pulsatile pump provides higher cardiac output, left ventricular unloading, cardiac pulsatility, and aortic valve flow as compared with the continuous flow model at the same level of support. The dynamic system model developed for this investigation can effectively simulate human cardiovascular support by a synchronous pulsatile or continuous flow ventricular assist device.

  3. Simulation of the thermal performance of a hybrid solar-assisted ground-source heat pump system in a school building

    Science.gov (United States)

    Androulakis, N. D.; Armen, K. G.; Bozis, D. A.; Papakostas, K. T.

    2018-04-01

    A hybrid solar-assisted ground-source heat pump (SAGSHP) system was designed, in the frame of an energy upgrade study, to serve as a heating system in a school building in Greece. The main scope of this study was to examine techniques to reduce the capacity of the heating equipment and to keep the primary energy consumption low. Simulations of the thermal performance of both the building and of five different heating system configurations were performed by using the TRNSYS software. The results are presented in this work and show that the hybrid SAGSHP system displays the lower primary energy consumption among the systems examined. A conventional ground-source heat pump system has the same primary energy consumption, while the heat pump's capacity is double and the ground heat exchanger 2.5 times longer. This work also highlights the contribution of simulation tools to the design of complex heating systems with renewable energy sources.

  4. Exercise Intolerance in Heart Failure

    DEFF Research Database (Denmark)

    Brassard, Patrice; Gustafsson, Finn

    2016-01-01

    Exercise tolerance is affected in patients with heart failure (HF). Although the inability of the heart to pump blood to the working muscle has been the conventional mechanism proposed to explain the lowered capacity of patients with HF to exercise, evidence suggests that the pathophysiological...

  5. Bridge to transplantation with a left ventricular assist device.

    Science.gov (United States)

    Jung, Jae Jun; Sung, Kiick; Jeong, Dong Seop; Kim, Wook Sung; Lee, Young Tak; Park, Pyo Won

    2012-04-01

    A 61-year-old female patient was diagnosed with dilated cardiomyopathy with severe left ventricle dysfunction. Two days after admission, continuous renal replacement therapy was performed due to oliguria and lactic acidosis. On the fifth day, an intra-aortic balloon pump was inserted due to low cardiac output syndrome. Beginning 4 days after admission, she was supported for 15 days thereafter with an extracorporeal left ventricular assist device (LVAD) because of heart failure with multi-organ failure. A heart transplant was performed while the patient was stabilized with the LVAD. She developed several complications after the surgery, such as cytomegalovirus pneumonia, pulmonary tuberculosis, wound dehiscence, and H1N1 infection. On postoperative day 19, she was discharged from the hospital with close follow-up and treatment for infection. She received follow-up care for 10 months without any immune rejection reaction.

  6. Experimental performance analysis and optimization of a direct expansion solar-assisted heat pump water heater

    International Nuclear Information System (INIS)

    Li, Y.W.; Wang, R.Z.; Wu, J.Y.; Xu, Y.X.

    2007-01-01

    In this study, a direct expansion solar-assisted heat pump water heater (DX-SAHPWH) with rated input power 750 W was tested and analyzed. Through experimental research in spring and thermodynamics analysis about the system performance, some suggestions for the system optimization are proposed. Then, a small-type DX-SAHPWH with rated input power 400 W was built, tested and analyzed. Through exergy analysis for each component of DX-SAHPWH (A) and (B), it can be seen that the highest exergy loss occurs in the compressor and collector/evaporator, followed by the condenser and expansion valve, respectively. Furthermore, some methods are suggested to improve the performance of each component, especially the collector/evaporator. A methodology for the design optimization of the collector/evaporator was introduced and applied. In order to maintain a proper matching between the heat pumping capacity of the compressor and the evaporative capacity of the collector/evaporator under widely varying ambient conditions, the electronic expansion valve and variable frequency compressor are suggested to be utilized for the DX-SAHPWH

  7. Investigating the Flow and Biomechanics of the Embryonic Zebrafish Heart

    Science.gov (United States)

    Johnson, Brennan; Garrity, Deborah; Dasi, Lakshmi

    2010-11-01

    Understanding flow and kinematic characteristics of the embryonic heart is a prerequisite to devise early intervention or detection methods in the context of congenital heart defects. In this study, the kinematics and fluid dynamics of the embryonic zebrafish heart were analyzed through the early stages of cardiac development (24-48 hours post-fertilization) in vivo using optical microscopy and high-speed video. Endocardial walls and individual blood cells were segmented from raw images and were tracked through the cardiac cycle. Particle tracking velocimetry analysis yielded quantitative blood cell velocity field, chamber volume, and flow rate information. It was seen that the pumping mechanism starts as a combined peristaltic and suction pump while the heart is in the tube configuration and transforms into a positive displacement pump after cardiac looping. Strong two-phase nature of the fluid is evident. This work provides us new understanding of the spatio-temporal characteristics of kinematics and blood cell velocity field inside the developing heart.

  8. Qualitative and quantitative analyses of the morphological-dynamics of early cardiac pumping function using video densitometry and optical coherence tomography (OCT)

    DEFF Research Database (Denmark)

    Happel, C.; Männer, J.; Thommes, J.

    has become a matter of dispute. Uncovering of the pumping mechanism of tubular embryonic hearts requires detailed information about the hemodynamics as well as morphological dynamics of the pump action. We have analyzed the morphological dynamics of cardiac pump action in chick embryos (HH-stage 16......) of the embryonic heart segments (common atrium, AV-canal, embryonic ventricles, outflow tract). Video densitometric M-mode curves show remarkable similarities to OCT M-mode recordings. OCT M-mode recordings can only be taken at one site at a time whereas video densitometry allows simultaneous recordings at any...... striking differences in contraction behavior of different heart segments of the tubular embryonic heart. These findings are important for the understanding of the pumping mechanism of the developing valveless embryonic heart....

  9. First pediatric transatlantic air ambulance transportation on a Berlin Heart EXCOR left ventricular assist device as a bridge to transplantation.

    Science.gov (United States)

    Tissot, Cecile; Buchholz, Holger; Mitchell, Max B; da Cruz, Eduardo; Miyamoto, Shelley D; Pietra, Bill A; Charpentier, Arnaud; Ghez, Olivier

    2010-03-01

    Mechanical circulatory devices are indicated in patients with refractory cardiac failure as a bridge to recovery or to transplantation. Whenever required, transportation while on mechanical support is a challenge and still limited by technical restrictions or distance. We report the first pediatric case of transatlantic air transportation on a Berlin Heart EXCOR ventricular assist device (Berlin Heart, Berlin, Germany) of a 13-yr-old American female who presented in cardiogenic shock with severe systolic dysfunction while vacationing in France. Rapid hemodynamic deterioration occurred despite maximal medical treatment, and she was supported initially with extracorporeal membrane oxygenation converted to a Berlin Heart EXCOR left ventricular assist device. Long-distance air transportation of the patient was accomplished 3 wks after implantation from Marseille, France, to Denver, Colorado. No adverse hemodynamic effects were encountered during the 13.5-hr flight (8770 km). The patient did not recover sufficient cardiac function and underwent successful orthotopic heart transplantation 3 months after the initial event. Our experience suggests that long-distance air transportation of pediatric patients using the Berlin Heart EXCOR mobile unit as a bridge to recovery or transplantation is feasible and appears safe.

  10. Report on the results of the FY 1999 R and D of the medical welfare equipment technology and the development of an implantable total artificial heart system using a non-pulsatile pump. R and D of an implantable total artificial heart system using a non-pulsatile pump (R and D of the functional/cure artificial heart); Iryo fukushi kiki gijutsu no kenkyu kaihatsu tainai umekomigata jinko shinzo system 1999 nendo seika hokokusho. 5. Renzokuryu pump wo mochiita tainai umekomigata jinko shinzo system no kenkyu kaihatsu (kinoteki chiryoteki jinko shinzo no kenkyu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    The R and D of element technology were made on non-pulsatile pump, drive/controller, energy supply storage system, structural coating materials, etc., and the prescribed target was achieved. In the R and D of a total system, a blood-removing conduit with movability was designed to avoid the functional inlet obstruction, and the animal experiment was carried out. In the short-term chronic animal experiment on the implantation of a single bypass model using this artificial conduit and in the animal experiment for implantation of functional/cure artificial heart, it was confirmed that the operation was conducted easily, the flow rate of the blood of the artificial heart is extremely stable, and the blood-removing conduit functions favorably. In the R and D on Tele-TAH with the aim of future home medical treatment, it became possible to acquire via monitor the pump drive information and blood circulation state information on the animals tested in the breeding farm. The remote medical simulation was made. (NEDO)

  11. Novel technique for airless connection of artificial heart to vascular conduits.

    Science.gov (United States)

    Karimov, Jamshid H; Gao, Shengqiang; Dessoffy, Raymond; Sunagawa, Gengo; Sinkewich, Martin; Grady, Patrick; Sale, Shiva; Moazami, Nader; Fukamachi, Kiyotaka

    2017-12-01

    Successful implantation of a total artificial heart relies on multiple standardized procedures, primarily the resection of the native heart, and exacting preparation of the atrial and vascular conduits for pump implant and activation. Achieving secure pump connections to inflow/outflow conduits is critical to a successful outcome. During the connection process, however, air may be introduced into the circulation, traveling to the brain and multiple organs. Such air emboli block blood flow to these areas and are detrimental to long-term survival. A correctly managed pump-to-conduit connection prevents air from collecting in the pump and conduits. To further optimize pump-connection techniques, we have developed a novel connecting sleeve that enables airless connection of the Cleveland Clinic continuous-flow total artificial heart (CFTAH) to the conduits. In this brief report, we describe the connecting sleeve design and our initial results from two acute in vivo implantations using a scaled-down version of the CFTAH.

  12. Left ventricular assist device (lvad design features: literature review

    Directory of Open Access Journals (Sweden)

    Yu. V. Bogdanova

    2014-01-01

    Full Text Available More than 8 million people in our country suffer from heart failure. About one million of these people die each year [1]. The problem of ventricular assist device creating - a mechanical device used for partial or complete replacement of heart function - is investigated for a long time (according to [2] just in our country since the 1970s. Today plenty of encouraging results are received. There is a number of VAD models which are successfully applied to patients with heart failure. After implantation, patients conduct a way of life that is normal in many respects: they are in the family, often they have an opportunity to work in their former specialty. Some of them live with the device about 8 years [3].According to [4] for 2010 the estimated total number of long-term devices implanted in the United States per year is over 1,700 (the population of the U.S. is 305 million, compared with over 430 per year in Europe (the population of Europe is 731 million. Unfortunately, people who need a heart transplant are much more.The principle of VAD is that being connected to the left ventricle with one cannula and to the ascending aorta with the other cannula the pump fully or partially replaces the function of the natural heart. This scheme allows the use of VAD in two ways: as a "bridge to transplantation" when the device is used temporarily until the donor heart is found, and a "bridge to recovery", when through the use of VAD the function of the heart muscle is recovered.VAD system can be divided into three subsystems: blood pump, power supply system and control system (Fig. 1.Each subsystem can be the subject of separate study. Special role in the development of VAD plays medical side of the issue. Successful research and development require interaction with qualified professionals in this field. The development of VAD is a multidisciplinary problem which demands fulfilment of a number of requirements.One of the most active programs in implantation of

  13. Qualitative and quantitative analyses of the morphological-dynamics of early cardiac pump action using video densidometry and optical coherence tomography (OCT)

    DEFF Research Database (Denmark)

    Männer, Jörg; Thrane, Lars; Thommes, Jan

    2010-01-01

    a matter of dispute. Uncovering of the pumping mechanism of tubular embryonic hearts requires detailed information about the hemodynamics as well as morphological dynamics of their pump action. We have therefore analyzed the morphological dynamics of cardiac pump action in chick embryos (HH-stages 16...... have recorded striking differences in the contraction behavior (e.g. contraction speed, duration of systolic occlusion of heart lumen) of the embryonic heart segments (common atrium, AV-canal, embryonic ventricles, outflow tract). Moreover, we show, for the first time, the pump action of tubular...

  14. β(3) adrenergic stimulation of the cardiac Na+-K+ pump by reversal of an inhibitory oxidative modification.

    Science.gov (United States)

    Bundgaard, Henning; Liu, Chia-Chi; Garcia, Alvaro; Hamilton, Elisha J; Huang, Yifei; Chia, Karin K M; Hunyor, Stephen N; Figtree, Gemma A; Rasmussen, Helge H

    2010-12-21

    inhibition of L-type Ca(2+) current contributes to negative inotropy of β(3) adrenergic receptor (β(3) AR) activation, but effects on other determinants of excitation-contraction coupling are not known. Of these, the Na(+)-K(+) pump is of particular interest because of adverse effects attributed to high cardiac myocyte Na(+) levels and upregulation of the β(3) AR in heart failure. we voltage clamped rabbit ventricular myocytes and identified electrogenic Na(+)-K(+) pump current (I(p)) as the shift in holding current induced by ouabain. The synthetic β(3) AR agonists BRL37344 and CL316,243 and the natural agonist norepinephrine increased I(p). Pump stimulation was insensitive to the β(1)/β(2) AR antagonist nadolol and the protein kinase A inhibitor H-89 but sensitive to the β(3) AR antagonist L-748,337. Blockade of nitric oxide synthase abolished pump stimulation and an increase in fluorescence of myocytes loaded with a nitric oxide-sensitive dye. Exposure of myocytes to β(3) AR agonists decreased β(1) Na(+)-K(+) pump subunit glutathionylation, an oxidative modification that causes pump inhibition. The in vivo relevance of this was indicated by an increase in myocardial β(1) pump subunit glutathionylation with elimination of β(3) AR-mediated signaling in β(3) AR(-/-) mice. The in vivo effect of BRL37344 on contractility of the nonfailing and failing heart in sheep was consistent with a beneficial effect of Na(+)-K(+) pump stimulation in heart failure. the β(3) AR mediates decreased β(1) subunit glutathionylation and Na(+)-K(+) pump stimulation in the heart. Upregulation of the receptor in heart failure may be a beneficial mechanism that facilitates the export of excess Na(+).

  15. Solar assisted heat pump on air collectors: A simulation tool

    Energy Technology Data Exchange (ETDEWEB)

    Karagiorgas, Michalis; Galatis, Kostas; Tsagouri, Manolis [Department of Mechanical Engineering Educators, ASPETE, N. Iraklio, GR 14121 (Greece); Tsoutsos, Theocharis [Environmental Engineering Dept., Technical University of Crete, Technical University Campus, GR 73100, Chania (Greece); Botzios-Valaskakis, Aristotelis [Centre for Renewable Energy Sources (CRES), 19th km Marathon Ave., GR 19001, Pikermi (Greece)

    2010-01-15

    The heating system of the bioclimatic building of the Greek National Centre for Renewable Energy Sources (CRES) comprises two heating plants: the first one includes an air source heat pump, Solar Air Collectors (SACs) and a heat distribution system (comprising a fan coil unit network); the second one is, mainly, a geothermal heat pump unit to cover the ground floor thermal needs. The SAC configuration as well as the fraction of the building heating load covered by the heating plant are assessed in two operation modes; the direct (hot air from the collectors is supplied directly to the heated space) and the indirect mode (warm air from the SAC or its mixture with ambient air is not supplied directly to the heated space but indirectly into the evaporator of the air source heat pump). The technique of the indirect mode of heating aims at maximizing the efficiency of the SAC, saving electrical power consumed by the compressor of the heat pump, and therefore, at optimizing the coefficient of performance (COP) of the heat pump due to the increased intake of ambient thermal energy by means of the SAC. Results are given for three research objectives: assessment of the heat pump efficiency whether in direct or indirect heating mode; Assessment of the overall heating plant efficiency on a daily or hourly basis; Assessment of the credibility of the suggested simulation model TSAGAIR by comparing its results with the TRNSYS ones. (author)

  16. The pump, the exchanger, and the holy spirit: origins and 40-year evolution of ideas about the ouabain-Na+ pump endocrine system.

    Science.gov (United States)

    Blaustein, Mordecai P

    2018-01-01

    Two prescient 1953 publications set the stage for the elucidation of a novel endocrine system: Schatzmann's report that cardiotonic steroids (CTSs) are all Na + pump inhibitors, and Szent-Gyorgi's suggestion that there is an endogenous "missing screw" in heart failure that CTSs like digoxin may replace. In 1977 I postulated that an endogenous Na + pump inhibitor acts as a natriuretic hormone and simultaneously elevates blood pressure (BP) in salt-dependent hypertension. This hypothesis was based on the idea that excess renal salt retention promoted the secretion of a CTS-like hormone that inhibits renal Na + pumps and salt reabsorption. The hormone also inhibits arterial Na + pumps, elevates myocyte Na + and promotes Na/Ca exchanger-mediated Ca 2+ gain. This enhances vasoconstriction and arterial tone-the hallmark of hypertension. Here I describe how those ideas led to the discovery that the CTS-like hormone is endogenous ouabain (EO), a key factor in the pathogenesis of hypertension and heart failure. Seminal observations that underlie the still-emerging picture of the EO-Na + pump endocrine system in the physiology and pathophysiology of multiple organ systems are summarized. Milestones include: 1) cloning the Na + pump isoforms and physiological studies of mutated pumps in mice; 2) discovery that Na + pumps are also EO-triggered signaling molecules; 3) demonstration that ouabain, but not digoxin, is hypertensinogenic; 4) elucidation of EO's roles in kidney development and cardiovascular and renal physiology and pathophysiology; 5) discovery of "brain ouabain", a component of a novel hypothalamic neuromodulatory pathway; and 6) finding that EO and its brain receptors modulate behavior and learning.

  17. Nuclear-pumped lasers

    CERN Document Server

    Prelas, Mark

    2016-01-01

    This book focuses on Nuclear-Pumped Laser (NPL) technology and provides the reader with a fundamental understanding of NPLs, a review of research in the field, and exploration of large scale NPL system design and applications. Early chapters look at the fundamental properties of lasers, nuclear-pumping and nuclear reactions that may be used as drivers for nuclear-pumped lasers. The book goes on to explore the efficient transport of energy from the ionizing radiation to the laser medium and then the operational characteristics of existing nuclear-pumped lasers. Models based on Mathematica, explanations and a tutorial all assist the reader’s understanding of this technology. Later chapters consider the integration of the various systems involved in NPLs and the ways in which they can be used, including beyond the military agenda. As readers will discover, there are significant humanitarian applications for high energy/power lasers, such as deflecting asteroids, space propulsion, power transmission and mining....

  18. Artificial heart for humanoid robot using coiled SMA actuators

    Science.gov (United States)

    Potnuru, Akshay; Tadesse, Yonas

    2015-03-01

    Previously, we have presented the design and characterization of artificial heart using cylindrical shape memory alloy (SMA) actuators for humanoids [1]. The robotic heart was primarily designed to pump a blood-like fluid to parts of the robot such as the face to simulate blushing or anger by the use of elastomeric substrates for the transport of fluids. It can also be used for other applications. In this paper, we present an improved design by using high strain coiled SMAs and a novel pumping mechanism that uses sequential actuation to create peristalsis-like motions, and hence pump the fluid. Various placements of actuators will be investigated with respect to the silicone elastomeric body. This new approach provides a better performance in terms of the fluid volume pumped.

  19. Ultrasound functional imaging in an ex vivo beating porcine heart platform

    Science.gov (United States)

    Petterson, Niels J.; Fixsen, Louis S.; Rutten, Marcel C. M.; Pijls, Nico H. J.; van de Vosse, Frans N.; Lopata, Richard G. P.

    2017-12-01

    In recent years, novel ultrasound functional imaging (UFI) techniques have been introduced to assess cardiac function by measuring, e.g. cardiac output (CO) and/or myocardial strain. Verification and reproducibility assessment in a realistic setting remain major issues. Simulations and phantoms are often unrealistic, whereas in vivo measurements often lack crucial hemodynamic parameters or ground truth data, or suffer from the large physiological and clinical variation between patients when attempting clinical validation. Controlled validation in certain pathologies is cumbersome and often requires the use of lab animals. In this study, an isolated beating pig heart setup was adapted and used for performance assessment of UFI techniques such as volume assessment and ultrasound strain imaging. The potential of performing verification and reproducibility studies was demonstrated. For proof-of-principle, validation of UFI in pathological hearts was examined. Ex vivo porcine hearts (n  =  6, slaughterhouse waste) were resuscitated and attached to a mock circulatory system. Radio frequency ultrasound data of the left ventricle were acquired in five short axis views and one long axis view. Based on these slices, the CO was measured, where verification was performed using flow sensor measurements in the aorta. Strain imaging was performed providing radial, circumferential and longitudinal strain to assess reproducibility and inter-subject variability under steady conditions. Finally, strains in healthy hearts were compared to a heart with an implanted left ventricular assist device, simulating a failing, supported heart. Good agreement between ultrasound and flow sensor based CO measurements was found. Strains were highly reproducible (intraclass correlation coefficients  >0.8). Differences were found due to biological variation and condition of the hearts. Strain magnitude and patterns in the assisted heart were available for different pump action, revealing

  20. Analysis of a Hybrid PV/Thermal Solar-Assisted Heat Pump System for Sports Center Water Heating Application

    Directory of Open Access Journals (Sweden)

    Y. Bai

    2012-01-01

    Full Text Available The application of solar energy provides an alternative way to replace the primary source of energy, especially for large-scale installations. Heat pump technology is also an effective means to reduce the consumption of fossil fuels. This paper presents a practical case study of combined hybrid PV/T solar assisted heat pump (SAHP system for sports center hot water production. The initial design procedure was first presented. The entire system was then modeled with the TRNSYS 16 computation environment and the energy performance was evaluated based on year round simulation results. The results show that the system COP can reach 4.1 under the subtropical climate of Hong Kong, and as compared to the conventional heating system, a high fractional factor of energy saving at 67% can be obtained. The energy performances of the same system under different climatic conditions, that include three other cities in France, were analyzed and compared. Economic implications were also considered in this study.

  1. Integrated solar-assisted heat pumps for water heating coupled to gas burners; control criteria for dynamic operation

    International Nuclear Information System (INIS)

    Scarpa, F.; Tagliafico, L.A.; Tagliafico, G.

    2011-01-01

    A direct expansion integrated solar-assisted heat pump (ISAHP) is compared to a traditional flat plate solar panel for low temperature (45 deg. C) water heating applications. The (simulated) comparison is accomplished assuming both the devices are energy supplemented with an auxiliary standard gas burner, to provide the typical heat duty of a four-member family. Literature dynamical models of the systems involved have been used to calculate the main performance figures in a context of actual climatic conditions and typical stochastic user demand. The paper highlights new heat pump control concepts, needed when maximum energy savings are the main goal of the apparatus for given user demand. Simulations confirm the high collector efficiency of the ISAHP when its panel/evaporator works at temperature close to the ambient one. The device, with respect to a flat plate solar water heater, shows a doubled performance, so that it can do the same task just using an unglazed panel with roughly half of the surface.

  2. Theoretical modelling and experimental study of air thermal conditioning process of a heat pump assisted solid desiccant cooling system

    DEFF Research Database (Denmark)

    Nie, Jinzhe; Li, Zan; Hu, Wenju

    2017-01-01

    purification aimed at improving indoor air quality and reducing building energy consumption. The heat and moisture transfer in adsorption desiccant rotor was theoretical modelled with one-dimensional partial differential equations. The theoretical model was validated with experimental measurements...... system, the energy performance of HP-SDC was more efficient mainly due to high efficient air purification capacity, reduction of cooling load and raised evaporation temperature. The energy performance of HP-SDC was sensitive to outdoor humidity ratio. Further improvements of HP-SDC energy efficiency......Taking the integrated gaseous contaminants and moisture adsorption potential of desiccant material, a new heat pump assisted solid desiccant cooling system (HP-SDC) was proposed based on the combination of desiccant rotor with heat pump. The HP-SDC was designed for dehumidification, cooling and air...

  3. Minimally Invasive Implantation of HeartWare Assist Device and Simultaneous Tricuspid Valve Reconstruction Through Partial Upper Sternotomy.

    Science.gov (United States)

    Hillebrand, Julia; Hoffmeier, Andreas; Djie Tiong Tjan, Tonny; Sindermann, Juergen R; Schmidt, Christoph; Martens, Sven; Scherer, Mirela

    2017-05-01

    Left ventricular assist device (LVAD) implantation is a well-established therapy to support patients with end-stage heart failure. However, the operative procedure is associated with severe trauma. Third generation LVADs like the HeartWare assist device (HeartWare, Inc., Framingham, MA, USA) are characterized by enhanced technology despite smaller size. These devices offer new minimally invasive surgical options. Tricuspid regurgitation requiring valve repair is frequent in patients with the need for mechanical circulatory support as it is strongly associated with ischemic and nonischemic cardiomyopathy. We report on HeartWare LVAD implantation and simultaneous tricuspid valve reconstruction through minimally invasive access by partial upper sternotomy to the fifth left intercostal space. Four male patients (mean age 51.72 ± 11.95 years) suffering from chronic heart failure due to dilative (three patients) and ischemic (one patient) cardiomyopathy and also exhibiting concomitant tricuspid valve insufficiency due to annular dilation underwent VAD implantation and tricuspid valve annuloplasty. Extracorporeal circulation was established via the ascending aorta, superior vena cava, and right atrium. In all four cases the LVAD implantation and tricuspid valve repair via partial median sternotomy was successful. During the operative procedure, no conversion to full sternotomy was necessary. One patient needed postoperative re-exploration because of pericardial effusion. No postoperative focal neurologic injury was observed. New generation VADs are advantageous because of the possibility of minimally invasive implantation procedure which can therefore minimize surgical trauma. Concomitant tricuspid valve reconstruction can also be performed simultaneously through partial upper sternotomy. Nevertheless, minimally invasive LVAD implantation is a challenging operative technique. © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals

  4. Air-clad fibers: pump absorption assisted by chaotic wave dynamics?

    DEFF Research Database (Denmark)

    Mortensen, Niels Asger

    2007-01-01

    Wave chaos is a concept which has already proved its practical usefulness in design of double-clad fibers for cladding-pumped fiber lasers and fiber amplifiers. In general, classically chaotic geometries will favor strong pump absorption and we address the extent of chaotic wave dynamics in typical...

  5. Novel maglev pump with a combined magnetic bearing.

    Science.gov (United States)

    Onuma, Hiroyuki; Murakami, Michiko; Masuzawa, Toru

    2005-01-01

    The newly developed pump is a magnetically levitated centrifugal blood pump in which active and passive magnetic bearings are integrated to construct a durable ventricular assist device. The developed maglev centrifugal pump consists of an active magnetic bearing, a passive magnetic bearing, a levitated impeller, and a motor stator. The impeller is set between the active magnetic bearing and the motor stator. The active magnetic bearing uses four electromagnets to control the tilt and the axial position of the impeller. The radial movement of the levitated impeller is restricted with the passive stability dependent upon the top stator and the passive permanent magnetic bearing to reduce the energy consumption and the control system complexity. The top stator was designed based upon a magnetic field analysis to develop the maglev pump with sufficient passive stability in the radial direction. By implementing this analysis design, the oscillating amplitude of the impeller in the radial direction was cut in half when compared with the simple shape stator. This study concluded that the newly developed maglev centrifugal pump displayed excellent levitation performance and sufficient pump performance as a ventricular assist device.

  6. Clinical trial design and rationale of the Multicenter Study of MagLev Technology in Patients Undergoing Mechanical Circulatory Support Therapy With HeartMate 3 (MOMENTUM 3) investigational device exemption clinical study protocol.

    Science.gov (United States)

    Heatley, Gerald; Sood, Poornima; Goldstein, Daniel; Uriel, Nir; Cleveland, Joseph; Middlebrook, Don; Mehra, Mandeep R

    2016-04-01

    The HeartMate 3 left ventricular assist system (LVAS; St. Jude Medical, Inc., formerly Thoratec Corporation, Pleasanton, CA) was recently introduced into clinical trials for durable circulatory support in patients with medically refractory advanced-stage heart failure. This centrifugal, fully magnetically levitated, continuous-flow pump is engineered with the intent to enhance hemocompatibility and reduce shear stress on blood elements, while also possessing intrinsic pulsatility. Although bridge-to-transplant (BTT) and destination therapy (DT) are established dichotomous indications for durable left ventricular assist device (LVAD) support, clinical practice has challenged the appropriateness of these designations. The introduction of novel LVAD technology allows for the development of clinical trial designs to keep pace with current practices. The prospective, randomized Multicenter Study of MagLev Technology in Patients Undergoing Mechanical Circulatory Support Therapy With HeartMate 3 (MOMENTUM 3) clinical trial aims to evaluate the safety and effectiveness of the HeartMate 3 LVAS by demonstrating non-inferiority to the HeartMate II LVAS (also St. Jude Medical, Inc.). The innovative trial design includes patients enrolled under a single inclusion and exclusion criteria , regardless of the intended use of the device, with outcomes ascertained in the short term (ST, at 6 months) and long term (LT, at 2 years). This adaptive trial design includes a pre-specified safety phase (n = 30) analysis. The ST cohort includes the first 294 patients and the LT cohort includes the first 366 patients for evaluation of the composite primary end-point of survival to transplant, recovery or LVAD support free of debilitating stroke (modified Rankin score >3), or re-operation to replace the pump. As part of the adaptive design, an analysis by an independent statistician will determine whether sample size adjustment is required at pre-specified times during the study. A further 662

  7. Embracing the heart: perioperative management of patients undergoing off-pump coronary artery bypass grafting using the octopus tissue stabilizer.

    Science.gov (United States)

    Nierich, A P; Diephuis, J; Jansen, E W; van Dijk, D; Lahpor, J R; Borst, C; Knape, J T

    1999-04-01

    To describe hemodynamic alterations during coronary artery bypass grafting (CABG) without extracorporeal circulation using the Octopus Tissue Stabilizer, and to describe the two anesthetic management protocols based on either general anesthesia with opioids (34 patients) or general anesthesia with high thoracic epidural anesthesia (TEA; 66 patients). A prospective observational report. An academic university heart center. First 100 patients undergoing CABG using the Octopus Tissue Stabilizer. None. Current management provided satisfactory results in preventing hypoperfusion of the heart and inadequate systemic circulation without the use of major pharmacologic interventions. Movement of the heart to reach the target site of anastomosis caused hemodynamic alterations. These could easily be corrected by anesthetic interventions, such as fluid load and low doses of inotropes. High TEA allows earlier extubation compared with the opioid anesthesia technique (0.9 v 4.5 hours). Perioperative management and the incidence of postoperative complications did not differ between anesthetic techniques. Major complications, such as death, intraoperative myocardial infarction, and stroke, did not occur. Both anesthetic protocols are safe and effective in handling these patients. Off-pump CABG surgery requires anesthetic interventions because hemodynamic alterations are caused by the presentation of the heart to the surgeon. The complication rate is low but needs to be evaluated, compared with conventional CABG, in a prospective randomized study. High thoracic epidural anesthesia allows early recovery, but improved outcome could not be proved in this patient group.

  8. The pharmacotherapy of the HeartMate II, a continuous flow left ventricular assist device, in patients with advanced heart failure: integration of disease, device, and drug.

    Science.gov (United States)

    Jennings, Douglas L; Chambers, Rachel M; Schillig, Jessica M

    2010-10-01

    Advanced heart failure continues to be a significant cause of morbidity and mortality in the US. Patients with advanced heart failure have a poor prognosis without cardiac transplantation. The use of left ventricular assist devices (LVADs) as destination therapy for these patients is therefore expected to increase in the coming years as technology advances. The HeartMate II, a continuous flow implantable device, is currently the only LVAD that has been approved by the Food and Drug Administration for destination therapy in patients with advanced heart failure. The pharmacotherapy associated with this device is very complex and, therefore, the need for expertly trained clinical pharmacists to care for this expanding patient population will also likely increase. Unfortunately, most pharmacists are unfamiliar with the effect of LVADs on the physiology and pharmacotherapy of a patient's heart failure. The purpose of this article is to give clinical pharmacists an introduction to the most common pharmacotherapeutic issues for patients with LVADs and present practical solutions for managing common drug therapy problems.

  9. Joint Modelling of Longitudinal and Survival Data with Applications in Heart Valve Data

    NARCIS (Netherlands)

    E-R. Andrinopoulou (Eleni-Rosalina)

    2014-01-01

    markdownabstract__Abstract__ The heart is one of the most important organs in the entire human body. Specifically, it is a pump composed of muscle which pumps blood throughout the blood vessels to various parts of the body by repeated rhythmic contractions. The four heart valves determine the

  10. Design and Performance Evaluation of a Solar Assisted Heat Pump Dryer Integrated with Biomass Furnace for Red Chilli

    Directory of Open Access Journals (Sweden)

    M. Yahya

    2016-01-01

    Full Text Available The performance of a solar assisted heat pump dryer integrated with biomass furnace has been designed and evaluated for drying red chillies, and drying kinetics of red chillies were evaluated. The red chillies were dried from 22 kg with moisture content of 4.26 db to moisture content of 0.08 db which needed 11 hours, with the average drying chamber temperature, drying chamber relative humidity, and an air mass flow rate of 70.5°C, 10.1%, and 0.124 kg/s, respectively, while the open sun drying needed 62 hours. Compared to open sun drying, this dryer yielded 82% saving in drying time. The drying rate, the specific moisture extraction rate, and thermal efficiency of the dryer were estimated in average to be about 1.57 kg/h, 0.14 kg/kWh, and 9.03%, respectively. Three mathematical models, the Newton, Henderson-Pabis, and Page models, were fitted to the experimental data on red chillies dried by solar assisted heat pump dryer integrated with biomass furnace and open sun drying. The performance of these models was evaluated by comparing the coefficient of determination (R2, mean bias error (MBE, and root mean-square error (RMSE. The Page model gave the best results for representing drying kinetics of red chillies.

  11. Interagency registry for mechanically assisted circulatory support report on the total artificial heart.

    Science.gov (United States)

    Arabía, Francisco A; Cantor, Ryan S; Koehl, Devin A; Kasirajan, Vigneshwar; Gregoric, Igor; Moriguchi, Jaime D; Esmailian, Fardad; Ramzy, Danny; Chung, Joshua S; Czer, Lawrence S; Kobashigawa, Jon A; Smith, Richard G; Kirklin, James K

    2018-04-26

    We sought to better understand the patient population who receive a temporary total artificial heart (TAH) as bridge to transplant or as bridge to decision by evaluating data from the Interagency Registry for Mechanically Assisted Circulatory Support (INTERMACS) database. We examined data related to survival, adverse events, and competing outcomes from patients who received TAHs between June 2006 and April 2017 and used hazard function analysis to explore risk factors for mortality. Data from 450 patients (87% men; mean age, 50 years) were available in the INTERMACS database. The 2 most common diagnoses were dilated cardiomyopathy (50%) and ischemic cardiomyopathy (20%). Risk factors for right heart failure were present in 82% of patients. Most patients were INTERMACS Profile 1 (43%) or 2 (37%) at implantation. There were 266 patients who eventually underwent transplantation, and 162 died. Overall 3-, 6-, and 12-month actuarial survival rates were 73%, 62%, and 53%, respectively. Risk factors for death included older age (p = 0.001), need for pre-implantation dialysis (p = 0.006), higher creatinine (p = 0.008) and lower albumin (p Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.

  12. Use of Inotropic Agents in Treatment of Systolic Heart Failure

    Directory of Open Access Journals (Sweden)

    Sohaib Tariq

    2015-12-01

    Full Text Available The most common use of inotropes is among hospitalized patients with acute decompensated heart failure, with reduced left ventricular ejection fraction and with signs of end-organ dysfunction in the setting of a low cardiac output. Inotropes can be used in patients with severe systolic heart failure awaiting heart transplant to maintain hemodynamic stability or as a bridge to decision. In cases where patients are unable to be weaned off inotropes, these agents can be used until a definite or escalated supportive therapy is planned, which can include coronary revascularization or mechanical circulatory support (intra-aortic balloon pump, extracorporeal membrane oxygenation, impella, left ventricular assist device, etc.. Use of inotropic drugs is associated with risks and adverse events. This review will discuss the use of the inotropes digoxin, dopamine, dobutamine, norepinephrine, milrinone, levosimendan, and omecamtiv mecarbil. Long-term inotropic therapy should be offered in selected patients. A detailed conversation with the patient and family shall be held, including a discussion on the risks and benefits of use of inotropes. Chronic heart failure patients awaiting heart transplants are candidates for intravenous inotropic support until the donor heart becomes available. This helps to maintain hemodynamic stability and keep the fluid status and pulmonary pressures optimized prior to the surgery. On the other hand, in patients with severe heart failure who are not candidates for advanced heart failure therapies, such as transplant and mechanical circulatory support, inotropic agents can be used for palliative therapy. Inotropes can help reduce frequency of hospitalizations and improve symptoms in these patients.

  13. Use of Inotropic Agents in Treatment of Systolic Heart Failure.

    Science.gov (United States)

    Tariq, Sohaib; Aronow, Wilbert S

    2015-12-04

    The most common use of inotropes is among hospitalized patients with acute decompensated heart failure, with reduced left ventricular ejection fraction and with signs of end-organ dysfunction in the setting of a low cardiac output. Inotropes can be used in patients with severe systolic heart failure awaiting heart transplant to maintain hemodynamic stability or as a bridge to decision. In cases where patients are unable to be weaned off inotropes, these agents can be used until a definite or escalated supportive therapy is planned, which can include coronary revascularization or mechanical circulatory support (intra-aortic balloon pump, extracorporeal membrane oxygenation, impella, left ventricular assist device, etc.). Use of inotropic drugs is associated with risks and adverse events. This review will discuss the use of the inotropes digoxin, dopamine, dobutamine, norepinephrine, milrinone, levosimendan, and omecamtiv mecarbil. Long-term inotropic therapy should be offered in selected patients. A detailed conversation with the patient and family shall be held, including a discussion on the risks and benefits of use of inotropes. Chronic heart failure patients awaiting heart transplants are candidates for intravenous inotropic support until the donor heart becomes available. This helps to maintain hemodynamic stability and keep the fluid status and pulmonary pressures optimized prior to the surgery. On the other hand, in patients with severe heart failure who are not candidates for advanced heart failure therapies, such as transplant and mechanical circulatory support, inotropic agents can be used for palliative therapy. Inotropes can help reduce frequency of hospitalizations and improve symptoms in these patients.

  14. Bridge to recovery in two cases of dilated cardiomyopathy after long-term mechanical circulatory support

    OpenAIRE

    Pacholewicz, Jerzy; Zakliczy?ski, Micha?; Kowalik, Violetta; Nadziakiewicz, Pawe?; Kowalski, Oskar; Kalarus, Zbigniew; Zembala, Marian

    2014-01-01

    Ventricular assist devices (VADs) have become an established therapeutic option for patients with end-stage heart failure. Achieving the potential for recovery of native heart function using VADs is an established form of treatment in a selected group of patients with HF. We report two cases of VAD patients with different types of pump used for mechanical circulatory support, a continuous flow pump (Heart-Ware?) and a pulsatile pump (POLVAD MEV?), which allow regeneration of the native heart....

  15. Design of a Heat Pump Assisted Solar Thermal System

    OpenAIRE

    Krockenberger, Kyle G.; DeGrove, John M.; Hutzel, William J.; Foreman, J. Christopher

    2014-01-01

    This paper outlines the design of an active solar thermal loop system that will be integrated with an air source heat pump hot water heater to provide highly efficient heating of a water/propylene glycol mixture. This system design uses solar energy when available, but reverts to the heat pump at night or during cloudy weather. This new design will be used for hydronic heating in the Applied Energy Laboratory, a teaching laboratory at Purdue University, but it is more generally applicable for...

  16. Investigating the Role of Interventricular Interdependence in Development of Right Heart Dysfunction During LVAD Support: A Patient-Specific Methods-Based Approach

    Directory of Open Access Journals (Sweden)

    Kevin L. Sack

    2018-05-01

    Full Text Available Predictive computation models offer the potential to uncover the mechanisms of treatments whose actions cannot be easily determined by experimental or imaging techniques. This is particularly relevant for investigating left ventricular mechanical assistance, a therapy for end-stage heart failure, which is increasingly used as more than just a bridge-to-transplant therapy. The high incidence of right ventricular failure following left ventricular assistance reflects an undesired consequence of treatment, which has been hypothesized to be related to the mechanical interdependence between the two ventricles. To investigate the implication of this interdependence specifically in the setting of left ventricular assistance device (LVAD support, we introduce a patient-specific finite-element model of dilated chronic heart failure. The model geometry and material parameters were calibrated using patient-specific clinical data, producing a mechanical surrogate of the failing in vivo heart that models its dynamic strain and stress throughout the cardiac cycle. The model of the heart was coupled to lumped-parameter circulatory systems to simulate realistic ventricular loading conditions. Finally, the impact of ventricular assistance was investigated by incorporating a pump with pressure-flow characteristics of an LVAD (HeartMate II™ operating between 8 and 12 k RPM in parallel to the left ventricle. This allowed us to investigate the mechanical impact of acute left ventricular assistance at multiple operating-speeds on right ventricular mechanics and septal wall motion. Our findings show that left ventricular assistance reduces myofiber stress in the left ventricle and, to a lesser extent, right ventricle free wall, while increasing leftward septal-shift with increased operating-speeds. These effects were achieved with secondary, potentially negative effects on the interventricular septum which showed that support from LVADs, introduces unnatural bending

  17. Vapor cycle energy system for implantable circulatory assist devices. Annual progress report Jul 1974--Jun 1975

    International Nuclear Information System (INIS)

    Hagen, K.G.

    1975-06-01

    The report describes the development status of a heart assist system driven by a nuclear fueled, electronically controlled vapor cycle engine termed the tidal regenerator engine (TRE). The TRE pressurization (typically from 5-160 psia) is controlled by a torque motor coupled to a displacer. The electrical power for the sensor, electronic logic and actuator is provided by a thermoelectric module interposed between the engine superheater and boiler. The TRE is direct coupled to an assist blood pump which also acts as a blood-cooled heat exchanger, pressure-volume transformer and sensor for the electronic logic. Engine efficiencies in excess of 14% have been demonstrated. Efficiency values as high as 13% have been achieved to date

  18. Cardiac dysfunction in heart failure: the cardiologist's love affair with time.

    Science.gov (United States)

    Brutsaert, Dirk L

    2006-01-01

    Translating research into clinical practice has been a challenge throughout medical history. From the present review, it should be clear that this is particularly the case for heart failure. As a consequence, public awareness of this disease has been disillusionedly low, despite its prognosis being worse than that of most cancers and many other chronic diseases. We explore how over the past 150 years since Ludwig and Marey concepts about the evaluation of cardiac performance in patients with heart failure have emerged. From this historical-physiologic perspective, we have seen how 3 increasingly reductionist approaches or schools of thought have evolved in parallel, that is, an input-output approach, a hemodynamic pump approach, and a muscular pump approach. Each one of these has provided complementary insights into the pathophysiology of heart failure and has resulted in measurements or derived indices, some of which still being in use in present-day cardiology. From the third, most reductionist muscular pump approach, we have learned that myocardial and ventricular relaxation properties as well as temporal and spatial nonuniformities have been largely overlooked in the 2 other, input-output and hemodynamic pump, approaches. A key message from the present review is that relaxation and nonuniformities can be fully understood only from within the time-space continuum of cardiac pumping. As cyclicity and rhythm are, in some way, the most basic aspects of cardiac function, considerations of time should dominate over any measurement of cardiac performance as a muscular pump. Any measurement that is blind for the arrow of cardiac time should therefore be interpreted with caution. We have seen how the escape from the time domain-as with the calculation of LV ejection fraction-fascinating though as it may be, has undoubtedly served to hinder a rational scientific debate on the recent, so-called systolic-diastolic heart failure controversy. Lacking appreciation of early

  19. Protein interactions at the heart of cardiac chamber formation

    NARCIS (Netherlands)

    Boogerd, Cornelis J. J.; Moorman, Antoon F. M.; Barnett, Phil

    2009-01-01

    The vertebrate heart is a muscular pump that contracts in a rhythmic fashion to propel the blood through the body. During evolution, the morphologically complex four-chambered heart of birds and mammals has evolved from a single-layered tube with peristaltic contractility. The heart of Drosophila,

  20. Prologue: ventricular assist devices and total artificial hearts. A historical perspective.

    Science.gov (United States)

    Frazier, O H

    2003-02-01

    In the 1960s, when LVADs and TAHs were introduced into clinical use, researchers estimated that, with this technology, the problem of heart failure could be solved within 20 years. Unfortunately, the evolution of these devices has taken much longer than anticipated. Nevertheless, significant advances have been achieved in both cardiac assistance and replacement, and today's cardiac surgeons have a wide range of devices from which to choose (Table 4). This progress has largely been due to the support of the NHLBI, especially the Devices and Technology Division headed by John Watson, and of the devoted commitment of the investigators. Because of the long-term commitment required for both basic and clinical research, commercial medical technology companies are unable to assume this burden. Advances in mechanical circulatory support and replacement have benefited numerous patients worldwide who would otherwise have died of heart failure, and devices now exist for use as bridges to recovery, bridges to transplant, and destination therapy. The current challenge is to refine what we have and to apply these technologies to broader patient populations with maximal safety and at a reasonable cost.

  1. Pulse pressure as a haemodynamic variable in systolic heart failure

    NARCIS (Netherlands)

    Petrie, Colin James

    2016-01-01

    In patients with heart failure, the heart is unable to pump enough blood to satisfy the requirements of the body. Explanations for this include heart muscle damage after a heart attack. This could be very recently, or in the past, sometimes dating back many years. In other cases the explanation for

  2. Development of ventricular assist devices in China: present status, opportunities and challenges.

    Science.gov (United States)

    Gu, Kaiyun; Chang, Yu; Gao, Bin; Wan, Feng; Loisance, Daniel; Zeng, Yi

    2014-08-01

    The growing number of heart failure patients and the scarcity of organ donors account for the huge need for the development of mechanical circulatory systems, including ventricular assist devices (VADs) and artificial hearts, in China. Several research programmes on blood pumps have been under way for the last three decades. However, unlike in other countries, the development of VADs has been extremely slow, and no system is currently approved and available for clinical application. There are many reasons for this situation. This article provides an overview of the present development of experimental and clinical research on VADs in China. In addition, the challenges for the clinical development of mechanical circulatory support in China are discussed. © The Author 2014. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  3. Our experience with implantation of VentrAssist left ventricular assist device

    Directory of Open Access Journals (Sweden)

    Hiriyur Shivalingappa Jayanthkumar

    2013-01-01

    Full Text Available Perioperative anaesthetic management of the VentrAssist TM left ventricular assist device (LVAD is a challenge for anaesthesiologists because patients presenting for this operation have long-standing cardiac failure and often have associated hepatic and renal impairment, which may significantly alter the pharmacokinetics of administered drugs and render the patients coagulopathic. The VentrAssist is implanted by midline sternotomy. A brief period of cardiopulmonary bypass (CPB for apical cannulation of left ventricle is needed. The centrifugal pump, which produces non-pulsatile, continuous flow, is positioned in the left sub-diaphragmatic pocket. This LVAD is preload dependent and afterload sensitive. Transoesophageal echocardiography is an essential tool to rule out contraindications and to ensure proper inflow cannula position, and following the implantation of LVAD, to ensure right ventricular (RV function. The anaesthesiologist should be prepared to manage cardiac decompensation and acute desaturation before initiation of CPB, as well as RV failure and severe coagulopathic bleeding after CPB. Three patients had undergone implantation of VentrAssist in our hospital. This pump provides flow of 5 l/min depending on preload, afterload and pump speed. All the patients were discharged after an average of 30 days. There was no perioperative mortality.

  4. System overview of the fully implantable destination therapy--ReinHeart-total artificial heart.

    Science.gov (United States)

    Pelletier, Benedikt; Spiliopoulos, Sotirios; Finocchiaro, Thomas; Graef, Felix; Kuipers, Kristin; Laumen, Marco; Guersoy, Dilek; Steinseifer, Ulrich; Koerfer, Reiner; Tenderich, Gero

    2015-01-01

    Owing to the lack of suitable allografts, the demand for long-term mechanical circulatory support in patients with biventricular end-stage heart failure is rising. Currently available Total Artificial Heart (TAH) systems consist of pump units with only limited durability, percutaneous tubes and bulky external equipment that limit the quality of life. Therefore we are focusing on the development of a fully implantable, highly durable destination therapy total artificial heart. The ReinHeart-TAH system consists of a passively filling pump unit driven by a low-wear linear drive between two artificial ventricles, an implantable control unit and a compliance chamber. The TAH is powered by a transcutaneous energy transmission system. The flow distribution inside the ventricles was analysed by fluid structure interaction simulation and particle image velocimetry measurements. Along with durability tests, the hydrodynamic performance and flow balance capability were evaluated in a mock circulation loop. Animal trials are ongoing. Based on fluid structure interaction simulation and particle image velocimetry, blood stagnation areas have been significantly reduced. In the mock circulation loop the ReinHeart-TAH generated a cardiac output of 5 l/min at an operating frequency of 120 bpm and an aortic pressure of 120/80 mmHg. The highly effective preload sensitivity of the passively filling ventricles allowed the sensorless integration of the Frank Starling mechanism. The ReinHeart-TAH effectively replaced the native heart's function in animals for up to 2 days. In vitro and in vivo testing showed a safe and effective function of the ReinHeart-TAH system. This has the potential to become an alternative to transplantation. However, before a first-in-man implant, chronic animal trials still have to be completed. © The Author 2014. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  5. Study on the System Design of a Solar Assisted Ground Heat Pump System Using Dynamic Simulation

    Directory of Open Access Journals (Sweden)

    Min Gyung Yu

    2016-04-01

    Full Text Available Recently, the use of hybrid systems using multiple heat sources in buildings to ensure a stable energy supply and improve the system performance has gained attention. Among them, a heat pump system using both solar and ground heat was developed and various system configurations have been introduced. However, establishing a suitable design method for the solar-assisted ground heat pump (SAGHP system including a thermal storage tank is complicated and there are few quantitative studies on the detailed system configurations. Therefore, this study developed three SAGHP system design methods considering the design factors focused on the thermal storage tank. Using dynamic energy simulation code (TRNSYS 17, individual performance analysis models were developed and long-term quantitative analysis was carried out to suggest optimum design and operation methods. As a result, it was found that SYSTEM 2 which is a hybrid system with heat storage tank for only a solar system showed the highest average heat source temperature of 14.81 °C, which is about 11 °C higher than minimum temperature in SYSTEM 3. Furthermore, the best coefficient of performance (COP values of heat pump and system were 5.23 and 4.32 in SYSYEM 2, using high and stable solar heat from a thermal storage tank. Moreover, this paper considered five different geographical and climatic locations and the SAGHP system worked efficiently in having high solar radiation and cool climate zones and the system COP was 4.51 in the case of Winnipeg (Canada where the highest heating demand is required.

  6. Heat Pumps With Direct Expansion Solar Collectors

    Science.gov (United States)

    Ito, Sadasuke

    In this paper, the studies of heat pump systems using solar collectors as the evaporators, which have been done so far by reserchers, are reviwed. Usually, a solar collector without any cover is preferable to one with ac over because of the necessity of absorbing heat from the ambient air when the intensity of the solar energy on the collector is not enough. The performance of the collector depends on its area and the intensity of the convective heat transfer on the surface. Fins are fixed on the backside of the collector-surface or on the tube in which the refrigerant flows in order to increase the convective heat transfer. For the purpose of using a heat pump efficiently throughout year, a compressor with variable capacity is applied. The solar assisted heat pump can be used for air conditioning at night during the summer. Only a few groups of people have studied cooling by using solar assisted heat pump systems. In Japan, a kind of system for hot water supply has been produced commercially in a company and a kind of system for air conditioning has been installed in buildings commercially by another company.

  7. Sudden cardiac death and pump failure death prediction in chronic heart failure by combining ECG and clinical markers in an integrated risk model

    Science.gov (United States)

    Orini, Michele; Mincholé, Ana; Monasterio, Violeta; Cygankiewicz, Iwona; Bayés de Luna, Antonio; Martínez, Juan Pablo

    2017-01-01

    Background Sudden cardiac death (SCD) and pump failure death (PFD) are common endpoints in chronic heart failure (CHF) patients, but prevention strategies are different. Currently used tools to specifically predict these endpoints are limited. We developed risk models to specifically assess SCD and PFD risk in CHF by combining ECG markers and clinical variables. Methods The relation of clinical and ECG markers with SCD and PFD risk was assessed in 597 patients enrolled in the MUSIC (MUerte Súbita en Insuficiencia Cardiaca) study. ECG indices included: turbulence slope (TS), reflecting autonomic dysfunction; T-wave alternans (TWA), reflecting ventricular repolarization instability; and T-peak-to-end restitution (ΔαTpe) and T-wave morphology restitution (TMR), both reflecting changes in dispersion of repolarization due to heart rate changes. Standard clinical indices were also included. Results The indices with the greatest SCD prognostic impact were gender, New York Heart Association (NYHA) class, left ventricular ejection fraction, TWA, ΔαTpe and TMR. For PFD, the indices were diabetes, NYHA class, ΔαTpe and TS. Using a model with only clinical variables, the hazard ratios (HRs) for SCD and PFD for patients in the high-risk group (fifth quintile of risk score) with respect to patients in the low-risk group (first and second quintiles of risk score) were both greater than 4. HRs for SCD and PFD increased to 9 and 11 when using a model including only ECG markers, and to 14 and 13, when combining clinical and ECG markers. Conclusion The inclusion of ECG markers capturing complementary pro-arrhythmic and pump failure mechanisms into risk models based only on standard clinical variables substantially improves prediction of SCD and PFD in CHF patients. PMID:29020031

  8. Alterations in cardiac sarcolemmal Ca2+ pump activity during diabetes mellitus

    International Nuclear Information System (INIS)

    Heyliger, C.E.; Prakash, A.; McNeill, J.

    1987-01-01

    Diabetes mellitus is frequently associated with a primary cardiomyopathy. The mechanisms responsible for this heart disease are not clear, but an alteration in myocardial Ca 2+ transport is believed to be involved in its development. Even though sarcolemma plays a crucial role in cellular Ca 2+ transport, little appears to be known about its Ca 2+ transporting capability in the diabetic myocardium. In this regard, the authors have examined the status of the cardiac sarcolemmal Ca 2+ pump during diabetes mellitus. Purified sarcolemmal membranes were isolated from male Wistar diabetic rat hearts 8 wk after streptozotocin injection. Ca 2+ pump activity assessed by measuring its Ca 2+ -stimulated adenosine triphosphatase and Ca 2+ -uptake ability in the absence and presence of calmodulin was significantly depressed in the diabetic myocardium relative to controls. These results did not appear to have been influenced by the minimal sarcoplasmic reticular and mitochondrial contamination of this membrane preparation. Hence, it appears that the sarcolemmal Ca 2+ pump is defective in the diabetic myocardium and may be involved in the altered Ca 2+ transport of the heart during diabetes mellitus

  9. A mitral annulus tracking approach for navigation of off-pump beating heart mitral valve repair.

    Science.gov (United States)

    Li, Feng P; Rajchl, Martin; Moore, John; Peters, Terry M

    2015-01-01

    To develop and validate a real-time mitral valve annulus (MVA) tracking approach based on biplane transesophageal echocardiogram (TEE) data and magnetic tracking systems (MTS) to be used in minimally invasive off-pump beating heart mitral valve repair (MVR). The authors' guidance system consists of three major components: TEE, magnetic tracking system, and an image guidance software platform. TEE provides real-time intraoperative images to show the cardiac motion and intracardiac surgical tools. The magnetic tracking system tracks the TEE probe and the surgical tools. The software platform integrates the TEE image planes and the virtual model of the tools and the MVA model on the screen. The authors' MVA tracking approach, which aims to update the MVA model in near real-time, comprises of three steps: image based gating, predictive reinitialization, and registration based MVA tracking. The image based gating step uses a small patch centered at each MVA point in the TEE images to identify images at optimal cardiac phases for updating the position of the MVA. The predictive reinitialization step uses the position and orientation of the TEE probe provided by the magnetic tracking system to predict the position of the MVA points in the TEE images and uses them for the initialization of the registration component. The registration based MVA tracking step aims to locate the MVA points in the images selected by the image based gating component by performing image based registration. The validation of the MVA tracking approach was performed in a phantom study and a retrospective study on porcine data. In the phantom study, controlled translations were applied to the phantom and the tracked MVA was compared to its "true" position estimated based on a magnetic sensor attached to the phantom. The MVA tracking accuracy was 1.29 ± 0.58 mm when the translation distance is about 1 cm, and increased to 2.85 ± 1.19 mm when the translation distance is about 3 cm. In the study on

  10. 北方地区应用太阳能辅助土壤源热泵效能分析%Efficiency Analysis of Utilizing Solar-assisted Ground Source Heat Pump in the Northern China

    Institute of Scientific and Technical Information of China (English)

    赵金秀

    2015-01-01

    针对北方寒冷地区气候特点,指出了太阳能辅助土壤源热泵系统相对于单独的土壤源热泵或单独的太阳能应用的技术特点。对北方寒冷地区某学校综合楼建筑进行了太阳能辅助土壤源热泵系统设计;并针对该建筑采用太阳能辅助土壤源热泵系统、采用单独的土壤源热泵系统或采用传统采暖空调系统,从三者经济效益、社会效益、环境效益等方面进行了比较,从而体现了太阳能辅助土壤源热泵系统相对于单独的土壤源热泵系统或传统采暖空调系统的高效、经济、节能、环保等优异性。%For the cold climate characteristics of the Northern China, the paper introduces the technical characteristics of solar-assisted ground source heat pump system relative to the separate ground source heat pump system or the separate solar energy application. For a complex building of a university in the cold northern area, the solar -assisted ground source heat pump system is designed, and economic benefits, social benefits, environmental benefits and other aspects about using the solar-assisted ground source heat pump system or using the ground source heat pump system alone or using the traditional air conditioning system are compared, thus reflects the excellent efficiency, cost-saving and energy -saving characteristics, and environmental protection about the solar assisted ground source heat pump system.

  11. Direct expansion solar assisted heat pumps – A clean steady state approach for overall performance analysis

    International Nuclear Information System (INIS)

    Tagliafico, Luca A.; Scarpa, Federico; Valsuani, Federico

    2014-01-01

    Traditional thermal solar panel technologies have limited efficiency and the required economic investments make them noncompetitive in the space heating market. The greatest limit to the diffusion of thermal solar systems is the characteristic temperatures they can reach: the strong connection between the user temperature and the collector temperature makes it possible to achieve high thermal (collector) efficiency only at low, often useless, user temperatures. By using solar collectors as thermal exchange units (evaporators) in a heat pump system (direct expansion solar assisted heat pump, DX-SAHP), the overall efficiency greatly increases with a significative cut of the associated investment in terms of pay-back time. In this study, an approach is proposed to the steady state analysis of DX-SAHP, which is based on the simplified inverse Carnot cycle and on the second law efficiency concept. This method, without the need of calculating the refrigerant fluid properties and the detailed processes occurring in the refrigeration device, allows us to link the main features of the plant to its relevant interactions with the surroundings. The very nature of the proposed method makes the relationship explicit and meaningful among all the involved variables. The paper, after the description of the method, presents an explanatory application of this technique by reviewing various aspects of the performance of a typical DX-SAHP in which the savings on primary energy consumption is regarded as the main feature of the plant and highlighted in a monthly averaged analysis. Results agree to those coming from a common standard steady state thermodynamic analysis. The application to a typical DX-SAHP system demonstrates that a mean saved primary energy of about 50% with respect to standard gas burner can be achieved for the same user needs. Such a result is almost independent from the type of flat plate solar panel used (double or single glazed, or even bare panels) as a result of

  12. Reduced Anxiety and Depression in Patients With Advanced Heart Failure After Left Ventricular Assist Device Implantation.

    Science.gov (United States)

    Yost, Gardner; Bhat, Geetha; Mahoney, Edward; Tatooles, Antone

    Despite the high prevalence of depression and anxiety in patients with advanced heart failure, the effects of left ventricular assist device (LVAD) implantation on these critically important aspects of mental health are not well understood. We sought to assess changes in depression and anxiety following LVAD implantation. The Beck Depression Inventory-II (BDI-II) and Beck Anxiety Inventory (BAI) were administered to 54 patients by a clinical psychologist at a mean of 12 days before LVAD implantation and 251 days after implantation. Patient demographics and clinical data were collected concurrently to psychologic testing. Changes in BDI-II, BAI, and clinical markers of heart failure were assessed using paired t-tests. A p Psychosomatic Medicine. Published by Elsevier Inc. All rights reserved.

  13. Oxidative stress and homocyteine metabolism following coronary artery grafting by on pump and off pump CABG techniques

    International Nuclear Information System (INIS)

    Parvizi, R.; Noubar, R.; Salmasi, H.S.

    2007-01-01

    To compare the effect of on-pump and off-pump CABG on the induction of the oxidative stress and the metabolism of homocysteine, which is involved in the synthesis of glutathione. This retrospective study was performed in Shahid Madani Heart Hospital in Tabriz, Iran in 2004 using a questionnaire. Plasma homocysteine, folate total antioxidant capacity (TAC) and malonedialdehyde (MDA) were determined on blood samples obtained from 40 patients undergoing CABG, preoperatively and at 0,12,48,120 hours and 6 months after surgery. The patients were divided into two matched groups, one off-pump and the other on-pump CABG. A marked reduction of homocysteine, folate and significant elevation of MDA were noticed at 0, 12, 48 hours after operation in the both groups (P<0.05). A negative and marked correlation between homocysteine and TAC but a positive and significant between homocysteinc and MDA were observed (P<0.05 in the both groups). In CABG operation because of oxidative stress and consumption of GSH immediate reduction in the plasma levels of homocyticine occurs in the both techniques. However using off pump CABG induction of oxidative stress and changes in plasma levels of homocysteine are not as high as on- pump CABG. (author)

  14. Stirling engine with hydraulic power output for powering artificial hearts

    International Nuclear Information System (INIS)

    Johnston, R.P.; Noble, J.E.; Emigh, S.G.; White, M.A.; Griffith, W.R.; Perrone, R.E.

    1975-01-01

    The DWDL heart power source combines the high efficiency of Stirling engines with the reliability, efficiency, and flexibility of hydraulic power transfer and control to ensure long system life and physiological effectiveness. Extended life testing has already been achieved with an engine module; animal in-vivo tests with an assist heart have consistently demonstrated required performance by biological synchronization and effective ventricle relief. The present System 5 can reliably meet near-term thousand-hour animal in-vivo test goals as far as the durability and efficacy of the power source are concerned. Carefully planned development of System 6 has produced major reductions in size and required input power. Research engine tests have provided the basis for achieving performance goals and the approach for further improvement is well established. The near term goal is 33 W heat input with 16 W input projected for normal physical activity. The goal of reduction of engine module volume to 0.9 liter has been achieved. Demonstrated reliability of 292 d for the engine and 35 d for the full system, as well as effectiveness of the artificial heart power source in short-term in-vivo tests indicate that life-limiting problems are now blood pump reliability and the machine-animal interface

  15. First experience with the Synergy Micro-Pump in patients in INTERMACS class 1-2 as a bridge to transplantation: pushing the limits?

    Science.gov (United States)

    Sabashnikov, Anton; Popov, Aron-Frederik; Bowles, Christopher T; Weymann, Alexander; Mohite, Prashant N; Wahlers, Thorsten; Wittwer, Thorsten; Zych, Bartlomiej; Garcia-Saez, Diana; Patil, Nikhil P; Fatullayev, Javid; Amrani, Mohamed; Banner, Nicholas R; Seidler, Tim; Unsoeld, Bernhard; Bireta, Christian; Schoendube, Friedrich A; Simon, André R

    2015-02-01

    The Synergy Micro-pump is the smallest implantable left ventricular assist device (LVAD) and provides partial flow support up to 4.25 L/min. It was shown that early intervention with this device can provide substantial benefits to patients with severe heart failure not yet sick enough for a full-support LVAD. However, as it can be inserted via small incisions with no need for sternotomy or cardiopulmonary bypass, it might be beneficial for selected high-risk patients. The aim of this study was to evaluate the efficacy of the Synergy Micro-pump in patients in INTERMACS class 1-2. From February 2012 to August 2013, 13 patients with severe heart failure were supported with the Synergy Pocket Micro-pump. Patients were divided into two groups according to INTERMACS class: the high-risk group (INTERMACS class 1-2) and the low-risk group (INTERMACS class 3-4). There were seven patients in INTERMACS class 1-2 and six in INTERMACS class 3-4. Patient demographics, perioperative characteristics, and postoperative outcomes were compared. There were no statistically significant differences in patient demographics, and mean support time was 108 ± 114 days in the high-risk group and 238 ± 198 days in the low-risk group. Also, there were no significant differences in perioperative characteristics or in the rate of postoperative adverse events. The overall survival was comparable between the two groups (one late death in each group, log-rank P = 0.608). Two patients from the high-risk group were upgraded to a full-support LVAD (P = 0.462) after 65 ± 84.9 days of mean support. One patient from the high-risk group and two patients from the low-risk group were successfully transplanted (P = 0.559). The use of the Synergy Micro-pump in INTERMACS 1-2 patients is feasible and is associated with similar postoperative outcome as in patients in INTERMACS 3-4. Carefully selected patients with severe heart failure could benefit due to the small size of the pump

  16. The man who feels two hearts: the different pathways of interoception.

    Science.gov (United States)

    Couto, Blas; Salles, Alejo; Sedeño, Lucas; Peradejordi, Margarita; Barttfeld, Pablo; Canales-Johnson, Andrés; Dos Santos, Yamil Vidal; Huepe, David; Bekinschtein, Tristán; Sigman, Mariano; Favaloro, Roberto; Manes, Facundo; Ibanez, Agustin

    2014-09-01

    Recent advances in neuroscience have provided new insights into the understanding of heart-brain interaction and communication. Cardiac information to the brain relies on two pathways, terminating in the insular cortex (IC) and anterior cingulate cortex (ACC), along with the somatosensory cortex (S1-S2). Interoception relying on these neuroanatomical pathways has been shown to modulate social cognition. We report the case study of C.S., a patient with an 'external heart' (an extracorporeal left-univentricular cardiac assist device, LVAD). The patient was assessed with neural/behavioral measures of cardiac interoception complemented by neuropsychological and social cognition measures. The patient's performance on the interoception task (heartbeat detection) seemed to be guided by signals from the artificial LVAD, which provides a somatosensory beat rather than by his endogenous heart. Cortical activity (HEP, heartbeat-evoked potential) was found decreased in comparison with normal volunteers, particularly during interoceptive states. The patient accurately performed several cognitive tasks, except for interoception-related social cognition domains (empathy, theory of mind and decision making). This evidence suggests an imbalance in the patient's cardiac interoceptive pathways that enhances sensation driven by the artificial pump over that from the cardiac vagal-IC/ACC pathway. A patient with two hearts, one endogenous and one artificial, presents a unique opportunity to explore models of interoception and heart-brain interaction. © The Author (2013). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  17. Development of diode-pumped medical solid-state lasers

    International Nuclear Information System (INIS)

    Kim, Cheol Jung; Kim, Min Suk

    2000-09-01

    Two thirds of human body consists of water and the absorption of laser by water is an important factor in medical laser treatment. Er medical lasers have been used in the dermatology, ophthalmology and dental treatments due to its highest absorption by water. However, 2.9 um Er laser can not be transmitted through an optical fiber. On the other hand, Tm laser can be transmitted through an fiber and also has very high absorption by water. Therefore, Tm lasers are used in ophthalmology and heart treatment wherein the fiber delivery is very important for the treatment. Until now, mainly lamp-pumped solid-state lasers have been used in medical treatments, but the lamp-pumped solid-state lasers are being replaced with the diode-pumped solid-state lasers because the diode-pumped solid-state lasers are more compact and much easier to maintain. Following this trend, end-pumped Er and side-pumped Tm lasers have been developed and the output power of 1 W was obtained for Er and Tm respectively

  18. Development of diode-pumped medical solid-state lasers

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Cheol Jung; Kim, Min Suk

    2000-09-01

    Two thirds of human body consists of water and the absorption of laser by water is an important factor in medical laser treatment. Er medical lasers have been used in the dermatology, ophthalmology and dental treatments due to its highest absorption by water. However, 2.9 um Er laser can not be transmitted through an optical fiber. On the other hand, Tm laser can be transmitted through an fiber and also has very high absorption by water. Therefore, Tm lasers are used in ophthalmology and heart treatment wherein the fiber delivery is very important for the treatment. Until now, mainly lamp-pumped solid-state lasers have been used in medical treatments, but the lamp-pumped solid-state lasers are being replaced with the diode-pumped solid-state lasers because the diode-pumped solid-state lasers are more compact and much easier to maintain. Following this trend, end-pumped Er and side-pumped Tm lasers have been developed and the output power of 1 W was obtained for Er and Tm respectively.

  19. Machines versus medication for biventricular heart failure: focus on the total artificial heart.

    Science.gov (United States)

    Arabia, Francisco A; Moriguchi, Jaime D

    2014-09-01

    The medical/surgical management of advanced heart failure has evolved rapidly over the last few decades. With better understanding of heart failure pathophysiology, new pharmacological agents have been introduced that have resulted in improvements in survival. For those patients that fail to improve, mechanical circulatory support with left ventricular assist devices and total artificial hearts (TAHs) have served as a beneficial bridge to transplantation. The TAH has continued to play a significant role as a bridge to transplantation in patients with biventricular failure and more selected indications that could not be completely helped with left ventricular assist devices. Improved survival with the TAH has resulted in more patients benefiting from this technology. Improvements will eventually lead to a totally implantable device that will permanently replace the failing human heart.

  20. Early in vivo experience with the pediatric continuous-flow total artificial heart.

    Science.gov (United States)

    Karimov, Jamshid H; Horvath, David J; Byram, Nicole; Sunagawa, Gengo; Kuban, Barry D; Gao, Shengqiang; Dessoffy, Raymond; Fukamachi, Kiyotaka

    2018-03-30

    Heart transplantation in infants and children is an accepted therapy for end-stage heart failure, but donor organ availability is low and always uncertain. Mechanical circulatory support is another standard option, but there is a lack of intracorporeal devices due to size and functional range. The purpose of this study was to evaluate the in vivo performance of our initial prototype of a pediatric continuous-flow total artificial heart (P-CFTAH), comprising a dual pump with one motor and one rotating assembly, supported by a hydrodynamic bearing. In acute studies, the P-CFTAH was implanted in 4 lambs (average weight: 28.7 ± 2.3 kg) via a median sternotomy under cardiopulmonary bypass. Pulmonary and systemic pump performance parameters were recorded. The experiments showed good anatomical fit and easy implantation, with an average aortic cross-clamp time of 98 ± 18 minutes. Baseline hemodynamics were stable in all 4 animals (pump speed: 3.4 ± 0.2 krpm; pump flow: 2.1 ± 0.9 liters/min; power: 3.0 ± 0.8 W; arterial pressure: 68 ± 10 mm Hg; left and right atrial pressures: 6 ± 1 mm Hg, for both). Any differences between left and right atrial pressures were maintained within the intended limit of ±5 mm Hg over a wide range of ratios of systemic-to-pulmonary vascular resistance (0.7 to 12), with and without pump-speed modulation. Pump-speed modulation was successfully performed to create arterial pulsation. This initial P-CFTAH prototype met the proposed requirements for self-regulation, performance, and pulse modulation. Copyright © 2018 International Society for the Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.

  1. Experimental Research of a Water-Source Heat Pump Water Heater System

    OpenAIRE

    Zhongchao Zhao; Yanrui Zhang; Haojun Mi; Yimeng Zhou; Yong Zhang

    2018-01-01

    The heat pump water heater (HPWH), as a portion of the eco-friendly technologies using renewable energy, has been applied for years in developed countries. Air-source heat pump water heaters and solar-assisted heat pump water heaters have been widely applied and have become more and more popular because of their comparatively higher energy efficiency and environmental protection. Besides use of the above resources, the heat pump water heater system can also adequately utilize an available wat...

  2. Myocardial fibrosis and pro-fibrotic markers in end-stage heart failure patients during continuous-flow left ventricular assist device support

    NARCIS (Netherlands)

    Lok, Sjoukje I.; Nous, Fay M. A.; van Kuik, Joyce; van der Weide, Petra; Winkens, Bjorn; Kemperman, Hans; Huisman, Andre; Lahpor, Jaap R; de Weger, Roel A.; de Jonge, Nicolaas

    OBJECTIVES: During support with a left ventricular assist device (LVAD), partial reverse remodelling takes place in which fibrosis plays an important role. In this study, we analysed the histological changes and expression of fibrotic markers in patients with advanced heart failure (HF) during

  3. An original valveless artificial heart providing pulsatile flow tested in mock circulatory loops.

    Science.gov (United States)

    Tozzi, Piergiorgio; Maertens, Audrey; Emery, Jonathan; Joseph, Samuel; Kirsch, Matthias; Avellan, François

    2017-11-24

    We present the test bench results of a valveless total artificial heart that is potentially compatible with the pediatric population. The RollingHeart is a valveless volumetric pump generating pulsatile flow. It consists of a single spherical cavity divided into 4 chambers by 2 rotating disks. The combined rotations of both disks produce changes in the volumes of the 4 cavities (suction and ejection). The blood enters/exits the spherical cavity through 4 openings that are symmetrical to the fixed rotation axis of the first disk.Mock circulatory system: The device pumps a 37% glycerin solution through 2 parallel circuits, simulating the pulmonary and systemic circulations. Flow rates are acquired with a magnetic inductive flowmeter, while pressure sensors collect pressure in the left and right outflow and inflow tracts.In vitro test protocol: The pump is run at speeds ranging from 20 to 180 ejections per minute. The waveform of the pressure generated at the inflow and outflow of the 4 chambers and the flow rate in the systemic circulation are measured. At an ejection rate of 178 min-1, the RollingHeart pumps 5.3 L/min for a systemic maximal pressure gradient of 174 mmHg and a pulmonary maximal pressure gradient of 75 mmHg. The power input was 14 W, corresponding to an efficiency of 21%. The RollingHeart represents a new approach in the domain of total artificial heart. This preliminary study endorses the feasibility of a single valveless device acting as a total artificial heart.

  4. A numerical method to enhance the performance of a cam-type electric motor-driven left ventricular assist device.

    Science.gov (United States)

    Huang, Huan; Yang, Ming; Lu, Cunyue; Xu, Liang; Zhuang, Xiaoqi; Meng, Fan

    2013-10-01

    Pulsatile left ventricular assist devices (LVADs) driven by electric motors have been widely accepted as a treatment of heart failure. Performance enhancement with computer assistance for this kind of LVAD has seldom been reported. In this article, a numerical method is proposed to assist the design of a cam-type pump. The method requires an integrated model of an LVAD system, consisting of a motor, a transmission mechanism, and a cardiovascular circulation. Performance indices, that is, outlet pressure, outlet flow, and pump efficiency, were used to select the best cam profile from six candidates. A prototype pump connected to a mock circulatory loop (MCL) was used to calibrate the friction coefficient of the cam groove and preliminarily evaluate modeling accuracy. In vitro experiments show that the mean outlet pressure and flow can be predicted with high accuracy by the model, and gross geometries of the measurements can also be reproduced. Simulation results demonstrate that as the total peripheral resistance (TPR) is fixed at 1.1 mm Hg.s/mL, the two-cycle 2/3-rise profile is the best. Compared with other profiles, the maximum increases of pressure and flow indices are 75 and 76%, respectively, and the maximum efficiency increase is over 51%. For different TPRs (0.5∼1.5 mm Hg.s/mL) and operation intervals (0.1∼0.4 s) in counterpulsation, the conclusion is also acceptable. © 2013 Wiley Periodicals, Inc. and International Center for Artificial Organs and Transplantation.

  5. [An artificial heart: bridge to transplantation or permanent?].

    Science.gov (United States)

    de Mol, Bas A J M; Lahpor, Jaap

    2013-01-01

    An artificial heart is a continuous-flow pump device with a constant output, which usually supports the left ventricle. Over the past five years, survival rates with an artificial heart have increased dramatically, but with an annual mortality of 10% per year compared with 6% for heart transplantation the artificial heart is mainly a 'bridge to transplantation' or an alternative for those patients who are not suitable for heart transplant, 'destination therapy'. It is anticipated that the number and severity of complications will decrease as a result of technological progress. The artificial heart could then become a long-term treatment option providing a good quality of life and thus become equivalent to a heart transplant.

  6. Selective Heart, Brain and Body Perfusion in Open Aortic Arch Replacement.

    Science.gov (United States)

    Maier, Sven; Kari, Fabian; Rylski, Bartosz; Siepe, Matthias; Benk, Christoph; Beyersdorf, Friedhelm

    2016-09-01

    Open aortic arch replacement is a complex and challenging procedure, especially in post dissection aneurysms and in redo procedures after previous surgery of the ascending aorta or aortic root. We report our experience with the simultaneous selective perfusion of heart, brain, and remaining body to ensure optimal perfusion and to minimize perfusion-related risks during these procedures. We used a specially configured heart-lung machine with a centrifugal pump as arterial pump and an additional roller pump for the selective cerebral perfusion. Initial arterial cannulation is achieved via femoral artery or right axillary artery. After lower body circulatory arrest and selective antegrade cerebral perfusion for the distal arch anastomosis, we started selective lower body perfusion simultaneously to the selective antegrade cerebral perfusion and heart perfusion. Eighteen patients were successfully treated with this perfusion strategy from October 2012 to November 2015. No complications related to the heart-lung machine and the cannulation occurred during the procedures. Mean cardiopulmonary bypass time was 239 ± 33 minutes, the simultaneous selective perfusion of brain, heart, and remaining body lasted 55 ± 23 minutes. One patient suffered temporary neurological deficit that resolved completely during intensive care unit stay. No patient experienced a permanent neurological deficit or end-organ dysfunction. These high-risk procedures require a concept with a special setup of the heart-lung machine. Our perfusion strategy for aortic arch replacement ensures a selective perfusion of heart, brain, and lower body during this complex procedure and we observed excellent outcomes in this small series. This perfusion strategy is also applicable for redo procedures.

  7. Development of a direct expansion solar assisted heat pump for hot water supply

    International Nuclear Information System (INIS)

    Abdesselam Hamloui; Ong, K.S.; Than Cheok Fah; Masjuki Hassan

    2000-01-01

    Experimental investigations were conducted on the direct expansion solar assisted Heat Pump (DESAHP). Refrigerant R-22 was expanded in the solar collector which also acted as the evaporator in a conventional vapor compression refrigerating machine. The experiments were conducted under conditions of high and low solar radiation, with evaporator completely shaded from the sun, and at night. System thermal performance was determined by measuring refrigerant flow rate, temperature and pressure at numerous points in the system. The results showed that 227-l of water could be heated from 3O degree to 55 degree C in about 105 minutes. Higher water temperatures were obtained during hot sunny days. The coefficient of performance of heating, COP h , ranged from 11 to 4.7, depending upon operating conditions. The total saving of electric energy during hot sunny days was about 460 %. It means that for 1 kWh of electrical input to the system, we achieve 4.6 kWh. This percentage decreases as the evaporator temperature decreases and is a function of solar energy input. (Author)

  8. Multivariate Autoregressive Model Based Heart Motion Prediction Approach for Beating Heart Surgery

    Directory of Open Access Journals (Sweden)

    Fan Liang

    2013-02-01

    Full Text Available A robotic tool can enable a surgeon to conduct off-pump coronary artery graft bypass surgery on a beating heart. The robotic tool actively alleviates the relative motion between the point of interest (POI on the heart surface and the surgical tool and allows the surgeon to operate as if the heart were stationary. Since the beating heart's motion is relatively high-band, with nonlinear and nonstationary characteristics, it is difficult to follow. Thus, precise beating heart motion prediction is necessary for the tracking control procedure during the surgery. In the research presented here, we first observe that Electrocardiography (ECG signal contains the causal phase information on heart motion and non-stationary heart rate dynamic variations. Then, we investigate the relationship between ECG signal and beating heart motion using Granger Causality Analysis, which describes the feasibility of the improved prediction of heart motion. Next, we propose a nonlinear time-varying multivariate vector autoregressive (MVAR model based adaptive prediction method. In this model, the significant correlation between ECG and heart motion enables the improvement of the prediction of sharp changes in heart motion and the approximation of the motion with sufficient detail. Dual Kalman Filters (DKF estimate the states and parameters of the model, respectively. Last, we evaluate the proposed algorithm through comparative experiments using the two sets of collected vivo data.

  9. Experimental Assessment of the Hydraulics of a Miniature Axial-Flow Left Ventricular Assist Device

    Science.gov (United States)

    Smith, P. Alex; Cohn, William; Metcalfe, Ralph

    2017-11-01

    A minimally invasive partial-support left ventricular assist device (LVAD) has been proposed with a flow path from the left atrium to the arterial system to reduce left ventricular stroke work. In LVAD design, peak and average efficiency must be balanced over the operating range to reduce blood trauma. Axial flow pumps have many geometric parameters. Until recently, testing all these parameters was impractical, but modern 3D printing technology enables multi-parameter studies. Following theoretical design, experimental hydraulic evaluation in steady state conditions examines pressure, flow, pressure-flow gradient, efficiency, torque, and axial force as output parameters. Preliminary results suggest that impeller blades and stator vanes with higher inlet angles than recommended by mean line theory (MLT) produce flatter gradients and broader efficiency curves, increasing compatibility with heart physiology. These blades also produce less axial force, which reduces bearing load. However, they require slightly higher torque, which is more demanding of the motor. MLT is a low order, empirical model developed on large pumps. It does not account for the significant viscous losses in small pumps like LVADs. This emphasizes the importance of experimental testing for hydraulic design. Roderick D MacDonald Research Fund.

  10. Cardiac septation: a late contribution of the embryonic primary myocardium to heart morphogenesis

    NARCIS (Netherlands)

    Lamers, Wouter H.; Moorman, Antoon F. M.

    2002-01-01

    Heart morphogenesis comprises 2 major consecutive steps, viz. chamber formation followed by septation. Septation is the remodeling of the heart from a single-channel peristaltic pump to a dual-channel, synchronously contracting device with 1-way valves. In the human heart, septation occurs between 4

  11. FEATURES OF LONG-TERM MECHANICAL CIRCULATORY SUPPORT WITH CONTINUOUS-FLOW PUMP

    Directory of Open Access Journals (Sweden)

    G. P. Itkin

    2012-01-01

    Full Text Available In a review of the comparative analysis of methods and tools for long-term mechanical circulatory support with continuous flow and pulsatile flow implantable pumps. Particular attention is paid to the choice of the optimal modes of the operation of pumps based on the physical principles of the interaction between a the steady flow of blood to the pulsatile mechanics of the heart chambers. 

  12. Hybrid Continuous-Flow Total Artificial Heart.

    Science.gov (United States)

    Fox, Carson; Chopski, Steven; Murad, Nohra; Allaire, Paul; Mentzer, Robert; Rossano, Joseph; Arabia, Francisco; Throckmorton, Amy

    2018-05-01

    Clinical studies using total artificial hearts (TAHs) have demonstrated that pediatric and adult patients derive quality-of-life benefits from this form of therapy. Two clinically-approved TAHs and other pumps under development, however, have design challenges and limitations, including thromboembolic events, neurologic impairment, infection risk due to large size and percutaneous drivelines, and lack of ambulation, to name a few. To address these limitations, we are developing a hybrid-design, continuous-flow, implantable or extracorporeal, magnetically-levitated TAH for pediatric and adult patients with heart failure. This TAH has only two moving parts: an axial impeller for the pulmonary circulation and a centrifugal impeller for the systemic circulation. This device will utilize the latest generation of magnetic bearing technology. Initial geometries were established using pump design equations, and computational modeling provided insight into pump performance. The designs were the basis for prototype manufacturing and hydraulic testing. The study results demonstrate that the TAH is capable of delivering target blood flow rates of 1-6.5 L/min with pressure rises of 1-92 mm Hg for the pulmonary circulation and 24-150 mm Hg for the systemic circulation at 1500-10 000 rpm. This initial design of the TAH was successful and serves as the foundation to continue its development as a novel, more compact, nonthrombogenic, and effective therapeutic alternative for infants, children, adolescents, and adults with heart failure. © 2018 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  13. The effect of garden designs on mood and heart output in older adults residing in an assisted living facility.

    Science.gov (United States)

    Goto, Seiko; Park, Bum-Jin; Tsunetsugu, Yuko; Herrup, Karl; Miyazaki, Yoshifumi

    2013-01-01

    The objective of this study is to trace short-term changes in mood and heart function in elderly individuals in response to exposure to different landscaped spaces. Nineteen elderly but cognitively intact residents of an assisted living facility participated in the study. They were exposed to three landscaped spaces: a Japanese style garden, an herb garden, and a simple landscaped area planted with a single tree. To assess the effect of different landscaped spaces on older adults, individuals were monitored for mood and cardiac function in response to short exposures to spaces. Mood state was assessed using Profile of Mood States (POMS) before and after viewing the spaces. Cardiac output was assessed using a portable electrocardiograph monitor before and during the viewing. We found that the structured gardens evoked greater responses in all outcome measures. Scores on the POMS improved after observation of the two organized gardens compared to responses to the simple landscaped space with a single tree. During the observation period, heart rate was significantly lower in the Japanese garden than in the other environments, and sympathetic function was significantly lower as well. We conclude that exposure to organized gardens can affect both the mood and cardiac physiology of elderly individuals. Our data further suggest that these effects can differ depending on the types of landscape to which an individual is exposed. Elderly, Japanese garden, herb garden, heart rate, mood, healing environmentPreferred Citation: Goto, S., Park, B-J., Tsunetsugu, Y., Herrup, K., & Miyazaki, Y. (2013). The effect of garden designs on mood and heart output in older adults residing in an assisted living facility. Health Environments Research & Design Journal 6(2), pp 27-42.

  14. Protein kinase-dependent oxidative regulation of the cardiac Na+-K+ pump: evidence from in vivo and in vitro modulation of cell signalling.

    Science.gov (United States)

    Galougahi, Keyvan Karimi; Liu, Chia-Chi; Garcia, Alvaro; Fry, Natasha A S; Hamilton, Elisha J; Rasmussen, Helge H; Figtree, Gemma A

    2013-06-15

    The widely reported stimulation of the cardiac Na(+)-K(+) pump by protein kinase A (PKA) should oppose other effects of PKA to increase contractility of the normal heart. It should also reduce harmful raised myocyte Na(+) levels in heart failure, yet blockade of the β1 adrenergic receptor (AR), coupled to PKA signalling, is beneficial. We treated rabbits with the β1 AR antagonist metoprolol to modulate PKA activity and studied cardiac myocytes ex vivo. Metoprolol increased electrogenic pump current (Ip) in voltage clamped myocytes and reduced glutathionylation of the β1 pump subunit, an oxidative modification causally related to pump inhibition. Activation of adenylyl cyclase with forskolin to enhance cAMP synthesis or inclusion of the catalytic subunit of PKA in patch pipette solutions abolished the increase in Ip in voltage clamped myocytes induced by treatment with metoprolol, supporting cAMP/PKA-mediated pump inhibition. Metoprolol reduced myocardial PKA and protein kinase C (PKC) activities, reduced coimmunoprecipitation of cytosolic p47(phox) and membranous p22(phox) NADPH oxidase subunits and reduced myocardial O2(•-)-sensitive dihydroethidium fluorescence. Treatment also enhanced coimmunoprecipitation of the β1 pump subunit with glutaredoxin 1 that catalyses de-glutathionylation. Since angiotensin II induces PKC-dependent activation of NADPH oxidase, we examined the effects of angiotensin-converting enzyme inhibition with captopril. This treatment had no effect on PKA activity but reduced the activity of PKC, reduced β1 subunit glutathionylation and increased Ip. The PKA-induced Na(+)-K(+) pump inhibition we report should act with other mechanisms that enhance contractility of the normal heart but accentuate the harmful effects of raised cytosolic Na(+) in the failing heart. This scheme is consistent with the efficacy of β1 AR blockade in the treatment of heart failure.

  15. The Heartmate III: design and in vivo studies of a maglev centrifugal left ventricular assist device.

    Science.gov (United States)

    Loree, H M; Bourque, K; Gernes, D B; Richardson, J S; Poirier, V L; Barletta, N; Fleischli, A; Foiera, G; Gempp, T M; Schoeb, R; Litwak, K N; Akimoto, T; Kameneva, M; Watach, M J; Litwak, P

    2001-05-01

    A compact implantable centrifugal left ventricular assist device (LVAD) (HeartMate III) featuring a magnetically levitated impeller is under development. The goal of our ongoing work is to demonstrate feasibility, low hemolysis, and low thrombogenicity of the titanium pump in chronic bovine in vivo studies. The LVAD is based on so-called bearingless motor technology and combines pump rotor, drive, and magnetic bearing functions in a single unit. The impeller is rotated (theta z) and levitated with both active (X, Y) and passive (Z, theta x, theta y) suspension. Six prototype systems have been built featuring an implantable titanium pump (69 mm diameter, 30 mm height) with textured blood contacting surfaces and extracorporeal electronics. The pumps were implanted in 9 calves (< or = 100 kg at implant) that were anticoagulated with Coumadin (2.5 < or = INR < or = 4.0) throughout the studies. Six studies were electively terminated (at 27-61 days), 1 study was terminated after the development of severe pneumonia and lung atelectasis (at 27 days) another study was terminated after cardiac arrest (at 2 days) while a final study is ongoing (at approximately 100 days). Mean pump flows ranged from 2 to 7 L/min, except for brief periods of exercise at 6 to 9 L/min. Plasma free hemoglobin ranged from 4 to 10 mg/dl. All measured biochemical indicators of end organ function remained within normal range. The pumps have met performance requirements in all 9 implants with acceptable hemolysis and no mechanical failures.

  16. Performance of Noninvasive Assessment in the Diagnosis of Right Heart Failure After Left Ventricular Assist Device.

    Science.gov (United States)

    Joly, Joanna M; El-Dabh, Ashraf; Marshell, Ramey; Chatterjee, Arka; Smith, Michelle G; Tresler, Margaret; Kirklin, James K; Acharya, Deepak; Rajapreyar, Indranee N; Tallaj, José A; Pamboukian, Salpy V

    2018-06-01

    Right heart failure (RHF) after left ventricular assist device (LVAD) is associated with poor outcomes. Interagency Registry for Mechanically Assisted Circulatory Support (INTERMACS) defines RHF as elevated right atrial pressure (RAP) plus venous congestion. The purpose of this study was to examine the diagnostic performance of the noninvasive INTERMACS criteria using RAP as the gold standard. We analyzed 108 patients with LVAD who underwent 341 right heart catheterizations (RHC) between January 1, 2006, and December 31, 2013. Physical exam, echocardiography, and laboratory data at the time of RHC were collected. Conventional two-by-two tables were used and missing data were excluded. The noninvasive INTERMACS definition of RHF is 32% sensitive (95% CI, 0.21-0.44) and 97% specific (95% CI, 0.95-0.99) for identifying elevated RAP. Clinical assessment failed to identify two-thirds of LVAD patients with RAP > 16 mm Hg. More than half of patients with elevated RAP did not have venous congestion, which may represent a physiologic opportunity to mitigate the progression of disease before end-organ damage occurs. One-quarter of patients who met the noninvasive definition of RHF did not actually have elevated RAP, potentially exposing patients to unnecessary therapies. In practice, if any component of the INTERMACS definition is present or equivocal, our data suggest RHC is warranted to establish the diagnosis.

  17. Determination of Sliced Pineapple Drying Characteristics in A Closed Loop Heat Pump Assisted Drying System

    Directory of Open Access Journals (Sweden)

    Cüneyt Tunçkal

    2018-02-01

    Full Text Available Pineapple (Ananascomosus slices were dried with the aid of a heat pump assisted dryer (HPD. During this process, air velocity was kept constant at 1m/s, while air temperatures were changed as 37°C, 40°C and 43°C. The drying air was also circulated by using an axial fan in a closed cycle and fresh air was not allowed into the system. The drying rate and drying time were significantly influenced by drying temperature. It was observed that drying temperatures had significant effects on the drying rate and drying time. During the conduct of the study, pineapple slices were dried at 37, 40 and 43°C for 465, 360 and 290 min, respectively. The specific moisture extraction ratio (SMER values were observed to change as drying temperatures were changed. The drying rate curves indicated that the whole drying process occurred in the falling rate period. Seven well-known thin-layer models (Lewis, Henderson &Pabis, Logarithmic, Page, Midilli & Kucuk, Weibull and Aghbashlo et al. were employed to make a prediction about drying kinetics through nonlinear regression analysis. The Midilli & Kucuk and Aghbashlo et al. models were consistent with the experimental data. Fick’s second law of diffusion was used to determine the moisture diffusivity coefficient ranging from 3.78×10–9 to 6.57×10-9  m2/s the each of the above mentioned temperatures. The dependence of effective diffusivity coefficient on temperature was defined by means a fan Arrhenius type equation. The activation energy of moisture diffusion was found to be 75.24kJ/mol.   Article History: Received: July 18th 2017; Received: October 27th 2017; Accepted: January 16th 2018; Available online How to Cite This Article: Tunçkal, C., Coşkun, S., Doymaz, I. and Ergun, E. (2018 Determination of Sliced Pineapple Drying Characteristics in A Closed Loop Heat Pump Assisted Drying System. International Journal of Renewable Energy Development, 7(1, 35-41. https://doi.org/10.14710/ijred.7.1.35-41

  18. Bleeding with the artificial heart: Gastrointestinal hemorrhage in CF-LVAD patients.

    Science.gov (United States)

    Gurvits, Grigoriy E; Fradkov, Elena

    2017-06-14

    Continuous-flow left ventricular assist devices (CF-LVADs) have significantly improved outcomes for patients with end-stage heart failure when used as a bridge to cardiac transplantation or, more recently, as destination therapy. However, its implantations carries a risk of complications including infection, device malfunction, arrhythmias, right ventricular failure, thromboembolic disease, postoperative and nonsurgical bleeding. A significant number of left ventricular assist devices (LVAD) recipients may experience recurrent gastrointestinal hemorrhage, mainly due to combination of antiplatelet and vitamin K antagonist therapy, activation of fibrinolytic pathway, acquired von Willebrand factor deficiency, and tendency to develop small intestinal angiodysplasias due to increased rotary speed of the pump. Gastrointestinal bleeding in LVAD patients remains a source of increased morbidity including the need for blood transfusions, extended hospital stays, multiple readmissions, and overall mortality. Management of gastrointestinal bleeding in LVAD patients involves multidisciplinary approach in stabilizing the patients, addressing risk factors and performing structured endoluminal evaluation with focus on upper gastrointestinal tract including jejunum to find and eradicate culprit lesion. Medical and procedural intervention is largely successful and universal bleeding cessation occurs in transplanted patients.

  19. Gyro-effect stabilizes unstable permanent maglev centrifugal pump.

    Science.gov (United States)

    Qian, Kun-Xi

    2007-03-01

    According to Earnshaw's Theorem (1839), the passive maglev cannot achieve stable equilibrium and thus an extra coil is needed to make the rotor electrically levitated in a heart pump. The author had developed a permanent maglev centrifugal pump utilizing only passive magnetic bearings, to keep the advantages but to avoid the disadvantages of the electric maglev pumps. The equilibrium stability was achieved by use of so-called "gyro-effect": a rotating body with certain high speed can maintain its rotation stably. This pump consisted of a rotor (driven magnets and an impeller), and a stator with motor coil and pump housing. Two passive magnetic bearings between rotor and stator were devised to counteract the attractive force between the motor coil iron core and the rotor driven magnets. Bench testing with saline demonstrated a levitated rotor under preconditions of higher than 3,250 rpm rotation and more than 1 l/min pumping flow. Rotor levitation was demonstrated by 4 Hall sensors on the stator, with evidence of reduced maximal eccentric distance from 0.15 mm to 0.07 mm. The maximal rotor vibration amplitude was 0.06 mm in a gap of 0.15 mm between rotor and stator. It concluded that Gyro-effect can help passive maglev bearings to achieve stabilization of permanent maglev pump; and that high flow rate indicates good hydraulic property of the pump, which helps also the stability of passive maglev pump.

  20. Vapor cycle energy system for implantable circulatory assist devices. Final summary May--Oct 1976

    International Nuclear Information System (INIS)

    Watelet, R.P.; Ruggles, A.E.; Hagen, K.G.

    1977-03-01

    The report describes the development status of a heart assist system driven by a nuclear-fueled, electronically controlled vapor cycle engine termed the tidal regenerator engine (TRE). The TRE pressurization is controlled by a torque motor coupled to a displacer. The electrical power for the sensor, electronic logic and actuator is provided by thermoelectric modules interposed between the engine superheater and boiler. The TRE is direct-coupled to an assist blood pump which also acts as a blood-cooled heat exchanger, pressure-volume trasformer and sensor for the electronic logic. Engine cycle efficiency in excess of 14% has been demonstrated routinely. Overall system efficiency on 33 watts of over 9% has been demonstrated (implied 13% engine cycle efficiency). A binary version of this engine in the annular configuration is now being tested. The preliminary tests demonstrated 10% cycle efficiency on the first buildup which ran well and started easily

  1. Aspects of Myocardial Infarction-induced Remodeling relevant to the Development of Heart Failure

    NARCIS (Netherlands)

    E.A.J. Kalkman (Ed)

    1997-01-01

    textabstractHeart failure can be defined as the pathophysiological state in which the pump function of the heart is insufficient to meet the metabolic demands of the body (Guyton, 1986; Ruggie, 1986). Thus, heart failure is a pathophysiological condition (rather than a disease per se), and can occur

  2. Usefulness of Tricuspid Annular Diameter to Predict Late Right Sided Heart Failure in Patients With Left Ventricular Assist Device.

    Science.gov (United States)

    Nakanishi, Koki; Homma, Shunichi; Han, Jiho; Takayama, Hiroo; Colombo, Paolo C; Yuzefpolskaya, Melana; Garan, Arthur R; Farr, Maryjane A; Kurlansky, Paul; Di Tullio, Marco R; Naka, Yoshifumi; Takeda, Koji

    2018-07-01

    Although late-onset right-sided heart failure is recognized as a clinical problem in the treatment of patients with left ventricular assist devices (LVADs), the mechanism and predictors are unknown. Tricuspid valve (TV) deformation leads to the restriction of the leaflet motion and decreased coaptation, resulting in a functional tricuspid regurgitation that may act as a surrogate marker of late right-sided heart failure. This study aimed to investigate the association of preoperative TV deformation (annulus dilatation and leaflet tethering) with late right-sided heart failure development after continuous-flow LVAD implantation. The study cohort consisted of 274 patients who underwent 2-dimensional echocardiography before LVAD implantation. TV annulus diameter and tethering distance were measured in an apical 4-chamber view. Late right-sided heart failure was defined as right-sided heart failure requiring readmission and medical and/or surgical treatment after initial LVAD implantation. During a mean follow-up of 25.1 ± 19.0 months after LVAD implantation, late right-sided heart failure occurred in 33 patients (12.0%). Multivariate Cox proportional hazard analysis demonstrated that TV annulus diameter (hazard ratio 1.221 per 1 mm, p right-sided heart failure development, whereas leaflet tethering distance was not. The best cut-off value of the TV annular diameter was 41 mm (area under the curve 0.787). Kaplan-Meier analysis showed that patients with dilated TV annulus (TV annular diameter ≥41 mm) exhibited a significantly higher late right-sided heart failure occurrence than those without TV annular enlargement (log-rank p right-sided heart failure after LVAD implantation. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Protein kinase-dependent oxidative regulation of the cardiac Na+–K+ pump: evidence from in vivo and in vitro modulation of cell signalling

    Science.gov (United States)

    Galougahi, Keyvan Karimi; Liu, Chia-Chi; Garcia, Alvaro; Fry, Natasha A S; Hamilton, Elisha J; Rasmussen, Helge H; Figtree, Gemma A

    2013-01-01

    The widely reported stimulation of the cardiac Na+–K+ pump by protein kinase A (PKA) should oppose other effects of PKA to increase contractility of the normal heart. It should also reduce harmful raised myocyte Na+ levels in heart failure, yet blockade of the β1 adrenergic receptor (AR), coupled to PKA signalling, is beneficial. We treated rabbits with the β1 AR antagonist metoprolol to modulate PKA activity and studied cardiac myocytes ex vivo. Metoprolol increased electrogenic pump current (Ip) in voltage clamped myocytes and reduced glutathionylation of the β1 pump subunit, an oxidative modification causally related to pump inhibition. Activation of adenylyl cyclase with forskolin to enhance cAMP synthesis or inclusion of the catalytic subunit of PKA in patch pipette solutions abolished the increase in Ip in voltage clamped myocytes induced by treatment with metoprolol, supporting cAMP/PKA-mediated pump inhibition. Metoprolol reduced myocardial PKA and protein kinase C (PKC) activities, reduced coimmunoprecipitation of cytosolic p47phox and membranous p22phox NADPH oxidase subunits and reduced myocardial O2•−-sensitive dihydroethidium fluorescence. Treatment also enhanced coimmunoprecipitation of the β1 pump subunit with glutaredoxin 1 that catalyses de-glutathionylation. Since angiotensin II induces PKC-dependent activation of NADPH oxidase, we examined the effects of angiotensin-converting enzyme inhibition with captopril. This treatment had no effect on PKA activity but reduced the activity of PKC, reduced β1 subunit glutathionylation and increased Ip. The PKA-induced Na+–K+ pump inhibition we report should act with other mechanisms that enhance contractility of the normal heart but accentuate the harmful effects of raised cytosolic Na+ in the failing heart. This scheme is consistent with the efficacy of β1 AR blockade in the treatment of heart failure. PMID:23587884

  4. 2013 update on congenital heart disease, clinical cardiology, heart failure, and heart transplant.

    Science.gov (United States)

    Subirana, M Teresa; Barón-Esquivias, Gonzalo; Manito, Nicolás; Oliver, José M; Ripoll, Tomás; Lambert, Jose Luis; Zunzunegui, José L; Bover, Ramon; García-Pinilla, José Manuel

    2014-03-01

    This article presents the most relevant developments in 2013 in 3 key areas of cardiology: congenital heart disease, clinical cardiology, and heart failure and transplant. Within the area of congenital heart disease, we reviewed contributions related to sudden death in adult congenital heart disease, the importance of specific echocardiographic parameters in assessing the systemic right ventricle, problems in patients with repaired tetralogy of Fallot and indication for pulmonary valve replacement, and confirmation of the role of specific factors in the selection of candidates for Fontan surgery. The most recent publications in clinical cardiology include a study by a European working group on correct diagnostic work-up in cardiomyopathies, studies on the cost-effectiveness of percutaneous aortic valve implantation, a consensus document on the management of type B aortic dissection, and guidelines on aortic valve and ascending aortic disease. The most noteworthy developments in heart failure and transplantation include new American guidelines on heart failure, therapeutic advances in acute heart failure (serelaxin), the management of comorbidities such as iron deficiency, risk assessment using new biomarkers, and advances in ventricular assist devices. Copyright © 2013 Sociedad Española de Cardiología. Published by Elsevier Espana. All rights reserved.

  5. RELATION OF FETAL BLOOD-GASES AND DATA FROM COMPUTER-ASSISTED ANALYSIS OF FETAL HEART-RATE PATTERNS IN SMALL FOR GESTATION FETUSES

    NARCIS (Netherlands)

    RIBBERT, LSM; SNIJDERS, RJM; NICOLAIDES, KH; VISSER, GHA

    Fetal heart rate (FHR) monitoring and computer-assisted analysis were performed immediately before cordocentesis in 25 severely small-for-gestational age fetuses. There were significant associations between FHR variation and both umbilical vein blood Po2 (r = 0.66) and pH (r = 0.69). However, the

  6. Windpump commercialisation: assistance to existing partners

    International Nuclear Information System (INIS)

    2000-09-01

    This project provided support and assistance to small and medium-sized enterprise collaborators in developing countries to progress the manufacture of a new wind pump design from a prototype to a commercially viable unit, through testing and assessment and market development issues. The project has:-produced a complete wind pump design package, including additional components and an investigation into alternative pump suppliers; undertaken local market study/assessments; produced a preliminary publicity brochure; gained operational experience in partner countries. (author)

  7. Heart Failure

    Science.gov (United States)

    ... Other diseases. Chronic diseases — such as diabetes, HIV, hyperthyroidism, hypothyroidism, or a buildup of iron (hemochromatosis) or ... transplantation or support with a ventricular assist device. Prevention The key to preventing heart failure is to ...

  8. 加热原油的太阳能-污水源热泵系统的开发%Development on solar-assisted sewage source heat pump system for crude oil heating

    Institute of Scientific and Technical Information of China (English)

    钱剑峰; 王强

    2017-01-01

    In this paper, the situations of crude oil heating and oily water utilization were analyzed.The development situation of solar heat pump at home and abroad was introduced.It was put forward that the solar-assisted sewage source heat pump system could be used to reuse oily water for crude oil heating.The composition of the system and five kinds of operation mode were analyzed.The mathematical model was also established.It provided some references for the application of solar-assisted sewage source heat pump system.%分析了油田用热现状和含油污水利用现状,详述了太阳能热泵在国内外的发展现状.在此基础上,提出应用太阳能-污水源热泵系统回收含油污水余热来加热原油,进而分析了该系统的组成及五种运行模式,建立了系统的数学模型,为太阳能-污水源热泵系统的应用提供参考.

  9. Heart bypass surgery - minimally invasive

    Science.gov (United States)

    ... MIDCAB; Robot-assisted coronary artery bypass; RACAB; Keyhole heart surgery; CAD - MIDCAB; Coronary artery disease - MIDCAB ... To perform this surgery: The heart surgeon will make a 3- to 5-inch (8 to 13 centimeters) surgical cut in the left part of your chest ...

  10. Demikhov's "Mechanical Heart": The Circumstances Surrounding Creation of the World's First Implantable Total Artificial Heart in 1937.

    Science.gov (United States)

    Glyantsev, Sergey P; Tchantchaleishvili, Vakhtang; Bockeria, Leo A

    2016-01-01

    The world's first implantable total artificial heart was designed by Vladimir Demikhov as a fourth year biology student in Voronezh, Soviet Union, in 1937. As a prototype of his device, Demikhov must have used an apparatus for extracorporeal blood circulation invented by Sergei Bryukhonenko of Moscow. The device was the size of a dog's native heart and consisted of two diaphragm pumps brought into motion by an electric motor. A dog with an implanted device lived for 2.5 hours. In addition to having the prototype, the preconditions for Demikhov's artificial heart creation were his manual dexterity, expertise in animal physiology, and his mechanistic worldview.

  11. Optical-response properties in an atom-assisted optomechanical system with a mechanical pump

    Science.gov (United States)

    Sun, Xue-Jian; Chen, Hao; Liu, Wen-Xiao; Li, Hong-Rong

    2017-05-01

    We investigate the optical-response properties of a coherent-mechanical pumped optomechanical system (OMS) coupled to a Λ-type three-level atomic ensemble. Due to the optomechanical and the cavity-atom couplings, the optomechanically induced transparency (OMIT) and electromagnetically induced transparency (EIT) phenomena could both be observed from our proposal. In the presence of a coherent mechanical pump, we show that the OMIT behavior of the probe field exhibits a phase-dependent effect, leading to the switch from OMIT to optomechanically induced absorption or amplification, while the feature of EIT remains unchanged. The distinctly different effects of the mechanical pump on OMIT and EIT behavior assure us that the absorption (amplification) and transparency of the output probe field can be simultaneously observed. Moreover, a tunable switch from slow to fast light can also be realized by tuning the phase and amplitude of the mechanical pump. In particular, the presence of the atomic ensemble can further adjust the group delay, providing additional flexibility for achieving the tunable switch.

  12. Sodium pumping: pump problems

    International Nuclear Information System (INIS)

    Guer, M.; Guiton, P.

    Information on sodium pumps for LMFBR type reactors is presented concerning ring pump design, pool reactor pump design, secondary pumps, sodium bearings, swivel joints of the oscillating annulus, and thermal shock loads

  13. Oxidative regulation of the Na(+)-K(+) pump in the cardiovascular system.

    Science.gov (United States)

    Figtree, Gemma A; Keyvan Karimi, Galougahi; Liu, Chia-Chi; Rasmussen, Helge H

    2012-12-15

    The Na(+)-K(+) pump is an essential heterodimeric membrane protein, which maintains electrochemical gradients for Na(+) and K(+) across cell membranes in all tissues. We have identified glutathionylation, a reversible posttranslational redox modification, of the Na(+)-K(+) pump's β1 subunit as a regulatory mechanism of pump activity. Oxidative inhibition of the Na(+)-K(+) pump by angiotensin II- and β1-adrenergic receptor-coupled signaling via NADPH oxidase activation demonstrates the relevance of this regulatory mechanism in cardiovascular physiology and pathophysiology. This has implications for dysregulation of intracellular Na(+) and Ca(2+) as well as increased oxidative stress in heart failure, myocardial ischemia-reperfusion, and regulation of vascular tone under conditions of elevated oxidative stress. Treatment strategies that are able to reverse this oxidative inhibition of the Na(+)-K(+) pump have the potential for cardiovascular-protective effects. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Thermoeconomic optimization of a solar-assisted heat pump based on transient simulations and computer Design of Experiments

    International Nuclear Information System (INIS)

    Calise, Francesco; Dentice d’Accadia, Massimo; Figaj, Rafal Damian; Vanoli, Laura

    2016-01-01

    Highlights: • A polygeneration system for a residential house is presented. • Hybrid photovoltaic/thermal collectors are used, coupled with a solar-assisted heat pump. • An optimization has been performed. • The system is profitable even in the absence of incentives. • A simple pay-back period of about 5 year is achieved. - Abstract: In the paper, a model for the simulation and the optimization of a novel solar trigeneration system is presented. The plant simulation model is designed to supply electricity, space heating or cooling and domestic hot water for a small residential building. The system is based on a solar field equipped with flat-plate photovoltaic/thermal collectors, coupled with a water-to-water electric heat pump/chiller. The electrical energy produced by the hybrid collectors is entirely supplied to the building. During the winter, the thermal energy available from the solar field is used as a heat source for the evaporator of the heat pump and/or to produce domestic hot water. During the summer, the heat pump operates in cooling mode, coupled with a closed circuit cooling tower, providing space cooling for the building, and the hot water produced by the collectors is only used to produce domestic hot water. For such a system, a dynamic simulation model was developed in TRNSYS environment, paying special attention to the dynamic simulation of the building, too. The system was analyzed from an energy and economic point of view, considering different time bases. In order to minimize the pay-back period, an optimum set of the main design/control parameters was obtained by means of a sensitivity analysis. Simultaneously, a computer-based Design of Experiment procedure was implemented, aiming at calculating the optimal set of design parameters, using both energy and economic objective functions. The results showed that thermal and electrical efficiencies are above 40% and 10%, respectively. The coefficient of performance of the reversible heat

  15. "The Heart Game"

    DEFF Research Database (Denmark)

    Dithmer, Marcus; Rasmussen, Jack Ord; Grönvall, Erik

    2016-01-01

    Objective: The aim of this article is to describe the development and testing of a prototype application (“The Heart Game”) using gamification principles to assist heart patients in their telerehabilitation process in the Teledialog project. Materials and Methods: A prototype game was developed via...... (interviews, participant observations, focus group interviews, and workshop) was used. Interviews with three healthcare professionals and 10 patients were carried out over a period of 2 weeks in order to evaluate the use of the prototype. Results: The heart patients reported the application to be a useful...... activities. Conclusions: “The Heart Game” concept presents a new way to motivate heart patients by using technology as a social and active approach to telerehabilitation. The findings show the potential of using gamification for heart patients as part of a telerehabilitation program. The evaluation indicated...

  16. Coronary artery bypass grafting on the beating heart using the Octopus method

    NARCIS (Netherlands)

    Thijssens, K. M.; Rodrigus, I. E.; Amsel, B. J.; de Hert, S. G.; Moulijn, A. C.

    2000-01-01

    STUDY OBJECTIVE: To study the usefulness and effectiveness of off-pump coronary bypass grafting with the Octopus heart stabilizing device. METHOD: The files of thirty-one patients undergoing coronary artery bypass with the aid of the Octopus heart stabilizing device between April 1996 and October

  17. Solar assisted heat pumps: A possible wave of the future

    Science.gov (United States)

    Smetana, F. O.

    1976-01-01

    With the higher costs of electric power and the widespread interest to use solar energy to reduce the national dependence on fossil fuels, heat pumps are examined to determine their suitability for use with solar energy systems.

  18. Pumps and pump facilities. 2. ed.

    International Nuclear Information System (INIS)

    Bohl, W.; Bauerfeind, H.; Gutmann, G.; Leuschner, G.; Matthias, H.B.; Mengele, R.; Neumaier, R.; Vetter, G.; Wagner, W.

    1981-01-01

    This book deals with the common fundamental aspects of liquid pumps and gives an exemplary choice of the most important kinds of pumps. The scientific matter is dealt with by means of practical mathematical examples among other ways of presenting the matter. Survey of contents: Division on main operational data of pumps - pipe characteristics - pump characteristics - suction behaviour of the pumps - projecting and operation of rotary pumps - boiler feed pumps - reactor feed pumps - oscillating positive-displacement pumps - eccentric spiral pumps. (orig./GL) [de

  19. Multicentre clinical trial experience with the HeartMate 3 left ventricular assist device: 30-day outcomes.

    Science.gov (United States)

    Zimpfer, Daniel; Netuka, Ivan; Schmitto, Jan D; Pya, Yuriy; Garbade, Jens; Morshuis, Michiel; Beyersdorf, Friedhelm; Marasco, Silvana; Rao, Vivek; Damme, Laura; Sood, Poornima; Krabatsch, Thomas

    2016-09-01

    The objective of this study was to describe the operative experience and 30-day outcomes of patients implanted with the HeartMate 3 Left Ventricular Assist System (LVAS) during the Conformité Européenne (CE) Mark clinical trial. Adult patients met inclusion and exclusion criteria defining advanced-stage heart failure and included the indications of bridge to transplant and destination therapy. Operative parameters, outcomes, adverse events, physical status and quality-of-life parameters were assessed in the first 30 days after LVAS implant. Fifty patients were implanted with the HeartMate 3 at 10 centres in 6 countries. The 30-day survival rate was 98%. The median operative and cardiopulmonary bypass times were 200 (range: 95-585) min and 84 (range: 47-250) min, respectively. Patients required transfusion with packed red blood cells (3.6 ± 2.3 units), fresh frozen plasma (6.5 ± 5 units) and platelets (2 ± 1 units). Six patients (12%) required reoperation for postoperative bleeding and 10 patients (20%) did not require blood transfusion. The median intensive care time was 6 days (range: 1-112 days) and the total hospital stay was 28 days (range: 14-116 days). The most common adverse events were bleeding (15, 30%), arrhythmia (14, 28%) and infection (10, 20%). There were 2 (4%) strokes. The 30-day outcomes following implantation of the HeartMate 3 demonstrates excellent survival with low adverse event rates. The LVAD performed as intended with no haemolysis or device failure. NCT02170363. HeartMate 3™ CE Mark Clinical Investigation Plan (HM3 CE Mark). © The Author 2016. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  20. Performance prediction method for a multi-stage Knudsen pump

    Science.gov (United States)

    Kugimoto, K.; Hirota, Y.; Kizaki, Y.; Yamaguchi, H.; Niimi, T.

    2017-12-01

    In this study, the novel method to predict the performance of a multi-stage Knudsen pump is proposed. The performance prediction method is carried out in two steps numerically with the assistance of a simple experimental result. In the first step, the performance of a single-stage Knudsen pump was measured experimentally under various pressure conditions, and the relationship of the mass flow rate was obtained with respect to the average pressure between the inlet and outlet of the pump and the pressure difference between them. In the second step, the performance of a multi-stage pump was analyzed by a one-dimensional model derived from the mass conservation law. The performances predicted by the 1D-model of 1-stage, 2-stage, 3-stage, and 4-stage pumps were validated by the experimental results for the corresponding number of stages. It was concluded that the proposed prediction method works properly.

  1. Long-Term Durability Test for the Left Ventricular Assist System EVAHEART under the Physiologic Pulsatile Load.

    Science.gov (United States)

    Kitano, Tomoya; Iwasaki, Kiyotaka

    The EVAHEART Left Ventricular Assist System (LVAS) was designed for the long-term support of a patient with severe heart failure. It has an original water lubrication system for seal and bearing and wear on these parts was considered one of its critical failure modes. A durability test focusing on wear was designed herein. We developed a mock loop, which generates a physiologic pulsatile flow and is sufficiently durable for a long-term test. The pulsatile load and the low fluid viscosity enable the creation of a severe condition for the mechanical seal. A total of 18 EVAHEART blood pumps completed 2 years of operation under the pulsatile condition without any failure. It indicated the EVAHEART blood pump had a greater than 90% reliability with a 88% confidence level. The test was continued with six blood pumps and achieved an average of 8.6 years, which was longer than the longest clinical use in Japan. The test result showed that no catastrophic, critical, marginal, or minor failures of the blood pump or their symptoms were observed. The seal performance was maintained after the test. Moreover, the surface roughness did not change, which showed any burn or abnormal wear occurred. The original water lubrication system equipped in EVAHEART LVAS prevent severe wear on the seal and the bearing, and it can be used in the bridge to transplant and destination therapy.

  2. The Ventricular Assist Device in the Life of the Child: A Phenomenological Pediatric Study.

    Science.gov (United States)

    van Manen, Michael A

    2017-05-01

    What is it like for a child to live with an artificial heart? The use of some medical therapies in children requires developmental considerations, is associated with psychosocial consequences, and calls for ethical sensitivities. A critical case is the ventricular assist device (VAD), a mechanical pump used to support the functioning of a failing heart. As a pediatric therapy, the device can be used as a temporary solution for poor heart function, a bridge to transplantation or recovery, or as a destination therapy. While the mechanical-technical operation of the VAD is well understood, the clinical-technical aspects of young people living with this device are largely unexplored. Drawing on interviews of school-aged children, the aim of this phenomenological study is to explore how a VAD may structure or condition a child's meaningful experience of their world outside the hospital. The driveline of an implanted VAD is the peripheral attachment, extruding through the skin to connect the controller-power supply. The materiality of the device may be interruptive, restrictive, and disturbing to the psycho-physical being and sense of self-identity of the child as a child. And while a child equipped with a VAD is not necessarily conspicuous among other children, the child may experience the device as an exposing presence, while living with the worry of a caregiver who takes on the role not simply of parent but of watchful health professional. A phenomenological understanding of the VAD should assist parents and caregiving health professionals knowing how to deal with specific issues arising in the life of the VAD child.

  3. Na/K pump regulation of cardiac repolarization: insights from a systems biology approach

    KAUST Repository

    Bueno-Orovio, Alfonso

    2013-05-15

    The sodium-potassium pump is widely recognized as the principal mechanism for active ion transport across the cellular membrane of cardiac tissue, being responsible for the creation and maintenance of the transarcolemmal sodium and potassium gradients, crucial for cardiac cell electrophysiology. Importantly, sodium-potassium pump activity is impaired in a number of major diseased conditions, including ischemia and heart failure. However, its subtle ways of action on cardiac electrophysiology, both directly through its electrogenic nature and indirectly via the regulation of cell homeostasis, make it hard to predict the electrophysiological consequences of reduced sodium-potassium pump activity in cardiac repolarization. In this review, we discuss how recent studies adopting the systems biology approach, through the integration of experimental and modeling methodologies, have identified the sodium-potassium pump as one of the most important ionic mechanisms in regulating key properties of cardiac repolarization and its rate dependence, from subcellular to whole organ levels. These include the role of the pump in the biphasic modulation of cellular repolarization and refractoriness, the rate control of intracellular sodium and calcium dynamics and therefore of the adaptation of repolarization to changes in heart rate, as well as its importance in regulating pro-arrhythmic substrates through modulation of dispersion of repolarization and restitution. Theoretical findings are consistent across a variety of cell types and species including human, and widely in agreement with experimental findings. The novel insights and hypotheses on the role of the pump in cardiac electrophysiology obtained through this integrative approach could eventually lead to novel therapeutic and diagnostic strategies. © 2013 Springer-Verlag Berlin Heidelberg.

  4. Na/K pump regulation of cardiac repolarization: insights from a systems biology approach.

    Science.gov (United States)

    Bueno-Orovio, Alfonso; Sánchez, Carlos; Pueyo, Esther; Rodriguez, Blanca

    2014-02-01

    The sodium-potassium pump is widely recognized as the principal mechanism for active ion transport across the cellular membrane of cardiac tissue, being responsible for the creation and maintenance of the transarcolemmal sodium and potassium gradients, crucial for cardiac cell electrophysiology. Importantly, sodium-potassium pump activity is impaired in a number of major diseased conditions, including ischemia and heart failure. However, its subtle ways of action on cardiac electrophysiology, both directly through its electrogenic nature and indirectly via the regulation of cell homeostasis, make it hard to predict the electrophysiological consequences of reduced sodium-potassium pump activity in cardiac repolarization. In this review, we discuss how recent studies adopting the systems biology approach, through the integration of experimental and modeling methodologies, have identified the sodium-potassium pump as one of the most important ionic mechanisms in regulating key properties of cardiac repolarization and its rate dependence, from subcellular to whole organ levels. These include the role of the pump in the biphasic modulation of cellular repolarization and refractoriness, the rate control of intracellular sodium and calcium dynamics and therefore of the adaptation of repolarization to changes in heart rate, as well as its importance in regulating pro-arrhythmic substrates through modulation of dispersion of repolarization and restitution. Theoretical findings are consistent across a variety of cell types and species including human, and widely in agreement with experimental findings. The novel insights and hypotheses on the role of the pump in cardiac electrophysiology obtained through this integrative approach could eventually lead to novel therapeutic and diagnostic strategies.

  5. Technical assistance to the manufacture, construction and assembly of Osorio-Canoas oil pipeline flow pumps

    Energy Technology Data Exchange (ETDEWEB)

    Menezes, Kellson Takenaka; Rangel Junior, Joilson Rangel; Costa, Jose Coelho [Petroleo Brasileiro S/A (PETROBRAS), Rio de Janeiro, RJ (Brazil)], E-mails: kellson.telsan@petrobras.com.br, joilson_jr@petrobras.com.br, jccoelho.telsan@petrobras.com.br

    2010-07-01

    This paper reports the experiences acquired through the modifications and improvements implemented in the manufacture, construction and assembly of the oil flow centrifugal pumps of the Osorio-Canoas Oil Pipeline (OSCAN 22''), located in Rio Grande do Sul. The OSCAN 22'' pumping capacity expansion was conceived aiming at meeting the Alberto Pasqualini Refinery (REFAP) processing increase project from 20,000 m{sup 3}/day to 30,000 m{sup 3}/day, besides changing the product profile from processed product to national high viscosity national oils. Due to this reason, a new pump park at the Almirante Soares Dutra Terminal (TEDUT) and a new intermediate pump station named Estacao de Santo Antonio da Patrulha (ESPAT) have been erected. Thus, the oil received by a tanker and stored at TEDUT was now pumped to ESPAT and then to REFAP through a 97 km long and 22 inch diameter oil pipeline named OSCAN 22''. In order to get such oil flow done, 03 new main pumps have been installed at TEDUT, one of them being a stand-by one, and other 03 pumps at ESPAT, one of them being also a stand-by one. During the startup of TEDUT's pumps, high vibration levels were observed in the rotors and in the equipment structures. The values defined by the manufacturer for equipment alarm and shutdown were, respectively, 50.0 {mu}m and 75.0 {mu}m, measured on the pump rotors in the bearing region. However, the global vibration levels of the TEDUT's pumps reached 110.0 {mu}m during the startup attended by the manufacturers. The equipment warranty period started after that, and a detailed activity planning was drawn up with the purpose of keeping TEDUT running with the new pumps at the lowest possible operational risk and avoiding a production reduction at REFAP. Simultaneously, various actions were taken in order to identify the vibration sources and reduce its intensity to the lowest possible values. After equipment modifications, median vibration values at 15

  6. Fast Track Extubation In Adult Patients On Pump Open Heart Surgery At A Tertiary Care Hospital.

    Science.gov (United States)

    Akhtar, Mohammad Irfan; Sharif, Hasanat; Hamid, Mohammad; Samad, Khalid; Khan, Fazal Hameed

    2016-01-01

    Fast-track cardiac surgery programs have been established as the standard of cardiac surgical care. Studies have shown that early extubation in elective cardiac surgery patients, including coronary and non-coronary open-heart surgery patients does not increase perioperative morbidity and mortality. The objective of this observational study was to determine the success and failure profile of fast track extubation (FTE) practice in adult open-heart surgical patients. The study was conducted at cardiac operating room and Cardiac Intensive Care Unit (CICU) of a tertiary care hospital for a period of nine months, i.e., from Oct 2014 to June-2015. All on pump elective adult cardiac surgery patients including isolated CABG, isolated Valve replacements, combined procedures and aortic root replacements were enrolled in the study. Standardized anesthetic technique was adopted. Surgical and bypass techniques were tailored according to the procedure. Success of Fast track extubation was defined as extubation within 6 hours of arrival in CICU. A total of 290 patients were recruited. The average age of the patients was 56.3±10.5 years. There were 77.6% male and 22.4% female patients. Overall success rate was 51.9% and failure rate was 48.1%. The peri-operative renal insufficiency, cross clamp time and CICU stay (hours) were significantly lower in success group. Re-intubation rate was 0.74%. The perioperative parameters were significantly better in success group and the safety was also demonstrated in the patients who were fast tracked successfully. To implement the practice in its full capacity and benefit, a fast track protocol needs to be devised to standardize the current practices and to disseminate the strategy among junior anaesthesiologists, perfusionists and nursing staff.

  7. [Analogies between heart and respiratory muscle failure. Importance to clinical practice].

    Science.gov (United States)

    Köhler, D

    2009-01-01

    Heart failure is an established diagnosis. Respiratory muscle or ventilatory pump failure, however, is less well known. The latter becomes obvious through hypercapnia, caused by hypoventilation. The respiratory centre tunes into hypercapnea in order to prevent the danger of respiratory muscle overload (hypercapnic ventilatory failure). Hypoventilation will consecutively cause hypoxemia but this will not be responsible for performance limitation. One therefore has to distinguish primary hypoxemia evolving from diseases in the lung parenchyma. Here hypoxemia is the key feature and compensatory hyperventilation usually decreases PaCO2 levels. The cardiac as well as the respiratory pump adapt to an inevitable burden caused by chronic disease. In either case organ muscle mass will increase. If the burden exceeds the range of possible physiological adaptation, compensatory mechanisms will set in that are similar in both instances. During periods of overload either muscle system is mainly fueled by muscular glycogen. In the recovery phase (e. g. during sleep) stores are replenished, which can be recognized by down-regulation of the blood pressure in case of the cardiac pumb or by augmentation of hypercapnia through hypoventilation in case of the respiratory pump. The main function of cardiac and respiratory pump is maintenance of oxygen transport. The human body has developed certain compensatory mechanisms to adapt to insufficient oxygen supply especially during periods of overload. These mechanisms include shift of the oxygen binding curve, expression of respiratory chain isoenzymes capable of producing ATP at lower partial pressures of oxygen and the development of polyglobulia. Medically or pharmacologically the cardiac pump can be unloaded with beta blockers, the respiratory pump by application of inspired oxygen. Newer forms of therapy augment the process of recovery. The heart can be supported through bypass surgery or intravascular pump systems, while respiratory

  8. Left ventricular assist device therapy in advanced heart failure

    DEFF Research Database (Denmark)

    Gustafsson, Finn; Rogers, Joseph G

    2017-01-01

    Despite improvements in pharmacological therapy and pacing, prognosis in advanced heart failure (HF) remains poor, with a 1-year mortality of 25-50%. While heart transplantation provides excellent survival and quality of life for eligible patients, only a few can be offered this treatment due...

  9. Beyond the VAD: Human Factors Engineering for Mechanically Assisted Circulation in the 21st Century.

    Science.gov (United States)

    Throckmorton, Amy L; Patel-Raman, Sonna M; Fox, Carson S; Bass, Ellen J

    2016-06-01

    Thousands of ventricular assist devices (VADs) currently provide circulatory support to patients worldwide, and dozens of heart pump designs for adults and pediatric patients are under various stages of development in preparation for translation to clinical use. The successful bench-to-bedside development of a VAD involves a structured evaluation of possible system states, including human interaction with the device and auxiliary component usage in the hospital or home environment. In this study, we review the literature and present the current landscape of preclinical design and assessment, decision support tools and procedures, and patient-centered therapy. Gaps of knowledge are identified. The study findings support the need for more attention to user-centered design approaches for medical devices, such as mechanical circulatory assist systems, that specifically involve detailed qualitative and quantitative assessments of human-device interaction to mitigate risk and failure. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  10. Redox-dependent regulation of the Na⁺-K⁺ pump

    DEFF Research Database (Denmark)

    Liu, Chia-Chi; Fry, Natasha A S; Hamilton, Elisha J

    2013-01-01

    By the time it was appreciated that the positive inotropic effect of cardiac glycosides is due to inhibition of the membrane Na(+)-K(+) pump, glycosides had been used for treatment of heart failure on an empiric basis for ~200 years. The subsequent documentation of their lack of clinical efficacy...

  11. Hybrid approach of ventricular assist device and autologous bone marrow stem cells implantation in end-stage ischemic heart failure enhances myocardial reperfusion

    Directory of Open Access Journals (Sweden)

    Khayat Andre

    2011-01-01

    Full Text Available Abstract We challenge the hypothesis of enhanced myocardial reperfusion after implanting a left ventricular assist device together with bone marrow mononuclear stem cells in patients with end-stage ischemic cardiomyopathy. Irreversible myocardial loss observed in ischemic cardiomyopathy leads to progressive cardiac remodelling and dysfunction through a complex neurohormonal cascade. New generation assist devices promote myocardial recovery only in patients with dilated or peripartum cardiomyopathy. In the setting of diffuse myocardial ischemia not amenable to revascularization, native myocardial recovery has not been observed after implantation of an assist device as destination therapy. The hybrid approach of implanting autologous bone marrow stem cells during assist device implantation may eventually improve native cardiac function, which may be associated with a better prognosis eventually ameliorating the need for subsequent heart transplantation. The aforementioned hypothesis has to be tested with well-designed prospective multicentre studies.

  12. Simulation of a solar assisted combined heat pump – Organic rankine cycle system

    International Nuclear Information System (INIS)

    Schimpf, Stefan; Span, Roland

    2015-01-01

    Highlights: • Addition of an ORC to a solar thermal and ground source heat pump system. • Reverse operation of the scroll compressor in ORC mode. • Annual simulations for application in a single-family house at three locations. • By introducing the ORC the net electricity demand is reduced by 1–9%. • Over the lifetime of the system savings can cover additional investments. - Abstract: A novel solar thermal and ground source heat pump system that harnesses the excess heat of the collectors during summer by an Organic Rankine Cycle (ORC) is simulated. For the ORC the heat pump process is reversed. In this case the scroll compressor of the heat pump runs as a scroll expander and the working fluid is condensed in the ground heat exchanger. Compared to a conventional solar thermal system the only additional investments for the combined system are a pump, valves and upgraded controls. The goal of the study is to simulate and optimize such a system. A brief overview of the applied models and the evolutionary algorithm for the optimization is given. A system with 12 m 2 of flat plate collectors installed in a single family house is simulated for the locations Ankara, Denver and Bochum. The ORC benefits add up to 20–140 kW h/a, which reduces the net electricity demand of the system by 1–9%. Overall 180–520 € are saved over a period of 20 years, which can be enough to cover the additional investments

  13. Na/K pump regulation of cardiac repolarization: insights from a systems biology approach

    KAUST Repository

    Bueno-Orovio, Alfonso; Sá nchez, Carlos; Pueyo, Esther; Rodriguez, Blanca

    2013-01-01

    gradients, crucial for cardiac cell electrophysiology. Importantly, sodium-potassium pump activity is impaired in a number of major diseased conditions, including ischemia and heart failure. However, its subtle ways of action on cardiac electrophysiology

  14. Risk Stratification of Patients With Current Generation Continuous-Flow Left Ventricular Assist Devices Being Bridged to Heart Transplantation.

    Science.gov (United States)

    Guha, Ashrith; Nguyen, Duc; Cruz-Solbes, Ana S; Amione-Guerra, Javier; Schutt, Robert C; Bhimaraj, Arvind; Trachtenberg, Barry H; Park, Myung H; Graviss, Edward A; Gaber, Osama; Suarez, Erik; Montane, Eva; Torre-Amione, Guillermo; Estep, Jerry D

    Patients bridged to transplant (BTT) with continuous-flow left ventricular assist devices (CF-LVADs) have increased in the past decade. Decision support tools for these patients are limited. We developed a risk score to estimate prognosis and guide decision-making. We included heart transplant recipients bridged with CF-LVADs from the United Network for Organ Sharing (UNOS) database and divided them into development (2,522 patients) and validation cohorts (1,681 patients). Univariate and multivariate Cox proportional hazards models were performed. Variables that independently predicted outcomes (age, African American race, recipient body mass index [BMI], intravenous [IV] antibiotic use, pretransplant dialysis, and total bilirubin) were assigned weight using linear transformation, and risk scores were derived. Patients were grouped by predicted posttransplant mortality: low risk (≤ 38 points), medium risk (38-41 points), and high risk (≥ 42 points). We performed Cox proportional hazards analysis on wait-listed CF-LVAD patients who were not transplanted. Score significantly discriminated survival among the groups in the development cohort (6.7, 12.9, 20.7; p = 0.001), validation cohort (6.4, 10.1, 13.6; p assist device (LVAD) BTT risk score that effectively identifies CF-LVAD patients who are at higher risk for worse outcomes after heart transplant. This score may help physicians weigh the risks of transplantation in patients with CF-LVAD.

  15. Mathematical Model Analysis of Heart-Arterial Interaction in Hypertension

    Science.gov (United States)

    2001-10-25

    conscious dogs with dilated cardiomyopathy ,” ! " # , vol. 260, pp. H1903-H1911, 1991. [7] P. Segers, N...with data measured in the isolated canine [14] or cat [15] heart, pumping into an artificial load or in the intact sheep [16] and human [7]. Left...instantaneous pressure-volume ratio of the canine left ventricle and effects of epinephrine and heart rate on the ratio,” , vol. 32, pp. 314

  16. High-resolution in vivo imaging of the cross-sectional deformations of contracting embryonic heart loops using optical coherence tomography

    DEFF Research Database (Denmark)

    Männer, J.; Thrane, Lars; Norozi, K.

    2008-01-01

    The embryonic heart tube consists of an outer myocardial tube, a middle layer of cardiac jelly, and an inner endocardial tube. It is said that tubular hearts pump the blood by peristaltoid contractions. The traditional concept of cardiac peristalsis sees the cyclic deformations of pulsating heart...... tubes as concentric narrowing and widening of tubes of circular cross-section. We have visualized the cross-sectional deformations of contracting embryonic hearts in chick embryos (HH-stages 9-17) using real-time high-resolution optical coherence tomography. Cardiac contractions are detected from HH...... of the endocardial tube is the consequence of an uneven distribution of the cardiac jelly. Our data show that the cyclic deformations of pulsating embryonic heart tubes run other than originally thought. There is evidence that heart tubes of elliptic cross-section might pump blood with a higher mechanical efficiency...

  17. Design and Development of a Miniaturized Percutaneously Deployable Wireless Left Ventricular Assist Device: Early Prototypes and Feasibility Testing.

    Science.gov (United States)

    Letzen, Brian; Park, Jiheum; Tuzun, Zeynep; Bonde, Pramod

    The current left ventricular assist devices (LVADs) are limited by a highly invasive implantation procedure in a severely unstable group of advanced heart failure patients. Additionally, the current transcutaneous power drive line acts as a nidus for infection resulting in significant morbidity and mortality. In an effort to decrease this invasiveness and eliminate drive line complications, we have conceived a wireless miniaturized percutaneous LVAD, capable of being delivered endovascularly with a tether-free operation. The system obviates the need for a transcutaneous fluid purge line required in existing temporary devices by utilizing an incorporated magnetically coupled impeller for a complete seal. The objective of this article was to demonstrate early development and proof-of-concept feasibility testing to serve as the groundwork for future formalized device development. Five early prototypes were designed and constructed to iteratively minimize the pump size and improve fluid dynamic performance. Various magnetic coupling configurations were tested. Using SolidWorks and ANSYS software for modeling and simulation, several geometric parameters were varied. HQ curves were constructed from preliminary in vitro testing to characterize the pump performance. Bench top tests showed no-slip magnetic coupling of the impeller to the driveshaft up to the current limit of the motor. The pump power requirements were tested in vitro and were within the appropriate range for powering via a wireless energy transfer system. Our results demonstrate the proof-of-concept feasibility of a novel endovascular cardiac assist device with the potential to eventually offer patients an untethered, minimally invasive support.

  18. THEORETICAL AND EXPERIMENTAL STUDY OF THE DYNAMIC CHARACTERISTICS OF AXIAL BLOOD PUMPS

    Directory of Open Access Journals (Sweden)

    G. P. Itkin

    2011-01-01

    Full Text Available The article presents a theoretical analysis of the dynamic interaction of the left ventricle assist axial pump and the cardiovascular system. It is shown the axial pumps are working in conditions «left ventricle- aorta» generates a pulsed flow. The slope of the flow-pressure characteristics determine the amplitude of the pulsation. Data are confirmed in the chronic experiments on the biological models with the extracorporeal connection of the pump. The possibility of using this characteristic for the develope of the automatic control systems to ensure adequate operation of the pump in range of the physical activity of a patient ‘s physical activity. 

  19. Fluid Dynamics in Rotary Piston Blood Pumps.

    Science.gov (United States)

    Wappenschmidt, Johannes; Sonntag, Simon J; Buesen, Martin; Gross-Hardt, Sascha; Kaufmann, Tim; Schmitz-Rode, Thomas; Autschbach, Ruediger; Goetzenich, Andreas

    2017-03-01

    Mechanical circulatory support can maintain a sufficient blood circulation if the native heart is failing. The first implantable devices were displacement pumps with membranes. They were able to provide a sufficient blood flow, yet, were limited because of size and low durability. Rotary pumps have resolved these technical drawbacks, enabled a growing number of mechanical circulatory support therapy and a safer application. However, clinical complications like gastrointestinal bleeding, aortic insufficiency, thromboembolic complications, and impaired renal function are observed with their application. This is traced back to their working principle with attenuated or non-pulsatile flow and high shear stress. Rotary piston pumps potentially merge the benefits of available pump types and seem to avoid their complications. However, a profound assessment and their development requires the knowledge of the flow characteristics. This study aimed at their investigation. A functional model was manufactured and investigated with particle image velocimetry. Furthermore, a fluid-structure interaction computational simulation was established to extend the laboratory capabilities. The numerical results precisely converged with the laboratory measurements. Thus, the in silico model enabled the investigation of relevant areas like gap flows that were hardly feasible with laboratory means. Moreover, an economic method for the investigation of design variations was established.

  20. Pumping behavior of sputter ion pumps

    International Nuclear Information System (INIS)

    Chou, T.S.; McCafferty, D.

    The ultrahigh vacuum requirements of ISABELLE is obtained by distributed pumping stations. Each pumping station consists of 1000 l/s titanium sublimation pump for active gases (N 2 , H 2 , O 2 , CO, etc.), and a 20 l/s sputter ion pump for inert gases (methane, noble gases like He, etc.). The combination of the alarming production rate of methane from titanium sublimation pumps (TSP) and the decreasing pumping speed of sputter ion pumps (SIP) in the ultrahigh vacuum region (UHV) leads us to investigate this problem. In this paper, we first describe the essential physics and chemistry of the SIP in a very clean condition, followed by a discussion of our measuring techniques. Finally measured methane, argon and helium pumping speeds are presented for three different ion pumps in the range of 10 -6 to 10 -11 Torr. The virtues of the best pump are also discussed

  1. Ventricular fibrillation in an ambulatory patient supported by a left ventricular assist device: highlighting the ICD controversy.

    Science.gov (United States)

    Boilson, Barry A; Durham, Lucian A; Park, Soon J

    2012-01-01

    Left ventricular assist devices (LVADs) provide an effective means of managing advanced pump failure as a means of bridging to cardiac transplantation or as permanent therapy. Although ventricular arrhythmias remain common post-LVAD implantation, such therapy may allow malignant arrhythmias to be tolerated hemodynamically. This report describes the clinical findings in a patient who had likely been in a ventricular tachyarrhythmia for several days and presented in ventricular fibrillation, ambulatory, and mentating normally. This report, with previous similar reports, is additive to the body of evidence that LVADs alter the physiologic impact of ventricular arrhythmias in advanced heart failure and highlights the need for thoughtful programming of implantable cardioverter defibrillator therapies in these patients.

  2. Impact of ventricular assist device placement on longitudinal renal function in children with end-stage heart failure.

    Science.gov (United States)

    May, Lindsay J; Montez-Rath, Maria E; Yeh, Justin; Axelrod, David M; Chen, Sharon; Maeda, Katsuhide; Almond, Christopher S D; Rosenthal, David N; Hollander, Seth A; Sutherland, Scott M

    2016-04-01

    Although ventricular assist devices (VADs) restore hemodynamics in those with heart failure, reversibility of end-organ dysfunction with VAD support is not well characterized. Renal function often improves in adults after VAD placement, but this has not been comprehensively explored in children. Sixty-three children on VAD support were studied. Acute kidney injury (AKI) was defined by Kidney Disease: Improving Global Outcomes criteria. Estimated glomerular filtration rate (eGFR) was determined by the Schwartz method. Generalized linear mixed-effects models compared the pre-VAD and post-VAD eGFR for the cohort and sub-groups with and without pre-VAD renal dysfunction (pre-VAD eGFR renal dysfunction. AKI affected 60.3% (38 of 63), with similar rates in those with and without pre-existing renal dysfunction. Within the cohort, the nadir eGFR occurred 1 day post-operatively (62.9 ml/min/1.73 m(2); IQR, 51.2-88.9 ml/min/1.73 m(2); p renal dysfunction experienced the greatest improvement in the eGFR (β = 0.0051 vs β = 0.0013, p Renal dysfunction is prevalent in children with heart failure undergoing VAD placement. Although peri-operative AKI is common, renal function improves substantially in the first post-operative week and for months thereafter. This is particularly pronounced in those with pre-VAD renal impairment, suggesting that VADs may facilitate recovery and maintenance of kidney function in children with advanced heart failure. Copyright © 2016 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.

  3. Risk stratification in patients with advanced heart failure requiring biventricular assist device support as a bridge to cardiac transplantation.

    Science.gov (United States)

    Cheng, Richard K; Deng, Mario C; Tseng, Chi-hong; Shemin, Richard J; Kubak, Bernard M; MacLellan, W Robb

    2012-08-01

    Prior studies have identified risk factors for survival in patients with end-stage heart failure (HF) requiring left ventricular assist device (LVAD) support. However, patients with biventricular HF may represent a unique cohort. We retrospectively evaluated a consecutive cohort of 113 adult, end-stage HF patients at University of California Los Angeles Medical Center who required BIVAD support between 2000 and 2009. Survival to transplant was 66.4%, with 1-year actuarial survival of 62.8%. All patients were Interagency Registry for Mechanically Assisted Circulatory Support (INTERMACS) Level 1 or 2 and received Thoratec (Pleasanton, CA) paracorporeal BIVAD as a bridge to transplant. Univariate analyses showed dialysis use, ventilator use, extracorporal membrane oxygenation use, low cardiac output, preserved LV ejection fraction (restrictive physiology), normal-to-high sodium, low platelet count, low total cholesterol, low high-density and high-density lipoprotein, low albumin, and elevated aspartate aminotransferase were associated with increased risk of death. We generated a scoring system for survival to transplant. Our final model, with age, sex, dialysis, cholesterol, ventilator, and albumin, gave a C-statistic of 0.870. A simplified system preserved a C-statistic of 0.844. Patients were divided into high-risk or highest-risk groups (median respective survival, 367 and 17 days), with strong discrimination between groups for death. We have generated a scoring system that offers high prognostic ability for patients requiring BIVAD support and hope that it may assist in clinical decision making. Further studies are needed to prospectively validate our scoring system. Copyright © 2012 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.

  4. Assessment of Safety and Effectiveness of the Extracorporeal Continuous-Flow Ventricular Assist Device (BR16010) Use as a Bridge-to-Decision Therapy for Severe Heart Failure or Refractory Cardiogenic Shock: Study Protocol for Single-Arm Non-randomized, Uncontrolled, and Investigator-Initiated Clinical Trial.

    Science.gov (United States)

    Fukushima, Norihide; Tatsumi, Eisuke; Seguchi, Osamu; Takewa, Yoshiaki; Hamasaki, Toshimitsu; Onda, Kaori; Yamamoto, Haruko; Hayashi, Teruyuki; Fujita, Tomoyuki; Kobayashi, Junjiro

    2018-06-08

    The management of heart failure patients presenting in a moribund state remains challenging, despite significant advances in the field of ventricular assist systems. Bridge to decision involves using temporary devices to stabilize the hemodynamic state of such patients while further assessment is performed and a decision can be made regarding patient management. The purpose of this study (NCVC-BTD_01, National Cerebral and Cardiovascular Center-Bridge to Dicision_01) is to assess the safety and effectiveness of the newly developed extracorporeal continuous-flow ventricular assist system employing a disposable centrifugal pump with a hydrodynamically levitated bearing (BR16010) use as a bridge-to-decision therapy for patients with severe heart failure or refractory cardiogenic shock. NCVC-BTD_01 is a single-center, single-arm, open-label, exploratory, medical device, investigator-initiated clinical study. It is conducted at the National Cerebral and Cardiovascular Center in Japan. A total of nine patients will be enrolled in the study. The study was planned using Simon's minimax two-stage phase design. The primary endpoint is a composite of survival free of device-related serious adverse events and complications during device support. For left ventricular assistance, withdrawal of a trial device due to cardiac function recovery or exchange to other ventricular assist devices (VADs) for the purpose of bridge to transplantation (BTT) during 30 days after implantation will be considered study successes. For right ventricular assistance, withdrawal of tal device due to right ventricular function recovery within 30 days after implantation will be considered a study success. Secondary objectives include changes in brain natriuretic peptide levels (7 days after implantation of a trial device and the day of withdrawal of a trial device), period of mechanical ventricular support, changes in left ventricular ejection fraction (7 days after implantation of a trial device

  5. Combining computer modelling and cardiac imaging to understand right ventricular pump function.

    Science.gov (United States)

    Walmsley, John; van Everdingen, Wouter; Cramer, Maarten J; Prinzen, Frits W; Delhaas, Tammo; Lumens, Joost

    2017-10-01

    Right ventricular (RV) dysfunction is a strong predictor of outcome in heart failure and is a key determinant of exercise capacity. Despite these crucial findings, the RV remains understudied in the clinical, experimental, and computer modelling literature. This review outlines how recent advances in using computer modelling and cardiac imaging synergistically help to understand RV function in health and disease. We begin by highlighting the complexity of interactions that make modelling the RV both challenging and necessary, and then summarize the multiscale modelling approaches used to date to simulate RV pump function in the context of these interactions. We go on to demonstrate how these modelling approaches in combination with cardiac imaging have improved understanding of RV pump function in pulmonary arterial hypertension, arrhythmogenic right ventricular cardiomyopathy, dyssynchronous heart failure and cardiac resynchronization therapy, hypoplastic left heart syndrome, and repaired tetralogy of Fallot. We conclude with a perspective on key issues to be addressed by computational models of the RV in the near future. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions, please email: journals.permissions@oup.com.

  6. Differences in displayed pump flow compared to measured flow under varying conditions during simulated cardiopulmonary bypass.

    LENUS (Irish Health Repository)

    Hargrove, M

    2008-07-01

    Errors in blood flow delivery due to shunting have been reported to reduce flow by, potentially, up to 40-83% during cardiopulmonary bypass. The standard roller-pump measures revolutions per minute and a calibration factor for different tubing sizes calculates and displays flow accordingly. We compared displayed roller-pump flow with ultrasonically measured flow to ascertain if measured flow correlated with the heart-lung pump flow reading. Comparison of flows was measured under varying conditions of pump run duration, temperature, viscosity, varying arterial\\/venous loops, occlusiveness, outlet pressure, use of silicone or polyvinyl chloride (PVC) in the roller race, different tubing diameters, and use of a venous vacuum-drainage device.

  7. Experimental studies on a ground coupled heat pump with solar thermal collectors for space heating

    International Nuclear Information System (INIS)

    Xi, Chen; Hongxing, Yang; Lin, Lu; Jinggang, Wang; Wei, Liu

    2011-01-01

    This paper presents experimental studies on a solar-assisted ground coupled heat pump (SAGCHP) system for space heating. The system was installed at the Hebei Academy of Sciences in Shijiazhuang (lat. N38 o 03', long. E114 o 26'), China. Solar collectors are in series connection with the borehole array through plate heat exchangers. Four operation modes of the system were investigated throughout the coldest period in winter (Dec 5th to Dec 27th). The heat pump performance, borehole temperature distributions and solar colleting characteristics of the SAGCHP system are analyzed and compared when the system worked in continuous or intermittent modes with or without solar-assisted heating. The SAGCHP system is proved to perform space heating with high energy efficiency and satisfactory solar fraction, which is a promising substitute for the conventional heating systems. It is also recommended to use the collected solar thermal energy as an alternative source for the heat pump instead of recharging boreholes for heat storage because of the enormous heat capacity of the earth. -- Highlights: → We study four working modes of a solar-assisted ground coupled heat pump. → The heating performance is in direct relation with the borehole temperature. → Solar-assisted heating elevates borehole temperature and system performance. → The system shows higher efficiency over traditional heating systems in cold areas. → Solar heat is not suggested for high temperature seasonal storage.

  8. Theoretical analysis and experimental study to solar assisted ground-source heat pump system%太阳能辅助系统的理论分析和实验研究

    Institute of Scientific and Technical Information of China (English)

    杨鹏; 刘自强; 侯静

    2011-01-01

    As a clean, renewable energy, the geothermal energy and solar energy are trend of develo- ping and using new energies in the future. This paper introduces solar assisted Ground Source Heat Pump system, combined with the advantage of t the geothermal energy and solar energy. Through theoretical analysis and experiment, the solar assisted Ground Source Heat Pump system is proved to be feasible and scientific.%地热能和太阳能作为清洁、可再生的能源,是未来开发和利用新能源的趋势,本文介绍了太阳能辅助地源热泵系统,是将二者结合,取长补短的一种热泵形式。通过理论分析和实验验证。证明了太阳能辅助地源热泵系统的可行性和科学性。

  9. The Ventricular Assist Device in the Life of the Child: A Phenomenological Pediatric Study

    Science.gov (United States)

    van Manen, Michael A.

    2017-01-01

    What is it like for a child to live with an artificial heart? The use of some medical therapies in children requires developmental considerations, is associated with psychosocial consequences, and calls for ethical sensitivities. A critical case is the ventricular assist device (VAD), a mechanical pump used to support the functioning of a failing heart. As a pediatric therapy, the device can be used as a temporary solution for poor heart function, a bridge to transplantation or recovery, or as a destination therapy. While the mechanical-technical operation of the VAD is well understood, the clinical-technical aspects of young people living with this device are largely unexplored. Drawing on interviews of school-aged children, the aim of this phenomenological study is to explore how a VAD may structure or condition a child’s meaningful experience of their world outside the hospital. The driveline of an implanted VAD is the peripheral attachment, extruding through the skin to connect the controller-power supply. The materiality of the device may be interruptive, restrictive, and disturbing to the psycho-physical being and sense of self-identity of the child as a child. And while a child equipped with a VAD is not necessarily conspicuous among other children, the child may experience the device as an exposing presence, while living with the worry of a caregiver who takes on the role not simply of parent but of watchful health professional. A phenomenological understanding of the VAD should assist parents and caregiving health professionals knowing how to deal with specific issues arising in the life of the VAD child. PMID:28682718

  10. Experience With a Long-term Pulsatile Ventricular Assist Device as a Bridge to Heart Transplant in Adults.

    Science.gov (United States)

    Gómez Bueno, Manuel; Segovia Cubero, Javier; Serrano Fiz, Santiago; Ugarte Basterrechea, Juan; Hernández Pérez, Francisco José; Goirigolzarri Artaza, Josebe; Castedo Mejuto, Evaristo; Burgos Lázaro, Raúl; García Montero, Carlos; Moñivas Palomero, Vanessa; Mingo Santos, Susana; González Román, Ana Isabel; Álvarez Avelló, José Manuel; Vidal Fernández, Mercedes; Forteza Gil, Alberto; Alonso-Pulpón, Luis

    2017-09-01

    Most long-term ventricular assist devices (VADs) that are currently implanted are intracorporeal continuous-flow devices. Their main limitations include their high cost and inability to provide biventricular support. The aim of this study was to describe the results of using paracorporeal pulsatile-flow VADs as a bridge to transplant (BTT) in adult patients. Retrospective analysis of the characteristics, complications, and outcomes of a single-center case series of consecutive patients treated with the EXCOR VAD as BTT between 2009 and 2015. During the study period, 25 VADs were implanted, 6 of them biventricular. Ventricular assist devices were indicated directly as a BTT in 12 patients and as a bridge to decision in 13 due to the presence of potentially reversible contraindications or chance of heart function recovery. Twenty patients (80%) were successfully bridged to heart transplant after a median of 112 days (range, 8-239). The main complications included infectious (52% of patients), neurological events (32%, half of them fatal), bleeding (28%), and VAD malfunction requiring component replacement (28%). Eighty percent of patients with the EXCOR VAD as BTT achieved the goal after an average of almost 4 months of support. The most frequent complications were infectious, and the most severe were neurological. In our enivonment, the use of these pulsatile-flow VAD as BTT is a feasible strategy that obtains similar outcomes to those of intracorporeal continuous-flow devices. Copyright © 2016 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  11. Towards robot-assisted anchor deployment in beating-heart mitral valve surgery.

    Science.gov (United States)

    Cheng, Lingbo; Sharifi, Mojtaba; Tavakoli, Mahdi

    2018-06-01

    Beating-heart intracardiac surgery promises significant benefits for patients compared with cardiopulmonary bypass based procedures. However, the fast motions of the heart introduce serious challenges for surgeons. In this work, a new impedance-controlled master-slave telerobotic system is developed to help perform anchor deployment for mitral valve annuloplasty under the guidance of live ultrasound images of the heart. The proposed bilateral teleoperation system can both reflect the non-oscillatory portion of slave-heart tissue interaction force on the surgeon's hand as haptic feedback and implement rapid compensation for the beating heart's motion. The surgical task involves performing anchor deployment on a simulated moving heart tissue to evaluate the effectiveness of the proposed strategy for safely interacting with a moving organ. The results obtained show that the telerobotic system increases the success rate of anchor deployment by 100% and reduces the excess force application rate by 70% compared with manual attempts. Copyright © 2018 John Wiley & Sons, Ltd.

  12. Overview of Heart Tumors

    Science.gov (United States)

    ... Tumors By Siddique A. Abbasi, MD, MSc, Assistant Professor of Medicine, Warren Alpert Medical School of Brown University; Attending Cardiologist, Director of Heart Failure, and Director of Cardiac MRI, Providence VA Medical ...

  13. Experimental performance analysis on a direct-expansion solar-assisted heat pump water heater

    International Nuclear Information System (INIS)

    Li, Y.W.; Wang, R.Z.; Wu, J.Y.; Xu, Y.X.

    2007-01-01

    A direct expansion solar assisted heat pump water heater (DX-SAHPWH) experimental set-up is introduced and analyzed. This DX-SAHPWH system mainly consists of 4.20 m 2 direct expansion type collector/evaporator, R-22 rotary-type hermetic compressor with rated input power 0.75 kW, 150 L water tank with immersed 60 m serpentine copper coil and external balance type thermostatic expansion valve. The experimental research under typical spring climate in Shanghai showed that the COP of the DX-SAHPWH system can reach 6.61 when the average temperature of 150 L water is heated from 13.4 deg. C to 50.5 deg. C in 94 min with average ambient temperature 20.6 deg. C and average solar radiation intensity 955 W/m 2 . And the COP of the DX-SAHPWH system is 3.11 even if at a rainy night with average ambient temperature 17.1 deg. C. The seasonal average value of the COP and the collector efficiency was measured as 5.25 and 1.08, respectively. Through exergy analysis for each component of the DX-SAHPWH system, it can be calculated that the highest exergy loss occurs in the compressor, followed by collector/evaporator, condenser and expansion valve, respectively. Further more, some methods are suggested to improve the thermal performance of each component and the whole DX-SAHPWH system

  14. Predictors of cardiogenic shock in cardiac surgery patients receiving intra-aortic balloon pumps.

    Science.gov (United States)

    Iyengar, Amit; Kwon, Oh Jin; Bailey, Katherine L; Ashfaq, Adeel; Abdelkarim, Ayman; Shemin, Richard J; Benharash, Peyman

    2018-02-01

    Cardiogenic shock after cardiac surgery leads to severely increased mortality. Intra-aortic balloon pumps may be used during the preoperative period to increase coronary perfusion. The purpose of this study was to characterize predictors of postoperative cardiogenic shock in cardiac surgery patients with and without intra-aortic balloon pumps support. We performed a retrospective analysis of our institutional database of the Society of Thoracic Surgeons for patients operated between January 2008 to July 2015. Multivariable logistic regression was used to model postoperative cardiogenic shock in both the intra-aortic balloon pumps and matched control cohorts. Overall, 4,741 cardiac surgery patients were identified during the study period, of whom 192 (4%) received a preoperative intra-aortic balloon pump. Intra-aortic balloon pumps patients had a greater prevalence of diabetes, previous cardiac surgery, congestive heart failure, and an urgent/emergent status (P pumps patients also had greater 30-day mortality and more postoperative cardiogenic shock (9% vs 3%, P pumps cohort, only sex, previous percutaneous coronary intervention and preoperative arrhythmia remained significant on multivariable analysis (all P pumps and those who do not. Further analysis of the effects of prophylactic intra-aortic balloon pumps support is warranted. (Surgery 2017;160:XXX-XXX.). Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Artificial muscle for end-stage heart failure.

    Science.gov (United States)

    Tozzi, Piergiorgio; Michalis, Alexandre; Hayoz, Daniel; Locca, Didier; von Segesser, Ludwig K

    2012-01-01

    We describe a device made of artificial muscle for the treatment of end-stage heart failure as an alternative to current heart assist devices. The key component is a matrix of nitinol wires and aramidic fibers called Biometal muscle (BM). When heated electrically, it produces a motorless, smooth, and lifelike motion. The BM is connected to a carbon fiber scaffold, tightening the heart and providing simultaneous assistance to the left and right ventricles. A pacemaker-like microprocessor drives the contraction of the BM. We tested the device in a dedicated bench model of diseased heart. It generated a systolic pressure of 75 mm Hg and ejected a maximum of 330 ml/min, with an ejection fraction of 12%. The device required a power supply of 6 V, 250 mA. This could be the beginning of an era in which BMs integrate or replace the mechanical function of natural muscles.

  16. Risk factors, mortality, and timing of ischemic and hemorrhagic stroke with left ventricular assist devices.

    Science.gov (United States)

    Frontera, Jennifer A; Starling, Randall; Cho, Sung-Min; Nowacki, Amy S; Uchino, Ken; Hussain, M Shazam; Mountis, Maria; Moazami, Nader

    2017-06-01

    Stroke is a major cause of mortality after left ventricular assist device (LVAD) placement. Prospectively collected data of patients with HeartMate II (n = 332) and HeartWare (n = 70) LVADs from October 21, 2004, to May 19, 2015, were reviewed. Predictors of early (during index hospitalization) and late (post-discharge) ischemic and hemorrhagic stroke and association of stroke subtypes with mortality were assessed. Of 402 patients, 83 strokes occurred in 69 patients (17%; 0.14 events per patient-year [EPPY]): early ischemic stroke in 18/402 (4%; 0.03 EPPY), early hemorrhagic stroke in 11/402 (3%; 0.02 EPPY), late ischemic stroke in 25/402 (6%; 0.04 EPPY) and late hemorrhagic stroke in 29/402 (7%; 0.05 EPPY). Risk of stroke and death among patients with stroke was bimodal with highest risks immediately post-implant and increasing again 9-12 months later. Risk of death declined over time in patients without stroke. Modifiable stroke risk factors varied according to timing and stroke type, including tobacco use, bacteremia, pump thrombosis, pump infection, and hypertension (all p hemorrhagic stroke (adjusted odds ratio [aOR] 4.3, 95% confidence interval [CI] 1.0-17.8, p = 0.04), late ischemic stroke (aOR 3.2, 95% CI 1.1-9.0, p = 0.03), and late hemorrhagic stroke (aOR 3.7, 95% CI 1.5-9.2, p = 0.005) predicted death, whereas early ischemic stroke did not. Stroke is a leading cause and predictor of death in patients with LVADs. Risk of stroke and death among patients with stroke is bimodal, with highest risk at time of implant and increasing risk again after 9-12 months. Management of modifiable risk factors may reduce stroke and mortality rates. Copyright © 2017 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.

  17. The total artificial heart.

    Science.gov (United States)

    Cook, Jason A; Shah, Keyur B; Quader, Mohammed A; Cooke, Richard H; Kasirajan, Vigneshwar; Rao, Kris K; Smallfield, Melissa C; Tchoukina, Inna; Tang, Daniel G

    2015-12-01

    The total artificial heart (TAH) is a form of mechanical circulatory support in which the patient's native ventricles and valves are explanted and replaced by a pneumatically powered artificial heart. Currently, the TAH is approved for use in end-stage biventricular heart failure as a bridge to heart transplantation. However, with an increasing global burden of cardiovascular disease and congestive heart failure, the number of patients with end-stage heart failure awaiting heart transplantation now far exceeds the number of available hearts. As a result, the use of mechanical circulatory support, including the TAH and left ventricular assist device (LVAD), is growing exponentially. The LVAD is already widely used as destination therapy, and destination therapy for the TAH is under investigation. While most patients requiring mechanical circulatory support are effectively treated with LVADs, there is a subset of patients with concurrent right ventricular failure or major structural barriers to LVAD placement in whom TAH may be more appropriate. The history, indications, surgical implantation, post device management, outcomes, complications, and future direction of the TAH are discussed in this review.

  18. Computer aided hydraulic design of axial flow pump impeller

    International Nuclear Information System (INIS)

    Sreedhar, B.K.; Rao, A.S.L.K.; Kumaraswamy, S.

    1994-01-01

    Pumps are the heart of any power plant and hence their design requires great attention. Computers with their potential for rapid computation can be successfully employed in the design and manufacture of these machines. The paper discusses a program developed for the hydraulic design of axial flow pump impeller. The program, written in FORTRAN 77, is interactive and performs the functions of design calculation, drafting and generation of numerical data for blade manufacture. The drafting function, which makes use of the software ACAD, is carried out automatically by means of suitable interface programs. In addition data for blade manufacture is also generated in either the x-y-z or r-θ-z system. (author). 4 refs., 3 figs

  19. An economic optimization of evaporator and air collector area in a solar assisted heat pump drying system

    International Nuclear Information System (INIS)

    Rahman, S.M.A.; Saidur, R.; Hawlader, M.N.A.

    2013-01-01

    Highlights: • The optimum combination will provide around 89% of the total load. • The system has a savings during the life cycle with least payback period of 4.37 year. • The optimal system is insensitive to the variation in fuel inflation and discount rate. - Abstract: This paper presents an economic optimization of evaporator and air collector area of a solar assisted heat pump drying system. Economic viability of solar heating systems is usually made by comparing the cost flows recurring throughout the lifetime of the solar and conventional alternative systems. Therefore, identification of optimum variables by using a simulation program and an economic analysis based on payback period of the system are presented in this paper. FORTRAN language is used to run the simulation. Effect of load and different economic variables on payback period is also investigated. Economic analysis reveals that system has sufficient amount of savings during the life cycle with a minimum payback period of about 4 years

  20. Experimental Study of a Novel Direct-Expansion Variable Frequency Finned Solar/Air-Assisted Heat Pump Water Heater

    Directory of Open Access Journals (Sweden)

    Jing Qin

    2018-01-01

    Full Text Available A novel direct expansion variable frequency finned solar/air-assisted heat pump water heater was fabricated and tested in the enthalpy difference lab with a solar simulator. A solar/air source evaporator-collector with an automatic lifting glass cover plate was installed on the system. The system could be operated in three modes, namely, air, solar, and dual modes. The effects of the ambient temperature, solar irradiation, compressor frequency, and operating mode on the performance of this system were studied in this paper. The experimental results show that the ambient temperature, solar irradiation, and operating mode almost have no effect on the energy consumption of the compressor. When the ambient temperature and the solar irradiation were increased, the COP was found to increase with decreasing heating time. Also, when the compressor frequency was increased, an increase in the energy consumption of the compressor and the heat gain of the evaporator were noted with a decrease in the heating time.

  1. RENAL SAFETY OF PROTON PUMP INHIBITORS

    Directory of Open Access Journals (Sweden)

    A. I. Dyadyk

    2017-01-01

    Full Text Available Proton pump inhibitors are a widely used in clinical practice, and are taken by millions of patients around the world for a long time. While proton pump inhibitors are well-tolerated class of drugs, the number of publications has been raised about adverse renal effects, specially their association with acute tubulointerstitial nephritis. It is one of the leading causes of acute renal injury and have catastrophic long-term consequences called chronic kidney disease. In this review, we consider epidemiology, pathogenesis, diagnostic criteria (including biopsy and morphological pattern, clinical manifestations and treatment of proton pump inhibitors-induced acute tubulointerstitial nephritis. A subclinical course without classical manifestations of a cell-mediated hypersensitivity reaction (fever, skin rash, eosinophilia, arthralgia is characteristic of acute tubulointerstitial nephritis. Increased serum creatinine, decreased glomerular filtration rate, electrolyte disorders, pathological changes in urine tests are not highly specific indicators, but allow to suspect the development of acute tubulointerstitial nephritis. The “gold” standard of diagnosis is the intravital morphological examination of the kidney tissue. Timely diagnosis and immediate discontinuation of the potentially causative drug is the mainstay of therapy and the first necessary step in the early management of suspected or biopsy-proven drug-induced acute tubulointerstitial nephritis. The usage of proton pump inhibitors should be performed only on strict indications with optimal duration of treatment and careful monitoring of kidney function. Multiple comorbidities (older age, heart failure, diabetes, cirrhosis, chronic kidney disease, hypovolemia increase potential nephrotoxicity. Awareness of this iatrogenic complication will improve diagnosis of proton pump inhibitors-induced acute tubulointerstitial nephritis by multidisciplinary specialists and increase the possibility

  2. Conventional radiography and computed tomography of cardiac assist devices

    Energy Technology Data Exchange (ETDEWEB)

    Scheffel, Hans; Stolzmann, Paul; Desbiolles, Lotus; Leschka, Sebastian; Frauenfelder, Thomas; Schertler, Thomas; Marincek, Borut; Alkadhi, Hatem [University Hospital Zurich, Institute of Diagnostic Radiology, Zurich (Switzerland); Wilhelm, Markus J.; Lachat, Mario [University Hospital Zurich, Clinic for Cardiovascular Surgery, Zurich (Switzerland)

    2009-09-15

    Patients intended for circulatory support by cardiac assist devices (CAD) usually suffer from end-stage acute or chronic heart failure. Since the introduction of CAD in 1963 by DeBakey and coworkers, the systems have gone through a substantial evolution and have been increasingly used in the intervening decades. The spectrum of CAD includes a variety of systems serving to assist the systolic function of the left ventricle, the right ventricle, or both. Conventional radiography and multislice spiral computed tomography (CT) are the most commonly used radiological techniques for imaging patients with a CAD. CT is very useful for evaluating CAD systems by using both two- and three-dimensional reconstructions of the volumetric data sets. The two techniques together allow for the comprehensive assessment of patients with devices by imaging the in- and outflow cannulae, the anastomoses, the position of the pump, as well as associated complications. A close collaboration with cardiac surgeons with expertise in the field of circulatory support is deemed necessary for adequate image interpretation. This article describes the technical diversity of the currently available CAD systems. The imaging characteristics on conventional radiography and multislice spiral CT as well as the typical complications of their use are demonstrated. (orig.)

  3. A new photovoltaic solar-assisted loop heat pipe/heat-pump system%新型光伏-太阳能环形热管/热泵复合系统

    Institute of Scientific and Technical Information of China (English)

    张龙灿; 裴刚; 张涛; 季杰

    2014-01-01

    The photovoltaic solar assisted loop heat pipe system/heat-pump (PV-SALHP/HP) is the combination of solar assisted loop heat pipe system (SALHP) and solar assisted heat pipe (SAHP). A photovoltaic/thermal (PVT) evaporator and condenser could be shared by two circling modes, and so is the working medium. The loop heat pipe mode will be utilized when solar radiation is strong and the temperature of working medium in PVT evaporator is higher than that in condenser. Correspondingly, the heat pump mode will be started when solar radiation is weak or the temperature difference of working medium in PVT evaporator and condenser cannot satisfy the condition of loop heat pipe mode. The loop heat pipe mode is passive and the heat pump mode is active, which means that the loop heat pipe mode does not consume work and the heat pump mode does. Therefore, the transformable mode of system could heavily reduce power consumption, raise the utilization ratio of solar energy, and promote energy saving. A PV-SAHP/LHP test rig is built. The instantaneous and daily performance of the loop heat pipe mode and heat pump mode is studied.%光伏-太阳能环形热管/热泵复合系统将太阳能环形热管循环模式和太阳能热泵循环模式有机结合,两者采用相同的工质,共用一个PVT蒸发器和冷凝器。当太阳辐照强度较强,工质在PVT蒸发器中的温度高于冷凝器中的温度时,可以利用环形热管模式制热;当太阳辐照强度较弱或工质在PVT蒸发器中与冷凝器中的温差无法满足环形热管模式运行时,可以利用热泵模式制热。两种模式既能够独立运行,又可以互相切换,确保热能的稳定供应,同时能够明显降低系统耗电量。搭建了光伏-太阳能环形热管/热泵复合系统实验平台,对复合系统在环形热管模式和热泵模式独立运行时的瞬时性能和全天性能进行了实验研究。

  4. Modelling the heart with the atrioventricular plane as a piston unit.

    Science.gov (United States)

    Maksuti, Elira; Bjällmark, Anna; Broomé, Michael

    2015-01-01

    Medical imaging and clinical studies have proven that the heart pumps by means of minor outer volume changes and back-and-forth longitudinal movements in the atrioventricular (AV) region. The magnitude of AV-plane displacement has also shown to be a reliable index for diagnosis of heart failure. Despite this, AV-plane displacement is usually omitted from cardiovascular modelling. We present a lumped-parameter cardiac model in which the heart is described as a displacement pump with the AV plane functioning as a piston unit (AV piston). This unit is constructed of different upper and lower areas analogous with the difference in the atrial and ventricular cross-sections. The model output reproduces normal physiology, with a left ventricular pressure in the range of 8-130 mmHg, an atrial pressure of approximatly 9 mmHg, and an arterial pressure change between 75 mmHg and 130 mmHg. In addition, the model reproduces the direction of the main systolic and diastolic movements of the AV piston with realistic velocity magnitude (∼10 cm/s). Moreover, changes in the simulated systolic ventricular-contraction force influence diastolic filling, emphasizing the coupling between cardiac systolic and diastolic functions. The agreement between the simulation and normal physiology highlights the importance of myocardial longitudinal movements and of atrioventricular interactions in cardiac pumping. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. 太阳能热泵应用现状与性能分析%Application Situation and Performance Analysis of Solar-assisted Heat Pump(SAHP)

    Institute of Scientific and Technical Information of China (English)

    魏翠琴; 王丽萍; 贾少刚; 高志宏

    2017-01-01

    太阳能是清洁可再生能源,热泵是高效节能技术,两者有机结合应用既提高了太阳能集热器效率和热泵性能,又拓宽了应用范围,使其实用性大大增强.在介绍太阳能热泵系统的分类与工作原理基础上,概括了各类太阳能热泵的优缺点,总结了国内外该技术的应用和研究现状,着重分析了非直膨式太阳能热泵系统性能的影响因素——集热器安装朝向和角度、热泵的蒸发温度和冷凝温度是影响系统性能的主要因素.%Solar energy is clean and renewable, similarly heat pump has the features of high efficiency and excellent energy saving. The combination application of solar energy and heat pump could improve the efficiency of solar collectors and heat pump performance, meanwhile the application range and utility are greatly enhanced. The classification and working principle of Solar-assisted heat pump (SAHP) system is introduced in this paper, the advantages and disadvantages of SAHP were summarized, the domestic and overseas application of SAHP were summarized, the performance influence factors of indirect expansion SAHP were analyzed, the installed orientation and angle of tilt of Solar collector, heat pump evaporation temperature and condensation temperature are the main factors influencing the performance of the system.

  6. Wind power integration in Aalborg Municipality using compression heat pumps and geothermal absorption heat pumps

    DEFF Research Database (Denmark)

    Østergaard, Poul Alberg

    2013-01-01

    -temperature geothermal resources. The analyses have also demonstrated that the municipality will still rely heavily on surrounding areas for electric load balancing assistance. With a departure in a previously elaborated 100% renewable energy scenario, this article investigates how absorption heat pumps (AHP......Aalborg Municipality, Denmark is investigating ways of switching to 100% renewable energy supply over the next 40 years. Analyses so far have demonstrated a potential for such a transition through energy savings, district heating (DH) and the use of locally available biomass, wind power and low......) and compression heat pumps (HP) for the supply of DH impact the integration of wind power. Hourly scenario-analyses made using the EnergyPLAN model reveal a boiler production and electricity excess which is higher with AHPs than with HPs whereas condensing mode power generation is increased by the application...

  7. Impact of Vice President Cheney on public interest in left ventricular assist devices and heart transplantation.

    Science.gov (United States)

    Pandey, Ambarish; Abdullah, Kazeen; Drazner, Mark H

    2014-05-01

    Although celebrity illnesses attract a significant amount of media attention in the United States, there are few studies that have looked at how celebrity health conditions impact the awareness of the illness in the general population. Recently, Vice President Cheney underwent left ventricular assist device (LVAD) implantation and subsequently a cardiac transplant. The aim of this study was to determine whether there was evidence of increased interest in these 2 procedures as assessed by social media. We determined the relative frequency of Google searches for LVAD and heart transplantation from 2004 to 2013 using Google trends. We also counted the number of YouTube videos and Twitter messages posted monthly concerning LVADs over a 7-year time frame. There was a significant spike in the Google search interest for LVAD and heart transplantation in the month when Vice President Cheney underwent the respective procedure. Similarly, there was a large increase in YouTube videos and Twitter messages concerning LVADs shortly after he was implanted. In total, these data support the concept that a public figure's illness can significantly influence the public's interest in that condition and its associated therapies. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Biofeedback in the treatment of heart failure.

    Science.gov (United States)

    McKee, Michael G; Moravec, Christine S

    2010-07-01

    Biofeedback training can be used to reduce activation of the sympathetic nervous system (SNS) and increase activation of the parasympathetic nervous system (PNS). It is well established that hyperactivation of the SNS contributes to disease progression in chronic heart failure. It has been postulated that underactivation of the PNS may also play a role in heart failure pathophysiology. In addition to autonomic imbalance, a chronic inflammatory process is now recognized as being involved in heart failure progression, and recent work has established that activation of the inflammatory process may be attenuated by vagal nerve stimulation. By interfering with both autonomic imbalance and the inflammatory process, biofeedback-assisted stress management may be an effective treatment for patients with heart failure by improving clinical status and quality of life. Recent studies have suggested that biofeedback and stress management have a positive impact in patients with chronic heart failure, and patients with higher perceived control over their disease have been shown to have better quality of life. Our ongoing study of biofeedback-assisted stress management in the treatment of end-stage heart failure will also examine biologic end points in treated patients at the time of heart transplant, in order to assess the effects of biofeedback training on the cellular and molecular components of the failing heart. We hypothesize that the effects of biofeedback training will extend to remodeling the failing human heart, in addition to improving quality of life.

  9. [Effect of dexmedetomidine and midazolam on respiration and circulation functions in patients undergoing open heart surgery under acupuncture-assisted general anesthesia].

    Science.gov (United States)

    Tang, Wei; Wang, Jian; Fu, Guo-Qiang; Yuan, Lan

    2014-06-01

    To evaluate the effect of Dexmedetomidine and Midazolam on respiratory and circulation in patients experiencing open heart surgery under acupuncture-assisted general anesthesia. Sixty patients undergoing open heart surgery (cardiac valve replacement surgery and aortic valve replacement surgery) were randomly and equally divided into Dexmedetomidine (D) and Midazolam (M) groups. Electroacupuncture (EA) was applied to bilateral Yunmen (LU 2), Zhongfu (LU1), Lieque (LU7) and Neiguan (PC6). For patients of group D, Dexmedetomidine (i.v., loading dose: 1 microg/kg, and succedent dose: 0.2-1 microg x kg(-1) x h(-1)) was given. For patients of group M, Midazolam (i.v., loading dose: 0.05 mg/kg, succedent dose: 0.01-0.03 mg x kg(-1) x h(-1)) was given. Arterial oxygen pressure (PaO2), arterial carbondioxide tension (PaCO2), O2 saturation (SPO2), mean arterial pressure (MAP), heart rate (HR), anesthetic effect, time of spontaneous breathing recovery, and time of resuscitation were recorded before operation (T0), immediately after skin incision (T1), immediately after sternotomy (T2), before suspension of cardiopulmonary bypass (CPB, T3), immediately after cardiac re-beating (T4), immediately after CPB cessation (T5), and at the end of surgery (T6). Before operation, no significant differences were found between the group D and M in the levels of PaO2, PaCO2 and SPO2 (P > 0.05). The PaO2 and SPO2 levels after skin incision, sternotomy, before suspension of CPB and at the end of surgery were significantly lower in group M than in group D (P heart re-beating,after CPB cessation and at the end of surgery in group M were considerably higher than those in group D (P 0.05). It suggested that the respiration and circulation states in group D were more smoothly than those in group M. There was no significant difference between the two groups in the time of resuscitation (P > 0.05). Dexmedetomidine is superior to Midazolam in analgesia, and improving respiration and circulation

  10. Anesthesia for off-pump coronary artery bypass surgery

    Directory of Open Access Journals (Sweden)

    Thomas M Hemmerling

    2013-01-01

    Full Text Available The evolution of techniques and knowledge of beating heart surgery has led anesthesia toward the development of new procedures and innovations to promote patient safety and ensure high standards of care. Off-pump coronary artery bypass (OPCAB surgery has shown to have some advantages compared to on-pump cardiac surgery, particularly the reduction of postoperative complications including systemic inflammation, myocardial injury, and cerebral injury. Minimally invasive surgery for single vessel OPCAB through a limited thoracotomy incision can offer the advantage of further reduction of complications. The anesthesiologist has to deal with different issues, including hemodynamic instability and myocardial ischemia during aorto-coronary bypass grafting. The anesthesiologist and surgeon should collaborate and plan the best perioperative strategy to provide optimal care and ensure a rapid and complete recovery. The use of high thoracic epidural analgesia and fast-track anesthesia offers particular benefits in beating heart surgery. The excellent analgesia, the ability to reduce myocardial oxygen consumption, and the good hemodynamic stability make high thoracic epidural analgesia an interesting technique. New scenarios are entering in cardiac anesthesia: ultra-fast-track anesthesia with extubation in the operating room and awake surgery tend to be less invasive, but can only be performed on selected patients.

  11. Ventricular assist device use in single ventricle congenital heart disease.

    Science.gov (United States)

    Carlo, Waldemar F; Villa, Chet R; Lal, Ashwin K; Morales, David L

    2017-11-01

    As VAD have become an effective therapy for end-stage heart failure, their application in congenital heart disease has increased. Single ventricle congenital heart disease introduces unique physiologic challenges for VAD use. However, with regard to the mixed clinical results presented within this review, we suggest that patient selection, timing of implant, and center experience are all important contributors to outcome. This review focuses on the published experience of VAD use in single ventricle patients and details physiologic challenges and novel approaches in this growing pediatric and adult population. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. miRNAs as therapeutic targets in ischemic heart disease.

    Science.gov (United States)

    Frost, Robert J A; van Rooij, Eva

    2010-06-01

    Ischemic heart disease is a form of congestive heart failure that is caused by insufficient blood supply to the heart, resulting in a loss of viable tissue. In response to the injury, the non-ischemic myocardium displays signs of secondary remodeling, like interstitial fibrosis and hypertrophy of cardiac myocytes. This remodeling process further deteriorates pump function and increases susceptibility to arrhythmias. MicroRNAs (miRNAs) are small, non-coding RNAs that regulate gene expression in a sequence-dependent manner. Recently, several groups identified miRNAs as crucial gene regulators in response to myocardial infarction (MI) and during post-MI remodeling. In this review, we discuss how modulation of these miRNAs represents a promising new therapeutic strategy to improve the clinical outcome in ischemic heart disease.

  13. Surface Modification using Plasma treatments and Adhesion Peptide for Durable Tissue-Engineered Heart Valves

    International Nuclear Information System (INIS)

    Jung, Young mee; Kim, Soo Hyun

    2010-01-01

    Artificial heart valves are used in valvular heart diseases, but these valves have disadvantages that they cannot grow, repair and remodel. In current study, the strategies to development of in vitro cultured functional tissue by tissue engineering is available to heart valve disease. In the point of using viable autolougous cells, tissue engineered heart valves have some advantage to include that they can repair, remodel, and grow. Because heart valve is placed under the strong shear stress condition by pumping of heart, the durability of tissue-engineered heart valves is now questionable. The purpose of the study is to evaluate of the durability of tissue engineered heart valve with surface modified scaffolds under hemodynamic conditions

  14. Conductional remodeling and arrhythmias in the diseased heart

    NARCIS (Netherlands)

    Fontes, Magda Sofia Cristóvão Martins Castro

    2015-01-01

    Cardiovascular disease (CVD) is the main cause of death in Western society and it is a global public health problem, particularly taking into account the ageing of the population in many countries. An important player in CVD is heart failure, which is a complex syndrome defined by insufficient pump

  15. Radionuclide power source for artificial heart autonomic apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Lazarenko, Yu V; Gusev, V V; Pustovalov, A A

    1988-02-01

    Works on creating autonomous artificial heart devices with radionuclide heat source are described. Calculated and experimental parameters of /sup 238/Pu base radionuclide thermoelectric RITEG generators designed for supplying perspective blood pump electric drives are presented. RITEG structure is described and the prospects of increasing its efficiency are shown.

  16. Iowa Hill Pumped Storage Project Investigations - Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, David [Sacramento Municipal Unitlity District, Sacramento, CA (United States)

    2016-07-01

    This Final Technical Report is a summary of the activities and outcome of the Department of Energy (DOE) Assistance Agreement DE-EE0005414 with the Sacramento Municipal Utility District (SMUD). The Assistance Agreement was created in 2012 to support investigations into the Iowa Hill Pumped-storage Project (Project), a new development that would add an additional 400 MW of capacity to SMUD’s existing 688MW Upper American River Hydroelectric Project (UARP) in the Sierra Nevada mountains east of Sacramento, California.

  17. Repetitive use of levosimendan in advanced heart failure

    DEFF Research Database (Denmark)

    Poelzl, Gerhard; Altenberger, Johann; Baholli, Loant

    2017-01-01

    Patients in the latest stages of heart failure are severely compromised, with poor quality of life and frequent hospitalizations. Heart transplantation and left ventricular assist device implantation are viable options only for a minority, and intermittent or continuous infusions of positive...

  18. Role of ventricular assist therapy for patients with heart failure and restrictive physiology: Improving outcomes for a lethal disease.

    Science.gov (United States)

    Grupper, Avishay; Park, Soon J; Pereira, Naveen L; Schettle, Sarah D; Gerber, Yariv; Topilsky, Yan; Edwards, Brooks S; Daly, Richard C; Stulak, John M; Joyce, Lyle D; Kushwaha, Sudhir S

    2015-08-01

    Restrictive cardiomyopathy (RCM) patients have poor prognosis due to progressive heart failure characterized by impaired ventricular filling of either or both ventricles. The goal of this study was to evaluate the outcome of end-stage RCM patients after left ventricular assist device (LVAD) implantation and to determine factors that may be associated with improved survival. This investigation is a retrospective study of prospectively collected data that include 28 consecutive patients with end-stage RCM who received continuous-flow LVADs at the Mayo Clinic, Rochester, Minnesota. Outcome was assessed by survival with LVAD support until heart transplantation or all-cause mortality. The mean follow-up time post-LVAD implantation was 448 ± 425 days. The mean hospitalization time was 29 ± 19 days and was complicated mainly by post-operative right ventricular (RV) failure requiring short-term medical support. The short-term in-hospital mortality was 14%. Ten patients underwent heart transplantation with 100% survival post-transplant during the follow-up period. One-year survival for patients with LVADs without transplantation was 64%, and was not significantly different between amyloidosis and non-amyloidosis patients. Larger left ventricle (LV) end-diastolic and end-systolic dimensions were significantly associated with improved survival rates (RR = 0.94 and 0.95, p < 0.05, respectively), and left ventricular end-diastolic diameter (LVEDD) ≤46 mm was associated with increased mortality post-LVAD implantation. LVAD is a feasible, life-saving therapy for end-stage heart failure related to RCM, especially as a bridge to transplant and in patients with larger LV dimensions. Copyright © 2015 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.

  19. Extracorporeal total artificial heart as bailout surgery.

    Science.gov (United States)

    Perrodin, Stéphanie F; Muller, Olivier; Gronchi, Fabrizio; Liaudet, Lucas; Hullin, Roger; Kirsch, Matthias

    2017-03-01

    We report the use of a total extracorporeal heart for uncontrolled bleeding following a proximal left anterior descending artery perforation, using two centrifugal ventricular assist devices after heart explantation. The literature describing similar techniques and patient outcomes for this "bailout" technique are reviewed. © 2017 Wiley Periodicals, Inc.

  20. Techno-economic evaluation of a solar assisted combined heat pump – Organic Rankine Cycle system

    International Nuclear Information System (INIS)

    Schimpf, Stefan; Span, Roland

    2015-01-01

    Highlights: • Addition of an ORC to a solar thermal and ground source heat pump system. • Additional investments comprise only 400 € for a single-family house unit. • Recharging the ground during ORC has negligible impact on the COP of the HP. • Economics studied for application in Bochum, Denver and Ankara; only small benefits. • Use of isobutane instead of R134a would increase the profit of the ORC system. - Abstract: The economic feasibility of the addition of an ORC to a combined solar system coupled to a ground-source heat pump is discussed. The ORC prevents the stagnation of the solar loop and reverses the heat pump cycle. The working fluid is evaporated in the condenser of the heat pump, expanded in the scroll compressor, which becomes a scroll expander, and condensed in the brine heat exchanger. The only additional investments for the ORC system comprise a pump, valves and upgraded controls and are estimated to be 400 € for a single-family-house unit. Flat-plate collectors are the preferred collector type as the higher collector efficiency of evacuated tube collectors does not outweigh the higher costs. The thermal recharging of the ground during ORC has a negligible impact on the COP of the heat pump. However, the recharging leads to less deep boreholes compared to a conventional system. Because of the low investments for the ORC, even small reductions in borehole depth make a significant contribution to the economic feasibility of the system. The addition of the ORC overall generates a small profit of 155 € at Ankara and 74 € at Denver for a rocky soil and a thermally enhanced grout. On the contrary, the conventional solar combisystem coupled to a ground source heat pump was found to be economically unreasonable at all locations. The working fluid isobutane is interesting for future applications because of the lower global warming potential and the smaller saturation pressures compared to R134a. The latter allow for the installation of a

  1. An innovative, sensorless, pulsatile, continuous-flow total artificial heart: device design and initial in vitro study.

    Science.gov (United States)

    Fukamachi, Kiyotaka; Horvath, David J; Massiello, Alex L; Fumoto, Hideyuki; Horai, Tetsuya; Rao, Santosh; Golding, Leonard A R

    2010-01-01

    We are developing a very small, innovative, continuous-flow total artificial heart (CFTAH) that passively self-balances left and right pump flows and atrial pressures without sensors. This report details the CFTAH design concept and our initial in vitro data. System performance of the CFTAH was evaluated using a mock circulatory loop to determine the range of systemic and pulmonary vascular resistance (SVR and PVR) levels over which the design goal of a maximum absolute atrial pressure difference of 10 mm Hg is achieved for a steady-state flow condition. Pump speed was then modulated at 2,600 +/- 900 rpm to induce flow and arterial pressure pulsation to evaluate the effects of speed pulsations on the system performance. An automatic control mode was also evaluated. Using only passive self-regulation, pump flows were balanced and absolute atrial pressure differences were maintained at mode adjusted pump speed to achieve targeted pump flows based on sensorless calculations of SVR and CFTAH flow. The initial in vitro testing of the CFTAH with a single, valveless, continuous-flow pump demonstrated its passive self-regulation of flows and atrial pressures and a new automatic control mode. Copyright (c) 2010 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.

  2. On-line vibration monitoring for submerged vertical shaft pumps: Final report

    International Nuclear Information System (INIS)

    Walter, T.J.; Marchione, M.M.

    1988-03-01

    The overall goal of this project was to extend to vertical pumps the capability that presently exists to monitor and diagnose vibration problems in horizontal pumps. Specific objectives included the development of analytical techniques to interpret vibration measurements, the verification of these techniqeus by in-plant tests, and the development of recommendations for procuring submergible vibration sensors. A concurrent analytical and experimental approach was used to accomplish these objectives. Rotordynamic analyses of selected pumps were accomplished, and each pump was instrumented and monitored for extended periods of time. The models were used to determine important frequencies and optimum sensor locations and to predict the effect that wear, imbalance, misalighment, and other mechanical changes would have on measured vibration. The predictive ability of the models was confirmed by making changes to instrumented pumps and observing actual changes in pump vibration. Simplified guidelines have been developed to assist the interested user to develop a computer model that realistically predicts the rotordynamic performance of the installed pump. Based on the work accomplished, typical sensor locations have been established. Experience gained in application of commercially available submergible sensors is also related. 11 refs., 11 figs

  3. Adsorption pump for helium pumping out

    International Nuclear Information System (INIS)

    Donde, A.L.; Semenenko, Yu.E.

    1981-01-01

    Adsorption pump with adsorbent cooling by liquid helium is described. Shuttered shield protecting adsorbent against radiation is cooled with evaporating helium passing along the coil positioned on the shield. The pump is also equipped with primed cylindrical shield, cooled with liquid nitrogen. The nitrogen shield has in the lower part the shuttered shield, on the pump casing there is a valve used for pump pre-burning, and valves for connection to recipient as well. Pumping- out rates are presented at different pressures and temperatures of adsorbent. The pumping-out rate according to air at absorbent cooling with liquid nitrogen constituted 5x10 -4 Pa-3000 l/s, at 2x10 -2 Pa-630 l/s. During the absorbent cooling with liquid hydrogen the pumping-out rate according to air was at 4x10 -4 Pa-580 l/s, at 2x10 -3 Pa-680 l/s, according to hydrogen - at 8x10 -5 Pa-2500 l/s, at 5x10 -3 Pa-4200 l/s. During adsorbent cooling with liquid helium the rate of pumping-out according to hydrogen at 3x10 5 Pa-2400% l/s, at 6x10 3 Pa-1200 l/s, and according to helium at 3.5x10 -5 Pa-2800 l/s, at 4x10 -3 Pa-1150 l/s. The limit vacuum is equal to 1x10 -7 Pa. The volume of the vessel with liquid helium is equal to 3.5 l. Helium consumption is 80 cm 3 /h. Consumption of liquid nitrogen from the shield is 400 cm 3 /h. The limit pressure in the pump is obtained after forevacuum pumping-out (adsorbent regeneration) at 300 K temperature. The pump is made of copper. The pump height together with primed tubes is 800 mm diameter-380 mm [ru

  4. Off-Pump Repair of a Post Myocardial Infarction Ventricular Septal Defect

    Directory of Open Access Journals (Sweden)

    Feridoun Sabzi

    2014-01-01

    Full Text Available Refractory cardiogenic shock meant that traditional patch repairs requiring cardiopulmonary bypass would be poorly tolerated and external sandwich closure of post myocardial ventricular septal defect (VSD appears to be simple and effective after initial myocardial infarction (MI. The three cases presented with a VSD after of acute MI with or without thrombolysed with streptokinase during patient admission. The general condition of the three patients was poor with pulmonary edema, low cardiac output and renal failure. The heart was approached through a median sternotomy. Off-pump coronary artery bypass grafting of the coronary artery lesion was done first using octopus and beating heart surgery method and latero - lateral septal plication was performed using sandwich technique. Low cardiac output managed with intra-aortic balloon pump in these patients accompanied with inotropic drugs. Post-operative transesophageal echocardiography revealed that VSD was closed completely in one patient and in two patients small residual VSD remained. More experience is required to ascertain whether this technique will become an accepted alternative to patch repairs.

  5. Exploitation of humid air latent heat by means of solar assisted heat pumps operating below the dew point

    International Nuclear Information System (INIS)

    Scarpa, Federico; Tagliafico, Luca A.

    2016-01-01

    Highlights: • The opportunity of humid air latent heat exploitation by DX-SAHP is investigated. • A set of experimental tests confirms this opportunity and quantifies it as relevant. • A parametric analysis is performed, via simulation, to deepen the subject. • The energy gain is relevant during both night and daytime. - Abstract: Nowadays, the exploitation of environmental exergy resources for heating purposes (solar energy, convection heat transfer from ambient air, moist air humidity condensation) by means of properly designed heat pump systems is a possible opportunity. In particular, the use of direct expansion solar assisted heat pumps (DX-SAHP) is investigated in this study, when a bare external plate (the solar collector) is kept at temperatures lower than the dew point temperature of ambient air, so that condensation takes place on it. The potential of this technology is settled and an instrumented prototype of a small DX-SAHP system is used to verify the actual performance of the system, in terms of specific thermal energy delivered to the user, efficiency and regulation capabilities. Results clearly show that the contribution of the condensation is significant (20%–30% of the total harvested energy) overnight or in cloudy days with very low or no solar irradiation, and must be taken into account in a system model devoted to describe the DX-SAHP behavior. During daytime, the percentage gain decreases but is still consistent. By investigating along these lines, the heat due to condensation harvested by the collector is found to be a function of the dew-point temperature alone.

  6. Piston-assisted proton pumping in Complex I of mitochondria membranes

    Science.gov (United States)

    Mourokh, Lev; Filonenko, Ilan

    2014-03-01

    Proton-pumping mechanism of Complex I remains mysterious because its electron and proton paths are well separated and the direct Coulomb interaction seems to be negligible. The structure of this enzyme was resolved very recently and its functionality was connected the shift of the helix HL. We model the helix as a piston oscillating between the protons and electrons. We assume that positive charges are accumulated near the edges of the helix. In the oxidized state, the piston is attracted to electrons, so its distance to the proton sites increases, the energy of these sites decreases and the sites can be populated. When electrons proceed to the drain, elastic forces return the piston to the original position and the energies of populated proton sites increase, so the protons can be transferred to the positive site of the membrane. In this work, we explore a simplified model when the interaction of the piston with electrons is replaced by a periodic force. We derive quantum Heisenberg equations for the proton operators and solve them jointly with the Langevin equation for the piston position. We show that the proton pumping is possible in such structure with parameters closely resembling the real system. We also address the feasibility of using such mechanism in nanoelectronics.

  7. Natriuretic peptides stimulate the cardiac sodium pump via NPR-C-coupled NOS activation

    DEFF Research Database (Denmark)

    William, M.; Hamilton, E.J.; Garcia, A.

    2008-01-01

    Natriuretic peptides (NPs) and their receptors (NPRs) are expressed in the heart, but their effects on myocyte function are poorly understood. Because NPRs are coupled to synthesis of cGMP, an activator of the sarcolemmal Na(+)-K(+) pump, we examined whether atrial natriuretic peptide (ANP) regul...

  8. Biomarkers of myocardial stress and fibrosis as predictors of mode of death in patients with chronic heart failure.

    Science.gov (United States)

    Ahmad, Tariq; Fiuzat, Mona; Neely, Benjamin; Neely, Megan L; Pencina, Michael J; Kraus, William E; Zannad, Faiez; Whellan, David J; Donahue, Mark P; Piña, Ileana L; Adams, Kirkwood F; Kitzman, Dalane W; O'Connor, Christopher M; Felker, G Michael

    2014-06-01

    The aim of this study was to determine whether biomarkers of myocardial stress and fibrosis improve prediction of the mode of death in patients with chronic heart failure. The 2 most common modes of death in patients with chronic heart failure are pump failure and sudden cardiac death. Prediction of the mode of death may facilitate treatment decisions. The relationship between amino-terminal pro-brain natriuretic peptide (NT-proBNP), galectin-3, and ST2, biomarkers that reflect different pathogenic pathways in heart failure (myocardial stress and fibrosis), and mode of death is unknown. HF-ACTION (Heart Failure: A Controlled Trial Investigating Outcomes of Exercise Training) was a randomized controlled trial of exercise training versus usual care in patients with chronic heart failure due to left ventricular systolic dysfunction (left ventricular ejection fraction ≤35%). An independent clinical events committee prospectively adjudicated mode of death. NT-proBNP, galectin-3, and ST2 levels were assessed at baseline in 813 subjects. Associations between biomarkers and mode of death were assessed using cause-specific Cox proportional hazards modeling, and interaction testing was used to measure differential associations between biomarkers and pump failure versus sudden cardiac death. Discrimination and risk reclassification metrics were used to assess the added value of galectin-3 and ST2 in predicting mode of death risk beyond a clinical model that included NT-proBNP. After a median follow-up period of 2.5 years, there were 155 deaths: 49 from pump failure, 42 from sudden cardiac death, and 64 from other causes. Elevations in all biomarkers were associated with increased risk for both pump failure and sudden cardiac death in both adjusted and unadjusted analyses. In each case, increases in the biomarker had a stronger association with pump failure than sudden cardiac death, but this relationship was attenuated after adjustment for clinical risk factors. Clinical

  9. Pumping mechanisms in sputter-ion pumps low pressure operation

    International Nuclear Information System (INIS)

    Welch, K.M.

    1991-01-01

    It is shown that significant H 2 pumping occurs in the walls of triode pumps. Also, H 2 is pumped in the anode cells of sputter-ion pumps. This pumping occurs in a manner similar to that by which the inert gases are pumped. That is, H 2 is pumped in the walls of the anode cells by high energy neutral burial. Hydrogen in the pump walls and anodes limits the base pressure of the pump

  10. Hippo pathway deficiency reverses systolic heart failure after infarction.

    Science.gov (United States)

    Leach, John P; Heallen, Todd; Zhang, Min; Rahmani, Mahdis; Morikawa, Yuka; Hill, Matthew C; Segura, Ana; Willerson, James T; Martin, James F

    2017-10-12

    Mammalian organs vary widely in regenerative capacity. Poorly regenerative organs, such as the heart are particularly vulnerable to organ failure. Once established, heart failure commonly results in mortality. The Hippo pathway, a kinase cascade that prevents adult cardiomyocyte proliferation and regeneration, is upregulated in human heart failure. Here we show that deletion of the Hippo pathway component Salvador (Salv) in mouse hearts with established ischaemic heart failure after myocardial infarction induces a reparative genetic program with increased scar border vascularity, reduced fibrosis, and recovery of pumping function compared with controls. Using translating ribosomal affinity purification, we isolate cardiomyocyte-specific translating messenger RNA. Hippo-deficient cardiomyocytes have increased expression of proliferative genes and stress response genes, such as the mitochondrial quality control gene, Park2. Genetic studies indicate that Park2 is essential for heart repair, suggesting a requirement for mitochondrial quality control in regenerating myocardium. Gene therapy with a virus encoding Salv short hairpin RNA improves heart function when delivered at the time of infarct or after ischaemic heart failure following myocardial infarction was established. Our findings indicate that the failing heart has a previously unrecognized reparative capacity involving more than cardiomyocyte renewal.

  11. Pumping mechanisms in sputter-ion pumps low pressure operation

    International Nuclear Information System (INIS)

    Welch, K.M.

    1991-01-01

    It is shown that significant H 2 pumping occurs in the walls of triode pumps. Also, H 2 is pumped in the anode cells of sputter-ion pumps. This pumping occurs in a manner similar to that by which the inert gases are pumped. That is, H 2 pumped in the walls of the anode cells by high energy neutral burial. Hydrogen in the pump walls and anodes limits the base pressure of the pump. 13 refs., 5 figs., 1 tab

  12. Computational fluid dynamics and particle image velocimetry assisted design tools for a new generation of trochoidal gear pumps

    Directory of Open Access Journals (Sweden)

    M Garcia-Vilchez

    2015-06-01

    Full Text Available Trochoidal gear pumps produce significant flow pulsations that result in pressure pulsations, which interact with the system where they are connected, shortening the life of both the pump and circuit components. The complicated aspects of the operation of a gerotor pump make computational fluid dynamics the proper tool for modelling and simulating its flow characteristics. A three-dimensional model with deforming mesh computational fluid dynamics is presented, including the effects of the manufacturing tolerance and the leakage inside the pump. A new boundary condition is created for the simulation of the solid contact in the interteeth radial clearance. The experimental study of the pump is carried out by means of time-resolved particle image velocimetry, and results are qualitatively evaluated, thanks to the numerical simulation results. Time-resolved particle image velocimetry is developed in order to adapt it to the gerotor pump, and it is proved to be a feasible alternative to obtain the instantaneous flow of the pump in a direct mode, which would allow the determination of geometries that minimize the non-desired flow pulsations. Thus, a new methodology involving computational fluid dynamics and time-resolved particle image velocimetry is presented, which allows the obtaining of the instantaneous flow of the pump in a direct mode without altering its behaviour significantly.

  13. Mathematical Modeling of Flow Characteristics in the Embryonic Chick Heart

    DEFF Research Database (Denmark)

    Heebøll-Christensen, Jesper

    This ph.d. thesis contains the mathematical modeling of fluid dynamical phenomena in the tubular embryonic chick heart at HH-stages 10, 12, 14, and 16. The models are constructed by application of energy bond technique and involve the elasticity of heart walls with elliptic cross-section, Womersley...... modified inertia, and resistance due to friction and curvature of the multilayered tubular heart. Through the modeling, flow conditions in the embryonic heart are characterized. The models suggest that eccentric rather than concentric deformation of the beating heart is optimal for mean flows induced...... the models are not conclusive on this point. In addition the Liebau effect is investigated in a simpler system containing two elastic tubes joined to form a liquid filled ring, with a compression pump at an asymmetric location. Through comparison to other reports the system validates model construction...

  14. Enhancement of Arterial Pressure Pulsatility by Controlling Continuous-Flow Left Ventricular Assist Device Flow Rate in Mock Circulatory System.

    Science.gov (United States)

    Bozkurt, Selim; van de Vosse, Frans N; Rutten, Marcel C M

    Continuous-flow left ventricular assist devices (CF-LVADs) generally operate at a constant speed, which reduces pulsatility in the arteries and may lead to complications such as functional changes in the vascular system, gastrointestinal bleeding, or both. The purpose of this study is to increase the arterial pulse pressure and pulsatility by controlling the CF-LVAD flow rate. A MicroMed DeBakey pump was used as the CF-LVAD. A model simulating the flow rate through the aortic valve was used as a reference model to drive the pump. A mock circulation containing two synchronized servomotor-operated piston pumps acting as left and right ventricles was used as a circulatory system. Proportional-integral control was used as the control method. First, the CF-LVAD was operated at a constant speed. With pulsatile-speed CF-LVAD assistance, the pump was driven such that the same mean pump output was generated. Continuous and pulsatile-speed CF-LVAD assistance provided the same mean arterial pressure and flow rate, while the index of pulsatility increased significantly for both arterial pressure and pump flow rate signals under pulsatile speed pump support. This study shows the possibility of improving the pulsatility of CF-LVAD support by regulating pump speed over a cardiac cycle without reducing the overall level of support.

  15. Large animal model of functional tricuspid regurgitation in pacing induced end-stage heart failure.

    Science.gov (United States)

    Malinowski, Marcin; Proudfoot, Alistair G; Langholz, David; Eberhart, Lenora; Brown, Michael; Schubert, Hans; Wodarek, Jeremy; Timek, Tomasz A

    2017-06-01

    Functional tricuspid regurgitation (FTR) is common in patients with advanced heart failure and frequently complicates left ventricular assist device implantation yet remains poorly understood. We set out to establish large animal model of FTR that could serve as a research platform to investigate the pathogenesis of FTR associated with end-stage heart failure. : Through right thoracotomy, ten adult sheep underwent implantation of pacemaker with epicardial LV lead, five sonomicrometry crystals on the right ventricle, and left and right ventricular telemetry pressure sensors during a beating heart off-pump procedure. After 5 ± 1 days of recovery, baseline haemodynamic, echocardiographic and sonomicrometry data were collected. Animals were paced thereafter at a rate of 220-240 beats/min until the development of heart failure and concomitant tricuspid regurgitation. : Three animals died during early recovery period and one during the pacing phase. Six surviving animals were paced for a mean of 14 ± 5 days. Cardiac function was significantly depressed compared to baseline, with LV ejection fraction falling from 69 ± 2% to 22 ± 4% ( P  tricuspid annulus (from 29.5 ± 1.6 to 36.5 ± 4.5 mm; P  = 0.01) and right ventricle (from 21.9 ± 0.2 to 30.3 ± 0.6 mm; P  = 0.03). Sonomicrometry derived contractility of RV free wall was depressed and at least moderate tricuspid insufficiency developed in all animals. : Biventricular dysfunction, tricuspid annular dilatation and significant FTR were observed in our model of ovine tachycardia induced cardiomyopathy. This animal model reflects the clinical situation of end-stage heart failure patients presenting for mechanical support. © The Author 2017. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  16. Experimental Study of the Performance of Air Source Heat Pump Systems Assisted by Low-Temperature Solar-Heated Water

    Directory of Open Access Journals (Sweden)

    Jinshun Wu

    2013-01-01

    Full Text Available Due to the low temperatures, the heating efficiency of air source heat pump systems during the winter is very low. To address this problem, a low-temperature solar hot water system was added to a basic air source heat pump system. Several parameters were tested and analyzed. The heat collection efficiency of the solar collector was analyzed under low-temperature conditions. The factors that affect the performance of the heat pumps, such as the fluid temperature, pressure, and energy savings, were analyzed for cases where the solar energy auxiliary heat pump and the air source heat pump are used independently. The optimal heating temperature and the changes in the fluid temperature were determined. The influence of the compression ratio and the coefficient of performance (COP were investigated theoretically. The results revealed the parameters that are important to the performance of the system. Several measures for improving the COP of the heat pump units are provided for other applications and future research.

  17. Closed-loop helium circulation system for actuation of a continuously operating heart catheter pump.

    Science.gov (United States)

    Karabegovic, Alen; Hinteregger, Markus; Janeczek, Christoph; Mohl, Werner; Gföhler, Margit

    2017-06-09

    Currently available, pneumatic-based medical devices are operated using closed-loop pulsatile or open continuous systems. Medical devices utilizing gases with a low atomic number in a continuous closed loop stream have not been documented to date. This work presents the construction of a portable helium circulation addressing the need for actuating a novel, pneumatically operated catheter pump. The design of its control system puts emphasis on the performance, safety and low running cost of the catheter pump. Static and dynamic characteristics of individual elements in the circulation are analyzed to ensure a proper operation of the system. The pneumatic circulation maximizes the working range of the drive unit inside the catheter pump while reducing the total size and noise production.Separate flow and pressure controllers position the turbine's working point into the stable region of the pressure creation element. A subsystem for rapid gas evacuation significantly decreases the duration of helium removal after a leak, reaching subatmospheric pressure in the intracorporeal catheter within several milliseconds. The system presented in the study offers an easy control of helium mass flow while ensuring stable behavior of its internal components.

  18. Designing the modern pump: engineering aspects of continuous subcutaneous insulin infusion software.

    Science.gov (United States)

    Welsh, John B; Vargas, Steven; Williams, Gary; Moberg, Sheldon

    2010-06-01

    Insulin delivery systems attracted the efforts of biological, mechanical, electrical, and software engineers well before they were commercially viable. The introduction of the first commercial insulin pump in 1983 represents an enduring milestone in the history of diabetes management. Since then, pumps have become much more than motorized syringes and have assumed a central role in diabetes management by housing data on insulin delivery and glucose readings, assisting in bolus estimation, and interfacing smoothly with humans and compatible devices. Ensuring the integrity of the embedded software that controls these devices is critical to patient safety and regulatory compliance. As pumps and related devices evolve, software engineers will face challenges and opportunities in designing pumps that are safe, reliable, and feature-rich. The pumps and related systems must also satisfy end users, healthcare providers, and regulatory authorities. In particular, pumps that are combined with glucose sensors and appropriate algorithms will provide the basis for increasingly safe and precise automated insulin delivery-essential steps to developing a fully closed-loop system.

  19. Artificial heart pumps: bridging the gap between science, technology and personalized medicine by relational medicine.

    Science.gov (United States)

    Raia, Federica; Deng, Mario C

    2017-01-01

    In the US population of 300 million, 3 million have heart failure with reduced ejection fraction and 300,000 have advanced heart failure. Long-term mechanical circulatory support will, within the next decade, be recommended to 30,000 patients annually in the USA, 3000 undergo heart transplantation annually. What do these advances mean for persons suffering from advanced heart failure and their loved ones/caregivers? In this perspective article, we discuss - by exemplifying a case report of a 27-year-old man receiving a Total Artificial Heart - a practice concept of modern medicine that fully incorporates the patient's personhood perspective which we have termed Relational Medicine™. From this case study, it becomes apparent that the successful practice of modern cardiovascular medicine requires the person-person encounter as a core practice element.

  20. Mechanism of artificial heart

    CERN Document Server

    Yamane, Takashi

    2016-01-01

    This book first describes medical devices in relation to regenerative medicine before turning to a more specific topic: artificial heart technologies. Not only the pump mechanisms but also the bearing, motor mechanisms, and materials are described, including expert information. Design methods are described to enhance hemocompatibility: main concerns are reduction of blood cell damage and protein break, as well as prevention of blood clotting. Regulatory science from R&D to clinical trials is also discussed to verify the safety and efficacy of the devices.

  1. Experimental Research of a Water-Source Heat Pump Water Heater System

    Directory of Open Access Journals (Sweden)

    Zhongchao Zhao

    2018-05-01

    Full Text Available The heat pump water heater (HPWH, as a portion of the eco-friendly technologies using renewable energy, has been applied for years in developed countries. Air-source heat pump water heaters and solar-assisted heat pump water heaters have been widely applied and have become more and more popular because of their comparatively higher energy efficiency and environmental protection. Besides use of the above resources, the heat pump water heater system can also adequately utilize an available water source. In order to study the thermal performance of the water-source heat pump water heater (WSHPWH system, an experimental prototype using the cyclic heating mode was established. The heating performance of the water-source heat pump water heater system, which was affected by the difference between evaporator water fluxes, was investigated. The water temperature unfavorably exceeded 55 °C when the experimental prototype was used for heating; otherwise, the compressor discharge pressure was close to the maximum discharge temperature, which resulted in system instability. The evaporator water flux allowed this system to function satisfactorily. It is necessary to reduce the exergy loss of the condenser to improve the energy utilization of the system.

  2. Vapor compression heat pump system field tests at the tech complex

    Science.gov (United States)

    Baxter, Van D.

    1985-11-01

    The Tennessee Energy Conservation In Housing (TECH) complex has been utilized since 1977 as a field test site for several novel and conventional heat pump systems for space conditioning and water heating. Systems tested include the Annual Cycle Energy System (ACES), solar assisted heat pumps (SAHP) both parallel and series, two conventional air-to-air heat pumps, an air-to-air heat pump with desuperheater water heater, and horizontal coil and multiple shallow vertical coil ground-coupled heat pumps (GCHP). A direct comparison of the measured annual performance of the test systems was not possible. However, a cursory examination revealed that the ACES had the best performance, however, its high cost makes it unlikely that it will achieve wide-spread use. Costs for the SAHP systems are similar to those of the ACES but their performance is not as good. Integration of water heating and space conditioning functions with a desuperheater yielded significant efficiency improvement at modest cost. The GCHP systems performed much better for heating than for cooling and may well be the most efficient alternative for residences in cold climates.

  3. Effect of using pump on postoperative pleural effusion in the patients that underwent CABG

    Directory of Open Access Journals (Sweden)

    Mehmet Özülkü

    2015-08-01

    Full Text Available Abstract Objective: The present study investigated effect of using pump on postoperative pleural effusion in patients who underwent coronary artery bypass grafting. Methods: A total of 256 patients who underwent isolated coronary artery bypass grafting surgery in the Cardiovascular Surgery clinic were enrolled in the study. Jostra-Cobe (Model 043213 105, VLC 865, Sweden heart-lung machine was used in on-pump coronary artery bypass grafting. Off-pump coronary artery bypass grafting was performed using Octopus and Starfish. Proximal anastomoses to the aorta in both on-pump and off-pump techniques were performed by side clamps. The patients were discharged from the hospital between postoperative day 6 and day 11. Results: The incidence of postoperative right pleural effusion and bilateral pleural effusion was found to be higher as a count in Group 1 (on-pump as compared to Group 2 (off-pump. But the difference was not statistically significant [P>0.05 for right pleural effusion (P=0.893, P>0.05 for bilateral pleural effusion (P=0.780]. Left pleural effusion was encountered to be lower in Group 2 (off-pump. The difference was found to be statistically significant (P<0.05, P=0.006. Conclusion: Under the light of these results, it can be said that left pleural effusion is less prevalent in the patients that underwent off-pump coronary artery bypass grafting when compared to the patients that underwent on-pump coronary artery bypass grafting.

  4. The effect of chronic digitalization on pump function in systolic heart failure.

    Science.gov (United States)

    Hassapoyannes, C A; Easterling, B M; Chavda, K; Chavda, K K; Movahed, M R; Welch, G W

    2001-10-01

    Short- and intermediate-term use of cardiac glycosides promotes inotropy and improves the ejection fraction in systolic heart failure. To determine whether chronic digitalization alters left ventricular function and performance. Eighty patients with mild-to-moderate systolic heart failure (baseline ejection fraction < or =45%) participated from our institution in a multi-center, chronic, randomized, double-blind study of digitalis vs. placebo. Of the 40 survivors, 38 (20 allocated to the digitalis arm and 18 to the placebo arm) were evaluated at the end of follow-up (mean, 48.4 months). Left ventricular systolic function was assessed by both nuclear ventriculography and echocardiography. The ejection fraction was measured scintigraphically, while the ventricular volumes were computed echocardiographically. The groups did not differ, at baseline or end-of-study, with respect to the ejection fraction and the loading conditions (arterial pressure, ventricular volumes and heart rate) by either intention-to-treat or actual-treatment-received analysis. Over the course of the trial, the digitalis arm exhibited no significant increase in the use of diuretics (18%, P=0.33), in distinction from the placebo group (78%, P=0.004), and a longer stay on study drug among those patients who withdrew from double-blind treatment (28.6 vs. 11.4 months, P=0.01). Following chronic use of digitalis for mild-to-moderate heart failure, cross-sectional comparison with a control group from the same inception cohort showed no appreciable difference in systolic function or performance. Thus, the suggested clinical benefit cannot be explained by an inotropic effect.

  5. The role of cerebral hyperperfusion in postoperative neurologic dysfunction after left ventricular assist device implantation for end-stage heart failure.

    Science.gov (United States)

    Lietz, Katherine; Brown, Kevin; Ali, Syed S; Colvin-Adams, Monica; Boyle, Andrew J; Anderson, David; Weinberg, Alan D; Miller, Leslie W; Park, Soon; John, Ranjit; Lazar, Ronald M

    2009-04-01

    Cerebral hyperperfusion is a life-threatening syndrome that can occur in patients with chronically hypoperfused cerebral vasculature whose normal cerebral circulation was re-established after carotid endarterectomy or angioplasty. We sought to determine whether the abrupt restoration of perfusion to the brain after left ventricular assist device (LVAD) implantation produced similar syndromes. We studied the role of increased systemic flow after LVAD implantation on neurologic dysfunction in 69 consecutive HeartMate XVE LVAD (Thoratec, Pleasanton, Calif) recipients from October 2001 through June 2006. Neurologic dysfunction was defined as postoperative permanent or transient central change in neurologic status, including confusion, focal neurologic deficits, visual changes, seizures, or coma for more than 24 hours within 30 days after LVAD implantation. We found that 19 (27.5%) patients had neurologic dysfunction, including encephalopathy (n = 11), coma (n = 3), and other complications (n = 5). The multivariate analysis showed that an increase in cardiac index from the preoperative baseline value (relative risk, 1.33 per 25% cardiac index increase; P = .01) and a previous coronary bypass operation (relative risk, 4.53; P = .02) were the only independent predictors of neurologic dysfunction. Reduction of left ventricular assist device flow in 16 of the 19 symptomatic patients led to improvement of symptoms in 14 (87%) patients. Our findings showed that normal flow might overwhelm cerebral autoregulation in patients with severe heart failure, suggesting that cerebral hyperperfusion is possible in recipients of mechanical circulatory support with neurologic dysfunction.

  6. Measurements of flux pumping activation of trapped field magnets

    Energy Technology Data Exchange (ETDEWEB)

    Weinstein, Roy; Parks, Drew; Sawh, Ravi-Persad [Texas Center for Superconductivity, 202 Houston Science Center, University of Houston, Houston, TX 77204-5002 (United States); Davey, Kent [Physics Department, 617 Science and Research Building I, University of Houston, Houston, TX 77204-5005 (United States)

    2010-11-15

    Large grains of high temperature superconducting (HTS) material can be utilized as trapped field magnets (TFMs). Persistent currents are set up in the HTS when it is cooled in a magnetic field, or exposed to a magnetic field after cooling. TFMs have been improved over the past two decades by the efforts of a large number of worldwide research groups. However, applications using TFMs have lagged, in part due to the problem of high fields needed for activation. We describe herein experiments designed to observe the behaviour of TFM activation using repeated applications of low fields (called 'pumping'). Significant partial activation is obtained using a non-uniform pumping field (e.g., a small permanent magnet) which is higher in the centre of the HTS than at the periphery. Cooling in zero field followed by pumping with such a field results in trapping the full applied field, in comparison to half of the applied field being trapped by cooling in zero field followed by application of a uniform field. We find that for partial activation by cooling in a field and subsequent activation by pumping, the resulting fields are additive. We also conclude that for activation by fluxoid pumping, creep assists the process.

  7. Experimental analysis of a direct expansion solar assisted heat pump with integral storage tank for domestic water heating under zero solar radiation conditions

    International Nuclear Information System (INIS)

    Fernández-Seara, José; Piñeiro, Carolina; Alberto Dopazo, J.; Fernandes, F.; Sousa, Paulo X.B.

    2012-01-01

    Highlights: ► We analyze a direct expansion solar assisted heat pump under zero solar radiation. ► We determine the COP and equivalent seasonal performance factors (SPFe). ► We determine the main components’ performance under transient operating conditions. ► The Huang and Lee performance evaluation method provides a characteristic COP of 3.23. - Abstract: This paper deals with the experimental evaluation of the performance of a direct expansion solar assisted heat pump water heating (DX-SAHPWH) system working under zero solar radiation conditions at static heating operation mode of the storage tank. The DX-SAHPWH system includes two bare solar collectors as evaporator, a R134a rotary-type hermetic compressor, a thermostatic expansion valve and a helical coil condenser immersed in a 300 L water storage tank. The zero solar radiation and stable ambient air temperature working conditions were established by placing the solar collectors into a climate chamber. The analysis is based on experimental data taken from the DX-SAHPWH provided by the manufacturer and equipped with an appropriate data acquisition system. In the paper, the experimental facility, the data acquisition system and the experimental methodology are described. Performance parameters to evaluate the energy efficiency, such as COP and equivalent seasonal performance factors (SPFe) for the heating period, and the water thermal stratification in the storage tank are defined and obtained from the experimental data. Results from the experimental analysis under transient operating working conditions of the DX-SAHPWH system and its main components are shown and discussed. Lastly, the Huang and Lee DX-SAHPWH performance evaluation method was applied resulting in a characteristic COP of 3.23 for the DX-SAHPWH system evaluated under zero solar radiation condition.

  8. Centrifugal pumps

    CERN Document Server

    Anderson, HH

    1981-01-01

    Centrifugal Pumps describes the whole range of the centrifugal pump (mixed flow and axial flow pumps are dealt with more briefly), with emphasis on the development of the boiler feed pump. Organized into 46 chapters, this book discusses the general hydrodynamic principles, performance, dimensions, type number, flow, and efficiency of centrifugal pumps. This text also explains the pumps performance; entry conditions and cavitation; speed and dimensions for a given duty; and losses. Some chapters further describe centrifugal pump mechanical design, installation, monitoring, and maintenance. The

  9. Groundwater-pumping optimization for land-subsidence control in Beijing plain, China

    Science.gov (United States)

    Qin, Huanhuan; Andrews, Charles B.; Tian, Fang; Cao, Guoliang; Luo, Yong; Liu, Jiurong; Zheng, Chunmiao

    2018-01-01

    Beijing, in the North China plain, is one of the few megacities that uses groundwater as its main source of water supply. Groundwater accounts for about two-thirds of the city's water supply, and during the past 50 years the storage depletion from the unconsolidated aquifers underlying the city has been >10.4 billion m3. By 2010, groundwater pumping in the city had resulted in a cumulative subsidence of greater than 100 mm in an area of about 3,900 km2, with a maximum cumulative subsidence of >1,200 mm. This subsidence has caused significant social and economic losses in Beijing, including significant damage to underground utilities. This study was undertaken to evaluate various future pumping scenarios to assist in selecting an optimal pumping scenario to minimize overall subsidence, meet the requirements of the Beijing Land Subsidence Prevention Plan (BLSPP 2013-2020), and be consistent with continued sustainable economic development. A numerical groundwater and land-subsidence model was developed for the aquifer system of the Beijing plain to evaluate land subsidence rates under the possible future pumping scenarios. The optimal pumping scenario consistent with the evaluation constraints is a reduction in groundwater pumping from three major pumping centers by 100, 50 and 20%, respectively, while maintaining an annual pumping rate of 1.9 billion m3. This scenario's land-subsidence rates satisfy the BLSPP 2013-2020 and the pumping scenario is consistent with continued economic development. It is recommended that this pumping scenario be adopted for future land-subsidence management in Beijing.

  10. Groundwater-pumping optimization for land-subsidence control in Beijing plain, China

    Science.gov (United States)

    Qin, Huanhuan; Andrews, Charles B.; Tian, Fang; Cao, Guoliang; Luo, Yong; Liu, Jiurong; Zheng, Chunmiao

    2018-06-01

    Beijing, in the North China plain, is one of the few megacities that uses groundwater as its main source of water supply. Groundwater accounts for about two-thirds of the city's water supply, and during the past 50 years the storage depletion from the unconsolidated aquifers underlying the city has been >10.4 billion m3. By 2010, groundwater pumping in the city had resulted in a cumulative subsidence of greater than 100 mm in an area of about 3,900 km2, with a maximum cumulative subsidence of >1,200 mm. This subsidence has caused significant social and economic losses in Beijing, including significant damage to underground utilities. This study was undertaken to evaluate various future pumping scenarios to assist in selecting an optimal pumping scenario to minimize overall subsidence, meet the requirements of the Beijing Land Subsidence Prevention Plan (BLSPP 2013-2020), and be consistent with continued sustainable economic development. A numerical groundwater and land-subsidence model was developed for the aquifer system of the Beijing plain to evaluate land subsidence rates under the possible future pumping scenarios. The optimal pumping scenario consistent with the evaluation constraints is a reduction in groundwater pumping from three major pumping centers by 100, 50 and 20%, respectively, while maintaining an annual pumping rate of 1.9 billion m3. This scenario's land-subsidence rates satisfy the BLSPP 2013-2020 and the pumping scenario is consistent with continued economic development. It is recommended that this pumping scenario be adopted for future land-subsidence management in Beijing.

  11. Hemocompatibility of Axial Versus Centrifugal Pump Technology in Mechanical Circulatory Support Devices.

    Science.gov (United States)

    Schibilsky, David; Lenglinger, Matthias; Avci-Adali, Meltem; Haller, Christoph; Walker, Tobias; Wendel, Hans Peter; Schlensak, Christian

    2015-08-01

    The hemocompatible properties of rotary blood pumps commonly used in mechanical circulatory support (MCS) are widely unknown regarding specific biocompatibility profiles of different pump technologies. Therefore, we analyzed the hemocompatibility indicating markers of an axial flow and a magnetically levitated centrifugal device within an in vitro mock loop. The HeartMate II (HM II; n = 3) device and a CentriMag (CM; n = 3) adult pump were investigated in a human whole blood mock loop for 360 min using the MCS devices as a driving component. Blood samples were analyzed by enzyme-linked immunosorbent assay for markers of coagulation, complement system, and inflammatory response. There was a time-dependent activation of the coagulation (thrombin-antithrombin complexes [TAT]), complement (SC5b-9), and inflammation system (polymorphonuclear [PMN] elastase) in both groups. The mean value of TAT (CM: 4.0 μg/L vs. 29.4 μg/L, P technologies and a magnetically levitated centrifugal pump design might be superior. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals Inc.

  12. LMFBR with booster pump in pumping loop

    International Nuclear Information System (INIS)

    Rubinstein, H.J.

    1975-01-01

    A loop coolant circulation system is described for a liquid metal fast breeder reactor (LMFBR) utilizing a low head, high specific speed booster pump in the hot leg of the coolant loop with the main pump located in the cold leg of the loop, thereby providing the advantages of operating the main pump in the hot leg with the reliability of cold leg pump operation

  13. Alloxan-induced diabetes reduces sarcolemmal Na+-K+ pump function in rabbit ventricular myocytes.

    Science.gov (United States)

    Hansen, Peter S; Clarke, Ronald J; Buhagiar, Kerrie A; Hamilton, Elisha; Garcia, Alvaro; White, Caroline; Rasmussen, Helge H

    2007-03-01

    The effect of diabetes on sarcolemmal Na(+)-K(+) pump function is important for our understanding of heart disease associated with diabetes and design of its treatment. We induced diabetes characterized by hyperglycemia but no other major metabolic disturbances in rabbits. Ventricular myocytes isolated from diabetic rabbits and controls were voltage clamped and internally perfused with the whole cell patch-clamp technique. Electrogenic Na(+)-K(+) pump current (I(p), arising from the 3:2 Na(+)-to-K(+) exchange ratio) was identified as the shift in holding current induced by Na(+)-K(+) pump blockade with 100 micromol/l ouabain in most experiments. There was no effect of diabetes on I(p) recorded when myocytes were perfused with pipette solutions containing 80 mmol/l Na(+) to nearly saturate intracellular Na(+)-K(+) pump sites. However, diabetes was associated with a significant decrease in I(p) measured when pipette solutions contained 10 mmol/l Na(+). The decrease was independent of membrane voltage but dependent on the intracellular concentration of K(+). There was no effect of diabetes on the sensitivity of I(p) to extracellular K(+). Pump inhibition was abolished by restoration of euglycemia or by in vivo angiotensin II receptor blockade with losartan. We conclude that diabetes induces sarcolemmal Na(+)-K(+) pump inhibition that can be reversed with pharmacological intervention.

  14. Biomedical engineering support. Annual progress report, August 15, 1974--August 14, 1975. [/sup 238/PuO/sub 2/-powered mechanical heart

    Energy Technology Data Exchange (ETDEWEB)

    Kolff, W.J.; Smith, L.M.; Sandquist, G.M.

    1975-01-01

    The major responsibility of the Institute for Biomedical Engineering at the University of Utah under the ERDA Artificial Heart Program has been to provide in vitro and in vivo experimental data and evaluation of the anatomical fitting, accommodation, performance and adequacy of the artificial heart system and its components as they are developed in the ERDA Program and provided to the Institute for study. The Institute also has the responsibility of designing, constructing and testing the blood handling components of the Blood Pump and insuring reliability, durability and satisfactory performance of these system components. During the reporting period, nine total heart replacement experiments were performed in calves using the ERDA Blood Pump powered by an electric motor implanted in the abdomen. Results of the experiments are given. Ultimately the mechanical heart will be powered by a radioisotope heat source. (TFD)

  15. Wireless patient monitoring system for a moving-actuator type artificial heart.

    Science.gov (United States)

    Nam, K W; Chung, J; Choi, S W; Sun, K; Min, B G

    2006-10-01

    In this study, we developed a wireless monitoring system for outpatients equipped with a moving-actuator type pulsatile bi-ventricular assist device, AnyHeart. The developed monitoring system consists of two parts; a Bluetooth-based short-distance self-monitoring system that can monitor and control the operating status of a VAD using a Bluetooth-embedded personal digital assistant or a personal computer within a distance of 10 meters, and a cellular network-based remote monitoring system that can continuously monitor and control the operating status of AnyHeart at any location. Results of in vitro experiments demonstrate the developed system's ability to monitor the operational status of an implanted AnyHeart.

  16. Investigations on the acoustic optimisation of a variable displacement pump using virtual prototyping

    Directory of Open Access Journals (Sweden)

    Thomas NIED-MENNINGER

    2009-01-01

    Full Text Available In modern vehicles the steering systems are still widely equipped with power-assisted steering pumps. In most cases vane pumps are used which limit the fluid volume flow in dependence of required pressure and running speed by a special design of the internal control valve. This control valve internally redirects the volume flow inside the pump leading still to unnecessary fluid circulation. Variable displacement pumps now offer an additional opportunity to eliminate the internal volume flow in dependence of the required load with reduced losses and hence increased efficiency. This is realized by a variable adjustment of the displacement cells, but simultaneously the variable force and load distributions inside the pump make the acoustic optimization even more difficult. In this paper the kinematics of the vane pump are modelled with a combined analytical and numerical approach. The data out of this model are used as input data for the hydraulic model of the variable displacement vane pump with a commercial tool. Both models are validated with data from test rig investigations. With this validated virtual prototype different design options are developed and finally successfully investigated on a test rig and in a passenger vehicle.

  17. The pumping of hydrogen and helium by sputter-ion pumps

    International Nuclear Information System (INIS)

    Welch, K.M.; Pate, D.J.; Todd, R.J.

    1992-01-01

    The pumping of hydrogen in diode and triode sputter-ion pumps is discussed. The type of cathode material used in these pumps is shown to have a significant impact on the effectiveness with which hydrogen is pumped. Examples of this include data for pumps with aluminum and titanium-alloy cathodes. Diode pumps with aluminum cathodes are shown to be no more effective in the pumping of hydrogen than in the pumping of helium. The use of titanium or titanium alloy anodes is also shown to measurably impact on the speed of these pumps at.very low pressures. This stems from the fact that hydrogen is x10 6 more soluble in titanium than in stainless steel. Hydrogen becomes resident in the anodes because of fast neutral burial. Lastly, quantitative data are given for the He speeds and capacities of both noble and conventional diode and triode pumps. The effectiveness of various pump regeneration procedures, subsequent to the pumping of He, is reported.These included bakeout and N 2 glow discharge cleaning. The comparative desorption of He with the subsequent pumping of N 2 is reported on. The N 2 speed of these pumps was used as the benchmark for defining the size of the pumps vs. their respective He speeds

  18. MR imaging of the heart: functional imaging

    International Nuclear Information System (INIS)

    Croisille, P.; Revel, D.

    2000-01-01

    To date, most applications of cardiovascular MRI relate to the evaluation of major vessels rather than the heart itself. However, MRI plays a major role in the evaluation of specific types of cardiovascular pathology, namely intracardiac and paracardiac masses, pericardial disease, and congenital heart disease. In addition, because the visualization of cardiovascular anatomy with MR is non-invasive and permits three-dimensional analysis but also allows functional assessment of the cardiac pump, it is clear that MRI will have a growing and significant impact over the next years. We review some of the technical aspect of cardiac MRI and describe the current and potential clinical and investigative applications of this new methodology. (orig.)

  19. Nanoparticles as Efflux Pump and Biofilm Inhibitor to Rejuvenate Bactericidal Effect of Conventional Antibiotics

    Science.gov (United States)

    Gupta, Divya; Singh, Ajeet; Khan, Asad U.

    2017-07-01

    The universal problem of bacterial resistance to antibiotic reflects a serious threat for physicians to control infections. Evolution in bacteria results in the development of various complex resistance mechanisms to neutralize the bactericidal effect of antibiotics, like drug amelioration, target modification, membrane permeability reduction, and drug extrusion through efflux pumps. Efflux pumps acquire a wide range of substrate specificity and also the tremendous efficacy for drug molecule extrusion outside bacterial cells. Hindrance in the functioning of efflux pumps may rejuvenate the bactericidal effect of conventional antibiotics. Efflux pumps also play an important role in the exclusion or inclusion of quorum-sensing biomolecules responsible for biofilm formation in bacterial cells. This transit movement of quorum-sensing biomolecules inside or outside the bacterial cells may get interrupted by impeding the functioning of efflux pumps. Metallic nanoparticles represent a potential candidate to block efflux pumps of bacterial cells. The application of nanoparticles as efflux pump inhibitors will not only help to revive the bactericidal effect of conventional antibiotics but will also assist to reduce biofilm-forming capacity of microbes. This review focuses on a novel and fascinating application of metallic nanoparticles in synergy with conventional antibiotics for efflux pump inhibition.

  20. HeartCare+: A Smart Heart Care Mobile Application for Framingham-Based Early Risk Prediction of Hard Coronary Heart Diseases in Middle East

    Directory of Open Access Journals (Sweden)

    Hoda Ahmed Galal Elsayed

    2017-01-01

    Full Text Available Background. Healthcare is a challenging, yet so demanding sector that developing countries are paying more attention to recently. Statistics show that rural areas are expected to develop a high rate of heart diseases, which is a leading cause of sudden mortality, in the future. Thus, providing solutions that can assist rural people in detecting the cardiac risks early will be vital for uncovering and even preventing the long-term complications of cardiac diseases. Methodology. Mobile technology can be effectively utilized to limit the cardiac diseases’ prevalence in rural Middle East. This paper proposes a smart mobile solution for early risk detection of hard coronary heart diseases that uses the Framingham scoring model. Results. Smart HeartCare+ mobile app estimates accurately coronary heart diseases’ risk over 10 years based on clinical and nonclinical data and classifies the patient risk to low, moderate, or high. HeartCare+ also directs the patients to further treatment recommendations. Conclusion. This work attempts to investigate the effectiveness of the mobile technology in the early risk detection of coronary heart diseases. HeartCare+ app intensifies the communication channel between the lab workers and patients residing in rural areas and cardiologists and specialist residing in urban places.

  1. Artificial heartbeat: design and fabrication of a biologically inspired pump

    International Nuclear Information System (INIS)

    Walters, Peter; Stephenson, Robert; Lewis, Amy; Stinchcombe, Andrew; Ieropoulos, Ioannis

    2013-01-01

    We present a biologically inspired actuator exhibiting a novel pumping action. The design of the ‘artificial heartbeat’ actuator is inspired by physical principles derived from the structure and function of the human heart. The actuator employs NiTi artificial muscles and is powered by electrical energy generated by microbial fuel cells (MFCs). We describe the design and fabrication of the actuator and report the results of tests conducted to characterize its performance. This is the first artificial muscle-driven pump to be powered by MFCs fed on human urine. Results are presented in terms of the peak pumping pressure generated by the actuator, as well as for the volume of fluid transferred, when the actuator was powered by energy stored in a capacitor bank, which was charged by 24 MFCs fed on urine. The results demonstrate the potential for the artificial heartbeat actuator to be employed as a fluid circulation pump in future generations of MFC-powered robots (‘EcoBots’) that extract energy from organic waste. We also envisage that the actuator could in the future form part of a bio-robotic artwork or ‘bio-automaton’ that could help increase public awareness of research in robotics, bio-energy and biologically inspired design. (paper)

  2. Liquid metals pumping

    International Nuclear Information System (INIS)

    Le Frere, J.P.

    1984-01-01

    Pumps used to pump liquid metals depend on the liquid metal and on the type of application concerned. One deals more particularly with electromagnetic pumps, the main pumps used with mechanical pumps. To pump sodium in the nuclear field, these two types of pumps are used; the pumps of different circuits of Super Phenix are presented and described [fr

  3. Characteristics and outcome of patients with heart failure due to anabolic-androgenic steroids

    DEFF Research Database (Denmark)

    Søndergaard, Eva Bjerre; Thune, Jens Jakob; Gustafsson, Finn

    2014-01-01

    OBJECTIVES: The objective of the study was to analyse the outcome of patients with advanced heart failure due to abuse of anabolic-androgenic steroids. DESIGN: A retrospective chart review of patients admitted or referred for advanced heart failure, due to anabolic-androgenic steroid abuse...... with angiotensin-converting enzyme inhibitors and beta-blockers. The remaining 3 patients required implantation of a LV assist device (LVAD) and were listed for heart transplantation. No recovery of LV function in the patients treated with assist device was seen. CONCLUSION: Anabolic-androgenic steroid...

  4. Crawl space assisted heat pump. [using stored ground heat

    Science.gov (United States)

    Ternes, M. P.

    1980-01-01

    A variety of experiments and simulations, currently being designed or underway, to determine the feasibility of conditioning the source air of an air to air heat pump using stored ground heat or cool to produce higher seasonal COP's and net energy savings are discussed. The ground would condition ambient air as it is drawn through the crawl space of a house. Tests designed to evaluate the feasibility of the concept, to determine the amount of heat or cool available from the ground, to study the effect of the system on the heating and cooling loads of the house, to study possible mechanisms which could enhance heat flow through the ground, and to determine if diurnal temperature swings are necessary to achieve successful system performance are described.

  5. Assessment of R290 as a possible alternative to R22 in direct expansion solar assisted heat pumps

    Directory of Open Access Journals (Sweden)

    Paradeshi Lokesh

    2017-01-01

    Full Text Available In this paper, the energy performance of a direct expansion solar assisted heat pump has been experimentally assessed with R290 as an alternative to R22 to meet the requirements of Kigali agreement. The experiments have been performed at Calicut climatic conditions (latitude of 11.15° N, longitude of 75.49° E during the winter climates of 2016. The performance parameters such as, compressor power consumption, condenser heating capacity, energy performance ratio, and solar energy input ratio were evaluated for energy performance comparison. The results showed that, R290 has 6.8% higher energy performance ratio when compared to R22, with 11% reduction in compressor power consumption. Moreover, R290 has negligible global warming impact and zero ozone depletion potential when compared to R22. The effect of wind speed, collector area, ambient temperature, and solar insolation on the system performance found to be with an average value of 0.85%, 12%, 2.5%, and 4.5% for the selected refrigerants, respectively.

  6. German disease management guidelines: surgical therapies for chronic heart failure.

    Science.gov (United States)

    Sindermann, J R; Klotz, S; Rahbar, K; Hoffmeier, A; Drees, G

    2010-02-01

    The German Disease Management Guideline "Chronic Heart Failure" intends to guide physicians working in the field of diagnosis and treatment of heart failure. The guideline provides a tool on the background of evidence based medicine. The following short review wants to give insights into the role of some surgical treatment options to improve heart failure, such as revascularization, ventricular reconstruction and aneurysmectomy, mitral valve reconstruction, ventricular assist devices and heart transplantation. (c) Georg Thieme Verlag KG Stuttgart-New York.

  7. Simulation of a pulsatile total artificial heart: Development of a partitioned Fluid Structure Interaction model

    Science.gov (United States)

    Sonntag, Simon J.; Kaufmann, Tim A. S.; Büsen, Martin R.; Laumen, Marco; Linde, Torsten; Schmitz-Rode, Thomas; Steinseifer, Ulrich

    2013-04-01

    Heart disease is one of the leading causes of death in the world. Due to a shortage in donor organs artificial hearts can be a bridge to transplantation or even serve as a destination therapy for patients with terminal heart insufficiency. A pusher plate driven pulsatile membrane pump, the Total Artificial Heart (TAH) ReinHeart, is currently under development at the Institute of Applied Medical Engineering of RWTH Aachen University.This paper presents the methodology of a fully coupled three-dimensional time-dependent Fluid Structure Interaction (FSI) simulation of the TAH using a commercial partitioned block-Gauss-Seidel coupling package. Partitioned coupling of the incompressible fluid with the slender flexible membrane as well as a high fluid/structure density ratio of about unity led inherently to a deterioration of the stability (‘artificial added mass instability’). The objective was to conduct a stable simulation with high accuracy of the pumping process. In order to achieve stability, a combined resistance and pressure outlet boundary condition as well as the interface artificial compressibility method was applied. An analysis of the contact algorithm and turbulence condition is presented. Independence tests are performed for the structural and the fluid mesh, the time step size and the number of pulse cycles. Because of the large deformation of the fluid domain, a variable mesh stiffness depending on certain mesh properties was specified for the fluid elements. Adaptive remeshing was avoided. Different approaches for the mesh stiffness function are compared with respect to convergence, preservation of mesh topology and mesh quality. The resulting mesh aspect ratios, mesh expansion factors and mesh orthogonalities are evaluated in detail. The membrane motion and flow distribution of the coupled simulations are compared with a top-view recording and stereo Particle Image Velocimetry (PIV) measurements, respectively, of the actual pump.

  8. Continuously pumping and reactivating gas pump

    International Nuclear Information System (INIS)

    Batzer, T.H.; Call, W.R.

    1984-01-01

    Apparatus for continuous pumping using cycling cyropumping panels. A plurality of liquid helium cooled panels are surrounded by movable nitrogen cooled panels the alternatively expose or shield the helium cooled panels from the space being pumped. Gases condense on exposed helium cooled panels until the nitrogen cooled panels are positioned to isolate the helium cooled panels. The helium cooled panels are incrementally warmed, causing captured gases to accumulate at the base of the panels, where an independent pump removes the gases. After the helium cooled panels are substantially cleaned of condensate, the nitrogen cooled panels are positioned to expose the helium cooled panels to the space being pumped

  9. Continuously pumping and reactivating gas pump

    Science.gov (United States)

    Batzer, Thomas H.; Call, Wayne R.

    1984-01-01

    Apparatus for continuous pumping using cycling cyropumping panels. A plurality of liquid helium cooled panels are surrounded by movable nitrogen cooled panels the alternatively expose or shield the helium cooled panels from the space being pumped. Gases condense on exposed helium cooled panels until the nitrogen cooled panels are positioned to isolate the helium cooled panels. The helium cooled panels are incrementally warmed, causing captured gases to accumulate at the base of the panels, where an independent pump removes the gases. After the helium cooled panels are substantially cleaned of condensate, the nitrogen cooled panels are positioned to expose the helium cooled panels to the space being pumped.

  10. Assessment of hydraulic performance and biocompatibility of a MagLev centrifugal pump system designed for pediatric cardiac or cardiopulmonary support.

    Science.gov (United States)

    Dasse, Kurt A; Gellman, Barry; Kameneva, Marina V; Woolley, Joshua R; Johnson, Carl A; Gempp, Thomas; Marks, John D; Kent, Stella; Koert, Andrew; Richardson, J Scott; Franklin, Steve; Snyder, Trevor A; Wearden, Peter; Wagner, William R; Gilbert, Richard J; Borovetz, Harvey S

    2007-01-01

    The treatment of children with life-threatening cardiac and cardiopulmonary failure is a large and underappreciated public health concern. We have previously shown that the CentriMag is a magnetically levitated centrifugal pump system, having the utility for treating adults and large children (1,500 utilized worldwide). We present here the PediVAS, a pump system whose design was modified from the CentriMag to meet the physiological requirements of young pediatric and neonatal patients. The PediVAS is comprised of a single-use centrifugal blood pump, reusable motor, and console, and is suitable for right ventricular assist device (RVAD), left ventricular assist device (LVAD), biventricular assist device (BVAD), or extracorporeal membrane oxygenator (ECMO) applications. It is designed to operate without bearings, seals and valves, and without regions of blood stasis, friction, or wear. The PediVAS pump is compatible with the CentriMag hardware, although the priming volume was reduced from 31 to 14 ml, and the port size reduced from 3/8 to (1/4) in. For the expected range of pediatric flow (0.3-3.0 L/min), the PediVAS exhibited superior hydraulic efficiency compared with the CentriMag. The PediVAS was evaluated in 14 pediatric animals for up to 30 days, demonstrating acceptable hydraulic function and hemocompatibility. The current results substantiate the performance and biocompatibility of the PediVAS cardiac assist system and are likely to support initiation of a US clinical trial in the future.

  11. Benefits of smart pumps for automated changeovers of vasoactive drug infusion pumps: a quasi-experimental study.

    Science.gov (United States)

    Cour, M; Hernu, R; Bénet, T; Robert, J M; Regad, D; Chabert, B; Malatray, A; Conrozier, S; Serra, P; Lassaigne, M; Vanhems, P; Argaud, L

    2013-11-01

    Manual changeover of vasoactive drug infusion pumps (CVIP) frequently lead to haemodynamic instability. Some of the newest smart pumps allow automated CVIP. The aim of this study was to compare automated CVIP with manual 'Quick Change' relays. We performed a prospective, quasi-experimental study, in a university-affiliated intensive care unit (ICU). All adult patients receiving continuous i.v. infusion of vasoactive drugs were included. CVIP were successively performed manually (Phase 1) and automatically (Phase 2) during two 6-month periods. The primary endpoint was the frequency of haemodynamic incidents related to the relays, which were defined as variations of mean arterial pressure >15 mm Hg or heart rate >15 bpm. The secondary endpoints were the nursing time dedicated to relays and the number of interruptions in care because of CVIP. A multivariate mixed effects logistic regression was fitted for analytic analysis. We studied 1329 relays (Phase 1: 681, Phase 2: 648) from 133 patients (Phase 1: 63, Phase 2: 70). Incidents related to CVIP decreased from 137 (20%) in Phase 1 to 73 (11%) in Phase 2 (Ppumps in limiting the frequency of haemodynamic incidents related to relays and in reducing the nursing workload.

  12. Biomarkers in acute heart failure.

    Science.gov (United States)

    Mallick, Aditi; Januzzi, James L

    2015-06-01

    The care of patients with acutely decompensated heart failure is being reshaped by the availability and understanding of several novel and emerging heart failure biomarkers. The gold standard biomarkers in heart failure are B-type natriuretic peptide and N-terminal pro-B-type natriuretic peptide, which play an important role in the diagnosis, prognosis, and management of acute decompensated heart failure. Novel biomarkers that are increasingly involved in the processes of myocardial injury, neurohormonal activation, and ventricular remodeling are showing promise in improving diagnosis and prognosis among patients with acute decompensated heart failure. These include midregional proatrial natriuretic peptide, soluble ST2, galectin-3, highly-sensitive troponin, and midregional proadrenomedullin. There has also been an emergence of biomarkers for evaluation of acute decompensated heart failure that assist in the differential diagnosis of dyspnea, such as procalcitonin (for identification of acute pneumonia), as well as markers that predict complications of acute decompensated heart failure, such as renal injury markers. In this article, we will review the pathophysiology and usefulness of established and emerging biomarkers for the clinical diagnosis, prognosis, and management of acute decompensated heart failure. Copyright © 2015 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  13. An analysis of the energetic cost of the branchial and cardiac pumps during sustained swimming in trout

    DEFF Research Database (Denmark)

    FARRELL, AP; STEFFENSEN, JF

    1987-01-01

    Experimental data are available for the oxygen cost of the branchial and cardiac pumps in fish. These data were used to theoretically analyze the relative oxygen cost of these pumps during rest and swimming in rainbow troutSalmo gairdneri. Efficiency of the heart increases with activity and so...... the relative oxygen cost of the cardiac pumps decreased from 4.6% at rest to 1.9% at the critical swimming speed. The relative oxygen cost of the branchial pump is significant in the resting and slowly swimming fish, being 10 to 15% of total oxygen uptake. However, when swimming trout switch to a ram mode...... of ventilation, a considerable saving in oxygen cost is accrued by switching the cost of ventilation from the branchial to the tail musculature. Thus, the relative oxygen cost of the branchial and cardiac pumps actually decreases at critical swimming speed compared to rest and therefore is unlikely to be a major...

  14. An implantable centrifugal blood pump for long term circulatory support.

    Science.gov (United States)

    Yamazaki, K; Litwak, P; Kormos, R L; Mori, T; Tagusari, O; Antaki, J F; Kameneva, M; Watach, M; Gordon, L; Umezu, M; Tomioka, J; Koyanagi, H; Griffith, B P

    1997-01-01

    A compact centrifugal blood pump was developed as an implantable left ventricular assist system. The impeller diameter is 40 mm and the pump dimensions are 55 x 64 mm. This first prototype was fabricated from titanium alloy, resulting in a pump weight of 400 g including a brushless DC motor. Weight of the second prototype pump was reduced to 280 g. The entire blood contacting surface is coated with diamond like carbon to improve blood compatibility. Flow rates of over 7 L/min against 100 mmHg pressure at 2,500 rpm with 9 W total power consumption have been measured. A newly designed mechanical seal with a recirculating purge system ("Cool-Seal") is used as a shaft seal. In this seal system, seal temperature is kept under 40 degrees C to prevent heat denaturation of blood proteins. Purge fluid also cools the pump motor coil and journal bearing. The purge fluid is continuously purified and sterilized by an ultrafiltration filter incorporated into the paracorporeal drive console. In vitro experiments with bovine blood demonstrated an acceptably low hemolysis rate (normalized index of hemolysis = 0.005 +/- 0.002 g/100 L). In vivo experiments are currently ongoing using calves. Via left thoracotomy, left ventricular apex-descending aorta bypass was performed utilizing a PTFE (Polytetrafluoroethylene) vascular graft, with the pump placed in the left thoracic cavity. In two in vivo experiments, pump flow rate was maintained at 5-8 L/min, and pump power consumption remained stable at 9-10 W. All plasma free hemoglobin levels were measured at < 15 mg/dl. The seal system has demonstrated good seal capability with negligible purge fluid consumption (< 0.5 ml/ day). Both animals remain under observation after 162 and 91 days of continuous pump function.

  15. On-Pump Versus Off-Pump Coronary Artery Bypass Surgery in Elderly Patients

    DEFF Research Database (Denmark)

    Houlind, Kim; Kjeldsen, Bo Juul; Madsen, Susanne Nørgaard

    2012-01-01

    BACKGROUND: Conventional coronary artery bypass grafting performed with the use of cardiopulmonary bypass is a well-validated treatment for patients with ischemic heart disease. Off-pump coronary artery bypass grafting (OPCAB) has been suggested to reduce the number of perioperative complications......, especially in elderly patients. METHODS AND RESULTS: In a multicenter, randomized trial, we assigned 900 patients >70 years of age to conventional coronary artery bypass grafting or OPCAB surgery. After 30 days, a blinded end-point committee assessed whether a combined end point of death, stroke...... experiencing the combined end point within 30 days was 10.2% for conventional coronary artery bypass grafting and 10.7% for OPCAB. Implied risk difference of 0.4% (with a 95% confidence interval, -3.6 to 4.4) showed nonsignificance in a standard test for equality (P=0.83) and for noninferiority...

  16. The relationship between the hypokalaemic response to adrenaline, beta-adrenoceptors, and Na(+)-K+ pumps in skeletal and cardiac muscle membranes in the rabbit

    International Nuclear Information System (INIS)

    Elfellah, M.S.; Reid, J.L.

    1990-01-01

    The hypokalaemic response to adrenaline and the involvement of beta-adrenoceptors and Na(+)-K+ pumps were investigated in control rabbits and animals chronically pretreated with adrenaline. The hypokalaemic response to acute intravenous infusion of adrenaline was significantly reduced when rabbits were chronically pretreated with adrenaline for 10 days. Chronic pretreatment of rabbits with adrenaline significantly reduced the densities for [125I]cyanopindolol and [3H]ouabain binding sites in skeletal muscle and heart. Furthermore, there was a strong positive correlation (r = 0.97, p less than 0.001) between the Bmax for ICYP and [3H]ouabain, in the rabbit heart. Ouabain-sensitive 86Rb uptake and the activity of 3-O-methylfluorescein phosphate phosphatase were used to assess the function of the Na(+)-K+ pump in skeletal and cardiac muscle. There was no significant difference in these functional indices of the Na(+)-K+ pump between the control and adrenaline-pretreated animals, in skeletal or cardiac muscle. Thus, downregulation of the [3H]ouabain binding sites did not appear to be accompanied by reduced function of the Na(+)-K+ pump. Additional investigations are required to confirm further the dissociation between the function of the pump and the ouabain binding sites

  17. Study of Hydrogen Pumping through Condensed Argon in Cryogenic pump

    International Nuclear Information System (INIS)

    Jadeja, K A; Bhatt, S B

    2012-01-01

    In ultra high vacuum (UHV) range, hydrogen is a dominant residual gas in vacuum chamber. Hydrogen, being light gas, pumping of hydrogen in this vacuum range is limited with widely used UHV pumps, viz. turbo molecular pump and cryogenic pump. Pre condensed argon layers in cryogenic pump create porous structure on the surface of the pump, which traps hydrogen gas at a temperature less than 20° K. Additional argon gas injection in the cryogenic pump, at lowest temperature, generates multiple layers of condensed argon as a porous frost with 10 to 100 A° diameters pores, which increase the pumping capacity of hydrogen gas. This pumping mechanism of hydrogen is more effective, to pump more hydrogen gas in UHV range applicable in accelerator, space simulation etc. and where hydrogen is used as fuel gas like tokamak. For this experiment, the cryogenic pump with a closed loop refrigerator using helium gas is used to produce the minimum cryogenic temperature as ∼ 14° K. In this paper, effect of cryosorption of hydrogen is presented with different levels of argon gas and hydrogen gas in cryogenic pump chamber.

  18. The need for intra aortic balloon pump support following open heart surgery: risk analysis and outcome.

    LENUS (Irish Health Repository)

    Parissis, Haralabos

    2010-01-01

    BACKGROUND: The early and intermediate outcome of patients requiring intraaortic balloon pump (IABP) was studied in a cohort of 2697 adult cardiac surgical patients. METHODS: 136 patients requiring IABP (5.04%) support analysed over a 4 year period. Prospective data collection, obtained. RESULTS: The overall operative mortality was 35.3%. The "operation specific" mortality was higher on the Valve population.The mortality (%) as per time of balloon insertion was: Preoperative 18.2, Intraoperative 33.3, postoperative 58.3 (p < 0.05).The incremental risk factors for death were: Female gender (Odds Ratio (OR) = 3.87 with Confidence Intervals (CI) = 1.3-11.6), Smoking (OR = 4.88, CI = 1.23- 19.37), Preoperative Creatinine>120 (OR = 3.3, CI = 1.14-9.7), Cross Clamp time>80 min (OR = 4.16, CI = 1.73-9.98) and IABP insertion postoperatively (OR = 19.19, CI = 3.16-116.47).The incremental risk factors for the development of complications were: Poor EF (OR = 3.16, CI = 0.87-11.52), Euroscore >7 (OR = 2.99, CI = 1.14-7.88), history of PVD (OR = 4.99, CI = 1.32-18.86).The 5 years survival was 79.2% for the CABG population and 71.5% for the valve group. (Hazard ratio = 1.78, CI = 0.92-3.46). CONCLUSIONS: IABP represents a safe option of supporting the failing heart. The need for IABP especially in a high risk Valve population is associated with early unfavourable outcome, however the positive mid term results further justify its use.

  19. The need for intra aortic balloon pump support following open heart surgery: risk analysis and outcome

    Directory of Open Access Journals (Sweden)

    Apostolakis Efstratios

    2010-04-01

    Full Text Available Abstract Background The early and intermediate outcome of patients requiring intraaortic balloon pump (IABP was studied in a cohort of 2697 adult cardiac surgical patients. Methods 136 patients requiring IABP (5.04% support analysed over a 4 year period. Prospective data collection, obtained. Results The overall operative mortality was 35.3%. The "operation specific" mortality was higher on the Valve population. The mortality (% as per time of balloon insertion was: Preoperative 18.2, Intraopeartive 33.3, postoperative 58.3 (p The incremental risk factors for death were: Female gender (Odds Ratio (OR = 3.87 with Confidence Intervals (CI = 1.3-11.6, Smoking (OR = 4.88, CI = 1.23- 19.37, Preoperative Creatinine>120 (OR = 3.3, CI = 1.14-9.7, Cross Clamp time>80 min (OR = 4.16, CI = 1.73-9.98 and IABP insertion postoperatively (OR = 19.19, CI = 3.16-116.47. The incremental risk factors for the development of complications were: Poor EF (OR = 3.16, CI = 0.87-11.52, Euroscore >7 (OR = 2.99, CI = 1.14-7.88, history of PVD (OR = 4.99, CI = 1.32-18.86. The 5 years survival was 79.2% for the CABG population and 71.5% for the valve group. (Hazard ratio = 1.78, CI = 0.92-3.46. Conclusions IABP represents a safe option of supporting the failing heart. The need for IABP especially in a high risk Valve population is associated with early unfavourable outcome, however the positive mid term results further justify its use.

  20. Na(+)/K(+) pump interacts with the h-current to control bursting activity in central pattern generator neurons of leeches.

    Science.gov (United States)

    Kueh, Daniel; Barnett, William H; Cymbalyuk, Gennady S; Calabrese, Ronald L

    2016-09-02

    The dynamics of different ionic currents shape the bursting activity of neurons and networks that control motor output. Despite being ubiquitous in all animal cells, the contribution of the Na(+)/K(+) pump current to such bursting activity has not been well studied. We used monensin, a Na(+)/H(+) antiporter, to examine the role of the pump on the bursting activity of oscillator heart interneurons in leeches. When we stimulated the pump with monensin, the period of these neurons decreased significantly, an effect that was prevented or reversed when the h-current was blocked by Cs(+). The decreased period could also occur if the pump was inhibited with strophanthidin or K(+)-free saline. Our monensin results were reproduced in model, which explains the pump's contributions to bursting activity based on Na(+) dynamics. Our results indicate that a dynamically oscillating pump current that interacts with the h-current can regulate the bursting activity of neurons and networks.

  1. Inspection of an artificial heart by the neutron radiography technique

    International Nuclear Information System (INIS)

    Pugliesi, R.; Geraldo, L.P.; Andrade, M.L.G.; Menezes, M.O.; Pereira, M.A.S.; Maizato, M.J.S.

    1999-01-01

    The neutron radiography technique was employed to inspect an artificial heart prototype which is being developed to provide blood circulation for patients expecting heart transplant surgery. The radiographs have been obtained by the direct method with a gadolinium converter screen along with the double coated Kodak-AA emulsion film. The artificial heart consists of a flexible plastic membrane located inside a welded metallic cavity, which is employed for blood pumping purposes. The main objective of the present inspection was to identify possible damages in this plastic membrane, produced during the welding process of the metallic cavity. The obtained radiographs were digitized as well as analysed in a PC and the improved images clearly identify several damages in the plastic membrane, suggesting changes in the welding process

  2. Inspection of an artificial heart by the neutron radiography technique

    CERN Document Server

    Pugliesi, R; Andrade, M L G; Menezes, M O; Pereira, M A S; Maizato, M J S

    1999-01-01

    The neutron radiography technique was employed to inspect an artificial heart prototype which is being developed to provide blood circulation for patients expecting heart transplant surgery. The radiographs have been obtained by the direct method with a gadolinium converter screen along with the double coated Kodak-AA emulsion film. The artificial heart consists of a flexible plastic membrane located inside a welded metallic cavity, which is employed for blood pumping purposes. The main objective of the present inspection was to identify possible damages in this plastic membrane, produced during the welding process of the metallic cavity. The obtained radiographs were digitized as well as analysed in a PC and the improved images clearly identify several damages in the plastic membrane, suggesting changes in the welding process.

  3. Comparative analytics of infusion pump data across multiple hospital systems.

    Science.gov (United States)

    Catlin, Ann Christine; Malloy, William X; Arthur, Karen J; Gaston, Cindy; Young, James; Fernando, Sudheera; Fernando, Ruchith

    2015-02-15

    A Web-based analytics system for conducting inhouse evaluations and cross-facility comparisons of alert data generated by smart infusion pumps is described. The Infusion Pump Informatics (IPI) project, a collaborative effort led by research scientists at Purdue University, was launched in 2009 to provide advanced analytics and tools for workflow analyses to assist hospitals in determining the significance of smart-pump alerts and reducing nuisance alerts. The IPI system allows facility-specific analyses of alert patterns and trends, as well as cross-facility comparisons of alert data uploaded by more than 55 participating institutions using different types of smart pumps. Tools accessible through the IPI portal include (1) charts displaying aggregated or breakout data on the top drugs associated with alerts, numbers of alerts per device or care area, and override-to-alert ratios, (2) investigative reports that can be used to characterize and analyze pump-programming errors in a variety of ways (e.g., by drug, by infusion type, by time of day), and (3) "drill-down" workflow analytics enabling users to evaluate alert patterns—both internally and in relation to patterns at other hospitals—in a quick and efficient stepwise fashion. The formation of the IPI analytics system to support a community of hospitals has been successful in providing sophisticated tools for member facilities to review, investigate, and efficiently analyze smart-pump alert data, not only within a member facility but also across other member facilities, to further enhance smart pump drug library design. Copyright © 2015 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  4. Intraventricular filling under increasing left ventricular wall stiffness and heart rates

    Science.gov (United States)

    Samaee, Milad; Lai, Hong Kuan; Schovanec, Joseph; Santhanakrishnan, Arvind; Nagueh, Sherif

    2015-11-01

    Heart failure with normal ejection fraction (HFNEF) is a clinical syndrome that is prevalent in over 50% of heart failure patients. HFNEF patients show increased left ventricle (LV) wall stiffness and clinical diagnosis is difficult using ejection fraction (EF) measurements. We hypothesized that filling vortex circulation strength would decrease with increasing LV stiffness irrespective of heart rate (HR). 2D PIV and hemodynamic measurements were acquired on LV physical models of varying wall stiffness under resting and exercise HRs. The LV models were comparatively tested in an in vitro flow circuit consisting of a two-element Windkessel model driven by a piston pump. The stiffer LV models were tested in comparison with the least stiff baseline model without changing pump amplitude, circuit compliance and resistance. Increasing stiffness at resting HR resulted in diminishing cardiac output without lowering EF below 50% as in HFNEF. Increasing HR to 110 bpm in addition to stiffness resulted in lowering EF to less than 50%. The circulation strength of the intraventricular filling vortex diminished with increasing stiffness and HR. The results suggest that filling vortex circulation strength could be potentially used as a surrogate measure of LV stiffness. This research was supported by the Oklahoma Center for Advancement of Science and Technology (HR14-022).

  5. Effect of Physical Osmosis Methods on Quality of Tilapia Fillets Processed by Heat Pump Drying

    Directory of Open Access Journals (Sweden)

    Li Min

    2017-06-01

    Full Text Available In order to achieve the influence of different pretreatment methods on heat pump dried tilapia fillets, the effects of trehalose, ultrasound-assisted and freeze-thaw cycle assisted osmotic dehydration on the color, rehydration, texture and Ca2+-ATPase activity were investigated. Tilapia fillets (100 mm length × 50 mm width × 5 mm height were first osmoconcentrated in a trehalose solution combined with 4°C under atmospheric pressure for 1 h, different power of ultrasound and freeze-thawing respectively, then heat pump dried. The results showed that under the same drying method, the comprehensive score of ultrasound in 400 Watt was best, compared to freeze-thaw, the ultrasound pretreatment had a significant (p0.05 effect on the rehydration and texture. However, both of them significantly (p<0.05 affected the quality in comparison to that of osmosis at 4°C. It indicates that suitable ultrasonic pretreatment conditions improve the quality of dried products effectively and the conclusion of this research provides reference for heat pump dried similar products.

  6. Solar-assisted ground-source heat pump system design and case study%太阳能辅助地埋管地源热泵系统设计及实例分析

    Institute of Scientific and Technical Information of China (English)

    季永明; 端木琳; 李祥立

    2017-01-01

    Presents an improved method to determine the solar collector area of the solar-assisted ground-source heat pump system based on the heat balance method.For a commercial building in Dalian,proposes the design scheme of a solar-assisted ground-source heat pump system.Simulates the operating parameters of the system by TRNSYS,and the results show that,on the basis of ensuring the heating capacity of the building,the system guarantees the average temperature of the thermal storage soil which contains the ground heat exchanger periodic and consistent change,and the COP of the heat pump is improved significantly compared with that of the system without solar collectors in winter.%基于热平衡法提出了确定太阳能辅助地埋管地源热泵系统中太阳能集热器面积的方法.针对大连地区一公共建筑,提出了太阳能辅助地埋管地源热泵系统设计方案.采用TRNSYS软件对该系统运行参数进行了仿真模拟,结果显示,在保证建筑供热量的基础上,系统能长期保证热泵源侧换热器所在蓄热土壤平均温度呈周期性一致变化,且冬季热泵机组COP较无集热器工况显著提高.

  7. Heart transplantation for adults with congenital heart disease: current status and future prospects.

    Science.gov (United States)

    Matsuda, Hikaru; Ichikawa, Hajime; Ueno, Takayoshi; Sawa, Yoshiki

    2017-06-01

    Increased survival rates after corrective or palliative surgery for complex congenital heart disease (CHD) in infancy and childhood are now being coupled with increased numbers of patients who survive to adulthood with various residual lesions or sequelae. These patients are likely to deteriorate in cardiac function or end-organ function, eventually requiring lifesaving treatment including heart transplantation. Although early and late outcomes of heart transplantation have been improving for adult survivors of CHD, outcomes and pretransplant management could still be improved. Survivors of Fontan procedures are a vulnerable cohort, particularly when single ventricle physiology fails, mostly with protein-losing enteropathy and hepatic dysfunction. Therefore, we reviewed single-institution and larger database analyses of adults who underwent heart transplantation for CHD, to enable risk stratification by identifying the indications and outcomes. As the results, despite relatively high early mortality, long-term results were encouraging after heart transplantation. However, further investigations are needed to improve the indication criteria for complex CHD, especially for failed Fontan. In addition, the current system of status criteria and donor heart allocation system in heart transplantation should be arranged as suitable for adults with complex CHD. Furthermore, there is a strong need to develop ventricular assist devices as a bridge to transplantation or destination therapy, especially where right-sided circulatory support is needed.

  8. EVAHEART: an implantable centrifugal blood pump for long-term circulatory support.

    Science.gov (United States)

    Yamazaki, Kenji; Kihara, Shinichiro; Akimoto, Takehide; Tagusari, Osamu; Kawai, Akihiko; Umezu, Mitsuo; Tomioka, Jun; Kormos, Robert L; Griffith, Bartley P; Kurosawa, Hiromi

    2002-11-01

    We developed "EVAHEART": a compact centrifugal blood pump system as an implantable left ventricular assist device for long-term circulatory support. The 55 x 64 mm pump is made from pure titanium, and weighs 370 g. The entire blood-contacting surface is covered with an anti-thrombogenic coating of diamond like carbon (DLC) or 2-methacryloyloxyethyl phosphorylcholine (MPC) to improve blood compatibility. Flows exceeding 12 L/min against 100 mmHg pressure at 2600 rpm was measured. A low-temperature mechanical seal with recirculating cooling system is used to seal the shaft. EVAHEART demonstrated an acceptably low hemolysis rate with normalized index of hemolysis of 0.005 +/- 0.002 g/100L. We evaluated the pump in long-term in-vivo experiments with seven calves. Via left thoracotomy, we conducted left ventricular apex-descending aorta bypass, placing the pump in the left thoracic cavity. Pump flow rates was maintained at 5-9 L/min, pump power consumption remained stable at 9-10 W in all cases, plasma free Hb levels were less than 15 mg/dl, and the seal system showed good seal capability throughout the experiments. The calves were sacrificed on schedule on postoperative day 200, 222, 142, 90, 151, 155, and 133. No thrombi formed on the blood contacting surface with either the DLC or MPC coating, and no major organ thromboembolisms occurred except for a few small renal infarcts. EVAHEART centrifugal blood pump demonstrated excellent performance in long-term in-vivo experiments.

  9. Dry vacuum pumps

    International Nuclear Information System (INIS)

    Sibuet, R

    2008-01-01

    For decades and for ultimate pressure below 1 mbar, oil-sealed Rotary Vane Pumps have been the most popular solution for a wide range of vacuum applications. In the late 80ies, Semiconductor Industry has initiated the development of the first dry roughing pumps. Today SC applications are only using dry pumps and dry pumping packages. Since that time, pumps manufacturers have developed dry vacuum pumps technologies in order to make them attractive for other applications. The trend to replace lubricated pumps by dry pumps is now spreading over many other market segments. For the Semiconductor Industry, it has been quite easy to understand the benefits of dry pumps, in terms of Cost of Ownership, process contamination and up-time. In this paper, Technology of Dry pumps, its application in R and D/industries, merits over conventional pumps and future growth scope will be discussed

  10. Off-Pump Versus On-Pump Coronary Artery Bypass Grafting

    DEFF Research Database (Denmark)

    Møller, Christian H; Steinbrüchel, Daniel A

    2014-01-01

    Coronary artery bypass grafting (CABG) remains the preferred treatment in patients with complex coronary artery disease. However, whether the procedure should be performed with or without the use of cardiopulmonary bypass, referred to as off-pump and on-pump CABG, is still up for debate....... Intuitively, avoidance of cardiopulmonary bypass seems beneficial as the systemic inflammatory response from extracorporeal circulation is omitted, but no single randomized trial has been able to prove off-pump CABG superior to on-pump CABG as regards the hard outcomes death, stroke or myocardial infarction....... In contrast, off-pump CABG is technically more challenging and may be associated with increased risk of incomplete revascularization. The purpose of the review is to summarize the current literature comparing outcomes of off-pump versus on-pump coronary artery bypass surgery....

  11. Rapid Speed Modulation of a Rotary Total Artificial Heart Impeller.

    Science.gov (United States)

    Kleinheyer, Matthias; Timms, Daniel L; Tansley, Geoffrey D; Nestler, Frank; Greatrex, Nicholas A; Frazier, O Howard; Cohn, William E

    2016-09-01

    Unlike the earlier reciprocating volume displacement-type pumps, rotary blood pumps (RBPs) typically operate at a constant rotational speed and produce continuous outflow. When RBP technology is used in constructing a total artificial heart (TAH), the pressure waveform that the TAH produces is flat, without the rise and fall associated with a normal arterial pulse. Several studies have suggested that pulseless circulation may impair microcirculatory perfusion and the autoregulatory response and may contribute to adverse events such as gastrointestinal bleeding, arteriovenous malformations, and pump thrombosis. It may therefore be beneficial to attempt to reproduce pulsatile output, similar to that generated by the native heart, by rapidly modulating the speed of an RBP impeller. The choice of an appropriate speed profile and control strategy to generate physiologic waveforms while minimizing power consumption and blood trauma becomes a challenge. In this study, pump operation modes with six different speed profiles using the BiVACOR TAH were evaluated in vitro. These modes were compared with respect to: hemodynamic pulsatility, which was quantified as surplus hemodynamic energy (SHE); maximum rate of change of pressure (dP/dt); pulse power index; and motor power consumption as a function of pulse pressure. The results showed that the evaluated variables underwent different trends in response to changes in the speed profile shape. The findings indicated a possible trade-off between SHE levels and flow rate pulsatility related to the relative systolic duration in the speed profile. Furthermore, none of the evaluated measures was sufficient to fully characterize hemodynamic pulsatility. © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  12. Quantitative evaluation of hand cranking a roller pump in a crisis management drill.

    Science.gov (United States)

    Tomizawa, Yasuko; Tokumine, Asako; Ninomiya, Shinji; Momose, Naoki; Matayoshi, Toru

    2008-01-01

    The heart-lung machines for open-heart surgery have improved over the past 50 years; they rarely break down and are almost always equipped with backup batteries. The hand-cranking procedure only becomes necessary when a pump breaks down during perfusion or after the batteries have run out. In this study, the performance of hand cranking a roller pump was quantitatively assessed by an objective method using the ECCSIM-Lite educational simulator system. A roller pump connected to an extracorporeal circuit with an oxygenator and with gravity venous drainage was used. A flow sensor unit consisting of electromagnetic sensors was used to measure arterial and venous flow rates, and a built-in pressure sensor was used to measure the water level in the reservoir. A preliminary study of continuous cranking by a team of six people was conducted as a surprise drill. This system was then used at a perfusion seminar. At the seminar, 1-min hand-cranking drills were conducted by volunteers according to a prepared scenario. The data were calculated on site and trend graphs of individual performances were given to the participants as a handout. Preliminary studies showed that each person's performance was different. Results from 1-min drills showed that good performance was not related to the number of clinical cases experienced, years of practice, or experience in hand cranking. Hand cranking to maintain the target flow rate could be achieved without practice; however, manipulating the venous return clamp requires practice. While the necessity of performing hand cranking during perfusion due to pump failure is rare, we believe that it is beneficial for perfusionists and patients to include hand-cranking practice in periodic extracorporeal circulation crisis management drills because a drill allows perfusionists to mentally rehearse the procedures should such a crisis occur.

  13. [Artificial muscle and its prospect in application for direct cardiac compression assist].

    Science.gov (United States)

    Dong, Jing; Yang, Ming; Zheng, Zhejun; Yan, Guozheng

    2008-12-01

    Artificial heart is an effective device in solving insufficient native heart supply for heart transplant, and the research and application of novel actuators play an important role in the development of artificial heart. In this paper, artificial muscle is introduced as the actuators of direct cardiac compression assist, and some of its parameters are compared with those of native heart muscle. The open problems are also discussed.

  14. Heat pump technology

    CERN Document Server

    Von Cube, Hans Ludwig; Goodall, E G A

    2013-01-01

    Heat Pump Technology discusses the history, underlying concepts, usage, and advancements in the use of heat pumps. The book covers topics such as the applications and types of heat pumps; thermodynamic principles involved in heat pumps such as internal energy, enthalpy, and exergy; and natural heat sources and energy storage. Also discussed are topics such as the importance of the heat pump in the energy industry; heat pump designs and systems; the development of heat pumps over time; and examples of practical everyday uses of heat pumps. The text is recommended for those who would like to kno

  15. Liquid metal pump

    Science.gov (United States)

    Pennell, William E.

    1982-01-01

    The liquid metal pump comprises floating seal rings and attachment of the pump diffuser to the pump bowl for isolating structural deflections from the pump shaft bearings. The seal rings also eliminate precision machining on large assemblies by eliminating the need for a close tolerance fit between the mounting surfaces of the pump and the seals. The liquid metal pump also comprises a shaft support structure that is isolated from the pump housing for better preservation of alignment of shaft bearings. The shaft support structure also allows for complete removal of pump internals for inspection and repair.

  16. Liquid metal pump

    International Nuclear Information System (INIS)

    Pennell, W.E.

    1982-01-01

    The liquid metal pump comprises floating seal rings and attachment of the pump diffuser to the pump bowl for isolating structural deflections from the pump shaft bearings. The seal rings also eliminate precision machining on large assemblies by eliminating the need for a close tolerance fit between the mounting surfaces of the pump and the seals. The liquid metal pump also comprises a shaft support structure that is isolated from the pump housing for better preservation of alignment of shaft bearings. The shaft support structure also allows for complete removal of pump internals for inspection and repair

  17. Flow visualization of a monoleaflet and bileaflet mechanical heart valve in a pneumatic ventricular assist device using a PIV system.

    Science.gov (United States)

    Lee, Hwansung; Tatsumi, Eisuke; Taenaka, Yoshiyuki

    2010-01-01

    Our group is developing a new type of pulsatile pneumatic ventricular assist device (PVAD) that uses the Medtronic Hall tilting disc valve (M-H valve). Although tilting disc valves have good washout effect inside the blood pump, they are no longer in common clinical use and may be difficult to obtain in the future. To investigate the stability of the Sorin Bicarbon valve (S-B valve) in our PVAD, we constructed a model pump made of an acrylic resin with the same configuration as our PVAD and attempted to compare the flow visualization upstream and downstream of the outlet position valve between the M-H valve and the S-B valve using a particle image velocimetry (PIV) method. The outlet S-B valve had faster closure than the M-H valve. The maximum flow velocity was greater than with the M-H valve. The maximum Reynolds shear stress (RSS) of the M-H valve reached 150 N/m(2) and that of the S-B valve reached 300 N/m(2) upstream during the end-systolic and early-diastolic phases. In both valves, the maximum RSS upstream of the valve was higher than downstream of the valve because of the regurgitation flow during valve closure. In addition, the maximum viscous shear stress reached above 2 N/m(2), which occupied only about 1%-1.5% of the maximum RSS.

  18. Heat pumps

    CERN Document Server

    Brodowicz, Kazimierz; Wyszynski, M L; Wyszynski

    2013-01-01

    Heat pumps and related technology are in widespread use in industrial processes and installations. This book presents a unified, comprehensive and systematic treatment of the design and operation of both compression and sorption heat pumps. Heat pump thermodynamics, the choice of working fluid and the characteristics of low temperature heat sources and their application to heat pumps are covered in detail.Economic aspects are discussed and the extensive use of the exergy concept in evaluating performance of heat pumps is a unique feature of the book. The thermodynamic and chemical properties o

  19. Mechanical stimulation in the engineering of heart muscle.

    Science.gov (United States)

    Liaw, Norman Yu; Zimmermann, Wolfram-Hubertus

    2016-01-15

    Recreating the beating heart in the laboratory continues to be a formidable bioengineering challenge. The fundamental feature of the heart is its pumping action, requiring considerable mechanical forces to compress a blood filled chamber with a defined in- and outlet. Ventricular output crucially depends on venous loading of the ventricles (preload) and on the force generated by the preloaded ventricles to overcome arterial blood pressure (afterload). The rate of contraction is controlled by the spontaneously active sinus node and transmission of its electrical impulses into the ventricles. The underlying principles for these physiological processes are described by the Frank-Starling mechanism and Bowditch phenomenon. It is essential to consider these principles in the design and evaluation of tissue engineered myocardium. This review focuses on current strategies to evoke mechanical loading in hydrogel-based heart muscle engineering. Copyright © 2015. Published by Elsevier B.V.

  20. Experimental Study on Series Operation of Sliding Vane Pump and Centrifugal Pump

    OpenAIRE

    Li, Tao; Zhang, Weiming; Jiang, Ming; Li, Zhengyang

    2013-01-01

    A platform for sliding vane pump and centrifugal pump tests is installed to study the series operation of them under different characteristics of pipeline. Firstly, the sliding vane pump and the centrifugal pump work independently, and the performance is recorded. Then, the two types of pumps are combined together, with the sliding vane pump acting as the feeding pump. Comparison is made between the performance of the independently working pump and the performance of series operation pump. Re...

  1. Centrifugal pump handbook

    CERN Document Server

    Pumps, Sulzer

    2010-01-01

    This long-awaited new edition is the complete reference for engineers and designers working on pump design and development or using centrifugal pumps in the field. This authoritative guide has been developed with access to the technical expertise of the leading centrifugal pump developer, Sulzer Pumps. In addition to providing the most comprehensive centrifugal pump theory and design reference with detailed material on cavitation, erosion, selection of materials, rotor vibration behavior and forces acting on pumps, the handbook also covers key pumping applications topics and operational

  2. Changes in cardiovascular function and vascular Na-K pump activity in streptozotocin (STZ)-diabetic rats

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Blood pressure, vascular reactivity and Na-K pump function were examined in male Sprague-Dawley rats and rats made diabetic with a single dose of STZ (50 mg/Kg, I.V.). In each group, body weight, systolic blood pressure and heart rate were determined weekly, and serum glucose was measured biweekly for 12 weeks. Contractile responses and Na-K pump activity of vascular smooth muscle were studied in caudal artery strips. At 12 weeks after treatment, STZ rats had elevated serum glucose but decreased body weight and heart rate in comparison to control rats. Systolic blood pressure of STZ rats was not significantly increased at any time during the treatment period. Contractile responses of caudal artery strips to norepinephrine and serotonin did not indicate altered sensitivity (ED50) of vascular smooth muscle in STZ rats. The responsiveness (g tension/g wet wt.), however, was significantly increased in artery strips from STZ rats. Analysis of ouabain-inhibitable 86 Rb-uptake of caudal artery by the double-reciprocal plot showed that neither the rate of 86 Rb-uptake nor the affinity for rubidium were altered by STZ treatment. The data indicate that nonspecific increases in the reactivity of caudal arteries to excitatory agents occur in diabetic rats which may precede the development of hypertension. The enhanced reactivity is not associated with alteration of the vascular Na-K pump activity

  3. Exergoeconomic analysis of a solar assisted ground-source heat pump greenhouse heating system

    International Nuclear Information System (INIS)

    Ozgener, Onder; Hepbasli, Arif

    2005-01-01

    EXCEM analysis may prove useful to investigators in engineering and other disciplines due to the methodology are being based on the quantities exergy, cost, energy and mass. The main objective of the present study is to investigate between capital costs and thermodynamic losses for devices in solar assisted ground-source heat pump greenhouse heating system (SAGSHPGHS) with a 50 m vertical 32 mm nominal diameter U-bend ground heat exchanger. This system was designed and installed at the Solar Energy Institute, Ege University, Izmir, Turkey. Thermodynamic loss rate-to-capital cost ratios are used to show that, for components and the overall system, a systematic correlation appears to exist between capital cost and exergy loss (total or internal), but not between capital cost and energy loss or external exergy loss. This correlation may imply that devices in successful air conditioning are configured so as to achieve an overall optimal design, by appropriately balancing the thermodynamic (exergy-based) and economic characteristics of the overall system and its devices. The results may, (i) provide useful insights into the relations between thermodynamics and economics, both in general and for SAGSHPGHS (ii) help demonstrate the merits of second-law analysis. It is observed from the results that the maximum exergy destructions in the system particularly occur due to the electrical, mechanical and isentropic efficiencies and emphasize the need for paying close attention to the selection of this type of equipment, since components of inferior performance can considerably reduce the overall performance of the system. In conjunction with this, the total exergy losses values are obtained to be from 0.010 kW to 0.480 kW for the system. As expected, the largest energy and exergy losses occur in the greenhouse and compressor. The ratio of thermodynamic loss rate to capital cost values are obtained for a range from 0.035 to 1.125

  4. Design and Evolution of the Asporto Heart Preservation Device.

    Science.gov (United States)

    Rivard, Andrew L

    2015-06-01

    The Asporto Heart Preservation Device is a system providing perfusion of cardioplegia to the donor heart using a computer-controlled peristaltic pump in a thermoelectrically cooled and insulated container. In 1998, a user interface was developed at the University of Minnesota consisting of a touch screen and battery-backed microcontroller. Power was supplied by a 120 VAC to 12 VDC converter. An upgrade to the insulated cooler and microcontroller occurred in 2002, which was followed by proof of concept experimental pre-clinical transplants and tests demonstrating the efficacy of the device with isolated donor hearts. During the period between 2002 and 2006, a variety of donor organ containers were developed, modified, and tested to provide an optimal sterile environment and fluid path. Parallel development paths encompass formalized design specifications for final prototypes of the touch screen/microcontroller, organ container, and thermoelectric cooler.

  5. Synergy of first principles modelling with predictive control for a biventricular assist device: In silico evaluation study.

    Science.gov (United States)

    Koh, Vivian C A; Yong Kuen Ho; Stevens, Michael C; Salamonsen, Robert F; Lovell, Nigel H; Lim, Einly

    2017-07-01

    Control for dual rotary left ventricular assist devices (LVADs) used as a biventricular assist device (BiVAD) is challenging. If the control system fails, flow imbalance between the systemic and the pulmonary circulations would result, subsequently leading to ventricular suction or pulmonary congestion. With the expectation that advanced control approaches such as model predictive control could address the challenges naturally and effectively, we developed a synergistic first principles model predictive controller (MPC) for the BiVAD. The internal model of the MPC is a simplified state-space model that has been developed and validated in a previous study. A single Frank-Starling (FS) control curve was used to define the target pump flow corresponding to the preload on each side of the heart. The MPC was evaluated in a validated numerical model using three clinical scenarios: blood loss, myocardial recovery, and exercise. Simulation results showed that the MPC was effective in adapting to changes in physiological states without causing ventricular suction or pulmonary congestion. The use of MPC for a BiVAD eliminates the need for two controllers of dual LVADs thus making the task of controller tuning easier.

  6. Penis Pump

    Science.gov (United States)

    ... your appointment might be less involved. Choosing a penis pump Some penis pumps are available without a ... it doesn't get caught in the ring. Penis pumps for penis enlargement Many advertisements in magazines ...

  7. Pumping characteristics of sputter ion pump (SIP) and titanium sublimation pump (TSP) combination

    International Nuclear Information System (INIS)

    Ratnakala, K.C.; Patel, R.J.; Bhavsar, S.T.; Pandiyar, M.L.; Ramamurthi, S.S.

    1995-01-01

    For achieving hydrocarbon free, clean ultra high vacuum, SIP-TSP combination is one of the ideal choice for pumping. For the SRS facility in Centre for Advanced Technology (CAT), we are utilising this combination, enmass. For this purpose, two modules of these combination set-ups are assembled, one with the TSP as an integral part of SIP and the other, with TSP as a separate pump mounted on the top of SIP. The pump bodies were vacuum degassed at 700 degC at 10 -5 mbar for 3 hrs. An ultimate vacuum of 3 x 10 -11 mbar was achieved, after a bake-out at 250 degC for 4 hrs, followed by continuous SIP pumping for 48 hrs, with two TSP flashing at approximately 10 hrs interval. The pump-down patterns as well as the pressure-rise patterns are studied. (author). 2 refs., 5 figs

  8. DEA (data envelopment analysis)-assisted supporting measures for ground coupled heat pumps implementing in Italy: A case study

    International Nuclear Information System (INIS)

    Longo, L.; Colantoni, A.; Castellucci, S.; Carlini, M.; Vecchione, L.; Savuto, E.; Pallozzi, V.; Di Carlo, A.; Bocci, E.; Moneti, M.; Cocchi, S.; Boubaker, K.

    2015-01-01

    Nowadays, the increasing of the energy consumption is producing serious global warming issues. Mainly most of greenhouse gas emissions in developed countries come from building equipments. In this context, GCHPs (ground coupled heat pumps) are candidate solution as air conditioning systems in buildings due to their higher efficiency compared to conventional devices. Actually, ground coupled heat pump systems are widely, recognized among the most efficient and comfortable used systems. Nevertheless, economic efficiency of the ground coupled heat pumps has to be proved. In this study, DEA (data envelopment analyses) method is applied to a real case in Italy. - Highlights: • Original investigation in terms of energy demands in buildings. • Gathering conjoint classical and scientific analyses. • Presenting original DEA (data envelopment analysis) economic optimization scheme analyses. • Outlining economical feasibility of an efficient low enthalpy-geothermal plant with GCHP (ground coupled heat pump) exchangers.

  9. Pulmonary Hypertension After Heart Transplantation in Patients Bridged with the Total Artificial Heart.

    Science.gov (United States)

    Shah, Rachit; Patel, Dhavalkumar B; Mankad, Anit K; Rennyson, Stephen L; Tang, Daniel G; Quader, Mohammed A; Smallfield, Melissa C; Kasirajan, Vigneshwar; Shah, Keyur B

    2016-01-01

    Pulmonary hypertension (PH) among heart transplant recipients is associated with an increased risk of mortality. Pulmonary hemodynamics improves after left ventricular assist device (LVAD) implantation; however, the impact of PH before total artificial heart (TAH) implantation on posttransplant hemodynamics and survival is unknown. This is a single center retrospective study aimed to evaluate the impact of TAH implantation on posttransplant hemodynamics and mortality in two groups stratified according to severity of PH: high (≥3 Woods units [WU]) and low (heart catheterization performed at baseline (before TAH) and posttransplant at 1 and 12 months. Patients in the high PVR group (n = 12) experienced improvement in PVR (baseline = 4.31 ± 0.7; 1-month = 1.69 ± 0.7, p heart transplantation (HT), but remained elevated. There was no significant difference in survival between the two groups at 12 months follow-up. Patients with high PVR who are bridged to transplant with TAH had improvement in PVR at 12 months after transplant, and the degree of PVR did not impact posttransplant survival.

  10. A novel permanent maglev impeller TAH: most requirements on blood pumps have been satisfied.

    Science.gov (United States)

    Qian, K X; Zeng, P; Ru, W M; Yuan, H Y

    2003-07-01

    Based on the development of an impeller total artificial heart (TAH) (1987) and a permanent maglev (magnetic levitation) impeller pump (2002), as well as a patented magnetic bearing and magnetic spring (1996), a novel permanent maglev impeller TAH has been developed. The device consists of a rotor and a stator. The rotor is driven radially. Two impellers with different dimensions are fixed at both the ends of the rotor. The levitation of the rotor is achieved by using two permanent magnetic bearings, which have double function: radial bearing and axial spring. As the rotor rotates at a periodic changing speed, two pumps deliver the pulsatile flow synchronously. The volume balance between the two pumps is realized due to self-modulation property of the impeller pumps, without need for detection and control. Because the hemo-dynamic force acting on the left impeller is larger than that on the right impeller, and this force during systole is larger than that during diastole, the rotor reciprocates axially once a cycle. This is beneficial to prevent the thrombosis in the pump. Furthermore, a small flow via the gap between stator and rotor from left pump into right pump comes to a full washout in the motor and the pumps. Therefore, it seems neither mechanical wear nor thrombosis could occur. The previously developed prototype impeller TAH had demonstrated that it could operate in animal experiments indefinitely, if the bearing would not fail to work. Expectantly, this novel permanent magnetic levitation impeller TAH with simplicity, implantability, pulsatility, compatibility and durability has satisfied the most requirements on blood pumps and will have more extensive applications in experiments and clinics.

  11. A Soft Total Artificial Heart-First Concept Evaluation on a Hybrid Mock Circulation.

    Science.gov (United States)

    Cohrs, Nicholas H; Petrou, Anastasios; Loepfe, Michael; Yliruka, Maria; Schumacher, Christoph M; Kohll, A Xavier; Starck, Christoph T; Schmid Daners, Marianne; Meboldt, Mirko; Falk, Volkmar; Stark, Wendelin J

    2017-10-01

    The technology of 3D-printing has allowed the production of entirely soft pumps with complex chamber geometries. We used this technique to develop a completely soft pneumatically driven total artificial heart from silicone elastomers and evaluated its performance on a hybrid mock circulation. The goal of this study is to present an innovative concept of a soft total artificial heart (sTAH). Using the form of a human heart, we designed a sTAH, which consists of only two ventricles and produced it using a 3D-printing, lost-wax casting technique. The diastolic properties of the sTAH were defined and the performance of the sTAH was evaluated on a hybrid mock circulation under various physiological conditions. The sTAH achieved a blood flow of 2.2 L/min against a systemic vascular resistance of 1.11 mm Hg s/mL (afterload), when operated at 80 bpm. At the same time, the mean pulmonary venous pressure (preload) was fixed at 10 mm Hg. Furthermore, an aortic pulse pressure of 35 mm Hg was measured, with a mean aortic pressure of 48 mm Hg. The sTAH generated physiologically shaped signals of blood flow and pressures by mimicking the movement of a real heart. The preliminary results of this study show a promising potential of the soft pumps in heart replacements. Further work, focused on increasing blood flow and in turn aortic pressure is required. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  12. Heat pump cycle by hydrogen-absorbing alloys to assist high-temperature gas-cooled reactor in producing hydrogen

    International Nuclear Information System (INIS)

    Satoshi, Fukada; Nobutaka, Hayashi

    2010-01-01

    A chemical heat pump system using two hydrogen-absorbing alloys is proposed to utilise heat exhausted from a high-temperature source such as a high-temperature gas-cooled reactor (HTGR), more efficiently. The heat pump system is designed to produce H 2 based on the S-I cycle more efficiently. The overall system proposed here consists of HTGR, He gas turbines, chemical heat pumps and reaction vessels corresponding to the three-step decomposition reactions comprised in the S-I process. A fundamental research is experimentally performed on heat generation in a single bed packed with a hydrogen-absorbing alloy that may work at the H 2 production temperature. The hydrogen-absorbing alloy of Zr(V 1-x Fe x ) 2 is selected as a material that has a proper plateau pressure for the heat pump system operated between the input and output temperatures of HTGR and reaction vessels of the S-I cycle. Temperature jump due to heat generated when the alloy absorbs H 2 proves that the alloy-H 2 system can heat up the exhaust gas even at 600 deg. C without any external mechanical force. (authors)

  13. Use of Proton-Pump Inhibitors Predicts Heart Failure and Death in Patients with Coronary Artery Disease.

    Directory of Open Access Journals (Sweden)

    Ana María Pello Lázaro

    Full Text Available Proton-pump inhibitors (PPIs seem to increase the incidence of cardiovascular events in patients with coronary artery disease (CAD, mainly in those using clopidogrel. We analysed the impact of PPIs on the prognosis of patients with stable CAD.We followed 706 patients with CAD. Primary outcome was the combination of secondary outcomes. Secondary outcomes were 1 acute ischaemic events (any acute coronary syndrome, stroke, or transient ischaemic attack and 2 heart failure (HF or death.Patients on PPIs were older [62.0 (53.0-73.0 vs. 58.0 (50.0-70.0 years; p = 0.003] and had a more frequent history of stroke (4.9% vs. 1.1%; p = 0.004 than those from the non-PPI group, and presented no differences in any other clinical variable, including cardiovascular risk factors, ejection fraction, and therapy with aspirin and clopidogrel. Follow-up was 2.2±0.99 years. Seventy-eight patients met the primary outcome, 53 developed acute ischaemic events, and 33 HF or death. PPI use was an independent predictor of the primary outcome [hazard ratio (HR = 2.281 (1.244-4.183; p = 0.008], along with hypertension, body-mass index, glomerular filtration rate, atrial fibrillation, and nitrate use. PPI use was also an independent predictor of HF/death [HR = 5.713 (1.628-20.043; p = 0.007], but not of acute ischaemic events. A propensity score showed similar results.In patients with CAD, PPI use is independently associated with an increased incidence of HF and death but not with a high rate of acute ischaemic events. Further studies are needed to confirm these findings.

  14. Geothermal direct-heat utilization assistance. Quarterly project progress report, July 1996--September 1996. Federal Assistance Program

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, P.

    1996-11-01

    This report summarizes geothermal technical assistance, R&D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the fourth quarter of FY-96. It describes 152 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, equipment, economics and resources. Research activities are summarized on greenhouse peaking. Outreach activities include the publication of a geothermal direct use Bulletin, dissemination of information, geothermal library, technical papers and seminars, and progress monitor reports on geothermal resources and utilization.

  15. Comparison of total artificial heart and biventricular assist device support as bridge-to-transplantation.

    Science.gov (United States)

    Cheng, Allen; Trivedi, Jaimin R; Van Berkel, Victor H; Massey, H Todd; Slaughter, Mark S

    2016-10-01

    The use of left ventricular assist devices (LVAD) has increased significantly in the last decade. However, right heart dysfunction remains a problem despite the improved outcomes with continuous-flow LVADs. Surgical options for bridge to transplantation (BTT) in patients with biventricular failure are total artificial heart (TAH) or biventricular support (BiVAD). This study examines the differences in pre- and post-transplantation outcomes and survival in patients with TAH or BiVAD support as BTT. The United Network of Organ Sharing database was retrospectively queried from January 2005 to December 2014 to identify adult patients undergoing heart transplantation (n = 17,022). Patients supported with either TAH (n = 212) or BiVAD (n = 366) at the time of transplantation were evaluated. Pre- and post-transplantation Kaplan-Meier survival curves were examined. Cox regression model was used to study the hazard ratios of the association between TAH versus BiVAD support and post-transplant survival. The median age of the study groups was 49.8 ± 12.9 (TAH) and 47.2 ± 13.9 (BiVAD) years (range 18-74 years). There were more men, 87% versus 74%, in the TAH group (p < 0.0001) with greater body mass index, 27.3 ± 5.2 versus 25.6 ± 4.7 (p < 0.0001), compared to those with BiVADs. Creatinine was higher, 1.7 + 1.2 versus 1.3 + 0.8 mg/dL (p < 0.0001), in the TAH group before transplant. The 30-day, one-, and three-year post-transplantation survival was 88%, 78%, and 67%, respectively, for patients with TAH support versus 93%, 83%, and 73% (p = 0.06) for patients with BiVAD support. Cox regression model shows pre-transplant creatinine (HR = 1.21, p = 0.008) is associated with a lower post-transplant survival. TAH is not associated with a worse post-transplant survival (p = 0.1). There was no difference in wait-list survival in patients supported with TAH or BiVAD (p = 0.8). Although there has been a recent

  16. Development of a Compact Maglev Centrifugal Blood Pump Enclosed in a Titanium Housing

    Science.gov (United States)

    Pai, Chi Nan; Shinshi, Tadahiko; Asama, Junichi; Takatani, Setsuo; Shimokohbe, Akira

    A compact centrifugal blood pump consisting of a controlled two-degrees-of-freedom radial magnetic bearing and a brushless DC motor enclosed in a titanium housing has been developed for use as an implantable ventricular assist device. The magnetic bearing also supports axial and angular motions of the impeller via a magnetic coupling. The top housing is made of pure titanium, while the impeller and the stator are coated with pure titanium and Ti-6Al-7Nb, respectively, to improve the biocompatibility of the pump. The combination of pure titanium and titanium alloy was chosen because of the sensitivity of eddy current type displacement sensors through the intervening conducting wall. The dimensions of the pump are 69.0 mm in diameter and 28.5 mm in height. During a pump performance test, axial shifting of the impeller due to hydraulic forces led to variations in the rotational positioning signal, causing loss of control of the rotational speed. This problem was solved by conditioning the rotational positioning signal. With a flow rate of 5 l/min against a head pressure of 100 mmHg, the power consumption and efficiency of the pump were 5.5 W and 20%, respectively. Furthermore, the hemolysis of the blood pump was 43.6% lower when compared to that of a commercially available pump.

  17. Quantum pump effect induced by a linearly polarized microwave in a two-dimensional electron gas.

    Science.gov (United States)

    Song, Juntao; Liu, Haiwen; Jiang, Hua

    2012-05-30

    A quantum pump effect is predicted in an ideal homogeneous two-dimensional electron gas (2DEG) that is normally irradiated by linearly polarized microwaves (MW). Without considering effects from spin-orbital coupling or the magnetic field, it is found that a polarized MW can continuously pump electrons from the longitudinal to the transverse direction, or from the transverse to the longitudinal direction, in the central irradiated region. The large pump current is obtained for both the low frequency limit and the high frequency case. Its magnitude depends on sample properties such as the size of the radiated region, the power and frequency of the MW, etc. Through the calculated results, the pump current should be attributed to the dominant photon-assisted tunneling processes as well as the asymmetry of the electron density of states with respect to the Fermi energy.

  18. Left atrial function in heart failure with impaired and preserved ejection fraction.

    Science.gov (United States)

    Fang, Fang; Lee, Alex Pui-Wai; Yu, Cheuk-Man

    2014-09-01

    Left atrial structural and functional changes in heart failure are relatively ignored parts of cardiac assessment. This review illustrates the pathophysiological and functional changes in left atrium in heart failure as well as their prognostic value. Heart failure can be divided into those with systolic dysfunction and heart failure with preserved ejection fraction (HFPEF). Left atrial enlargement and dysfunction commonly occur in systolic heart failure, in particular, in idiopathic dilated cardiomyopathy. Atrial enlargement and dysfunction also carry important prognostic value in systolic heart failure, independently of known parameters such as left ventricular ejection fraction. In HFPEF, there is evidence of left atrial enlargement, impaired atrial compliance, and reduction of atrial pump function. This occurs not only at rest but also during exercise, indicating significant impairment of atrial contractile reserve. Furthermore, atrial dyssynchrony is common in HFPEF. These factors further contribute to the development of new onset or progression of atrial arrhythmias, in particular, atrial fibrillation. Left atrial function is an integral part of cardiac function and its structural and functional changes in heart failure are common. As changes of left atrial structure and function have different clinical implications in systolic heart failure and HFPEF, routine assessment is warranted.

  19. Na+/Ca2+ exchange and Na+/K+-ATPase in the heart

    Science.gov (United States)

    Shattock, Michael J; Ottolia, Michela; Bers, Donald M; Blaustein, Mordecai P; Boguslavskyi, Andrii; Bossuyt, Julie; Bridge, John H B; Chen-Izu, Ye; Clancy, Colleen E; Edwards, Andrew; Goldhaber, Joshua; Kaplan, Jack; Lingrel, Jerry B; Pavlovic, Davor; Philipson, Kenneth; Sipido, Karin R; Xie, Zi-Jian

    2015-01-01

    This paper is the third in a series of reviews published in this issue resulting from the University of California Davis Cardiovascular Symposium 2014: Systems approach to understanding cardiac excitation–contraction coupling and arrhythmias: Na+ channel and Na+ transport. The goal of the symposium was to bring together experts in the field to discuss points of consensus and controversy on the topic of sodium in the heart. The present review focuses on cardiac Na+/Ca2+ exchange (NCX) and Na+/K+-ATPase (NKA). While the relevance of Ca2+ homeostasis in cardiac function has been extensively investigated, the role of Na+ regulation in shaping heart function is often overlooked. Small changes in the cytoplasmic Na+ content have multiple effects on the heart by influencing intracellular Ca2+ and pH levels thereby modulating heart contractility. Therefore it is essential for heart cells to maintain Na+ homeostasis. Among the proteins that accomplish this task are the Na+/Ca2+ exchanger (NCX) and the Na+/K+ pump (NKA). By transporting three Na+ ions into the cytoplasm in exchange for one Ca2+ moved out, NCX is one of the main Na+ influx mechanisms in cardiomyocytes. Acting in the opposite direction, NKA moves Na+ ions from the cytoplasm to the extracellular space against their gradient by utilizing the energy released from ATP hydrolysis. A fine balance between these two processes controls the net amount of intracellular Na+ and aberrations in either of these two systems can have a large impact on cardiac contractility. Due to the relevant role of these two proteins in Na+ homeostasis, the emphasis of this review is on recent developments regarding the cardiac Na+/Ca2+ exchanger (NCX1) and Na+/K+ pump and the controversies that still persist in the field. PMID:25772291

  20. Centrifugal pumps

    CERN Document Server

    Gülich, Johann Friedrich

    2014-01-01

    This book gives an unparalleled, up-to-date, in-depth treatment of all kinds of flow phenomena encountered in centrifugal pumps including the complex interactions of fluid flow with vibrations and wear of materials. The scope includes all aspects of hydraulic design, 3D-flow phenomena and partload operation, cavitation, numerical flow calculations, hydraulic forces, pressure pulsations, noise, pump vibrations (notably bearing housing vibration diagnostics and remedies), pipe vibrations, pump characteristics and pump operation, design of intake structures, the effects of highly viscous flows, pumping of gas-liquid mixtures, hydraulic transport of solids, fatigue damage to impellers or diffusers, material selection under the aspects of fatigue, corrosion, erosion-corrosion or hydro-abrasive wear, pump selection, and hydraulic quality criteria. As a novelty, the 3rd ed. brings a fully analytical design method for radial impellers, which eliminates the arbitrary choices inherent to former design procedures. The d...

  1. Nuclear-powered artificial heart system

    International Nuclear Information System (INIS)

    Pouchot, W.D.; Lehrfeld, D.

    1976-01-01

    As reported to the 9th IECEC, a bench model version of a nuclear-powered artificial heart system to be used as a replacement for the natural heart was constructed and tested as part of a broader U.S. ERDA program. A report is given of the system design and integration, bench testing, and field support equipment of an implantable and advanced version of the bench model incorporating some of the component developments reported to the 10th IECEC. The basic elements of the system are a 32-watt Pu-238 heat source, a Stirling engine thermal converter, a coupling mechanism, and a mechanical blood pump drive actuating, alternatively, two artificial ventricles of polymeric material. As tested on the bench using a mock circulation, the system provides approximately 9 liters/minute at 120/80 mm Hg aortic pressure. At 190/145 mm Hg aortic pressure, the maximum flow decreases to about 7 liters/minute

  2. Pumping characteristics of roots blower pumps for light element gases

    International Nuclear Information System (INIS)

    Hiroki, Seiji; Abe, Tetsuya; Tanzawa, Sadamitsu; Nakamura, Jun-ichi; Ohbayashi, Tetsuro

    2002-07-01

    The pumping speed and compression ratio of the two-stage roots blower pumping system were measured for light element gases (H 2 , D 2 and He) and for N 2 , in order to assess validity of the ITER torus roughing system as an ITER R and D task (T234). The pumping system of an Edwards EH1200 (nominal pumping speed of 1200 m 3 /s), two EH250s (ibid. 250 m 3 /s) and a backing pump (ibid. 100 m 3 /s) in series connection was tested under PNEUROP standards. The maximum pumping speeds of the two-stage system for D 2 and N 2 were 1200 and 1300 m 3 /h, respectively at 60 Hz, which satisfied the nominal pumping speed. These experimental data support the design validity of the ITER torus roughing system. (author)

  3. The clinical research of off-pump coronary artery bypass grafting by small incision at the left chest.

    Science.gov (United States)

    Xiao, L-B; Zhang, Y-H; Zhou, J-W; Yang, M; Ling, Y-P; Gao, Z-S; Wang, Y-S

    2016-01-01

    To explore the clinical value of off-pump coronary artery bypass grafting by small incision at the left chest, and develop a better surgical regimen for coronary heart disease patients. 201 coronary heart disease patients who need coronary artery bypass grafting were required and randomly divided into 2 groups including a control group and an observation group. There were 107 cases in the control group who received coronary bypass grafting by extracorporeal circulation; there were 103 cases in the observation group who received off-pump coronary bypass grafting by small incision at the left chest. The duration of the mechanism ventilation, length of stay in ICU, hospitalization time, postoperative drainage volume, and the occurrence rate of complications were recorded and compared. The duration of mechanism ventilation, length of stay in ICU, hospitalization time and postoperative drainage volume in the control group were (19.21 ± 1.33) hours, (5.08 ± 0.57) days, (21.20 ± 2.34) days and (997.68 ± 96.35) mL, which were (7.73 ± 0.74) hours, (2.83 ± 0.16) days, (15.67 ± 1.18) days and (901.53 ± 89.32) mL in the observation group respectively, with statistical difference between the two groups (pdisease, pulmonary infection, perioperative cardiac infarction and mortality did not display a significant difference between the two groups (p > 0.05). Off-pump coronary artery bypass grafting by small incision at the left chest is a surgical method with less injury and fast recovery, which can be used as the preferred therapeutical method for the coronary heart disease patients who need coronary artery bypass grafting.

  4. PUMPS

    Science.gov (United States)

    Thornton, J.D.

    1959-03-24

    A pump is described for conveving liquids, particure it is not advisable he apparatus. The to be submerged in the liquid to be pumped, a conduit extending from the high-velocity nozzle of the injector,and means for applying a pulsating prcesure to the surface of the liquid in the conduit, whereby the surface oscillates between positions in the conduit. During the positive half- cycle of an applied pulse liquid is forced through the high velocity nozzle or jet of the injector and operates in the manner of the well known water injector and pumps liquid from the main intake to the outlet of the injector. During the negative half-cycle of the pulse liquid flows in reverse through the jet but no reverse pumping action takes place.

  5. Right ventricular longitudinal strain and right ventricular stroke work index in patients with severe heart failure: left ventricular assist device suitability for transplant candidates.

    Science.gov (United States)

    Cameli, M; Bernazzali, S; Lisi, M; Tsioulpas, C; Croccia, M G; Lisi, G; Maccherini, M; Mondillo, S

    2012-09-01

    Right ventricular (RV) systolic function has a critical role in determining the clinical outcome and the success of using left ventricular assist devices in patients with refractory heart failure. RV deformation analysis by speckle tracking echocardiography (STE) has recently allowed the analysis of RV longitudinal function. Using cardiac catheterization as the reference standard, this study aimed to explore the correlation between RV longitudinal function by STE and RV stroke work index (RVSWI) among patients referred for cardiac transplantation. Right heart catheterization and transthoracic echo-Doppler were simultaneously performed in 47 patients referred for cardiac transplant assessment due to refractory heart failure (ejection fraction 25.1 ± 4.5%). Thermodilution RV stroke volume and invasive pulmonary pressures were used to obtain RVSWI. RV longitudinal strain (RVLS) by STE was assessed averaging RV free-wall segments (free-wall RVLS). We also calculated. Tricuspid S' and tricuspid annular plane systolic excursion (TAPSE). No significant correlation was observed for TAPSE on tricuspid S' with RV stroke volume (r = 0.14 and r = 0.06, respectively). A close negative correlation between free-wall RVLS and RVSWI was found (r = -0.82; P rights reserved.

  6. Shape Optimization of the Assisted Bi-directional Glenn surgery for stage-1 single ventricle palliation

    Science.gov (United States)

    Verma, Aekaansh; Shang, Jessica; Esmaily-Moghadam, Mahdi; Wong, Kwai; Marsden, Alison

    2016-11-01

    Babies born with a single functional ventricle typically undergo three open-heart surgeries starting as neonates. The first of these stages (BT shunt or Norwood) has the highest mortality rates of the three, approaching 30%. Proceeding directly to a stage-2 Glenn surgery has historically demonstrated inadequate pulmonary flow (PF) & high mortality. Recently, the Assisted Bi-directional Glenn (ABG) was proposed as a promising means to achieve a stable physiology by assisting the PF via an 'ejector pump' from the systemic circulation. We present preliminary parametrization and optimization results for the ABG geometry, with the goal of increasing PF. To limit excessive pressure increases in the Superior Vena Cava (SVC), the SVC pressure is included as a constraint. We use 3-D finite element flow simulations coupled with a single ventricle lumped parameter network to evaluate PF & the pressure constraint. We employ a derivative free optimization method- the Surrogate Management Framework, in conjunction with the OpenDIEL framework to simulate multiple simultaneous evaluations. Results show that nozzle diameter is the most important design parameter affecting ABG performance. The application of these results to patient specific situations will be discussed. This work was supported by an NSF CAREER award (OCI1150184) and by the XSEDE National Computing Resource.

  7. Bridge to recovery in two cases of dilated cardiomyopathy after long-term mechanical circulatory support.

    Science.gov (United States)

    Pacholewicz, Jerzy; Zakliczyński, Michał; Kowalik, Violetta; Nadziakiewicz, Paweł; Kowalski, Oskar; Kalarus, Zbigniew; Zembala, Marian

    2014-06-01

    Ventricular assist devices (VADs) have become an established therapeutic option for patients with end-stage heart failure. Achieving the potential for recovery of native heart function using VADs is an established form of treatment in a selected group of patients with HF. We report two cases of VAD patients with different types of pump used for mechanical circulatory support, a continuous flow pump (Heart-Ware(®)) and a pulsatile pump (POLVAD MEV(®)), which allow regeneration of the native heart. Patients were qualified as INTERMACS level 3-4 for elective implantation of an LVAD. Implantations were performed without complications. The postoperative course was uncomplicated. In the HeartWare patient the follow-up was complicated by episodes of epistaxis and recurrent GIB as well as driveline infection. The follow-up of the POLVAD MEV patient was uneventful. Recurrent GIB forced us to withdraw aspirin and warfarin therapy and maintain only clopidogrel in the HeartWare patient.. In mid-February 2013 the patient was admitted due to dysfunction of the centrifugal pump with a continuous low-flow alarm and increase power consumption. Under close monitoring of the patient a decision was made to stop the pump immediately and evaluate cardiac function. The serial echocardiography studies showed significant improvement in LVEF up to 45% and no significant valvular pathology. In February 2013 LVAD explant was performed by left thoracotomy without complications. At six-month follow-up the patient was in a good clinical condition, in NYHA class I/II, and on pharmacological treatment.

  8. Pump characteristics and applications

    CERN Document Server

    Volk, Michael

    2013-01-01

    Providing a wealth of information on pumps and pump systems, Pump Characteristics and Applications, Third Edition details how pump equipment is selected, sized, operated, maintained, and repaired. The book identifies the key components of pumps and pump accessories, introduces the basics of pump and system hydraulics as well as more advanced hydraulic topics, and details various pump types, as well as special materials on seals, motors, variable frequency drives, and other pump-related subjects. It uses example problems throughout the text, reinforcing the practical application of the formulae

  9. Effects of intravenous home dobutamine in palliative end-stage heart failure on quality of life, heart failure hospitalization, and cost expenditure.

    Science.gov (United States)

    Martens, Pieter; Vercammen, Jan; Ceyssens, Wendy; Jacobs, Linda; Luwel, Evert; Van Aerde, Herwig; Potargent, Peter; Renaers, Monique; Dupont, Matthias; Mullens, Wilfried

    2018-01-17

    In patients with palliative end-stage heart failure, interventions that could provide symptomatic relief and prevent hospital admissions are important. Ambulatory continuous intravenous inotropes have been advocated by guidelines for such a purpose. We sought to determine the effect of intravenous dobutamine on symptomatic status, hospital stay, mortality, and cost expenditure. All consecutive end-stage heart failure patients not amenable for advanced therapies and discharged with continuous intravenous home dobutamine from a single tertiary centre between April 2011 and January 2017 were retrospectively analysed. Dobutamine (fixed dose) was infused through a single-lumen central venous catheter with a small pump that was refilled by a nurse on a daily basis. Symptomatic status was longitudinally assessed as the change in New York Heart Association class and patient global assessment scale. Antecedent and incident heart failure hospitalizations were determined in a paired fashion, and cost impact was assessed. A total of 21 patients (age 77 ± 9 years) were followed up for 869 ± 647 days. At first follow-up (6 ± 1 weeks) after the initiation of dobutamine, patients had a significant improvement in New York Heart Association class (-1.29 ± 0.64; P heart failure hospitalizations assessed at 3, 6, and 12 months were significantly reduced (P heart failure hospitalizations over the same time period. Cost expenditure was significantly lower at 3 (P heart failure is feasible and associated with improved symptomatic status, heart failure hospitalizations, and health-care-related costs. Nevertheless, results should be interpreted in the context of the small and retrospective design. Larger studies are necessary to evaluate the effect of dobutamine in palliative end-stage heart failure. © 2018 The Authors. ESC Heart Failure published by John Wiley & Sons Ltd on behalf of the European Society of Cardiology.

  10. Pump element for a tube pump

    DEFF Research Database (Denmark)

    2011-01-01

    The invention relates to a tube pump comprising a tube and a pump element inserted in the tube, where the pump element comprises a rod element and a first and a second non-return valve member positioned a distance apart on the rod element. The valve members are oriented in the same direction...... relative to the rod element so as to allow for a fluid flow in the tube through the first valve member, along the rod element, and through the second valve member. The tube comprises an at least partly flexible tube portion between the valve members such that a repeated deformation of the flexible tube...... portion acts to alternately close and open the valve members thereby generating a fluid flow through the tube. The invention further relates to a pump element comprising at least two non-return valve members connected by a rod element, and for insertion in an at least partly flexible tube in such tube...

  11. Pumping behavior of sputtering ion pump

    Energy Technology Data Exchange (ETDEWEB)

    Chou, T.S.; Bittner, J.; Schuchman, J.

    1991-12-31

    To optimize the design of a distributed ion pump (DIP) for the Superconducting X-Ray Lithography Source (SXLS) the stability of the rotating electron cloud at very high magnetic field beyond transition, must be re-examined. In this work the pumping speed and frequency spectrum of a DIP at various voltages (1 to 10 KV) and various magnetic fields (0.1 to 4 Tesla) are measured. Three cell diameters 10 mm, 5 mm and 2.5 mm, each 8 mm long, and with 3 or 4 mm gaps between anode and cathode are investigated. In this study both the titanium cathodes and the stainless steel anode plates are perforated with holes comparable in size to the anode cell diameters. Only the partially saturated pumping behavior is under investigation. The ultimate pressure and conditioning of the pump will be investigated at a later date when the stability criterion for the electron cloud is better understood.

  12. Pumping behavior of sputtering ion pump

    Energy Technology Data Exchange (ETDEWEB)

    Chou, T.S.; Bittner, J.; Schuchman, J.

    1991-01-01

    To optimize the design of a distributed ion pump (DIP) for the Superconducting X-Ray Lithography Source (SXLS) the stability of the rotating electron cloud at very high magnetic field beyond transition, must be re-examined. In this work the pumping speed and frequency spectrum of a DIP at various voltages (1 to 10 KV) and various magnetic fields (0.1 to 4 Tesla) are measured. Three cell diameters 10 mm, 5 mm and 2.5 mm, each 8 mm long, and with 3 or 4 mm gaps between anode and cathode are investigated. In this study both the titanium cathodes and the stainless steel anode plates are perforated with holes comparable in size to the anode cell diameters. Only the partially saturated pumping behavior is under investigation. The ultimate pressure and conditioning of the pump will be investigated at a later date when the stability criterion for the electron cloud is better understood.

  13. Total artificial heart in the pediatric patient with biventricular heart failure.

    Science.gov (United States)

    Park, S S; Sanders, D B; Smith, B P; Ryan, J; Plasencia, J; Osborn, M B; Wellnitz, C M; Southard, R N; Pierce, C N; Arabia, F A; Lane, J; Frakes, D; Velez, D A; Pophal, S G; Nigro, J J

    2014-01-01

    Mechanical circulatory support emerged for the pediatric population in the late 1980s as a bridge to cardiac transplantation. The Total Artificial Heart (TAH-t) (SynCardia Systems Inc., Tuscon, AZ) has been approved for compassionate use by the Food and Drug Administration for patients with end-stage biventricular heart failure as a bridge to heart transplantation since 1985 and has had FDA approval since 2004. However, of the 1,061 patients placed on the TAH-t, only 21 (2%) were under the age 18. SynCardia Systems, Inc. recommends a minimum patient body surface area (BSA) of 1.7 m(2), thus, limiting pediatric application of this device. This unique case report shares this pediatric institution's first experience with the TAH-t. A 14-year-old male was admitted with dilated cardiomyopathy and severe biventricular heart failure. The patient rapidly decompensated, requiring extracorporeal life support. An echocardiogram revealed severe biventricular dysfunction and diffuse clot formation in the left ventricle and outflow tract. The decision was made to transition to biventricular assist device. The biventricular failure and clot formation helped guide the team to the TAH-t, in spite of a BSA (1.5 m(2)) below the recommendation of 1.7 m(2). A computed tomography (CT) scan of the thorax, in conjunction with a novel three-dimensional (3D) modeling system and team, assisted in determining appropriate fit. Chest CT and 3D modeling following implantation were utilized to determine all major vascular structures were unobstructed and the bronchi were open. The virtual 3D model confirmed appropriate device fit with no evidence of compression to the left pulmonary veins. The postoperative course was complicated by a left lung opacification. The left lung anomalies proved to be atelectasis and improved with aggressive recruitment maneuvers. The patient was supported for 11 days prior to transplantation. Chest CT and 3D modeling were crucial in assessing whether the device would

  14. Analysis of Contemporary Methods for Designing Rotary Type Ventricular Assist Devices

    Directory of Open Access Journals (Sweden)

    E. P. Banin

    2015-01-01

    Full Text Available The research object is inlet apparatus of ventricular assist device, namely inlet cannula and straightener.The purpose of the study is to reveal features of blood flow in inlet apparatus of ventricular assist device. The mathematical modeling is carried out by computational fluid dynamics analysis in a stationary setting.The first part of study concerns the analysis of existing approaches to the numerical and experimental studies in designing the ventricular assist devices of rotary type. It reveals the features of each approach for their further application in practice. The article presents an original design of developed hydraulic test bench to verify the results of mathematical modeling. Analysis of foreign authors’ studies showed that there is no enough attention paid to design of the adjacent pump assemblies of ventricular assist device. The second part of study considers direct mathematical modeling of input apparatus of ventricular assist device. The study examined straightener with three or four blades. Mathematical modeling has revealed the presence of potentially dangerous stagnation zones and essential asymmetry of the outlet flow from the input unit. The found features must be taken in consideration in designing the ventricular assist device pumps. In the future we plan to use obtained data to create a parametric model of the rotor and the diffuser considering the abovementioned features.

  15. Multiple pump housing

    Science.gov (United States)

    Donoho, II, Michael R.; Elliott; Christopher M.

    2010-03-23

    A fluid delivery system includes a first pump having a first drive assembly, a second pump having a second drive assembly, and a pump housing. At least a portion of each of the first and second pumps are located in the housing.

  16. Post-transplant outcomes in pediatric ventricular assist device patients: A PediMACS-Pediatric Heart Transplant Study linkage analysis.

    Science.gov (United States)

    Sutcliffe, David L; Pruitt, Elizabeth; Cantor, Ryan S; Godown, Justin; Lane, John; Turrentine, Mark W; Law, Sabrina P; Lantz, Jodie L; Kirklin, James K; Bernstein, Daniel; Blume, Elizabeth D

    2017-12-13

    Pediatric ventricular assist device (VAD) support as bridge to transplant has improved waitlist survival, but the effects of pre-implant status and VAD-related events on post-transplant outcomes have not been assessed. This study is a linkage analysis between the PediMACS and Pediatric Heart Transplant Study databases to determine the effects of VAD course on post-transplant outcomes. Database linkage between October 1, 2012 and December 31, 2015 identified 147 transplanted VAD patients, the primary study group. The comparison cohort was composed of 630 PHTS patients without pre-transplant VAD support. The primary outcome was post-transplant survival, with secondary outcomes of post-transplant length of stay, freedom from infection and freedom from rejection. At implant, the VAD cohort was INTERMACS Profile 1 in 33 (23%), Profile 2 in 89 (63%) and Profile 3 in 14 (10%) patients. The VAD cohort was older, larger, and less likely to have congenital heart disease (p < 0.0001). However, they had greater requirements for inotrope and ventilator support and increased liver and renal dysfunction (p < 0.0001), both of which normalized at transplant after device support. Importantly, there were no differences in 1-year post-transplant survival (96% vs 93%, p = 0.3), freedom from infection (81% vs 79%, p = 0.9) or freedom from rejection (71% vs 74%, p = 0.87) between cohorts. Pediatric VAD patients have post-transplant outcomes equal to that of medically supported patients, despite greater pre-implant illness severity. Post-transplant survival, hospital length of stay, infection and rejection were not affected by patient acuity at VAD implantation or VAD-related complications. Therefore, VAD as bridge to transplant mitigates severity of illness in children. Copyright © 2017 International Society for the Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.

  17. Assessing the energy efficiency of pumps and pump units background and methodology

    CERN Document Server

    Bernd Stoffel, em Dr-Ing

    2015-01-01

    Assessing the Energy Efficiency of Pumps and Pump Units, developed in cooperation with Europump, is the first book available providing the background, methodology, and assessment tools for understanding and calculating energy efficiency for pumps and extended products (pumps+motors+drives). Responding to new EU requirements for pump efficiency, and US DOE exploratory work in setting pump energy efficiency guidelines, this book provides explanation, derivation, and illustration of PA and EPA methods for assessing energy efficiency. It surveys legislation related to pump energy eff

  18. Effect of Non-linear Velocity Loss Changes in Pumping Stage of Hydraulic Ram Pumps on Pumping Discharge Rate

    Directory of Open Access Journals (Sweden)

    Reza Fatahialkouhi

    2018-03-01

    Full Text Available The ram pump is a device which pumps a portion of input discharge to the pumping system in a significant height by using renewable energy of water hammer. The complexities of flow hydraulic on one hand and on the other hand the use of simplifying assumptions in ram pumps have caused errors in submitted analytical models for analyzing running cycle of these pumps. In this study it has been tried to modify the governing analytical model on hydraulic performance of these pumps in pumping stage. In this study by creating a logical division, the cycle of the ram pump was divided into three stages of acceleration, pumping and recoil and the governing equations on each stage of cycling are presented by using method of characteristics. Since the closing of impulse valve is nonlinear, velocity loss in pumping stage is considered nonlinearly. Also the governing equations in pumping stage were modified by considering disc elasticity of impulse valve and changing volume of the pump body when the water hammer phenomenon is occurred. In order to evaluate results and determine empirical factors of the proposed analytical model, a physical model of the ram pump is made with internal diameter of 51 mm. Results of this study are divided into several parts. In the first part, loss coefficients of the impulse valve were measured experimentally and empirical equations of drag coefficient and friction coefficient of the impulse valve were submitted by using nonlinear regression. In the second part, results were evaluated by using experimental data taken from this study. Evaluation of statistical error functions showed that the proposed model has good accuracy for predicting experimental observations. In the third part, in order to validate the results in pumping stage, the analytical models of Lansford and Dugan (1941 and Tacke (1988 were used and the error functions resulted from prediction of experimental observations were investigated through analytical models of

  19. The pathophysiology of heart failure.

    Science.gov (United States)

    Kemp, Clinton D; Conte, John V

    2012-01-01

    Heart failure is a clinical syndrome that results when the heart is unable to provide sufficient blood flow to meet metabolic requirements or accommodate systemic venous return. This common condition affects over 5 million people in the United States at a cost of $10-38 billion per year. Heart failure results from injury to the myocardium from a variety of causes including ischemic heart disease, hypertension, and diabetes. Less common etiologies include cardiomyopathies, valvular disease, myocarditis, infections, systemic toxins, and cardiotoxic drugs. As the heart fails, patients develop symptoms which include dyspnea from pulmonary congestion, and peripheral edema and ascites from impaired venous return. Constitutional symptoms such as nausea, lack of appetite, and fatigue are also common. There are several compensatory mechanisms that occur as the failing heart attempts to maintain adequate function. These include increasing cardiac output via the Frank-Starling mechanism, increasing ventricular volume and wall thickness through ventricular remodeling, and maintaining tissue perfusion with augmented mean arterial pressure through activation of neurohormonal systems. Although initially beneficial in the early stages of heart failure, all of these compensatory mechanisms eventually lead to a vicious cycle of worsening heart failure. Treatment strategies have been developed based upon the understanding of these compensatory mechanisms. Medical therapy includes diuresis, suppression of the overactive neurohormonal systems, and augmentation of contractility. Surgical options include ventricular resynchronization therapy, surgical ventricular remodeling, ventricular assist device implantation, and heart transplantation. Despite significant understanding of the underlying pathophysiological mechanisms in heart failure, this disease causes significant morbidity and carries a 50% 5-year mortality. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Performance Analysis Of Single-Pumped And Dual-Pumped Parametric Optical Amplifier

    Directory of Open Access Journals (Sweden)

    Sandar Myint

    2015-06-01

    Full Text Available Abstract In this study we present a performance analysis of single-pumped and dual- pumped parametric optical amplifier and present the analysis of gain flatness in dual- pumped Fiber Optical Parametric Amplifier FOPA based on four-wave mixing FWM. Result shows that changing the signal power and pump power give the various gains in FOPA. It is also found out that the parametric gain increase with increase in pump power and decrease in signal power. .Moreover in this paper the phase matching condition in FWM plays a vital role in predicting the gain profile of the FOPAbecause the parametric gain is maximum when the total phase mismatch is zero.In this paper single-pumped parametric amplification over a 50nm gain bandwidth is demonstrated using 500 nm highly nonlinear fiber HNLF and signal achieves about 31dB gain. For dual-pumped parametric amplification signal achieves 26.5dB gains over a 50nm gain bandwidth. Therefore dual-pumped parametric amplifier can provide relatively flat gain over a much wider bandwidth than the single-pumped FOPA.

  1. [Heart transplant in "Nuevo Leon": the first 33 cases].

    Science.gov (United States)

    Herrera Garza, Eduardo; Molina Gamboa, Julio; Decanini Arcaute, Horacio; Ibarra Flores, Marcos; Torres García, Myrella; Macías Hidalgo, Carlos; González Oviedo, Roberto; de la Fuente Magallanes, Felipe de Jesús; Elizondo Sifuentes, Lius Angel; Villarreal Arredondo, Miguel Angel; Ortega Durán, Oscar; Martínez Bermúdez, Pedro; García Castillo, Armando; Becerra García, Oralia; Martínez Rodríguez, Diana; Contreras Lara, Carmen; Olivares de la Cerda, María de Consuelo; Treviño Treviño, Alfonso

    2006-01-01

    Heart failure is one of the most important causes of death worldwide. Heart transplant is the last effective alternative when the medical and surgical treatments have failed in patients with end stage heart failure, giving them an 80% one year survival rate. Unfortunately, during the outcome, the heart transplant patients can develop complications such as graft rejection and opportunistic infections because of the use of immunosuppressive therapy. In the present article we report the experience with 33 heart transplant patients. Our program not only has successfully transplanted patients with advanced age but, for the first time in Latin America we have transplanted patients assisted with the ambulatory Thoratec TLC II system. Even with limited resources, we have managed the same complications than other heart transplant programs, our 82% one year survival rate is similar than reports in medical literature.

  2. Residual heat removal pump and low pressure safety injection pump retrofit program

    International Nuclear Information System (INIS)

    Dudiak, J.G.; McKenna, J.M.

    1992-01-01

    Residual Heat Removal (RHR) and low pressure safety injection (LPSI) pumps installed in pressurized water-to-reactor power plants are used to provide low-head safety injection in the event of loss of coolant in the reactor coolant system. Because these pumps are subjected to rather severe temperature and pressure transients, the majority of pumps installed in the RHR service are vertical pumps with a single stage impeller. Typically the pump impeller is mounted on an extended motor shaft (close-coupled configuration) and a mechanical seal is employed at the pump end of the shaft. Traditionally RHR and LPSI pumps have been a significant maintenance item for many utilities. Periodic mechanical seal of motor bearing replacement often is considered routine maintenance. The closed-coupled pump design requires disassembly of the casing cover from the lower pump casing while performing these routine maintenance tasks. This paper introduces a design modification developed to convert the close-coupled RHR and LPSI pumps to a coupled configuration

  3. The OregonHeart Total Artificial Heart: Design and Performance on a Mock Circulatory Loop.

    Science.gov (United States)

    Glynn, Jeremy; Song, Howard; Hull, Bryan; Withers, Stanley; Gelow, Jill; Mudd, James; Starr, Albert; Wampler, Richard

    2017-10-01

    Widespread use of heart transplantation is limited by the scarcity of donor organs. Total artificial heart (TAH) development has been pursued to address this shortage, especially to treat patients who require biventricular support. We have developed a novel TAH that utilizes a continuously spinning rotor that shuttles between two positions to provide pulsatile, alternating blood flow to the systemic and pulmonary circulations without artificial valves. Flow rates and pressures generated by the TAH are controlled by adjusting rotor speed, cycle frequency, and the proportion of each cycle spent pumping to either circulation. To validate the design, a TAH prototype was placed in a mock circulatory loop that simulates vascular resistance, pressure, and compliance in normal and pathophysiologic conditions. At a systemic blood pressure of 120/80 mm Hg, nominal TAH output was 7.4 L/min with instantaneous flows reaching 17 L/min. Pulmonary artery, and left and right atrial pressures were all maintained within normal ranges. To simulate implant into a patient with severe pulmonary hypertension, the pulmonary vascular resistance of the mock loop was increased to 7.5 Wood units. By increasing pump speed to the pulmonary circulation, cardiac output could be maintained at 7.4 L/min as mean pulmonary artery pressure increased to 56 mm Hg while systemic blood pressures remained normal. This in vitro testing of a novel, shuttling TAH demonstrated that cardiac output could be maintained across a range of pathophysiologic conditions including pulmonary hypertension. These experiments serve as a proof-of-concept for the design, which has proceeded to in vivo testing. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  4. Pump Application as Hydraulic Turbine – Pump as Turbine (PaT)

    OpenAIRE

    Rusovs, D

    2009-01-01

    The paper considers pump operation as hydraulic turbine with purpose to produce mechanical power from liquid flow. The Francis hydraulic turbine was selected for comparison with centrifugal pump in reverse operation. Turbine and centrifugal pump velocity triangles were considered with purpose to evaluate PaT efficiency. Shape of impeller blades for turbine and pumps was analysed. Specific speed calculation is carried out with purpose to obtain similarity in pump and turbine description. For ...

  5. Evaluation of the performance in the solar assisted heat pump system; Taiyonetsu riyo heat pump system no seino hyoka ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Y [Osaka Institute of Technology, Osaka (Japan)

    1996-10-27

    Performance of a solar heating system with a hydrothermal source heat pump was evaluated and compared with that of a direct solar heating system. The sun-dependency rates ({Sigma}D and {Sigma}H)of the direct system and heat pump (HP)-provided system were expressed as a function of the rate ({alpha}) of the auxiliary heat against the collected heat and as a function of the performance coefficient and {alpha}, respectively. When the sun-dependency rates are compared, it is found that the HP-provided system is the more advantageous when {Sigma}H/{Sigma}D>1. The relationship between the {alpha}`s of the two systems was clarified and computation was performed to compare the sun-dependency rates on condition that the two are equal in the heat collecting area. Although the sun-dependence rate cannot be elevated to 100% in the HP-provided system, it achieves a sun-dependency rate higher than that of the direct system even when the heat collecting area is small. In cases where the building is economically limited, for instance, with respect to the area for solar collector installation, it is advantageous to employ the HP-provided system. 5 figs., 1 tab.

  6. Performance analysis on solar-water compound source heat pump for radiant floor heating system

    Institute of Scientific and Technical Information of China (English)

    曲世林; 马飞; 仇安兵

    2009-01-01

    A solar-water compound source heat pump for radiant floor heating (SWHP-RFH) experimental system was introduced and analyzed. The SWHP-RFH system mainly consists of 11.44 m2 vacuum tube solar collector,1 000 L water tank assisted 3 kW electrical heater,a water source heat pump,the radiant floor heating system with cross-linked polyethylene (PE-X) of diameter 20 mm,temperature controller and solar testing system. The SWHP-RFH system was tested from December to February during the heating season in Beijing,China under different operation situations. The test parameters include the outdoor air temperature,solar radiation intensity,indoor air temperature,radiation floor average surface temperature,average surface temperature of the building envelope,the inlet and outlet temperatures of solar collector,the temperature of water tank,the heat medium temperatures of heat pump condenser side and evaporator side,and the power consumption includes the water source heat pump system,the solar source heat pump system,the auxiliary heater and the radiant floor heating systems etc. The experimental results were used to calculate the collector efficiency,heat pump dynamic coefficient of performance (COP),total energy consumption and seasonal heating performance during the heating season. The results indicate that the performance of the compound source heat pump system is better than that of the air source heat pump system. Furthermore,some methods are suggested to improve the thermal performance of each component and the whole SWHP-RFH system.

  7. Heat pumps

    CERN Document Server

    Macmichael, DBA

    1988-01-01

    A fully revised and extended account of the design, manufacture and use of heat pumps in both industrial and domestic applications. Topics covered include a detailed description of the various heat pump cycles, the components of a heat pump system - drive, compressor, heat exchangers etc., and the more practical considerations to be taken into account in their selection.

  8. Thrombotic Depositions on Right Impeller of Double-Ended Centrifugal Total Artificial Heart In Vivo.

    Science.gov (United States)

    Karimov, Jamshid H; Horvath, David J; Okano, Shinji; Goodin, Mark; Sunagawa, Gengo; Byram, Nicole; Moazami, Nader; Golding, Leonard A R; Fukamachi, Kiyotaka

    2017-05-01

    The development of total artificial heart devices is a complex undertaking that includes chronic biocompatibility assessment of the device. It is considered particularly important to assess whether device design and features can be compatible long term in a biological environment. As part of the development program for the Cleveland Clinic continuous-flow total artificial heart (CFTAH), we evaluated the device for signs of thrombosis and biological material deposition in four animals that had achieved the intended 14-, 30-, or 90-day durations in each respective experiment. Explanted CFTAHs were analyzed for possible clot buildup at "susceptible" areas inside the pump, particularly the right pump impeller. Depositions of various consistency and shapes were observed. We here report our findings, along with macroscopic and microscopic analysis post explant, and provide computational fluid dynamics data with its potential implications for thrombus formation. © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  9. Reactor coolant purification system circulation pumps (CUW pumps)

    International Nuclear Information System (INIS)

    Tsutsui, Toshiaki

    1979-01-01

    Coolant purification equipments for BWRs have been improved, and the high pressure purifying system has become the main type. The quantity of purifying treatment also changed to 2% of the flow rate of reactor feed water. As for the circulation pumps, canned motor pumps are adopted recently, and the improvements of reliability and safety are attempted. The impurities carried in by reactor feed water and the corrosion products generated in reactors and auxiliary equipments are activated by neutron irradiation or affect heat transfer adversely, adhering to fuel claddings are core structures. Therefore, a part of reactor coolant is led to the purification equipments, and returned to reactors after the impurities are eliminated perfectly. At the time of starting and stopping reactors, excess reactor water and the contaminated water from reactors are transferred to main condenser hot wells or waste treatment systems. Thus the prescribed water quality is maintained. The operational modes of and the requirements for the CUW pumps, the construction and the features of the canned motor type CUW pumps are explained. Recently, a pump operated for 11 months without any maintenance has been disassembled and inspected, but the wear of bearings has not been observed, and the high reliability of the pump has been proved. (Kako, I.)

  10. Work plan, AP-102 mixer pump removal and pump replacement

    International Nuclear Information System (INIS)

    Jimenez, R.F.

    1994-01-01

    The objective of this work plan is to plan the steps and estimate the costs required to remove the failed AP-102 mixer pump, and to plan and estimate the cost of the necessary design and specification work required to order a new, but modified, mixer pump including the pump and pump pit energy absorbing design. The main hardware required for the removal of the mixer is as follows: a flexible receiver and blast shield; a metal container for the pulled mixer pump; and a trailer and strongback to haul and manipulate the container. Additionally: a gamma scanning device will be needed to detect the radioactivity emanating from the mixer as it is pulled from the tank; a water spray system will be required to remove tank waste from the surface of the mixer as it is pulled from the AP-102 tank; and a lifting yoke to lift the mixer from the pump pit (the SY-101 Mixer Lifting Yoke will be used). A ''green house'' will have to be erected over the AP-102 pump pit and an experienced Hoisting and Rigging crew must be assembled and trained in mixer pump removal methods before the actual removal is undertaken

  11. Experimental validation of a theoretical model for a direct-expansion solar-assisted heat pump applied to heating

    International Nuclear Information System (INIS)

    Moreno-Rodriguez, A.; Garcia-Hernando, N.; González-Gil, A.; Izquierdo, M.

    2013-01-01

    This paper discusses the experimental validation of a theoretical model that determines the operating parameters of a DXSAHP (direct-expansion solar-assisted heat pump) applied to heating. For this application, the model took into account the variable condensing temperature, and it was developed from the following environmental variables: outdoor temperature, solar radiation and wind. The experimental data were obtained from a prototype installed at the University Carlos III, which is located south of Madrid. The prototype uses a solar collector with a total area of 5.6 m 2 , a compressor with a rated capacity of 1100 W, a thermostatic expansion valve and fan-coil units as indoor terminals. The monitoring results were analyzed for several typical days in the climatic zone where the machine was located to understand the equipment's seasonal behavior. The experimental coefficient of the performance varies between 1.9 and 2.7, and the equipment behavior in extreme outdoor conditions has also been known to determine the thermal demand that can be compensated for. - Highlights: • The study aims to present an experimental validation of a theoretical model. • The experimental COP can vary between 1.9 and 2.7 (max. condensation temperature 59 °C). • A “dragging term” relates condensation and evaporation temperature. • The operating parameters respond to the solar radiation. The COP may increase up to 25%

  12. Right heart failure and "failure to thrive" after left ventricular assist device: clinical predictors and outcomes.

    Science.gov (United States)

    Baumwol, Jay; Macdonald, Peter S; Keogh, Anne M; Kotlyar, Eugene; Spratt, Phillip; Jansz, Paul; Hayward, Christopher S

    2011-08-01

    This study determined predictors of early post-operative right heart failure (RHF) and its consequences, as well as predictors of those who clinically thrive longer term after insertion of a continuous-flow left ventricular assist device (LVAD). Pre-operative and latest follow-up data were analyzed for 40 consecutive patients who received third-generation centrifugal-flow LVADs. RHF was defined using previously described criteria, including post-operative inotropes, pulmonary vasodilator use, or right-sided mechanical support. Patients were also categorized according to clinical outcomes after LVAD insertion. LVADs were implanted as a bridge to transplantation (BTT) in 33 patients and as destination therapy in 7. Before LVAD implant, 22 patients were Interagency Registry for Mechanically Assisted Circulatory Support (INTERMACS) level 1, and 17 were at level 2. Temporary mechanical assistance was present in 50% of the cohort at LVAD implantation. The 6-month survival/progression to transplant was 92.5%. Average LVAD support time was 385 days (range, 21-1,011 days). RHF developed postoperatively in 13 of 40 patients (32.5%). RHF patients had more severe pre-operative tricuspid incompetence than non-RHF patients. The BTT patients with evidence of RHF had poorer survival to transplant (6 of 11 [54.5%]) than those without RHF (20 of 22 [90.9%]), p = 0.027). There were no other hemodynamic or echocardiographic predictors of short-term RHF. After LVAD, 22 of the 40 patients (55%) thrived clinically. For BTT patients, 20 of 21 (95%) of those who thrived progressed to transplant or were alive at latest follow-up vs 6 of 12 (50%) of those who failed to thrive (FTT; p thrived. Early post-operative RHF results in poorer survival/progression to transplantation for BTT patients and is predicted by greater pre-operative tricuspid incompetence. The most important predictor for those who will clinically thrive longer-term after LVAD insertion is younger age. Crown Copyright © 2011

  13. Model of a thermal energy storage device integrated into a solar assisted heat pump system for space heating

    International Nuclear Information System (INIS)

    Badescu, Viorel

    2003-01-01

    Details about modelling a sensible heat thermal energy storage (TES) device integrated into a space heating system are given. The two main operating modes are described. Solar air heaters provide thermal energy for driving a vapor compression heat pump. The TES unit ensures a more efficient usage of the collected solar energy. The TES operation is modeled by using two non-linear coupled partial differential equations for the temperature of the storage medium and heat transfer fluid, respectively. Preliminary results show that smaller TES units provide a higher heat flux to the heat pump vaporiser. This makes the small TES unit discharge more rapidly during time periods with higher thermal loads. The larger TES units provide heat during longer time periods, even if the heat flux they supply is generally smaller. The maximum heat flux is extracted from the TES unit during the morning. Both the heat pump COP and exergy efficiency decrease when the TES unit length increases. Also, the monthly thermal energy stored by the TES unit and the monthly energy necessary to drive the heat pump compressor are increased by increasing the TES unit length

  14. "The Heart Game"

    DEFF Research Database (Denmark)

    Dithmer, Marcus; Rasmussen, Jack Ord; Grönvall, Erik

    2016-01-01

    Objective: The aim of this article is to describe the development and testing of a prototype application (“The Heart Game”) using gamification principles to assist heart patients in their telerehabilitation process in the Teledialog project. Materials and Methods: A prototype game was developed via...... user-driven innovation and tested on 10 patients 48–89 years of age and their relatives for a period of 2 weeks. The application consisted of a series of daily challenges given to the patients and relatives and was based on several gamification principles. A triangulation of data collection techniques...... tool as a part of their telerehabilitation process in everyday life. Gamification and gameful design principles such as leaderboards, relationships, and achievements engaged the patients and relatives. The inclusion of a close relative in the game motivated the patients to perform rehabilitation...

  15. Inflammatory response and cardioprotection during open-heart surgery: the importance of anaesthetics.

    Science.gov (United States)

    Suleiman, M-S; Zacharowski, K; Angelini, G D

    2008-01-01

    Open-heart surgery triggers an inflammatory response that is largely the result of surgical trauma, cardiopulmonary bypass, and organ reperfusion injury (e.g. heart). The heart sustains injury triggered by ischaemia and reperfusion and also as a result of the effects of systemic inflammatory mediators. In addition, the heart itself is a source of inflammatory mediators and reactive oxygen species that are likely to contribute to the impairment of cardiac pump function. Formulating strategies to protect the heart during open heart surgery by attenuating reperfusion injury and systemic inflammatory response is essential to reduce morbidity. Although many anaesthetic drugs have cardioprotective actions, the diversity of the proposed mechanisms for protection (e.g. attenuating Ca(2+) overload, anti-inflammatory and antioxidant effects, pre- and post-conditioning-like protection) may have contributed to the slow adoption of anaesthetics as cardioprotective agents during open heart surgery. Clinical trials have suggested at least some cardioprotective effects of volatile anaesthetics. Whether these benefits are relevant in terms of morbidity and mortality is unclear and needs further investigation. This review describes the main mediators of myocardial injury during open heart surgery, explores available evidence of anaesthetics induced cardioprotection and addresses the efforts made to translate bench work into clinical practice.

  16. Geometric Optimization for Non-Thrombogenicity of a Centrifugal Blood Pump through Flow Visualization

    Science.gov (United States)

    Toyoda, Masahiro; Nishida, Masahiro; Maruyama, Osamu; Yamane, Takashi; Tsutsui, Tatsuo; Sankai, Yoshiyuki

    A monopivot centrifugal blood pump, whose impeller is supported with a pivot bearing and a passive magnetic bearing, is under development for implantable artificial heart. The hemolysis level is less than that of commercial centrifugal pumps and the pump size is as small as 160 mL in volume. To solve a problem of thrombus caused by fluid dynamics, flow visualization experiments and animal experiments have been undertaken. For flow visualization a three-fold scale-up model, high-speed video system, and particle tracking velocimetry software were used. To verify non-thrombogenicity one-week animal experiments were conducted with sheep. The initially observed thrombus around the pivot was removed through unifying the separate washout holes to a small centered hole to induce high shear around the pivot. It was found that the thrombus contours corresponded to the shear rate of 300s-1 for red thrombus and 1300-1700s-1 for white thrombus, respectively. Thus flow visualization technique was found to be a useful tool to predict thrombus location.

  17. An analytical method for defining the pump`s power optimum of a water-to-water heat pump heating system using COP

    Directory of Open Access Journals (Sweden)

    Nyers Jozsef

    2017-01-01

    Full Text Available This paper analyzes the energy efficiency of the heat pump and the complete heat pump heating system. Essentially, the maximum of the coefficient of performance of the heat pump and the heat pump heating system are investigated and determined by applying a new analytical optimization procedure. The analyzed physical system consists of the water-to-water heat pump, circulation and well pump. In the analytical optimization procedure the "first derivative equal to zero" mathematical method is applied. The objective function is the coefficient of performance of the heat pump, and the heat pump heating system. By using the analytical optimization procedure and the objective function, as the result, the local and the total energy optimum conditions with respect to the mass flow rate of hot and cold water i. e. the power of circulation or well pump are defined.

  18. Embryonic Heart Morphogenesis from Confocal Microscopy Imaging and Automatic Segmentation

    Directory of Open Access Journals (Sweden)

    Hongda Mao

    2013-01-01

    Full Text Available Embryonic heart morphogenesis (EHM is a complex and dynamic process where the heart transforms from a single tube into a four-chambered pump. This process is of great biological and clinical interest but is still poorly understood for two main reasons. On the one hand, the existing imaging modalities for investigating EHM suffered from either limited penetration depth or limited spatial resolution. On the other hand, current works typically adopted manual segmentation, which was tedious, subjective, and time consuming considering the complexity of developing heart geometry and the large size of images. In this paper, we propose to utilize confocal microscopy imaging with tissue optical immersion clearing technique to image the heart at different stages of development for EHM study. The imaging method is able to produce high spatial resolution images and achieve large penetration depth at the same time. Furthermore, we propose a novel convex active contour model for automatic image segmentation. The model has the ability to deal with intensity fall-off in depth which is characterized by confocal microscopy images. We acquired the images of embryonic quail hearts from day 6 to day 14 of incubation for EHM study. The experimental results were promising and provided us with an insight view of early heart growth pattern and also paved the road for data-driven heart growth modeling.

  19. Geothermal direct-heat utilization assistance: Federal assistance program. Quarterly project progress report, October--December 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    The report summarizes geothermal technical assistance, R&D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the first quarter of FY-96. It describes 90 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, equipment and resources. Research activities are summarized on low-temperature resource assessment, geothermal district heating system cost evaluation and silica waste utilization project. Outreach activities include the publication of a geothermal direct use Bulletin, dissemination of information, geothermal library, technical papers and seminars, development of a webpage, and progress monitor reports on geothermal resources and utilization.

  20. A Signal Processing Module for the Analysis of Heart Sounds and Heart Murmurs

    International Nuclear Information System (INIS)

    Javed, Faizan; Venkatachalam, P A; H, Ahmad Fadzil M

    2006-01-01

    In this paper a Signal Processing Module (SPM) for the computer-aided analysis of heart sounds has been developed. The module reveals important information of cardiovascular disorders and can assist general physician to come up with more accurate and reliable diagnosis at early stages. It can overcome the deficiency of expert doctors in rural as well as urban clinics and hospitals. The module has five main blocks: Data Acquisition and Pre-processing, Segmentation, Feature Extraction, Murmur Detection and Murmur Classification. The heart sounds are first acquired using an electronic stethoscope which has the capability of transferring these signals to the near by workstation using wireless media. Then the signals are segmented into individual cycles as well as individual components using the spectral analysis of heart without using any reference signal like ECG. Then the features are extracted from the individual components using Spectrogram and are used as an input to a MLP (Multiple Layer Perceptron) Neural Network that is trained to detect the presence of heart murmurs. Once the murmur is detected they are classified into seven classes depending on their timing within the cardiac cycle using Smoothed Pseudo Wigner-Ville distribution. The module has been tested with real heart sounds from 40 patients and has proved to be quite efficient and robust while dealing with a large variety of pathological conditions

  1. A Signal Processing Module for the Analysis of Heart Sounds and Heart Murmurs

    Energy Technology Data Exchange (ETDEWEB)

    Javed, Faizan; Venkatachalam, P A; H, Ahmad Fadzil M [Signal and Imaging Processing and Tele-Medicine Technology Research Group, Department of Electrical and Electronics Engineering, Universiti Teknologi PETRONAS, 31750 Tronoh, Perak (Malaysia)

    2006-04-01

    In this paper a Signal Processing Module (SPM) for the computer-aided analysis of heart sounds has been developed. The module reveals important information of cardiovascular disorders and can assist general physician to come up with more accurate and reliable diagnosis at early stages. It can overcome the deficiency of expert doctors in rural as well as urban clinics and hospitals. The module has five main blocks: Data Acquisition and Pre-processing, Segmentation, Feature Extraction, Murmur Detection and Murmur Classification. The heart sounds are first acquired using an electronic stethoscope which has the capability of transferring these signals to the near by workstation using wireless media. Then the signals are segmented into individual cycles as well as individual components using the spectral analysis of heart without using any reference signal like ECG. Then the features are extracted from the individual components using Spectrogram and are used as an input to a MLP (Multiple Layer Perceptron) Neural Network that is trained to detect the presence of heart murmurs. Once the murmur is detected they are classified into seven classes depending on their timing within the cardiac cycle using Smoothed Pseudo Wigner-Ville distribution. The module has been tested with real heart sounds from 40 patients and has proved to be quite efficient and robust while dealing with a large variety of pathological conditions.

  2. Na+/K+ pump interacts with the h-current to control bursting activity in central pattern generator neurons of leeches

    Science.gov (United States)

    Kueh, Daniel; Barnett, William H; Cymbalyuk, Gennady S; Calabrese, Ronald L

    2016-01-01

    The dynamics of different ionic currents shape the bursting activity of neurons and networks that control motor output. Despite being ubiquitous in all animal cells, the contribution of the Na+/K+ pump current to such bursting activity has not been well studied. We used monensin, a Na+/H+ antiporter, to examine the role of the pump on the bursting activity of oscillator heart interneurons in leeches. When we stimulated the pump with monensin, the period of these neurons decreased significantly, an effect that was prevented or reversed when the h-current was blocked by Cs+. The decreased period could also occur if the pump was inhibited with strophanthidin or K+-free saline. Our monensin results were reproduced in model, which explains the pump’s contributions to bursting activity based on Na+ dynamics. Our results indicate that a dynamically oscillating pump current that interacts with the h-current can regulate the bursting activity of neurons and networks. DOI: http://dx.doi.org/10.7554/eLife.19322.001 PMID:27588351

  3. Examination of pump failure data in the nuclear power industry

    Energy Technology Data Exchange (ETDEWEB)

    Casada, D. [Oak Ridge National Lab., TN (United States)

    1996-12-01

    There are several elements that are critical to any program which is used to optimize the availability and reliability of process equipment. Perhaps the most important elements are routine monitoring and predictive maintenance elements. In order to optimize equipment monitoring and predictive maintenance, it is necessary to fundamentally and thoroughly understand the principal failure modes for the equipment and the effectiveness of alternative monitoring methods. While these observations are general in nature, they are certainly true for the {open_quotes}heart{close_quotes} of fluid systems - pumps. In recent years, particularly within the last decade, the capabilities and ease of use of previously existing pump diagnostic technologies, such as vibration monitoring and oil analysis, have improved dramatically. Newer technologies, such as thermal imaging, have been found effective at detecting certain undesirable or degraded conditions, such as misalignment and overheated bearings or packing. The ASME Code and NRC regulatory requirements have been, like essentially all similar code and regulatory bodies, conservative in their adoption or endorsement of newer technologies. The requirements prescribed by the Code and endorsed by the NRC have, in their essence, changed only minimally over more than a dozen years. As a follow-on to studies of check valve failure experience in the nuclear industry that have proven useful in identifying the effectiveness of alternative monitoring methods, a study of nuclear industry pump failure data has been conducted. The results of this study, conducted for the NRC by Oak Ridge National Laboratory, are presented. The historical effectiveness of both regulatory required and voluntarily implemented pump monitoring programs are shown. The distribution of pump failures by application, affected area, and level of significance are indicated. Apparent strengths and weaknesses of alternative monitoring methods are discussed.

  4. Electromagnetic pump technology

    International Nuclear Information System (INIS)

    Prabhakar, R.

    1994-01-01

    Fast Breeder Reactors have an important role to play in our nuclear power programme. Liquid metal sodium is used as the coolant for removing fission heat generated in fast reactors and a distinctive physical property of sodium is its high electrical conductivity. This enables application of electromagnetic (EM) pumps, working on same principle as electric motors, for pumping liquid sodium. Due to its lower efficiency as compared to centrifugal pumps, use of EM pumps has been restricted to reactor auxiliary circuits and experimental facilities. As part of our efforts to manufacture fast reactor components indigenously, work on the development of two types of EM pumps namely flat linear induction pump (FLIP) and annular linear induction pump (ALIP) has been undertaken. Design procedures based on an equivalent circuit approach have been established and results from testing a 5.6 x 10E-3 Cum/s (20 Cum/h) FLIP in a sodium loop were used to validate the procedure. (author). 7 refs., 6 figs

  5. PumpKin: A tool to find principal pathways in plasma chemical models

    Science.gov (United States)

    Markosyan, A. H.; Luque, A.; Gordillo-Vázquez, F. J.; Ebert, U.

    2014-10-01

    PumpKin is a software package to find all principal pathways, i.e. the dominant reaction sequences, in chemical reaction systems. Although many tools are available to integrate numerically arbitrarily complex chemical reaction systems, few tools exist in order to analyze the results and interpret them in relatively simple terms. In particular, due to the large disparity in the lifetimes of the interacting components, it is often useful to group reactions into pathways that recycle the fastest species. This allows a researcher to focus on the slow chemical dynamics, eliminating the shortest timescales. Based on the algorithm described by Lehmann (2004), PumpKin automates the process of finding such pathways, allowing the user to analyze complex kinetics and to understand the consumption and production of a certain species of interest. We designed PumpKin with an emphasis on plasma chemical systems but it can also be applied to atmospheric modeling and to industrial applications such as plasma medicine and plasma-assisted combustion.

  6. [Abortion using a bicycle pump on the mistress and unusual suicide of a blind man].

    Science.gov (United States)

    Holzer, F J

    1973-01-01

    In Tyrol a case of fatal air embolism after an abortion attempt with a bicycle pump, performed by a blind man who later committed suicide, is described. The bicycle tube was inserted into the vagina and air and a soapy solution were pumped in. Autopsies revealed internal bleeding, gas embolisms in the veins of the ovaries and heart, a bloody foamy liquid in the lungs, and an intact 14 cm male fetus. 3 similar cases of fatal air embolisms after abortion attempts with bicycle pumps are described. In 1 case a soapy solution had been injected. Abortion attempts with a pipe and a rubber catheter, reported here, also resulted in rapidly fatal air embolisms. In 1 case death occurred a few seconds after a partner blew air with his mouth into his pregnant mistress' vagina. It is concluded that under some conditions filling the vagina with air (tightly) can cause fatal air embolisms.

  7. Pumping life

    DEFF Research Database (Denmark)

    Sitsel, Oleg; Dach, Ingrid; Hoffmann, Robert Daniel

    2012-01-01

    The name PUMPKIN may suggest a research centre focused on American Halloween traditions or the investigation of the growth of vegetables – however this would be misleading. Researchers at PUMPKIN, short for Centre for Membrane Pumps in Cells and Disease, are in fact interested in a large family o......’. Here we illustrate that the pumping of ions means nothing less than the pumping of life....

  8. Champagne Heat Pump

    Science.gov (United States)

    Jones, Jack A.

    2004-01-01

    The term champagne heat pump denotes a developmental heat pump that exploits a cycle of absorption and desorption of carbon dioxide in an alcohol or other organic liquid. Whereas most heat pumps in common use in the United States are energized by mechanical compression, the champagne heat pump is energized by heating. The concept of heat pumps based on other absorption cycles energized by heat has been understood for years, but some of these heat pumps are outlawed in many areas because of the potential hazards posed by leakage of working fluids. For example, in the case of the water/ammonia cycle, there are potential hazards of toxicity and flammability. The organic-liquid/carbon dioxide absorption/desorption cycle of the champagne heat pump is similar to the water/ammonia cycle, but carbon dioxide is nontoxic and environmentally benign, and one can choose an alcohol or other organic liquid that is also relatively nontoxic and environmentally benign. Two candidate nonalcohol organic liquids are isobutyl acetate and amyl acetate. Although alcohols and many other organic liquids are flammable, they present little or no flammability hazard in the champagne heat pump because only the nonflammable carbon dioxide component of the refrigerant mixture is circulated to the evaporator and condenser heat exchangers, which are the only components of the heat pump in direct contact with air in habitable spaces.

  9. Perioperative Care of the Patient With the Total Artificial Heart.

    Science.gov (United States)

    Yaung, Jill; Arabia, Francisco A; Nurok, Michael

    2017-05-01

    Advanced heart failure continues to be a leading cause of morbidity and mortality despite improvements in pharmacologic therapy. High demand for cardiac transplantation and shortage of donor organs have led to an increase in the utilization of mechanical circulatory support devices. The total artificial heart is an effective biventricular assist device that may be used as a bridge to transplant and that is being studied for destination therapy. This review discusses the history, indications, and perioperative management of the total artificial heart with emphasis on the postoperative concerns.

  10. Ethical challenges with the left ventricular assist device as a destination therapy

    Directory of Open Access Journals (Sweden)

    Rady Mohamed Y

    2008-08-01

    Full Text Available Abstract The left ventricular assist device was originally designed to be surgically implanted as a bridge to transplantation for patients with chronic end-stage heart failure. On the basis of the REMATCH trial, the US Food and Drug Administration and the US Centers for Medicare & Medicaid Services approved permanent implantation of the left ventricular assist device as a destination therapy in Medicare beneficiaries who are not candidates for heart transplantation. The use of the left ventricular assist device as a destination therapy raises certain ethical challenges. Left ventricular assist devices can prolong the survival of average recipients compared with optimal medical management of chronic end-stage heart failure. However, the overall quality of life can be adversely affected in some recipients because of serious infections, neurologic complications, and device malfunction. Left ventricular assist devices alter end-of-life trajectories. The caregivers of recipients may experience significant burden (e.g., poor physical health, depression, anxiety, and posttraumatic stress disorder from destination therapy with left ventricular assist devices. There are also social and financial ramifications for recipients and their families. We advocate early utilization of a palliative care approach and outline prerequisite conditions so that consenting for the use of a left ventricular assist device as a destination therapy is a well informed process. These conditions include: (1 direct participation of a multidisciplinary care team, including palliative care specialists, (2 a concise plan of care for anticipated device-related complications, (3 careful surveillance and counseling for caregiver burden, (4 advance-care planning for anticipated end-of-life trajectories and timing of device deactivation, and (5 a plan to address the long-term financial burden on patients, families, and caregivers. Short-term mechanical circulatory devices (e

  11. Breastfeeding FAQs: Pumping

    Science.gov (United States)

    ... of pump is best? You can buy or rent a breast pump from lactation consultants, hospitals, retail ... place to do it. Many companies offer their employees pumping and nursing areas. If yours doesn't, ...

  12. Preload-based Starling-like control of rotary blood pumps: An in-vitro evaluation.

    Directory of Open Access Journals (Sweden)

    Mahdi Mansouri

    Full Text Available Due to a shortage of donor hearts, rotary left ventricular assist devices (LVADs are used to provide mechanical circulatory support. To address the preload insensitivity of the constant speed controller (CSC used in conventional LVADs, we developed a preload-based Starling-like controller (SLC. The SLC emulates the Starling law of the heart to maintain mean pump flow ([Formula: see text] with respect to mean left ventricular end diastolic pressure (PLVEDm as the feedback signal. The SLC and CSC were compared using a mock circulation loop to assess their capacity to increase cardiac output during mild exercise while avoiding ventricular suction (marked by a negative PLVEDm and maintaining circulatory stability during blood loss and severe reductions in left ventricular contractility (LVC. The root mean squared hemodynamic deviation (RMSHD metric was used to assess the clinical acceptability of each controller based on pre-defined hemodynamic limits. We also compared the in-silico results from our previously published paper with our in-vitro outcomes. In the exercise simulation, the SLC increased [Formula: see text] by 37%, compared to only 17% with the CSC. During blood loss, the SLC maintained a better safety margin against left ventricular suction with PLVEDm of 2.7 mmHg compared to -0.1 mmHg for CSC. A transition to reduced LVC resulted in decreased mean arterial pressure (MAP and [Formula: see text] with CSC, whilst the SLC maintained MAP and [Formula: see text]. The results were associated with a much lower RMSHD value with SLC (70.3% compared to CSC (225.5%, demonstrating improved capacity of the SLC to compensate for the varying cardiac demand during profound circulatory changes. In-vitro and in-silico results demonstrated similar trends to the simulated changes in patient state however the magnitude of hemodynamic changes were different, thus justifying the progression to in-vitro evaluation.

  13. Development and evaluation of cryosorption pump and cryotrapping pump for CTR applications

    International Nuclear Information System (INIS)

    Kuribayashi, S.; Ota, H.; Sato, H.

    1986-01-01

    In order to obtain the engineering data to design compound cryopump for CTR, the authors tested the cryosorption pump and cryotrapping pump. The cryosorption panel was consisted of coconut charcoal metallically bonded to 4.2K cryopanel by brazing. The initial pumping speed of helium of cryosorption pump was found to be ≅2.2 iota/scm/sup 2/. The speed dropped off with loading (about 8 Torr iota/cm/sup 2/) to 1.5 iota/scm/sup 2/. The initial helium pumping speed of the 4.2K cryotrapping pump by argon spray was found to be ≅6 iota/scm/sup 2/. The speed, however, dropped off with loading (≅0.3 Torr iota/cm/sup 2/) to less than 5%. These results indicate that the cryosorption pump by coconut charcoal is superior to the cryotrapping pump, because the capacity of the former is larger than the latter

  14. Efficiency and threshold pump intensity of CW solar-pumped solid-state lasers

    Science.gov (United States)

    Hwang, In H.; Lee, Ja H.

    1991-01-01

    The authors consider the relation between the threshold pumping intensity, the material properties, the resonator parameters, and the ultimate slope efficiencies of various solid-state laser materials for solar pumping. They clarify the relation between the threshold pump intensity and the material parameters and the relation between the ultimate slope efficiency and the laser resonator parameters such that a design criterion for the solar-pumped solid-state laser can be established. Among the laser materials evaluated, alexandrite has the highest slope efficiency of about 12.6 percent; however, it does not seem to be practical for a solar-pumped laser application because of its high threshold pump intensity. Cr:Nd:GSGG is the most promising for solar-pumped lasing. Its threshold pump intensity is about 100 air-mass-zero (AM0) solar constants and its slope efficiency is about 12 percent when thermal deformation is completely prevented.

  15. An implantable centrifugal blood pump with a recirculating purge system (Cool-Seal system).

    Science.gov (United States)

    Yamazaki, K; Litwak, P; Tagusari, O; Mori, T; Kono, K; Kameneva, M; Watach, M; Gordon, L; Miyagishima, M; Tomioka, J; Umezu, M; Outa, E; Antaki, J F; Kormos, R L; Koyanagi, H; Griffith, B P

    1998-06-01

    A compact centrifugal blood pump has been developed as an implantable left ventricular assist system. The impeller diameter is 40 mm, and pump dimensions are 55 x 64 mm. This first prototype, fabricated from titanium alloy, resulted in a pump weight of 400 g including a brushless DC motor. The weight of a second prototype pump was reduced to 280 g. The entire blood contacting surface is coated with diamond like carbon (DLC) to improve blood compatibility. Flow rates of over 7 L/min against 100 mm Hg pressure at 2,500 rpm with 9 W total power consumption have been measured. A newly designed mechanical seal with a recirculating purge system (Cool-Seal) is used for the shaft seal. In this seal system, the seal temperature is kept under 40 degrees C to prevent heat denaturation of blood proteins. Purge fluid also cools the pump motor coil and journal bearing. Purge fluid is continuously purified and sterilized by an ultrafiltration unit which is incorporated in the paracorporeal drive console. In vitro experiments with bovine blood demonstrated an acceptably low hemolysis rate (normalized index of hemolysis = 0.005 +/- 0.002 g/100 L). In vivo experiments are currently ongoing using calves. Via left thoracotomy, left ventricular (LV) apex descending aorta bypass was performed utilizing an expanded polytetrafluoroethylene (ePTFE) vascular graft with the pump placed in the left thoracic cavity. In 2 in vivo experiments, the pump flow rate was maintained at 5-9 L/min, and pump power consumption remained stable at 9-10 W. All plasma free Hb levels were measured at less than 15 mg/dl. The seal system has demonstrated good seal capability with negligible purge fluid consumption (<0.5 ml/day). In both calves, the pumps demonstrated trouble free continuous function over 6 month (200 days and 222 days).

  16. First clinical use of a bioprosthetic total artificial heart: report of two cases.

    Science.gov (United States)

    Carpentier, Alain; Latrémouille, Christian; Cholley, Bernard; Smadja, David M; Roussel, Jean-Christian; Boissier, Elodie; Trochu, Jean-Noël; Gueffet, Jean-Pierre; Treillot, Michèle; Bizouarn, Philippe; Méléard, Denis; Boughenou, Marie-Fazia; Ponzio, Olivier; Grimmé, Marc; Capel, Antoine; Jansen, Piet; Hagège, Albert; Desnos, Michel; Fabiani, Jean-Noël; Duveau, Daniel

    2015-10-17

    The development of artificial hearts in patients with end-stage heart disease have been confronted with the major issues of thromboembolism or haemorrhage. Since valvular bioprostheses are associated with a low incidence of these complications, we decided to use bioprosthetic materials in the construction of a novel artificial heart (C-TAH). We report here the device characteristics and its first clinical applications in two patients with end-stage dilated cardiomyopathy. The aim of the study was to evaluate safety and feasibility of the CARMAT TAH for patients at imminent risk of death from biventricular heart failure and not eligible for transplant. The C-TAH is an implantable electro-hydraulically actuated pulsatile biventricular pump. All components, batteries excepted, are embodied in a single device positioned in the pericardial sac after excision of the native ventricles. We selected patients admitted to hospital who were at imminent risk of death, having irreversible biventricular failure, and not eligible for heart transplantation, from three cardiac surgery centres in France. The C-TAH was implanted in two male patients. Patient 1, aged 76 years, had the C-TAH implantation on Dec 18, 2013; patient 2, aged 68 years, had the implantation on Aug 5, 2014. The cardiopulmonary bypass times for C-TAH implantation were 170 min for patient 1 and 157 min for patient 2. Both patients were extubated within the first 12 postoperative hours and had a rapid recovery of their respiratory and circulatory functions as well as a normal mental status. Patient 1 presented with a tamponade on day 23 requiring re-intervention. Postoperative bleeding disorders prompted anticoagulant discontinuation. The C-TAH functioned well with a cardiac output of 4·8-5·8 L/min. On day 74, the patient died due to a device failure. Autopsy did not detect any relevant thrombus formation within the bioprosthesis nor the different organs, despite a 50-day anticoagulant-free period. Patient 2

  17. Pumping station design for a pumped-storage wind-hydro power plant

    International Nuclear Information System (INIS)

    Anagnostopoulos, John S.; Papantonis, Dimitris E.

    2007-01-01

    This work presents a numerical study of the optimum sizing and design of a pumping station unit in a hybrid wind-hydro plant. The standard design that consists of a number of identical pumps operating in parallel is examined in comparison with two other configurations, using one variable-speed pump or an additional set of smaller jockey pumps. The aim is to reduce the amount of the wind generated energy that cannot be transformed to hydraulic energy due to power operation limits of the pumps and the resulting step-wise operation of the pumping station. The plant operation for a period of one year is simulated by a comprehensive evaluation algorithm, which also performs a detailed economic analysis of the plant using dynamic evaluation methods. A preliminary study of the entire plant sizing is carried out at first using an optimization tool based on evolutionary algorithms. The performance of the three examined pumping station units is then computed and analyzed in a comparative study. The results reveal that the use of a variable-speed pump constitutes the most effective and profitable solution, and its superiority is more pronounced for less dispersed wind power potential

  18. Performance Analysis of Solar Assisted Fluidized Bed Dryer Integrated Biomass Furnace with and without Heat Pump for Drying of Paddy

    Directory of Open Access Journals (Sweden)

    M. Yahya

    2016-01-01

    Full Text Available The performances of a solar assisted fluidized bed dryer integrated biomass furnace (SA-FBDIBF and a solar assisted heat pump fluidized bed dryer integrated biomass furnace (SAHP-FBDIBF for drying of paddy have been evaluated, and also drying kinetics of paddy were determined. The SA-FBDIBF and the SAHP-FBDIBF were used to dry paddy from 11 kg with moisture content of 32.85% db to moisture content of 16.29% db (14% wb under an air mass flow rate of 0.1037 kg/s within 29.73 minutes and 22.95 minutes, with average temperatures and relative humidities of 80.3°C and 80.9°C and 12.28% and 8.14%, respectively. The average drying rate, specific energy consumption, and specific moisture extraction rate were 0.043 kg/minute and 0.050 kg/minute, 5.454 kWh/kg and 4.763 kWh/kg, and 0.204 kg/kWh and 0.241 kg/kWh for SA-FBDIBF and SAHP-FBDIBF, respectively. In SA-FBDIBF and SAHP-FBDIBF, the dryer thermal efficiencies were average values of 12.28% and 15.44%; in addition, the pickup efficiencies were 33.55% and 43.84% on average, whereas the average solar and biomass fractions were 10.9% and 10.6% and 36.6% and 30.4% for SA-FBDIBF and SAHP-FBDIBF, respectively. The drying of paddy occurred in the falling rate period. The experimental dimensionless moisture content data were fitted to three mathematical models. Page’s model was found best to describe the drying behaviour of paddy.

  19. Geothermal direct-heat utilization assistance. Quarterly progress report, April--June 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    Progress is reported on the following R&D activities: evaluation of lineshaft turbine pump problems, geothermal district heating marketing strategy, and greenhouse peaking analysis. Other activities are reported on technical assistance, technology transfer, and the geothermal progress monitor.

  20. BWR series pump recirculation system

    International Nuclear Information System (INIS)

    Dillmann, C.W.

    1992-01-01

    This patent describes a recirculation system for driving reactor coolant water contained in an annular downcomer defined between a boiling water reactor vessel and a reactor core spaced radially inwardly therefrom. It comprises a plurality of circumferentially spaced second pumps disposed in the downcomer, each including an inlet for receiving from the downcomer a portion of the coolant water as pump inlet flow, and an outlet for discharging the pump inlet flow pressurized in the second pump as pump outlet flow; and means for increasing pressure of the pump inlet flow at the pump inlet including a first pump disposed in series flow with the second pump for first receiving the pump inlet flow from the downcomer and discharging to the second pump inlet flow pressurized in the first pump

  1. Early outcome of off-pump versus on-pump coronary revascularization

    African Journals Online (AJOL)

    Introduction: The use of coronary artery bypass surgery (CABG) with cardiopulmonary bypass (CPB) or without CPB technique (off-pump) can be associated with different mortality and morbidity and their outcomes remain uncertain. The goal of this study was to evaluate the early outcome of on-pump versus off-pump CABG.

  2. Pumps in wearable ultrafiltration devices: pumps in wuf devices.

    Science.gov (United States)

    Armignacco, Paolo; Garzotto, Francesco; Bellini, Corrado; Neri, Mauro; Lorenzin, Anna; Sartori, Marco; Ronco, Claudio

    2015-01-01

    The wearable artificial kidney (WAK) is a device that is supposed to operate like a real kidney, which permits prolonged, frequent, and continuous dialysis treatments for patients with end-stage renal disease (ESRD). Its functioning is mainly related to its pumping system, as well as to its dialysate-generating and alarm/shutoff ones. A pump is defined as a device that moves fluids by mechanical action. In such a context, blood pumps pull blood from the access side of the dialysis catheter and return the blood at the same rate of flow. The main aim of this paper is to review the current literature on blood pumps, describing the way they have been functioning thus far and how they are being engineered, giving details about the most important parameters that define their quality, thus allowing the production of a radar comparative graph, and listing ideal pumps' features. © 2015 S. Karger AG, Basel.

  3. 75 FR 70273 - National Heart, Lung, and Blood Institute; Notice of Closed Meetings

    Science.gov (United States)

    2010-11-17

    ... Institute Special Emphasis Panel, The Antihypertensive and Lipid-Lowering to Prevent Heart Attack Trial... Research Demonstration and Dissemination Projects. Date: December 14, 2010. Time: 8 a.m. to 2 p.m. Agenda... Assistance Program Nos. 93.233, National Center for Sleep Disorders Research; 93.837, Heart and Vascular...

  4. TFTR ultrahigh-vacuum pumping system incorporating mercury diffusion pumps

    International Nuclear Information System (INIS)

    Sink, D.A.; Sniderman, M.

    1976-06-01

    The TFTR vacuum vessel will have a system of four 61 cm diameter mercury diffusion pumps to provide a base pressure in the 10 -8 to 10 -9 Torr range as well as a low impurity level within the vessel. The system, called the Torus Vacuum Pumping System (TVPS), will be employed with the aid of an occasional 250 0 C bakeout in situ as well as periodic applications of aggressive discharge cleaning. The TVPS is an ultrahigh-vacuum (UHV) system using no elastomers as well as being a closed system with respect to tritium or any tritiated gases. The backing system employing approximately 75 all-metal isolation valves is designed with the features of redundancy and flexibility employed in a variety of ways to meet the fundamental requirements and functions enumerated for the TVPS. Since the design, is one which is a modification of the conceptual design of the TVPS, those features which have changed are discussed. Calculations are presented for the major performance parameters anticipated for the TVPS and include conductances, effective pumping speeds, base pressures, operating parameters, getter pump parameters, and calculations of time constants associated with leak checking. Modifications in the vacuum pumping system for the guard regions on the twelve bellows sections are presented so that it is compatible with the main TVPS. The bellows pumping system consists of a mechanical pump unit, a zirconium aluminum getter pump unit and a residual gas analyzer. The control and management of the TVPS is described with particular attention given to providing both manual and automatic control at a local station and at the TFTR Central Control. Such operations as testing, maintenance, leak checking, startup, bakeout, and various other operations are considered in some detail. Various aspects related to normal pulsing, discharge cleaning, non-tritium operations and tritium operations are also taken into consideration. A cost estimate is presented

  5. Advanced strategies for end-stage heart failure: combining regenerative approaches with LVAD, a new horizon?

    Directory of Open Access Journals (Sweden)

    Cheyenne eTseng

    2015-04-01

    Full Text Available Despite the improved treatment of cardiovascular diseases the population with end-stage heart failure is progressively growing. The scarcity of the gold standard therapy, heart transplantation, demands novel therapeutic approaches. For patients awaiting transplantation ventricular assist devices have been of great benefit on survival. To allow explantation of the assist device and obviate heart transplantation, sufficient and durable myocardial recovery is necessary. However, explant rates so far are low. Combining mechanical circulatory support with regenerative therapies such as cell(-based therapy and biomaterials might give rise to improved long-term results. Although synergistic effects are suggested with mechanical support and stem cell therapy, evidence in both preclinical and clinical setting is lacking. This review focuses on advanced and innovative strategies for the treatment of end-stage heart failure and furthermore appraises clinical experience with combined strategies.

  6. Leonardo da Vinci's studies of the heart.

    Science.gov (United States)

    Shoja, Mohammadali M; Agutter, Paul S; Loukas, Marios; Benninger, Brion; Shokouhi, Ghaffar; Namdar, Husain; Ghabili, Kamyar; Khalili, Majid; Tubbs, R Shane

    2013-08-20

    Leonardo da Vinci's detailed drawings are justly celebrated; however, less well known are his accounts of the structures and functions of the organs. In this paper, we focus on his illustrations of the heart, his conjectures about heart and blood vessel function, his experiments on model systems to test those conjectures, and his unprecedented conclusions about the way in which the cardiovascular system operates. In particular, da Vinci seems to have been the first to recognize that the heart is a muscle and that systole is the active phase of the pump. He also seems to have understood the functions of the auricles and pulmonary veins, identified the relationship between the cardiac cycle and the pulse, and explained the hemodynamic mechanism of valve opening and closure. He also described anatomical variations and changes in structure and function that occurred with age. We outline da Vinci's varied career and suggest ways in which his personality, experience, skills and intellectual heritage contributed to these advances in understanding. We also consider his influence on later studies in anatomy and physiology. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  7. Total Artificial Heart Implantation Blood Pressure Management as Resolving Treatment for Massive Hemolysis following Total Artificial Heart Implantation.

    Science.gov (United States)

    Ghodsizad, Ali; Koerner, Michael M; El-Banayosy, A; Zeriouh, Mohamed; Ruhparwar, Arjang; Loebe, Matthias

    2016-10-21

    The SynCardia Total Artificial Heart (TAH) has been used for patients with biventricular failure, who cannot be managed with implantation of a left ventricular (LV) assist device. Following TAH implantation, our patient developed severe hemolysis, which could only be managed successfully by aggressive blood pressure control [Ohashi 2003; Nakata 1998].

  8. Comparison of Transplant Waitlist Outcomes for Pediatric Candidates Supported by Ventricular Assist Devices Versus Medical Therapy.

    Science.gov (United States)

    Law, Sabrina P; Oron, Assaf P; Kemna, Mariska S; Albers, Erin L; McMullan, D Michael; Chen, Jonathan M; Law, Yuk M

    2018-05-01

    Ventricular assist devices have gained popularity in the management of refractory heart failure in children listed for heart transplantation. Our primary aim was to compare the composite endpoint of all-cause pretransplant mortality and loss of transplant eligibility in children who were treated with a ventricular assist device versus a medically managed cohort. This was a retrospective cohort analysis. Data were obtained from the Scientific Registry of Transplant Recipients. The at-risk population (n = 1,380) was less than 18 years old, either on a ventricular assist device (605 cases) or an equivalent-severity, intensively medically treated group (referred to as MED, 775 cases). None. The impact of ventricular assist devices was estimated via Cox proportional hazards regression (hazard ratio), dichotomizing 1-year outcomes to "poor" (22%: 193 deaths, 114 too sick) versus all others (940 successful transplants, 41 too healthy, 90 censored), while adjusting for conventional risk factors. Among children 0-12 months old, ventricular assist device was associated with a higher risk of poor outcomes (hazard ratio, 2.1; 95% CI, 1.5-3.0; p comparative study of ventricular assist devices versus medical therapy in children. Age