WorldWideScience

Sample records for healthy human brain

  1. Complex Trajectories of Brain Development in the Healthy Human Fetus.

    Science.gov (United States)

    Andescavage, Nickie N; du Plessis, Adre; McCarter, Robert; Serag, Ahmed; Evangelou, Iordanis; Vezina, Gilbert; Robertson, Richard; Limperopoulos, Catherine

    2017-11-01

    This study characterizes global and hemispheric brain growth in healthy human fetuses during the second half of pregnancy using three-dimensional MRI techniques. We studied 166 healthy fetuses that underwent MRI between 18 and 39 completed weeks gestation. We created three-dimensional high-resolution reconstructions of the brain and calculated volumes for left and right cortical gray matter (CGM), fetal white matter (FWM), deep subcortical structures (DSS), and the cerebellum. We calculated the rate of growth for each tissue class according to gestational age and described patterns of hemispheric growth. Each brain region demonstrated major increases in volume during the second half of gestation, the most pronounced being the cerebellum (34-fold), followed by FWM (22-fold), CGM (21-fold), and DSS (10-fold). The left cerebellar hemisphere, CGM, and DSS had larger volumes early in gestation, but these equalized by term. It has been increasingly recognized that brain asymmetry evolves throughout the human life span. Advanced quantitative MRI provides noninvasive measurements of early structural asymmetry between the left and right fetal brain that may inform functional and behavioral laterality differences seen in children and young adulthood. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. Investigating structure and function in the healthy human brain: validity of acute versus chronic lesion-symptom mapping.

    Science.gov (United States)

    Karnath, Hans-Otto; Rennig, Johannes

    2017-07-01

    Modern voxel-based lesion-symptom mapping (VLSM) analyses techniques provide powerful tools to examine the relationship between structure and function of the healthy human brain. However, there is still uncertainty on the type of and the appropriate time point of imaging and of behavioral testing for such analyses. Here we tested the validity of the three most common combinations of structural imaging data and behavioral scores used in VLSM analyses. Given the established knowledge about the neural substrate of the primary motor system in humans, we asked the mundane question of where the motor system is represented in the normal human brain, analyzing individual arm motor function of 60 unselected stroke patients. Only the combination of acute behavioral scores and acute structural imaging precisely identified the principal brain area for the emergence of hemiparesis after stroke, i.e., the corticospinal tract (CST). In contrast, VLSM analyses based on chronic behavior-in combination with either chronic or acute imaging-required the exclusion of patients who had recovered from an initial paresis to reveal valid anatomical results. Thus, if the primary research aim of a VLSM lesion analysis is to uncover the neural substrates of a certain function in the healthy human brain and if no longitudinal designs with repeated evaluations are planned, the combination of acute imaging and behavior represents the ideal dataset.

  3. Physiological neuronal decline in healthy aging human brain - An in vivo study with MRI and short echo-time whole-brain (1)H MR spectroscopic imaging.

    Science.gov (United States)

    Ding, Xiao-Qi; Maudsley, Andrew A; Sabati, Mohammad; Sheriff, Sulaiman; Schmitz, Birte; Schütze, Martin; Bronzlik, Paul; Kahl, Kai G; Lanfermann, Heinrich

    2016-08-15

    Knowledge of physiological aging in healthy human brain is increasingly important for neuroscientific research and clinical diagnosis. To investigate neuronal decline in normal aging brain eighty-one healthy subjects aged between 20 and 70years were studied with MRI and whole-brain (1)H MR spectroscopic imaging. Concentrations of brain metabolites N-acetyl-aspartate (NAA), choline (Cho), total creatine (tCr), myo-inositol (mI), and glutamine+glutamate (Glx) in ratios to internal water, and the fractional volumes of brain tissue were estimated simultaneously in eight cerebral lobes and in cerebellum. Results demonstrated that an age-related decrease in gray matter volume was the largest contribution to changes in brain volume. Both lobar NAA and the fractional volume of gray matter (FVGM) decreased with age in all cerebral lobes, indicating that the decreased NAA was predominantly associated with decreased gray matter volume and neuronal density or metabolic activity. In cerebral white matter Cho, tCr, and mI increased with age in association with increased fractional volume, showing altered cellular membrane turn-over, energy metabolism, and glial activity in human aging white matter. In cerebellum tCr increased while brain tissue volume decreased with age, showing difference to cerebral aging. The observed age-related metabolic and microstructural variations suggest that physiological neuronal decline in aging human brain is associated with a reduction of gray matter volume and neuronal density, in combination with cellular aging in white matter indicated by microstructural alterations and altered energy metabolism in the cerebellum. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Macroscopic networks in the human brain: mapping connectivity in healthy and damaged brains

    NARCIS (Netherlands)

    Nijhuis, E.H.J.

    2013-01-01

    The human brain contains a network of interconnected neurons. Recent advances in functional and structural in-vivo magnetic resonance neuroimaging (MRI) techniques have provided opportunities to model the networks of the human brain on a macroscopic scale. This dissertation investigates the

  5. Human astrocytes: structure and functions in the healthy brain.

    Science.gov (United States)

    Vasile, Flora; Dossi, Elena; Rouach, Nathalie

    2017-07-01

    Data collected on astrocytes' physiology in the rodent have placed them as key regulators of synaptic, neuronal, network, and cognitive functions. While these findings proved highly valuable for our awareness and appreciation of non-neuronal cell significance in brain physiology, early structural and phylogenic investigations of human astrocytes hinted at potentially different astrocytic properties. This idea sparked interest to replicate rodent-based studies on human samples, which have revealed an analogous but enhanced involvement of astrocytes in neuronal function of the human brain. Such evidence pointed to a central role of human astrocytes in sustaining more complex information processing. Here, we review the current state of our knowledge of human astrocytes regarding their structure, gene profile, and functions, highlighting the differences with rodent astrocytes. This recent insight is essential for assessment of the relevance of findings using animal models and for comprehending the functional significance of species-specific properties of astrocytes. Moreover, since dysfunctional astrocytes have been described in many brain disorders, a more thorough understanding of human-specific astrocytic properties is crucial for better-adapted translational applications.

  6. In vivo NAD assay reveals the intracellular NAD contents and redox state in healthy human brain and their age dependences

    Science.gov (United States)

    Zhu, Xiao-Hong; Lu, Ming; Lee, Byeong-Yeul; Ugurbil, Kamil; Chen, Wei

    2015-01-01

    NAD is an essential metabolite that exists in NAD+ or NADH form in all living cells. Despite its critical roles in regulating mitochondrial energy production through the NAD+/NADH redox state and modulating cellular signaling processes through the activity of the NAD+-dependent enzymes, the method for quantifying intracellular NAD contents and redox state is limited to a few in vitro or ex vivo assays, which are not suitable for studying a living brain or organ. Here, we present a magnetic resonance (MR) -based in vivo NAD assay that uses the high-field MR scanner and is capable of noninvasively assessing NAD+ and NADH contents and the NAD+/NADH redox state in intact human brain. The results of this study provide the first insight, to our knowledge, into the cellular NAD concentrations and redox state in the brains of healthy volunteers. Furthermore, an age-dependent increase of intracellular NADH and age-dependent reductions in NAD+, total NAD contents, and NAD+/NADH redox potential of the healthy human brain were revealed in this study. The overall findings not only provide direct evidence of declined mitochondrial functions and altered NAD homeostasis that accompany the normal aging process but also, elucidate the merits and potentials of this new NAD assay for noninvasively studying the intracellular NAD metabolism and redox state in normal and diseased human brain or other organs in situ. PMID:25730862

  7. The effects of physical activity and exercise on brain-derived neurotrophic factor in healthy humans

    DEFF Research Database (Denmark)

    Huang, T; Larsen, K T; Ried-Larsen, M

    2014-01-01

    The purpose of this study was to summarize the effects of physical activity and exercise on peripheral brain-derived neurotrophic factor (BDNF) in healthy humans. Experimental and observational studies were identified from PubMed, Web of Knowledge, Scopus, and SPORT Discus. A total of 32 articles...... studies suggested an inverse relationship between the peripheral BDNF level and habitual physical activity or cardiorespiratory fitness. More research is needed to confirm the findings from the observational studies....

  8. Brain anatomical networks in early human brain development.

    Science.gov (United States)

    Fan, Yong; Shi, Feng; Smith, Jeffrey Keith; Lin, Weili; Gilmore, John H; Shen, Dinggang

    2011-02-01

    Recent neuroimaging studies have demonstrated that human brain networks have economic small-world topology and modular organization, enabling efficient information transfer among brain regions. However, it remains largely unknown how the small-world topology and modular organization of human brain networks emerge and develop. Using longitudinal MRI data of 28 healthy pediatric subjects, collected at their ages of 1 month, 1 year, and 2 years, we analyzed development patterns of brain anatomical networks derived from morphological correlations of brain regional volumes. The results show that the brain network of 1-month-olds has the characteristically economic small-world topology and nonrandom modular organization. The network's cost efficiency increases with the brain development to 1 year and 2 years, so does the modularity, providing supportive evidence for the hypothesis that the small-world topology and the modular organization of brain networks are established during early brain development to support rapid synchronization and information transfer with minimal rewiring cost, as well as to balance between local processing and global integration of information. Copyright © 2010. Published by Elsevier Inc.

  9. Revisiting Glycogen Content in the Human Brain.

    Science.gov (United States)

    Öz, Gülin; DiNuzzo, Mauro; Kumar, Anjali; Moheet, Amir; Seaquist, Elizabeth R

    2015-12-01

    Glycogen provides an important glucose reservoir in the brain since the concentration of glucosyl units stored in glycogen is several fold higher than free glucose available in brain tissue. We have previously reported 3-4 µmol/g brain glycogen content using in vivo (13)C magnetic resonance spectroscopy (MRS) in conjunction with [1-(13)C]glucose administration in healthy humans, while higher levels were reported in the rodent brain. Due to the slow turnover of bulk brain glycogen in humans, complete turnover of the glycogen pool, estimated to take 3-5 days, was not observed in these prior studies. In an attempt to reach complete turnover and thereby steady state (13)C labeling in glycogen, here we administered [1-(13)C]glucose to healthy volunteers for 80 h. To eliminate any net glycogen synthesis during this period and thereby achieve an accurate estimate of glycogen concentration, volunteers were maintained at euglycemic blood glucose levels during [1-(13)C]glucose administration and (13)C-glycogen levels in the occipital lobe were measured by (13)C MRS approximately every 12 h. Finally, we fitted the data with a biophysical model that was recently developed to take into account the tiered structure of the glycogen molecule and additionally incorporated blood glucose levels and isotopic enrichments as input function in the model. We obtained excellent fits of the model to the (13)C-glycogen data, and glycogen content in the healthy human brain tissue was found to be 7.8 ± 0.3 µmol/g, a value substantially higher than previous estimates of glycogen content in the human brain.

  10. Comparison of brain activation to purposefully activate a tool in healthy subjects and brain tumor patients using fMRI

    International Nuclear Information System (INIS)

    Nishimura, Masahiko; Yoshii, Yoshihiko; Hyodo, Akio; Sugimoto, Koichi; Tsuchida, Yukihiro; Yonaha, Hirokatsu; Ito, Koichi

    2007-01-01

    The purpose of this study was to determine the functional organization of the human brain involved in tool-manipulation. Blood Oxygen Level Dependent was measured by functional magnetic resonance imaging in seventeen right-handed healthy volunteers and two brain tumor patients during two tool-manipulation tasks: simulated tightening a bolt with a screwdriver (Simulation), and tightening a bolt with a screwdriver (Real). Subjects performed the experiment without watching the tasks. Bilateral pre-supplementary motor areas, bilateral cerebellar posterior lobes, right ventral premotor area, right calcarine sulcus, and cerebellar vermis were activated during Real but not during Simulation tasks in healthy volunteers. In addition, brain tumor patients activated the prefrontal areas. Our results suggest that the human brain mechanisms for tool-manipulation have a neural-network comprised of presupplementary motor area, ventral premotor area, and bilateral cerebellar posterior lobes. In the patients with brain dusfurction diee to tumors, activation at the prefrontal area provided function compensation without motor paralysis. (author)

  11. Protective Effect of Human Leukocyte Antigen (HLA Allele DRB1*13:02 on Age-Related Brain Gray Matter Volume Reduction in Healthy Women

    Directory of Open Access Journals (Sweden)

    Lisa M. James

    2018-03-01

    Full Text Available Background: Reduction of brain volume (brain atrophy during healthy brain aging is well documented and dependent on genetic, lifestyle and environmental factors. Here we investigated the possible dependence of brain gray matter volume reduction in the absence of the Human Leukocyte Antigen (HLA allele DRB1*13:02 which prevents brain atrophy in Gulf War Illness (James et al., 2017. Methods: Seventy-one cognitively healthy women (32–69 years old underwent a structural Magnetic Resonance Imaging (sMRI scan to measure the volumes of total gray matter, cerebrocortical gray matter, and subcortical gray matter. Participants were assigned to two groups, depending on whether they lacked the DRB1*13:02 allele (No DRB1*13:02 group, N = 60 or carried the DRB1*13:02 allele (N = 11. We assessed the change of brain gray matter volume with age in each group by performing a linear regression where the brain volume (adjusted for total intracranial volume was the dependent variable and age was the independent variable. Findings: In the No DRB1*13:02 group, the volumes of total gray matter, cerebrocortical gray matter, and subcortical gray matter were reduced highly significantly. In contrast, none of these volumes showed a statistically significant reduction with age in the DRB1*13:02 group. Interpretation: These findings document the protective effect of DRB1*13:02 on age-dependent reduction of brain gray matter in healthy individuals. Since the role of this allele is to connect to matching epitopes of external antigens for the subsequent production of antibodies and elimination of the offending antigen, we hypothesize that its protective effect may be due to the successful elimination of such antigens to which we are exposed during the lifespan, antigens that otherwise would persist causing gradual brain atrophy. In addition, we consider a possible beneficial role of DRB1*13:02 attributed to its binding to cathepsin S, a known harmful substance in brain

  12. 18F-Alfatide II PET/CT in healthy human volunteers and patients with brain metastases

    International Nuclear Information System (INIS)

    Yu, Chunjing; Mi, Baoming; Wan, Weixing; Pan, Donghui; Xu, Yuping; Yang, Min; Lang, Lixin; Niu, Gang; Chen, Xiaoyuan

    2015-01-01

    We report the biodistribution and radiation dosimetry of an integrin α v β 3 specific PET tracer 18 F-AlF-NOTA-E[PEG 4 -c(RGDfk)] 2 (denoted as 18 F-Alfatide II). We also assessed the value of 18 F-Alfatide II in patients with brain metastases. A series of torso (from the skull to the thigh) static images were acquired in five healthy volunteers (3 M, 2 F) at 5, 10, 15, 30, 45, and 60 min after injection of 18 F-Alfatide II (257 ± 48 MBq). Regions of interest (ROIs) were drawn manually, and the time-activity curves (TACs) were obtained for major organs. Nine patients with brain metastases were examined by static PET imaging with 18 F-FDG (5.55 MBq/kg) and 18 F-Alfatide II. Injection of 18 F-Alfatide II was well tolerated in all healthy volunteers, with no serious tracer-related adverse events found. 18 F-Alfatide II showed rapid clearance from the blood pool and kidneys. The total effective dose equivalent (EDE) and effective dose (ED) were 0.0277 ± 0.003 mSv/MBq and 0.0198 ± 0.002 mSv/MBq, respectively. The organs with the highest absorbed dose were the kidneys and the spleen. Nine patients with 20 brain metastatic lesions identified by MRI and/or CT were enrolled in this study. All 20 brain lesions were visualized by 18 F-Alfatide II PET, while only ten lesions were visualized by 18 F-FDG, and 13 by CT. F-Alfatide II is a safe PET tracer with a favorable dosimetry profile. The observed ED suggests that 18 F-Alfatide II is feasible for human studies. 18 F-Alfatide II has potential value in finding brain metastases of different cancers as a biomarker of angiogenesis. (orig.)

  13. Variable ATP yields and uncoupling of oxygen consumption in human brain

    DEFF Research Database (Denmark)

    Gjedde, Albert; Aanerud, Joel; Peterson, Ericka

    2011-01-01

    normalized the metabolic rate to the population average of that region. Coefficients of variation ranged from 10 to 15% in the different regions of the human brain and the normalized regional metabolic rates ranged from 70% to 140% of the population average for each region, equal to a two-fold variation......The distribution of brain oxidative metabolism values among healthy humans is astoundingly wide for a measure that reflects normal brain function and is known to change very little with most changes of brain function. It is possible that the part of the oxygen consumption rate that is coupled...... to ATP turnover is the same in all healthy human brains, with different degrees of uncoupling explaining the variability of total oxygen consumption among people. To test the hypothesis that about 75% of the average total oxygen consumption of human brains is common to all individuals, we determined...

  14. Fear extinction in the human brain: A meta-analysis of fMRI studies in healthy participants.

    Science.gov (United States)

    Fullana, Miquel A; Albajes-Eizagirre, Anton; Soriano-Mas, Carles; Vervliet, Bram; Cardoner, Narcís; Benet, Olívia; Radua, Joaquim; Harrison, Ben J

    2018-05-01

    The study of fear extinction represents an important example of translational neuroscience in psychiatry and promises to improve the understanding and treatment of anxiety and fear-related disorders. We present the results of a set of meta-analyses of human fear extinction studies in healthy participants, conducted with functional magnetic resonance imaging (fMRI) and reporting whole-brain results. Meta-analyses of fear extinction learning primarily implicate consistent activation of brain regions linked to threat appraisal and experience, including the dorsal anterior cingulate and anterior insular cortices. An overlapping anatomical result was obtained from the meta-analysis of extinction recall studies, except when studies directly compared an extinguished threat stimulus to an unextinguished threat stimulus (instead of a safety stimulus). In this latter instance, more consistent activation was observed in dorsolateral and ventromedial prefrontal cortex regions, together with other areas including the hippocampus. While our results partially support the notion of a shared neuroanatomy between human and rodent models of extinction processes, they also encourage an expanded account of the neural basis of human fear extinction. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Genotype and ancestry modulate brain's DAT availability in healthy humans

    International Nuclear Information System (INIS)

    Shumay, E.; Chen, J.; Fowler, J.S.; Volkow, N.D.

    2011-01-01

    The dopamine transporter (DAT) is a principal regulator of dopaminergic neurotransmission and its gene (the SLC6A3) is a strong biological candidate gene for various behavioral- and neurological disorders. Intense investigation of the link between the SLC6A3 polymorphisms and behavioral phenotypes yielded inconsistent and even contradictory results. Reliance on objective brain phenotype measures, for example, those afforded by brain imaging, might critically improve detection of DAT genotype-phenotype association. Here, we tested the relationship between the DAT brain availability and the SLC6A3 genotypes using an aggregate sample of 95 healthy participants of several imaging studies. These studies employed positron emission tomography (PET) with [ 11 C] cocaine wherein the DAT availability was estimated as Bmax/Kd; while the genotype values were obtained on two repeat polymorphisms - 3-UTR- and intron 8- VNTRs. The main findings are the following: (1) both polymorphisms analyzed as single genetic markers and in combination (haplotype) modulate DAT density in midbrain; (2) ethnic background and age influence the strength of these associations; and (3) age-related changes in DAT availability differ in the 3-UTR and intron8 - genotype groups.

  16. The overlapping community structure of structural brain network in young healthy individuals.

    Directory of Open Access Journals (Sweden)

    Kai Wu

    2011-05-01

    Full Text Available Community structure is a universal and significant feature of many complex networks in biology, society, and economics. Community structure has also been revealed in human brain structural and functional networks in previous studies. However, communities overlap and share many edges and nodes. Uncovering the overlapping community structure of complex networks remains largely unknown in human brain networks. Here, using regional gray matter volume, we investigated the structural brain network among 90 brain regions (according to a predefined anatomical atlas in 462 young, healthy individuals. Overlapped nodes between communities were defined by assuming that nodes (brain regions can belong to more than one community. We demonstrated that 90 brain regions were organized into 5 overlapping communities associated with several well-known brain systems, such as the auditory/language, visuospatial, emotion, decision-making, social, control of action, memory/learning, and visual systems. The overlapped nodes were mostly involved in an inferior-posterior pattern and were primarily related to auditory and visual perception. The overlapped nodes were mainly attributed to brain regions with higher node degrees and nodal efficiency and played a pivotal role in the flow of information through the structural brain network. Our results revealed fuzzy boundaries between communities by identifying overlapped nodes and provided new insights into the understanding of the relationship between the structure and function of the human brain. This study provides the first report of the overlapping community structure of the structural network of the human brain.

  17. {sup 18}F-Alfatide II PET/CT in healthy human volunteers and patients with brain metastases

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Chunjing; Mi, Baoming; Wan, Weixing [Affiliated Hospital of Jiangnan University (Wuxi No. 4 People' s Hospital), Department of Nuclear Medicine, Wuxi (China); Pan, Donghui; Xu, Yuping; Yang, Min [Jiangsu Institute of Nuclear Medicine, Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Wuxi (China); Lang, Lixin; Niu, Gang; Chen, Xiaoyuan [National Institutes of Health, Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, Bethesda, MD (United States)

    2015-12-15

    We report the biodistribution and radiation dosimetry of an integrin α{sub v}β{sub 3} specific PET tracer {sup 18}F-AlF-NOTA-E[PEG{sub 4}-c(RGDfk)]{sub 2} (denoted as {sup 18}F-Alfatide II). We also assessed the value of {sup 18}F-Alfatide II in patients with brain metastases. A series of torso (from the skull to the thigh) static images were acquired in five healthy volunteers (3 M, 2 F) at 5, 10, 15, 30, 45, and 60 min after injection of {sup 18}F-Alfatide II (257 ± 48 MBq). Regions of interest (ROIs) were drawn manually, and the time-activity curves (TACs) were obtained for major organs. Nine patients with brain metastases were examined by static PET imaging with {sup 18}F-FDG (5.55 MBq/kg) and {sup 18}F-Alfatide II. Injection of {sup 18}F-Alfatide II was well tolerated in all healthy volunteers, with no serious tracer-related adverse events found. {sup 18}F-Alfatide II showed rapid clearance from the blood pool and kidneys. The total effective dose equivalent (EDE) and effective dose (ED) were 0.0277 ± 0.003 mSv/MBq and 0.0198 ± 0.002 mSv/MBq, respectively. The organs with the highest absorbed dose were the kidneys and the spleen. Nine patients with 20 brain metastatic lesions identified by MRI and/or CT were enrolled in this study. All 20 brain lesions were visualized by {sup 18}F-Alfatide II PET, while only ten lesions were visualized by {sup 18}F-FDG, and 13 by CT. F-Alfatide II is a safe PET tracer with a favorable dosimetry profile. The observed ED suggests that {sup 18}F-Alfatide II is feasible for human studies. {sup 18}F-Alfatide II has potential value in finding brain metastases of different cancers as a biomarker of angiogenesis. (orig.)

  18. Phosphatidylserine and the human brain.

    Science.gov (United States)

    Glade, Michael J; Smith, Kyl

    2015-06-01

    The aim of this study was to assess the roles and importance of phosphatidylserine (PS), an endogenous phospholipid and dietary nutrient, in human brain biochemistry, physiology, and function. A scientific literature search was conducted on MEDLINE for relevant articles regarding PS and the human brain published before June 2014. Additional publications were identified from references provided in original papers; 127 articles were selected for inclusion in this review. A large body of scientific evidence describes the interactions among PS, cognitive activity, cognitive aging, and retention of cognitive functioning ability. Phosphatidylserine is required for healthy nerve cell membranes and myelin. Aging of the human brain is associated with biochemical alterations and structural deterioration that impair neurotransmission. Exogenous PS (300-800 mg/d) is absorbed efficiently in humans, crosses the blood-brain barrier, and safely slows, halts, or reverses biochemical alterations and structural deterioration in nerve cells. It supports human cognitive functions, including the formation of short-term memory, the consolidation of long-term memory, the ability to create new memories, the ability to retrieve memories, the ability to learn and recall information, the ability to focus attention and concentrate, the ability to reason and solve problems, language skills, and the ability to communicate. It also supports locomotor functions, especially rapid reactions and reflexes. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Nutritional Cognitive Neuroscience: Innovations for Healthy Brain Aging

    Directory of Open Access Journals (Sweden)

    Marta Karolina Zamroziewicz

    2016-06-01

    Full Text Available Nutritional cognitive neuroscience is an emerging interdisciplinary field of research that seeks to understand nutrition’s impact on cognition and brain health across the life span. Research in this burgeoning field demonstrates that many aspects of nutrition – from entire diets to specific nutrients – affect brain structure and function, and therefore have profound implications for understanding the nature of healthy brain aging. The aim of this Focused Review is to examine recent advances in nutritional cognitive neuroscience, with an emphasis on methods that enable discovery of nutrient biomarkers that predict healthy brain aging. We propose an integrative framework that calls for the synthesis of research in nutritional epidemiology and cognitive neuroscience, incorporating: (i methods for the precise characterization of nutritional health based on the analysis of nutrient biomarker patterns, along with (ii modern indices of brain health derived from high-resolution magnetic resonance imaging. By integrating cutting-edge techniques from nutritional epidemiology and cognitive neuroscience, nutritional cognitive neuroscience will continue to advance our understanding of the beneficial effects of nutrition on the aging brain and establish effective nutritional interventions to promote healthy brain aging.

  20. BrainNet Viewer: a network visualization tool for human brain connectomics.

    Science.gov (United States)

    Xia, Mingrui; Wang, Jinhui; He, Yong

    2013-01-01

    The human brain is a complex system whose topological organization can be represented using connectomics. Recent studies have shown that human connectomes can be constructed using various neuroimaging technologies and further characterized using sophisticated analytic strategies, such as graph theory. These methods reveal the intriguing topological architectures of human brain networks in healthy populations and explore the changes throughout normal development and aging and under various pathological conditions. However, given the huge complexity of this methodology, toolboxes for graph-based network visualization are still lacking. Here, using MATLAB with a graphical user interface (GUI), we developed a graph-theoretical network visualization toolbox, called BrainNet Viewer, to illustrate human connectomes as ball-and-stick models. Within this toolbox, several combinations of defined files with connectome information can be loaded to display different combinations of brain surface, nodes and edges. In addition, display properties, such as the color and size of network elements or the layout of the figure, can be adjusted within a comprehensive but easy-to-use settings panel. Moreover, BrainNet Viewer draws the brain surface, nodes and edges in sequence and displays brain networks in multiple views, as required by the user. The figure can be manipulated with certain interaction functions to display more detailed information. Furthermore, the figures can be exported as commonly used image file formats or demonstration video for further use. BrainNet Viewer helps researchers to visualize brain networks in an easy, flexible and quick manner, and this software is freely available on the NITRC website (www.nitrc.org/projects/bnv/).

  1. BrainNet Viewer: a network visualization tool for human brain connectomics.

    Directory of Open Access Journals (Sweden)

    Mingrui Xia

    Full Text Available The human brain is a complex system whose topological organization can be represented using connectomics. Recent studies have shown that human connectomes can be constructed using various neuroimaging technologies and further characterized using sophisticated analytic strategies, such as graph theory. These methods reveal the intriguing topological architectures of human brain networks in healthy populations and explore the changes throughout normal development and aging and under various pathological conditions. However, given the huge complexity of this methodology, toolboxes for graph-based network visualization are still lacking. Here, using MATLAB with a graphical user interface (GUI, we developed a graph-theoretical network visualization toolbox, called BrainNet Viewer, to illustrate human connectomes as ball-and-stick models. Within this toolbox, several combinations of defined files with connectome information can be loaded to display different combinations of brain surface, nodes and edges. In addition, display properties, such as the color and size of network elements or the layout of the figure, can be adjusted within a comprehensive but easy-to-use settings panel. Moreover, BrainNet Viewer draws the brain surface, nodes and edges in sequence and displays brain networks in multiple views, as required by the user. The figure can be manipulated with certain interaction functions to display more detailed information. Furthermore, the figures can be exported as commonly used image file formats or demonstration video for further use. BrainNet Viewer helps researchers to visualize brain networks in an easy, flexible and quick manner, and this software is freely available on the NITRC website (www.nitrc.org/projects/bnv/.

  2. Intrinsic functional brain architecture derived from graph theoretical analysis in the human fetus.

    Directory of Open Access Journals (Sweden)

    Moriah E Thomason

    Full Text Available The human brain undergoes dramatic maturational changes during late stages of fetal and early postnatal life. The importance of this period to the establishment of healthy neural connectivity is apparent in the high incidence of neural injury in preterm infants, in whom untimely exposure to ex-uterine factors interrupts neural connectivity. Though the relevance of this period to human neuroscience is apparent, little is known about functional neural networks in human fetal life. Here, we apply graph theoretical analysis to examine human fetal brain connectivity. Utilizing resting state functional magnetic resonance imaging (fMRI data from 33 healthy human fetuses, 19 to 39 weeks gestational age (GA, our analyses reveal that the human fetal brain has modular organization and modules overlap functional systems observed postnatally. Age-related differences between younger (GA <31 weeks and older (GA≥31 weeks fetuses demonstrate that brain modularity decreases, and connectivity of the posterior cingulate to other brain networks becomes more negative, with advancing GA. By mimicking functional principles observed postnatally, these results support early emerging capacity for information processing in the human fetal brain. Current technical limitations, as well as the potential for fetal fMRI to one day produce major discoveries about fetal origins or antecedents of neural injury or disease are discussed.

  3. A Healthy Brain in a Healthy Body: Brain Network Correlates of Physical and Mental Fitness.

    NARCIS (Netherlands)

    Douw, L.; Nieboer, D.; van Dijk, B.W.; Stam, C.J.; Twisk, J.W.R.

    2014-01-01

    A healthy lifestyle is an important focus in today's society. The physical benefits of regular exercise are abundantly clear, but physical fitness is also associated with better cognitive performance. How these two factors together relate to characteristics of the brain is still incompletely

  4. Blood lactate is an important energy source for the human brain

    DEFF Research Database (Denmark)

    G., van Hall; Stromstad, M.; Rasmussen, P.

    2009-01-01

    Lactate is a potential energy source for the brain. The aim of this study was to establish whether systemic lactate is a brain energy source. We measured in vivo cerebral lactate kinetics and oxidation rates in 6 healthy individuals at rest with and without 90 mins of intravenous lactate infusion...... is taken up and oxidized by the human brain and is an important substrate for the brain both under basal and hyperlactatemic conditions.Journal of Cerebral Blood Flow & Metabolism advance online publication, 1 April 2009; doi:10.1038/jcbfm.2009.35.......Lactate is a potential energy source for the brain. The aim of this study was to establish whether systemic lactate is a brain energy source. We measured in vivo cerebral lactate kinetics and oxidation rates in 6 healthy individuals at rest with and without 90 mins of intravenous lactate infusion...

  5. Effects of hypoglycemia on human brain activation measured with fMRI.

    Science.gov (United States)

    Anderson, Adam W; Heptulla, Rubina A; Driesen, Naomi; Flanagan, Daniel; Goldberg, Philip A; Jones, Timothy W; Rife, Fran; Sarofin, Hedy; Tamborlane, William; Sherwin, Robert; Gore, John C

    2006-07-01

    Functional magnetic resonance imaging (fMRI) was used to measure the effects of acute hypoglycemia caused by passive sensory stimulation on brain activation. Visual stimulation was used to generate blood-oxygen-level-dependent (BOLD) contrast, which was monitored during hyperinsulinemic hypoglycemic and euglycemic clamp studies. Hypoglycemia (50 +/- 1 mg glucose/dl) decreased the fMRI signal relative to euglycemia in 10 healthy human subjects: the fractional signal change was reduced by 28 +/- 12% (P variations in blood glucose levels may modulate BOLD signals in the healthy brain.

  6. Comparison of resilience in adolescent survivors of brain tumors and healthy adolescents.

    Science.gov (United States)

    Chen, Chin-Mi; Chen, Yueh-Chih; Wong, Tai-Tong

    2014-01-01

    Resilience is essential for the psychological adjustment of adolescents experiencing difficulty. Comparing differences in resilience between adolescent survivors of brain tumors and healthy adolescents may help identify factors related to resilience in adolescents. The purpose of this study was to clarify how illness impacts the normative development of adolescent survivors of brain tumors by comparing them to healthy adolescents in terms of resilience and how it is affected by various health problems. This cross-sectional, case-control study used convenience sampling to recruit 13- to 18-year-old adolescent survivors of brain tumors and healthy adolescents matched by school level, gender, and living area. Data were collected by structured questionnaires. The sample included 60 adolescent survivors and 120 healthy adolescents. Participants in both groups were predominantly male adolescents (63.3%) and junior high school students (55%). The 2 groups did not differ significantly in resilience, but survivors without emotional problems had a higher mean resilience score than did healthy adolescents and survivors with emotional problems (F = 8.65, P adolescent survivors of brain tumors and healthy adolescents. In addition, the impact of emotional problems on resilience was more severe in brain tumor survivors than in healthy adolescents. Our results suggest that pediatric oncology nurses design interdisciplinary school-based interventions to reduce the impact of emotional problems on resilience in both healthy adolescents and those who survived brain tumors.

  7. Genotype and ancestry modulate brain's DAT availability in healthy humans

    Energy Technology Data Exchange (ETDEWEB)

    Shumay, E.; Shumay, E.; Chen, J.; Fowler, J.S.; Volkow, N.D.

    2011-08-01

    The dopamine transporter (DAT) is a principal regulator of dopaminergic neurotransmission and its gene (the SLC6A3) is a strong biological candidate gene for various behavioral- and neurological disorders. Intense investigation of the link between the SLC6A3 polymorphisms and behavioral phenotypes yielded inconsistent and even contradictory results. Reliance on objective brain phenotype measures, for example, those afforded by brain imaging, might critically improve detection of DAT genotype-phenotype association. Here, we tested the relationship between the DAT brain availability and the SLC6A3 genotypes using an aggregate sample of 95 healthy participants of several imaging studies. These studies employed positron emission tomography (PET) with [{sup 11}C] cocaine wherein the DAT availability was estimated as Bmax/Kd; while the genotype values were obtained on two repeat polymorphisms - 3-UTR- and intron 8- VNTRs. The main findings are the following: (1) both polymorphisms analyzed as single genetic markers and in combination (haplotype) modulate DAT density in midbrain; (2) ethnic background and age influence the strength of these associations; and (3) age-related changes in DAT availability differ in the 3-UTR and intron8 - genotype groups.

  8. The intrinsic geometry of the human brain connectome.

    Science.gov (United States)

    Ye, Allen Q; Ajilore, Olusola A; Conte, Giorgio; GadElkarim, Johnson; Thomas-Ramos, Galen; Zhan, Liang; Yang, Shaolin; Kumar, Anand; Magin, Richard L; G Forbes, Angus; Leow, Alex D

    2015-12-01

    This paper describes novel methods for constructing the intrinsic geometry of the human brain connectome using dimensionality-reduction techniques. We posit that the high-dimensional, complex geometry that represents this intrinsic topology can be mathematically embedded into lower dimensions using coupling patterns encoded in the corresponding brain connectivity graphs. We tested both linear and nonlinear dimensionality-reduction techniques using the diffusion-weighted structural connectome data acquired from a sample of healthy subjects. Results supported the nonlinearity of brain connectivity data, as linear reduction techniques such as the multidimensional scaling yielded inferior lower-dimensional embeddings. To further validate our results, we demonstrated that for tractography-derived structural connectome more influential regions such as rich-club members of the brain are more centrally mapped or embedded. Further, abnormal brain connectivity can be visually understood by inspecting the altered geometry of these three-dimensional (3D) embeddings that represent the topology of the human brain, as illustrated using simulated lesion studies of both targeted and random removal. Last, in order to visualize brain's intrinsic topology we have developed software that is compatible with virtual reality technologies, thus allowing researchers to collaboratively and interactively explore and manipulate brain connectome data.

  9. Evaluating Community-Academic Partnerships of the South Carolina Healthy Brain Research Network.

    Science.gov (United States)

    Soltani, Suzan Neda; Kannaley, Kristie; Tang, Weizhou; Gibson, Andrea; Olscamp, Kate; Friedman, Daniela B; Khan, Samira; Houston, Julie; Wilcox, Sara; Levkoff, Sue E; Hunter, Rebecca H

    2017-07-01

    Community-academic partnerships have a long history of support from public health researchers and practitioners as an effective way to advance research and solutions to issues that are of concern to communities and their citizens. Data on the development and evaluation of partnerships focused on healthy aging and cognitive health were limited. The purpose of this article is to examine how community partners view the benefits and barriers of a community-academic partner group established to support activities of the South Carolina Healthy Brain Research Network (SC-HBRN). The SC-HBRN is part of the national Healthy Brain Research Network, a thematic research network funded by the Centers for Disease Control and Prevention (CDC). It is focused on improving the scientific and research translation agenda on cognitive health and healthy aging. Semistructured interviews, conducted at end of Year 2 of the 5-year partnership, were used to collect data from partners of the SC-HBRN. Reported benefits of the partnership were information sharing and networking, reaching a broader audience, and humanizing research. When asked to describe what they perceived as barriers to the collaborative, partners described some lack of clarity regarding goals of the network and opportunities to contribute to the partnership. Study results can guide and strengthen other public health-focused partnerships.

  10. Do glutathione levels decline in aging human brain?

    Science.gov (United States)

    Tong, Junchao; Fitzmaurice, Paul S; Moszczynska, Anna; Mattina, Katie; Ang, Lee-Cyn; Boileau, Isabelle; Furukawa, Yoshiaki; Sailasuta, Napapon; Kish, Stephen J

    2016-04-01

    For the past 60 years a major theory of "aging" is that age-related damage is largely caused by excessive uncompensated oxidative stress. The ubiquitous tripeptide glutathione is a major antioxidant defense mechanism against reactive free radicals and has also served as a marker of changes in oxidative stress. Some (albeit conflicting) animal data suggest a loss of glutathione in brain senescence, which might compromise the ability of the aging brain to meet the demands of oxidative stress. Our objective was to establish whether advancing age is associated with glutathione deficiency in human brain. We measured reduced glutathione (GSH) levels in multiple regions of autopsied brain of normal subjects (n=74) aged one day to 99 years. Brain GSH levels during the infancy/teenage years were generally similar to those in the oldest examined adult group (76-99 years). During adulthood (23-99 years) GSH levels remained either stable (occipital cortex) or increased (caudate nucleus, frontal and cerebellar cortices). To the extent that GSH levels represent glutathione antioxidant capacity, our postmortem data suggest that human brain aging is not associated with declining glutathione status. We suggest that aged healthy human brains can maintain antioxidant capacity related to glutathione and that an age-related increase in GSH levels in some brain regions might possibly be a compensatory response to increased oxidative stress. Since our findings, although suggestive, suffer from the generic limitations of all postmortem brain studies, we also suggest the need for "replication" investigations employing the new (1)H MRS imaging procedures in living human brain. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Third Trimester Brain Growth in Preterm Infants Compared With In Utero Healthy Fetuses.

    Science.gov (United States)

    Bouyssi-Kobar, Marine; du Plessis, Adré J; McCarter, Robert; Brossard-Racine, Marie; Murnick, Jonathan; Tinkleman, Laura; Robertson, Richard L; Limperopoulos, Catherine

    2016-11-01

    Compared with term infants, preterm infants have impaired brain development at term-equivalent age, even in the absence of structural brain injury. However, details regarding the onset and progression of impaired preterm brain development over the third trimester are unknown. Our primary objective was to compare third-trimester brain volumes and brain growth trajectories in ex utero preterm infants without structural brain injury and in healthy in utero fetuses. As a secondary objective, we examined risk factors associated with brain volumes in preterm infants over the third-trimester postconception. Preterm infants born before 32 weeks of gestational age (GA) and weighing <1500 g with no evidence of structural brain injury on conventional MRI and healthy pregnant women were prospectively recruited. Anatomic T2-weighted brain images of preterm infants and healthy fetuses were parcellated into the following regions: cerebrum, cerebellum, brainstem, and intracranial cavity. We studied 205 participants (75 preterm infants and 130 healthy control fetuses) between 27 and 39 weeks' GA. Third-trimester brain volumes were reduced and brain growth trajectories were slower in the ex utero preterm group compared with the in utero healthy fetuses in the cerebrum, cerebellum, brainstem, and intracranial cavity. Clinical risk factors associated with reduced brain volumes included dexamethasone treatment, the presence of extra-axial blood on brain MRI, confirmed sepsis, and duration of oxygen support. These preterm infants exhibited impaired third-trimester global and regional brain growth in the absence of cerebral/cerebellar parenchymal injury detected by using conventional MRI. Copyright © 2016 by the American Academy of Pediatrics.

  12. Glutathione in the human brain: Review of its roles and measurement by magnetic resonance spectroscopy.

    Science.gov (United States)

    Rae, Caroline D; Williams, Stephen R

    2017-07-15

    We review the transport, synthesis and catabolism of glutathione in the brain as well as its compartmentation and biochemistry in different brain cells. The major reactions involving glutathione are reviewed and the factors limiting its availability in brain cells are discussed. We also describe and critique current methods for measuring glutathione in the human brain using magnetic resonance spectroscopy, and review the literature on glutathione measurements in healthy brains and in neurological, psychiatric, neurodegenerative and neurodevelopmental conditions In summary: Healthy human brain glutathione concentration is ∼1-2 mM, but it varies by brain region, with evidence of gender differences and age effects; in neurological disease glutathione appears reduced in multiple sclerosis, motor neurone disease and epilepsy, while being increased in meningiomas; in psychiatric disease the picture is complex and confounded by methodological differences, regional effects, length of disease and drug-treatment. Both increases and decreases in glutathione have been reported in depression and schizophrenia. In Alzheimer's disease and mild cognitive impairment there is evidence for a decrease in glutathione compared to age-matched healthy controls. Improved methods to measure glutathione in vivo will provide better precision in glutathione determination and help resolve the complex biochemistry of this molecule in health and disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Gene expression in the aging human brain: an overview.

    Science.gov (United States)

    Mohan, Adith; Mather, Karen A; Thalamuthu, Anbupalam; Baune, Bernhard T; Sachdev, Perminder S

    2016-03-01

    The review aims to provide a summary of recent developments in the study of gene expression in the aging human brain. Profiling differentially expressed genes or 'transcripts' in the human brain over the course of normal aging has provided valuable insights into the biological pathways that appear activated or suppressed in late life. Genes mediating neuroinflammation and immune system activation in particular, show significant age-related upregulation creating a state of vulnerability to neurodegenerative and neuropsychiatric disease in the aging brain. Cellular ionic dyshomeostasis and age-related decline in a host of molecular influences on synaptic efficacy may underlie neurocognitive decline in later life. Critically, these investigations have also shed light on the mobilization of protective genetic responses within the aging human brain that help determine health and disease trajectories in older age. There is growing interest in the study of pre and posttranscriptional regulators of gene expression, and the role of noncoding RNAs in particular, as mediators of the phenotypic diversity that characterizes human brain aging. Gene expression studies in healthy brain aging offer an opportunity to unravel the intricately regulated cellular underpinnings of neurocognitive aging as well as disease risk and resiliency in late life. In doing so, new avenues for early intervention in age-related neurodegenerative disease could be investigated with potentially significant implications for the development of disease-modifying therapies.

  14. Cross-hemispheric functional connectivity in the human fetal brain.

    Science.gov (United States)

    Thomason, Moriah E; Dassanayake, Maya T; Shen, Stephen; Katkuri, Yashwanth; Alexis, Mitchell; Anderson, Amy L; Yeo, Lami; Mody, Swati; Hernandez-Andrade, Edgar; Hassan, Sonia S; Studholme, Colin; Jeong, Jeong-Won; Romero, Roberto

    2013-02-20

    Compelling evidence indicates that psychiatric and developmental disorders are generally caused by disruptions in the functional connectivity (FC) of brain networks. Events occurring during development, and in particular during fetal life, have been implicated in the genesis of such disorders. However, the developmental timetable for the emergence of neural FC during human fetal life is unknown. We present the results of resting-state functional magnetic resonance imaging performed in 25 healthy human fetuses in the second and third trimesters of pregnancy (24 to 38 weeks of gestation). We report the presence of bilateral fetal brain FC and regional and age-related variation in FC. Significant bilateral connectivity was evident in half of the 42 areas tested, and the strength of FC between homologous cortical brain regions increased with advancing gestational age. We also observed medial to lateral gradients in fetal functional brain connectivity. These findings improve understanding of human fetal central nervous system development and provide a basis for examining the role of insults during fetal life in the subsequent development of disorders in neural FC.

  15. 101 labeled brain images and a consistent human cortical labeling protocol

    Directory of Open Access Journals (Sweden)

    Arno eKlein

    2012-12-01

    Full Text Available We introduce the Mindboggle-101 dataset, the largest and most complete set of free, publicly accessible, manually labeled human brain images. To manually label the macroscopic anatomy in magnetic resonance images of 101 healthy participants, we created a new cortical labeling protocol that relies on robust anatomical landmarks and minimal manual edits after initialization with automated labels. The Desikan-Killiany-Tourville (DKT protocol is intended to improve the ease, consistency, and accuracy of labeling human cortical areas. Given how difficult it is to label brains, the Mindboggle-101 dataset is intended to serve as brain atlases for use in labeling other brains, as a normative dataset to establish morphometric variation in a healthy population for comparison against clinical populations, and contribute to the development, training, testing, and evaluation of automated registration and labeling algorithms. To this end, we also introduce benchmarks for the evaluation of such algorithms by comparing our manual labels with labels automatically generated by probabilistic and multi-atlas registration-based approaches. All data and related software and updated information are available on the http://www.mindboggle.info/data/ website.

  16. 101 Labeled Brain Images and a Consistent Human Cortical Labeling Protocol

    Science.gov (United States)

    Klein, Arno; Tourville, Jason

    2012-01-01

    We introduce the Mindboggle-101 dataset, the largest and most complete set of free, publicly accessible, manually labeled human brain images. To manually label the macroscopic anatomy in magnetic resonance images of 101 healthy participants, we created a new cortical labeling protocol that relies on robust anatomical landmarks and minimal manual edits after initialization with automated labels. The “Desikan–Killiany–Tourville” (DKT) protocol is intended to improve the ease, consistency, and accuracy of labeling human cortical areas. Given how difficult it is to label brains, the Mindboggle-101 dataset is intended to serve as brain atlases for use in labeling other brains, as a normative dataset to establish morphometric variation in a healthy population for comparison against clinical populations, and contribute to the development, training, testing, and evaluation of automated registration and labeling algorithms. To this end, we also introduce benchmarks for the evaluation of such algorithms by comparing our manual labels with labels automatically generated by probabilistic and multi-atlas registration-based approaches. All data and related software and updated information are available on the http://mindboggle.info/data website. PMID:23227001

  17. Healthy human gut phageome.

    Science.gov (United States)

    Manrique, Pilar; Bolduc, Benjamin; Walk, Seth T; van der Oost, John; de Vos, Willem M; Young, Mark J

    2016-09-13

    The role of bacteriophages in influencing the structure and function of the healthy human gut microbiome is unknown. With few exceptions, previous studies have found a high level of heterogeneity in bacteriophages from healthy individuals. To better estimate and identify the shared phageome of humans, we analyzed a deep DNA sequence dataset of active bacteriophages and available metagenomic datasets of the gut bacteriophage community from healthy individuals. We found 23 shared bacteriophages in more than one-half of 64 healthy individuals from around the world. These shared bacteriophages were found in a significantly smaller percentage of individuals with gastrointestinal/irritable bowel disease. A network analysis identified 44 bacteriophage groups of which 9 (20%) were shared in more than one-half of all 64 individuals. These results provide strong evidence of a healthy gut phageome (HGP) in humans. The bacteriophage community in the human gut is a mixture of three classes: a set of core bacteriophages shared among more than one-half of all people, a common set of bacteriophages found in 20-50% of individuals, and a set of bacteriophages that are either rarely shared or unique to a person. We propose that the core and common bacteriophage communities are globally distributed and comprise the HGP, which plays an important role in maintaining gut microbiome structure/function and thereby contributes significantly to human health.

  18. Effects of lithium on brain glucose metabolism in healthy men.

    Science.gov (United States)

    Kohno, Tomoya; Shiga, Tohru; Toyomaki, Atsuhito; Kusumi, Ichiro; Matsuyama, Tetsuaki; Inoue, Tetsuya; Katoh, Chietsugu; Koyama, Tsukasa; Tamaki, Nagara

    2007-12-01

    Lithium is clinically available for the treatment of mood disorders. However, it has remained unclear how lithium acts on the brain to produce its effects. The aim of this study was to evaluate the effects of chronic lithium on human brain activity using positron emission tomography and clarify the correlation between brain activity changes and cognitive functional changes as induced by chronic lithium administration. A total of 20 healthy male subjects (mean age, 32 +/- 6 years) underwent positron emission tomographic scans with F-fluorodeoxyglucose and a battery of neuropsychological tests at baseline condition and after 4 weeks of lithium administration. Brain metabolic data were analyzed using statistical parametric mapping. Lithium increased relative regional cerebral glucose metabolism (rCMRglc) in the bilateral dorsomedial frontal cortices including the anterior cingulate gyrus and decreased rCMRglc in the right cerebellum and left lingual gyrus/cuneus. There was no difference in any of the variables of cognitive functions between the baseline condition and after chronic lithium administration. There was no correlation between rCMRglc changes in any of the brain regions and individual variable changes in any of the neuropsychological tests. The results suggest that the effects of chronic lithium are associated with increased activity in the bilateral dorsomedial frontal cortices including the anterior cingulate gyrus and decreased activity in the right cerebellum and left lingual gyrus/cuneus.

  19. Topological organization of the human brain functional connectome across the lifespan

    Directory of Open Access Journals (Sweden)

    Miao Cao

    2014-01-01

    Full Text Available Human brain function undergoes complex transformations across the lifespan. We employed resting-state functional MRI and graph-theory approaches to systematically chart the lifespan trajectory of the topological organization of human whole-brain functional networks in 126 healthy individuals ranging in age from 7 to 85 years. Brain networks were constructed by computing Pearson's correlations in blood-oxygenation-level-dependent temporal fluctuations among 1024 parcellation units followed by graph-based network analyses. We observed that the human brain functional connectome exhibited highly preserved non-random modular and rich club organization over the entire age range studied. Further quantitative analyses revealed linear decreases in modularity and inverted-U shaped trajectories of local efficiency and rich club architecture. Regionally heterogeneous age effects were mainly located in several hubs (e.g., default network, dorsal attention regions. Finally, we observed inverse trajectories of long- and short-distance functional connections, indicating that the reorganization of connectivity concentrates and distributes the brain's functional networks. Our results demonstrate topological changes in the whole-brain functional connectome across nearly the entire human lifespan, providing insights into the neural substrates underlying individual variations in behavior and cognition. These results have important implications for disease connectomics because they provide a baseline for evaluating network impairments in age-related neuropsychiatric disorders.

  20. Information flow between interacting human brains: Identification, validation, and relationship to social expertise.

    Science.gov (United States)

    Bilek, Edda; Ruf, Matthias; Schäfer, Axel; Akdeniz, Ceren; Calhoun, Vince D; Schmahl, Christian; Demanuele, Charmaine; Tost, Heike; Kirsch, Peter; Meyer-Lindenberg, Andreas

    2015-04-21

    Social interactions are fundamental for human behavior, but the quantification of their neural underpinnings remains challenging. Here, we used hyperscanning functional MRI (fMRI) to study information flow between brains of human dyads during real-time social interaction in a joint attention paradigm. In a hardware setup enabling immersive audiovisual interaction of subjects in linked fMRI scanners, we characterize cross-brain connectivity components that are unique to interacting individuals, identifying information flow between the sender's and receiver's temporoparietal junction. We replicate these findings in an independent sample and validate our methods by demonstrating that cross-brain connectivity relates to a key real-world measure of social behavior. Together, our findings support a central role of human-specific cortical areas in the brain dynamics of dyadic interactions and provide an approach for the noninvasive examination of the neural basis of healthy and disturbed human social behavior with minimal a priori assumptions.

  1. MRI-based Brain Healthcare Quotients: A bridge between neural and behavioral analyses for keeping the brain healthy.

    Science.gov (United States)

    Nemoto, Kiyotaka; Oka, Hiroki; Fukuda, Hiroki; Yamakawa, Yoshinori

    2017-01-01

    Neurological and psychiatric disorders are a burden on social and economic resources. Therefore, maintaining brain health and preventing these disorders are important. While the physiological functions of the brain are well studied, few studies have focused on keeping the brain healthy from a neuroscientific viewpoint. We propose a magnetic resonance imaging (MRI)-based quotient for monitoring brain health, the Brain Healthcare Quotient (BHQ), which is based on the volume of gray matter (GM) and the fractional anisotropy (FA) of white matter (WM). We recruited 144 healthy adults to acquire structural neuroimaging data, including T1-weighted images and diffusion tensor images, and data associated with both physical (BMI, blood pressure, and daily time use) and social (subjective socioeconomic status, subjective well-being, post-materialism and Epicureanism) factors. We confirmed that the BHQ was sensitive to an age-related decline in GM volume and WM integrity. Further analysis revealed that the BHQ was critically affected by both physical and social factors. We believe that our BHQ is a simple yet highly sensitive, valid measure for brain health research that will bridge the needs of the scientific community and society and help us lead better lives in which we stay healthy, active, and sharp.

  2. MRI-based Brain Healthcare Quotients: A bridge between neural and behavioral analyses for keeping the brain healthy.

    Directory of Open Access Journals (Sweden)

    Kiyotaka Nemoto

    Full Text Available Neurological and psychiatric disorders are a burden on social and economic resources. Therefore, maintaining brain health and preventing these disorders are important. While the physiological functions of the brain are well studied, few studies have focused on keeping the brain healthy from a neuroscientific viewpoint. We propose a magnetic resonance imaging (MRI-based quotient for monitoring brain health, the Brain Healthcare Quotient (BHQ, which is based on the volume of gray matter (GM and the fractional anisotropy (FA of white matter (WM. We recruited 144 healthy adults to acquire structural neuroimaging data, including T1-weighted images and diffusion tensor images, and data associated with both physical (BMI, blood pressure, and daily time use and social (subjective socioeconomic status, subjective well-being, post-materialism and Epicureanism factors. We confirmed that the BHQ was sensitive to an age-related decline in GM volume and WM integrity. Further analysis revealed that the BHQ was critically affected by both physical and social factors. We believe that our BHQ is a simple yet highly sensitive, valid measure for brain health research that will bridge the needs of the scientific community and society and help us lead better lives in which we stay healthy, active, and sharp.

  3. Brain Magnetic Resonance Elastography on Healthy Volunteers: A Safety Study

    International Nuclear Information System (INIS)

    Guang-Rui Liu; Pei-Yi Gao; Yan Lin; Jing Xue; Xiao-Chun Wang; Bin-Bin Sui; Li Ma; Zhi-Nong Xi; Qin Bai; Hao Shen

    2009-01-01

    Background: Magnetic resonance elastography (MRE) is a recently developed imaging technique that can directly visualize and quantitatively measure tissue elasticity. Purpose: To evaluate the safety of brain MRE on human subjects. Material and Methods: The study included 20 healthy volunteers. MRE sequence scan (drive signal not applied to external force actuator) and MRE study were separately performed on each volunteer at an interval of more than 24 hours. The heart rate and blood pressure of each volunteer were measured immediately before and after MRE sequence scan and MRE study. Electroencephalography (EEG) was also performed within 2 hours after each scan. The volunteers were asked about their experience of the two scans. Randomized-block analysis of variance (ANOVA) was used to analyze the data of blood pressure and heart rate. Paired t test was used to analyze the data of the two EEG examinations. The volunteers were followed up 1 week after the examination. Results: All procedures were performed on each volunteer, and no one complained of obvious discomfort. No related adverse events were reported during follow-up. There was no statistically significant difference in heart rate or blood pressure. There was a statistically significant difference (P<0.05) in EEG results in the right temporoparietal region. Increased power was found in the theta, delta, alpha, and beta2 bands. No brain injury was detected by the EEG examinations. Conclusion: Based on the study results, brain MRE examinations are safe to perform on human subjects

  4. Brain energy metabolism and blood flow differences in healthy aging

    DEFF Research Database (Denmark)

    Aanerud, Joel; Borghammer, Per; Chakravarty, M Mallar

    2012-01-01

    Cerebral metabolic rate of oxygen consumption (CMRO(2)), cerebral blood flow (CBF), and oxygen extraction fraction (OEF) are important indices of healthy aging of the brain. Although a frequent topic of study, changes of CBF and CMRO(2) during normal aging are still controversial, as some authors......, and in the temporal cortex. Because of the inverse relation between OEF and capillary oxygen tension, increased OEF can compromise oxygen delivery to neurons, with possible perturbation of energy turnover. The results establish a possible mechanism of progression from healthy to unhealthy brain aging, as the regions...

  5. Mapping the trajectory of the amygdalothalamic tract in the human brain.

    Science.gov (United States)

    Kamali, Arash; Riascos, Roy F; Pillai, Jay J; Sair, Haris I; Patel, Rajan; Nelson, Flavia M; Lincoln, John A; Tandon, Nitin; Mirbagheri, Saeedeh; Rabiei, Pejman; Keser, Zafer; Hasan, Khader M

    2018-04-01

    Although the thalamus is not considered primarily as a limbic structure, abundant evidence indicates the essential role of the thalamus as a modulator of limbic functions indirectly through the amygdala. The amygdala is a central component of the limbic system and serves an essential role in modulating the core processes including the memory, decision-making, and emotional reactions. The amygdalothalamic pathway is the largest direct amygdalo-diencephalic connection in the primates including the human brain. Given the crucial role of the amygdalothalamic tract (ATT) in memory function and diencephalic amnesia in stroke patients, diffusion tensor imaging may be helpful in better visualizing the surgical anatomy of this pathway noninvasively. To date, few diffusion-weighted studies have focused on the amygdala, yet the fine neuronal connection of the amygdala and thalamus known as the ATT has yet to be elucidated. This study aimed to investigate the utility of high spatial resolution diffusion tensor tractography for mapping the trajectory of the ATT in the human brain. We studied 15 healthy right-handed human subjects (12 men and 3 women with age range of 24-37 years old). Using a high-resolution diffusion tensor tractography technique, for the first time, we were able to reconstruct and measure the trajectory of the ATT. We further revealed the close relationship of the ATT with the temporopontine tract and the fornix bilaterally in 15 healthy adult human brains. © 2018 Wiley Periodicals, Inc.

  6. Insulin action in the human brain: evidence from neuroimaging studies.

    Science.gov (United States)

    Kullmann, S; Heni, M; Fritsche, A; Preissl, H

    2015-06-01

    Thus far, little is known about the action of insulin in the human brain. Nonetheless, recent advances in modern neuroimaging techniques, such as functional magnetic resonance imaging (fMRI) or magnetoencephalography (MEG), have made it possible to investigate the action of insulin in the brain in humans, providing new insights into the pathogenesis of brain insulin resistance and obesity. Using MEG, the clinical relevance of the action of insulin in the brain was first identified, linking cerebral insulin resistance with peripheral insulin resistance, genetic predisposition and weight loss success in obese adults. Although MEG is a suitable tool for measuring brain activity mainly in cortical areas, fMRI provides high spatial resolution for cortical as well as subcortical regions. Thus, the action of insulin can be detected within all eating behaviour relevant regions, which include regions deeply located within the brain, such as the hypothalamus, midbrain and brainstem, as well as regions within the striatum. In this review, we outline recent advances in the field of neuroimaging aiming to investigate the action of insulin in the human brain using different routes of insulin administration. fMRI studies have shown a significant insulin-induced attenuation predominantly in the occipital and prefrontal cortical regions and the hypothalamus, successfully localising insulin-sensitive brain regions in healthy, mostly normal-weight individuals. However, further studies are needed to localise brain areas affected by insulin resistance in obese individuals, which is an important prerequisite for selectively targeting brain insulin resistance in obesity. © 2015 British Society for Neuroendocrinology.

  7. Morphology of subcortical brain nuclei is associated with autonomic function in healthy humans.

    Science.gov (United States)

    Ruffle, James K; Coen, Steven J; Giampietro, Vincent; Williams, Steven C R; Apkarian, A Vania; Farmer, Adam D; Aziz, Qasim

    2018-01-01

    The autonomic nervous system (ANS) is a brain body interface which serves to maintain homeostasis by influencing a plethora of physiological processes, including metabolism, cardiorespiratory regulation and nociception. Accumulating evidence suggests that ANS function is disturbed in numerous prevalent clinical disorders, including irritable bowel syndrome and fibromyalgia. While the brain is a central hub for regulating autonomic function, the association between resting autonomic activity and subcortical morphology has not been comprehensively studied and thus was our aim. In 27 healthy subjects [14 male and 13 female; mean age 30 years (range 22-53 years)], we quantified resting ANS function using validated indices of cardiac sympathetic index (CSI) and parasympathetic cardiac vagal tone (CVT). High resolution structural magnetic resonance imaging scans were acquired, and differences in subcortical nuclei shape, that is, 'deformation', contingent on resting ANS activity were investigated. CSI positively correlated with outward deformation of the brainstem, right nucleus accumbens, right amygdala and bilateral pallidum (all thresholded to corrected P right amygdala and pallidum (all thresholded to corrected P Left and right putamen volume positively correlated with CVT (r = 0.62, P = 0.0047 and r = 0.59, P = 0.008, respectively), as did the brainstem (r = 0.46, P = 0.049). These data provide novel evidence that resting autonomic state is associated with differences in the shape and volume of subcortical nuclei. Thus, subcortical morphological brain differences in various disorders may partly be attributable to perturbation in autonomic function. Further work is warranted to investigate these findings in clinical populations. Hum Brain Mapp 39:381-392, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  8. Revealing the cerebello-ponto-hypothalamic pathway in the human brain.

    Science.gov (United States)

    Kamali, Arash; Karbasian, Niloofar; Rabiei, Pejman; Cano, Andres; Riascos, Roy F; Tandon, Nitin; Arevalo, Octavio; Ocasio, Laura; Younes, Kyan; Khayat-Khoei, Mahsa; Mirbagheri, Saeedeh; Hasan, Khader M

    2018-04-16

    The cerebellum is shown to be involved in some limbic functions of the human brain such as emotion and affect. The major connection of the cerebellum with the limbic system is known to be through the cerebello-hypothalamic pathways. The consensus is that the projections from the cerebellar nuclei to the limbic system, and particularly the hypothalamus, or from the hypothalamus to the cerebellar nuclei, are through multisynaptic pathways in the bulbar reticular formation. The detailed anatomy of the pathways responsible for mediating these responses, however, is yet to be determined. Diffusion tensor imaging may be helpful in better visualizing the surgical anatomy of the cerebello-ponto-hypothalamic (CPH) pathway. This study aimed to investigate the utility of high-spatial-resolution diffusion tensor tractography for mapping the trajectory of the CPH tract in the human brain. Fifteen healthy adults were studied. We delineated, for the first time, the detailed trajectory of the CPH tract of the human brain in fifteen normal adult subjects using high-spatial-resolution diffusion tensor tractography. We further revealed the close relationship of the CPH tract with the optic tract, temporo-pontine tract, amygdalofugal tract and the fornix in the human brain. Copyright © 2018. Published by Elsevier B.V.

  9. Detection of rabies antigen in the saliva and brains of apparently healthy dogs slaughtered for human consumption and its public health implications in abia state, Nigeria.

    Science.gov (United States)

    Mshelbwala, P P; Ogunkoya, A B; Maikai, B V

    2013-01-01

    The study was carried out in eight dogs slaughtering outlets within four Local Government Areas of the State for the determination of rabies antigen in the saliva and brain of apparently healthy dogs slaughtered for human consumption. A total of one hundred (100) samples each of saliva and brain were collected before and after slaughter, respectively, between April to June, 2013, in the selected areas. The saliva was subjected to rapid immune-chromatographic test (RICT) while direct fluorescent antibody test (DFAT) was carried out on the brain samples. Structured questionnaire was administered to nineteen (19) dog meat processors comprising 18 males and 1 female in the selected areas. Sixty four percent of the samples tested were from female dogs while 36% were from males, 5% tested positive for rabies antigen with the use of both tests; there was no statistical association between sex and rabies status of the dogs sampled (P > 0.05). Butchers bitten during the course of slaughtering were 94.7% out of which 72.8% utilized traditional method of treatment and only 27.8% reported to the hospital for proper medical attention. This study has established the presence of rabies antigen in apparently healthy dogs in the study area.

  10. Localized proton 1H MR spectroscopy in different regions of the human brain

    International Nuclear Information System (INIS)

    Fang Hong; Guo Qinglin; Zhang Guixiang

    1997-01-01

    To study the 1 H MR spectrum of normal human brain and the concentration and distribution of main metabolites using 1 H MR spectroscopy eighteen healthy human brains were examined by conventional 1.5 T MRI system. Volume of interest (VOI) included temporal lobe (mainly gray matter), thalamus, cerebellum as well as white matter. Proton MR spectroscopy can detect a variety of metabolites in human brain in vivo. The main detectable metabolites were N-acetyl-aspartate (NAA: at 2.02 ppm), cholineontaining compounds (Cho: at 3.2 ppm), phospho-creating and creatine (PCr + Cr: at 3.0 ppm), glutamine and glutamate (Gln + Glu: at 2.34-2.45 ppm), lipids (Lip: at 1.0 ppm) and lactate (Lac: at 1.3 ppm). the metabolite concentration varied in different parts of the brain. The relative signal intensity calculation showed that: NAA/Cho ratio is the highest in gray matter and lowest in cerebellun. Cr/Cho is the highest in cerebellum and lowest in white matter. The assumed creatine concentration is 10 mmol/L for gray matter and cerebellum, 11 mmol/L for white matter and thalanmus, the absolute concentration of NAA in the brain is about 13-23 mmol/L, and is higher in gray matter than in cerebellum and thalamus. Proton MR spectroscopy is a new noninvasive method which can be used to detect a number of chemical compounds pertaining to energy metabolism, free amino acids, fatty acids and neurotransmitters in the brain. It is useful to assess the cerebral biochemical changes in vivo both in healthy subjects and in patients with various brain disease

  11. Brain Serotonin Transporter Occupancy by Oral Sibutramine Dosed to Steady State: A PET Study Using 11C-DASB in Healthy Humans

    Science.gov (United States)

    Talbot, Peter S; Bradley, Stefan; Clarke, Cyril P; Babalola, Kola O; Philipp, Andrew W; Brown, Gavin; McMahon, Adam W; Matthews, Julian C

    2010-01-01

    Sibutramine is a centrally acting monoamine reuptake inhibitor prescribed as an appetite suppressant in the management of obesity. Its effects are mostly attributable to serotonin and norepinephrine transporter (SERT and NET, respectively) inhibition by its potent metabolites mono-desmethylsibutramine (M1) and di-desmethylsibutramine (M2). However, there is a paucity of in vivo data in humans about mechanisms underlying both clinical efficacy and the dose-independent non-response observed in a minority of patients. Twelve healthy male patients (mean age 41 years) completed a double-blind, placebo-controlled, within-subject crossover investigation of brain SERT occupancy by sibutramine 15 mg daily at steady state. Correlations were measured between occupancy and (i) plasma concentrations of sibutramine, M1 and M2; (ii) appetite suppression. 11C-DASB PET scans were performed on the HRRT camera. Binding potentials (BPND) were calculated by the Logan reference tissue (cerebellum) method. SERT occupancy was modest (mean 30±10%), was similar across brain regions, but varied widely across subjects (15–46%). Occupancy was correlated positively (p=0.09) with M2 concentration, but not with sibutramine or M1. No significant appetite suppression was seen at sibutramine is of modest magnitude and may be mediated predominantly by M2 in humans. 5-HT reuptake inhibition may be necessary but is not sufficient for sibutramine's efficacy in humans, supporting preclinical data suggesting that the hypophagic effect requires the co-inhibition of both SERT and NET. PMID:19890256

  12. Whole-body biodistribution, radiation absorbed dose, and brain SPET imaging with [{sup 123}I]5-I-A-85380 in healthy human subjects

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, Masahiro; Tamagnan, G.; Baldwin, R.M.; Khan, S.; Bozkurt, A. [Yale Univ., New Haven, CT (United States). School of Medicine; Seibyl, J.P.; Early, M. [Institute for Neurodegenerative Disorders, New Haven, CT (United States); Vaupel, B.D.; Horti, A.G.; Mukhin, A.G.; Kimes, A.S. [Brain Imaging Center, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD (United States); Zoghbi, S.S. [Yale Univ., New Haven, CT (United States). Dept. of Radiology; Koren, A.O.; London, E.D. [Brain Imaging Center, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD (United States); Departments of Psychiatry and Biobehavioral Sciences, UCLA, Los Angeles, CA (United States); Innis, R.B. [Molecular Imaging Branch, National Institutes of Mental Health (United States)

    2002-02-01

    The biodistribution of radioactivity after the administration of a new tracer for {alpha}4{beta}2 nicotinic acetylcholine receptors (nAChRs), [{sup 123}I]5-iodo-3-[2(S)-2-azetidinylmethoxy]pyridine (5-I-A-85380), was studied in ten healthy human subjects. Following administration of 98{+-}6 MBq [{sup 123}I]5-I-A-85380, serial whole-body images were acquired over 24 h and corrected for attenuation. One to four brain single-photon emission tomography (SPET) images were also acquired between 2.5 and 24 h. Estimates of radiation absorbed dose were calculated using MIRDOSE 3.1 with a dynamic bladder model and a dynamic gastrointestinal tract model. The estimates of the highest absorbed dose ({mu}Gy/MBq) were for the urinary bladder wall (71 and 140), lower large intestine wall (70 and 72), and upper large intestine wall (63 and 64), with 2.4-h and 4.8-h urine voiding intervals, respectively. The whole brain activity at the time of the initial whole-body imaging at 14 min was 5.0% of the injected dose. Consistent with the known distribution of {alpha}4{beta}2 nAChRs, SPET images showed the highest activity in the thalamus. These results suggest that [{sup 123}I]5-I-A-85380 is a promising SPET agent to image {alpha}4{beta}2 nAChRs in humans, with acceptable dosimetry and high brain uptake. (orig.)

  13. Quantification of dopamine transporter density with [18F]FECNT PET in healthy humans

    International Nuclear Information System (INIS)

    Nye, Jonathon A.; Votaw, John R.; Bremner, J. Douglas; Davis, Margaret R.; Voll, Ronald J.; Camp, Vernon M.; Goodman, Mark M.

    2014-01-01

    Introduction: Fluorine-18 labeled 2β-carbomethoxy-3β-(4-chlorophenyl)-8-(2-fluoroethyl)nortropane ([ 18 F]FECNT) binds reversibly to the dopamine transporter (DAT) with high selectivity. [ 18 F]FECNT has been used extensively in the quantification of DAT occupancy in non-human primate brain and can distinguish between Parkinson's and healthy controls in humans. The purpose of this work was to develop a compartment model to characterize the kinetics of [ 18 F]FECNT for quantification of DAT density in healthy human brain. Methods: Twelve healthy volunteers underwent 180 min dynamic [ 18 F]FECNT PET imaging including sampling of arterial blood. Regional time-activity curves were extracted from the caudate, putamen and midbrain including a reference region placed in the cerebellum. Binding potential, BP ND , was calculated for all regions using kinetic parameters estimated from compartmental and Logan graphical model fits to the time-activity data. Simulations were performed to determine whether the compartment model could reliably fit time-activity data over a range of BP ND values. Results: The kinetics of [ 18 F]FECNT were well-described by the reversible 2-tissue arterial input and full reference tissue compartment models. Calculated binding potentials in the caudate, putamen and midbrain were in good agreement between the arterial input model, reference tissue model and the Logan graphical model. The distribution volume in the cerebellum did not reach a plateau over the duration of the study, which may be a result of non-specific binding in the cerebellum. Simulations that included non-specific binding show that the reference and arterial input models are able to estimate BP ND for DAT densities well below that observed in normal volunteers. Conclusion: The kinetics of [ 18 F]FECNT in human brain are well-described by arterial input and reference tissue compartment models. Measured and simulated data show that BP ND calculated with reference tissue model

  14. Healthy human gut phageome

    NARCIS (Netherlands)

    Manrique, Pilar; Bolduc, Benjamin; Walk, Seth T.; Oost, van der John; Vos, de Willem M.; Young, Mark J.

    2016-01-01

    The role of bacteriophages in influencing the structure and function of the healthy human gut microbiome is unknown. With few exceptions, previous studies have found a high level of heterogeneity in bacteriophages from healthy individuals. To better estimate and identify the shared phageome of

  15. Hemispheric Asymmetry of Human Brain Anatomical Network Revealed by Diffusion Tensor Tractography

    Directory of Open Access Journals (Sweden)

    Ni Shu

    2015-01-01

    Full Text Available The topological architecture of the cerebral anatomical network reflects the structural organization of the human brain. Recently, topological measures based on graph theory have provided new approaches for quantifying large-scale anatomical networks. However, few studies have investigated the hemispheric asymmetries of the human brain from the perspective of the network model, and little is known about the asymmetries of the connection patterns of brain regions, which may reflect the functional integration and interaction between different regions. Here, we utilized diffusion tensor imaging to construct binary anatomical networks for 72 right-handed healthy adult subjects. We established the existence of structural connections between any pair of the 90 cortical and subcortical regions using deterministic tractography. To investigate the hemispheric asymmetries of the brain, statistical analyses were performed to reveal the brain regions with significant differences between bilateral topological properties, such as degree of connectivity, characteristic path length, and betweenness centrality. Furthermore, local structural connections were also investigated to examine the local asymmetries of some specific white matter tracts. From the perspective of both the global and local connection patterns, we identified the brain regions with hemispheric asymmetries. Combined with the previous studies, we suggested that the topological asymmetries in the anatomical network may reflect the functional lateralization of the human brain.

  16. Kisspeptin modulates sexual and emotional brain processing in humans.

    Science.gov (United States)

    Comninos, Alexander N; Wall, Matthew B; Demetriou, Lysia; Shah, Amar J; Clarke, Sophie A; Narayanaswamy, Shakunthala; Nesbitt, Alexander; Izzi-Engbeaya, Chioma; Prague, Julia K; Abbara, Ali; Ratnasabapathy, Risheka; Salem, Victoria; Nijher, Gurjinder M; Jayasena, Channa N; Tanner, Mark; Bassett, Paul; Mehta, Amrish; Rabiner, Eugenii A; Hönigsperger, Christoph; Silva, Meire Ribeiro; Brandtzaeg, Ole Kristian; Lundanes, Elsa; Wilson, Steven Ray; Brown, Rachel C; Thomas, Sarah A; Bloom, Stephen R; Dhillo, Waljit S

    2017-02-01

    Sex, emotion, and reproduction are fundamental and tightly entwined aspects of human behavior. At a population level in humans, both the desire for sexual stimulation and the desire to bond with a partner are important precursors to reproduction. However, the relationships between these processes are incompletely understood. The limbic brain system has key roles in sexual and emotional behaviors, and is a likely candidate system for the integration of behavior with the hormonal reproductive axis. We investigated the effects of kisspeptin, a recently identified key reproductive hormone, on limbic brain activity and behavior. Using a combination of functional neuroimaging and hormonal and psychometric analyses, we compared the effects of kisspeptin versus vehicle administration in 29 healthy heterosexual young men. We demonstrated that kisspeptin administration enhanced limbic brain activity specifically in response to sexual and couple-bonding stimuli. Furthermore, kisspeptin's enhancement of limbic brain structures correlated with psychometric measures of reward, drive, mood, and sexual aversion, providing functional significance. In addition, kisspeptin administration attenuated negative mood. Collectively, our data provide evidence of an undescribed role for kisspeptin in integrating sexual and emotional brain processing with reproduction in humans. These results have important implications for our understanding of reproductive biology and are highly relevant to the current pharmacological development of kisspeptin as a potential therapeutic agent for patients with common disorders of reproductive function. National Institute for Health Research (NIHR), Wellcome Trust (Ref 080268), and the Medical Research Council (MRC).

  17. Educating the Human Brain. Human Brain Development Series

    Science.gov (United States)

    Posner, Michael I.; Rothbart, Mary K.

    2006-01-01

    "Educating the Human Brain" is the product of a quarter century of research. This book provides an empirical account of the early development of attention and self regulation in infants and young children. It examines the brain areas involved in regulatory networks, their connectivity, and how their development is influenced by genes and…

  18. The relationship between subcortical brain volume and striatal dopamine D2/3 receptor availability in healthy humans assessed with [11 C]-raclopride and [11 C]-(+)-PHNO PET.

    Science.gov (United States)

    Caravaggio, Fernando; Ku Chung, Jun; Plitman, Eric; Boileau, Isabelle; Gerretsen, Philip; Kim, Julia; Iwata, Yusuke; Patel, Raihaan; Chakravarty, M Mallar; Remington, Gary; Graff-Guerrero, Ariel

    2017-11-01

    Abnormalities in dopamine (DA) and brain morphology are observed in several neuropsychiatric disorders. However, it is not fully understood how these abnormalities may relate to one another. For such in vivo findings to be used as biomarkers for neuropsychiatric disease, it must be understood how variability in DA relates to brain structure under healthy conditions. We explored how the availability of striatal DA D 2/3 receptors (D 2/3 R) is related to the volume of subcortical brain structures in a sample of healthy humans. Differences in D 2/3 R availability measured with an antagonist radiotracer ([ 11 C]-raclopride) versus an agonist radiotracer ([ 11 C]-(+)-PHNO) were examined. Data from 62 subjects scanned with [ 11 C]-raclopride (mean age = 38.98 ± 14.45; 23 female) and 68 subjects scanned with [ 11 C]-(+)-PHNO (mean age = 38.54 ± 14.59; 25 female) were used. Subcortical volumes were extracted from T1-weighted images using the Multiple Automatically Generated Templates (MAGeT-Brain) algorithm. Partial correlations were used controlling for age, gender, and total brain volume. For [ 11 C]-(+)-PHNO, ventral caudate volumes were positively correlated with BP ND in the dorsal caudate and globus pallidus (GP). Ventral striatum (VS) volumes were positively correlated with BP ND in the VS. With [ 11 C]-raclopride, BP ND in the VS was negatively correlated with subiculum volume of the hippocampus. Moreover, BP ND in the GP was negatively correlated with the volume of the lateral posterior nucleus of the thalamus. Findings are purely exploratory and presented corrected and uncorrected for multiple comparisons. We hope they will help inform the interpretation of future PET studies where concurrent changes in D 2/3 R and brain morphology are observed. Hum Brain Mapp 38:5519-5534, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  19. Gaze-and-brain-controlled interfaces for human-computer and human-robot interaction

    Directory of Open Access Journals (Sweden)

    Shishkin S. L.

    2017-09-01

    Full Text Available Background. Human-machine interaction technology has greatly evolved during the last decades, but manual and speech modalities remain single output channels with their typical constraints imposed by the motor system’s information transfer limits. Will brain-computer interfaces (BCIs and gaze-based control be able to convey human commands or even intentions to machines in the near future? We provide an overview of basic approaches in this new area of applied cognitive research. Objective. We test the hypothesis that the use of communication paradigms and a combination of eye tracking with unobtrusive forms of registering brain activity can improve human-machine interaction. Methods and Results. Three groups of ongoing experiments at the Kurchatov Institute are reported. First, we discuss the communicative nature of human-robot interaction, and approaches to building a more e cient technology. Specifically, “communicative” patterns of interaction can be based on joint attention paradigms from developmental psychology, including a mutual “eye-to-eye” exchange of looks between human and robot. Further, we provide an example of “eye mouse” superiority over the computer mouse, here in emulating the task of selecting a moving robot from a swarm. Finally, we demonstrate a passive, noninvasive BCI that uses EEG correlates of expectation. This may become an important lter to separate intentional gaze dwells from non-intentional ones. Conclusion. The current noninvasive BCIs are not well suited for human-robot interaction, and their performance, when they are employed by healthy users, is critically dependent on the impact of the gaze on selection of spatial locations. The new approaches discussed show a high potential for creating alternative output pathways for the human brain. When support from passive BCIs becomes mature, the hybrid technology of the eye-brain-computer (EBCI interface will have a chance to enable natural, fluent, and the

  20. Human brain imaging

    International Nuclear Information System (INIS)

    Kuhar, M.J.

    1987-01-01

    Just as there have been dramatic advances in the molecular biology of the human brain in recent years, there also have been remarkable advances in brain imaging. This paper reports on the development and broad application of microscopic imaging techniques which include the autoradiographic localization of receptors and the measurement of glucose utilization by autoradiography. These approaches provide great sensitivity and excellent anatomical resolution in exploring brain organization and function. The first noninvasive external imaging of receptor distributions in the living human brain was achieved by positron emission tomography (PET) scanning. Developments, techniques and applications continue to progress. Magnetic resonance imaging (MRI) is also becoming important. Its initial clinical applications were in examining the structure and anatomy of the brain. However, more recent uses, such as MRI spectroscopy, indicate the feasibility of exploring biochemical pathways in the brain, the metabolism of drugs in the brain, and also of examining some of these procedures at an anatomical resolution which is substantially greater than that obtainable by PET scanning. The issues will be discussed in greater detail

  1. Oxygen Mapping within Healthy and Acutely Infarcted Brain Tissue in Humans Using the NMR Relaxation of Lipids: A Proof-Of-Concept Translational Study.

    Science.gov (United States)

    Colliez, Florence; Safronova, Marta M; Magat, Julie; Joudiou, Nicolas; Peeters, André P; Jordan, Bénédicte F; Gallez, Bernard; Duprez, Thierry

    2015-01-01

    The clinical applicability of brain oxygenation mapping using the MOBILE (Mapping of Oxygen By Imaging Lipids relaxation Enhancement) magnetic resonance (MR) technique was assessed in the clinical setting of normal brain and of acute cerebral ischemia as a founding proof-of-concept translational study. Changes in the oxygenation level within healthy brain tissue can be detected by analyzing the spin-lattice proton relaxation ('Global T1' combining water and lipid protons) because of the paramagnetic properties of molecular oxygen. It was hypothesized that selective measurement of the relaxation of the lipid protons ('Lipids T1') would result in enhanced sensitivity of pO2 mapping because of higher solubility of oxygen in lipids than in water, and this was demonstrated in pre-clinical models using the MOBILE technique. In the present study, 12 healthy volunteers and eight patients with acute (48-72 hours) brain infarction were examined with the same clinical 3T MR system. Both Lipids R1 (R1 = 1/T1) and Global R1 were significantly different in the infarcted area and the contralateral unaffected brain tissue, with a higher statistical significance for Lipids R1 (median difference: 0.408 s-1; pbrain tissue of stroke patients were not significantly different from the R1 values calculated in the brain tissue of healthy volunteers. The main limitations of the present prototypic version of the MOBILE sequence are the long acquisition time (4 min), hampering robustness of data in uncooperative patients, and a 2 mm slice thickness precluding accurate measurements in small infarcts because of partial volume averaging effects.

  2. Striatal μ-opioid receptor availability predicts cold pressor pain threshold in healthy human subjects

    DEFF Research Database (Denmark)

    Hagelberg, Nora; Aalto, Sargo; Tuominen, Lauri

    2012-01-01

    the potential associations between μ-opioid receptor BP(ND) and psychophysical measures. The results show that striatal μ-opioid receptor BP(ND) predicts cold pressor pain threshold, but not cold pressor pain tolerance or tactile sensitivity. This finding suggests that striatal μ-opioid receptor density......Previous PET studies in healthy humans have shown that brain μ-opioid receptor activation during experimental pain is associated with reductions in the sensory and affective ratings of the individual pain experience. The aim of this study was to find out whether brain μ-opioid receptor binding...... at the resting state, in absence of painful stimulation, can be a long-term predictor of experimental pain sensitivity. We measured μ-opioid receptor binding potential (BP(ND)) with μ-opioid receptor selective radiotracer [(11)C]carfentanil and positron emission tomography (PET) in 12 healthy male subjects...

  3. Enhanced task-related brain activation and resting perfusion in healthy older adults after chronic blueberry supplementation.

    Science.gov (United States)

    Bowtell, Joanna L; Aboo-Bakkar, Zainie; Conway, Myra E; Adlam, Anna-Lynne R; Fulford, Jonathan

    2017-07-01

    Blueberries are rich in flavonoids, which possess antioxidant and anti-inflammatory properties. High flavonoid intakes attenuate age-related cognitive decline, but data from human intervention studies are sparse. We investigated whether 12 weeks of blueberry concentrate supplementation improved brain perfusion, task-related activation, and cognitive function in healthy older adults. Participants were randomised to consume either 30 mL blueberry concentrate providing 387 mg anthocyanidins (5 female, 7 male; age 67.5 ± 3.0 y; body mass index, 25.9 ± 3.3 kg·m -2 ) or isoenergetic placebo (8 female, 6 male; age 69.0 ± 3.3 y; body mass index, 27.1 ± 4.0 kg·m -2 ). Pre- and postsupplementation, participants undertook a battery of cognitive function tests and a numerical Stroop test within a 1.5T magnetic resonance imaging scanner while functional magnetic resonance images were continuously acquired. Quantitative resting brain perfusion was determined using an arterial spin labelling technique, and blood biomarkers of inflammation and oxidative stress were measured. Significant increases in brain activity were observed in response to blueberry supplementation relative to the placebo group within Brodmann areas 4/6/10/21/40/44/45, precuneus, anterior cingulate, and insula/thalamus (p blueberry versus placebo supplementation (p = 0.05). Supplementation with an anthocyanin-rich blueberry concentrate improved brain perfusion and activation in brain areas associated with cognitive function in healthy older adults.

  4. In vivo magnetic resonance imaging and 31P spectroscopy of large human brain tumours at 1.5 tesla

    DEFF Research Database (Denmark)

    Thomsen, C; Jensen, K E; Achten, E

    1988-01-01

    31P MR spectroscopy of human brain tumours is one feature of magnetic resonance imaging. Eight patients with large superficial brain tumours and eight healthy volunteers were examined with 31P spectroscopy using an 8 cm surface coil for volume selection. Seven frequencies were resolved in our spe...

  5. A High-Resolution In Vivo Atlas of the Human Brain's Serotonin System.

    Science.gov (United States)

    Beliveau, Vincent; Ganz, Melanie; Feng, Ling; Ozenne, Brice; Højgaard, Liselotte; Fisher, Patrick M; Svarer, Claus; Greve, Douglas N; Knudsen, Gitte M

    2017-01-04

    The serotonin (5-hydroxytryptamine, 5-HT) system modulates many important brain functions and is critically involved in many neuropsychiatric disorders. Here, we present a high-resolution, multidimensional, in vivo atlas of four of the human brain's 5-HT receptors (5-HT 1A , 5-HT 1B , 5-HT 2A , and 5-HT 4 ) and the 5-HT transporter (5-HTT). The atlas is created from molecular and structural high-resolution neuroimaging data consisting of positron emission tomography (PET) and magnetic resonance imaging (MRI) scans acquired in a total of 210 healthy individuals. Comparison of the regional PET binding measures with postmortem human brain autoradiography outcomes showed a high correlation for the five 5-HT targets and this enabled us to transform the atlas to represent protein densities (in picomoles per milliliter). We also assessed the regional association between protein concentration and mRNA expression in the human brain by comparing the 5-HT density across the atlas with data from the Allen Human Brain atlas and identified receptor- and transporter-specific associations that show the regional relation between the two measures. Together, these data provide unparalleled insight into the serotonin system of the human brain. We present a high-resolution positron emission tomography (PET)- and magnetic resonance imaging-based human brain atlas of important serotonin receptors and the transporter. The regional PET-derived binding measures correlate strongly with the corresponding autoradiography protein levels. The strong correlation enables the transformation of the PET-derived human brain atlas into a protein density map of the serotonin (5-hydroxytryptamine, 5-HT) system. Next, we compared the regional receptor/transporter protein densities with mRNA levels and uncovered unique associations between protein expression and density at high detail. This new in vivo neuroimaging atlas of the 5-HT system not only provides insight in the human brain's regional protein

  6. Driving and driven architectures of directed small-world human brain functional networks.

    Directory of Open Access Journals (Sweden)

    Chaogan Yan

    Full Text Available Recently, increasing attention has been focused on the investigation of the human brain connectome that describes the patterns of structural and functional connectivity networks of the human brain. Many studies of the human connectome have demonstrated that the brain network follows a small-world topology with an intrinsically cohesive modular structure and includes several network hubs in the medial parietal regions. However, most of these studies have only focused on undirected connections between regions in which the directions of information flow are not taken into account. How the brain regions causally influence each other and how the directed network of human brain is topologically organized remain largely unknown. Here, we applied linear multivariate Granger causality analysis (GCA and graph theoretical approaches to a resting-state functional MRI dataset with a large cohort of young healthy participants (n = 86 to explore connectivity patterns of the population-based whole-brain functional directed network. This directed brain network exhibited prominent small-world properties, which obviously improved previous results of functional MRI studies showing weak small-world properties in the directed brain networks in terms of a kernel-based GCA and individual analysis. This brain network also showed significant modular structures associated with 5 well known subsystems: fronto-parietal, visual, paralimbic/limbic, subcortical and primary systems. Importantly, we identified several driving hubs predominantly located in the components of the attentional network (e.g., the inferior frontal gyrus, supplementary motor area, insula and fusiform gyrus and several driven hubs predominantly located in the components of the default mode network (e.g., the precuneus, posterior cingulate gyrus, medial prefrontal cortex and inferior parietal lobule. Further split-half analyses indicated that our results were highly reproducible between two

  7. Brain Evolution and Human Neuropsychology: The Inferential Brain Hypothesis

    Science.gov (United States)

    Koscik, Timothy R.; Tranel, Daniel

    2013-01-01

    Collaboration between human neuropsychology and comparative neuroscience has generated invaluable contributions to our understanding of human brain evolution and function. Further cross-talk between these disciplines has the potential to continue to revolutionize these fields. Modern neuroimaging methods could be applied in a comparative context, yielding exciting new data with the potential of providing insight into brain evolution. Conversely, incorporating an evolutionary base into the theoretical perspectives from which we approach human neuropsychology could lead to novel hypotheses and testable predictions. In the spirit of these objectives, we present here a new theoretical proposal, the Inferential Brain Hypothesis, whereby the human brain is thought to be characterized by a shift from perceptual processing to inferential computation, particularly within the social realm. This shift is believed to be a driving force for the evolution of the large human cortex. PMID:22459075

  8. Brain entropy and human intelligence: A resting-state fMRI study

    Science.gov (United States)

    Calderone, Daniel; Morales, Leah J.

    2018-01-01

    Human intelligence comprises comprehension of and reasoning about an infinitely variable external environment. A brain capable of large variability in neural configurations, or states, will more easily understand and predict variable external events. Entropy measures the variety of configurations possible within a system, and recently the concept of brain entropy has been defined as the number of neural states a given brain can access. This study investigates the relationship between human intelligence and brain entropy, to determine whether neural variability as reflected in neuroimaging signals carries information about intellectual ability. We hypothesize that intelligence will be positively associated with entropy in a sample of 892 healthy adults, using resting-state fMRI. Intelligence is measured with the Shipley Vocabulary and WASI Matrix Reasoning tests. Brain entropy was positively associated with intelligence. This relation was most strongly observed in the prefrontal cortex, inferior temporal lobes, and cerebellum. This relationship between high brain entropy and high intelligence indicates an essential role for entropy in brain functioning. It demonstrates that access to variable neural states predicts complex behavioral performance, and specifically shows that entropy derived from neuroimaging signals at rest carries information about intellectual capacity. Future work in this area may elucidate the links between brain entropy in both resting and active states and various forms of intelligence. This insight has the potential to provide predictive information about adaptive behavior and to delineate the subdivisions and nature of intelligence based on entropic patterns. PMID:29432427

  9. Brain entropy and human intelligence: A resting-state fMRI study.

    Science.gov (United States)

    Saxe, Glenn N; Calderone, Daniel; Morales, Leah J

    2018-01-01

    Human intelligence comprises comprehension of and reasoning about an infinitely variable external environment. A brain capable of large variability in neural configurations, or states, will more easily understand and predict variable external events. Entropy measures the variety of configurations possible within a system, and recently the concept of brain entropy has been defined as the number of neural states a given brain can access. This study investigates the relationship between human intelligence and brain entropy, to determine whether neural variability as reflected in neuroimaging signals carries information about intellectual ability. We hypothesize that intelligence will be positively associated with entropy in a sample of 892 healthy adults, using resting-state fMRI. Intelligence is measured with the Shipley Vocabulary and WASI Matrix Reasoning tests. Brain entropy was positively associated with intelligence. This relation was most strongly observed in the prefrontal cortex, inferior temporal lobes, and cerebellum. This relationship between high brain entropy and high intelligence indicates an essential role for entropy in brain functioning. It demonstrates that access to variable neural states predicts complex behavioral performance, and specifically shows that entropy derived from neuroimaging signals at rest carries information about intellectual capacity. Future work in this area may elucidate the links between brain entropy in both resting and active states and various forms of intelligence. This insight has the potential to provide predictive information about adaptive behavior and to delineate the subdivisions and nature of intelligence based on entropic patterns.

  10. In vivo 1H spectroscopy of the human brain at 1.5 tesla. Preliminary experience at a clinical installation

    DEFF Research Database (Denmark)

    Henriksen, O; Larsson, H; Jensen, K M

    1990-01-01

    In vivo localized water suppressed proton spectroscopy of human brain was carried out on 15 healthy volunteers and 2 patients suffering from a brain tumour and an infarction, respectively. The measurements were performed on a whole body MR system, operating at 1.5 tesla using the stimulated echo...

  11. A Polygenic Risk Score of glutamatergic SNPs associated with schizophrenia predicts attentional behavior and related brain activity in healthy humans.

    Science.gov (United States)

    Rampino, Antonio; Taurisano, Paolo; Fanelli, Giuseppe; Attrotto, Mariateresa; Torretta, Silvia; Antonucci, Linda Antonella; Miccolis, Grazia; Pergola, Giulio; Ursini, Gianluca; Maddalena, Giancarlo; Romano, Raffaella; Masellis, Rita; Di Carlo, Pasquale; Pignataro, Patrizia; Blasi, Giuseppe; Bertolino, Alessandro

    2017-09-01

    Multiple genetic variations impact on risk for schizophrenia. Recent analyses by the Psychiatric Genomics Consortium (PGC2) identified 128 SNPs genome-wide associated with the disorder. Furthermore, attention and working memory deficits are core features of schizophrenia, are heritable and have been associated with variation in glutamatergic neurotransmission. Based on this evidence, in a sample of healthy volunteers, we used SNPs associated with schizophrenia in PGC2 to construct a Polygenic-Risk-Score (PRS) reflecting the cumulative risk for schizophrenia, along with a Polygenic-Risk-Score including only SNPs related to genes implicated in glutamatergic signaling (Glu-PRS). We performed Factor Analysis for dimension reduction of indices of cognitive performance. Furthermore, both PRS and Glu-PRS were used as predictors of cognitive functioning in the domains of Attention, Speed of Processing and Working Memory. The association of the Glu-PRS on brain activity during the Variable Attention Control (VAC) task was also explored. Finally, in a second independent sample of healthy volunteers we sought to confirm the association between the Glu-PRS and both performance in the domain of Attention and brain activity during the VAC.We found that performance in Speed of Processing and Working Memory was not associated with any of the Polygenic-Risk-Scores. The Glu-PRS, but not the PRS was associated with Attention and brain activity during the VAC. The specific effects of Glu-PRS on Attention and brain activity during the VAC were also confirmed in the replication sample.Our results suggest a pathway specificity in the relationship between genetic risk for schizophrenia, the associated cognitive dysfunction and related brain processing. Copyright © 2017 Elsevier B.V. and ECNP. All rights reserved.

  12. Is the macromolecule signal tissue-specific in healthy human brain? A (1)H MRS study at 7 Tesla in the occipital lobe.

    Science.gov (United States)

    Schaller, Benoît; Xin, Lijing; Gruetter, Rolf

    2014-10-01

    The macromolecule signal plays a key role in the precision and the accuracy of the metabolite quantification in short-TE (1) H MR spectroscopy. Macromolecules have been reported at 1.5 Tesla (T) to depend on the cerebral studied region and to be age specific. As metabolite concentrations vary locally, information about the profile of the macromolecule signal in different tissues may be of crucial importance. The aim of this study was to investigate, at 7T for healthy subjects, the neurochemical profile differences provided by macromolecule signal measured in two different tissues in the occipital lobe, predominantly composed of white matter tissue or of grey matter tissue. White matter-rich macromolecule signal was relatively lower than the gray matter-rich macromolecule signal from 1.5 to 1.8 ppm and from 2.3 to 2.5 ppm with mean difference over these regions of 7% and 12% (relative to the reference peak at 0.9 ppm), respectively. The neurochemical profiles, when using either of the two macromolecule signals, were similar for 11 reliably quantified metabolites (CRLB occipital lobe at 7T in healthy human brain. Copyright © 2013 Wiley Periodicals, Inc.

  13. Measurement of human advanced brain function in calculation processing using functional magnetic resonance imaging (fMRI)

    International Nuclear Information System (INIS)

    Hashida, Masahiro; Yamauchi, Syuichi; Wu, Jing-Long

    2001-01-01

    Using functional magnetic resonance imaging (fMRI), we investigated the activated areas of the human brain related with calculation processing as an advanced function of the human brain. Furthermore, we investigated differences in activation between visual and auditory calculation processing. The eight subjects (all healthy men) were examined on a clinical MR unit (1.5 tesla) with a gradient echo-type EPI sequence. SPM99 software was used for data processing. Arithmetic problems were used for the visual stimulus (visual image) as well as for the auditory stimulus (audible voice). The stimuli were presented to the subjects as follows: no stimulation, presentation of random figures, and presentation of arithmetic problems. Activated areas of the human brain related with calculation processing were the inferior parietal lobule, middle frontal gyrus, and inferior frontal gyrus. Comparing the arithmetic problems with the presentation of random figures, we found that the activated areas of the human brain were not differently affected by visual and auditory systems. The areas activated in the visual and auditory experiments were observed at nearly the same place in the brain. It is possible to study advanced functions of the human brain such as calculation processing in a general clinical hospital when adequate tasks and methods of presentation are used. (author)

  14. Endurance training enhances BDNF release from the human brain

    DEFF Research Database (Denmark)

    Seifert, Thomas; Brassard, Patrice; Wissenberg, Mads

    2010-01-01

    The circulating level of brain-derived neurotrophic factor (BDNF) is reduced in patients with major depression and type-2 diabetes. Because acute exercise increases BDNF production in the hippocampus and cerebral cortex, we hypothesized that endurance training would enhance the release of BDNF from...... the human brain as detected from arterial and internal jugular venous blood samples. In a randomized controlled study, 12 healthy sedentary males carried out 3 mo of endurance training (n = 7) or served as controls (n = 5). Before and after the intervention, blood samples were obtained at rest and during...... exercise. At baseline, the training group (58 + or - 106 ng x 100 g(-1) x min(-1), means + or - SD) and the control group (12 + or - 17 ng x 100 g(-1) x min(-1)) had a similar release of BDNF from the brain at rest. Three months of endurance training enhanced the resting release of BDNF to 206 + or - 108...

  15. Simultaneous measurement of glucose transport and utilization in the human brain

    Science.gov (United States)

    Shestov, Alexander A.; Emir, Uzay E.; Kumar, Anjali; Henry, Pierre-Gilles; Seaquist, Elizabeth R.

    2011-01-01

    Glucose is the primary fuel for brain function, and determining the kinetics of cerebral glucose transport and utilization is critical for quantifying cerebral energy metabolism. The kinetic parameters of cerebral glucose transport, KMt and Vmaxt, in humans have so far been obtained by measuring steady-state brain glucose levels by proton (1H) NMR as a function of plasma glucose levels and fitting steady-state models to these data. Extraction of the kinetic parameters for cerebral glucose transport necessitated assuming a constant cerebral metabolic rate of glucose (CMRglc) obtained from other tracer studies, such as 13C NMR. Here we present new methodology to simultaneously obtain kinetic parameters for glucose transport and utilization in the human brain by fitting both dynamic and steady-state 1H NMR data with a reversible, non-steady-state Michaelis-Menten model. Dynamic data were obtained by measuring brain and plasma glucose time courses during glucose infusions to raise and maintain plasma concentration at ∼17 mmol/l for ∼2 h in five healthy volunteers. Steady-state brain vs. plasma glucose concentrations were taken from literature and the steady-state portions of data from the five volunteers. In addition to providing simultaneous measurements of glucose transport and utilization and obviating assumptions for constant CMRglc, this methodology does not necessitate infusions of expensive or radioactive tracers. Using this new methodology, we found that the maximum transport capacity for glucose through the blood-brain barrier was nearly twofold higher than maximum cerebral glucose utilization. The glucose transport and utilization parameters were consistent with previously published values for human brain. PMID:21791622

  16. Registration of FA and T1-weighted MRI data of healthy human brain based on template matching and normalized cross-correlation.

    Science.gov (United States)

    Malinsky, Milos; Peter, Roman; Hodneland, Erlend; Lundervold, Astri J; Lundervold, Arvid; Jan, Jiri

    2013-08-01

    In this work, we propose a new approach for three-dimensional registration of MR fractional anisotropy images with T1-weighted anatomy images of human brain. From the clinical point of view, this accurate coregistration allows precise detection of nerve fibers that is essential in neuroscience. A template matching algorithm combined with normalized cross-correlation was used for this registration task. To show the suitability of the proposed method, it was compared with the normalized mutual information-based B-spline registration provided by the Elastix software library, considered a reference method. We also propose a general framework for the evaluation of robustness and reliability of both registration methods. Both registration methods were tested by four evaluation criteria on a dataset consisting of 74 healthy subjects. The template matching algorithm has shown more reliable results than the reference method in registration of the MR fractional anisotropy and T1 anatomy image data. Significant differences were observed in the regions splenium of corpus callosum and genu of corpus callosum, considered very important areas of brain connectivity. We demonstrate that, in this registration task, the currently used mutual information-based parametric registration can be replaced by more accurate local template matching utilizing the normalized cross-correlation similarity measure.

  17. Functional MRI studies of acupuncture analgesia modulating within the human brain

    International Nuclear Information System (INIS)

    Hou Jinwen; Huang Weihao; Wang Qing; Feng Jingwei; Pu Yonglin; Gao Jiahong

    2002-01-01

    Objective: To evaluate the correlation between acupuncture analgesia and specific functional areas of the brain using functional magnetic resonance imaging (fMRI). Methods: Acupuncture stimulation was induced by manipulating acupuncture needle at the acupuncture point, large intestine 4 (LI 4, Hegu) on the right (dominant) hand of 8 healthy subjects. Functional MRI data were obtained from scanning the whole brain. A block-design paradigm was applied. Functional responses were established by students' group t-test analysis. Results: The data sets from 6 of 8 subjects were used in the study. Signal increases and signal decreases elicited by acupuncture stimulating were demonstrated in multiple brain regions. Signal increases in periaqueductal gray matter and ventral posterior nucleus of the left thalamus, and signal decreases in bilateral anterior cingulate cortex and bilateral occipital lobes were considered as the response to the acupuncture modulating within the human brain. Conclusion: The therapeutic effect of acupuncture analgesia was probably produced by the interaction of multiple brain structures of functional connectivity rather than through the activation of a single brain region

  18. MR elastography study of the brain in healthy volunteers

    International Nuclear Information System (INIS)

    Liu Guangrui; Gao Peiyi; Lin Yan; Wang Xiaochun; Xue Jing; Sui Bingbing; Ma Li; Wang Chen; Shen Mi

    2009-01-01

    Objective: To evaluate the shear stiffness of brain by MR elastography (MRE) in healthy Chinese volunteers and to assess the association between the cerebral shear stiffness and age. Methods: Brain MRE studies were performed on 105 healthy volunteers. The shear stiffness of brain parenchyma was measured by local frequency estimation (LFE) algorithm. The differences of the shear stiffness between white matter (WM) and grey matter (GM) were analyzed by independent sample t test; the differences of brain parenchyma shear stiffness between male and female were estimated by independent sample t test. Spearman test was used to analyze the correlation between age and the shear stiffness of parenchyma; the volunteers were divided into two groups (age ≤40 and age > 40) and the correlation between age and shear stiffness of parenchyma in each group were analyzed separately. Results: The shear stiffness of whiter matter [(23.1±5.7) kPa] was higher than that of grey matter [(11.3±2.6) kPa], and the difference was significant (t=19.34, P 0.05). An age-dependent trend was observed in the stiffness of grey matter (r= 0.315, P 0.05). When the shear stiffness of subjects no more than 40 years old was analysed, the age-dependent trend of shear stiffness was found both in white matter and gray matter (r=0.251, 0.235, P 0.05). Conclusions: The shear stiffness of WM is significantly higher than that of GM. No obvious sex difference was found in the stiffness of brain parenchyma. The shear stiffness of GM increases with age; the age-related increase of shear stiffness of WM was only found in subjects under 40 years old. (authors)

  19. Prevalence of incidental findings on magnetic resonance imaging: Cuban project to map the human brain

    International Nuclear Information System (INIS)

    Hernandez Gonzalez, Gertrudis de los Angeles; Alvarez Sanchez, Marilet; Jordan Gonzalez, Jose

    2010-01-01

    To determine the prevalence of incidental findings in healthy subjects of the Cuban Human Brain Mapping Project sample, it was performed a retrospective descriptive study of the magnetic resonance imaging (MRI) obtained from 394 healthy subjects that make up the sample of the project, between 2006-2007, with an age range of 18 to 68 years (mean 33,12), of which 269 (68,27 %) are male and 125 (31,73 %) are women. It was shown that 40,36 % had one or more anomaly in the magnetic resonance imaging (MRI). In total, the number of incidental findings was 188, 23,6 % of which were brain findings and 24,11 % were non-brain findings, among the latter, were the sinusopathy with 20,81 % and maxillary polyps with 3,30 %. The most prevalent brain findings were: intrasellar arachnoidocele, 11,93 %, followed by the prominence of the pituitary gland, 5,84 %, ventricular asymmetry, 1,77 % and bone defects, 1,02 %. Other brain abnormalities found with very low prevalence had no pathological significance, except for two cases with brain tumor, which were immediately sent to a specialist. Incidental findings in MRI are common in the general population (40,36 %), being the sinusopathy, and intrasellar arachnoidocele the most common findings. Asymptomatic individuals who have any type of structural abnormality provide invaluable information on the prevalence of these abnormalities in a presumably healthy population, which may be used as references for epidemiological studies

  20. Topological isomorphisms of human brain and financial market networks

    Directory of Open Access Journals (Sweden)

    Petra E Vértes

    2011-09-01

    Full Text Available Although metaphorical and conceptual connections between the human brain and the financial markets have often been drawn, rigorous physical or mathematical underpinnings of this analogy remain largely unexplored. Here, we apply a statistical and graph theoretic approach to the study of two datasets - the timeseries of 90 stocks from the New York Stock Exchange over a three-year period, and the fMRI-derived timeseries acquired from 90 brain regions over the course of a 10 min-long functional MRI scan of resting brain function in healthy volunteers. Despite the many obvious substantive differences between these two datasets, graphical analysis demonstrated striking commonalities in terms of global network topological properties. Both the human brain and the market networks were non-random, small-world, modular, hierarchical systems with fat-tailed degree distributions indicating the presence of highly connected hubs. These properties could not be trivially explained by the univariate time series statistics of stock price returns. This degree of topological isomorphism suggests that brains and markets can be regarded broadly as members of the same family of networks. The two systems, however, were not topologically identical. The financial market was more efficient and more modular - more highly optimised for information processing - than the brain networks; but also less robust to systemic disintegration as a result of hub deletion. We conclude that the conceptual connections between brains and markets are not merely metaphorical; rather these two information processing systems can be rigorously compared in the same mathematical language and turn out often to share important topological properties in common to some degree. There will be interesting scientific arbitrage opportunities in further work at the graph theoretically-mediated interface between systems neuroscience and the statistical physics of financial markets.

  1. Topological isomorphisms of human brain and financial market networks.

    Science.gov (United States)

    Vértes, Petra E; Nicol, Ruth M; Chapman, Sandra C; Watkins, Nicholas W; Robertson, Duncan A; Bullmore, Edward T

    2011-01-01

    Although metaphorical and conceptual connections between the human brain and the financial markets have often been drawn, rigorous physical or mathematical underpinnings of this analogy remain largely unexplored. Here, we apply a statistical and graph theoretic approach to the study of two datasets - the time series of 90 stocks from the New York stock exchange over a 3-year period, and the fMRI-derived time series acquired from 90 brain regions over the course of a 10-min-long functional MRI scan of resting brain function in healthy volunteers. Despite the many obvious substantive differences between these two datasets, graphical analysis demonstrated striking commonalities in terms of global network topological properties. Both the human brain and the market networks were non-random, small-world, modular, hierarchical systems with fat-tailed degree distributions indicating the presence of highly connected hubs. These properties could not be trivially explained by the univariate time series statistics of stock price returns. This degree of topological isomorphism suggests that brains and markets can be regarded broadly as members of the same family of networks. The two systems, however, were not topologically identical. The financial market was more efficient and more modular - more highly optimized for information processing - than the brain networks; but also less robust to systemic disintegration as a result of hub deletion. We conclude that the conceptual connections between brains and markets are not merely metaphorical; rather these two information processing systems can be rigorously compared in the same mathematical language and turn out often to share important topological properties in common to some degree. There will be interesting scientific arbitrage opportunities in further work at the graph-theoretically mediated interface between systems neuroscience and the statistical physics of financial markets.

  2. Endogenous neurogenesis in the human brain following cerebral infarction.

    Science.gov (United States)

    Minger, Stephen L; Ekonomou, Antigoni; Carta, Eloisa M; Chinoy, Amish; Perry, Robert H; Ballard, Clive G

    2007-01-01

    Increased endogenous neurogenesis has a significant regenerative role in many experimental models of cerebrovascular diseases, but there have been very few studies in humans. We therefore examined whether there was evidence of altered endogenous neurogenesis in an 84-year-old patient who suffered a cerebrovascular accident 1 week prior to death. Using antibodies that specifically label neural stem/neural progenitor cells, we examined the presence of immunopositive cells around and distant from the infarcted area, and compared this with a control, age-matched individual. Interestingly, a large number of neural stem cells, vascular endothelial growth factor-immunopositive cells and new blood vessels were observed only around the region of infarction, and none in the corresponding brain areas of the healthy control. In addition, an increased number of neural stem cells was observed in the neurogenic region of the lateral ventricle wall. Our results suggest increased endogenous neurogenesis associated with neovascularization and migration of newly-formed cells towards a region of cerebrovascular damage in the adult human brain and highlight possible mechanisms underlying this process.

  3. Longitudinal Whole-Brain N-acetylaspartate Concentration in Healthy Adults

    Science.gov (United States)

    Rigotti, Daniel J.; Kirov, Ivan I.; Djavadi, Bejan; Perry, Nissa N.; Babb, James S.; Gonen, Oded

    2011-01-01

    BACKGROUND AND PURPOSE Though N-acetylaspartate (NAA) is often used as a marker of neural integrity and health in different neurological disorders, the temporal behavior of its whole-brain concentration (WBNAA) is not well characterized. Our goal, therefore, was to establish its normal variations in a cohort of healthy adults over typical clinical trial periods. METHODS Baseline amount of brain NAA, QNAA, was obtained with non-localizing proton MR spectroscopy from 9 subjects (7 women, 2 men) 31.2±5.6 years old. QNAA was converted into absolute millimole amount using phantom-replacement. The WBNAA concentration was derived by dividing QNAA with the brain parenchyma volume, VB, segmented from MRI. Temporal variations were determined with four annual scans of each participant. RESULTS The distribution of WBNAA levels was not different among time points with respect to the mean, 12.1±1.5 mM (p 0.6) nor was its intra-subject change (CV = 8.6%) significant between any two scans (p 0.5). There was a small (0.2 mL), but significant (p=0.05) annual VB decline. CONCLUSION WBNAA is stable over a three year period in healthy adults. It qualifies therefore, as a biomarker for global neuronal loss and dysfunction in diffuse neurological disorders that may be well worth considering as a secondary outcome measure candidate for clinical trials. PMID:21511862

  4. Brain Activity and Human Unilateral Chewing

    Science.gov (United States)

    Quintero, A.; Ichesco, E.; Myers, C.; Schutt, R.; Gerstner, G.E.

    2012-01-01

    Brain mechanisms underlying mastication have been studied in non-human mammals but less so in humans. We used functional magnetic resonance imaging (fMRI) to evaluate brain activity in humans during gum chewing. Chewing was associated with activations in the cerebellum, motor cortex and caudate, cingulate, and brainstem. We also divided the 25-second chew-blocks into 5 segments of equal 5-second durations and evaluated activations within and between each of the 5 segments. This analysis revealed activation clusters unique to the initial segment, which may indicate brain regions involved with initiating chewing. Several clusters were uniquely activated during the last segment as well, which may represent brain regions involved with anticipatory or motor events associated with the end of the chew-block. In conclusion, this study provided evidence for specific brain areas associated with chewing in humans and demonstrated that brain activation patterns may dynamically change over the course of chewing sequences. PMID:23103631

  5. Why did humans develop a large brain?

    OpenAIRE

    Muscat Baron, Yves

    2012-01-01

    "Of all animals, man has the largest brain in proportion to his size"- Aristotle. Dr Yves Muscat Baron shares his theory on how humans evolved large brains. The theory outlines how gravity could have helped humans develop a large brain- the author has named the theory 'The Gravitational Vascular Theory'. http://www.um.edu.mt/think/why-did-humans-develop-a-large-brain/

  6. Detection of Normal Aging Effects on Human Brain Metabolite Concentrations and Microstructure with Whole-Brain MR Spectroscopic Imaging and Quantitative MR Imaging.

    Science.gov (United States)

    Eylers, V V; Maudsley, A A; Bronzlik, P; Dellani, P R; Lanfermann, H; Ding, X-Q

    2016-03-01

    Knowledge of age-related physiological changes in the human brain is a prerequisite to identify neurodegenerative diseases. Therefore, in this study whole-brain (1)H-MRS was used in combination with quantitative MR imaging to study the effects of normal aging on healthy human brain metabolites and microstructure. Sixty healthy volunteers, 21-70 years of age, were studied. Brain maps of the metabolites NAA, creatine and phosphocreatine, and Cho and the tissue irreversible and reversible transverse relaxation times T2 and T2' were derived from the datasets. The relative metabolite concentrations and the values of relaxation times were measured with ROIs placed within the frontal and parietal WM, centrum semiovale, splenium of the corpus callosum, hand motor area, occipital GM, putamen, thalamus, pons ventral/dorsal, and cerebellar white matter and posterior lobe. Linear regression analysis and Pearson correlation tests were used to analyze the data. Aging resulted in decreased NAA concentrations in the occipital GM, putamen, splenium of the corpus callosum, and pons ventral and decreased creatine and phosphocreatine concentrations in the pons dorsal and putamen. Cho concentrations did not change significantly in selected brain regions. T2 increased in the cerebellar white matter and decreased in the splenium of the corpus callosum with aging, while the T2' decreased in the occipital GM, hand motor area, and putamen, and increased in the splenium of the corpus callosum. Correlations were found between NAA concentrations and T2' in the occipital GM and putamen and between creatine and phosphocreatine concentrations and T2' in the putamen. The effects of normal aging on brain metabolites and microstructure are region-dependent. Correlations between both processes are evident in the gray matter. The obtained data could be used as references for future studies on patients. © 2016 by American Journal of Neuroradiology.

  7. Network dynamics with BrainX(3): a large-scale simulation of the human brain network with real-time interaction.

    Science.gov (United States)

    Arsiwalla, Xerxes D; Zucca, Riccardo; Betella, Alberto; Martinez, Enrique; Dalmazzo, David; Omedas, Pedro; Deco, Gustavo; Verschure, Paul F M J

    2015-01-01

    BrainX(3) is a large-scale simulation of human brain activity with real-time interaction, rendered in 3D in a virtual reality environment, which combines computational power with human intuition for the exploration and analysis of complex dynamical networks. We ground this simulation on structural connectivity obtained from diffusion spectrum imaging data and model it on neuronal population dynamics. Users can interact with BrainX(3) in real-time by perturbing brain regions with transient stimulations to observe reverberating network activity, simulate lesion dynamics or implement network analysis functions from a library of graph theoretic measures. BrainX(3) can thus be used as a novel immersive platform for exploration and analysis of dynamical activity patterns in brain networks, both at rest or in a task-related state, for discovery of signaling pathways associated to brain function and/or dysfunction and as a tool for virtual neurosurgery. Our results demonstrate these functionalities and shed insight on the dynamics of the resting-state attractor. Specifically, we found that a noisy network seems to favor a low firing attractor state. We also found that the dynamics of a noisy network is less resilient to lesions. Our simulations on TMS perturbations show that even though TMS inhibits most of the network, it also sparsely excites a few regions. This is presumably due to anti-correlations in the dynamics and suggests that even a lesioned network can show sparsely distributed increased activity compared to healthy resting-state, over specific brain areas.

  8. Network dynamics with BrainX3: a large-scale simulation of the human brain network with real-time interaction

    Science.gov (United States)

    Arsiwalla, Xerxes D.; Zucca, Riccardo; Betella, Alberto; Martinez, Enrique; Dalmazzo, David; Omedas, Pedro; Deco, Gustavo; Verschure, Paul F. M. J.

    2015-01-01

    BrainX3 is a large-scale simulation of human brain activity with real-time interaction, rendered in 3D in a virtual reality environment, which combines computational power with human intuition for the exploration and analysis of complex dynamical networks. We ground this simulation on structural connectivity obtained from diffusion spectrum imaging data and model it on neuronal population dynamics. Users can interact with BrainX3 in real-time by perturbing brain regions with transient stimulations to observe reverberating network activity, simulate lesion dynamics or implement network analysis functions from a library of graph theoretic measures. BrainX3 can thus be used as a novel immersive platform for exploration and analysis of dynamical activity patterns in brain networks, both at rest or in a task-related state, for discovery of signaling pathways associated to brain function and/or dysfunction and as a tool for virtual neurosurgery. Our results demonstrate these functionalities and shed insight on the dynamics of the resting-state attractor. Specifically, we found that a noisy network seems to favor a low firing attractor state. We also found that the dynamics of a noisy network is less resilient to lesions. Our simulations on TMS perturbations show that even though TMS inhibits most of the network, it also sparsely excites a few regions. This is presumably due to anti-correlations in the dynamics and suggests that even a lesioned network can show sparsely distributed increased activity compared to healthy resting-state, over specific brain areas. PMID:25759649

  9. Network Dynamics with BrainX3: A Large-Scale Simulation of the Human Brain Network with Real-Time Interaction

    Directory of Open Access Journals (Sweden)

    Xerxes D. Arsiwalla

    2015-02-01

    Full Text Available BrainX3 is a large-scale simulation of human brain activity with real-time interaction, rendered in 3D in a virtual reality environment, which combines computational power with human intuition for the exploration and analysis of complex dynamical networks. We ground this simulation on structural connectivity obtained from diffusion spectrum imaging data and model it on neuronal population dynamics. Users can interact with BrainX3 in real-time by perturbing brain regions with transient stimulations to observe reverberating network activity, simulate lesion dynamics or implement network analysis functions from a library of graph theoretic measures. BrainX3 can thus be used as a novel immersive platform for real-time exploration and analysis of dynamical activity patterns in brain networks, both at rest or in a task-related state, for discovery of signaling pathways associated to brain function and/or dysfunction and as a tool for virtual neurosurgery. Our results demonstrate these functionalities and shed insight on the dynamics of the resting-state attractor. Specifically, we found that a noisy network seems to favor a low firing attractor state. We also found that the dynamics of a noisy network is less resilient to lesions. Our simulations on TMS perturbations show that even though TMS inhibits most of the network, it also sparsely excites a few regions. This is presumably, due to anti-correlations in the dynamics and suggests that even a lesioned network can show sparsely distributed increased activity compared to healthy resting-state, over specific brain areas.

  10. Imaging Human Brain Perfusion with Inhaled Hyperpolarized 129Xe MR Imaging.

    Science.gov (United States)

    Rao, Madhwesha R; Stewart, Neil J; Griffiths, Paul D; Norquay, Graham; Wild, Jim M

    2018-02-01

    Purpose To evaluate the feasibility of directly imaging perfusion of human brain tissue by using magnetic resonance (MR) imaging with inhaled hyperpolarized xenon 129 ( 129 Xe). Materials and Methods In vivo imaging with 129 Xe was performed in three healthy participants. The combination of a high-yield spin-exchange optical pumping 129 Xe polarizer, custom-built radiofrequency coils, and an optimized gradient-echo MR imaging protocol was used to achieve signal sensitivity sufficient to directly image hyperpolarized 129 Xe dissolved in the human brain. Conventional T1-weighted proton (hydrogen 1 [ 1 H]) images and perfusion images by using arterial spin labeling were obtained for comparison. Results Images of 129 Xe uptake were obtained with a signal-to-noise ratio of 31 ± 9 and demonstrated structural similarities to the gray matter distribution on conventional T1-weighted 1 H images and to perfusion images from arterial spin labeling. Conclusion Hyperpolarized 129 Xe MR imaging is an injection-free means of imaging the perfusion of cerebral tissue. The proposed method images the uptake of inhaled xenon gas to the extravascular brain tissue compartment across the intact blood-brain barrier. This level of sensitivity is not readily available with contemporary MR imaging methods. © RSNA, 2017.

  11. Diurnal microstructural variations in healthy adult brain revealed by diffusion tensor imaging.

    Directory of Open Access Journals (Sweden)

    Chunxiang Jiang

    Full Text Available Biorhythm is a fundamental property of human physiology. Changes in the extracellular space induced by cell swelling in response to the neural activity enable the in vivo characterization of cerebral microstructure by measuring the water diffusivity using diffusion tensor imaging (DTI. To study the diurnal microstructural alterations of human brain, fifteen right-handed healthy adult subjects were recruited for DTI studies in two repeated sessions (8∶30 AM and 8∶30 PM within a 24-hour interval. Fractional anisotropy (FA, apparent diffusion coefficient (ADC, axial (λ// and radial diffusivity (λ⊥ were compared pixel by pixel between the sessions for each subject. Significant increased morning measurements in FA, ADC, λ// and λ⊥ were seen in a wide range of brain areas involving frontal, parietal, temporal and occipital lobes. Prominent evening dominant λ⊥ (18.58% was detected in the right inferior temporal and ventral fusiform gyri. AM-PM variation of λ⊥ was substantially left side hemisphere dominant (p<0.05, while no hemispheric preference was observed for the same analysis for ADC (p = 0.77, λ// (p = 0.08 or FA (p = 0.25. The percentage change of ADC, λ//, λ⊥, and FA were 1.59%, 2.15%, 1.20% and 2.84%, respectively, for brain areas without diurnal diffusivity contrast. Microstructural variations may function as the substrates of the phasic neural activities in correspondence to the environment adaptation in a light-dark cycle. This research provided a baseline for researches in neuroscience, sleep medicine, psychological and psychiatric disorders, and necessitates that diurnal effect should be taken into account in following up studies using diffusion tensor quantities.

  12. Revealing topological organization of human brain functional networks with resting-state functional near infrared spectroscopy.

    Science.gov (United States)

    Niu, Haijing; Wang, Jinhui; Zhao, Tengda; Shu, Ni; He, Yong

    2012-01-01

    The human brain is a highly complex system that can be represented as a structurally interconnected and functionally synchronized network, which assures both the segregation and integration of information processing. Recent studies have demonstrated that a variety of neuroimaging and neurophysiological techniques such as functional magnetic resonance imaging (MRI), diffusion MRI and electroencephalography/magnetoencephalography can be employed to explore the topological organization of human brain networks. However, little is known about whether functional near infrared spectroscopy (fNIRS), a relatively new optical imaging technology, can be used to map functional connectome of the human brain and reveal meaningful and reproducible topological characteristics. We utilized resting-state fNIRS (R-fNIRS) to investigate the topological organization of human brain functional networks in 15 healthy adults. Brain networks were constructed by thresholding the temporal correlation matrices of 46 channels and analyzed using graph-theory approaches. We found that the functional brain network derived from R-fNIRS data had efficient small-world properties, significant hierarchical modular structure and highly connected hubs. These results were highly reproducible both across participants and over time and were consistent with previous findings based on other functional imaging techniques. Our results confirmed the feasibility and validity of using graph-theory approaches in conjunction with optical imaging techniques to explore the topological organization of human brain networks. These results may expand a methodological framework for utilizing fNIRS to study functional network changes that occur in association with development, aging and neurological and psychiatric disorders.

  13. Neuronal correlates of the five factor model (FFM) of human personality: Multimodal imaging in a large healthy sample.

    Science.gov (United States)

    Bjørnebekk, Astrid; Fjell, Anders M; Walhovd, Kristine B; Grydeland, Håkon; Torgersen, Svenn; Westlye, Lars T

    2013-01-15

    Advances in neuroimaging techniques have recently provided glimpse into the neurobiology of complex traits of human personality. Whereas some intriguing findings have connected aspects of personality to variations in brain morphology, the relations are complex and our current understanding is incomplete. Therefore, we aimed to provide a comprehensive investigation of brain-personality relations using a multimodal neuroimaging approach in a large sample comprising 265 healthy individuals. The NEO Personality Inventory was used to provide measures of core aspects of human personality, and imaging phenotypes included measures of total and regional brain volumes, regional cortical thickness and arealization, and diffusion tensor imaging indices of white matter (WM) microstructure. Neuroticism was the trait most clearly linked to brain structure. Higher neuroticism including facets reflecting anxiety, depression and vulnerability to stress was associated with smaller total brain volume, widespread decrease in WM microstructure, and smaller frontotemporal surface area. Higher scores on extraversion were associated with thinner inferior frontal gyrus, and conscientiousness was negatively associated with arealization of the temporoparietal junction. No reliable associations between brain structure and agreeableness and openness, respectively, were found. The results provide novel evidence of the associations between brain structure and variations in human personality, and corroborate previous findings of a consistent neuroanatomical basis of negative emotionality. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Putting age-related task activation into large-scale brain networks: A meta-analysis of 114 fMRI studies on healthy aging.

    Science.gov (United States)

    Li, Hui-Jie; Hou, Xiao-Hui; Liu, Han-Hui; Yue, Chun-Lin; Lu, Guang-Ming; Zuo, Xi-Nian

    2015-10-01

    Normal aging is associated with cognitive decline and underlying brain dysfunction. Previous studies concentrated less on brain network changes at a systems level. Our goal was to examine these age-related changes of fMRI-derived activation with a common network parcellation of the human brain function, offering a systems-neuroscience perspective of healthy aging. We conducted a series of meta-analyses on a total of 114 studies that included 2035 older adults and 1845 young adults. Voxels showing significant age-related changes in activation were then overlaid onto seven commonly referenced neuronal networks. Older adults present moderate cognitive decline in behavioral performance during fMRI scanning, and hypo-activate the visual network and hyper-activate both the frontoparietal control and default mode networks. The degree of increased activation in frontoparietal network was associated with behavioral performance in older adults. Age-related changes in activation present different network patterns across cognitive domains. The systems neuroscience approach used here may be useful for elucidating the underlying network mechanisms of various brain plasticity processes during healthy aging. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Unmasking Language Lateralization in Human Brain Intrinsic Activity

    Science.gov (United States)

    McAvoy, Mark; Mitra, Anish; Coalson, Rebecca S.; d'Avossa, Giovanni; Keidel, James L.; Petersen, Steven E.; Raichle, Marcus E.

    2016-01-01

    Lateralization of function is a fundamental feature of the human brain as exemplified by the left hemisphere dominance of language. Despite the prominence of lateralization in the lesion, split-brain and task-based fMRI literature, surprisingly little asymmetry has been revealed in the increasingly popular functional imaging studies of spontaneous fluctuations in the fMRI BOLD signal (so-called resting-state fMRI). Here, we show the global signal, an often discarded component of the BOLD signal in resting-state studies, reveals a leftward asymmetry that maps onto regions preferential for semantic processing in left frontal and temporal cortex and the right cerebellum and a rightward asymmetry that maps onto putative attention-related regions in right frontal, temporoparietal, and parietal cortex. Hemispheric asymmetries in the global signal resulted from amplitude modulation of the spontaneous fluctuations. To confirm these findings obtained from normal, healthy, right-handed subjects in the resting-state, we had them perform 2 semantic processing tasks: synonym and numerical magnitude judgment and sentence comprehension. In addition to establishing a new technique for studying lateralization through functional imaging of the resting-state, our findings shed new light on the physiology of the global brain signal. PMID:25636911

  16. Serotonin 2A receptor agonist binding in the human brain with [C]Cimbi-36

    DEFF Research Database (Denmark)

    Ettrup, A.; da Cunha-Bang, S.; McMahon, Barry P.

    2014-01-01

    [C]Cimbi-36 was recently developed as a selective serotonin 2A (5-HT) receptor agonist radioligand for positron emission tomography (PET) brain imaging. Such an agonist PET radioligand may provide a novel, and more functional, measure of the serotonergic system and agonist binding is more likely ....... Thus, we here describe [C]Cimbi-36 as the first agonist PET radioligand to successfully image and quantify 5-HT receptors in the human brain.Journal of Cerebral Blood Flow & Metabolism advance online publication, 30 April 2014; doi:10.1038/jcbfm.2014.68....... than antagonist binding to reflect 5-HT levels in vivo. Here, we show data from a first-in-human clinical trial with [C]Cimbi-36. In 29 healthy volunteers, we found high brain uptake and distribution according to 5-HT receptors with [C]Cimbi-36 PET. The two-tissue compartment model using arterial input...

  17. Dietary guanidinoacetic acid does not accumulate in the brain of healthy men

    DEFF Research Database (Denmark)

    Ostojic, Sergej M.; Ostojic, Jelena

    2018-01-01

    analyzed for brain GAA and glutamate concentrations using TARQUIN 4.3.10 software. Brain GAA levels remained essentially unchanged at follow-up (an increase of 7.7% from baseline levels; 95% confidence interval, - 24.1% to 39.5%; P = 0.88) when averaged across 12 white and grey matter voxel locations......We conducted a secondary analysis of a previously completed trial to determine the effects of 8-week guanidinoacetic acid (GAA) loading on brain GAA levels in five healthy men. Brain magnetic resonance spectroscopy (1H-MRS) was taken at baseline and post-administration, with spectra additionally....... No significant changes were found for brain glutamate levels during the study (P = 0.64). Supplemental GAA appears to be safe intervention concerning brain GAA deposition, at least with GAA dosages used....

  18. Hierarchical modularity in human brain functional networks

    Directory of Open Access Journals (Sweden)

    David Meunier

    2009-10-01

    Full Text Available The idea that complex systems have a hierarchical modular organization originates in the early 1960s and has recently attracted fresh support from quantitative studies of large scale, real-life networks. Here we investigate the hierarchical modular (or “modules-within-modules” decomposition of human brain functional networks, measured using functional magnetic resonance imaging (fMRI in 18 healthy volunteers under no-task or resting conditions. We used a customized template to extract networks with more than 1800 regional nodes, and we applied a fast algorithm to identify nested modular structure at several hierarchical levels. We used mutual information, 0 < I < 1, to estimate the similarity of community structure of networks in different subjects, and to identify the individual network that is most representative of the group. Results show that human brain functional networks have a hierarchical modular organization with a fair degree of similarity between subjects, I=0.63. The largest 5 modules at the highest level of the hierarchy were medial occipital, lateral occipital, central, parieto-frontal and fronto-temporal systems; occipital modules demonstrated less sub-modular organization than modules comprising regions of multimodal association cortex. Connector nodes and hubs, with a key role in inter-modular connectivity, were also concentrated in association cortical areas. We conclude that methods are available for hierarchical modular decomposition of large numbers of high resolution brain functional networks using computationally expedient algorithms. This could enable future investigations of Simon's original hypothesis that hierarchy or near-decomposability of physical symbol systems is a critical design feature for their fast adaptivity to changing environmental conditions.

  19. Increased expression of aquaporin-4 in human traumatic brain injury and brain tumors

    Institute of Scientific and Technical Information of China (English)

    HU Hua; YAO Hong-tian; ZHANG Wei-ping; ZHANG LEI; DING Wei; ZHANG Shi-hong; CHEN Zhong; WEI Er-qing

    2005-01-01

    Objective: To characterize the expression of aquaporin-4 (AQP4), one of the aquaporins (AQPs), in human brain specimens from patients with traumatic brain injury or brain tumors. Methods: Nineteen human brain specimens were obtained from the patients with traumatic brain injury, brain tumors, benign meningioma or early stage hemorrhagic stroke. MRI or CT imaging was used to assess brain edema. Hematoxylin and eosin staining were used to evaluate cell damage. Immunohistochemistry was used to detect the AQP4 expression. Results: AQP4 expression was increased from 15h to at least 8 d after injury. AQP4immunoreactivity was strong around astrocytomas, ganglioglioma and metastatic adenocarcinoma. However, AQP4 immunoreactivity was only found in the centers of astrocytomas and ganglioglioma, but not in metastatic adenocarcinoma derived from lung.Conclusion: AQP4 expression increases in human brains after traumatic brain injury, within brain-derived tumors, and around brain tumors.

  20. Protein phosphorylation systems in postmortem human brain

    International Nuclear Information System (INIS)

    Walaas, S.I.; Perdahl-Wallace, E.; Winblad, B.; Greengard, P.

    1989-01-01

    Protein phosphorylation systems regulated by cyclic adenosine 3',5'-monophosphate (cyclic AMP), or calcium in conjunction with calmodulin or phospholipid/diacylglycerol, have been studied by phosphorylation in vitro of particulate and soluble fractions from human postmortem brain samples. One-dimensional or two-dimensional gel electrophoretic protein separations were used for analysis. Protein phosphorylation catalyzed by cyclic AMP-dependent protein kinase was found to be highly active in both particulate and soluble preparations throughout the human CNS, with groups of both widely distributed and region-specific substrates being observed in different brain nuclei. Dopamine-innervated parts of the basal ganglia and cerebral cortex contained the phosphoproteins previously observed in rodent basal ganglia. In contrast, calcium/phospholipid-dependent and calcium/calmodulin-dependent protein phosphorylation systems were less prominent in human postmortem brain than in rodent brain, and only a few widely distributed substrates for these protein kinases were found. Protein staining indicated that postmortem proteolysis, particularly of high-molecular-mass proteins, was prominent in deeply located, subcortical regions in the human brain. Our results indicate that it is feasible to use human postmortem brain samples, when obtained under carefully controlled conditions, for qualitative studies on brain protein phosphorylation. Such studies should be of value in studies on human neurological and/or psychiatric disorders

  1. Does brain creatine content rely on exogenous creatine in healthy youth? A proof-of-principle study.

    Science.gov (United States)

    Merege-Filho, Carlos Alberto Abujabra; Otaduy, Maria Concepción Garcia; de Sá-Pinto, Ana Lúcia; de Oliveira, Maira Okada; de Souza Gonçalves, Lívia; Hayashi, Ana Paula Tanaka; Roschel, Hamilton; Pereira, Rosa Maria Rodrigues; Silva, Clovis Artur; Brucki, Sonia Maria Dozzi; da Costa Leite, Claudia; Gualano, Bruno

    2017-02-01

    It has been hypothesized that dietary creatine could influence cognitive performance by increasing brain creatine in developing individuals. This double-blind, randomized, placebo-controlled, proof-of-principle study aimed to investigate the effects of creatine supplementation on cognitive function and brain creatine content in healthy youth. The sample comprised 67 healthy participants aged 10 to 12 years. The participants were given creatine or placebo supplementation for 7 days. At baseline and after the intervention, participants undertook a battery of cognitive tests. In a random subsample of participants, brain creatine content was also assessed in the regions of left dorsolateral prefrontal cortex, left hippocampus, and occipital lobe by proton magnetic resonance spectroscopy (1H-MRS) technique. The scores obtained from verbal learning and executive functions tests did not significantly differ between groups at baseline or after the intervention (all p > 0.05). Creatine content was not significantly different between groups in left dorsolateral prefrontal cortex, left hippocampus, and occipital lobe (all p > 0.05). In conclusion, a 7-day creatine supplementation protocol did not elicit improvements in brain creatine content or cognitive performance in healthy youth, suggesting that this population mainly relies on brain creatine synthesis rather than exogenous creatine intake to maintain brain creatine homeostasis.

  2. Male microchimerism in the human female brain.

    Directory of Open Access Journals (Sweden)

    William F N Chan

    Full Text Available In humans, naturally acquired microchimerism has been observed in many tissues and organs. Fetal microchimerism, however, has not been investigated in the human brain. Microchimerism of fetal as well as maternal origin has recently been reported in the mouse brain. In this study, we quantified male DNA in the human female brain as a marker for microchimerism of fetal origin (i.e. acquisition of male DNA by a woman while bearing a male fetus. Targeting the Y-chromosome-specific DYS14 gene, we performed real-time quantitative PCR in autopsied brain from women without clinical or pathologic evidence of neurologic disease (n=26, or women who had Alzheimer's disease (n=33. We report that 63% of the females (37 of 59 tested harbored male microchimerism in the brain. Male microchimerism was present in multiple brain regions. Results also suggested lower prevalence (p=0.03 and concentration (p=0.06 of male microchimerism in the brains of women with Alzheimer's disease than the brains of women without neurologic disease. In conclusion, male microchimerism is frequent and widely distributed in the human female brain.

  3. Diffusion tensor tractography of the mammillothalamic tract in the human brain using a high spatial resolution DTI technique.

    Science.gov (United States)

    Kamali, Arash; Zhang, Caroline C; Riascos, Roy F; Tandon, Nitin; Bonafante-Mejia, Eliana E; Patel, Rajan; Lincoln, John A; Rabiei, Pejman; Ocasio, Laura; Younes, Kyan; Hasan, Khader M

    2018-03-27

    The mammillary bodies as part of the hypothalamic nuclei are in the central limbic circuitry of the human brain. The mammillary bodies are shown to be directly or indirectly connected to the amygdala, hippocampus, and thalami as the major gray matter structures of the human limbic system. Although it is not primarily considered as part of the human limbic system, the thalamus is shown to be involved in many limbic functions of the human brain. The major direct connection of the thalami with the hypothalamic nuclei is known to be through the mammillothalamic tract. Given the crucial role of the mammillothalamic tracts in memory functions, diffusion tensor imaging may be helpful in better visualizing the surgical anatomy of this pathway noninvasively. This study aimed to investigate the utility of high spatial resolution diffusion tensor tractography for mapping the trajectory of the mammillothalamic tract in the human brain. Fifteen healthy adults were studied after obtaining written informed consent. We used high spatial resolution diffusion tensor imaging data at 3.0 T. We delineated, for the first time, the detailed trajectory of the mammillothalamic tract of the human brain using deterministic diffusion tensor tractography.

  4. Physical Exercise Habits Correlate with Gray Matter Volume of the Hippocampus in Healthy Adult Humans

    Science.gov (United States)

    Killgore, William D. S.; Olson, Elizabeth A.; Weber, Mareen

    2013-12-01

    Physical activity facilitates neurogenesis of dentate cells in the rodent hippocampus, a brain region critical for memory formation and spatial representation. Recent findings in humans also suggest that aerobic exercise can lead to increased hippocampal volume and enhanced cognitive functioning in children and elderly adults. However, the association between physical activity and hippocampal volume during the period from early adulthood through middle age has not been effectively explored. Here, we correlated the number of minutes of self-reported exercise per week with gray matter volume of the hippocampus using voxel-based morphometry (VBM) in 61 healthy adults ranging from 18 to 45 years of age. After controlling for age, gender, and total brain volume, total minutes of weekly exercise correlated significantly with volume of the right hippocampus. Findings highlight the relationship between regular physical exercise and brain structure during early to middle adulthood.

  5. Correlation among body height, intelligence, and brain gray matter volume in healthy children.

    Science.gov (United States)

    Taki, Yasuyuki; Hashizume, Hiroshi; Sassa, Yuko; Takeuchi, Hikaru; Asano, Michiko; Asano, Kohei; Kotozaki, Yuka; Nouchi, Rui; Wu, Kai; Fukuda, Hiroshi; Kawashima, Ryuta

    2012-01-16

    A significant positive correlation between height and intelligence has been demonstrated in children. Additionally, intelligence has been associated with the volume of gray matter in the brains of children. Based on these correlations, we analyzed the correlation among height, full-scale intelligence quotient (IQ) and gray matter volume applying voxel-based morphometry using data from the brain magnetic resonance images of 160 healthy children aged 5-18 years of age. As a result, body height was significantly positively correlated with brain gray matter volume. Additionally, the regional gray matter volume of several regions such as the bilateral prefrontal cortices, temporoparietal region, and cerebellum was significantly positively correlated with body height and that the gray matter volume of several of these regions was also significantly positively correlated with full-scale intelligence quotient (IQ) scores after adjusting for age, sex, and socioeconomic status. Our results demonstrate that gray and white matter volume may mediate the correlation between body height and intelligence in healthy children. Additionally, the correlations among gray and white matter volume, height, and intelligence may be at least partially explained by the effect of insulin-like growth factor-1 and growth hormones. Given the importance of the effect of environmental factors, especially nutrition, on height, IQ, and gray matter volume, the present results stress the importance of nutrition during childhood for the healthy maturation of body and brain. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Low doses of alcohol substantially decrease glucose metabolism in the human brain.

    Science.gov (United States)

    Volkow, Nora D; Wang, Gene-Jack; Franceschi, Dinko; Fowler, Joanna S; Thanos, Panayotis Peter K; Maynard, Laurence; Gatley, S John; Wong, Christopher; Veech, Richard L; Kunos, George; Kai Li, Ting

    2006-01-01

    Moderate doses of alcohol decrease glucose metabolism in the human brain, which has been interpreted to reflect alcohol-induced decreases in brain activity. Here, we measure the effects of two relatively low doses of alcohol (0.25 g/kg and 0.5 g/kg, or 5 to 10 mM in total body H2O) on glucose metabolism in the human brain. Twenty healthy control subjects were tested using positron emission tomography (PET) and FDG after placebo and after acute oral administration of either 0.25 g/kg, or 0.5 g/kg of alcohol, administered over 40 min. Both doses of alcohol significantly decreased whole-brain glucose metabolism (10% and 23% respectively). The responses differed between doses; whereas the 0.25 g/kg dose predominantly reduced metabolism in cortical regions, the 0.5 g/kg dose reduced metabolism in cortical as well as subcortical regions (i.e. cerebellum, mesencephalon, basal ganglia and thalamus). These doses of alcohol did not significantly change the scores in cognitive performance, which contrasts with our previous results showing that a 13% reduction in brain metabolism by lorazepam was associated with significant impairment in performance on the same battery of cognitive tests. This seemingly paradoxical finding raises the possibility that the large brain metabolic decrements during alcohol intoxication could reflect a shift in the substrate for energy utilization, particularly in light of new evidence that blood-borne acetate, which is markedly increased during intoxication, is a substrate for energy production by the brain.

  7. Mapping the human brain during a specific Vojta's tactile input: the ipsilateral putamen's role.

    Science.gov (United States)

    Sanz-Esteban, Ismael; Calvo-Lobo, Cesar; Ríos-Lago, Marcos; Álvarez-Linera, Juan; Muñoz-García, Daniel; Rodríguez-Sanz, David

    2018-03-01

    A century of research in human brain parcellation has demonstrated that different brain areas are associated with functional tasks. New neuroscientist perspectives to achieve the parcellation of the human brain have been developed to know the brain areas activation and its relationship with different stimuli. This descriptive study aimed to compare brain regions activation by specific tactile input (STI) stimuli according to the Vojta protocol (STI-group) to a non-STI stimulation (non-STI-group). An exploratory functional magnetic resonance imaging (fMRI) study was performed. The 2 groups of participants were passively stimulated by an expert physical therapist using the same paradigm structure, although differing in the place of stimulation. The stimulation was presented to participants using a block design in all cases. A sample of 16 healthy participants, 5 men and 11 women, with mean age 31.31 ± 8.13 years was recruited. Indeed, 12 participants were allocated in the STI-group and 4 participants in the non-STI-group. fMRI was used to map the human brain in vivo while these tactile stimuli were being applied. Data were analyzed using a general linear model in SPM12 implemented in MATLAB. Differences between groups showed a greater activation in the right cortical areas (temporal and frontal lobes), subcortical regions (thalamus, brainstem, and basal nuclei), and in the cerebellum (anterior lobe). STI-group had specific difference brain activation areas, such as the ipsilateral putamen. Future studies should study clinical implications in neurorehabilitation patients.

  8. Conscious brain-to-brain communication in humans using non-invasive technologies.

    Science.gov (United States)

    Grau, Carles; Ginhoux, Romuald; Riera, Alejandro; Nguyen, Thanh Lam; Chauvat, Hubert; Berg, Michel; Amengual, Julià L; Pascual-Leone, Alvaro; Ruffini, Giulio

    2014-01-01

    Human sensory and motor systems provide the natural means for the exchange of information between individuals, and, hence, the basis for human civilization. The recent development of brain-computer interfaces (BCI) has provided an important element for the creation of brain-to-brain communication systems, and precise brain stimulation techniques are now available for the realization of non-invasive computer-brain interfaces (CBI). These technologies, BCI and CBI, can be combined to realize the vision of non-invasive, computer-mediated brain-to-brain (B2B) communication between subjects (hyperinteraction). Here we demonstrate the conscious transmission of information between human brains through the intact scalp and without intervention of motor or peripheral sensory systems. Pseudo-random binary streams encoding words were transmitted between the minds of emitter and receiver subjects separated by great distances, representing the realization of the first human brain-to-brain interface. In a series of experiments, we established internet-mediated B2B communication by combining a BCI based on voluntary motor imagery-controlled electroencephalographic (EEG) changes with a CBI inducing the conscious perception of phosphenes (light flashes) through neuronavigated, robotized transcranial magnetic stimulation (TMS), with special care taken to block sensory (tactile, visual or auditory) cues. Our results provide a critical proof-of-principle demonstration for the development of conscious B2B communication technologies. More fully developed, related implementations will open new research venues in cognitive, social and clinical neuroscience and the scientific study of consciousness. We envision that hyperinteraction technologies will eventually have a profound impact on the social structure of our civilization and raise important ethical issues.

  9. Conscious brain-to-brain communication in humans using non-invasive technologies.

    Directory of Open Access Journals (Sweden)

    Carles Grau

    Full Text Available Human sensory and motor systems provide the natural means for the exchange of information between individuals, and, hence, the basis for human civilization. The recent development of brain-computer interfaces (BCI has provided an important element for the creation of brain-to-brain communication systems, and precise brain stimulation techniques are now available for the realization of non-invasive computer-brain interfaces (CBI. These technologies, BCI and CBI, can be combined to realize the vision of non-invasive, computer-mediated brain-to-brain (B2B communication between subjects (hyperinteraction. Here we demonstrate the conscious transmission of information between human brains through the intact scalp and without intervention of motor or peripheral sensory systems. Pseudo-random binary streams encoding words were transmitted between the minds of emitter and receiver subjects separated by great distances, representing the realization of the first human brain-to-brain interface. In a series of experiments, we established internet-mediated B2B communication by combining a BCI based on voluntary motor imagery-controlled electroencephalographic (EEG changes with a CBI inducing the conscious perception of phosphenes (light flashes through neuronavigated, robotized transcranial magnetic stimulation (TMS, with special care taken to block sensory (tactile, visual or auditory cues. Our results provide a critical proof-of-principle demonstration for the development of conscious B2B communication technologies. More fully developed, related implementations will open new research venues in cognitive, social and clinical neuroscience and the scientific study of consciousness. We envision that hyperinteraction technologies will eventually have a profound impact on the social structure of our civilization and raise important ethical issues.

  10. Calcitonin gene-related peptide modulates heat nociception in the human brain - An fMRI study in healthy volunteers

    DEFF Research Database (Denmark)

    Asghar, Mohammad Sohail; Becerra, Lino; Larsson, Henrik B.W.

    2016-01-01

    Background: Intravenous infusion of calcitonin-gene-related-peptide (CGRP) provokes headache and migraine in humans. Mechanisms underlying CGRP-induced headache are not fully clarified and it is unknown to what extent CGRP modulates nociceptive processing in the brain. To elucidate this we recorded...... cortex. Sumatriptan injection reversed these changes. Conclusion: The changes in BOLD-signals in the brain after CGRP infusion suggests that systemic CGRP modulates nociceptive transmission in the trigeminal pain pathways in response to noxious heat stimuli....

  11. BDNF Val66met and 5-HTTLPR polymorphisms predict a human in vivo marker for brain serotonin levels

    DEFF Research Database (Denmark)

    Fisher, Patrick M; Holst, Klaus K; Adamsen, Dea

    2015-01-01

    ) polymorphism. We applied a linear latent variable model (LVM) using regional 5-HT4 binding values (neocortex, amygdala, caudate, hippocampus, and putamen) from 68 healthy humans, allowing us to explicitly model brain-wide and region-specific genotype effects on 5-HT4 binding. Our data supported an LVM wherein...... specifically affects 5-HT4 binding in the neocortex. These findings implicate serotonin signaling as an important molecular mediator underlying the effects of BDNF val66met and 5-HTTLPR on behavior and related risk for neuropsychiatric illness in humans. Hum Brain Mapp, 2014. © 2014 Wiley Periodicals, Inc....

  12. Computational Intelligence in a Human Brain Model

    Directory of Open Access Journals (Sweden)

    Viorel Gaftea

    2016-06-01

    Full Text Available This paper focuses on the current trends in brain research domain and the current stage of development of research for software and hardware solutions, communication capabilities between: human beings and machines, new technologies, nano-science and Internet of Things (IoT devices. The proposed model for Human Brain assumes main similitude between human intelligence and the chess game thinking process. Tactical & strategic reasoning and the need to follow the rules of the chess game, all are very similar with the activities of the human brain. The main objective for a living being and the chess game player are the same: securing a position, surviving and eliminating the adversaries. The brain resolves these goals, and more, the being movement, actions and speech are sustained by the vital five senses and equilibrium. The chess game strategy helps us understand the human brain better and easier replicate in the proposed ‘Software and Hardware’ SAH Model.

  13. Lipid alterations in lipid rafts from Alzheimer's disease human brain cortex.

    Science.gov (United States)

    Martín, Virginia; Fabelo, Noemí; Santpere, Gabriel; Puig, Berta; Marín, Raquel; Ferrer, Isidre; Díaz, Mario

    2010-01-01

    Lipid rafts are membrane microdomains intimately associated with cell signaling. These biochemical microstructures are characterized by their high contents of sphingolipids, cholesterol and saturated fatty acids and a reduced content of polyunsaturated fatty acids (PUFA). Here, we have purified lipid rafts of human frontal brain cortex from normal and Alzheimer's disease (AD) and characterized their biochemical lipid composition. The results revealed that lipid rafts from AD brains exhibit aberrant lipid profiles compared to healthy brains. In particular, lipid rafts from AD brains displayed abnormally low levels of n-3 long chain polyunsaturated fatty acids (LCPUFA, mainly 22:6n-3, docosahexaenoic acid) and monoenes (mainly 18:1n-9, oleic acid), as well as reduced unsaturation and peroxidability indexes. Also, multiple relationships between phospholipids and fatty acids were altered in AD lipid rafts. Importantly, no changes were observed in the mole percentage of lipid classes and fatty acids in rafts from normal brains throughout the lifespan (24-85 years). These indications point to the existence of homeostatic mechanisms preserving lipid raft status in normal frontal cortex. The disruption of such mechanisms in AD brains leads to a considerable increase in lipid raft order and viscosity, which may explain the alterations in lipid raft signaling observed in AD.

  14. Brain substrates of unhealthy versus healthy food choices: influence of homeostatic status and body mass index.

    Science.gov (United States)

    Harding, I H; Andrews, Z B; Mata, F; Orlandea, S; Martínez-Zalacaín, I; Soriano-Mas, C; Stice, E; Verdejo-Garcia, A

    2018-03-01

    Unhealthy dietary choices are a major contributor to harmful weight gain and obesity. This study interrogated the brain substrates of unhealthy versus healthy food choices in vivo, and evaluated the influence of hunger state and body mass index (BMI) on brain activation and connectivity. Thirty adults (BMI: 18-38 kg m -2 ) performed a food-choice task involving preference-based selection between beverage pairs consisting of high-calorie (unhealthy) or low-calorie (healthy) options, concurrent with functional magnetic resonance imaging (fMRI). Selected food stimuli were delivered to participants using an MRI-compatible gustometer. fMRI scans were performed both after 10-h fasting and when sated. Brain activation and hypothalamic functional connectivity were assessed when selecting between unhealthy-healthy beverage pairings, relative to unhealthy-unhealthy and healthy-healthy options. Results were considered significant at cluster-based family-wise error corrected Pfoods elicited significant activation in the hypothalamus, the medial and dorsolateral prefrontal cortices, the anterior insula and the posterior cingulate. Hunger was associated with higher activation within the ventromedial and dorsolateral prefrontal cortices, as well as lower connectivity between the hypothalamus and both the ventromedial prefrontal cortex and dorsal striatum. Critically, people with higher BMI showed lower activation of the hypothalamus-regardless of hunger state-and higher activation of the ventromedial prefrontal cortex when hungry. People who are overweight and obese have weaker activation of brain regions involved in energy regulation and greater activation of reward valuation regions while making choices between unhealthy and healthy foods. These results provide evidence for a shift towards hedonic-based, and away from energy-based, food selection in obesity.

  15. Handedness- and Brain Size-Related Efficiency Differences in Small-World Brain Networks: A Resting-State Functional Magnetic Resonance Imaging Study

    OpenAIRE

    Li, Meiling; Wang, Junping; Liu, Feng; Chen, Heng; Lu, Fengmei; Wu, Guorong; Yu, Chunshui; Chen, Huafu

    2015-01-01

    The human brain has been described as a complex network, which integrates information with high efficiency. However, the relationships between the efficiency of human brain functional networks and handedness and brain size remain unclear. Twenty-one left-handed and 32 right-handed healthy subjects underwent a resting-state functional magnetic resonance imaging scan. The whole brain functional networks were constructed by thresholding Pearson correlation matrices of 90 cortical and subcortical...

  16. Evidence for altered transport of insulin across the blood-brain barrier in insulin-resistant humans.

    Science.gov (United States)

    Heni, Martin; Schöpfer, Patricia; Peter, Andreas; Sartorius, Tina; Fritsche, Andreas; Synofzik, Matthis; Häring, Hans-Ulrich; Maetzler, Walter; Hennige, Anita M

    2014-08-01

    Eating behavior, body weight regulation, peripheral glucose metabolism, and cognitive function depend on adequate insulin action in the brain, and recent studies in humans suggested that impaired insulin action in the brain emerges upon fat intake, obesity, and genetic variants. As insulin enters into the brain in a receptor-mediated fashion, we hypothesized that whole-body insulin sensitivity might affect the transport of insulin into the brain and contribute to the aversive effect of insulin resistance in the central nervous system. In this study, we aimed to determine the ratio of insulin in the cerebrospinal fluid and serum to whole-body insulin sensitivity. Healthy human subjects participated in an oral glucose tolerance test to determine whole-body insulin sensitivity and underwent lumbar puncture. Blood and CSF concentrations of insulin were significantly correlated. The CSF/serum ratio for insulin was significantly associated with whole body insulin sensitivity with reduced insulin transported into the CSF in insulin-resistant subjects. Together, our data suggest that transport of insulin into the CSF relates to peripheral insulin sensitivity and impairs insulin action in the brain. This underlines the need for sensitizing measures in insulin-resistant subjects.

  17. Lifespan Development of the Human Brain Revealed by Large-Scale Network Eigen-Entropy

    Directory of Open Access Journals (Sweden)

    Yiming Fan

    2017-09-01

    Full Text Available Imaging connectomics based on graph theory has become an effective and unique methodological framework for studying functional connectivity patterns of the developing and aging brain. Normal brain development is characterized by continuous and significant network evolution through infancy, childhood, and adolescence, following specific maturational patterns. Normal aging is related to some resting state brain networks disruption, which are associated with certain cognitive decline. It is a big challenge to design an integral metric to track connectome evolution patterns across the lifespan, which is to understand the principles of network organization in the human brain. In this study, we first defined a brain network eigen-entropy (NEE based on the energy probability (EP of each brain node. Next, we used the NEE to characterize the lifespan orderness trajectory of the whole-brain functional connectivity of 173 healthy individuals ranging in age from 7 to 85 years. The results revealed that during the lifespan, the whole-brain NEE exhibited a significant non-linear decrease and that the EP distribution shifted from concentration to wide dispersion, implying orderness enhancement of functional connectome over age. Furthermore, brain regions with significant EP changes from the flourishing (7–20 years to the youth period (23–38 years were mainly located in the right prefrontal cortex and basal ganglia, and were involved in emotion regulation and executive function in coordination with the action of the sensory system, implying that self-awareness and voluntary control performance significantly changed during neurodevelopment. However, the changes from the youth period to middle age (40–59 years were located in the mesial temporal lobe and caudate, which are associated with long-term memory, implying that the memory of the human brain begins to decline with age during this period. Overall, the findings suggested that the human connectome

  18. Brain-Computer Interface Controlled Cyborg: Establishing a Functional Information Transfer Pathway from Human Brain to Cockroach Brain.

    Science.gov (United States)

    Li, Guangye; Zhang, Dingguo

    2016-01-01

    An all-chain-wireless brain-to-brain system (BTBS), which enabled motion control of a cyborg cockroach via human brain, was developed in this work. Steady-state visual evoked potential (SSVEP) based brain-computer interface (BCI) was used in this system for recognizing human motion intention and an optimization algorithm was proposed in SSVEP to improve online performance of the BCI. The cyborg cockroach was developed by surgically integrating a portable microstimulator that could generate invasive electrical nerve stimulation. Through Bluetooth communication, specific electrical pulse trains could be triggered from the microstimulator by BCI commands and were sent through the antenna nerve to stimulate the brain of cockroach. Serial experiments were designed and conducted to test overall performance of the BTBS with six human subjects and three cockroaches. The experimental results showed that the online classification accuracy of three-mode BCI increased from 72.86% to 78.56% by 5.70% using the optimization algorithm and the mean response accuracy of the cyborgs using this system reached 89.5%. Moreover, the results also showed that the cyborg could be navigated by the human brain to complete walking along an S-shape track with the success rate of about 20%, suggesting the proposed BTBS established a feasible functional information transfer pathway from the human brain to the cockroach brain.

  19. A reduced cerebral metabolic ratio in exercise reflects metabolism and not accumulation of lactate within the human brain

    DEFF Research Database (Denmark)

    Dalsgaard, Mads K; Quistorff, Bjørn; Danielsen, Else R

    2003-01-01

    During maximal exercise lactate taken up by the human brain contributes to reduce the cerebral metabolic ratio, O(2)/(glucose + 1/2 lactate), but it is not known whether the lactate is metabolized or if it accumulates in a distribution volume. In one experiment the cerebral arterio-venous differe......During maximal exercise lactate taken up by the human brain contributes to reduce the cerebral metabolic ratio, O(2)/(glucose + 1/2 lactate), but it is not known whether the lactate is metabolized or if it accumulates in a distribution volume. In one experiment the cerebral arterio......-venous differences (AV) for O(2), glucose (glc) and lactate (lac) were evaluated in nine healthy subjects at rest and during and after exercise to exhaustion. The cerebrospinal fluid (CSF) was drained through a lumbar puncture immediately after exercise, while control values were obtained from six other healthy.......0 to 0.9 +/- 0.1 mM (P ratio from 6.0 +/- 0.3 to 2.8 +/- 0.2 (P

  20. Distribution of melatonin receptor in human fetal brain

    Institute of Scientific and Technical Information of China (English)

    WANG Guo-quan; SHAO Fu-yuan; ZHAO Ying; LIU Zhi-min

    2001-01-01

    Objective: To study the distribution of 2 kinds of melatonin receptor subtypes (mtl and MT2) in human fetal brain. Methods: The fetal brain tissues were sliced and the distribution ofmelatonin receptors in human fetal brain were detected using immunohistochemistry and in situ hybridization. Results: Melatonin receptor mtl existed in the cerebellun and hypothalamus, melatonin receptor MT2 exists in hypothalamus, occipital and medulla. Conclusion: Two kinds of melatonin receptors, mtl and MT2 exist in the membrane and cytosol of brain cells, indicating that human fetal brain is a target organ of melatonin.

  1. Effects of Diet on Brain Plasticity in Animal and Human Studies: Mind the Gap

    Directory of Open Access Journals (Sweden)

    Tytus Murphy

    2014-01-01

    Full Text Available Dietary interventions have emerged as effective environmental inducers of brain plasticity. Among these dietary interventions, we here highlight the impact of caloric restriction (CR: a consistent reduction of total daily food intake, intermittent fasting (IF, every-other-day feeding, and diet supplementation with polyphenols and polyunsaturated fatty acids (PUFAs on markers of brain plasticity in animal studies. Moreover, we also discuss epidemiological and intervention studies reporting the effects of CR, IF and dietary polyphenols and PUFAs on learning, memory, and mood. In particular, we evaluate the gap in mechanistic understanding between recent findings from animal studies and those human studies reporting that these dietary factors can benefit cognition, mood, and anxiety, aging, and Alzheimer’s disease—with focus on the enhancement of structural and functional plasticity markers in the hippocampus, such as increased expression of neurotrophic factors, synaptic function and adult neurogenesis. Lastly, we discuss some of the obstacles to harnessing the promising effects of diet on brain plasticity in animal studies into effective recommendations and interventions to promote healthy brain function in humans. Together, these data reinforce the important translational concept that diet, a modifiable lifestyle factor, holds the ability to modulate brain health and function.

  2. Contribution of non-genetic factors to dopamine and serotonin receptor availability in the adult human brain

    DEFF Research Database (Denmark)

    Borg, J; Cervenka, S; Kuja-Halkola, R

    2016-01-01

    The dopamine (DA) and serotonin (5-HT) neurotransmission systems are of fundamental importance for normal brain function and serve as targets for treatment of major neuropsychiatric disorders. Despite central interest for these neurotransmission systems in psychiatry research, little is known about...... and environmental factors, respectively, on dopaminergic and serotonergic markers in the living human brain. Eleven monozygotic and 10 dizygotic healthy male twin pairs were examined with PET and [(11)C]raclopride binding to the D2- and D3-dopamine receptor and [(11)C]WAY100635 binding to the serotonin 5-HT1A...

  3. ¹H MRS characterization of neurochemical profiles in orthotopic mouse models of human brain tumors.

    Science.gov (United States)

    Hulsey, Keith M; Mashimo, Tomoyuki; Banerjee, Abhishek; Soesbe, Todd C; Spence, Jeffrey S; Vemireddy, Vamsidhara; Maher, Elizabeth A; Bachoo, Robert M; Choi, Changho

    2015-01-01

    Glioblastoma (GBM), the most common primary brain tumor, is resistant to currently available treatments. The development of mouse models of human GBM has provided a tool for studying mechanisms involved in tumor initiation and growth as well as a platform for preclinical investigation of new drugs. In this study we used (1) H MR spectroscopy to study the neurochemical profile of a human orthotopic tumor (HOT) mouse model of human GBM. The goal of this study was to evaluate differences in metabolite concentrations in the GBM HOT mice when compared with normal mouse brain in order to determine if MRS could reliably differentiate tumor from normal brain. A TE =19 ms PRESS sequence at 9.4 T was used for measuring metabolite levels in 12 GBM mice and 8 healthy mice. Levels for 12 metabolites and for lipids/macromolecules at 0.9 ppm and at 1.3 ppm were reliably detected in all mouse spectra. The tumors had significantly lower concentrations of total creatine, GABA, glutamate, total N-acetylaspartate, aspartate, lipids/macromolecules at 0.9 ppm, and lipids/macromolecules at 1.3 ppm than did the brains of normal mice. The concentrations of glycine and lactate, however, were significantly higher in tumors than in normal brain. Copyright © 2014 John Wiley & Sons, Ltd.

  4. The relationship between age and brain response to visual erotic stimuli in healthy heterosexual males.

    Science.gov (United States)

    Seo, Y; Jeong, B; Kim, J-W; Choi, J

    2010-01-01

    The various changes of sexuality, including decreased sexual desire and erectile dysfunction, are also accompanied with aging. To understand the effect of aging on sexuality, we explored the relationship between age and the visual erotic stimulation-related brain response in sexually active male subjects. Twelve healthy, heterosexual male subjects (age 22-47 years) were recorded the functional magnetic resonance imaging (fMRI) signals of their brain activation elicited by passive viewing erotic (ERO), happy-faced (HA) couple, food and nature pictures. Mixed effect analysis and correlation analysis were performed to investigate the relationship between the age and the change of brain activity elicited by erotic stimuli. Our results showed age was positively correlated with the activation of right occipital fusiform gyrus and amygdala, and negatively correlated with the activation of right insula and inferior frontal gyrus. These findings suggest age might be related with functional decline in brain regions being involved in both interoceptive sensation and prefrontal modulation while it is related with the incremental activity of the brain region for early processing of visual emotional stimuli in sexually healthy men.

  5. Variation of mutational burden in healthy human tissues suggests non-random strand segregation and allows measuring somatic mutation rates.

    Science.gov (United States)

    Werner, Benjamin; Sottoriva, Andrea

    2018-06-01

    The immortal strand hypothesis poses that stem cells could produce differentiated progeny while conserving the original template strand, thus avoiding accumulating somatic mutations. However, quantitating the extent of non-random DNA strand segregation in human stem cells remains difficult in vivo. Here we show that the change of the mean and variance of the mutational burden with age in healthy human tissues allows estimating strand segregation probabilities and somatic mutation rates. We analysed deep sequencing data from healthy human colon, small intestine, liver, skin and brain. We found highly effective non-random DNA strand segregation in all adult tissues (mean strand segregation probability: 0.98, standard error bounds (0.97,0.99)). In contrast, non-random strand segregation efficiency is reduced to 0.87 (0.78,0.88) in neural tissue during early development, suggesting stem cell pool expansions due to symmetric self-renewal. Healthy somatic mutation rates differed across tissue types, ranging from 3.5 × 10-9/bp/division in small intestine to 1.6 × 10-7/bp/division in skin.

  6. Variation of mutational burden in healthy human tissues suggests non-random strand segregation and allows measuring somatic mutation rates.

    Directory of Open Access Journals (Sweden)

    Benjamin Werner

    2018-06-01

    Full Text Available The immortal strand hypothesis poses that stem cells could produce differentiated progeny while conserving the original template strand, thus avoiding accumulating somatic mutations. However, quantitating the extent of non-random DNA strand segregation in human stem cells remains difficult in vivo. Here we show that the change of the mean and variance of the mutational burden with age in healthy human tissues allows estimating strand segregation probabilities and somatic mutation rates. We analysed deep sequencing data from healthy human colon, small intestine, liver, skin and brain. We found highly effective non-random DNA strand segregation in all adult tissues (mean strand segregation probability: 0.98, standard error bounds (0.97,0.99. In contrast, non-random strand segregation efficiency is reduced to 0.87 (0.78,0.88 in neural tissue during early development, suggesting stem cell pool expansions due to symmetric self-renewal. Healthy somatic mutation rates differed across tissue types, ranging from 3.5 × 10-9/bp/division in small intestine to 1.6 × 10-7/bp/division in skin.

  7. Radiological study of the brain at various stages of human immunodeficiency virus infection: early development of brain atrophy

    International Nuclear Information System (INIS)

    Raininko, R.; Elovaara, I.; Virta, A.; Valanne, L.; Haltia, M.; Valle, S.L.

    1992-01-01

    One hundred and one persons infected with human immunodeficiency virus (HIV-1), in whom other central nervous system infections or diseases were excluded, underwent brain CT and/or MRI at various stages of HIV-1 infection: 29 were asymptomatic (ASX), 35 had lymphadenopathy syndrome (LAS), 17 had AIDS-related complex (ARC), and 20 had AIDS. A control group of 32 HIV-1-seronegative healthy persons underwent brain MRI. The most common finding was brain atrophy. The changes were bilateral and symmetrical, and they were more severe at later stages of infection. Non-specific small hyperintense foci were found on MRI in 13% of controls and 6-15% of the infected groups. Larger, diffuse, bilateral white matter infiltrates were detected in 4 demented patients with AIDS. Four patients with AIDS and 1 with LAS had focal hyperintense lesions in the internal capsules, lentiform nuclei or thalamus, often bilateral on MRI. One patient with AIDS examined with CT only, had low density in the lentiform nucleus. Loss of brain parenchyma can occur at an early stage of HIV-1 infection, and the atrophic process becomes more intense at later stages (ARC and AIDS). (orig./GDG)

  8. Positive selection on gene expression in the human brain

    DEFF Research Database (Denmark)

    Khaitovich, Philipp; Tang, Kun; Franz, Henriette

    2006-01-01

    Recent work has shown that the expression levels of genes transcribed in the brains of humans and chimpanzees have changed less than those of genes transcribed in other tissues [1] . However, when gene expression changes are mapped onto the evolutionary lineage in which they occurred, the brain...... shows more changes than other tissues in the human lineage compared to the chimpanzee lineage [1] , [2] and [3] . There are two possible explanations for this: either positive selection drove more gene expression changes to fixation in the human brain than in the chimpanzee brain, or genes expressed...... in the brain experienced less purifying selection in humans than in chimpanzees, i.e. gene expression in the human brain is functionally less constrained. The first scenario would be supported if genes that changed their expression in the brain in the human lineage showed more selective sweeps than other genes...

  9. Main effect and interactions of brain regions and gender in the calculation of volumetric asymmetry indices in healthy human brains: ANCOVA analyses of in vivo 3T MRI data.

    Science.gov (United States)

    Roldan-Valadez, Ernesto; Rios, Camilo; Suarez-May, Marcela A; Favila, Rafel; Aguilar-Castañeda, Erika

    2013-12-01

    Macroanatomical right-left hemispheric differences in the brain are termed asymmetries, although there is no clear information on the global influence of gender and brain-regions. The aim of this study was to evaluate the main effects and interactions of these variables on the measurement of volumetric asymmetry indices (VAIs). Forty-seven healthy young-adult volunteers (23 males, 24 females) agreed to undergo brain magnetic resonance imaging in a 3T scanner. Image post processing using voxel-based volumetry allowed the calculation of 54 VAIs from the frontal, temporal, parietal and occipital lobes, limbic system, basal ganglia, and cerebellum for each cerebral hemisphere. Multivariate ANCOVA analysis calculated the main effects and interactions on VAIs of gender and brain regions controlling the effect of age. The only significant finding was the main effect of brain regions (F (6, 9373.605) 44.369, P gender and brain regions (F (6, 50.517) .239, P = .964). Volumetric asymmetries are present across all brain regions, with larger values found in the limbic system and parietal lobe. The absence of a significant influence of gender and age in the evaluation of the numerous measurements generated by multivariate analyses in this study should not discourage researchers to report and interpret similar results, as this topic still deserves further assessment. Copyright © 2013 Wiley Periodicals, Inc.

  10. Prism Adaptation Alters Electrophysiological Markers of Attentional Processes in the Healthy Brain.

    Science.gov (United States)

    Martín-Arévalo, Elisa; Laube, Inga; Koun, Eric; Farnè, Alessandro; Reilly, Karen T; Pisella, Laure

    2016-01-20

    Neglect patients typically show a rightward attentional orienting bias and a strong disengagement deficit, such that they are especially slow in responding to left-sided targets after right-sided cues (Posner et al., 1984). Prism adaptation (PA) can reduce diverse debilitating neglect symptoms and it has been hypothesized that PA's effects are so generalized that they might be mediated by attentional mechanisms (Pisella et al., 2006; Redding and Wallace, 2006). In neglect patients, performance on spatial attention tasks improves after rightward-deviating PA (Jacquin-Courtois et al., 2013). In contrast, in healthy subjects, although there is evidence that leftward-deviating PA induces neglect-like performance on some visuospatial tasks, behavioral studies of spatial attention tasks have mostly yielded negative results (Morris et al., 2004; Bultitude et al., 2013). We hypothesized that these negative behavioral findings might reflect the limitations of behavioral measures in healthy subjects. Here we exploited the sensitivity of event-related potentials to test the hypothesis that electrophysiological markers of attentional processes in the healthy human brain are affected by PA. Leftward-deviating PA generated asymmetries in attentional orienting (reflected in the cue-locked N1) and in attentional disengagement for invalidly cued left targets (reflected in the target-locked P1). This is the first electrophysiological demonstration that leftward-deviating PA in healthy subjects mimics attentional patterns typically seen in neglect patients. Significance statement: Prism adaptation (PA) is a promising tool for ameliorating many deficits in neglect patients and inducing neglect-like behavior in healthy subjects. The mechanisms underlying PA's effects are poorly understood but one hypothesis suggests that it acts by modulating attention. To date, however, there has been no successful demonstration of attentional modulation in healthy subjects. We provide the first

  11. Iron-related gene variants and brain iron in multiple sclerosis and healthy individuals

    Directory of Open Access Journals (Sweden)

    Jesper Hagemeier

    2018-01-01

    Full Text Available Brain iron homeostasis is known to be disturbed in multiple sclerosis (MS, yet little is known about the association of common gene variants linked to iron regulation and pathological tissue changes in the brain. In this study, we investigated the association of genetic determinants linked to iron regulation with deep gray matter (GM magnetic susceptibility in both healthy controls (HC and MS patients. Four hundred (400 patients with MS and 150 age- and sex-matched HCs were enrolled and obtained 3 T MRI examination. Three (3 single nucleotide polymorphisms (SNPs associated with iron regulation were genotyped: two SNPs in the human hereditary hemochromatosis protein gene HFE: rs1800562 (C282Y mutation and rs1799945 (H63D mutation, as well as the rs1049296 SNP in the transferrin gene (C2 mutation. The effects of disease and genetic status were studied using quantitative susceptibility mapping (QSM voxel-based analysis (VBA and region-of-interest (ROI analysis of the deep GM. The general linear model framework was used to compare groups. Analyses were corrected for age and sex, and adjusted for false discovery rate. We found moderate increases in susceptibility in the right putamen of participants with the C282Y (+6.1 ppb and H63D (+6.9 ppb gene variants vs. non-carriers, as well as a decrease in thalamic susceptibility of progressive MS patients with the C282Y mutation (left: −5.3 ppb, right: −6.7 ppb, p < 0.05. Female MS patients had lower susceptibility in the caudate (−6.0 ppb and putamen (left: −3.9 ppb, right: −4.6 ppb than men, but only when they had a wild-type allele (p < 0.05. Iron-gene linked increases in putamen susceptibility (in HC and relapsing remitting MS and decreases in thalamus susceptibility (in progressive MS, coupled with apparent sex interactions, indicate that brain iron in healthy and disease states may be influenced by genetic factors.

  12. Reconstruction of human brain spontaneous activity based on frequency-pattern analysis of magnetoencephalography data

    Directory of Open Access Journals (Sweden)

    Rodolfo R Llinas

    2015-10-01

    Full Text Available A new method for the analysis and localization of brain activity has been developed, based on multichannel magnetic field recordings, over minutes, superimposed on the MRI of the individual. Here, a high resolution Fourier Transform is obtained over the entire recording period, leading to a detailed multi-frequency spectrum. Further analysis implements a total decomposition of the frequency components into functionally invariant entities, each having an invariant field pattern localizable in recording space. The method, addressed as functional tomography, makes it possible to find the distribution of magnetic field sources in space. Here, the method is applied to the analysis of simulated data, to oscillating signals activating a physical current dipoles phantom, and to recordings of spontaneous brain activity in ten healthy adults. In the analysis of simulated data, 61 dipoles are localized with 0.7 mm precision. Concerning the physical phantom the method is able to localize three simultaneously activated current dipoles with 1 mm precision. Spatial resolution 3 mm was attained when localizing spontaneous alpha rhythm activity in ten healthy adults, where the alpha peak was specified for each subject individually. Co-registration of the functional tomograms with each subject’s head MRI localized alpha range activity to the occipital and/or posterior parietal brain region. This is the first application of this new functional tomography to human brain activity. The method successfully provides an overall view of brain electrical activity, a detailed spectral description and, combined with MRI, the localization of sources in anatomical brain space.

  13. Reconstruction of human brain spontaneous activity based on frequency-pattern analysis of magnetoencephalography data

    Science.gov (United States)

    Llinás, Rodolfo R.; Ustinin, Mikhail N.; Rykunov, Stanislav D.; Boyko, Anna I.; Sychev, Vyacheslav V.; Walton, Kerry D.; Rabello, Guilherme M.; Garcia, John

    2015-01-01

    A new method for the analysis and localization of brain activity has been developed, based on multichannel magnetic field recordings, over minutes, superimposed on the MRI of the individual. Here, a high resolution Fourier Transform is obtained over the entire recording period, leading to a detailed multi-frequency spectrum. Further analysis implements a total decomposition of the frequency components into functionally invariant entities, each having an invariant field pattern localizable in recording space. The method, addressed as functional tomography, makes it possible to find the distribution of magnetic field sources in space. Here, the method is applied to the analysis of simulated data, to oscillating signals activating a physical current dipoles phantom, and to recordings of spontaneous brain activity in 10 healthy adults. In the analysis of simulated data, 61 dipoles are localized with 0.7 mm precision. Concerning the physical phantom the method is able to localize three simultaneously activated current dipoles with 1 mm precision. Spatial resolution 3 mm was attained when localizing spontaneous alpha rhythm activity in 10 healthy adults, where the alpha peak was specified for each subject individually. Co-registration of the functional tomograms with each subject's head MRI localized alpha range activity to the occipital and/or posterior parietal brain region. This is the first application of this new functional tomography to human brain activity. The method successfully provides an overall view of brain electrical activity, a detailed spectral description and, combined with MRI, the localization of sources in anatomical brain space. PMID:26528119

  14. Improving data availability for brain image biobanking in healthy subjects: Practice-based suggestions from an international multidisciplinary working group.

    Science.gov (United States)

    Shenkin, Susan D; Pernet, Cyril; Nichols, Thomas E; Poline, Jean-Baptiste; Matthews, Paul M; van der Lugt, Aad; Mackay, Clare; Lanyon, Linda; Mazoyer, Bernard; Boardman, James P; Thompson, Paul M; Fox, Nick; Marcus, Daniel S; Sheikh, Aziz; Cox, Simon R; Anblagan, Devasuda; Job, Dominic E; Dickie, David Alexander; Rodriguez, David; Wardlaw, Joanna M

    2017-06-01

    Brain imaging is now ubiquitous in clinical practice and research. The case for bringing together large amounts of image data from well-characterised healthy subjects and those with a range of common brain diseases across the life course is now compelling. This report follows a meeting of international experts from multiple disciplines, all interested in brain image biobanking. The meeting included neuroimaging experts (clinical and non-clinical), computer scientists, epidemiologists, clinicians, ethicists, and lawyers involved in creating brain image banks. The meeting followed a structured format to discuss current and emerging brain image banks; applications such as atlases; conceptual and statistical problems (e.g. defining 'normality'); legal, ethical and technological issues (e.g. consents, potential for data linkage, data security, harmonisation, data storage and enabling of research data sharing). We summarise the lessons learned from the experiences of a wide range of individual image banks, and provide practical recommendations to enhance creation, use and reuse of neuroimaging data. Our aim is to maximise the benefit of the image data, provided voluntarily by research participants and funded by many organisations, for human health. Our ultimate vision is of a federated network of brain image biobanks accessible for large studies of brain structure and function. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Glucose transporter of the human brain and blood-brain barrier

    International Nuclear Information System (INIS)

    Kalaria, R.N.; Gravina, S.A.; Schmidley, J.W.; Perry, G.; Harik, S.I.

    1988-01-01

    We identified and characterized the glucose transporter in the human cerebral cortex, cerebral microvessels, and choroid plexus by specific D-glucose-displaceable [3H]cytochalasin B binding. The binding was saturable, with a dissociation constant less than 1 microM. Maximal binding capacity was approximately 7 pmol/mg protein in the cerebral cortex, approximately 42 pmol/mg protein in brain microvessels, and approximately 27 pmol/mg protein in the choroid plexus. Several hexoses displaced specific [3H]cytochalasin B binding to microvessels in a rank-order that correlated well with their known ability to cross the blood-brain barrier; the only exception was 2-deoxy-D-glucose, which had much higher affinity for the glucose transporter than the natural substrate, D-glucose. Irreversible photoaffinity labeling of the glucose transporter of microvessels with [3H]cytochalasin B, followed by solubilization and polyacrylamide gel electrophoresis, labeled a protein band with an average molecular weight of approximately 55,000. Monoclonal and polyclonal antibodies specific to the human erythrocyte glucose transporter immunocytochemically stained brain blood vessels and the few trapped erythrocytes in situ, with minimal staining of the neuropil. In the choroid plexus, blood vessels did not stain, but the epithelium reacted positively. We conclude that human brain microvessels are richly endowed with a glucose transport moiety similar in molecular weight and antigenic characteristics to that of human erythrocytes and brain microvessels of other mammalian species

  16. Brain Imaging Studies on the Cognitive, Pharmacological and Neurobiological Effects of Cannabis in Humans: Evidence from Studies of Adult Users.

    Science.gov (United States)

    Weinstein, Aviv; Livny, Abigail; Weizman, Abraham

    2016-01-01

    Cannabis is the most widely used illicit drug worldwide. Regular cannabis use has been associated with a range of acute and chronic mental health problems, such as anxiety, depression, psychotic symptoms and neurocognitive impairments and their neural mechanisms need to be examined. This review summarizes and critically evaluates brain-imaging studies of cannabis in recreational and regular cannabis users between January 2000 and January 2016. The search has yielded eligible 103 structural and functional studies. Regular use of cannabis results in volumetric, gray matter and white matter structural changes in the brain, in particular in the hippocampus and the amygdala. Regular use of cannabis affects cognitive processes such as attention, memory, inhibitory control, decision-making, emotional processing, social cognition and their associated brain areas. There is evidence that regular cannabis use leads to altered neural function during attention and working memory and that recruitment of activity in additional brain regions can compensate for it. Similar to other drugs of abuse, cannabis cues activated areas in the reward pathway. Pharmacological studies showed a modest increase in human striatal dopamine transmission after administration of THC in healthy volunteers. Regular cannabis use resulted in reduced dopamine transporter occupancy and reduced dopamine synthesis but not in reduced striatal D2/D3 receptor occupancy compared with healthy control participants. Studies also showed different effects of Δ-9 tetrahydrocannabinol (THC) and cannabidiol (CBD) on emotion, cognition and associated brain regions in healthy volunteers, whereby CBD protects against the psychoactive effects of THC. Brain imaging studies using selective high-affinity radioligands for the imaging of cannabinoid CB1 receptor availability in Positron Emission Tomography (PET) showed downregulation of CB1 in regular users of cannabis. In conclusion, regular use of the cannabinoids exerts

  17. Brain-heart linear and nonlinear dynamics during visual emotional elicitation in healthy subjects.

    Science.gov (United States)

    Valenza, G; Greco, A; Gentili, C; Lanata, A; Toschi, N; Barbieri, R; Sebastiani, L; Menicucci, D; Gemignani, A; Scilingo, E P

    2016-08-01

    This study investigates brain-heart dynamics during visual emotional elicitation in healthy subjects through linear and nonlinear coupling measures of EEG spectrogram and instantaneous heart rate estimates. To this extent, affective pictures including different combinations of arousal and valence levels, gathered from the International Affective Picture System, were administered to twenty-two healthy subjects. Time-varying maps of cortical activation were obtained through EEG spectral analysis, whereas the associated instantaneous heartbeat dynamics was estimated using inhomogeneous point-process linear models. Brain-Heart linear and nonlinear coupling was estimated through the Maximal Information Coefficient (MIC), considering EEG time-varying spectra and point-process estimates defined in the time and frequency domains. As a proof of concept, we here show preliminary results considering EEG oscillations in the θ band (4-8 Hz). This band, indeed, is known in the literature to be involved in emotional processes. MIC highlighted significant arousal-dependent changes, mediated by the prefrontal cortex interplay especially occurring at intermediate arousing levels. Furthermore, lower and higher arousing elicitations were associated to not significant brain-heart coupling changes in response to pleasant/unpleasant elicitations.

  18. Enhanced functional connectivity properties of human brains during in-situ nature experience.

    Science.gov (United States)

    Chen, Zheng; He, Yujia; Yu, Yuguo

    2016-01-01

    In this study, we investigated the impacts of in-situ nature and urban exposure on human brain activities and their dynamics. We randomly assigned 32 healthy right-handed college students (mean age = 20.6 years, SD = 1.6; 16 males) to a 20 min in-situ sitting exposure in either a nature (n = 16) or urban environment (n = 16) and measured their Electroencephalography (EEG) signals. Analyses revealed that a brief in-situ restorative nature experience may induce more efficient and stronger brain connectivity with enhanced small-world properties compared with a stressful urban experience. The enhanced small-world properties were found to be correlated with "coherent" experience measured by Perceived Restorativeness Scale (PRS). Exposure to nature also induces stronger long-term correlated activity across different brain regions with a right lateralization. These findings may advance our understanding of the functional activities during in-situ environmental exposures and imply that a nature or nature-like environment may potentially benefit cognitive processes and mental well-being.

  19. The vascular basement membrane in the healthy and pathological brain.

    Science.gov (United States)

    Thomsen, Maj S; Routhe, Lisa J; Moos, Torben

    2017-10-01

    The vascular basement membrane contributes to the integrity of the blood-brain barrier (BBB), which is formed by brain capillary endothelial cells (BCECs). The BCECs receive support from pericytes embedded in the vascular basement membrane and from astrocyte endfeet. The vascular basement membrane forms a three-dimensional protein network predominantly composed of laminin, collagen IV, nidogen, and heparan sulfate proteoglycans that mutually support interactions between BCECs, pericytes, and astrocytes. Major changes in the molecular composition of the vascular basement membrane are observed in acute and chronic neuropathological settings. In the present review, we cover the significance of the vascular basement membrane in the healthy and pathological brain. In stroke, loss of BBB integrity is accompanied by upregulation of proteolytic enzymes and degradation of vascular basement membrane proteins. There is yet no causal relationship between expression or activity of matrix proteases and the degradation of vascular matrix proteins in vivo. In Alzheimer's disease, changes in the vascular basement membrane include accumulation of Aβ, composite changes, and thickening. The physical properties of the vascular basement membrane carry the potential of obstructing drug delivery to the brain, e.g. thickening of the basement membrane can affect drug delivery to the brain, especially the delivery of nanoparticles.

  20. [Evolution of human brain and intelligence].

    Science.gov (United States)

    Lakatos, László; Janka, Zoltán

    2008-07-30

    The biological evolution, including human evolution is mainly driven by environmental changes. Accidental genetic modifications and their innovative results make the successful adaptation possible. As we know the human evolution started 7-8 million years ago in the African savannah, where upright position and bipedalism were significantly advantageous. The main drive of improving manual actions and tool making could be to obtain more food. Our ancestor got more meat due to more successful hunting, resulting in more caloric intake, more protein and essential fatty acid in the meal. The nervous system uses disproportionally high level of energy, so better quality of food was a basic condition for the evolution of huge human brain. The size of human brain was tripled during 3.5 million years, it increased from the average of 450 cm3 of Australopithecinae to the average of 1350 cm3 of Homo sapiens. A genetic change in the system controlling gene expression could happen about 200 000 years ago, which influenced the development of nervous system, the sensorimotor function and learning ability for motor processes. The appearance and stabilisation of FOXP2 gene structure as feature of modern man coincided with the first presence and quick spread of Homo sapiens on the whole Earth. This genetic modification made opportunity for human language, as the basis of abrupt evolution of human intelligence. The brain region being responsible for human language is the left planum temporale, which is much larger in left hemisphere. This shows the most typical human brain asymmetry. In this case the anatomical asymmetry means a clearly defined functional asymmetry as well, where the brain hemispheres act differently. The preference in using hands, the lateralised using of tools resulted in the brain asymmetry, which is the precondition of human language and intelligence. However, it cannot be held anymore, that only humans make tools, because our closest relatives, the chimpanzees are

  1. Asymmetry of the structural brain connectome in healthy older adults.

    Directory of Open Access Journals (Sweden)

    Leonardo eBonilha

    2014-01-01

    Full Text Available Background: It is now possible to map neural connections in vivo across the whole brain (i.e., the brain connectome. This is a promising development in neuroscience since many health and disease processes are believed to arise from the architecture of neural networks.Objective: To describe the normal range of hemispheric asymmetry in structural connectivity in healthy older adults.Methods: We obtained high-resolution structural magnetic resonance images (MRI from 17 healthy older adults. For each subject, the brain connectome was reconstructed by parcelating the probabilistic map of gray matter into anatomically defined regions of interested (ROIs. White matter fiber tractography was reconstructed from diffusion tensor imaging and streamlines connecting gray matter ROIs were computed. Asymmetry indices were calculated regarding ROI connectivity (representing the sum of connectivity weight of each cortical ROI and for regional white matter links. All asymmetry measures were compared to a normal distribution with mean=0 through one sample t-tests.Results: Leftward cortical ROI asymmetry was observed in medial temporal, dorsolateral frontal and occipital regions. Rightward cortical ROI asymmetry was observed in middle temporal and orbito-frontal regions. Link-wise asymmetry revealed stronger connections in the left hemisphere between the medial temporal, anterior and posterior peri-Sylvian and occipito-temporal regions. Rightward link asymmetry was observed in lateral temporal, parietal and dorsolateral frontal connections.Conclusions: We postulate that asymmetry of specific connections may be related to functional hemispheric organization. This study may provide reference for future studies evaluating the architecture of the connectome in health and disease processes in senior individuals.

  2. Short desynchronization episodes prevail in synchronous dynamics of human brain rhythms.

    Science.gov (United States)

    Ahn, Sungwoo; Rubchinsky, Leonid L

    2013-03-01

    Neural synchronization is believed to be critical for many brain functions. It frequently exhibits temporal variability, but it is not known if this variability has a specific temporal patterning. This study explores these synchronization/desynchronization patterns. We employ recently developed techniques to analyze the fine temporal structure of phase-locking to study the temporal patterning of synchrony of the human brain rhythms. We study neural oscillations recorded by electroencephalograms in α and β frequency bands in healthy human subjects at rest and during the execution of a task. While the phase-locking strength depends on many factors, dynamics of synchrony has a very specific temporal pattern: synchronous states are interrupted by frequent, but short desynchronization episodes. The probability for a desynchronization episode to occur decreased with its duration. The transition matrix between synchronized and desynchronized states has eigenvalues close to 0 and 1 where eigenvalue 1 has multiplicity 1, and therefore if the stationary distribution between these states is perturbed, the system converges back to the stationary distribution very fast. The qualitative similarity of this patterning across different subjects, brain states and electrode locations suggests that this may be a general type of dynamics for the brain. Earlier studies indicate that not all oscillatory networks have this kind of patterning of synchronization/desynchronization dynamics. Thus, the observed prevalence of short (but potentially frequent) desynchronization events (length of one cycle of oscillations) may have important functional implications for the brain. Numerous short desynchronizations (as opposed to infrequent, but long desynchronizations) may allow for a quick and efficient formation and break-up of functionally significant neuronal assemblies.

  3. Organization and hierarchy of the human functional brain network lead to a chain-like core.

    Science.gov (United States)

    Mastrandrea, Rossana; Gabrielli, Andrea; Piras, Fabrizio; Spalletta, Gianfranco; Caldarelli, Guido; Gili, Tommaso

    2017-07-07

    The brain is a paradigmatic example of a complex system: its functionality emerges as a global property of local mesoscopic and microscopic interactions. Complex network theory allows to elicit the functional architecture of the brain in terms of links (correlations) between nodes (grey matter regions) and to extract information out of the noise. Here we present the analysis of functional magnetic resonance imaging data from forty healthy humans at rest for the investigation of the basal scaffold of the functional brain network organization. We show how brain regions tend to coordinate by forming a highly hierarchical chain-like structure of homogeneously clustered anatomical areas. A maximum spanning tree approach revealed the centrality of the occipital cortex and the peculiar aggregation of cerebellar regions to form a closed core. We also report the hierarchy of network segregation and the level of clusters integration as a function of the connectivity strength between brain regions.

  4. Quantitative susceptibility mapping of human brain at 3T: a multisite reproducibility study.

    Science.gov (United States)

    Lin, P-Y; Chao, T-C; Wu, M-L

    2015-03-01

    Quantitative susceptibility mapping of the human brain has demonstrated strong potential in examining iron deposition, which may help in investigating possible brain pathology. This study assesses the reproducibility of quantitative susceptibility mapping across different imaging sites. In this study, the susceptibility values of 5 regions of interest in the human brain were measured on 9 healthy subjects following calibration by using phantom experiments. Each of the subjects was imaged 5 times on 1 scanner with the same procedure repeated on 3 different 3T systems so that both within-site and cross-site quantitative susceptibility mapping precision levels could be assessed. Two quantitative susceptibility mapping algorithms, similar in principle, one by using iterative regularization (iterative quantitative susceptibility mapping) and the other with analytic optimal solutions (deterministic quantitative susceptibility mapping), were implemented, and their performances were compared. Results show that while deterministic quantitative susceptibility mapping had nearly 700 times faster computation speed, residual streaking artifacts seem to be more prominent compared with iterative quantitative susceptibility mapping. With quantitative susceptibility mapping, the putamen, globus pallidus, and caudate nucleus showed smaller imprecision on the order of 0.005 ppm, whereas the red nucleus and substantia nigra, closer to the skull base, had a somewhat larger imprecision of approximately 0.01 ppm. Cross-site errors were not significantly larger than within-site errors. Possible sources of estimation errors are discussed. The reproducibility of quantitative susceptibility mapping in the human brain in vivo is regionally dependent, and the precision levels achieved with quantitative susceptibility mapping should allow longitudinal and multisite studies such as aging-related changes in brain tissue magnetic susceptibility. © 2015 by American Journal of Neuroradiology.

  5. Physical Exercise Keeps the Brain Connected: Biking Increases White Matter Integrity in Patients With Schizophrenia and Healthy Controls.

    Science.gov (United States)

    Svatkova, Alena; Mandl, René C W; Scheewe, Thomas W; Cahn, Wiepke; Kahn, René S; Hulshoff Pol, Hilleke E

    2015-07-01

    It has been shown that learning a new skill leads to structural changes in the brain. However, it is unclear whether it is the acquisition or continuous practicing of the skill that causes this effect and whether brain connectivity of patients with schizophrenia can benefit from such practice. We examined the effect of 6 months exercise on a stationary bicycle on the brain in patients with schizophrenia and healthy controls. Biking is an endemic skill in the Netherlands and thus offers an ideal situation to disentangle the effects of learning vs practice. The 33 participating patients with schizophrenia and 48 healthy individuals were assigned to either one of two conditions, ie, physical exercise or life-as-usual, balanced for diagnosis. Diffusion tensor imaging brain scans were made prior to and after intervention. We demonstrate that irrespective of diagnosis regular physical exercise of an overlearned skill, such as bicycling, significantly increases the integrity, especially of motor functioning related, white matter fiber tracts whereas life-as-usual leads to a decrease in fiber integrity. Our findings imply that exercise of an overlearned physical skill improves brain connectivity in patients and healthy individuals. This has important implications for understanding the effect of fitness programs on the brain in both healthy subjects and patients with schizophrenia. Moreover, the outcome may even apply to the nonphysical realm. © The Author 2015. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  6. The glia doctrine: addressing the role of glial cells in healthy brain ageing.

    Science.gov (United States)

    Nagelhus, Erlend A; Amiry-Moghaddam, Mahmood; Bergersen, Linda H; Bjaalie, Jan G; Eriksson, Jens; Gundersen, Vidar; Leergaard, Trygve B; Morth, J Preben; Storm-Mathisen, Jon; Torp, Reidun; Walhovd, Kristine B; Tønjum, Tone

    2013-10-01

    Glial cells in their plurality pervade the human brain and impact on brain structure and function. A principal component of the emerging glial doctrine is the hypothesis that astrocytes, the most abundant type of glial cells, trigger major molecular processes leading to brain ageing. Astrocyte biology has been examined using molecular, biochemical and structural methods, as well as 3D brain imaging in live animals and humans. Exosomes are extracelluar membrane vesicles that facilitate communication between glia, and have significant potential for biomarker discovery and drug delivery. Polymorphisms in DNA repair genes may indirectly influence the structure and function of membrane proteins expressed in glial cells and predispose specific cell subgroups to degeneration. Physical exercise may reduce or retard age-related brain deterioration by a mechanism involving neuro-glial processes. It is most likely that additional information about the distribution, structure and function of glial cells will yield novel insight into human brain ageing. Systematic studies of glia and their functions are expected to eventually lead to earlier detection of ageing-related brain dysfunction and to interventions that could delay, reduce or prevent brain dysfunction. Copyright © 2013 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  7. Functional brain imaging of gastrointestinal sensation in health and disease

    Institute of Scientific and Technical Information of China (English)

    Lukas Van Oudenhove; Steven J Coen; Qasim Aziz

    2007-01-01

    It has since long been known, from everyday experience as well as from animal and human studies, that psychological processes-both affective and cognitiveexert an influence on gastrointestinal sensorimotor function. More specifically, a link between psychological factors and visceral hypersensitivity has been suggested,mainly based on research in functional gastrointestinal disorder patients. However, until recently, the exact nature of this putative relationship remained unclear,mainly due to a lack of non-invasive methods to study the (neurobiological) mechanisms underlying this relationship in non-sleeping humans. As functional brain imaging, introduced in visceral sensory neuroscience some 10 years ago, does provide a method for in vivo study of brain-gut interactions, insight into the neurobiological mechanisms underlying visceral sensation in general and the influence of psychological factors more particularly,has rapidly grown. In this article, an overview of brain imaging evidence on gastrointestinal sensation will be given, with special emphasis on the brain mechanisms underlying the interaction between affective & cognitive processes and visceral sensation. First, the reciprocal neural pathways between the brain and the gut (braingut axis) will be briefly outlined, including brain imaging evidence in healthy volunteers. Second, functional brain imaging studies assessing the influence of psychological factors on brain processing of visceral sensation in healthy humans will be discussed in more detail.Finally, brain imaging work investigating differences in brain responses to visceral distension between healthy volunteers and functional gastrointestinal disorder patients will be highlighted.

  8. The evolution of modern human brain shape

    Science.gov (United States)

    Neubauer, Simon; Hublin, Jean-Jacques; Gunz, Philipp

    2018-01-01

    Modern humans have large and globular brains that distinguish them from their extinct Homo relatives. The characteristic globularity develops during a prenatal and early postnatal period of rapid brain growth critical for neural wiring and cognitive development. However, it remains unknown when and how brain globularity evolved and how it relates to evolutionary brain size increase. On the basis of computed tomographic scans and geometric morphometric analyses, we analyzed endocranial casts of Homo sapiens fossils (N = 20) from different time periods. Our data show that, 300,000 years ago, brain size in early H. sapiens already fell within the range of present-day humans. Brain shape, however, evolved gradually within the H. sapiens lineage, reaching present-day human variation between about 100,000 and 35,000 years ago. This process started only after other key features of craniofacial morphology appeared modern and paralleled the emergence of behavioral modernity as seen from the archeological record. Our findings are consistent with important genetic changes affecting early brain development within the H. sapiens lineage since the origin of the species and before the transition to the Later Stone Age and the Upper Paleolithic that mark full behavioral modernity. PMID:29376123

  9. The evolution of modern human brain shape.

    Science.gov (United States)

    Neubauer, Simon; Hublin, Jean-Jacques; Gunz, Philipp

    2018-01-01

    Modern humans have large and globular brains that distinguish them from their extinct Homo relatives. The characteristic globularity develops during a prenatal and early postnatal period of rapid brain growth critical for neural wiring and cognitive development. However, it remains unknown when and how brain globularity evolved and how it relates to evolutionary brain size increase. On the basis of computed tomographic scans and geometric morphometric analyses, we analyzed endocranial casts of Homo sapiens fossils ( N = 20) from different time periods. Our data show that, 300,000 years ago, brain size in early H. sapiens already fell within the range of present-day humans. Brain shape, however, evolved gradually within the H. sapiens lineage, reaching present-day human variation between about 100,000 and 35,000 years ago. This process started only after other key features of craniofacial morphology appeared modern and paralleled the emergence of behavioral modernity as seen from the archeological record. Our findings are consistent with important genetic changes affecting early brain development within the H. sapiens lineage since the origin of the species and before the transition to the Later Stone Age and the Upper Paleolithic that mark full behavioral modernity.

  10. Resolving anatomical and functional structure in human brain organization: identifying mesoscale organization in weighted network representations.

    Science.gov (United States)

    Lohse, Christian; Bassett, Danielle S; Lim, Kelvin O; Carlson, Jean M

    2014-10-01

    Human brain anatomy and function display a combination of modular and hierarchical organization, suggesting the importance of both cohesive structures and variable resolutions in the facilitation of healthy cognitive processes. However, tools to simultaneously probe these features of brain architecture require further development. We propose and apply a set of methods to extract cohesive structures in network representations of brain connectivity using multi-resolution techniques. We employ a combination of soft thresholding, windowed thresholding, and resolution in community detection, that enable us to identify and isolate structures associated with different weights. One such mesoscale structure is bipartivity, which quantifies the extent to which the brain is divided into two partitions with high connectivity between partitions and low connectivity within partitions. A second, complementary mesoscale structure is modularity, which quantifies the extent to which the brain is divided into multiple communities with strong connectivity within each community and weak connectivity between communities. Our methods lead to multi-resolution curves of these network diagnostics over a range of spatial, geometric, and structural scales. For statistical comparison, we contrast our results with those obtained for several benchmark null models. Our work demonstrates that multi-resolution diagnostic curves capture complex organizational profiles in weighted graphs. We apply these methods to the identification of resolution-specific characteristics of healthy weighted graph architecture and altered connectivity profiles in psychiatric disease.

  11. Brain imaging of serotonin 4 receptors in humans with [11C]SB207145-PET

    DEFF Research Database (Denmark)

    Marner, Lisbeth; Gillings, Nic; Madsen, Karine

    2010-01-01

    Pharmacological stimulation of the serotonin 4 (5-HT(4)) receptor has shown promise for treatment of Alzheimer's disease and major depression. A new selective radioligand, [(11)C]SB207145, for positron emission tomography (PET) was used to quantify brain 5-HT(4) receptors in sixteen healthy......(max) was in accordance with post-mortem brain studies (Spearman's r=0.83, p=0.04), and the regional binding potentials, BP(ND), were on average 2.6 in striatum, 0.42 in prefrontal cortex, and 0.91 in hippocampus. We found no effect of sex but a decreased binding with age (p=0.046). A power analysis showed that, given......-HT(4) receptor binding in human brain can be reliably assessed with [(11)C]SB207145, which is encouraging for future PET studies of drug occupancy or patients with neuropsychiatric disorders....

  12. Characterizing brain oscillations in cognition and disease

    NARCIS (Netherlands)

    Jiang, H.

    2016-01-01

    It has been suggested that neuronal oscillations play a fundamental role for shaping the functional architecture of the working brain. This thesis investigates brain oscillations in rat, human healthy population and major depressive disorder (MDD) patients. A novel measurement termed

  13. A human-specific de novo protein-coding gene associated with human brain functions.

    Directory of Open Access Journals (Sweden)

    Chuan-Yun Li

    2010-03-01

    Full Text Available To understand whether any human-specific new genes may be associated with human brain functions, we computationally screened the genetic vulnerable factors identified through Genome-Wide Association Studies and linkage analyses of nicotine addiction and found one human-specific de novo protein-coding gene, FLJ33706 (alternative gene symbol C20orf203. Cross-species analysis revealed interesting evolutionary paths of how this gene had originated from noncoding DNA sequences: insertion of repeat elements especially Alu contributed to the formation of the first coding exon and six standard splice junctions on the branch leading to humans and chimpanzees, and two subsequent substitutions in the human lineage escaped two stop codons and created an open reading frame of 194 amino acids. We experimentally verified FLJ33706's mRNA and protein expression in the brain. Real-Time PCR in multiple tissues demonstrated that FLJ33706 was most abundantly expressed in brain. Human polymorphism data suggested that FLJ33706 encodes a protein under purifying selection. A specifically designed antibody detected its protein expression across human cortex, cerebellum and midbrain. Immunohistochemistry study in normal human brain cortex revealed the localization of FLJ33706 protein in neurons. Elevated expressions of FLJ33706 were detected in Alzheimer's brain samples, suggesting the role of this novel gene in human-specific pathogenesis of Alzheimer's disease. FLJ33706 provided the strongest evidence so far that human-specific de novo genes can have protein-coding potential and differential protein expression, and be involved in human brain functions.

  14. Associations between polygenic risk for schizophrenia and brain function during probabilistic learning in healthy individuals.

    Science.gov (United States)

    Lancaster, Thomas M; Ihssen, Niklas; Brindley, Lisa M; Tansey, Katherine E; Mantripragada, Kiran; O'Donovan, Michael C; Owen, Michael J; Linden, David E J

    2016-02-01

    A substantial proportion of schizophrenia liability can be explained by additive genetic factors. Risk profile scores (RPS) directly index risk using a summated total of common risk variants weighted by their effect. Previous studies suggest that schizophrenia RPS predict alterations to neural networks that support working memory and verbal fluency. In this study, we apply schizophrenia RPS to fMRI data to elucidate the effects of polygenic risk on functional brain networks during a probabilistic-learning neuroimaging paradigm. The neural networks recruited during this paradigm have previously been shown to be altered to unmedicated schizophrenia patients and relatives of schizophrenia patients, which may reflect genetic susceptibility. We created schizophrenia RPS using summary data from the Psychiatric Genetic Consortium (Schizophrenia Working Group) for 83 healthy individuals and explore associations between schizophrenia RPS and blood oxygen level dependency (BOLD) during periods of choice behavior (switch-stay) and reflection upon choice outcome (reward-punishment). We show that schizophrenia RPS is associated with alterations in the frontal pole (PWHOLE-BRAIN-CORRECTED  = 0.048) and the ventral striatum (PROI-CORRECTED  = 0.036), during choice behavior, but not choice outcome. We suggest that the common risk variants that increase susceptibility to schizophrenia can be associated with alterations in the neural circuitry that support the processing of changing reward contingencies. Hum Brain Mapp 37:491-500, 2016. © 2015 Wiley Periodicals, Inc. © 2015 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  15. β-Amyloid accumulation in the human brain after one night of sleep deprivation.

    Science.gov (United States)

    Shokri-Kojori, Ehsan; Wang, Gene-Jack; Wiers, Corinde E; Demiral, Sukru B; Guo, Min; Kim, Sung Won; Lindgren, Elsa; Ramirez, Veronica; Zehra, Amna; Freeman, Clara; Miller, Gregg; Manza, Peter; Srivastava, Tansha; De Santi, Susan; Tomasi, Dardo; Benveniste, Helene; Volkow, Nora D

    2018-04-24

    The effects of acute sleep deprivation on β-amyloid (Aβ) clearance in the human brain have not been documented. Here we used PET and 18 F-florbetaben to measure brain Aβ burden (ABB) in 20 healthy controls tested after a night of rested sleep (baseline) and after a night of sleep deprivation. We show that one night of sleep deprivation, relative to baseline, resulted in a significant increase in Aβ burden in the right hippocampus and thalamus. These increases were associated with mood worsening following sleep deprivation, but were not related to the genetic risk (APOE genotype) for Alzheimer's disease. Additionally, baseline ABB in a range of subcortical regions and the precuneus was inversely associated with reported night sleep hours. APOE genotyping was also linked to subcortical ABB, suggesting that different Alzheimer's disease risk factors might independently affect ABB in nearby brain regions. In summary, our findings show adverse effects of one-night sleep deprivation on brain ABB and expand on prior findings of higher Aβ accumulation with chronic less sleep. Copyright © 2018 the Author(s). Published by PNAS.

  16. Functional organization of the transcriptome in human brain

    Science.gov (United States)

    Oldham, Michael C; Konopka, Genevieve; Iwamoto, Kazuya; Langfelder, Peter; Kato, Tadafumi; Horvath, Steve; Geschwind, Daniel H

    2009-01-01

    The enormous complexity of the human brain ultimately derives from a finite set of molecular instructions encoded in the human genome. These instructions can be directly studied by exploring the organization of the brain’s transcriptome through systematic analysis of gene coexpression relationships. We analyzed gene coexpression relationships in microarray data generated from specific human brain regions and identified modules of coexpressed genes that correspond to neurons, oligodendrocytes, astrocytes and microglia. These modules provide an initial description of the transcriptional programs that distinguish the major cell classes of the human brain and indicate that cell type–specific information can be obtained from whole brain tissue without isolating homogeneous populations of cells. Other modules corresponded to additional cell types, organelles, synaptic function, gender differences and the subventricular neurogenic niche. We found that subventricular zone astrocytes, which are thought to function as neural stem cells in adults, have a distinct gene expression pattern relative to protoplasmic astrocytes. Our findings provide a new foundation for neurogenetic inquiries by revealing a robust and previously unrecognized organization to the human brain transcriptome. PMID:18849986

  17. Lipidomics of human brain aging and Alzheimer's disease pathology.

    Science.gov (United States)

    Naudí, Alba; Cabré, Rosanna; Jové, Mariona; Ayala, Victoria; Gonzalo, Hugo; Portero-Otín, Manuel; Ferrer, Isidre; Pamplona, Reinald

    2015-01-01

    Lipids stimulated and favored the evolution of the brain. Adult human brain contains a large amount of lipids, and the largest diversity of lipid classes and lipid molecular species. Lipidomics is defined as "the full characterization of lipid molecular species and of their biological roles with respect to expression of proteins involved in lipid metabolism and function, including gene regulation." Therefore, the study of brain lipidomics can help to unravel the diversity and to disclose the specificity of these lipid traits and its alterations in neural (neurons and glial) cells, groups of neural cells, brain, and fluids such as cerebrospinal fluid and plasma, thus helping to uncover potential biomarkers of human brain aging and Alzheimer disease. This review will discuss the lipid composition of the adult human brain. We first consider a brief approach to lipid definition, classification, and tools for analysis from the new point of view that has emerged with lipidomics, and then turn to the lipid profiles in human brain and how lipids affect brain function. Finally, we focus on the current status of lipidomics findings in human brain aging and Alzheimer's disease pathology. Neurolipidomics will increase knowledge about physiological and pathological functions of brain cells and will place the concept of selective neuronal vulnerability in a lipid context. © 2015 Elsevier Inc. All rights reserved.

  18. Towards passive brain-computer interfaces: applying brain-computer interface technology to human-machine systems in general.

    Science.gov (United States)

    Zander, Thorsten O; Kothe, Christian

    2011-04-01

    Cognitive monitoring is an approach utilizing realtime brain signal decoding (RBSD) for gaining information on the ongoing cognitive user state. In recent decades this approach has brought valuable insight into the cognition of an interacting human. Automated RBSD can be used to set up a brain-computer interface (BCI) providing a novel input modality for technical systems solely based on brain activity. In BCIs the user usually sends voluntary and directed commands to control the connected computer system or to communicate through it. In this paper we propose an extension of this approach by fusing BCI technology with cognitive monitoring, providing valuable information about the users' intentions, situational interpretations and emotional states to the technical system. We call this approach passive BCI. In the following we give an overview of studies which utilize passive BCI, as well as other novel types of applications resulting from BCI technology. We especially focus on applications for healthy users, and the specific requirements and demands of this user group. Since the presented approach of combining cognitive monitoring with BCI technology is very similar to the concept of BCIs itself we propose a unifying categorization of BCI-based applications, including the novel approach of passive BCI.

  19. Smaller brain size likely in young adults (<40 years old) with depressive symptoms compared to healthy controls. A retrospective study

    International Nuclear Information System (INIS)

    Adachi, Michito; Sato, Takamichi; Kawaguchi, Etsuko; Shibata, Akiko

    2011-01-01

    The aim of this study was to determine whether the brain size of young patients with depressive symptoms is smaller than that of healthy controls using magnetic resonance imaging (MRI). We retrospectively evaluated brain size by calculating the ratio of the brain area to that of the skull (the brain-to-skull ratio) on routine MRI scans including the splenium of the corpus callosum obtained from 19 patients <40 years old with depressive symptoms in 2009. The controls were 12 healthy individuals <40 years old who underwent MRI for medical examinations. The mean brain-to-skull ratio of the control group was 0.850±0.022 (range 0.822-0.889), and that of the patient group was 0.819±0.041 (range 0.756-0.878). An unpaired t-test showed a significant difference in the brain-to-skull ratios between these groups (P=0.011). In particular, in 7 of the 19 patients with longer duration of illness and more severe symptoms, the brain-to-skull ratio was 89%-92% of the mean ratio of the control group. The brain size of young patients with depressive symptoms appears to be smaller than that of healthy controls. (author)

  20. Metabolic connectivity mapping reveals effective connectivity in the resting human brain.

    Science.gov (United States)

    Riedl, Valentin; Utz, Lukas; Castrillón, Gabriel; Grimmer, Timo; Rauschecker, Josef P; Ploner, Markus; Friston, Karl J; Drzezga, Alexander; Sorg, Christian

    2016-01-12

    Directionality of signaling among brain regions provides essential information about human cognition and disease states. Assessing such effective connectivity (EC) across brain states using functional magnetic resonance imaging (fMRI) alone has proven difficult, however. We propose a novel measure of EC, termed metabolic connectivity mapping (MCM), that integrates undirected functional connectivity (FC) with local energy metabolism from fMRI and positron emission tomography (PET) data acquired simultaneously. This method is based on the concept that most energy required for neuronal communication is consumed postsynaptically, i.e., at the target neurons. We investigated MCM and possible changes in EC within the physiological range using "eyes open" versus "eyes closed" conditions in healthy subjects. Independent of condition, MCM reliably detected stable and bidirectional communication between early and higher visual regions. Moreover, we found stable top-down signaling from a frontoparietal network including frontal eye fields. In contrast, we found additional top-down signaling from all major clusters of the salience network to early visual cortex only in the eyes open condition. MCM revealed consistent bidirectional and unidirectional signaling across the entire cortex, along with prominent changes in network interactions across two simple brain states. We propose MCM as a novel approach for inferring EC from neuronal energy metabolism that is ideally suited to study signaling hierarchies in the brain and their defects in brain disorders.

  1. Lipid transport and human brain development.

    Science.gov (United States)

    Betsholtz, Christer

    2015-07-01

    How the human brain rapidly builds up its lipid content during brain growth and maintains its lipids in adulthood has remained elusive. Two new studies show that inactivating mutations in MFSD2A, known to be expressed specifically at the blood-brain barrier, lead to microcephaly, thereby offering a simple and surprising solution to an old enigma.

  2. Systemic klotho is associated with KLOTHO variation and predicts intrinsic cortical connectivity in healthy human aging.

    Science.gov (United States)

    Yokoyama, Jennifer S; Marx, Gabe; Brown, Jesse A; Bonham, Luke W; Wang, Dan; Coppola, Giovanni; Seeley, William W; Rosen, Howard J; Miller, Bruce L; Kramer, Joel H; Dubal, Dena B

    2017-04-01

    Cognitive decline is a major biomedical challenge as the global population ages. Elevated levels of the longevity factor klotho suppress aging, enhance cognition, and promote synaptic plasticity and neural resilience against aging and Alzheimer's disease (AD)-related pathogenic proteins. Here, we examined the relationship between human genetic variants of KLOTHO and systemic klotho levels - and assessed neuroanatomic correlates of serum klotho in a cohort of healthy older adults. Serum klotho levels were increased with KL-VS heterozygosity, as anticipated. We report, for the first time, that serum klotho levels were paradoxically decreased with KL-VS homozygosity. Further, we found that higher serum klotho levels were associated with measures of greater intrinsic connectivity in key functional networks of the brain vulnerable to aging and AD such as the fronto-parietal and default mode networks. Our findings suggest that elevated klotho promotes a resilient brain, possibly through increased network connectivity of critical brain regions.

  3. Structure, function and diversity of the healthy human microbiome.

    Science.gov (United States)

    2012-06-13

    Studies of the human microbiome have revealed that even healthy individuals differ remarkably in the microbes that occupy habitats such as the gut, skin and vagina. Much of this diversity remains unexplained, although diet, environment, host genetics and early microbial exposure have all been implicated. Accordingly, to characterize the ecology of human-associated microbial communities, the Human Microbiome Project has analysed the largest cohort and set of distinct, clinically relevant body habitats so far. We found the diversity and abundance of each habitat's signature microbes to vary widely even among healthy subjects, with strong niche specialization both within and among individuals. The project encountered an estimated 81-99% of the genera, enzyme families and community configurations occupied by the healthy Western microbiome. Metagenomic carriage of metabolic pathways was stable among individuals despite variation in community structure, and ethnic/racial background proved to be one of the strongest associations of both pathways and microbes with clinical metadata. These results thus delineate the range of structural and functional configurations normal in the microbial communities of a healthy population, enabling future characterization of the epidemiology, ecology and translational applications of the human microbiome.

  4. Simultaneous fMRI-PET of the opioidergic pain system in human brain

    DEFF Research Database (Denmark)

    Wey, Hsiao-Ying; Catana, Ciprian; Hooker, Jacob M

    2014-01-01

    distinct components of the blood oxygenation level dependent (BOLD) fMRI signal has not yet been shown. We obtained sixteen fMRI-PET data sets from eight healthy volunteers. Each subject participated in randomized order in a pain scan and a control (nonpainful pressure) scan on the same day. Dynamic PET......MRI and PET provide complementary information for studying brain function. While the potential use of simultaneous MRI/PET for clinical diagnostic and disease staging has been demonstrated recently; the biological relevance of concurrent functional MRI-PET brain imaging to dissect neurochemically...... data were acquired with an opioid radioligand, [(11)C]diprenorphine, to detect endogenous opioid releases in response to pain. BOLD fMRI data were collected at the same time to capture hemodynamic responses. In this simultaneous human fMRI-PET imaging study, we show co-localized responses in thalamus...

  5. Neuroglobin and Cytoglobin expression in the human brain

    DEFF Research Database (Denmark)

    Hundahl, Christian Ansgar; Kelsen, Jesper; Hay-Schmidt, Anders

    2013-01-01

    Neuroglobin and Cytoglobin are new members of the heme-globin family. Both globins are primarily expressed in neurons of the brain and retina. Neuroglobin and Cytoglobin have been suggested as novel therapeutic targets in various neurodegenerative diseases based on their oxygen binding and cell...... protecting properties. However, findings in Neuroglobin-deficient mice question the endogenous neuroprotective properties. The expression pattern of Neuroglobin and Cytoglobin in the rodent brain is also in contradiction to a major role of neuronal protection. In a recent study, Neuroglobin was ubiquitously...... expressed and up-regulated following stroke in the human brain. The present study aimed at confirming our previous observations in rodents using two post-mortem human brains. The anatomical localization of Neuroglobin and Cytoglobin in the human brain is much like what has been described for the rodent...

  6. Topological Organization of Functional Brain Networks in Healthy Children: Differences in Relation to Age, Sex, and Intelligence

    OpenAIRE

    Wu, Kai; Taki, Yasuyuki; Sato, Kazunori; Hashizume, Hiroshi; Sassa, Yuko; Takeuchi, Hikaru; Thyreau, Benjamin; He, Yong; Evans, Alan C.; Li, Xiaobo; Kawashima, Ryuta; Fukuda, Hiroshi

    2013-01-01

    Recent studies have demonstrated developmental changes of functional brain networks derived from functional connectivity using graph theoretical analysis, which has been rapidly translated to studies of brain network organization. However, little is known about sex- and IQ-related differences in the topological organization of functional brain networks during development. In this study, resting-state fMRI (rs-fMRI) was used to map the functional brain networks in 51 healthy children. We then ...

  7. Sex beyond the genitalia: The human brain mosaic

    Science.gov (United States)

    Joel, Daphna; Berman, Zohar; Tavor, Ido; Wexler, Nadav; Gaber, Olga; Stein, Yaniv; Shefi, Nisan; Pool, Jared; Urchs, Sebastian; Margulies, Daniel S.; Liem, Franziskus; Hänggi, Jürgen; Jäncke, Lutz; Assaf, Yaniv

    2015-01-01

    Whereas a categorical difference in the genitals has always been acknowledged, the question of how far these categories extend into human biology is still not resolved. Documented sex/gender differences in the brain are often taken as support of a sexually dimorphic view of human brains (“female brain” or “male brain”). However, such a distinction would be possible only if sex/gender differences in brain features were highly dimorphic (i.e., little overlap between the forms of these features in males and females) and internally consistent (i.e., a brain has only “male” or only “female” features). Here, analysis of MRIs of more than 1,400 human brains from four datasets reveals extensive overlap between the distributions of females and males for all gray matter, white matter, and connections assessed. Moreover, analyses of internal consistency reveal that brains with features that are consistently at one end of the “maleness-femaleness” continuum are rare. Rather, most brains are comprised of unique “mosaics” of features, some more common in females compared with males, some more common in males compared with females, and some common in both females and males. Our findings are robust across sample, age, type of MRI, and method of analysis. These findings are corroborated by a similar analysis of personality traits, attitudes, interests, and behaviors of more than 5,500 individuals, which reveals that internal consistency is extremely rare. Our study demonstrates that, although there are sex/gender differences in the brain, human brains do not belong to one of two distinct categories: male brain/female brain. PMID:26621705

  8. Automated detection of unfilled pauses in speech of healthy and brain-damaged individuals

    NARCIS (Netherlands)

    Ossewaarde, Roelant; Jonkers, Roel; Jalvingh, Fedor; Bastiaanse, Yvonne

    Automated detection of un lled pauses in speech of healthy and brain-damaged individuals Roelant Ossewaardea,b, Roel Jonkersa, Fedor Jalvingha,c, Roelien Bastiaansea aCenter for Language and Cognition, University of Groningen; bInstitute for ICT, HU University of Applied Science, Utrecht; cSt.

  9. An introduction to human brain anatomy

    NARCIS (Netherlands)

    Forstmann, B.U.; Keuken, M.C.; Alkemade, A.; Forstmann, B.U.; Wagenmakers, E.-J.

    2015-01-01

    This tutorial chapter provides an overview of the human brain anatomy. Knowledge of brain anatomy is fundamental to our understanding of cognitive processes in health and disease; moreover, anatomical constraints are vital for neurocomputational models and can be important for psychological

  10. Enhanced functional connectivity properties of human brains during in-situ nature experience

    Directory of Open Access Journals (Sweden)

    Zheng Chen

    2016-07-01

    Full Text Available In this study, we investigated the impacts of in-situ nature and urban exposure on human brain activities and their dynamics. We randomly assigned 32 healthy right-handed college students (mean age = 20.6 years, SD = 1.6; 16 males to a 20 min in-situ sitting exposure in either a nature (n = 16 or urban environment (n = 16 and measured their Electroencephalography (EEG signals. Analyses revealed that a brief in-situ restorative nature experience may induce more efficient and stronger brain connectivity with enhanced small-world properties compared with a stressful urban experience. The enhanced small-world properties were found to be correlated with “coherent” experience measured by Perceived Restorativeness Scale (PRS. Exposure to nature also induces stronger long-term correlated activity across different brain regions with a right lateralization. These findings may advance our understanding of the functional activities during in-situ environmental exposures and imply that a nature or nature-like environment may potentially benefit cognitive processes and mental well-being.

  11. [11C]TASP457, a novel PET ligand for histamine H3 receptors in human brain

    International Nuclear Information System (INIS)

    Kimura, Yasuyuki; Seki, Chie; Ikoma, Yoko; Ichise, Masanori; Kawamura, Kazunori; Takahata, Keisuke; Moriguchi, Sho; Nagashima, Tomohisa; Ishii, Tatsuya; Kitamura, Soichiro; Niwa, Fumitoshi; Endo, Hironobu; Yamada, Makiko; Higuchi, Makoto; Zhang, Ming-Rong; Suhara, Tetsuya

    2016-01-01

    The histamine H 3 receptors are presynaptic neuroreceptors that inhibit the release of histamine and other neurotransmitters. The receptors are considered a drug target for sleep disorders and neuropsychiatric disorders with cognitive decline. We developed a novel PET ligand for the H 3 receptors, [ 11 C]TASP0410457 ([ 11 C]TASP457), with high affinity, selectivity and favorable kinetic properties in the monkey, and evaluated its kinetics and radiation safety profile for quantifying the H 3 receptors in human brain. Ten healthy men were scanned for 120 min with a PET scanner for brain quantification and three healthy men were scanned for radiation dosimetry after injection of 386 ± 6.2 MBq and 190 ± 7.5 MBq of [ 11 C]TASP457, respectively. For brain quantification, arterial blood sampling and metabolite analysis were performed using high-performance liquid chromatography. Distribution volumes (V T ) in brain regions were determined by compartment and graphical analyses using the Logan plot and Ichise multilinear analysis (MA1). For dosimetry, radiation absorbed doses were estimated using the Medical Internal Radiation Dose scheme. [ 11 C]TASP457 PET showed high uptake (standardized uptake values in the range of about 3 - 6) in the brain and fast washout in cortical regions and slow washout in the pallidum. The two-tissue compartment model and graphical analyses estimated V T with excellent identification using 60-min scan data (about 16 mL/cm 3 in the pallidum, 9 - 14 in the basal ganglia, 6 - 9 in cortical regions, and 5 in the pons), which represents the known distribution of histamine H 3 receptors. For parametric imaging, MA1 is recommended because of minimal underestimation with small intersubject variability. The organs with the highest radiation doses were the pancreas, kidneys, and liver. The effective dose delivered by [ 11 C]TASP457 was 6.9 μSv/MBq. [ 11 C]TASP457 is a useful novel PET ligand for the investigation of the density of histamine H 3

  12. Analysis of a human brain transcriptome map

    Directory of Open Access Journals (Sweden)

    Greene Jonathan R

    2002-04-01

    Full Text Available Abstract Background Genome wide transcriptome maps can provide tools to identify candidate genes that are over-expressed or silenced in certain disease tissue and increase our understanding of the structure and organization of the genome. Expressed Sequence Tags (ESTs from the public dbEST and proprietary Incyte LifeSeq databases were used to derive a transcript map in conjunction with the working draft assembly of the human genome sequence. Results Examination of ESTs derived from brain tissues (excluding brain tumor tissues suggests that these genes are distributed on chromosomes in a non-random fashion. Some regions on the genome are dense with brain-enriched genes while some regions lack brain-enriched genes, suggesting a significant correlation between distribution of genes along the chromosome and tissue type. ESTs from brain tumor tissues have also been mapped to the human genome working draft. We reveal that some regions enriched in brain genes show a significant decrease in gene expression in brain tumors, and, conversely that some regions lacking in brain genes show an increased level of gene expression in brain tumors. Conclusions This report demonstrates a novel approach for tissue specific transcriptome mapping using EST-based quantitative assessment.

  13. Small-world human brain networks: Perspectives and challenges.

    Science.gov (United States)

    Liao, Xuhong; Vasilakos, Athanasios V; He, Yong

    2017-06-01

    Modelling the human brain as a complex network has provided a powerful mathematical framework to characterize the structural and functional architectures of the brain. In the past decade, the combination of non-invasive neuroimaging techniques and graph theoretical approaches enable us to map human structural and functional connectivity patterns (i.e., connectome) at the macroscopic level. One of the most influential findings is that human brain networks exhibit prominent small-world organization. Such a network architecture in the human brain facilitates efficient information segregation and integration at low wiring and energy costs, which presumably results from natural selection under the pressure of a cost-efficiency balance. Moreover, the small-world organization undergoes continuous changes during normal development and ageing and exhibits dramatic alterations in neurological and psychiatric disorders. In this review, we survey recent advances regarding the small-world architecture in human brain networks and highlight the potential implications and applications in multidisciplinary fields, including cognitive neuroscience, medicine and engineering. Finally, we highlight several challenging issues and areas for future research in this rapidly growing field. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Distinguishing rhythmic from non-rhythmic brain activity during rest in healthy neurocognitive aging.

    Science.gov (United States)

    Caplan, Jeremy B; Bottomley, Monica; Kang, Pardeep; Dixon, Roger A

    2015-05-15

    Rhythmic brain activity at low frequencies (healthy neurocognitive aging are mixed. Here we address two reasons conventional spectral analyses may have led to inconsistent results. First, spectral-power measures are compared to a baseline condition; when resting activity is the signal of interest, it is unclear what the baseline should be. Second, conventional methods do not clearly differentiate power due to rhythmic versus non-rhythmic activity. The Better OSCillation detection method (BOSC; Caplan et al., 2001; Whitten et al., 2011) avoids these problems by using the signal's own spectral characteristics as a reference to detect elevations in power lasting a few cycles. We recorded electroencephalographic (EEG) signal during rest, alternating eyes open and closed, in healthy younger (18-25 years) and older (60-74 years) participants. Topographic plots suggested the conventional and BOSC analyses measured different sources of activity, particularly at frequencies, like delta (1-4Hz), at which rhythms are sporadic; topographies were more similar in the 8-12Hz alpha band. There was little theta-band activity meeting the BOSC method's criteria, suggesting prior findings of theta power in healthy aging may reflect non-rhythmic signal. In contrast, delta oscillations were present at higher levels than theta in both age groups. In summary, applying strict and standardized criteria for rhythmicity, slow rhythms appear present in the resting brain at delta and alpha, but not theta frequencies, and appear unchanged in healthy aging. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Increased expression of aquaporin-4 in human traumatic brain injury and brain tumors

    Institute of Scientific and Technical Information of China (English)

    HuaHu; Wei-PingZhang; LeiZhang; ZhongChen; Er-QingWei

    2004-01-01

    Aquaporin-4 (AQP4) is one of the aquaporins (AQPs), a water channel family. In the brain, AQP4 is expressed in astroeyte foot processes, and plays an important role in water homeostasis and in the formation of brain edema. In our study, AQP4 expression in human brain specimens from patients with traumatic brain injury or different brain tumors was detected

  16. Astrocyte calcium signal and gliotransmission in human brain tissue.

    Science.gov (United States)

    Navarrete, Marta; Perea, Gertrudis; Maglio, Laura; Pastor, Jesús; García de Sola, Rafael; Araque, Alfonso

    2013-05-01

    Brain function is recognized to rely on neuronal activity and signaling processes between neurons, whereas astrocytes are generally considered to play supportive roles for proper neuronal function. However, accumulating evidence indicates that astrocytes sense and control neuronal and synaptic activity, indicating that neuron and astrocytes reciprocally communicate. While this evidence has been obtained in experimental animal models, whether this bidirectional signaling between astrocytes and neurons occurs in human brain remains unknown. We have investigated the existence of astrocyte-neuron communication in human brain tissue, using electrophysiological and Ca(2+) imaging techniques in slices of the cortex and hippocampus obtained from biopsies from epileptic patients. Cortical and hippocampal human astrocytes displayed spontaneous Ca(2+) elevations that were independent of neuronal activity. Local application of transmitter receptor agonists or nerve electrical stimulation transiently elevated Ca(2+) in astrocytes, indicating that human astrocytes detect synaptic activity and respond to synaptically released neurotransmitters, suggesting the existence of neuron-to-astrocyte communication in human brain tissue. Electrophysiological recordings in neurons revealed the presence of slow inward currents (SICs) mediated by NMDA receptor activation. The frequency of SICs increased after local application of ATP that elevated astrocyte Ca(2+). Therefore, human astrocytes are able to release the gliotransmitter glutamate, which affect neuronal excitability through activation of NMDA receptors in neurons. These results reveal the existence of reciprocal signaling between neurons and astrocytes in human brain tissue, indicating that astrocytes are relevant in human neurophysiology and are involved in human brain function.

  17. Scale-free functional connectivity of the brain is maintained in anesthetized healthy participants but not in patients with unresponsive wakefulness syndrome.

    Directory of Open Access Journals (Sweden)

    Xiaolin Liu

    Full Text Available Loss of consciousness in anesthetized healthy participants and in patients with unresponsive wakefulness syndrome (UWS is associated with substantial alterations of functional connectivity across large-scale brain networks. Yet, a prominent distinction between the two cases is that after anesthesia, brain connectivity and consciousness are spontaneously restored, whereas in patients with UWS this restoration fails to occur, but why? A possible explanation is that the self-organizing capability of the brain is compromised in patients with UWS but not in healthy participants undergoing anesthesia. According to the theory of self-organized criticality, many natural complex systems, including the brain, evolve spontaneously to a critical state wherein system behaviors display spatial and/or temporal scale-invariant characteristics. Here we tested the hypothesis that the scale-free property of brain network organization is in fact fundamentally different between anesthetized healthy participants and UWS patients. We introduced a novel, computationally efficient approach to determine anatomical-functional parcellation of the whole-brain network at increasingly finer spatial scales. We found that in healthy participants, scale-free distributions of node size and node degree were present across wakefulness, propofol sedation, and recovery, despite significant propofol-induced functional connectivity changes. In patients with UWS, the scale-free distribution of node degree was absent, reflecting a fundamental difference between the two groups in adaptive reconfiguration of functional interaction between network components. The maintenance of scale-invariance across propofol sedation in healthy participants suggests the presence of persistent, on-going self-organizing processes to a critical state--a capacity that is compromised in patients with UWS.

  18. Multilayer modeling and analysis of human brain networks

    Science.gov (United States)

    2017-01-01

    Abstract Understanding how the human brain is structured, and how its architecture is related to function, is of paramount importance for a variety of applications, including but not limited to new ways to prevent, deal with, and cure brain diseases, such as Alzheimer’s or Parkinson’s, and psychiatric disorders, such as schizophrenia. The recent advances in structural and functional neuroimaging, together with the increasing attitude toward interdisciplinary approaches involving computer science, mathematics, and physics, are fostering interesting results from computational neuroscience that are quite often based on the analysis of complex network representation of the human brain. In recent years, this representation experienced a theoretical and computational revolution that is breaching neuroscience, allowing us to cope with the increasing complexity of the human brain across multiple scales and in multiple dimensions and to model structural and functional connectivity from new perspectives, often combined with each other. In this work, we will review the main achievements obtained from interdisciplinary research based on magnetic resonance imaging and establish de facto, the birth of multilayer network analysis and modeling of the human brain. PMID:28327916

  19. High-resolution imaging of the large non-human primate brain using microPET: a feasibility study

    Science.gov (United States)

    Naidoo-Variawa, S.; Hey-Cunningham, A. J.; Lehnert, W.; Kench, P. L.; Kassiou, M.; Banati, R.; Meikle, S. R.

    2007-11-01

    The neuroanatomy and physiology of the baboon brain closely resembles that of the human brain and is well suited for evaluating promising new radioligands in non-human primates by PET and SPECT prior to their use in humans. These studies are commonly performed on clinical scanners with 5 mm spatial resolution at best, resulting in sub-optimal images for quantitative analysis. This study assessed the feasibility of using a microPET animal scanner to image the brains of large non-human primates, i.e. papio hamadryas (baboon) at high resolution. Factors affecting image accuracy, including scatter, attenuation and spatial resolution, were measured under conditions approximating a baboon brain and using different reconstruction strategies. Scatter fraction measured 32% at the centre of a 10 cm diameter phantom. Scatter correction increased image contrast by up to 21% but reduced the signal-to-noise ratio. Volume resolution was superior and more uniform using maximum a posteriori (MAP) reconstructed images (3.2-3.6 mm3 FWHM from centre to 4 cm offset) compared to both 3D ordered subsets expectation maximization (OSEM) (5.6-8.3 mm3) and 3D reprojection (3DRP) (5.9-9.1 mm3). A pilot 18F-2-fluoro-2-deoxy-d-glucose ([18F]FDG) scan was performed on a healthy female adult baboon. The pilot study demonstrated the ability to adequately resolve cortical and sub-cortical grey matter structures in the baboon brain and improved contrast when images were corrected for attenuation and scatter and reconstructed by MAP. We conclude that high resolution imaging of the baboon brain with microPET is feasible with appropriate choices of reconstruction strategy and corrections for degrading physical effects. Further work to develop suitable correction algorithms for high-resolution large primate imaging is warranted.

  20. High-resolution imaging of the large non-human primate brain using microPET: a feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Naidoo-Variawa, S [Discipline of Medical Radiation Sciences, Faculty of Health Sciences, University of Sydney, PO Box 170, Lidcombe, NSW 1825, Sydney (Australia); Hey-Cunningham, A J [Discipline of Medical Radiation Sciences, Faculty of Health Sciences, University of Sydney, PO Box 170, Lidcombe, NSW 1825, Sydney (Australia); Lehnert, W [Discipline of Medical Radiation Sciences, Faculty of Health Sciences, University of Sydney, PO Box 170, Lidcombe, NSW 1825, Sydney (Australia); Kench, P L [Discipline of Medical Radiation Sciences, Faculty of Health Sciences, University of Sydney, PO Box 170, Lidcombe, NSW 1825, Sydney (Australia); Kassiou, M [Discipline of Medical Radiation Sciences, Faculty of Health Sciences, University of Sydney, PO Box 170, Lidcombe, NSW 1825, Sydney (Australia); Banati, R [Discipline of Medical Radiation Sciences, Faculty of Health Sciences, University of Sydney, PO Box 170, Lidcombe, NSW 1825, Sydney (Australia); Meikle, S R [Discipline of Medical Radiation Sciences, Faculty of Health Sciences, University of Sydney, PO Box 170, Lidcombe, NSW 1825, Sydney (Australia)

    2007-11-21

    The neuroanatomy and physiology of the baboon brain closely resembles that of the human brain and is well suited for evaluating promising new radioligands in non-human primates by PET and SPECT prior to their use in humans. These studies are commonly performed on clinical scanners with 5 mm spatial resolution at best, resulting in sub-optimal images for quantitative analysis. This study assessed the feasibility of using a microPET animal scanner to image the brains of large non-human primates, i.e. papio hamadryas (baboon) at high resolution. Factors affecting image accuracy, including scatter, attenuation and spatial resolution, were measured under conditions approximating a baboon brain and using different reconstruction strategies. Scatter fraction measured 32% at the centre of a 10 cm diameter phantom. Scatter correction increased image contrast by up to 21% but reduced the signal-to-noise ratio. Volume resolution was superior and more uniform using maximum a posteriori (MAP) reconstructed images (3.2-3.6 mm{sup 3} FWHM from centre to 4 cm offset) compared to both 3D ordered subsets expectation maximization (OSEM) (5.6-8.3 mm{sup 3}) and 3D reprojection (3DRP) (5.9-9.1 mm{sup 3}). A pilot {sup 18}F-2-fluoro-2-deoxy-d-glucose ([{sup 18}F]FDG) scan was performed on a healthy female adult baboon. The pilot study demonstrated the ability to adequately resolve cortical and sub-cortical grey matter structures in the baboon brain and improved contrast when images were corrected for attenuation and scatter and reconstructed by MAP. We conclude that high resolution imaging of the baboon brain with microPET is feasible with appropriate choices of reconstruction strategy and corrections for degrading physical effects. Further work to develop suitable correction algorithms for high-resolution large primate imaging is warranted.

  1. [Influence of mastication on the amount of hemoglobin in human brain tissue].

    Science.gov (United States)

    Sasaki, A

    2001-03-01

    The purpose of this study was to investigate the influence of mastication on the amount of hemoglobin in human brain tissue. Nine healthy volunteers (6 males and 3 females) participated in this study. They underwent two tasks: 1) at rest, 2) gum-chewing. In seven of the nine (4 males and 3 females), experimental occlusal interference was applied to the first molar of the mandibule on the habitual masticatory side. They underwent the gum-chewing task. To evaluate the amount of hemoglobin, both the hemoglobin oxygenation state and blood volume during gum-chewing were measured in the frontal region, using near-infrared spectroscopy. The amount of total-hemoglobin (blood volume) and oxyhemoglobin of subjects significantly increased during gum-chewing (p experimental occlusal interference was imposed on the subject, the amount of them significantly decreased compared with subjects without experimental occlusal interference (p < 0.05). The results suggested that increases of cerebral blood flow in the frontal region were not due to the mandibular movement, and that human brain activity caused by mastication was not only in the cortical masticatory area but also in the frontal region.

  2. Brain shape in human microcephalics and Homo floresiensis.

    Science.gov (United States)

    Falk, Dean; Hildebolt, Charles; Smith, Kirk; Morwood, M J; Sutikna, Thomas; Jatmiko; Saptomo, E Wayhu; Imhof, Herwig; Seidler, Horst; Prior, Fred

    2007-02-13

    Because the cranial capacity of LB1 (Homo floresiensis) is only 417 cm(3), some workers propose that it represents a microcephalic Homo sapiens rather than a new species. This hypothesis is difficult to assess, however, without a clear understanding of how brain shape of microcephalics compares with that of normal humans. We compare three-dimensional computed tomographic reconstructions of the internal braincases (virtual endocasts that reproduce details of external brain morphology, including cranial capacities and shape) from a sample of 9 microcephalic humans and 10 normal humans. Discriminant and canonical analyses are used to identify two variables that classify normal and microcephalic humans with 100% success. The classification functions classify the virtual endocast from LB1 with normal humans rather than microcephalics. On the other hand, our classification functions classify a pathological H. sapiens specimen that, like LB1, represents an approximately 3-foot-tall adult female and an adult Basuto microcephalic woman that is alleged to have an endocast similar to LB1's with the microcephalic humans. Although microcephaly is genetically and clinically variable, virtual endocasts from our highly heterogeneous sample share similarities in protruding and proportionately large cerebella and relatively narrow, flattened orbital surfaces compared with normal humans. These findings have relevance for hypotheses regarding the genetic substrates of hominin brain evolution and may have medical diagnostic value. Despite LB1's having brain shape features that sort it with normal humans rather than microcephalics, other shape features and its small brain size are consistent with its assignment to a separate species.

  3. Human brain networks function in connectome-specific harmonic waves.

    Science.gov (United States)

    Atasoy, Selen; Donnelly, Isaac; Pearson, Joel

    2016-01-21

    A key characteristic of human brain activity is coherent, spatially distributed oscillations forming behaviour-dependent brain networks. However, a fundamental principle underlying these networks remains unknown. Here we report that functional networks of the human brain are predicted by harmonic patterns, ubiquitous throughout nature, steered by the anatomy of the human cerebral cortex, the human connectome. We introduce a new technique extending the Fourier basis to the human connectome. In this new frequency-specific representation of cortical activity, that we call 'connectome harmonics', oscillatory networks of the human brain at rest match harmonic wave patterns of certain frequencies. We demonstrate a neural mechanism behind the self-organization of connectome harmonics with a continuous neural field model of excitatory-inhibitory interactions on the connectome. Remarkably, the critical relation between the neural field patterns and the delicate excitation-inhibition balance fits the neurophysiological changes observed during the loss and recovery of consciousness.

  4. Gender differences in healthy aging and Alzheimer's Dementia: A 18 F-FDG-PET study of brain and cognitive reserve.

    Science.gov (United States)

    Malpetti, Maura; Ballarini, Tommaso; Presotto, Luca; Garibotto, Valentina; Tettamanti, Marco; Perani, Daniela

    2017-08-01

    Cognitive reserve (CR) and brain reserve (BR) are protective factors against age-associated cognitive decline and neurodegenerative disorders. Very limited evidence exists about gender effects on brain aging and on the effect of CR on brain modulation in healthy aging and Alzheimer's Dementia (AD). We investigated gender differences in brain metabolic activity and resting-state network connectivity, as measured by 18 F-FDG-PET, in healthy aging and AD, also considering the effects of education and occupation. The clinical and imaging data were retrieved from large datasets of healthy elderly subjects (HE) (225) and AD patients (282). In HE, males showed more extended age-related reduction of brain metabolism than females in frontal medial cortex. We also found differences in brain modulation as metabolic increases induced by education and occupation, namely in posterior associative cortices in HE males and in the anterior limbic-affective and executive networks in HE females. In AD patients, the correlations between education and occupation levels and brain hypometabolism showed gender differences, namely a posterior temporo-parietal association in males and a frontal and limbic association in females, indicating the involvement of different networks. Finally, the metabolic connectivity in both HE and AD aligned with these results, suggesting greater efficiency in the posterior default mode network for males, and in the anterior frontal executive network for females. The basis of these brain gender differences in both aging and AD, obtained exploring cerebral metabolism, metabolic connectivity and the effects of education and occupation, is likely at the intersection between biological and sociodemographic factors. Hum Brain Mapp 38:4212-4227, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  5. Topological organization of functional brain networks in healthy children: differences in relation to age, sex, and intelligence.

    Science.gov (United States)

    Wu, Kai; Taki, Yasuyuki; Sato, Kazunori; Hashizume, Hiroshi; Sassa, Yuko; Takeuchi, Hikaru; Thyreau, Benjamin; He, Yong; Evans, Alan C; Li, Xiaobo; Kawashima, Ryuta; Fukuda, Hiroshi

    2013-01-01

    Recent studies have demonstrated developmental changes of functional brain networks derived from functional connectivity using graph theoretical analysis, which has been rapidly translated to studies of brain network organization. However, little is known about sex- and IQ-related differences in the topological organization of functional brain networks during development. In this study, resting-state fMRI (rs-fMRI) was used to map the functional brain networks in 51 healthy children. We then investigated the effects of age, sex, and IQ on economic small-world properties and regional nodal properties of the functional brain networks. At a global level of whole networks, we found significant age-related increases in the small-worldness and local efficiency, significant higher values of the global efficiency in boys compared with girls, and no significant IQ-related difference. Age-related increases in the regional nodal properties were found predominately in the frontal brain regions, whereas the parietal, temporal, and occipital brain regions showed age-related decreases. Significant sex-related differences in the regional nodal properties were found in various brain regions, primarily related to the default mode, language, and vision systems. Positive correlations between IQ and the regional nodal properties were found in several brain regions related to the attention system, whereas negative correlations were found in various brain regions primarily involved in the default mode, emotion, and language systems. Together, our findings of the network topology of the functional brain networks in healthy children and its relationship with age, sex, and IQ bring new insights into the understanding of brain maturation and cognitive development during childhood and adolescence.

  6. Topological organization of functional brain networks in healthy children: differences in relation to age, sex, and intelligence.

    Directory of Open Access Journals (Sweden)

    Kai Wu

    Full Text Available Recent studies have demonstrated developmental changes of functional brain networks derived from functional connectivity using graph theoretical analysis, which has been rapidly translated to studies of brain network organization. However, little is known about sex- and IQ-related differences in the topological organization of functional brain networks during development. In this study, resting-state fMRI (rs-fMRI was used to map the functional brain networks in 51 healthy children. We then investigated the effects of age, sex, and IQ on economic small-world properties and regional nodal properties of the functional brain networks. At a global level of whole networks, we found significant age-related increases in the small-worldness and local efficiency, significant higher values of the global efficiency in boys compared with girls, and no significant IQ-related difference. Age-related increases in the regional nodal properties were found predominately in the frontal brain regions, whereas the parietal, temporal, and occipital brain regions showed age-related decreases. Significant sex-related differences in the regional nodal properties were found in various brain regions, primarily related to the default mode, language, and vision systems. Positive correlations between IQ and the regional nodal properties were found in several brain regions related to the attention system, whereas negative correlations were found in various brain regions primarily involved in the default mode, emotion, and language systems. Together, our findings of the network topology of the functional brain networks in healthy children and its relationship with age, sex, and IQ bring new insights into the understanding of brain maturation and cognitive development during childhood and adolescence.

  7. Measurement of P-31 MR relaxation times and concentrations in human brain and brain tumors

    International Nuclear Information System (INIS)

    Roth, K.; Naruse, S.; Hubesch, B.; Gober, I.; Lawry, T.; Boska, M.; Matson, G.B.; Weiner, M.W.

    1987-01-01

    Measurements of high-energy phosphates and pH were made in human brain and brain tumors using P-31 MR imaging. Using a Philips Gyroscan 1.5-T MRMRS, MR images were used to select a cuboidal volume of interest and P-31 MR spectra were obtained from that volume using the ISIS technique. An external quantitation standard was used. T 1 s were measured by inversion recovery. Quantitative values for metabolites were calculated using B 1 field plot of the head coil. The results for normal brain phosphates are as follows; adenosine triphosphate, 2.2 mM; phosphocreatin, 5.3 mM; inorganic phosphate, 1.6 mM. Preliminary studies with human brain tumors show a decrease of all phosphate compounds. These experiments are the first to quantitate metabolites in human brain

  8. "Messing with the Mind: Evolutionary Challenges to Human Brain Augmentation

    Directory of Open Access Journals (Sweden)

    ARTHUR eSANIOTIS

    2014-09-01

    Full Text Available The issue of brain augmentation has received considerable scientific attention over the last two decades. A key factor to brain augmentation that has been widely overlooked are the complex evolutionary processes which have taken place in evolving the human brain to its current state of functioning. Like other bodily organs, the human brain has been subject to the forces of biological adaptation. The structure and function of the brain, is very complex and only now we are beginning to understand some of the basic concepts of cognition. Therefore, this article proposes that brain-machine interfacing and nootropics are not going to produce augmented brains because we do not understand enough about how evolutionary pressures have informed the neural networks which support human cognitive faculties.

  9. Loss of Brain Aerobic Glycolysis in Normal Human Aging.

    Science.gov (United States)

    Goyal, Manu S; Vlassenko, Andrei G; Blazey, Tyler M; Su, Yi; Couture, Lars E; Durbin, Tony J; Bateman, Randall J; Benzinger, Tammie L-S; Morris, John C; Raichle, Marcus E

    2017-08-01

    The normal aging human brain experiences global decreases in metabolism, but whether this affects the topography of brain metabolism is unknown. Here we describe PET-based measurements of brain glucose uptake, oxygen utilization, and blood flow in cognitively normal adults from 20 to 82 years of age. Age-related decreases in brain glucose uptake exceed that of oxygen use, resulting in loss of brain aerobic glycolysis (AG). Whereas the topographies of total brain glucose uptake, oxygen utilization, and blood flow remain largely stable with age, brain AG topography changes significantly. Brain regions with high AG in young adults show the greatest change, as do regions with prolonged developmental transcriptional features (i.e., neoteny). The normal aging human brain thus undergoes characteristic metabolic changes, largely driven by global loss and topographic changes in brain AG. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Glucocorticoid receptor gene expression and promoter CpG modifications throughout the human brain.

    Science.gov (United States)

    Cao-Lei, Lei; Suwansirikul, Songkiet; Jutavijittum, Prapan; Mériaux, Sophie B; Turner, Jonathan D; Muller, Claude P

    2013-11-01

    Glucocorticoids and the glucocorticoid (GR) and mineralocorticoid (MR) receptors have been implicated in many processes, particularly in negative feedback regulation of the hypothalamic-pituitary-adrenal axis. Epigenetically programmed GR alternative promoter usage underlies transcriptional control of GR levels, generation of GR 3' splice variants, and the overall GC response in the brain. No detailed analysis of GR first exons or GR transcript variants throughout the human brain has been reported. Therefore we investigated post mortem tissues from 28 brain regions of 5 individuals. GR first exons were expressed throughout the healthy human brain with no region-specific usage patterns. First exon levels were highly inter-correlated suggesting that they are co-regulated. GR 3' splice variants (GRα and GR-P) were equally distributed in all regions, and GRβ expression was always low. GR/MR ratios showed significant differences between the 28 tissues with the highest ratio in the pituitary gland. Modification levels of individual CpG dinucleotides, including 5-mC and 5-hmC, in promoters 1D, 1E, 1F, and 1H were low, and diffusely clustered; despite significant heterogeneity between the donors. In agreement with this clustering, sum modification levels rather than individual CpG modifications correlated with GR expression. Two-way ANOVA showed that this sum modification was both promoter and brain region specific, but that there was however no promoter*tissue interaction. The heterogeneity between donors may however hide such an interaction. In both promoters 1F and 1H modification levels correlated with GRα expression suggesting that 5-mC and 5-hmC play an important role in fine tuning GR expression levels throughout the brain. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Electrical stimulation of the human brain: perceptual and behavioral phenomena reported in the old and new literature

    Directory of Open Access Journals (Sweden)

    Aslihan Selimbeyoglu

    2010-05-01

    Full Text Available In this review, we summarize the subjective experiential phenomena and behavioral changes that are caused by electrical stimulation of the cerebral cortex or subcortical nuclei in awake and conscious human subjects. Our comprehensive review contains a detailed summary of the data obtained from electrical brain stimulation (EBS in humans in the last 100 years. Findings from the EBS studies may provide an additional layer of information about the neural correlates of cognition and behavior in healthy human subjects, or the neuroanatomy of illusions and hallucinations in patients with psychosis, and the anatomy of seizure signs and symptoms in patients with epilepsy. In addition to a comprehensive overview of published reports in the last hundred years, we discuss some of the fundamental concepts, issues, and remaining questions that have defined the field of EBS. We also review the current state of knowledge about the mechanism of action of EBS suggesting that the modulation of activity within a localized, but distributed, neuroanatomical network might explain the perceptual and behavioral phenomena that are reported during focal electrical stimulation of the human brain.

  12. The brain's silent messenger: using selective attention to decode human thought for brain-based communication.

    Science.gov (United States)

    Naci, Lorina; Cusack, Rhodri; Jia, Vivian Z; Owen, Adrian M

    2013-05-29

    The interpretation of human thought from brain activity, without recourse to speech or action, is one of the most provoking and challenging frontiers of modern neuroscience. In particular, patients who are fully conscious and awake, yet, due to brain damage, are unable to show any behavioral responsivity, expose the limits of the neuromuscular system and the necessity for alternate forms of communication. Although it is well established that selective attention can significantly enhance the neural representation of attended sounds, it remains, thus far, untested as a response modality for brain-based communication. We asked whether its effect could be reliably used to decode answers to binary (yes/no) questions. Fifteen healthy volunteers answered questions (e.g., "Do you have brothers or sisters?") in the fMRI scanner, by selectively attending to the appropriate word ("yes" or "no"). Ninety percent of the answers were decoded correctly based on activity changes within the attention network. The majority of volunteers conveyed their answers with less than 3 min of scanning, suggesting that this technique is suited for communication in a reasonable amount of time. Formal comparison with the current best-established fMRI technique for binary communication revealed improved individual success rates and scanning times required to detect responses. This novel fMRI technique is intuitive, easy to use in untrained participants, and reliably robust within brief scanning times. Possible applications include communication with behaviorally nonresponsive patients.

  13. Dynamics of chaotic maps for modelling the multifractal spectrum of human brain Diffusion Tensor Images

    International Nuclear Information System (INIS)

    Provata, A.; Katsaloulis, P.; Verganelakis, D.A.

    2012-01-01

    Highlights: ► Calculation of human brain multifractal spectra. ► Calculations are based on Diffusion Tensor MRI Images. ► Spectra are modelled by coupled Ikeda map dynamics. ► Coupled lattice Ikeda maps model well only positive multifractal spectra. ► Appropriately modified coupled lattice Ikeda maps give correct spectra. - Abstract: The multifractal spectra of 3d Diffusion Tensor Images (DTI) obtained by magnetic resonance imaging of the human brain are studied. They are shown to deviate substantially from artificial brain images with the same white matter intensity. All spectra, obtained from 12 healthy subjects, show common characteristics indicating non-trivial moments of the intensity. To model the spectra the dynamics of the chaotic Ikeda map are used. The DTI multifractal spectra for positive q are best approximated by 3d coupled Ikeda maps in the fully developed chaotic regime. The coupling constants are as small as α = 0.01. These results reflect not only the white tissue non-trivial architectural complexity in the human brain, but also demonstrate the presence and importance of coupling between neuron axons. The architectural complexity is also mirrored by the deviations in the negative q-spectra, where the rare events dominate. To obtain a good agreement in the DTI negative q-spectrum of the brain with the Ikeda dynamics, it is enough to slightly modify the most rare events of the coupled Ikeda distributions. The representation of Diffusion Tensor Images with coupled Ikeda maps is not unique: similar conclusions are drawn when other chaotic maps (Tent, Logistic or Henon maps) are employed in the modelling of the neuron axons network.

  14. Human-like brain hemispheric dominance in birdsong learning.

    Science.gov (United States)

    Moorman, Sanne; Gobes, Sharon M H; Kuijpers, Maaike; Kerkhofs, Amber; Zandbergen, Matthijs A; Bolhuis, Johan J

    2012-07-31

    Unlike nonhuman primates, songbirds learn to vocalize very much like human infants acquire spoken language. In humans, Broca's area in the frontal lobe and Wernicke's area in the temporal lobe are crucially involved in speech production and perception, respectively. Songbirds have analogous brain regions that show a similar neural dissociation between vocal production and auditory perception and memory. In both humans and songbirds, there is evidence for lateralization of neural responsiveness in these brain regions. Human infants already show left-sided dominance in their brain activation when exposed to speech. Moreover, a memory-specific left-sided dominance in Wernicke's area for speech perception has been demonstrated in 2.5-mo-old babies. It is possible that auditory-vocal learning is associated with hemispheric dominance and that this association arose in songbirds and humans through convergent evolution. Therefore, we investigated whether there is similar song memory-related lateralization in the songbird brain. We exposed male zebra finches to tutor or unfamiliar song. We found left-sided dominance of neuronal activation in a Broca-like brain region (HVC, a letter-based name) of juvenile and adult zebra finch males, independent of the song stimulus presented. In addition, juvenile males showed left-sided dominance for tutor song but not for unfamiliar song in a Wernicke-like brain region (the caudomedial nidopallium). Thus, left-sided dominance in the caudomedial nidopallium was specific for the song-learning phase and was memory-related. These findings demonstrate a remarkable neural parallel between birdsong and human spoken language, and they have important consequences for our understanding of the evolution of auditory-vocal learning and its neural mechanisms.

  15. The naturally occurring α-tocopherol stereoisomer RRR-α-tocopherol is predominant in the human infant brain

    DEFF Research Database (Denmark)

    Kuchan, J M; Jensen, Søren Krogh; Johnson, E J

    2016-01-01

    α-Tocopherol is the principal source of vitamin E, an essential nutrient that plays a crucial role in maintaining healthy brain function. Infant formula is routinely supplemented with synthetic α-tocopherol, a racaemic mixture of eight stereoisomers with less bioactivity than the natural...... stereoisomer RRR-α-tocopherol. α-Tocopherol stereoisomer profiles have not been previously reported in the human brain. In the present study, we analysed total α-tocopherol and α-tocopherol stereoisomers in the frontal cortex (FC), hippocampus (HPC) and visual cortex (VC) of infants (n 36) who died of sudden...... infant death syndrome or other conditions. RRR-α-tocopherol was the predominant stereoisomer in all brain regions (Ptocopherol (5–17 μg/g). Mean RRR-α-tocopherol concentrations in FC, HPC and VC were 10·5, 6·8 and 5·5 μg...

  16. Intranasal insulin modulates intrinsic reward and prefrontal circuitry of the human brain in lean women.

    Science.gov (United States)

    Kullmann, Stephanie; Frank, Sabine; Heni, Martin; Ketterer, Caroline; Veit, Ralf; Häring, Hans-Ulrich; Fritsche, Andreas; Preissl, Hubert

    2013-01-01

    There is accumulating evidence that food consumption is controlled by a wide range of brain circuits outside of the homeostatic system. Activation in these brain circuits may override the homeostatic system and also contribute to the enormous increase of obesity. However, little is known about the influence of hormonal signals on the brain's non-homeostatic system. Thus, selective insulin action in the brain was investigated by using intranasal application. We performed 'resting-state' functional magnetic resonance imaging in 17 healthy lean female subjects to assess intrinsic brain activity by fractional amplitude of low-frequency fluctuations (fALFF) before, 30 and 90 min after application of intranasal insulin. Here, we showed that insulin modulates intrinsic brain activity in the hypothalamus and orbitofrontal cortex. Furthermore, we could show that the prefrontal and anterior cingulate cortex response to insulin is associated with body mass index. This demonstrates that hormonal signals as insulin may reduce food intake by modifying the reward and prefrontal circuitry of the human brain, thereby potentially decreasing the rewarding properties of food. Due to the alarming increase in obesity worldwide, it is of great importance to identify neural mechanisms of interaction between the homeostatic and non-homeostatic system to generate new targets for obesity therapy. Copyright © 2012 S. Karger AG, Basel.

  17. Age dependent white matter lesions and brain volume changes in healthy volunteers

    DEFF Research Database (Denmark)

    Christiansen, P; Larsson, H B; Thomsen, C

    1994-01-01

    The brain of 142 healthy volunteers aged 21 to 80 years were investigated using MR imaging. The number and size of the white matter hyperintensity lesions (WMHL) in the cerebral hemispheres were determined. Furthermore, the volume of the cerebral hemispheres and of the lateral ventricles was meas......The brain of 142 healthy volunteers aged 21 to 80 years were investigated using MR imaging. The number and size of the white matter hyperintensity lesions (WMHL) in the cerebral hemispheres were determined. Furthermore, the volume of the cerebral hemispheres and of the lateral ventricles...... was measured. An almost linear increase in the number of volunteers with WMHL was seen with aging for males and females. With aging a significant decrease in the volume of the cerebral hemispheres was found for males, and a significant increase in the volume of the lateral ventricles was seen for both males...... and females. Our results suggest that with aging central atrophy increases more (relatively) than cortical atrophy. No correlation was found between the decreasing volume of the cerebral hemispheres and the increasing number and size of WMHL, nor between the increasing volume of the lateral ventricles...

  18. Hemodynamic measurements in deep brain tissues of humans by near-infrared time-resolved spectroscopy

    Science.gov (United States)

    Suzuki, Hiroaki; Oda, Motoki; Yamaki, Etsuko; Suzuki, Toshihiko; Yamashita, Daisuke; Yoshimoto, Kenji; Homma, Shu; Yamashita, Yutaka

    2014-03-01

    Using near-infrared time-resolved spectroscopy (TRS), we measured the human head in transmittance mode to obtain the optical properties, tissue oxygenation, and hemodynamics of deep brain tissues in 50 healthy adult volunteers. The right ear canal was irradiated with 3-wavelengths of pulsed light (760, 795, and 835nm), and the photons passing through the human head were collected at the left ear canal. Optical signals with sufficient intensity could be obtained from 46 of the 50 volunteers. By analyzing the temporal profiles based on the photon diffusion theory, we successfully obtained absorption coefficients for each wavelength. The levels of oxygenated hemoglobin (HbO2), deoxygenated hemoglobin (Hb), total hemoglobin (tHb), and tissue oxygen saturation (SO2) were then determined by referring to the hemoglobin spectroscopic data. Compared with the SO2 values for the forehead measurements in reflectance mode, the SO2 values of the transmittance measurements of the human head were approximately 10% lower, and tHb values of the transmittance measurements were always lower than those of the forehead reflectance measurements. Moreover, the level of hemoglobin and the SO2 were strongly correlated between the human head measurements in transmittance mode and the forehead measurements in the reflectance mode, respectively. These results demonstrated a potential application of this TRS system in examining deep brain tissues of humans.

  19. Connectome imaging for mapping human brain pathways.

    Science.gov (United States)

    Shi, Y; Toga, A W

    2017-09-01

    With the fast advance of connectome imaging techniques, we have the opportunity of mapping the human brain pathways in vivo at unprecedented resolution. In this article we review the current developments of diffusion magnetic resonance imaging (MRI) for the reconstruction of anatomical pathways in connectome studies. We first introduce the background of diffusion MRI with an emphasis on the technical advances and challenges in state-of-the-art multi-shell acquisition schemes used in the Human Connectome Project. Characterization of the microstructural environment in the human brain is discussed from the tensor model to the general fiber orientation distribution (FOD) models that can resolve crossing fibers in each voxel of the image. Using FOD-based tractography, we describe novel methods for fiber bundle reconstruction and graph-based connectivity analysis. Building upon these novel developments, there have already been successful applications of connectome imaging techniques in reconstructing challenging brain pathways. Examples including retinofugal and brainstem pathways will be reviewed. Finally, we discuss future directions in connectome imaging and its interaction with other aspects of brain imaging research.

  20. Imaging visual function of the human brain

    International Nuclear Information System (INIS)

    Marg, E.

    1988-01-01

    Imaging of human brain structure and activity with particular reference to visual function is reviewed along with methods of obtaining the data including computed tomographic (CT) scan, magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), and positron emission tomography (PET). The literature is reviewed and the potential for a new understanding of brain visual function is discussed. PET is reviewed from basic physical principles to the most recent visual brain findings with oxygen-15. It is shown that there is a potential for submillimeter localization of visual functions with sequentially different visual stimuli designed for the temporal separation of the responses. Single photon emission computed tomography (SPECT), a less expensive substitute for PET, is also discussed. MRS is covered from basic physical principles to the current state of the art of in vivo biochemical analysis. Future possible clinical applications are discussed. Improved understanding of the functional neural organization of vision and brain will open a window to maps and circuits of human brain function.119 references

  1. Ionising radiation and the developing human brain

    International Nuclear Information System (INIS)

    Schull, W.J.

    1991-01-01

    This article reviews the effects of radiation exposure of the developing human brain. Much of the evidence has come from the prenatally exposed in Hiroshima and Nagasaki. The effects on development age, mental retardation, head size, neuromuscular performance, intelligence tests, school performance and the occurrence of convulsions are discussed. Other topics covered include the biological nature of the damage to the brain, risk estimates in human and problems in radiation protection. (UK)

  2. Increasing cognitive load attenuates right arm swing in healthy human walking

    Science.gov (United States)

    Killeen, Tim; Easthope, Christopher S.; Filli, Linard; Lőrincz, Lilla; Schrafl-Altermatt, Miriam; Brugger, Peter; Linnebank, Michael; Curt, Armin; Zörner, Björn; Bolliger, Marc

    2017-01-01

    Human arm swing looks and feels highly automated, yet it is increasingly apparent that higher centres, including the cortex, are involved in many aspects of locomotor control. The addition of a cognitive task increases arm swing asymmetry during walking, but the characteristics and mechanism of this asymmetry are unclear. We hypothesized that this effect is lateralized and a Stroop word-colour naming task-primarily involving left hemisphere structures-would reduce right arm swing only. We recorded gait in 83 healthy subjects aged 18-80 walking normally on a treadmill and while performing a congruent and incongruent Stroop task. The primary measure of arm swing asymmetry-an index based on both three-dimensional wrist trajectories in which positive values indicate proportionally smaller movements on the right-increased significantly under dual-task conditions in those aged 40-59 and further still in the over-60s, driven by reduced right arm flexion. Right arm swing attenuation appears to be the norm in humans performing a locomotor-cognitive dual-task, confirming a prominent role of the brain in locomotor behaviour. Women under 60 are surprisingly resistant to this effect, revealing unexpected gender differences atop the hierarchical chain of locomotor control.

  3. A Culture-Behavior-Brain Loop Model of Human Development.

    Science.gov (United States)

    Han, Shihui; Ma, Yina

    2015-11-01

    Increasing evidence suggests that cultural influences on brain activity are associated with multiple cognitive and affective processes. These findings prompt an integrative framework to account for dynamic interactions between culture, behavior, and the brain. We put forward a culture-behavior-brain (CBB) loop model of human development that proposes that culture shapes the brain by contextualizing behavior, and the brain fits and modifies culture via behavioral influences. Genes provide a fundamental basis for, and interact with, the CBB loop at both individual and population levels. The CBB loop model advances our understanding of the dynamic relationships between culture, behavior, and the brain, which are crucial for human phylogeny and ontogeny. Future brain changes due to cultural influences are discussed based on the CBB loop model. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Midsagittal Brain Variation among Non-Human Primates: Insights into Evolutionary Expansion of the Human Precuneus.

    Science.gov (United States)

    Pereira-Pedro, Ana Sofia; Rilling, James K; Chen, Xu; Preuss, Todd M; Bruner, Emiliano

    2017-01-01

    The precuneus is a major element of the superior parietal lobule, positioned on the medial side of the hemisphere and reaching the dorsal surface of the brain. It is a crucial functional region for visuospatial integration, visual imagery, and body coordination. Previously, we argued that the precuneus expanded in recent human evolution, based on a combination of paleontological, comparative, and intraspecific evidence from fossil and modern human endocasts as well as from human and chimpanzee brains. The longitudinal proportions of this region are a major source of anatomical variation among adult humans and, being much larger in Homo sapiens, is the main characteristic differentiating human midsagittal brain morphology from that of our closest living primate relative, the chimpanzee. In the current shape analysis, we examine precuneus variation in non-human primates through landmark-based models, to evaluate the general pattern of variability in non-human primates, and to test whether precuneus proportions are influenced by allometric effects of brain size. Results show that precuneus proportions do not covary with brain size, and that the main difference between monkeys and apes involves a vertical expansion of the frontal and occipital regions in apes. Such differences might reflect differences in brain proportions or differences in cranial architecture. In this sample, precuneus variation is apparently not influenced by phylogenetic or allometric factors, but does vary consistently within species, at least in chimpanzees and macaques. This result further supports the hypothesis that precuneus expansion in modern humans is not merely a consequence of increasing brain size or of allometric scaling, but rather represents a species-specific morphological change in our lineage. © 2017 S. Karger AG, Basel.

  5. Effects of Sex Steroids in the Human Brain.

    Science.gov (United States)

    Nguyen, Tuong-Vi; Ducharme, Simon; Karama, Sherif

    2017-11-01

    Sex steroids are thought to play a critical developmental role in shaping both cortical and subcortical structures in the human brain. Periods of profound changes in sex steroids invariably coincide with the onset of sex differences in mental health vulnerability, highlighting the importance of sex steroids in determining sexual differentiation of the brain. Yet, most of the evidence for the central effects of sex steroids relies on non-human studies, as several challenges have limited our understanding of these effects in humans: the lack of systematic assessment of the human sex steroid metabolome, the different developmental trajectories of specific sex steroids, the impact of genetic variation and epigenetic changes, and the plethora of interactions between sex steroids, sex chromosomes, neurotransmitters, and other hormonal systems. Here we review how multimodal strategies may be employed to bridge the gap between the basic and clinical understanding of sex steroid-related changes in the human brain.

  6. Regional brain activation and affective response to physical activity among healthy adolescents

    OpenAIRE

    Schneider, Margaret; Graham, Dan; Grant, Arthur; King, Pamela; Cooper, Dan

    2009-01-01

    Research has shown that frontal brain activation, assessed via electroencephalographic (EEG) asymmetry, predicts the post-exercise affective response to exercise among adults. Building on this evidence, the present study investigates the utility of resting cortical asymmetry for explaining variance in the affective response both during and after exercise at two different intensities among healthy adolescents. Resting EEG was obtained from 98 adolescents (55% male), who also completed two 30-m...

  7. Using a concept map as a tool for strategic planning: The Healthy Brain Initiative.

    Science.gov (United States)

    Anderson, Lynda A; Day, Kristine L; Vandenberg, Anna E

    2011-09-01

    Concept mapping is a tool to assist in strategic planning that allows planners to work through a sequence of phases to produce a conceptual framework. Although several studies describe how concept mapping is applied to various public health problems, the flexibility of the methods used in each phase of the process is often overlooked. If practitioners were more aware of the flexibility, more public health endeavors could benefit from using concept mapping as a tool for strategic planning. The objective of this article is to describe how the 6 concept-mapping phases originally outlined by William Trochim guided our strategic planning process and how we adjusted the specific methods in the first 2 phases to meet the specialized needs and requirements to create The Healthy Brain Initiative: A National Public Health Road Map to Maintaining Cognitive Health. In the first stage (phases 1 and 2 of concept mapping), we formed a steering committee, convened 4 work groups over a period of 3 months, and generated an initial set of 42 action items grounded in science. In the second stage (phases 3 and 4), we engaged stakeholders in sorting and rating the action items and constructed a series of concept maps. In the third and final stage (phases 5 and 6), we examined and refined the action items and generated a final concept map consisting of 44 action items. We then selected the top 10 action items, and in 2007, we published The Healthy Brain Initiative: A National Public Health Road Map to Maintaining Cognitive Health, which represents the strategic plan for The Healthy Brain Initiative.

  8. Potential risk for healthy siblings to develop schizophrenia: evidence from pattern classification with whole-brain connectivity.

    Science.gov (United States)

    Liu, Meijie; Zeng, Ling-Li; Shen, Hui; Liu, Zhening; Hu, Dewen

    2012-03-28

    Recent resting-state functional connectivity MRI studies using group-level statistical analysis have demonstrated the inheritable characters of schizophrenia. The objective of the present study was to use pattern classification as a means to investigate schizophrenia inheritance based on the whole-brain resting-state functional connectivity at the individual subject level. One-against-one pattern classifications were made amongst three groups (i.e. patients diagnosed with schizophrenia, healthy siblings, and healthy controls after preprocessing), resulting in an 80.4% separation between patients with schizophrenia and healthy controls, a 77.6% separation between schizophrenia patients and their healthy siblings, and a 78.7% separation between healthy siblings and healthy controls, respectively. These results suggest that the healthy siblings of schizophrenia patients have an altered resting-state functional connectivity pattern compared with healthy controls. Thus, healthy siblings may have a potential higher risk for developing schizophrenia compared with the general population. Moreover, this pattern differed from that of schizophrenia patients and may contribute to the normal behavior exhibition of healthy siblings in daily life.

  9. Genome-wide scan of healthy human connectome discovers SPON1 gene variant influencing dementia severity

    Science.gov (United States)

    Jahanshad, Neda; Rajagopalan, Priya; Hua, Xue; Hibar, Derrek P.; Nir, Talia M.; Toga, Arthur W.; Jack, Clifford R.; Saykin, Andrew J.; Green, Robert C.; Weiner, Michael W.; Medland, Sarah E.; Montgomery, Grant W.; Hansell, Narelle K.; McMahon, Katie L.; de Zubicaray, Greig I.; Martin, Nicholas G.; Wright, Margaret J.; Thompson, Paul M.; Weiner, Michael; Aisen, Paul; Weiner, Michael; Aisen, Paul; Petersen, Ronald; Jack, Clifford R.; Jagust, William; Trojanowski, John Q.; Toga, Arthur W.; Beckett, Laurel; Green, Robert C.; Saykin, Andrew J.; Morris, John; Liu, Enchi; Green, Robert C.; Montine, Tom; Petersen, Ronald; Aisen, Paul; Gamst, Anthony; Thomas, Ronald G.; Donohue, Michael; Walter, Sarah; Gessert, Devon; Sather, Tamie; Beckett, Laurel; Harvey, Danielle; Gamst, Anthony; Donohue, Michael; Kornak, John; Jack, Clifford R.; Dale, Anders; Bernstein, Matthew; Felmlee, Joel; Fox, Nick; Thompson, Paul; Schuff, Norbert; Alexander, Gene; DeCarli, Charles; Jagust, William; Bandy, Dan; Koeppe, Robert A.; Foster, Norm; Reiman, Eric M.; Chen, Kewei; Mathis, Chet; Morris, John; Cairns, Nigel J.; Taylor-Reinwald, Lisa; Trojanowki, J.Q.; Shaw, Les; Lee, Virginia M.Y.; Korecka, Magdalena; Toga, Arthur W.; Crawford, Karen; Neu, Scott; Saykin, Andrew J.; Foroud, Tatiana M.; Potkin, Steven; Shen, Li; Khachaturian, Zaven; Frank, Richard; Snyder, Peter J.; Molchan, Susan; Kaye, Jeffrey; Quinn, Joseph; Lind, Betty; Dolen, Sara; Schneider, Lon S.; Pawluczyk, Sonia; Spann, Bryan M.; Brewer, James; Vanderswag, Helen; Heidebrink, Judith L.; Lord, Joanne L.; Petersen, Ronald; Johnson, Kris; Doody, Rachelle S.; Villanueva-Meyer, Javier; Chowdhury, Munir; Stern, Yaakov; Honig, Lawrence S.; Bell, Karen L.; Morris, John C.; Ances, Beau; Carroll, Maria; Leon, Sue; Mintun, Mark A.; Schneider, Stacy; Marson, Daniel; Griffith, Randall; Clark, David; Grossman, Hillel; Mitsis, Effie; Romirowsky, Aliza; deToledo-Morrell, Leyla; Shah, Raj C.; Duara, Ranjan; Varon, Daniel; Roberts, Peggy; Albert, Marilyn; Onyike, Chiadi; Kielb, Stephanie; Rusinek, Henry; de Leon, Mony J.; Glodzik, Lidia; De Santi, Susan; Doraiswamy, P. Murali; Petrella, Jeffrey R.; Coleman, R. Edward; Arnold, Steven E.; Karlawish, Jason H.; Wolk, David; Smith, Charles D.; Jicha, Greg; Hardy, Peter; Lopez, Oscar L.; Oakley, MaryAnn; Simpson, Donna M.; Porsteinsson, Anton P.; Goldstein, Bonnie S.; Martin, Kim; Makino, Kelly M.; Ismail, M. Saleem; Brand, Connie; Mulnard, Ruth A.; Thai, Gaby; Mc-Adams-Ortiz, Catherine; Womack, Kyle; Mathews, Dana; Quiceno, Mary; Diaz-Arrastia, Ramon; King, Richard; Weiner, Myron; Martin-Cook, Kristen; DeVous, Michael; Levey, Allan I.; Lah, James J.; Cellar, Janet S.; Burns, Jeffrey M.; Anderson, Heather S.; Swerdlow, Russell H.; Apostolova, Liana; Lu, Po H.; Bartzokis, George; Silverman, Daniel H.S.; Graff-Radford, Neill R.; Parfitt, Francine; Johnson, Heather; Farlow, Martin R.; Hake, Ann Marie; Matthews, Brandy R.; Herring, Scott; van Dyck, Christopher H.; Carson, Richard E.; MacAvoy, Martha G.; Chertkow, Howard; Bergman, Howard; Hosein, Chris; Black, Sandra; Stefanovic, Bojana; Caldwell, Curtis; Hsiung, Ging-Yuek Robin; Feldman, Howard; Mudge, Benita; Assaly, Michele; Kertesz, Andrew; Rogers, John; Trost, Dick; Bernick, Charles; Munic, Donna; Kerwin, Diana; Mesulam, Marek-Marsel; Lipowski, Kristina; Wu, Chuang-Kuo; Johnson, Nancy; Sadowsky, Carl; Martinez, Walter; Villena, Teresa; Turner, Raymond Scott; Johnson, Kathleen; Reynolds, Brigid; Sperling, Reisa A.; Johnson, Keith A.; Marshall, Gad; Frey, Meghan; Yesavage, Jerome; Taylor, Joy L.; Lane, Barton; Rosen, Allyson; Tinklenberg, Jared; Sabbagh, Marwan; Belden, Christine; Jacobson, Sandra; Kowall, Neil; Killiany, Ronald; Budson, Andrew E.; Norbash, Alexander; Johnson, Patricia Lynn; Obisesan, Thomas O.; Wolday, Saba; Bwayo, Salome K.; Lerner, Alan; Hudson, Leon; Ogrocki, Paula; Fletcher, Evan; Carmichael, Owen; Olichney, John; DeCarli, Charles; Kittur, Smita; Borrie, Michael; Lee, T.-Y.; Bartha, Rob; Johnson, Sterling; Asthana, Sanjay; Carlsson, Cynthia M.; Potkin, Steven G.; Preda, Adrian; Nguyen, Dana; Tariot, Pierre; Fleisher, Adam; Reeder, Stephanie; Bates, Vernice; Capote, Horacio; Rainka, Michelle; Scharre, Douglas W.; Kataki, Maria; Zimmerman, Earl A.; Celmins, Dzintra; Brown, Alice D.; Pearlson, Godfrey D.; Blank, Karen; Anderson, Karen; Saykin, Andrew J.; Santulli, Robert B.; Schwartz, Eben S.; Sink, Kaycee M.; Williamson, Jeff D.; Garg, Pradeep; Watkins, Franklin; Ott, Brian R.; Querfurth, Henry; Tremont, Geoffrey; Salloway, Stephen; Malloy, Paul; Correia, Stephen; Rosen, Howard J.; Miller, Bruce L.; Mintzer, Jacobo; Longmire, Crystal Flynn; Spicer, Kenneth; Finger, Elizabeth; Rachinsky, Irina; Rogers, John; Kertesz, Andrew; Drost, Dick

    2013-01-01

    Aberrant connectivity is implicated in many neurological and psychiatric disorders, including Alzheimer’s disease and schizophrenia. However, other than a few disease-associated candidate genes, we know little about the degree to which genetics play a role in the brain networks; we know even less about specific genes that influence brain connections. Twin and family-based studies can generate estimates of overall genetic influences on a trait, but genome-wide association scans (GWASs) can screen the genome for specific variants influencing the brain or risk for disease. To identify the heritability of various brain connections, we scanned healthy young adult twins with high-field, high-angular resolution diffusion MRI. We adapted GWASs to screen the brain’s connectivity pattern, allowing us to discover genetic variants that affect the human brain’s wiring. The association of connectivity with the SPON1 variant at rs2618516 on chromosome 11 (11p15.2) reached connectome-wide, genome-wide significance after stringent statistical corrections were enforced, and it was replicated in an independent subsample. rs2618516 was shown to affect brain structure in an elderly population with varying degrees of dementia. Older people who carried the connectivity variant had significantly milder clinical dementia scores and lower risk of Alzheimer’s disease. As a posthoc analysis, we conducted GWASs on several organizational and topological network measures derived from the matrices to discover variants in and around genes associated with autism (MACROD2), development (NEDD4), and mental retardation (UBE2A) significantly associated with connectivity. Connectome-wide, genome-wide screening offers substantial promise to discover genes affecting brain connectivity and risk for brain diseases. PMID:23471985

  10. Insulin and C-peptide in human brain neurons (insulin/C-peptide/brain peptides/immunohistochemistry/radioimmunoassay)

    International Nuclear Information System (INIS)

    Dorn, A.; Bernstein, H.G.; Rinne, A.; Hahn, H.J.; Ziegler, M.

    1983-01-01

    The regional distribution and cellular localization of insulin and C-peptide immunoreactivities were studied in human cadaver brains using the indirect immunofluorescence method, the peroxidase-antiperoxidase technique, and radioimmunoassay. Products of the immune reactions to both polypeptides were observed in most nerve cells in all areas of the brain examined. Immunostaining was mainly restricted to the cell soma and proximal dendrites. Radioimmunoassay revealed that human brain contains insulin and C-peptide in concentrations much higher than the blood, the highest being in the hypothalamus. These findings support the hypothesis that the 'brain insulin' is - at least in part - produced in the CNS. (author)

  11. External Beam Radiotherapy of Recurrent Glioma: Radiation Tolerance of the Human Brain

    Energy Technology Data Exchange (ETDEWEB)

    Sminia, Peter, E-mail: p.sminia@vumc.nl [Department of Radiation Oncology, Radiobiology Section, VU University Medical Center, De Boelelaan 1117, P.O. Box 7057, Amsterdam (Netherlands); Mayer, Ramona [EBG MedAustron GmbH., Viktor Kaplan-Strasse 2, A-2700, Wiener Neustadt (Austria)

    2012-04-05

    Malignant gliomas relapse in close proximity to the resection site, which is the postoperatively irradiated volume. Studies on re-irradiation of glioma were examined regarding radiation-induced late adverse effects (i.e., brain tissue necrosis), to obtain information on the tolerance dose and treatment volume of normal human brain tissue. The studies were analyzed using the linear-quadratic model to express the re-irradiation tolerance in cumulative equivalent total doses when applied in 2 Gy fractions (EQD2{sub cumulative}). Analysis shows that the EQD2{sub cumulative} increases from conventional re-irradiation series to fractionated stereotactic radiotherapy (FSRT) to LINAC-based stereotactic radiosurgery (SRS). The mean time interval between primary radiotherapy and the re-irradiation course was shortened from 30 months for conventional re-irradiation to 17 and 10 months for FSRT and SRS, respectively. Following conventional re-irradiation, radiation-induced normal brain tissue necrosis occurred beyond an EQD2{sub cumulative} around 100 Gy. With increasing conformality of therapy, the smaller the treatment volume is, the higher the radiation dose that can be tolerated. Despite the dose escalation, no increase in late normal tissue toxicity was reported. On basis of our analysis, the use of particle therapy in the treatment of recurrent gliomas, because of the optimized physical dose distribution in the tumour and surrounding healthy brain tissue, should be considered for future clinical trials.

  12. External Beam Radiotherapy of Recurrent Glioma: Radiation Tolerance of the Human Brain

    Directory of Open Access Journals (Sweden)

    Peter Sminia

    2012-04-01

    Full Text Available Malignant gliomas relapse in close proximity to the resection site, which is the postoperatively irradiated volume. Studies on re-irradiation of glioma were examined regarding radiation-induced late adverse effects (i.e., brain tissue necrosis, to obtain information on the tolerance dose and treatment volume of normal human brain tissue. The studies were analyzed using the linear-quadratic model to express the re-irradiation tolerance in cumulative equivalent total doses when applied in 2 Gy fractions (EQD2cumulative. Analysis shows that the EQD2cumulative increases from conventional re-irradiation series to fractionated stereotactic radiotherapy (FSRT to LINAC-based stereotactic radiosurgery (SRS. The mean time interval between primary radiotherapy and the re-irradiation course was shortened from 30 months for conventional re-irradiation to 17 and 10 months for FSRT and SRS, respectively. Following conventional re-irradiation, radiation-induced normal brain tissue necrosis occurred beyond an EQD2cumulative around 100 Gy. With increasing conformality of therapy, the smaller the treatment volume is, the higher the radiation dose that can be tolerated. Despite the dose escalation, no increase in late normal tissue toxicity was reported. On basis of our analysis, the use of particle therapy in the treatment of recurrent gliomas, because of the optimized physical dose distribution in the tumour and surrounding healthy brain tissue, should be considered for future clinical trials.

  13. Subcomponents and connectivity of the superior longitudinal fasciculus in the human brain.

    Science.gov (United States)

    Wang, Xuhui; Pathak, Sudhir; Stefaneanu, Lucia; Yeh, Fang-Cheng; Li, Shiting; Fernandez-Miranda, Juan C

    2016-05-01

    The subcomponents of the human superior longitudinal fasciculus (SLF) are disputed. The objective of this study was to investigate the segments, connectivity and asymmetry of the SLF. We performed high angular diffusion spectrum imaging (DSI) analysis on ten healthy adults. We also conducted fiber tracking on a 30-subject DSI template (CMU-30) and 488-subject template from the Human Connectome Project (HCP-488). In addition, five normal brains obtained at autopsy were microdissected. Based on tractography and microdissection results, we show that the human SLF differs significantly from that of monkey. The fibers corresponding to SLF-I found in 6 out of 20 hemispheres proved to be part of the cingulum fiber system in all cases and confirmed on both DSI and HCP-488 template. The most common patterns of connectivity bilaterally were as follows: from angular gyrus to caudal middle frontal gyrus and dorsal precentral gyrus representing SLF-II (or dorsal SLF), and from supramarginal gyrus to ventral precentral gyrus and pars opercularis to form SLF-III (or ventral SLF). Some connectivity features were, however, clearly asymmetric. Thus, we identified a strong asymmetry of the dorsal SLF (SLF-II), where the connectivity between the supramarginal gyrus with the dorsal precentral gyrus and the caudal middle frontal gyrus was only present in the left hemisphere. Contrarily, the ventral SLF (SLF-III) showed fairly constant connectivity with pars triangularis only in the right hemisphere. The results provide a novel neuroanatomy of the SLF that may help to better understand its functional role in the human brain.

  14. Neurospin Seminar: From the Proton to the Human Brain

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    From the Proton to the Human Brain Speaker: Prof Denis Le Bihan Abstract: The understanding of the human brain is one of the main scientific challenges of the 21st century. In the early 2000s the French Atomic Energy Commission (CEA) launched a program to conceive and build a “human brain explorer”, the first human MRI scanner operating at 11.7T. This scanner was envisioned to be part of the ambitious Iseult project, bridging together industrial and academic partners to push the limits of molecular neuroimaging, from mouse to man, using Ultra-High Field (UHF) MRI. In this seminar a summary of the main features of this magnet, and the neuroscience and medical targets of NeuroSpin where this outstanding instrument will be installed in 2017 will be surveyed. The unprecedented resolution and the new contrasts allowed by such UHF magnets, in combination with innovative concepts in physics and neurobiology, will allow to explore the human brain at a mesoscale at which everything remains to d...

  15. Meta-analysis of associations between human brain volume and intelligence differences: How strong are they and what do they mean?

    Science.gov (United States)

    Pietschnig, Jakob; Penke, Lars; Wicherts, Jelte M; Zeiler, Michael; Voracek, Martin

    2015-10-01

    Positive associations between human intelligence and brain size have been suspected for more than 150 years. Nowadays, modern non-invasive measures of in vivo brain volume (Magnetic Resonance Imaging) make it possible to reliably assess associations with IQ. By means of a systematic review of published studies and unpublished results obtained by personal communications with researchers, we identified 88 studies examining effect sizes of 148 healthy and clinical mixed-sex samples (>8000 individuals). Our results showed significant positive associations of brain volume and IQ (r=.24, R(2)=.06) that generalize over age (children vs. adults), IQ domain (full-scale, performance, and verbal IQ), and sex. Application of a number of methods for detection of publication bias indicates that strong and positive correlation coefficients have been reported frequently in the literature whilst small and non-significant associations appear to have been often omitted from reports. We show that the strength of the positive association of brain volume and IQ has been overestimated in the literature, but remains robust even when accounting for different types of dissemination bias, although reported effects have been declining over time. While it is tempting to interpret this association in the context of human cognitive evolution and species differences in brain size and cognitive ability, we show that it is not warranted to interpret brain size as an isomorphic proxy of human intelligence differences. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Mechanism of Cerebralcare Granule® for Improving Cognitive Function in Resting-State Brain Functional Networks of Sub-healthy Subjects

    Directory of Open Access Journals (Sweden)

    Jing Li

    2017-07-01

    Full Text Available Cerebralcare Granule® (CG, a Chinese herbal medicine, has been used to ameliorate cognitive impairment induced by ischemia or mental disorders. The ability of CG to improve health status and cognitive function has drawn researchers' attention, but the relevant brain circuits that underlie the ameliorative effects of CG remain unclear. The present study aimed to explore the underlying neurobiological mechanisms of CG in ameliorating cognitive function in sub-healthy subjects using resting-state functional magnetic resonance imaging (fMRI. Thirty sub-healthy participants were instructed to take one 2.5-g package of CG three times a day for 3 months. Clinical cognitive functions were assessed with the Chinese Revised Wechsler Adult Intelligence Scale (WAIS-RC and Wechsler Memory Scale (WMS, and fMRI scans were performed at baseline and the end of intervention. Functional brain network data were analyzed by conventional network metrics (CNM and frequent subgraph mining (FSM. Then 21 other sub-healthy participants were enrolled as a blank control group of cognitive functional. We found that administrating CG can improve the full scale of intelligence quotient (FIQ and Memory Quotient (MQ scores. At the same time, following CG treatment, in CG group, the topological properties of functional brain networks were altered in various frontal, temporal, occipital cortex regions, and several subcortical brain regions, including essential components of the executive attention network, the salience network, and the sensory-motor network. The nodes involved in the FSM results were largely consistent with the CNM findings, and the changes in nodal metrics correlated with improved cognitive function. These findings indicate that CG can improve sub-healthy subjects' cognitive function through altering brain functional networks. These results provide a foundation for future studies of the potential physiological mechanism of CG.

  17. Methods and Management of the Healthy Brain Study: A Large Multisite Qualitative Research Project

    Science.gov (United States)

    Laditka, Sarah B.; Corwin, Sara J.; Laditka, James N.; Liu, Rui; Friedman, Daniela B.; Mathews, Anna E.; Wilcox, Sara

    2009-01-01

    Purpose of the study: To describe processes used in the Healthy Brain project to manage data collection, coding, and data distribution in a large qualitative project, conducted by researchers at 9 universities in 9 states. Design and Methods: Project management protocols included: (a) managing audiotapes and surveys to ensure data confidentiality,…

  18. Handedness- and brain size-related efficiency differences in small-world brain networks: a resting-state functional magnetic resonance imaging study.

    Science.gov (United States)

    Li, Meiling; Wang, Junping; Liu, Feng; Chen, Heng; Lu, Fengmei; Wu, Guorong; Yu, Chunshui; Chen, Huafu

    2015-05-01

    The human brain has been described as a complex network, which integrates information with high efficiency. However, the relationships between the efficiency of human brain functional networks and handedness and brain size remain unclear. Twenty-one left-handed and 32 right-handed healthy subjects underwent a resting-state functional magnetic resonance imaging scan. The whole brain functional networks were constructed by thresholding Pearson correlation matrices of 90 cortical and subcortical regions. Graph theory-based methods were employed to further analyze their topological properties. As expected, all participants demonstrated small-world topology, suggesting a highly efficient topological structure. Furthermore, we found that smaller brains showed higher local efficiency, whereas larger brains showed higher global efficiency, reflecting a suitable efficiency balance between local specialization and global integration of brain functional activity. Compared with right-handers, significant alterations in nodal efficiency were revealed in left-handers, involving the anterior and median cingulate gyrus, middle temporal gyrus, angular gyrus, and amygdala. Our findings indicated that the functional network organization in the human brain was associated with handedness and brain size.

  19. Insights into Brain Glycogen Metabolism: THE STRUCTURE OF HUMAN BRAIN GLYCOGEN PHOSPHORYLASE.

    Science.gov (United States)

    Mathieu, Cécile; Li de la Sierra-Gallay, Ines; Duval, Romain; Xu, Ximing; Cocaign, Angélique; Léger, Thibaut; Woffendin, Gary; Camadro, Jean-Michel; Etchebest, Catherine; Haouz, Ahmed; Dupret, Jean-Marie; Rodrigues-Lima, Fernando

    2016-08-26

    Brain glycogen metabolism plays a critical role in major brain functions such as learning or memory consolidation. However, alteration of glycogen metabolism and glycogen accumulation in the brain contributes to neurodegeneration as observed in Lafora disease. Glycogen phosphorylase (GP), a key enzyme in glycogen metabolism, catalyzes the rate-limiting step of glycogen mobilization. Moreover, the allosteric regulation of the three GP isozymes (muscle, liver, and brain) by metabolites and phosphorylation, in response to hormonal signaling, fine-tunes glycogenolysis to fulfill energetic and metabolic requirements. Whereas the structures of muscle and liver GPs have been known for decades, the structure of brain GP (bGP) has remained elusive despite its critical role in brain glycogen metabolism. Here, we report the crystal structure of human bGP in complex with PEG 400 (2.5 Å) and in complex with its allosteric activator AMP (3.4 Å). These structures demonstrate that bGP has a closer structural relationship with muscle GP, which is also activated by AMP, contrary to liver GP, which is not. Importantly, despite the structural similarities between human bGP and the two other mammalian isozymes, the bGP structures reveal molecular features unique to the brain isozyme that provide a deeper understanding of the differences in the activation properties of these allosteric enzymes by the allosteric effector AMP. Overall, our study further supports that the distinct structural and regulatory properties of GP isozymes contribute to the different functions of muscle, liver, and brain glycogen. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Segmentation of the Cingulum Bundle in the Human Brain: A New Perspective Based on DSI Tractography and Fiber Dissection Study.

    Science.gov (United States)

    Wu, Yupeng; Sun, Dandan; Wang, Yong; Wang, Yibao; Ou, Shaowu

    2016-01-01

    The cingulum bundle (CB) is a critical white matter fiber tract in the brain, which forms connections between the frontal lobe, parietal lobe and temporal lobe. In non-human primates, the CB is actually divided into distinct subcomponents on the basis of corticocortical connections. However, at present, no study has verified similar distinct subdivisions in the human brain. In this study, we reconstructed these distinct subdivisions in the human brain, and determined their exact cortical connections using high definition fiber tracking (HDFT) technique on 10 healthy adults and a 488-subject template from the Human Connectome Project (HCP-488). Fiber dissections were performed to verify tractography results. Five CB segments were identified. CB-I ran from the subrostral areas to the precuneus and splenium, encircling the corpus callosum (CC). CB-II arched around the splenium and extended anteriorly above the CC to the medial aspect of the superior frontal gyrus (SFG). CB-III connected the superior parietal lobule (SPL) and precuneus with the medial aspect of the SFG. CB-IV was a relatively minor subcomponent from the SPL and precuneus to the frontal region. CB-V, the para-hippocampal cingulum, stemmed from the medial temporal lobe and fanned out to the occipital lobes. Our findings not only provide a more accurate and detailed description on the associated architecture of the subcomponents within the CB, but also offer new insights into the functional role of the CB in the human brain.

  1. Segmentation of the cingulum bundle in the human brain: a new perspective based on DSI tractography and fiber dissection study

    Directory of Open Access Journals (Sweden)

    Yupeng Wu

    2016-09-01

    Full Text Available The cingulum bundle (CB is a critical white matter fiber tract in the brain, which forms connections between the frontal lobe, parietal lobe, and temporal lobe. In non-human primates, the CB is actually divided into distinct subcomponents on the basis of corticocortical connections. However, at present, no study has verified similar distinct subdivisions in the human brain. In this study, we reconstructed these distinct subdivisions in the human brain, and determined their exact cortical connections using high definition fiber tracking (HDFT technique on 10 healthy adults and a 488-subject template from the Human Connectome Project (HCP-488. Fiber dissections were performed to verify tractography results. Five CB segments were identified. CB-I ran from the subrostral areas to the precuneus and splenium, encircling the corpus callosum. CB-II arched around the splenium and extended anteriorly above the corpus callosum to the medial aspect of the superior frontal gyrus. CB-III connected the superior parietal lobule and precuneus with the medial aspect of the superior frontal gyrus. CB-IV was a relatively minor subcomponent from the superior parietal lobule and precuneus to the frontal region. CB-V, the para-hippocampal cingulum, stemmed from the medial temporal lobe and fanned out to the occipital lobes. Our findings not only provide a more accurate and detailed description on the associated architecture of the subcomponents within the CB, but also offer new insights into the functional role of the CB in the human brain.

  2. Infrasounds and biorhythms of the human brain

    Science.gov (United States)

    Panuszka, Ryszard; Damijan, Zbigniew; Kasprzak, Cezary; McGlothlin, James

    2002-05-01

    Low Frequency Noise (LFN) and infrasound has begun a new public health hazard. Evaluations of annoyance of (LFN) on human occupational health were based on standards where reactions of human auditory system and vibrations of parts of human body were small. Significant sensitivity has been observed on the central nervous system from infrasonic waves especially below 10 Hz. Observed follow-up effects in the brain gives incentive to study the relationship between parameters of waves and reactions obtained of biorhythms (EEG) and heart action (EKG). New results show the impact of LFN on the electrical potentials of the brain are dependent on the pressure waves on the human body. Electrical activity of circulatory system was also affected. Signals recorded in industrial workplaces were duplicated by loudspeakers and used to record data from a typical LFN spectra with 5 and 7 Hz in a laboratory chamber. External noise, electromagnetic fields, temperature, dust, and other elements were controlled. Results show not only a follow-up effect in the brain but also a result similar to arrhythmia in the heart. Relaxations effects were observed of people impacted by waves generated from natural sources such as streams and waterfalls.

  3. Brain Activation During Singing: "Clef de Sol Activation" Is the "Concert" of the Human Brain.

    Science.gov (United States)

    Mavridis, Ioannis N; Pyrgelis, Efstratios-Stylianos

    2016-03-01

    Humans are the most complex singers in nature, and the human voice is thought by many to be the most beautiful musical instrument. Aside from spoken language, singing represents a second mode of acoustic communication in humans. The purpose of this review article is to explore the functional anatomy of the "singing" brain. Methodologically, the existing literature regarding activation of the human brain during singing was carefully reviewed, with emphasis on the anatomic localization of such activation. Relevant human studies are mainly neuroimaging studies, namely functional magnetic resonance imaging and positron emission tomography studies. Singing necessitates activation of several cortical, subcortical, cerebellar, and brainstem areas, served and coordinated by multiple neural networks. Functionally vital cortical areas of the frontal, parietal, and temporal lobes bilaterally participate in the brain's activation process during singing, confirming the latter's role in human communication. Perisylvian cortical activity of the right hemisphere seems to be the most crucial component of this activation. This also explains why aphasic patients due to left hemispheric lesions are able to sing but not speak the same words. The term clef de sol activation is proposed for this crucial perisylvian cortical activation due to the clef de sol shape of the topographical distribution of these cortical areas around the sylvian fissure. Further research is needed to explore the connectivity and sequence of how the human brain activates to sing.

  4. Unique Distribution of Aromatase in the Human Brain: In Vivo Studies With PET and [N-Methyl-11C]Vorozole

    Energy Technology Data Exchange (ETDEWEB)

    Biegon, A.; Biegon, A.; Kim, S.W.; Alexoff, D.; Millard, J.; Carter, P.; Hubbard, B.; King, P.; Logan, J.; Muench, L.; Pareto, D.; Schlyer, D.; Shea, C.; Telang, F.; Wang, G.-J.; Xu, Y.; Fowler, J.

    2010-10-01

    Aromatase catalyzes the last step in estrogen biosynthesis. Brain aromatase is involved in diverse neurophysiological and behavioral functions including sexual behavior, aggression, cognition, and neuroprotection. Using positron emission tomography (PET) with the radiolabeled aromatase inhibitor [N-methyl-{sup 11}C]vorozole, we characterized the tracer distribution and kinetics in the living human brain. Six young, healthy subjects, three men and three women, were administered the radiotracer alone on two separate occasions. Women were scanned in distinct phases of the menstrual cycle. Specificity was confirmed by pretreatment with a pharmacological (2.5 mg) dose of the aromatase inhibitor letrozole. PET data were acquired over a 90-min period and regions of interest placed over selected brain regions. Brain and plasma time activity curves, corrected for metabolites, were used to derive kinetic parameters. Distribution volume (V{sub T}) values in both men and women followed the following rank order: thalamus > amygdala = preoptic area > medulla (inferior olive) > accumbens, pons, occipital and temporal cortex, putamen, cerebellum, and white matter. Pretreatment with letrozole reduced VT in all regions, though the size of the reduction was region-dependent, ranging from {approx}70% blocking in thalamus andpreoptic area to {approx}10% in cerebellum. The high levels of aromatase in thalamus and medulla (inferior olive) appear to be unique to humans. These studies set the stage for the noninvasive assessment of aromatase involvement in various physiological and pathological processes affecting the human brain.

  5. Unique Distribution of Aromatase in the Human Brain: In Vivo Studies With PET and (N-Methyl-11C)Vorozole

    International Nuclear Information System (INIS)

    Biegon, A.; Kim, S.W.; Alexoff, D.; Millard, J.; Carter, P.; Hubbard, B.; King, P.; Logan, J.; Muench, L.; Pareto, D.; Schlyer, D.; Shea, C.; Telang, F.; Wang, G.-J.; Xu, Y.; Fowler, J.

    2010-01-01

    Aromatase catalyzes the last step in estrogen biosynthesis. Brain aromatase is involved in diverse neurophysiological and behavioral functions including sexual behavior, aggression, cognition, and neuroprotection. Using positron emission tomography (PET) with the radiolabeled aromatase inhibitor (N-methyl- 11 C)vorozole, we characterized the tracer distribution and kinetics in the living human brain. Six young, healthy subjects, three men and three women, were administered the radiotracer alone on two separate occasions. Women were scanned in distinct phases of the menstrual cycle. Specificity was confirmed by pretreatment with a pharmacological (2.5 mg) dose of the aromatase inhibitor letrozole. PET data were acquired over a 90-min period and regions of interest placed over selected brain regions. Brain and plasma time activity curves, corrected for metabolites, were used to derive kinetic parameters. Distribution volume (V T ) values in both men and women followed the following rank order: thalamus > amygdala = preoptic area > medulla (inferior olive) > accumbens, pons, occipital and temporal cortex, putamen, cerebellum, and white matter. Pretreatment with letrozole reduced VT in all regions, though the size of the reduction was region-dependent, ranging from ∼70% blocking in thalamus andpreoptic area to ∼10% in cerebellum. The high levels of aromatase in thalamus and medulla (inferior olive) appear to be unique to humans. These studies set the stage for the noninvasive assessment of aromatase involvement in various physiological and pathological processes affecting the human brain.

  6. Unique distribution of aromatase in the human brain: in vivo studies with PET and [N-methyl-11C]vorozole.

    Science.gov (United States)

    Biegon, Anat; Kim, Sung Won; Alexoff, David L; Jayne, Millard; Carter, Pauline; Hubbard, Barbara; King, Payton; Logan, Jean; Muench, Lisa; Pareto, Deborah; Schlyer, David; Shea, Colleen; Telang, Frank; Wang, Gene-Jack; Xu, Youwen; Fowler, Joanna S

    2010-11-01

    Aromatase catalyzes the last step in estrogen biosynthesis. Brain aromatase is involved in diverse neurophysiological and behavioral functions including sexual behavior, aggression, cognition, and neuroprotection. Using positron emission tomography (PET) with the radiolabeled aromatase inhibitor [N-methyl-(11)C]vorozole, we characterized the tracer distribution and kinetics in the living human brain. Six young, healthy subjects, three men and three women, were administered the radiotracer alone on two separate occasions. Women were scanned in distinct phases of the menstrual cycle. Specificity was confirmed by pretreatment with a pharmacological (2.5 mg) dose of the aromatase inhibitor letrozole. PET data were acquired over a 90-min period and regions of interest placed over selected brain regions. Brain and plasma time activity curves, corrected for metabolites, were used to derive kinetic parameters. Distribution volume (V(T)) values in both men and women followed the following rank order: thalamus > amygdala = preoptic area > medulla (inferior olive) > accumbens, pons, occipital and temporal cortex, putamen, cerebellum, and white matter. Pretreatment with letrozole reduced V(T) in all regions, though the size of the reduction was region-dependent, ranging from ∼70% blocking in thalamus andpreoptic area to ∼10% in cerebellum. The high levels of aromatase in thalamus and medulla (inferior olive) appear to be unique to humans. These studies set the stage for the noninvasive assessment of aromatase involvement in various physiological and pathological processes affecting the human brain.

  7. Responses of the Human Brain to Mild Dehydration and Rehydration Explored In Vivo by 1H-MR Imaging and Spectroscopy.

    Science.gov (United States)

    Biller, A; Reuter, M; Patenaude, B; Homola, G A; Breuer, F; Bendszus, M; Bartsch, A J

    2015-12-01

    As yet, there are no in vivo data on tissue water changes and associated morphometric changes involved in the osmo-adaptation of normal brains. Our aim was to evaluate osmoadaptive responses of the healthy human brain to osmotic challenges of de- and rehydration by serial measurements of brain volume, tissue fluid, and metabolites. Serial T1-weighted and (1)H-MR spectroscopy data were acquired in 15 healthy individuals at normohydration, on 12 hours of dehydration, and during 1 hour of oral rehydration. Osmotic challenges were monitored by serum measures, including osmolality and hematocrit. MR imaging data were analyzed by using FreeSurfer and LCModel. On dehydration, serum osmolality increased by 0.67% and brain tissue fluid decreased by 1.63%, on average. MR imaging morphometry demonstrated corresponding decreases of cortical thickness and volumes of the whole brain, cortex, white matter, and hypothalamus/thalamus. These changes reversed during rehydration. Continuous fluid ingestion of 1 L of water for 1 hour within the scanner lowered serum osmolality by 0.96% and increased brain tissue fluid by 0.43%, on average. Concomitantly, cortical thickness and volumes of the whole brain, cortex, white matter, and hypothalamus/thalamus increased. Changes in brain tissue fluid were related to volume changes of the whole brain, the white matter, and hypothalamus/thalamus. Only volume changes of the hypothalamus/thalamus significantly correlated with serum osmolality. This is the first study simultaneously evaluating changes in brain tissue fluid, metabolites, volume, and cortical thickness. Our results reflect cellular volume regulatory mechanisms at a macroscopic level and emphasize that it is essential to control for hydration levels in studies on brain morphometry and metabolism in order to avoid confounding the findings. © 2015 by American Journal of Neuroradiology.

  8. Is the social brain theory applicable to human individual differences? Relationship between sociability personality dimension and brain size.

    Science.gov (United States)

    Horváth, Klára; Martos, János; Mihalik, Béla; Bódizs, Róbert

    2011-06-17

    Our study intends to examine whether the social brain theory is applicable to human individual differences. According to the social brain theory primates have larger brains as it could be expected from their body sizes due to the adaptation to a more complex social life. Regarding humans there were few studies about the relationship between theory of mind and frontal and temporal brain lobes. We hypothesized that these brain lobes, as well as the whole cerebrum and neocortex are in connection with the Sociability personality dimension that is associated with individuals' social lives. Our findings support this hypothesis as Sociability correlated positively with the examined brain structures if we control the effects of body size differences and age. These results suggest that the social brain theory can be extended to human interindividual differences and they have some implications to personality psychology too.

  9. Sigma and opioid receptors in human brain tumors

    International Nuclear Information System (INIS)

    Thomas, G.E.; Szuecs, M.; Mamone, J.Y.; Bem, W.T.; Rush, M.D.; Johnson, F.E.; Coscia, C.J.

    1990-01-01

    Human brain tumors and nude mouse-borne human neuroblastomas and gliomas were analyzed for sigma and opioid receptor content. Sigma binding was assessed using [ 3 H] 1, 3-di-o-tolylguanidine (DTG), whereas opioid receptor subtypes were measured with tritiated forms of the following: μ, [D-ala 2 , mePhe 4 , gly-ol 5 ] enkephalin (DAMGE); κ, ethylketocyclazocine (EKC) or U69,593; δ, [D-pen 2 , D-pen 5 ] enkephalin (DPDPE) or [D-ala 2 , D-leu 5 ] enkephalin (DADLE) with μ suppressor present. Binding parameters were estimated by homologous displacement assays followed by analysis using the LIGAND program. Sigma binding was detected in 15 of 16 tumors examined with very high levels found in a brain metastasis from an adenocarcinoma of lung and a human neuroblastoma (SK-N-MC) passaged in nude mice. κ opioid receptor binding was detected in 4 of 4 glioblastoma multiforme specimens and 2 of 2 human astrocytoma cell lines tested but not in the other brain tumors analyzed

  10. Sex differences in brain organization: implications for human communication.

    Science.gov (United States)

    Hanske-Petitpierre, V; Chen, A C

    1985-12-01

    This article reviews current knowledge in two major research domains: sex differences in neuropsychophysiology, and in human communication. An attempt was made to integrate knowledge from several areas of brain research with human communication and to clarify how such a cooperative effort may be beneficial to both fields of study. By combining findings from the area of brain research, a communication paradigm was developed which contends that brain-related sex differences may reside largely in the area of communication of emotion.

  11. Task-dependent activity and connectivity predict episodic memory network-based responses to brain stimulation in healthy aging.

    Science.gov (United States)

    Vidal-Piñeiro, Dídac; Martin-Trias, Pablo; Arenaza-Urquijo, Eider M; Sala-Llonch, Roser; Clemente, Imma C; Mena-Sánchez, Isaias; Bargalló, Núria; Falcón, Carles; Pascual-Leone, Álvaro; Bartrés-Faz, David

    2014-01-01

    Transcranial magnetic stimulation (TMS) can affect episodic memory, one of the main cognitive hallmarks of aging, but the mechanisms of action remain unclear. To evaluate the behavioral and functional impact of excitatory TMS in a group of healthy elders. We applied a paradigm of repetitive TMS - intermittent theta-burst stimulation - over left inferior frontal gyrus in healthy elders (n = 24) and evaluated its impact on the performance of an episodic memory task with two levels of processing and the associated brain activity as captured by a pre and post fMRI scans. In the post-TMS fMRI we found TMS-related activity increases in left prefrontal and cerebellum-occipital areas specifically during deep encoding but not during shallow encoding or at rest. Furthermore, we found a task-dependent change in connectivity during the encoding task between cerebellum-occipital areas and the TMS-targeted left inferior frontal region. This connectivity change correlated with the TMS effects over brain networks. The results suggest that the aged brain responds to brain stimulation in a state-dependent manner as engaged by different tasks components and that TMS effect is related to inter-individual connectivity changes measures. These findings reveal fundamental insights into brain network dynamics in aging and the capacity to probe them with combined behavioral and stimulation approaches. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Hierarchical functional modularity in the resting-state human brain.

    Science.gov (United States)

    Ferrarini, Luca; Veer, Ilya M; Baerends, Evelinda; van Tol, Marie-José; Renken, Remco J; van der Wee, Nic J A; Veltman, Dirk J; Aleman, André; Zitman, Frans G; Penninx, Brenda W J H; van Buchem, Mark A; Reiber, Johan H C; Rombouts, Serge A R B; Milles, Julien

    2009-07-01

    Functional magnetic resonance imaging (fMRI) studies have shown that anatomically distinct brain regions are functionally connected during the resting state. Basic topological properties in the brain functional connectivity (BFC) map have highlighted the BFC's small-world topology. Modularity, a more advanced topological property, has been hypothesized to be evolutionary advantageous, contributing to adaptive aspects of anatomical and functional brain connectivity. However, current definitions of modularity for complex networks focus on nonoverlapping clusters, and are seriously limited by disregarding inclusive relationships. Therefore, BFC's modularity has been mainly qualitatively investigated. Here, we introduce a new definition of modularity, based on a recently improved clustering measurement, which overcomes limitations of previous definitions, and apply it to the study of BFC in resting state fMRI of 53 healthy subjects. Results show hierarchical functional modularity in the brain. Copyright 2009 Wiley-Liss, Inc

  13. A common brain network links development, aging, and vulnerability to disease.

    Science.gov (United States)

    Douaud, Gwenaëlle; Groves, Adrian R; Tamnes, Christian K; Westlye, Lars Tjelta; Duff, Eugene P; Engvig, Andreas; Walhovd, Kristine B; James, Anthony; Gass, Achim; Monsch, Andreas U; Matthews, Paul M; Fjell, Anders M; Smith, Stephen M; Johansen-Berg, Heidi

    2014-12-09

    Several theories link processes of development and aging in humans. In neuroscience, one model posits for instance that healthy age-related brain degeneration mirrors development, with the areas of the brain thought to develop later also degenerating earlier. However, intrinsic evidence for such a link between healthy aging and development in brain structure remains elusive. Here, we show that a data-driven analysis of brain structural variation across 484 healthy participants (8-85 y) reveals a largely--but not only--transmodal network whose lifespan pattern of age-related change intrinsically supports this model of mirroring development and aging. We further demonstrate that this network of brain regions, which develops relatively late during adolescence and shows accelerated degeneration in old age compared with the rest of the brain, characterizes areas of heightened vulnerability to unhealthy developmental and aging processes, as exemplified by schizophrenia and Alzheimer's disease, respectively. Specifically, this network, while derived solely from healthy subjects, spatially recapitulates the pattern of brain abnormalities observed in both schizophrenia and Alzheimer's disease. This network is further associated in our large-scale healthy population with intellectual ability and episodic memory, whose impairment contributes to key symptoms of schizophrenia and Alzheimer's disease. Taken together, our results suggest that the common spatial pattern of abnormalities observed in these two disorders, which emerge at opposite ends of the life spectrum, might be influenced by the timing of their separate and distinct pathological processes in disrupting healthy cerebral development and aging, respectively.

  14. Mapping human whole-brain structural networks with diffusion MRI.

    Directory of Open Access Journals (Sweden)

    Patric Hagmann

    Full Text Available Understanding the large-scale structural network formed by neurons is a major challenge in system neuroscience. A detailed connectivity map covering the entire brain would therefore be of great value. Based on diffusion MRI, we propose an efficient methodology to generate large, comprehensive and individual white matter connectional datasets of the living or dead, human or animal brain. This non-invasive tool enables us to study the basic and potentially complex network properties of the entire brain. For two human subjects we find that their individual brain networks have an exponential node degree distribution and that their global organization is in the form of a small world.

  15. Cognitive genomics: Linking genes to behavior in the human brain

    Directory of Open Access Journals (Sweden)

    Genevieve Konopka

    2017-02-01

    Full Text Available Correlations of genetic variation in DNA with functional brain activity have already provided a starting point for delving into human cognitive mechanisms. However, these analyses do not provide the specific genes driving the associations, which are complicated by intergenic localization as well as tissue-specific epigenetics and expression. The use of brain-derived expression datasets could build upon the foundation of these initial genetic insights and yield genes and molecular pathways for testing new hypotheses regarding the molecular bases of human brain development, cognition, and disease. Thus, coupling these human brain gene expression data with measurements of brain activity may provide genes with critical roles in brain function. However, these brain gene expression datasets have their own set of caveats, most notably a reliance on postmortem tissue. In this perspective, I summarize and examine the progress that has been made in this realm to date, and discuss the various frontiers remaining, such as the inclusion of cell-type-specific information, additional physiological measurements, and genomic data from patient cohorts.

  16. Transcranial magnetic stimulation and the human brain

    Science.gov (United States)

    Hallett, Mark

    2000-07-01

    Transcranial magnetic stimulation (TMS) is rapidly developing as a powerful, non-invasive tool for studying the human brain. A pulsed magnetic field creates current flow in the brain and can temporarily excite or inhibit specific areas. TMS of motor cortex can produce a muscle twitch or block movement; TMS of occipital cortex can produce visual phosphenes or scotomas. TMS can also alter the functioning of the brain beyond the time of stimulation, offering potential for therapy.

  17. Study of cerebral metabolism of glucose in normal human brain correlated with age

    International Nuclear Information System (INIS)

    Si, M.

    2007-01-01

    Full text: The objective was to determine whether cerebral metabolism in various regions of the brain differs with advancing age by using 18F-FDG PET instrument and SPM software. Materials and Methods We reviewed clinical information of 295 healthy normal samples who were examined by a whole body GE Discovery LS PET-CT instrument in our center from Aug. 2004 to Dec. 2005.They (with the age ranging from 21 to 88; mean age+/-SD: 49.77+/-13.51) were selected with: (i)absence of clear focal brain lesions (epilepsy.cerebrovascular diseases etc);(ii) absence of metabolic diseases, such as hyperthyroidism, hypothyroidism and diabetes;(iii) absence of psychiatric disorders and abuse of drugs and alcohol. They were sub grouped into six groups with the interval of 10 years old starting from 21, and the gender, educational background and serum glucose were matched. All subgroups were compared to the control group of 31-40 years old (84 samples; mean age+/-SD: 37.15+/-2.63). All samples were injected with 18F-FDG (5.55MBq/kg), 45-60 minutes later, their brains were scanned for 10min. Pixel-by-pixel t-statistic analysis was applied to all brain images using the Statistical parametric mapping (SPM2) .The hypometabolic areas (p < 0. 01 or p<0.001, uncorrected) were identified in the Stereotaxic coordinate human brain atlas and three-dimensional localized by MNI Space utility (MSU) software. Results:Relative hypometabolic brain areas detected are mainly in the cortical structures such as bilateral prefrontal cortex, superior temporal gyrus(BA22), parietal cortex (inferior parietal lobule and precuneus(BA40, insula(BA13)), parahippocampal gyrus and amygdala (p<0.01).It is especially apparent in the prefrontal cortex (BA9)and sensory-motor cortex(BA5, 7) (p<0.001), while basal ganglia and cerebellum remained metabolically unchanged with advancing age. Conclusions Regional cerebral metabolism of glucose shows a descent tendency with aging, especially in the prefrontal cortex (BA9)and

  18. Using human brain activity to guide machine learning.

    Science.gov (United States)

    Fong, Ruth C; Scheirer, Walter J; Cox, David D

    2018-03-29

    Machine learning is a field of computer science that builds algorithms that learn. In many cases, machine learning algorithms are used to recreate a human ability like adding a caption to a photo, driving a car, or playing a game. While the human brain has long served as a source of inspiration for machine learning, little effort has been made to directly use data collected from working brains as a guide for machine learning algorithms. Here we demonstrate a new paradigm of "neurally-weighted" machine learning, which takes fMRI measurements of human brain activity from subjects viewing images, and infuses these data into the training process of an object recognition learning algorithm to make it more consistent with the human brain. After training, these neurally-weighted classifiers are able to classify images without requiring any additional neural data. We show that our neural-weighting approach can lead to large performance gains when used with traditional machine vision features, as well as to significant improvements with already high-performing convolutional neural network features. The effectiveness of this approach points to a path forward for a new class of hybrid machine learning algorithms which take both inspiration and direct constraints from neuronal data.

  19. An association between human hippocampal volume and topographical memory in healthy young adults.

    Directory of Open Access Journals (Sweden)

    Tom eHartley

    2012-12-01

    Full Text Available The association between human hippocampal structure and topographical memory was investigated in healthy adults (N=30. Structural MR images were acquired, and voxel-based morphometry (VBM was used to estimate local gray matter volume throughout the brain. A complementary automated mesh-based segmentation approach was used to independently isolate and measure specified structures including the hippocampus. Topographical memory was assessed using a version of the Four Mountains Task, a short test designed to target hippocampal spatial function. Each item requires subjects to briefly study a landscape scene before recognizing the depicted place from a novel viewpoint and under altered non-spatial conditions when presented amongst similar alternative scenes. Positive correlations between topographical memory performance and hippocampal volume were observed in both VBM and segmentation-based analyses. Score on the topographical memory task was also correlated with the volume of some subcortical structures, extra-hippocampal gray matter and total brain volume, with the most robust and extensive covariation seen in circumscribed neocortical regions in the insula and anterior temporal lobes. Taken together with earlier findings, the results suggest that global variations in brain morphology affect the volume of the hippocampus and its specific contribution to topographical memory. We speculate that behavioral variation might arise directly through the impact of resource constraints on spatial representations in the hippocampal formation and its inputs, and perhaps indirectly through an increased reliance on non-allocentric strategies.

  20. Short parietal lobe connections of the human and monkey brain

    DEFF Research Database (Denmark)

    Catani, Marco; Robertsson, Naianna; Beyh, Ahmad

    2017-01-01

    projections were reconstructed for both species and results compared to identify similarities or differences in tract anatomy (i.e., trajectories and cortical projections). In addition, post-mortem dissections were performed in a human brain. The largest tract identified in both human and monkey brains...... and angular gyri of the inferior parietal lobule in humans but only to the supramarginal gyrus in the monkey brain. The third tract connects the postcentral gyrus to the anterior region of the superior parietal lobule and is more prominent in monkeys compared to humans. Finally, short U-shaped fibres...... and monkeys with some differences for those areas that have cytoarchitectonically distinct features in humans. The overall pattern of intraparietal connectivity supports the special role of the inferior parietal lobule in cognitive functions characteristic of humans....

  1. Expression of iron-related genes in human brain and brain tumors

    Directory of Open Access Journals (Sweden)

    Britton Robert S

    2009-04-01

    Full Text Available Abstract Background Defective iron homeostasis may be involved in the development of some diseases within the central nervous system. Although the expression of genes involved in normal iron balance has been intensively studied in other tissues, little is known about their expression in the brain. We investigated the mRNA levels of hepcidin (HAMP, HFE, neogenin (NEO1, transferrin receptor 1 (TFRC, transferrin receptor 2 (TFR2, and hemojuvelin (HFE2 in normal human brain, brain tumors, and astrocytoma cell lines. The specimens included 5 normal brain tissue samples, 4 meningiomas, one medulloblastoma, 3 oligodendrocytic gliomas, 2 oligoastrocytic gliomas, 8 astrocytic gliomas, and 3 astrocytoma cell lines. Results Except for hemojuvelin, all genes studied had detectable levels of mRNA. In most tumor types, the pattern of gene expression was diverse. Notable findings include high expression of transferrin receptor 1 in the hippocampus and medulla oblongata compared to other brain regions, low expression of HFE in normal brain with elevated HFE expression in meningiomas, and absence of hepcidin mRNA in astrocytoma cell lines despite expression in normal brain and tumor specimens. Conclusion These results indicate that several iron-related genes are expressed in normal brain, and that their expression may be dysregulated in brain tumors.

  2. Studying frequency processing of the brain to enhance long-term memory and develop a human brain protocol.

    Science.gov (United States)

    Friedrich, Wernher; Du, Shengzhi; Balt, Karlien

    2015-01-01

    The temporal lobe in conjunction with the hippocampus is responsible for memory processing. The gamma wave is involved with this process. To develop a human brain protocol, a better understanding of the relationship between gamma and long-term memory is vital. A more comprehensive understanding of the human brain and specific analogue waves it uses will support the development of a human brain protocol. Fifty-eight participants aged between 6 and 60 years participated in long-term memory experiments. It is envisaged that the brain could be stimulated through binaural beats (sound frequency) at 40 Hz (gamma) to enhance long-term memory capacity. EEG recordings have been transformed to sound and then to an information standard, namely ASCII. Statistical analysis showed a proportional relationship between long-term memory and gamma activity. Results from EEG recordings indicate a pattern. The pattern was obtained through the de-codification of an EEG recording to sound and then to ASCII. Stimulation of gamma should enhance long term memory capacity. More research is required to unlock the human brains' protocol key. This key will enable the processing of information directly to and from human memory via gamma, the hippocampus and the temporal lobe.

  3. Validation of In Vitro Cell-Based Human Blood-Brain Barrier Model Using Clinical Positron Emission Tomography Radioligands To Predict In Vivo Human Brain Penetration

    International Nuclear Information System (INIS)

    Mabondzo, A.; Guyot, A.C.; Bottlaender, M.; Deverre, J.R.; Tsaouin, K.; Balimane, P.V.

    2010-01-01

    We have evaluated a novel in vitro cell-based human blood-brain barrier (BBB) model that could predict in vivo human brain penetration for compounds with different BBB permeabilities using the clinical positron emission tomography (PET) data. Comparison studies were also performed to demonstrate that the in vitro cell-based human BBB model resulted in better predictivity over the traditional permeability model in discovery organizations, Caco-2 cells. We evaluated the in vivo BBB permeability of [ 18 F] and [ 11 C]-compounds in humans by PET imaging. The in vivo plasma-brain exchange parameters used for comparison were determined in humans by PET using a kinetic analysis of the radiotracer binding. For each radiotracer, the parameters were determined by fitting the brain kinetics of the radiotracer using a two-tissue compartment model of the ligand-receptor interaction. Bidirectional transport studies with the same compounds as in in vivo studies were carried out using the in vitro cell-based human BBB model as well as Caco-2 cells. The in vitro cell-based human BBB model has important features of the BBB in vivo and is suitable for discriminating between CNS and non-CNS marketed drugs. A very good correlation (r 2 =0.90; P≤0.001) was demonstrated between in vitro BBB permeability and in vivo permeability coefficient. In contrast, a poor correlation (r 2 = 0.17) was obtained between Caco-2 data and in vivo human brain penetration. This study highlights the potential of this in vitro cell-based human BBB model in drug discovery and shows that it can be an extremely effective screening tool for CNS programs. (authors)

  4. Impaired insulin action in the human brain: causes and metabolic consequences.

    Science.gov (United States)

    Heni, Martin; Kullmann, Stephanie; Preissl, Hubert; Fritsche, Andreas; Häring, Hans-Ulrich

    2015-12-01

    Over the past few years, evidence has accumulated that the human brain is an insulin-sensitive organ. Insulin regulates activity in a limited number of specific brain areas that are important for memory, reward, eating behaviour and the regulation of whole-body metabolism. Accordingly, insulin in the brain modulates cognition, food intake and body weight as well as whole-body glucose, energy and lipid metabolism. However, brain imaging studies have revealed that not everybody responds equally to insulin and that a substantial number of people are brain insulin resistant. In this Review, we provide an overview of the effects of insulin in the brain in humans and the relevance of the effects for physiology. We present emerging evidence for insulin resistance of the human brain. Factors associated with brain insulin resistance such as obesity and increasing age, as well as possible pathogenic factors such as visceral fat, saturated fatty acids, alterations at the blood-brain barrier and certain genetic polymorphisms, are reviewed. In particular, the metabolic consequences of brain insulin resistance are discussed and possible future approaches to overcome brain insulin resistance and thereby prevent or treat obesity and type 2 diabetes mellitus are outlined.

  5. Voxel-based analysis of whole-brain effects of age and gender on dopamine transporter SPECT imaging in healthy subjects

    International Nuclear Information System (INIS)

    Eusebio, Alexandre; Azulay, Jean-Philippe; Ceccaldi, Mathieu; Girard, Nadine; Mundler, Olivier; Guedj, Eric

    2012-01-01

    Several studies have shown age- and gender-related differences in striatal dopamine transporter (DaT) binding. These studies were based on a striatal region on interest approach that may have underestimated these effects and could not evaluate extrastriatal regions. Our aim was to determine the effects at the voxel level of age and gender on whole-brain DaT distribution using [ 123 I]FP-CIT SPECT in healthy subjects. We performed a whole-brain [ 123 I]FP-CIT SPECT voxel-based analysis using SPM8 and a standardized normalization template (p < 0.05, corrected using the false discovery rate method) in 51 healthy subjects aged from 21 to 79 years. We found an age-related DaT binding decrease in the striatum, anterior cingulate/medial frontal cortices and insulo-opercular cortices. Also DaT binding ratios were higher in women than men in the striatum and opercular cortices. This study showed both striatal and extrastriatal age-related and gender-related differences in DaT binding in healthy subjects using a whole-brain voxel-based non-a priori approach. These differences highlight the need for careful age and gender matching in DaT analyses of neuropsychiatric disorders. (orig.)

  6. Voxel-based analysis of whole-brain effects of age and gender on dopamine transporter SPECT imaging in healthy subjects

    Energy Technology Data Exchange (ETDEWEB)

    Eusebio, Alexandre; Azulay, Jean-Philippe [APHM, Hopital de la Timone, Service de Neurologie et Pathologie du Mouvement, Marseille (France); CNRS, Aix-Marseille Univ, Institut de Neurosciences de la Timone, Marseille (France); Ceccaldi, Mathieu [APHM, Hopital de la Timone, Service de Neurologie et de Neuropsychologie, Marseille (France); Aix-Marseille Univ, UMR Inserm 1106, Institut de Neurosciences des Systemes, Marseille (France); Girard, Nadine [APHM, Hopital de la Timone, Service de Neuroradiologie diagnostique et interventionnelle, Marseille (France); Mundler, Olivier [APHM, Hopital de la Timone, Service Central de Biophysique et Medecine Nucleaire, Marseille (France); Aix-Marseille Univ, CERIMED, Marseille (France); Guedj, Eric [CNRS, Aix-Marseille Univ, Institut de Neurosciences de la Timone, Marseille (France); APHM, Hopital de la Timone, Service Central de Biophysique et Medecine Nucleaire, Marseille (France); Aix-Marseille Univ, CERIMED, Marseille (France)

    2012-11-15

    Several studies have shown age- and gender-related differences in striatal dopamine transporter (DaT) binding. These studies were based on a striatal region on interest approach that may have underestimated these effects and could not evaluate extrastriatal regions. Our aim was to determine the effects at the voxel level of age and gender on whole-brain DaT distribution using [{sup 123}I]FP-CIT SPECT in healthy subjects. We performed a whole-brain [{sup 123}I]FP-CIT SPECT voxel-based analysis using SPM8 and a standardized normalization template (p < 0.05, corrected using the false discovery rate method) in 51 healthy subjects aged from 21 to 79 years. We found an age-related DaT binding decrease in the striatum, anterior cingulate/medial frontal cortices and insulo-opercular cortices. Also DaT binding ratios were higher in women than men in the striatum and opercular cortices. This study showed both striatal and extrastriatal age-related and gender-related differences in DaT binding in healthy subjects using a whole-brain voxel-based non-a priori approach. These differences highlight the need for careful age and gender matching in DaT analyses of neuropsychiatric disorders. (orig.)

  7. “Messing with the mind”: evolutionary challenges to human brain augmentation

    OpenAIRE

    Saniotis, Arthur; Henneberg, Maciej; Kumaratilake, Jaliya; Grantham, James P.

    2014-01-01

    The issue of brain augmentation has received considerable scientific attention over the last two decades. A key factor to brain augmentation that has been widely overlooked are the complex evolutionary processes which have taken place in evolving the human brain to its current state of functioning. Like other bodily organs, the human brain has been subject to the forces of biological adaptation. The structure and function of the brain, is very complex and only now we are beginning to understa...

  8. The structural, connectomic and network covariance of the human brain.

    Science.gov (United States)

    Irimia, Andrei; Van Horn, John D

    2013-02-01

    Though it is widely appreciated that complex structural, functional and morphological relationships exist between distinct areas of the human cerebral cortex, the extent to which such relationships coincide remains insufficiently appreciated. Here we determine the extent to which correlations between brain regions are modulated by either structural, connectomic or network-theoretic properties using a structural neuroimaging data set of magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) volumes acquired from N=110 healthy human adults. To identify the linear relationships between all available pairs of regions, we use canonical correlation analysis to test whether a statistically significant correlation exists between each pair of cortical parcels as quantified via structural, connectomic or network-theoretic measures. In addition to this, we investigate (1) how each group of canonical variables (whether structural, connectomic or network-theoretic) contributes to the overall correlation and, additionally, (2) whether each individual variable makes a significant contribution to the test of the omnibus null hypothesis according to which no correlation between regions exists across subjects. We find that, although region-to-region correlations are extensively modulated by structural and connectomic measures, there are appreciable differences in how these two groups of measures drive inter-regional correlation patterns. Additionally, our results indicate that the network-theoretic properties of the cortex are strong modulators of region-to-region covariance. Our findings are useful for understanding the structural and connectomic relationship between various parts of the brain, and can inform theoretical and computational models of cortical information processing. Published by Elsevier Inc.

  9. The progress of radiosensitive genes of human brain glioma

    International Nuclear Information System (INIS)

    Wang Xi; Liu Qiang

    2008-01-01

    Human gliomas are one of the most aggressive tumors in brain which grow infiltrativly. Surgery is the mainstay of treatment. But as the tumor could not be entirely cut off, it is easy to relapse. Radiotherapy plays an important role for patients with gliomas after surgery. The efficacy of radiotherapy is associated with radio sensitivity of human gliomas. This paper makes a summary of current situation and progress for radiosensitive genes of human brain gliomas. (authors)

  10. Analysis of brain CT on 120 patients of human cysticercosis

    International Nuclear Information System (INIS)

    Ma, J.; To, R.; Ri, T.; Ra, S.; Inomata, Taiten; Ogawa, Yasuhiro; Maeda, Tomoo.

    1990-01-01

    A study on brain CT was made in 120 patients of human cysticercosis, which is a rare disease in Japan and clinical symptoms and laboratory data for the diagnosis were also discussed. From the point of therapeutic view, we proposed a new differentiation on brain CT of human cysticercosis, which is divided into two groups according to the alve or dead parasite. Furthermore, we proposed a new type named multiple large and small cysts type on brain CT. The idea of diagnostic standard was made integrating brain CT image, clinical symptoms and labolatory data. (author)

  11. The human brain. Prenatal development and structure

    International Nuclear Information System (INIS)

    Marin-Padilla, Miguel

    2011-01-01

    This book is unique among the current literature in that it systematically documents the prenatal structural development of the human brain. It is based on lifelong study using essentially a single staining procedure, the classic rapid Golgi procedure, which ensures an unusual and desirable uniformity in the observations. The book is amply illustrated with 81 large, high-quality color photomicrographs never previously reproduced. These photomicrographs, obtained at 6, 7, 11, 15, 18, 20, 25, 30, 35, and 40 weeks of gestation, offer a fascinating insight into the sequential prenatal development of neurons, blood vessels, and glia in the human brain. (orig.)

  12. The human brain. Prenatal development and structure

    Energy Technology Data Exchange (ETDEWEB)

    Marin-Padilla, Miguel

    2011-07-01

    This book is unique among the current literature in that it systematically documents the prenatal structural development of the human brain. It is based on lifelong study using essentially a single staining procedure, the classic rapid Golgi procedure, which ensures an unusual and desirable uniformity in the observations. The book is amply illustrated with 81 large, high-quality color photomicrographs never previously reproduced. These photomicrographs, obtained at 6, 7, 11, 15, 18, 20, 25, 30, 35, and 40 weeks of gestation, offer a fascinating insight into the sequential prenatal development of neurons, blood vessels, and glia in the human brain. (orig.)

  13. Infection and upregulation of proinflammatory cytokines in human brain vascular pericytes by human cytomegalovirus

    Directory of Open Access Journals (Sweden)

    Alcendor Donald J

    2012-05-01

    Full Text Available Abstract Background Congenital human cytomegalovirus (HCMV infections can result in CNS abnormalities in newborn babies including vision loss, mental retardation, motor deficits, seizures, and hearing loss. Brain pericytes play an essential role in the development and function of the blood–brain barrier yet their unique role in HCMV dissemination and neuropathlogy has not been reported. Methods Primary human brain vascular pericytes were exposed to a primary clinical isolate of HCMV designated ‘SBCMV’. Infectivity was analyzed by microscopy, immunofluorescence, Western blot, and qRT-PCR. Microarrays were performed to identify proinflammatory cytokines upregulated after SBCMV exposure, and the results validated by real-time quantitative polymerase chain reaction (qPCR methodology. In situ cytokine expression of pericytes after exposure to HCMV was examined by ELISA and in vivo evidence of HCMV infection of brain pericytes was shown by dual-labeled immunohistochemistry. Results HCMV-infected human brain vascular pericytes as evidenced by several markers. Using a clinical isolate of HCMV (SBCMV, microscopy of infected pericytes showed virion production and typical cytomegalic cytopathology. This finding was confirmed by the expression of major immediate early and late virion proteins and by the presence of HCMV mRNA. Brain pericytes were fully permissive for CMV lytic replication after 72 to 96 hours in culture compared to human astrocytes or human brain microvascular endothelial cells (BMVEC. However, temporal transcriptional expression of pp65 virion protein after SBCMV infection was lower than that seen with the HCMV Towne laboratory strain. Using RT-PCR and dual-labeled immunofluorescence, proinflammatory cytokines CXCL8/IL-8, CXCL11/ITAC, and CCL5/Rantes were upregulated in SBCMV-infected cells, as were tumor necrosis factor-alpha (TNF-alpha, interleukin-1 beta (IL-1beta, and interleukin-6 (IL-6. Pericytes exposed to SBCMV elicited

  14. Evidence of native α-synuclein conformers in the human brain.

    Science.gov (United States)

    Gould, Neal; Mor, Danielle E; Lightfoot, Richard; Malkus, Kristen; Giasson, Benoit; Ischiropoulos, Harry

    2014-03-14

    α-Synuclein aggregation is central to the pathogenesis of several brain disorders. However, the native conformations and functions of this protein in the human brain are not precisely known. The native state of α-synuclein was probed by gel filtration coupled with native gradient gel separation, an array of antibodies with non-overlapping epitopes, and mass spectrometry. The existence of metastable conformers and stable monomer was revealed in the human brain.

  15. Blood-brain transfer of Pittsburgh compound B in humans

    DEFF Research Database (Denmark)

    Gjedde, Albert; Aanerud, Joel; Braendgaard, Hans

    2013-01-01

    -brain barrier is held to be high but the permeability-surface area product and extraction fractions in patients or healthy volunteers are not known. We used PET to determine the clearance associated with the unidrectional blood-brain transfer of [(11)C]PiB and the corresponding cerebral blood flow rates...... with the observation that numerically, but insignificantly, unidirectional blood-brain clearances are lower and extraction fractions higher in the patients. The evidence of unchanged permeability-surface area products in the patients implies that blood flow changes can be deduced from the unidirectional blood......In the labeled form, the Pittsburgh compound B (2-(4'-{N-methyl-[(11)C]}methyl-aminophenyl)-6-hydroxy-benzothiazole, [(11)C]PiB), is used as a biomarker for positron emission tomography (PET) of brain β-amyloid deposition in Alzheimer's disease (AD). The permeability of [(11)C]PiB in the blood...

  16. Sigma and opioid receptors in human brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, G.E.; Szuecs, M.; Mamone, J.Y.; Bem, W.T.; Rush, M.D.; Johnson, F.E.; Coscia, C.J. (St. Louis Univ. School of Medicine, MO (USA))

    1990-01-01

    Human brain tumors and nude mouse-borne human neuroblastomas and gliomas were analyzed for sigma and opioid receptor content. Sigma binding was assessed using ({sup 3}H) 1, 3-di-o-tolylguanidine (DTG), whereas opioid receptor subtypes were measured with tritiated forms of the following: {mu}, (D-ala{sup 2}, mePhe{sup 4}, gly-ol{sup 5}) enkephalin (DAMGE); {kappa}, ethylketocyclazocine (EKC) or U69,593; {delta}, (D-pen{sup 2}, D-pen{sup 5}) enkephalin (DPDPE) or (D-ala{sup 2}, D-leu{sup 5}) enkephalin (DADLE) with {mu} suppressor present. Binding parameters were estimated by homologous displacement assays followed by analysis using the LIGAND program. Sigma binding was detected in 15 of 16 tumors examined with very high levels found in a brain metastasis from an adenocarcinoma of lung and a human neuroblastoma (SK-N-MC) passaged in nude mice. {kappa} opioid receptor binding was detected in 4 of 4 glioblastoma multiforme specimens and 2 of 2 human astrocytoma cell lines tested but not in the other brain tumors analyzed.

  17. MR-visible water content in human brain: a proton MRS study

    DEFF Research Database (Denmark)

    Christiansen, P; Toft, P B; Gideon, P

    1994-01-01

    . The major drawbacks are the necessity to make the assumptions that the water concentrations in the brain and that all tissue water is MR-visible. A number of in vivo measurements were carried out to estimate the concentration of MR-visible water in the brain of healthy volunteers divided into four age...... and biochemical data published, suggest that only a small fraction (invisible.(ABSTRACT TRUNCATED AT 250 WORDS)...

  18. Development of Human Brain Structural Networks Through Infancy and Childhood

    Science.gov (United States)

    Huang, Hao; Shu, Ni; Mishra, Virendra; Jeon, Tina; Chalak, Lina; Wang, Zhiyue J.; Rollins, Nancy; Gong, Gaolang; Cheng, Hua; Peng, Yun; Dong, Qi; He, Yong

    2015-01-01

    During human brain development through infancy and childhood, microstructural and macrostructural changes take place to reshape the brain's structural networks and better adapt them to sophisticated functional and cognitive requirements. However, structural topological configuration of the human brain during this specific development period is not well understood. In this study, diffusion magnetic resonance image (dMRI) of 25 neonates, 13 toddlers, and 25 preadolescents were acquired to characterize network dynamics at these 3 landmark cross-sectional ages during early childhood. dMRI tractography was used to construct human brain structural networks, and the underlying topological properties were quantified by graph-theory approaches. Modular organization and small-world attributes are evident at birth with several important topological metrics increasing monotonically during development. Most significant increases of regional nodes occur in the posterior cingulate cortex, which plays a pivotal role in the functional default mode network. Positive correlations exist between nodal efficiencies and fractional anisotropy of the white matter traced from these nodes, while correlation slopes vary among the brain regions. These results reveal substantial topological reorganization of human brain structural networks through infancy and childhood, which is likely to be the outcome of both heterogeneous strengthening of the major white matter tracts and pruning of other axonal fibers. PMID:24335033

  19. Non-invasive Brain Stimulation: A Paradigm Shift in Understanding Brain Oscillations

    Directory of Open Access Journals (Sweden)

    Johannes Vosskuhl

    2018-05-01

    Full Text Available Cognitive neuroscience set out to understand the neural mechanisms underlying cognition. One central question is how oscillatory brain activity relates to cognitive processes. Up to now, most of the evidence supporting this relationship was correlative in nature. This situation changed dramatically with the recent development of non-invasive brain stimulation (NIBS techniques, which open up new vistas for neuroscience by allowing researchers for the first time to validate their correlational theories by manipulating brain functioning directly. In this review, we focus on transcranial alternating current stimulation (tACS, an electrical brain stimulation method that applies sinusoidal currents to the intact scalp of human individuals to directly interfere with ongoing brain oscillations. We outline how tACS can impact human brain oscillations by employing different levels of observation from non-invasive tACS application in healthy volunteers and intracranial recordings in patients to animal studies demonstrating the effectiveness of alternating electric fields on neurons in vitro and in vivo. These findings likely translate to humans as comparable effects can be observed in human and animal studies. Neural entrainment and plasticity are suggested to mediate the behavioral effects of tACS. Furthermore, we focus on mechanistic theories about the relationship between certain cognitive functions and specific parameters of brain oscillaitons such as its amplitude, frequency, phase and phase coherence. For each of these parameters we present the current state of testing its functional relevance by means of tACS. Recent developments in the field of tACS are outlined which include the stimulation with physiologically inspired non-sinusoidal waveforms, stimulation protocols which allow for the observation of online-effects, and closed loop applications of tACS.

  20. Bovine brain ribonuclease is the functional homolog of human ribonuclease 1.

    Science.gov (United States)

    Eller, Chelcie H; Lomax, Jo E; Raines, Ronald T

    2014-09-19

    Mounting evidence suggests that human pancreatic ribonuclease (RNase 1) plays important roles in vivo, ranging from regulating blood clotting and inflammation to directly counteracting tumorigenic cells. Understanding these putative roles has been pursued with continual comparisons of human RNase 1 to bovine RNase A, an enzyme that appears to function primarily in the ruminant gut. Our results imply a different physiology for human RNase 1. We demonstrate distinct functional differences between human RNase 1 and bovine RNase A. Moreover, we characterize another RNase 1 homolog, bovine brain ribonuclease, and find pronounced similarities between that enzyme and human RNase 1. We report that human RNase 1 and bovine brain ribonuclease share high catalytic activity against double-stranded RNA substrates, a rare quality among ribonucleases. Both human RNase 1 and bovine brain RNase are readily endocytosed by mammalian cells, aided by tight interactions with cell surface glycans. Finally, we show that both human RNase 1 and bovine brain RNase are secreted from endothelial cells in a regulated manner, implying a potential role in vascular homeostasis. Our results suggest that brain ribonuclease, not RNase A, is the true bovine homolog of human RNase 1, and provide fundamental insight into the ancestral roles and functional adaptations of RNase 1 in mammals. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Common genetic variants influence human subcortical brain structures

    NARCIS (Netherlands)

    Hibar, D.P.; Stein, J.L.; Renteria, M.E.; Arias-Vasquez, A.; Desrivières, S.; Jahanshad, N.; Toro, R.; Wittfeld, K.; Abramovic, L.; Andersson, M.; Aribisala, B.S.; Armstrong, N.J.; Bernard, M.; Bohlken, M.M.; Biks, M.P.; Bralten, J.; Brown, A.A.; Chakravarty, M.M.; Chen, Q.; Ching, C.R.K.; Cuellar-Partida, G.; den Braber, A.; Giddaluru, S.; Goldman, A.L.; Grimm, O.; Guadalupe, T.; Hass, J.; Woldehawariat, G.; Holmes, A.J.; Hoogman, M.; Janowitz, D.; Jia, T.; Kim, S.; Klein, M.; Kraemer, B.; Lee, P.H.; Olde Loohuis, L.M.; Luciano, M.; Macare, C.; Mather, K.A.; Mattheisen, M.; Milaneschi, Y.; Nho, K.; Papmeyer, M.; Ramasamy, A.; Risacher, S.L.; Roiz-Santiañez, R.; Rose, E.J.; Salami, A.; Sämann, P.G.; Schmaal, L.; Schork, A.J.; Shin, J.; Strike, L.T.; Teumer, A.; Donkelaar, M.M.J.; van Eijk, K.R.; Walters, R.K.; Westlye, L.T.; Welan, C.D.; Winkler, A.M.; Zwiers, M.P.; Alhusaini, S.; Athanasiu, L.; Ehrlich, S.; Hakobjan, M.M.H.; Hartberg, C.B.; Haukvik, U.K.; Heister, A.J.G.A.M.; Hoehn, D.; Kasperaviciute, D.; Liewald, D.C.M.; Lopez, L.M.; Makkinje, R.R.; Matarin, M.; Naber, M.A.M.; Reese McKay, D.; Needham, M.; Nugent, A.C.; Pütz, B.; Royle, N.A.; Shen, L.; Sprooten, E.; Trabzuni, D.; van der Marel, S.S.L.; van Hulzen, K.J.E.; Walton, E.; Wolf, C.; Almasy, L.; Ames, D.; Arepalli, S.; Assareh, A.A.; Bastin, M.E.; Brodaty, H.; Bulayeva, K.B.; Carless, M.A.; Cichon, S.; Corvin, A.; Curran, J.E.; Czisch, M.; de Zubicaray, G.I.; Dillman, A.; Duggirala, R.; Dyer, T.D.; Erk, S.; Fedko, I.O.; Ferrucci, L.; Foroud, T.M.; Fox, P.T.; Fukunaga, M.; Gibbs, J.R.; Göring, H.H.H.; Green, R.C.; Guelfi, S.; Hansell, N.K.; Hartman, C.A.; Hegenscheid, K.; Heinz, A.; Hernandez, D.G.; Heslenfeld, D.J.; Hoekstra, P.J.; Holsboer, F.; Homuth, G.; Hottenga, J.J.; Ikeda, M.; Jack, C.R., Jr.; Jenkinson, M.; Johnson, R.; Kanai, R.; Keil, M.; Kent, J.W. Jr.; Kochunov, P.; Kwok, J.B.; Lawrie, S.M.; Liu, X.; Longo, D.L.; McMahon, K.L.; Meisenzahl, E.; Melle, I.; Mohnke, S.; Montgomery, G.W.; Mostert, J.C.; Mühleisen, T.W.; Nalls, M.A.; Nichols, T.E.; Nilsson, L.G.; Nöthen, M.M.; Ohi, K.; Olvera, R.L.; Perez-Iglesias, R.; Pike, G.B.; Potkin, S.G.; Reinvang, I.; Reppermund, S.; Rietschel, M.; Romanczuk-Seiferth, N.; Rosen, G.D.; Rujescu, D.; Schnell, K.; Schofield, P.R.; Smith, C.; Steen, V.M.; Sussmann, J.E.; Thalamuthu, A.; Toga, A.W.; Traynor, B.J.; Troncoso, J.; Turner, J.A.; Valdés Hernández, M.C.; van t Ent, D.; van der Brug, M.; van der Wee, N.J.A.; van Tol, M.J.; Veltman, D.J.; Wassink, T.H.; Westmann, E.; Zielke, R.H.; Zonderman, A.B.; Ashbrook, D.G.; Hager, R.; Lu, L.; McMahon, F.J.; Morris, D.W.; Williams, R.W.; Brunner, H.G.; Buckner, R.L.; Buitelaar, J.K.; Cahn, W.; Calhoun, V.D.; Cavalleri, G.L.; Crespo-Facorro, B.; Dale, A.M.; Davies, G.E.; Delanty, N.; Depondt, C.; Djurovic, S.; Drevets, W.C.; Espeseth, T.; Gollub, R.L.; Ho, B.C.; Hoffmann, W.; Hosten, N.; Kahn, R.S.; Le Hellard, S.; Meyer-Lindenberg, A.; Müller-Myhsok, B.; Nauck, M.; Nyberg, L.; Pandolfo, M.; Penninx, B.W.J.H.; Roffman, J.L.; Sisodiya, SM; Smoller, J.W.; van Bokhoven, H.; van Haren, N.E.M.; Völzke, H.; Walter, H.; Weiner, M.W.; Wen, W.; White, T.; Agartz, I.; Andreassen, O.A.; Blangero, J.; Boomsma, D.I.; Brouwer, R.M.; Cannon, D.M.; Cookson, M.R.; de Geus, E.J.C.; Deary, I.J.; Donohoe, G.; Fernandez, G.; Fisher, S.E.; Francks, C.; Glahn, D.C.; Grabe, H.J.; Gruber, O.; Hardy, J.; Hashimoto, R.; Hulshoff Pol, H.E.; Jönsson, E.G.; Kloszewska, I.; Lovestone, S.; Mattay, V.S.; Mecocci, P.; McDonald, C.; McIntosh, A.M.; Ophoff, R.A.; Paus, T.; Pausova, Z.; Ryten, M.; Sachdev, P.S.; Saykin, A.J.; Simmons, A.; Singleton, A.; Soininen, H.; Wardlaw, J.M.; Weale, M.E.; Weinberger, D.R.; Adams, H.H.H.; Launer, L.J.; Seiler, S.; Schmidt, R.; Chauhan, G.; Satizabal, C.L.; Becker, J.T.; Yanek, L.; van der Lee, S.J.; Ebling, M.; Fischl, B.; Longstreth, Jr. W.T.; Greve, D.; Schmidt, H.; Nyquist, P.; Vinke, L.N.; van Duijn, C.M.; Xue, L.; Mazoyer, B.; Bis, J.C.; Gudnason, V.; Seshadri, S.; Arfan Ikram, M.; Martin, N.G.; Wright, M.J.; Schumann, G.; Franke, B.; Thompson, P.M.; Medland, S.E.

    2015-01-01

    The highly complex structure of the human brain is strongly shaped by genetic influences. Subcortical brain regions form circuits with cortical areas to coordinate movement, learning, memory and motivation, and altered circuits can lead to abnormal behaviour and disease. To investigate how common

  2. Common genetic variants influence human subcortical brain structures

    NARCIS (Netherlands)

    D.P. Hibar (Derrek); J.L. Stein; M.E. Rentería (Miguel); A. Arias-Vásquez (Alejandro); S. Desrivières (Sylvane); N. Jahanshad (Neda); R. Toro (Roberto); K. Wittfeld (Katharina); L. Abramovic (Lucija); M. Andersson (Micael); B. Aribisala (Benjamin); N.J. Armstrong (Nicola J.); M. Bernard (Manon); M.M. Bohlken (Marc M.); M.P.M. Boks (Marco); L.B.C. Bralten (Linda); A.A. Brown (Andrew); M.M. Chakravarty (M. Mallar); Q. Chen (Qiang); C.R.K. Ching (Christopher); G. Cuellar-Partida (Gabriel); A. den Braber (Anouk); S. Giddaluru (Sudheer); A.L. Goldman (Aaron L.); O. Grimm (Oliver); T. Guadalupe (Tulio); J. Hass (Johanna); G. Woldehawariat (Girma); A.J. Holmes (Avram); M. Hoogman (Martine); D. Janowitz (Deborah); T. Jia (Tianye); S. Kim (Shinseog); M. Klein (Marieke); B. Kraemer (Bernd); P.H. Lee (Phil H.); L.M. Olde Loohuis (Loes M.); M. Luciano (Michelle); C. MacAre (Christine); R. Mather; M. Mattheisen (Manuel); Y. Milaneschi (Yuri); K. Nho (Kwangsik); M. Papmeyer (Martina); A. Ramasamy (Adaikalavan); S.L. Risacher (Shannon); R. Roiz-Santiañez (Roberto); E.J. Rose (Emma); A. Salami (Alireza); P.G. Sämann (Philipp); L. Schmaal (Lianne); N.J. Schork (Nicholas); J. Shin (Jean); L.T. Strike (Lachlan); A. Teumer (Alexander); M.M.J. Van Donkelaar (Marjolein M. J.); K.R. van Eijk (Kristel); R.K. Walters (Raymond); L.T. Westlye (Lars); C.D. Whelan (Christopher); A.M. Winkler (Anderson); M.P. Zwiers (Marcel); S. Alhusaini (Saud); L. Athanasiu (Lavinia); S.M. Ehrlich (Stefan); M. Hakobjan (Marina); C.B. Hartberg (Cecilie B.); U.K. Haukvik (Unn); A.J.G.A.M. Heister (Angelien J. G. A. M.); D. Hoehn (David); D. Kasperaviciute (Dalia); D.C. Liewald (David C.); L.M. Lopez (Lorna); R.R.R. Makkinje (Remco R. R.); M. Matarin (Mar); M.A.M. Naber (Marlies A. M.); D. Reese McKay; M. Needham (Margaret); A.C. Nugent (Allison); B. Pütz (Benno); N.A. Royle (Natalie); L. Shen (Li); R. Sprooten (Roy); D. Trabzuni (Danyah); S.S.L. Van Der Marel (Saskia S. L.); K.J.E. Van Hulzen (Kimm J. E.); E. Walton (Esther); A. Björnsson (Asgeir); L. Almasy (Laura); D.J. Ames (David); S. Arepalli (Sampath); A.A. Assareh; M.E. Bastin (Mark); H. Brodaty (Henry); K. Bulayeva (Kazima); M.A. Carless (Melanie); S. Cichon (Sven); A. Corvin (Aiden); J.E. Curran (Joanne); M. Czisch (Michael); G.I. de Zubicaray (Greig); A. Dillman (Allissa); A. Duggirala (Aparna); M.D. Dyer (Matthew); S. Erk; I. Fedko (Iryna); L. Ferrucci (Luigi); T. Foroud (Tatiana); P.T. Fox (Peter); M. Fukunaga (Masaki); J. Raphael Gibbs; H.H.H. Göring (Harald H.); R.C. Green (Robert C.); S. Guelfi (Sebastian); N.K. Hansell (Narelle); C.A. Hartman (Catharina); K. Hegenscheid (Katrin); J. Heinz (Judith); D.G. Hernandez (Dena); D.J. Heslenfeld (Dirk); P.J. Hoekstra (Pieter); F. Holsboer; G. Homuth (Georg); J.J. Hottenga (Jouke Jan); M. Ikeda (Masashi); C.R. Jack Jr. (Clifford); S. Jenkinson (Sarah); R. Johnson (Robert); R. Kanai (Ryota); M. Keil (Maria); J.W. Kent (Jack W.); P. Kochunov (Peter); J.B. Kwok (John B.); S. Lawrie (Stephen); X. Liu (Xinmin); D.L. Longo (Dan L.); K.L. Mcmahon (Katie); E. Meisenzahl (Eva); I. Melle (Ingrid); S. Mohnke (Sebastian); G.W. Montgomery (Grant); J.C. Mostert (Jeanette C.); T.W. Mühleisen (Thomas); M.A. Nalls (Michael); T.E. Nichols (Thomas); L.G. Nilsson; M.M. Nöthen (Markus); K. Ohi (Kazutaka); R.L. Olvera (Rene); R. Perez-Iglesias (Rocio); G. Bruce Pike; S.G. Potkin (Steven); I. Reinvang (Ivar); S. Reppermund; M. Rietschel (Marcella); N. Seiferth (Nina); G.D. Rosen (Glenn D.); D. Rujescu (Dan); K. Schnell (Kerry); C.J. Schofield (Christopher); C. Smith (Colin); V.M. Steen (Vidar); J. Sussmann (Jessika); A. Thalamuthu (Anbupalam); A.W. Toga (Arthur W.); B. Traynor (Bryan); J.C. Troncoso (Juan); J. Turner (Jessica); M.C. Valdés Hernández (Maria); D. van 't Ent (Dennis); M.P. van der Brug (Marcel); N.J. van der Wee (Nic); M.J.D. van Tol (Marie-José); D.J. Veltman (Dick); A.M.J. Wassink (Annemarie); E. Westman (Eric); R.H. Zielke (Ronald H.); A.B. Zonderman (Alan B.); D.G. Ashbrook (David G.); R. Hager (Reinmar); L. Lu (Lu); F.J. Mcmahon (Francis J); D.W. Morris (Derek W); R.W. Williams (Robert W.); H.G. Brunner; M. Buckner; J.K. Buitelaar (Jan K.); W. Cahn (Wiepke); V.D. Calhoun Vince D. (V.); G. Cavalleri (Gianpiero); B. Crespo-Facorro (Benedicto); A.M. Dale (Anders); G.E. Davies (Gareth); N. Delanty; C. Depondt (Chantal); S. Djurovic (Srdjan); D.A. Drevets (Douglas); T. Espeseth (Thomas); R.L. Gollub (Randy); B.C. Ho (Beng ); W. Hoffmann (Wolfgang); N. Hosten (Norbert); R. Kahn (René); S. Le Hellard (Stephanie); A. Meyer-Lindenberg; B. Müller-Myhsok (B.); M. Nauck (Matthias); L. Nyberg (Lars); M. Pandolfo (Massimo); B.W.J.H. Penninx (Brenda); J.L. Roffman (Joshua); S.M. Sisodiya (Sanjay); J.W. Smoller; H. van Bokhoven (Hans); N.E.M. van Haren (Neeltje E.); H. Völzke (Henry); H.J. Walter (Henrik); M.W. Weiner (Michael); W. Wen (Wei); T.J.H. White (Tonya); I. Agartz (Ingrid); O.A. Andreassen (Ole); J. Blangero (John); D.I. Boomsma (Dorret); R.M. Brouwer (Rachel); D.M. Cannon (Dara); M.R. Cookson (Mark); E.J.C. de Geus (Eco); I.J. Deary (Ian J.); D.J. Donohoe (Dennis); G. Fernandez (Guillén); S.E. Fisher (Simon); C. Francks (Clyde); D.C. Glahn (David); H.J. Grabe (Hans Jörgen); O. Gruber (Oliver); J. Hardy (John); R. Hashimoto (Ryota); H.E. Hulshoff Pol (Hilleke); E.G. Jönsson (Erik); I. Kloszewska (Iwona); S. Lovestone (Simon); V.S. Mattay (Venkata S.); P. Mecocci (Patrizia); C. McDonald (Colm); A.M. McIntosh (Andrew); R.A. Ophoff (Roel); T. Paus (Tomas); Z. Pausova (Zdenka); M. Ryten (Mina); P.S. Sachdev (Perminder); A.J. Saykin (Andrew); A. Simmons (Andrew); A. Singleton (Andrew); H. Soininen (H.); J.M. Wardlaw (J.); M.E. Weale (Michael); D.R. Weinberger (Daniel); H.H.H. Adams (Hieab); L.J. Launer (Lenore); S. Seiler (Stephan); R. Schmidt (Reinhold); G. Chauhan (Ganesh); C.L. Satizabal (Claudia L.); J.T. Becker (James); L.R. Yanek (Lisa); S.J. van der Lee (Sven); M. Ebling (Maritza); B. Fischl (Bruce); W.T. Longstreth Jr; D. Greve (Douglas); R. Schmidt (Reinhold); P. Nyquist (Paul); L.N. Vinke (Louis N.); C.M. van Duijn (Cornelia); L. Xue (Luting); B. Mazoyer (Bernard); J.C. Bis (Joshua); V. Gudnason (Vilmundur); S. Seshadri (Sudha); M.A. Ikram (Arfan); N.G. Martin (Nicholas); M.J. Wright (Margaret); G. Schumann (Gunter); B. Franke (Barbara); P.M. Thompson (Paul); S.E. Medland (Sarah Elizabeth)

    2015-01-01

    textabstractThe highly complex structure of the human brain is strongly shaped by genetic influences. Subcortical brain regions form circuits with cortical areas to coordinate movement, learning, memory and motivation, and altered circuits can lead to abnormal behaviour and disease. To investigate

  3. Low-dimensional morphospace of topological motifs in human fMRI brain networks

    Directory of Open Access Journals (Sweden)

    Sarah E. Morgan

    2018-06-01

    Full Text Available We present a low-dimensional morphospace of fMRI brain networks, where axes are defined in a data-driven manner based on the network motifs. The morphospace allows us to identify the key variations in healthy fMRI networks in terms of their underlying motifs, and we observe that two principal components (PCs can account for 97% of the motif variability. The first PC of the motif distribution is correlated with efficiency and inversely correlated with transitivity. Hence this axis approximately conforms to the well-known economical small-world trade-off between integration and segregation in brain networks. Finally, we show that the economical clustering generative model proposed by Vértes et al. (2012 can approximately reproduce the motif morphospace of the real fMRI brain networks, in contrast to other generative models. Overall, the motif morphospace provides a powerful way to visualize the relationships between network properties and to investigate generative or constraining factors in the formation of complex human brain functional networks. Motifs have been described as the building blocks of complex networks. Meanwhile, a morphospace allows networks to be placed in a common space and can reveal the relationships between different network properties and elucidate the driving forces behind network topology. We combine the concepts of motifs and morphospaces to create the first motif morphospace of fMRI brain networks. Crucially, the morphospace axes are defined by the motifs, in a data-driven manner. We observe strong correlations between the networks’ positions in morphospace and their global topological properties, suggesting that motif morphospaces are a powerful way to capture the topology of networks in a low-dimensional space and to compare generative models of brain networks. Motif morphospaces could also be used to study other complex networks’ topologies.

  4. Common genetic variants influence human subcortical brain structures

    NARCIS (Netherlands)

    Hibar, Derrek P.; Stein, Jason L.; Renteria, Miguel E.; Arias-Vasquez, Alejandro; Desrivieres, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S.; Armstrong, Nicola J.; Bernard, Manon; Bohlken, Marc M.; Boks, Marco P.; Bralten, Janita; Brown, Andrew A.; Chakravarty, M. Mallar; Chen, Qiang; Ching, Christopher R. K.; Cuellar-Partida, Gabriel; den Braber, Anouk; Giddaluru, Sudheer; Goldman, Aaron L.; Grimm, Oliver; Guadalupe, Tulio; Hass, Johanna; Woldehawariat, Girma; Holmes, Avram J.; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H.; Loohuis, Loes M. Olde; Luciano, Michelle; Macare, Christine; Mather, Karen A.; Mattheisen, Manuel; Milaneschi, Yuri; Nho, Kwangsik; Papmeyer, Martina; Ramasamy, Adaikalavan; Risacher, Shannon L.; Roiz-Santianez, Roberto; Rose, Emma J.; Salami, Alireza; Saemann, Philipp G.; Schmaal, Lianne; Schork, Andrew J.; Shin, Jean; Strike, Lachlan T.; Teumer, Alexander; van Donkelaar, Marjolein M. J.; van Eijk, Kristel R.; Walters, Raymond K.; Westlye, Lars T.; Whelan, Christopher D.; Winkler, Anderson M.; Zwiers, Marcel P.; Alhusaini, Saud; Athanasiu, Lavinia; Ehrlich, Stefan; Hakobjan, Marina M. H.; Hartberg, Cecilie B.; Haukvik, Unn K.; Heister, Angelien J. G. A. M.; Hoehn, David; Kasperaviciute, Dalia; Liewald, David C. M.; Lopez, Lorna M.; Makkinje, Remco R. R.; Matarin, Mar; Naber, Marlies A. M.; McKay, D. Reese; Needham, Margaret; Nugent, Allison C.; Puetz, Benno; Royle, Natalie A.; Shen, Li; Sprooten, Emma; Trabzuni, Daniah; van der Marel, Saskia S. L.; van Hulzen, Kimm J. E.; Walton, Esther; Wolf, Christiane; Almasy, Laura; Ames, David; Arepalli, Sampath; Assareh, Amelia A.; Bastin, Mark E.; Brodaty, Henry; Bulayeva, Kazima B.; Carless, Melanie A.; Cichon, Sven; Corvin, Aiden; Curran, Joanne E.; Czisch, Michael; de Zubicaray, Greig I.; Dillman, Allissa; Duggirala, Ravi; Dyer, Thomas D.; Erk, Susanne; Fedko, Iryna O.; Ferrucci, Luigi; Foroud, Tatiana M.; Fox, Peter T.; Fukunaga, Masaki; Gibbs, J. Raphael; Goering, Harald H. H.; Green, Robert C.; Guelfi, Sebastian; Hansell, Narelle K.; Hartman, Catharina A.; Hegenscheid, Katrin; Heinz, Andreas; Hernandez, Dena G.; Heslenfeld, Dirk J.; Hoekstra, Pieter J.; Holsboer, Florian; Homuth, Georg; Hottenga, Jouke-Jan; Ikeda, Masashi; Jack, Clifford R.; Jenkinson, Mark; Johnson, Robert; Kanai, Ryota; Keil, Maria; Kent, Jack W.; Kochunov, Peter; Kwok, John B.; Lawrie, Stephen M.; Liu, Xinmin; Longo, Dan L.; McMahon, Katie L.; Meisenzah, Eva; Melle, Ingrid; Mahnke, Sebastian; Montgomery, Grant W.; Mostert, Jeanette C.; Muehleisen, Thomas W.; Nalls, Michael A.; Nichols, Thomas E.; Nilsson, Lars G.; Noethen, Markus M.; Ohi, Kazutaka; Olvera, Rene L.; Perez-Iglesias, Rocio; Pike, G. Bruce; Potkin, Steven G.; Reinvang, Ivar; Reppermund, Simone; Rietschel, Marcella; Romanczuk-Seiferth, Nina; Rosen, Glenn D.; Rujescu, Dan; Schnell, Knut; Schofield, Peter R.; Smith, Colin; Steen, Vidar M.; Sussmann, Jessika E.; Thalamuthu, Anbupalam; Toga, Arthur W.; Traynor, Bryan J.; Troncoso, Juan; Turner, Jessica A.; Valdes Hernandez, Maria C.; van't Ent, Dennis; van der Brug, Marcel; van der Wee, Nic J. A.; van Tol, Marie-Jose; Veltman, Dick J.; Wassink, Thomas H.; Westman, Eric; Zielke, Ronald H.; Zonderman, Alan B.; Ashbrook, David G.; Hager, Reinmar; Lu, Lu; McMahon, Francis J.; Morris, Derek W.; Williams, Robert W.; Brunner, Han G.; Buckner, Randy L.; Buitelaar, Jan K.; Cahn, Wiepke; Calhoun, Vince D.; Cavalleri, Gianpiero L.; Crespo-Facorro, Benedicto; Dale, Anders M.; Davies, Gareth E.; Delanty, Norman; Depondt, Chantal; Djurovic, Srdjan; Drevets, Wayne C.; Espeseth, Thomas; Gollub, Randy L.; Ho, Beng-Choon; Hoffman, Wolfgang; Hosten, Norbert; Kahn, Rene S.; Le Hellard, Stephanie; Meyer-Lindenberg, Andreas; Mueller-Myhsok, Bertram; Nauck, Matthias; Nyberg, Lars; Pandolfo, Massimo; Penninx, Brenda W. J. H.; Roffman, Joshua L.; Sisodiya, Sanjay M.; Smoller, Jordan W.; van Bokhoven, Hans; van Haren, Neeltje E. M.; Voelzke, Henry; Walter, Henrik; Weiner, Michael W.; Wen, Wei; White, Tonya; Agartz, Ingrid; Andreassen, Ole A.; Blangero, John; Boomsma, Dorret I.; Brouwer, Rachel M.; Cannon, Dara M.; Cookson, Mark R.; de Geus, Eco J. C.; Deary, Ian J.; Donohoe, Gary; Fernandez, Guillen; Fisher, Simon E.; Francks, Clyde; Glahn, David C.; Grabe, Hans J.; Gruber, Oliver; Hardy, John; Hashimoto, Ryota; Pol, Hilleke E. Hulshoff; Joensson, Erik G.; Kloszewska, Iwona; Lovestone, Simon; Mattay, Venkata S.; Mecocci, Patrizia; McDonald, Colm; McIntosh, Andrew M.; Ophoff, Roel A.; Paus, Tomas; Pausova, Zdenka; Ryten, Mina; Sachdev, Perminder S.; Saykin, Andrew J.; Simmons, Andy; Singleton, Andrew; Soininen, Hilkka; Wardlaw, Joanna M.; Weale, Michael E.; Weinberger, Daniel R.; Adams, Hieab H. H.; Launer, Lenore J.; Seiler, Stephan; Schmidt, Reinhold; Chauhan, Ganesh; Satizabal, Claudia L.; Becker, James T.; Yanek, Lisa; van der Lee, Sven J.; Ebling, Maritza; Fischl, Bruce; Longstreth, W. T.; Greve, Douglas; Schmidt, Helena; Nyquist, Paul; Vinke, Louis N.; van Duijn, Cornelia M.; Xue, Luting; Mazoyer, Bernard; Bis, Joshua C.; Gudnason, Vilmundur; Seshadri, Sudha; Ikram, M. Arfan; Martin, Nicholas G.; Wright, Margaret J.; Schumann, Gunter; Franke, Barbara; Thompson, Paul M.; Medland, Sarah E.

    2015-01-01

    The highly complex structure of the human brain is strongly shaped by genetic influences(1). Subcortical brain regions form circuits with cortical areas to coordinate movement(2), learning, memory(3) and motivation(4), and altered circuits can lead to abnormal behaviour and disease(5). To

  5. Study of 99m Tc-TRODAT-1 Imaging on Human Brain with Children Autism by Single Photon Emission Computed Tomography

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective: Evaluate the application values of 99mTc-2 β [ N, N'-bis( 2-mercaptoethy1 ) ethylenediamino ] methyl, 3 β -(4-chlorophenyl) tropane ( TRODAT-1 ) dopamine transporter (DAT) SPECT imaging in children autism, and offer the academic foundation to etiology, mechanism and clinical therapy of autism. Methods:Ten autistic children and ten healthy controls were examined with 99mTc-TRODAT-1 DAT SPECT imaging.Striatal specific uptake of 99mTc-TRODAT-1 was calculated with region of interest analysis according to the ratios between striatum and cerebellum [ (STR-BKG)/BKG]. Results:There was no difference in semiquantitative dopamine transporter between bilateral striatum in autistic children ( P = 0. 562) and in normal controls ( P = 0. 573 ); dopamine transporter in brain of patients with autism increased more significantly than that in normal controls ( P = 0. 017 ). Conclusion: Dopaminergic nervous system is dysfunction in human brain with children autism, and DAT 99mTc-TRODAT-1 SPECT imaging on human brain will help the imaging diagnosis of children autism.

  6. Chemosensory danger detection in the human brain: Body odor communicating aggression modulates limbic system activation.

    Science.gov (United States)

    Mutic, Smiljana; Brünner, Yvonne F; Rodriguez-Raecke, Rea; Wiesmann, Martin; Freiherr, Jessica

    2017-05-01

    Although the sense of smell is involved in numerous survival functions, the processing of body odor emitted by dangerous individuals is far from understood. The aim of the study was to explore how human fight chemosignals communicating aggression can alter brain activation related to an attentional bias and danger detection. While the anterior cingulate cortex (ACC) was seen involved in processing threat-related emotional information, danger detection and error evaluation, it still remains unknown whether human chemosignals communicating aggression can potentially modulate this activation. In the fMRI experiment, healthy male and female normosmic odor recipients (n=18) completed a higher-order processing task (emotional Stroop task with the word categories anger, anxiety, happiness and neutral) while exposed to aggression and exercise chemosignals (collected from a different group of healthy male donors; n=16). Our results provide first evidence that aggression chemosignals induce a time-sensitive attentional bias in chemosensory danger detection and modulate limbic system activation. During exposure to aggression chemosignals compared to exercise chemosignals, functional imaging data indicates an enhancement of thalamus, hypothalamus and insula activation (pbody odor signals are discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. IMAGING OF BRAIN FUNCTION BASED ON THE ANALYSIS OF FUNCTIONAL CONNECTIVITY - IMAGING ANALYSIS OF BRAIN FUNCTION BY FMRI AFTER ACUPUNCTURE AT LR3 IN HEALTHY INDIVIDUALS

    OpenAIRE

    Zheng, Yu; Wang, Yuying; Lan, Yujun; Qu, Xiaodong; Lin, Kelin; Zhang, Jiping; Qu, Shanshan; Wang, Yanjie; Tang, Chunzhi; Huang, Yong

    2016-01-01

    Objective: This Study observed the relevant brain areas activated by acupuncture at the Taichong acupoint (LR3) and analyzed the functional connectivity among brain areas using resting state functional magnetic resonance imaging (fMRI) to explore the acupoint specificity of the Taichong acupoint. Methods: A total of 45 healthy subjects were randomly divided into the Taichong (LR3) group, sham acupuncture group and sham acupoint group. Subjects received resting state fMRI before acupuncture, a...

  8. Default, Cognitive, and Affective Brain Networks in Human Tinnitus

    Science.gov (United States)

    2015-10-01

    AWARD NUMBER: W81XWH-13-1-0491 TITLE: Default, Cognitive, and Affective Brain Networks in Human Tinnitus PRINCIPAL INVESTIGATOR: Jennifer R...SUBTITLE 5a. CONTRACT NUMBER Default, Cognitive and Affective Brain Networks in Human Tinnitus 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Tinnitus is a major health problem among those currently and formerly in military

  9. Non-uniform versus uniform attenuation correction in brain perfusion SPET of healthy volunteers

    International Nuclear Information System (INIS)

    Van Laere, K.; Versijpt, J.; Dierckx, R.; Koole, M.

    2001-01-01

    Although non-uniform attenuation correction (NUAC) can supply more accurate absolute quantification, it is not entirely clear whether NUAC provides clear-cut benefits in the routine clinical practice of brain SPET imaging. The aim of this study was to compare the effect of NUAC versus uniform attenuation correction (UAC) on volume of interest (VOI)-based semi-quantification of a large age- and gender-stratified brain perfusion normal database. Eighty-nine healthy volunteers (46 females and 43 males, aged 20-81 years) underwent standardised high-resolution single-photon emission tomography (SPET) with 925 MBq 99m Tc-ethyl cysteinate dimer (ECD) on a Toshiba GCA-9300A camera with 153 Gd or 99m Tc transmission CT scanning. Emission images were reconstructed by filtered back-projection and scatter corrected using the triple-energy window correction method. Both non-uniform Chang attenuation correction (one iteration) and uniform Sorenson correction (attenuation coefficient 0.09 cm -1 ) were applied. Images were automatically re-oriented to a stereotactic template on which 35 predefined VOIs were defined for semi-quantification (normalisation on total VOI counts). Small but significant differences between relative VOI uptake values for NUAC versus UAC in the infratentorial region were found. VOI standard deviations were significantly smaller for UAC, 4.5% (range 2.6-7.5), than for NUAC, 5.0% (2.3-9.0) (P 99m Tc-ECD uptake values in healthy volunteers to those obtained with NUAC, although values for the infratentorial region are slightly lower. NUAC produces a slight increase in inter-subject variability. Further study is necessary in various patient populations to establish the full clinical impact of NUAC in brain perfusion SPET. (orig.)

  10. Outer brain barriers in rat and human development

    DEFF Research Database (Denmark)

    Brøchner, Christian B; Holst, Camilla Bjørnbak; Møllgård, Kjeld

    2015-01-01

    Complex barriers at the brain's surface, particularly in development, are poorly defined. In the adult, arachnoid blood-cerebrospinal fluid (CSF) barrier separates the fenestrated dural vessels from the CSF by means of a cell layer joined by tight junctions. Outer CSF-brain barrier provides...... diffusion restriction between brain and subarachnoid CSF through an initial radial glial end feet layer covered with a pial surface layer. To further characterize these interfaces we examined embryonic rat brains from E10 to P0 and forebrains from human embryos and fetuses (6-21st weeks post...

  11. Genetic contributions to human brain morphology and intelligence

    DEFF Research Database (Denmark)

    Hulshoff Pol, HE; Schnack, HG; Posthuma, D

    2006-01-01

    Variation in gray matter (GM) and white matter (WM) volume of the adult human brain is primarily genetically determined. Moreover, total brain volume is positively correlated with general intelligence, and both share a common genetic origin. However, although genetic effects on morphology...... of specific GM areas in the brain have been studied, the heritability of focal WM is unknown. Similarly, it is unresolved whether there is a common genetic origin of focal GM and WM structures with intelligence. We explored the genetic influence on focal GM and WM densities in magnetic resonance brain images...

  12. Distribution of vesicular glutamate transporters in the human brain

    Directory of Open Access Journals (Sweden)

    Erika eVigneault

    2015-03-01

    Full Text Available Glutamate is the major excitatory transmitter in the brain. Vesicular glutamate transporters (VGLUT1-3 are responsible for uploading glutamate into synaptic vesicles. VGLUT1 and VGLUT2 are considered as specific markers of canonical glutamatergic neurons, while VGLUT3 is found in neurons previously shown to use other neurotransmitters than glutamate. Although there exists a rich literature on the localization of these glutamatergic markers in the rodent brain, little is currently known about the distribution of VGLUT1-3 in the human brain. In the present study, using subtype specific probes and antisera, we examined the localization of the three vesicular glutamate transporters in the human brain by in situ hybridization, immunoautoradiography and immunohistochemistry. We found that the VGLUT1 transcript was highly expressed in the cerebral cortex, hippocampus and cerebellum, whereas VGLUT2 mRNA was mainly found in the thalamus and brainstem. VGLUT3 mRNA was localized in scarce neurons within the cerebral cortex, hippocampus, striatum and raphe nuclei. Following immunoautoradiographic labeling, intense VGLUT1- and VGLUT2-immunoreactivities were observed in all regions investigated (cerebral cortex, hippocampus, caudate-putamen, cerebellum, thalamus, amygdala, substantia nigra, raphe while VGLUT3 was absent from the thalamus and cerebellum. This extensive mapping of VGLUT1-3 in human brain reveals distributions that correspond for the most part to those previously described in rodent brains.

  13. A collaborative brain-computer interface for improving human performance.

    Directory of Open Access Journals (Sweden)

    Yijun Wang

    Full Text Available Electroencephalogram (EEG based brain-computer interfaces (BCI have been studied since the 1970s. Currently, the main focus of BCI research lies on the clinical use, which aims to provide a new communication channel to patients with motor disabilities to improve their quality of life. However, the BCI technology can also be used to improve human performance for normal healthy users. Although this application has been proposed for a long time, little progress has been made in real-world practices due to technical limits of EEG. To overcome the bottleneck of low single-user BCI performance, this study proposes a collaborative paradigm to improve overall BCI performance by integrating information from multiple users. To test the feasibility of a collaborative BCI, this study quantitatively compares the classification accuracies of collaborative and single-user BCI applied to the EEG data collected from 20 subjects in a movement-planning experiment. This study also explores three different methods for fusing and analyzing EEG data from multiple subjects: (1 Event-related potentials (ERP averaging, (2 Feature concatenating, and (3 Voting. In a demonstration system using the Voting method, the classification accuracy of predicting movement directions (reaching left vs. reaching right was enhanced substantially from 66% to 80%, 88%, 93%, and 95% as the numbers of subjects increased from 1 to 5, 10, 15, and 20, respectively. Furthermore, the decision of reaching direction could be made around 100-250 ms earlier than the subject's actual motor response by decoding the ERP activities arising mainly from the posterior parietal cortex (PPC, which are related to the processing of visuomotor transmission. Taken together, these results suggest that a collaborative BCI can effectively fuse brain activities of a group of people to improve the overall performance of natural human behavior.

  14. Higher cortical modulation of pain perception in the human brain: Psychological determinant.

    Science.gov (United States)

    Chen, Andrew Cn

    2009-10-01

    Pain perception and its genesis in the human brain have been reviewed recently. In the current article, the reports on pain modulation in the human brain were reviewed from higher cortical regulation, i.e. top-down effect, particularly studied in psychological determinants. Pain modulation can be examined by gene therapy, physical modulation, pharmacological modulation, psychological modulation, and pathophysiological modulation. In psychological modulation, this article examined (a) willed determination, (b) distraction, (c) placebo, (d) hypnosis, (e) meditation, (f) qi-gong, (g) belief, and (h) emotions, respectively, in the brain function for pain modulation. In each, the operational definition, cortical processing, neuroimaging, and pain modulation were systematically deliberated. However, not all studies had featured the brain modulation processing but rather demonstrated potential effects on human pain. In our own studies on the emotional modulation on human pain, we observed that emotions could be induced from music melodies or pictures perception for reduction of tonic human pain, mainly in potentiation of the posterior alpha EEG fields, likely resulted from underneath activities of precuneous in regulation of consciousness, including pain perception. To sum, higher brain functions become the leading edge research in all sciences. How to solve the information bit of thinking and feeling in the brain can be the greatest challenge of human intelligence. Application of higher cortical modulation of human pain and suffering can lead to the progress of social humanity and civilization.

  15. Development of human brain structural networks through infancy and childhood.

    Science.gov (United States)

    Huang, Hao; Shu, Ni; Mishra, Virendra; Jeon, Tina; Chalak, Lina; Wang, Zhiyue J; Rollins, Nancy; Gong, Gaolang; Cheng, Hua; Peng, Yun; Dong, Qi; He, Yong

    2015-05-01

    During human brain development through infancy and childhood, microstructural and macrostructural changes take place to reshape the brain's structural networks and better adapt them to sophisticated functional and cognitive requirements. However, structural topological configuration of the human brain during this specific development period is not well understood. In this study, diffusion magnetic resonance image (dMRI) of 25 neonates, 13 toddlers, and 25 preadolescents were acquired to characterize network dynamics at these 3 landmark cross-sectional ages during early childhood. dMRI tractography was used to construct human brain structural networks, and the underlying topological properties were quantified by graph-theory approaches. Modular organization and small-world attributes are evident at birth with several important topological metrics increasing monotonically during development. Most significant increases of regional nodes occur in the posterior cingulate cortex, which plays a pivotal role in the functional default mode network. Positive correlations exist between nodal efficiencies and fractional anisotropy of the white matter traced from these nodes, while correlation slopes vary among the brain regions. These results reveal substantial topological reorganization of human brain structural networks through infancy and childhood, which is likely to be the outcome of both heterogeneous strengthening of the major white matter tracts and pruning of other axonal fibers. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. Magnetic resonance elastography of the brain: A comparison between pigs and humans.

    Science.gov (United States)

    Weickenmeier, Johannes; Kurt, Mehmet; Ozkaya, Efe; Wintermark, Max; Pauly, Kim Butts; Kuhl, Ellen

    2018-01-01

    Magnetic resonance elastography holds promise as a non-invasive, easy-to-use, in vivo biomarker for neurodegenerative diseases. Throughout the past decade, pigs have gained increased popularity as large animal models for human neurodegeneration. However, the volume of a pig brain is an order of magnitude smaller than the human brain, its skull is 40% thicker, and its head is about twice as big. This raises the question to which extent established vibration devices, actuation frequencies, and analysis tools for humans translate to large animal studies in pigs. Here we explored the feasibility of using human brain magnetic resonance elastography to characterize the dynamic properties of the porcine brain. In contrast to humans, where vibration devices induce an anterior-posterior displacement recorded in transverse sections, the porcine anatomy requires a dorsal-ventral displacement recorded in coronal sections. Within these settings, we applied a wide range of actuation frequencies, from 40Hz to 90Hz, and recorded the storage and loss moduli for human and porcine brains. Strikingly, we found that optimal actuation frequencies for humans translate one-to-one to pigs and reliably generate shear waves for elastographic post-processing. In a direct comparison, human and porcine storage and loss moduli followed similar trends and increased with increasing frequency. When translating these frequency-dependent storage and loss moduli into the frequency-independent stiffnesses and viscosities of a standard linear solid model, we found human values of μ 1 =1.3kPa, μ 2 =2.1kPa, and η=0.025kPas and porcine values of μ 1 =2.0kPa, μ 2 =4.9kPa, and η=0.046kPas. These results suggest that living human brain is softer and less viscous than dead porcine brain. Our study compares, for the first time, magnetic resonance elastography in human and porcine brains, and paves the way towards systematic interspecies comparison studies and ex vivo validation of magnetic resonance

  17. Language mapping in healthy volunteers and brain tumor patients with a novel navigated TMS system: evidence of tumor-induced plasticity.

    Science.gov (United States)

    Rösler, J; Niraula, B; Strack, V; Zdunczyk, A; Schilt, S; Savolainen, P; Lioumis, P; Mäkelä, J; Vajkoczy, P; Frey, D; Picht, T

    2014-03-01

    This article explores the feasibility of a novel repetitive navigated transcranial magnetic stimulation (rnTMS) system and compares language mapping results obtained by rnTMS in healthy volunteers and brain tumor patients. Fifteen right-handed healthy volunteers and 50 right-handed consecutive patients with left-sided gliomas were examined with a picture-naming task combined with time-locked rnTMS (5-10 Hz and 80-120% resting motor threshold) applied over both hemispheres. Induced errors were classified into four psycholinguistic types and assigned to their respective cortical areas according to the coil position during stimulation. In healthy volunteers, language disturbances were almost exclusively induced in the left hemisphere. In patients errors were more frequent and induced at a comparative rate over both hemispheres. Predominantly dysarthric errors were induced in volunteers, whereas semantic errors were most frequent in the patient group. The right hemisphere's increased sensitivity to rnTMS suggests reorganization in language representation in brain tumor patients. rnTMS is a novel technology for exploring cortical language representation. This study proves the feasibility and safety of rnTMS in patients with brain tumor. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  18. The Corpus Callosum Area and Brain Volume in Alzheimer's Disease, Mild Cognitive Impairment and Healthy Controls

    International Nuclear Information System (INIS)

    Choi, Hee Seok; Kim, Kwang Ki; Yoon, Yup Yoon; Seo, Hyung Suk

    2009-01-01

    To compare the corpus callosum (CC) area and brain volume among individuals with Alzheimer's disease (AD), mild cognitive impairment (MCI) and healthy controls (HC). To evaluate the relationship of CC area and brain volume in 111 subjects (M:F = 48:63; mean age, 56.9 years) without memory disturbance and 28 subjects (11:17; 66.7years) with memory disturbance. The 11 AD (3:8; 75.7 years), 17 MCI (8:9; 60.9 years) and 28 selected HC (11:17; 66.4 years) patients were investigated for comparison of their CC area and brain volume. A good positive linear correlation was found between CC area and brain volume in subjects without and with memory disturbance (r = 0.64 and 0.66, respectively, p 2 , 715.4 ± 107 cm3) were significantly smaller than in MCI patients (595.9 ± 108, 844.1 ± 85) and the HCs (563.2 ± 75, 818.9 ± 109) (p < 0.05). The CC area and brain volume were not significantly different between MCI patients and the HCs. The CC area was significantly correlated with brain volume. Both CC area and brain volume were significantly smaller in the AD patients

  19. Brain-Derived Neurotrophic Factor Expression in Individuals With Schizophrenia and Healthy Aging: Testing the Accelerated Aging Hypothesis of Schizophrenia.

    Science.gov (United States)

    Islam, Farhana; Mulsant, Benoit H; Voineskos, Aristotle N; Rajji, Tarek K

    2017-07-01

    Schizophrenia has been hypothesized to be a syndrome of accelerated aging. Brain plasticity is vulnerable to the normal aging process and affected in schizophrenia: brain-derived neurotrophic factor (BDNF) is an important neuroplasticity molecule. The present review explores the accelerated aging hypothesis of schizophrenia by comparing changes in BDNF expression in schizophrenia with aging-associated changes. Individuals with schizophrenia show patterns of increased overall mortality, metabolic abnormalities, and cognitive decline normally observed later in life in the healthy population. An overall decrease is observed in BDNF expression in schizophrenia compared to healthy controls and in older individuals compared to a younger cohort. There is a marked decrease in BDNF levels in the frontal regions and in the periphery among older individuals and those with schizophrenia; however, data for BDNF expression in the occipital, parietal, and temporal cortices and the hippocampus is inconclusive. Accelerated aging hypothesis is supported based on frontal regions and peripheral studies; however, further studies are needed in other brain regions.

  20. Cyto- and receptor architectonic mapping of the human brain.

    Science.gov (United States)

    Palomero-Gallagher, Nicola; Zilles, Karl

    2018-01-01

    Mapping of the human brain is more than the generation of an atlas-based parcellation of brain regions using histologic or histochemical criteria. It is the attempt to provide a topographically informed model of the structural and functional organization of the brain. To achieve this goal a multimodal atlas of the detailed microscopic and neurochemical structure of the brain must be registered to a stereotaxic reference space or brain, which also serves as reference for topographic assignment of functional data, e.g., functional magnet resonance imaging, electroencephalography, or magnetoencephalography, as well as metabolic imaging, e.g., positron emission tomography. Although classic maps remain pioneering steps, they do not match recent concepts of the functional organization in many regions, and suffer from methodic drawbacks. This chapter provides a summary of the recent status of human brain mapping, which is based on multimodal approaches integrating results of quantitative cyto- and receptor architectonic studies with focus on the cerebral cortex in a widely used reference brain. Descriptions of the methods for observer-independent and statistically testable cytoarchitectonic parcellations, quantitative multireceptor mapping, and registration to the reference brain, including the concept of probability maps and a toolbox for using the maps in functional neuroimaging studies, are provided. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. A family of hyperelastic models for human brain tissue

    Science.gov (United States)

    Mihai, L. Angela; Budday, Silvia; Holzapfel, Gerhard A.; Kuhl, Ellen; Goriely, Alain

    2017-09-01

    Experiments on brain samples under multiaxial loading have shown that human brain tissue is both extremely soft when compared to other biological tissues and characterized by a peculiar elastic response under combined shear and compression/tension: there is a significant increase in shear stress with increasing axial compression compared to a moderate increase with increasing axial tension. Recent studies have revealed that many widely used constitutive models for soft biological tissues fail to capture this characteristic response. Here, guided by experiments of human brain tissue, we develop a family of modeling approaches that capture the elasticity of brain tissue under varying simple shear superposed on varying axial stretch by exploiting key observations about the behavior of the nonlinear shear modulus, which can be obtained directly from the experimental data.

  2. Modeling Structural Brain Connectivity

    DEFF Research Database (Denmark)

    Ambrosen, Karen Marie Sandø

    The human brain consists of a gigantic complex network of interconnected neurons. Together all these connections determine who we are, how we react and how we interpret the world. Knowledge about how the brain is connected can further our understanding of the brain’s structural organization, help...... improve diagnosis, and potentially allow better treatment of a wide range of neurological disorders. Tractography based on diffusion magnetic resonance imaging is a unique tool to estimate this “structural connectivity” of the brain non-invasively and in vivo. During the last decade, brain connectivity...... has increasingly been analyzed using graph theoretic measures adopted from network science and this characterization of the brain’s structural connectivity has been shown to be useful for the classification of populations, such as healthy and diseased subjects. The structural connectivity of the brain...

  3. Sensitivity analysis of human brain structural network construction

    Directory of Open Access Journals (Sweden)

    Kuang Wei

    2017-12-01

    Full Text Available Network neuroscience leverages diffusion-weighted magnetic resonance imaging and tractography to quantify structural connectivity of the human brain. However, scientists and practitioners lack a clear understanding of the effects of varying tractography parameters on the constructed structural networks. With diffusion images from the Human Connectome Project (HCP, we characterize how structural networks are impacted by the spatial resolution of brain atlases, total number of tractography streamlines, and grey matter dilation with various graph metrics. We demonstrate how injudicious combinations of highly refined brain parcellations and low numbers of streamlines may inadvertently lead to disconnected network models with isolated nodes. Furthermore, we provide solutions to significantly reduce the likelihood of generating disconnected networks. In addition, for different tractography parameters, we investigate the distributions of values taken by various graph metrics across the population of HCP subjects. Analyzing the ranks of individual subjects within the graph metric distributions, we find that the ranks of individuals are affected differently by atlas scale changes. Our work serves as a guideline for researchers to optimize the selection of tractography parameters and illustrates how biological characteristics of the brain derived in network neuroscience studies can be affected by the choice of atlas parcellation schemes. Diffusion tractography has been proven to be a promising noninvasive technique to study the network properties of the human brain. However, how various tractography and network construction parameters affect network properties has not been studied using a large cohort of high-quality data. We utilize data provided by the Human Connectome Project to characterize the changes to network properties induced by varying the brain parcellation atlas scales, the number of reconstructed tractography tracks, and the degree of grey

  4. Dynamic Multi-Coil Shimming of the Human Brain at 7 Tesla

    Science.gov (United States)

    Juchem, Christoph; Nixon, Terence W.; McIntyre, Scott; Boer, Vincent O.; Rothman, Douglas L.; de Graaf, Robin A.

    2011-01-01

    High quality magnetic field homogenization of the human brain (i.e. shimming) for MR imaging and spectroscopy is a demanding task. The susceptibility differences between air and tissue are a longstanding problem as they induce complex field distortions in the prefrontal cortex and the temporal lobes. To date, the theoretical gains of high field MR have only been realized partially in the human brain due to limited magnetic field homogeneity. A novel shimming technique for the human brain is presented that is based on the combination of non-orthogonal basis fields from 48 individual, circular coils. Custom-built amplifier electronics enabled the dynamic application of the multi-coil shim fields in a slice-specific fashion. Dynamic multi-coil (DMC) shimming is shown to eliminate most of the magnetic field inhomogeneity apparent in the human brain at 7 Tesla and provided improved performance compared to state-of-the-art dynamic shim updating with zero through third order spherical harmonic functions. The novel technique paves the way for high field MR applications of the human brain for which excellent magnetic field homogeneity is a prerequisite. PMID:21824794

  5. Serum BDNF correlates with connectivity in the (pre)motor hub in the aging human brain--a resting-state fMRI pilot study.

    Science.gov (United States)

    Mueller, Karsten; Arelin, Katrin; Möller, Harald E; Sacher, Julia; Kratzsch, Jürgen; Luck, Tobias; Riedel-Heller, Steffi; Villringer, Arno; Schroeter, Matthias L

    2016-02-01

    Brain-derived neurotrophic factor (BDNF) has been discussed to be involved in plasticity processes in the human brain, in particular during aging. Recently, aging and its (neurodegenerative) diseases have increasingly been conceptualized as disconnection syndromes. Here, connectivity changes in neural networks (the connectome) are suggested to be the most relevant and characteristic features for such processes or diseases. To further elucidate the impact of aging on neural networks, we investigated the interaction between plasticity processes, brain connectivity, and healthy aging by measuring levels of serum BDNF and resting-state fMRI data in 25 young (mean age 24.8 ± 2.7 (SD) years) and 23 old healthy participants (mean age, 68.6 ± 4.1 years). To identify neural hubs most essentially related to serum BDNF, we applied graph theory approaches, namely the new data-driven and parameter-free approach eigenvector centrality (EC) mapping. The analysis revealed a positive correlation between serum BDNF and EC in the premotor and motor cortex in older participants in contrast to young volunteers, where we did not detect any association. This positive relationship between serum BDNF and EC appears to be specific for older adults. Our results might indicate that the amount of physical activity and learning capacities, leading to higher BDNF levels, increases brain connectivity in (pre)motor areas in healthy aging in agreement with rodent animal studies. Pilot results have to be replicated in a larger sample including behavioral data to disentangle the cause for the relationship between BDNF levels and connectivity. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Brain structures in the sciences and humanities.

    Science.gov (United States)

    Takeuchi, Hikaru; Taki, Yasuyuki; Sekiguchi, Atsushi; Nouchi, Rui; Kotozaki, Yuka; Nakagawa, Seishu; Miyauchi, Carlos Makoto; Iizuka, Kunio; Yokoyama, Ryoichi; Shinada, Takamitsu; Yamamoto, Yuki; Hanawa, Sugiko; Araki, Tsuyoshi; Hashizume, Hiroshi; Sassa, Yuko; Kawashima, Ryuta

    2015-11-01

    The areas of academic interest (sciences or humanities) and area of study have been known to be associated with a number of factors associated with autistic traits. However, despite the vast amount of literature on the psychological and physiological characteristics associated with faculty membership, brain structural characteristics associated with faculty membership have never been investigated directly. In this study, we used voxel-based morphometry to investigate differences in regional gray matter volume (rGMV)/regional white matter volume (rWMV) between science and humanities students to test our hypotheses that brain structures previously robustly shown to be altered in autistic subjects are related to differences in faculty membership. We examined 312 science students (225 males and 87 females) and 179 humanities students (105 males and 74 females). Whole-brain analyses of covariance revealed that after controlling for age, sex, and total intracranial volume, the science students had significantly larger rGMV in an anatomical cluster around the medial prefrontal cortex and the frontopolar area, whereas the humanities students had significantly larger rWMV in an anatomical cluster mainly concentrated around the right hippocampus. These anatomical structures have been linked to autism in previous studies and may mediate cognitive functions that characterize differences in faculty membership. The present results may support the ideas that autistic traits and characteristics of the science students compared with the humanities students share certain characteristics from neuroimaging perspectives. This study improves our understanding of differences in faculty membership which is the link among cognition, biological factors, disorders, and education (academia).

  7. Thrombin binding to human brain and spinal cord

    International Nuclear Information System (INIS)

    McKinney, M.; Snider, R.M.; Richelson, E.

    1983-01-01

    Thrombin, a serine protease that regulates hemostasis, has been shown to stimulate the formation of cGMP in murine neuroblastoma cells. The nervous system in vivo thus may be postulated to respond to this blood-borne factor after it breaches the blood-brain barrier, as in trauma. Human alpha-thrombin was radiolabeled with 125I and shown to bind rapidly, reversibly, and with high affinity to human brain and spinal cord. These findings indicate the presence of specific thrombin-binding sites in nervous tissue and may have important clinical implications

  8. Mu opioid receptor binding sites in human brain

    International Nuclear Information System (INIS)

    Pilapil, C.; Welner, S.; Magnan, J.; Zamir, N.; Quirion, R.

    1986-01-01

    Our experiments focused on the examination of the distribution of mu opioid receptor binding sites in normal human brain using the highly selective ligand [ 3 H]DAGO, in both membrane binding assay and in vitro receptor autoradiography. Mu opioid binding sites are very discretely distributed in human brain with high densities of sites found in the posterior amygdala, caudate, putamen, hypothalamus and certain cortical areas. Moreover the autoradiographic distribution of [ 3 H]DAGO binding sites clearly reveals the discrete lamination (layers I and III-IV) of mu sites in cortical areas

  9. Differential associations between types of verbal memory and prefrontal brain structure in healthy aging and late life depression.

    Science.gov (United States)

    Lamar, Melissa; Charlton, Rebecca; Zhang, Aifeng; Kumar, Anand

    2012-07-01

    Verbal memory deficits attributed to late life depression (LLD) may result from executive dysfunction that is more detrimental to list-learning than story-based recall when compared to healthy aging. Despite these behavioral dissociations, little work has been done investigating related neuroanatomical dissociations across types of verbal memory performance in LLD. We compared list-learning to story-based memory performance in 24 non-demented individuals with LLD (age ~ 66.1 ± 7.8) and 41 non-demented/non-depressed healthy controls (HC; age ~ 67.6 ± 5.3). We correlated significant results of between-group analyses across memory performance variables with brain volumes of frontal, temporal and parietal regions known to be involved with verbal learning and memory. When compared to the HC group, the LLD group showed significantly lower verbal memory performance for spontaneous recall after repeated exposure and after a long-delay but only for the list-learning task; groups did not differ on story-based memory performance. Despite equivalent brain volumes across regions, only the LLD group showed brain associations with verbal memory performance and only for the list-learning task. Specifically, frontal volumes important for subjective organization and response monitoring correlated with list-learning performance in the LLD group. This study is the first to demonstrate neuroanatomical dissociations across types of verbal memory performance in individuals with LLD. Results provide structural evidence for the behavioral dissociations between list-learning and story-based recall in LLD when compared to healthy aging. More specifically, it points toward a network of predominantly anterior brain regions that may underlie the executive contribution to list-learning in older adults with depression. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Network Dynamics with BrainX3: A Large-Scale Simulation of the Human Brain Network with Real-Time Interaction

    OpenAIRE

    Xerxes D. Arsiwalla; Riccardo eZucca; Alberto eBetella; Enrique eMartinez; David eDalmazzo; Pedro eOmedas; Gustavo eDeco; Gustavo eDeco; Paul F.M.J. Verschure; Paul F.M.J. Verschure

    2015-01-01

    BrainX3 is a large-scale simulation of human brain activity with real-time interaction, rendered in 3D in a virtual reality environment, which combines computational power with human intuition for the exploration and analysis of complex dynamical networks. We ground this simulation on structural connectivity obtained from diffusion spectrum imaging data and model it on neuronal population dynamics. Users can interact with BrainX3 in real-time by perturbing brain regions with transient stimula...

  11. Network dynamics with BrainX3: a large-scale simulation of the human brain network with real-time interaction

    OpenAIRE

    Arsiwalla, Xerxes D.; Zucca, Riccardo; Betella, Alberto; Martínez, Enrique, 1961-; Dalmazzo, David; Omedas, Pedro; Deco, Gustavo; Verschure, Paul F. M. J.

    2015-01-01

    BrainX3 is a large-scale simulation of human brain activity with real-time interaction, rendered in 3D in a virtual reality environment, which combines computational power with human intuition for the exploration and analysis of complex dynamical networks. We ground this simulation on structural connectivity obtained from diffusion spectrum imaging data and model it on neuronal population dynamics. Users can interact with BrainX3 in real-time by perturbing brain regions with transient stimula...

  12. Rate of evolution in brain-expressed genes in humans and other primates.

    Directory of Open Access Journals (Sweden)

    Hurng-Yi Wang

    2007-02-01

    Full Text Available Brain-expressed genes are known to evolve slowly in mammals. Nevertheless, since brains of higher primates have evolved rapidly, one might expect acceleration in DNA sequence evolution in their brain-expressed genes. In this study, we carried out full-length cDNA sequencing on the brain transcriptome of an Old World monkey (OWM and then conducted three-way comparisons among (i mouse, OWM, and human, and (ii OWM, chimpanzee, and human. Although brain-expressed genes indeed appear to evolve more rapidly in species with more advanced brains (apes > OWM > mouse, a similar lineage effect is observable for most other genes. The broad inclusion of genes in the reference set to represent the genomic average is therefore critical to this type of analysis. Calibrated against the genomic average, the rate of evolution among brain-expressed genes is probably lower (or at most equal in humans than in chimpanzee and OWM. Interestingly, the trend of slow evolution in coding sequence is no less pronounced among brain-specific genes, vis-à-vis brain-expressed genes in general. The human brain may thus differ from those of our close relatives in two opposite directions: (i faster evolution in gene expression, and (ii a likely slowdown in the evolution of protein sequences. Possible explanations and hypotheses are discussed.

  13. Visual dictionaries as intermediate features in the human brain

    Directory of Open Access Journals (Sweden)

    Kandan eRamakrishnan

    2015-01-01

    Full Text Available The human visual system is assumed to transform low level visual features to object and scene representations via features of intermediate complexity. How the brain computationally represents intermediate features is still unclear. To further elucidate this, we compared the biologically plausible HMAX model and Bag of Words (BoW model from computer vision. Both these computational models use visual dictionaries, candidate features of intermediate complexity, to represent visual scenes, and the models have been proven effective in automatic object and scene recognition. These models however differ in the computation of visual dictionaries and pooling techniques. We investigated where in the brain and to what extent human fMRI responses to short video can be accounted for by multiple hierarchical levels of the HMAX and BoW models. Brain activity of 20 subjects obtained while viewing a short video clip was analyzed voxel-wise using a distance-based variation partitioning method. Results revealed that both HMAX and BoW explain a significant amount of brain activity in early visual regions V1, V2 and V3. However BoW exhibits more consistency across subjects in accounting for brain activity compared to HMAX. Furthermore, visual dictionary representations by HMAX and BoW explain significantly some brain activity in higher areas which are believed to process intermediate features. Overall our results indicate that, although both HMAX and BoW account for activity in the human visual system, the BoW seems to more faithfully represent neural responses in low and intermediate level visual areas of the brain.

  14. Brain activation by visual erotic stimuli in healthy middle aged males.

    Science.gov (United States)

    Kim, S W; Sohn, D W; Cho, Y-H; Yang, W S; Lee, K-U; Juh, R; Ahn, K-J; Chung, Y-A; Han, S-I; Lee, K H; Lee, C U; Chae, J-H

    2006-01-01

    The objective of the present study was to identify brain centers, whose activity changes are related to erotic visual stimuli in healthy, heterosexual, middle aged males. Ten heterosexual, right-handed males with normal sexual function were entered into the present study (mean age 52 years, range 46-55). All potential subjects were screened over 1 h interview, and were encouraged to fill out questionnaires including the Brief Male Sexual Function Inventory. All subjects with a history of sexual arousal disorder or erectile dysfunction were excluded. We performed functional brain magnetic resonance imaging (fMRI) in male volunteers when an alternatively combined erotic and nonerotic film was played for 14 min and 9 s. The major areas of activation associated with sexual arousal to visual stimuli were occipitotemporal area, anterior cingulate gyrus, insula, orbitofrontal cortex, caudate nucleus. However, hypothalamus and thalamus were not activated. We suggest that the nonactivation of hypothalamus and thalamus in middle aged males may be responsible for the lesser physiological arousal in response to the erotic visual stimuli.

  15. Breakfast staple types affect brain gray matter volume and cognitive function in healthy children.

    Directory of Open Access Journals (Sweden)

    Yasuyuki Taki

    Full Text Available Childhood diet is important for brain development. Furthermore, the quality of breakfast is thought to affect the cognitive functioning of well-nourished children. To analyze the relationship among breakfast staple type, gray matter volume, and intelligence quotient (IQ in 290 healthy children, we used magnetic resonance images and applied voxel-based morphometry. We divided subjects into rice, bread, and both groups according to their breakfast staple. We showed that the rice group had a significantly larger gray matter ratio (gray matter volume percentage divided by intracranial volume and significantly larger regional gray matter volumes of several regions, including the left superior temporal gyrus. The bread group had significantly larger regional gray and white matter volumes of several regions, including the right frontoparietal region. The perceptual organization index (POI; IQ subcomponent of the rice group was significantly higher than that of the bread group. All analyses were adjusted for age, gender, intracranial volume, socioeconomic status, average weekly frequency of having breakfast, and number of side dishes eaten for breakfast. Although several factors may have affected the results, one possible mechanism underlying the difference between the bread and the rice groups may be the difference in the glycemic index (GI of these two substances; foods with a low GI are associated with less blood-glucose fluctuation than are those with a high GI. Our study suggests that breakfast staple type affects brain gray and white matter volumes and cognitive function in healthy children; therefore, a diet of optimal nutrition is important for brain maturation during childhood and adolescence.

  16. Breakfast staple types affect brain gray matter volume and cognitive function in healthy children.

    Science.gov (United States)

    Taki, Yasuyuki; Hashizume, Hiroshi; Sassa, Yuko; Takeuchi, Hikaru; Asano, Michiko; Asano, Kohei; Kawashima, Ryuta

    2010-12-08

    Childhood diet is important for brain development. Furthermore, the quality of breakfast is thought to affect the cognitive functioning of well-nourished children. To analyze the relationship among breakfast staple type, gray matter volume, and intelligence quotient (IQ) in 290 healthy children, we used magnetic resonance images and applied voxel-based morphometry. We divided subjects into rice, bread, and both groups according to their breakfast staple. We showed that the rice group had a significantly larger gray matter ratio (gray matter volume percentage divided by intracranial volume) and significantly larger regional gray matter volumes of several regions, including the left superior temporal gyrus. The bread group had significantly larger regional gray and white matter volumes of several regions, including the right frontoparietal region. The perceptual organization index (POI; IQ subcomponent) of the rice group was significantly higher than that of the bread group. All analyses were adjusted for age, gender, intracranial volume, socioeconomic status, average weekly frequency of having breakfast, and number of side dishes eaten for breakfast. Although several factors may have affected the results, one possible mechanism underlying the difference between the bread and the rice groups may be the difference in the glycemic index (GI) of these two substances; foods with a low GI are associated with less blood-glucose fluctuation than are those with a high GI. Our study suggests that breakfast staple type affects brain gray and white matter volumes and cognitive function in healthy children; therefore, a diet of optimal nutrition is important for brain maturation during childhood and adolescence.

  17. Coordination of gene expression of arachidonic and docosahexaenoic acid cascade enzymes during human brain development and aging.

    Science.gov (United States)

    Ryan, Veronica H; Primiani, Christopher T; Rao, Jagadeesh S; Ahn, Kwangmi; Rapoport, Stanley I; Blanchard, Helene

    2014-01-01

    The polyunsaturated arachidonic and docosahexaenoic acids (AA and DHA) participate in cell membrane synthesis during neurodevelopment, neuroplasticity, and neurotransmission throughout life. Each is metabolized via coupled enzymatic reactions within separate but interacting metabolic cascades. AA and DHA pathway genes are coordinately expressed and underlie cascade interactions during human brain development and aging. The BrainCloud database for human non-pathological prefrontal cortex gene expression was used to quantify postnatal age changes in mRNA expression of 34 genes involved in AA and DHA metabolism. Expression patterns were split into Development (0 to 20 years) and Aging (21 to 78 years) intervals. Expression of genes for cytosolic phospholipases A2 (cPLA2), cyclooxygenases (COX)-1 and -2, and other AA cascade enzymes, correlated closely with age during Development, less so during Aging. Expression of DHA cascade enzymes was less inter-correlated in each period, but often changed in the opposite direction to expression of AA cascade genes. Except for the PLA2G4A (cPLA2 IVA) and PTGS2 (COX-2) genes at 1q25, highly inter-correlated genes were at distant chromosomal loci. Coordinated age-related gene expression during the brain Development and Aging intervals likely underlies coupled changes in enzymes of the AA and DHA cascades and largely occur through distant transcriptional regulation. Healthy brain aging does not show upregulation of PLA2G4 or PTGS2 expression, which was found in Alzheimer's disease.

  18. Coordination of gene expression of arachidonic and docosahexaenoic acid cascade enzymes during human brain development and aging.

    Directory of Open Access Journals (Sweden)

    Veronica H Ryan

    Full Text Available The polyunsaturated arachidonic and docosahexaenoic acids (AA and DHA participate in cell membrane synthesis during neurodevelopment, neuroplasticity, and neurotransmission throughout life. Each is metabolized via coupled enzymatic reactions within separate but interacting metabolic cascades.AA and DHA pathway genes are coordinately expressed and underlie cascade interactions during human brain development and aging.The BrainCloud database for human non-pathological prefrontal cortex gene expression was used to quantify postnatal age changes in mRNA expression of 34 genes involved in AA and DHA metabolism.Expression patterns were split into Development (0 to 20 years and Aging (21 to 78 years intervals. Expression of genes for cytosolic phospholipases A2 (cPLA2, cyclooxygenases (COX-1 and -2, and other AA cascade enzymes, correlated closely with age during Development, less so during Aging. Expression of DHA cascade enzymes was less inter-correlated in each period, but often changed in the opposite direction to expression of AA cascade genes. Except for the PLA2G4A (cPLA2 IVA and PTGS2 (COX-2 genes at 1q25, highly inter-correlated genes were at distant chromosomal loci.Coordinated age-related gene expression during the brain Development and Aging intervals likely underlies coupled changes in enzymes of the AA and DHA cascades and largely occur through distant transcriptional regulation. Healthy brain aging does not show upregulation of PLA2G4 or PTGS2 expression, which was found in Alzheimer's disease.

  19. No Acute Effects of Choline Bitartrate Food Supplements on Memory in Healthy, Young, Human Adults.

    Science.gov (United States)

    Lippelt, D P; van der Kint, S; van Herk, K; Naber, M

    2016-01-01

    Choline is a dietary component and precursor of acetylcholine, a crucial neurotransmitter for memory-related brain functions. In two double-blind, placebo-controlled cross-over experiments, we investigated whether the food supplement choline bitartrate improved declarative memory and working memory in healthy, young students one to two hours after supplementation. In experiment 1, 28 participants performed a visuospatial working memory task. In experiment 2, 26 participants performed a declarative picture memorization task. In experiment 3, 40 participants performed a verbal working memory task in addition to the visuospatial working memory and declarative picture task. All tasks were conducted approximately 60 minutes after the ingestion of 2.0-2.5g of either choline bitartrate or placebo. We found that choline did not significantly enhance memory performance during any of the tasks. The null hypothesis that choline does not improve memory performance as compared to placebo was strongly supported by Bayesian statistics. These results are in contrast with animal studies suggesting that choline supplementation boosts memory performance and learning. We conclude that choline likely has no acute effects on cholinergic memory functions in healthy human participants.

  20. MR spectroscopy detection of lactate and lipid signals in the brains of healthy elderly people

    Energy Technology Data Exchange (ETDEWEB)

    Sijens, P.E.; Heijboer, R.J.J.; Oudkerk, M. [Dept. of Radiology, Univ. Hospital Groningen (Netherlands); Heijer, T. den; Leeuw, F.E. de; Groot, J.C. de; Hofman, A.; Breteler, M.M.B. [Dept. of Epidemiology and Biostatistics, Erasmus University Medical School, Rotterdam (Netherlands); Achten, E. [Dept. of Magnetic Resonance, Gent University Hospital (Belgium)

    2001-08-01

    Magnetic resonance spectroscopy was used to assess the presence of brain lactate and lipid signals, frequently associated with the presence of pathology, in healthy persons of 60-90 years old (n=540). Lactate and lipid signals were observed in, respectively, 25 and 6% of women, and 18 and 2% of men. Upon adjustment for age, and for MRI-detected cerebral atrophy and white matter lesions, the gender differences in lactate and lipid remained the same (p=0.05 and p=0.03, respectively). Brain lactate and lipid signals appear to be intrinsic to aging. However, the presence of these metabolites in very focal areas only, rather than in any distributed fashion within the brain (the latter generally the case with cerebral atrophy and white matter lesions), strongly suggests the existence of asymptomatic focal pathology not shown on MRI. (orig.)

  1. The immune response of the human brain to abdominal surgery

    DEFF Research Database (Denmark)

    Forsberg, Anton; Cervenka, Simon; Jonsson Fagerlund, Malin

    2017-01-01

    OBJECTIVE: Surgery launches a systemic inflammatory reaction that reaches the brain and associates with immune activation and cognitive decline. Although preclinical studies have in part described this systemic-to-brain signaling pathway, we lack information on how these changes appear in humans....... This study examines the short- and long-term impact of abdominal surgery on the human brain immune system by positron emission tomography (PET) in relation to blood immune reactivity, plasma inflammatory biomarkers, and cognitive function. METHODS: Eight males undergoing prostatectomy under general...... anesthesia were included. Prior to surgery (baseline), at postoperative days 3 to 4, and after 3 months, patients were examined using [11C]PBR28 brain PET imaging to assess brain immune cell activation. Concurrently, systemic inflammatory biomarkers, ex vivo blood tests on immunoreactivity...

  2. Optogenetic control of human neurons in organotypic brain cultures

    DEFF Research Database (Denmark)

    Andersson, My; Avaliani, Natalia; Svensson, Andreas

    2016-01-01

    Optogenetics is one of the most powerful tools in neuroscience, allowing for selective control of specific neuronal populations in the brain of experimental animals, including mammals. We report, for the first time, the application of optogenetic tools to human brain tissue providing a proof......-of-concept for the use of optogenetics in neuromodulation of human cortical and hippocampal neurons as a possible tool to explore network mechanisms and develop future therapeutic strategies....

  3. Centrality of Social Interaction in Human Brain Function.

    Science.gov (United States)

    Hari, Riitta; Henriksson, Linda; Malinen, Sanna; Parkkonen, Lauri

    2015-10-07

    People are embedded in social interaction that shapes their brains throughout lifetime. Instead of emerging from lower-level cognitive functions, social interaction could be the default mode via which humans communicate with their environment. Should this hypothesis be true, it would have profound implications on how we think about brain functions and how we dissect and simulate them. We suggest that the research on the brain basis of social cognition and interaction should move from passive spectator science to studies including engaged participants and simultaneous recordings from the brains of the interacting persons. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Brain activation during human male ejaculation

    NARCIS (Netherlands)

    Holstege, Ger; Georgiadis, Janniko R.; Paans, Anne M.J.; Meiners, Linda C.; Graaf, Ferdinand H.C.E. van der; Reinders, A.A.T.Simone

    2003-01-01

    Brain mechanisms that control human sexual behavior in general, and ejaculation in particular, are poorly understood. We used positron emission tomography to measure increases in regional cerebral blood flow (rCBF) during ejaculation compared with sexual stimulation in heterosexual male volunteers.

  5. A psychology of the human brain-gut-microbiome axis.

    Science.gov (United States)

    Allen, Andrew P; Dinan, Timothy G; Clarke, Gerard; Cryan, John F

    2017-04-01

    In recent years, we have seen increasing research within neuroscience and biopsychology on the interactions between the brain, the gastrointestinal tract, the bacteria within the gastrointestinal tract, and the bidirectional relationship between these systems: the brain-gut-microbiome axis. Although research has demonstrated that the gut microbiota can impact upon cognition and a variety of stress-related behaviours, including those relevant to anxiety and depression, we still do not know how this occurs. A deeper understanding of how psychological development as well as social and cultural factors impact upon the brain-gut-microbiome axis will contextualise the role of the axis in humans and inform psychological interventions that improve health within the brain-gut-microbiome axis. Interventions ostensibly aimed at ameliorating disorders in one part of the brain-gut-microbiome axis (e.g., psychotherapy for depression) may nonetheless impact upon other parts of the axis (e.g., microbiome composition and function), and functional gastrointestinal disorders such as irritable bowel syndrome represent a disorder of the axis, rather than an isolated problem either of psychology or of gastrointestinal function. The discipline of psychology needs to be cognisant of these interactions and can help to inform the future research agenda in this emerging field of research. In this review, we outline the role psychology has to play in understanding the brain-gut-microbiome axis, with a focus on human psychology and the use of research in laboratory animals to model human psychology.

  6. Data integration through brain atlasing: Human Brain Project tools and strategies.

    Science.gov (United States)

    Bjerke, Ingvild E; Øvsthus, Martin; Papp, Eszter A; Yates, Sharon C; Silvestri, Ludovico; Fiorilli, Julien; Pennartz, Cyriel M A; Pavone, Francesco S; Puchades, Maja A; Leergaard, Trygve B; Bjaalie, Jan G

    2018-04-01

    The Human Brain Project (HBP), an EU Flagship Initiative, is currently building an infrastructure that will allow integration of large amounts of heterogeneous neuroscience data. The ultimate goal of the project is to develop a unified multi-level understanding of the brain and its diseases, and beyond this to emulate the computational capabilities of the brain. Reference atlases of the brain are one of the key components in this infrastructure. Based on a new generation of three-dimensional (3D) reference atlases, new solutions for analyzing and integrating brain data are being developed. HBP will build services for spatial query and analysis of brain data comparable to current online services for geospatial data. The services will provide interactive access to a wide range of data types that have information about anatomical location tied to them. The 3D volumetric nature of the brain, however, introduces a new level of complexity that requires a range of tools for making use of and interacting with the atlases. With such new tools, neuroscience research groups will be able to connect their data to atlas space, share their data through online data systems, and search and find other relevant data through the same systems. This new approach partly replaces earlier attempts to organize research data based only on a set of semantic terminologies describing the brain and its subdivisions. Copyright © 2018 The Authors. Published by Elsevier Masson SAS.. All rights reserved.

  7. Brain responses to sound intensity changes dissociate depressed participants and healthy controls.

    Science.gov (United States)

    Ruohonen, Elisa M; Astikainen, Piia

    2017-07-01

    Depression is associated with bias in emotional information processing, but less is known about the processing of neutral sensory stimuli. Of particular interest is processing of sound intensity which is suggested to indicate central serotonergic function. We tested weather event-related brain potentials (ERPs) to occasional changes in sound intensity can dissociate first-episode depressed, recurrent depressed and healthy control participants. The first-episode depressed showed larger N1 amplitude to deviant sounds compared to recurrent depression group and control participants. In addition, both depression groups, but not the control group, showed larger N1 amplitude to deviant than standard sounds. Whether these manifestations of sensory over-excitability in depression are directly related to the serotonergic neurotransmission requires further research. The method based on ERPs to sound intensity change is fast and low-cost way to objectively measure brain activation and holds promise as a future diagnostic tool. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. MRI of the brain in neurologically healthy middle-aged and elderly individuals

    International Nuclear Information System (INIS)

    Salonen, O.; Autti, T.; Raininko, R.; Ylikoski, A.; Erkinjuntti, T.

    1997-01-01

    Our purpose was to document the MRI appearances of the brain in healthy middle-aged to elderly subjects. T2- and proton density-weighted axial slices were obtained in 61 volunteers, 30-86 years of age. After visual inspection, signal intensities of brain structures were measured on T2-weighted images. Age-related changes became increasingly apparent after age 50. The main findings were that signal intensity of the white matter increased concomitantly with widening of the cerebrospinal fluid spaces; that basal ganglia remained stable; that high-signal foci in white matter increased in number and size after the age of 50 years; that periventricular high-signal foci were constant after the age of 65 years. Our visual impression of a decrease in signal intensity of the central grey matter with age seems to be mistaken. Pathological processes should be suspected if periventricular foci are found in middle-aged or young subjects. (orig.). With 9 figs., 1 tab

  9. Deconstructing Anger in the Human Brain.

    Science.gov (United States)

    Gilam, Gadi; Hendler, Talma

    2017-01-01

    Anger may be caused by a wide variety of triggers, and though it has negative consequences on health and well-being, it is also crucial in motivating to take action and approach rather than avoid a confrontation. While anger is considered a survival response inherent in all living creatures, humans are endowed with the mental flexibility that enables them to control and regulate their anger, and adapt it to socially accepted norms. Indeed, a profound interpersonal nature is apparent in most events which evoke anger among humans. Since anger consists of physiological, cognitive, subjective, and behavioral components, it is a contextualized multidimensional construct that poses theoretical and operational difficulties in defining it as a single psychobiological phenomenon. Although most neuroimaging studies have neglected the multidimensionality of anger and thus resulted in brain activations dispersed across the entire brain, there seems to be several reoccurring neural circuits subserving the subjective experience of human anger. Nevertheless, to capture the large variety in the forms and fashions in which anger is experienced, expressed, and regulated, and thus to better portray the related underlying neural substrates, neurobehavioral investigations of human anger should aim to further embed realistic social interactions within their anger induction paradigms.

  10. Decade of the Brain 1990--2000: Maximizing human potential

    Energy Technology Data Exchange (ETDEWEB)

    1991-04-01

    The US Decade of the Brain offers scientists throughout the Federal Government a unique opportunity to advance and apply scientific knowledge about the brain and nervous system. During the next 10 years, scientists hope to maximize human potential through studies of human behavior, senses and communication, learning and memory, genetic/chemical alterations, and environmental interactions. Progress in these areas should lead to reductions in mortality from brain and nervous system disorders and to improvements in the quality of life. This report identifies nine research areas that could form the basis of an integrated program in the brain and behavioral sciences. A chart summarizing the Federal activities in these nine areas may be found at the back of the report. In addition, three areas that span the nine research areas -- basic research, technology and international activities -- are considered.

  11. Factor analysis of regional brain activation in bipolar and healthy individuals reveals a consistent modular structure.

    Science.gov (United States)

    Fleck, David E; Welge, Jeffrey A; Eliassen, James C; Adler, Caleb M; DelBello, Melissa P; Strakowski, Stephen M

    2018-07-01

    The neurophysiological substrates of cognition and emotion, as seen with fMRI, are generally explained using modular structures. The present study was designed to probe the modular structure of cognitive-emotional processing in bipolar and healthy individuals using factor analysis and compare the results with current conceptions of the neurophysiology of bipolar disorder. Exploratory factor analysis was used to assess patterns of covariation among brain regions-of-interest activated during the Continuous Performance Task with Emotional and Neutral Distractors in healthy and bipolar individuals without a priori constraints on the number or composition of latent factors. Results indicated a common cognitive-emotional network consisting of prefrontal, medial temporal, limbic, parietal, anterior cingulate and posterior cingulate modules. However, reduced brain activation to emotional stimuli in the frontal, medial temporal and limbic modules was apparent in the bipolar relative to the healthy group, potentially accounting for emotional dysregulation in bipolar disorder. This study is limited by a relatively small sample size recruited at a single site. The results have yet to be validated on a larger independent sample. Although the modular structure of cognitive-emotional processing is similar in bipolar and healthy individuals, activation in response to emotional/neutral cues varies. These findings are not only consistent with recent conceptions of mood regulation in bipolar disorder, but also suggest that regional activation can be considered within tighter modular structures without compromising data interpretation. This demonstration may serve as a template for data reduction in future region-of-interest analyses to increase statistical power. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Common genetic variants influence human subcortical brain structures.

    Science.gov (United States)

    Hibar, Derrek P; Stein, Jason L; Renteria, Miguel E; Arias-Vasquez, Alejandro; Desrivières, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S; Armstrong, Nicola J; Bernard, Manon; Bohlken, Marc M; Boks, Marco P; Bralten, Janita; Brown, Andrew A; Chakravarty, M Mallar; Chen, Qiang; Ching, Christopher R K; Cuellar-Partida, Gabriel; den Braber, Anouk; Giddaluru, Sudheer; Goldman, Aaron L; Grimm, Oliver; Guadalupe, Tulio; Hass, Johanna; Woldehawariat, Girma; Holmes, Avram J; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H; Olde Loohuis, Loes M; Luciano, Michelle; Macare, Christine; Mather, Karen A; Mattheisen, Manuel; Milaneschi, Yuri; Nho, Kwangsik; Papmeyer, Martina; Ramasamy, Adaikalavan; Risacher, Shannon L; Roiz-Santiañez, Roberto; Rose, Emma J; Salami, Alireza; Sämann, Philipp G; Schmaal, Lianne; Schork, Andrew J; Shin, Jean; Strike, Lachlan T; Teumer, Alexander; van Donkelaar, Marjolein M J; van Eijk, Kristel R; Walters, Raymond K; Westlye, Lars T; Whelan, Christopher D; Winkler, Anderson M; Zwiers, Marcel P; Alhusaini, Saud; Athanasiu, Lavinia; Ehrlich, Stefan; Hakobjan, Marina M H; Hartberg, Cecilie B; Haukvik, Unn K; Heister, Angelien J G A M; Hoehn, David; Kasperaviciute, Dalia; Liewald, David C M; Lopez, Lorna M; Makkinje, Remco R R; Matarin, Mar; Naber, Marlies A M; McKay, D Reese; Needham, Margaret; Nugent, Allison C; Pütz, Benno; Royle, Natalie A; Shen, Li; Sprooten, Emma; Trabzuni, Daniah; van der Marel, Saskia S L; van Hulzen, Kimm J E; Walton, Esther; Wolf, Christiane; Almasy, Laura; Ames, David; Arepalli, Sampath; Assareh, Amelia A; Bastin, Mark E; Brodaty, Henry; Bulayeva, Kazima B; Carless, Melanie A; Cichon, Sven; Corvin, Aiden; Curran, Joanne E; Czisch, Michael; de Zubicaray, Greig I; Dillman, Allissa; Duggirala, Ravi; Dyer, Thomas D; Erk, Susanne; Fedko, Iryna O; Ferrucci, Luigi; Foroud, Tatiana M; Fox, Peter T; Fukunaga, Masaki; Gibbs, J Raphael; Göring, Harald H H; Green, Robert C; Guelfi, Sebastian; Hansell, Narelle K; Hartman, Catharina A; Hegenscheid, Katrin; Heinz, Andreas; Hernandez, Dena G; Heslenfeld, Dirk J; Hoekstra, Pieter J; Holsboer, Florian; Homuth, Georg; Hottenga, Jouke-Jan; Ikeda, Masashi; Jack, Clifford R; Jenkinson, Mark; Johnson, Robert; Kanai, Ryota; Keil, Maria; Kent, Jack W; Kochunov, Peter; Kwok, John B; Lawrie, Stephen M; Liu, Xinmin; Longo, Dan L; McMahon, Katie L; Meisenzahl, Eva; Melle, Ingrid; Mohnke, Sebastian; Montgomery, Grant W; Mostert, Jeanette C; Mühleisen, Thomas W; Nalls, Michael A; Nichols, Thomas E; Nilsson, Lars G; Nöthen, Markus M; Ohi, Kazutaka; Olvera, Rene L; Perez-Iglesias, Rocio; Pike, G Bruce; Potkin, Steven G; Reinvang, Ivar; Reppermund, Simone; Rietschel, Marcella; Romanczuk-Seiferth, Nina; Rosen, Glenn D; Rujescu, Dan; Schnell, Knut; Schofield, Peter R; Smith, Colin; Steen, Vidar M; Sussmann, Jessika E; Thalamuthu, Anbupalam; Toga, Arthur W; Traynor, Bryan J; Troncoso, Juan; Turner, Jessica A; Valdés Hernández, Maria C; van 't Ent, Dennis; van der Brug, Marcel; van der Wee, Nic J A; van Tol, Marie-Jose; Veltman, Dick J; Wassink, Thomas H; Westman, Eric; Zielke, Ronald H; Zonderman, Alan B; Ashbrook, David G; Hager, Reinmar; Lu, Lu; McMahon, Francis J; Morris, Derek W; Williams, Robert W; Brunner, Han G; Buckner, Randy L; Buitelaar, Jan K; Cahn, Wiepke; Calhoun, Vince D; Cavalleri, Gianpiero L; Crespo-Facorro, Benedicto; Dale, Anders M; Davies, Gareth E; Delanty, Norman; Depondt, Chantal; Djurovic, Srdjan; Drevets, Wayne C; Espeseth, Thomas; Gollub, Randy L; Ho, Beng-Choon; Hoffmann, Wolfgang; Hosten, Norbert; Kahn, René S; Le Hellard, Stephanie; Meyer-Lindenberg, Andreas; Müller-Myhsok, Bertram; Nauck, Matthias; Nyberg, Lars; Pandolfo, Massimo; Penninx, Brenda W J H; Roffman, Joshua L; Sisodiya, Sanjay M; Smoller, Jordan W; van Bokhoven, Hans; van Haren, Neeltje E M; Völzke, Henry; Walter, Henrik; Weiner, Michael W; Wen, Wei; White, Tonya; Agartz, Ingrid; Andreassen, Ole A; Blangero, John; Boomsma, Dorret I; Brouwer, Rachel M; Cannon, Dara M; Cookson, Mark R; de Geus, Eco J C; Deary, Ian J; Donohoe, Gary; Fernández, Guillén; Fisher, Simon E; Francks, Clyde; Glahn, David C; Grabe, Hans J; Gruber, Oliver; Hardy, John; Hashimoto, Ryota; Hulshoff Pol, Hilleke E; Jönsson, Erik G; Kloszewska, Iwona; Lovestone, Simon; Mattay, Venkata S; Mecocci, Patrizia; McDonald, Colm; McIntosh, Andrew M; Ophoff, Roel A; Paus, Tomas; Pausova, Zdenka; Ryten, Mina; Sachdev, Perminder S; Saykin, Andrew J; Simmons, Andy; Singleton, Andrew; Soininen, Hilkka; Wardlaw, Joanna M; Weale, Michael E; Weinberger, Daniel R; Adams, Hieab H H; Launer, Lenore J; Seiler, Stephan; Schmidt, Reinhold; Chauhan, Ganesh; Satizabal, Claudia L; Becker, James T; Yanek, Lisa; van der Lee, Sven J; Ebling, Maritza; Fischl, Bruce; Longstreth, W T; Greve, Douglas; Schmidt, Helena; Nyquist, Paul; Vinke, Louis N; van Duijn, Cornelia M; Xue, Luting; Mazoyer, Bernard; Bis, Joshua C; Gudnason, Vilmundur; Seshadri, Sudha; Ikram, M Arfan; Martin, Nicholas G; Wright, Margaret J; Schumann, Gunter; Franke, Barbara; Thompson, Paul M; Medland, Sarah E

    2015-04-09

    The highly complex structure of the human brain is strongly shaped by genetic influences. Subcortical brain regions form circuits with cortical areas to coordinate movement, learning, memory and motivation, and altered circuits can lead to abnormal behaviour and disease. To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts. We identify five novel genetic variants influencing the volumes of the putamen and caudate nucleus. We also find stronger evidence for three loci with previously established influences on hippocampal volume and intracranial volume. These variants show specific volumetric effects on brain structures rather than global effects across structures. The strongest effects were found for the putamen, where a novel intergenic locus with replicable influence on volume (rs945270; P = 1.08 × 10(-33); 0.52% variance explained) showed evidence of altering the expression of the KTN1 gene in both brain and blood tissue. Variants influencing putamen volume clustered near developmental genes that regulate apoptosis, axon guidance and vesicle transport. Identification of these genetic variants provides insight into the causes of variability in human brain development, and may help to determine mechanisms of neuropsychiatric dysfunction.

  13. Measuring dopamine release in the human brain with PET

    Energy Technology Data Exchange (ETDEWEB)

    Volkow, N.D. [Brookhaven National Lab., Upton, NY (United States)]|[State Univ. of New York at Stony Brook, Stony Brook, NY (United States). Dept. of Psychiatry; Fowler, J.S.; Logan, J.; Wang, G.J. [Brookhaven National Lab., Upton, NY (United States)

    1995-12-01

    The dopamine system is involved in the regulation of brain regions that subserve motor, cognitive and motivational behaviors. Disruptions of dopamine (DA) function have ben implicated in neurological and psychiatric illnesses including substance abuse as well as on some of the deficits associated with aging of the human brain. This has made the DA system an important topic in research in the neurosciences and neuroimaging as well as an important molecular target for drug development. Positron Emission Tomography (PET), was the first technology that enabled direct measurement of components of the DA system in the living human brain. Imaging studies of DA in the living brain have been indirect, relying on the development of radiotracers to label DA receptors, DA transporters, compounds which have specificity for the enzymes which degrade synaptic DA. Additionally, through the use of tracers that provide information on regional brain activity (ie brain glucose metabolism and cerebral blood flow) and of appropriate pharmacological interventions, it has been possible to assess the functional consequences of changes in brain DA activity. DA specific ligands have been useful in the evaluation of patients with neuropsychiatric illnesses as well as to investigate receptor blockade by antipsychotic drugs. A limitation of strategies that rely on the use of DA specific ligands is that the measures do not necessarily reflect the functional state of the dopaminergic system and that there use to study the effects of drugs is limited to the investigation of receptor or transporter occupancy. Newer strategies have been developed in an attempt to provide with information on dopamine release and on the functional responsivity of the DA system in the human brain. This in turn allows to investigate the effects of pharmacological agent in an analogous way to what is done with microdialysis techniques.

  14. Functional and Topological Conditions for Explosive Synchronization Develop in Human Brain Networks with the Onset of Anesthetic-Induced Unconsciousness.

    Science.gov (United States)

    Kim, Minkyung; Mashour, George A; Moraes, Stefanie-Blain; Vanini, Giancarlo; Tarnal, Vijay; Janke, Ellen; Hudetz, Anthony G; Lee, Uncheol

    2016-01-01

    Sleep, anesthesia, and coma share a number of neural features but the recovery profiles are radically different. To understand the mechanisms of reversibility of unconsciousness at the network level, we studied the conditions for gradual and abrupt transitions in conscious and anesthetized states. We hypothesized that the conditions for explosive synchronization (ES) in human brain networks would be present in the anesthetized brain just over the threshold of unconsciousness. To test this hypothesis, functional brain networks were constructed from multi-channel electroencephalogram (EEG) recordings in seven healthy subjects across conscious, unconscious, and recovery states. We analyzed four variables that are involved in facilitating ES in generic, non-biological networks: (1) correlation between node degree and frequency, (2) disassortativity (i.e., the tendency of highly-connected nodes to link with less-connected nodes, or vice versa), (3) frequency difference of coupled nodes, and (4) an inequality relationship between local and global network properties, which is referred to as the suppressive rule. We observed that the four network conditions for ES were satisfied in the unconscious state. Conditions for ES in the human brain suggest a potential mechanism for rapid recovery from the lightly-anesthetized state. This study demonstrates for the first time that the network conditions for ES, formerly shown in generic networks only, are present in empirically-derived functional brain networks. Further investigations with deep anesthesia, sleep, and coma could provide insight into the underlying causes of variability in recovery profiles of these unconscious states.

  15. A High-Resolution In Vivo Atlas of the Human Brain's Serotonin System

    DEFF Research Database (Denmark)

    Beliveau, Vincent; Ganz-Benjaminsen, Melanie; Feng, Ling

    2017-01-01

    The serotonin (5-hydroxytryptamine, 5-HT) system modulates many important brain functions and is critically involved in many neuropsychiatric disorders. Here, we present a high-resolution, multidimensional, in vivo atlas of four of the human brain's 5-HT receptors (5-HT1A, 5-HT1B, 5-HT2A, and 5-HT4...... with postmortem human brain autoradiography outcomes showed a high correlation for the five 5-HT targets and this enabled us to transform the atlas to represent protein densities (in picomoles per milliliter). We also assessed the regional association between protein concentration and mRNA expression in the human...... brain by comparing the 5-HT density across the atlas with data from the Allen Human Brain atlas and identified receptor- and transporter-specific associations that show the regional relation between the two measures. Together, these data provide unparalleled insight into the serotonin system...

  16. Treatment optimization of a brain tumor in BNCT by Monte Carlo method

    International Nuclear Information System (INIS)

    Nejat, S.; Binesh, A.; Karimian, A.

    2012-01-01

    Brain cancers are one of the most important diseases. BNCT (Boron Neutron Capture Therapy) is used to brain tumor treatment. In this method the 1 0B (n,α) 7 Li reaction is used. The purpose of this study is absorbed dose evaluation of tumoral and healthy parts of brain. To achieve this aim the brain was simulated by a cylindrical phantom with the dimensions of 20 cm in diameter and height. In BNCT treatment the BSH (Na 2 B 12 H 11 SH) is injected to the human body and absorbed in the healthy and tumoral parts by the ratios of 18 and 65 ppm respectively. So in this research the absorption of BSH in tumoral and healthy parts of brain was considered as the mentioned ratio. Then the neutron with the energy range of 50 eV - 10 keV was exposed to the brain and maximum absorbed dose in healthy and tumoral parts of brain were calculated for a cylindrical tumor with the thickness of about 1 cm which was considered in 5.5 cm depth of brain. This research showed the suitable energy to treat this tumor by BNCT is interval 4 keV- 6keV. The average of dose which is met with healthy and tumor tissue was gained for 6 keV energy of brain 1.18x10 -12 cGy/n and 5.98x10 -12 cGy/n respectively. Maximum of dose which is met with healthy tissue was 4.3 Gy which is much less than standard amount 12.6 Gy. Therefore BNCT method is known as an effective way in the therapy of this kind of tumor. (authors)

  17. Patterns of differences in brain morphology in humans as compared to extant apes.

    Science.gov (United States)

    Aldridge, Kristina

    2011-01-01

    Although human evolution is characterized by a vast increase in brain size, it is not clear whether or not certain regions of the brain are enlarged disproportionately in humans, or how this enlargement relates to differences in overall neural morphology. The aim of this study is to determine whether or not there are specific suites of features that distinguish the morphology of the human brain from that of apes. The study sample consists of whole brain, in vivo magnetic resonance images (MRIs) of anatomically modern humans (Homo sapiens sapiens) and five ape species (gibbons, orangutans, gorillas, chimpanzees, bonobos). Twenty-nine 3D landmarks, including surface and internal features of the brain were located on 3D MRI reconstructions of each individual using MEASURE software. Landmark coordinate data were scaled for differences in size and analyzed using Euclidean Distance Matrix Analysis (EDMA) to statistically compare the brains of each non-human ape species to the human sample. Results of analyses show both a pattern of brain morphology that is consistently different between all apes and humans, as well as patterns that differ among species. Further, both the consistent and species-specific patterns include cortical and subcortical features. The pattern that remains consistent across species indicates a morphological reorganization of 1) relationships between cortical and subcortical frontal structures, 2) expansion of the temporal lobe and location of the amygdala, and 3) expansion of the anterior parietal region. Additionally, results demonstrate that, although there is a pattern of morphology that uniquely defines the human brain, there are also patterns that uniquely differentiate human morphology from the morphology of each non-human ape species, indicating that reorganization of neural morphology occurred at the evolutionary divergence of each of these groups. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Convergent transcriptional specializations in the brains of humans and song-learning birds

    DEFF Research Database (Denmark)

    Pfenning, Andreas R.; Hara, Erina; Whitney, Osceola

    2014-01-01

    Song-learning birds and humans share independently evolved similarities in brain pathways for vocal learning that are essential for song and speech and are not found in most other species. Comparisons of brain transcriptomes of song-learning birds and humans relative to vocal nonlearners identified...... convergent gene expression specializations in specific song and speech brain regions of avian vocal learners and humans. The strongest shared profiles relate bird motor and striatal song-learning nuclei, respectively, with human laryngeal motor cortex and parts of the striatum that control speech production...... and learning. Most of the associated genes function in motor control and brain connectivity. Thus, convergent behavior and neural connectivity for a complex trait are associated with convergent specialized expression of multiple genes....

  19. The feed-back regulation of erythropoietin production in healthy humans

    International Nuclear Information System (INIS)

    Klausen, T.

    1998-01-01

    The proposed oxygen-dependent feed-back loop regulation of EPO (erythropoietin) production is mainly supported by data from studies in animals and cell cultures. The feed-back loop and its dependence on oxygen was therefore challenged by studies in healthy humans: Exposure of humans to different levels of acute and continued altitude hypobaria provided evidence for an oxygen dependence of the EPO response. This response is consistent with the proposed feed-back loop regulation of EPO production; Exposure to continued altitude hypobaria demonstrated that the decline in human EPO production is initiated before an EPO-induced erythopoiesis is detectable, and that this decline is related to a concomitant decrease in the haemoglobin-oxygen affinity. Contrary to the feed-back loop, this time-relation indicate that the feed-back regulation of EPO production during continued hypobaric hypoxia is exerted primarily through a decrease in the haemoglobin-oxygen affinity, rather than by the effects of an EPO-stimulated erythropoiesis; Increased circulating levels of the proinflammatory cytokine IL-6 was found in healthy humans during four days of altitude exposure as compared with sea level. The other proinflammatory cytokines IL-1 beta, and TNF alpha remained unchanged, and the increased serum IL-6 did not induce production of c-reactive protein; Comparable circadian variations in human EPO production were shown in sedentary subjects, athletes, and healthy but hypoxaemic subjects. Human EPO production could not be triggered by one hour of high-intensity exercise, whereas longitudinal changes in exercise showed a trend of relation between human EPO production, serum concentration of free testosterone, and indices of body composition. These results have demonstrated and endogenous, probably hormonal, and oxygen-independent regulation of human EPO production, which is at variance with the oxygen dependent feed-back loop regulation of EPO production. Conclusively, the present

  20. The Superior Fronto-Occipital Fasciculus in the Human Brain Revealed by Diffusion Spectrum Imaging Tractography: An Anatomical Reality or a Methodological Artifact?

    Science.gov (United States)

    Bao, Yue; Wang, Yong; Wang, Wei; Wang, Yibao

    2017-01-01

    The existence of the superior fronto-occipital fasciculus (SFOF) in the human brain remains controversial. The aim of the present study was to clarify the existence, course, and terminations of the SFOF. High angular diffusion spectrum imaging (DSI) analysis was performed on six healthy adults and on a template of 842 subjects from the Human Connectome Project. To verify tractography results, we performed fiber microdissections of four post-mortem human brains. Based on DSI tractography, we reconstructed the SFOF in the subjects and the template from the Human Connectome Project that originated from the rostral and medial parts of the superior and middle frontal gyri. By tractography, we found that the fibers formed a compact fascicle at the level of the anterior horn of the lateral ventricle coursing above the head of caudate nucleus, medial to the corona radiate and under the corpus callosum (CC), and terminated at the parietal region via the lower part of the caudate nucleus. We consider that this fiber bundle observed by tractography is the SFOF, although it terminates mainly at the parietal region, rather than occipital lobe. By contrast, we were unable to identify a fiber bundle corresponding to the SFOF in our fiber dissection study. Although we did not provide definite evidence of the SFOF in the human brain, these findings may be useful for future studies in this field. PMID:29321729

  1. The Superior Fronto-Occipital Fasciculus in the Human Brain Revealed by Diffusion Spectrum Imaging Tractography: An Anatomical Reality or a Methodological Artifact?

    Directory of Open Access Journals (Sweden)

    Yue Bao

    2017-12-01

    Full Text Available The existence of the superior fronto-occipital fasciculus (SFOF in the human brain remains controversial. The aim of the present study was to clarify the existence, course, and terminations of the SFOF. High angular diffusion spectrum imaging (DSI analysis was performed on six healthy adults and on a template of 842 subjects from the Human Connectome Project. To verify tractography results, we performed fiber microdissections of four post-mortem human brains. Based on DSI tractography, we reconstructed the SFOF in the subjects and the template from the Human Connectome Project that originated from the rostral and medial parts of the superior and middle frontal gyri. By tractography, we found that the fibers formed a compact fascicle at the level of the anterior horn of the lateral ventricle coursing above the head of caudate nucleus, medial to the corona radiate and under the corpus callosum (CC, and terminated at the parietal region via the lower part of the caudate nucleus. We consider that this fiber bundle observed by tractography is the SFOF, although it terminates mainly at the parietal region, rather than occipital lobe. By contrast, we were unable to identify a fiber bundle corresponding to the SFOF in our fiber dissection study. Although we did not provide definite evidence of the SFOF in the human brain, these findings may be useful for future studies in this field.

  2. The Speculative Neuroscience of the Future Human Brain

    Directory of Open Access Journals (Sweden)

    Robert A. Dielenberg

    2013-05-01

    Full Text Available The hallmark of our species is our ability to hybridize symbolic thinking with behavioral output. We began with the symmetrical hand axe around 1.7 mya and have progressed, slowly at first, then with greater rapidity, to producing increasingly more complex hybridized products. We now live in the age where our drive to hybridize has pushed us to the brink of a neuroscientific revolution, where for the first time we are in a position to willfully alter the brain and hence, our behavior and evolution. Nootropics, transcranial direct current stimulation (tDCS, transcranial magnetic stimulation (TMS, deep brain stimulation (DBS and invasive brain mind interface (BMI technology are allowing humans to treat previously inaccessible diseases as well as open up potential vistas for cognitive enhancement. In the future, the possibility exists for humans to hybridize with BMIs and mobile architectures. The notion of self is becoming increasingly extended. All of this to say: are we in control of our brains, or are they in control of us?

  3. Brain Imaging of Human Sexual Response: Recent Developments and Future Directions.

    Science.gov (United States)

    Ruesink, Gerben B; Georgiadis, Janniko R

    2017-01-01

    The purpose of this study is to provide a comprehensive summary of the latest developments in the experimental brain study of human sexuality, focusing on brain connectivity during the sexual response. Stable patterns of brain activation have been established for different phases of the sexual response, especially with regard to the wanting phase, and changes in these patterns can be linked to sexual response variations, including sexual dysfunctions. From this solid basis, connectivity studies of the human sexual response have begun to add a deeper understanding of the brain network function and structure involved. The study of "sexual" brain connectivity is still very young. Yet, by approaching the brain as a connected organ, the essence of brain function is captured much more accurately, increasing the likelihood of finding useful biomarkers and targets for intervention in sexual dysfunction.

  4. Spatial cluster analysis of nanoscopically mapped serotonin receptors for classification of fixed brain tissue

    Science.gov (United States)

    Sams, Michael; Silye, Rene; Göhring, Janett; Muresan, Leila; Schilcher, Kurt; Jacak, Jaroslaw

    2014-01-01

    We present a cluster spatial analysis method using nanoscopic dSTORM images to determine changes in protein cluster distributions within brain tissue. Such methods are suitable to investigate human brain tissue and will help to achieve a deeper understanding of brain disease along with aiding drug development. Human brain tissue samples are usually treated postmortem via standard fixation protocols, which are established in clinical laboratories. Therefore, our localization microscopy-based method was adapted to characterize protein density and protein cluster localization in samples fixed using different protocols followed by common fluorescent immunohistochemistry techniques. The localization microscopy allows nanoscopic mapping of serotonin 5-HT1A receptor groups within a two-dimensional image of a brain tissue slice. These nanoscopically mapped proteins can be confined to clusters by applying the proposed statistical spatial analysis. Selected features of such clusters were subsequently used to characterize and classify the tissue. Samples were obtained from different types of patients, fixed with different preparation methods, and finally stored in a human tissue bank. To verify the proposed method, samples of a cryopreserved healthy brain have been compared with epitope-retrieved and paraffin-fixed tissues. Furthermore, samples of healthy brain tissues were compared with data obtained from patients suffering from mental illnesses (e.g., major depressive disorder). Our work demonstrates the applicability of localization microscopy and image analysis methods for comparison and classification of human brain tissues at a nanoscopic level. Furthermore, the presented workflow marks a unique technological advance in the characterization of protein distributions in brain tissue sections.

  5. Early developmental gene enhancers affect subcortical volumes in the adult human brain.

    Science.gov (United States)

    Becker, Martin; Guadalupe, Tulio; Franke, Barbara; Hibar, Derrek P; Renteria, Miguel E; Stein, Jason L; Thompson, Paul M; Francks, Clyde; Vernes, Sonja C; Fisher, Simon E

    2016-05-01

    Genome-wide association screens aim to identify common genetic variants contributing to the phenotypic variability of complex traits, such as human height or brain morphology. The identified genetic variants are mostly within noncoding genomic regions and the biology of the genotype-phenotype association typically remains unclear. In this article, we propose a complementary targeted strategy to reveal the genetic underpinnings of variability in subcortical brain volumes, by specifically selecting genomic loci that are experimentally validated forebrain enhancers, active in early embryonic development. We hypothesized that genetic variation within these enhancers may affect the development and ultimately the structure of subcortical brain regions in adults. We tested whether variants in forebrain enhancer regions showed an overall enrichment of association with volumetric variation in subcortical structures of >13,000 healthy adults. We observed significant enrichment of genomic loci that affect the volume of the hippocampus within forebrain enhancers (empirical P = 0.0015), a finding which robustly passed the adjusted threshold for testing of multiple brain phenotypes (cutoff of P < 0.0083 at an alpha of 0.05). In analyses of individual single nucleotide polymorphisms (SNPs), we identified an association upstream of the ID2 gene with rs7588305 and variation in hippocampal volume. This SNP-based association survived multiple-testing correction for the number of SNPs analyzed but not for the number of subcortical structures. Targeting known regulatory regions offers a way to understand the underlying biology that connects genotypes to phenotypes, particularly in the context of neuroimaging genetics. This biology-driven approach generates testable hypotheses regarding the functional biology of identified associations. Hum Brain Mapp 37:1788-1800, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. The Brain Prize 2014: complex human functions.

    Science.gov (United States)

    Grigaityte, Kristina; Iacoboni, Marco

    2014-11-01

    Giacomo Rizzolatti, Stanislas Dehaene, and Trevor Robbins were recently awarded the 2014 Grete Lundbeck European Brain Research Prize for their 'pioneering research on higher brain mechanisms underpinning such complex human functions as literacy, numeracy, motivated behavior and social cognition, and for their effort to understand cognitive and behavioral disorders'. Why was their work highlighted? Is there anything that links together these seemingly disparate lines of research? Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Brain Activity Associated with Slow Temporal Summation of C-fiber Evoked Pain in Fibromyalgia Patients and Healthy Controls

    OpenAIRE

    Staud, Roland; Craggs, Jason G.; Perlstein, William M.; Robinson, Michael E.; Price, Donald D.

    2008-01-01

    Temporal summation of “second pain” (TSSP) is the result of C-fiber-evoked responses of dorsal-horn neurons, termed ‘windup’. This phenomenon is dependent on stimulus frequency (≥0.33 Hz) and relevant for central sensitization as well as chronic pain. Whereas our previous functional magnetic resonance imaging (fMRI) study characterized neural correlates of TSSP in eleven healthy volunteers, the present study was designed to compare brain responses associated with TSSP across these healthy par...

  8. The role of human endogenous retroviruses in brain development and function.

    Science.gov (United States)

    Mortelmans, Kristien; Wang-Johanning, Feng; Johanning, Gary L

    2016-01-01

    Endogenous retroviral sequences are spread throughout the genome of all humans, and make up about 8% of the genome. Despite their prevalence, the function of human endogenous retroviruses (HERVs) in humans is largely unknown. In this review we focus on the brain, and evaluate studies in animal models that address mechanisms of endogenous retrovirus activation in the brain and central nervous system (CNS). One such study in mice found that TRIM28, a protein critical for mouse early development, regulates transcription and silencing of endogenous retroviruses in neural progenitor cells. Another intriguing finding in human brain cells and mouse models was that endogenous retrovirus HERV-K appears to be protective against neurotoxins. We also report on studies that associate HERVs with human diseases of the brain and CNS. There is little doubt of an association between HERVs and a number of CNS diseases. However, a cause and effect relationship between HERVs and these diseases has not yet been established. © 2016 APMIS. Published by John Wiley & Sons Ltd.

  9. Can older "at risk" adults benefit from psychoeducation targeting healthy brain aging?

    Science.gov (United States)

    Norrie, Louisa M; Diamond, Keri; Hickie, Ian B; Rogers, Naomi L; Fearns, Samantha; Naismith, Sharon L

    2011-04-01

    Multifactorial strategies that prevent or delay the onset or progress of cognitive decline and dementia are needed, and should include education regarding recognized risk factors. The current study sought to investigate whether older adults "at risk" of cognitive decline benefit from psychoeducation targeting healthy brain aging. 65 participants (mean age 64.8 years, SD 9.6) with a lifetime history of major depression; vascular risk as evidenced by at least one vascular risk factor; and/or subjective or objective memory impairment were allocated to weekly psychoeducation sessions or a waitlist control group. The small group sessions were conducted over ten weeks by a team of medical and allied health professionals with expertise in late-life depression and cognition. Sessions focused on modifiable risk factors for cognitive decline including vascular risk, diet, exercise, depression, anxiety and sleep disturbance, as well as providing practical strategies for memory and cognition. Both the psychoeducation and waitlist group completed a 20-item knowledge test at baseline and follow-up. Participants in the psychoeducation group were asked to complete follow-up self-report satisfaction questionnaires. Repeated measures ANOVA showed a significant interaction effect depicting improvements in knowledge associated with psychoeducation, corresponding to an improvement of 15% from baseline. Satisfaction data additionally showed that 92.3% of participants rated the program as "good" to "excellent", and over 90% suggested they would recommend it to others. A group-based psychoeducation program targeting healthy brain aging is effective in improving knowledge. Additionally, it is acceptable and rated highly by participants.

  10. Three-dimensional morphology of the human embryonic brain

    Directory of Open Access Journals (Sweden)

    N. Shiraishi

    2015-09-01

    Full Text Available The morphogenesis of the cerebral vesicles and ventricles was visualized in 3D movies using images derived from human embryo specimens between Carnegie stage 13 and 23 from the Kyoto Collection. These images were acquired with a magnetic resonance microscope equipped with a 2.35-T superconducting magnet. Three-dimensional images using the same scale demonstrated brain development and growth effectively. The non-uniform thickness of the brain tissue, which may indicate brain differentiation, was visualized with thickness-based surface color mapping. A closer view was obtained of the unique and complicated differentiation of the rhombencephalon, especially with regard to the internal view and thickening of the brain tissue. The present data contribute to a better understanding of brain and cerebral ventricle development.

  11. Ex vivo MR volumetry of human brain hemispheres.

    Science.gov (United States)

    Kotrotsou, Aikaterini; Bennett, David A; Schneider, Julie A; Dawe, Robert J; Golak, Tom; Leurgans, Sue E; Yu, Lei; Arfanakis, Konstantinos

    2014-01-01

    The aims of this work were to (a) develop an approach for ex vivo MR volumetry of human brain hemispheres that does not contaminate the results of histopathological examination, (b) longitudinally assess regional brain volumes postmortem, and (c) investigate the relationship between MR volumetric measurements performed in vivo and ex vivo. An approach for ex vivo MR volumetry of human brain hemispheres was developed. Five hemispheres from elderly subjects were imaged ex vivo longitudinally. All datasets were segmented. The longitudinal behavior of volumes measured ex vivo was assessed. The relationship between in vivo and ex vivo volumetric measurements was investigated in seven elderly subjects imaged both antemortem and postmortem. This approach for ex vivo MR volumetry did not contaminate the results of histopathological examination. For a period of 6 months postmortem, within-subject volume variation across time points was substantially smaller than intersubject volume variation. A close linear correspondence was detected between in vivo and ex vivo volumetric measurements. Regional brain volumes measured with this approach for ex vivo MR volumetry remain relatively unchanged for a period of 6 months postmortem. Furthermore, the linear relationship between in vivo and ex vivo MR volumetric measurements suggests that this approach captures information linked to antemortem macrostructural brain characteristics. Copyright © 2013 Wiley Periodicals, Inc.

  12. Injury Response of Resected Human Brain Tissue In Vitro

    NARCIS (Netherlands)

    Verwer, Ronald W. H.; Sluiter, Arja A.; Balesar, Rawien A.; Baaijen, Johannes C.; de Witt Hamer, Philip C.; Speijer, Dave; Li, Yichen; Swaab, Dick F.

    2015-01-01

    Brain injury affects a significant number of people each year. Organotypic cultures from resected normal neocortical tissue provide unique opportunities to study the cellular and neuropathological consequences of severe injury of adult human brain tissue in vitro. The in vitro injuries caused by

  13. Amplification of a transcriptionally active DNA sequence in the human brain

    International Nuclear Information System (INIS)

    Yakovlev, A.G.; Sazonov, A.E.; Spunde, A.Ya.; Gindilis, V.M.

    1986-01-01

    The authors present their findings of tissue-specific amplification of a DNA fragment actively transcribed in the human brain. This genome fragment was found in the library complement of cDNA of the human brain and evidently belongs to a new class of moderate repetitions of DNA with an unstable copying capacity in the human genome. The authors isolated total cell RNA from various human tissues (brain, placenta), and rat tissues (brain, liver), by the method of hot phenol extraction with guanidine thiocynate. The poly(A + ) RNA fraction was isolated by chromatography. Synthesis of cDNA was done on a matrix of poly(A + ) RNA of human brain. The cDNA obtained was cloned in plasmid pBR322 for the PstI site using (dC/dG) sequences synthesized on the 3' ends of the vector molecule and cDNA respectively. In cloning 75 ng cDNA, the authors obtained approximately 10 5 recombinant. This library was analyzed by the hybridization method on columns with two radioactive ( 32 P) probes: the total cDNA preparation and the total nuclear DNA from the human brain. The number of copies of the cloned DNA fragment in the genome was determined by dot hybridization. Restricting fragments of human and rat DNA genomes homologous to the cloned cDNA were identified on radio-autographs. In each case, 10 micrograms of EcoRI DNA hydrolyzate was fractionated in 1% agarose gel. The probe was also readied with RNA samples fractionated in agarose gel with formaldehyde and transferred to a nitrocellulose filter under weak vacuum. The filter was hybridized with 0.1 micrograms DNA pAG 02, labeled with ( 32 P) to a specific activity of 0.5-1 x 10 9 counts/min x microgram. The autograph was exposed with amplifying screens at -70 0 C for 2 days

  14. Puberty and structural brain development in humans.

    Science.gov (United States)

    Herting, Megan M; Sowell, Elizabeth R

    2017-01-01

    Adolescence is a transitional period of physical and behavioral development between childhood and adulthood. Puberty is a distinct period of sexual maturation that occurs during adolescence. Since the advent of magnetic resonance imaging (MRI), human studies have largely examined neurodevelopment in the context of age. A breadth of animal findings suggest that sex hormones continue to influence the brain beyond the prenatal period, with both organizational and activational effects occurring during puberty. Given the animal evidence, human MRI research has also set out to determine how puberty may influence otherwise known patterns of age-related neurodevelopment. Here we review structural-based MRI studies and show that pubertal maturation is a key variable to consider in elucidating sex- and individual- based differences in patterns of human brain development. We also highlight the continuing challenges faced, as well as future considerations, for this vital avenue of research. Copyright © 2016. Published by Elsevier Inc.

  15. Quantifying anisotropy and fiber orientation in human brain histological sections

    Directory of Open Access Journals (Sweden)

    Matthew D Budde

    2013-02-01

    Full Text Available Diffusion weighted imaging (DWI has provided unparalleled insight into the microscopic structure and organization of the central nervous system. Diffusion tensor imaging (DTI and other models of the diffusion MRI signal extract microstructural properties of tissues with relevance to the normal and injured brain. Despite the prevalence of such techniques and applications, accurate and large-scale validation has proven difficult, particularly in the human brain. In this report, human brain sections obtained from a digital public brain bank were employed to quantify anisotropy and fiber orientation using structure tensor analysis. The derived maps depict the intricate complexity of white matter fibers at a resolution not attainable with current DWI experiments. Moreover, the effects of multiple fiber bundles (i.e. crossing fibers and intravoxel fiber dispersion were demonstrated. Examination of the cortex and hippocampal regions validated specific features of previous in vivo and ex vivo DTI studies of the human brain. Despite the limitation to two dimensions, the resulting images provide a unique depiction of white matter organization at resolutions currently unattainable with DWI. The method of analysis may be used to validate tissue properties derived from DTI and alternative models of the diffusion signal.

  16. From Brain-Environment Connections to Temporal Dynamics and Social Interaction: Principles of Human Brain Function.

    Science.gov (United States)

    Hari, Riitta

    2017-06-07

    Experimental data about brain function accumulate faster than does our understanding of how the brain works. To tackle some general principles at the grain level of behavior, I start from the omnipresent brain-environment connection that forces regularities of the physical world to shape the brain. Based on top-down processing, added by sparse sensory information, people are able to form individual "caricature worlds," which are similar enough to be shared among other people and which allow quick and purposeful reactions to abrupt changes. Temporal dynamics and social interaction in natural environments serve as further essential organizing principles of human brain function. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Maximal heart rate does not limit cardiovascular capacity in healthy humans

    DEFF Research Database (Denmark)

    Munch, G D W; Svendsen, J H; Damsgaard, R

    2014-01-01

    In humans, maximal aerobic power (VO2 max ) is associated with a plateau in cardiac output (Q), but the mechanisms regulating the interplay between maximal heart rate (HRmax) and stroke volume (SV) are unclear. To evaluate the effect of tachycardia and elevations in HRmax on cardiovascular function...... and capacity during maximal exercise in healthy humans, 12 young male cyclists performed incremental cycling and one-legged knee-extensor exercise (KEE) to exhaustion with and without right atrial pacing to increase HR. During control cycling, Q and leg blood flow increased up to 85% of maximal workload (WLmax...... and RAP (P healthy...

  18. Parcellation of the Healthy Neonatal Brain into 107 Regions Using Atlas Propagation through Intermediate Time Points in Childhood.

    Science.gov (United States)

    Blesa, Manuel; Serag, Ahmed; Wilkinson, Alastair G; Anblagan, Devasuda; Telford, Emma J; Pataky, Rozalia; Sparrow, Sarah A; Macnaught, Gillian; Semple, Scott I; Bastin, Mark E; Boardman, James P

    2016-01-01

    Neuroimage analysis pipelines rely on parcellated atlases generated from healthy individuals to provide anatomic context to structural and diffusion MRI data. Atlases constructed using adult data introduce bias into studies of early brain development. We aimed to create a neonatal brain atlas of healthy subjects that can be applied to multi-modal MRI data. Structural and diffusion 3T MRI scans were acquired soon after birth from 33 typically developing neonates born at term (mean postmenstrual age at birth 39(+5) weeks, range 37(+2)-41(+6)). An adult brain atlas (SRI24/TZO) was propagated to the neonatal data using temporal registration via childhood templates with dense temporal samples (NIH Pediatric Database), with the final atlas (Edinburgh Neonatal Atlas, ENA33) constructed using the Symmetric Group Normalization (SyGN) method. After this step, the computed final transformations were applied to T2-weighted data, and fractional anisotropy, mean diffusivity, and tissue segmentations to provide a multi-modal atlas with 107 anatomical regions; a symmetric version was also created to facilitate studies of laterality. Volumes of each region of interest were measured to provide reference data from normal subjects. Because this atlas is generated from step-wise propagation of adult labels through intermediate time points in childhood, it may serve as a useful starting point for modeling brain growth during development.

  19. Parcellation of the healthy neonatal brain into 107 regions using atlas propagation through intermediate time points in childhood

    Directory of Open Access Journals (Sweden)

    Manuel eBlesa Cabez

    2016-05-01

    Full Text Available Neuroimage analysis pipelines rely on parcellated atlases generated from healthy individuals to provide anatomic context to structural and diffusion MRI data. Atlases constructed using adult data introduce bias into studies of early brain development. We aimed to create a neonatal brain atlas of healthy subjects that can be applied to multi-modal MRI data. Structural and diffusion 3T MRI scans were acquired soon after birth from 33 typically developing neonates born at term (mean postmenstrual age at birth 39+5 weeks, range 37+2-41+6. An adult brain atlas (SRI24/TZO was propagated to the neonatal data using temporal registration via childhood templates with dense temporal samples (NIH Pediatric Database, with the final atlas (Edinburgh Neonatal Atlas, ENA33 constructed using the Symmetric Group Normalization method. After this step, the computed final transformations were applied to T2-weighted data, and fractional anisotropy, mean diffusivity, and tissue segmentations to provide a multi-modal atlas with 107 anatomical regions; a symmetric version was also created to facilitate studies of laterality. Volumes of each region of interest were measured to provide reference data from normal subjects. Because this atlas is generated from step-wise propagation of adult labels through intermediate time points in childhood, it may serve as a useful starting point for modelling brain growth during development.

  20. The relationship between brain morphology and polysomnography in healthy good sleepers.

    Directory of Open Access Journals (Sweden)

    Matthias A Reinhard

    Full Text Available Normal sleep continuity and architecture show remarkable inter-individual variability. Previous studies suggest that brain morphology may explain inter-individual differences in sleep variables.Thirty-eight healthy subjects spent two consecutive nights at the sleep laboratory with polysomnographic monitoring. Furthermore, high-resolution T1-weighted MRI datasets were acquired in all participants. EEG sleep recordings were analyzed using standard sleep staging criteria and power spectral analysis. Using the FreeSurfer software for automated segmentation, 174 variables were determined representing the volume and thickness of cortical segments and the volume of subcortical brain areas. Regression analyses were performed to examine the relationship with polysomnographic and spectral EEG power variables.The analysis did not provide any support for the a-priori formulated hypotheses of an association between brain morphology and polysomnographic variables. Exploratory analyses revealed that the thickness of the left caudal anterior cingulate cortex was positively associated with EEG beta2 power (24-32 Hz during REM sleep. The volume of the left postcentral gyrus was positively associated with periodic leg movements during sleep (PLMS.The function of the anterior cingulate cortex as well as EEG beta power during REM sleep have been related to dreaming and sleep-related memory consolidation, which may explain the observed correlation. Increased volumes of the postcentral gyrus may be the result of increased sensory input associated with PLMS. However, due to the exploratory nature of the corresponding analyses, these results have to be replicated before drawing firm conclusions.

  1. Neuronal substrates of sensory gating within the human brain.

    NARCIS (Netherlands)

    Grunwald, T.; Boutros, N.N.; Pezer, N.; Oertzen, J. von; Fernandez, G.S.E.; Schaller, C.; Elger, C.E.

    2003-01-01

    BACKGROUND: For the human brain, habituation to irrelevant sensory input is an important function whose failure is associated with behavioral disturbances. Sensory gating can be studied by recording the brain's electrical responses to repeated clicks: the P50 potential is normally reduced to the

  2. Different impressions of other agents obtained through social interaction uniquely modulate dorsal and ventral pathway activities in the social human brain.

    Science.gov (United States)

    Takahashi, Hideyuki; Terada, Kazunori; Morita, Tomoyo; Suzuki, Shinsuke; Haji, Tomoki; Kozima, Hideki; Yoshikawa, Masahiro; Matsumoto, Yoshio; Omori, Takashi; Asada, Minoru; Naito, Eiichi

    2014-09-01

    Internal (neuronal) representations in the brain are modified by our experiences, and this phenomenon is not unique to sensory and motor systems. Here, we show that different impressions obtained through social interaction with a variety of agents uniquely modulate activity of dorsal and ventral pathways of the brain network that mediates human social behavior. We scanned brain activity with functional magnetic resonance imaging (fMRI) in 16 healthy volunteers when they performed a simple matching-pennies game with a human, human-like android, mechanical robot, interactive robot, and a computer. Before playing this game in the scanner, participants experienced social interactions with each opponent separately and scored their initial impressions using two questionnaires. We found that the participants perceived opponents in two mental dimensions: one represented "mind-holderness" in which participants attributed anthropomorphic impressions to some of the opponents that had mental functions, while the other dimension represented "mind-readerness" in which participants characterized opponents as intelligent. Interestingly, this "mind-readerness" dimension correlated to participants frequently changing their game tactic to prevent opponents from envisioning their strategy, and this was corroborated by increased entropy during the game. We also found that the two factors separately modulated activity in distinct social brain regions. Specifically, mind-holderness modulated activity in the dorsal aspect of the temporoparietal junction (TPJ) and medial prefrontal and posterior paracingulate cortices, while mind-readerness modulated activity in the ventral aspect of TPJ and the temporal pole. These results clearly demonstrate that activity in social brain networks is modulated through pre-scanning experiences of social interaction with a variety of agents. Furthermore, our findings elucidated the existence of two distinct functional networks in the social human brain

  3. Brain and skin do not contribute to the systemic rise in erythropoietin during acute hypoxia in humans

    DEFF Research Database (Denmark)

    Rasmussen, Peter; Nordsborg, Nikolai; Taudorf, Sarah

    2012-01-01

    these findings apply to humans remains unknown. We exposed healthy young subjects to hypoxia (equivalent to 3800 m) and measured EPO in arterial and jugular venous plasma and in cerebrospinal fluid. To examine the role of the skin for EPO production during hypoxia, subjects were exposed to 8 h of hypobaric......Erythropoietin (EPO) preserves arterial oxygen content by controlling red blood cell and plasma volumes. Synthesis of EPO was long thought to relate inversely to renal oxygenation, but in knockout mice, brain and skin have been identified as essential for the acute hypoxic EPO response. Whether...

  4. Delineating Neural Structures of Developmental Human Brains with Diffusion Tensor Imaging

    Directory of Open Access Journals (Sweden)

    Hao Huang

    2010-01-01

    Full Text Available The human brain anatomy is characterized by dramatic structural changes during fetal development. It is extraordinarily complex and yet its origin is a simple tubular structure. Revealing detailed anatomy at different stages of brain development not only aids in understanding this highly ordered process, but also provides clues to detect abnormalities caused by genetic or environmental factors. However, anatomical studies of human brain development during the fetal period are surprisingly scarce and histology-based atlases have become available only recently. Diffusion tensor imaging (DTI measures water diffusion to delineate the underlying neural structures. The high contrasts derived from DTI can be used to establish the brain atlas. With DTI tractography, coherent neural structures, such as white matter tracts, can be three-dimensionally reconstructed. The primary eigenvector of the diffusion tensor can be further explored to characterize microstructures in the cerebral wall of the developmental brains. In this mini-review, the application of DTI in order to reveal the structures of developmental fetal brains has been reviewed in the above-mentioned aspects. The fetal brain DTI provides a unique insight for delineating the neural structures in both macroscopic and microscopic levels. The resultant DTI database will provide structural guidance for the developmental study of human fetal brains in basic neuroscience, and reference standards for diagnostic radiology of premature newborns.

  5. Evidence of a Christmas spirit network in the brain

    DEFF Research Database (Denmark)

    Hougaard, Anders; Lindberg, Ulrich; Arngrim, Nanna

    2015-01-01

    OBJECTIVE: To detect and localise the Christmas spirit in the human brain. DESIGN: Single blinded, cross cultural group study with functional magnetic resonance imaging (fMRI). SETTING: Functional imaging unit and department of clinical physiology, nuclear medicine and PET in Denmark. PARTICIPANTS......: 10 healthy people from the Copenhagen area who routinely celebrate Christmas and 10 healthy people living in the same area who have no Christmas traditions. MAIN OUTCOME MEASURES: Brain activation unique to the group with Christmas traditions during visual stimulation with images with a Christmas......, differences between the two groups were calculated to determine Christmas specific brain activation. RESULTS: Significant clusters of increased BOLD activation in the sensory motor cortex, the premotor and primary motor cortex, and the parietal lobule (inferior and superior) were found in scans of people who...

  6. Effect of childhood maltreatment on brain structure in adult patients with major depressive disorder and healthy participants.

    LENUS (Irish Health Repository)

    Chaney, Aisling

    2013-07-30

    Background: Childhood maltreatment has been found to play a crucial role in the development of psychiatric disorders. However, whether childhood maltreatment is associated with structural brain changes described for major depressive disorder (MDD) is still a matter of debate. The aim of this study was to investigate whether patients with MDD and a history of childhood maltreatment display more structural changes than patients without childhood maltreatment or healthy controls. Methods: Patients with MDD and healthy controls with and without childhood maltreatment experience were investigated using high-resolution magnetic resonance imaging (MRI), and data were analyzed using voxel-based morphometry. Results: We studied 37 patients with MDD and 46 controls. Grey matter volume was significantly decreased in the hippocampus and significantly increased in the dorsomedial prefrontal cortex (DMPFC) and the orbitofrontal cortex (OFC) in participants who had experienced childhood maltreatment compared with those who had not. Patients displayed smaller left OFC and left DMPFC volumes than controls. No significant difference in hippocampal volume was evident between patients with MDD and healthy controls. In regression analyses, despite effects from depression, age and sex on the DMPFC, OFC and hippocampus, childhood maltreatment was found to independently affect these regions. Limitations: The retrospective assessment of childhood maltreatment; the natural problem that patients experienced more childhood maltreatment than controls; and the restrictions, owing to sample size, to investigating higher order interactions among factors are discussed as limitations. Conclusion: These results suggest that early childhood maltreatment is associated with brain structural changes irrespective of sex, age and a history of depression. Thus, the study highlights the importance of childhood maltreatment when investigating brain structures.

  7. PET imaging of the brain serotonin transporters (SERT) with N,N-dimethyl-2-(2-amino-4-[18F]fluorophenylthio)benzylamine (4-[18F]-ADAM) in humans: a preliminary study

    International Nuclear Information System (INIS)

    Huang, Wen-Sheng; Huang, San-Yuan; Ho, Pei-Shen; Yeh, Chin-Bin; Ma, Kuo-Hsing; Huang, Ya-Yao; Shiue, Chyng-Yann; Liu, Ren-Syuan; Cheng, Cheng-Yi

    2013-01-01

    The aim of this study was to assess the feasibility of using 4-[ 18 F]-ADAM as a brain SERT imaging agent in humans. Enrolled in the study were 19 healthy Taiwanese subjects (11 men, 8 women; age 33 ± 9 years). The PET data were semiquantitatively analyzed and expressed as specific uptake ratios (SUR) and distribution volume ratios (DVR) using the software package PMOD. The SUR and DVR of 4-[ 18 F]-ADAM in the raphe nucleus (RN), midbrain (MB), thalamus (TH), striatum (STR) and prefrontal cortex (PFC) were determined using the cerebellum (CB) as the reference region. 4-[ 18 F]-ADAM bound to known SERT-rich regions in human brain. The order of the regional brain uptake was MB (RN) > TH > STR > PFC > CB. The DVR (n = 4, t* = 60 min) in the RN, TH, STR and PFC were 3.00 ± 0.50, 2.25 ± 0.45, 2.05 ± 0.31 and 1.40 ± 0.13, respectively. The optimal time for imaging brain SERT with 4-[ 18 F]-ADAM was 120-140 min after injection. At the optimal imaging time, the SURs (n = 15) in the MB, TH, STR, and PFC were 2.25 ± 0.20, 2.28 ± 0.20, 2.12 ± 0.18 and 1.47 ± 0.14, respectively. There were no significant differences in SERT availability between men and women (p 18 F]-ADAM was safe for human studies and its distribution in human brain appeared to correlate well with the known distribution of SERT in the human brain. In addition, it had high specific binding and a reasonable optimal time for imaging brain SERT in humans. Thus, 4-[ 18 F]-ADAM may be feasible for assessing the status of brain SERT in humans. (orig.)

  8. Mapping glucose-mediated gut-to-brain signalling pathways in humans.

    Science.gov (United States)

    Little, Tanya J; McKie, Shane; Jones, Richard B; D'Amato, Massimo; Smith, Craig; Kiss, Orsolya; Thompson, David G; McLaughlin, John T

    2014-08-01

    Previous fMRI studies have demonstrated that glucose decreases the hypothalamic BOLD response in humans. However, the mechanisms underlying the CNS response to glucose have not been defined. We recently demonstrated that the slowing of gastric emptying by glucose is dependent on activation of the gut peptide cholecystokinin (CCK1) receptor. Using physiological functional magnetic resonance imaging this study aimed to determine the whole brain response to glucose, and whether CCK plays a central role. Changes in blood oxygenation level-dependent (BOLD) signal were monitored using fMRI in 12 healthy subjects following intragastric infusion (250ml) of: 1M glucose+predosing with dexloxiglumide (CCK1 receptor antagonist), 1M glucose+placebo, or 0.9% saline (control)+placebo, in a single-blind, randomised fashion. Gallbladder volume, blood glucose, insulin, and GLP-1 and CCK concentrations were determined. Hunger, fullness and nausea scores were also recorded. Intragastric glucose elevated plasma glucose, insulin, and GLP-1, and reduced gall bladder volume (an in vivo assay for CCK secretion). Glucose decreased BOLD signal, relative to saline, in the brainstem and hypothalamus as well as the cerebellum, right occipital cortex, putamen and thalamus. The timing of the BOLD signal decrease was negatively correlated with the rise in blood glucose and insulin levels. The glucose+dex arm highlighted a CCK1-receptor dependent increase in BOLD signal only in the motor cortex. Glucose induces site-specific differences in BOLD response in the human brain; the brainstem and hypothalamus show a CCK1 receptor-independent reduction which is likely to be mediated by a circulatory effect of glucose and insulin, whereas the motor cortex shows an early dexloxiglumide-reversible increase in signal, suggesting a CCK1 receptor-dependent neural pathway. Copyright © 2014. Published by Elsevier Inc.

  9. Brain Insulin Signaling and Alzheimer's Disease: Current Evidence and Future Directions

    OpenAIRE

    Schiöth, Helgi B.; Craft, Suzanne; Brooks, Samantha J.; Frey, William H.; Benedict, Christian

    2011-01-01

    Insulin receptors in the brain are found in high densities in the hippocampus, a region that is fundamentally involved in the acquisition, consolidation, and recollection of new information. Using the intranasal method, which effectively bypasses the blood–brain barrier to deliver and target insulin directly from the nose to the brain, a series of experiments involving healthy humans has shown that increased central nervous system (CNS) insulin action enhances learning and memory processes as...

  10. Brain-Computer Interfaces Revolutionizing Human-Computer Interaction

    CERN Document Server

    Graimann, Bernhard; Allison, Brendan

    2010-01-01

    A brain-computer interface (BCI) establishes a direct output channel between the human brain and external devices. BCIs infer user intent via direct measures of brain activity and thus enable communication and control without movement. This book, authored by experts in the field, provides an accessible introduction to the neurophysiological and signal-processing background required for BCI, presents state-of-the-art non-invasive and invasive approaches, gives an overview of current hardware and software solutions, and reviews the most interesting as well as new, emerging BCI applications. The book is intended not only for students and young researchers, but also for newcomers and other readers from diverse backgrounds keen to learn about this vital scientific endeavour.

  11. [Isolation and identification of brain tumor stem cells from human brain neuroepithelial tumors].

    Science.gov (United States)

    Fang, Jia-sheng; Deng, Yong-wen; Li, Ming-chu; Chen, Feng-Hua; Wang, Yan-jin; Lu, Ming; Fang, Fang; Wu, Jun; Yang, Zhuan-yi; Zhou, Xang-yang; Wang, Fei; Chen, Cheng

    2007-01-30

    To establish a simplified culture system for the isolation of brain tumor stem cells (BTSCs) from the tumors of human neuroepithelial tissue, to observe the growth and differentiation pattern of BTSCs, and to investigate their expression of the specific markers. Twenty-six patients with brain neuroepithelial tumors underwent tumor resection. Two pieces of tumor tissues were taken from each tumor to be dissociated, triturated into single cells in sterile DMEM-F12 medium, and then filtered. The tumor cells were seeded at a concentration of 200,000 viable cells per mL into serum-free DMEM-F12 medium simply supplemented with B27, human basic fibroblast growth factor (20 microg/L), human epidermal growth factor (20 microg /L), insulin (4 U/L), L-glutamine, penicillin and streptomycin. After the primary brain tumor spheres (BTSs) were generated, they were triturated again and passed in fresh medium. Limiting dilution assay was performed to observe the monoclone formation. 5-bromodeoxyuridine (BrdU) incorporation test was performed to observe the proliferation of the BTS. The BTSCs were cultured in mitogen-free DMEM-F12 medium supplemented with 10% fetal bovine serum to observe their differentiation. Immunocytochemistry was used to examine the expression of CD133 and nestin, specific markers of BTSC, and the rate of CD133 positive cells. Only a minority of subsets of cells from the tumors of neuroepithelial tissue had the capacity to survive, proliferate, and generate free-floating neurosphere-like BTSs in the simplified serum-free medium. These cells attached to the poly-L-lysine coated coverslips in the serum-supplemented medium and differentiated. The BTSCs were CD133 and nestin positive. The rate of CD133 positive cells in the tumor specimens was (21 +/- 6.2)% - (38 +/- 7.0)%. A new simplified culture system for the isolation of BTSCs is established. The tumors of human neuroepithelial tissue contain CD133 and nestin positive tumor stem cells which can be isolated

  12. Long-term neuroglobin expression of human astrocytes following brain trauma.

    Science.gov (United States)

    Chen, Xiameng; Liu, Yuan; Zhang, Lin; Zhu, Peng; Zhu, Haibiao; Yang, Yu; Guan, Peng

    2015-10-08

    Neuroglobin (Ngb), a 17 kDa monomeric protein, was initially described as a vertebrate oxygen-binding heme protein in 2000 and detected in metabolically active organs or cells, like the brain, peripheral nervous system as well as certain endocrine cells. A large array of initial experimental work reported that Ngb displayed a neuron restricted expression pattern in mammalian brains. However, growing evidence indicated astrocytes may also express Ngb under pathological conditions. To address the question whether human astrocytes express Ngb under traumatic insults, we investigated Ngb immuno-reactivity in post-mortem human brain tissues that died of acute, sub-acute and chronic brain trauma, respectively. We observed astrocytic Ngb expression in sub-acute and chronic traumatic brains rather than acute traumatic brains. Strikingly, the Ngb immuno-reactive astrocytes were still strongly detectable in groups that died 12 months after brain trauma. Our findings may imply an unexplored role of Ngb in astrocytes and the involved mechanisms were suggested to be further characterized. Also, therapeutic application of Ngb or Ngb-inducible chemical compounds in neuro-genesis or astrocytic scar forming can be expected. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Non-human Primate Models for Brain Disorders - Towards Genetic Manipulations via Innovative Technology.

    Science.gov (United States)

    Qiu, Zilong; Li, Xiao

    2017-04-01

    Modeling brain disorders has always been one of the key tasks in neurobiological studies. A wide range of organisms including worms, fruit flies, zebrafish, and rodents have been used for modeling brain disorders. However, whether complicated neurological and psychiatric symptoms can be faithfully mimicked in animals is still debatable. In this review, we discuss key findings using non-human primates to address the neural mechanisms underlying stress and anxiety behaviors, as well as technical advances for establishing genetically-engineered non-human primate models of autism spectrum disorders and other disorders. Considering the close evolutionary connections and similarity of brain structures between non-human primates and humans, together with the rapid progress in genome-editing technology, non-human primates will be indispensable for pathophysiological studies and exploring potential therapeutic methods for treating brain disorders.

  14. Lactate fuels the human brain during exercise

    DEFF Research Database (Denmark)

    Quistorff, Bjørn; Secher, Niels H; Van Lieshout, Johannes J

    2008-01-01

    The human brain releases a small amount of lactate at rest, and even an increase in arterial blood lactate during anesthesia does not provoke a net cerebral lactate uptake. However, during cerebral activation associated with exercise involving a marked increase in plasma lactate, the brain takes up......)] from a resting value of 6 to exercise, cerebral activation associated with mental activity, or exposure to a stressful situation. The CMR decrease is prevented with combined beta(1)- and beta(2)-adrenergic receptor...

  15. Brain and Social Networks: Fundamental Building Blocks of Human Experience.

    Science.gov (United States)

    Falk, Emily B; Bassett, Danielle S

    2017-09-01

    How do brains shape social networks, and how do social ties shape the brain? Social networks are complex webs by which ideas spread among people. Brains comprise webs by which information is processed and transmitted among neural units. While brain activity and structure offer biological mechanisms for human behaviors, social networks offer external inducers or modulators of those behaviors. Together, these two axes represent fundamental contributors to human experience. Integrating foundational knowledge from social and developmental psychology and sociology on how individuals function within dyads, groups, and societies with recent advances in network neuroscience can offer new insights into both domains. Here, we use the example of how ideas and behaviors spread to illustrate the potential of multilayer network models. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Ex-vivo MR Volumetry of Human Brain Hemispheres

    Science.gov (United States)

    Kotrotsou, Aikaterini; Bennett, David A.; Schneider, Julie A.; Dawe, Robert J.; Golak, Tom; Leurgans, Sue E.; Yu, Lei; Arfanakis, Konstantinos

    2013-01-01

    Purpose The aims of this work were to: a) develop an approach for ex-vivo MR volumetry of human brain hemispheres that does not contaminate the results of histopathological examination, b) longitudinally assess regional brain volumes postmortem, and c) investigate the relationship between MR volumetric measurements performed in-vivo and ex-vivo. Methods An approach for ex-vivo MR volumetry of human brain hemispheres was developed. Five hemispheres from elderly subjects were imaged ex-vivo longitudinally. All datasets were segmented. The longitudinal behavior of volumes measured ex-vivo was assessed. The relationship between in-vivo and ex-vivo volumetric measurements was investigated in seven elderly subjects imaged both ante-mortem and postmortem. Results The presented approach for ex-vivo MR volumetry did not contaminate the results of histopathological examination. For a period of 6 months postmortem, within-subject volume variation across time points was substantially smaller than inter-subject volume variation. A close linear correspondence was detected between in-vivo and ex-vivo volumetric measurements. Conclusion Regional brain volumes measured with the presented approach for ex-vivo MR volumetry remain relatively unchanged for a period of 6 months postmortem. Furthermore, the linear relationship between in-vivo and ex-vivo MR volumetric measurements suggests that the presented approach captures information linked to ante-mortem macrostructural brain characteristics. PMID:23440751

  17. mRNA Transcriptomics of Galectins Unveils Heterogeneous Organization in Mouse and Human Brain

    Directory of Open Access Journals (Sweden)

    Sebastian John

    2016-12-01

    Full Text Available Background: Galectins, a family of non-classically secreted, β-galactoside binding proteins is involved in several brain disorders; however no systematic knowledge on the normal neuroanatomical distribution and functions of galectins exits. Hence, the major purpose of this study was to understand spatial distribution and predict functions of galectins in brain and also compare the degree of conservation vs. divergence between mouse and human species. The latter objective was required to determine the relevance and appropriateness of studying galectins in mouse brain which may ultimately enable us to extrapolate the findings to human brain physiology and pathologies.Results: In order to fill this crucial gap in our understanding of brain galectins, we analyzed the in situ hybridization (ISH and microarray data of adult mouse and human brain respectively, from the Allen Brain Atlas, to resolve each galectin-subtype’s spatial distribution across brain distinct cytoarchitecture. Next, transcription factors (TFs that may regulate galectins were identified using TRANSFAC software and the list obtained was further curated to sort TFs on their confirmed transcript expression in the adult brain. Galectin-TF cluster analysis, gene-ontology annotations and co-expression networks were then extrapolated to predict distinct functional relevance of each galectin in the neuronal processes. Data shows that galectins have highly heterogeneous expression within and across brain sub-structures and are predicted to be the crucial targets of brain enriched TFs. Lgals9 had maximal spatial distribution across mouse brain with inferred predominant roles in neurogenesis while LGALS1 was ubiquitously expressed in human. Limbic region associated with learning, memory and emotions and substantia nigra associated with motor movements showed strikingly high expression of LGALS1 and LGALS8 in human vs. mouse brain. The overall expression profile of galectin-8 was most

  18. Age-related Differences in White Matter Integrity in Healthy Human Brain: Evidence from Structural Mri and Diffusion Tensor Imaging

    Directory of Open Access Journals (Sweden)

    Rishu Rathee

    2016-01-01

    Full Text Available The aim is to investigate the relationship between microstructural white matter (WM diffusivity indices and macrostructural WM volume (WMV among healthy individuals (20–85 years. Whole-brain diffusion measures were calculated from diffusion tensor imaging using FMRIB software library while WMV was estimated through voxel-based morphometry, and voxel-based analysis was carried out using tract-based spatial statistics. Our results revealed that mean diffusivity, axial diffusivity, and radial diffusivity had shown good correlation with WMV but not for fractional anisotropy (FA. Voxel-wise tract-based spatial statistics analysis for FA showed a significant decrease in four regions for middle-aged group compared to young-aged group, in 22 regions for old-aged group compared to middle-aged group, and in 26 regions for old-aged group compared to young-aged group ( P < 0.05. We found significantly lower WMV, FA, and mean diffusivity values in females than males and inverted-U trend for FA in males. We conclude differential age- and gender-related changes for structural WMV and WM diffusion indices.

  19. Human blood-brain barrier insulin-like growth factor receptor

    International Nuclear Information System (INIS)

    Duffy, K.R.; Pardridge, W.M.; Rosenfeld, R.G.

    1988-01-01

    Insulin-like growth factor (IGF)-1 and IGF-2, may be important regulatory molecules in the CNS. Possible origins of IGFs in brain include either de novo synthesis or transport of circulating IGFs from blood into brain via receptor mediated transcytosis mechanisms at the brain capillary endothelial wall, ie, the blood-brain barrier (BBB). In the present studies, isolated human brain capillaries are used as an in vitro model system of the human BBB and the characteristics of IGF-1 or IGF-2 binding to this preparation were assessed. The total binding of IGF-2 at 37 degrees C exceeded 130% per mg protein and was threefold greater than the total binding for IGF-1. However, at 37 degrees C nonsaturable binding equaled total binding, suggesting that endocytosis is rate limiting at physiologic temperatures. Binding studies performed at 4 degrees C slowed endocytosis to a greater extent than membrane binding, and specific binding of either IGF-1 or IGF-2 was detectable. Scatchard plots for either peptide were linear and the molar dissociation constant of IGF-1 and IGF-2 binding was 2.1 +/- 0.4 and 1.1 +/- 0.1 nmol/L, respectively. Superphysiologic concentrations of porcine insulin inhibited the binding of both IGF-1 (ED50 = 2 micrograms/mL) and IGF-2 (ED50 = 0.5 microgram/mL). Affinity cross linking of 125 I-IGF-1, 125 I-IGF-2, and 125 I-insulin to isolated human brain capillaries was performed using disuccinimidylsuberate (DSS). These studies revealed a 141 kd binding site for both IGF-1 and IGF-2, and a 133 kd binding site for insulin

  20. Healthy Living after Stroke

    Science.gov (United States)

    ... Nutrition Cooking for Health Food for Thought: Heart-healthy Diet is Also Good For Your Brain Physical Activity Get Moving and Boost Your Brain Power Understanding Risky Conditions Converging Risk Factors for Stroke ...

  1. Brain donation in psychiatry: results of a Dutch prospective donor program among psychiatric cohort participants.

    Science.gov (United States)

    de Lange, Geertje M; Rademaker, Marleen; Boks, Marco P; Palmen, Saskia J M C

    2017-10-20

    Human brain tissue is crucial to study the molecular and cellular basis of psychiatric disorders. However, the current availability of human brain tissue is inadequate. Therefore, the Netherlands Brain Bank initiated a program in which almost 4.000 participants of 15 large Dutch psychiatric research cohorts were asked to register as prospective brain donors. We approached patients with schizophrenia, bipolar disorder, major depressive disorder, obsessive-compulsive disorder, post-traumatic stress disorder, families with a child with autism or Attention Deficit Hyperactivity Disorder, healthy relatives and healthy unrelated controls, either face-to-face or by post. We investigated whether diagnosis, method of approach, age, and gender were related to the likelihood of brain-donor registration. We found a striking difference in registration efficiency between the diagnosis groups. Patients with bipolar disorder and healthy relatives registered most often (25% respectively 17%), followed by unrelated controls (8%) and patients with major depressive disorder, post-traumatic stress disorder, and obsessive-compulsive disorder (9%, 6% resp. 5%). A face-to-face approach was 1.3 times more effective than a postal approach and the likelihood of registering as brain donor significantly increased with age. Gender did not make a difference. Between 2013 and 2016, our prospective brain-donor program for psychiatry resulted in an almost eightfold increase (from 149 to 1149) in the number of registered psychiatric patients at the Netherlands Brain Bank. Based on our results we recommend, when starting a prospective brain donor program in psychiatric patients, to focus on face to face recruitment of people in their sixties or older.

  2. Significance of MDR1 and multiple drug resistance in refractory human epileptic brain

    Directory of Open Access Journals (Sweden)

    Dini Gabriele

    2004-10-01

    Full Text Available Abstract Background The multiple drug resistance protein (MDR1/P-glycoprotein is overexpressed in glia and blood-brain barrier (BBB endothelium in drug refractory human epileptic tissue. Since various antiepileptic drugs (AEDs can act as substrates for MDR1, the enhanced expression/function of this protein may increase their active extrusion from the brain, resulting in decreased responsiveness to AEDs. Methods Human drug resistant epileptic brain tissues were collected after surgical resection. Astrocyte cell cultures were established from these tissues, and commercially available normal human astrocytes were used as controls. Uptake of fluorescent doxorubicin and radioactive-labeled Phenytoin was measured in the two cell populations, and the effect of MDR1 blockers was evaluated. Frozen human epileptic brain tissue slices were double immunostained to locate MDR1 in neurons and glia. Other slices were exposed to toxic concentrations of Phenytoin to study cell viability in the presence or absence of a specific MDR1 blocker. Results MDR1 was overexpressed in blood vessels, astrocytes and neurons in human epileptic drug-resistant brain. In addition, MDR1-mediated cellular drug extrusion was increased in human 'epileptic' astrocytes compared to 'normal' ones. Concomitantly, cell viability in the presence of cytotoxic compounds was increased. Conclusions Overexpression of MDR1 in different cell types in drug-resistant epileptic human brain leads to functional alterations, not all of which are linked to drug pharmacokinetics. In particular, the modulation of glioneuronal MDR1 function in epileptic brain in the presence of toxic concentrations of xenobiotics may constitute a novel cytoprotective mechanism.

  3. Human brain lesion-deficit inference remapped.

    Science.gov (United States)

    Mah, Yee-Haur; Husain, Masud; Rees, Geraint; Nachev, Parashkev

    2014-09-01

    Our knowledge of the anatomical organization of the human brain in health and disease draws heavily on the study of patients with focal brain lesions. Historically the first method of mapping brain function, it is still potentially the most powerful, establishing the necessity of any putative neural substrate for a given function or deficit. Great inferential power, however, carries a crucial vulnerability: without stronger alternatives any consistent error cannot be easily detected. A hitherto unexamined source of such error is the structure of the high-dimensional distribution of patterns of focal damage, especially in ischaemic injury-the commonest aetiology in lesion-deficit studies-where the anatomy is naturally shaped by the architecture of the vascular tree. This distribution is so complex that analysis of lesion data sets of conventional size cannot illuminate its structure, leaving us in the dark about the presence or absence of such error. To examine this crucial question we assembled the largest known set of focal brain lesions (n = 581), derived from unselected patients with acute ischaemic injury (mean age = 62.3 years, standard deviation = 17.8, male:female ratio = 0.547), visualized with diffusion-weighted magnetic resonance imaging, and processed with validated automated lesion segmentation routines. High-dimensional analysis of this data revealed a hidden bias within the multivariate patterns of damage that will consistently distort lesion-deficit maps, displacing inferred critical regions from their true locations, in a manner opaque to replication. Quantifying the size of this mislocalization demonstrates that past lesion-deficit relationships estimated with conventional inferential methodology are likely to be significantly displaced, by a magnitude dependent on the unknown underlying lesion-deficit relationship itself. Past studies therefore cannot be retrospectively corrected, except by new knowledge that would render them redundant

  4. Measuring and Reconstructing the Brain at the Synaptic Scale: Towards a Biofidelic Human Brain in silico

    OpenAIRE

    NeuroData; CE, Priebe; Burns, R.; RJ, Vogelstein

    2015-01-01

    Vogelstein JT, Priebe CE, Burns R, Vogelstein RJ, Lichtman J. Measuring and Reconstructing the Brain at the Synaptic Scale: Towards a Biofidelic Human Brain in silico. DARPA Neural Engineering, Science and Technology Forum, 2010

  5. Noninvasive assessment of the rheological behavior of human organs using multifrequency MR elastography: a study of brain and liver viscoelasticity

    Energy Technology Data Exchange (ETDEWEB)

    Klatt, Dieter [Department of Radiology, Charite-Universitaetsmedizin Berlin, Campus Charite Mitte, Chariteplatz 1, 10117 Berlin (Germany); Hamhaber, Uwe [Institute of Medical Informatics, Charite-Universitaetsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12200 Berlin (Germany); Asbach, Patrick [Department of Radiology, Charite-Universitaetsmedizin Berlin, Campus Charite Mitte, Chariteplatz 1, 10117 Berlin (Germany); Braun, Juergen [Institute of Medical Informatics, Charite-Universitaetsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12200 Berlin (Germany); Sack, Ingolf [Department of Radiology, Charite-Universitaetsmedizin Berlin, Campus Charite Mitte, Chariteplatz 1, 10117 Berlin (Germany)

    2007-12-21

    MR elastography (MRE) enables the noninvasive determination of the viscoelastic behavior of human internal organs based on their response to oscillatory shear stress. An experiment was developed that combines multifrequency shear wave actuation with broad-band motion sensitization to extend the dynamic range of a single MRE examination. With this strategy, multiple wave images corresponding to different driving frequencies are simultaneously received and can be analyzed by evaluating the dispersion of the complex modulus over frequency. The technique was applied on the brain and liver of five healthy volunteers. Its repeatability was tested by four follow-up studies in each volunteer. Five standard rheological models (Maxwell, Voigt, Zener, Jeffreys and fractional Zener model) were assessed for their ability to reproduce the observed dispersion curves. The three-parameter Zener model was found to yield the most consistent results with two shear moduli {mu}{sub 1} = 0.84 {+-} 0.22 (1.36 {+-} 0.31) kPa, {mu}{sub 2} = 2.03 {+-} 0.19 (1.86 {+-} 0.34) kPa and one shear viscosity of {eta} = 6.7 {+-} 1.3 (5.5 {+-} 1.6) Pa s (interindividual mean {+-} SD) in brain (liver) experiments. Significant differences between the rheological parameters of brain and liver were found for {mu}{sub 1} and {eta} (P < 0.05), indicating that human brain is softer and possesses a higher viscosity than liver.

  6. Noninvasive assessment of the rheological behavior of human organs using multifrequency MR elastography: a study of brain and liver viscoelasticity

    International Nuclear Information System (INIS)

    Klatt, Dieter; Hamhaber, Uwe; Asbach, Patrick; Braun, Juergen; Sack, Ingolf

    2007-01-01

    MR elastography (MRE) enables the noninvasive determination of the viscoelastic behavior of human internal organs based on their response to oscillatory shear stress. An experiment was developed that combines multifrequency shear wave actuation with broad-band motion sensitization to extend the dynamic range of a single MRE examination. With this strategy, multiple wave images corresponding to different driving frequencies are simultaneously received and can be analyzed by evaluating the dispersion of the complex modulus over frequency. The technique was applied on the brain and liver of five healthy volunteers. Its repeatability was tested by four follow-up studies in each volunteer. Five standard rheological models (Maxwell, Voigt, Zener, Jeffreys and fractional Zener model) were assessed for their ability to reproduce the observed dispersion curves. The three-parameter Zener model was found to yield the most consistent results with two shear moduli μ 1 = 0.84 ± 0.22 (1.36 ± 0.31) kPa, μ 2 = 2.03 ± 0.19 (1.86 ± 0.34) kPa and one shear viscosity of η = 6.7 ± 1.3 (5.5 ± 1.6) Pa s (interindividual mean ± SD) in brain (liver) experiments. Significant differences between the rheological parameters of brain and liver were found for μ 1 and η (P < 0.05), indicating that human brain is softer and possesses a higher viscosity than liver

  7. Do the metabolites of 6-[F-18]fluoro-L-dopa and of [F-18]fluoro-meta-L-tyrosine contribute to the F-18 accumulation in the human brain?

    International Nuclear Information System (INIS)

    Firnau, G.; Chirakal, R.; Nahmias, C.; Garnett, E.S.

    1990-01-01

    The purpose of this study was to determine if the metabolites of 6-[F-18]fluoro-L-dopa (F-dopa) and of [F-18]fluoro-meta-L-tyrosine (FmLtyr) contribute to the accumulation of fluorine-18 in the brain through unspecific retention. PET studies were conducted on a healthy human subject who was treated with both of the radiopharmaceuticals and their labelled metabolites. Results indicated that in contrast to F-dopa, the metabolite of FmLtyr does not 'contaminate' the brain with extraneous fluorine-18

  8. In vivo bioimpedance measurement of healthy and ischaemic rat brain: implications for stroke imaging using electrical impedance tomography

    International Nuclear Information System (INIS)

    Dowrick, T; Blochet, C; Holder, D

    2015-01-01

    In order to facilitate the imaging of haemorrhagic and ischaemic stroke using frequency difference electrical impedance tomography (EIT), impedance measurements of normal and ischaemic brain, and clotted blood during haemorrhage, were gathered using a four-terminal technique in an in vivo animal model, a first for ischaemic measurements. Differences of 5–10% in impedance were seen between the frequency spectrums of healthy and ischaemic brain, over the frequency range 0–3 kHz, while the spectrum of blood was predominately uniform. The implications of imaging blood/ischaemia in the brain using electrical impedance tomography are discussed, supporting the notion that it will be possible to differentiate stroke from haemorrhage. (paper)

  9. A digital interactive human brain atlas based on Chinese visible human datasets for anatomy teaching.

    Science.gov (United States)

    Li, Qiyu; Ran, Xu; Zhang, Shaoxiang; Tan, Liwen; Qiu, Mingguo

    2014-01-01

    As we know, the human brain is one of the most complicated organs in the human body, which is the key and difficult point in neuroanatomy and sectional anatomy teaching. With the rapid development and extensive application of imaging technology in clinical diagnosis, doctors are facing higher and higher requirement on their anatomy knowledge. Thus, to cultivate medical students to meet the needs of medical development today and to improve their ability to read and understand radiographic images have become urgent challenges for the medical teachers. In this context, we developed a digital interactive human brain atlas based on the Chinese visible human datasets for anatomy teaching (available for free download from http://www.chinesevisiblehuman.com/down/DHBA.rar). The atlas simultaneously provides views in all 3 primary planes of section. The main structures of the human brain have been anatomically labeled in all 3 views. It is potentially useful for anatomy browsing, user self-testing, and automatic student assessment. In a word, it is interactive, 3D, user friendly, and free of charge, which can provide a new, intuitive means for anatomy teaching.

  10. Brain Imaging of Human Sexual Response : Recent Developments and Future Directions

    NARCIS (Netherlands)

    Ruesink, Gerben B; Georgiadis, Janniko R

    2017-01-01

    Purpose of Review: The purpose of this study is to provide a comprehensive summary of the latest developments in the experimental brain study of human sexuality, focusing on brain connectivity during the sexual response. Recent Findings: Stable patterns of brain activation have been established for

  11. Identification of Multipotent Stem Cells in Human Brain Tissue Following Stroke.

    Science.gov (United States)

    Tatebayashi, Kotaro; Tanaka, Yasue; Nakano-Doi, Akiko; Sakuma, Rika; Kamachi, Saeko; Shirakawa, Manabu; Uchida, Kazutaka; Kageyama, Hiroto; Takagi, Toshinori; Yoshimura, Shinichi; Matsuyama, Tomohiro; Nakagomi, Takayuki

    2017-06-01

    Perivascular regions of the brain harbor multipotent stem cells. We previously demonstrated that brain pericytes near blood vessels also develop multipotency following experimental ischemia in mice and these ischemia-induced multipotent stem cells (iSCs) can contribute to neurogenesis. However, it is essential to understand the traits of iSCs in the poststroke human brain for possible applications in stem cell-based therapies for stroke patients. In this study, we report for the first time that iSCs can be isolated from the poststroke human brain. Putative iSCs were derived from poststroke brain tissue obtained from elderly stroke patients requiring decompressive craniectomy and partial lobectomy for diffuse cerebral infarction. Immunohistochemistry showed that these iSCs were localized near blood vessels within poststroke areas containing apoptotic/necrotic neurons and expressed both the stem cell marker nestin and several pericytic markers. Isolated iSCs expressed these same markers and demonstrated high proliferative potential without loss of stemness. Furthermore, isolated iSCs expressed other stem cell markers, such as Sox2, c-myc, and Klf4, and differentiated into multiple cells in vitro, including neurons. These results show that iSCs, which are likely brain pericyte derivatives, are present within the poststroke human brain. This study suggests that iSCs can contribute to neural repair in patients with stroke.

  12. Synaptic Tau Seeding Precedes Tau Pathology in Human Alzheimer's Disease Brain

    Directory of Open Access Journals (Sweden)

    Sarah L. DeVos

    2018-04-01

    Full Text Available Alzheimer's disease (AD is defined by the presence of intraneuronal neurofibrillary tangles (NFTs composed of hyperphosphorylated tau aggregates as well as extracellular amyloid-beta plaques. The presence and spread of tau pathology through the brain is classified by Braak stages and thought to correlate with the progression of AD. Several in vitro and in vivo studies have examined the ability of tau pathology to move from one neuron to the next, suggesting a “prion-like” spread of tau aggregates may be an underlying cause of Braak tau staging in AD. Using the HEK293 TauRD-P301S-CFP/YFP expressing biosensor cells as a highly sensitive and specific tool to identify the presence of seed competent aggregated tau in brain lysate—i.e., tau aggregates that are capable of recruiting and misfolding monomeric tau—, we detected substantial tau seeding levels in the entorhinal cortex from human cases with only very rare NFTs, suggesting that soluble tau aggregates can exist prior to the development of overt tau pathology. We next looked at tau seeding levels in human brains of varying Braak stages along six regions of the Braak Tau Pathway. Tau seeding levels were detected not only in the brain regions impacted by pathology, but also in the subsequent non-pathology containing region along the Braak pathway. These data imply that pathogenic tau aggregates precede overt tau pathology in a manner that is consistent with transneuronal spread of tau aggregates. We then detected tau seeding in frontal white matter tracts and the optic nerve, two brain regions comprised of axons that contain little to no neuronal cell bodies, implying that tau aggregates can indeed traverse along axons. Finally, we isolated cytosolic and synaptosome fractions along the Braak Tau Pathway from brains of varying Braak stages. Phosphorylated and seed competent tau was significantly enriched in the synaptic fraction of brain regions that did not have extensive cellular tau

  13. Regional distribution of serotonin transporter protein in postmortem human brain

    International Nuclear Information System (INIS)

    Kish, Stephen J.; Furukawa, Yoshiaki; Chang Lijan; Tong Junchao; Ginovart, Nathalie; Wilson, Alan; Houle, Sylvain; Meyer, Jeffrey H.

    2005-01-01

    Introduction: The primary approach in assessing the status of brain serotonin neurons in human conditions such as major depression and exposure to the illicit drug ecstasy has been the use of neuroimaging procedures involving radiotracers that bind to the serotonin transporter (SERT). However, there has been no consistency in the selection of a 'SERT-free' reference region for the estimation of free and nonspecific binding, as occipital cortex, cerebellum and white matter have all been employed. Objective and Methods: To identify areas of human brain that might have very low SERT levels, we measured, by a semiquantitative Western blotting procedure, SERT protein immunoreactivity throughout the postmortem brain of seven normal adult subjects. Results: Serotonin transporter could be quantitated in all examined brain areas. However, the SERT concentration in cerebellar cortex and white matter were only at trace values, being approximately 20% of average cerebral cortex and 5% of average striatum values. Conclusion: Although none of the examined brain areas are completely free of SERT, human cerebellar cortex has low SERT binding as compared to other examined brain regions, with the exception of white matter. Since the cerebellar cortical SERT binding is not zero, this region will not be a suitable reference region for SERT radioligands with very low free and nonspecific binding. For SERT radioligands with reasonably high free and nonspecific binding, the cerebellar cortex should be a useful reference region, provided other necessary radioligand assumptions are met

  14. Regional distribution of serotonin transporter protein in postmortem human brain

    Energy Technology Data Exchange (ETDEWEB)

    Kish, Stephen J. [Human Neurochemical Pathology Laboratory, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8 (Canada)]. E-mail: Stephen_Kish@CAMH.net; Furukawa, Yoshiaki [Human Neurochemical Pathology Laboratory, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8 (Canada); Chang Lijan [Human Neurochemical Pathology Laboratory, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8 (Canada); Tong Junchao [Human Neurochemical Pathology Laboratory, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8 (Canada); Ginovart, Nathalie [PET Centre, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8 (Canada); Wilson, Alan [PET Centre, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8 (Canada); Houle, Sylvain [PET Centre, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8 (Canada); Meyer, Jeffrey H. [PET Centre, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8 (Canada)

    2005-02-01

    Introduction: The primary approach in assessing the status of brain serotonin neurons in human conditions such as major depression and exposure to the illicit drug ecstasy has been the use of neuroimaging procedures involving radiotracers that bind to the serotonin transporter (SERT). However, there has been no consistency in the selection of a 'SERT-free' reference region for the estimation of free and nonspecific binding, as occipital cortex, cerebellum and white matter have all been employed. Objective and Methods: To identify areas of human brain that might have very low SERT levels, we measured, by a semiquantitative Western blotting procedure, SERT protein immunoreactivity throughout the postmortem brain of seven normal adult subjects. Results: Serotonin transporter could be quantitated in all examined brain areas. However, the SERT concentration in cerebellar cortex and white matter were only at trace values, being approximately 20% of average cerebral cortex and 5% of average striatum values. Conclusion: Although none of the examined brain areas are completely free of SERT, human cerebellar cortex has low SERT binding as compared to other examined brain regions, with the exception of white matter. Since the cerebellar cortical SERT binding is not zero, this region will not be a suitable reference region for SERT radioligands with very low free and nonspecific binding. For SERT radioligands with reasonably high free and nonspecific binding, the cerebellar cortex should be a useful reference region, provided other necessary radioligand assumptions are met.

  15. Mary Jane Hogue (1883-1962): A pioneer in human brain tissue culture.

    Science.gov (United States)

    Zottoli, Steven J; Seyfarth, Ernst-August

    2018-05-16

    The ability to maintain human brain explants in tissue culture was a critical step in the use of these cells for the study of central nervous system disorders. Ross G. Harrison (1870-1959) was the first to successfully maintain frog medullary tissue in culture in 1907, but it took another 38 years before successful culture of human brain tissue was accomplished. One of the pioneers in this achievement was Mary Jane Hogue (1883-1962). Hogue was born into a Quaker family in 1883 in West Chester, Pennsylvania, and received her undergraduate degree from Goucher College in Baltimore, Maryland. Research with the developmental biologist Theodor Boveri (1862-1915) in Würzburg, Germany, resulted in her Ph.D. (1909). Hogue transitioned from studying protozoa to the culture of human brain tissue in the 1940s and 1950s, when she was one of the first to culture cells from human fetal, infant, and adult brain explants. We review Hogue's pioneering contributions to the study of human brain cells in culture, her putative identification of progenitor neuroblast and/or glioblast cells, and her use of the cultures to study the cytopathogenic effects of poliovirus. We also put Hogue's work in perspective by discussing how other women pioneers in tissue culture influenced Hogue and her research.

  16. Biologic variability of N-terminal pro-brain natriuretic peptide in adult healthy cats.

    Science.gov (United States)

    Harris, Autumn N; Estrada, Amara H; Gallagher, Alexander E; Winter, Brandy; Lamb, Kenneth E; Bohannon, Mary; Hanscom, Jancy; Mainville, Celine A

    2017-02-01

    Objectives The biologic variability of N-terminal pro-brain natriuretic peptide (NT-proBNP) and its impact on diagnostic utility is unknown in healthy cats and those with cardiac disease. The purpose of this study was to determine the biologic variation of NT-proBNP within-day and week-to-week in healthy adult cats. Methods Adult cats were prospectively evaluated by complete blood count (CBC), biochemistry, total thyroxine, echocardiography, electrocardiography and blood pressure, to exclude underlying systemic or cardiac disease. Adult healthy cats were enrolled and blood samples were obtained at 11 time points over a 6 week period (0, 2 h, 4 h, 6 h, 8 h, 10 h and at weeks 2, 3, 4, 5 and 6). The intra-individual (coefficient of variation [CV I ]) biologic variation along with index of individuality and reference change values (RCVs) were calculated. Univariate models were analyzed and included comparison of the six different time points for both daily and weekly samples. This was followed by a Tukey's post-hoc adjustment, with a P value of cats. Further research is warranted to evaluate NT-proBNP variability, particularly how serial measurements of NT-proBNP may be used in the diagnosis and management of cats with cardiac disease.

  17. Spatial distribution of resting-state BOLD regional homogeneity as a predictor of brain glucose uptake: A study in healthy aging.

    Science.gov (United States)

    Bernier, Michaël; Croteau, Etienne; Castellano, Christian-Alexandre; Cunnane, Stephen C; Whittingstall, Kevin

    2017-04-15

    Positron emission tomography using [18F]-fluorodeoxyglucose (PET-FDG) is the primary imaging modality used to measure glucose metabolism in the brain (CMRGlu). CMRGlu has been used as a biomarker of brain aging and neurodegenerative diseases, but the complexity and invasive nature of PET often limits its use in research. There is therefore great interest in developing non-invasive metrics for estimating brain CMRGlu. We therefore investigated resting state fMRI metrics such as regional homogeneity (ReHo), amplitude of low-frequency fluctuations (ALFF) and regional global connectivity (Closeness) with multiple analytical approaches to determine their relationship to CMRGlu. We investigated this relation in two distinct cognitively healthy populations separated by age (27 young adults and 35 older adults). Overall, we found that both regionally and across participants, ReHo strongly correlated with CMRGlu in healthy young and older adults. Moreover, ReHo demonstrated the same age-related differences as CMRGlu throughout all cortical regions, particularly in the default network and frontal areas. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Brain mechanisms underlying human communication

    Directory of Open Access Journals (Sweden)

    Matthijs L Noordzij

    2009-07-01

    Full Text Available Human communication has been described as involving the coding-decoding of a conventional symbol system, which could be supported by parts of the human motor system (i.e. the “mirror neurons system”. However, this view does not explain how these conventions could develop in the first place. Here we target the neglected but crucial issue of how people organize their non-verbal behavior to communicate a given intention without pre-established conventions. We have measured behavioral and brain responses in pairs of subjects during communicative exchanges occurring in a real, interactive, on-line social context. In two fMRI studies, we found robust evidence that planning new communicative actions (by a sender and recognizing the communicative intention of the same actions (by a receiver relied on spatially overlapping portions of their brains (the right posterior superior temporal sulcus. The response of this region was lateralized to the right hemisphere, modulated by the ambiguity in meaning of the communicative acts, but not by their sensorimotor complexity. These results indicate that the sender of a communicative signal uses his own intention recognition system to make a prediction of the intention recognition performed by the receiver. This finding supports the notion that our communicative abilities are distinct from both sensorimotor processes and language abilities.

  19. Brain mechanisms underlying human communication.

    Science.gov (United States)

    Noordzij, Matthijs L; Newman-Norlund, Sarah E; de Ruiter, Jan Peter; Hagoort, Peter; Levinson, Stephen C; Toni, Ivan

    2009-01-01

    Human communication has been described as involving the coding-decoding of a conventional symbol system, which could be supported by parts of the human motor system (i.e. the "mirror neurons system"). However, this view does not explain how these conventions could develop in the first place. Here we target the neglected but crucial issue of how people organize their non-verbal behavior to communicate a given intention without pre-established conventions. We have measured behavioral and brain responses in pairs of subjects during communicative exchanges occurring in a real, interactive, on-line social context. In two fMRI studies, we found robust evidence that planning new communicative actions (by a sender) and recognizing the communicative intention of the same actions (by a receiver) relied on spatially overlapping portions of their brains (the right posterior superior temporal sulcus). The response of this region was lateralized to the right hemisphere, modulated by the ambiguity in meaning of the communicative acts, but not by their sensorimotor complexity. These results indicate that the sender of a communicative signal uses his own intention recognition system to make a prediction of the intention recognition performed by the receiver. This finding supports the notion that our communicative abilities are distinct from both sensorimotor processes and language abilities.

  20. Activation analysis study on subcellular distribution of trace elements in human brain tumor

    International Nuclear Information System (INIS)

    Zheng Jian; Zhuan Guisun; Wang Yongji; Dong Mo; Zhang Fulin

    1992-01-01

    The concentrations of up to 11 elements in subcellular fractions of human brain (normal and malignant tumor) have been determined by a combination of gradient centrifugation and INAA methods. Samples of human brain were homogenized in a glass homogenizer tube, the homogenate was separated into nuclei, mitochondrial, myelin, synaptosome fractions, and these fractions were then analyzed using the INAA method. The discussions of elemental subcelleular distributions in human brain malignant tumor are presented in this paper. (author) 11 refs.; 2 figs.; 4 tabs

  1. ALFY-Controlled DVL3 Autophagy Regulates Wnt Signaling, Determining Human Brain Size.

    Directory of Open Access Journals (Sweden)

    Rotem Kadir

    2016-03-01

    Full Text Available Primary microcephaly is a congenital neurodevelopmental disorder of reduced head circumference and brain volume, with fewer neurons in the cortex of the developing brain due to premature transition between symmetrical and asymmetrical cellular division of the neuronal stem cell layer during neurogenesis. We now show through linkage analysis and whole exome sequencing, that a dominant mutation in ALFY, encoding an autophagy scaffold protein, causes human primary microcephaly. We demonstrate the dominant effect of the mutation in drosophila: transgenic flies harboring the human mutant allele display small brain volume, recapitulating the disease phenotype. Moreover, eye-specific expression of human mutant ALFY causes rough eye phenotype. In molecular terms, we demonstrate that normally ALFY attenuates the canonical Wnt signaling pathway via autophagy-dependent removal specifically of aggregates of DVL3 and not of Dvl1 or Dvl2. Thus, autophagic attenuation of Wnt signaling through removal of Dvl3 aggregates by ALFY acts in determining human brain size.

  2. Human brain functional MRI and DTI visualization with virtual reality.

    Science.gov (United States)

    Chen, Bin; Moreland, John; Zhang, Jingyu

    2011-12-01

    Magnetic resonance diffusion tensor imaging (DTI) and functional MRI (fMRI) are two active research areas in neuroimaging. DTI is sensitive to the anisotropic diffusion of water exerted by its macromolecular environment and has been shown useful in characterizing structures of ordered tissues such as the brain white matter, myocardium, and cartilage. The diffusion tensor provides two new types of information of water diffusion: the magnitude and the spatial orientation of water diffusivity inside the tissue. This information has been used for white matter fiber tracking to review physical neuronal pathways inside the brain. Functional MRI measures brain activations using the hemodynamic response. The statistically derived activation map corresponds to human brain functional activities caused by neuronal activities. The combination of these two methods provides a new way to understand human brain from the anatomical neuronal fiber connectivity to functional activities between different brain regions. In this study, virtual reality (VR) based MR DTI and fMRI visualization with high resolution anatomical image segmentation and registration, ROI definition and neuronal white matter fiber tractography visualization and fMRI activation map integration is proposed. Rationale and methods for producing and distributing stereoscopic videos are also discussed.

  3. Differing levels of excision repair in human fetal dermis and brain cells

    International Nuclear Information System (INIS)

    Gibson, R.E.; D'Ambrosio, S.M.; Ohio State Univ., Columbus

    1982-01-01

    The levels of DNA excision repair, as measured by unscheduled DNA synthesis (UDS) and the UV-endonuclease sensitive site assay, were compared in cells derived from human fetal brain and dermal tissues. The level of UDS induced following ultraviolet (UV) irradiation was found to be lower (approx. 60%) in the fetal brain cells than in fetal dermal cells. It was determined, using the UV-endonuclease sensitive site assay to confirm the UDS observation, that 50% of the dimers induced by UV in fetal dermal cells were repaired in 8 h. while only 15% were removed in the fetal brain cells during the same period of time. Even after 24 h. only 44% of the dimers induced by UV in the fetal brain cells were repaired, while 65% were removed in the dermal cells. These data suggest that cultured human fetal brain cells exhibit lower levels of excision repair compared to cultured human fetal dermal cells. (author)

  4. [11C]Doxepin binding to histamine H1 receptors in living human brain in association with attentive waking and circadian rhythm

    Directory of Open Access Journals (Sweden)

    Kazuhiko eYanai

    2012-06-01

    Full Text Available Molecular imaging in neuroscience is a new research field that enables visualization of the impact of molecular events on brain structure and function in humans. While magnetic resonance-based imaging techniques can provide complex information at the level of system, positron emission tomography (PET enables determination of the distribution and density of receptor and enzyme in the human brain. Previous studies using [11C]raclopride revealed that the release of neuronal dopamine was increased in human brain by psychostimulants or reward stimuli. Following on from these previous studies, we examined whether the levels of neuronal release of histamine might change [11C]doxepin binding to the H1 receptors under the influence of physiological stimuli. The purpose of the present study was to evaluate the test-retest reliability of quantitative measurement of [11C]doxepin binding between morning and afternoon and between resting and attentive waking conditions in healthy human subjects. There was a trend for a decrease in [11C]doxepin binding during attentive calculation tasks compared with that in resting conditions, but the difference (approximately 10% was not significant. In contrast, the binding potential of [11C]doxepin in the anterior cingulate gyrus was significantly higher in the morning than that in the afternoon (approximately 19%, suggesting that higher histamine release in the morning would decrease the [11C]doxepin binding in the afternoon. This study suggests that non-invasive measurement of neuronal histamine release is feasible in humans by PET ligand-activation study, although the development of a tracer with better signal-to-noise properties is needed.

  5. Tolerances of the human brain to concussion.

    Science.gov (United States)

    1971-03-01

    The report reviews the pertinent literature and adds additional evidence indicating that the human brain may be able to tolerate head impact forces in the range of 300 to 400 g's without evidence of concussion or other detectable neurologic sequelae,...

  6. Diffusion tensor tractography of language functional areas and fiber pathways in normal human brain

    International Nuclear Information System (INIS)

    Sun Xuejin; Dai Jianping; Chen Hongyan; Gao Peiyi; Ai Lin; Tian Shengyong; Pang Ruilin

    2007-01-01

    Objective: To demonstrate the fiber pathways of Broca area to the other functional brain areas with diffusion tensor imaging and fiber tracking. Methods: Conventionality MRI, diffusion tensor imaging (DTI) and fiber tracking were performed using 3.0 T MRI in 20 healthy person. The fiber bundles and tracts were analyzed in Broca area and contralateral normal area. Results: The left-side fiber bundles were 428 and the right-side were 416 in B45 area, there were no statistically significant differences between both sides (t=0.216, P>0.05). The left-side fiber bundles were 432 and the right-side were 344 in B44 area,there were statistically significant (t=2.314, P 0.05). Differences of the arcuate fascicule between both sides were not statistically significant (t=-0.465, P>0.05), the mean FA on the left was higher than the right (t=1.912, P<0.05). DTI and fiber tracking exhibited that the fiber bundles from Broca area were distributed superoanteriorly to the lateral foreside of the frontal lobe, lateroinferiorly to the occipital lobe through external capsule, and went down through globus pallidus and internal capsule. Conclusion: The fiber tracts bewteen Broca area and other brain areas were the fundamental structures for performing language function of the human brain. (authors)

  7. Dehydration enhances pain-evoked activation in the human brain compared with rehydration.

    Science.gov (United States)

    Ogino, Yuichi; Kakeda, Takahiro; Nakamura, Koji; Saito, Shigeru

    2014-06-01

    Negative effects of dehydration on the human brain and cognitive function have been reported. In this study, we examined the effects of dehydration on pain thresholds and cortical activations in response to pain, compared with rehydration with an oral rehydration solution (ORS) by functional magnetic resonance imaging. Five healthy adult men were subjected to dehydration and rehydration on 2 different days. The condition on the first day was randomly assigned to each subject. They completed a 40-minute exercise protocol using a walking machine after 12 hours of fasting under both conditions. For rehydration, the subjects consumed up to 3000 mL ORS starting from the night before the test day. After exercise, a painful stimulus (cold pressor test) was applied to the subjects' medial forearm in a magnetic resonance imaging scanning gantry, and pain-evoked brain activation was analyzed. On the rehydration day, each of the subjects consumed an average of 2040 mL (range; 1800-2500 mL) ORS. Physiological data revealed that subjects when dehydrated lost more weight from exercise than subjects when rehydrated had a larger heart rate increase, a higher tympanic temperature, and a higher urine osmolality. Subjective data revealed that the subjects reported significantly stronger thirst while dehydrated than while rehydrated with ORS, although the levels of hunger and anxiety and mood did not significantly differ between conditions. The cold pressor test robustly activated the pain-related neural network, notably the anterior cingulate cortex, insula, and thalamus. Such activations in the dehydrated subjects were greater than those in the rehydrated subjects in terms of peak and cluster, accompanied by a decrease in pain threshold (P = 0.001). Our findings suggest that dehydration brings about increased brain activity related to painful stimuli together with enhanced thirst, whereas rehydration with ORS alleviates thirst and decreases brain activity related to painful stimuli.

  8. Xanthine oxidase activity regulates human embryonic brain cells growth

    Directory of Open Access Journals (Sweden)

    Kevorkian G. A.

    2011-10-01

    Full Text Available Aim. Involvement of Xanthine Oxidase (XO; EC1.1.3.22 in cellular proliferation and differentiation has been suggested by the numerous investigations. We have proposed that XO might have undoubtedly important role during the development, maturation as well as the death of human embryos brain cells. Methods. Human abortion material was utilized for the cultivation of brain cells (E90. XO activity was measured by the formation of uric acid in tissue. Cell death was detected by the utility of Trypan Blue dye. Results. Allopurinol suppressed the XO activity in the brain tissue (0.12 ± 0.02; 0.20 ± 0.03 resp., p < 0.05. On day 12th the number of cells in the culture treated with the Allopurinol at the early stage of development was higher in comparison with the Control (2350.1 ± 199.0 vs 2123 ± 96 and higher in comparison with the late period of treatment (1479.6 ± 103.8, p < < 0.05. In all groups, the number of the dead cells was less than in Control, indicating the protective nature of Allopurinol as an inhibitor of XO. Conclusions. Allopurinol initiates cells proliferation in case of the early treatment of the human brain derived cell culture whereas at the late stages it has an opposite effect.

  9. The Complex Functioning of the Human Brain: The Two Hemispheres

    Directory of Open Access Journals (Sweden)

    Iulia Cristina Timofti

    2010-04-01

    Full Text Available The present study reveals just a glimpse of the possible functions and reactions that the human brain can have. I considered as good examples different situations characteristic both of a normal person and a split-brain one. These situations prove that the brain, although divided in two, works as a unit, as an amazing computer that has data processing as a main goal.

  10. PET imaging of the brain serotonin transporters (SERT) with N,N-dimethyl-2-(2-amino-4-[{sup 18}F]fluorophenylthio)benzylamine (4-[{sup 18}F]-ADAM) in humans: a preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Wen-Sheng [PET Center, Tri-Service General Hospital, Department of Nuclear Medicine, Neihu, Taipei (China); Changhua Christian Hospital, Department of Nuclear Medicine, Changhua (China); Huang, San-Yuan; Ho, Pei-Shen; Yeh, Chin-Bin [Tri-Service General Hospital, Department of Psychiatry, Taipei (China); Ma, Kuo-Hsing [National Defense Medical Center, Department of Biology and Anatomy, Taipei (China); Huang, Ya-Yao; Shiue, Chyng-Yann [PET Center, Tri-Service General Hospital, Department of Nuclear Medicine, Neihu, Taipei (China); PET Center, National Taiwan University Hospital, Department of Nuclear Medicine, Taipei (China); Liu, Ren-Syuan [Taipei Veterans General Hospital, Department of Nuclear Medicine, Taipei (China); Cheng, Cheng-Yi [PET Center, Tri-Service General Hospital, Department of Nuclear Medicine, Neihu, Taipei (China)

    2013-01-15

    The aim of this study was to assess the feasibility of using 4-[{sup 18}F]-ADAM as a brain SERT imaging agent in humans. Enrolled in the study were 19 healthy Taiwanese subjects (11 men, 8 women; age 33 {+-} 9 years). The PET data were semiquantitatively analyzed and expressed as specific uptake ratios (SUR) and distribution volume ratios (DVR) using the software package PMOD. The SUR and DVR of 4-[{sup 18}F]-ADAM in the raphe nucleus (RN), midbrain (MB), thalamus (TH), striatum (STR) and prefrontal cortex (PFC) were determined using the cerebellum (CB) as the reference region. 4-[{sup 18}F]-ADAM bound to known SERT-rich regions in human brain. The order of the regional brain uptake was MB (RN) > TH > STR > PFC > CB. The DVR (n = 4, t* = 60 min) in the RN, TH, STR and PFC were 3.00 {+-} 0.50, 2.25 {+-} 0.45, 2.05 {+-} 0.31 and 1.40 {+-} 0.13, respectively. The optimal time for imaging brain SERT with 4-[{sup 18}F]-ADAM was 120-140 min after injection. At the optimal imaging time, the SURs (n = 15) in the MB, TH, STR, and PFC were 2.25 {+-} 0.20, 2.28 {+-} 0.20, 2.12 {+-} 0.18 and 1.47 {+-} 0.14, respectively. There were no significant differences in SERT availability between men and women (p < 0.05). The results of this study showed that 4-[{sup 18}F]-ADAM was safe for human studies and its distribution in human brain appeared to correlate well with the known distribution of SERT in the human brain. In addition, it had high specific binding and a reasonable optimal time for imaging brain SERT in humans. Thus, 4-[{sup 18}F]-ADAM may be feasible for assessing the status of brain SERT in humans. (orig.)

  11. Human brain organoids on a chip reveal the physics of folding

    Science.gov (United States)

    Karzbrun, Eyal; Kshirsagar, Aditya; Cohen, Sidney R.; Hanna, Jacob H.; Reiner, Orly

    2018-05-01

    Human brain wrinkling has been implicated in neurodevelopmental disorders and yet its origins remain unknown. Polymer gel models suggest that wrinkling emerges spontaneously due to compression forces arising during differential swelling, but these ideas have not been tested in a living system. Here, we report the appearance of surface wrinkles during the in vitro development and self-organization of human brain organoids in a microfabricated compartment that supports in situ imaging over a timescale of weeks. We observe the emergence of convolutions at a critical cell density and maximal nuclear strain, which are indicative of a mechanical instability. We identify two opposing forces contributing to differential growth: cytoskeletal contraction at the organoid core and cell-cycle-dependent nuclear expansion at the organoid perimeter. The wrinkling wavelength exhibits linear scaling with tissue thickness, consistent with balanced bending and stretching energies. Lissencephalic (smooth brain) organoids display reduced convolutions, modified scaling and a reduced elastic modulus. Although the mechanism here does not include the neuronal migration seen in vivo, it models the physics of the folding brain remarkably well. Our on-chip approach offers a means for studying the emergent properties of organoid development, with implications for the embryonic human brain.

  12. Penetration and distribution of gadolinium-based contrast agents into the cerebrospinal fluid in healthy rats: a potential pathway of entry into the brain tissue

    Energy Technology Data Exchange (ETDEWEB)

    Jost, Gregor; Frenzel, Thomas; Lohrke, Jessica; Pietsch, Hubertus [MR and CT Contrast Media Research, Bayer Pharma AG, Berlin (Germany); Lenhard, Diana Constanze [Charite, Institute of Vegetative Physiology, Berlin (Germany); Naganawa, Shinji [Nagoya University Graduate School of Medicine, Department of Radiology, Nagoya (Japan)

    2017-07-15

    Signal hyperintensity on unenhanced MRI in certain brain regions has been reported after multiple administrations of some, but not all, gadolinium-based contrast agents (GBCAs). One potential initial pathway of GBCA entry into the brain, infiltration from blood into the cerebrospinal fluid (CSF), was systematically evaluated in this preclinical study. GBCA infiltration and distribution in the CSF were investigated in healthy rats using repeated fluid-attenuated MRI up to 4 h after high-dose (1.8 mmol/kg) administration of six marketed and one experimental GBCA. Additionally, gadolinium measurements in CSF, blood and brain tissue samples (after 24 h) were performed using inductively coupled plasma mass spectrometry. Enhanced MRI signals in the CSF spaces with similar distribution kinetics were observed for all GBCAs. No substantial differences in the gadolinium concentrations among the marketed GBCAs were found in the CSF, blood or brain tissue. After 4.5 h, the concentration in the CSF was clearly higher than in blood but was almost completely cleared and lower than the brain tissue concentration after 24 h. In contrast to the brain signal hyperintensities, no differences in penetration and distribution into the CSF of healthy rats exist among the marketed GBCAs. (orig.)

  13. Penetration and distribution of gadolinium-based contrast agents into the cerebrospinal fluid in healthy rats: a potential pathway of entry into the brain tissue

    International Nuclear Information System (INIS)

    Jost, Gregor; Frenzel, Thomas; Lohrke, Jessica; Pietsch, Hubertus; Lenhard, Diana Constanze; Naganawa, Shinji

    2017-01-01

    Signal hyperintensity on unenhanced MRI in certain brain regions has been reported after multiple administrations of some, but not all, gadolinium-based contrast agents (GBCAs). One potential initial pathway of GBCA entry into the brain, infiltration from blood into the cerebrospinal fluid (CSF), was systematically evaluated in this preclinical study. GBCA infiltration and distribution in the CSF were investigated in healthy rats using repeated fluid-attenuated MRI up to 4 h after high-dose (1.8 mmol/kg) administration of six marketed and one experimental GBCA. Additionally, gadolinium measurements in CSF, blood and brain tissue samples (after 24 h) were performed using inductively coupled plasma mass spectrometry. Enhanced MRI signals in the CSF spaces with similar distribution kinetics were observed for all GBCAs. No substantial differences in the gadolinium concentrations among the marketed GBCAs were found in the CSF, blood or brain tissue. After 4.5 h, the concentration in the CSF was clearly higher than in blood but was almost completely cleared and lower than the brain tissue concentration after 24 h. In contrast to the brain signal hyperintensities, no differences in penetration and distribution into the CSF of healthy rats exist among the marketed GBCAs. (orig.)

  14. Effect of the Putative Lithium Mimetic Ebselen on Brain Myo-Inositol, Sleep, and Emotional Processing in Humans.

    Science.gov (United States)

    Singh, Nisha; Sharpley, Ann L; Emir, Uzay E; Masaki, Charles; Herzallah, Mohammad M; Gluck, Mark A; Sharp, Trevor; Harmer, Catherine J; Vasudevan, Sridhar R; Cowen, Philip J; Churchill, Grant C

    2016-06-01

    Lithium remains the gold standard in treating bipolar disorder but has unwanted toxicity and side effects. We previously reported that ebselen inhibits inositol monophosphatase (IMPase) and exhibits lithium-like effects in animal models through lowering of inositol. Ebselen has been tested in clinical trials for other disorders, enabling us to determine for the first time the effect of a blood-brain barrier-penetrant IMPase inhibitor on human central nervous system (CNS) function. We now report that in a double-blind, placebo-controlled trial with healthy participants, acute oral ebselen reduced brain myo-inositol in the anterior cingulate cortex, consistent with CNS target engagement. Ebselen decreased slow-wave sleep and affected emotional processing by increasing recognition of some emotions, decreasing latency time in the acoustic startle paradigm, and decreasing the reinforcement of rewarding stimuli. In summary, ebselen affects the phosphoinositide cycle and has CNS effects on surrogate markers that may be relevant to the treatment of bipolar disorder that can be tested in future clinical trials.

  15. The Corpus Callosum Area and Brain Volume in Alzheimer's Disease, Mild Cognitive Impairment and Healthy Controls

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hee Seok; Kim, Kwang Ki; Yoon, Yup Yoon [Dongguk University Medical Center, Goyang (Korea, Republic of); Seo, Hyung Suk [Korea University Ansan Hospital, Ansan (Korea, Republic of)

    2009-07-15

    To compare the corpus callosum (CC) area and brain volume among individuals with Alzheimer's disease (AD), mild cognitive impairment (MCI) and healthy controls (HC). To evaluate the relationship of CC area and brain volume in 111 subjects (M:F = 48:63; mean age, 56.9 years) without memory disturbance and 28 subjects (11:17; 66.7years) with memory disturbance. The 11 AD (3:8; 75.7 years), 17 MCI (8:9; 60.9 years) and 28 selected HC (11:17; 66.4 years) patients were investigated for comparison of their CC area and brain volume. A good positive linear correlation was found between CC area and brain volume in subjects without and with memory disturbance (r = 0.64 and 0.66, respectively, p < 0.01). The CC area and brain volume in AD patients (498.7 +- 72 mm{sup 2}, 715.4 +- 107 cm3) were significantly smaller than in MCI patients (595.9 +- 108, 844.1 +- 85) and the HCs (563.2 +- 75, 818.9 +- 109) (p < 0.05). The CC area and brain volume were not significantly different between MCI patients and the HCs. The CC area was significantly correlated with brain volume. Both CC area and brain volume were significantly smaller in the AD patients

  16. Brain Oscillatory Correlates of Altered Executive Functioning in Positive and Negative Symptomatic Schizophrenia Patients and Healthy Controls.

    Science.gov (United States)

    Berger, Barbara; Minarik, Tamas; Griesmayr, Birgit; Stelzig-Schoeler, Renate; Aichhorn, Wolfgang; Sauseng, Paul

    2016-01-01

    Working Memory and executive functioning deficits are core characteristics of patients suffering from schizophrenia. Electrophysiological research indicates that altered patterns of neural oscillatory mechanisms underpinning executive functioning are associated with the psychiatric disorder. Such brain oscillatory changes have been found in local amplitude differences at gamma and theta frequencies in task-specific cortical areas. Moreover, interregional interactions are also disrupted as signified by decreased phase coherence of fronto-posterior theta activity in schizophrenia patients. However, schizophrenia is not a one-dimensional psychiatric disorder but has various forms and expressions. A common distinction is between positive and negative symptomatology but most patients have both negative and positive symptoms to some extent. Here, we examined three groups-healthy controls, predominantly negative, and predominantly positive symptomatic schizophrenia patients-when performing a working memory task with increasing cognitive demand and increasing need for executive control. We analyzed brain oscillatory activity in the three groups separately and investigated how predominant symptomatology might explain differences in brain oscillatory patterns. Our results indicate that differences in task specific fronto-posterior network activity (i.e., executive control network) expressed by interregional phase synchronization are able to account for working memory dysfunctions between groups. Local changes in the theta and gamma frequency range also show differences between patients and healthy controls, and more importantly, between the two patient groups. We conclude that differences in oscillatory brain activation patterns related to executive processing can be an indicator for positive and negative symptomatology in schizophrenia. Furthermore, changes in cognitive and especially executive functioning in patients are expressed by alterations in a task-specific fronto

  17. Reflectance diffuse optical tomography. Its application to human brain mapping

    International Nuclear Information System (INIS)

    Ueda, Yukio; Yamanaka, Takeshi; Yamashita, Daisuke; Suzuki, Toshihiko; Ohmae, Etsuko; Oda, Motoki; Yamashita, Yutaka

    2005-01-01

    We report the successful application of reflectance diffuse optical tomography (DOT) using near-infrared light with the new reconstruction algorithm that we developed to the observation of regional hemodynamic changes in the brain under specific mental tasks. Our results reveal the heterogeneous distribution of oxyhemoglobin and deoxyhemoglobin in the brain, showing complementary images of oxyhemoglobin and deoxyhemoglobin changes in certain regions. We conclude that our reflectance DOT has practical potential for human brain mapping, as well as in the diagnostic imaging of brain diseases. (author)

  18. 11C-ORM-13070, a novel PET ligand for brain α2C-adrenoceptors: radiometabolism, plasma pharmacokinetics, whole-body distribution and radiation dosimetry in healthy men

    International Nuclear Information System (INIS)

    Luoto, Pauliina; Oikonen, Vesa; Arponen, Eveliina; Helin, Semi; Virta, Jere; Virtanen, Kirsi; Roivainen, Anne; Suilamo, Sami; Herttuainen, Jukka; Hietamaeki, Johanna; Holopainen, Aila; Rouru, Juha; Sallinen, Jukka; Kailajaervi, Marita; Peltonen, Juha M.; Scheinin, Mika; Volanen, Iina; Rinne, Juha O.

    2014-01-01

    11 C-labelled 1-[(S)-1-(2,3-dihydrobenzo[1,2]dioxin-2-yl)methyl] -4-(3-methoxy-methylpyridin-2- yl)-piperazine ( 11 C-ORM-13070) is a novel PET tracer for imaging of α 2C -adrenoceptors in the human brain. Brain α 2C -adrenoceptors may be therapeutic targets in several neuropsychiatric disorders, including depression, schizophrenia and Alzheimer's disease. To validate the use of 11 C-ORM-13070 in humans, we investigated its radiometabolism, pharmacokinetics, whole-body distribution and radiation dose. Radiometabolism was studied in a test-retest setting in six healthy men. After intravenous injection of 11 C-ORM-13070, blood samples were drawn over 60 min. Plasma samples were analysed by radio-HPLC for intact tracer and its radioactive metabolites. Metabolite-corrected plasma time-activity curves were used for calculation of pharmacokinetics. In a separate group of 12 healthy men, the whole-body distribution of 11 C-ORM-13070 and radiation exposure were investigated by dynamic PET/CT imaging without blood sampling. Two radioactive metabolites of 11 C-ORM-13070 were detected in human arterial plasma. The proportion of unchanged 11 C-ORM-13070 decreased from 81 ± 4 % of total radioactivity at 4 min after tracer injection to 23 ± 4 % at 60 min. At least one of the radioactive metabolites penetrated into red blood cells, while the parent tracer remained in plasma. The apparent elimination rate constant and corresponding half-life of unchanged 11 C-ORM-13070 in arterial plasma were 0.0117 ± 0.0056 min -1 and 73.6 ± 35.8 min, respectively. The organs with the highest absorbed doses were the liver (12 μSv/MBq), gallbladder wall (12 μSv/MBq) and pancreas (9.1 μSv/MBq). The mean effective dose was 3.9 μSv/MBq, with a range of 3.6 - 4.2 μSv/MBq. 11 C-ORM-13070 was rapidly metabolized in human subjects after intravenous injection. The effective radiation dose of 11 C-ORM-13070 was in the same range as that of other 11 C-labelled brain receptor tracers. An injection

  19. Brain mineralocorticoid receptors as resilience factor under adverse life conditions?

    NARCIS (Netherlands)

    Kanatsou, S.

    2016-01-01

    Studies in human cohorts have underlined the importance of gene-environment interactions for brain structure and function during development and in adulthood. Such interactions can make the difference between staying healthy or succumbing to disease, e.g. depression or posttraumatic stress disorder.

  20. The maternal brain and its plasticity in humans

    Science.gov (United States)

    Kim, Pilyoung; Strathearn, Lane; Swain, James E.

    2015-01-01

    Early mother-infant relationships play important roles in infants’ optimal development. New mothers undergo neurobiological changes that support developing mother-infant relationships regardless of great individual differences in those relationships. In this article, we review the neural plasticity in human mothers’ brains based on functional magnetic resonance imaging (fMRI) studies. First, we review the neural circuits that are involved in establishing and maintaining mother-infant relationships. Second, we discuss early postpartum factors (e.g., birth and feeding methods, hormones, and parental sensitivity) that are associated with individual differences in maternal brain neuroplasticity. Third, we discuss abnormal changes in the maternal brain related to psychopathology (i.e., postpartum depression, posttraumatic stress disorder, substance abuse) and potential brain remodeling associated with interventions. Last, we highlight potentially important future research directions to better understand normative changes in the maternal brain and risks for abnormal changes that may disrupt early mother-infant relationships. PMID:26268151

  1. Cognitive Improvement and Brain Changes after Real-Time Functional MRI Neurofeedback Training in Healthy Elderly and Prodromal Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Christian Hohenfeld

    2017-08-01

    Full Text Available BackgroundCognitive decline is characteristic for Alzheimer’s disease (AD and also for healthy ageing. As a proof-of-concept study, we examined whether this decline can be counteracted using real-time fMRI neurofeedback training. Visuospatial memory and the parahippocampal gyrus (PHG were targeted.MethodsSixteen healthy elderly subjects (mean age 63.5 years, SD = 6.663 and 10 patients with prodromal AD (mean age 66.2 years, SD = 8.930 completed the experiment. Four additional healthy subjects formed a sham-feedback condition to validate the paradigm. The protocol spanned five examination days (T1–T5. T1 contained a neuropsychological pre-test, the encoding of a real-world footpath, and an anatomical MRI scan of the brain. T2–T4 included the fMRI neurofeedback training paradigm, in which subjects learned to enhance activation of the left PHG while recalling the path encoded on T1. At T5, the neuropsychological post-test and another anatomical MRI brain scan were performed. The neuropsychological battery included the Montreal Cognitive Assessment (MoCA; the Visual and Verbal Memory Test (VVM; subtests of the Wechsler Memory Scale (WMS; the Visual Patterns Test; and Trail Making Tests (TMT A and B.ResultsHealthy elderly and patients with prodromal AD showed improved visuospatial memory performance after neurofeedback training. Healthy subjects also performed better in a working-memory task (WMS backward digit-span and in the MoCA. Both groups were able to elicit parahippocampal activation during training, but no significant changes in brain activation were found over the course of the training. However, Granger-causality-analysis revealed changes in cerebral connectivity over the course of the training, involving the parahippocampus and identifying the precuneus as main driver of activation in both groups. Voxel-based morphometry showed increases in grey matter volumes in the precuneus and frontal cortex. Neither cognitive

  2. Tactile Toe Agnosia and Percept of a "Missing Toe" in Healthy Humans.

    Science.gov (United States)

    Cicmil, Nela; Meyer, Achim P; Stein, John F

    2016-03-01

    A disturbance of body representation is central to many neurological and psychiatric conditions, but the mechanisms by which body representations are constructed by the brain are not fully understood. We demonstrate a directional disturbance in tactile identification of the toes in healthy humans. Nineteen young adult participants underwent tactile stimulation of the digits with the eyes closed and verbally reported the identity of the stimulated digit. In the majority of individuals, responses to the second and third toes were significantly biased toward the laterally neighboring digit. The directional bias was greater for the nondominant foot and was affected by the identity of the immediately preceding stimulated toe. Unexpectedly, 9/19 participants reported the subjective experience of a "missing toe" or "missing space" during the protocol. These findings challenge current models of somatosensory localization, as they cannot be explained simply by a lack of distinct representations for toes compared with fingers, or by overt toe-finger correspondences. We present a novel theory of equal spatial representations of digit width combined with a "preceding neighbor" effect to explain the observed phenomena. The diagnostic implications for neurological disorders that involve "digit agnosia" are discussed. © The Author(s) 2015.

  3. Simple instrument for biochemical studies of the living human brain

    International Nuclear Information System (INIS)

    Bice, A.N.; Wagner, H.N. Jr.; Lee, M.C.; Frost, J.J.

    1986-01-01

    A simple, relatively inexpensive radiation detection system was developed for measurement of positron-emitting receptor-binding drugs in the human brain. This high-efficiency coincidence counting system requires that only a few hundred microcuries of labeled drug be administered to the subject, thereby allowing for multiple studies without an excessive radiation dose. Measurement of the binding of [ 11 C]-carfentanil, a high-affinity synthetic opiate, to opiate receptors in the presence and in the absence of a competitive opiate antagonist exemplifies the use of this system for estimating different degrees of receptor binding of drugs in the human brain. The instrument has also been used for measurement of the transport into the brain of other positron-emitting radiotracers, such as large neutral amino acids

  4. Regional cerebral blood flow changes associated with clitorally induced orgasm in healthy women

    NARCIS (Netherlands)

    Georgiadis, Janniko R.; Kortekaas, Rudie; Kuipers, Rutger; Nieuwenburg, Arie; Pruim, Jan; Reinders, A. A. T. Simone; Holstege, Gert

    2006-01-01

    There is a severe lack of knowledge regarding the brain regions involved in human sexual performance in general, and female orgasm in particular. We used [(15)O]-H(2)O positron emission tomography to measure regional cerebral blood flow (rCBF) in 12 healthy women during a nonsexual resting state,

  5. Genome-wide DNA methylation analyses in the brain reveal four differentially methylated regions between humans and non-human primates

    Directory of Open Access Journals (Sweden)

    Wang Jinkai

    2012-08-01

    Full Text Available Abstract Background The highly improved cognitive function is the most significant change in human evolutionary history. Recently, several large-scale studies reported the evolutionary roles of DNA methylation; however, the role of DNA methylation on brain evolution is largely unknown. Results To test if DNA methylation has contributed to the evolution of human brain, with the use of MeDIP-Chip and SEQUENOM MassARRAY, we conducted a genome-wide analysis to identify differentially methylated regions (DMRs in the brain between humans and rhesus macaques. We first identified a total of 150 candidate DMRs by the MeDIP-Chip method, among which 4 DMRs were confirmed by the MassARRAY analysis. All 4 DMRs are within or close to the CpG islands, and a MIR3 repeat element was identified in one DMR, but no repeat sequence was observed in the other 3 DMRs. For the 4 DMR genes, their proteins tend to be conserved and two genes have neural related functions. Bisulfite sequencing and phylogenetic comparison among human, chimpanzee, rhesus macaque and rat suggested several regions of lineage specific DNA methylation, including a human specific hypomethylated region in the promoter of K6IRS2 gene. Conclusions Our study provides a new angle of studying human brain evolution and understanding the evolutionary role of DNA methylation in the central nervous system. The results suggest that the patterns of DNA methylation in the brain are in general similar between humans and non-human primates, and only a few DMRs were identified.

  6. An Integrated Neuroscience and Engineering Approach to Classifying Human Brain-States

    Science.gov (United States)

    2015-12-22

    AFRL-AFOSR-VA-TR-2016-0037 An Integrated Neuroscience and Engineering Approach to Classifying Human Brain-States Adrian Lee UNIVERSITY OF WASHINGTON...to 14-09-2015 4. TITLE AND SUBTITLE An Integrated Neuroscience and Engineering Approach to Classifying Human Brain- States 5a.  CONTRACT NUMBER 5b...specific cognitive states remains elusive, owing perhaps to limited crosstalk between the fields of neuroscience and engineering. Here, we report a

  7. Main-, minor- and trace elements distribution in human brain

    International Nuclear Information System (INIS)

    Zoeger, N.; Streli, C.; Wobrauschek, P.; Jokubonis, C.; Pepponi, G.; Roschger, P.; Bohic, S.; Osterode, W.

    2004-01-01

    Lead (Pb) is known to induce adverse health effects in humans. In fact, cognitive deficits are repeatedly described with Pb exposure, but little is known about the distribution of lead in brain. Measurements of the distribution of Pb in human brain and to study if Pb is associated with the distribution of other chemical elements such as zinc (Zn), iron (Fe) is of great interest and could reveal some hints about the metabolism of Pb in brain. To determine the local distribution of lead (Pb) and other trace elements x-ray fluorescence spectroscopy (XRF) measurements have been performed, using a microbeam setup and highest flux synchrotron radiation. Experiments have been carried out at ID-22, ESRF, Grenoble, France. The installed microprobe setup provides a monochromatic beam (17 keV) from an undulator station focused by Kirkpatrick-Baez x-ray optics to a spot size of 5 μm x 3μm. Brain slices (20 μm thickness, imbedded in paraffin and mounted on Kapton foils) from areas of the frontal cortex, thalamus and hippocampus have been investigated. Generally no significant increase in fluorescence intensities could be detected in one of the investigated brain compartments. However Pb and other (trace) elements (e.g. S, Ca, Fe, Cu, Zn, Br) could be detected in all samples and showed strong inhomogeneities across the analyzed areas. While S, Ca, Fe, Cu, Zn and Br could be clearly assigned to the investigated brain structures (vessels, etc.) Pb showed a very different behavior. In some cases (e.g. plexus choroidei) Pb was located at the walls of the vessel, whereas with other structures (e.g. blood vessel) this correlation was not found. Moreover, the detected Pb in different brain areas was individually correlated with various elements. The local distribution of the detected elements in various brain structures will be discussed in this work. (author)

  8. Characterization of the melanoma brain metastatic niche in mice and humans

    International Nuclear Information System (INIS)

    Amit, Moran; Laider-Trejo, Leonor; Shalom, Vardit; Shabtay-Orbach, Ayelet; Krelin, Yakov; Gil, Ziv

    2013-01-01

    Brain metastases occur in 15% of patients with melanoma and are associated with a dismal prognosis. Here, we investigate the architectural phenotype and stromal reaction of melanoma brain metastasis in mice and humans. A syngeneic, green fluorescence protein (GFP)-expressing murine B16-F1 melanoma clone was introduced via intracardiac injection, and was examined in vivo in comparison with human specimens. Immunofluorescence analyses of the brain metastases revealed that F4/80 + macrophages/microglia were most abundant at the tumor front, but rare in its core, where they were found only around blood vessels (P = 0.01). Similar pattern of infiltration was found in CD3 + T cells (P < 0.01). Infiltrating T cells were prominently CD4 + compared with CD8 + T cells (P < 0.001). Blood vessels (CD31 + ) were less abundant at the tumor front than in its center (12 ± 1 vs. 4 ± 0.6 vessels per high-power field [HPF], P < 0.001). In contrast, there were few vessels at the tumor front, but their diameter was significantly larger at the front (8236 μm 2 vs. 4617 μm 2 average cross-sectional area, P < 0.005). This is the first comparative analysis of melanoma brain metastases showing similar stromal reaction in murine models and human specimens. Our results validate the utility of this murine model of melanoma brain metastases for investigating the mechanism of the human disease

  9. Human brain mass: similar body composition associations as observed across mammals.

    Science.gov (United States)

    Heymsfield, Steven B; Müller, Manfred J; Bosy-Westphal, Anja; Thomas, Diana; Shen, Wei

    2012-01-01

    A classic association is the link between brain mass and body mass across mammals that has now been shown to derive from fat-free mass (FFM) and not fat mass (FM). This study aimed to establish for the first time the associations between human brain mass and body composition and to compare these relations with those established for liver as a reference organ. Subjects were 112 men and 148 women who had brain and liver mass measured by magnetic resonance imaging with FM and FFM measured by dual-energy X-ray absorptiometry. Brain mass scaled to height (H) with powers of ≤0.6 in men and women; liver mass and FFM both scaled similarly as H(~2) . The fraction of FFM as brain thus scaled inversely to height (P FFM was independent of height. After controlling for age, brain, and liver mass were associated with FFM while liver was additionally associated with FM (all models P ≤ 0.01). After controlling for age and sex, FFM accounted for ~5% of the variance in brain mass while levels were substantially higher for liver mass (~60%). Brain mass was significantly larger (P FFM. As across mammals, human brain mass associates significantly, although weakly, with FFM and not FM; the fraction of FFM as brain relates inversely to height; brain differs in these relations from liver, another small high metabolic rate organ; and the sexual dimorphism in brain mass persists even after adjusting for age and FFM. Copyright © 2012 Wiley Periodicals, Inc.

  10. Functional MR imaging of the motor cortex in healthy volunteers and patients with brain tumours: qualitative and quantitative results

    International Nuclear Information System (INIS)

    Fellner, C.; Friedrich-Alexander-Univ., Erlangen-Nuernberg; Schlaier, J.; Schwerdtner, J.; Brawanski, A.; Fellner, F.; Oberoesterreichische Landesnervenklinik, Linz; Held, P.; Blank, M.; Kalender, W.A.

    1999-01-01

    The purpose of this study was to compare functional magnetic resonance (MR) imaging of the motor cortex in healthy volunteers and patients with brain tumours. Functional MR imaging was performed in 14 healthy volunteers and 14 patients with tumours in or near the primary motor cortex with groups being matched for age, sex, and handedness. Functional images were acquired during motion of the right and left hand. Time courses of signal intensity within the contralateral, ipsilateral, and supplementary motor cortex as well as z-maps were calculated, their quality being assessed visually. Mean signal increase between activation and rest were evaluated within the contralateral, ipsilateral, and supplementary motor cortex, the activated area in those regions of interest was measured using z-maps. The quality of functional MR experiments was generally lower in patients than in volunteers. The quantitative results showed a trend towards increased ipsilateral activation in volunteers during left hand compared to right hand motion and in patients during motion of the affected compared to the non-affected hand. Considering quantitative and qualitative results, significantly increased ipsilateral activation was found in patients compared to healthy volunteers. In conclusion, functional MR imaging quality was significantly reduced in patient studies compared to healthy volunteers, even if influences of age, sex, and handedness were excluded. Increased ipsilateral activation was found in patients with brain tumours which can be interpreted by an improved connectivity between both hemispheres. (orig.) [de

  11. [Introduction of neuroethics: out of clinic, beyond academia in human brain research].

    Science.gov (United States)

    Fukushi, Tamami; Sakura, Osamu

    2008-11-01

    Higher cognitive function in human brain is one of well-developed fields of neuroscience research in the 21st century. Especially functional magnetic resonance imaging (fMRI) and near infrared recording system have brought so many non-clinical researchers whose background is such as cognitive psychology, economics, politics, pedagogy, and so on, to the human brain mapping study. Authors have introduced the ethical issues related to incidental findings during the fMRI recording for non-clinical purpose, which is a typical problem derived from such expanded human brain research under non clinical condition, that is, neuroethics. In the present article we would introduce neuroethical issues in contexts of "out of clinic" and "beyond academia".

  12. Initial evaluation of 123I-5-I-R91150, a selective 5-HT2Aligand for single-photon emission tomography, in healthy human subjects

    International Nuclear Information System (INIS)

    Busatto, G.F.; Pilowsky, L.S.; Costa, D.C.; Mertens, J.; Terriere, D.; Ell, P.J.; Mulligan, R.; Travis, M.J.; Leysen, J.E.; Lui, D.; Gacinovic, S.; Waddington, W.; Lingford-Hughes, A.; Kerwin, R.W.

    1997-01-01

    The mapping of 5-HT 2 receptors in the brain using functional imaging techniques has been limited by a relative lack of selective radioligands. Iodine-123 labelled 4-amino-N-[1-[3-(4-fluorophenoxy)propyl]-4-methyl-4-piperidinyl]-5-iodo-2-methox ybenzamide ( 123 I-5-I-R91150 or 123 I-R93274) is a new ligand for single-photon emission tomography (SPET), with high affinity and selectivity for 5-HT 2A receptors. This study reports on preliminary 123 I-5-I-R91150 SPET, whole-body and blood distribution findings in five healthy human volunteers. Maximal brain uptake was approximately 2% of total body counts at 180 min post injection (p.i.). Dynamic SPET sequences were acquired with the brain-dedicated, single-slice multi-detector system SME-810 over 200 min p.i. Early peak uptake (at 5 min p.i.) was seen in the cerebellum, a region free from 5HT 2A receptors. In contrast, radioligand binding in the frontal cortex increased steadily over time, up to a peak at approximately 100-120 min p.i. Frontal cortex-cerebellum activity ratios reached values of 1.4, and remained stable from approximately 100 min p.i. onwards. Multi-slice SPET sequences showed a pattern of regional variation of binding compatible with the autoradiographic data on the distribution of 5-HT 2A receptors in humans (cerebral cortex >striatum >cerebellum). These findings suggest that 123 I-5-I-R91150 may be used for the imaging of 5-HT 2A receptors in the living human brain with SPET. (orig.). With 4 figs., 2 tabs

  13. Unveiling the mystery of visual information processing in human brain.

    Science.gov (United States)

    Diamant, Emanuel

    2008-08-15

    It is generally accepted that human vision is an extremely powerful information processing system that facilitates our interaction with the surrounding world. However, despite extended and extensive research efforts, which encompass many exploration fields, the underlying fundamentals and operational principles of visual information processing in human brain remain unknown. We still are unable to figure out where and how along the path from eyes to the cortex the sensory input perceived by the retina is converted into a meaningful object representation, which can be consciously manipulated by the brain. Studying the vast literature considering the various aspects of brain information processing, I was surprised to learn that the respected scholarly discussion is totally indifferent to the basic keynote question: "What is information?" in general or "What is visual information?" in particular. In the old days, it was assumed that any scientific research approach has first to define its basic departure points. Why was it overlooked in brain information processing research remains a conundrum. In this paper, I am trying to find a remedy for this bizarre situation. I propose an uncommon definition of "information", which can be derived from Kolmogorov's Complexity Theory and Chaitin's notion of Algorithmic Information. Embracing this new definition leads to an inevitable revision of traditional dogmas that shape the state of the art of brain information processing research. I hope this revision would better serve the challenging goal of human visual information processing modeling.

  14. Healthy brain ageing assessed with 18F-FDG PET and age-dependent recovery factors after partial volume effect correction

    Energy Technology Data Exchange (ETDEWEB)

    Bonte, Stijn [IBiTech, Ghent, (Belgium); Ghent University, iMinds - Medical Image and Signal Processing (MEDISIP), Department of Electronics and Information Systems, Ghent (Belgium); University Hospital, Department of Radiology and Nuclear Medicine, Ghent (Belgium); Vandemaele, Pieter; Deblaere, Karel; Goethals, Ingeborg [University Hospital, Department of Radiology and Nuclear Medicine, Ghent (Belgium); Verleden, Stijn; Audenaert, Kurt [University Hospital, Department of Psychiatry, Ghent (Belgium); Holen, Roel van [Ghent University, iMinds - Medical Image and Signal Processing (MEDISIP), Department of Electronics and Information Systems, Ghent (Belgium)

    2017-05-15

    The mechanisms of ageing of the healthy brain are not entirely clarified to date. In recent years several authors have tried to elucidate this topic by using {sup 18}F-FDG positron emission tomography. However, when correcting for partial volume effects (PVE), divergent results were reported. Therefore, it is necessary to evaluate these methods in the presence of atrophy due to ageing. In this paper we first evaluate the performance of two PVE correction techniques with a phantom study: the Rousset method and iterative deconvolution. We show that the ability of the latter method to recover the true activity in a small region decreases with increasing age due to brain atrophy. Next, we have calculated age-dependent recovery factors to correct for this incomplete recovery. These factors were applied to PVE-corrected {sup 18}F-FDG PET scans of healthy subjects for mapping the agedependent metabolism in the brain. Many regions in the brain show a reduced metabolism with ageing, especially in grey matter in the frontal and temporal lobe. An increased metabolism is found in grey matter of the cerebellum and thalamus. Our study resulted in age-dependent recovery factors which can be applied following standard PVE correction methods. Cancelling the effect of atrophy, we found regional changes in {sup 18}F-FDG metabolism with ageing. A decreasing trend is found in the frontal and temporal lobe, whereas an increasing metabolism with ageing is observed in the thalamus and cerebellum.

  15. Steady-state cerebral glucose concentrations and transport in the human brain

    OpenAIRE

    Gruetter, R.; Ugurbil, K.; Seaquist, E. R.

    1998-01-01

    Understanding the mechanism of brain glucose transport across the blood- brain barrier is of importance to understanding brain energy metabolism. The specific kinetics of glucose transport nave been generally described using standard Michaelis-Menten kinetics. These models predict that the steady- state glucose concentration approaches an upper limit in the human brain when the plasma glucose level is well above the Michaelis-Menten constant for half-maximal transport, K(t). In experiments wh...

  16. Human Brain Organoids on a Chip Reveal the Physics of Folding.

    Science.gov (United States)

    Karzbrun, Eyal; Kshirsagar, Aditya; Cohen, Sidney R; Hanna, Jacob H; Reiner, Orly

    2018-05-01

    Human brain wrinkling has been implicated in neurodevelopmental disorders and yet its origins remain unknown. Polymer gel models suggest that wrinkling emerges spontaneously due to compression forces arising during differential swelling, but these ideas have not been tested in a living system. Here, we report the appearance of surface wrinkles during the in vitro development and self-organization of human brain organoids in a micro-fabricated compartment that supports in situ imaging over a timescale of weeks. We observe the emergence of convolutions at a critical cell density and maximal nuclear strain, which are indicative of a mechanical instability. We identify two opposing forces contributing to differential growth: cytoskeletal contraction at the organoid core and cell-cycle-dependent nuclear expansion at the organoid perimeter. The wrinkling wavelength exhibits linear scaling with tissue thickness, consistent with balanced bending and stretching energies. Lissencephalic (smooth brain) organoids display reduced convolutions, modified scaling and a reduced elastic modulus. Although the mechanism here does not include the neuronal migration seen in in vivo , it models the physics of the folding brain remarkably well. Our on-chip approach offers a means for studying the emergent properties of organoid development, with implications for the embryonic human brain.

  17. In Vivo H MR spectroscopic imaging of human brain

    International Nuclear Information System (INIS)

    Choe, Bo Young; Suh, Tae Suk; Choi, Kyo Ho; Bahk, Yong Whee; Shinn, Kyung Sub

    1994-01-01

    To evaluate the spatial distribution of various proton metabolites in the human brain with use of water-suppressed in vivo H MR spectroscopic imaging (MRSI) technique. All of water-suppressed in vivo H MRSI were performed on 1.5 T whole-body MRI/MRS system using Stimulated Echo Acquisition Method (STEAM) Chemical Shift Imaging (CSI) pulse sequence. T1-weighted MR images were used for CSI field of view (FOV; 24 cm). Voxel size of 1.5 cm 3 was designated from the periphery of the brain which was divided by 1024 X 16 X 16 data points. Metabolite images of N-acetylaspartate (NAA), creatine/ phosphocreatine (Cr) + choline/phosphocholine (Cho), and complex of γ-aminobutyric acid (GABA) + glutamate (Glu) were obtained on the human brain. Our preliminary study suggests that in vivo H MRSI could provide the metabolite imaging to compensate for hypermetabolism on Positron Emission Tomography (PET) scans on the basis of the metabolic informations on brain tissues. The unique ability of in vivo H MRSI to offer noninvasive information about tissue biochemistry in disease states will stimulate on clinical research and disease diagnosis

  18. The role of positron emission tomography in neuropharmacology in the living human brain and drug development

    International Nuclear Information System (INIS)

    Yanai, Kazuhiko

    1999-01-01

    Neuroimaging is a powerful and innovative tool for studying the pathology of psychiatric and neurological diseases and, more recently, for studying the drugs used in their treatment. Technological advances in imaging have made it possible to noninvasively extract information from the human brain regarding a drug's mechanism and site of action. Until now, our understanding of human brain pharmacology has depended primarily on indirect assessments or models derived from animal studies. However, the advent of multiple techniques for human brain imaging allows researchers to focus directly on human pharmacology and brain function. In this review article, our PET studies on the histaminergic neuron system were presented as an example. We have developed and used the PET techniques for 10 years in order to examine the H 1 receptors in the living human brain. This review outlines available PET techniques and examine how these various methods have already been applied to the drug development process and neuropharmacology in the living human brain. (author)

  19. The role of positron emission tomography in neuropharmacology in the living human brain and drug development

    Energy Technology Data Exchange (ETDEWEB)

    Yanai, Kazuhiko [Tohoku Univ., Sendai (Japan). School of Medicine

    1999-09-01

    Neuroimaging is a powerful and innovative tool for studying the pathology of psychiatric and neurological diseases and, more recently, for studying the drugs used in their treatment. Technological advances in imaging have made it possible to noninvasively extract information from the human brain regarding a drug's mechanism and site of action. Until now, our understanding of human brain pharmacology has depended primarily on indirect assessments or models derived from animal studies. However, the advent of multiple techniques for human brain imaging allows researchers to focus directly on human pharmacology and brain function. In this review article, our PET studies on the histaminergic neuron system were presented as an example. We have developed and used the PET techniques for 10 years in order to examine the H{sub 1} receptors in the living human brain. This review outlines available PET techniques and examine how these various methods have already been applied to the drug development process and neuropharmacology in the living human brain. (author)

  20. The influence of heroin abuse on glutathione-dependent enzymes in human brain.

    Science.gov (United States)

    Gutowicz, Marzena; Kaźmierczak, Beata; Barańczyk-Kuźma, Anna

    2011-01-01

    Heroin is an illicit narcotic abused by millions of people worldwide. In our earlier studies we have shown that heroin intoxication changes the antioxidant status in human brain. In the present work we continued our studies by estimating the effect of heroin abuse on reduced glutathione (GSH) and enzymes related to this cofactor, such as glutathione S-transferase detoxifying electrophilics (GST) and organic peroxides (as Se-independent glutathione peroxidase-GSHPx), and Se-dependent glutathione peroxidase (Se-GSHPx) specific mainly for hydrogen peroxide. Studies were conducted on human brains obtained from autopsy of 9 heroin abusers and 8 controls. The level of GSH and the activity of glutathione-related enzymes were determined spectrophotometrically. The expression of GST pi on mRNA and protein level was studied by RT-PCR and Western blotting, respectively. The results indicated significant increase of GST and GSHPx activities, unchanged Se-GSHPx activity, and decreased level of GSH in frontal, temporal, parietal and occipital cortex, brain stem, hippocampus, and white matter of heroin abusers. GST pi expression was increased on both mRNA and protein levels, however the increase was lower in brain stem than in other regions. Heroin affects all regions of human brain, and especially brain stem. Its intoxication leads to an increase of organic rather then inorganic peroxides in various brain regions. Glutathione S-transferase plays an important role during heroin intoxication, however its protective effect is lower in brain stem than in brain cortex or hippocampus. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  1. Brain functional connectivity in stimulant drug dependence and obsessive-compulsive disorder.

    Science.gov (United States)

    Meunier, David; Ersche, Karen D; Craig, Kevin J; Fornito, Alex; Merlo-Pich, Emilio; Fineberg, Naomi A; Shabbir, Shaila S; Robbins, Trevor W; Bullmore, Edward T

    2012-01-16

    There are reasons for thinking that obsessive-compulsive disorder (OCD) and drug dependence, although conventionally distinct diagnostic categories, might share important cognitive and neurobiological substrates. We tested this hypothesis directly by comparing brain functional connectivity measures between patients with OCD, stimulant dependent individuals (SDIs; many of whom were non-dependent users of other recreational drugs) and healthy volunteers. We measured functional connectivity between each possible pair of 506 brain regional functional MRI time series representing low frequency (0.03-0.06 Hz) spontaneous brain hemodynamics in healthy volunteers (N=18), patients with OCD (N=18) and SDIs (N=18). We used permutation tests to identify i) brain regions where strength of connectivity was significantly different in both patient groups compared to healthy volunteers; and ii) brain regions and connections which had significantly different functional connectivity between patient groups. We found that functional connectivity of right inferior and superior orbitofrontal cortex (OFC) was abnormally reduced in both disorders. Whether diagnosed as OCD or SDI, patients with higher scores on measures of compulsive symptom severity showed greater reductions of right orbitofrontal connectivity. Functional connections specifically between OFC and dorsal medial pre-motor and cingulate cortex were attenuated in both patient groups. However, patients with OCD demonstrated more severe and extensive reductions of functional connectivity compared to SDIs. OCD and stimulant dependence are not identical at the level of brain functional systems but they have some important abnormalities in common compared with healthy volunteers. Orbitofrontal connectivity may serve as a human brain systems biomarker for compulsivity across diagnostic categories. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Accelerated echo-planar J-resolved spectroscopic imaging in the human brain using compressed sensing: a pilot validation in obstructive sleep apnea.

    Science.gov (United States)

    Sarma, M K; Nagarajan, R; Macey, P M; Kumar, R; Villablanca, J P; Furuyama, J; Thomas, M A

    2014-06-01

    Echo-planar J-resolved spectroscopic imaging is a fast spectroscopic technique to record the biochemical information in multiple regions of the brain, but for clinical applications, time is still a constraint. Investigations of neural injury in obstructive sleep apnea have revealed structural changes in the brain, but determining the neurochemical changes requires more detailed measurements across multiple brain regions, demonstrating a need for faster echo-planar J-resolved spectroscopic imaging. Hence, we have extended the compressed sensing reconstruction of prospectively undersampled 4D echo-planar J-resolved spectroscopic imaging to investigate metabolic changes in multiple brain locations of patients with obstructive sleep apnea and healthy controls. Nonuniform undersampling was imposed along 1 spatial and 1 spectral dimension of 4D echo-planar J-resolved spectroscopic imaging, and test-retest reliability of the compressed sensing reconstruction of the nonuniform undersampling data was tested by using a brain phantom. In addition, 9 patients with obstructive sleep apnea and 11 healthy controls were investigated by using a 3T MR imaging/MR spectroscopy scanner. Significantly reduced metabolite differences were observed between patients with obstructive sleep apnea and healthy controls in multiple brain regions: NAA/Cr in the left hippocampus; total Cho/Cr and Glx/Cr in the right hippocampus; total NAA/Cr, taurine/Cr, scyllo-Inositol/Cr, phosphocholine/Cr, and total Cho/Cr in the occipital gray matter; total NAA/Cr and NAA/Cr in the medial frontal white matter; and taurine/Cr and total Cho/Cr in the left frontal white matter regions. The 4D echo-planar J-resolved spectroscopic imaging technique using the nonuniform undersampling-based acquisition and compressed sensing reconstruction in patients with obstructive sleep apnea and healthy brain is feasible in a clinically suitable time. In addition to brain metabolite changes previously reported by 1D MR

  3. The human sexual response cycle : Brain imaging evidence linking sex to other pleasures

    NARCIS (Netherlands)

    Georgiadis, J. R.; Kringelbach, M. L.

    Sexual behavior is critical to species survival, yet comparatively little is known about the neural mechanisms in the human brain. Here we systematically review the existing human brain imaging literature on sexual behavior and show that the functional neuroanatomy of sexual behavior is comparable

  4. Skull and cerebrospinal fluid effects on microwave radiation propagation in human brain

    Science.gov (United States)

    Ansari, M. A.; Zarei, M.; Akhlaghipour, N.; Niknam, A. R.

    2017-12-01

    The determination of microwave absorption distribution in the human brain is necessary for the detection of brain tumors using thermo-acoustic imaging and for removing them using hyperthermia treatment. In contrast to ionizing radiation, hyperthermia treatment can be applied to remove tumors inside the brain without the concern of including secondary malignancies, which typically form from the neuronal cells of the septum pellucidum. The aim of this study is to determine the microwave absorption distribution in an adult human brain and to study the effects of skull and cerebrospinal fluid on the propagation of microwave radiation inside the brain. To this end, we simulate the microwave absorption distribution in a realistic adult brain model (Colin 27) using the mesh-based Monte Carlo (MMC) method. This is because in spite of there being other numerical methods, the MMC does not require a large memory, even for complicated geometries, and its algorithm is simple and easy to implement with low computational cost. The brain model is constructed using high-resolution (1 mm isotropic voxel) and low noise magnetic resonance imaging (MRI) scans and its volume contains 181×217×181 voxels, covering the brain completely. Using the MMC method, the radiative transport equation is solved and the absorbed microwave energy distribution in different brain regions is obtained without any fracture or anomaly. The simulation results show that the skull and cerebrospinal fluid guide the microwave radiation and suppress its penetration through deep brain compartments as a shielding factor. These results reveal that the MMC can be used to predict the amount of required energy to increase the temperature inside the tumour during hyperthermia treatment. Our results also show why a deep tumour inside an adult human brain cannot be efficiently treated using hyperthermia treatment. Finally, the accuracy of the presented numerical method is verified using the signal flow graph technique.

  5. Progressive gender differences of structural brain networks in healthy adults: a longitudinal, diffusion tensor imaging study.

    Directory of Open Access Journals (Sweden)

    Yu Sun

    Full Text Available Sexual dimorphism in the brain maturation during childhood and adolescence has been repeatedly documented, which may underlie the differences in behaviors and cognitive performance. However, our understanding of how gender modulates the development of structural connectome in healthy adults is still not entirely clear. Here we utilized graph theoretical analysis of longitudinal diffusion tensor imaging data over a five-year period to investigate the progressive gender differences of brain network topology. The brain networks of both genders showed prominent economical "small-world" architecture (high local clustering and short paths between nodes. Additional analysis revealed a more economical "small-world" architecture in females as well as a greater global efficiency in males regardless of scan time point. At the regional level, both increased and decreased efficiency were found across the cerebral cortex for both males and females, indicating a compensation mechanism of cortical network reorganization over time. Furthermore, we found that weighted clustering coefficient exhibited significant gender-time interactions, implying different development trends between males and females. Moreover, several specific brain regions (e.g., insula, superior temporal gyrus, cuneus, putamen, and parahippocampal gyrus exhibited different development trajectories between males and females. Our findings further prove the presence of sexual dimorphism in brain structures that may underlie gender differences in behavioral and cognitive functioning. The sex-specific progress trajectories in brain connectome revealed in this work provide an important foundation to delineate the gender related pathophysiological mechanisms in various neuropsychiatric disorders, which may potentially guide the development of sex-specific treatments for these devastating brain disorders.

  6. Progressive gender differences of structural brain networks in healthy adults: a longitudinal, diffusion tensor imaging study.

    Science.gov (United States)

    Sun, Yu; Lee, Renick; Chen, Yu; Collinson, Simon; Thakor, Nitish; Bezerianos, Anastasios; Sim, Kang

    2015-01-01

    Sexual dimorphism in the brain maturation during childhood and adolescence has been repeatedly documented, which may underlie the differences in behaviors and cognitive performance. However, our understanding of how gender modulates the development of structural connectome in healthy adults is still not entirely clear. Here we utilized graph theoretical analysis of longitudinal diffusion tensor imaging data over a five-year period to investigate the progressive gender differences of brain network topology. The brain networks of both genders showed prominent economical "small-world" architecture (high local clustering and short paths between nodes). Additional analysis revealed a more economical "small-world" architecture in females as well as a greater global efficiency in males regardless of scan time point. At the regional level, both increased and decreased efficiency were found across the cerebral cortex for both males and females, indicating a compensation mechanism of cortical network reorganization over time. Furthermore, we found that weighted clustering coefficient exhibited significant gender-time interactions, implying different development trends between males and females. Moreover, several specific brain regions (e.g., insula, superior temporal gyrus, cuneus, putamen, and parahippocampal gyrus) exhibited different development trajectories between males and females. Our findings further prove the presence of sexual dimorphism in brain structures that may underlie gender differences in behavioral and cognitive functioning. The sex-specific progress trajectories in brain connectome revealed in this work provide an important foundation to delineate the gender related pathophysiological mechanisms in various neuropsychiatric disorders, which may potentially guide the development of sex-specific treatments for these devastating brain disorders.

  7. Brain barriers and functional interfaces with sequential appearance of ABC efflux transporters during human development

    DEFF Research Database (Denmark)

    Møllgård, Kjeld; Dziegielewska, Katarzyna M.; Holst, Camilla B.

    2017-01-01

    Adult brain is protected from entry of drugs and toxins by specific mechanisms such as ABC (ATP-binding Cassette) efflux transporters. Little is known when these appear in human brain during development. Cellular distribution of three main ABC transporters (ABCC1, ABCG2, ABCB1) was determined...... at blood-brain barriers and interfaces in human embryos and fetuses in first half of gestation. Antibodies against claudin-5 and-11 and antibodies to α-fetoprotein were used to describe morphological and functional aspects of brain barriers. First exchange interfaces to be established, probably at 4...... three transporters. Results provide evidence for sequential establishment of brain exchange interfaces and spatial and temporal timetable for three main ABC transporters in early human brain....

  8. Interaction Effect between Handedness and CNTNAP2 Polymorphism (rs7794745 genotype on Voice-specific Frontotemporal Activity in Healthy Individuals: An fMRI Study

    Directory of Open Access Journals (Sweden)

    Michihiko eKoeda

    2015-04-01

    Full Text Available Recent neuroimaging studies have demonstrated that Contactin-associated protein-like2 (CNTNAP2 polymorphisms affect left-hemispheric function of language processing in healthy individuals, but no study has investigated the influence of these polymorphisms on right-hemispheric function involved in human voice perception. Further, although recent reports suggest that determination of handedness is influenced by genetic effect, the interaction effect between handedness and CNTNAP2 polymorphisms for brain activity in human voice perception and language processing has not been revealed. We aimed to investigate the interaction effect of handedness and CNTNAP2 polymorphisms in respect to brain function for human voice perception and language processing in healthy individuals. Brain function of 108 healthy volunteers (74 right-handed and 34 non-right-handed was examined while they were passively listening to reverse sentences (rSEN, identifiable non-vocal sounds (SND, and sentences (SEN. Full factorial design analysis was calculated by using three factors: 1 rs7794745 (A/A or A/T, 2 rs2710102 (G/G or A carrier (A/G and A/A, and 3 voice-specific response (rSEN or SND. The main effect of rs7794745 (A/A or A/T was significantly revealed at the right middle frontal gyrus (MFG and bilateral superior temporal gyrus (STG. This result suggests that rs7794745 genotype affects voice-specific brain function. Furthermore, interaction effect was significantly observed among MFG-STG activations by human voice perception, rs7794745 (A/A or A/T, and handedness. These results suggest that CNTNAP2 polymorphisms could be one of the important factors in the neural development related to vocal communication and language processing in both right-handed and non-right-handed healthy individuals.

  9. Bidirectional Microglia-Neuron Communication in the Healthy Brain

    Directory of Open Access Journals (Sweden)

    Ukpong B. Eyo

    2013-01-01

    Full Text Available Unlike other resident neural cells that are of neuroectodermal origin, microglia are resident neural cells of mesodermal origin. Traditionally recognized for their immune functions during disease, new roles are being attributed to these cells in the development and maintenance of the central nervous system (CNS including specific communication with neurons. In this review, we highlight some of the recent findings on the bidirectional interaction between neurons and microglia. We discuss these interactions along two lines. First, we review data that suggest that microglial activity is modulated by neuronal signals, focusing on evidence that (i neurons are capable of regulating microglial activation state and influence basal microglial activities; (ii classic neurotransmitters affect microglial behavior; (iii chemotactic signals attract microglia during acute neuronal injury. Next, we discuss some of the recent data on how microglia signal to neurons. Signaling mechanisms include (i direct physical contact of microglial processes with neuronal elements; (ii microglial regulation of neuronal synapse and circuit by fractalkine, complement, and DAP12 signaling. In addition, we discuss the use of microglial depletion strategies in studying the role of microglia in neuronal development and synaptic physiology. Deciphering the mechanisms of bidirectional microglial-neuronal communication provides novel insights in understanding microglial function in both the healthy and diseased brain.

  10. Abnormal rich club organization and functional brain dynamics in schizophrenia.

    Science.gov (United States)

    van den Heuvel, Martijn P; Sporns, Olaf; Collin, Guusje; Scheewe, Thomas; Mandl, René C W; Cahn, Wiepke; Goñi, Joaquín; Hulshoff Pol, Hilleke E; Kahn, René S

    2013-08-01

    The human brain forms a large-scale structural network of regions and interregional pathways. Recent studies have reported the existence of a selective set of highly central and interconnected hub regions that may play a crucial role in the brain's integrative processes, together forming a central backbone for global brain communication. Abnormal brain connectivity may have a key role in the pathophysiology of schizophrenia. To examine the structure of the rich club in schizophrenia and its role in global functional brain dynamics. Structural diffusion tensor imaging and resting-state functional magnetic resonance imaging were performed in patients with schizophrenia and matched healthy controls. Department of Psychiatry, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, the Netherlands. Forty-eight patients and 45 healthy controls participated in the study. An independent replication data set of 41 patients and 51 healthy controls was included to replicate and validate significant findings. MAIN OUTCOME(S) AND MEASURES: Measures of rich club organization, connectivity density of rich club connections and connections linking peripheral regions to brain hubs, measures of global brain network efficiency, and measures of coupling between brain structure and functional dynamics. Rich club organization between high-degree hub nodes was significantly affected in patients, together with a reduced density of rich club connections predominantly comprising the white matter pathways that link the midline frontal, parietal, and insular hub regions. This reduction in rich club density was found to be associated with lower levels of global communication capacity, a relationship that was absent for other white matter pathways. In addition, patients had an increase in the strength of structural connectivity-functional connectivity coupling. Our findings provide novel biological evidence that schizophrenia is characterized by a selective

  11. Effects of botropase on clotting factors in healthy human volunteers

    Directory of Open Access Journals (Sweden)

    Ashok K Shenoy

    2014-01-01

    Full Text Available Objective: To evaluate the effects of botropase on various clotting factors in human volunteers. Materials and Methods: It was a prospective open label study conducted on human healthy volunteers. After the baseline screening, subjects fulfilling inclusion criteria were enrolled. On the study day, 1 ml of botropase was administered intravenously and after an hour same dose of botropase (1 ml was given by intramuscular (IM route. The efficacy and safety parameters were monitored up to 72 h from the time of intravenous (IV administration. Results: A total of 15 volunteers, belonging to 24-35 years of age were included in the study. Botropase significantly reduced the plasma level of fibrinogen and fibrin degradation products after 5 min of IV administration (P < 0.05. In addition, factor X was observed to reduce constantly by botropase administration suggesting enhanced turnover between 5 and 20 min of IV administration. Although botropase reduced clotting and bleeding time in all the volunteers, the data remains to be statistically insignificant. Conclusion: Present study demonstrated the safety and efficacy of botropase in human healthy volunteers. The study has shown that it is a factor X activator and reduces effectively clotting and bleeding time.

  12. Sexual differences of human brain

    Directory of Open Access Journals (Sweden)

    Masoud Pezeshki Rad

    2014-04-01

    Full Text Available During the last decades there has been an increasing interest in studying the differences between males and females. These differences extend from behavioral to cognitive to micro- and macro- neuro-anatomical aspects of human biology. There have been many methods to evaluate these differences and explain their determinants. The most studied cause of this dimorphism is the prenatal sex hormones and their organizational effect on brain and behavior. However, there have been new and recent attentions to hormone's activational influences in puberty and also the effects of genomic imprinting. In this paper, we reviewed the sex differences of brain, the evidences for possible determinants of these differences and also the methods that have been used to discover them. We reviewed the most conspicuous findings with specific attention to macro-anatomical differences based on Magnetic Resonance Imaging (MRI data. We finally reviewed the findings and the many opportunities for future studies.

  13. Ageing diminishes the modulation of human brain responses to visual food cues by meal ingestion.

    Science.gov (United States)

    Cheah, Y S; Lee, S; Ashoor, G; Nathan, Y; Reed, L J; Zelaya, F O; Brammer, M J; Amiel, S A

    2014-09-01

    Rates of obesity are greatest in middle age. Obesity is associated with altered activity of brain networks sensing food-related stimuli and internal signals of energy balance, which modulate eating behaviour. The impact of healthy mid-life ageing on these processes has not been characterised. We therefore aimed to investigate changes in brain responses to food cues, and the modulatory effect of meal ingestion on such evoked neural activity, from young adulthood to middle age. Twenty-four healthy, right-handed subjects, aged 19.5-52.6 years, were studied on separate days after an overnight fast, randomly receiving 50 ml water or 554 kcal mixed meal before functional brain magnetic resonance imaging while viewing visual food cues. Across the group, meal ingestion reduced food cue-evoked activity of amygdala, putamen, insula and thalamus, and increased activity in precuneus and bilateral parietal cortex. Corrected for body mass index, ageing was associated with decreasing food cue-evoked activation of right dorsolateral prefrontal cortex (DLPFC) and precuneus, and increasing activation of left ventrolateral prefrontal cortex (VLPFC), bilateral temporal lobe and posterior cingulate in the fasted state. Ageing was also positively associated with the difference in food cue-evoked activation between fed and fasted states in the right DLPFC, bilateral amygdala and striatum, and negatively associated with that of the left orbitofrontal cortex and VLPFC, superior frontal gyrus, left middle and temporal gyri, posterior cingulate and precuneus. There was an overall tendency towards decreasing modulatory effects of prior meal ingestion on food cue-evoked regional brain activity with increasing age. Healthy ageing to middle age is associated with diminishing sensitivity to meal ingestion of visual food cue-evoked activity in brain regions that represent the salience of food and direct food-associated behaviour. Reduced satiety sensing may have a role in the greater risk of

  14. Antibiotic Resistance Escherichia coli isolated from Faecal of Healthy Human

    OpenAIRE

    , S. Budiarti

    2011-01-01

    The objective of this research was to examine antibiotic resistant of Escherechia coli as intestinal normal şora, isolated from healthy human. The samples were collected from faeces of new born children, children under 3 and 5years-old, and human adult. Bacteria were isolated at Eosin Methylen Blue solid media followed by biochemistry reaction for physiological E.coli identiŞcation. Antibiotic resistant test was carried out using Kirby-Bauer method. The result showed that 95 % bacterial strai...

  15. [Right extremities pain caused by a malacia lesion in the left putamen:a resting functional magnetic resonance imaging of the marginal division of the human brain].

    Science.gov (United States)

    Chen, Zhi-Ye; Ma, Lin

    2014-04-01

    To explore the role of marginal division of the human brain in the pain modulation. Resting functional magnetic resonance imaging was applied in a patient with right extremities pain caused by a malacia lesion in the left putamen and in 8 healthy volunteers. Marginal division was defined using manual drawing on structure images, and was applied to the computation of fuctional connectivity maps. The functional connectivities in the left marginal division showed an evident decrease in the patient when compared with healthy controls. These connectivities were mainly located in the bilateral head of caudate nucleus, putamen, and left globus pallidus. The marginal division may be involved in the pain modulation.

  16. The bilingual brain: Flexibility and control in the human cortex

    Science.gov (United States)

    Buchweitz, Augusto; Prat, Chantel

    2013-12-01

    The goal of the present review is to discuss recent cognitive neuroscientific findings concerning bilingualism. Three interrelated questions about the bilingual brain are addressed: How are multiple languages represented in the brain? how are languages controlled in the brain? and what are the real-world implications of experience with multiple languages? The review is based on neuroimaging research findings about the nature of bilingual processing, namely, how the brain adapts to accommodate multiple languages in the bilingual brain and to control which language should be used, and when. We also address how this adaptation results in differences observed in the general cognition of bilingual individuals. General implications for models of human learning, plasticity, and cognitive control are discussed.

  17. Mapping a2 Adrenoceptors of the Human Brain with 11C-Yohimbine

    DEFF Research Database (Denmark)

    Nahimi, Adjmal; Jakobsen, Steen; Munk, Ole

    2015-01-01

    A previous study from this laboratory suggested that 11C-yohimbine, a selective α2-adrenoceptor antagonist, is an appropriate ligand for PET of α2 adrenoceptors that passes readily from blood to brain tissue in pigs but not in rodents. To test usefulness in humans, we determined blood–brain...... values of VT ranged from 0.82 mL cm−3 in the right frontal cortex to 0.46 mL cm−3 in the corpus callosum, with intermediate VT values in subcortical structures. Binding potentials averaged 0.6–0.8 in the cortex and 0.2–0.5 in subcortical regions. Conclusion: The maps of 11C-yohimbine binding to α2...... adrenoceptors in human brain had the highest values in cortical areas and hippocampus, with moderate values in subcortical structures, as found also in vitro. The results confirm the usefulness of the tracer 11C-yohimbine for mapping α2 adrenoceptors in human brain in vivo....

  18. HUMAN CAPITAL IN ISLAMIC BANK AND ITS EFFECT ON THE IMPROVEMENT OF HEALTHY ORGANIZATION AND EMPLOYEE PERFORMANCE

    Directory of Open Access Journals (Sweden)

    Muafi

    2017-12-01

    Full Text Available Human resources have become one of strategic issues of Islamic banking in Indonesia. Islamic bank is important to have a good human capital, who has specialized knowledge and expertise related to Islamic aspects. The quality of human resource that is bad will affect the organization to grow unhealthy and also the employee performance. This research aims to test and analyze the role of human capital that affect the healthy organization and the employee performance. This research was conducted on all employees of Islamic banks in the Province of Daerah Istimewa Yogyakarta (DIY and East Java. The reason is because nowadays, Islamic banking in Indonesia is experiencing a slowdown growth of business performance, especially market share so that it needs human capital with good quality. Sampling technique is using purposive sampling. Bank employees came from Islamic bank, government bank, and private bank. The result concludes that human capital (HC has significant positive effect on the improvement of employee performance (EP and healthy organization (HO. Meanwhile, healthy organization (HO has significant positive effect on the improvement of employee performance (EP. Healthy organization mediates the relationship between human capital and employee performance.

  19. Astrocyte cultures derived from human brain tissue express angiotensinogen mRNA

    International Nuclear Information System (INIS)

    Milsted, A.; Barna, B.P.; Ransohoff, R.M.; Brosnihan, K.B.; Ferrario, C.M.

    1990-01-01

    The authors have identified human cultured cell lines that are useful for studying angiotensinogen gene expression and its regulation in the central nervous system. A model cell system of human central nervous system origin expressing angiotensinogen has not previously been available. Expression of angiotensinogen mRNA appears to be a basal property of noninduced human astrocytes, since astrocytic cell lines derived from human glioblastomas or nonneoplastic human brain tissue invariably produced angiotensinogen mRNA. In situ hybridization histochemistry revealed that angiotensinogen mRNA production was not limited to a subpopulation of astrocytes because >99% of cells in these cultures contained angiotensinogen mRNA. These cell lines will be useful in studies of the molecular mechanisms controlling angiotensin synthesis and the role of biologically active angiotensin in the human brain by allowing the authors to examine regulation of expression of the renin-angiotensin system in human astrocyte cultures

  20. The brain effects of laser acupuncture in healthy individuals: an FMRI investigation.

    Directory of Open Access Journals (Sweden)

    Im Quah-Smith

    2010-09-01

    Full Text Available As laser acupuncture is being increasingly used to treat mental disorders, we sought to determine whether it has a biologically plausible effect by using functional magnetic resonance imaging (fMRI to investigate the cerebral activation patterns from laser stimulation of relevant acupoints.Ten healthy subjects were randomly stimulated with a fibreoptic infrared laser on 4 acupoints (LR14, CV14, LR8 and HT7 used for depression following the principles of Traditional Chinese Medicine (TCM, and 1 control non-acupoint (sham point in a blocked design (alternating verum laser and placebo laser/rest blocks, while the blood oxygenation level-dependent (BOLD fMRI response was recorded from the whole brain on a 3T scanner. Many of the acupoint laser stimulation conditions resulted in different patterns of neural activity. Regions with significantly increased activation included the limbic cortex (cingulate and the frontal lobe (middle and superior frontal gyrus. Laser acupuncture tended to be associated with ipsilateral brain activation and contralateral deactivation that therefore cannot be simply attributed to somatosensory stimulation.We found that laser stimulation of acupoints lead to activation of frontal-limbic-striatal brain regions, with the pattern of neural activity somewhat different for each acupuncture point. This is the first study to investigate laser acupuncture on a group of acupoints useful in the management of depression. Differing activity patterns depending on the acupoint site were demonstrated, suggesting that neurological effects vary with the site of stimulation. The mechanisms of activation and deactivation and their effects on depression warrant further investigation.

  1. Superior Pattern Processing is the Essence of the Evolved Human Brain

    Directory of Open Access Journals (Sweden)

    Mark eMattson

    2014-08-01

    Full Text Available Humans have long pondered the nature of their mind/brain and, particularly why its capacities for reasoning, communication and abstract thought are far superior to other species, including closely related anthropoids. This article considers superior pattern processing (SPP as the fundamental basis of most, if not all, unique features of the human brain including intelligence, language, imagination, invention, and the belief in imaginary entities such as ghosts and gods. SPP involves the electrochemical, neuronal network-based, encoding, integration, and transfer to other individuals of perceived or mentally-fabricated patterns. During human evolution, pattern processing capabilities became increasingly sophisticated as the result of expansion of the cerebral cortex, particularly the prefrontal cortex and regions involved in processing of images. Specific patterns, real or imagined, are reinforced by emotional experiences, indoctrination and even psychedelic drugs. Impaired or dysregulated SPP is fundamental to cognitive and psychiatric disorders. A broader understanding of SPP mechanisms, and their roles in normal and abnormal function of the human brain, may enable the development of interventions that reduce irrational decisions and destructive behaviors.

  2. Brain processing of visual sexual stimuli in healthy men: a functional magnetic resonance imaging study.

    Science.gov (United States)

    Mouras, Harold; Stoléru, Serge; Bittoun, Jacques; Glutron, Dominique; Pélégrini-Issac, Mélanie; Paradis, Anne-Lise; Burnod, Yves

    2003-10-01

    The brain plays a central role in sexual motivation. To identify cerebral areas whose activation was correlated with sexual desire, eight healthy male volunteers were studied with functional magnetic resonance imaging (fMRI). Visual stimuli were sexually stimulating photographs (S condition) and emotionally neutral photographs (N condition). Subjective responses pertaining to sexual desire were recorded after each condition. To image the entire brain, separate runs focused on the upper and the lower parts of the brain. Statistical Parametric Mapping was used for data analysis. Subjective ratings confirmed that sexual pictures effectively induced sexual arousal. In the S condition compared to the N condition, a group analysis conducted on the upper part of the brain demonstrated an increased signal in the parietal lobes (superior parietal lobules, left intraparietal sulcus, left inferior parietal lobule, and right postcentral gyrus), the right parietooccipital sulcus, the left superior occipital gyrus, and the precentral gyri. In addition, a decreased signal was recorded in the right posterior cingulate gyrus and the left precuneus. In individual analyses conducted on the lower part of the brain, an increased signal was found in the right and/or left middle occipital gyrus in seven subjects, and in the right and/or left fusiform gyrus in six subjects. In conclusion, fMRI allows to identify brain responses to visual sexual stimuli. Among activated regions in the S condition, parietal areas are known to be involved in attentional processes directed toward motivationally relevant stimuli, while frontal premotor areas have been implicated in motor preparation and motor imagery. Further work is needed to identify those specific features of the neural responses that distinguish sexual desire from other emotional and motivational states.

  3. Specific metabolomics adaptations define a differential regional vulnerability in the adult human cerebral cortex

    Directory of Open Access Journals (Sweden)

    Rosanna Cabré

    2016-12-01

    Full Text Available Brain neurons offer diverse responses to stresses and detrimental factors during development and aging, and as a result of both neurodegenerative and neuropsychiatric disorders. This multiplicity of responses can be ascribed to the great diversity among neuronal populations. Here we have determined the metabolomic profile of three healthy adult human brain regions—entorhinal cortex, hippocampus, and frontal cortex—using mass spectrometry-based technologies. Our results show the existence of a lessened energy demand, mitochondrial stress, and lower one-carbon metabolism (particularly restricted to the methionine cycle specifically in frontal cortex. These findings, along with the better antioxidant capacity and lower mTOR signaling also seen in frontal cortex, suggest that this brain region is especially resistant to stress compared to the entorhinal cortex and hippocampus, which are more vulnerable regions. Globally, our results show the presence of specific metabolomics adaptations in three mature, healthy human brain regions, confirming the existence of cross-regional differences in cell vulnerability in the human cerebral cortex.

  4. Human Brain Activity Patterns beyond the Isoelectric Line of Extreme Deep Coma

    Science.gov (United States)

    Kroeger, Daniel; Florea, Bogdan; Amzica, Florin

    2013-01-01

    The electroencephalogram (EEG) reflects brain electrical activity. A flat (isoelectric) EEG, which is usually recorded during very deep coma, is considered to be a turning point between a living brain and a deceased brain. Therefore the isoelectric EEG constitutes, together with evidence of irreversible structural brain damage, one of the criteria for the assessment of brain death. In this study we use EEG recordings for humans on the one hand, and on the other hand double simultaneous intracellular recordings in the cortex and hippocampus, combined with EEG, in cats. They serve to demonstrate that a novel brain phenomenon is observable in both humans and animals during coma that is deeper than the one reflected by the isoelectric EEG, and that this state is characterized by brain activity generated within the hippocampal formation. This new state was induced either by medication applied to postanoxic coma (in human) or by application of high doses of anesthesia (isoflurane in animals) leading to an EEG activity of quasi-rhythmic sharp waves which henceforth we propose to call ν-complexes (Nu-complexes). Using simultaneous intracellular recordings in vivo in the cortex and hippocampus (especially in the CA3 region) we demonstrate that ν-complexes arise in the hippocampus and are subsequently transmitted to the cortex. The genesis of a hippocampal ν-complex depends upon another hippocampal activity, known as ripple activity, which is not overtly detectable at the cortical level. Based on our observations, we propose a scenario of how self-oscillations in hippocampal neurons can lead to a whole brain phenomenon during coma. PMID:24058669

  5. Evolving knowledge of sex differences in brain structure, function, and chemistry.

    Science.gov (United States)

    Cosgrove, Kelly P; Mazure, Carolyn M; Staley, Julie K

    2007-10-15

    Clinical and epidemiologic evidence demonstrates sex differences in the prevalence and course of various psychiatric disorders. Understanding sex-specific brain differences in healthy individuals is a critical first step toward understanding sex-specific expression of psychiatric disorders. Here, we evaluate evidence on sex differences in brain structure, chemistry, and function using imaging methodologies, including functional magnetic resonance imaging (fMRI), positron emission tomography (PET), single photon emission computed tomography (SPECT), and structural magnetic resonance imaging (MRI) in mentally healthy individuals. MEDLINE searches of English-language literature (1980-November 2006) using the terms sex, gender, PET, SPECT, MRI, fMRI, morphometry, neurochemistry, and neurotransmission were performed to extract relevant sources. The literature suggests that while there are many similarities in brain structure, function, and neurotransmission in healthy men and women, there are important differences that distinguish the male from the female brain. Overall, brain volume is greater in men than women; yet, when controlling for total volume, women have a higher percentage of gray matter and men a higher percentage of white matter. Regional volume differences are less consistent. Global cerebral blood flow is higher in women than in men. Sex-specific differences in dopaminergic, serotonergic, and gamma-aminobutyric acid (GABA)ergic markers indicate that male and female brains are neurochemically distinct. Insight into the etiology of sex differences in the normal living human brain provides an important foundation to delineate the pathophysiological mechanisms underlying sex differences in neuropsychiatric disorders and to guide the development of sex-specific treatments for these devastating brain disorders.

  6. In humans IL-6 is released from the brain during and after exercise and paralleled by enhanced IL-6 mRNA expression in the hippocampus of mice

    DEFF Research Database (Denmark)

    Rasmussen, Per; Vedel, J-C; Olesen, J

    2011-01-01

    Aim: Plasma interleukin-6 (IL-6) increases during exercise by release from active muscles and during prolonged exercise also from the brain. The IL-6 release from muscles continues into recovery and we tested whether the brain also releases IL-6 in recovery from prolonged exercise in humans....... Additionally, it was evaluated in mice whether brain release of IL-6 reflected enhanced IL-6 mRNA expression in the brain as modulated by brain glycogen levels. Methods: Nine healthy male subjects completed 4 h of ergometer rowing while the arterio-jugular venous difference (a-v diff) for IL-6 was determined....... The IL-6 mRNA and the glycogen content were determined in mouse hippocampus, cerebellum and cortex before and after 2 h treadmill running (N = 8). Results: At rest, the IL-6 a-v diff was negligible but decreased to -2.2 ± 1.9 pg ml(-1) at the end of exercise and remained low (-2.1 ± 2.1 pg ml(-1) ) 1 h...

  7. Chronological changes in microRNA expression in the developing human brain.

    Directory of Open Access Journals (Sweden)

    Michael P Moreau

    Full Text Available MicroRNAs (miRNAs are endogenously expressed noncoding RNA molecules that are believed to regulate multiple neurobiological processes. Expression studies have revealed distinct temporal expression patterns in the developing rodent and porcine brain, but comprehensive profiling in the developing human brain has not been previously reported.We performed microarray and TaqMan-based expression analysis of all annotated mature miRNAs (miRBase 10.0 as well as 373 novel, predicted miRNAs. Expression levels were measured in 48 post-mortem brain tissue samples, representing gestational ages 14-24 weeks, as well as early postnatal and adult time points.Expression levels of 312 miRNAs changed significantly between at least two of the broad age categories, defined as fetal, young, and adult.We have constructed a miRNA expression atlas of the developing human brain, and we propose a classification scheme to guide future studies of neurobiological function.

  8. High and ultra-high resolution metabolite mapping of the human brain using 1H FID MRSI at 9.4T.

    Science.gov (United States)

    Nassirpour, Sahar; Chang, Paul; Henning, Anke

    2018-03-01

    Magnetic resonance spectroscopic imaging (MRSI) is a promising technique for mapping the spatial distribution of multiple metabolites in the human brain. These metabolite maps can be used as a diagnostic tool to gain insight into several biochemical processes and diseases in the brain. In comparison to lower field strengths, MRSI at ultra-high field strengths benefits from a higher signal to noise ratio (SNR) as well as higher chemical shift dispersion, and hence spectral resolution. This study combines the benefits of an ultra-high field magnet with the advantages of an ultra-short TE and TR single-slice FID-MRSI sequence (such as negligible J-evolution and loss of SNR due to T 2 relaxation effects) and presents the first metabolite maps acquired at 9.4T in the healthy human brain at both high (voxel size of 97.6µL) and ultra-high (voxel size of 24.4µL) spatial resolutions in a scan time of 11 and 46min respectively. In comparison to lower field strengths, more anatomically-detailed maps with higher SNR from a larger number of metabolites are shown. A total of 12 metabolites including glutamate (Glu), glutamine (Gln), N-acetyl-aspartyl-glutamate (NAAG), Gamma-aminobutyric acid (GABA) and glutathione (GSH) are reliably mapped. Comprehensive description of the methodology behind these maps is provided. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Simplified detection system for neuroreceptor studies in the human brain

    International Nuclear Information System (INIS)

    Bice, A.N.; Wagner, H.N. Jr.; Frost, J.J.

    1986-01-01

    A simple, inexpensive dual-detector system has been developed for measurement of positronemitting receptor-binding drugs in the human brain. This high efficiency coincidence counting system requires that only a few hundred microcuries of labeled drug be administered to the subject, thereby allowing for multiple studies without an excessive radiation dose. Measurement of the binding of [11C]carfentanil, a high affinity synthetic opiate, to opiate receptors in the presence and in the absence of a competitive opiate antagonist indicates the potential utility of this system for estimating different degrees of receptor occupation in the human brain

  10. Brain-Computer Interfaces Applying Our Minds to Human-computer Interaction

    CERN Document Server

    Tan, Desney S

    2010-01-01

    For generations, humans have fantasized about the ability to create devices that can see into a person's mind and thoughts, or to communicate and interact with machines through thought alone. Such ideas have long captured the imagination of humankind in the form of ancient myths and modern science fiction stories. Recent advances in cognitive neuroscience and brain imaging technologies have started to turn these myths into a reality, and are providing us with the ability to interface directly with the human brain. This ability is made possible through the use of sensors that monitor physical p

  11. Differences in distribution and regulation of astrocytic aquaporin-4 in human and rat hydrocephalic brain

    DEFF Research Database (Denmark)

    Skjolding, Anders Daehli; Holst, Anders Vedel; Broholm, Helle

    2013-01-01

    findings to human pathophysiology. This study compares expression of aquaporin-4 in hydrocephalic human brain with human controls and hydrocephalic rat brain. Methods:  Cortical biopsies from patients with chronic hydrocephalus (n=29) were sampled secondary to planned surgical intervention. Aquaporin-4...

  12. The Identification of Aluminum in Human Brain Tissue Using Lumogallion and Fluorescence Microscopy

    Science.gov (United States)

    Mirza, Ambreen; King, Andrew; Troakes, Claire; Exley, Christopher

    2016-01-01

    Aluminum in human brain tissue is implicated in the etiologies of neurodegenerative diseases including Alzheimer’s disease. While methods for the accurate and precise measurement of aluminum in human brain tissue are widely acknowledged, the same cannot be said for the visualization of aluminum. Herein we have used transversely-heated graphite furnace atomic absorption spectrometry to measure aluminum in the brain of a donor with Alzheimer’s disease, and we have developed and validated fluorescence microscopy and the fluor lumogallion to show the presence of aluminum in the same tissue. Aluminum is observed as characteristic orange fluorescence that is neither reproduced by other metals nor explained by autofluorescence. This new and relatively simple method to visualize aluminum in human brain tissue should enable more rigorous testing of the aluminum hypothesis of Alzheimer’s disease (and other neurological conditions) in the future. PMID:27472886

  13. Transcriptional profiling of adult neural stem-like cells from the human brain.

    Directory of Open Access Journals (Sweden)

    Cecilie Jonsgar Sandberg

    Full Text Available There is a great potential for the development of new cell replacement strategies based on adult human neural stem-like cells. However, little is known about the hierarchy of cells and the unique molecular properties of stem- and progenitor cells of the nervous system. Stem cells from the adult human brain can be propagated and expanded in vitro as free floating neurospheres that are capable of self-renewal and differentiation into all three cell types of the central nervous system. Here we report the first global gene expression study of adult human neural stem-like cells originating from five human subventricular zone biopsies (mean age 42, range 33-60. Compared to adult human brain tissue, we identified 1,189 genes that were significantly up- and down-regulated in adult human neural stem-like cells (1% false discovery rate. We found that adult human neural stem-like cells express stem cell markers and have reduced levels of markers that are typical of the mature cells in the nervous system. We report that the genes being highly expressed in adult human neural stem-like cells are associated with developmental processes and the extracellular region of the cell. The calcium signaling pathway and neuroactive ligand-receptor interactions are enriched among the most differentially regulated genes between adult human neural stem-like cells and adult human brain tissue. We confirmed the expression of 10 of the most up-regulated genes in adult human neural stem-like cells in an additional sample set that included adult human neural stem-like cells (n = 6, foetal human neural stem cells (n = 1 and human brain tissues (n = 12. The NGFR, SLITRK6 and KCNS3 receptors were further investigated by immunofluorescence and shown to be heterogeneously expressed in spheres. These receptors could potentially serve as new markers for the identification and characterisation of neural stem- and progenitor cells or as targets for manipulation of cellular

  14. The Effects of Acupuncture at Real or Sham Acupoints on the Intrinsic Brain Activity in Mild Cognitive Impairment Patients

    Directory of Open Access Journals (Sweden)

    Baohui Jia

    2015-01-01

    Full Text Available Accumulating neuroimaging studies in humans have shown that acupuncture can modulate a widely distributed brain network in mild cognitive impairment (MCI and Alzheimer’s disease (AD patients. Acupuncture at different acupoints could exert different modulatory effects on the brain network. However, whether acupuncture at real or sham acupoints can produce different effects on the brain network in MCI or AD patients remains unclear. Using resting-state fMRI, we reported that acupuncture at Taixi (KI3 induced amplitude of low-frequency fluctuation (ALFF change of different brain regions in MCI patients from those shown in the healthy controls. In MCI patients, acupuncture at KI3 increased or decreased ALFF in the different regions from those activated by acupuncture in the healthy controls. Acupuncture at the sham acupoint in MCI patients activated the different brain regions from those in healthy controls. Therefore, we concluded that acupuncture displays more significant effect on neuronal activities of the above brain regions in MCI patients than that in healthy controls. Acupuncture at KI3 exhibits different effects on the neuronal activities of the brain regions from acupuncture at sham acupoint, although the difference is only shown at several regions due to the close distance between the above points.

  15. Positron Emission Tomography studies with [11C]PBR28 in the Healthy Rodent Brain: Validating SUV as an Outcome Measure of Neuroinflammation.

    Science.gov (United States)

    Tóth, Miklós; Doorduin, Janine; Häggkvist, Jenny; Varrone, Andrea; Amini, Nahid; Halldin, Christer; Gulyás, Balázs

    2015-01-01

    Molecular imaging of the 18 kD Translocator protein (TSPO) with positron emission tomography (PET) is of great value for studying neuroinflammation in rodents longitudinally. Quantification of the TSPO in rodents is, however, quite challenging. There is no suitable reference region and the use of plasma-derived input is not an option for longitudinal studies. The aim of this study was therefore to evaluate the use of the standardized uptake value (SUV) as an outcome measure for TSPO imaging in rodent brain PET studies, using [11C]PBR28. In the first part of the study, healthy male Wistar rats (n = 4) were used to determine the correlation between the distribution volume (VT, calculated with Logan graphical analysis) and the SUV. In the second part, healthy male Wistar rats (n = 4) and healthy male C57BL/6J mice (n = 4), were used to determine the test-retest variability of the SUV, with a 7-day interval between measurements. Dynamic PET scans of 63 minutes were acquired with a nanoScan PET/MRI and nanoScan PET/CT. An MRI scan was made for anatomical reference with each measurement. The whole brain VT of [11C]PBR28 in rats was 42.9 ± 1.7. A statistically significant correlation (r2 = 0.96; p < 0.01) was found between the VT and the SUV. The test-retest variability in 8 brain region ranged from 8 to 20% in rats and from 7 to 23% in mice. The interclass correlation coefficient (ICC) was acceptable to excellent for rats, but poor to acceptable for mice. The SUV of [11C]PBR28 showed a high correlation with VT as well as good test-retest variability. For future longitudinal small animal PET studies the SUV can thus be used to describe [11C]PBR28 uptake in healthy brain tissue. Based on the present observations, further studies are needed to explore the applicability of this approach in small animal disease models, with special regard to neuroinflammatory models.

  16. Microstructural Changes of the Human Brain from Early to Mid-Adulthood

    OpenAIRE

    Tian, Lixia; Ma, Lin

    2017-01-01

    Despite numerous studies on the microstructural changes of the human brain throughout life, we have indeed little direct knowledge about the changes from early to mid-adulthood. The aim of this study was to investigate the microstructural changes of the human brain from early to mid-adulthood. We performed two sets of analyses based on the diffusion tensor imaging (DTI) data of 111 adults aged 18–55 years. Specifically, we first correlated age with skeletonized fractional anisotropy (FA), mea...

  17. No effect of escitalopram versus placebo on brain-derived neurotrophic factor in healthy individuals: a randomised trial.

    Science.gov (United States)

    Knorr, Ulla; Koefoed, Pernille; Soendergaard, Mia H Greisen; Vinberg, Maj; Gether, Ulrik; Gluud, Christian; Wetterslev, Jørn; Winkel, Per; Kessing, Lars V

    2016-04-01

    Brain-derived neurotrophic factor (BDNF) seems to play an important role in the course of depression including the response to antidepressants in patients with depression. We aimed to study the effect of an antidepressant intervention on peripheral BDNF in healthy individuals with a family history of depression. We measured changes in BDNF messenger RNA (mRNA) expression and whole-blood BDNF levels in 80 healthy first-degree relatives of patients with depression randomly allocated to receive daily tablets of escitalopram 10 mg versus placebo for 4 weeks. We found no statistically significant difference between the escitalopram and the placebo group in the change in BDNF mRNA expression and whole-blood BDNF levels. Post hoc analyses showed a statistically significant negative correlation between plasma escitalopram concentration and change in whole-blood BDNF levels in the escitalopram-treated group. The results of this randomised trial suggest that escitalopram 10 mg has no effect on peripheral BDNF levels in healthy individuals.

  18. Linking neuronal brain activity to the glucose metabolism.

    Science.gov (United States)

    Göbel, Britta; Oltmanns, Kerstin M; Chung, Matthias

    2013-08-29

    Energy homeostasis ensures the functionality of the entire organism. The human brain as a missing link in the global regulation of the complex whole body energy metabolism is subject to recent investigation. The goal of this study is to gain insight into the influence of neuronal brain activity on cerebral and peripheral energy metabolism. In particular, the tight link between brain energy supply and metabolic responses of the organism is of interest. We aim to identifying regulatory elements of the human brain in the whole body energy homeostasis. First, we introduce a general mathematical model describing the human whole body energy metabolism. It takes into account the two central roles of the brain in terms of energy metabolism. The brain is considered as energy consumer as well as regulatory instance. Secondly, we validate our mathematical model by experimental data. Cerebral high-energy phosphate content and peripheral glucose metabolism are measured in healthy men upon neuronal activation induced by transcranial direct current stimulation versus sham stimulation. By parameter estimation we identify model parameters that provide insight into underlying neurophysiological processes. Identified parameters reveal effects of neuronal activity on regulatory mechanisms of systemic glucose metabolism. Our examinations support the view that the brain increases its glucose supply upon neuronal activation. The results indicate that the brain supplies itself with energy according to its needs, and preeminence of cerebral energy supply is reflected. This mechanism ensures balanced cerebral energy homeostasis. The hypothesis of the central role of the brain in whole body energy homeostasis as active controller is supported.

  19. Electrical Guidance of Human Stem Cells in the Rat Brain

    Directory of Open Access Journals (Sweden)

    Jun-Feng Feng

    2017-07-01

    Full Text Available Limited migration of neural stem cells in adult brain is a roadblock for the use of stem cell therapies to treat brain diseases and injuries. Here, we report a strategy that mobilizes and guides migration of stem cells in the brain in vivo. We developed a safe stimulation paradigm to deliver directional currents in the brain. Tracking cells expressing GFP demonstrated electrical mobilization and guidance of migration of human neural stem cells, even against co-existing intrinsic cues in the rostral migration stream. Transplanted cells were observed at 3 weeks and 4 months after stimulation in areas guided by the stimulation currents, and with indications of differentiation. Electrical stimulation thus may provide a potential approach to facilitate brain stem cell therapies.

  20. Cells in human postmortem brain tissue slices remain alive for several weeks in culture

    NARCIS (Netherlands)

    Verwer, Ronald W. H.; Hermens, Wim T. J. M. C.; Dijkhuizen, PaulaA; ter Brake, Olivier; Baker, Robert E.; Salehi, Ahmad; Sluiter, Arja A.; Kok, Marloes J. M.; Muller, Linda J.; Verhaagen, Joost; Swaab, Dick F.

    2002-01-01

    Animal models for human neurological and psychiatric diseases only partially mimic the underlying pathogenic processes. Therefore, we investigated the potential use of cultured postmortem brain tissue from adult neurological patients and controls. The present study shows that human brain tissue

  1. [Neuroethics: Ethical Endowments of Human Brain].

    Science.gov (United States)

    López Moratalla, Natalia

    2015-01-01

    The neurobiological processes underlying moral judgement have been the focus of Neuroethics. Neurosciences demonstrate which cerebral areas are active and inactive whilst people decide how to act when facing a moral dilemma; in this way we know the correlation between determined cerebral areas and our human acts. We can explain how the ″ethical endowments″ of each person, common to all human beings, is ″embedded″ in the dynamic of cerebral flows. Of central interest is whether emotions play a causal role in moral judgement, and, in parallel, how emotion related areas of the brain contribute to moral judgement. The outcome of man's natural inclinations is on one hand linked to instinctive systems of animal survival and to basic emotions, and on the other, to the life of each individual human uninhibited by automatism of the biological laws, because he is governed by the laws of freedom. The capacity to formulate an ethical judgement is an innate asset of the human mind.

  2. At least eighty percent of brain grey matter is modifiable by physical activity: A review study.

    Science.gov (United States)

    Batouli, Seyed Amir Hossein; Saba, Valiallah

    2017-08-14

    The human brain is plastic, i.e. it can show structural changes in response to the altered environment. Physical activity (PA) is a lifestyle factor which has significant associations with the structural and functional aspects of the human brain, as well as with the mind and body health. Many studies have reported regional/global brain volume increments due to exercising; however, a map which shows the overall extent of the influences of PAs on brain structure is not available. In this study, we collected all the reports on brain structural alterations in association with PA in healthy humans, and next, a brain map of the extent of these effects is provided. The results of this study showed that a large network of brain areas, equal to 82% of the total grey matter volume, were associated with PA. This finding has important implications in utilizing PA as a mediator factor for educational purposes in children, rehabilitation applications in patients, improving the cognitive abilities of the human brain such as in learning or memory, and preventing age-related brain deteriorations. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Increased brain iron deposition is a risk factor for brain atrophy in patients with haemodialysis: a combined study of quantitative susceptibility mapping and whole brain volume analysis.

    Science.gov (United States)

    Chai, Chao; Zhang, Mengjie; Long, Miaomiao; Chu, Zhiqiang; Wang, Tong; Wang, Lijun; Guo, Yu; Yan, Shuo; Haacke, E Mark; Shen, Wen; Xia, Shuang

    2015-08-01

    To explore the correlation between increased brain iron deposition and brain atrophy in patients with haemodialysis and their correlation with clinical biomarkers and neuropsychological test. Forty two patients with haemodialysis and forty one age- and gender-matched healthy controls were recruited in this prospective study. 3D whole brain high resolution T1WI and susceptibility weighted imaging were scanned on a 3 T MRI system. The brain volume was analyzed using voxel-based morphometry (VBM) in patients and to compare with that of healthy controls. Quantitative susceptibility mapping was used to measure and compare the susceptibility of different structures between patients and healthy controls. Correlation analysis was used to investigate the relationship between the brain volume, iron deposition and neuropsychological scores. Stepwise multiple regression analysis was used to explore the effect of clinical biomarkers on the brain volumes in patients. Compared with healthy controls, patients with haemodialysis showed decreased volume of bilateral putamen and left insular lobe (All P brain iron deposition is negatively correlated with the decreased volume of bilateral putamen (P brain iron deposition and dialysis duration was risk factors for brain atrophy in patients with haemodialysis. The decreased gray matter volume of the left insular lobe was correlated with neurocognitive impairment.

  4. The Potential Impact of Biofield Treatment on Human Brain Tumor Cells: A Time-Lapse Video Microscopy

    OpenAIRE

    Trivedi, Mahendra

    2015-01-01

    Study background: Glioblastoma (GBM) is the most common subtype of primary brain tumor in adults. The aim was to evaluate the impact of biofield treatment potential on human GBM and non-GBM brain cells using two time-lapse video microscopy technique. Methods: The human brain tumor, GBM cultured cells were divided into two groups viz. GBM control and GBM treatment. Similarly, human normal brain cultured cells (non-GBM) were taken and divided into two groups viz. non- GBM control and non-GB...

  5. A hybrid CPU-GPU accelerated framework for fast mapping of high-resolution human brain connectome.

    Directory of Open Access Journals (Sweden)

    Yu Wang

    Full Text Available Recently, a combination of non-invasive neuroimaging techniques and graph theoretical approaches has provided a unique opportunity for understanding the patterns of the structural and functional connectivity of the human brain (referred to as the human brain connectome. Currently, there is a very large amount of brain imaging data that have been collected, and there are very high requirements for the computational capabilities that are used in high-resolution connectome research. In this paper, we propose a hybrid CPU-GPU framework to accelerate the computation of the human brain connectome. We applied this framework to a publicly available resting-state functional MRI dataset from 197 participants. For each subject, we first computed Pearson's Correlation coefficient between any pairs of the time series of gray-matter voxels, and then we constructed unweighted undirected brain networks with 58 k nodes and a sparsity range from 0.02% to 0.17%. Next, graphic properties of the functional brain networks were quantified, analyzed and compared with those of 15 corresponding random networks. With our proposed accelerating framework, the above process for each network cost 80∼150 minutes, depending on the network sparsity. Further analyses revealed that high-resolution functional brain networks have efficient small-world properties, significant modular structure, a power law degree distribution and highly connected nodes in the medial frontal and parietal cortical regions. These results are largely compatible with previous human brain network studies. Taken together, our proposed framework can substantially enhance the applicability and efficacy of high-resolution (voxel-based brain network analysis, and have the potential to accelerate the mapping of the human brain connectome in normal and disease states.

  6. A Set of Functional Brain Networks for the Comprehensive Evaluation of Human Characteristics

    Directory of Open Access Journals (Sweden)

    Yul-Wan Sung

    2018-03-01

    Full Text Available Many human characteristics must be evaluated to comprehensively understand an individual, and measurements of the corresponding cognition/behavior are required. Brain imaging by functional MRI (fMRI has been widely used to examine brain function related to human cognition/behavior. However, few aspects of cognition/behavior of individuals or experimental groups can be examined through task-based fMRI. Recently, resting state fMRI (rs-fMRI signals have been shown to represent functional infrastructure in the brain that is highly involved in processing information related to cognition/behavior. Using rs-fMRI may allow diverse information about the brain through a single MRI scan to be obtained, as rs-fMRI does not require stimulus tasks. In this study, we attempted to identify a set of functional networks representing cognition/behavior that are related to a wide variety of human characteristics and to evaluate these characteristics using rs-fMRI data. If possible, these findings would support the potential of rs-fMRI to provide diverse information about the brain. We used resting-state fMRI and a set of 130 psychometric parameters that cover most human characteristics, including those related to intelligence and emotional quotients and social ability/skill. We identified 163 brain regions by VBM analysis using regression analysis with 130 psychometric parameters. Next, using a 163 × 163 correlation matrix, we identified functional networks related to 111 of the 130 psychometric parameters. Finally, we made an 8-class support vector machine classifiers corresponding to these 111 functional networks. Our results demonstrate that rs-fMRI signals contain intrinsic information about brain function related to cognition/behaviors and that this set of 111 networks/classifiers can be used to comprehensively evaluate human characteristics.

  7. NMR relaxation times in human brain tumors (preliminary results)

    International Nuclear Information System (INIS)

    Benoist, L.; Certaines, J. de; Chatel, M.; Menault, F.

    1981-01-01

    Since the early work of Damadian in 1971, proton NMR studies of tumors has been well documented. Present study concerns the spin-lattice T 1 and spin-spin T 2 relaxation times of normal dog brain according to the histological differentiation and of 35 human benignant or malignant tumors. The results principally show T 2 important variations between white and gray substance in normal brain but no discrimination between malignant and benignant tumors [fr

  8. Radiation effects on the developing human brain

    International Nuclear Information System (INIS)

    1993-01-01

    The developing human brain has been shown to be especially sensitive to ionizing radiation. Mental retardation has been observed in the survivors of the atomic bombings in Japan exposed in utero during sensitive periods, and clinical studies of pelvically irradiated pregnant women have demonstrated damaging effects on the fetus. In this annex the emphasis is on reviewing the results of the study of the survivors of the atomic bombings in Japan, although the results of other human epidemiological investigations and of pertinent experimental studies are also considered. Refs, 3 figs, 10 tabs

  9. Cognitive learning is associated with gray matter changes in healthy human individuals: a tensor-based morphometry study.

    Science.gov (United States)

    Ceccarelli, Antonia; Rocca, Maria Assunta; Pagani, Elisabetta; Falini, Andrea; Comi, Giancarlo; Filippi, Massimo

    2009-11-15

    Longitudinal voxel-based morphometry studies have demonstrated morphological changes in cortical structures following motor and cognitive learning. In this study, we applied, for the first time, tensor-based morphometry (TBM) to assess the short-term structural brain gray matter (GM) changes associated with cognitive learning in healthy subjects. Using a 3 T scanner, a 3D T1-weighted sequence was acquired from 32 students at baseline and after two weeks. Students were separated into two groups: 13 defined as "students in cognitive training", who underwent a two-week cognitive learning period, and 19 "students not in cognitive training", who were not involved in any teaching activity. GM changes were assessed using TBM and statistical parametric mapping. Baseline regional GM volume did not differ between the two groups. At follow up, compared to "students not in cognitive training", the "students in cognitive training" had a significant GM volume increase in the dorsomedial frontal cortex, the orbitofrontal cortex, and the precuneus (p<0.001). These results suggest that cognitive learning results in short-term structural GM changes of neuronal networks of the human brain, which are known to be involved in cognition. This may have important implications for the development of rehabilitation strategies in patients with neurological diseases.

  10. Altered brain processing of decision-making in healthy first-degree biological relatives of suicide completers.

    Science.gov (United States)

    Ding, Y; Pereira, F; Hoehne, A; Beaulieu, M-M; Lepage, M; Turecki, G; Jollant, F

    2017-08-01

    Suicidal behavior is heritable, with the transmission of risk being related to the transmission of vulnerability traits. Previous studies suggest that risky decision-making may be an endophenotype of suicide. Here, we aimed at investigating brain processing of decision-making in relatives of suicide completers in order to shed light on heritable mechanisms of suicidal vulnerability. Seventeen healthy first-degree biological relatives of suicide completers with no personal history of suicidal behavior, 16 relatives of depressed patients without any personal or family history of suicidal behavior, and 19 healthy controls were recruited. Functional 3 T magnetic resonance imaging scans were acquired while participants underwent the Iowa Gambling Task, an economic decision-making test. Whole-brain analyses contrasting activations during risky vs safe choices were conducted with AFNI and FSL. Individuals with a family history of suicide in comparison to control groups showed altered contrasts in left medial orbitofrontal cortex, and right dorsomedial prefrontal cortex. This pattern was different from the neural basis of familial depression. Moreover, controls in comparison to relatives showed increased contrast in several regions including the post-central gyrus, posterior cingulate and parietal cortices, and cerebellum (culmen) in familial suicide; and inferior parietal, temporal, occipital, anteromedial and dorsolateral prefrontal cortices, and cerebellum (vermis) in familial depression. These findings most likely represent a complex combination of vulnerability and protective mechanisms in relatives. They also support a significant role for deficient risk processing, and ventral and dorsal prefrontal cortex functioning in the suicidal diathesis.

  11. Differential regional brain growth and rotation of the prenatal human tentorium cerebelli.

    Science.gov (United States)

    Jeffery, Nathan

    2002-02-01

    Folds of dura mater, the falx cerebri and tentorium cerebelli, traverse the vertebrate endocranial cavity and compartmentalize the brain. Previous studies suggest that the tentorial fold has adopted an increasingly important role in supporting the increased load of the cerebrum during human evolution, brought about by encephalization and an adaptation to bipedal posture. Ontogenetic studies of the fetal tentorium suggest that its midline profile rotates inferoposteriorly towards the foramen magnum in response to disproportionate growth of the cerebrum. This study tests the hypothesis that differential growth of the cerebral and cerebellar components of the brain underlies the inferoposterior rotation of the tentorium cerebelli during human fetal development. Brain volumes and tentorial angles were taken from high-resolution magnetic resonance images of 46 human fetuses ranging from 10 to 29 gestational weeks. Apart from the expected increases of both supratentorial and infratentorial brain volumes with age, the results confirm previous studies showing a significant relative enlargement of the supratentorial volume. Correlated with this enlargement was a rotation of the midline section of the tentorium towards the posterior cranial base. These findings support the concept that increases of supratentorial volume relative to infratentorial volume affect an inferoposterior rotation of the human fetal tentorium cerebelli. These results are discussed in the context of the role played by the tentorium cerebelli during human evolution and underline implications for phylogenetic and ontogenetic models of encephalization.

  12. Brain and Nervous System

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Brain and Nervous System KidsHealth / For Parents / Brain and ... healthy, and remove waste products. All About the Brain The brain is made up of three main ...

  13. New perspectives in EEG/MEG brain mapping and PET/fMRI neuroimaging of human pain.

    Science.gov (United States)

    Chen, A C

    2001-10-01

    With the maturation of EEG/MEG brain mapping and PET/fMRI neuroimaging in the 1990s, greater understanding of pain processing in the brain now elucidates and may even challenge the classical theory of pain mechanisms. This review scans across the cultural diversity of pain expression and modulation in man. It outlines the difficulties in defining and studying human pain. It then focuses on methods of studying the brain in experimental and clinical pain, the cohesive results of brain mapping and neuroimaging of noxious perception, the implication of pain research in understanding human consciousness and the relevance to clinical care as well as to the basic science of human psychophysiology. Non-invasive brain studies in man start to unveil the age-old puzzles of pain-illusion, hypnosis and placebo in pain modulation. The neurophysiological and neurohemodynamic brain measures of experimental pain can now largely satisfy the psychophysiologist's dream, unimaginable only a few years ago, of modelling the body-brain, brain-mind, mind-matter duality in an inter-linking 3-P triad: physics (stimulus energy); physiology (brain activities); and psyche (perception). For neuropsychophysiology greater challenges lie ahead: (a) how to integrate a cohesive theory of human pain in the brain; (b) what levels of analyses are necessary and sufficient; (c) what constitutes the structural organisation of the pain matrix; (d) what are the modes of processing among and across the sites of these structures; and (e) how can neural computation of these processes in the brain be carried out? We may envision that modular identification and delineation of the arousal-attention, emotion-motivation and perception-cognition neural networks of pain processing in the brain will also lead to deeper understanding of the human mind. Two foreseeable impacts on clinical sciences and basic theories from brain mapping/neuroimaging are the plausible central origin in persistent pain and integration of

  14. Red-backed vole brain promotes highly efficient in vitro amplification of abnormal prion protein from macaque and human brains infected with variant Creutzfeldt-Jakob disease agent.

    Science.gov (United States)

    Nemecek, Julie; Nag, Nabanita; Carlson, Christina M.; Schneider, Jay R.; Heisey, Dennis M.; Johnson, Christopher J.; Asher, David M.; Gregori, Luisa

    2013-01-01

    Rapid antemortem tests to detect individuals with transmissible spongiform encephalopathies (TSE) would contribute to public health. We investigated a technique known as protein misfolding cyclic amplification (PMCA) to amplify abnormal prion protein (PrPTSE) from highly diluted variant Creutzfeldt-Jakob disease (vCJD)-infected human and macaque brain homogenates, seeking to improve the rapid detection of PrPTSE in tissues and blood. Macaque vCJD PrPTSE did not amplify using normal macaque brain homogenate as substrate (intraspecies PMCA). Next, we tested interspecies PMCA with normal brain homogenate of the southern red-backed vole (RBV), a close relative of the bank vole, seeded with macaque vCJD PrPTSE. The RBV has a natural polymorphism at residue 170 of the PrP-encoding gene (N/N, S/S, and S/N). We investigated the effect of this polymorphism on amplification of human and macaque vCJD PrPTSE. Meadow vole brain (170N/N PrP genotype) was also included in the panel of substrates tested. Both humans and macaques have the same 170S/S PrP genotype. Macaque PrPTSE was best amplified with RBV 170S/S brain, although 170N/N and 170S/N were also competent substrates, while meadow vole brain was a poor substrate. In contrast, human PrPTSE demonstrated a striking narrow selectivity for PMCA substrate and was successfully amplified only with RBV 170S/S brain. These observations suggest that macaque PrPTSE was more permissive than human PrPTSE in selecting the competent RBV substrate. RBV 170S/S brain was used to assess the sensitivity of PMCA with PrPTSE from brains of humans and macaques with vCJD. PrPTSE signals were reproducibly detected by Western blot in dilutions through 10-12 of vCJD-infected 10% brain homogenates. This is the first report showing PrPTSE from vCJD-infected human and macaque brains efficiently amplified with RBV brain as the substrate. Based on our estimates, PMCA showed a sensitivity that might be sufficient to detect PrPTSE in v

  15. Red-backed vole brain promotes highly efficient in vitro amplification of abnormal prion protein from macaque and human brains infected with variant Creutzfeldt-Jakob disease agent.

    Directory of Open Access Journals (Sweden)

    Julie Nemecek

    Full Text Available Rapid antemortem tests to detect individuals with transmissible spongiform encephalopathies (TSE would contribute to public health. We investigated a technique known as protein misfolding cyclic amplification (PMCA to amplify abnormal prion protein (PrP(TSE from highly diluted variant Creutzfeldt-Jakob disease (vCJD-infected human and macaque brain homogenates, seeking to improve the rapid detection of PrP(TSE in tissues and blood. Macaque vCJD PrP(TSE did not amplify using normal macaque brain homogenate as substrate (intraspecies PMCA. Next, we tested interspecies PMCA with normal brain homogenate of the southern red-backed vole (RBV, a close relative of the bank vole, seeded with macaque vCJD PrP(TSE. The RBV has a natural polymorphism at residue 170 of the PrP-encoding gene (N/N, S/S, and S/N. We investigated the effect of this polymorphism on amplification of human and macaque vCJD PrP(TSE. Meadow vole brain (170N/N PrP genotype was also included in the panel of substrates tested. Both humans and macaques have the same 170S/S PrP genotype. Macaque PrP(TSE was best amplified with RBV 170S/S brain, although 170N/N and 170S/N were also competent substrates, while meadow vole brain was a poor substrate. In contrast, human PrP(TSE demonstrated a striking narrow selectivity for PMCA substrate and was successfully amplified only with RBV 170S/S brain. These observations suggest that macaque PrP(TSE was more permissive than human PrP(TSE in selecting the competent RBV substrate. RBV 170S/S brain was used to assess the sensitivity of PMCA with PrP(TSE from brains of humans and macaques with vCJD. PrP(TSE signals were reproducibly detected by Western blot in dilutions through 10⁻¹² of vCJD-infected 10% brain homogenates. This is the first report showing PrP(TSE from vCJD-infected human and macaque brains efficiently amplified with RBV brain as the substrate. Based on our estimates, PMCA showed a sensitivity that might be sufficient to detect Pr

  16. [Patterns of brain ageing].

    Science.gov (United States)

    Fernández Viadero, Carlos; Verduga Vélez, Rosario; Crespo Santiago, Dámaso

    2017-06-01

    Neuroplasticity lends the brain a strong ability to adapt to changes in the environment that occur during ageing. Animal models have shown alterations in neurotransmission and imbalances in the expression of neural growth factor. Changes at the morphometric level are not constant. Volume loss is related to alterations in neuroplasticity and involvement of the cerebral neuropil. Although there are no conclusive data, physical exercise improves the molecular, biological, functional and behavioural-cognitive changes associated with brain ageing. The aged human brain has been described as showing weight and volume loss and increased ventricular size. However, neuroimaging shows significant variation and many healthy elderly individuals show no significant macroscopic changes. In most brain regions, the number of neurons remains stable throughout life. Neuroplasticity does not disappear with ageing, and changes in dendritic arborization and the density of spines and synapses are more closely related to brain activity than to age. At the molecular level, although the presence of altered Tau and β-amyloid proteins is used as a biomarker of neurodegenerative disease, postmortem studies show that these abnormal proteins are common in the brains of elderly people without dementia. Finally, due to the relationship between neurodegenerative diseases and metabolic alterations, this article analyses the influence of insulin-like growth factor and ageing, both in animal models and in humans, and the possible neuroprotective effect of insulin. Copyright © 2017 Sociedad Española de Geriatría y Gerontología. Publicado por Elsevier España, S.L.U. All rights reserved.

  17. Brain Diseases

    Science.gov (United States)

    The brain is the control center of the body. It controls thoughts, memory, speech, and movement. It regulates the function of many organs. When the brain is healthy, it works quickly and automatically. However, ...

  18. Higher cortical modulation of pain perception in the human brain: Psychological determinant

    OpenAIRE

    Chen, Andrew Cn

    2009-01-01

    Pain perception and its genesis in the human brain have been reviewed recently. In the current article, the reports on pain modulation in the human brain were reviewed from higher cortical regulation, i.e. top-down effect, particularly studied in psychological determinants. Pain modulation can be examined by gene therapy, physical modulation, pharmacological modulation, psychological modulation, and pathophysiological modulation. In psychological modulation, this article examined (a) willed d...

  19. Effectiveness of brain-based learning and animated cartoons for enhancing healthy habits among school children in Khon Kaen, Thailand.

    Science.gov (United States)

    Banchonhattakit, Pannee; Duangsong, Rujira; Muangsom, Niramon; Kamsong, Theppamon; Phangwan, Krittiya

    2015-03-01

    The objective of this study was to investigate the effectiveness of brain-based learning (BBL) and animated cartoons on video compact discs (VCDs) in enhancing the healthy habits of school children. A representative sample of 1085 school children in the first through the third grades at 16 schools was selected by multistage random sampling. Knowledge of healthy habits and self-reported adoption of practices were assessed by a questionnaire. BBL and VCD, either combined or as single-intervention techniques, led to improved knowledge and practice of healthy behavior, whereas conventional teaching did not. As a single-intervention technique, BBL on its own led to a greater improvement in healthy practices than VCD, but the addition of BBL to VCD made no difference, and there was no difference between BBL and VCD in terms of improvements in knowledge. In conclusion, both BBL and VCD are effective, but VCD requires fewer resources. Recommendations are made for further research. © 2012 APJPH.

  20. Is human blood a good surrogate for brain tissue in transcriptional studies?

    Directory of Open Access Journals (Sweden)

    van den Berg Leonard H

    2010-10-01

    Full Text Available Abstract Background Since human brain tissue is often unavailable for transcriptional profiling studies, blood expression data is frequently used as a substitute. The underlying hypothesis in such studies is that genes expressed in brain tissue leave a transcriptional footprint in blood. We tested this hypothesis by relating three human brain expression data sets (from cortex, cerebellum and caudate nucleus to two large human blood expression data sets (comprised of 1463 individuals. Results We found mean expression levels were weakly correlated between the brain and blood data (r range: [0.24,0.32]. Further, we tested whether co-expression relationships were preserved between the three brain regions and blood. Only a handful of brain co-expression modules showed strong evidence of preservation and these modules could be combined into a single large blood module. We also identified highly connected intramodular "hub" genes inside preserved modules. These preserved intramodular hub genes had the following properties: first, their expression levels tended to be significantly more heritable than those from non-preserved intramodular hub genes (p -90; second, they had highly significant positive correlations with the following cluster of differentiation genes: CD58, CD47, CD48, CD53 and CD164; third, a significant number of them were known to be involved in infection mechanisms, post-transcriptional and post-translational modification and other basic processes. Conclusions Overall, we find transcriptome organization is poorly preserved between brain and blood. However, the subset of preserved co-expression relationships characterized here may aid future efforts to identify blood biomarkers for neurological and neuropsychiatric diseases when brain tissue samples are unavailable.

  1. HIP2: An online database of human plasma proteins from healthy individuals

    Directory of Open Access Journals (Sweden)

    Shen Changyu

    2008-04-01

    Full Text Available Abstract Background With the introduction of increasingly powerful mass spectrometry (MS techniques for clinical research, several recent large-scale MS proteomics studies have sought to characterize the entire human plasma proteome with a general objective for identifying thousands of proteins leaked from tissues in the circulating blood. Understanding the basic constituents, diversity, and variability of the human plasma proteome is essential to the development of sensitive molecular diagnosis and treatment monitoring solutions for future biomedical applications. Biomedical researchers today, however, do not have an integrated online resource in which they can search for plasma proteins collected from different mass spectrometry platforms, experimental protocols, and search software for healthy individuals. The lack of such a resource for comparisons has made it difficult to interpret proteomics profile changes in patients' plasma and to design protein biomarker discovery experiments. Description To aid future protein biomarker studies of disease and health from human plasma, we developed an online database, HIP2 (Healthy Human Individual's Integrated Plasma Proteome. The current version contains 12,787 protein entries linked to 86,831 peptide entries identified using different MS platforms. Conclusion This web-based database will be useful to biomedical researchers involved in biomarker discovery research. This database has been developed to be the comprehensive collection of healthy human plasma proteins, and has protein data captured in a relational database schema built to contain mappings of supporting peptide evidence from several high-quality and high-throughput mass-spectrometry (MS experimental data sets. Users can search for plasma protein/peptide annotations, peptide/protein alignments, and experimental/sample conditions with options for filter-based retrieval to achieve greater analytical power for discovery and validation.

  2. The glucocorticoid receptor in the limbic system of the human brain

    NARCIS (Netherlands)

    Wang, Qian

    2016-01-01

    Glucocorticoid hormones (GCs) are important mediators of the stress response in mammals including humans. GCs are released from the adrenal in response to stress and affect numerous processes in the body and brain. Their levels are controlled via negative feedback exerted by GC binding to brain

  3. Improved sensitivity of human brain MAO B measurement using deuterium substituted [{sup 11}C]L-deprenyl ([{sup 11}C]L-deprenyl-D2)

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, J.S.; Volkow, N.D.; Wang, G.J. [Brookhaven National Laboratory, Upton, NY (United States)] [and others

    1995-05-01

    Post-mortem reports that human brain monoamine oxidase B (MAO B) increases in normal aging and neurodegenerative disorders due to the proliferation of MAO B-rich glial cells suggest that PET measures of MAO B may track gliosis. We have recently shown that the MAO B tracer [{sup 11}C]L-deprenyl has limited sensitivity in regions of high MAO B due to its rapid rate of trapping. This limits its utility for measuring MAO B in brain regions where MAO B is higher and/or where blood flow is low. We have recently demonstrated that [{sup 11}C]L-deprenyl-D2 has improved sensitivity in regions of high MAO B due to the deuterium isotope effect which reduces the rate of trapping. We report studies [{sup 11}C]L-deprenyl-D2 in normal human brain in 16 healthy men and women (age range 23-73) to assess tracer sensitivity, regional distribution, and reproducibility. Graphical analysis for irreversible systems was used to calculate Ki (influx constant) as an index of MAO B concentration in different brain regions. The uptake of carbon-11 in different brain regions was rapid, peaking at 5 minutes and plateauing from 30-60 minutes after an initial clearance. MAO B was highest in subcortical regions: thalamus{ge}basal ganglia>cingulate gyrus>frontal cortex=occipital cortex=cerebellum in agreement with post-mortem measurements. Ki values were highly correlated within an individual. Repeated measures at 1-4 week intervals were highly correlated (r=0.9; p=0.0001). In women (n=8: age range 23-73), Ki increased with increasing age for 8 brain regions (p < 0.04). Though men (N=8; age range 34-70) showed no correlation with age, a larger sample size is needed to adequately assess trends. In summary, the use of [{sup 11}C]L-deprenyl-D2 improves the measurement of MAO B in the human brain permitting its investigation as a positive tracer for glial cell proliferation in neurodegenerative disorders.

  4. Visualization of monoamine oxidase in human brain

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, J.S.; Volkow, N.D.; Wang, G.J.; Pappas, N.; Shea, C.; MacGregor, R.R.; Logan, J.

    1996-12-31

    Monoamine oxidase is a flavin enzyme which exists in two subtypes, MAO A and MAO B. In human brain MAO B predominates and is largely compartmentalized in cell bodies of serotonergic neurons and glia. Regional distribution of MAO B was determined by positron computed tomography with volunteers after the administration of deuterium substituted [11C]L-deprenyl. The basal ganglia and thalamus exhibited the greatest concentrations of MAO B with intermediate levels in the frontal cortex and cingulate gyrus while lowest levels were observed in the parietal and temporal cortices and cerebellum. We observed that brain MAO B increases with are in health normal subjects, however the increases were generally smaller than those revealed with post-mortem studies.

  5. Dichotomy in Hedgehog Signaling between Human Healthy Vessel and Atherosclerotic Plaques

    NARCIS (Netherlands)

    Queiroz, Karla C. S.; Bijlsma, Maarten F.; Tio, René A.; Zeebregts, Clark J.; Dunaeva, Marina; Ferreira, Carmen V.; Fuhler, Gwenny M.; Kuipers, Ernst J.; Alves, Maria M.; Rezaee, Farhad; Spek, C. Arnold; Peppelenbosch, Maikel P.

    2012-01-01

    The major cause for plaque instability in atherosclerotic disease is neoangiogenic revascularization, but the factors controlling this process remain only partly understood. Hedgehog (HH) is a morphogen with important functions in revascularization, but its function in human healthy vessel biology

  6. X-ray diffraction evidence for myelin disorder in brain from humans with Alzheimer's disease.

    Science.gov (United States)

    Chia, L S; Thompson, J E; Moscarello, M A

    1984-09-05

    Wide-angle X-ray diffraction studies revealed that the lipid phase transition temperature of myelin from brain tissue of humans with Alzheimer's disease was about 12 degrees C lower than that of normal age-matched controls, indicating differences in the physical organization of the myelin lipid bilayer. Elevated levels of malondialdehyde and conjugated diene were found in brain tissue from humans with Alzheimer's disease, indicating an increased amount of lipid peroxidation over the controls. An increase in myelin disorder and in lipid peroxidation can both be correlated with aging in human brain, but the changes in myelin from humans with Alzheimer's disease are more pronounced than in normal aging. These changes might represent severe or accelerated aging.

  7. Distribution of 5HT2A receptors in the human brain: Comparison of data in vivo and post mortem

    International Nuclear Information System (INIS)

    Forutan, F.; Estalji, S.; Beu, M.; Nikolaus, S.; Vosberg, H.; Mueller-Gaertner, H.W.; Larisch, R.; Hamacher, K.; Coenen, H.H.

    2002-01-01

    Aim: The study presented here firstly compars the distribution of the binding potential of the serotonin-5HT 2A receptor as measured in vivo with data of receptor density taken from literature. Secondly, the sensitivity of the method to detect gradual differences in receptor densities is evaluated. Methods: Positron emission tomography (PET) studies were carried out in 6 healthy volunteers using the selective serotonin-5HT 2A ligand 18 F-altanserin. The binding potential was quantified in 12 regions using Logan's graphical method and the equilibrium method. These data were compared to the distribution of receptor density as taken from literature. Results: The binding data in vivo correlated to autoradiography data (post mortem) with r = 0.83 (Pearson regression coefficient; p 18 F-altanserin and PET in healthy volunteers and the true autoradiographically determined distribution of 5HT 2A receptors in human brains. The in vivo method seems to be sensitive enough to detect changes in receptor density of more than 18%. (orig.)

  8. Physical biology of human brain development

    Directory of Open Access Journals (Sweden)

    Silvia eBudday

    2015-07-01

    Full Text Available Neurodevelopment is a complex, dynamic process that involves a precisely orchestrated sequence of genetic, environmental, biochemical, and physical events. Developmental biology and genetics have shaped our understanding of the molecular and cellular mechanisms during neurodevelopment. Recent studies suggest that physical forces play a central role in translating these cellular mechanisms into the complex surface morphology of the human brain. However, the precise impact of neuronal differentiation, migration, and connection on the physical forces during cortical folding remains unknown. Here we review the cellular mechanisms of neurodevelopment with a view towards surface morphogenesis, pattern selection, and evolution of shape. We revisit cortical folding as the instability problem of constrained differential growth in a multi-layered system. To identify the contributing factors of differential growth, we map out the timeline of neurodevelopment in humans and highlight the cellular events associated with extreme radial and tangential expansion. We demonstrate how computational modeling of differential growth can bridge the scales-from phenomena on the cellular level towards form and function on the organ level-to make quantitative, personalized predictions. Physics-based models can quantify cortical stresses, identify critical folding conditions, rationalize pattern selection, and predict gyral wavelengths and gyrification indices. We illustrate that physical forces can explain cortical malformations as emergent properties of developmental disorders. Combining biology and physics holds promise to advance our understanding of human brain development and enable early diagnostics of cortical malformations with the ultimate goal to improve treatment of neurodevelopmental disorders including epilepsy, autism spectrum disorders, and schizophrenia.

  9. Quantitative analysis of the z-spectrum using a numerically simulated look-up table: Application to the healthy human brain at 7T.

    Science.gov (United States)

    Geades, Nicolas; Hunt, Benjamin A E; Shah, Simon M; Peters, Andrew; Mougin, Olivier E; Gowland, Penny A

    2017-08-01

    To develop a method that fits a multipool model to z-spectra acquired from non-steady state sequences, taking into account the effects of variations in T1 or B1 amplitude and the results estimating the parameters for a four-pool model to describe the z-spectrum from the healthy brain. We compared measured spectra with a look-up table (LUT) of possible spectra and investigated the potential advantages of simultaneously considering spectra acquired at different saturation powers (coupled spectra) to provide sensitivity to a range of different physicochemical phenomena. The LUT method provided reproducible results in healthy controls. The average values of the macromolecular pool sizes measured in white matter (WM) and gray matter (GM) of 10 healthy volunteers were 8.9% ± 0.3% (intersubject standard deviation) and 4.4% ± 0.4%, respectively, whereas the average nuclear Overhauser effect pool sizes in WM and GM were 5% ± 0.1% and 3% ± 0.1%, respectively, and average amide proton transfer pool sizes in WM and GM were 0.21% ± 0.03% and 0.20% ± 0.02%, respectively. The proposed method demonstrated increased robustness when compared with existing methods (such as Lorentzian fitting and asymmetry analysis) while yielding fully quantitative results. The method can be adjusted to measure other parameters relevant to the z-spectrum. Magn Reson Med 78:645-655, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

  10. Noninvasive quantification of human brain antioxidant concentrations after an intravenous bolus of vitamin C

    Science.gov (United States)

    Background: Until now, antioxidant based initiatives for preventing dementia have lacked a means to detect deficiency or measure pharmacologic effect in the human brain in situ. Objective: Our objective was to apply a novel method to measure key human brain antioxidant concentrations throughout the ...

  11. Investigation of G72 (DAOA expression in the human brain

    Directory of Open Access Journals (Sweden)

    Hirsch Steven

    2008-12-01

    Full Text Available Abstract Background Polymorphisms at the G72/G30 locus on chromosome 13q have been associated with schizophrenia or bipolar disorder in more than ten independent studies. Even though the genetic findings are very robust, the physiological role of the predicted G72 protein has thus far not been resolved. Initial reports suggested G72 as an activator of D-amino acid oxidase (DAO, supporting the glutamate dysfunction hypothesis of schizophrenia. However, these findings have subsequently not been reproduced and reports of endogenous human G72 mRNA and protein expression are extremely limited. In order to better understand the function of this putative schizophrenia susceptibility gene, we attempted to demonstrate G72 mRNA and protein expression in relevant human brain regions. Methods The expression of G72 mRNA was studied by northern blotting and semi-quantitative SYBR-Green and Taqman RT-PCR. Protein expression in human tissue lysates was investigated by western blotting using two custom-made specific anti-G72 peptide antibodies. An in-depth in silico analysis of the G72/G30 locus was performed in order to try and identify motifs or regulatory elements that provide insight to G72 mRNA expression and transcript stability. Results Despite using highly sensitive techniques, we failed to identify significant levels of G72 mRNA in a variety of human tissues (e.g. adult brain, amygdala, caudate nucleus, fetal brain, spinal cord and testis human cell lines or schizophrenia/control post mortem BA10 samples. Furthermore, using western blotting in combination with sensitive detection methods, we were also unable to detect G72 protein in a number of human brain regions (including cerebellum and amygdala, spinal cord or testis. A detailed in silico analysis provides several lines of evidence that support the apparent low or absent expression of G72. Conclusion Our results suggest that native G72 protein is not normally present in the tissues that we analysed

  12. Brain Imaging of Human Sexual Response: Recent Developments and Future Directions

    OpenAIRE

    Ruesink, Gerben B; Georgiadis, Janniko R

    2017-01-01

    Purpose of Review: The purpose of this study is to provide a comprehensive summary of the latest developments in the experimental brain study of human sexuality, focusing on brain connectivity during the sexual response. Recent Findings: Stable patterns of brain activation have been established for different phases of the sexual response, especially with regard to the wanting phase, and changes in these patterns can be linked to sexual response variations, including sexual dysfunctions. From ...

  13. Brain/MINDS: brain-mapping project in Japan

    Science.gov (United States)

    Okano, Hideyuki; Miyawaki, Atsushi; Kasai, Kiyoto

    2015-01-01

    There is an emerging interest in brain-mapping projects in countries across the world, including the USA, Europe, Australia and China. In 2014, Japan started a brain-mapping project called Brain Mapping by Integrated Neurotechnologies for Disease Studies (Brain/MINDS). Brain/MINDS aims to map the structure and function of neuronal circuits to ultimately understand the vast complexity of the human brain, and takes advantage of a unique non-human primate animal model, the common marmoset (Callithrix jacchus). In Brain/MINDS, the RIKEN Brain Science Institute acts as a central institute. The objectives of Brain/MINDS can be categorized into the following three major subject areas: (i) structure and functional mapping of a non-human primate brain (the marmoset brain); (ii) development of innovative neurotechnologies for brain mapping; and (iii) human brain mapping; and clinical research. Brain/MINDS researchers are highly motivated to identify the neuronal circuits responsible for the phenotype of neurological and psychiatric disorders, and to understand the development of these devastating disorders through the integration of these three subject areas. PMID:25823872

  14. Brain/MINDS: brain-mapping project in Japan.

    Science.gov (United States)

    Okano, Hideyuki; Miyawaki, Atsushi; Kasai, Kiyoto

    2015-05-19

    There is an emerging interest in brain-mapping projects in countries across the world, including the USA, Europe, Australia and China. In 2014, Japan started a brain-mapping project called Brain Mapping by Integrated Neurotechnologies for Disease Studies (Brain/MINDS). Brain/MINDS aims to map the structure and function of neuronal circuits to ultimately understand the vast complexity of the human brain, and takes advantage of a unique non-human primate animal model, the common marmoset (Callithrix jacchus). In Brain/MINDS, the RIKEN Brain Science Institute acts as a central institute. The objectives of Brain/MINDS can be categorized into the following three major subject areas: (i) structure and functional mapping of a non-human primate brain (the marmoset brain); (ii) development of innovative neurotechnologies for brain mapping; and (iii) human brain mapping; and clinical research. Brain/MINDS researchers are highly motivated to identify the neuronal circuits responsible for the phenotype of neurological and psychiatric disorders, and to understand the development of these devastating disorders through the integration of these three subject areas.

  15. A stable and reproducible human blood-brain barrier model derived from hematopoietic stem cells.

    Directory of Open Access Journals (Sweden)

    Romeo Cecchelli

    Full Text Available The human blood brain barrier (BBB is a selective barrier formed by human brain endothelial cells (hBECs, which is important to ensure adequate neuronal function and protect the central nervous system (CNS from disease. The development of human in vitro BBB models is thus of utmost importance for drug discovery programs related to CNS diseases. Here, we describe a method to generate a human BBB model using cord blood-derived hematopoietic stem cells. The cells were initially differentiated into ECs followed by the induction of BBB properties by co-culture with pericytes. The brain-like endothelial cells (BLECs express tight junctions and transporters typically observed in brain endothelium and maintain expression of most in vivo BBB properties for at least 20 days. The model is very reproducible since it can be generated from stem cells isolated from different donors and in different laboratories, and could be used to predict CNS distribution of compounds in human. Finally, we provide evidence that Wnt/β-catenin signaling pathway mediates in part the BBB inductive properties of pericytes.

  16. Endurance training increases plasma brain-derived neurotrophic factor concentration in young healthy men.

    Science.gov (United States)

    Zoladz, J A; Pilc, A; Majerczak, J; Grandys, M; Zapart-Bukowska, J; Duda, K

    2008-12-01

    It is believed that brain derived neurotrophic factor (BDNF) plays an important role in neuronal growth, transmission, modulation and plasticity. Single bout of exercise can increase plasma BDNF concentration [BDNF](p) in humans. It was recently reported however, that elevated [BDNF](p) positively correlated with risk factors for metabolic syndrome and type 2 diabetes mellitus in middle age group of subjects. On the other hand it is well established that endurance training decreases the risk of diabetes and development of metabolic syndrome. In the present study we have examined the effect of 5 weeks of moderate intensity endurance training on the basal and the exercise induced changes in [BDNF](p) in humans. Thirteen young, healthy and physically active men (mean +/- S.E: age 22.7 +/- 0.5 yr, body height 180.2 +/- 1.7 cm, body weight 77.0 +/- 2.5 kg, V(O2max) 45.29 +/- 0.93 ml x kg-1 x min(-1)) performed a five week endurance cycling training program, composed mainly of moderate intensity bouts. Before training [BDNF]p at rest have amounted to 10.3 +/- 1.4 pg x ml(-1). No effect of a single maximal incremental cycling up to V(O2max) on its concentration was found (10.9 +/- 2.3 pg x ml(-1), P=0.74). The training resulted in a significant (P=0.01) increase in [BDNF]p at rest to 16.8 +/- 2.1 pg x ml(-1), as well as in significant (P=0.0002) exercise induced increase in the [BDNF](p) (10.9 +/- 2.3 pg x ml(-1) before training vs. 68.4 +/- 16.0 pg x ml(-1) after training). The training induced increase in resting [BDNF](p) was accompanied by a slight decrease in insulin resistance (P=0.25), calculated using the homeostatic model assessment version 2 (HOMA2-IR), amounting to 1.40 +/- 0.13 before and 1.15 +/- 0.13 after the training. Moreover, we have found that the basal [BDNF](p) in athletes (n=16) was significantly higher than in untrained subjects (n=13) (29.5 +/- 9.5 pg x ml(-1) vs. 10.3 +/- 1.4 pg x ml(-1), P=0.013). We have concluded that endurance training of

  17. Brain Insulin Resistance at the Crossroads of Metabolic and Cognitive Disorders in Humans.

    Science.gov (United States)

    Kullmann, Stephanie; Heni, Martin; Hallschmid, Manfred; Fritsche, Andreas; Preissl, Hubert; Häring, Hans-Ulrich

    2016-10-01

    Ever since the brain was identified as an insulin-sensitive organ, evidence has rapidly accumulated that insulin action in the brain produces multiple behavioral and metabolic effects, influencing eating behavior, peripheral metabolism, and cognition. Disturbances in brain insulin action can be observed in obesity and type 2 diabetes (T2D), as well as in aging and dementia. Decreases in insulin sensitivity of central nervous pathways, i.e., brain insulin resistance, may therefore constitute a joint pathological feature of metabolic and cognitive dysfunctions. Modern neuroimaging methods have provided new means of probing brain insulin action, revealing the influence of insulin on both global and regional brain function. In this review, we highlight recent findings on brain insulin action in humans and its impact on metabolism and cognition. Furthermore, we elaborate on the most prominent factors associated with brain insulin resistance, i.e., obesity, T2D, genes, maternal metabolism, normal aging, inflammation, and dementia, and on their roles regarding causes and consequences of brain insulin resistance. We also describe the beneficial effects of enhanced brain insulin signaling on human eating behavior and cognition and discuss potential applications in the treatment of metabolic and cognitive disorders. Copyright © 2016 the American Physiological Society.

  18. Human Brain Expansion during Evolution Is Independent of Fire Control and Cooking

    OpenAIRE

    Corn?lio, Alianda M.; de Bittencourt-Navarrete, Ruben E.; de Bittencourt Brum, Ricardo; Queiroz, Claudio M.; Costa, Marcos R.

    2016-01-01

    What makes humans unique? This question has fascinated scientists and philosophers for centuries and it is still a matter of intense debate. Nowadays, human brain expansion during evolution has been acknowledged to explain our empowered cognitive capabilities. The drivers for such accelerated expansion remain, however, largely unknown. In this sense, studies have suggested that the cooking of food could be a pre-requisite for the expansion of brain size in early hominins. However, this appeal...

  19. Examination of human brain tumors in situ with image-localized H-1 MR spectroscopy

    International Nuclear Information System (INIS)

    Luyten, P.R.; Segebarth, C.; Baleriaux, D.; Den Hollander, J.A.

    1987-01-01

    Human brain tumors were examined in situ by combined imaging and H-1 MR spectroscopy at 1.5 T. Water-suppressed localized H-1 MR spectra obtained from the brains of normal volunteers show resonances from lactate, N-acetyl aspartate (NAA), creatine, and choline. Several patients suffering from different brain tumors were examined, showing spectral changes in the region of 0.5-1.5 ppm; spectral editing showed that these changes were not due to lactic acid, but to lipid signals. The NAA signal was decreased in the tumors as compared with normal brain. This study shows that H-1 MR spectroscopy can monitor submillimolar changes in chemical composition of human brain tumors in situ

  20. Visual Restoration after Cataract Surgery Promotes Functional and Structural Brain Recovery

    Directory of Open Access Journals (Sweden)

    Haotian Lin

    2018-04-01

    Full Text Available Background: Visual function and brain function decline concurrently with aging. Notably, cataract patients often present with accelerated age-related decreases in brain function, but the underlying mechanisms are still unclear. Optical structures of the anterior segment of the eyes, such as the lens and cornea, can be readily reconstructed to improve refraction and vision quality. However, the effects of visual restoration on human brain function and structure remain largely unexplored. Methods: A prospective, controlled clinical trial was conducted. Twenty-six patients with bilateral age-related cataracts (ARCs who underwent phacoemulsification and intraocular lens implantation and 26 healthy controls without ARC, matched for age, sex, and education, were recruited. Visual functions (including visual acuity, visual evoke potential, and contrast sensitivity, the Mini-Mental State Examination and functional magnetic resonance imaging (including the fractional amplitude of low-frequency fluctuations and grey matter volume variation were assessed for all the participants and reexamined for ARC patients after cataract surgery. This trial was registered with ClinicalTrials.gov (NCT02644720. Findings: Compared with the healthy controls, the ARC patients presented decreased brain functionality as well as structural alterations in visual and cognitive-related brain areas preoperatively. Three months postoperatively, significant functional improvements were observed in the visual and cognitive-related brain areas of the patients. Six months postoperatively, the patients' grey matter volumes in these areas were significantly increased. Notably, both the function and structure in the visual and cognitive-related brain areas of the patients improved significantly and became comparable to those of the healthy controls 6 months postoperatively. Interpretation: We demonstrated that ocular reconstruction can functionally and structurally reverse cataract