WorldWideScience

Sample records for health monitoring studies

  1. Physical health monitoring in mental health settings: a study exploring mental health nurses' views of their role.

    Science.gov (United States)

    Mwebe, Herbert

    2017-10-01

    To explore nurses' views of their role in the screening and monitoring of the physical care needs of people with serious mental illness in a mental health service provider. There is increasing awareness through research that people with serious mental illness disproportionately experience and die early from physical health conditions. Mental health nurses are best placed as front-line workers to offer screening, monitoring and interventions; however, their views on physical care interventions are not studied often. Qualitative exploratory study. The study was carried out in a mental health inpatient centre in England. Volunteer sampling was adopted for the study with a total target sample of (n = 20) nurses from three inpatient wards. Semistructured interviews were conducted with (n = 10) registered mental health nurses who had consented to take part in the study. Inductive data analysis and theme development were guided by a thematic analytic framework. Participants shared a clear commitment regarding their role regarding physical health screening and monitoring in mental health settings. Four themes emerged as follows: features of current practice and physical health monitoring; perceived barriers to physical health monitoring; education and training needs; and strategies to improve physical health monitoring. Nurses were unequivocal in their resolve to ensure good standard physical health monitoring and screening interventions in practice. However, identified obstacles have to be addressed to ensure that physical health screening and monitoring is integrated adequately in everyday clinical activities. Achieving this would require improvements in nurses' training, and an integrated multiservice and team-working approach. Attending to the physical health needs of people with serious mental illness has been associated with multiple improvements in both mental and physical health; nurses have a vital role to play in identifying and addressing causes of poor

  2. Challenges of monitoring reproductive health services: a case study ...

    African Journals Online (AJOL)

    Challenges of monitoring reproductive health services: a case study of antenatal clinics in Kinondoni municipality, Dar Es Salaam. ... was descriptive cross sectional employing both qualitative and quantitative methods. The sample population included nurse-midwives who manage ANC clinics in Kinondoni Municipality.

  3. A STUDY ON HEALTH MONITORING SYSTEM: RECENT ADVANCEMENTS

    Directory of Open Access Journals (Sweden)

    Atika Arshad

    2014-12-01

    Full Text Available ABSTRACT: A proliferating interest has been observed over the past years in the development of an accurate system for monitoring continuous human activities in the health care sectors, especially for the elderly. This paper conducts a survey of the various techniques and methods that are proposed to monitor the movements and activities of the elderly people. These techniques promise a useful and dependable detection system to give support and lessen the medical expenses of health care for the elderly. The detection approaches are divided into five main categories: wearable device based, wireless based, ambience device based, vision based and floor sensor / electric field sensors based. These techniques have focused on the pros and cons of the existing methods for recognizing the prospective scope of research in the domain of health monitoring systems. Apart from highlighting and analyzing the features of the existing techniques, perspectives on probable future studies have been detailed. ABSTRAK: Dewasa ini, pembangunan sistem yang tepat untuk memantau aktiviti berterusan terutamanya dalam sektor kesihatan warga tua mula mendapat tempat. Kaji selidik telah dijalankan dengan pelbagai teknik dan kaedah untuk meninjau pergerakan dan aktiviti golongan warga tua. Kaedah-kaedah ini memberikan sistem pengesanan yang berguna dan dipercayai untuk memberikan sokongan serta mengurangkan kos perubatan kesihatan bagi golongan tua. Pendekatan pengesanan dibahagikan kepada lima kategori utama; alatan yang dapat dipakai, alatan tanpa wayar, alatan berdasarkan persekitaran, alatan berasaskan penglihatan dan alatan berdasarkan pengesan pada lantai / medan elektrik.  Teknik-teknik ini memfokuskan kepada pro dan kontra kaedah yang sedia ada untuk mengenalpasti skop prospektif penyelidikan dalam domain sistem pengawasan kesihatan.  Selain daripada mengetengah dan menganalisa ciri-ciri teknik yang sedia ada, perspektif kajian akan datang juga diperincikan.KEYWORDS: health

  4. Data for development in health: a case study and monitoring framework from Kazakhstan

    Science.gov (United States)

    Obermann, Konrad; Chanturidze, Tata; Richardson, Erica; Tanirbergenov, Serik; Shoranov, Marat; Nurgozhaev, Ali

    2016-01-01

    Healthcare reforms are often not coupled with a relevant and appropriate monitoring framework, leaving policymakers and the public without evidence about the implications of such reforms. Kazakhstan has embarked on a large-scale reform of its healthcare system in order to achieve Universal Health Coverage. The health-related 2020 Strategic Development Goals reflect this political ambition. In a case-study approach and on the basis of published and unpublished evidence as well as personal involvement and experience (A) the indicators in the 2020 Strategic Development Goals were assessed and (B) a ‘data-mapping’ exercise was conducted, where the WHO health system framework was used to describe the data available at present in Kazakhstan and comment on the different indicators regarding their usefulness for monitoring the current health-related 2020 Strategic Development Goals in Kazakhstan. It was concluded that the country’s current monitoring framework needs further development to track the progress and outcomes of policy implementation. The application of a modified WHO/World Bank/Global Fund health system monitoring framework was suggested to examine the implications of recent health sector reforms. Lessons drawn from the Kazakhstan experience on tailoring the suggested framework, collecting the data, and using the generated intelligence in policy development and decision-making can serve as a useful example for other middle-income countries, potentially enabling them to fast-track developments in the health sector. PMID:28588905

  5. Design of an Air Pollution Monitoring Campaign in Beijing for Application to Cohort Health Studies.

    Science.gov (United States)

    Vedal, Sverre; Han, Bin; Xu, Jia; Szpiro, Adam; Bai, Zhipeng

    2017-12-15

    No cohort studies in China on the health effects of long-term air pollution exposure have employed exposure estimates at the fine spatial scales desirable for cohort studies with individual-level health outcome data. Here we assess an array of modern air pollution exposure estimation approaches for assigning within-city exposure estimates in Beijing for individual pollutants and pollutant sources to individual members of a cohort. Issues considered in selecting specific monitoring data or new monitoring campaigns include: needed spatial resolution, exposure measurement error and its impact on health effect estimates, spatial alignment and compatibility with the cohort, and feasibility and expense. Sources of existing data largely include administrative monitoring data, predictions from air dispersion or chemical transport models and remote sensing (specifically satellite) data. New air monitoring campaigns include additional fixed site monitoring, snapshot monitoring, passive badge or micro-sensor saturation monitoring and mobile monitoring, as well as combinations of these. Each of these has relative advantages and disadvantages. It is concluded that a campaign in Beijing that at least includes a mobile monitoring component, when coupled with currently available spatio-temporal modeling methods, should be strongly considered. Such a campaign is economical and capable of providing the desired fine-scale spatial resolution for pollutants and sources.

  6. Design of an Air Pollution Monitoring Campaign in Beijing for Application to Cohort Health Studies

    Directory of Open Access Journals (Sweden)

    Sverre Vedal

    2017-12-01

    Full Text Available No cohort studies in China on the health effects of long-term air pollution exposure have employed exposure estimates at the fine spatial scales desirable for cohort studies with individual-level health outcome data. Here we assess an array of modern air pollution exposure estimation approaches for assigning within-city exposure estimates in Beijing for individual pollutants and pollutant sources to individual members of a cohort. Issues considered in selecting specific monitoring data or new monitoring campaigns include: needed spatial resolution, exposure measurement error and its impact on health effect estimates, spatial alignment and compatibility with the cohort, and feasibility and expense. Sources of existing data largely include administrative monitoring data, predictions from air dispersion or chemical transport models and remote sensing (specifically satellite data. New air monitoring campaigns include additional fixed site monitoring, snapshot monitoring, passive badge or micro-sensor saturation monitoring and mobile monitoring, as well as combinations of these. Each of these has relative advantages and disadvantages. It is concluded that a campaign in Beijing that at least includes a mobile monitoring component, when coupled with currently available spatio-temporal modeling methods, should be strongly considered. Such a campaign is economical and capable of providing the desired fine-scale spatial resolution for pollutants and sources.

  7. Augmented fish health monitoring

    International Nuclear Information System (INIS)

    Michak, P.; Rogers, R.; Amos, K.

    1991-05-01

    The Bonneville Power Administration (BPA) initiated the Augmented Fish Health Monitoring project in 1986. This project was a five year interagency project involving fish rearing agencies in the Columbia Basin. Historically, all agencies involved with fish health in the Columbia Basin were conducting various levels of fish health monitoring, pathogen screening and collection. The goals of this project were; to identify, develop and implement a standardized level of fish health methodologies, develop a common data collection and reporting format in the area of artificial production, evaluate and monitor water quality, improve communications between agencies and provide annual evaluation of fish health information for production of healthier smolts. This completion report will contain a project evaluation, review of the goals of the project, evaluation of the specific fish health analyses, an overview of highlights of the project and concluding remarks. 8 refs., 1 fig., 4 tabs

  8. [Monitoring system on prison health: feasibility and recommendations].

    Science.gov (United States)

    Develay, Aude-Emmanuelle; Verdot, Charlotte; Grémy, Isabelle

    2015-01-01

    This article presents the results of two studies designed to define the feasibility and framework of the future prison health monitoring system in France. The objective of the first study was to obtain the points of view of professionals involved in prison health and the second study was designed to assess the feasibility of using prisoner's medical files for epidemiological purposes. The point of view of various professionals was collected by questionnaire sent to 43 randomly selected prison physicians and by 22 semi-directive interviews. The feasibility study was based on analysis of the medical files of 330 randomly selected prisoners in eleven prisons chosen in order to reflect the diversity of correctional settings and prison populations. Additional interviews were conducted with the medical staff of these prison facilities. There is a consensus on the need to monitor prison health, but there are contrasting views on data collection methods (surveys or routinely collected data]. The feasibility study also showed that the implementation of a prison health monitoring system based on routinely collected data from prisoner's medical records was not feasible at the present time in France. In the light of these findings, it is recommended to initially develop a monitoring system based on regular nationwide surveys, while pursuing computerization and standardization of health data in prison.

  9. Application of near field communication for health monitoring in daily life.

    Science.gov (United States)

    Strömmer, Esko; Kaartinen, Jouni; Pärkkä, Juha; Ylisaukko-Oja, Arto; Korhonen, Ilkka

    2006-01-01

    We study the possibility of applying an emerging RFID-based communication technology, NFC (Near Field Communication), to health monitoring. We suggest that NFC is, compared to other competing technologies, a high-potential technology for short-range connectivity between health monitoring devices and mobile terminals. We propose practices to apply NFC to some health monitoring applications and study the benefits that are attainable with NFC. We compare NFC to other short-range communication technologies such as Bluetooth and IrDA, and study the possibility of improving the usability of health monitoring devices with NFC. We also introduce a research platform for technical evaluation, applicability study and application demonstrations of NFC.

  10. Promoting health equity: WHO health inequality monitoring at global and national levels

    Science.gov (United States)

    Hosseinpoor, Ahmad Reza; Bergen, Nicole; Schlotheuber, Anne

    2015-01-01

    Background Health equity is a priority in the post-2015 sustainable development agenda and other major health initiatives. The World Health Organization (WHO) has a history of promoting actions to achieve equity in health, including efforts to encourage the practice of health inequality monitoring. Health inequality monitoring systems use disaggregated data to identify disadvantaged subgroups within populations and inform equity-oriented health policies, programs, and practices. Objective This paper provides an overview of a number of recent and current WHO initiatives related to health inequality monitoring at the global and/or national level. Design We outline the scope, content, and intended uses/application of the following: Health Equity Monitor database and theme page; State of inequality: reproductive, maternal, newborn, and child health report; Handbook on health inequality monitoring: with a focus on low- and middle-income countries; Health inequality monitoring eLearning module; Monitoring health inequality: an essential step for achieving health equity advocacy booklet and accompanying video series; and capacity building workshops conducted in WHO Member States and Regions. Conclusions The paper concludes by considering how the work of the WHO can be expanded upon to promote the establishment of sustainable and robust inequality monitoring systems across a variety of health topics among Member States and at the global level. PMID:26387506

  11. Promoting health equity: WHO health inequality monitoring at global and national levels.

    Science.gov (United States)

    Hosseinpoor, Ahmad Reza; Bergen, Nicole; Schlotheuber, Anne

    2015-01-01

    Health equity is a priority in the post-2015 sustainable development agenda and other major health initiatives. The World Health Organization (WHO) has a history of promoting actions to achieve equity in health, including efforts to encourage the practice of health inequality monitoring. Health inequality monitoring systems use disaggregated data to identify disadvantaged subgroups within populations and inform equity-oriented health policies, programs, and practices. This paper provides an overview of a number of recent and current WHO initiatives related to health inequality monitoring at the global and/or national level. We outline the scope, content, and intended uses/application of the following: Health Equity Monitor database and theme page; State of inequality: reproductive, maternal, newborn, and child health report; Handbook on health inequality monitoring: with a focus on low- and middle-income countries; Health inequality monitoring eLearning module; Monitoring health inequality: an essential step for achieving health equity advocacy booklet and accompanying video series; and capacity building workshops conducted in WHO Member States and Regions. The paper concludes by considering how the work of the WHO can be expanded upon to promote the establishment of sustainable and robust inequality monitoring systems across a variety of health topics among Member States and at the global level.

  12. Promoting health equity: WHO health inequality monitoring at global and national levels

    Directory of Open Access Journals (Sweden)

    Ahmad Reza Hosseinpoor

    2015-09-01

    Full Text Available Background: Health equity is a priority in the post-2015 sustainable development agenda and other major health initiatives. The World Health Organization (WHO has a history of promoting actions to achieve equity in health, including efforts to encourage the practice of health inequality monitoring. Health inequality monitoring systems use disaggregated data to identify disadvantaged subgroups within populations and inform equity-oriented health policies, programs, and practices. Objective: This paper provides an overview of a number of recent and current WHO initiatives related to health inequality monitoring at the global and/or national level. Design: We outline the scope, content, and intended uses/application of the following: Health Equity Monitor database and theme page; State of inequality: reproductive, maternal, newborn, and child health report; Handbook on health inequality monitoring: with a focus on low- and middle-income countries; Health inequality monitoring eLearning module; Monitoring health inequality: an essential step for achieving health equity advocacy booklet and accompanying video series; and capacity building workshops conducted in WHO Member States and Regions. Conclusions: The paper concludes by considering how the work of the WHO can be expanded upon to promote the establishment of sustainable and robust inequality monitoring systems across a variety of health topics among Member States and at the global level.

  13. Comparison of remote sensing and fixed-site monitoring approaches for examining air pollution and health in a national study population

    Science.gov (United States)

    Prud'homme, Genevieve; Dobbin, Nina A.; Sun, Liu; Burnett, Richard T.; Martin, Randall V.; Davidson, Andrew; Cakmak, Sabit; Villeneuve, Paul J.; Lamsal, Lok N.; van Donkelaar, Aaron; Peters, Paul A.; Johnson, Markey

    2013-12-01

    Satellite remote sensing (RS) has emerged as a cutting edge approach for estimating ground level ambient air pollution. Previous studies have reported a high correlation between ground level PM2.5 and NO2 estimated by RS and measurements collected at regulatory monitoring sites. The current study examined associations between air pollution and adverse respiratory and allergic health outcomes using multi-year averages of NO2 and PM2.5 from RS and from regulatory monitoring. RS estimates were derived using satellite measurements from OMI, MODIS, and MISR instruments. Regulatory monitoring data were obtained from Canada's National Air Pollution Surveillance Network. Self-reported prevalence of doctor-diagnosed asthma, current asthma, allergies, and chronic bronchitis were obtained from the Canadian Community Health Survey (a national sample of individuals 12 years of age and older). Multi-year ambient pollutant averages were assigned to each study participant based on their six digit postal code at the time of health survey, and were used as a marker for long-term exposure to air pollution. RS derived estimates of NO2 and PM2.5 were associated with 6-10% increases in respiratory and allergic health outcomes per interquartile range (3.97 μg m-3 for PM2.5 and 1.03 ppb for NO2) among adults (aged 20-64) in the national study population. Risk estimates for air pollution and respiratory/allergic health outcomes based on RS were similar to risk estimates based on regulatory monitoring for areas where regulatory monitoring data were available (within 40 km of a regulatory monitoring station). RS derived estimates of air pollution were also associated with adverse health outcomes among participants residing outside the catchment area of the regulatory monitoring network (p health among participants living outside the catchment area for regulatory monitoring suggest that RS can provide useful estimates of long-term ambient air pollution in epidemiologic studies. This is

  14. Scoping review: national monitoring frameworks for social determinants of health and health equity

    Directory of Open Access Journals (Sweden)

    Leo Pedrana

    2016-02-01

    Full Text Available Background: The strategic importance of monitoring social determinants of health (SDH and health equity and inequity has been a central focus in global discussions around the 2011 Rio Political Declaration on SDH and the Millennium Development Goals. This study is part of the World Health Organization (WHO equity-oriented analysis of linkages between health and other sectors (EQuAL project, which aims to define a framework for monitoring SDH and health equity. Objectives: This review provides a global summary and analysis of the domains and indicators that have been used in recent studies covering the SDH. These studies are considered here within the context of indicators proposed by the WHO EQuAL project. The objectives are as follows: to describe the range of international and national studies and the types of indicators most frequently used; report how they are used in causal explanation of the SDH; and identify key priorities and challenges reported in current research for national monitoring of the SDH. Design: We conducted a scoping review of published SDH studies in the PubMed® database to obtain evidence of socio-economic indicators. We evaluated, selected, and extracted data from national scale studies published from 2004 to 2014. The research included papers published in English, Italian, French, Portuguese, and Spanish. Results: The final sample consisted of 96 articles. SDH monitoring is well reported in the scientific literature independent of the economic level of the country and magnitude of deprivation in population groups. The research methods were mostly quantitative and many papers used multilevel and multivariable statistical analyses and indexes to measure health inequalities and SDH. In addition to the usual economic indicators, a high number of socio-economic indicators were used. The indicators covered a broad range of social dimensions, which were given consideration within and across different social groups. Many

  15. Scoping review: national monitoring frameworks for social determinants of health and health equity.

    Science.gov (United States)

    Pedrana, Leo; Pamponet, Marina; Walker, Ruth; Costa, Federico; Rasella, Davide

    2016-01-01

    The strategic importance of monitoring social determinants of health (SDH) and health equity and inequity has been a central focus in global discussions around the 2011 Rio Political Declaration on SDH and the Millennium Development Goals. This study is part of the World Health Organization (WHO) equity-oriented analysis of linkages between health and other sectors (EQuAL) project, which aims to define a framework for monitoring SDH and health equity. This review provides a global summary and analysis of the domains and indicators that have been used in recent studies covering the SDH. These studies are considered here within the context of indicators proposed by the WHO EQuAL project. The objectives are as follows: to describe the range of international and national studies and the types of indicators most frequently used; report how they are used in causal explanation of the SDH; and identify key priorities and challenges reported in current research for national monitoring of the SDH. We conducted a scoping review of published SDH studies in the PubMed(®) database to obtain evidence of socio-economic indicators. We evaluated, selected, and extracted data from national scale studies published from 2004 to 2014. The research included papers published in English, Italian, French, Portuguese, and Spanish. The final sample consisted of 96 articles. SDH monitoring is well reported in the scientific literature independent of the economic level of the country and magnitude of deprivation in population groups. The research methods were mostly quantitative and many papers used multilevel and multivariable statistical analyses and indexes to measure health inequalities and SDH. In addition to the usual economic indicators, a high number of socio-economic indicators were used. The indicators covered a broad range of social dimensions, which were given consideration within and across different social groups. Many indicators included in the WHO EQuAL framework were not

  16. Acceptance by laypersons and medical professionals of the personalized eHealth platform, eHealthMonitor.

    Science.gov (United States)

    Griebel, Lena; Kolominsky-Rabas, Peter; Schaller, Sandra; Siudyka, Jakub; Sierpinski, Radoslaw; Papapavlou, Dimitrios; Simeonidou, Aliki; Prokosch, Hans-Ulrich; Sedlmayr, Martin

    2017-09-01

    Often, eHealth services are not accepted because of factors such as eHealth literacy or trust. Within this study, eHealthMonitor was evaluated in three European countries (Germany, Greece, and Poland) by medical professionals and laypersons with respect to numerous acceptance factors. Questionnaires were created on the basis of factors from literature and with the help of scales which have already been validated. A qualitative survey was conducted in Germany, Poland, and Greece. The eHealth literacy of all participants was medium/high. Laypersons mostly agreed that they could easily become skillful with eHealthMonitor and that other people thought that they should use eHealthMonitor. Amongst medical professionals, a large number were afraid that eHealthMonitor could violate their privacy or the privacy of their patients. Overall, the participants thought that eHealthMonitor was a good concept and that they would use it. The main hindrances to the use of eHealthMonitor were found in trust issues including data privacy. In the future, more research on the linkage of all measured factors is needed, for example, to address the question of whether highly educated people tend to mistrust eHealth information more than people with lower levels of education.

  17. Lunar Health Monitor (LHM)

    Science.gov (United States)

    Lisy, Frederick J.

    2015-01-01

    Orbital Research, Inc., has developed a low-profile, wearable sensor suite for monitoring astronaut health in both intravehicular and extravehicular activities. The Lunar Health Monitor measures respiration, body temperature, electrocardiogram (EKG) heart rate, and other cardiac functions. Orbital Research's dry recording electrode is central to the innovation and can be incorporated into garments, eliminating the need for conductive pastes, adhesives, or gels. The patented dry recording electrode has been approved by the U.S. Food and Drug Administration. The LHM is easily worn under flight gear or with civilian clothing, making the system completely versatile for applications where continuous physiological monitoring is needed. During Phase II, Orbital Research developed a second-generation LHM that allows sensor customization for specific monitoring applications and anatomical constraints. Evaluations included graded exercise tests, lunar mission task simulations, functional battery tests, and resting measures. The LHM represents the successful integration of sensors into a wearable platform to capture long-duration and ambulatory physiological markers.

  18. Metabolic monitoring in New Zealand district health board mental health services.

    Science.gov (United States)

    Staveley, Aimee; Soosay, Ian; O'Brien, Anthony J

    2017-11-10

    To audit New Zealand district health boards' (DHBs) metabolic monitoring policies in relation to consumers prescribed second-generation antipsychotic medications using a best practice guideline. Metabolic monitoring policies from DHBs and one private clinic were analysed in relation to a best practice standard developed from the current literature and published guidelines relevant to metabolic syndrome. Fourteen of New Zealand's 20 DHBs currently have metabolic monitoring policies for consumers prescribed antipsychotic medication. Two of those policies are consistent with the literature-based guideline. Eight policies include actions to be taken when consumers meet criteria for metabolic syndrome. Four DHBs have systems for measuring their rates of metabolic monitoring. There is no consensus on who is clinically responsible for metabolic monitoring. Metabolic monitoring by mental health services in New Zealand reflects international experience that current levels of monitoring are low and policies are not always in place. Collaboration across the mental health and primary care sectors together with the adoption of a consensus guideline is needed to improve rates of monitoring and reduce current rates of physical health morbidities.

  19. National health inequality monitoring: current challenges and opportunities.

    Science.gov (United States)

    Hosseinpoor, Ahmad Reza; Bergen, Nicole; Schlotheuber, Anne; Boerma, Ties

    National health inequality monitoring needs considerably more investment to realize equity-oriented health improvements in countries, including advancement towards the Sustainable Development Goals. Following an overview of national health inequality monitoring and the associated resource requirements, we highlight challenges that countries may encounter when setting up, expanding or strengthening national health inequality monitoring systems, and discuss opportunities and key initiatives that aim to address these challenges. We provide specific proposals on what is needed to ensure that national health inequality monitoring systems are harnessed to guide the reduction of health inequalities.

  20. Comparison of Remote Sensing and Fixed-Site Monitoring Approaches for Examining Air Pollution and Health in a National Study Population

    Science.gov (United States)

    Prud'homme, Genevieve; Dobbin, Nina A.; Sun, Liu; Burnet, Richard T.; Martin, Randall V.; Davidson, Andrew; Cakmak, Sabit; Villeneuve, Paul J.; Lamsal, Lok N.; vanDonkelaar, Aaron; hide

    2013-01-01

    Satellite remote sensing (RS) has emerged as a cutting edge approach for estimating ground level ambient air pollution. Previous studies have reported a high correlation between ground level PM2.5 and NO2 estimated by RS and measurements collected at regulatory monitoring sites. The current study examined associations between air pollution and adverse respiratory and allergic health outcomes using multi-year averages of NO2 and PM2.5 from RS and from regulatory monitoring. RS estimates were derived using satellite measurements from OMI, MODIS, and MISR instruments. Regulatory monitoring data were obtained from Canada's National Air Pollution Surveillance Network. Self-reported prevalence of doctor-diagnosed asthma, current asthma, allergies, and chronic bronchitis were obtained from the Canadian Community Health Survey (a national sample of individuals 12 years of age and older). Multi-year ambient pollutant averages were assigned to each study participant based on their six digit postal code at the time of health survey, and were used as a marker for long-term exposure to air pollution. RS derived estimates of NO2 and PM2.5 were associated with 6e10% increases in respiratory and allergic health outcomes per interquartile range (3.97 mg m3 for PM2.5 and 1.03 ppb for NO2) among adults (aged 20e64) in the national study population. Risk estimates for air pollution and respiratory/ allergic health outcomes based on RS were similar to risk estimates based on regulatory monitoring for areas where regulatory monitoring data were available (within 40 km of a regulatory monitoring station). RS derived estimates of air pollution were also associated with adverse health outcomes among participants residing outside the catchment area of the regulatory monitoring network (p < 0.05).

  1. Lunar Health Monitor, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — During the Phase II Lunar Health Monitor program, Orbital Research will develop a second generation wearable sensor suite for astronaut physiologic monitoring. The...

  2. Security And Privacy Issues in Health Monitoring Systems: eCare@Home Case Study

    DEFF Research Database (Denmark)

    Wearing, Thomas; Dragoni, Nicola

    2016-01-01

    Automated systems for monitoring elderly people in their home are becoming more and more common. Indeed, an increasing number of home sensor networks for healthcare can be found in the recent literature, indicating a clear research direction in smart homes for health-care. Although the huge amount...... of sensitive data these systems deal with and expose to the external world, security and privacy issues are surpris-ingly not taken into consideration. The aim of this paper is to raise some key security and privacy issues that home health monitor systems should face with. The analysis is based on a real world...... monitoring sensor network for healthcare built in the context of the eCare@Home project....

  3. Hybrid Modeling Improves Health and Performance Monitoring

    Science.gov (United States)

    2007-01-01

    Scientific Monitoring Inc. was awarded a Phase I Small Business Innovation Research (SBIR) project by NASA's Dryden Flight Research Center to create a new, simplified health-monitoring approach for flight vehicles and flight equipment. The project developed a hybrid physical model concept that provided a structured approach to simplifying complex design models for use in health monitoring, allowing the output or performance of the equipment to be compared to what the design models predicted, so that deterioration or impending failure could be detected before there would be an impact on the equipment's operational capability. Based on the original modeling technology, Scientific Monitoring released I-Trend, a commercial health- and performance-monitoring software product named for its intelligent trending, diagnostics, and prognostics capabilities, as part of the company's complete ICEMS (Intelligent Condition-based Equipment Management System) suite of monitoring and advanced alerting software. I-Trend uses the hybrid physical model to better characterize the nature of health or performance alarms that result in "no fault found" false alarms. Additionally, the use of physical principles helps I-Trend identify problems sooner. I-Trend technology is currently in use in several commercial aviation programs, and the U.S. Air Force recently tapped Scientific Monitoring to develop next-generation engine health-management software for monitoring its fleet of jet engines. Scientific Monitoring has continued the original NASA work, this time under a Phase III SBIR contract with a joint NASA-Pratt & Whitney aviation security program on propulsion-controlled aircraft under missile-damaged aircraft conditions.

  4. System health monitoring

    International Nuclear Information System (INIS)

    Reneke, J.A.; Fryer, M.O.

    1995-01-01

    Well designed large systems include many instrument taking data. These data are used in a variety of ways. They are used to control the system and its components, to monitor system and component health, and often for historical or financial purposes. This paper discusses a new method of using data from low level instrumentation to monitor system and component health. The method uses the covariance of instrument outputs to calculate a measure of system change. The method involves no complicated modeling since it is not a parameter estimation algorithm. The method is iterative and can be implemented on a computer in real time. Examples are presented for a metal lathe and a high efficiency particulate air (HEPA) filter. It is shown that the proposed method is quite sensitive to system changes such as wear out and failure. The method is useful for low level system diagnostics and fault detection

  5. A pilot study on diagnostic sensor networks for structure health monitoring.

    Science.gov (United States)

    2013-08-01

    The proposal was submitted in an effort to obtain some preliminary results on using sensor networks for real-time structure health : monitoring. The proposed work has twofold: to develop and validate an elective algorithm for the diagnosis of coupled...

  6. Networked Biomedical System for Ubiquitous Health Monitoring

    Directory of Open Access Journals (Sweden)

    Arjan Durresi

    2008-01-01

    Full Text Available We propose a distributed system that enables global and ubiquitous health monitoring of patients. The biomedical data will be collected by wearable health diagnostic devices, which will include various types of sensors and will be transmitted towards the corresponding Health Monitoring Centers. The permanent medical data of patients will be kept in the corresponding Home Data Bases, while the measured biomedical data will be sent to the Visitor Health Monitor Center and Visitor Data Base that serves the area of present location of the patient. By combining the measured biomedical data and the permanent medical data, Health Medical Centers will be able to coordinate the needed actions and help the local medical teams to make quickly the best decisions that could be crucial for the patient health, and that can reduce the cost of health service.

  7. Privacy by design in personal health monitoring.

    Science.gov (United States)

    Nordgren, Anders

    2015-06-01

    The concept of privacy by design is becoming increasingly popular among regulators of information and communications technologies. This paper aims at analysing and discussing the ethical implications of this concept for personal health monitoring. I assume a privacy theory of restricted access and limited control. On the basis of this theory, I suggest a version of the concept of privacy by design that constitutes a middle road between what I call broad privacy by design and narrow privacy by design. The key feature of this approach is that it attempts to balance automated privacy protection and autonomously chosen privacy protection in a way that is context-sensitive. In personal health monitoring, this approach implies that in some contexts like medication assistance and monitoring of specific health parameters one single automatic option is legitimate, while in some other contexts, for example monitoring in which relatives are receivers of health-relevant information rather than health care professionals, a multi-choice approach stressing autonomy is warranted.

  8. Physical health care monitoring for people with serious mental illness.

    Science.gov (United States)

    Tosh, Graeme; Clifton, Andrew V; Xia, Jun; White, Margueritte M

    2014-01-17

    Current guidance suggests that we should monitor the physical health of people with serious mental illness, and there has been a significant financial investment over recent years to provide this. To assess the effectiveness of physical health monitoring, compared with standard care for people with serious mental illness. We searched the Cochrane Schizophrenia Group Trials Register (October 2009, update in October 2012), which is based on regular searches of CINAHL, EMBASE, MEDLINE and PsycINFO. All randomised clinical trials focusing on physical health monitoring versus standard care, or comparing i) self monitoring versus monitoring by a healthcare professional; ii) simple versus complex monitoring; iii) specific versus non-specific checks; iv) once only versus regular checks; or v) different guidance materials. Initially, review authors (GT, AC, SM) independently screened the search results and identified three studies as possibly fulfilling the review's criteria. On examination, however, all three were subsequently excluded. Forty-two additional citations were identified in October 2012 and screened by two review authors (JX and MW), 11 of which underwent full screening. No relevant randomised trials which assess the effectiveness of physical health monitoring in people with serious mental illness have been completed. We identified one ongoing study. There is still no evidence from randomised trials to support or refute current guidance and practice. Guidance and practice are based on expert consensus, clinical experience and good intentions rather than high quality evidence.

  9. Forest health monitoring: 2008 national technical report

    Science.gov (United States)

    Kevin M. Potter; Barbara L. Conkling

    2012-01-01

    The Forest Health Monitoring (FHM) Program’s annual national technical report has three objectives: (1) to present forest health status and trends from a national or a multi-State regional perspective using a variety of sources, (2) to introduce new techniques for analyzing forest health data, and (3) to report results of recently completed evaluation monitoring...

  10. Monitoring 'monitoring' and evaluating 'evaluation': an ethical framework for monitoring and evaluation in public health.

    Science.gov (United States)

    Gopichandran, Vijayaprasad; Indira Krishna, Anil Kumar

    2013-01-01

    Monitoring and evaluation (M&E) is an essential part of public health programmes. Since M&E is the backbone of public health programmes, ethical considerations are important in their conduct. Some of the key ethical considerations are avoiding conflicts of interest, maintaining independence of judgement, maintaining fairness, transparency, full disclosure, privacy and confidentiality, respect, responsibility, accountability, empowerment and sustainability. There are several ethical frameworks in public health, but none focusing on the monitoring and evaluation process. There is a need to institutionalise the ethical review of M&E proposals. A theoretical framework for ethical considerations is proposed in this paper. This proposed theoretical framework can act as the blueprint for building the capacity of ethics committees to review M&E proposals. A case study is discussed in this context. After thorough field testing, this practical and field-based ethical framework can be widely used by donor agencies, M&E teams, institutional review boards and ethics committees.

  11. Design of wearable health monitoring device

    Science.gov (United States)

    Devara, Kresna; Ramadhanty, Savira; Abuzairi, Tomy

    2018-02-01

    Wearable smart health monitoring devices have attracted considerable attention in both research community and industry. Some of the causes are the increasing healthcare costs, along with the growing technology. To address this demand, in this paper, design and evaluation of wearable health monitoring device integrated with smartphone were presented. This device was designed for patients in need of constant health monitoring. The performance of the proposed design has been tested by conducting measurement once in 2 minutes for 10 minutes to obtain heart rate and body temperature data. The comparation between data measured by the proposed device and that measured by the reference device yields only an average error of 1.45% for heart rate and 1.04% for body temperature.

  12. Health Monitoring System Technology Assessments: Cost Benefits Analysis

    Science.gov (United States)

    Kent, Renee M.; Murphy, Dennis A.

    2000-01-01

    The subject of sensor-based structural health monitoring is very diverse and encompasses a wide range of activities including initiatives and innovations involving the development of advanced sensor, signal processing, data analysis, and actuation and control technologies. In addition, it embraces the consideration of the availability of low-cost, high-quality contributing technologies, computational utilities, and hardware and software resources that enable the operational realization of robust health monitoring technologies. This report presents a detailed analysis of the cost benefit and other logistics and operational considerations associated with the implementation and utilization of sensor-based technologies for use in aerospace structure health monitoring. The scope of this volume is to assess the economic impact, from an end-user perspective, implementation health monitoring technologies on three structures. It specifically focuses on evaluating the impact on maintaining and supporting these structures with and without health monitoring capability.

  13. Smart health monitoring systems: an overview of design and modeling.

    Science.gov (United States)

    Baig, Mirza Mansoor; Gholamhosseini, Hamid

    2013-04-01

    Health monitoring systems have rapidly evolved during the past two decades and have the potential to change the way health care is currently delivered. Although smart health monitoring systems automate patient monitoring tasks and, thereby improve the patient workflow management, their efficiency in clinical settings is still debatable. This paper presents a review of smart health monitoring systems and an overview of their design and modeling. Furthermore, a critical analysis of the efficiency, clinical acceptability, strategies and recommendations on improving current health monitoring systems will be presented. The main aim is to review current state of the art monitoring systems and to perform extensive and an in-depth analysis of the findings in the area of smart health monitoring systems. In order to achieve this, over fifty different monitoring systems have been selected, categorized, classified and compared. Finally, major advances in the system design level have been discussed, current issues facing health care providers, as well as the potential challenges to health monitoring field will be identified and compared to other similar systems.

  14. Health disparities monitoring in the U.S.: lessons for monitoring efforts in Israel and other countries.

    Science.gov (United States)

    Abu-Saad, Kathleen; Avni, Shlomit; Kalter-Leibovici, Ofra

    2018-02-28

    Health disparities are a persistent problem in many high-income countries. Health policymakers recognize the need to develop systematic methods for documenting and tracking these disparities in order to reduce them. The experience of the U.S., which has a well-established health disparities monitoring infrastructure, provides useful insights for other countries. This article provides an in-depth review of health disparities monitoring in the U.S. Lessons of potential relevance for other countries include: 1) the integration of health disparities monitoring in population health surveillance, 2) the role of political commitment, 3) use of monitoring as a feedback loop to inform future directions, 4) use of monitoring to identify data gaps, 5) development of extensive cross-departmental cooperation, and 6) exploitation of digital tools for monitoring and reporting. Using Israel as a case in point, we provide a brief overview of the healthcare and health disparities landscape in Israel, and examine how the lessons from the U.S. experience might be applied in the Israeli context. The U.S. model of health disparities monitoring provides useful lessons for other countries with respect to documentation of health disparities and tracking of progress made towards their elimination. Given the persistence of health disparities both in the U.S. and Israel, there is a need for monitoring systems to expand beyond individual- and healthcare system-level factors, to incorporate social and environmental determinants of health as health indicators/outcomes.

  15. [Monitoring the use of health-related quality of life measurements in Korean studies of patients with diabetes].

    Science.gov (United States)

    Lee, Eun-Hyun; Kim, Chun-Ja; Cho, Soo-Yeon; Chae, Hyun-Ju; Lee, Sunhee; Kim, Eun Jung

    2011-08-01

    The purpose of this study was to monitor the use of health-related quality of life (HRQOL) instruments in Korean studies of patients with diabetes. Of 86 Korean studies initially identified, 17 studies met the inclusion criteria. For each study, a description of the instrument and its psychometric properties were monitored by the Instrument Review Criteria of the Scientific Advisory Committee. These criteria include conceptual definition, attributes, taxonomy, reliability, validity, responsiveness, administrative mode, and language adaptations. Five generic and one diabetes specific type questionnaires were identified from the 17 studies. Of those studies, conceptual definitions with the attributes of multi-dimension and subjectiveness were provided for 11 studies (71%). In the analysis of conceptual taxonomy, only 6 studies were classified as HRQOL, while other studies were done as QOL or health status. In monitoring of psychometric properties, reliability, validity, and responsiveness were reported for 88.2%, 64.7%, and 29.4%, respectively. One generic instrument was developed with a Korean population, while the other instruments were developed for Western countries. However, language adaptations were performed for only a few of the instruments. The psychometric properties including responsiveness of most instruments warrants further research, and the development of diabetes-specific HRQOL measurements should be sought to facilitate intervention outcomes across Korean studies of patients with diabetes.

  16. Smart Materials in Structural Health Monitoring, Control and Biomechanics

    CERN Document Server

    Soh, Chee-Kiong; Bhalla, Suresh

    2012-01-01

    "Smart Materials in Structural Health Monitoring, Control and Biomechanics" presents the latest developments in structural health monitoring, vibration control and biomechanics using smart materials. The book mainly focuses on piezoelectric, fibre optic and ionic polymer metal composite materials. It introduces concepts from the very basics and leads to advanced modelling (analytical/ numerical), practical aspects (including software/ hardware issues) and case studies spanning civil, mechanical and aerospace structures, including bridges, rocks and underground structures. This book is intended for practicing engineers, researchers from academic and R&D institutions and postgraduate students in the fields of smart materials and structures, structural health monitoring, vibration control and biomedical engineering. Professor Chee-Kiong Soh and Associate Professor Yaowen Yang both work at the School of Civil and Environmental Engineering, Nanyang Technological University, Singapore. Dr. Suresh Bhalla is an A...

  17. System Identification of Wind Turbines for Structural Health Monitoring

    DEFF Research Database (Denmark)

    Perisic, Nevena

    Structural health monitoring is a multi-disciplinary engineering field that should allow the actual wind turbine maintenance programmes to evolve to the next level, hence increasing safety and reliability and decreasing turbines downtime. The main idea is to have a sensing system on the structure...... cases are considered, two practical problems from the wind industry are studied, i.e. monitoring of the gearbox shaft torque and the tower root bending moments. The second part of the thesis is focused on the influence of friction on the health of the wind turbine and on the nonlinear identification...... that monitors the system responses and notifies the operator when damages or degradations have been detected. However, some of the response signals that contain important information about the health of the wind turbine components cannot be directly measured, or measuring them is highly complex and costly...

  18. Integrating structural health and condition monitoring

    DEFF Research Database (Denmark)

    May, Allan; Thöns, Sebastian; McMillan, David

    2015-01-01

    window’ allowing for the possible detection of faults up to 6 months in advance. The SHM system model uses a reduction in the probability of failure factor to account for lower modelling uncertainties. A case study is produced that shows a reduction in operating costs and also a reduction in risk......There is a large financial incentive to minimise operations and maintenance (O&M) costs for offshore wind power by optimising the maintenance plan. The integration of condition monitoring (CM) and structural health monitoring (SHM) may help realise this. There is limited work on the integration...

  19. The use of the road to health card in monitoring child health | Tarwa ...

    African Journals Online (AJOL)

    The use of the road to health card in monitoring child health. ... The Road to Health Chart (RTHC) provides a simple, cheap, practical and convenient method of monitoring child health. The RTHC could assist ... Conclusions: Many parents believe that the RTHC is only required for Well-baby-clinic visits, not for consultations.

  20. Health monitoring of civil structures using fiber optic sensors

    International Nuclear Information System (INIS)

    Varma, Veto; Kumar, Praveen; Charan, J.J.; Reddy, G.R.; Vaze, K.K.; Kushwaha, H.S.

    2003-08-01

    During the lifetime of the reactor, the civil structure is subjected to many operational and environmental loads. Hence it is increasingly important to monitor the conditions of the structure and insure its safety and integrity. The conventional gauges have proved to be not sufficiently catering the problem of long term health monitoring of the structure because of its many limitations. Hence it is mandatory to develop a technique for the above purpose. Present study deals with the application of Fiber optic sensors (EFPI strain Gauges) in the civil structure for its health monitoring. Various experiments were undertaken and suitability of sensors was checked. A technique to embed the optical sensor inside the concrete is successfully developed and tested. (author)

  1. Vibration-based structural health monitoring of harbor caisson structure

    Science.gov (United States)

    Lee, So-Young; Lee, So-Ra; Kim, Jeong-Tae

    2011-04-01

    This study presents vibration-based structural health monitoring method in foundation-structure interface of harbor caisson structure. In order to achieve the objective, the following approaches are implemented. Firstly, vibration-based response analysis method is selected and structural health monitoring (SHM) technique is designed for harbor caisson structure. Secondly, the performance of designed SHM technique for harbor structure is examined by FE analysis. Finally, the applicability of designed SHM technique for harbor structure is evaluated by dynamic tests on a lab-scaled caisson structure.

  2. Health Monitor for Multitasking, Safety-Critical, Real-Time Software

    Science.gov (United States)

    Zoerner, Roger

    2011-01-01

    Health Manager can detect Bad Health prior to a failure occurring by periodically monitoring the application software by looking for code corruption errors, and sanity-checking each critical data value prior to use. A processor s memory can fail and corrupt the software, or the software can accidentally write to the wrong address and overwrite the executing software. This innovation will continuously calculate a checksum of the software load to detect corrupted code. This will allow a system to detect a failure before it happens. This innovation monitors each software task (thread) so that if any task reports "bad health," or does not report to the Health Manager, the system is declared bad. The Health Manager reports overall system health to the outside world by outputting a square wave signal. If the square wave stops, this indicates that system health is bad or hung and cannot report. Either way, "bad health" can be detected, whether caused by an error, corrupted data, or a hung processor. A separate Health Monitor Task is started and run periodically in a loop that starts and stops pending on a semaphore. Each monitored task registers with the Health Manager, which maintains a count for the task. The registering task must indicate if it will run more or less often than the Health Manager. If the task runs more often than the Health Manager, the monitored task calls a health function that increments the count and verifies it did not go over max-count. When the periodic Health Manager runs, it verifies that the count did not go over the max-count and zeroes it. If the task runs less often than the Health Manager, the periodic Health Manager will increment the count. The monitored task zeroes the count, and both the Health Manager and monitored task verify that the count did not go over the max-count.

  3. Mobile health monitoring system for community health workers

    CSIR Research Space (South Africa)

    Sibiya, G

    2014-09-01

    Full Text Available of hypertension as it provides real time information and eliminates the need to visit a healthcare facility to take blood pressure readings. Our proposed mobile health monitoring system enables faster computerization of data that has been recorded... pressure, heart rate and glucose readings. These reading closely related to most common NCDs. D. Feedback to health worker and the subject of care Community health workers are often not professionally trained on health. As a result they are not expected...

  4. Wearable Sensors for Remote Health Monitoring.

    Science.gov (United States)

    Majumder, Sumit; Mondal, Tapas; Deen, M Jamal

    2017-01-12

    Life expectancy in most countries has been increasing continually over the several few decades thanks to significant improvements in medicine, public health, as well as personal and environmental hygiene. However, increased life expectancy combined with falling birth rates are expected to engender a large aging demographic in the near future that would impose significant  burdens on the socio-economic structure of these countries. Therefore, it is essential to develop cost-effective, easy-to-use systems for the sake of elderly healthcare and well-being. Remote health monitoring, based on non-invasive and wearable sensors, actuators and modern communication and information technologies offers an efficient and cost-effective solution that allows the elderly to continue to live in their comfortable home environment instead of expensive healthcare facilities. These systems will also allow healthcare personnel to monitor important physiological signs of their patients in real time, assess health conditions and provide feedback from distant facilities. In this paper, we have presented and compared several low-cost and non-invasive health and activity monitoring systems that were reported in recent years. A survey on textile-based sensors that can potentially be used in wearable systems is also presented. Finally, compatibility of several communication technologies as well as future perspectives and research challenges in remote monitoring systems will be discussed.

  5. Wearable Sensors for Remote Health Monitoring

    Directory of Open Access Journals (Sweden)

    Sumit Majumder

    2017-01-01

    Full Text Available Life expectancy in most countries has been increasing continually over the several few decades thanks to significant improvements in medicine, public health, as well as personal and environmental hygiene. However, increased life expectancy combined with falling birth rates are expected to engender a large aging demographic in the near future that would impose significant  burdens on the socio-economic structure of these countries. Therefore, it is essential to develop cost-effective, easy-to-use systems for the sake of elderly healthcare and well-being. Remote health monitoring, based on non-invasive and wearable sensors, actuators and modern communication and information technologies offers an efficient and cost-effective solution that allows the elderly to continue to live in their comfortable home environment instead of expensive healthcare facilities. These systems will also allow healthcare personnel to monitor important physiological signs of their patients in real time, assess health conditions and provide feedback from distant facilities. In this paper, we have presented and compared several low-cost and non-invasive health and activity monitoring systems that were reported in recent years. A survey on textile-based sensors that can potentially be used in wearable systems is also presented. Finally, compatibility of several communication technologies as well as future perspectives and research challenges in remote monitoring systems will be discussed.

  6. Acoustic Techniques for Structural Health Monitoring

    Science.gov (United States)

    Frankenstein, B.; Augustin, J.; Hentschel, D.; Schubert, F.; Köhler, B.; Meyendorf, N.

    2008-02-01

    Future safety and maintenance strategies for industrial components and vehicles are based on combinations of monitoring systems that are permanently attached to or embedded in the structure, and periodic inspections. The latter belongs to conventional nondestructive evaluation (NDE) and can be enhanced or partially replaced by structural health monitoring systems. However, the main benefit of this technology for the future will consist of systems that can be differently designed based on improved safety philosophies, including continuous monitoring. This approach will increase the efficiency of inspection procedures at reduced inspection times. The Fraunhofer IZFP Dresden Branch has developed network nodes, miniaturized transmitter and receiver systems for active and passive acoustical techniques and sensor systems that can be attached to or embedded into components or structures. These systems have been used to demonstrate intelligent sensor networks for the monitoring of aerospace structures, railway systems, wind energy generators, piping system and other components. Material discontinuities and flaws have been detected and monitored during full scale fatigue testing. This paper will discuss opportunities and future trends in nondestructive evaluation and health monitoring based on new sensor principles and advanced microelectronics. It will outline various application examples of monitoring systems based on acoustic techniques and will indicate further needs for research and development.

  7. [Use of routine data from statutory health insurances for federal health monitoring purposes].

    Science.gov (United States)

    Ohlmeier, C; Frick, J; Prütz, F; Lampert, T; Ziese, T; Mikolajczyk, R; Garbe, E

    2014-04-01

    Federal health monitoring deals with the state of health and the health-related behavior of populations and is used to inform politics. To date, the routine data from statutory health insurances (SHI) have rarely been used for federal health monitoring purposes. SHI routine data enable analyses of disease frequency, risk factors, the course of the disease, the utilization of medical services, and mortality rates. The advantages offered by SHI routine data regarding federal health monitoring are the intersectoral perspective and the nearly complete absence of recall and selection bias in the respective population. Further, the large sample sizes and the continuous collection of the data allow reliable descriptions of the state of health of the insurants, even in cases of multiple stratification. These advantages have to be weighed against disadvantages linked to the claims nature of the data and the high administrative hurdles when requesting the use of SHI routine data. Particularly in view of the improved availability of data from all SHI insurants for research institutions in the context of the "health-care structure law", SHI routine data are an interesting data source for federal health monitoring purposes.

  8. Remote mood monitoring for adults with bipolar disorder: An explorative study of compliance and impact on mental health service use and costs.

    Science.gov (United States)

    Simon, J; Budge, K; Price, J; Goodwin, G M; Geddes, J R

    2017-09-01

    Remote monitoring of mood disorders may be an effective and low resource option for patient follow-up, but relevant evidence remains very limited. This study explores real-life compliance and health services impacts of mood monitoring among patients with bipolar disorder in the UK. Patients with a diagnosis of bipolar disorder who were registered users of the True Colours monitoring system for at least 12months at study assessment were included in this retrospective cohort study (n=79). Compliance was measured as the proportion of valid depression and mania scale messages received in comparison to their expected numbers over the first 12months of monitoring. Mental health service use data were extracted from case notes, costed using national unit costs, and compared 12months before (pre-TC period) and 12months after (TC period) patients' engagement with monitoring. Associations with relevant patient factors were investigated in a multiple regression model. Average compliance with monitoring was 82%. Significant increases in the annual use and costs of psychiatrist contacts and total mental health services were shown for patients newly referred to the clinic during the pre-TC period but not for long-term patients of the clinic. Psychiatric medication costs increased significantly between the pre-TC and TC periods (£235, P=0.005) unrelated to patients' referral status. Remote mood monitoring has good compliance among consenting patients with bipolar disorder. We found no associations between observed changes in mental health service costs and the introduction of monitoring except for the increase in psychiatric medication costs. Copyright © 2017 The Authors. Published by Elsevier Masson SAS.. All rights reserved.

  9. Wearable sensors for human health monitoring

    Science.gov (United States)

    Asada, H. Harry; Reisner, Andrew

    2006-03-01

    Wearable sensors for continuous monitoring of vital signs for extended periods of weeks or months are expected to revolutionize healthcare services in the home and workplace as well as in hospitals and nursing homes. This invited paper describes recent research progress in wearable health monitoring technology and its clinical applications, with emphasis on blood pressure and circulatory monitoring. First, a finger ring-type wearable blood pressure sensor based on photo plethysmogram is presented. Technical issues, including motion artifact reduction, power saving, and wearability enhancement, will be addressed. Second, sensor fusion and sensor networking for integrating multiple sensors with diverse modalities will be discussed for comprehensive monitoring and diagnosis of health status. Unlike traditional snap-shot measurements, continuous monitoring with wearable sensors opens up the possibility to treat the physiological system as a dynamical process. This allows us to apply powerful system dynamics and control methodologies, such as adaptive filtering, single- and multi-channel system identification, active noise cancellation, and adaptive control, to the monitoring and treatment of highly complex physiological systems. A few clinical trials illustrate the potentials of the wearable sensor technology for future heath care services.

  10. Design of smart neonatal health monitoring system using SMCC.

    Science.gov (United States)

    De, Debashis; Mukherjee, Anwesha; Sau, Arkaprabha; Bhakta, Ishita

    2017-02-01

    Automated health monitoring and alert system development is a demanding research area today. Most of the currently available monitoring and controlling medical devices are wired which limits freeness of working environment. Wireless sensor network (WSN) is a better alternative in such an environment. Neonatal intensive care unit is used to take care of sick and premature neonates. Hypothermia is an independent risk factor for neonatal mortality and morbidity. To prevent it an automated monitoring system is required. In this Letter, an automated neonatal health monitoring system is designed using sensor mobile cloud computing (SMCC). SMCC is based on WSN and MCC. In the authors' system temperature sensor, acceleration sensor and heart rate measurement sensor are used to monitor body temperature, acceleration due to body movement and heart rate of neonates. The sensor data are stored inside the cloud. The health person continuously monitors and accesses these data through the mobile device using an Android Application for neonatal monitoring. When an abnormal situation arises, an alert is generated in the mobile device of the health person. By alerting health professional using such an automated system, early care is provided to the affected babies and the probability of recovery is increased.

  11. Smart homes and home health monitoring technologies for older adults: A systematic review.

    Science.gov (United States)

    Liu, Lili; Stroulia, Eleni; Nikolaidis, Ioanis; Miguel-Cruz, Antonio; Rios Rincon, Adriana

    2016-07-01

    Around the world, populations are aging and there is a growing concern about ways that older adults can maintain their health and well-being while living in their homes. The aim of this paper was to conduct a systematic literature review to determine: (1) the levels of technology readiness among older adults and, (2) evidence for smart homes and home-based health-monitoring technologies that support aging in place for older adults who have complex needs. We identified and analyzed 48 of 1863 relevant papers. Our analyses found that: (1) technology-readiness level for smart homes and home health monitoring technologies is low; (2) the highest level of evidence is 1b (i.e., one randomized controlled trial with a PEDro score ≥6); smart homes and home health monitoring technologies are used to monitor activities of daily living, cognitive decline and mental health, and heart conditions in older adults with complex needs; (3) there is no evidence that smart homes and home health monitoring technologies help address disability prediction and health-related quality of life, or fall prevention; and (4) there is conflicting evidence that smart homes and home health monitoring technologies help address chronic obstructive pulmonary disease. The level of technology readiness for smart homes and home health monitoring technologies is still low. The highest level of evidence found was in a study that supported home health technologies for use in monitoring activities of daily living, cognitive decline, mental health, and heart conditions in older adults with complex needs. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Model-based health monitoring of hybrid systems

    CERN Document Server

    Wang, Danwei; Low, Chang Boon; Arogeti, Shai

    2013-01-01

    Offers in-depth comprehensive study on health monitoring for hybrid systems Includes new concepts, such as GARR, mode tracking and multiple failure prognosis Contains many examples, making the developed techniques easily understandable and accessible Introduces state-of-the-art algorithms and methodologies from experienced researchers

  13. Flexible Sensing Electronics for Wearable/Attachable Health Monitoring.

    Science.gov (United States)

    Wang, Xuewen; Liu, Zheng; Zhang, Ting

    2017-07-01

    Wearable or attachable health monitoring smart systems are considered to be the next generation of personal portable devices for remote medicine practices. Smart flexible sensing electronics are components crucial in endowing health monitoring systems with the capability of real-time tracking of physiological signals. These signals are closely associated with body conditions, such as heart rate, wrist pulse, body temperature, blood/intraocular pressure and blood/sweat bio-information. Monitoring such physiological signals provides a convenient and non-invasive way for disease diagnoses and health assessments. This Review summarizes the recent progress of flexible sensing electronics for their use in wearable/attachable health monitoring systems. Meanwhile, we present an overview of different materials and configurations for flexible sensors, including piezo-resistive, piezo-electrical, capacitive, and field effect transistor based devices, and analyze the working principles in monitoring physiological signals. In addition, the future perspectives of wearable healthcare systems and the technical demands on their commercialization are briefly discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Context aware sensing for health monitoring

    NARCIS (Netherlands)

    Landete, F.; Chen, W.; Bouwstra, S.; Feijs, L.M.G.; Bambang Oetomo, S.

    2012-01-01

    Health Monitoring systems with textile sensors offer more comfort compared to gel electrodes, however they tend to suffer from poor skin contact and motion artifacts. In order to improve the monitoring reliability, we propose to apply multiple sensors and context aware sensing. A context aware

  15. Activity monitoring systems in health care

    NARCIS (Netherlands)

    Kröse, B.; van Oosterhout, T.; van Kasteren, T.; Salah, A.A.; Gevers, T.

    2011-01-01

    This chapter focuses on activity monitoring in a home setting for health care purposes. First the most current sensing systems are described, which consist of wearable and ambient sensors. Then several approaches for the monitoring of simple actions are discussed, like falls or therapies. After

  16. Wearable sensors for health monitoring

    Science.gov (United States)

    Suciu, George; Butca, Cristina; Ochian, Adelina; Halunga, Simona

    2015-02-01

    In this paper we describe several wearable sensors, designed for monitoring the health condition of the patients, based on an experimental model. Wearable sensors enable long-term continuous physiological monitoring, which is important for the treatment and management of many chronic illnesses, neurological disorders, and mental health issues. The system is based on a wearable sensors network, which is connected to a computer or smartphone. The wearable sensor network integrates several wearable sensors that can measure different parameters such as body temperature, heart rate and carbon monoxide quantity from the air. After the portable sensors measuring parameter values, they are transmitted by microprocessor through the Bluetooth to the application developed on computer or smartphone, to be interpreted.

  17. Structure health monitoring system using internet and database technologies

    International Nuclear Information System (INIS)

    Kwon, Il Bum; Kim, Chi Yeop; Choi, Man Yong; Lee, Seung Seok

    2003-01-01

    Structural health monitoring system should developed to be based on internet and database technology in order to manage efficiently large structures. This system is operated by internet connected with the side of structures. The monitoring system has some functions: self monitoring, self diagnosis, and self control etc. Self monitoring is the function of sensor fault detection. If some sensors are not normally worked, then this system can detect the fault sensors. Also Self diagnosis function repair the abnormal condition of sensors. And self control is the repair function of the monitoring system. Especially, the monitoring system can identify the replacement of sensors. For further study, the real application test will be performed to check some unconvince.

  18. Structural health monitoring system using internet and database technologies

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chi Yeop; Choi, Man Yong; Kwon, Il Bum; Lee, Seung Seok [Nonstructive Measurment Lab., KRISS, Daejeon (Korea, Republic of)

    2003-07-01

    Structure health monitoring system should develope to be based on internet and database technology in order to manage efficiency large structures. This system is operated by internet connected with the side of structures. The monitoring system has some functions: self monitoring, self diagnosis, and self control etc. Self monitoring is the function of sensor fault detection. If some sensors are not normally worked, then this system can detect the fault sensors. Also Self diagnosis function repair the abnormal condition of sensors. And self control is the repair function of the monitoring system. Especially, the monitoring system can identify the replacement of sensors. For further study, the real application test will be performed to check some unconviniences.

  19. Structure health monitoring system using internet and database technologies

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Il Bum; Kim, Chi Yeop; Choi, Man Yong; Lee, Seung Seok [Smart Measurment Group. Korea Resarch Institute of Standards and Science, Saejeon (Korea, Republic of)

    2003-05-15

    Structural health monitoring system should developed to be based on internet and database technology in order to manage efficiently large structures. This system is operated by internet connected with the side of structures. The monitoring system has some functions: self monitoring, self diagnosis, and self control etc. Self monitoring is the function of sensor fault detection. If some sensors are not normally worked, then this system can detect the fault sensors. Also Self diagnosis function repair the abnormal condition of sensors. And self control is the repair function of the monitoring system. Especially, the monitoring system can identify the replacement of sensors. For further study, the real application test will be performed to check some unconvince.

  20. Structural health monitoring system using internet and database technologies

    International Nuclear Information System (INIS)

    Kim, Chi Yeop; Choi, Man Yong; Kwon, Il Bum; Lee, Seung Seok

    2003-01-01

    Structure health monitoring system should develope to be based on internet and database technology in order to manage efficiency large structures. This system is operated by internet connected with the side of structures. The monitoring system has some functions: self monitoring, self diagnosis, and self control etc. Self monitoring is the function of sensor fault detection. If some sensors are not normally worked, then this system can detect the fault sensors. Also Self diagnosis function repair the abnormal condition of sensors. And self control is the repair function of the monitoring system. Especially, the monitoring system can identify the replacement of sensors. For further study, the real application test will be performed to check some unconviniences.

  1. Validity and reliability of the South African health promoting schools monitoring questionnaire.

    Science.gov (United States)

    Struthers, Patricia; Wegner, Lisa; de Koker, Petra; Lerebo, Wondwossen; Blignaut, Renette J

    2017-04-01

    Health promoting schools, as conceptualised by the World Health Organisation, have been developed in many countries to facilitate the health-education link. In 1994, the concept of health promoting schools was introduced in South Africa. In the process of becoming a health promoting school, it is important for schools to monitor and evaluate changes and developments taking place. The Health Promoting Schools (HPS) Monitoring Questionnaire was developed to obtain opinions of students about their school as a health promoting school. It comprises 138 questions in seven sections: socio-demographic information; General health promotion programmes; health related Skills and knowledge; Policies; Environment; Community-school links; and support Services. This paper reports on the reliability and face validity of the HPS Monitoring Questionnaire. Seven experts reviewed the questionnaire and agreed that it has satisfactory face validity. A test-retest reliability study was conducted with 83 students in three high schools in Cape Town, South Africa. The kappa-coefficients demonstrate mostly fair (κ-scores between 0.21 and 0.4) to moderate (κ-scores between 0.41 and 0.6) agreement between test-retest General and Environment items; poor (κ-scores up to 0.2) agreement between Skills and Community test-retest items, fair agreement between Policies items, and for most of the questions focussing on Services a fair agreement was found. The study is a first effort at providing a tool that may be used to monitor and evaluate students' opinions about changes in health promoting schools. Although the HPS Monitoring Questionnaire has face validity, the results of the reliability testing were inconclusive. Further research is warranted. © The Author 2016. Published by Oxford University Press.

  2. Care coordinator views and experiences of physical health monitoring in clients with severe mental illness: A qualitative study.

    Science.gov (United States)

    Gronholm, Petra C; Onagbesan, Oluwadamilola; Gardner-Sood, Poonam

    2017-11-01

    Excess mortality among people with severe mental illness (SMI) is largely attributed to co-morbid physical illness. Improving the physical health of this population is critically important; however, physical health monitoring among people with SMI is often inadequate. This study aimed to facilitate an enhanced understanding of barriers to successfully attend to clients' physical health in mental health settings, through exploring care coordinators' views and experiences regarding their ability to monitor physical health in clients with SMI (specifically, psychosis). Semi-structured interviews were conducted with seven care coordinators from a South East London (UK) community mental health team. Data were analysed using thematic analysis principles. Three themes were identified in these data, capturing (1) how care coordinators viewed the professional roles of other clinical staff and themselves, (2) views on barriers to the provision of physical healthcare and (3) factors that motivated care coordinators to attend to clients' physical health. Our findings can inform efforts to implement physical healthcare interventions within mental health settings. Such insights are timely, as academic literature and guidelines regarding clinical practice increasingly promote the value of integrated provision of mental and physical healthcare.

  3. Patient monitoring in mobile health: opportunities and challenges.

    Science.gov (United States)

    Mohammadzadeh, Niloofar; Safdari, Reza

    2014-01-01

    In most countries chronic diseases lead to high health care costs and reduced productivity of people in society. The best way to reduce costs of health sector and increase the empowerment of people is prevention of chronic diseases and appropriate health activities management through monitoring of patients. To enjoy the full benefits of E-health, making use of methods and modern technologies is very important. This literature review articles were searched with keywords like Patient monitoring, Mobile Health, and Chronic Disease in Science Direct, Google Scholar and Pub Med databases without regard to the year of publications. Applying remote medical diagnosis and monitoring system based on mobile health systems can help significantly to reduce health care costs, correct performance management particularly in chronic disease management. Also some challenges are in patient monitoring in general and specific aspects like threats to confidentiality and privacy, technology acceptance in general and lack of system interoperability with electronic health records and other IT tools, decrease in face to face communication between doctor and patient, sudden interruptions of telecommunication networks, and device and sensor type in specific aspect. It is obvious identifying the opportunities and challenges of mobile technology and reducing barriers, strengthening the positive points will have a significant role in the appropriate planning and promoting the achievements of the health care systems based on mobile and helps to design a roadmap for improvement of mobile health.

  4. Experimental Research on Quick Structural Health Monitoring Technique for Bridges Using Smartphone

    Directory of Open Access Journals (Sweden)

    Xuefeng Zhao

    2016-01-01

    Full Text Available In the recent years, with the development and popularization of smartphone, the utilization of smartphone in the Structural Health Monitoring (SHM has attracted increasing attention owing to its unique feature. Since bridges are of great importance to society and economy, bridge health monitoring has very practical significance during its service life. Furthermore, rapid damage assessment of bridge after an extreme event such as earthquake is very important in the recovery work. Smartphone-based bridge health monitoring and postevent damage evaluation have advantages over the conventional monitoring techniques, such as low cost, ease of installation, and convenience. Therefore, this study investigates the implementation feasibility of the quick bridge health monitoring technique using smartphone. A novel vision-based cable force measurement method using smartphone camera is proposed, and, then, its feasibility and practicality is initially validated through cable model test. An experiment regarding multiple parameters monitoring of one bridge scale model is carried out. Parameters, such as acceleration, displacement, and angle, are monitored using smartphone. The experiment results show that there is a good agreement between the reference sensor and smartphone measurements in both time and frequency domains.

  5. [What potential do geographic information systems have for population-wide health monitoring in Germany? : Perspectives and challenges for the health monitoring of the Robert Koch Institute].

    Science.gov (United States)

    Thißen, Martin; Niemann, Hildegard; Varnaccia, Gianni; Rommel, Alexander; Teti, Andrea; Butschalowsky, Hans; Manz, Kristin; Finger, Jonas David; Kroll, Lars Eric; Ziese, Thomas

    2017-12-01

    Geographic information systems (GISs) are computer-based systems with which geographical data can be recorded, stored, managed, analyzed, visualized and provided. In recent years, they have become an integral part of public health research. They offer a broad range of analysis tools, which enable innovative solutions for health-related research questions. An analysis of nationwide studies that applied geographic information systems underlines the potential this instrument bears for health monitoring in Germany. Geographic information systems provide up-to-date mapping and visualization options to be used for national health monitoring at the Robert Koch Institute (RKI). Furthermore, objective information on the residential environment as an influencing factor on population health and on health behavior can be gathered and linked to RKI survey data at different geographic scales. Besides using physical information, such as climate, vegetation or land use, as well as information on the built environment, the instrument can link socioeconomic and sociodemographic data as well as information on health care and environmental stress to the survey data and integrate them into concepts for analyses. Therefore, geographic information systems expand the potential of the RKI to present nationwide, representative and meaningful health-monitoring results. In doing so, data protection regulations must always be followed. To conclude, the development of a national spatial data infrastructure and the identification of important data sources can prospectively improve access to high quality data sets that are relevant for the health monitoring.

  6. Engagement with eHealth Self-Monitoring in a Primary Care-Based Weight Management Intervention.

    Science.gov (United States)

    Wolin, Kathleen Y; Steinberg, Dori M; Lane, Ilana B; Askew, Sandy; Greaney, Mary L; Colditz, Graham A; Bennett, Gary G

    2015-01-01

    While eHealth approaches hold promise for improving the reach and cost-effectiveness of behavior change interventions, they have been challenged by declining participant engagement over time, particularly for self-monitoring behaviors. These are significant concerns in the context of chronic disease prevention and management where durable effects are important for driving meaningful changes. "Be Fit, Be Well" was an eHealth weight loss intervention that allowed participants to self-select a self-monitoring modality (web or interactive voice response (IVR)). Participants could change their modality. As such, this study provides a unique opportunity to examine the effects of intervention modality choice and changing modalities on intervention engagement and outcomes. Intervention participants, who were recruited from community health centers, (n = 180) were expected to self-monitor health behaviors weekly over the course of the 24-month intervention. We examined trends in intervention engagement by modality (web, IVR, or changed modality) among participants in the intervention arm. The majority (61%) of participants chose IVR self-monitoring, while 39% chose web. 56% of those who selected web monitoring changed to IVR during the study versus no change in those who initially selected IVR. Self-monitoring declined in both modalities, but completion rates were higher in those who selected IVR. There were no associations between self-monitoring modality and weight or blood pressure outcomes. This is the first study to compare web and IVR self-monitoring in an eHealth intervention where participants could select and change their self-monitoring modality. IVR shows promise for achieving consistent engagement.

  7. Introduction to:Forest health monitoring program

    Science.gov (United States)

    Mark J. Ambrose

    2009-01-01

    This annual technical report is a product of the Forest Health Monitoring (FHM) Program. The report provides information about a variety of issues relating to forest health at a national scale. FHM national reports have the dual focus of presenting analyses of the latest available data and showcasing innovative techniques for analyzing forest health data. The report is...

  8. Patient attitudes toward mobile phone-based health monitoring: questionnaire study among kidney transplant recipients.

    Science.gov (United States)

    McGillicuddy, John William; Weiland, Ana Katherine; Frenzel, Ronja Maximiliane; Mueller, Martina; Brunner-Jackson, Brenda Marie; Taber, David James; Baliga, Prabhakar Kalyanpur; Treiber, Frank Anton

    2013-01-08

    Mobile phone based remote monitoring of medication adherence and physiological parameters has the potential of improving long-term graft outcomes in the recipients of kidney transplants. This technology is promising as it is relatively inexpensive, can include intuitive software and may offer the ability to conduct close patient monitoring in a non-intrusive manner. This includes the optimal management of comorbidities such as hypertension and diabetes. There is, however, a lack of data assessing the attitudes of renal transplant recipients toward this technology, especially among ethnic minorities. To assess the attitudes of renal transplant recipients toward mobile phone based remote monitoring and management of their medical regimen; and to identify demographic or clinical characteristics that impact on this attitude. After a 10 minute demonstration of a prototype mobile phone based monitoring system, a 10 item questionnaire regarding attitude toward remote monitoring and the technology was administered to the participants, along with the 10 item Perceived Stress Scale and the 7 item Morisky Medication Adherence Scale. Between February and April 2012, a total of 99 renal transplant recipients were identified and agreed to participate in the survey. The results of the survey indicate that while 90% (87/97) of respondents own a mobile phone, only 7% (7/98) had any prior knowledge of mobile phone based remote monitoring. Despite this, the majority of respondents, 79% (78/99), reported a positive attitude toward the use of a prototype system if it came at no cost to themselves. Blacks were more likely than whites to own smartphones (43.1%, 28/65 vs 20.6%, 7/34; P=.03) and held a more positive attitude toward free use of the prototype system than whites (4.25±0.88 vs 3.76±1.07; P=.02). The data demonstrates that kidney transplant recipients have a positive overall attitude toward mobile phone based health technology (mHealth). Additionally, the data demonstrates

  9. Measurement of exposures to radioactivity and monitoring of effects on health

    International Nuclear Information System (INIS)

    Spira, Alfred; Boutou, Odile

    1999-01-01

    On the request of the French ministries of Health and of the Environment, the author reports thoughts and proposals regarding epidemiological problems related to natural and artificial radioactive emissions. He first reports an analysis of the present context (assessment of health risks, ionizing radiation in France, radiation protection, nuclear operators, relationship between ionizing radiation and health, epidemiology) and knowledge (about nuclear and health, available results, current investigations). He outlines the benefits of an epidemiological monitoring and its requirements, and identifies the various components of this monitoring. While presenting current works, biological and epidemiological studies performed in the northern Cotentin area, he makes some specific proposals for this area and notably for the workers of La Hague. He proposes the implementation of a national arrangement comprising a measurement of exposures, an epidemiological monitoring, and a sociological survey. He discusses the associated administrative organisation and needs

  10. The design of an m-Health monitoring system based on a cloud computing platform

    Science.gov (United States)

    Xu, Boyi; Xu, Lida; Cai, Hongming; Jiang, Lihong; Luo, Yang; Gu, Yizhi

    2017-01-01

    Compared to traditional medical services provided within hospitals, m-Health monitoring systems (MHMSs) face more challenges in personalised health data processing. To achieve personalised and high-quality health monitoring by means of new technologies, such as mobile network and cloud computing, in this paper, a framework of an m-Health monitoring system based on a cloud computing platform (Cloud-MHMS) is designed to implement pervasive health monitoring. Furthermore, the modules of the framework, which are Cloud Storage and Multiple Tenants Access Control Layer, Healthcare Data Annotation Layer, and Healthcare Data Analysis Layer, are discussed. In the data storage layer, a multiple tenant access method is designed to protect patient privacy. In the data annotation layer, linked open data are adopted to augment health data interoperability semantically. In the data analysis layer, the process mining algorithm and similarity calculating method are implemented to support personalised treatment plan selection. These three modules cooperate to implement the core functions in the process of health monitoring, which are data storage, data processing, and data analysis. Finally, we study the application of our architecture in the monitoring of antimicrobial drug usage to demonstrate the usability of our method in personal healthcare analysis.

  11. Equity-Oriented Monitoring in the Context of Universal Health Coverage

    Science.gov (United States)

    Hosseinpoor, Ahmad Reza; Bergen, Nicole; Koller, Theadora; Prasad, Amit; Schlotheuber, Anne; Valentine, Nicole; Lynch, John; Vega, Jeanette

    2014-01-01

    Monitoring inequalities in health is fundamental to the equitable and progressive realization of universal health coverage (UHC). A successful approach to global inequality monitoring must be intuitive enough for widespread adoption, yet maintain technical credibility. This article discusses methodological considerations for equity-oriented monitoring of UHC, and proposes recommendations for monitoring and target setting. Inequality is multidimensional, such that the extent of inequality may vary considerably across different dimensions such as economic status, education, sex, and urban/rural residence. Hence, global monitoring should include complementary dimensions of inequality (such as economic status and urban/rural residence) as well as sex. For a given dimension of inequality, subgroups for monitoring must be formulated taking into consideration applicability of the criteria across countries and subgroup heterogeneity. For economic-related inequality, we recommend forming subgroups as quintiles, and for urban/rural inequality we recommend a binary categorization. Inequality spans populations, thus appropriate approaches to monitoring should be based on comparisons between two subgroups (gap approach) or across multiple subgroups (whole spectrum approach). When measuring inequality absolute and relative measures should be reported together, along with disaggregated data; inequality should be reported alongside the national average. We recommend targets based on proportional reductions in absolute inequality across populations. Building capacity for health inequality monitoring is timely, relevant, and important. The development of high-quality health information systems, including data collection, analysis, interpretation, and reporting practices that are linked to review and evaluation cycles across health systems, will enable effective global and national health inequality monitoring. These actions will support equity-oriented progressive realization of UHC

  12. To track or not to track: user reactions to concepts in longitudinal health monitoring.

    Science.gov (United States)

    Beaudin, Jennifer S; Intille, Stephen S; Morris, Margaret E

    2006-01-01

    Advances in ubiquitous computing, smart homes, and sensor technologies enable novel, longitudinal health monitoring applications in the home. Many home monitoring technologies have been proposed to detect health crises, support aging-in-place, and improve medical care. Health professionals and potential end users in the lay public, however, sometimes question whether home health monitoring is justified given the cost and potential invasion of privacy. The aim of the study was to elicit specific feedback from health professionals and laypeople about how they might use longitudinal health monitoring data for proactive health and well-being. Interviews were conducted with 8 health professionals and 26 laypeople. Participants were asked to evaluate mock data visualization displays that could be generated by novel home monitoring systems. The mock displays were used to elicit reactions to longitudinal monitoring in the home setting as well as what behaviors, events, and physiological indicators people were interested in tracking. Based on the qualitative data provided by the interviews, lists of benefits of and concerns about health tracking from the perspectives of the practitioners and laypeople were compiled. Variables of particular interest to the interviewees, as well as their specific ideas for applications of collected data, were documented. Based upon these interviews, we recommend that ubiquitous "monitoring" systems may be more readily adopted if they are developed as tools for personalized, longitudinal self-investigation that help end users learn about the conditions and variables that impact their social, cognitive, and physical health.

  13. Structural health monitoring system/method using electroactive polymer fibers

    Science.gov (United States)

    Scott-Carnell, Lisa A. (Inventor); Siochi, Emilie J. (Inventor)

    2013-01-01

    A method for monitoring the structural health of a structure of interest by coupling one or more electroactive polymer fibers to the structure and monitoring the electroactive responses of the polymer fiber(s). Load changes that are experienced by the structure cause changes in the baseline responses of the polymer fiber(s). A system for monitoring the structural health of the structure is also provided.

  14. Structural health monitoring with a wireless vibration sensor network

    NARCIS (Netherlands)

    Basten, T.G.H.; Sas, P; Schiphorst, F.B.A.; Jonckheere, S.; Moens, D.

    2012-01-01

    Advanced maintenance strategies for infrastructure assets such as bridges or off shore wind turbines require actual and reliable information of the maintenance status. Structural health monitoring based on vibration sensing can help in supplying the input needed for structural health monitoring

  15. 75 FR 52504 - Notice of Request for Approval of an Information Collection; National Animal Health Monitoring...

    Science.gov (United States)

    2010-08-26

    ...; National Animal Health Monitoring System; Dairy Heifer Raiser 2010 Study AGENCY: Animal and Plant Health... Service's intention to initiate an information collection to support the National Animal Health Monitoring... Warnken, Management and Program Analyst, Centers for Epidemiology and Animal Health, VS, APHIS, 2150...

  16. Structural health monitoring using wireless sensor networks

    Science.gov (United States)

    Sreevallabhan, K.; Nikhil Chand, B.; Ramasamy, Sudha

    2017-11-01

    Monitoring and analysing health of large structures like bridges, dams, buildings and heavy machinery is important for safety, economical, operational, making prior protective measures, and repair and maintenance point of view. In recent years there is growing demand for such larger structures which in turn make people focus more on safety. By using Microelectromechanical Systems (MEMS) Accelerometer we can perform Structural Health Monitoring by studying the dynamic response through measure of ambient vibrations and strong motion of such structures. By using Wireless Sensor Networks (WSN) we can embed these sensors in wireless networks which helps us to transmit data wirelessly thus we can measure the data wirelessly at any remote location. This in turn reduces heavy wiring which is a cost effective as well as time consuming process to lay those wires. In this paper we developed WSN based MEMS-accelerometer for Structural to test the results in the railway bridge near VIT University, Vellore campus.

  17. Monitoring of health care personnel employee and occupational health immunization program practices in the United States.

    Science.gov (United States)

    Carrico, Ruth M; Sorrells, Nikka; Westhusing, Kelly; Wiemken, Timothy

    2014-01-01

    Recent studies have identified concerns with various elements of health care personnel immunization programs, including the handling and management of the vaccine. The purpose of this study was to assess monitoring processes that support evaluation of the care of vaccines in health care settings. An 11-question survey instrument was developed for use in scripted telephone surveys. State health departments in all 50 states in the United States and the District of Columbia were the target audience for the surveys. Data from a total of 47 states were obtained and analyzed. No states reported an existing monitoring process for evaluation of health care personnel immunization programs in their states. Our assessment indicates that vaccine evaluation processes for health care facilities are rare to nonexistent in the United States. Identifying existing practice gaps and resultant opportunities for improvements may be an important safety initiative that protects patients and health care personnel. Copyright © 2014 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.

  18. Principles in wireless building health monitoring systems.

    Science.gov (United States)

    Pentaris, F. P.; Makris, J. P.; Stonham, J.; Vallianatos, F.

    2012-04-01

    Monitoring the structural state of a building is essential for the safety of the people who work, live, visit or just use it as well as for the civil protection of urban areas. Many factors can affect the state of the health of a structure, namely man made, like mistakes in the construction, traffic, heavy loads on the structures, explosions, environmental impacts like wind loads, humidity, chemical reactions, temperature changes and saltiness, and natural hazards like earthquakes and landslides. Monitoring the health of a structure provides the ability to anticipate structural failures and secure the safe use of buildings especially those of public services. This work reviews the state of the art and the challenges of a wireless Structural Health Monitoring (WiSHM). Literature review reveals that although there is significant evolution in wireless structural health monitoring, in many cases, monitoring by itself is not enough to predict when a structure becomes inappropriate and/or unsafe for use, and the damage or low durability of a structure cannot be revealed (Chintalapudi, et al., 2006; Ramos, Aguilar, & Lourenço, 2011). Several features and specifications of WiSHM like wireless sensor networking, reliability and autonomy of sensors, algorithms of data transmission and analysis should still be evolved and improved in order to increase the predictive effectiveness of the SHM (Jinping Ou & Hui Li, 2010; Lu & Loh, 2010) . Acknowledgments This work was supported in part by the ARCHEMEDES III Program of the Ministry of Education of Greece and the European Union in the framework of the project entitled «Interdisciplinary Multi-Scale Research of Earthquake Physics and Seismotectonics at the front of the Hellenic Arc (IMPACT-ARC) ».

  19. Health monitoring system for transmission shafts based on adaptive parameter identification

    Science.gov (United States)

    Souflas, I.; Pezouvanis, A.; Ebrahimi, K. M.

    2018-05-01

    A health monitoring system for a transmission shaft is proposed. The solution is based on the real-time identification of the physical characteristics of the transmission shaft i.e. stiffness and damping coefficients, by using a physical oriented model and linear recursive identification. The efficacy of the suggested condition monitoring system is demonstrated on a prototype transient engine testing facility equipped with a transmission shaft capable of varying its physical properties. Simulation studies reveal that coupling shaft faults can be detected and isolated using the proposed condition monitoring system. Besides, the performance of various recursive identification algorithms is addressed. The results of this work recommend that the health status of engine dynamometer shafts can be monitored using a simple lumped-parameter shaft model and a linear recursive identification algorithm which makes the concept practically viable.

  20. Propulsion health monitoring of a turbine engine disk using spin test data

    Science.gov (United States)

    Abdul-Aziz, Ali; Woike, Mark; Oza, Nikunj; Matthews, Bryan; Baakilini, George

    2010-03-01

    On line detection techniques to monitor the health of rotating engine components are becoming increasingly attractive options to aircraft engine companies in order to increase safety of operation and lower maintenance costs. Health monitoring remains a challenging feature to easily implement, especially, in the presence of scattered loading conditions, crack size, component geometry and materials properties. The current trend, however, is to utilize noninvasive types of health monitoring or nondestructive techniques to detect hidden flaws and mini cracks before any catastrophic event occurs. These techniques go further to evaluate materials' discontinuities and other anomalies that have grown to the level of critical defects which can lead to failure. Generally, health monitoring is highly dependent on sensor systems that are capable of performing in various engine environmental conditions and able to transmit a signal upon a predetermined crack length, while acting in a neutral form upon the overall performance of the engine system. Efforts are under way at NASA Glenn Research Center through support of the Intelligent Vehicle Health Management Project (IVHM) to develop and implement such sensor technology for a wide variety of applications. These efforts are focused on developing high temperature, wireless, low cost and durable products. Therefore, in an effort to address the technical issues concerning health monitoring of a rotor disk, this paper considers data collected from an experimental study using high frequency capacitive sensor technology to capture blade tip clearance and tip timing measurements in a rotating engine-like-disk-to predict the disk faults and assess its structural integrity. The experimental results collected at a range of rotational speeds from tests conducted at the NASA Glenn Research Center's Rotordynamics Laboratory will be evaluated using multiple data-driven anomaly detection techniques to identify anomalies in the disk. This study

  1. Recent Developments on Wireless Sensor Networks Technology for Bridge Health Monitoring

    Directory of Open Access Journals (Sweden)

    Guang-Dong Zhou

    2013-01-01

    Full Text Available Structural health monitoring (SHM systems have shown great potential to sense the responses of a bridge system, diagnose the current structural conditions, predict the expected future performance, provide information for maintenance, and validate design hypotheses. Wireless sensor networks (WSNs that have the benefits of reducing implementation costs of SHM systems as well as improving data processing efficiency become an attractive alternative to traditional tethered sensor systems. This paper introduces recent technology developments in the field of bridge health monitoring using WSNs. As a special application of WSNs, the requirements and characteristics of WSNs when used for bridge health monitoring are firstly briefly discussed. Then, the state of the art in WSNs-based bridge health monitoring systems is reviewed including wireless sensor, network topology, data processing technology, power management, and time synchronization. Following that, the performance validations and applications of WSNs in bridge health monitoring through scale models and field deployment are presented. Finally, some existing problems and promising research efforts for promoting applications of WSNs technology in bridge health monitoring throughout the world are explored.

  2. Forest health monitoring in the United States: focus on national reports

    Science.gov (United States)

    Kurt Riitters; Kevin Potter

    2013-01-01

    The health and sustainability of United States forests have been monitored for many years from several different perspectives. The national Forest Health Monitoring (FHM) Program was established in 1990 by Federal and State agencies to develop a national system for monitoring and reporting on the status and trends of forest ecosystem health. We describe and illustrate...

  3. Psycho-social aspects of personal health monitoring: a descriptive literature review.

    Science.gov (United States)

    Muehlan, Holger; Schmidt, Silke

    2013-01-01

    We aimed at providing a short review on already published studies addressing psycho-social issues of personal health monitoring (PHM). Both core questions addressed within this review are: What is the impact of PHM on intended psycho-social and health-related outcomes? And which psycho-social issues affected by or related to PHM have already been investigated? This descriptive review based on a literature search using various databases (Psycinfo, Psyndex, Pubmed, SSCI). Resulting 428 abstracts were coded regarding their psycho-social content. Inspection of results was carried out along the relevance of the papers regarding psycho-social issues. Research in PHM focuses on telemonitoring and smart home applications: Tele-monitoring studies are directed to outcome-related questions, smart home studies to feasibility issues. Despite of technological matters, comparability of both systems in psycho-social issues is lacking. Tele-monitoring has been proven for impact on patient groups with chronic diseases, yet smart home still lacks evidence in health-related and psycho-social matters. Smart home applications have been investigated with respect to attitudes, perceptions and concerns of end-users, telemonitoring regarding acceptance and adherence.

  4. Forest health monitoring: 2007 national technical report

    Science.gov (United States)

    Barbara L. Conkling

    2011-01-01

    The Forest Health Monitoring Program produces an annual technical report that has two main objectives. The first objective is to present information about forest health from a national perspective. The second objective is to present examples of useful techniques for analyzing forest health data new to the annual national reports and new applications of techniques...

  5. Forest health monitoring: 2009 national technical report

    Science.gov (United States)

    Kevin M. Potter; Barbara L. Conkling

    2012-01-01

    The annual national technical report of the Forest Health Monitoring Program of the Forest Service, U.S. Department of Agriculture, presents forest health status and trends from a national or multi-State regional perspective using a variety of sources, introduces new techniques for analyzing forest health data, and summarizes results of recently completed Evaluation...

  6. Simultaneous Structural Health Monitoring and Vibration Control of Adaptive Structures Using Smart Materials

    Directory of Open Access Journals (Sweden)

    Myung-Hyun Kim

    2002-01-01

    Full Text Available The integration of actuators and sensors using smart materials enabled various applications including health monitoring and structural vibration control. In this study, a robust control technique is designed and implemented in order to reduce vibration of an active structure. Special attention is given to eliminating the possibility of interaction between the health monitoring system and the control system. Exploiting the disturbance decoupling characteristic of the sliding mode observer, it is demonstrated that the proposed observer can eliminate the possible high frequency excitation from the health monitoring system. At the same time, a damage identification scheme, which tracks the changes of mechanical impedance due to the presence of damage, has been applied to assess the health condition of structures. The main objective of this paper is to examine the potential of combining the two emerging techniques together. Using the collocated piezoelectric sensors/actuators for vibration suppression as well as for health monitoring, this technique enabled to reduce the number of system components, while enhancing the performance of structures. As an initial study, both simulation and experimental investigations were performed for an active beam structure. The results show that this integrated technique can provide substantial vibration reductions, while detecting damage on the structure at the same time.

  7. A synthesis of evaluation monitoring projects by the forest health monitoring program (1998-2007)

    Science.gov (United States)

    William A. Bechtold; Michael J. Bohne; Barbara L. Conkling; Dana L. Friedman

    2012-01-01

    The national Forest Health Monitoring Program of the Forest Service, U.S. Department of Agriculture, has funded over 200 Evaluation Monitoring projects. Evaluation Monitoring is designed to verify and define the extent of deterioration in forest ecosystems where potential problems have been identified. This report is a synthesis of results from over 150 Evaluation...

  8. Design and Analysis of Architectures for Structural Health Monitoring Systems

    Science.gov (United States)

    Mukkamala, Ravi; Sixto, S. L. (Technical Monitor)

    2002-01-01

    During the two-year project period, we have worked on several aspects of Health Usage and Monitoring Systems for structural health monitoring. In particular, we have made contributions in the following areas. 1. Reference HUMS architecture: We developed a high-level architecture for health monitoring and usage systems (HUMS). The proposed reference architecture is shown. It is compatible with the Generic Open Architecture (GOA) proposed as a standard for avionics systems. 2. HUMS kernel: One of the critical layers of HUMS reference architecture is the HUMS kernel. We developed a detailed design of a kernel to implement the high level architecture.3. Prototype implementation of HUMS kernel: We have implemented a preliminary version of the HUMS kernel on a Unix platform.We have implemented both a centralized system version and a distributed version. 4. SCRAMNet and HUMS: SCRAMNet (Shared Common Random Access Memory Network) is a system that is found to be suitable to implement HUMS. For this reason, we have conducted a simulation study to determine its stability in handling the input data rates in HUMS. 5. Architectural specification.

  9. Monitoring intervention coverage in the context of universal health coverage.

    Directory of Open Access Journals (Sweden)

    Ties Boerma

    2014-09-01

    Full Text Available Monitoring universal health coverage (UHC focuses on information on health intervention coverage and financial protection. This paper addresses monitoring intervention coverage, related to the full spectrum of UHC, including health promotion and disease prevention, treatment, rehabilitation, and palliation. A comprehensive core set of indicators most relevant to the country situation should be monitored on a regular basis as part of health progress and systems performance assessment for all countries. UHC monitoring should be embedded in a broad results framework for the country health system, but focus on indicators related to the coverage of interventions that most directly reflect the results of UHC investments and strategies in each country. A set of tracer coverage indicators can be selected, divided into two groups-promotion/prevention, and treatment/care-as illustrated in this paper. Disaggregation of the indicators by the main equity stratifiers is critical to monitor progress in all population groups. Targets need to be set in accordance with baselines, historical rate of progress, and measurement considerations. Critical measurement gaps also exist, especially for treatment indicators, covering issues such as mental health, injuries, chronic conditions, surgical interventions, rehabilitation, and palliation. Consequently, further research and proxy indicators need to be used in the interim. Ideally, indicators should include a quality of intervention dimension. For some interventions, use of a single indicator is feasible, such as management of hypertension; but in many areas additional indicators are needed to capture quality of service provision. The monitoring of UHC has significant implications for health information systems. Major data gaps will need to be filled. At a minimum, countries will need to administer regular household health surveys with biological and clinical data collection. Countries will also need to improve the

  10. Wearable Health Monitoring Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this proposal is to demonstrate the feasibility of producing a wearable health monitoring system for the human body that is functional, comfortable,...

  11. Wearable Health Monitoring Systems, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this proposal is to demonstrate the feasibility of producing a wearable health monitoring system for the human body that is functional, comfortable,...

  12. Continuous Monitoring of Glucose for Type 1 Diabetes: A Health Technology Assessment.

    Science.gov (United States)

    2018-01-01

    Type 1 diabetes is a condition in which the pancreas produces little or no insulin. People with type 1 diabetes must manage their blood glucose levels by monitoring the amount of glucose in their blood and administering appropriate amounts of insulin via injection or an insulin pump. Continuous glucose monitoring may be beneficial compared to self-monitoring of blood glucose using a blood glucose meter. It provides insight into a person's blood glucose levels on a continuous basis, and can identify whether blood glucose levels are trending up or down. We conducted a health technology assessment, which included an evaluation of clinical benefit, value for money, and patient preferences related to continuous glucose monitoring. We compared continuous glucose monitoring with self-monitoring of blood glucose using a finger-prick and a blood glucose meter. We performed a systematic literature search for studies published since January 1, 2010. We created a Markov model projecting the lifetime horizon of adults with type 1 diabetes, and performed a budget impact analysis from the perspective of the health care payer. We also conducted interviews and focus group discussions with people who self-manage their type 1 diabetes or support the management of a child with type 1 diabetes. Twenty studies were included in the clinical evidence review. Compared with self-monitoring of blood glucose, continuous glucose monitoring improved the percentage of time patients spent in the target glycemic range by 9.6% (95% confidence interval 8.0-11.2) to 10.0% (95% confidence interval 6.75-13.25) and decreased the number of severe hypoglycemic events.Continuous glucose monitoring was associated with higher costs and small increases in health benefits (quality-adjusted life-years). Incremental cost-effectiveness ratios (ICERs) ranged from $592,206 to $1,108,812 per quality-adjusted life-year gained in analyses comparing four continuous glucose monitoring interventions to usual care

  13. Northern Rivers Basins human health monitoring program : report

    International Nuclear Information System (INIS)

    Gabos, S.

    1999-04-01

    The Northern River Basins Human Health Monitoring Program was established in 1994 to investigate the possible relationships between various environmental risk factors and the health of northern residents in the province. This report presents the initial analysis of the health program and examines the differences in health outcomes across the province and compares the Northern Rivers Basin Study (NRBS) area with the other areas of the province. A series of maps and graphs showed the prevalence of certain diseases and disorders within the Peace and Athabasca river basins. The focus of the report was on reproductive health, congenital anomalies, respiratory ailments, circulatory diseases, gastrointestinal disorders, endocrine and metabolic disorders, and neurocognitive disorders. The study showed that compared to other areas of the province, the NRBS area had higher incidences of endometriosis, selected congenital anomalies, bronchitis, pneumonia, peptic ulcers and epilepsy. There were three potential exposure pathways to environmental contaminants. These were through ingestion of water or food, inhalation of air and through dermal exposure. refs., tabs., figs

  14. Northern Rivers Basins human health monitoring program : report

    Energy Technology Data Exchange (ETDEWEB)

    Gabos, S. [Alberta Health, Edmonton, AB (Canada). Health Surveillance

    1999-04-01

    The Northern River Basins Human Health Monitoring Program was established in 1994 to investigate the possible relationships between various environmental risk factors and the health of northern residents in the province. This report presents the initial analysis of the health program and examines the differences in health outcomes across the province and compares the Northern Rivers Basin Study (NRBS) area with the other areas of the province. A series of maps and graphs showed the prevalence of certain diseases and disorders within the Peace and Athabasca river basins. The focus of the report was on reproductive health, congenital anomalies, respiratory ailments, circulatory diseases, gastrointestinal disorders, endocrine and metabolic disorders, and neurocognitive disorders. The study showed that compared to other areas of the province, the NRBS area had higher incidences of endometriosis, selected congenital anomalies, bronchitis, pneumonia, peptic ulcers and epilepsy. There were three potential exposure pathways to environmental contaminants. These were through ingestion of water or food, inhalation of air and through dermal exposure. refs., tabs., figs.

  15. Monitoring public health following a major firework factory explosion.

    NARCIS (Netherlands)

    Dirkzwager, A.J.E.; IJzermans, C.J.; Kerssens, J.J.

    2003-01-01

    Background: In May 2000, a firework factory exploded in a residential area in the Netherlands, resulting in 22 deaths, 947 wounded people, and about 2.000 severely damaged houses. Following the explosion, a largescale monitoring study was implemented to examine disaster-related health consequences

  16. Monitoring health status following a major firework factory explosion.

    NARCIS (Netherlands)

    Dirkzwager, A.; IJzermans, J.

    2003-01-01

    In May 2000, a firework factory exploded in a residential area in the Netherlands, resulting in 22 death, 947 wounded people, 500 destroyed houses, and 1.500 severely damaged houses. Following the explosion, a large-scale monitoring study was implemented to investigate disaster-related health

  17. Online Health Monitoring using Facebook Advertisement Audience Estimates in the United States: Evaluation Study

    Science.gov (United States)

    Weber, Ingmar; Fernandez-Luque, Luis

    2018-01-01

    Background Facebook, the most popular social network with over one billion daily users, provides rich opportunities for its use in the health domain. Though much of Facebook’s data are not available to outsiders, the company provides a tool for estimating the audience of Facebook advertisements, which includes aggregated information on the demographics and interests, such as weight loss or dieting, of Facebook users. This paper explores the potential uses of Facebook ad audience estimates for eHealth by studying the following: (1) for what type of health conditions prevalence estimates can be obtained via social media and (2) what type of marker interests are useful in obtaining such estimates, which can then be used for recruitment within online health interventions. Objective The objective of this study was to understand the limitations and capabilities of using Facebook ad audience estimates for public health monitoring and as a recruitment tool for eHealth interventions. Methods We use the Facebook Marketing application programming interface to correlate estimated sizes of audiences having health-related interests with public health data. Using several study cases, we identify both potential benefits and challenges in using this tool. Results We find several limitations in using Facebook ad audience estimates, for example, using placebo interest estimates to control for background level of user activity on the platform. Some Facebook interests such as plus-size clothing show encouraging levels of correlation (r=.74) across the 50 US states; however, we also sometimes find substantial correlations with the placebo interests such as r=.68 between interest in Technology and Obesity prevalence. Furthermore, we find demographic-specific peculiarities in the interests on health-related topics. Conclusions Facebook’s advertising platform provides aggregate data for more than 190 million US adults. We show how disease-specific marker interests can be used to model

  18. Mobile health-monitoring system through visible light communication.

    Science.gov (United States)

    Tan, Yee-Yong; Chung, Wan-Young

    2014-01-01

    Promising development in the light emitting diode (LED) technology has spurred the interest to adapt LED for both illumination and data transmission. This has fostered the growth of interest in visible light communication (VLC), with on-going research to utilize VLC in various applications. This paper presents a mobile-health monitoring system, where healthcare information such as biomedical signals and patient information are transmitted via the LED lighting. A small and portable receiver module is designed and developed to be attached to the mobile device, providing a seamless monitoring environment. Three different healthcare information including ECG, PPG signals and HL7 text information is transmitted simultaneously, using a single channel VLC. This allows for a more precise and accurate monitoring and diagnosis. The data packet size is carefully designed, to transmit information in a minimal packet error rate. A comprehensive monitoring application is designed and developed through the use of a tablet computer in our study. Monitoring and evaluation such as heart rate and arterial blood pressure measurement can be performed concurrently. Real-time monitoring is demonstrated through experiment, where non-hazardous transmission method can be implemented alongside a portable device for better and safer healthcare service.

  19. Diagnostic tool for structural health monitoring: effect of material nonlinearity and vibro-impact process

    Science.gov (United States)

    Hiwarkar, V. R.; Babitsky, V. I.; Silberschmidt, V. V.

    2013-07-01

    Numerous techniques are available for monitoring structural health. Most of these techniques are expensive and time-consuming. In this paper, vibration-based techniques are explored together with their use as diagnostic tools for structural health monitoring. Finite-element simulations are used to study the effect of material nonlinearity on dynamics of a cracked bar. Additionally, several experiments are performed to study the effect of vibro-impact behavior of crack on its dynamics. It was observed that a change in the natural frequency of the cracked bar due to crack-tip plasticity and vibro-impact behavior linked to interaction of crack faces, obtained from experiments, led to generation of higher harmonics; this can be used as a diagnostic tool for structural health monitoring.

  20. Assessing the value of structural health monitoring

    DEFF Research Database (Denmark)

    Thöns, S.; Faber, Michael Havbro

    2013-01-01

    Structural Health Monitoring (SHM) systems are designed for assisting owners and operators with information and forecasts concerning the fitness for purpose of structures and building systems. The benefit associated with the implementation of SHM may in some cases be intuitively anticipated...... as their responses and performances over their life-cycle. In addition, the quality of monitoring and the performance of possible remedial actions triggered by monitoring results are modeled probabilistically.The consequences accounted for, in principle include all consequences associated with the performance...

  1. Cointegration as a data normalization tool for structural health monitoring applications

    Science.gov (United States)

    Harvey, Dustin Y.; Todd, Michael D.

    2012-04-01

    The structural health monitoring literature has shown an abundance of features sensitive to various types of damage in laboratory tests. However, robust feature extraction in the presence of varying operational and environmental conditions has proven to be one of the largest obstacles in the development of practical structural health monitoring systems. Cointegration, a technique adapted from the field of econometrics, has recently been introduced to the SHM field as one solution to the data normalization problem. Response measurements and feature histories often show long-run nonstationarity due to fluctuating temperature, load conditions, or other factors that leads to the occurrence of false positives. Cointegration theory allows nonstationary trends common to two or more time series to be modeled and subsequently removed. Thus, the residual retains sensitivity to damage with dependence on operational and environmental variability removed. This study further explores the use of cointegration as a data normalization tool for structural health monitoring applications.

  2. Twenty years of children’s health monitoring: organization, results, conclusions

    Directory of Open Access Journals (Sweden)

    Aleksandra Anatol’evna Shabunova

    2015-05-01

    Full Text Available Deep understanding of human potential reproduction, presenting it as a continuous cycle and reflecting the continuity of generations, is significant for the formation of health and development of children. Today’s children will determine the future of Russian society. It is they who in 10–15 years will be a major part of the labor and creative population, a demographic base of the country. The research into children’s problems through the prism of socio-economic development helps identify targets of the state many-sided policy. The article presents results of the long-term medical sociological monitoring on the formation of child health carried out by the Institute of Socio-Economic Development of Territories of RAS with the support of the Vologda Oblast Healthcare Department since 1995. The special monitoring study of health dynamics in real time is unique not only for the Vologda Oblast, but for Russia as well. It reveals the transformation of a personality and the dependence of these changes on direct and indirect factors. The work’s feature is that it addresses an extremely important and wide range of issues: whether man was born healthy or not, if he/she is unhealthy, then why and why he/she was born unhealthy; whether his/her health after the birth is improving or deteriorating; if health is changing, what causes the changes. The 15 year observations disclose the dynamics of child health in the conditions of transformation processes taking place in the country. If the official statistics only records certain health trends, the monitoring results allow us to talk about them at a qualitatively new level. They reveal the underlying causes of demographic processes. The conclusion is, on the one hand, obvious and, on the other hand, it can not be neglected: economic stability and orderly development of the social sphere are critical for family well-being and child health. The reverse situation leads to the destruction of the family

  3. Mobile Patient Monitoring: the MobiHealth System

    NARCIS (Netherlands)

    Konstantas, D.; van Halteren, Aart; Bults, Richard G.A.; Wac, K.E.; Widya, I.A.; Dokovski, N.T.; Jones, Valerie M.; Dokovsky, Nicolai; Koprinkov, G.T.; Herzog, Rainer; Bos, L.; Laxminarayan, S.

    2004-01-01

    The forthcoming wide availability of high bandwidth public wireless networks will give rise to new mobile health care services. Towards this direction the MobiHealth1 project has developed and trialed a highly customisable vital signals’ monitoring system based on a Body Area Network (BAN) and an

  4. Efficient color correction method for smartphone camera-based health monitoring application.

    Science.gov (United States)

    Duc Dang; Chae Ho Cho; Daeik Kim; Oh Seok Kwon; Jo Woon Chong

    2017-07-01

    Smartphone health monitoring applications are recently highlighted due to the rapid development of hardware and software performance of smartphones. However, color characteristics of images captured by different smartphone models are dissimilar each other and this difference may give non-identical health monitoring results when the smartphone health monitoring applications monitor physiological information using their embedded smartphone cameras. In this paper, we investigate the differences in color properties of the captured images from different smartphone models and apply a color correction method to adjust dissimilar color values obtained from different smartphone cameras. Experimental results show that the color corrected images using the correction method provide much smaller color intensity errors compared to the images without correction. These results can be applied to enhance the consistency of smartphone camera-based health monitoring applications by reducing color intensity errors among the images obtained from different smartphones.

  5. Temporal Informative Analysis in Smart-ICU Monitoring: M-HealthCare Perspective.

    Science.gov (United States)

    Bhatia, Munish; Sood, Sandeep K

    2016-08-01

    The rapid introduction of Internet of Things (IoT) Technology has boosted the service deliverance aspects of health sector in terms of m-health, and remote patient monitoring. IoT Technology is not only capable of sensing the acute details of sensitive events from wider perspectives, but it also provides a means to deliver services in time sensitive and efficient manner. Henceforth, IoT Technology has been efficiently adopted in different fields of the healthcare domain. In this paper, a framework for IoT based patient monitoring in Intensive Care Unit (ICU) is presented to enhance the deliverance of curative services. Though ICUs remained a center of attraction for high quality care among researchers, still number of studies have depicted the vulnerability to a patient's life during ICU stay. The work presented in this study addresses such concerns in terms of efficient monitoring of various events (and anomalies) with temporal associations, followed by time sensitive alert generation procedure. In order to validate the system, it was deployed in 3 ICU room facilities for 30 days in which nearly 81 patients were monitored during their ICU stay. The results obtained after implementation depicts that IoT equipped ICUs are more efficient in monitoring sensitive events as compared to manual monitoring and traditional Tele-ICU monitoring. Moreover, the adopted methodology for alert generation with information presentation further enhances the utility of the system.

  6. Integrating Social Media Monitoring Into Public Health Emergency Response Operations.

    Science.gov (United States)

    Hadi, Tamer A; Fleshler, Keren

    2016-10-01

    Social media monitoring for public health emergency response and recovery is an essential response capability for any health department. The value of social media for emergency response lies not only in the capacity to rapidly communicate official and critical incident information, but as a rich source of incoming data that can be gathered to inform leadership decision-making. Social media monitoring is a function that can be formally integrated into the Incident Command System of any response agency. The approach to planning and required resources, such as staffing, logistics, and technology, is flexible and adaptable based on the needs of the agency and size and scope of the emergency. The New York City Department of Health and Mental Hygiene has successfully used its Social Media Monitoring Team during public health emergency responses and planned events including major Ebola and Legionnaires' disease responses. The concepts and implementations described can be applied by any agency, large or small, interested in building a social media monitoring capacity. (Disaster Med Public Health Preparedness. 2016;page 1 of 6).

  7. Dedicated real-time monitoring system for health care using ZigBee.

    Science.gov (United States)

    Alwan, Omar S; Prahald Rao, K

    2017-08-01

    Real-time monitoring systems (RTMSs) have drawn considerable attentions in the last decade. Several commercial versions of RTMS for patient monitoring are available which are used by health care professionals. Though they are working satisfactorily on various communication protocols, their range, power consumption, data rate and cost are really bothered. In this study, the authors present an efficient embedded system based wireless health care monitoring system using ZigBee. Their system has a capability to transmit the data between two embedded systems through two transceivers over a long range. In this, wireless transmission has been applied through two categories. The first part which contains Arduino with ZigBee will send the signals to the second device, which contains Raspberry with ZigBee. The second device will measure the patient data and send it to the first device through ZigBee transceiver. The designed system is demonstrated on volunteers to measure the body temperature which is clinically important to monitor and diagnose for fever in the patients.

  8. Monitoring Indoor Air Quality for Enhanced Occupational Health.

    Science.gov (United States)

    Pitarma, Rui; Marques, Gonçalo; Ferreira, Bárbara Roque

    2017-02-01

    Indoor environments are characterized by several pollutant sources. Because people spend more than 90% of their time in indoor environments, several studies have pointed out the impact of indoor air quality on the etiopathogenesis of a wide number of non-specific symptoms which characterizes the "Sick Building Syndrome", involving the skin, the upper and lower respiratory tract, the eyes and the nervous system, as well as many building related diseases. Thus, indoor air quality (IAQ) is recognized as an important factor to be controlled for the occupants' health and comfort. The majority of the monitoring systems presently available is very expensive and only allow to collect random samples. This work describes the system (iAQ), a low-cost indoor air quality monitoring wireless sensor network system, developed using Arduino, XBee modules and micro sensors, for storage and availability of monitoring data on a web portal in real time. Five micro sensors of environmental parameters (air temperature, humidity, carbon monoxide, carbon dioxide and luminosity) were used. Other sensors can be added for monitoring specific pollutants. The results reveal that the system can provide an effective indoor air quality assessment to prevent exposure risk. In fact, the indoor air quality may be extremely different compared to what is expected for a quality living environment. Systems like this would have benefit as public health interventions to reduce the burden of symptoms and diseases related to "sick buildings".

  9. Device-based monitoring in physical activity and public health research

    International Nuclear Information System (INIS)

    Bassett, David R

    2012-01-01

    Measurement of physical activity is important, given the vital role of this behavior in physical and mental health. Over the past quarter of a century, the use of small, non-invasive, wearable monitors to assess physical activity has become commonplace. This review is divided into three sections. In the first section, a brief history of physical activity monitoring is provided, along with a discussion of the strengths and weaknesses of different devices. In the second section, recent applications of physical activity monitoring in physical activity and public health research are discussed. Wearable monitors are being used to conduct surveillance, and to determine the extent and distribution of physical activity and sedentary behaviors in populations around the world. They have been used to help clarify the dose–response relation between physical activity and health. Wearable monitors that provide feedback to users have also been used in longitudinal interventions to motivate research participants and to assess their compliance with program goals. In the third section, future directions for research in physical activity monitoring are discussed. It is likely that new developments in wearable monitors will lead to greater accuracy and improved ease-of-use. (paper)

  10. Continuous Monitoring of Glucose for Type 1 Diabetes: A Health Technology Assessment

    Science.gov (United States)

    Vandersluis, Stacey; Kabali, Conrad; Djalalov, Sandjar; Gajic-Veljanoski, Olga; Wells, David; Holubowich, Corinne

    2018-01-01

    Background Type 1 diabetes is a condition in which the pancreas produces little or no insulin. People with type 1 diabetes must manage their blood glucose levels by monitoring the amount of glucose in their blood and administering appropriate amounts of insulin via injection or an insulin pump. Continuous glucose monitoring may be beneficial compared to self-monitoring of blood glucose using a blood glucose meter. It provides insight into a person's blood glucose levels on a continuous basis, and can identify whether blood glucose levels are trending up or down. Methods We conducted a health technology assessment, which included an evaluation of clinical benefit, value for money, and patient preferences related to continuous glucose monitoring. We compared continuous glucose monitoring with self-monitoring of blood glucose using a finger-prick and a blood glucose meter. We performed a systematic literature search for studies published since January 1, 2010. We created a Markov model projecting the lifetime horizon of adults with type 1 diabetes, and performed a budget impact analysis from the perspective of the health care payer. We also conducted interviews and focus group discussions with people who self-manage their type 1 diabetes or support the management of a child with type 1 diabetes. Results Twenty studies were included in the clinical evidence review. Compared with self-monitoring of blood glucose, continuous glucose monitoring improved the percentage of time patients spent in the target glycemic range by 9.6% (95% confidence interval 8.0–11.2) to 10.0% (95% confidence interval 6.75–13.25) and decreased the number of severe hypoglycemic events. Continuous glucose monitoring was associated with higher costs and small increases in health benefits (quality-adjusted life-years). Incremental cost-effectiveness ratios (ICERs) ranged from $592,206 to $1,108,812 per quality-adjusted life-year gained in analyses comparing four continuous glucose monitoring

  11. A fully automated health-care monitoring at home without attachment of any biological sensors and its clinical evaluation.

    Science.gov (United States)

    Motoi, Kosuke; Ogawa, Mitsuhiro; Ueno, Hiroshi; Kuwae, Yutaka; Ikarashi, Akira; Yuji, Tadahiko; Higashi, Yuji; Tanaka, Shinobu; Fujimoto, Toshiro; Asanoi, Hidetsugu; Yamakoshi, Ken-ichi

    2009-01-01

    Daily monitoring of health condition is important for an effective scheme for early diagnosis, treatment and prevention of lifestyle-related diseases such as adiposis, diabetes, cardiovascular diseases and other diseases. Commercially available devices for health care monitoring at home are cumbersome in terms of self-attachment of biological sensors and self-operation of the devices. From this viewpoint, we have been developing a non-conscious physiological monitor installed in a bath, a lavatory, and a bed for home health care and evaluated its measurement accuracy by simultaneous recordings of a biological sensors directly attached to the body surface. In order to investigate its applicability to health condition monitoring, we have further developed a new monitoring system which can automatically monitor and store the health condition data. In this study, by evaluation on 3 patients with cardiac infarct or sleep apnea syndrome, patients' health condition such as body and excretion weight in the toilet and apnea and hypopnea during sleeping were successfully monitored, indicating that the system appears useful for monitoring the health condition during daily living.

  12. Three-Dimensional Health Monitoring of Sandwich Composites, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR project delivers a single-chip structural health-monitoring (SHM) system that uses the impedance method to monitor bulk interiors and wave propagation...

  13. Online Health Monitoring using Facebook Advertisement Audience Estimates in the United States: Evaluation Study.

    Science.gov (United States)

    Mejova, Yelena; Weber, Ingmar; Fernandez-Luque, Luis

    2018-03-28

    Facebook, the most popular social network with over one billion daily users, provides rich opportunities for its use in the health domain. Though much of Facebook's data are not available to outsiders, the company provides a tool for estimating the audience of Facebook advertisements, which includes aggregated information on the demographics and interests, such as weight loss or dieting, of Facebook users. This paper explores the potential uses of Facebook ad audience estimates for eHealth by studying the following: (1) for what type of health conditions prevalence estimates can be obtained via social media and (2) what type of marker interests are useful in obtaining such estimates, which can then be used for recruitment within online health interventions. The objective of this study was to understand the limitations and capabilities of using Facebook ad audience estimates for public health monitoring and as a recruitment tool for eHealth interventions. We use the Facebook Marketing application programming interface to correlate estimated sizes of audiences having health-related interests with public health data. Using several study cases, we identify both potential benefits and challenges in using this tool. We find several limitations in using Facebook ad audience estimates, for example, using placebo interest estimates to control for background level of user activity on the platform. Some Facebook interests such as plus-size clothing show encouraging levels of correlation (r=.74) across the 50 US states; however, we also sometimes find substantial correlations with the placebo interests such as r=.68 between interest in Technology and Obesity prevalence. Furthermore, we find demographic-specific peculiarities in the interests on health-related topics. Facebook's advertising platform provides aggregate data for more than 190 million US adults. We show how disease-specific marker interests can be used to model prevalence rates in a simple and intuitive manner

  14. Forest health monitoring: 2005 national technical report

    Science.gov (United States)

    Mark J. Ambrose; Barbara L. Conkling

    2007-01-01

    The Forest Health Monitoring program's annual national technical report presents results of forest health analyses from a national perspective using data from a variety of sources. The report is organized according to the Criteria and Indicators for the Conservation and Sustainable Management of Temperate and Boreal Forests of the Santiago Declaration. The results...

  15. Forest health monitoring: 2006 national technical report

    Science.gov (United States)

    Mark J. Ambrose; Barbara L. Conkling

    2009-01-01

    The Forest Health Monitoring Program’s annual national technical report presents results of forest health analyses from a national perspective using data from a variety of sources. The report is organized according to the Criteria and Indicators for the Conservation and Sustainable Management of Temperate and Boreal Forests of the...

  16. Intelligent Control and Health Monitoring. Chapter 3

    Science.gov (United States)

    Garg, Sanjay; Kumar, Aditya; Mathews, H. Kirk; Rosenfeld, Taylor; Rybarik, Pavol; Viassolo, Daniel E.

    2009-01-01

    Advanced model-based control architecture overcomes the limitations state-of-the-art engine control and provides the potential of virtual sensors, for example for thrust and stall margin. "Tracking filters" are used to adapt the control parameters to actual conditions and to individual engines. For health monitoring standalone monitoring units will be used for on-board analysis to determine the general engine health and detect and isolate sudden faults. Adaptive models open up the possibility of adapting the control logic to maintain desired performance in the presence of engine degradation or to accommodate any faults. Improved and new sensors are required to allow sensing at stations within the engine gas path that are currently not instrumented due in part to the harsh conditions including high operating temperatures and to allow additional monitoring of vibration, mass flows and energy properties, exhaust gas composition, and gas path debris. The environmental and performance requirements for these sensors are summarized.

  17. Real-time health monitoring of civil infrastructure systems in Colombia

    Science.gov (United States)

    Thomson, Peter; Marulanda Casas, Johannio; Marulanda Arbelaez, Johannio; Caicedo, Juan

    2001-08-01

    Colombia's topography, climatic conditions, intense seismic activity and acute social problems place high demands on the nations deteriorating civil infrastructure. Resources that are available for maintenance of the road and railway networks are often misdirected and actual inspection methods are limited to a visual examination. New techniques for inspection and evaluation of safety and serviceability of civil infrastructure, especially bridges, must be developed. Two cases of civil structures with health monitoring systems in Colombia are presented in this paper. Construction of the Pereria-Dos Quebradas Viaduct was completed in 1997 with a total cost of 58 million dollars, including 1.5 million dollars in health monitoring instrumentation provided and installed by foreign companies. This health monitoring system is not yet fully operational due to the lack of training of national personnel in system operation and extremely limited technical documentation. In contrast to the Pereria-Dos Quebradas Viaduct monitoring system, the authors have proposed a relatively low cost health monitoring system via telemetry. This system has been implemented for real-time monitoring of accelerations of El Hormiguero Bridge spanning the Cauca River using the Colombian Southwest Earthquake Observatory telemetry systems. This two span metallic bridge, located along a critical road between the cities of Puerto Tejada and Cali in the Cauca Valley, was constructed approximately 50 years ago. Experiences with this system demonstrate how effective low cost systems can be used to remotely monitor the structural integrity of deteriorating structures that are continuously subject to high loading conditions.

  18. [Monitoring social determinants of health].

    Science.gov (United States)

    Espelt, Albert; Continente, Xavier; Domingo-Salvany, Antonia; Domínguez-Berjón, M Felicitas; Fernández-Villa, Tania; Monge, Susana; Ruiz-Cantero, M Teresa; Perez, Glòria; Borrell, Carme

    2016-11-01

    Public health surveillance is the systematic and continuous collection, analysis, dissemination and interpretation of health-related data for planning, implementation and evaluation of public health initiatives. Apart from the health system, social determinants of health include the circumstances in which people are born, grow up, live, work and age, and they go a long way to explaining health inequalities. A surveillance system of the social determinants of health requires a comprehensive and social overview of health. This paper analyses the importance of monitoring social determinants of health and health inequalities, and describes some relevant aspects concerning the implementation of surveillance during the data collection, compilation and analysis phases, as well as dissemination of information and evaluation of the surveillance system. It is important to have indicators from sources designed for this purpose, such as continuous records or periodic surveys, explicitly describing its limitations and strengths. The results should be published periodically in a communicative format that both enhances the public's ability to understand the problems that affect them, whilst at the same time empowering the population, with the ultimate goal of guiding health-related initiatives at different levels of intervention. Copyright © 2016 SESPAS. Publicado por Elsevier España, S.L.U. All rights reserved.

  19. Structural health monitoring an advanced signal processing perspective

    CERN Document Server

    Chen, Xuefeng; Mukhopadhyay, Subhas

    2017-01-01

    This book highlights the latest advances and trends in advanced signal processing (such as wavelet theory, time-frequency analysis, empirical mode decomposition, compressive sensing and sparse representation, and stochastic resonance) for structural health monitoring (SHM). Its primary focus is on the utilization of advanced signal processing techniques to help monitor the health status of critical structures and machines encountered in our daily lives: wind turbines, gas turbines, machine tools, etc. As such, it offers a key reference guide for researchers, graduate students, and industry professionals who work in the field of SHM.

  20. Advanced health monitor for automated driving functions

    OpenAIRE

    Mikovski Iotov, I.

    2017-01-01

    There is a trend in the automotive domain where driving functions are taken from the driver by automated driving functions. In order to guarantee the correct behavior of these auto-mated driving functions, the report introduces an Advanced Health Monitor that uses Tem-poral Logic and Probabilistic Analysis to indicate the system’s health.

  1. Administrative integration of vertical HIV monitoring and evaluation into health systems: a case study from South Africa

    OpenAIRE

    Kawonga, Mary; Fonn, Sharon; Blaauw, Duane

    2013-01-01

    Background: In light of an increasing global focus on health system strengthening and integration of vertical programmes within health systems, methods and tools are required to examine whether general health service managers exercise administrative authority over vertical programmes. Objective: To measure the extent to which general health service (horizontal) managers, exercise authority over the HIV programme’s monitoring and evaluation (M&E) function, and to explore factors that may i...

  2. In situ health monitoring of piezoelectric sensors

    Science.gov (United States)

    Jensen, Scott L. (Inventor); Drouant, George J. (Inventor)

    2013-01-01

    An in situ health monitoring apparatus may include an exciter circuit that applies a pulse to a piezoelectric transducer and a data processing system that determines the piezoelectric transducer's dynamic response to the first pulse. The dynamic response can be used to evaluate the operating range, health, and as-mounted resonance frequency of the transducer, as well as the strength of a coupling between the transducer and a structure and the health of the structure.

  3. Regional Geographic Information Systems of Health and Environmental Monitoring

    Directory of Open Access Journals (Sweden)

    Kurolap Semen A.

    2016-12-01

    Full Text Available The article describes a new scientific and methodological approach to designing geographic information systems of health and environmental monitoring for urban areas. Geographic information systems (GIS are analytical tools of the regional health and environmental monitoring; they are used for an integrated assessment of the environmental status of a large industrial centre or a part of it. The authors analyse the environmental situation in Voronezh, a major industrial city, located in the Central Black Earth Region with a population of more than 1 million people. The proposed research methodology is based on modern approaches to the assessment of health risks caused by adverse environmental conditions. The research work was implemented using a GIS and multicriteria probabilistic and statistical evaluation to identify cause-and-effect links, a combination of action and reaction, in the dichotomy ‘environmental factors — public health’. The analysis of the obtained statistical data confirmed an increase in childhood diseases in some areas of the city. Environmentally induced diseases include congenital malformations, tumors, endocrine and urogenital pathologies. The main factors having an adverse impact on health are emissions of carcinogens into the atmosphere and the negative impact of transport on the environment. The authors identify and characterize environmentally vulnerable parts of the city and developed principles of creating an automated system of health monitoring and control of environmental risks. The article offers a number of measures aimed at the reduction of environmental risks, better protection of public health and a more efficient environmental monitoring.

  4. Signature Optical Cues: Emerging Technologies for Monitoring Plant Health

    Directory of Open Access Journals (Sweden)

    Anand K. Asundi

    2008-05-01

    Full Text Available Optical technologies can be developed as practical tools for monitoring plant health by providing unique spectral signatures that can be related to specific plant stresses. Signatures from thermal and fluorescence imaging have been used successfully to track pathogen invasion before visual symptoms are observed. Another approach for noninvasive plant health monitoring involves elucidating the manner with which light interacts with the plant leaf and being able to identify changes in spectral characteristics in response to specific stresses. To achieve this, an important step is to understand the biochemical and anatomical features governing leaf reflectance, transmission and absorption. Many studies have opened up possibilities that subtle changes in leaf reflectance spectra can be analyzed in a plethora of ways for discriminating nutrient and water stress, but with limited success. There has also been interest in developing transgenic phytosensors to elucidate plant status in relation to environmental conditions. This approach involves unambiguous signal creation whereby genetic modification to generate reporter plants has resulted in distinct optical signals emitted in response to specific stressors. Most of these studies are limited to laboratory or controlled greenhouse environments at leaf level. The practical translation of spectral cues for application under field conditions at canopy and regional levels by remote aerial sensing remains a challenge. The movement towards technology development is well exemplified by the Controlled Ecological Life Support System under development by NASA which brings together technologies for monitoring plant status concomitantly with instrumentation for environmental monitoring and feedback control.

  5. The effectiveness of specialist roles in mental health metabolic monitoring: a retrospective cross-sectional comparison study.

    Science.gov (United States)

    McKenna, Brian; Furness, Trentham; Wallace, Elizabeth; Happell, Brenda; Stanton, Robert; Platania-Phung, Chris; Edward, Karen-leigh; Castle, David

    2014-09-02

    People with serious mental illness (SMI) exhibit a high prevalence of cardiovascular diseases. Mental health services have a responsibility to address poor physical health in their consumers. One way of doing this is to conduct metabolic monitoring (MM) of risk factors for cardiovascular diseases. This study compares two models of MM among consumers with SMI and describes referral pathways for those at high risk of cardiovascular diseases. A retrospective cross-sectional comparison design was used. The two models were: (1) MM integrated with case managers, and (2) MM integrated with case managers and specialist roles. Retrospective data were collected for all new episodes at two community mental health services (CMHS) over a 12-month period (September 2012 - August 2013). A total of 432 consumers with SMI across the two community mental health services were included in the analysis. At the service with the specialist roles, MM was undertaken for 78% of all new episode consumers, compared with 3% at the mental health service with case managers undertaking the role. Incomplete MM was systemic to both CMHS, although all consumers identified with high risk of cardiovascular diseases were referred to a general practitioner or other community based health services. The specialist roles enabled more varied referral options. The results of this study support incorporating specialist roles over case manager only roles for more effective MM among new episode consumers with SMI.

  6. Introduction to: The Forest Health monitoring program

    Science.gov (United States)

    Barbara L. Conkling

    2011-01-01

    The National Forest Health Monitoring (FHM) Program of the Forest Service, U.S. Department of Agriculture, produces an annual technical report on forest health as one of its products. The report is organized using the Criteria and Indicators for the Conservation and Sustainable Management of Temperate and Boreal Forests (Montréal Process Working Group 2007) as a...

  7. Monitoring and Benchmarking eHealth in the Nordic Countries.

    Science.gov (United States)

    Nøhr, Christian; Koch, Sabine; Vimarlund, Vivian; Gilstad, Heidi; Faxvaag, Arild; Hardardottir, Gudrun Audur; Andreassen, Hege K; Kangas, Maarit; Reponen, Jarmo; Bertelsen, Pernille; Villumsen, Sidsel; Hyppönen, Hannele

    2018-01-01

    The Nordic eHealth Research Network, a subgroup of the Nordic Council of Ministers eHealth group, is working on developing indicators to monitor progress in availability, use and outcome of eHealth applications in the Nordic countries. This paper reports on the consecutive analysis of National eHealth policies in the Nordic countries from 2012 to 2016. Furthermore, it discusses the consequences for the development of indicators that can measure changes in the eHealth environment arising from the policies. The main change in policies is reflected in a shift towards more stakeholder involvement and intensified focus on clinical infrastructure. This change suggests developing indicators that can monitor understandability and usability of eHealth systems, and the use and utility of shared information infrastructure from the perspective of the end-users - citizens/patients and clinicians in particular.

  8. Ethical issues in using Twitter for population-level depression monitoring: a qualitative study.

    Science.gov (United States)

    Mikal, Jude; Hurst, Samantha; Conway, Mike

    2016-04-14

    Recently, significant research effort has focused on using Twitter (and other social media) to investigate mental health at the population-level. While there has been influential work in developing ethical guidelines for Internet discussion forum-based research in public health, there is currently limited work focused on addressing ethical problems in Twitter-based public health research, and less still that considers these issues from users' own perspectives. In this work, we aim to investigate public attitudes towards utilizing public domain Twitter data for population-level mental health monitoring using a qualitative methodology. The study explores user perspectives in a series of five, 2-h focus group interviews. Following a semi-structured protocol, 26 Twitter users with and without a diagnosed history of depression discussed general Twitter use, along with privacy expectations, and ethical issues in using social media for health monitoring, with a particular focus on mental health monitoring. Transcripts were then transcribed, redacted, and coded using a constant comparative approach. While participants expressed a wide range of opinions, there was an overall trend towards a relatively positive view of using public domain Twitter data as a resource for population level mental health monitoring, provided that results are appropriately aggregated. Results are divided into five sections: (1) a profile of respondents' Twitter use patterns and use variability; (2) users' privacy expectations, including expectations regarding data reach and permanence; (3) attitudes towards social media based population-level health monitoring in general, and attitudes towards mental health monitoring in particular; (4) attitudes towards individual versus population-level health monitoring; and (5) users' own recommendations for the appropriate regulation of population-level mental health monitoring. Focus group data reveal a wide range of attitudes towards the use of public

  9. Capacity building for health inequality monitoring in Indonesia: enhancing the equity orientation of country health information system.

    Science.gov (United States)

    Hosseinpoor, Ahmad Reza; Nambiar, Devaki; Tawilah, Jihane; Schlotheuber, Anne; Briot, Benedicte; Bateman, Massee; Davey, Tamzyn; Kusumawardani, Nunik; Myint, Theingi; Nuryetty, Mariet Tetty; Prasetyo, Sabarinah; Suparmi; Floranita, Rustini

    Inequalities in health represent a major problem in many countries, including Indonesia. Addressing health inequality is a central component of the Sustainable Development Goals and a priority of the World Health Organization (WHO). WHO provides technical support for health inequality monitoring among its member states. Following a capacity-building workshop in the WHO South-East Asia Region in 2014, Indonesia expressed interest in incorporating health-inequality monitoring into its national health information system. This article details the capacity-building process for national health inequality monitoring in Indonesia, discusses successes and challenges, and how this process may be adapted and implemented in other countries/settings. We outline key capacity-building activities undertaken between April 2016 and December 2017 in Indonesia and present the four key outcomes of this process. The capacity-building process entailed a series of workshops, meetings, activities, and processes undertaken between April 2016 and December 2017. At each stage, a range of stakeholders with access to the relevant data and capacity for data analysis, interpretation and reporting was engaged with, under the stewardship of state agencies. Key steps to strengthening health inequality monitoring included capacity building in (1) identification of the health topics/areas of interest, (2) mapping data sources and identifying gaps, (3) conducting equity analyses using raw datasets, and (4) interpreting and reporting inequality results. As a result, Indonesia developed its first national report on the state of health inequality. A number of peer-reviewed manuscripts on various aspects of health inequality in Indonesia have also been developed. The capacity-building process undertaken in Indonesia is designed to be adaptable to other contexts. Capacity building for health inequality monitoring among countries is a critical step for strengthening equity-oriented national health

  10. Bridge health monitoring with consideration of environmental effects

    International Nuclear Information System (INIS)

    Kim, Yuhee; Kim, Hyunsoo; Shin, Soobong; Park, Jongchil

    2012-01-01

    Reliable response measurements are extremely important for proper bridge health monitoring but incomplete and unreliable data may be acquired due to sensor problems and environmental effects. In the case of a sensor malfunction, parts of the measured data can be missing so that the structural health condition cannot be monitored reliably. This means that the dynamic characteristics of natural frequencies can change as if the structure is damaged due to environmental effects, such as temperature variations. To overcome these problems, this paper proposes a systematic procedure of data analysis to recover missing data and eliminate the environmental effects from the measured data. It also proposed a health index calculated statistically using revised data to evaluate the health condition of a bridge. The proposed method was examined using numerically simulated data with a truss structure and then applied to a set of field data measured from a cable stayed bridge

  11. Bridge health monitoring with consideration of environmental effects

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yuhee; Kim, Hyunsoo; Shin, Soobong [Inha Univ., Incheon (Korea, Republic of); Park, Jongchil [Korea Expressway Co., (Korea, Republic of)

    2012-12-15

    Reliable response measurements are extremely important for proper bridge health monitoring but incomplete and unreliable data may be acquired due to sensor problems and environmental effects. In the case of a sensor malfunction, parts of the measured data can be missing so that the structural health condition cannot be monitored reliably. This means that the dynamic characteristics of natural frequencies can change as if the structure is damaged due to environmental effects, such as temperature variations. To overcome these problems, this paper proposes a systematic procedure of data analysis to recover missing data and eliminate the environmental effects from the measured data. It also proposed a health index calculated statistically using revised data to evaluate the health condition of a bridge. The proposed method was examined using numerically simulated data with a truss structure and then applied to a set of field data measured from a cable stayed bridge.

  12. Passive in-home health and wellness monitoring: overview, value and examples.

    Science.gov (United States)

    Alwan, Majd

    2009-01-01

    Modern sensor and communication technology, coupled with advances in data analysis and artificial intelligence techniques, is causing a paradigm shift in remote management and monitoring of chronic disease. In-home monitoring technology brings the added benefit of measuring individualized health status and reporting it to the care provider and caregivers alike, allowing timely and targeted preventive interventions, even in home and community based settings. This paper presents a paradigm for geriatric care based on monitoring older adults passively in their own living settings through placing sensors in their living environments or the objects they use. Activity and physiological data can be analyzed, archived and mined to detect indicators of early disease onset or changes in health conditions at various levels. Examples of monitoring systems are discussed and results from field evaluation pilot studies are summarized. The approach has shown great promise for a significant value proposition to all the stakeholders involved in caring for older adults. The paradigm would allow care providers to extend their services into the communities they serve.

  13. Adaptive and Online Health Monitoring System for Autonomous Aircraft

    OpenAIRE

    Mokhtar, Maizura; Zapatel-Bayo, Sergio Z.; Hussein, Saed; Howe, Joe M.

    2012-01-01

    Good situation awareness is one of the key attributes required to maintain safe flight, especially for an Unmanned Aerial System (UAS). Good situation awareness can be achieved by incorporating an Adaptive Health Monitoring System (AHMS) to the aircraft. The AHMS monitors the flight outcome or flight behaviours of the aircraft based on its external environmental conditions and the behaviour of its internal systems. The AHMS does this by associating a health value to the aircraft's behaviour b...

  14. Structural health monitoring 2012. Proceedings. Vol. 2

    International Nuclear Information System (INIS)

    Boller, Christian

    2012-01-01

    Structural Health Monitoring (SHM) is an emerging technology, dealing with the development and implementation of techniques and systems where monitoring, inspection and damage detection become an integral part of structures and thus a matter of automation. It further merges with a variety of techniques related to diagnostics and prognostics. SHM emerged from the field of smart structures and laterally encompasses disciplines such as structural dynamics, materials and structures, fatigue and fracture, non-destructive testing and evaluation, sensors and actuators, microelectronics, signal processing and much more. To be effective in the development of SHM systems, a multidisciplinary approach is therefore required. Without this global view it will be difficult for engineers to holistically manage the operation of an engineering structure through its life cycle in the future and to generate new breakthroughs in structural engineering. The second volume of the proceedings contains topics dealing with applications in the field of aeronautics, astronautic, civil engineering (bridges), energy (wind power), structural health monitoring (transportation), and poster presentations. Ten of the contributions are separately analyzed for the ENERGY database.

  15. Frequency Selective Surface for Structural Health Monitoring

    Science.gov (United States)

    Norlyana Azemi, Saidatul; Mustaffa, Farzana Hazira Wan; Faizal Jamlos, Mohd; Abdullah Al-Hadi, Azremi; Soh, Ping Jack

    2018-03-01

    Structural health monitoring (SHM) technologies have attained attention to monitor civil structures. SHM sensor systems have been used in various civil structures such as bridges, buildings, tunnels and so on. However the previous sensor for SHM is wired and encounter with problem to cover large areas. Therefore, wireless sensor was introduced for SHM to reduce network connecting problem. Wireless sensors for Structural Health monitoring are new technology and have many advantages to overcome the drawback of conventional and wired sensor. This project proposed passive wireless SHM sensor using frequency selective surface (FSS) as an alternative to conventional sensors. The electromagnetic wave characteristic of FSS will change by geometrical changes of FSS due to mechanical strain or structural failure. The changes feature is used as a sensing function without any connecting wires. Two type of design which are circular ring and square loop along with the transmission and reflection characteristics of SHM using FSS were discussed in this project. A simulation process has shown that incident angle characteristics can be use as a data for SHM application.

  16. Environment monitoring and residents health condition monitoring of nuclear power plant Bohunice region

    International Nuclear Information System (INIS)

    Letkovicova, M.; Rehak, R.; Stehlikova, B.; Celko, M.; Hraska, S.; Klocok, L.; Kostial, J.; Prikazsky, V.; Vidovic, J.; Zirko, M.; Beno, T.; Mitosinka, J.

    1998-01-01

    The report contents final environment evaluation and selected characteristic of residents health physics of nuclear power plant Bohunice region. Evaluated data were elaborated during analytical period 1993-1997.Task solving which results are documented in this final report was going on between 1996- 1998. The report deals in individual stages with the following: Information obtaining and completing which characterize demographic situation of the area for the 1993-1997 period; Datum obtaining and completing which contain selected health physics characteristics of the area residents; Database structures for individual data archiving from monitoring and collection; Brief description of geographic information system for graphic presentation of evaluation results based on topographic base; Digital mapping structure description; Results and evaluation of radionuclide monitoring in environment performed by Environmental radiation measurements laboratory by the nuclear power plant Bohunice for the 1993-1997 period. Demographic situation evaluation and selected health physics characteristics of the area of nuclear power plant residents for the 1993-1997 period are summarized in the final part of the document. Monitoring results and their evaluation is processed in graph, table, text description and map output forms. Map outputs are processed in the geographic information system Arc View GIS 3.0a environment

  17. A Study on the Data Compression Technology-Based Intelligent Data Acquisition (IDAQ System for Structural Health Monitoring of Civil Structures

    Directory of Open Access Journals (Sweden)

    Gwanghee Heo

    2017-07-01

    Full Text Available In this paper, a data compression technology-based intelligent data acquisition (IDAQ system was developed for structural health monitoring of civil structures, and its validity was tested using random signals (El-Centro seismic waveform. The IDAQ system was structured to include a high-performance CPU with large dynamic memory for multi-input and output in a radio frequency (RF manner. In addition, the embedded software technology (EST has been applied to it to implement diverse logics needed in the process of acquiring, processing and transmitting data. In order to utilize IDAQ system for the structural health monitoring of civil structures, this study developed an artificial filter bank by which structural dynamic responses (acceleration were efficiently acquired, and also optimized it on the random El-Centro seismic waveform. All techniques developed in this study have been embedded to our system. The data compression technology-based IDAQ system was proven valid in acquiring valid signals in a compressed size.

  18. Multi-metric model-based structural health monitoring

    Science.gov (United States)

    Jo, Hongki; Spencer, B. F.

    2014-04-01

    ABSTRACT The inspection and maintenance of bridges of all types is critical to the public safety and often critical to the economy of a region. Recent advanced sensor technologies provide accurate and easy-to-deploy means for structural health monitoring and, if the critical locations are known a priori, can be monitored by direct measurements. However, for today's complex civil infrastructure, the critical locations are numerous and often difficult to identify. This paper presents an innovative framework for structural monitoring at arbitrary locations on the structure combining computational models and limited physical sensor information. The use of multi-metric measurements is advocated to improve the accuracy of the approach. A numerical example is provided to illustrate the proposed hybrid monitoring framework, particularly focusing on fatigue life assessment of steel structures.

  19. Personalized Health Monitoring System for Managing Well-Being in Rural Areas.

    Science.gov (United States)

    Nedungadi, Prema; Jayakumar, Akshay; Raman, Raghu

    2017-12-14

    Rural India lacks easy access to health practitioners and medical centers, depending instead on community health workers. In these areas, common ailments that are easy to manage with medicines, often lead to medical escalations and even fatalities due to lack of awareness and delayed diagnosis. The introduction of wearable health devices has made it easier to monitor health conditions and to connect doctors and patients in urban areas. However, existing initiatives have not succeeded in providing adequate health monitoring to rural and low-literate patients, as current methods are expensive, require consistent connectivity and expect literate users. Our design considerations address these concerns by providing low-cost medical devices connected to a low-cost health platform, along with personalized guidance based on patient physiological parameters in local languages, and alerts to medical practitioners in case of emergencies. This patient-centric integrated healthcare system is designed to manage the overall health of villagers with real-time health monitoring of patients, to offer guidance on preventive care, and to increase health awareness and self-monitoring at an affordable price. This personalized health monitoring system addresses the health-related needs in remote and rural areas by (1) empowering health workers in monitoring of basic health conditions for rural patients in order to prevent escalations, (2) personalized feedback regarding nutrition, exercise, diet, preventive Ayurveda care and yoga postures based on vital parameters and (3) reporting of patient data to the patient's health center with emergency alerts to doctor and patient. The system supports community health workers in the diagnostic procedure, management, and reporting of rural patients, and functions well even with only intermittent access to Internet.

  20. Identification methods for structural health monitoring

    CERN Document Server

    Papadimitriou, Costas

    2016-01-01

    The papers in this volume provide an introduction to well known and established system identification methods for structural health monitoring and to more advanced, state-of-the-art tools, able to tackle the challenges associated with actual implementation. Starting with an overview on fundamental methods, introductory concepts are provided on the general framework of time and frequency domain, parametric and non-parametric methods, input-output or output only techniques. Cutting edge tools are introduced including, nonlinear system identification methods; Bayesian tools; and advanced modal identification techniques (such as the Kalman and particle filters, the fast Bayesian FFT method). Advanced computational tools for uncertainty quantification are discussed to provide a link between monitoring and structural integrity assessment. In addition, full scale applications and field deployments that illustrate the workings and effectiveness of the introduced monitoring schemes are demonstrated.

  1. Localizing the HL7 Personal Health Monitoring Record for Danish Telemedicine

    DEFF Research Database (Denmark)

    Christensen, Henrik Bærbak

    2014-01-01

    Telemedicine holds a promise of lowering cost in health care and improving the life quality of chronic ill patients by allowing monitoring in the home. The Personal Health Monitoring Record (PHMR) is an international HL7 standard data format for encoding measurements made by devices in the home...

  2. Contributions of national and global health estimates to monitoring health-related sustainable development goals.

    Science.gov (United States)

    Bundhamcharoen, Kanitta; Limwattananon, Supon; Kusreesakul, Khanitta; Tangcharoensathien, Viroj

    2016-01-01

    The millennium development goals triggered an increased demand for data on child and maternal mortalities for monitoring progress. With the advent of the sustainable development goals and growing evidence of an epidemiological transition toward non-communicable diseases, policymakers need data on mortality and disease trends and distribution to inform effective policies and support monitoring progress. Where there are limited capacities to produce national health estimates (NHEs), global health estimates (GHEs) can fill gaps for global monitoring and comparisons. This paper discusses lessons learned from Thailand's burden of disease (BOD) study on capacity development on NHEs and discusses the contributions and limitations of GHEs in informing policies at the country level. Through training and technical support by external partners, capacities are gradually strengthened and institutionalized to enable regular updates of BOD at national and subnational levels. Initially, the quality of cause-of-death reporting in death certificates was inadequate, especially for deaths occurring in the community. Verbal autopsies were conducted, using domestic resources, to determine probable causes of deaths occurring in the community. This method helped to improve the estimation of years of life lost. Since the achievement of universal health coverage in 2002, the quality of clinical data on morbidities has also considerably improved. There are significant discrepancies between the Global Burden of Disease 2010 study estimates for Thailand and the 1999 nationally generated BOD, especially for years of life lost due to HIV/AIDS, and the ranking of priority diseases. National ownership of NHEs and an effective interface between researchers and decision-makers contribute to enhanced country policy responses, whereas subnational data are intended to be used by various subnational partners. Although GHEs contribute to benchmarking country achievement compared with global health

  3. Reconfigurable intelligent sensors for health monitoring: a case study of pulse oximeter sensor.

    Science.gov (United States)

    Jovanov, E; Milenkovic, A; Basham, S; Clark, D; Kelley, D

    2004-01-01

    Design of low-cost, miniature, lightweight, ultra low-power, intelligent sensors capable of customization and seamless integration into a body area network for health monitoring applications presents one of the most challenging tasks for system designers. To answer this challenge we propose a reconfigurable intelligent sensor platform featuring a low-power microcontroller, a low-power programmable logic device, a communication interface, and a signal conditioning circuit. The proposed solution promises a cost-effective, flexible platform that allows easy customization, run-time reconfiguration, and energy-efficient computation and communication. The development of a common platform for multiple physical sensors and a repository of both software procedures and soft intellectual property cores for hardware acceleration will increase reuse and alleviate costs of transition to a new generation of sensors. As a case study, we present an implementation of a reconfigurable pulse oximeter sensor.

  4. Forest health monitoring: national status, trends, and analysis 2016

    Science.gov (United States)

    Kevin M. Potter; Barbara L. Conkling

    2017-01-01

    The annual national report of the Forest Health Monitoring (FHM) Program of the Forest Service, U.S. Department of Agriculture, presents forest health status and trends from a national or multi-State regional perspective using a variety of sources, introducesnew techniques for analyzing forest health data, and summarizes results of recently completed...

  5. Damage Detection Sensitivity of a Vehicle-based Bridge Health Monitoring System

    Science.gov (United States)

    Miyamoto, Ayaho; Yabe, Akito; Lúcio, Válter J. G.

    2017-05-01

    As one solution to the problem for condition assessment of existing short and medium span (10-30m) reinforced/prestressed concrete bridges, a new monitoring method using a public bus as part of a public transit system (called “Bus monitoring system”) was proposed, along with safety indices, namely, “characteristic deflection”, which is relatively free from the influence of dynamic disturbances due to such factors as the roughness of the road surface, and a structural anomaly parameter. In this study, to evaluate the practicality of the newly developed bus monitoring system, it has been field-tested over a period of about four years by using an in-service fixed-route bus operating on a bus route in the city of Ube, Yamaguchi Prefecture, Japan. In here, although there are some useful monitoring methods for short and medium span bridges based on the qualitative or quantitative information, the sensitivity of damage detection was newly discussed for safety assessment based on long term health monitoring data. The verification results thus obtained are also described in this paper, and also evaluates the sensitivity of the “characteristic deflection”, which is a bridge (health) condition indicator used by the bus monitoring system, in damage detection. Sensitivity of “characteristic deflection” is verified by introducing artificial damage into a bridge that has ended its service life and is awaiting removal. Furthermore, the sensitivity of “characteristic deflection” is verified by 3D FEM analysis.

  6. Integrating Condition Indicators and Usage Parameters for Improved Spiral Bevel Gear Health Monitoring

    Science.gov (United States)

    Dempsey, Paula J.; Handschuh, Robert F.; Delgado, Irebert, R.

    2013-01-01

    The objective of this study was to illustrate the importance of combining Health Usage Monitoring Systems (HUMS) data with usage monitoring system data when detecting rotorcraft transmission health. Three gear sets were tested in the NASA Glenn Spiral Bevel Gear Fatigue Rig. Damage was initiated and progressed on the gear and pinion teeth. Damage progression was measured by debris generation and documented with inspection photos at varying torque values. A contact fatigue analysis was applied to the gear design indicating the effect temperature, load and reliability had on gear life. Results of this study illustrated the benefits of combining HUMS data and actual usage data to indicate progression of damage for spiral bevel gears.

  7. Forest Health Monitoring: national status, trends, and analysis 2014

    Science.gov (United States)

    Kevin M. Potter; Barbara L. Conkling

    2015-01-01

    The annual national report of the Forest Health Monitoring (FHM) Program of the Forest Service, U.S. Department of Agriculture, presents forest health status and trends from a national or multi-State regional perspective using a variety of sources, introduces new techniques for analyzing forest health data, and summarizes results of recently completed Evaluation...

  8. Forest health monitoring: national status, trends, and analysis 2013

    Science.gov (United States)

    Kevin M. Potter; Barbara L. Conkling

    2015-01-01

    The annual national report of the Forest Health Monitoring (FHM) Program of the Forest Service, U.S. Department of Agriculture, presents forest health status and trends from a national or multi-State regional perspective using a variety of sources, introduces new techniques for analyzing forest health data, and summarizes results of recently completed Evaluation...

  9. Smart sensor systems for human health breath monitoring applications.

    Science.gov (United States)

    Hunter, G W; Xu, J C; Biaggi-Labiosa, A M; Laskowski, D; Dutta, P K; Mondal, S P; Ward, B J; Makel, D B; Liu, C C; Chang, C W; Dweik, R A

    2011-09-01

    Breath analysis techniques offer a potential revolution in health care diagnostics, especially if these techniques can be brought into standard use in the clinic and at home. The advent of microsensors combined with smart sensor system technology enables a new generation of sensor systems with significantly enhanced capabilities and minimal size, weight and power consumption. This paper discusses the microsensor/smart sensor system approach and provides a summary of efforts to migrate this technology into human health breath monitoring applications. First, the basic capability of this approach to measure exhaled breath associated with exercise physiology is demonstrated. Building from this foundation, the development of a system for a portable asthma home health care system is described. A solid-state nitric oxide (NO) sensor for asthma monitoring has been identified, and efforts are underway to miniaturize this NO sensor technology and integrate it into a smart sensor system. It is concluded that base platform microsensor technology combined with smart sensor systems can address the needs of a range of breath monitoring applications and enable new capabilities for healthcare.

  10. Policy based Agents in Wireless Body Sensor Mesh Networks for Patient Health Monitoring

    OpenAIRE

    Kevin Miller; Suresh Sankaranarayanan

    2009-01-01

    There is presently considerable research interest in using wireless and mobile technologies in patient health monitoring particularly in hospitals and nursing homes. For health monitoring,, an intelligent agent based hierarchical architecture has already been published by one of the authors of this paper. Also, the technique of monitoring and notifying the health of patients using an intelligent agent, to the concerned hospital personnel, has also been proposed. We now present the details of ...

  11. Development of structural health monitoring techniques using dynamics testing

    Energy Technology Data Exchange (ETDEWEB)

    James, G.H. III [Sandia National Labs., Albuquerque, NM (United States). Experimental Structural Dynamics Dept.

    1996-03-01

    Today`s society depends upon many structures (such as aircraft, bridges, wind turbines, offshore platforms, buildings, and nuclear weapons) which are nearing the end of their design lifetime. Since these structures cannot be economically replaced, techniques for structural health monitoring must be developed and implemented. Modal and structural dynamics measurements hold promise for the global non-destructive inspection of a variety of structures since surface measurements of a vibrating structure can provide information about the health of the internal members without costly (or impossible) dismantling of the structure. In order to develop structural health monitoring for application to operational structures, developments in four areas have been undertaken within this project: operational evaluation, diagnostic measurements, information condensation, and damage identification. The developments in each of these four aspects of structural health monitoring have been exercised on a broad range of experimental data. This experimental data has been extracted from structures from several application areas which include aging aircraft, wind energy, aging bridges, offshore structures, structural supports, and mechanical parts. As a result of these advances, Sandia National Laboratories is in a position to perform further advanced development, operational implementation, and technical consulting for a broad class of the nation`s aging infrastructure problems.

  12. Monitoring the health-related labelling of foods and non-alcoholic beverages in retail settings.

    Science.gov (United States)

    Rayner, M; Wood, A; Lawrence, M; Mhurchu, C N; Albert, J; Barquera, S; Friel, S; Hawkes, C; Kelly, B; Kumanyika, S; L'abbé, M; Lee, A; Lobstein, T; Ma, J; Macmullan, J; Mohan, S; Monteiro, C; Neal, B; Sacks, G; Sanders, D; Snowdon, W; Swinburn, B; Vandevijvere, S; Walker, C

    2013-10-01

    Food labelling on food packaging has the potential to have both positive and negative effects on diets. Monitoring different aspects of food labelling would help to identify priority policy options to help people make healthier food choices. A taxonomy of the elements of health-related food labelling is proposed. A systematic review of studies that assessed the nature and extent of health-related food labelling has been conducted to identify approaches to monitoring food labelling. A step-wise approach has been developed for independently assessing the nature and extent of health-related food labelling in different countries and over time. Procedures for sampling the food supply, and collecting and analysing data are proposed, as well as quantifiable measurement indicators and benchmarks for health-related food labelling. © 2013 The Authors. Obesity Reviews published by John Wiley & Sons Ltd on behalf of the International Association for the Study of Obesity.

  13. Remote health monitoring for elderly through interactive television

    Science.gov (United States)

    2012-01-01

    Background Providing remote health monitoring to specific groups of patients represents an issue of great relevance for the national health systems, because of the costs related to moving health operators, the time spent to reach remote sites, and the high number of people needing health assistance. At the same time, some assistance activities, like those related to chronical diseases, may be satisfied through a remote interaction with the patient, without a direct medical examination. Methods Moving from this considerations, our paper proposes a system architecture for the provisioning of remote health assistance to older adults, based on a blind management of a network of wireless medical devices, and an interactive TV Set Top Box for accessing health related data. The selection of TV as the interface between the user and the system is specifically targeted to older adults. Due to the private nature of the information exchanged, a certified procedure is implemented for data delivery, through the use of non conditional smart cards. All these functions may be accomplished through a proper design of the system management, and a suitable interactive application. Results The interactive application acting as the interface between the user and the system on the TV monitor has been evaluated able to help readability and clear understanding of the contents and functions proposed. Thanks to the limited amount of data to transfer, even a Set Top Box equipped with a traditional PSTN modem may be used to support the proposed service at a basic level; more advanced features, like audio/video connection, may be activated if the Set Top Box enables a broadband connection (e.g. ADSL). Conclusions The proposed layered architecture for a remote health monitoring system can be tailored to address a wide range of needs, according with each patient’s conditions and capabilities. The system exploits the potentialities offered by Digital Television receivers, a friendly MHP interface

  14. Advising overweight persons about diet and physical activity in primary health care: Lithuanian health behaviour monitoring study

    Directory of Open Access Journals (Sweden)

    Vaisvalavicius Vytautas

    2006-02-01

    Full Text Available Abstract Background Obesity is a globally spreading health problem. Behavioural interventions aimed at modifying dietary habits and physical activity patterns are essential in prevention and management of obesity. General practitioners (GP have a unique opportunity to counsel overweight patients on weight control. The purpose of the study was to assess the level of giving advice on diet and physical activity by GPs using the data of Lithuanian health behaviour monitoring among adult population. Methods Data from cross-sectional postal surveys of 2000, 2002 and 2004 were analysed. Nationally representative random samples were drawn from the population register. Each sample consisted of 3000 persons aged 20–64 years. The response rates were 74.4% in 2000, 63.4% in 2002 and 61.7% in 2004. Self-reported body weight and height were used to calculate body mass index (BMI. Information on advising in primary health care was obtained asking whether GP advised overweight patients to change dietary habits and to increase physical activity. The odds of receiving advice on diet and physical activity were calculated using multiple logistic regression analyses according to a range of sociodemographic variables, perceived health, number of visits to GPs and body-weight status. Results Almost a half of respondents were overweight or obese. Only one fourth of respondents reported that they were advised to change diet. The proportion of persons who received advice on physical activity was even lower. The odds of receiving advice increased with age. A strong association was found between perceived health and receiving advice. The likelihood of receiving advice was related to BMI. GPs were more likely to give advice when BMI was high. More than a half of obese respondents (63.3% reported that they had tried to lose weight. The association between receiving advice and self-reported attempt to lose weight was found. Conclusion The low rate of dietary and physical

  15. Monitoring health interventions--who's afraid of LQAS?

    Science.gov (United States)

    Pezzoli, Lorenzo; Kim, Sung Hye

    2013-11-08

    Lot quality assurance sampling (LQAS) is used to evaluate health services. Subunits of a population (lots) are accepted or rejected according to the number of failures in a random sample (N) of a given lot. If failures are greater than decision value (d), we reject the lot and recommend corrective actions in the lot (i.e. intervention area); if they are equal to or less than d, we accept it. We used LQAS to monitor coverage during the last 3 days of a meningitis vaccination campaign in Niger. We selected one health area (lot) per day reporting the lowest administrative coverage in the previous 2 days. In the sampling plan we considered: N to be small enough to allow us to evaluate one lot per day, deciding to sample 16 individuals from the selected villages of each health area, using probability proportionate to population size; thresholds and d to vary according to administrative coverage reported; α ≤5% (meaning that, if we would have conducted the survey 100 times, we would have accepted the lot up to five times when real coverage was at an unacceptable level) and β ≤20% (meaning that we would have rejected the lot up to 20 times, when real coverage was equal or above the satisfactory level). We classified all three lots as with the acceptable coverage. LQAS appeared to be a rapid, simple, and statistically sound method for in-process coverage assessment. We encourage colleagues in the field to consider using LQAS in complement with other monitoring techniques such as house-to-house monitoring.

  16. General Purpose Data-Driven Online System Health Monitoring with Applications to Space Operations

    Science.gov (United States)

    Iverson, David L.; Spirkovska, Lilly; Schwabacher, Mark

    2010-01-01

    Modern space transportation and ground support system designs are becoming increasingly sophisticated and complex. Determining the health state of these systems using traditional parameter limit checking, or model-based or rule-based methods is becoming more difficult as the number of sensors and component interactions grows. Data-driven monitoring techniques have been developed to address these issues by analyzing system operations data to automatically characterize normal system behavior. System health can be monitored by comparing real-time operating data with these nominal characterizations, providing detection of anomalous data signatures indicative of system faults, failures, or precursors of significant failures. The Inductive Monitoring System (IMS) is a general purpose, data-driven system health monitoring software tool that has been successfully applied to several aerospace applications and is under evaluation for anomaly detection in vehicle and ground equipment for next generation launch systems. After an introduction to IMS application development, we discuss these NASA online monitoring applications, including the integration of IMS with complementary model-based and rule-based methods. Although the examples presented in this paper are from space operations applications, IMS is a general-purpose health-monitoring tool that is also applicable to power generation and transmission system monitoring.

  17. A Battery Health Monitoring Framework for Planetary Rovers

    Science.gov (United States)

    Daigle, Matthew J.; Kulkarni, Chetan Shrikant

    2014-01-01

    Batteries have seen an increased use in electric ground and air vehicles for commercial, military, and space applications as the primary energy source. An important aspect of using batteries in such contexts is battery health monitoring. Batteries must be carefully monitored such that the battery health can be determined, and end of discharge and end of usable life events may be accurately predicted. For planetary rovers, battery health estimation and prediction is critical to mission planning and decision-making. We develop a model-based approach utilizing computaitonally efficient and accurate electrochemistry models of batteries. An unscented Kalman filter yields state estimates, which are then used to predict the future behavior of the batteries and, specifically, end of discharge. The prediction algorithm accounts for possible future power demands on the rover batteries in order to provide meaningful results and an accurate representation of prediction uncertainty. The framework is demonstrated on a set of lithium-ion batteries powering a rover at NASA.

  18. INTEROPERABLE FRAMEWORK SOLUTION TO ICU HEALTH CARE MONITORING

    Directory of Open Access Journals (Sweden)

    Shola Usha Rani

    2015-03-01

    Full Text Available An interoperable telehealth system provides an independent healthcare solution for better management of health and wellness. It allows people to manage their heart disease and diabetes etc. by sending their health parameters like blood pressure, heart rate, glucose levels, temperature, weight, respiration from remote place to health professional, and get real-time feedback on their condition. Here different medical devices are connected to the patient for monitoring. Each kind of device is manufactured by different vendors. And each device information and communication requires different installation and network design. It causes design complexities and network overheads when moving patients for diagnosis examinations. This problem will be solved by interoperability among devices. The ISO/IEEE 11073 is an international standard which produces interoperable hospital information system solution to medical devices. One such type of integrated environment that requires the integration of medical devices is ICU (Intensive Care Unit. This paper presents the issues for ICU monitoring system and framework solution for it.

  19. Health technology assessment to optimize health technology utilization: using implementation initiatives and monitoring processes.

    Science.gov (United States)

    Frønsdal, Katrine B; Facey, Karen; Klemp, Marianne; Norderhaug, Inger Natvig; Mørland, Berit; Røttingen, John-Arne

    2010-07-01

    The way in which a health technology is used in any particular health system depends on the decisions and actions of a variety of stakeholders, the local culture, and context. In 2009, the HTAi Policy Forum considered how health technology assessment (HTA) could be improved to optimize the use of technologies (in terms of uptake, change in use, or disinvestment) in such complex systems. In scoping, it was agreed to focus on initiatives to implement evidence-based guidance and monitoring activities. A review identified systematic reviews of implementation initiatives and monitoring activities. A two-day deliberative workshop was held to discuss key papers, members' experiences, and collectively address key questions. This consensus paper was developed by email and finalized at a postworkshop meeting. Evidence suggests that the impact and use of HTA could be increased by ensuring timely delivery of relevant reports to clearly determined policy receptor (decision-making) points. To achieve this, the breadth of assessment, implementation initiatives such as incentives and targeted, intelligent dissemination of HTA result, needs to be considered. HTA stakeholders undertake a variety of monitoring activities, which could inform optimal use of a technology. However, the quality of these data varies and is often not submitted to an HTA. Monitoring data should be sufficiently robust so that they can be used in HTA to inform optimal use of technology. Evidence-based implementation initiatives should be developed for HTA, to better inform decision makers at all levels in a health system about the optimal use of technology.

  20. Integrated system of structural health monitoring and intelligent management for a cable-stayed bridge.

    Science.gov (United States)

    Chen, Bin; Wang, Xu; Sun, Dezhang; Xie, Xu

    2014-01-01

    It is essential to construct structural health monitoring systems for large important bridges. Zhijiang Bridge is a cable-stayed bridge that was built recently over the Hangzhou Qiantang River (the largest river in Zhejiang Province). The length of Zhijiang Bridge is 478 m, which comprises an arched twin-tower space and a twin-cable plane structure. As an example, the present study describes the integrated system of structural health monitoring and intelligent management for Zhijiang Bridge, which comprises an information acquisition system, data management system, evaluation and decision-making system, and application service system. The monitoring components include the working environment of the bridge and various factors that affect bridge safety, such as the stress and strain of the main bridge structure, vibration, cable force, temperature, and wind speed. In addition, the integrated system includes a forecasting and decision-making module for real-time online evaluation, which provides warnings and makes decisions based on the monitoring information. From this, the monitoring information, evaluation results, maintenance decisions, and warning information can be input simultaneously into the bridge monitoring center and traffic emergency center to share the monitoring data, thereby facilitating evaluations and decision making using the system.

  1. A qualitative review for wireless health monitoring system

    Science.gov (United States)

    Arshad, Atika; Fadzil Ismail, Ahmad; Khan, Sheroz; Zahirul Alam, A. H. M.; Tasnim, Rumana; Samnan Haider, Syed; Shobaki, Mohammed M.; Shahid, Zeeshan

    2013-12-01

    A proliferating interest has been being observed over the past years in accurate wireless system development in order to monitor incessant human activities in health care centres. Furthermore because of the swelling number of elderly population and the inadequate number of competent staffs for nursing homes there is a big market petition for health care monitoring system. In order to detect human researchers developed different methods namely which include Field Identification technique, Visual Sensor Network, radar detection, e-mobile techniques and so on. An all-encompassing overview of the non-wired human detection application advancement is presented in this paper. Inductive links are used for human detection application while wiring an electronic system has become impractical in recent times. Keeping in mind the shortcomings, an Inductive Intelligent Sensor (IIS) has been proposed as a novel human monitoring system for future implementation. The proposed sensor works towards exploring the signature signals of human body movement and size. This proposed sensor is fundamentally based on inductive loop that senses the presence and a passing human resulting an inductive change.

  2. Time-frequency Methods for Structural Health Monitoring

    NARCIS (Netherlands)

    Pyayt, A.L.; Kozionov, A.P.; Mokhov, I.I.; Lang, B.; Meijer, R.J.; Krzhizhanovskaya, V.V.; Sloot, P.M.A.

    2014-01-01

    Detection of early warning signals for the imminent failure of large and complex engineered structures is a daunting challenge with many open research questions. In this paper we report on novel ways to perform Structural Health Monitoring (SHM) of flood protection systems (levees, earthen dikes and

  3. Time-frequency methods for structural health monitoring

    NARCIS (Netherlands)

    Pyayt, A.L.; Kozionov, A.P.; Mokhov, I.I.; Lang, B.; Meijer, R.J.; Krzhizhanovskaya, V.V.; Sloot, P.M.A.

    2014-01-01

    Detection of early warning signals for the imminent failure of large and complex engineered structures is a daunting challenge with many open research questions. In this paper we report on novel ways to perform Structural Health Monitoring (SHM) of flood protection systems (levees, earthen dikes and

  4. Advanced health monitor for automated driving functions

    NARCIS (Netherlands)

    Mikovski Iotov, I.

    2017-01-01

    There is a trend in the automotive domain where driving functions are taken from the driver by automated driving functions. In order to guarantee the correct behavior of these auto-mated driving functions, the report introduces an Advanced Health Monitor that uses Tem-poral Logic and Probabilistic

  5. Mobile patient monitoring: The MobiHealth system

    NARCIS (Netherlands)

    Wac, K.E.; Bults, Richard G.A.; van Beijnum, Bernhard J.F.; Widya, I.A.; Jones, Valerie M.; Konstantas, D.; Vollenbroek-Hutten, Miriam Marie Rosé; Hermens, Hermanus J.

    2009-01-01

    The emergence of high bandwidth public wireless networks and miniaturized personal mobile devices give rise to new mobile healthcare services. To this end, the MobiHealth system provides highly customizable vital signs tele-monitoring and tele-treatment system based on a body area network (BAN) and

  6. Children’s health and development: results of a 20-year monitoring

    Directory of Open Access Journals (Sweden)

    Aleksandra Anatol’evna Shabunova

    2014-11-01

    Full Text Available The analysis of the data from domestic and foreign theory and practice has shown that the monitoring of the cohort of children is the most effective method of studying and assessing the health and development of children in order to make efficient and adequate management decisions. The paper presents the results of the medical-and-sociological monitoring “Research into the conditions for the formation of a healthy generation”, performed by RAS Institute of Socio-Economic Development of Territories since 1995 with the active support on the part of the Vologda Oblast Department of Healthcare. The authors have found out that each age period is characterized by a specific set of factors influencing health. Infancy and early age are dominated by the impact of medico-biological and social factors (poor health of the parents; low level of hemoglobin during pregnancy; mother’s smoking during pregnancy; labour conditions of the mother that do not meet sanitary standards; specifics of the infant’s feeding. In preschool and primary school age greater importance is attached to environmental factors, lifestyle and standard of living of the family (comfort of living conditions, environmental conditions in the area of residence, level of sociohygienic literacy and health-preserving activity of the parents. Using the cohort of children born in 2014 as an example, the authors show certain positive trends that emerged during the reforms of the economy and social sphere, reflected in the living conditions of families with children, in the level of satisfaction with their health, infant health, and key indicators of obstetrics system. In this regard, the authors substantiate the necessity of such monitoring to determine the correct vector of government policy

  7. Use of multi-objective air pollution monitoring sites and online air pollution monitoring system for total health risk assessment in Hyderabad, India.

    Science.gov (United States)

    Anjaneyulu, Y; Jayakumar, I; Hima Bindu, V; Sagareswar, G; Mukunda Rao, P V; Rambabu, N; Ramani, K V

    2005-08-01

    A consensus has been emerging among public health experts in developing countries that air pollution, even at current ambient levels, aggravates respiratory and cardiovascular diseases and leads to premature mortality. Recent studies have also presented well-founded theories concerning the biological mechanisms involved and the groups of people that are probably more susceptible to health effects caused or exacerbated by inhalation of ambient particulate matter (PM.). On the basis of prognostic studies carried out in Center for Environment, JNT University, Hyderabad "it has been estimated that in Hyderabad some 1,700 to 3,000 people per year die prematurely as a result of inhaling PM". These figures reflect only the effects of acute exposure to air pollution. If the long-term effects of chronic exposure are taken into account, 10,000-15,000 people a year could die prematurely in Hyderabad. This estimate of the chronic effects is based on other studies, which are not completely comparable with the Hyderabad situation. While the study designs and analyses in these other studies may indeed be different or irrelevant to Hyderabad, the fact they were carried out in other countries is irrelevant. Taking into account these considerations, a model for total health risk assessment for the city of Hyderabad, and its state of Andhra Pradesh in India has been developed using a multi-objective air pollution monitoring network and online and real time air pollution monitoring stations. For the model studies a number of potential monitoring sites were screened for general and site-specific criteria in a geographic information system (GIS) environment that may, on a local basis, affect the representativeness of the data collected. Local features that may affect either the chemical or meteorological parameters are evaluated to assure a minimum of interference. Finally, for monitoring air pollution, an online and real-time monitoring system was designed using advanced

  8. Integration of structural health monitoring solutions onto commercial aircraft via the Federal Aviation Administration structural health monitoring research program

    Science.gov (United States)

    Swindell, Paul; Doyle, Jon; Roach, Dennis

    2017-02-01

    The Federal Aviation Administration (FAA) started a research program in structural health monitoring (SHM) in 2011. The program's goal was to understand the technical gaps of implementing SHM on commercial aircraft and the potential effects on FAA regulations and guidance. The program evolved into a demonstration program consisting of a team from Sandia National Labs Airworthiness Assurance NDI Center (AANC), the Boeing Corporation, Delta Air Lines, Structural Monitoring Systems (SMS), Anodyne Electronics Manufacturing Corp (AEM) and the FAA. This paper will discuss the program from the selection of the inspection problem, the SHM system (Comparative Vacuum Monitoring-CVM) that was selected as the inspection solution and the testing completed to provide sufficient data to gain the first approved use of an SHM system for routine maintenance on commercial US aircraft.

  9. Multinational surveys for monitoring eHealth policy implementations

    DEFF Research Database (Denmark)

    Gilstad, Heidi; Faxvaag, Arild; Hyppönen, Hannele

    2014-01-01

    Development of multinational variables for monitoring eHealth policy implementations is a complex task and requires multidisciplinary, knowledgebased international collaboration. Experts in an interdisciplinary workshop identified useful data and pitfalls for comparative variable development...

  10. Levee Health Monitoring With Radar Remote Sensing

    Science.gov (United States)

    Jones, C. E.; Bawden, G. W.; Deverel, S. J.; Dudas, J.; Hensley, S.; Yun, S.

    2012-12-01

    Remote sensing offers the potential to augment current levee monitoring programs by providing rapid and consistent data collection over large areas irrespective of the ground accessibility of the sites of interest, at repeat intervals that are difficult or costly to maintain with ground-based surveys, and in rapid response to emergency situations. While synthetic aperture radar (SAR) has long been used for subsidence measurements over large areas, applying this technique directly to regional levee monitoring is a new endeavor, mainly because it requires both a wide imaging swath and fine spatial resolution to resolve individual levees within the scene, a combination that has not historically been available. Application of SAR remote sensing directly to levee monitoring has only been attempted in a few pilot studies. Here we describe how SAR remote sensing can be used to assess levee conditions, such as seepage, drawing from the results of two levee studies: one of the Sacramento-San Joaquin Delta levees in California that has been ongoing since July 2009 and a second that covered the levees near Vicksburg, Mississippi, during the spring 2011 floods. These studies have both used data acquired with NASA's UAVSAR L-band synthetic aperture radar, which has the spatial resolution needed for this application (1.7 m single-look), sufficiently wide imaging swath (22 km), and the longer wavelength (L-band, 0.238 m) required to maintain phase coherence between repeat collections over levees, an essential requirement for applying differential interferometry (DInSAR) to a time series of repeated collections for levee deformation measurement. We report the development and demonstration of new techniques that employ SAR polarimetry and differential interferometry to successfully assess levee health through the quantitative measurement of deformation on and near levees and through detection of areas experiencing seepage. The Sacramento-San Joaquin Delta levee study, which covers

  11. Construction of health monitoring system for traveler based on the mobile Internet

    Directory of Open Access Journals (Sweden)

    Wei Haoqian

    2017-04-01

    Full Text Available With the development of communication technology and computer technology,intelligent terminals represented by smartphone and mobile Internet have become indispensable tools in people's life and work.As the intelligent terminal platform is widely used and the wearable medical equipment is gradually mature,this paper based on the Internet designs and develops a health monitoring system for travelers who suffered from chronic diseases or worried about their physical conditions,to provide a whole process of health monitoring and assistant service.The system,combing smartphone and wearable medical devices,uploads the health and physical signs data to the health monitoring platform through the mobile Internet.Then the professionals statistically analyze the data and provide appropriate advice and guidance,so as to achieve the remote medical treatment for travelers.

  12. Application of ubiquitous computing in personal health monitoring systems.

    Science.gov (United States)

    Kunze, C; Grossmann, U; Stork, W; Müller-Glaser, K D

    2002-01-01

    A possibility to significantly reduce the costs of public health systems is to increasingly use information technology. The Laboratory for Information Processing Technology (ITIV) at the University of Karlsruhe is developing a personal health monitoring system, which should improve health care and at the same time reduce costs by combining micro-technological smart sensors with personalized, mobile computing systems. In this paper we present how ubiquitous computing theory can be applied in the health-care domain.

  13. Learning to Monitor Machine Health with Convolutional Bi-Directional LSTM Networks

    OpenAIRE

    Rui Zhao; Ruqiang Yan; Jinjiang Wang; Kezhi Mao

    2017-01-01

    In modern manufacturing systems and industries, more and more research efforts have been made in developing effective machine health monitoring systems. Among various machine health monitoring approaches, data-driven methods are gaining in popularity due to the development of advanced sensing and data analytic techniques. However, considering the noise, varying length and irregular sampling behind sensory data, this kind of sequential data cannot be fed into classification and regression mode...

  14. The Brain Health Registry: An internet-based platform for recruitment, assessment, and longitudinal monitoring of participants for neuroscience studies.

    Science.gov (United States)

    Weiner, Michael W; Nosheny, Rachel; Camacho, Monica; Truran-Sacrey, Diana; Mackin, R Scott; Flenniken, Derek; Ulbricht, Aaron; Insel, Philip; Finley, Shannon; Fockler, Juliet; Veitch, Dallas

    2018-05-08

    Recruitment, assessment, and longitudinal monitoring of participants for neuroscience studies and clinical trials limit the development of new treatments. Widespread Internet use allows data capture from participants in an unsupervised setting. The Brain Health Registry, a website and online registry, collects data from participants and their study partners. The Brain Health Registry obtains self and study partner report questionnaires and neuropsychological data, including the Cogstate Brief Battery, Lumos Labs Neurocognitive Performance Test, and MemTrax Memory Test. Participants provide informed consent before participation. Baseline and longitudinal data were obtained from nearly 57,000 and 28,000 participants, respectively. Over 18,800 participants were referred to, and nearly 1800 were enrolled in, clinical Alzheimer's disease and aging studies, including five observational studies and seven intervention trials. Online assessments of participants and study partners provide useful information at relatively low cost for neuroscience studies and clinical trials and may ultimately be used in routine clinical practice. Copyright © 2018 the Alzheimer's Association. All rights reserved.

  15. Promoting health and reducing costs: a role for reform of self-monitoring of blood glucose provision within the National Health Service.

    Science.gov (United States)

    Leigh, S; Idris, I; Collins, B; Granby, P; Noble, M; Parker, M

    2016-05-01

    To determine the cost-effectiveness of all options for the self-monitoring of blood glucose funded by the National Health Service, providing guidance for disinvestment and testing the hypothesis that advanced meter features may justify higher prices. Using data from the Health and Social Care Information Centre concerning all 8 340 700 self-monitoring of blood glucose-related prescriptions during 2013/2014, we conducted a cost-minimization analysis, considering both strip and lancet costs, including all clinically equivalent technologies for self-monitoring of blood glucose, as determined by the ability to meet ISO-15197:2013 guidelines for meter accuracy. A total of 56 glucose monitor, test strip and lancet combinations were identified, of which 38 met the required accuracy standards. Of these, the mean (range) net ingredient costs for test strips and lancets were £0.27 (£0.14-£0.32) and £0.04 (£0.02-£0.05), respectively, resulting in a weighted average of £0.28 (£0.18-£0.37) per test. Systems providing four or more advanced features were priced equal to those providing just one feature. A total of £12 m was invested in providing 42 million self-monitoring of blood glucose tests with systems that fail to meet acceptable accuracy standards, and efficiency savings of £23.2 m per annum are achievable if the National Health Service were to disinvest from technologies providing lesser functionality than available alternatives, but at a much higher price. The study uncovered considerable variation in the price paid by the National Health Service for self-monitoring of blood glucose, which could not be explained by the availability of advanced meter features. A standardized approach to self-monitoring of blood glucose prescribing could achieve significant efficiency savings for the National Health Service, whilst increasing overall utilisation and improving safety for those currently using systems that fail to meet acceptable standards for measurement accuracy

  16. Towards "Zero" False Positive in Structural Health Monitoring

    National Research Council Canada - National Science Library

    Chiu, Wing K; Chang, F. K; Tian, Daniel T

    2007-01-01

    Structural Health Monitoring (SHM) is one aspect of a revolution based on the use of Smart Materials and Structures technologies that have the potential to provide major gains in structural performance and cost-efficient life management...

  17. Long-term real-time structural health monitoring using wireless smart sensor

    Science.gov (United States)

    Jang, Shinae; Mensah-Bonsu, Priscilla O.; Li, Jingcheng; Dahal, Sushil

    2013-04-01

    Improving the safety and security of civil infrastructure has become a critical issue for decades since it plays a central role in the economics and politics of a modern society. Structural health monitoring of civil infrastructure using wireless smart sensor network has emerged as a promising solution recently to increase structural reliability, enhance inspection quality, and reduce maintenance costs. Though hardware and software framework are well prepared for wireless smart sensors, the long-term real-time health monitoring strategy are still not available due to the lack of systematic interface. In this paper, the Imote2 smart sensor platform is employed, and a graphical user interface for the long-term real-time structural health monitoring has been developed based on Matlab for the Imote2 platform. This computer-aided engineering platform enables the control, visualization of measured data as well as safety alarm feature based on modal property fluctuation. A new decision making strategy to check the safety is also developed and integrated in this software. Laboratory validation of the computer aided engineering platform for the Imote2 on a truss bridge and a building structure has shown the potential of the interface for long-term real-time structural health monitoring.

  18. Review on pressure sensors for structural health monitoring

    Science.gov (United States)

    Sikarwar, Samiksha; Satyendra; Singh, Shakti; Yadav, Bal Chandra

    2017-12-01

    This paper reports the state of art in a variety of pressure and the detailed study of various matrix based pressure sensors. The performances of the bridges, buildings, etc. are threatened by earthquakes, material degradations, and other environmental effects. Structural health monitoring (SHM) is crucial to protect the people and also for assets planning. This study is a contribution in developing the knowledge about self-sensing smart materials and structures for the construction industry. It deals with the study of self-sensing as well as mechanical and electrical properties of different matrices based on pressure sensors. The relationships among the compression, tensile strain, and crack length with electrical resistance change are also reviewed.

  19. Epidemiologic monitoring of possible health reactions of waste water reuse

    Energy Technology Data Exchange (ETDEWEB)

    Frerichs, R.R.

    1984-01-27

    The possible health effects of consuming ground water partially recharged with recycled waste water were monitored in a long-term study of residents of several communities in eastern Los Angeles County, California. In three phases of ecologic studies, health measures were compared among residents of two recycled water areas (high and low concentration) and two control areas. Included were measures of mortality, reportable illnesses, adverse birth outcomes, and incident cases of cancer. While significant differences were noted among the four study areas when comparing several health outcomes, none of the differences were in a direction to suggest a dose-response relationship between reclaimed water consumption and disease. To supplement findings of the ecologic studies, a household survey was conducted of approximately 2,500 women, half residing in the high recycled water area and half in the control area. The survey provided increased information on reproductive outcomes and on excess effects after controlling for important potential confounding factors such as cigarette use and alcohol consumption. The results of both the ecologic studies and the household survey provide no indication that recycled water has a noticeable harmful effect on the health of a population exposed for nearly two decades.

  20. Wearable health monitoring using capacitive voltage-mode Human Body Communication.

    Science.gov (United States)

    Maity, Shovan; Das, Debayan; Sen, Shreyas

    2017-07-01

    Rapid miniaturization and cost reduction of computing, along with the availability of wearable and implantable physiological sensors have led to the growth of human Body Area Network (BAN) formed by a network of such sensors and computing devices. One promising application of such a network is wearable health monitoring where the collected data from the sensors would be transmitted and analyzed to assess the health of a person. Typically, the devices in a BAN are connected through wireless (WBAN), which suffers from energy inefficiency due to the high-energy consumption of wireless transmission. Human Body Communication (HBC) uses the relatively low loss human body as the communication medium to connect these devices, promising order(s) of magnitude better energy-efficiency and built-in security compared to WBAN. In this paper, we demonstrate a health monitoring device and system built using Commercial-Off-The-Shelf (COTS) sensors and components, that can collect data from physiological sensors and transmit it through a) intra-body HBC to another device (hub) worn on the body or b) upload health data through HBC-based human-machine interaction to an HBC capable machine. The system design constraints and signal transfer characteristics for the implemented HBC-based wearable health monitoring system are measured and analyzed, showing reliable connectivity with >8× power savings compared to Bluetooth low-energy (BTLE).

  1. Integrated System of Structural Health Monitoring and Intelligent Management for a Cable-Stayed Bridge

    Directory of Open Access Journals (Sweden)

    Bin Chen

    2014-01-01

    Full Text Available It is essential to construct structural health monitoring systems for large important bridges. Zhijiang Bridge is a cable-stayed bridge that was built recently over the Hangzhou Qiantang River (the largest river in Zhejiang Province. The length of Zhijiang Bridge is 478 m, which comprises an arched twin-tower space and a twin-cable plane structure. As an example, the present study describes the integrated system of structural health monitoring and intelligent management for Zhijiang Bridge, which comprises an information acquisition system, data management system, evaluation and decision-making system, and application service system. The monitoring components include the working environment of the bridge and various factors that affect bridge safety, such as the stress and strain of the main bridge structure, vibration, cable force, temperature, and wind speed. In addition, the integrated system includes a forecasting and decision-making module for real-time online evaluation, which provides warnings and makes decisions based on the monitoring information. From this, the monitoring information, evaluation results, maintenance decisions, and warning information can be input simultaneously into the bridge monitoring center and traffic emergency center to share the monitoring data, thereby facilitating evaluations and decision making using the system.

  2. Regional health workforce monitoring as governance innovation: a German model to coordinate sectoral demand, skill mix and mobility.

    Science.gov (United States)

    Kuhlmann, E; Lauxen, O; Larsen, C

    2016-11-28

    As health workforce policy is gaining momentum, data sources and monitoring systems have significantly improved in the European Union and internationally. Yet data remain poorly connected to policy-making and implementation and often do not adequately support integrated approaches. This brings the importance of governance and the need for innovation into play. The present case study introduces a regional health workforce monitor in the German Federal State of Rhineland-Palatinate and seeks to explore the capacity of monitoring to innovate health workforce governance. The monitor applies an approach from the European Network on Regional Labour Market Monitoring to the health workforce. The novel aspect of this model is an integrated, procedural approach that promotes a 'learning system' of governance based on three interconnected pillars: mixed methods and bottom-up data collection, strong stakeholder involvement with complex communication tools and shared decision- and policy-making. Selected empirical examples illustrate the approach and the tools focusing on two aspects: the connection between sectoral, occupational and mobility data to analyse skill/qualification mixes and the supply-demand matches and the connection between monitoring and stakeholder-driven policy. Regional health workforce monitoring can promote effective governance in high-income countries like Germany with overall high density of health workers but maldistribution of staff and skills. The regional stakeholder networks are cost-effective and easily accessible and might therefore be appealing also to low- and middle-income countries.

  3. Accelerated Aging Experiments for Capacitor Health Monitoring and Prognostics

    Data.gov (United States)

    National Aeronautics and Space Administration — This paper discusses experimental setups for health monitoring and prognostics of electrolytic capacitors under nominal operation and accelerated aging conditions....

  4. Perceived Parental Monitoring and Health Risk Behavior among Public Secondary School Students in El Salvador

    OpenAIRE

    Springer, Andrew E.; Sharma, Shreela; de Guardado, Alba Margarita; Nava, Francisco Vázquez; Kelder, Steven H.

    2006-01-01

    Although parental monitoring has received considerable attention in studies of U.S. adolescents, few published studies have examined how parents' knowledge of their children's whereabouts may influence health risk behaviors in adolescents living in Latin America. We investigated the association between perceived parental monitoring and substance use, fighting, and sexual behaviors in rural and urban Salvadoran adolescents (n = 982). After adjusting for several sociodemographic covariates, mul...

  5. Proceedings (slides) of the ANCCLI-IRSN seminar: 'environment - health: what monitoring in territories by the different actors'

    International Nuclear Information System (INIS)

    2012-01-01

    Relations between the operation of nuclear facilities and the health of populations are recurrent topics. For this reason, the national association of information committees and local commissions (ANCCLI), and the radiation protection and nuclear safety institute (IRSN) have jointly organized this seminar devoted to the monitoring of environment and public health. Its aim was to share the experience of the different actors in order to help the local commissions of information (CLI) in carrying out their own actions on these topics. The first day, the Golfech, Gravelines, Cadarache and Saint-Laurent-Des-Eaux CLIs presented their local environmental monitoring actions and their impact studies for facilities effluents. IRSN presented its methodology for the elaboration of its annual radiological status of the French environment. A round table permitted the different intervening parties to exchange about their monitoring goals. The second day, the Tricastin and Gravelines CLI, as well as the health care supervision institute InVS), presented different studies and attempts of answers to the health-impact questions coming from the surrounding communities. The contributions and limitations of public health studies were discussed through a presentation of the joint ANCCLI/IRSN/InVS methodological guidebook 'public health in the vicinity of nuclear facilities: how to approach the questions asked'. This document gathers the slides of the available presentations: 1 - Environmental monitoring by the Tarn-et-Garonne departmental laboratory in partnership with the Golfech's CLI (A. Calafat); 2 - Environmental monitoring by the Tarn-et-Garonne veterinary laboratory (V. Rossetto); 3 - Independent environmental monitoring by the Tarn-et-Garonne and occasional expertises around the Gravelines site (F. Cazier); 4 - Study of the impact on Durance river of the liquid radiological effluents of CEA-Cadarache site (C. Fourcaud); 5 - Study of the impact on Loire river of the chemical

  6. The Mexican experience in monitoring and evaluation of public policies addressing social determinants of health

    Science.gov (United States)

    Valle, Adolfo Martinez

    2016-01-01

    Monitoring and evaluation (M&E) have gradually become important and regular components of the policy-making process in Mexico since, and even before, the World Health Organization (WHO) Commission on Social Determinants of Health (CSDH) called for interventions and policies aimed at tackling the social determinants of health (SDH). This paper presents two case studies to show how public policies addressing the SDH have been monitored and evaluated in Mexico using reliable, valid, and complete information, which is not regularly available. Prospera, for example, evaluated programs seeking to improve the living conditions of families in extreme poverty in terms of direct effects on health, nutrition, education and income. Monitoring of Prospera's implementation has also helped policy-makers identify windows of opportunity to improve the design and operation of the program. Seguro Popular has monitored the reduction of health inequalities and inequities evaluated the positive effects of providing financial protection to its target population. Useful and sound evidence of the impact of programs such as Progresa and Seguro Popular plus legal mandates, and a regulatory evaluation agency, the National Council for Social Development Policy Evaluation, have been fundamental to institutionalizing M&E in Mexico. The Mexican experience may provide useful lessons for other countries facing the challenge of institutionalizing the M&E of public policy processes to assess the effects of SDH as recommended by the WHO CSDH. PMID:26928215

  7. The Mexican experience in monitoring and evaluation of public policies addressing social determinants of health.

    Science.gov (United States)

    Valle, Adolfo Martinez

    2016-01-01

    Monitoring and evaluation (M&E) have gradually become important and regular components of the policy-making process in Mexico since, and even before, the World Health Organization (WHO) Commission on Social Determinants of Health (CSDH) called for interventions and policies aimed at tackling the social determinants of health (SDH). This paper presents two case studies to show how public policies addressing the SDH have been monitored and evaluated in Mexico using reliable, valid, and complete information, which is not regularly available. Prospera, for example, evaluated programs seeking to improve the living conditions of families in extreme poverty in terms of direct effects on health, nutrition, education and income. Monitoring of Prospera's implementation has also helped policy-makers identify windows of opportunity to improve the design and operation of the program. Seguro Popular has monitored the reduction of health inequalities and inequities evaluated the positive effects of providing financial protection to its target population. Useful and sound evidence of the impact of programs such as Progresa and Seguro Popular plus legal mandates, and a regulatory evaluation agency, the National Council for Social Development Policy Evaluation, have been fundamental to institutionalizing M&E in Mexico. The Mexican experience may provide useful lessons for other countries facing the challenge of institutionalizing the M&E of public policy processes to assess the effects of SDH as recommended by the WHO CSDH.

  8. The Mexican experience in monitoring and evaluation of public policies addressing social determinants of health

    Directory of Open Access Journals (Sweden)

    Adolfo Martinez Valle

    2016-02-01

    Full Text Available Monitoring and evaluation (M&E have gradually become important and regular components of the policy-making process in Mexico since, and even before, the World Health Organization (WHO Commission on Social Determinants of Health (CSDH called for interventions and policies aimed at tackling the social determinants of health (SDH. This paper presents two case studies to show how public policies addressing the SDH have been monitored and evaluated in Mexico using reliable, valid, and complete information, which is not regularly available. Prospera, for example, evaluated programs seeking to improve the living conditions of families in extreme poverty in terms of direct effects on health, nutrition, education and income. Monitoring of Prospera's implementation has also helped policy-makers identify windows of opportunity to improve the design and operation of the program. Seguro Popular has monitored the reduction of health inequalities and inequities evaluated the positive effects of providing financial protection to its target population. Useful and sound evidence of the impact of programs such as Progresa and Seguro Popular plus legal mandates, and a regulatory evaluation agency, the National Council for Social Development Policy Evaluation, have been fundamental to institutionalizing M&E in Mexico. The Mexican experience may provide useful lessons for other countries facing the challenge of institutionalizing the M&E of public policy processes to assess the effects of SDH as recommended by the WHO CSDH.

  9. Perceived parental monitoring and health risk behavior among public secondary school students in El Salvador.

    Science.gov (United States)

    Springer, Andrew E; Sharma, Shreela; de Guardado, Alba Margarita; Nava, Francisco Vázquez; Kelder, Steven H

    2006-12-28

    Although parental monitoring has received considerable attention in studies of U.S. adolescents, few published studies have examined how parents' knowledge of their children's whereabouts may influence health risk behaviors in adolescents living in Latin America. We investigated the association between perceived parental monitoring and substance use, fighting, and sexual behaviors in rural and urban Salvadoran adolescents (n = 982). After adjusting for several sociodemographic covariates, multilevel regression analyses indicated that students reporting low parental monitoring were between 2 to 3.5 times more likely to report risk behaviors examined. The promotion of specific parenting practices such as parental monitoring may hold promise for reducing adolescent risk behaviors in El Salvador.

  10. Novelty detection methods for online health monitoring and post data analysis of turbopumps

    International Nuclear Information System (INIS)

    Lei Hu; Niaoqing, Hu; Xinpeng, Zhang; Fengshou, Gu; Ming, Gao

    2013-01-01

    As novelty detection works when only normal data are available, it is of considerable promise for health monitoring in cases lacking fault samples and prior knowledge. We present two novelty detection methods for health monitoring of turbopumps in large-scale liquid propellant rocket engines. The first method is the adaptive Gaussian threshold model. This method is designed to monitor the vibration of the turbopumps online because it has minimal computational complexity and is easy for implementation in real time. The second method is the one-class support vector machine (OCSVM) which is developed for post analysis of historical vibration signals. Via post analysis the method not only confirms the online monitoring results but also provides diagnostic results so that faults from sensors are separated from those actually from the turbopumps. Both of these two methods are validated to be efficient for health monitoring of the turbopumps.

  11. 75 FR 52711 - Notice of Request for Approval of an Information Collection; National Animal Health Monitoring...

    Science.gov (United States)

    2010-08-27

    ...In accordance with the Paperwork Reduction Act of 1995, this notice announces the Animal and Plant Health Inspection Service's intention to initiate an information collection to support the National Animal Health Monitoring System Sheep 2011 Study.

  12. Flexible, Stretchable Sensors for Wearable Health Monitoring: Sensing Mechanisms, Materials, Fabrication Strategies and Features

    Science.gov (United States)

    Liu, Yan; Wang, Hai; Zhao, Wei; Qin, Hongbo; Xie, Yongqiang

    2018-01-01

    Wearable health monitoring systems have gained considerable interest in recent years owing to their tremendous promise for personal portable health watching and remote medical practices. The sensors with excellent flexibility and stretchability are crucial components that can provide health monitoring systems with the capability of continuously tracking physiological signals of human body without conspicuous uncomfortableness and invasiveness. The signals acquired by these sensors, such as body motion, heart rate, breath, skin temperature and metabolism parameter, are closely associated with personal health conditions. This review attempts to summarize the recent progress in flexible and stretchable sensors, concerning the detected health indicators, sensing mechanisms, functional materials, fabrication strategies, basic and desired features. The potential challenges and future perspectives of wearable health monitoring system are also briefly discussed. PMID:29470408

  13. Continuous health monitoring of Graphite Epoxy Motorcases (GEM)

    Science.gov (United States)

    Finlayson, Richard D.; Schaafsma, David T.; Shen, H. Warren; Carlos, Mark F.; Miller, Ronnie K.; Shepherd, Brent

    2001-07-01

    Following the explosion of Delta 241 (IIR-1) on January 17th, 1997, the failure investigation board concluded that the Graphite Epoxy Motorcases (GEM's) should be inspected for damage just prior to launch. Subsequent investigations and feedback from industry led to an Aerospace Corporation proposal to instrument the entire fleet of GEM's with a continuous health monitoring system. The period of monitoring would extend from the initial acceptance testing through final erection on the launch pad. As this proposal demonstrates, (along with the increasing use of advanced composite materials in aircraft, automobiles, military hardware, and aerospace components such as rocket motorcases) a sizable need for composite health assessment measures exist. Particularly where continuous monitoring is required for the detection of damage from impacts and other sources of high mechanical and thermal stresses. Even low-momentum impacts can lead to barely visible impact damage (BVID), corresponding to a significant weakening of the composite. This damage, undetectable by visual inspection, can in turn lead to sudden and catastrophic failure when the material is subjected to a normal operating load. There is perhaps no system with as much potential for truly catastrophic failure as a rocket motor. We will present an update on our ongoing efforts with the United States Air Force Delta II Program Office, and The Aerospace Corporation. This will cover the development of a local, portable, surface-mounted, fiberoptic sensor based impact damage monitor designed to operate on a Delta II GEM during transport, storage, and handling. This system is designed to continuously monitor the GEMs, to communicate wirelessly with base stations and maintenance personnel, to operate autonomously for extended periods, and to fit unobtrusively on the GEM itself.

  14. Structural health monitoring of bridge cables : An overview

    OpenAIRE

    DRISSI HABTI, Monssef; BETTI, Raimondo; YANEV, Bojidar

    2009-01-01

    Bridges are critical components of the civil infrastructure and are normally designed for a long life span. The life span of suspension bridges depends on the health of their cables, which, in turn, is a function of many factors. Therefore, continuous health monitoring (SHM) and regular condition assessment of cables is highly desirable. In this article, some SHM procedures based on direct, indirect non-destructive techniques NDT, and vibration theory are presented.

  15. Monitoring, Tracking, and Recording Pancreas-Related Health Issues in Real Time

    Science.gov (United States)

    Chrysikos, Theofilos; Zisi, Iliana; Katsini, Christina; Raptis, George E.; Kotsopoulos, Stavros

    2017-11-01

    The monitoring of pancreas-related health issues in real-time and outside the medical room is a challenge in the wide e-health domain. This paper introduces WHEAMO, a novel e-health platform which employs medical implants (biosensors), which function as antennas, planted in the pancreas. WHEAMO uses wireless in-body propagation to track, monitor, and record critical parameters, such as glucose. The signal reaches the skin and then it is propagated in an indoor environment (e.g., medical room) over to a terminal equipped with adaptive, user-configurable, and intelligent mechanisms which provide personalized recommendations to varying WHEAMO users (e.g., medical personnel, health care workers, patients). The personalized nature of the provided recommendations is based on patients unique characteristics via a sophisticated knowledge-base. The fundamentals of in-body and on-body wireless propagation and channel characterization have been studied in a series of published works. Researchers have tested both electric-field (dipole) and magnetic-field (patch, loop) antennas. Another important aspect concerns the frequency band in which the signal propagation will occur. Among the frequencies that have gathered scientific and academic interest are the Medical Implant Communication Service (MICS) band at 402-405 MHz, the 900 MHz channel and the industrial, scientific and medical (ISM) radio band at 2.45 GHz.

  16. Summary Report: Forest Health Monitoring in the South, 1991

    Science.gov (United States)

    William A. Bechtold; William H. Hoffard; Robert L. Anderson

    1992-01-01

    The USDA Forest Service and the U.S. Environmental Protection Agency have launched a joint program to monitor the health of forests iu the United States. The program is still in the initial phases of implementation, but several indicators of forest health are undergoiug development and permanent plots have been established in 12 States. This report contains...

  17. Summary of Forest health monitoring: 2006 national technical report

    Science.gov (United States)

    Mark J. Ambrose

    2009-01-01

    Forest Health Monitoring (FHM), together with cooperating researchers both in and outside of the Forest Service, continues to investigate a variety of issues relating to forest health. This report provides some of the latest analyses and results. The broad range of indicators presented demonstrates one reason it can be difficult to draw general conclusions about the...

  18. Study of monitoring protection of radionuclides contamination in organism by autoradiography

    International Nuclear Information System (INIS)

    Zhu Shoupeng; Kang Baoan; He Guangren

    1987-01-01

    In view of the exceptionally important role of the medical radiation protection in human health, the authors try to study on the monitoring of internal contamination of radionuclides in organism by different autoradiographic methods, such as: monitoring of the body retention of isolated or combined radionuclides by freezing microautoradiography; monitoring of blood, bone marrow and excreta radioactive samples by smear autoradiography; differentiation of two radionuclides contamination by double radionuclide autoradiography; especially, monitoring of low level of radionuclides contamination by fluorescence sensitization autoradiography. The sensitivity of autoradiographic formation was increased by the scintillator by 10 times

  19. Synthesis of vibration control and health monitoring of building structures under unknown excitation

    International Nuclear Information System (INIS)

    He, Jia; Huang, Qin; Xu, You-Lin

    2014-01-01

    The vibration control and health monitoring of building structures have been actively investigated in recent years but often treated separately according to the primary objective pursued. In this study, a time-domain integrated vibration control and health monitoring approach is proposed based on the extended Kalman filter (EKF) for identifying the physical parameters of the controlled building structures without the knowledge of the external excitation. The physical parameters and state vectors of the building structure are then estimated and used for the determination of the control force for the purpose of the vibration attenuation. The interaction between the health monitoring and vibration control is revealed and assessed. The feasibility and reliability of the proposed approach is numerically demonstrated via a five-story shear building structure equipped with magneto-rheological (MR) dampers. Two types of excitations are considered: (1) the EI-Centro ground excitation underneath of the building and (2) a swept-frequency excitation applied on the top floor of the building. Results show that the structural parameters as well as the unknown dynamic loadings could be identified accurately; and, at the same time, the structural vibration is significantly reduced in the building structure. (paper)

  20. Nuclear propulsion control and health monitoring

    Science.gov (United States)

    Walter, P. B.; Edwards, R. M.

    1993-11-01

    An integrated control and health monitoring architecture is being developed for the Pratt & Whitney XNR2000 nuclear rocket. Current work includes further development of the dynamic simulation modeling and the identification and configuration of low level controllers to give desirable performance for the various operating modes and faulted conditions. Artificial intelligence and knowledge processing technologies need to be investigated and applied in the development of an intelligent supervisory controller module for this control architecture.

  1. Self-learning health monitoring algorithm in composite structures

    Science.gov (United States)

    Grassia, Luigi; Iannone, Michele; Califano, America; D'Amore, Alberto

    2018-02-01

    The paper describes a system that it is able of monitoring the health state of a composite structure in real time. The hardware of the system consists of a wire of strain sensors connected to a control unit. The software of the system elaborates the strain data and in real time is able to detect the presence of an eventual damage of the structures monitored with the strain sensors. The algorithm requires as input only the strains of the monitored structured measured on real time, i.e. those strains coming from the deformations of the composite structure due to the working loads. The health monitoring system does not require any additional device to interrogate the structure as often used in the literature, instead it is based on a self-learning procedure. The strain data acquired when the structure is healthy are used to set up the correlations between the strain in different positions of structure by means of neural network. Once the correlations between the strains in different position have been set up, these correlations act as a fingerprint of the healthy structure. In case of damage the correlation between the strains in the position of the structure near the damage will change due to the change of the stiffness of the structure caused by the damage. The developed software is able to recognize the change of the transfer function between the strains and consequently is able to detect the damage.

  2. Embedded Active Fiber Optic Sensing Network for Structural Health Monitoring in Harsh Environments

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Anbo [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)

    2016-09-30

    This report summarizes technical progress on the program “Embedded Active Fiber Optic Sensing Network for Structural Health Monitoring in Harsh Environments” funded by the National Energy Technology Laboratory of the U.S. Department of Energy, and performed by the Center for Photonics Technology at Virginia Tech. The objective of this project is to develop a first-of-a-kind technology for remote fiber optic generation and detection of acoustic waves for structural health monitoring in harsh environments. During the project period, which is from April 1, 2013 to Septemeber 30, 2016, three different acoustic generation mechanisms were studied in detail for their applications in building a fiber optic acoustic generation unit (AGU), including laser induced plasma breakdown (LIP), Erbium-doped fiber laser absorption, and metal laser absorption. By comparing the performance of the AGUs designed based on these three mechanisms and analyzing the experimental results with simulations, the metal laser absorption method was selected to build a complete fiber optic structure health monitoring (FO-SHM) system for the proposed high temperature multi-parameter structure health monitoring application. Based on the simulation of elastic wave propagation and fiber Bragg grating acoustic pulse detection, an FO-SHM element together with a completed interrogation system were designed and built. This system was first tested on an aluminum piece in the low-temperature range and successfully demonstrated its capability of multi-parameter monitoring and multi-point sensing. In the later stages of the project, the research was focused on improving the surface attachment design and preparing the FO-SHM element for high temperature environment tests. After several upgrades to the surface attachment methods, the FO-SHM element was able to work reliably up to 600oC when attached to P91 pipes, which are the target material of this project. In the final stage of this project, this FO

  3. Distributed Rocket Engine Testing Health Monitoring System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The on-ground and Distributed Rocket Engine Testing Health Monitoring System (DiRETHMS) provides a system architecture and software tools for performing diagnostics...

  4. Distributed Rocket Engine Testing Health Monitoring System, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Leveraging the Phase I achievements of the Distributed Rocket Engine Testing Health Monitoring System (DiRETHMS) including its software toolsets and system building...

  5. Standards of lithium monitoring in mental health trusts in the UK

    Directory of Open Access Journals (Sweden)

    Shingleton-Smith Amber

    2010-10-01

    Full Text Available Abstract Background Lithium is a commonly prescribed drug with a narrow therapeutic index, and recognised adverse effects on the kidneys and thyroid. Clinical guidelines for the management of bipolar affective disorder published by The National Institute for Health and Clinical Excellence (NICE recommend checks of renal and thyroid function before lithium is prescribed. They further recommend that all patients who are prescribed lithium should have their renal and thyroid function checked every six months, and their serum lithium checked every three months. Adherence to these recommendations has not been subject to national UK audit. Methods The Prescribing Observatory for Mental Health (POMH-UK invited all National Health Service Mental Health Trusts in the UK to participate in a benchmarking audit of lithium monitoring against recommended standards. Data were collected retrospectively from clinical records and submitted electronically. Results 436 clinical teams from 38 Trusts submitted data for 3,373 patients. In patients recently starting lithium, there was a documented baseline measure of renal or thyroid function in 84% and 82% respectively. For patients prescribed lithium for a year or more, the NICE standards for monitoring lithium serum levels, and renal and thyroid function were met in 30%, 55% and 50% of cases respectively. Conclusions The quality of lithium monitoring in patients who are in contact with mental health services falls short of recognised standards and targets. Findings from this audit, along with reports of harm received by the National Patient Safety Agency, prompted a Patient Safety Alert mandating primary care, mental health and acute Trusts, and laboratory staff to work together to ensure systems are in place to support recommended lithium monitoring by December 2010.

  6. Integrating a project monitoring system into a public health network: experiences from Alive & Thrive Vietnam.

    Science.gov (United States)

    Tuan, Nguyen Thanh; Alayon, Silvia; Do, Tran Thanh; Ngan, Tran Thi; Hajeebhoy, Nemat

    2015-01-01

    Little information is available about how to build a monitoring system to measure the output of preventive nutrition interventions, such as counselling on infant and young child feeding. This paper describes the Alive & Thrive Vietnam (A&T) project experience in nesting a large-scale project monitoring system into the existing public health information system (e.g. using the system and resources), and in using monitoring data to strengthen service delivery in 15 provinces with A&T franchises. From January 2012 to April 2014, the 780 A&T franchises provided 1,700,000 counselling contacts (~3/4 by commune franchises). In commune franchises in April 2014, 80% of mothers who were pregnant or with children under two years old had been to the counselling service at least one time, and 87% of clients had been to the service earlier. Monitoring data are used to track the progress of the project, make decisions, provide background for a costing study and advocate for the integration of nutrition counselling indicators into the health information system nationwide. With careful attention to the needs of stakeholders at multiple levels, clear data quality assurance measures and strategic feedback mechanisms, it is feasible to monitor the scale-up of nutrition programmes through the existing routine health information system.

  7. Use of Multi-Objective Air Pollution Monitoring Sites and Online Air Pollution Monitoring System for Total Health Risk Assessment in Hyderabad, India

    Directory of Open Access Journals (Sweden)

    K. V. Ramani

    2005-08-01

    Full Text Available A consensus has been emerging among public health experts in developing countries that air pollution, even at current ambient levels, aggravates respiratory and cardiovascular diseases and leads to premature mortality. Recent studies have also presented well-founded theories concerning the biological mechanisms involved and the groups of people that are probably more susceptible to health effects caused or exacerbated by inhalation of ambient particulate matter (PM.. On the basis of prognostic studies carried out in Center for Environment, JNT University, Hyderabad “it has been estimated that in Hyderabad some 1,700 to 3,000 people per year die prematurely as a result of inhaling PM”. These figures reflect only the effects of acute exposure to air pollution. If the long-term effects of chronic exposure are taken into account, 10,000–15,000 people a year could die prematurely in Hyderabad. This estimate of the chronic effects is based on other studies, which are not completely comparable with the Hyderabad situation. While the study designs and analyses in these other studies may indeed be different or irrelevant to Hyderabad, the fact they were carried out in other countries is irrelevant. Taking into account these considerations, a model for total health risk assessment for the city of Hyderabad, and its state of Andhra Pradesh in India has been developed using a multi-objective air pollution monitoring network and online and real time air pollution monitoring stations. For the model studies a number of potential monitoring sites were screened for general and site-specific criteria in a geographic information system (GIS environment that may, on a local basis, affect the representativeness of the data collected. Local features that may affect either the chemical or meteorological parameters are evaluated to assure a minimum of interference. Finally, for monitoring air pollution, an online and real

  8. A power supply design of body sensor networks for health monitoring of neonates

    NARCIS (Netherlands)

    Chen, W.; Sonntag, C.L.W.; Boesten, F.; Bambang Oetomo, S.; Feijs, L.M.G.

    2008-01-01

    Critically ill new born babies are extremely tiny and vulnerable to external disturbance. Non-invasive health monitoring with body sensor networks is crucial for the survival of these neonates and the quality of their life later on. A key question for health monitoring with body sensor networks is

  9. An Overview of the NASA Aviation Safety Program Propulsion Health Monitoring Element

    Science.gov (United States)

    Simon, Donald L.

    2000-01-01

    The NASA Aviation Safety Program (AvSP) has been initiated with aggressive goals to reduce the civil aviation accident rate, To meet these goals, several technology investment areas have been identified including a sub-element in propulsion health monitoring (PHM). Specific AvSP PHM objectives are to develop and validate propulsion system health monitoring technologies designed to prevent engine malfunctions from occurring in flight, and to mitigate detrimental effects in the event an in-flight malfunction does occur. A review of available propulsion system safety information was conducted to help prioritize PHM areas to focus on under the AvSP. It is noted that when a propulsion malfunction is involved in an aviation accident or incident, it is often a contributing factor rather than the sole cause for the event. Challenging aspects of the development and implementation of PHM technology such as cost, weight, robustness, and reliability are discussed. Specific technology plans are overviewed including vibration diagnostics, model-based controls and diagnostics, advanced instrumentation, and general aviation propulsion system health monitoring technology. Propulsion system health monitoring, in addition to engine design, inspection, maintenance, and pilot training and awareness, is intrinsic to enhancing aviation propulsion system safety.

  10. Monitoring health interventions – who's afraid of LQAS?

    Science.gov (United States)

    Pezzoli, Lorenzo; Kim, Sung Hye

    2013-01-01

    Lot quality assurance sampling (LQAS) is used to evaluate health services. Subunits of a population (lots) are accepted or rejected according to the number of failures in a random sample (N) of a given lot. If failures are greater than decision value (d), we reject the lot and recommend corrective actions in the lot (i.e. intervention area); if they are equal to or less than d, we accept it. We used LQAS to monitor coverage during the last 3 days of a meningitis vaccination campaign in Niger. We selected one health area (lot) per day reporting the lowest administrative coverage in the previous 2 days. In the sampling plan we considered: N to be small enough to allow us to evaluate one lot per day, deciding to sample 16 individuals from the selected villages of each health area, using probability proportionate to population size; thresholds and d to vary according to administrative coverage reported; α ≤5% (meaning that, if we would have conducted the survey 100 times, we would have accepted the lot up to five times when real coverage was at an unacceptable level) and β ≤20% (meaning that we would have rejected the lot up to 20 times, when real coverage was equal or above the satisfactory level). We classified all three lots as with the acceptable coverage. LQAS appeared to be a rapid, simple, and statistically sound method for in-process coverage assessment. We encourage colleagues in the field to consider using LQAS in complement with other monitoring techniques such as house-to-house monitoring. PMID:24206650

  11. Monitoring of health and environment by National Uranium Company (NUC)

    International Nuclear Information System (INIS)

    Georgescu, D.P.; Banciu, O

    1998-01-01

    Among the activities of geological survey, exploitation and processing of radioactive ore performed by National Uranium Company (NUC) a major attention is paid to personnel medical monitoring, to influences on the public health in the affected zones and also to the impact on environment, based on specific criteria and accomplished by medical and technical institutions having an adequate profile, in conformity with the enforced laws and with recommendations of international authorities on this field. Health monitoring of the active and retired personnel and of population from the affected sites by the NUC activities is done on the basis of a program established in co-operation with the Work Protection Department and the management of the company's subunits. The methodology used at present has the following three stages: 1. Periodical medical examination of the personnel including all the compulsory investigations requested by the Ministry of Health; 2. Annual epidemiology descriptive studies concerning the analysis of the personnel health state; 3. Analytical epidemiologic studies (retrospective and prospective) having the aim of surveying the radiation effects on the human target organs of the exposed personnel and also the impact on the public health in the influenced zones. At present the incidence of professional diseases liked to uranium is no longer a problem. Attention has to be focused to the diseases due to microclimate, noise, intensive physical effort and stress (non-specific chronic breathing diseases, arterial high blood pressure, heart diseases, digestive diseases and neuroses). The paper presents also the environmental factors investigated in connection with the importance which they have in radioactive contamination: air, water, soil, sediments, vegetation, and agricultural products. There are given the results of the tests performed on 25,000 samples and from more then 20,000 radiometric measurements performed between 1975 - 1997 in each subunit of

  12. The use of animals as a surveillance tool for monitoring environmental health hazards, human health hazards and bioterrorism.

    Science.gov (United States)

    Neo, Jacqueline Pei Shan; Tan, Boon Huan

    2017-05-01

    This review discusses the utilization of wild or domestic animals as surveillance tools for monitoring naturally occurring environmental and human health hazards. Besides providing early warning to natural hazards, animals can also provide early warning to societal hazards like bioterrorism. Animals are ideal surveillance tools to humans because they share the same environment as humans and spend more time outdoors than humans, increasing their exposure risk. Furthermore, the biologically compressed lifespans of some animals may allow them to develop clinical signs more rapidly after exposure to specific pathogens. Animals are an excellent channel for monitoring novel and known pathogens with outbreak potential given that more than 60 % of emerging infectious diseases in humans originate as zoonoses. This review attempts to highlight animal illnesses, deaths, biomarkers or sentinel events, to remind human and veterinary public health programs that animal health can be used to discover, monitor or predict environmental health hazards, human health hazards, or bioterrorism. Lastly, we hope that this review will encourage the implementation of animals as a surveillance tool by clinicians, veterinarians, ecosystem health professionals, researchers and governments. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  13. A Low Cost Sensor Controller for Health Monitoring

    Science.gov (United States)

    Birbas, M.; Petrellis, N.; Gioulekas, F.

    2015-09-01

    Aging population can benefit from health care systems that allow their health and daily life to be monitored by expert medical staff. Blood pressure, temperature measurements or more advanced tests like Electrocardiograms (ECG) can be ordered through such a healthcare system while urgent situations can be detected and alleviated on time. The results of these tests can be stored with security in a remote cloud or database. Such systems are often used to monitor non-life threatening patient health problems and their advantage in lowering the cost of the healthcare services is obvious. A low cost commercial medical sensor kit has been used in the present work, trying to improve the accuracy and stability of the sensor measurements, the power consumption, etc. This Sensor Controller communicates with a Gateway installed in the patient's residence and a tablet or smart phone used for giving instructions to the patient through a comprehensive user interface. A flexible communication protocol has been defined supporting any short or long term sensor sampling scenario. The experimental results show that it is possible to achieve low power consumption by applying apropriate sleep intervals to the Sensor Controller and by deactivating periodically some of its functionality.

  14. Perceived Parental Monitoring and Health Risk Behavior among Public Secondary School Students in El Salvador

    Directory of Open Access Journals (Sweden)

    Andrew E. Springer

    2006-01-01

    Full Text Available Although parental monitoring has received considerable attention in studies of U.S. adolescents, few published studies have examined how parents' knowledge of their children's whereabouts may influence health risk behaviors in adolescents living in Latin America. We investigated the association between perceived parental monitoring and substance use, fighting, and sexual behaviors in rural and urban Salvadoran adolescents (n = 982. After adjusting for several sociodemographic covariates, multilevel regression analyses indicated that students reporting low parental monitoring were between 2 to 3.5 times more likely to report risk behaviors examined. The promotion of specific parenting practices such as parental monitoring may hold promise for reducing adolescent risk behaviors in El Salvador.

  15. Integrity mechanism for eHealth tele-monitoring system in smart home environment.

    Science.gov (United States)

    Mantas, Georgios; Lymberopoulos, Dimitrios; Komninos, Nikos

    2009-01-01

    During the past few years, a lot of effort has been invested in research and development of eHealth tele-monitoring systems that will provide many benefits for healthcare delivery from the healthcare provider to the patient's home. However, there is a plethora of security requirements in eHealth tele-monitoring systems. Data integrity of the transferred medical data is one of the most important security requirements that should be satisfied in these systems, since medical information is extremely sensitive information, and even sometimes life threatening information. In this paper, we present a data integrity mechanism for eHealth tele-monitoring system that operates in a smart home environment. Agent technology is applied to achieve data integrity with the use of cryptographic smart cards. Furthermore, the overall security infrastructure and its various components are described.

  16. New trends in structural health monitoring

    CERN Document Server

    Güemes, J

    2013-01-01

    Experts actively working in structural health monitoring and control techniques present the current research, areas of application and tendencies for the future of this technology, including various design issues involved. Examples using some of the latest hardware and software tools, experimental data from small scale laboratory demonstrators and measurements made on real structures illustrate the book. It will be a reference for professionals and students in the areas of engineering, applied natural sciences and engineering management.

  17. Study of the EAR.620 aerosol monitor survival

    International Nuclear Information System (INIS)

    Morisset, A.; Sciorella, G.; Chivu, D.; Meriaux, P.; Pagel, M.

    1976-01-01

    The disappearance of different electronic components on the European professional market was likely to create a very serious problem for the maintenance of health physics instrumentation existing at CEA. The present report is a study of the conditions of assurance of the survival of the air contamination monitor EAR.620 up to 1980 [fr

  18. Engine health monitoring systems: Tools for improved maintenance management in the 1980's

    Science.gov (United States)

    Kimball, J. C.

    1981-01-01

    The performance monitoring aspect of maintenance, characteristic of the engine health monitoring system are discussed. An overview of the system activities is presented and a summary of programs for improved monitoring in the 1980's are discussed.

  19. 78 FR 24153 - Notice of Emergency Approval of an Information Collection; National Animal Health Monitoring...

    Science.gov (United States)

    2013-04-24

    ...In accordance with the Paperwork Reduction Act of 1995, this notice announces that the Animal and Plant Health Inspection Service has requested and received emergency approval of an information collection for a National Animal Health Monitoring System Equine Herpesvirus Myeloencephalopathy Study to support the equine industry in the United States.

  20. Applications of fiber optic sensors in concrete structural health monitoring

    Science.gov (United States)

    Dai, Jingyun; Zhang, Wentao; Sun, Baochen; Du, Yanliang

    2007-11-01

    The research of fiber optic extrinsic Fabry-Perot interferometer (EFPI) sensors and their applications in concrete structural health monitoring are presented in this paper. Different types of fiber optic EFPI sensors are designed and fabricated. Experiments are carried out to test the performance of the sensors. The results show that the sensors have good linearity and stability. The applications of the fiber optic EFPI sensors in concrete structural health monitoring are also introduced. Ten fiber optic sensors are embedded into one section of the Liaohe Bridge in Qinghuangdao-Shenyang Railway. Field test demonstrates that the results of fiber optic sensors agree well with conventional strain gauges.

  1. Forest health monitoring: national status, trends, and analysis 2015

    Science.gov (United States)

    Kevin M. Potter; Barbara L. Conkling

    2016-01-01

    The annual national report of the Forest Health Monitoring (FHM) Program of the Forest Service, U.S. Department of Agriculture, presents forest health status and trends from a national or multi- State regional perspective using a variety of sources, introduces new techniques for analyzing forest health data, and summarizes results of recently completed Evaluation...

  2. Progress of optical sensor system for health monitoring of bridges at Chongqing University

    Science.gov (United States)

    Chen, W.; Fu, Y.; Zhu, Y.; Huang, S.

    2005-02-01

    With decades of research experience on optical sensors, Optoelectronic Technology Lab of Chongqing University (OTLCU) has studied on a variety of sensors system designed for practical use in health monitoring. In OTLCU, embedded and surface mounted fiber Fabry-Perot strain sensor has been developed for monitoring the local strain of both concrete and steel truss bridge. Optoelectronic deflect meter, with a group of optical level sensor in a series connected pipe, was developed for deflection monitoring and line shape monitoring of the bridges. Laser deflect meter, with a laser pointer and a sensors array, has been also developed for a dynamic deflection monitoring of the bridges. To monitoring the 2-Dimentional displacement of the bridge, a self-calibrating imaging system was developed. All these sensor systems have been applied in different bridges successfully. This paper briefly describes principle of these optical sensing systems, and also gives some representative results of the system in practical application of bridges.

  3. Resource consumption and management associated with monitoring of warfarin treatment in primary health care in Sweden

    Directory of Open Access Journals (Sweden)

    Nilsson Gunnar H

    2006-11-01

    Full Text Available Abstract Background Warfarin is used for the prevention and treatment of various thromboembolic complications. It is an efficacious anticoagulant, but it has a narrow therapeutic range, and regular monitoring is required to ensure therapeutic efficacy and at the same time avoid life-threatening adverse events. The objective was to assess management and resource consumption associated with patient monitoring episodes during warfarin treatment in primary health care in Sweden. Methods Delphi technique was used to systematically explore attitudes, demands and priorities, and to collect informed judgements related to monitoring of warfarin treatment. Two separate Delphi-panels were performed in three and two rounds, respectively, one concerning tests taken in primary health care centres, involving 34 GPs and 10 registered nurses, and one concerning tests taken in patients' homes, involving 49 district nurses. Results In the primary health care panel 10 of the 34 GPs regularly collaborated with a registered nurse. Average time for one monitoring episode was estimated to 10.1 minutes for a GP and 21.4 minutes for a nurse, when a nurse assisted a doctor. The average time for monitoring was 17.6 minutes for a GP when not assisted by a nurse. Considering all the monitoring episodes, 11.6% of patient blood samples were taken in the individual patient's home. Average time for such a monitoring episode was estimated to 88.2 minutes. Of all the visits, 8.2% were performed in vain and took on average 44.6 minutes. In both studies, approximately 20 different elements of work concerning management of patients during warfarin treatment were identified. Conclusion Monitoring of patients during treatment with warfarin in primary health care in Sweden involves many elements of work, and demands large resources, especially when tests are taken in the patient's home.

  4. Remote Monitoring of the Structural Health of Hydrokinetic Composite Turbine Blades

    Energy Technology Data Exchange (ETDEWEB)

    J.L. Rovey

    2012-09-21

    A health monitoring approach is investigated for hydrokinetic turbine blade applications. In-service monitoring is critical due to the difficult environment for blade inspection and the cost of inspection downtime. Composite blade designs have advantages that include long life in marine environments and great control over mechanical properties. Experimental strain characteristics are determined for static loads and free-vibration loads. These experiments are designed to simulate the dynamic characteristics of hydrokinetic turbine blades. Carbon/epoxy symmetric composite laminates are manufactured using an autoclave process. Four-layer composite beams, eight-layer composite beams, and two-dimensional eight-layer composite blades are instrumented for strain. Experimental results for strain measurements from electrical resistance gages are validated with theoretical characteristics obtained from in-house finite-element analysis for all sample cases. These preliminary tests on the composite samples show good correlation between experimental and finite-element strain results. A health monitoring system is proposed in which damage to a composite structure, e.g. delamination and fiber breakage, causes changes in the strain signature behavior. The system is based on embedded strain sensors and embedded motes in which strain information is demodulated for wireless transmission. In-service monitoring is critical due to the difficult environment for blade inspection and the cost of inspection downtime. Composite blade designs provide a medium for embedding sensors into the blades for in-situ health monitoring. The major challenge with in-situ health monitoring is transmission of sensor signals from the remote rotating reference frame of the blade to the system monitoring station. In the presented work, a novel system for relaying in-situ blade health measurements in hydrokinetic systems is described and demonstrated. An ultrasonic communication system is used to transmit

  5. A distributed scheme to manage the dynamic coexistence of IEEE 802.15.4-based health-monitoring WBANs.

    Science.gov (United States)

    Deylami, Mohammad N; Jovanov, Emil

    2014-01-01

    The overlap of transmission ranges between wireless networks as a result of mobility is referred to as dynamic coexistence. The interference caused by coexistence may significantly affect the performance of wireless body area networks (WBANs) where reliability is particularly critical for health monitoring applications. In this paper, we analytically study the effects of dynamic coexistence on the operation of IEEE 802.15.4-based health monitoring WBANs. The current IEEE 802.15.4 standard lacks mechanisms for effectively managing the coexistence of mobile WBANs. Considering the specific characteristics and requirements of health monitoring WBANs, we propose the dynamic coexistence management (DCM) mechanism to make IEEE 802.15.4-based WBANs able to detect and mitigate the harmful effects of coexistence. We assess the effectiveness of this scheme using extensive OPNET simulations. Our results indicate that DCM improves the successful transmission rates of dynamically coexisting WBANs by 20%-25% for typical medical monitoring applications.

  6. Space Station Environmental Health System water quality monitoring

    Science.gov (United States)

    Vincze, Johanna E.; Sauer, Richard L.

    1990-01-01

    One of the unique aspects of the Space Station is that it will be a totally encapsulated environment and the air and water supplies will be reclaimed for reuse. The Environmental Health System, a subsystem of CHeCS (Crew Health Care System), must monitor the air and water on board the Space Station Freedom to verify that the quality is adequate for crew safety. Specifically, the Water Quality Subsystem will analyze the potable and hygiene water supplies regularly for organic, inorganic, particulate, and microbial contamination. The equipment selected to perform these analyses will be commercially available instruments which will be converted for use on board the Space Station Freedom. Therefore, the commercial hardware will be analyzed to identify the gravity dependent functions and modified to eliminate them. The selection, analysis, and conversion of the off-the-shelf equipment for monitoring the Space Station reclaimed water creates a challenging project for the Water Quality engineers and scientists.

  7. A VME based health monitoring system

    International Nuclear Information System (INIS)

    Huang Yiming; Wang Chunhong

    2011-01-01

    It introduces a VME based health system for monitoring the working status of VME crates in the BEPCⅡ. It consists of a PC and a VME crate where a CMM (Classic Monitor System) is installed. The CMM module is responsible for collecting data from the power supply and temperature as well as fan speed inside the VME crate and send these data to the PC via the serial port. The author developed EPICS asynchronous driver by using a character-based device protocol StreamDevice. The data is saved into EPICS IOC database in character. Man-machine interface which is designed by BOY displays the running status of the VME crate including the power supply and temperature as well as fan speed. If the value of records display unusual, the color of the value will be changed into red. This can facilitate the maintenance of the VME crates. (authors)

  8. Bayesian updating and decision making using correlated structural health monitoring observations

    DEFF Research Database (Denmark)

    Nielsen, Jannie Sønderkær

    2018-01-01

    A Bayesian approach is often applied when updating a deterioration model using observations from expected structural health monitoring or condition monitoring. Usually, observations are assumed to be independent conditioned on the damage size, but this assumption does not always hold, especially ...... is properly modeled. In case of correlated observations, an advanced decision model using all past observations for decision making is needed to make monitoring feasible compared to only using inspections....

  9. Affordable Remote Health Monitoring System for the Elderly Using Smart Mobile Device

    Directory of Open Access Journals (Sweden)

    Matthew CLARK

    2015-01-01

    Full Text Available Aging population has been growing as life expectancy increases. In the years to come a much larger percentage of the population will be dependent on others for their daily care. According to a recent report more than 11 million seniors live alone in the USA. These seniors may face serious consequences when they have an emergency situation. However health-monitoring systems are often not affordable for many seniors. The remote health monitoring system presented in this paper addresses the challenge to provide caregivers an emergency alert system for the elderly based on monitoring of their heart rates, breathing activities, and room temperature measurements. The device also allows the dependents to make on demand request for assistance. The remote communication is enabled through the cellular telephone services; so there is no special or additional subscription services needed. This is essential to make the device more affordable for the elderly. We expect that this affordable remote health-monitoring system can be used to help seniors who live alone be safer and healthier.

  10. Informing the Design of "Lifestyle Monitoring" Technology for the Detection of Health Deterioration in Long-Term Conditions: A Qualitative Study of People Living With Heart Failure.

    Science.gov (United States)

    Hargreaves, Sarah; Hawley, Mark S; Haywood, Annette; Enderby, Pamela M

    2017-06-28

    Health technologies are being developed to help people living at home manage long-term conditions. One such technology is "lifestyle monitoring" (LM), a telecare technology based on the idea that home activities may be monitored unobtrusively via sensors to give an indication of changes in health-state. However, questions remain about LM technology: how home activities change when participants experience differing health-states; and how sensors might capture clinically important changes to inform timely interventions. The objective of this paper was to report the findings of a study aimed at identifying changes in activity indicative of important changes in health in people with long-term conditions, particularly changes indicative of exacerbation, by exploring the relationship between home activities and health among people with heart failure (HF). We aimed to add to the knowledge base informing the development of home monitoring technologies designed to detect health deterioration in order to facilitate early intervention and avoid hospital admissions. This qualitative study utilized semistructured interviews to explore everyday activities undertaken during the three health-states of HF: normal days, bad days, and exacerbations. Potential recruits were identified by specialist nurses and attendees at an HF support group. The sample was purposively selected to include a range of experience of living with HF. The sample comprised a total of 20 people with HF aged 50 years and above, and 11 spouses or partners of the individuals with HF. All resided in Northern England. Participant accounts revealed that home activities are in part shaped by the degree of intrusion from HF symptoms. During an exacerbation, participants undertook activities specifically to ease symptoms, and detailed activity changes were identified. Everyday activity was also influenced by a range of factors other than health. The study highlights the importance of careful development of LM

  11. On the system of monitoring ambient air quality in relation to the health of the population of the Czech Republic

    Energy Technology Data Exchange (ETDEWEB)

    Kazmarova, H. [National Inst. of Public Health, Prague (Czech Republic)

    1995-12-31

    In 1991 the Government of the Czech republic in Ruling No 369 approved a draft of a system for monitoring the health of the population in relation to the environment on the basis of a need to obtain purposefully targeted information for an appropriate policy for the protection of health and the environment. The aim of monitoring does not and cannot consist of determining the cause and effect relationship between the health status and pollutants. The system of monitoring is an open and comprehensive system of the continual collection, processing and evaluation of data concerned with the load on the organism and damage to human health in relation to environmental pollution. Air pollution and health are one of the six subsystems realised in the whole system (beside drinking water, noise, food, biomarkers, and demographic and health statistics). The aim of the monitoring is to obtain a data base that shall serve three main purposes: (1) Description of the status of health of the population and characteristics of the ambient air, (2) Evaluation of the trend of each index, (3) Assessment and evaluation of the risk to health of the parameters under study. Thirty cities and towns were selected in the Czech Republic for the realisation of the monitoring system. (author)

  12. On the system of monitoring ambient air quality in relation to the health of the population of the Czech Republic

    Energy Technology Data Exchange (ETDEWEB)

    Kazmarova, H [National Inst. of Public Health, Prague (Czech Republic)

    1996-12-31

    In 1991 the Government of the Czech republic in Ruling No 369 approved a draft of a system for monitoring the health of the population in relation to the environment on the basis of a need to obtain purposefully targeted information for an appropriate policy for the protection of health and the environment. The aim of monitoring does not and cannot consist of determining the cause and effect relationship between the health status and pollutants. The system of monitoring is an open and comprehensive system of the continual collection, processing and evaluation of data concerned with the load on the organism and damage to human health in relation to environmental pollution. Air pollution and health are one of the six subsystems realised in the whole system (beside drinking water, noise, food, biomarkers, and demographic and health statistics). The aim of the monitoring is to obtain a data base that shall serve three main purposes: (1) Description of the status of health of the population and characteristics of the ambient air, (2) Evaluation of the trend of each index, (3) Assessment and evaluation of the risk to health of the parameters under study. Thirty cities and towns were selected in the Czech Republic for the realisation of the monitoring system. (author)

  13. Investigation of Wireless Sensor Networks for Structural Health Monitoring

    Directory of Open Access Journals (Sweden)

    Ping Wang

    2012-01-01

    Full Text Available Wireless sensor networks (WSNs are one of the most able technologies in the structural health monitoring (SHM field. Through intelligent, self-organising means, the contents of this paper will test a variety of different objects and different working principles of sensor nodes connected into a network and integrated with data processing functions. In this paper the key issues of WSN applied in SHM are discussed, including the integration of different types of sensors with different operational modalities, sampling frequencies, issues of transmission bandwidth, real-time ability, and wireless transmitter frequency. Furthermore, the topology, data fusion, integration, energy saving, and self-powering nature of different systems will be investigated. In the FP7 project “Health Monitoring of Offshore Wind Farms,” the above issues are explored.

  14. Tunable Laser Development for In-flight Fiber Optic Based Structural Health Monitoring Systems

    Science.gov (United States)

    Richards, Lance; Parker, Allen; Chan, Patrick

    2014-01-01

    The objective of this task is to investigate, develop, and demonstrate a low-cost swept lasing light source for NASA DFRC's fiber optics sensing system (FOSS) to perform structural health monitoring on current and future aerospace vehicles. This is the regular update of the Tunable Laser Development for In-flight Fiber Optic Based Structural Health Monitoring Systems website.

  15. Health monitoring method for composite materials

    Science.gov (United States)

    Watkins, Jr., Kenneth S.; Morris, Shelby J [Hampton, VA

    2011-04-12

    An in-situ method for monitoring the health of a composite component utilizes a condition sensor made of electrically conductive particles dispersed in a polymeric matrix. The sensor is bonded or otherwise formed on the matrix surface of the composite material. Age-related shrinkage of the sensor matrix results in a decrease in the resistivity of the condition sensor. Correlation of measured sensor resistivity with data from aged specimens allows indirect determination of mechanical damage and remaining age of the composite component.

  16. Structural Health Monitoring Analysis for the Orbiter Wing Leading Edge

    Science.gov (United States)

    Yap, Keng C.

    2010-01-01

    This viewgraph presentation reviews Structural Health Monitoring Analysis for the Orbiter Wing Leading Edge. The Wing Leading Edge Impact Detection System (WLE IDS) and the Impact Analysis Process are also described to monitor WLE debris threats. The contents include: 1) Risk Management via SHM; 2) Hardware Overview; 3) Instrumentation; 4) Sensor Configuration; 5) Debris Hazard Monitoring; 6) Ascent Response Summary; 7) Response Signal; 8) Distribution of Flight Indications; 9) Probabilistic Risk Analysis (PRA); 10) Model Correlation; 11) Impact Tests; 12) Wing Leading Edge Modeling; 13) Ascent Debris PRA Results; and 14) MM/OD PRA Results.

  17. Experimental Research on Quick Structural Health Monitoring Technique for Bridges Using Smartphone

    OpenAIRE

    Zhao, Xuefeng; Ri, Kwang; Han, Ruicong; Yu, Yan; Li, Mingchu; Ou, Jinping

    2016-01-01

    In the recent years, with the development and popularization of smartphone, the utilization of smartphone in the Structural Health Monitoring (SHM) has attracted increasing attention owing to its unique feature. Since bridges are of great importance to society and economy, bridge health monitoring has very practical significance during its service life. Furthermore, rapid damage assessment of bridge after an extreme event such as earthquake is very important in the recovery work. Smartphone-b...

  18. Structural health monitoring feature design by genetic programming

    International Nuclear Information System (INIS)

    Harvey, Dustin Y; Todd, Michael D

    2014-01-01

    Structural health monitoring (SHM) systems provide real-time damage and performance information for civil, aerospace, and other high-capital or life-safety critical structures. Conventional data processing involves pre-processing and extraction of low-dimensional features from in situ time series measurements. The features are then input to a statistical pattern recognition algorithm to perform the relevant classification or regression task necessary to facilitate decisions by the SHM system. Traditional design of signal processing and feature extraction algorithms can be an expensive and time-consuming process requiring extensive system knowledge and domain expertise. Genetic programming, a heuristic program search method from evolutionary computation, was recently adapted by the authors to perform automated, data-driven design of signal processing and feature extraction algorithms for statistical pattern recognition applications. The proposed method, called Autofead, is particularly suitable to handle the challenges inherent in algorithm design for SHM problems where the manifestation of damage in structural response measurements is often unclear or unknown. Autofead mines a training database of response measurements to discover information-rich features specific to the problem at hand. This study provides experimental validation on three SHM applications including ultrasonic damage detection, bearing damage classification for rotating machinery, and vibration-based structural health monitoring. Performance comparisons with common feature choices for each problem area are provided demonstrating the versatility of Autofead to produce significant algorithm improvements on a wide range of problems. (paper)

  19. Monitoring health interventions – who's afraid of LQAS?

    Directory of Open Access Journals (Sweden)

    Lorenzo Pezzoli

    2013-11-01

    Full Text Available Lot quality assurance sampling (LQAS is used to evaluate health services. Subunits of a population (lots are accepted or rejected according to the number of failures in a random sample (N of a given lot. If failures are greater than decision value (d, we reject the lot and recommend corrective actions in the lot (i.e. intervention area; if they are equal to or less than d, we accept it. We used LQAS to monitor coverage during the last 3 days of a meningitis vaccination campaign in Niger. We selected one health area (lot per day reporting the lowest administrative coverage in the previous 2 days. In the sampling plan we considered: N to be small enough to allow us to evaluate one lot per day, deciding to sample 16 individuals from the selected villages of each health area, using probability proportionate to population size; thresholds and d to vary according to administrative coverage reported; α≤5% (meaning that, if we would have conducted the survey 100 times, we would have accepted the lot up to five times when real coverage was at an unacceptable level and β≤20% (meaning that we would have rejected the lot up to 20 times, when real coverage was equal or above the satisfactory level. We classified all three lots as with the acceptable coverage. LQAS appeared to be a rapid, simple, and statistically sound method for in-process coverage assessment. We encourage colleagues in the field to consider using LQAS in complement with other monitoring techniques such as house-to-house monitoring.

  20. [Intelligent watch system for health monitoring based on Bluetooth low energy technology].

    Science.gov (United States)

    Wang, Ji; Guo, Hailiang; Ren, Xiaoli

    2017-08-01

    According to the development status of wearable technology and the demand of intelligent health monitoring, we studied the multi-function integrated smart watches solution and its key technology. First of all, the sensor technology with high integration density, Bluetooth low energy (BLE) and mobile communication technology were integrated and used in develop practice. Secondly, for the hardware design of the system in this paper, we chose the scheme with high integration density and cost-effective computer modules and chips. Thirdly, we used real-time operating system FreeRTOS to develop the friendly graphical interface interacting with touch screen. At last, the high-performance application software which connected with BLE hardware wirelessly and synchronized data was developed based on android system. The function of this system included real-time calendar clock, telephone message, address book management, step-counting, heart rate and sleep quality monitoring and so on. Experiments showed that the collecting data accuracy of various sensors, system data transmission capacity, the overall power consumption satisfy the production standard. Moreover, the system run stably with low power consumption, which could realize intelligent health monitoring effectively.

  1. eHealth in the future of medications management: personalisation, monitoring and adherence.

    Science.gov (United States)

    Car, Josip; Tan, Woan Shin; Huang, Zhilian; Sloot, Peter; Franklin, Bryony Dean

    2017-04-05

    Globally, healthcare systems face major challenges with medicines management and medication adherence. Medication adherence determines medication effectiveness and can be the single most effective intervention for improving health outcomes. In anticipation of growth in eHealth interventions worldwide, we explore the role of eHealth in the patients' medicines management journey in primary care, focusing on personalisation and intelligent monitoring for greater adherence. eHealth offers opportunities to transform every step of the patient's medicines management journey. From booking appointments, consultation with a healthcare professional, decision-making, medication dispensing, carer support, information acquisition and monitoring, to learning about medicines and their management in daily life. It has the potential to support personalisation and monitoring and thus lead to better adherence. For some of these dimensions, such as supporting decision-making and providing reminders and prompts, evidence is stronger, but for many others more rigorous research is urgently needed. Given the potential benefits and barriers to eHealth in medicines management, a fine balance needs to be established between evidence-based integration of technologies and constructive experimentation that could lead to a game-changing breakthrough. A concerted, transdisciplinary approach adapted to different contexts, including low- and middle-income contries is required to realise the benefits of eHealth at scale.

  2. Experimental study on engine gas-path component fault monitoring using exhaust gas electrostatic signal

    International Nuclear Information System (INIS)

    Sun, Jianzhong; Zuo, Hongfu; Liu, Pengpeng; Wen, Zhenhua

    2013-01-01

    This paper presents the recent development in engine gas-path components health monitoring using electrostatic sensors in combination with signal-processing techniques. Two ground-based engine electrostatic monitoring experiments are reported and the exhaust gas electrostatic monitoring signal-based fault-detection method is proposed. It is found that the water washing, oil leakage and combustor linear cracking result in an increase in the activity level of the electrostatic monitoring signal, which can be detected by the electrostatic monitoring system. For on-line health monitoring of the gas-path components, a baseline model-based fault-detection method is proposed and the multivariate state estimation technique is used to establish the baseline model for the electrostatic monitoring signal. The method is applied to a data set from a turbo-shaft engine electrostatic monitoring experiment. The results of the case study show that the system with the developed method is capable of detecting the gas-path component fault in an on-line fashion. (paper)

  3. Moire-Fringe-Based Fiber Optic Tiltmeter for Structural Health Monitoring

    International Nuclear Information System (INIS)

    Kim, Dae Hyun

    2008-01-01

    This paper presents a novel fiber optic tiltmeter system for the health monitoring of large-size structures. The system is composed of a sensor head, a light control unit and a signal processing unit. The sensing mechanism of the sensor head is based on a novel integration of the moire fringe phenomenon with fiber optics to achieve a robust performance in addition to its immunity to EM interference, easy ratting, and low cost. In this paper, a prototype of the fiber optic tiltmeter system has been developed successfully. A low-cost light control unit has been developed to drive the system's optic and electronic components. From an experimental test, the fiber optic tiltmeter is proven to be a prospective sensor for the monitoring of the tilting angle of civil structure with a good linearity. Finally, the test also successfully demonstrates the performance and the potential of the novel fiber optic tiltmeter system to monitor the health of civil infrastructures.

  4. Moire-Fringe-Based Fiber Optic Tiltmeter for Structural Health Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae Hyun [Seoul National of Technology, Seoul (Korea, Republic of)

    2008-04-15

    This paper presents a novel fiber optic tiltmeter system for the health monitoring of large-size structures. The system is composed of a sensor head, a light control unit and a signal processing unit. The sensing mechanism of the sensor head is based on a novel integration of the moire fringe phenomenon with fiber optics to achieve a robust performance in addition to its immunity to EM interference, easy ratting, and low cost. In this paper, a prototype of the fiber optic tiltmeter system has been developed successfully. A low-cost light control unit has been developed to drive the system's optic and electronic components. From an experimental test, the fiber optic tiltmeter is proven to be a prospective sensor for the monitoring of the tilting angle of civil structure with a good linearity. Finally, the test also successfully demonstrates the performance and the potential of the novel fiber optic tiltmeter system to monitor the health of civil infrastructures.

  5. 78 FR 58269 - Notice of Request for Approval of an Information Collection; National Animal Health Monitoring...

    Science.gov (United States)

    2013-09-23

    ...In accordance with the Paperwork Reduction Act of 1995, this notice announces the Animal and Plant Health Inspection Service's intention to request approval of a new information collection for the National Animal Health Monitoring System's Bison 2014 Study to support the bison industry of the United States.

  6. [A risk-based monitoring model for health care service institutions as a tool to protect health rights in Peru].

    Science.gov (United States)

    Benites-Zapata, Vicente A; Saravia-Chong, Héctor A; Mezones-Holguin, Edward; Aquije-Díaz, Allen J; Villegas-Ortega, José; Rossel-de-Almeida, Gustavo; Acosta-Saal, Carlos; Philipps-Cuba, Flor

    2016-01-01

    To describe the monitoring model of the Health Care Service Institutions (HCSI) of the National Health Authority (NHA) and assess the factors associated with risk-adjusted normative compliance (%RANC) within the Peruvian Health System (PHS). We carried out a case study of the experience of the NHA in the development and implementation of a monitoring program based on the ISO 31000-2009. With HCSI as the units of analysis, we calculated the %RANC (a scorein continuous scale ranging from 0 to 100) for comprehensive monitoring (CM) and for specific evaluations made from 2013 to 2015. A higher score in the %RANC means lower operational risk. Also, slope coefficients (β) and their 95% confidence intervals (95% CI) were estimated using generalized linear models to estimate the association between %RANC as outcome, and health subsector, region, level of care and year, as explanatory variables. The NHA made 1444 evaluations. For CM, only the Social Security Administration had higher %RANC than private centers (β=7.7%; 95% CI 3.5 to 11.9). The HCSI of the coastal region (β=-5.2, 95% CI -9.4 to -1.0), andean region (β=-12.5; 95% CI -16.7 to -8.3) and jungle region (β=-12.6, 95% CI% -17.7 to -7.6) had lower %RANC than those located in Lima Metropolitan area. %RANC was higher in 2015 than 2013 (β=10.8; 95% CI 6.4 to 15.3). The %RANC differs by health subsector, region and year of supervision. For CM, the HCSI in the Social Security Administration and in the Lima Metropolitan area had better scores, and scores improved over time. The implementation of actions aimed at improving %RANC in order to foster the full exercise of health rights in the PHS is suggested.

  7. Health Monitoring System Based on Intra-Body Communication

    Science.gov (United States)

    Razak, A. H. A.; Ibrahim, I. W.; Ayub, A. H.; Amri, M. F.; Hamzi, M. H.; Halim, A. K.; Ahmad, A.; Junid, S. A. M. Al

    2015-11-01

    This paper presents a model of a Body Area Network (BAN) health monitoring system based on Intra-Body Communication. Intra-body Communication (IBC) is a communication technique that uses the human body as a medium for electrical signal communication. One of the visions in the health care industry is to provide autonomous and continuous self and the remote health monitoring system. This can be achieved via BAN, LAN and WAN integration. The BAN technology itself consists of short range data communication modules, sensors, controller and actuators. The information can be transmitted to the LAN and WAN via the RF technology such as Bluetooth, ZigBee and ANT. Although the implementations of RF communication have been successful, there are still limitations in term of power consumption, battery lifetime, interferences and signal attenuations. One of the solutions for Medical Body Area Network (MBANs) to overcome these issues is by using an IBC technique because it can operate at lower frequencies and power consumption compared to the existing techniques. The first objective is to design the IBC's transmitter and receiver modules using the off the shelf components. The specifications of the modules such as frequency, data rate, modulation and demodulation coding system were defined. The individual module were designed and tested separately. The modules was integrated as an IBC system and tested for functionality then was implemented on PCB. Next objective is to model and implement the digital parts of the transmitter and receiver modules on the Altera's FPGA board. The digital blocks were interfaced with the FPGA's on board modules and the discrete components. The signals that have been received from the transmitter were converted into a proper waveform and it can be viewed via external devices such as oscilloscope and Labview. The signals such as heartbeats or pulses can also be displayed on LCD. In conclusion, the IBC project presents medical health monitoring model

  8. An autonomous structural health monitoring solution

    Science.gov (United States)

    Featherston, Carol A.; Holford, Karen M.; Pullin, Rhys; Lees, Jonathan; Eaton, Mark; Pearson, Matthew

    2013-05-01

    Combining advanced sensor technologies, with optimised data acquisition and diagnostic and prognostic capability, structural health monitoring (SHM) systems provide real-time assessment of the integrity of bridges, buildings, aircraft, wind turbines, oil pipelines and ships, leading to improved safety and reliability and reduced inspection and maintenance costs. The implementation of power harvesting, using energy scavenged from ambient sources such as thermal gradients and sources of vibration in conjunction with wireless transmission enables truly autonomous systems, reducing the need for batteries and associated maintenance in often inaccessible locations, alongside bulky and expensive wiring looms. The design and implementation of such a system however presents numerous challenges. A suitable energy source or multiple sources capable of meeting the power requirements of the system, over the entire monitoring period, in a location close to the sensor must be identified. Efficient power management techniques must be used to condition the power and deliver it, as required, to enable appropriate measurements to be taken. Energy storage may be necessary, to match a continuously changing supply and demand for a range of different monitoring states including sleep, record and transmit. An appropriate monitoring technique, capable of detecting, locating and characterising damage and delivering reliable information, whilst minimising power consumption, must be selected. Finally a wireless protocol capable of transmitting the levels of information generated at the rate needed in the required operating environment must be chosen. This paper considers solutions to some of these challenges, and in particular examines SHM in the context of the aircraft environment.

  9. Airspora concentrations in the Vaal-triangle-monitoring and potential health-effects.2, fungal spores

    CSIR Research Space (South Africa)

    Vismer, HF

    1995-08-01

    Full Text Available Atmospheric fungal spores were monitored in Vanderbijlpark for the period 1991-92 as part of the Vaal triangle air pollution health study of the medical research council and the CSIR. Cladosporium, Aspergillus/ Penicillium, Alternaria and Epicoccum...

  10. A remote data access architecture for home-monitoring health-care applications.

    Science.gov (United States)

    Lin, Chao-Hung; Young, Shuenn-Tsong; Kuo, Te-Son

    2007-03-01

    With the aging of the population and the increasing patient preference for receiving care in their own homes, remote home care is one of the fastest growing areas of health care in Taiwan and many other countries. Many remote home-monitoring applications have been developed and implemented to enable both formal and informal caregivers to have remote access to patient data so that they can respond instantly to any abnormalities of in-home patients. The aim of this technology is to give both patients and relatives better control of the health care, reduce the burden on informal caregivers and reduce visits to hospitals and thus result in a better quality of life for both the patient and his/her family. To facilitate their widespread adoption, remote home-monitoring systems take advantage of the low-cost features and popularity of the Internet and PCs, but are inherently exposed to several security risks, such as virus and denial-of-service (DoS) attacks. These security threats exist as long as the in-home PC is directly accessible by remote-monitoring users over the Internet. The purpose of the study reported in this paper was to improve the security of such systems, with the proposed architecture aimed at increasing the system availability and confidentiality of patient information. A broker server is introduced between the remote-monitoring devices and the in-home PCs. This topology removes direct access to the in-home PC, and a firewall can be configured to deny all inbound connections while the remote home-monitoring application is operating. This architecture helps to transfer the security risks from the in-home PC to the managed broker server, on which more advanced security measures can be implemented. The pros and cons of this novel architecture design are also discussed and summarized.

  11. A comprehensive health service evaluation and monitoring framework.

    Science.gov (United States)

    Reeve, Carole; Humphreys, John; Wakerman, John

    2015-12-01

    To develop a framework for evaluating and monitoring a primary health care service, integrating hospital and community services. A targeted literature review of primary health service evaluation frameworks was performed to inform the development of the framework specifically for remote communities. Key principles underlying primary health care evaluation were determined and sentinel indicators developed to operationalise the evaluation framework. This framework was then validated with key stakeholders. The framework includes Donabedian's three seminal domains of structure, process and outcomes to determine health service performance. These in turn are dependent on sustainability, quality of patient care and the determinants of health to provide a comprehensive health service evaluation framework. The principles underpinning primary health service evaluation were pertinent to health services in remote contexts. Sentinel indicators were developed to fit the demographic characteristics and health needs of the population. Consultation with key stakeholders confirmed that the evaluation framework was applicable. Data collected routinely by health services can be used to operationalise the proposed health service evaluation framework. Use of an evaluation framework which links policy and health service performance to health outcomes will assist health services to improve performance as part of a continuous quality improvement cycle. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. [Input on monitoring and evaluation practices of government management of Brazilian Municipal Health Departments].

    Science.gov (United States)

    Miranda, Alcides Silva de; Carvalho, André Luis Bonifácio de; Cavalcante, Caio Garcia Correia Sá

    2012-04-01

    What do the leaders of the Municipal Health Service (SMS) report and say about the systematic monitoring and evaluation of their own government management? The purpose of this paper is to provide input for the formulation of plausible hypotheses about such institutional processes and practices based on information produced in an exploratory study. This is a multiple case study with quantitative and qualitative analysis of answers to a semi-structured questionnaire given to government officials of a systematic sample of 577 Municipal Health Services (10.4% of the total in Brazil). They were selected and stratified by proportional distribution among states and by the population size of municipalities. In general, it shows that approximately half of the respondents use information from Health Monitoring Evaluations to orient decision-making, planning and other management approaches. This proportion tends to decrease in cities with smaller populations. There are specific and significant gaps in financial, personnel and crisis management. The evidence from the hypotheses highlights the fact that these processes are still at an early stage.

  13. 78 FR 58268 - Notice of Request for Approval of an Information Collection; National Animal Health Monitoring...

    Science.gov (United States)

    2013-09-23

    ...In accordance with the Paperwork Reduction Act of 1995, this notice announces the Animal and Plant Health Inspection Service's intention to request approval of a new information collection for the National Animal Health Monitoring System's Cervid 2014 Study to support the farmed cervid industry in the United States.

  14. Health Monitoring of Composite Material Structures using a Vibrometry Technique

    Science.gov (United States)

    Schulz, Mark J.

    1997-01-01

    Large composite material structures such as aircraft and Reusable Launch Vehicles (RLVS) operate in severe environments comprised of vehicle dynamic loads, aerodynamic loads, engine vibration, foreign object impact, lightning strikes, corrosion, and moisture absorption. These structures are susceptible to damage such as delamination, fiber breaking/pullout, matrix cracking, and hygrothermal strain. To ensure human safety and load-bearing integrity, these structures must be inspected to detect and locate often invisible damage and faults before becoming catastrophic. Moreover, nearly all future structures will need some type of in-service inspection technique to increase their useful life and reduce maintenance and overall costs. Possible techniques for monitoring the health and indicating damage on composite structures include: c-scan, thermography, acoustic emissions using piezoceramic actuators or fiber-optic wires with gratings, laser ultrasound, shearography, holography, x-ray, and others. These techniques have limitations in detecting damage that is beneath the surface of the structure, far away from a sensor location, or during operation of the vehicle. The objective of this project is to develop a more global method for damage detection that is based on structural dynamics principles, and can inspect for damage when the structure is subjected to vibratory loads to expose faults that may not be evident by static inspection. A Transmittance Function Monitoring (TFM) method is being developed in this project for ground-based inspection and operational health monitoring of large composite structures as a RLV. A comparison of the features of existing health monitoring approaches and the proposed TFM method is given.

  15. Indicators for Universal Health Coverage: can Kenya comply with the proposed post-2015 monitoring recommendations?

    Science.gov (United States)

    Obare, Valerie; Brolan, Claire E; Hill, Peter S

    2014-12-20

    Universal Health Coverage (UHC), referring to access to healthcare without financial burden, has received renewed attention in global health spheres. UHC is a potential goal in the post-2015 development agenda. Monitoring of progress towards achieving UHC is thus critical at both country and global level, and a monitoring framework for UHC was proposed by a joint WHO/World Bank discussion paper in December 2013. The aim of this study was to determine the feasibility of the framework proposed by WHO/World Bank for global UHC monitoring framework in Kenya. The study utilised three documents--the joint WHO/World Bank UHC monitoring framework and its update, and the Bellagio meeting report sponsored by WHO and the Rockefeller Foundation--to conduct the research. These documents informed the list of potential indicators that were used to determine the feasibility of the framework. A purposive literature search was undertaken to identify key government policy documents and relevant scholarly articles. A desk review of the literature was undertaken to answer the research objectives of this study. Kenya has yet to establish an official policy on UHC that provides a clear mandate on the goals, targets and monitoring and evaluation of performance. However, a significant majority of Kenyans continue to have limited access to health services as well as limited financial risk protection. The country has the capacity to reasonably report on five out of the seven proposed UHC indicators. However, there was very limited capacity to report on the two service coverage indicators for the chronic condition and injuries (CCIs) interventions. Out of the potential tracer indicators (n = 27) for aggregate CCI-related measures, four tracer indicators were available. Moreover the country experiences some wider challenges that may impact on the implementation and feasibility of the WHO/World Bank framework. The proposed global framework for monitoring UHC will only be feasible in Kenya if

  16. Process evaluation of community monitoring under national health mission at Chandigarh, union territory: Methodology and challenges

    Directory of Open Access Journals (Sweden)

    Jaya Prasad Tripathy

    2015-01-01

    Full Text Available Background: Community monitoring was introduced on a pilot mode in 36 selected districts of India in a phased manner. In Chandigarh, it was introduced in the year 2009-2010. A preliminary evaluation of the program was undertaken with special emphasis on the inputs and the processes. Methodology: Quantitative methods included verification against checklists and record reviews. Nonparticipant observation was used to evaluate the conduct of trainings, interviews, and group discussions. Health system had trained health system functionaries (nursing students and Village Health Sanitation Committee [VHSC] members to generate village-based scorecards for assessing community needs. Community needs were assessed independently for two villages under the study area to validate the scores generated by the health system. Results: VHSCs were formed in all 22 villages but without a chairperson or convener. The involvement of VHSC members in the community monitoring process was minimal. The conduct of group discussions was below par due to poor moderation and unequal responses from the group. The community monitoring committees at the state level had limited representation from the non-health sector, lower committees, and the nongovernmental organizations/civil societies. Agreement between the report cards generated by the investigator and the health system in the selected villages was found to be to be fair (0.369 whereas weighted kappa (0.504 was moderate. Conclusion: In spite of all these limitations and challenges, the government has taken a valiant step by trying to involve the community in the monitoring of health services. The dynamic nature of the community warrants incorporation of an evaluation framework into the planning of such programs.

  17. Multidisciplinary health monitoring of a steel bridge deck structure

    NARCIS (Netherlands)

    Pahlavan, P.L.; Pijpers, R.J.M.; Paulissen, J.H.; Hakkesteegt, H.C.; Jansen, T.H.

    2013-01-01

    Fatigue cracks in orthotropic bridge decks are an important cause for the necessary renovation of existing bridges. Parallel utilization of various technologies based on different physical sensing principles can potentially maximize the efficiency of structural health monitoring (SHM) systems for

  18. Rate-based structural health monitoring using permanently installed sensors

    Science.gov (United States)

    Corcoran, Joseph

    2017-09-01

    Permanently installed sensors are becoming increasingly ubiquitous, facilitating very frequent in situ measurements and consequently improved monitoring of `trends' in the observed system behaviour. It is proposed that this newly available data may be used to provide prior warning and forecasting of critical events, particularly system failure. Numerous damage mechanisms are examples of positive feedback; they are `self-accelerating' with an increasing rate of damage towards failure. The positive feedback leads to a common time-response behaviour which may be described by an empirical relation allowing prediction of the time to criticality. This study focuses on Structural Health Monitoring of engineering components; failure times are projected well in advance of failure for fatigue, creep crack growth and volumetric creep damage experiments. The proposed methodology provides a widely applicable framework for using newly available near-continuous data from permanently installed sensors to predict time until failure in a range of application areas including engineering, geophysics and medicine.

  19. Smartphone ownership and interest in mobile applications to monitor symptoms of mental health conditions.

    Science.gov (United States)

    Torous, John; Friedman, Rohn; Keshavan, Matcheri

    2014-01-21

    Patient retrospective recollection is a mainstay of assessing symptoms in mental health and psychiatry. However, evidence suggests that these retrospective recollections may not be as accurate as data collection though the experience sampling method (ESM), which captures patient data in "real time" and "real life." However, the difficulties in practical implementation of ESM data collection have limited its impact in psychiatry and mental health. Smartphones with the capability to run mobile applications may offer a novel method of collecting ESM data that may represent a practical and feasible tool for mental health and psychiatry. This paper aims to provide data on psychiatric patients' prevalence of smartphone ownership, patterns of use, and interest in utilizing mobile applications to monitor their mental health conditions. One hundred psychiatric outpatients at a large urban teaching hospital completed a paper-and-pencil survey regarding smartphone ownership, use, and interest in utilizing mobile applications to monitor their mental health condition. Ninety-seven percent of patients reported owning a phone and 72% reported that their phone was a smartphone. Patients in all age groups indicated greater than 50% interest in using a mobile application on a daily basis to monitor their mental health condition. Smartphone and mobile applications represent a practical opportunity to explore new modalities of monitoring, treatment, and research of psychiatric and mental health conditions.

  20. Patient Health Monitoring Using Wireless Body Area Network

    Directory of Open Access Journals (Sweden)

    Hsu Myat Thwe

    2015-06-01

    Full Text Available Abstract Nowadays remote patient health monitoring using wireless technology plays very vigorous role in a society. Wireless technology helps monitoring of physiological parameters like body temperature heart rate respiration blood pressure and ECG. The main aim of this paper is to propose a wireless sensor network system in which both heart rate and body temperature ofmultiplepatients can monitor on PC at the same time via RF network. The proposed prototype system includes two sensor nodes and receiver node base station. The sensor nodes are able to transmit data to receiver using wireless nRF transceiver module.The nRF transceiver module is used to transfer the data from microcontroller to PC and a graphical user interface GUI is developed to display the measured data and save to database. This system can provide very cheaper easier and quick respondent history of patient.

  1. Toward youth self-report of health and quality of life in population monitoring.

    Science.gov (United States)

    Topolski, Tari D; Edwards, Todd C; Patrick, Donald L

    2004-01-01

    This paper addresses population monitoring of youth health and quality of life, including the concepts used, methodological and practical criteria for indicators, and existing surveys and measures. Current population surveys of youth generally focus on poor health, such as disability or health-risk behaviors. Although these are important end points, indicators of illness or risk do not reflect the health or life perspective of the majority of youth who do not experience health problems. The measures used to monitor youth health should be appropriate and sensitive to future needs and capture the perspectives of youths. Two potential concepts for this "scorecard" are self-perceived health and quality of life, which have been shown to be useful in adults. For youth, the quality of life framework seems particularly relevant as it incorporates both positive and negative aspects of health and well-being and also captures salient aspects of health other than physical health, such as sense of self, social relationships, environment and culture, and life satisfaction.

  2. Contributions of national and global health estimates to monitoring health-related Sustainable Development Goals in Thailand.

    Science.gov (United States)

    Bundhamcharoen, Kanitta; Limwattananon, Supon; Kusreesakul, Khanitta; Tangcharoensathien, Viroj

    2017-01-01

    The Millennium Development Goals (MDGs) triggered increased demand for data on child and maternal mortality for monitoring progress. With the advent of the Sustainable Development Goals (SDGs) and growing evidence of an epidemiological transition towards non-communicable diseases, policy makers need data on mortality and disease trends and distribution to inform effective policies and support monitoring progress. Where there are limited capacities to produce national health estimates (NHEs), global health estimates (GHEs) can fill gaps for global monitoring and comparisons. This paper draws lessons learned from Thailand's burden of disease study (BOD) on capacity development for NHEs, and discusses the contributions and limitation of GHEs in informing policies at country level. Through training and technical support by external partners, capacities are gradually strengthened and institutionalized to enable regular updates of BOD at national and sub-national levels. Initially, the quality of cause of death reporting in the death certificates was inadequate, especially for deaths occurring in the community. Verbal autopsies were conducted, using domestic resources, to determine probable causes of deaths occurring in the community. This helped improve the estimation of years of life lost. Since the achievement of universal health coverage in 2002, the quality of clinical data on morbidities has also considerably improved. There are significant discrepancies between the 2010 Global Burden of Diseases (GBD) estimates for Thailand and the 1999 nationally generated BOD, especially for years of life lost due to HIV/AIDS, and the ranking of priority diseases. National ownership of NHEs and effective interfaces between researchers and decision makers contribute to enhanced country policy responses, while sub-national data are intended to be used by various sub-national-level partners. Though GHEs contribute to benchmarking country achievement compared with global health

  3. Performance-based financing as a health system reform: mapping the key dimensions for monitoring and evaluation

    Science.gov (United States)

    2013-01-01

    Background Performance-based financing is increasingly being applied in a variety of contexts, with the expectation that it can improve the performance of health systems. However, while there is a growing literature on implementation issues and effects on outputs, there has been relatively little focus on interactions between PBF and health systems and how these should be studied. This paper aims to contribute to filling that gap by developing a framework for assessing the interactions between PBF and health systems, focusing on low and middle income countries. In doing so, it elaborates a general framework for monitoring and evaluating health system reforms in general. Methods This paper is based on an exploratory literature review and on the work of a group of academics and PBF practitioners. The group developed ideas for the monitoring and evaluation framework through exchange of emails and working documents. Ideas were further refined through discussion at the Health Systems Research symposium in Beijing in October 2012, through comments from members of the online PBF Community of Practice and Beijing participants, and through discussion with PBF experts in Bergen in June 2013. Results The paper starts with a discussion of definitions, to clarify the core concept of PBF and how the different terms are used. It then develops a framework for monitoring its interactions with the health system, structured around five domains of context, the development process, design, implementation and effects. Some of the key questions for monitoring and evaluation are highlighted, and a systematic approach to monitoring effects proposed, structured according to the health system pillars, but also according to inputs, processes and outputs. Conclusions The paper lays out a broad framework within which indicators can be prioritised for monitoring and evaluation of PBF or other health system reforms. It highlights the dynamic linkages between the domains and the different pillars

  4. Performance-based financing as a health system reform: mapping the key dimensions for monitoring and evaluation.

    Science.gov (United States)

    Witter, Sophie; Toonen, Jurrien; Meessen, Bruno; Kagubare, Jean; Fritsche, György; Vaughan, Kelsey

    2013-09-29

    Performance-based financing is increasingly being applied in a variety of contexts, with the expectation that it can improve the performance of health systems. However, while there is a growing literature on implementation issues and effects on outputs, there has been relatively little focus on interactions between PBF and health systems and how these should be studied. This paper aims to contribute to filling that gap by developing a framework for assessing the interactions between PBF and health systems, focusing on low and middle income countries. In doing so, it elaborates a general framework for monitoring and evaluating health system reforms in general. This paper is based on an exploratory literature review and on the work of a group of academics and PBF practitioners. The group developed ideas for the monitoring and evaluation framework through exchange of emails and working documents. Ideas were further refined through discussion at the Health Systems Research symposium in Beijing in October 2012, through comments from members of the online PBF Community of Practice and Beijing participants, and through discussion with PBF experts in Bergen in June 2013. The paper starts with a discussion of definitions, to clarify the core concept of PBF and how the different terms are used. It then develops a framework for monitoring its interactions with the health system, structured around five domains of context, the development process, design, implementation and effects. Some of the key questions for monitoring and evaluation are highlighted, and a systematic approach to monitoring effects proposed, structured according to the health system pillars, but also according to inputs, processes and outputs. The paper lays out a broad framework within which indicators can be prioritised for monitoring and evaluation of PBF or other health system reforms. It highlights the dynamic linkages between the domains and the different pillars. All of these are also framed within

  5. Mobile personal health records for pregnancy monitoring functionalities: Analysis and potential.

    Science.gov (United States)

    Bachiri, Mariam; Idri, Ali; Fernández-Alemán, José Luis; Toval, Ambrosio

    2016-10-01

    Personal Health Records (PHRs) are a rapidly growing area of health information technology. PHR users are able to manage their own health data and communicate with doctors in order to improve healthcare quality and efficiency. Mobile PHR (mPHR) applications for mobile devices have obtained an interesting market quota since the appearance of more powerful mobile devices. These devices allow users to gain access to applications that used to be available only for personal computers. This paper analyzes the functionalities of mobile PHRs that are specific to pregnancy monitoring. A well-known Systematic Literature Review (SLR) protocol was used in the analysis process. A questionnaire was developed for this task, based on the rigorous study of scientific literature concerning pregnancy and applications available on the market, with 9 data items and 35 quality assessments. The data items contain calendars, pregnancy information, health habits, counters, diaries, mobile features, security, backup, configuration and architectural design. A total of 33 mPHRs for pregnancy monitoring, available for iOS and Android, were selected from Apple App store and Google Play store, respectively. The results show that none of the mPHRs selected met 100% of the functionalities analyzed in this paper. The highest score achieved was 77%, while the lowest was 17%. In this paper, these features are discussed and possible paths for future development of similar applications are proposed, which may lead to a more efficient use of smartphone capabilities. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Structural Health Monitoring for a Z-Type Special Vehicle

    Directory of Open Access Journals (Sweden)

    Chaolin Yuan

    2017-06-01

    Full Text Available Nowadays there exist various kinds of special vehicles designed for some purposes, which are different from regular vehicles in overall dimension and design. In that case, accidents such as overturning will lead to large economical loss and casualties. There are still no technical specifications to follow to ensure the safe operation and driving of these special vehicles. Owing to the poor efficiency of regular maintenance, it is more feasible and effective to apply real-time monitoring during the operation and driving process. In this paper, the fiber Bragg grating (FBG sensors are used to monitor the safety of a z-type special vehicle. Based on the structural features and force distribution, a reasonable structural health monitoring (SHM scheme is presented. Comparing the monitoring results with the finite element simulation results guarantees the accuracy and reliability of the monitoring results. Large amounts of data are collected during the operation and driving progress to evaluate the structural safety condition and provide reference for SHM systems developed for other special vehicles.

  7. Utilizing Ecological Health Index to Monitor Grazingland Ecological Health: A Quick and Flexible Method for Ranchers and Farmers

    Science.gov (United States)

    Xu, S.; Borrelli, P. R.; Raven, M. R.; Rowntree, J. E.

    2017-12-01

    Grazing lands should be monitored to ensure their long-term productivity and sustainability. While monitoring protocols do exist, there is a need to simplify procedures for land managers while maintaining efficacy in order to increase usage. The objective in this study was to investigate the effectiveness of an Ecological Health Index (EHI) on indicating ecological health in grazing lands. We introduced the EHI, which was derived by synthesizing vegetation and soil cover indicators already existing in the literature to ranchers in Patagonia. Additionally, we implemented long-term transects at 44 farms from two ecological regions in Patagonia, the non-brittle Humid Magellan Steppe (HMS) (n=24) and the brittle Subandean Grasslands (SG) (n=20), to collect quantitative vegetative and soil measurements and correlated this back to EHI. In the non-brittle area HMS with even distribution of rainfall and good temperature which can support more plant biomass, the EHI ranged from -40 to 65 with a mean of 12.5 ± 24. The EHI from brittle SG ranged from -80 to 75 with a mean of 1.25 ± 35, which was 90% lower than the mean non-brittle EHI. From a quantitative perspective, HMS had greater species richness compared to SG (27 vs. 20, P=0.0003). Similarly, the average percentage of total live vegetation was higher in HMS than that in SG (77% vs. 48%, P pavement percentage and bare ground + erosion pavement (P < 0.05). These results suggest that EHI could be a useful method to detect the ecological health and productivity in grazing lands. Overall, we conclude that EHI is an effective short and long-term monitoring approach that ranchers could easily use annually to monitor grazing lands and determine the impacts of ranch decision-making on important ecosystem indicators.

  8. Structural health monitoring of wind turbine blades

    Science.gov (United States)

    Rumsey, Mark A.; Paquette, Joshua A.

    2008-03-01

    As electric utility wind turbines increase in size, and correspondingly, increase in initial capital investment cost, there is an increasing need to monitor the health of the structure. Acquiring an early indication of structural or mechanical problems allows operators to better plan for maintenance, possibly operate the machine in a de-rated condition rather than taking the unit off-line, or in the case of an emergency, shut the machine down to avoid further damage. This paper describes several promising structural health monitoring (SHM) techniques that were recently exercised during a fatigue test of a 9 meter glass-epoxy and carbon-epoxy wind turbine blade. The SHM systems were implemented by teams from NASA Kennedy Space Center, Purdue University and Virginia Tech. A commercial off-the-shelf acoustic emission (AE) NDT system gathered blade AE data throughout the test. At a fatigue load cycle rate around 1.2 Hertz, and after more than 4,000,000 fatigue cycles, the blade was diagnostically and visibly failing at the out-board blade spar-cap termination point at 4.5 meters. For safety reasons, the test was stopped just before the blade completely failed. This paper provides an overview of the SHM and NDT system setups and some current test results.

  9. Additional self-monitoring tools in the dietary modification component of The Women's Health Initiative.

    Science.gov (United States)

    Mossavar-Rahmani, Yasmin; Henry, Holly; Rodabough, Rebecca; Bragg, Charlotte; Brewer, Amy; Freed, Trish; Kinzel, Laura; Pedersen, Margaret; Soule, C Oehme; Vosburg, Shirley

    2004-01-01

    Self-monitoring promotes behavior changes by promoting awareness of eating habits and creates self-efficacy. It is an important component of the Women's Health Initiative dietary intervention. During the first year of intervention, 74% of the total sample of 19,542 dietary intervention participants self-monitored. As the study progressed the self-monitoring rate declined to 59% by spring 2000. Participants were challenged by inability to accurately estimate fat content of restaurant foods and the inconvenience of carrying bulky self-monitoring tools. In 1996, a Self-Monitoring Working Group was organized to develop additional self-monitoring options that were responsive to participant needs. This article describes the original and additional self-monitoring tools and trends in tool use over time. Original tools were the Food Diary and Fat Scan. Additional tools include the Keeping Track of Goals, Quick Scan, Picture Tracker, and Eating Pattern Changes instruments. The additional tools were used by the majority of participants (5,353 of 10,260 or 52% of participants who were self-monitoring) by spring 2000. Developing self-monitoring tools that are responsive to participant needs increases the likelihood that self-monitoring can enhance dietary reporting adherence, especially in long-term clinical trials.

  10. Non-Intrusive Battery Health Monitoring

    Directory of Open Access Journals (Sweden)

    Gajewski Laurent

    2017-01-01

    Full Text Available The “Non-intrusive battery health monitoring”, developed by Airbus Defence and Space (ADS in cooperation with the CIRIMAT-CNRS laboratory and supported by CNES, aims at providing a diagnosis of the battery ageing in flight, called State of Health (SOH, using only the post-treatment of the battery telemetries. The battery current and voltage telemetries are used by a signal processing tool on ground to characterize and to model the battery at low frequencies which allows monitoring the evolution of its degradation with great accuracy. The frequential behaviour estimation is based on inherent disturbances on the current during the nominal functioning of the battery. For instance, on-board thermal control or equipment consumption generates random disturbances on battery current around an average current. The battery voltage response to these current random disturbances enables to model the low frequency impedance of the battery by a signal processing tool. The re-created impedance is then compared with the evolution model of the low frequencies impedance as a function of the battery ageing to estimate accurately battery degradation. Hence, this method could be applied to satellites which are already in orbit and whose battery telemetries acquisition system fulfils the constraints determined in the study. This innovative method is an improvement of present state-of-the-art and is important to have a more accurate in-flight knowledge of battery ageing which is crucial for mission and operation planning and also for possible satellite mission extension or deorbitation. This method is patented by Airbus Defence and Space and CNES.

  11. Structural Health Monitoring of Nuclear Spent Fuel Storage Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Lingyu

    2018-04-10

    Interim storage of spent nuclear fuel from reactor sites has gained additional importance and urgency for resolving waste-management-related technical issues. To ensure that nuclear power remains clean energy, monitoring has been identified by DOE as a high priority cross-cutting need, necessary to determine and predict the degradation state of the systems, structures, and components (SSCs) important to safety (ITS). Therefore, nondestructive structural condition monitoring becomes a need to be installed on existing or to be integrated into future storage system to quantify the state of health or to guarantee the safe operation of nuclear power plants (NPPs) during their extended life span. In this project, the lead university and the collaborating national laboratory teamed to develop a nuclear structural health monitoring (n-SHM) system based on in-situ piezoelectric sensing technologies that can monitor structural degradation and aging for nuclear spent fuel DCSS and similar structures. We also aimed to identify and quantify possible influences of nuclear spent fuel environment (temperature and radiation) to the piezoelectric sensor system and come up with adequate solutions and guidelines therefore. We have therefore developed analytical model for piezoelectric based n-SHM methods, with considerations of temperature and irradiation influence on the model of sensing and algorithms in acoustic emission (AE), guided ultrasonic waves (GUW), and electromechanical impedance spectroscopy (EMIS). On the other side, experimentally the temperature and irradiation influence on the piezoelectric sensors and sensing capabilities were investigated. Both short-term and long-term irradiation investigation with our collaborating national laboratory were performed. Moreover, we developed multi-modal sensing, validated in laboratory setup, and conducted the testing on the We performed multi-modal sensing development, verification and validation tests on very complex structures

  12. Ultrasonic wireless health monitoring

    Science.gov (United States)

    Petit, Lionel; Lefeuvre, Elie; Guyomar, Daniel; Richard, Claude; Guy, Philippe; Yuse, Kaori; Monnier, Thomas

    2006-03-01

    The integration of autonomous wireless elements in health monitoring network increases the reliability by suppressing power supplies and data transmission wiring. Micro-power piezoelectric generators are an attractive alternative to primary batteries which are limited by a finite amount of energy, a limited capacity retention and a short shelf life (few years). Our goal is to implement such an energy harvesting system for powering a single AWT (Autonomous Wireless Transmitter) using our SSH (Synchronized Switch Harvesting) method. Based on a non linear process of the piezoelement voltage, this SSH method optimizes the energy extraction from the mechanical vibrations. This AWT has two main functions : The generation of an identifier code by RF transmission to the central receiver and the Lamb wave generation for the health monitoring of the host structure. A damage index is derived from the variation between the transmitted wave spectrum and a reference spectrum. The same piezoelements are used for the energy harvesting function and the Lamb wave generation, thus reducing mass and cost. A micro-controller drives the energy balance and synchronizes the functions. Such an autonomous transmitter has been evaluated on a 300x50x2 mm 3 composite cantilever beam. Four 33x11x0.3 mm 3 piezoelements are used for the energy harvesting and for the wave lamb generation. A piezoelectric sensor is placed at the free end of the beam to track the transmitted Lamb wave. In this configuration, the needed energy for the RF emission is 0.1 mJ for a 1 byte-information and the Lamb wave emission requires less than 0.1mJ. The AWT can harvested an energy quantity of approximately 20 mJ (for a 1.5 Mpa lateral stress) with a 470 μF storage capacitor. This corresponds to a power density near to 6mW/cm 3. The experimental AWT energy abilities are presented and the damage detection process is discussed. Finally, some envisaged solutions are introduced for the implementation of the required data

  13. Factors affecting mobile diabetes monitoring adoption among physicians: questionnaire study and path model.

    Science.gov (United States)

    Okazaki, Shintaro; Castañeda, José Alberto; Sanz, Silvia; Henseler, Jörg

    2012-12-21

    Patients with type 1 and type 2 diabetes often find it difficult to control their blood glucose level on a daily basis because of distance or physical incapacity. With the increase in Internet-enabled smartphone use, this problem can be resolved by adopting a mobile diabetes monitoring system. Most existing studies have focused on patients' usability perceptions, whereas little attention has been paid to physicians' intentions to adopt this technology. The aim of the study was to evaluate the perceptions and user acceptance of mobile diabetes monitoring among Japanese physicians. A questionnaire survey of physicians was conducted in Japan. The structured questionnaire was prepared in a context of a mobile diabetes monitoring system that controls blood glucose, weight, physical activity, diet, insulin and medication, and blood pressure. Following a thorough description of mobile diabetes monitoring with a graphical image, questions were asked relating to system quality, information quality, service quality, health improvement, ubiquitous control, privacy and security concerns, perceived value, subjective norms, and intention to use mobile diabetes monitoring. The data were analyzed by partial least squares (PLS) path modeling. In total, 471 physicians participated from 47 prefectures across Japan, of whom 134 were specialized in internal and gastrointestinal medicine. Nine hypotheses were tested with both the total sample and the specialist subsample; results were similar for both samples in terms of statistical significance and the strength of path coefficients. We found that system quality, information quality, and service quality significantly affect overall quality. Overall quality determines the extent to which physicians perceive the value of mobile health monitoring. However, in contrast to our initial predictions, overall quality does not have a significant direct effect on the intention to use mobile diabetes monitoring. With regard to net benefits, both

  14. Optimum wireless sensor deployment scheme for structural health monitoring: a simulation study

    International Nuclear Information System (INIS)

    Liu, Chengyin; Fang, Kun; Teng, Jun

    2015-01-01

    With the rapid advancements in smart sensing technology and wireless communication technology, the wireless sensor network (WSN) offers an alternative solution to structural health monitoring (SHM). In WSNs, dense deployment of wireless nodes aids the identification of structural dynamic characteristics, while data transmission is a significant issue since wireless channels typically have a lower bandwidth and a limited power supply. This paper provides a wireless sensor deployment optimization scheme for SHM, in terms of both energy consumption and modal identification accuracy. A spherical energy model is established to formulate the energy consumption within a WSN. The optimal number of sensors and their locations are obtained through solving a multi-objective function with weighting factors on energy consumption and modal identification accuracy using a genetic algorithm (GA). Simulation and comparison results with traditional sensor deployment methods demonstrate the efficiency of the proposed optimization scheme. (paper)

  15. Smart home-based health platform for behavioral monitoring and alteration of diabetes patients.

    Science.gov (United States)

    Helal, Abdelsalam; Cook, Diane J; Schmalz, Mark

    2009-01-01

    Researchers and medical practitioners have long sought the ability to continuously and automatically monitor patients beyond the confines of a doctor's office. We describe a smart home monitoring and analysis platform that facilitates the automatic gathering of rich databases of behavioral information in a manner that is transparent to the patient. Collected information will be automatically or manually analyzed and reported to the caregivers and may be interpreted for behavioral modification in the patient. Our health platform consists of five technology layers. The architecture is designed to be flexible, extensible, and transparent, to support plug-and-play operation of new devices and components, and to provide remote monitoring and programming opportunities. The smart home-based health platform technologies have been tested in two physical smart environments. Data that are collected in these implemented physical layers are processed and analyzed by our activity recognition and chewing classification algorithms. All of these components have yielded accurate analyses for subjects in the smart environment test beds. This work represents an important first step in the field of smart environment-based health monitoring and assistance. The architecture can be used to monitor the activity, diet, and exercise compliance of diabetes patients and evaluate the effects of alternative medicine and behavior regimens. We believe these technologies are essential for providing accessible, low-cost health assistance in an individual's own home and for providing the best possible quality of life for individuals with diabetes. © Diabetes Technology Society

  16. eHealth and mHealth initiatives in Bangladesh: A scoping study

    Science.gov (United States)

    2014-01-01

    Background The health system of Bangladesh is haunted by challenges of accessibility and affordability. Despite impressive gains in many health indicators, recent evidence has raised concerns regarding the utilization, quality and equity of healthcare. In the context of new and unfamiliar public health challenges including high population density and rapid urbanization, eHealth and mHealth are being promoted as a route to cost-effective, equitable and quality healthcare in Bangladesh. The aim of this paper is to highlight such initiatives and understand their true potential. Methods This scoping study applies a combination of research tools to explore 26 eHealth and mHealth initiatives in Bangladesh. A screening matrix was developed by modifying the framework of Arksey & O’Malley, further complemented by case study and SWOT analysis to identify common traits among the selected interventions. The WHO health system building blocks approach was then used for thematic analysis of these traits. Results Findings suggest that most eHealth and mHealth initiatives have proliferated within the private sector, using mobile phones. The most common initiatives include tele-consultation, prescription and referral. While a minority of projects have a monitoring and evaluation framework, less than a quarter have undertaken evaluation. Most of the initiatives use a health management information system (HMIS) to monitor implementation. However, these do not provide for effective sharing of information and interconnectedness among the various actors. There are extremely few individuals with eHealth training in Bangladesh and there is a strong demand for capacity building and experience sharing, especially for implementation and policy making. There is also a lack of research evidence on how to design interventions to meet the needs of the population and on potential benefits. Conclusion This study concludes that Bangladesh needs considerable preparation and planning to sustain eHealth

  17. eHealth and mHealth initiatives in Bangladesh: a scoping study.

    Science.gov (United States)

    Ahmed, Tanvir; Lucas, Henry; Khan, Azfar Sadun; Islam, Rubana; Bhuiya, Abbas; Iqbal, Mohammad

    2014-06-16

    The health system of Bangladesh is haunted by challenges of accessibility and affordability. Despite impressive gains in many health indicators, recent evidence has raised concerns regarding the utilization, quality and equity of healthcare. In the context of new and unfamiliar public health challenges including high population density and rapid urbanization, eHealth and mHealth are being promoted as a route to cost-effective, equitable and quality healthcare in Bangladesh. The aim of this paper is to highlight such initiatives and understand their true potential. This scoping study applies a combination of research tools to explore 26 eHealth and mHealth initiatives in Bangladesh. A screening matrix was developed by modifying the framework of Arksey & O'Malley, further complemented by case study and SWOT analysis to identify common traits among the selected interventions. The WHO health system building blocks approach was then used for thematic analysis of these traits. Findings suggest that most eHealth and mHealth initiatives have proliferated within the private sector, using mobile phones. The most common initiatives include tele-consultation, prescription and referral. While a minority of projects have a monitoring and evaluation framework, less than a quarter have undertaken evaluation. Most of the initiatives use a health management information system (HMIS) to monitor implementation. However, these do not provide for effective sharing of information and interconnectedness among the various actors. There are extremely few individuals with eHealth training in Bangladesh and there is a strong demand for capacity building and experience sharing, especially for implementation and policy making. There is also a lack of research evidence on how to design interventions to meet the needs of the population and on potential benefits. This study concludes that Bangladesh needs considerable preparation and planning to sustain eHealth and mHealth initiatives successfully

  18. Monitoring of Recommended Metabolic Laboratory Parameters Among Medicaid Recipients on Second-Generation Antipsychotics in Federally Qualified Health Centers.

    Science.gov (United States)

    Uzal, Natalia E; Chavez, Benjamin; Kosirog, Emily R; Billups, Sarah J; Saseen, Joseph J

    2018-02-01

    In 2004, a consensus statement outlining recommended metabolic monitoring for patients prescribed second-generation antipsychotics (SGAs) was published. More than a decade later, suboptimal adherence rates to these recommendations continue to be reported, which could lead to long-term and costly complications. To define the prevalence of appropriately monitored Medicaid patients receiving care at federally qualified health centers (FQHCs) prescribed SGAs. This was a retrospective study examining electronic health record and Medicaid claims data to assess the rates of glucose and lipid monitoring for patients prescribed SGAs from January 2014 to August 2016 in a FQHC. Prescription and laboratory claims for patients receiving care at 4 FQHCs were reviewed. Descriptive statistics were used to evaluate the primary outcome. A total of 235 patients were included in the analysis. Patients initiated on SGA therapy (n = 92) had baseline glucose and lipid monitoring rates of 50% and 23%, respectively. The 3-month monitoring rates were 37% for glucose and 26% for lipids, whereas annual rates were 71% and 40%, respectively. Patients continuing SGA therapy (n = 143) had annual glucose and lipid monitoring rates of 67% and 44%. Medicaid patients at FQHCs initially prescribed SGAs have low baseline and 3-month metabolic monitoring, whereas annual monitoring was comparable to previously published studies. Adults receiving chronic care at a FQHC were more likely to receive glucose monitoring. Those with type 2 diabetes mellitus and/or hyperlipidemia were more likely to receive glucose and lipid monitoring.

  19. Engaging Communities in Commodity Stock Monitoring Using Telecommunication Technology in Primary Health Care Facilities in Rural Nigeria

    Directory of Open Access Journals (Sweden)

    Ugo Okoli

    2015-10-01

    Full Text Available Background: With several efforts being made by key stakeholders to bridge the gap between beneficiaries and their having full access to free supplies, frequent stock-out, pilfering, collection of user fees for health commodities, and poor community engagement continue to plague the delivery of health services at the primary health care (PHC level in rural Nigeria. Objective: To assess the potential in the use of telecommunication technology as an effective way to engage members of the community in commodity stock monitoring, increase utilization of services, as well as promote accountability and community ownership. Methods: The pilot done in 8 PHCs from 4 locations within Nigeria utilized telecommunication technologies to exchange information on stock monitoring. A triangulated technique of data validation through cross verification from 3 subsets of respondents was used: 160 ward development committee (WDC members, 8 officers-in-charge (OICs of PHCs, and 383 beneficiaries (health facility users participated. Data collection made through a call center over a period of 3 months from July to September 2014 focused on WDC participation in inventory of commodities and type and cost of maternal, neonatal, and child health services accessed by each beneficiary. Results: Results showed that all WDCs involved in the pilot study became very active, and there was a strong cooperation between the OICs and the WDCs in monitoring commodity stock levels as the OICs participated in the monthly WDC meetings 96% of the time. A sharp decline in the collection of user fees was observed, and there was a 10% rise in overall access to free health care services by beneficiaries. Conclusion: This study reveals the effectiveness of mobile phones and indicates that telecommunication technologies can play an important role in engaging communities to monitor PHC stock levels as well as reduce the incidence of user fees collection and pilfering of commodities (PHC level in

  20. Health and usage monitoring system for the small aircraft composite structure

    Science.gov (United States)

    Růžička, Milan; Dvořák, Milan; Schmidová, Nikola; Šašek, Ladislav; Štěpánek, Martin

    2017-07-01

    This paper is focused on the design of the health and usage monitoring system (HUMS) of the composite ultra-light aircrafts. A multichannel measuring system was developed and installed for recording of the long-term operational measurements of the UL airplane. Many fiber Bragg grating sensors were implemented into the composite aircraft structure, mainly in the glue joints. More than ten other analog functions and signals of the aircraft is monitored and can be correlated together. Changing of the FBG sensors responses in monitored places and their correlations, comparing with the calibration and recalibration procedures during a monitored life may indicate damage (eg. in bonded joints) and complements the HUMS system.

  1. High Temperatures Health Monitoring of the Condensed Water Height in Steam Pipe Systems

    Science.gov (United States)

    Lih, Shyh-Shiuh; Bar-Cohen, Yoseph; Lee, Hyeong Jae; Badescu, Mircea; Bao, Xiaoqi; Sherrit, Stewart; Takano, Nobuyuki; Ostlund, Patrick; Blosiu, Julian

    2013-01-01

    Ultrasonic probes were designed, fabricated and tested for high temperature health monitoring system. The goal of this work was to develop the health monitoring system that can determine the height level of the condensed water through the pipe wall at high temperature up to 250 deg while accounting for the effects of surface perturbation. Among different ultrasonic probe designs, 2.25 MHz probes with air backed configuration provide satisfactory results in terms of sensitivity, receiving reflections from the target through the pipe wall. A series of tests were performed using the air-backed probes under irregular conditions, such as surface perturbation and surface disturbance at elevated temperature, to qualify the developed ultrasonic system. The results demonstrate that the fabricated air-backed probes combined with advanced signal processing techniques offer the capability of health monitoring of steam pipe under various operating conditions.

  2. Assessing the value of information for long-term structural health monitoring

    Science.gov (United States)

    Pozzi, Matteo; Der Kiureghian, Armen

    2011-04-01

    In the field of Structural Health Monitoring, tests and sensing systems are intended as tools providing diagnoses, which allow the operator of the facility to develop an efficient maintenance plan or to require extraordinary measures on a structure. The effectiveness of these systems depends directly on their capability to guide towards the most optimal decision for the prevailing circumstances, avoiding mistakes and wastes of resources. Though this is well known, most studies only address the accuracy of the information gained from sensors without discussing economic criteria. Other studies evaluate these criteria separately, with only marginal or heuristic connection with the outcomes of the monitoring system. The concept of "Value of Information" (VoI) provides a rational basis to rank measuring systems according to a utility-based metric, which fully includes the decision-making process affected by the monitoring campaign. This framework allows, for example, an explicit assessment of the economical justifiability of adopting a sensor depending on its precision. In this paper we outline the framework for assessing the VoI, as applicable to the ranking of competitive measuring systems. We present the basic concepts involved, highlight issues related to monitoring of civil structures, address the problem of non-linearity of the cost-to-utility mapping, and introduce an approximate Monte Carlo approach suitable for the implementation of time-consuming predictive models.

  3. Dynamic Analysis with Fibre Optic Sensors for Structural Health Monitoring

    National Research Council Canada - National Science Library

    Paolozzi, Antonio; Gasbarri, Paolo

    2006-01-01

    Structural Health Monitoring (SHM) is a new frontier of non destructing testing. Often SHM is associated with fibre optic sensors whose signals can be used to identify the structure and consequently its damage...

  4. ICT and the future of healthcare: Aspects of pervasive health monitoring.

    Science.gov (United States)

    Haluza, Daniela; Jungwirth, David

    2018-01-01

    Along with the digital revolution, information and communication technology applications are currently transforming the delivery of health and social care services. This paper investigates prevailing opinions toward future technology-based healthcare solutions among Austrian healthcare professionals. During a biphasic online Delphi survey, panelists rated expected outcomes of two future scenarios describing pervasive health monitoring applications. Experts perceived that the scenarios were highly innovative, but only moderately desirable, and that their implementation could especially improve patients' knowledge, quality of healthcare, and living standard. Contrarily, monetary aspects, technical prerequisites, and data security were identified as key obstacles. We further compared the impact of professional affiliation. Clearly, opinions toward pervasive healthcare differed between the interest groups, medical professionals, patient advocates, and administrative personnel. These data suggest closer collaborations between stakeholder groups to harmonize differences in expectations regarding pervasive health monitoring.

  5. New seismic array solution for earthquake observations and hydropower plant health monitoring

    Science.gov (United States)

    Antonovskaya, Galina N.; Kapustian, Natalya K.; Moshkunov, Alexander I.; Danilov, Alexey V.; Moshkunov, Konstantin A.

    2017-09-01

    We present the novel fusion of seismic safety monitoring data of the hydropower plant in Chirkey (Caucasus Mountains, Russia). This includes new hardware solutions and observation methods, along with technical limitations for three types of applications: (a) seismic monitoring of the Chirkey reservoir area, (b) structure monitoring of the dam, and (c) monitoring of turbine vibrations. Previous observations and data processing for health monitoring do not include complex data analysis, while the new system is more rational and less expensive. The key new feature of the new system is remote monitoring of turbine vibration. A comparison of the data obtained at the test facilities and by hydropower plant inspection with remote sensors enables early detection of hazardous hydrodynamic phenomena.

  6. Human monitoring, smart health and assisted living techniques and technologies

    CERN Document Server

    Longhi, Sauro; Freddi, Alessandro

    2017-01-01

    This book covers the three main scientific and technological areas critical for improving people's quality of life - namely human monitoring, smart health and assisted living - from both the research and development points of view.

  7. Specialist Cohort Event Monitoring studies: a new study method for risk management in pharmacovigilance.

    Science.gov (United States)

    Layton, Deborah; Shakir, Saad A W

    2015-02-01

    The evolving regulatory landscape has heightened the need for innovative, proactive, efficient and more meaningful solutions for 'real-world' post-authorization safety studies (PASS) that not only align with risk management objectives to gather additional safety monitoring information or assess a pattern of drug utilization, but also satisfy key regulatory requirements for marketing authorization holder risk management planning and execution needs. There is a need for data capture across the primary care and secondary care interface, or for exploring use of new medicines in secondary care to support conducting PASS. To fulfil this need, event monitoring has evolved. The Specialist Cohort Event Monitoring (SCEM) study is a new application that enables a cohort of patients prescribed a medicine in the hospital and secondary care settings to be monitored. The method also permits the inclusion of a comparator cohort of patients receiving standard care, or another counterfactual comparator group, to be monitored concurrently, depending on the study question. The approach has been developed in parallel with the new legislative requirement for pharmaceutical companies to undertake a risk management plan as part of post-authorization safety monitoring. SCEM studies recognize that the study population comprises those patients who may have treatment initiated under the care of specialist health care professionals and who are more complex in terms of underlying disease, co-morbidities and concomitant medications than the general disease population treated in primary care. The aims of this paper are to discuss the SCEM new-user study design, rationale and features that aim to address possible bias (such as selection bias) and current applications.

  8. Autonomous health management for PMSM rail vehicles through demagnetization monitoring and prognosis control.

    Science.gov (United States)

    Niu, Gang; Jiang, Junjie; Youn, Byeng D; Pecht, Michael

    2018-01-01

    Autonomous vehicles are playing an increasingly importance in support of a wide variety of critical events. This paper presents a novel autonomous health management scheme on rail vehicles driven by permanent magnet synchronous motors (PMSMs). Firstly, the PMSMs are modeled based on first principle to deduce the initial profile of pneumatic braking (p-braking) force, then which is utilized for real-time demagnetization monitoring and degradation prognosis through similarity-based theory and generate prognosis-enhanced p-braking force strategy for final optimal control. A case study is conducted to demonstrate the feasibility and benefit of using the real-time prognostics and health management (PHM) information in vehicle 'drive-brake' control automatically. The results show that accurate demagnetization monitoring, degradation prognosis, and real-time capability for control optimization can be obtained, which can effectively relieve brake shoe wear. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  9. The influence of health system organizational structure and culture on integration of health services: the example of HIV service monitoring in South Africa.

    Science.gov (United States)

    Kawonga, Mary; Blaauw, Duane; Fonn, Sharon

    2016-11-01

    Administrative integration of disease control programmes (DCPs) within the district health system has been a health sector reform priority in South Africa for two decades. The reforms entail district managers assuming authority for the planning and monitoring of DCPs in districts, with DCP managers providing specialist support. There has been little progress in achieving this, and a dearth of research exploring why. Using a case study of HIV programme monitoring and evaluation (M&E), this article explores whether South Africa's health system is configured to support administrative integration. The article draws on data from document reviews and interviews with 54 programme and district managers in two of nine provinces, exploring their respective roles in decision-making regarding HIV M&E system design and in using HIV data for monitoring uptake of HIV interventions in districts. Using Mintzberg's configurations framework, we describe three organizational parameters: (a) extent of centralization (whether district managers play a role in decisions regarding the design of the HIV M&E system); (b) key part of the organization (extent to which sub-national programme managers vs district managers play the central role in HIV monitoring in districts); and (c) coordination mechanisms used (whether highly formalized and rules-based or more output-based to promote agency). We find that the health system can be characterized as Mintzberg's machine bureaucracy. It is centralized and highly formalized with structures, management styles and practices that promote programme managers as lead role players in the monitoring of HIV interventions within districts. This undermines policy objectives of district managers assuming this leadership role. Our study enhances the understanding of organizational factors that may limit the success of administrative integration reforms and suggests interventions that may mitigate this. © The Author 2016. Published by Oxford University Press in

  10. Novel cloud and SOA-based framework for e-health monitoring using wireless biosensors.

    Science.gov (United States)

    Benharref, Abdelghani; Serhani, Mohamed Adel

    2014-01-01

    Various and independent studies are showing that an exponential increase of chronic diseases (CDs) is exhausting governmental and private healthcare systems to an extent that some countries allocate half of their budget to healthcare systems. To benefit from the IT development, e-health monitoring and prevention approaches revealed to be among top promising solutions. In fact, well-implemented monitoring and prevention schemes have reported a decent reduction of CDs risk and have narrowed their effects, on both patients' health conditions and on government budget spent on healthcare. In this paper, we propose a framework to collect patients' data in real time, perform appropriate nonintrusive monitoring, and propose medical and/or life style engagements, whenever needed and appropriate. The framework, which relies on service-oriented architecture (SOA) and the Cloud, allows a seamless integration of different technologies, applications, and services. It also integrates mobile technologies to smoothly collect and communicate vital data from a patient's wearable biosensors while considering the mobile devices' limited capabilities and power drainage in addition to intermittent network disconnections. Then, data are stored in the Cloud and made available via SOA to allow easy access by physicians, paramedics, or any other authorized entity. A case study has been developed to evaluate the usability of the framework, and the preliminary results that have been analyzed are showing very promising results.

  11. Recyclable Nonfunctionalized Paper-Based Ultralow-Cost Wearable Health Monitoring System

    KAUST Repository

    Nassar, Joanna M.; Mishra, Kush; Lau, Kirklann; Aguirre-Pablo, Andres A.; Hussain, Muhammad Mustafa

    2017-01-01

    A wearable health monitor using low-cost and recyclable paper continuously supervises and assesses body vital conditions simultaneously and in real time, such as blood pressure, heart rate, body temperature, and skin hydration. The affordability

  12. Application of data fusion techniques and technologies for wearable health monitoring.

    Science.gov (United States)

    King, Rachel C; Villeneuve, Emma; White, Ruth J; Sherratt, R Simon; Holderbaum, William; Harwin, William S

    2017-04-01

    Technological advances in sensors and communications have enabled discrete integration into everyday objects, both in the home and about the person. Information gathered by monitoring physiological, behavioural, and social aspects of our lives, can be used to achieve a positive impact on quality of life, health, and well-being. Wearable sensors are at the cusp of becoming truly pervasive, and could be woven into the clothes and accessories that we wear such that they become ubiquitous and transparent. To interpret the complex multidimensional information provided by these sensors, data fusion techniques are employed to provide a meaningful representation of the sensor outputs. This paper is intended to provide a short overview of data fusion techniques and algorithms that can be used to interpret wearable sensor data in the context of health monitoring applications. The application of these techniques are then described in the context of healthcare including activity and ambulatory monitoring, gait analysis, fall detection, and biometric monitoring. A snap-shot of current commercially available sensors is also provided, focusing on their sensing capability, and a commentary on the gaps that need to be bridged to bring research to market. Copyright © 2017. Published by Elsevier Ltd.

  13. [Indicators to monitor the evolution of the economic crisis and its effects on health and health inequalities. SESPAS report 2014].

    Science.gov (United States)

    Pérez, Glòria; Rodríguez-Sanz, Maica; Domínguez-Berjón, Felicitas; Cabeza, Elena; Borrell, Carme

    2014-06-01

    The economic crisis has adverse effects on determinants of health and health inequalities. The aim of this article was to present a set of indicators of health and its determinants to monitor the effects of the crisis in Spain. On the basis of the conceptual framework proposed by the Commission for the Reduction of Social Health Inequalities in Spain, we searched for indicators of social, economic, and political (structural and intermediate) determinants of health, as well as for health indicators, bearing in mind the axes of social inequality (gender, age, socioeconomic status, and country of origin). The indicators were mainly obtained from official data sources published on the internet. The selected indicators are periodically updated and are comparable over time and among territories (among autonomous communities and in some cases among European Union countries), and are available for age groups, gender, socio-economic status, and country of origin. However, many of these indicators are not sufficiently reactive to rapid change, which occurs in the economic crisis, and consequently require monitoring over time. Another limitation is the lack of availability of indicators for the various axes of social inequality. In conclusion, the proposed indicators allow for progress in monitoring the effects of the economic crisis on health and health inequalities in Spain. Copyright © 2013 SESPAS. Published by Elsevier Espana. All rights reserved.

  14. Weak fault detection and health degradation monitoring using customized standard multiwavelets

    Science.gov (United States)

    Yuan, Jing; Wang, Yu; Peng, Yizhen; Wei, Chenjun

    2017-09-01

    Due to the nonobvious symptoms contaminated by a large amount of background noise, it is challenging to beforehand detect and predictively monitor the weak faults for machinery security assurance. Multiwavelets can act as adaptive non-stationary signal processing tools, potentially viable for weak fault diagnosis. However, the signal-based multiwavelets suffer from such problems as the imperfect properties missing the crucial orthogonality, the decomposition distortion impossibly reflecting the relationships between the faults and signatures, the single objective optimization and independence for fault prognostic. Thus, customized standard multiwavelets are proposed for weak fault detection and health degradation monitoring, especially the weak fault signature quantitative identification. First, the flexible standard multiwavelets are designed using the construction method derived from scalar wavelets, seizing the desired properties for accurate detection of weak faults and avoiding the distortion issue for feature quantitative identification. Second, the multi-objective optimization combined three dimensionless indicators of the normalized energy entropy, normalized singular entropy and kurtosis index is introduced to the evaluation criterions, and benefits for selecting the potential best basis functions for weak faults without the influence of the variable working condition. Third, an ensemble health indicator fused by the kurtosis index, impulse index and clearance index of the original signal along with the normalized energy entropy and normalized singular entropy by the customized standard multiwavelets is achieved using Mahalanobis distance to continuously monitor the health condition and track the performance degradation. Finally, three experimental case studies are implemented to demonstrate the feasibility and effectiveness of the proposed method. The results show that the proposed method can quantitatively identify the fault signature of a slight rub on

  15. Wireless connectivity for health and sports monitoring: a review.

    Science.gov (United States)

    Armstrong, S

    2007-05-01

    This is a review of health and sports monitoring research that uses or could benefit from wireless connectivity. New, enabling wireless connectivity standards are evaluated for their suitability, and an assessment of current exploitation of these technologies is summarised. An example of the application is given, highlighting the capabilities of a network of wireless sensors. Issues of timing and power consumption in a battery-powered system are addressed to highlight the benefits networking can provide, and a suggestion of how monitoring different biometric signals might allow one to gain additional information about an athlete or patient is made.

  16. A Remote Health Monitoring System for the Elderly Based on Smart Home Gateway

    Directory of Open Access Journals (Sweden)

    Kai Guan

    2017-01-01

    Full Text Available This paper proposed a remote health monitoring system for the elderly based on smart home gateway. The proposed system consists of three parts: the smart clothing, the smart home gateway, and the health care server. The smart clothing collects the elderly’s electrocardiogram (ECG and motion signals. The home gateway is used for data transmission. The health care server provides services of data storage and user information management; it is constructed on the Windows-Apache-MySQL-PHP (WAMP platform and is tested on the Ali Cloud platform. To resolve the issues of data overload and network congestion of the home gateway, an ECG compression algorithm is applied. System demonstration shows that the ECG signals and motion signals of the elderly can be monitored. Evaluation of the compression algorithm shows that it has a high compression ratio and low distortion and consumes little time, which is suitable for home gateways. The proposed system has good scalability, and it is simple to operate. It has the potential to provide long-term and continuous home health monitoring services for the elderly.

  17. A Remote Health Monitoring System for the Elderly Based on Smart Home Gateway.

    Science.gov (United States)

    Guan, Kai; Shao, Minggang; Wu, Shuicai

    2017-01-01

    This paper proposed a remote health monitoring system for the elderly based on smart home gateway. The proposed system consists of three parts: the smart clothing, the smart home gateway, and the health care server. The smart clothing collects the elderly's electrocardiogram (ECG) and motion signals. The home gateway is used for data transmission. The health care server provides services of data storage and user information management; it is constructed on the Windows-Apache-MySQL-PHP (WAMP) platform and is tested on the Ali Cloud platform. To resolve the issues of data overload and network congestion of the home gateway, an ECG compression algorithm is applied. System demonstration shows that the ECG signals and motion signals of the elderly can be monitored. Evaluation of the compression algorithm shows that it has a high compression ratio and low distortion and consumes little time, which is suitable for home gateways. The proposed system has good scalability, and it is simple to operate. It has the potential to provide long-term and continuous home health monitoring services for the elderly.

  18. A Remote Health Monitoring System for the Elderly Based on Smart Home Gateway

    Science.gov (United States)

    Shao, Minggang

    2017-01-01

    This paper proposed a remote health monitoring system for the elderly based on smart home gateway. The proposed system consists of three parts: the smart clothing, the smart home gateway, and the health care server. The smart clothing collects the elderly's electrocardiogram (ECG) and motion signals. The home gateway is used for data transmission. The health care server provides services of data storage and user information management; it is constructed on the Windows-Apache-MySQL-PHP (WAMP) platform and is tested on the Ali Cloud platform. To resolve the issues of data overload and network congestion of the home gateway, an ECG compression algorithm is applied. System demonstration shows that the ECG signals and motion signals of the elderly can be monitored. Evaluation of the compression algorithm shows that it has a high compression ratio and low distortion and consumes little time, which is suitable for home gateways. The proposed system has good scalability, and it is simple to operate. It has the potential to provide long-term and continuous home health monitoring services for the elderly. PMID:29204258

  19. Development of a wearable wireless body area network for health monitoring of the elderly and disabled

    Science.gov (United States)

    Rushambwa, Munyaradzi C.; Gezimati, Mavis; Jeeva, J. B.

    2017-11-01

    Novel advancements in systems miniaturization, electronics in health care and communication technologies are enabling the integration of both patients and doctors involvement in health care system. A Wearable Wireless Body Area Network (WWBAN) provides continuous, unobtrusive ambulatory, ubiquitous health monitoring, and provide real time patient’s status to the physician without any constraint on their normal daily life activities. In this project we developed a wearable wireless body area network system that continuously monitor the health of the elderly and the disabled and provide them with independent, safe and secure living. The WWBAN system monitors the following parameters; blood oxygen saturation using a pulse oximeter sensor (SpO2), heart rate (HR) pulse sensor, Temperature, hydration, glucose level and fall detection. When the wearable system is put on, the sensor values are processed and analysed. If any of the monitored parameter values falls below or exceeds the normal range, there is trigger of remote alert by which an SMS is send to a doctor or physician via GSM module and network. The developed system offers flexibility and mobility to the user; it is a real time system and has significance in revolutionizing health care system by enabling non-invasive, inexpensive, continuous health monitoring.

  20. Ultra low power signal oriented approach for wireless health monitoring.

    Science.gov (United States)

    Marinkovic, Stevan; Popovici, Emanuel

    2012-01-01

    In recent years there is growing pressure on the medical sector to reduce costs while maintaining or even improving the quality of care. A potential solution to this problem is real time and/or remote patient monitoring by using mobile devices. To achieve this, medical sensors with wireless communication, computational and energy harvesting capabilities are networked on, or in, the human body forming what is commonly called a Wireless Body Area Network (WBAN). We present the implementation of a novel Wake Up Receiver (WUR) in the context of standardised wireless protocols, in a signal-oriented WBAN environment and present a novel protocol intended for wireless health monitoring (WhMAC). WhMAC is a TDMA-based protocol with very low power consumption. It utilises WBAN-specific features and a novel ultra low power wake up receiver technology, to achieve flexible and at the same time very low power wireless data transfer of physiological signals. As the main application is in the medical domain, or personal health monitoring, the protocol caters for different types of medical sensors. We define four sensor modes, in which the sensors can transmit data, depending on the sensor type and emergency level. A full power dissipation model is provided for the protocol, with individual hardware and application parameters. Finally, an example application shows the reduction in the power consumption for different data monitoring scenarios.

  1. Mobile Health Based System for Managing and Maintaining Health Data in Classroom: Case Study

    Directory of Open Access Journals (Sweden)

    Dalibor Serafimovski

    2017-05-01

    Full Text Available It is necessary for young people to get appropriate medical education so that they can learn how to properly take care of their health from an early age. In this paper we are presenting a study that enables practical implementation of a mobile system for monitoring students’ health using mobile devices and managing medical data in the classroom. About 600 students were engaged for the purpose of this study. The study results suggest that the application of these technologies leads to an increased concern about students’ health and their proper medical education.

  2. Data Integration for Health and Stress Monitoring: Biological Metabolites, Wearables Data, and Self-Reporting

    Science.gov (United States)

    Dunn, Jocelyn T.

    Integrative and unobtrusive approaches to monitoring health and stress can assist in preventative medicine and disease management, and provide capabilities for complex work environments, such as military deployments and long-duration human space exploration missions. With many data streams that could potentially provide critical information about the health, behavior, and psychosocial states of individuals or small groups, the central question of this research is how to reliably measure health and stress states over time. This integrative approach to health and stress monitoring has implemented biological metabolite profiling, wearables data analysis, and survey assessment for comparing biological, behavioral, and psychological perspectives. Health monitoring technologies aim to provide objective data about health status. Providing objective information can help mitigate biases or blind spots in an individual's perception. Consider an individual who is unwilling to openly admit to psychosocial distress and unhealthy habits, or an individual who has habituated to long-term stressors and is unable to recognize a chronic state of high stress. Both honesty and self-awareness are required for accurate self-reporting. Digital health technologies, such as wearable devices, provide objective data for health monitoring. Compared to surveys, wearables are less influenced by participant openness, and compared to biological samples, wearables require less equipment and less labor for analysis. However, inherent to every data stream are limitations due to uncertainty and sensitivity. This research has been conducted in collaboration with Hawaii Space Exploration Analog and Simulation (HI-SEAS), which is a Mars analog research site on the slopes on Mauna Loa volcano in Hawaii. During 8-month and 12-month HI-SEAS missions in the 2014-2016 timeframe, twelve individuals provided hair and urine samples for metabolite profiling, utilized consumer-grade wearables to monitor sleep and

  3. New Sensors and Techniques for the Structural Health Monitoring of Propulsion Systems

    Directory of Open Access Journals (Sweden)

    Mark Woike

    2013-01-01

    Full Text Available The ability to monitor the structural health of the rotating components, especially in the hot sections of turbine engines, is of major interest to aero community in improving engine safety and reliability. The use of instrumentation for these applications remains very challenging. It requires sensors and techniques that are highly accurate, are able to operate in a high temperature environment, and can detect minute changes and hidden flaws before catastrophic events occur. The National Aeronautics and Space Administration (NASA, through the Aviation Safety Program (AVSP, has taken a lead role in the development of new sensor technologies and techniques for the in situ structural health monitoring of gas turbine engines. This paper presents a summary of key results and findings obtained from three different structural health monitoring approaches that have been investigated. This includes evaluating the performance of a novel microwave blade tip clearance sensor; a vibration based crack detection technique using an externally mounted capacitive blade tip clearance sensor; and lastly the results of using data driven anomaly detection algorithms for detecting cracks in a rotating disk.

  4. Analysis of decision fusion algorithms in handling uncertainties for integrated health monitoring systems

    Science.gov (United States)

    Zein-Sabatto, Saleh; Mikhail, Maged; Bodruzzaman, Mohammad; DeSimio, Martin; Derriso, Mark; Behbahani, Alireza

    2012-06-01

    It has been widely accepted that data fusion and information fusion methods can improve the accuracy and robustness of decision-making in structural health monitoring systems. It is arguably true nonetheless, that decision-level is equally beneficial when applied to integrated health monitoring systems. Several decisions at low-levels of abstraction may be produced by different decision-makers; however, decision-level fusion is required at the final stage of the process to provide accurate assessment about the health of the monitored system as a whole. An example of such integrated systems with complex decision-making scenarios is the integrated health monitoring of aircraft. Thorough understanding of the characteristics of the decision-fusion methodologies is a crucial step for successful implementation of such decision-fusion systems. In this paper, we have presented the major information fusion methodologies reported in the literature, i.e., probabilistic, evidential, and artificial intelligent based methods. The theoretical basis and characteristics of these methodologies are explained and their performances are analyzed. Second, candidate methods from the above fusion methodologies, i.e., Bayesian, Dempster-Shafer, and fuzzy logic algorithms are selected and their applications are extended to decisions fusion. Finally, fusion algorithms are developed based on the selected fusion methods and their performance are tested on decisions generated from synthetic data and from experimental data. Also in this paper, a modeling methodology, i.e. cloud model, for generating synthetic decisions is presented and used. Using the cloud model, both types of uncertainties; randomness and fuzziness, involved in real decision-making are modeled. Synthetic decisions are generated with an unbiased process and varying interaction complexities among decisions to provide for fair performance comparison of the selected decision-fusion algorithms. For verification purposes

  5. Identifying professionals' needs in integrating electronic pain monitoring in community palliative care services: An interview study.

    Science.gov (United States)

    Taylor, Sally; Allsop, Matthew J; Bekker, Hilary L; Bennett, Michael I; Bewick, Bridgette M

    2017-07-01

    Poor pain assessment is a barrier to effective pain control. There is growing interest internationally in the development and implementation of remote monitoring technologies to enhance assessment in cancer and chronic disease contexts. Findings describe the development and testing of pain monitoring systems, but research identifying the needs of health professionals to implement routine monitoring systems within clinical practice is limited. To inform the development and implementation strategy of an electronic pain monitoring system, PainCheck, by understanding palliative care professionals' needs when integrating PainCheck into routine clinical practice. Qualitative study using face-to-face interviews. Data were analysed using framework analysis Setting/participants: Purposive sample of health professionals managing the palliative care of patients living in the community Results: A total of 15 interviews with health professionals took place. Three meta-themes emerged from the data: (1) uncertainties about integration of PainCheck and changes to current practice, (2) appraisal of current practice and (3) pain management is everybody's responsibility Conclusion: Even the most sceptical of health professionals could see the potential benefits of implementing an electronic patient-reported pain monitoring system. Health professionals have reservations about how PainCheck would work in practice. For optimal use, PainCheck needs embedding within existing electronic health records. Electronic pain monitoring systems have the potential to enable professionals to support patients' pain management more effectively but only when barriers to implementation are appropriately identified and addressed.

  6. The Role of Hospital Information Systems in Universal Health Coverage Monitoring in Rwanda.

    Science.gov (United States)

    Karara, Gustave; Verbeke, Frank; Nyssen, Marc

    2015-01-01

    In this retrospective study, the authors monitored the patient health coverage in 6 Rwandan hospitals in the period between 2011 and 2014. Among the 6 hospitals, 2 are third level hospitals, 2 district hospitals and 2 private hospitals. Patient insurance and financial data were extracted and analyzed from OpenClinic GA, an open source hospital information system (HIS) used in those 6 hospitals. The percentage of patients who had no health insurer globally decreased from 35% in 2011 to 15% in 2014. The rate of health insurance coverage in hospitals varied between 75% in private hospitals and 84% in public hospitals. The amounts paid by the patients for health services decreased in private hospitals to 25% of the total costs in 2014 (-7.4%) and vary between 14% and 19% in public hospitals. Although the number of insured patients has increased and the patient share decreased over the four years of study, the patients' out-of-pocket payments increased especially for in-patients. This study emphasizes the value of integrated hospital information systems for this kind of health economics research in developing countries.

  7. Performance Health Monitoring of Large-Scale Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rajamony, Ram [IBM Research, Austin, TX (United States)

    2014-11-20

    This report details the progress made on the ASCR funded project Performance Health Monitoring for Large Scale Systems. A large-­scale application may not achieve its full performance potential due to degraded performance of even a single subsystem. Detecting performance faults, isolating them, and taking remedial action is critical for the scale of systems on the horizon. PHM aims to develop techniques and tools that can be used to identify and mitigate such performance problems. We accomplish this through two main aspects. The PHM framework encompasses diagnostics, system monitoring, fault isolation, and performance evaluation capabilities that indicates when a performance fault has been detected, either due to an anomaly present in the system itself or due to contention for shared resources between concurrently executing jobs. Software components called the PHM Control system then build upon the capabilities provided by the PHM framework to mitigate degradation caused by performance problems.

  8. Interoperability as a quality label for portable & wearable health monitoring systems.

    Science.gov (United States)

    Chronaki, Catherine E; Chiarugi, Franco

    2005-01-01

    Advances in ICT promising universal access to high quality care, reduction of medical errors, and containment of health care costs, have renewed interest in electronic health records (EHR) standards and resulted in comprehensive EHR adoption programs in many European states. Health cards, and in particular the European health insurance card, present an opportunity for instant cross-border access to emergency health data including allergies, medication, even a reference ECG. At the same time, research and development in miniaturized medical devices and wearable medical sensors promise continuous health monitoring in a comfortable, flexible, and fashionable way. These trends call for the seamless integration of medical devices and intelligent wearables into an active EHR exploiting the vast information available to increase medical knowledge and establish personal wellness profiles. In a mobile connected world with empowered health consumers and fading barriers between health and healthcare, interoperability has a strong impact on consumer trust. As a result, current interoperability initiatives are extending the traditional standardization process to embrace implementation, validation, and conformance testing. In this paper, starting from the OpenECG initiative, which promotes the consistent implementation of interoperability standards in electrocardiography and supports a worldwide community with data sets, open source tools, specifications, and online conformance testing, we discuss EHR interoperability as a quality label for personalized health monitoring systems. Such a quality label would support big players and small enterprises in creating interoperable eHealth products, while opening the way for pervasive healthcare and the take-up of the eHealth market.

  9. Administrative integration of vertical HIV monitoring and evaluation into health systems: a case study from South Africa.

    Science.gov (United States)

    Kawonga, Mary; Fonn, Sharon; Blaauw, Duane

    2013-01-24

    In light of an increasing global focus on health system strengthening and integration of vertical programmes within health systems, methods and tools are required to examine whether general health service managers exercise administrative authority over vertical programmes. To measure the extent to which general health service (horizontal) managers, exercise authority over the HIV programme's monitoring and evaluation (M&E) function, and to explore factors that may influence this exercise of authority. This cross-sectional survey involved interviews with 51 managers. We drew ideas from the concept of 'exercised decision-space' - traditionally used to measure local level managers' exercise of authority over health system functions following decentralisation. Our main outcome measure was the degree of exercised authority - classified as 'low', 'medium' or 'high' - over four M&E domains (HIV data collection, collation, analysis, and use). We applied ordinal logistic regression to assess whether actor type (horizontal or vertical) was predictive of a higher degree of exercised authority, independent of management capacity (training and experience), and M&E knowledge. Relative to vertical managers, horizontal managers had lower HIV M&E knowledge, were more likely to exercise a higher degree of authority over HIV data collation (OR 7.26; CI: 1.9, 27.4), and less likely to do so over HIV data use (OR 0.19; CI: 0.05, 0.84). A higher HIV M&E knowledge score was predictive of a higher exercised authority over HIV data use (OR 1.22; CI: 0.99, 1.49). There was no association between management capacity and degree of authority. This study demonstrates a HIV M&E model that is neither fully vertical nor integrated. The HIV M&E is characterised by horizontal managers producing HIV information while vertical managers use it. This may undermine policies to strengthen integrated health system planning and management under the leadership of horizontal managers.

  10. Structural Health Monitoring of Railway Transition Zones Using Satellite Radar Data

    Directory of Open Access Journals (Sweden)

    Haoyu Wang

    2018-01-01

    Full Text Available Transition zones in railway tracks are locations with considerable changes in the rail-supporting structure. Typically, they are located near engineering structures, such as bridges, culverts and tunnels. In such locations, severe differential settlements often occur due to the different material properties and structure behavior. Without timely maintenance, the differential settlement may lead to the damage of track components and loss of passenger’s comfort. To ensure the safety of railway operations and reduce the maintenance costs, it is necessary to consecutively monitor the structural health condition of the transition zones in an economical manner and detect the changes at an early stage. However, using the current in situ monitoring of transition zones is hard to achieve this goal, because most in situ techniques (e.g., track-measuring coaches are labor-consuming and usually not frequently performed (approximately twice a year in the Netherlands. To tackle the limitations of the in situ techniques, a Satellite Synthetic Aperture Radar (InSAR system is presented in this paper, which provides a potential solution for a consecutive structural health monitoring of transition zones with bi-/tri-weekly data update and mm-level precision. To demonstrate the feasibility of the InSAR system for monitoring transition zones, a transition zone is tested. The results show that the differential settlement in the transition zone and the settlement rate can be observed and detected by the InSAR measurements. Moreover, the InSAR results are cross-validated against measurements obtained using a measuring coach and a Digital Image Correlation (DIC device. The results of the three measuring techniques show a good correlation, which proves the applicability of InSAR for the structural health monitoring of transition zones in railway track.

  11. Structural Health Monitoring of Railway Transition Zones Using Satellite Radar Data.

    Science.gov (United States)

    Wang, Haoyu; Chang, Ling; Markine, Valeri

    2018-01-31

    Transition zones in railway tracks are locations with considerable changes in the rail-supporting structure. Typically, they are located near engineering structures, such as bridges, culverts and tunnels. In such locations, severe differential settlements often occur due to the different material properties and structure behavior. Without timely maintenance, the differential settlement may lead to the damage of track components and loss of passenger's comfort. To ensure the safety of railway operations and reduce the maintenance costs, it is necessary to consecutively monitor the structural health condition of the transition zones in an economical manner and detect the changes at an early stage. However, using the current in situ monitoring of transition zones is hard to achieve this goal, because most in situ techniques (e.g., track-measuring coaches) are labor-consuming and usually not frequently performed (approximately twice a year in the Netherlands). To tackle the limitations of the in situ techniques, a Satellite Synthetic Aperture Radar (InSAR) system is presented in this paper, which provides a potential solution for a consecutive structural health monitoring of transition zones with bi-/tri-weekly data update and mm-level precision. To demonstrate the feasibility of the InSAR system for monitoring transition zones, a transition zone is tested. The results show that the differential settlement in the transition zone and the settlement rate can be observed and detected by the InSAR measurements. Moreover, the InSAR results are cross-validated against measurements obtained using a measuring coach and a Digital Image Correlation (DIC) device. The results of the three measuring techniques show a good correlation, which proves the applicability of InSAR for the structural health monitoring of transition zones in railway track.

  12. Disease Monitoring and Health Campaign Evaluation Using Google Search Activities for HIV and AIDS, Stroke, Colorectal Cancer, and Marijuana Use in Canada: A Retrospective Observational Study

    Science.gov (United States)

    2016-01-01

    Background Infodemiology can offer practical and feasible health research applications through the practice of studying information available on the Web. Google Trends provides publicly accessible information regarding search behaviors in a population, which may be studied and used for health campaign evaluation and disease monitoring. Additional studies examining the use and effectiveness of Google Trends for these purposes remain warranted. Objective The objective of our study was to explore the use of infodemiology in the context of health campaign evaluation and chronic disease monitoring. It was hypothesized that following a launch of a campaign, there would be an increase in information seeking behavior on the Web. Second, increasing and decreasing disease patterns in a population would be associated with search activity patterns. This study examined 4 different diseases: human immunodeficiency virus (HIV) infection, stroke, colorectal cancer, and marijuana use. Methods Using Google Trends, relative search volume data were collected throughout the period of February 2004 to January 2015. Campaign information and disease statistics were obtained from governmental publications. Search activity trends were graphed and assessed with disease trends and the campaign interval. Pearson product correlation statistics and joinpoint methodology analyses were used to determine significance. Results Disease patterns and online activity across all 4 diseases were significantly correlated: HIV infection (r=.36, Pcampaigns on colorectal cancer and marijuana use in stimulating search activity. No significant correlations were observed for the campaigns on stroke and HIV regarding search activity. Conclusions The use of infoveillance shows promise as an alternative and inexpensive solution to disease surveillance and health campaign evaluation. Further research is needed to understand Google Trends as a valid and reliable tool for health research. PMID:27733330

  13. Fatigue evaluation for Tsing Ma Bridge using structural health monitoring data

    Science.gov (United States)

    Chan, Hung-tin Tommy; Ko, Jan Ming; Li, Zhao-Xia

    2001-08-01

    Fatigue assessment for the Tsing Ma Bridge (TMB) are presented based on the British standard BS5400 and the real-time structural health monitoring data under railway loading. TMB, as an essential portion of transport network for the Hong Kong airport, is the longest suspension bridge in the world carrying both highway and railway traffic. The bridge design has been mainly based on BS5400. A structural health monitoring system - Wind and Structural Health Monitoring System (WASHMS) for TMB has been operated since the bridge commissioning in May 1997. In order to assess the fatigue behavior of TMB under railway loading, strain gauges were installed on the bridge deck to measure the strain-time histories as soon as the bridge is loaded by a standard railway loading due to the service of an actual train. The strain-time history data at the critical members are then used to determine the stress spectrum, of which the rainflow method recommended for railway bridges by BS5400 is applied to count cycles of stress range. Miner's law is employed to evaluate fatigue damage and remaining service life of the bridge. The evaluated results of fatigue damage and remaining service life would help us to well understand about the fatigue design of the bridge and status in fatigue accumulation.

  14. A review on architectures and communications technologies for wearable health-monitoring systems.

    Science.gov (United States)

    Custodio, Víctor; Herrera, Francisco J; López, Gregorio; Moreno, José Ignacio

    2012-10-16

    Nowadays society is demanding more and more smart healthcare services that allow monitoring patient status in a non-invasive way, anywhere and anytime. Thus, healthcare applications are currently facing important challenges guided by the u-health (ubiquitous health) and p-health (pervasive health) paradigms. New emerging technologies can be combined with other widely deployed ones to develop such next-generation healthcare systems. The main objective of this paper is to review and provide more details on the work presented in "LOBIN: E-Textile and Wireless-Sensor-Network-Based Platform for Healthcare Monitoring in Future Hospital Environments", published in the IEEE Transactions on Information Technology in Biomedicine, as well as to extend and update the comparison with other similar systems. As a result, the paper discusses the main advantages and disadvantages of using different architectures and communications technologies to develop wearable systems for pervasive healthcare applications.

  15. A Review on Architectures and Communications Technologies for Wearable Health-Monitoring Systems

    Directory of Open Access Journals (Sweden)

    José Ignacio Moreno

    2012-10-01

    Full Text Available Nowadays society is demanding more and more smart healthcare services that allow monitoring patient status in a non-invasive way, anywhere and anytime. Thus, healthcare applications are currently facing important challenges guided by the u-health (ubiquitous health and p-health (pervasive health paradigms. New emerging technologies can be combined with other widely deployed ones to develop such next-generation healthcare systems. The main objective of this paper is to review and provide more details on the work presented in “LOBIN: E-Textile and Wireless-Sensor-Network-Based Platform for Healthcare Monitoring in Future Hospital Environments”, published in the IEEE Transactions on Information Technology in Biomedicine, as well as to extend and update the comparison with other similar systems. As a result, the paper discusses the main advantages and disadvantages of using different architectures and communications technologies to develop wearable systems for pervasive healthcare applications.

  16. Health-Based Cyanotoxin Guideline Values Allow for Cyanotoxin-Based Monitoring and Efficient Public Health Response to Cyanobacterial Blooms

    Science.gov (United States)

    Farrer, David; Counter, Marina; Hillwig, Rebecca; Cude, Curtis

    2015-01-01

    Human health risks from cyanobacterial blooms are primarily related to cyanotoxins that some cyanobacteria produce. Not all species of cyanobacteria can produce toxins. Those that do often do not produce toxins at levels harmful to human health. Monitoring programs that use identification of cyanobacteria genus and species and enumeration of cyanobacterial cells as a surrogate for cyanotoxin presence can overestimate risk and lead to unnecessary health advisories. In the absence of federal criteria for cyanotoxins in recreational water, the Oregon Health Authority (OHA) developed guideline values for the four most common cyanotoxins in Oregon’s fresh waters (anatoxin-a, cylindrospermopsin, microcystins, and saxitoxins). OHA developed three guideline values for each of the cyanotoxins found in Oregon. Each of the guideline values is for a specific use of cyanobacteria-affected water: drinking water, human recreational exposure and dog recreational exposure. Having cyanotoxin guidelines allows OHA to promote toxin-based monitoring (TBM) programs, which reduce the number of health advisories and focus advisories on times and places where actual, rather than potential, risks to health exist. TBM allows OHA to more efficiently protect public health while reducing burdens on local economies that depend on water recreation-related tourism. PMID:25664510

  17. Integrating Smart Health in the US Health Care System: Infodemiology Study of Asthma Monitoring in the Google Era.

    Science.gov (United States)

    Mavragani, Amaryllis; Sampri, Alexia; Sypsa, Karla; Tsagarakis, Konstantinos P

    2018-03-12

    With the internet's penetration and use constantly expanding, this vast amount of information can be employed in order to better assess issues in the US health care system. Google Trends, a popular tool in big data analytics, has been widely used in the past to examine interest in various medical and health-related topics and has shown great potential in forecastings, predictions, and nowcastings. As empirical relationships between online queries and human behavior have been shown to exist, a new opportunity to explore the behavior toward asthma-a common respiratory disease-is present. This study aimed at forecasting the online behavior toward asthma and examined the correlations between queries and reported cases in order to explore the possibility of nowcasting asthma prevalence in the United States using online search traffic data. Applying Holt-Winters exponential smoothing to Google Trends time series from 2004 to 2015 for the term "asthma," forecasts for online queries at state and national levels are estimated from 2016 to 2020 and validated against available Google query data from January 2016 to June 2017. Correlations among yearly Google queries and between Google queries and reported asthma cases are examined. Our analysis shows that search queries exhibit seasonality within each year and the relationships between each 2 years' queries are statistically significant (PGoogle queries are robust and validated against available data from January 2016 to June 2017. Significant correlations were found between (1) online queries and National Health Interview Survey lifetime asthma (r=-.82, P=.001) and current asthma (r=-.77, P=.004) rates from 2004 to 2015 and (2) between online queries and Behavioral Risk Factor Surveillance System lifetime (r=-.78, P=.003) and current asthma (r=-.79, P=.002) rates from 2004 to 2014. The correlations are negative, but lag analysis to identify the period of response cannot be employed until short-interval data on asthma

  18. A Comparative Study of Genetic and Firefly Algorithms for Sensor Placement in Structural Health Monitoring

    Directory of Open Access Journals (Sweden)

    Guang-Dong Zhou

    2015-01-01

    Full Text Available Optimal sensor placement (OSP is an important task during the implementation of sophisticated structural health monitoring (SHM systems for large-scale structures. In this paper, a comparative study between the genetic algorithm (GA and the firefly algorithm (FA in solving the OSP problem is conducted. To overcome the drawback related to the inapplicability of the FA in optimization problems with discrete variables, some improvements are proposed, including the one-dimensional binary coding system, the Hamming distance between any two fireflies, and the semioriented movement scheme; also, a simple discrete firefly algorithm (SDFA is developed. The capabilities of the SDFA and the GA in finding the optimal sensor locations are evaluated using two disparate objective functions in a numerical example with a long-span benchmark cable-stayed bridge. The results show that the developed SDFA can find the optimal sensor configuration with high reliability. The comparative study indicates that the SDFA outperforms the GA in terms of algorithm complexity, computational efficiency, and result quality. The optimization mechanism of the FA has the potential to be extended to a wide range of optimization problems.

  19. An energy-efficient communication method based on the relationships between biological signals for ubiquitous health monitoring.

    Science.gov (United States)

    Kwon, Hyok Chon; Na, Doosu; Ko, Byung Geun; Lee, Songjun

    2008-01-01

    Wireless sensor networks have been studied in the area of intelligent transportation systems, disaster perception, environment monitoring, ubiquitous healthcare, home network, and so on. For the ubiquitous healthcare, the previous systems collect the sensed health related data at portable devices without regard to correlations of various biological signals to determine the health conditions. It is not the energy-efficient method to gather a lot of information into a specific node to decide the health condition. Since the biological signals are related with each other to estimate certain body condition, it is necessary to be collected selectively by their relationship for energy efficiency of the networked nodes. One of researches about low power consumption is the reduction of the amount of packet transmission. In this paper, a health monitoring system, which allows the transmission of the reduced number of packets by means of setting the routing path considered the relations of biological signals, is proposed.

  20. In-season monitoring of hip and groin strength, health and function in elite youth soccer

    DEFF Research Database (Denmark)

    Wollin, Martin; Thorborg, Kristian; Welvaert, Marijke

    2018-01-01

    OBJECTIVES: The primary purpose of this study was to describe an early detection and management strategy when monitoring in-season hip and groin strength, health and function in soccer. Secondly to compare pre-season to in-season test results. DESIGN: Longitudinal cohort study. METHODS: Twenty......-seven elite male youth soccer players (age: 15.07±0.73years) volunteered to participate in the study. Monitoring tests included: adductor strength, adductor/abductor strength ratio and hip and groin outcome scores (HAGOS). Data were recorded at pre-season and at 22 monthly intervals in-season. Thresholds.......09, CI95%: 0.04, 0.13 respectively). HAGOS subscale scores were lowest at baseline with all, except Physical Activity, showing significant improvements at time-point one (ptime-loss were classified minimal or mild. CONCLUSIONS: In-season monitoring aimed at early detection...

  1. Smart Sensing Technologies for Structural Health Monitoring of Civil Engineering Structures

    OpenAIRE

    M. Sun; W. J. Staszewski; R. N. Swamy

    2010-01-01

    Structural Health Monitoring (SHM) aims to develop automated systems for the continuous monitoring, inspection, and damage detection of structures with minimum labour involvement. The first step to set up a SHM system is to incorporate a level of structural sensing capability that is reliable and possesses long term stability. Smart sensing technologies including the applications of fibre optic sensors, piezoelectric sensors, magnetostrictive sensors and self-diagnosing fibre reinforced compo...

  2. Aircraft Control Augmentation and Health Monitoring Using FADS Technology, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase I research proposal is aimed at demonstrating the feasibility of an innovative architecture comprising control augmentation and on-line health monitoring...

  3. Automatic Sensor-Fault Detection System for Comprehensive Structural Health Monitoring System

    National Research Council Canada - National Science Library

    Chan, Hian-Leng; Zhang, Chang; Qing, Peter X; Ooi, Teng K; Marotta, Steve A

    2005-01-01

    Structural health monitoring systems are viewed as viable means to reduce life-cycle costs, increase structural reliability, and extend the operational hours for a wide variety of composite structures...

  4. eWALL Innovation for Smart e-Health Monitoring Devices

    DEFF Research Database (Denmark)

    Mihovska, Albena Dimitrova; Kyriazakos, Sofoklis

    2017-01-01

    E-health environments should be designed to provide personalized services and applications to their primary users (i.e. the patients) by breaking the barrier of technology acceptance and addressing their daily needs, under strict regulation and security constraints. A typical scenario would employ...... wireless and wired sensors and local or cloud-based processing units to collect, process, store and communicate data related to the patients’ needs and condition. E-health devices can be located on the patients’ bodies or immediate environments to monitor and interact with the patients, while they perform...

  5. Inspection Correlation Study of Ultrasonic-Based In Situ Structural Health Monitoring Monthly Report for December 2014-January 2015

    Science.gov (United States)

    2015-05-01

    fatigue an induced ultrasonic elastic vibration (via piezoelectric transducers [ PZTs ]) propagates through the dogbone specimen. A receiver PZT picks up...inspection of fatigue crack growth in aluminum 7075-T6 dogbone specimens. Acellent Technologies, Inc., is supporting this project through providing...January 2015. 15. SUBJECT TERMS structural health monitoring, probabilistics, fatigue damage, guided waves, Lamb waves 16. SECURITY CLASSIFICATION OF

  6. National Surveys of Population Health: Big Data Analytics for Mobile Health Monitors.

    Science.gov (United States)

    Schatz, Bruce R

    2015-12-01

    At the core of the healthcare crisis is fundamental lack of actionable data. Such data could stratify individuals within populations to predict which persons have which outcomes. If baselines existed for all variations of all conditions, then managing health could be improved by matching the measuring of individuals to their cohort in the population. The scale required for complete baselines involves effective National Surveys of Population Health (NSPH). Traditionally, these have been focused upon acute medicine, measuring people to contain the spread of epidemics. In recent decades, the focus has moved to chronic conditions as well, which require smaller measures over longer times. NSPH have long utilized quality of life questionnaires. Mobile Health Monitors, where computing technologies eliminate manual administration, provide richer data sets for health measurement. Older technologies of telephone interviews will be replaced by newer technologies of smartphone sensors to provide deeper individual measures at more frequent timings across larger-sized populations. Such continuous data can provide personal health records, supporting treatment guidelines specialized for population cohorts. Evidence-based medicine will become feasible by leveraging hundreds of millions of persons carrying mobile devices interacting with Internet-scale services for Big Data Analytics.

  7. An integrated framework for online diagnostic and prognostic health monitoring using a multistate deterioration process

    International Nuclear Information System (INIS)

    Moghaddass, Ramin; Zuo, Ming J.

    2014-01-01

    Efficient asset management is of paramount importance, particularly for systems with costly downtime and failure. As in energy and capital-intensive industries, the economic loss of downtime and failure is huge, the need for a low-cost and integrated health monitoring system has increased significantly over the years. Timely detection of faults and failures through an efficient prognostics and health management (PHM) framework can lead to appropriate maintenance actions to be scheduled proactively to avoid catastrophic failures and minimize the overall maintenance cost of the systems. This paper aims at practical challenges of online diagnostics and prognostics of mechanical systems under unobservable degradation. First, the elements of a multistate degradation structure are reviewed and then a model selection framework is introduced. Important dynamic performance measures are introduced, which can be used for online diagnostics and prognostics. The effectiveness of the result of this paper is demonstrated with a case study on the health monitoring of turbofan engines

  8. Structural health monitoring 2012. Proceedings. Vol. 1

    International Nuclear Information System (INIS)

    Boller, Christian

    2012-01-01

    Structural Health Monitoring (SHM) is an emerging technology, dealing with the development and implementation of techniques and systems where monitoring, inspection and damage detection become an integral part of structures and thus a matter of automation. It further merges with a variety of techniques related to diagnostics and prognostics. SHM emerged from the field of smart structures and laterally encompasses disciplines such as structural dynamics, materials and structures, fatigue and fracture, non-destructive testing and evaluation, sensors and actuators, microelectronics, signal processing and much more. To be effective in the development of SHM systems, a multidisciplinary approach is therefore required. Without this global view it will be difficult for engineers to holistically manage the operation of an engineering structure through its life cycle in the future and to generate new breakthroughs in structural engineering. The first volume of the proceedings contains topics dealing with physics, materials and sensors. Five of the contributions are separately analyzed for the ENERGY database.

  9. Mobile Health Apps to Facilitate Self-Care: A Qualitative Study of User Experiences.

    Science.gov (United States)

    Anderson, Kevin; Burford, Oksana; Emmerton, Lynne

    2016-01-01

    Consumers are living longer, creating more pressure on the health system and increasing their requirement for self-care of chronic conditions. Despite rapidly-increasing numbers of mobile health applications ('apps') for consumers' self-care, there is a paucity of research into consumer engagement with electronic self-monitoring. This paper presents a qualitative exploration of how health consumers use apps for health monitoring, their perceived benefits from use of health apps, and suggestions for improvement of health apps. 'Health app' was defined as any commercially-available health or fitness app with capacity for self-monitoring. English-speaking consumers aged 18 years and older using any health app for self-monitoring were recruited for interview from the metropolitan area of Perth, Australia. The semi-structured interview guide comprised questions based on the Technology Acceptance Model, Health Information Technology Acceptance Model, and the Mobile Application Rating Scale, and is the only study to do so. These models also facilitated deductive thematic analysis of interview transcripts. Implicit and explicit responses not aligned to these models were analyzed inductively. Twenty-two consumers (15 female, seven male) participated, 13 of whom were aged 26-35 years. Eighteen participants reported on apps used on iPhones. Apps were used to monitor diabetes, asthma, depression, celiac disease, blood pressure, chronic migraine, pain management, menstrual cycle irregularity, and fitness. Most were used approximately weekly for several minutes per session, and prior to meeting initial milestones, with significantly decreased usage thereafter. Deductive and inductive thematic analysis reduced the data to four dominant themes: engagement in use of the app; technical functionality of the app; ease of use and design features; and management of consumers' data. The semi-structured interviews provided insight into usage, benefits and challenges of health monitoring

  10. An Approach for Real-time Levee Health Monitoring Using Signal Processing Methods

    NARCIS (Netherlands)

    Pyayt, A.L.; Kozionov, A.P.; Mokhov, I.I.; Lang, B.; Krzhizhanovskaya, V.V.; Sloot, P.M.A.

    2013-01-01

    We developed a levee health monitoring system within the UrbanFlood project funded under the EU 7th Framework Programme. A novel real-time levee health assessment Artificial Intelligence system is developed using data-driven methods. The system is implemented in the UrbanFlood early warning system.

  11. A Review on Architectures and Communications Technologies for Wearable Health-Monitoring Systems

    OpenAIRE

    Custodio, V?ctor; Herrera, Francisco J.; L?pez, Gregorio; Moreno, Jos? Ignacio

    2012-01-01

    Nowadays society is demanding more and more smart healthcare services that allow monitoring patient status in a non-invasive way, anywhere and anytime. Thus, healthcare applications are currently facing important challenges guided by the u-health (ubiquitous health) and p-health (pervasive health) paradigms. New emerging technologies can be combined with other widely deployed ones to develop such next-generation healthcare systems. The main objective of this paper is to review and provide mor...

  12. ChemAND - a system health monitor for plant chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Turner, C.W.; Mitchel, G.R.; Tosello, G.; Balakrishnan, P.V.; McKay, G.; Thompson, M. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Dundar, Y.; Bergeron, M.; Laporte, R. [Hydro-Quebec, Groupe Chimie, Centrale Nucleaire Gentilly-2, Gentilly, Quebec (Canada)

    2001-03-01

    Effective management of plant systems throughout their lifetime requires much more than data acquisition and display - it requires that the plant's system health be continually monitored and managed. AECL has developed a System Health Monitor called ChemAND for CANDU plant chemistry. ChemAND, a Chemistry ANalysis and Diagnostic system, monitors key chemistry parameters in the heat transport system, moderator-cover gas, annulus gas, and the steam cycle during full-power operation. These parameters can be used as inputs to models that calculate the effect of current plant operating conditions on the present and future health of the system. Chemistry data from each of the systems are extracted on a regular basis from the plant's Historical Data Server and are sorted according to function, e.g., indicators for condenser in-leakage, air in-leakage, heavy water leakage into the annulus gas, fuel failure, etc. Each parameter is conveniently displayed and is trended along with its alarm limits. ChemAND currently includes two analytical models developed for the balance-of-plant. The first model, ChemSolv, calculates crevice chemistry conditions in the steam generator (SG) from either the SG blowdown chemistry conditions or from a simulated condenser leak. This information can be used by plant staff to evaluate the susceptibility of the SG tubes to crevice corrosion. ChemSolv also calculates chemistry conditions throughout the steam-cycle system as determined by the transport of volatile species such as ammonia, hydrazine, morpholine, and oxygen. The second model, SLUDGE, calculates the deposit loading and distribution in the SG as a function of time, based on concentrations of corrosion product in the final feedwater for both normal and start-up conditions. Operations personnel can use this information to predict where to inspect and when to clean. (author)

  13. ChemAND - a system health monitor for plant chemistry

    International Nuclear Information System (INIS)

    Turner, C.W.; Mitchell, G.R.; Tosello, G.; Balakrishnan, P.V.; McKay, G.; Thompson, M.; Dundar, Y.; Bergeron, M.; Laporte, R.

    2001-01-01

    Effective management of plant systems throughout their lifetime requires much more than data acquisition and display-it requires that the plant's system health be continually monitored and managed. AECL has developed a System Health Monitor called ChemAND for CANDU plant chemistry. ChemAND, a Chemistry ANalysis and Diagnostic system, monitors key chemistry parameters in the heat transport system, moderator-cover gas, annulus gas, and the steam cycle during full-power operation. These parameters can be used as inputs to models that calculate the effect of current plant operating conditions on the present and future health of the system. Chemistry data from each of the systems are extracted on a regular basis from the plant's Historical Data Server and are sorted according to function, e.g., indicators for condenser in-leakage, air in-leakage, heavy water leakage into the annulus gas, fuel failure, etc. Each parameter is conveniently displayed and is trended along with its alarm limits. ChemAND currently includes two analytical models developed for the balance-of-plant. The first model, ChemSolv, calculates crevice chemistry conditions in the steam generator (SG) from either the SG blowdown chemistry conditions or from a simulated condenser leak. This information can be used by plant staff to evaluate the susceptibility of the SG tubes to crevice corrosion. ChemSolv also calculates chemistry conditions throughout the steam cycle system, as determined by the transport of volatile species such as ammonia, hydrazine, morpholine, and oxygen. The second model, SLUDGE, calculates the deposit loading and distribution in the SG as a function of time, based on concentrations of corrosion product in the final feedwater for both normal and start-up conditions. Operations personnel can use this information to predict where to inspect and when to clean. (author)

  14. ChemAND - a system health monitor for plant chemistry

    International Nuclear Information System (INIS)

    Turner, C.W.; Mitchel, G.R.; Tosello, G.; Balakrishnan, P.V.; McKay, G.; Thompson, M.; Dundar, Y.; Bergeron, M.; Laporte, R.

    2001-03-01

    Effective management of plant systems throughout their lifetime requires much more than data acquisition and display - it requires that the plant's system health be continually monitored and managed. AECL has developed a System Health Monitor called ChemAND for CANDU plant chemistry. ChemAND, a Chemistry ANalysis and Diagnostic system, monitors key chemistry parameters in the heat transport system, moderator-cover gas, annulus gas, and the steam cycle during full-power operation. These parameters can be used as inputs to models that calculate the effect of current plant operating conditions on the present and future health of the system. Chemistry data from each of the systems are extracted on a regular basis from the plant's Historical Data Server and are sorted according to function, e.g., indicators for condenser in-leakage, air in-leakage, heavy water leakage into the annulus gas, fuel failure, etc. Each parameter is conveniently displayed and is trended along with its alarm limits. ChemAND currently includes two analytical models developed for the balance-of-plant. The first model, ChemSolv, calculates crevice chemistry conditions in the steam generator (SG) from either the SG blowdown chemistry conditions or from a simulated condenser leak. This information can be used by plant staff to evaluate the susceptibility of the SG tubes to crevice corrosion. ChemSolv also calculates chemistry conditions throughout the steam-cycle system as determined by the transport of volatile species such as ammonia, hydrazine, morpholine, and oxygen. The second model, SLUDGE, calculates the deposit loading and distribution in the SG as a function of time, based on concentrations of corrosion product in the final feedwater for both normal and start-up conditions. Operations personnel can use this information to predict where to inspect and when to clean. (author)

  15. Forest health monitoring in New England: 1990 annual report

    Science.gov (United States)

    Robert T. Brooks; David R. Dickson; William B. Burkman; Imants Millers; Margaret Miller-Weeks; Ellen Cooter; Luther Smith; Luther Smith

    1992-01-01

    The USDA Forest Service, in cooperation with the U.S. Environmental Protection Agency and the New England State Forestry Agencies initiated field sampling for the Forest Health Monitoring program in 1990. Two hundred and sixty-three permanent sample plots were established. Measurements were taken to characterize the physical conditions of the plots. This publication...

  16. Assessing the utilisation of a child health monitoring tool

    African Journals Online (AJOL)

    2017-12-06

    Dec 6, 2017 ... preventive or promotive tool for monitoring child health as neither ... attitudes and practices of both CGs and HCWs relating to these components; and (iii) identify HCWs' perceptions of the barriers .... In posession of old RtHC (n=54) .... number of CGs (16.4%; 409/1 646) knew that a young child should.

  17. Supportive Mental Health Self-Monitoring among Smartphone Users with Psychological Distress: Protocol for a Fully Mobile Randomized Controlled Trial

    Directory of Open Access Journals (Sweden)

    Till Beiwinkel

    2017-09-01

    Full Text Available Mobile health (mHealth could be widely used in the population to improve access to psychological treatment. In this paper, we describe the development of a mHealth intervention on the basis of supportive self-monitoring and describe the protocol for a randomized controlled trial to evaluate its effectiveness among smartphone users with psychological distress. Based on power analysis, a representative quota sample of N = 186 smartphone users will be recruited, with an over-sampling of persons with moderate to high distress. Over a 4-week period, the intervention will be compared to a self-monitoring without intervention group and a passive control group. Telephone interviews will be conducted at baseline, post-intervention (4 weeks, and 12-week follow-up to assess study outcomes. The primary outcome will be improvement of mental health. Secondary outcomes will include well-being, intentions toward help-seeking and help-seeking behavior, user activation, attitudes toward mental-health services, perceived stigmatization, smartphone app quality, user satisfaction, engagement, and adherence with the intervention. Additionally, data from the user’s daily life as collected during self-monitoring will be used to investigate risk and protective factors of mental health in real-world settings. Therefore, this study will allow us to demonstrate the effectiveness of a smartphone application as a widely accessible and low-cost intervention to improve mental health on a population level. It also allows to identify new assessment approaches in the field of psychiatric epidemiology.

  18. Supportive Mental Health Self-Monitoring among Smartphone Users with Psychological Distress: Protocol for a Fully Mobile Randomized Controlled Trial

    Science.gov (United States)

    Beiwinkel, Till; Hey, Stefan; Bock, Olaf; Rössler, Wulf

    2017-01-01

    Mobile health (mHealth) could be widely used in the population to improve access to psychological treatment. In this paper, we describe the development of a mHealth intervention on the basis of supportive self-monitoring and describe the protocol for a randomized controlled trial to evaluate its effectiveness among smartphone users with psychological distress. Based on power analysis, a representative quota sample of N = 186 smartphone users will be recruited, with an over-sampling of persons with moderate to high distress. Over a 4-week period, the intervention will be compared to a self-monitoring without intervention group and a passive control group. Telephone interviews will be conducted at baseline, post-intervention (4 weeks), and 12-week follow-up to assess study outcomes. The primary outcome will be improvement of mental health. Secondary outcomes will include well-being, intentions toward help-seeking and help-seeking behavior, user activation, attitudes toward mental-health services, perceived stigmatization, smartphone app quality, user satisfaction, engagement, and adherence with the intervention. Additionally, data from the user’s daily life as collected during self-monitoring will be used to investigate risk and protective factors of mental health in real-world settings. Therefore, this study will allow us to demonstrate the effectiveness of a smartphone application as a widely accessible and low-cost intervention to improve mental health on a population level. It also allows to identify new assessment approaches in the field of psychiatric epidemiology. PMID:28983477

  19. Supportive Mental Health Self-Monitoring among Smartphone Users with Psychological Distress: Protocol for a Fully Mobile Randomized Controlled Trial.

    Science.gov (United States)

    Beiwinkel, Till; Hey, Stefan; Bock, Olaf; Rössler, Wulf

    2017-01-01

    Mobile health (mHealth) could be widely used in the population to improve access to psychological treatment. In this paper, we describe the development of a mHealth intervention on the basis of supportive self-monitoring and describe the protocol for a randomized controlled trial to evaluate its effectiveness among smartphone users with psychological distress. Based on power analysis, a representative quota sample of N  = 186 smartphone users will be recruited, with an over-sampling of persons with moderate to high distress. Over a 4-week period, the intervention will be compared to a self-monitoring without intervention group and a passive control group. Telephone interviews will be conducted at baseline, post-intervention (4 weeks), and 12-week follow-up to assess study outcomes. The primary outcome will be improvement of mental health. Secondary outcomes will include well-being, intentions toward help-seeking and help-seeking behavior, user activation, attitudes toward mental-health services, perceived stigmatization, smartphone app quality, user satisfaction, engagement, and adherence with the intervention. Additionally, data from the user's daily life as collected during self-monitoring will be used to investigate risk and protective factors of mental health in real-world settings. Therefore, this study will allow us to demonstrate the effectiveness of a smartphone application as a widely accessible and low-cost intervention to improve mental health on a population level. It also allows to identify new assessment approaches in the field of psychiatric epidemiology.

  20. Home blood-pressure monitoring in a hypertensive pregnant population: cost minimisation study.

    Science.gov (United States)

    Xydopoulos, G; Perry, H; Sheehan, E; Thilaganathan, B; Fordham, R; Khalil, A

    2018-03-08

    Traditional monitoring of blood pressure in hypertensive pregnant women requires frequent visits to the maternity outpatient services. Home blood-pressure monitoring (HBPM) could offer a cost-saving alternative that is acceptable to patients. The main objective of this study was to undertake a health economic analysis of HBPM compared with traditional monitoring in hypertensive pregnant women. This was a case-control study. Cases were pregnant women with hypertension who had HBPM with or without the adjunct of a smartphone app, via a specially designed pathway. The control group were managed as per existing hospital guidelines. Specific outcome measures were the number of outpatient visits, inpatient bed stays and investigations performed. Maternal, fetal and neonatal adverse outcomes were also recorded. Health economic analysis was performed using two methods: direct cost comparison of the study dataset and process scenario modelling. There were 108 women in the HBPM group, of whom 29 recorded their results on the smartphone app (App-HBPM) and 79 in their notes (Non-app HBPM). The control group comprised of 58 patients. There were significantly more women with chronic hypertension in the HBPM group (49.1% vs 25.9%, P = 0.004). The HBPM group had significantly longer duration of monitoring (9 weeks vs 5 weeks P = 0.004) and started monitoring from an earlier gestation (30 weeks vs 33.6 weeks, P = 0.001). Despite these differences, the mean saving per week for HBPM compared with the control group was £200.69. For the App-HBPM cohort, the saving per week compared with the control group was £286.53. The process modelling method predicted savings of between £98.32 and £245.80 per week using HBPM compared to the traditional monitoring. HBPM in hypertensive pregnancies appears to be cost-saving compared with traditional monitoring, without compromising maternal, fetal or neonatal safety. Larger studies are required to confirm these findings. This article is

  1. Structural health monitoring system of soccer arena based on optical sensors

    Science.gov (United States)

    Shishkin, Victor V.; Churin, Alexey E.; Kharenko, Denis S.; Zheleznova, Maria A.; Shelemba, Ivan S.

    2014-05-01

    A structural health monitoring system based on optical sensors has been developed and installed on the indoor soccer arena "Zarya" in Novosibirsk. The system integrates 119 fiber optic sensors: 85 strain, 32 temperature and 2 displacement sensors. In addition, total station is used for measuring displacement in 45 control points. All of the constituents of the supporting structure are subjects for monitoring: long-span frames with under floor ties, connections, purlins and foundation.

  2. Data driven innovations in structural health monitoring

    Science.gov (United States)

    Rosales, M. J.; Liyanapathirana, R.

    2017-05-01

    At present, substantial investments are being allocated to civil infrastructures also considered as valuable assets at a national or global scale. Structural Health Monitoring (SHM) is an indispensable tool required to ensure the performance and safety of these structures based on measured response parameters. The research to date on damage assessment has tended to focus on the utilization of wireless sensor networks (WSN) as it proves to be the best alternative over the traditional visual inspections and tethered or wired counterparts. Over the last decade, the structural health and behaviour of innumerable infrastructure has been measured and evaluated owing to several successful ventures of implementing these sensor networks. Various monitoring systems have the capability to rapidly transmit, measure, and store large capacities of data. The amount of data collected from these networks have eventually been unmanageable which paved the way to other relevant issues such as data quality, relevance, re-use, and decision support. There is an increasing need to integrate new technologies in order to automate the evaluation processes as well as to enhance the objectivity of data assessment routines. This paper aims to identify feasible methodologies towards the application of time-series analysis techniques to judiciously exploit the vast amount of readily available as well as the upcoming data resources. It continues the momentum of a greater effort to collect and archive SHM approaches that will serve as data-driven innovations for the assessment of damage through efficient algorithms and data analytics.

  3. Monitoring progression of clinical reasoning skills during health sciences education using the case method - a qualitative observational study.

    Science.gov (United States)

    Orban, Kristina; Ekelin, Maria; Edgren, Gudrun; Sandgren, Olof; Hovbrandt, Pia; Persson, Eva K

    2017-09-11

    Outcome- or competency-based education is well established in medical and health sciences education. Curricula are based on courses where students develop their competences and assessment is also usually course-based. Clinical reasoning is an important competence, and the aim of this study was to monitor and describe students' progression in professional clinical reasoning skills during health sciences education using observations of group discussions following the case method. In this qualitative study students from three different health education programmes were observed while discussing clinical cases in a modified Harvard case method session. A rubric with four dimensions - problem-solving process, disciplinary knowledge, character of discussion and communication - was used as an observational tool to identify clinical reasoning. A deductive content analysis was performed. The results revealed the students' transition over time from reasoning based strictly on theoretical knowledge to reasoning ability characterized by clinical considerations and experiences. Students who were approaching the end of their education immediately identified the most important problem and then focused on this in their discussion. Practice knowledge increased over time, which was seen as progression in the use of professional language, concepts, terms and the use of prior clinical experience. The character of the discussion evolved from theoretical considerations early in the education to clinical reasoning in later years. Communication within the groups was supportive and conducted with a professional tone. Our observations revealed progression in several aspects of students' clinical reasoning skills on a group level in their discussions of clinical cases. We suggest that the case method can be a useful tool in assessing quality in health sciences education.

  4. Improving Cardiometabolic Monitoring of Children on Antipsychotics.

    Science.gov (United States)

    Cotes, Robert O; Fernandes, Nisha K; McLaren, Jennifer L; McHugo, Gregory J; Bartels, Stephen J; Brunette, Mary F

    2017-12-01

    This study evaluated changes in cardiometabolic monitoring for children and adolescents who were prescribed an antipsychotic medication in a state mental health system before and after a quality improvement intervention. The intervention included education for prescribers, auditing on metabolic monitoring, and feedback to mental health center leaders regarding their monitoring. Research staff extracted yearly data on cardiometabolic monitoring from randomly selected community mental health center records before and after the intervention. Pre- and postintervention changes in monitoring were assessed with chi-squared tests. Evidence of past year monitoring increased: for glucose 18.9%-42.1% (χ 2  = 6.75, p monitoring for blood pressure and waist circumference increased but not significantly. In both years studied, weight was obtained most frequently and waist circumference was obtained least frequently. Monitoring rates significantly improved for four out of six parameters evaluated, but overall monitoring rates remained low at the end of the study period. Prescriber education with audit and feedback may improve cardiometabolic monitoring rates, but research is needed to evaluate barriers to monitoring in children.

  5. Remote monitoring technologies for the prevention of metabolic syndrome: the Diabetes and Technology for Increased Activity (DaTA) study.

    Science.gov (United States)

    Stuckey, Melanie; Fulkerson, Robyn; Read, Emily; Russell-Minda, Elizabeth; Munoz, Claudio; Kleinstiver, Peter; Petrella, Robert

    2011-07-01

    Remote monitoring technologies are ideally suited for rural communities with limited access to health care. In an 8-week pilot study, we examined the feasibility of implementing and conducting a technology-intensive intervention in an underserviced rural setting. Our goal was to test the utility of self-monitoring technologies, physical activity, and education as tools to manage health indicators for the development of the cardiovascular complications (CVCs) of type 2 diabetes. The Diabetes and Technology for Increased Activity study was an open single-center study conducted in a community-based research setting. All 24 participants were provided with a Blackberry™ Smartphone, blood pressure monitor, glucometer, and pedometer. Smartphones transmitted measurements and survey results to the database, interfaced participants with the clinical team, and allowed for self-monitoring. Outcomes were improved body composition, improved markers of CVC risk factors, increased daily exercise, and interest in or awareness of lifestyle changes that impact health outcomes. Participants had excellent compliance for measurements, as self-monitoring provided a sense of security that improved from week 4 to week 8. Our team gained substantial insight into the operational requirements of technology-facilitated health care, including redefined hours of service; data reporting, management, and access protocols; and the utility of real-time clinical measures by remote monitoring. We developed an understanding of knowledge translation strategies as well as successful motivational and educational tools. Importantly, remote monitoring technology was found to be feasible and accepted in a rural setting. © 2011 Diabetes Technology Society.

  6. Applications of Piezoelectric Materials in Structural Health Monitoring and Repair: Selected Research Examples.

    Science.gov (United States)

    Duan, Wen Hui; Wang, Quan; Quek, Ser Tong

    2010-12-06

    The paper reviews the recent applications of piezoelectric materials in structural health monitoring and repair conducted by the authors. First, commonly used piezoelectric materials in structural health monitoring and structure repair are introduced. The analysis of plain piezoelectric sensors and actuators and interdigital transducer and their applications in beam, plate and pipe structures for damage detection are reviewed in detail. Second, an overview is presented on the recent advances in the applications of piezoelectric materials in structural repair. In addition, the basic principle and the current development of the technique are examined.

  7. Applications of Piezoelectric Materials in Structural Health Monitoring and Repair: Selected Research Examples

    Directory of Open Access Journals (Sweden)

    Ser Tong Quek

    2010-12-01

    Full Text Available The paper reviews the recent applications of piezoelectric materials in structural health monitoring and repair conducted by the authors. First, commonly used piezoelectric materials in structural health monitoring and structure repair are introduced. The analysis of plain piezoelectric sensors and actuators and interdigital transducer and their applications in beam, plate and pipe structures for damage detection are reviewed in detail. Second, an overview is presented on the recent advances in the applications of piezoelectric materials in structural repair. In addition, the basic principle and the current development of the technique are examined.

  8. Next-generation psychiatric assessment: Using smartphone sensors to monitor behavior and mental health.

    Science.gov (United States)

    Ben-Zeev, Dror; Scherer, Emily A; Wang, Rui; Xie, Haiyi; Campbell, Andrew T

    2015-09-01

    Optimal mental health care is dependent upon sensitive and early detection of mental health problems. We have introduced a state-of-the-art method for the current study for remote behavioral monitoring that transports assessment out of the clinic and into the environments in which individuals negotiate their daily lives. The objective of this study was to examine whether the information captured with multimodal smartphone sensors can serve as behavioral markers for one's mental health. We hypothesized that (a) unobtrusively collected smartphone sensor data would be associated with individuals' daily levels of stress, and (b) sensor data would be associated with changes in depression, stress, and subjective loneliness over time. A total of 47 young adults (age range: 19-30 years) were recruited for the study. Individuals were enrolled as a single cohort and participated in the study over a 10-week period. Participants were provided with smartphones embedded with a range of sensors and software that enabled continuous tracking of their geospatial activity (using the Global Positioning System and wireless fidelity), kinesthetic activity (using multiaxial accelerometers), sleep duration (modeled using device-usage data, accelerometer inferences, ambient sound features, and ambient light levels), and time spent proximal to human speech (i.e., speech duration using microphone and speech detection algorithms). Participants completed daily ratings of stress, as well as pre- and postmeasures of depression (Patient Health Questionnaire-9; Spitzer, Kroenke, & Williams, 1999), stress (Perceived Stress Scale; Cohen et al., 1983), and loneliness (Revised UCLA Loneliness Scale; Russell, Peplau, & Cutrona, 1980). Mixed-effects linear modeling showed that sensor-derived geospatial activity (p sleep duration (p sleep duration (p Smartphones can be harnessed as instruments for unobtrusive monitoring of several behavioral indicators of mental health. Creative leveraging of smartphone

  9. Monitoring health related quality of life in adolescents with diabetes

    DEFF Research Database (Denmark)

    de Wit, M; Delemarre-van de Waal, Henriette A; Pouwer, F

    2007-01-01

    Particularly in chronic conditions, monitoring health related quality of life (HRQoL) of adolescents in clinical practice is increasingly advocated. We set out to identify and review the clinical utility of available generic and diabetes specific HRQoL questionnaires suitable for use in adolescents...

  10. [POPULATION MONITORING OF THE HEALTH SHAPING ENVIRONMENT OF THE STUDENTS OF NAGORNO KARABAKH].

    Science.gov (United States)

    Galstyan, H

    2016-10-01

    The study of the health shaping environment of students is one of the actual biomedical tasks, it is also the scientific founding for conducting health-preventive and health-preserving measures. Despite the importance of the proposed problem, this study is a pioneering attempt in Nagorno Karabakh. The objective of the work is the scientific grounding of regional peculiarities and the contemporary level of health shaping environment of students on the basis of population monitoring system. The results of the study prove that the studied health criteria are within limits of physiological norm. The most wide-spead risk factors are lack of physical activity, in the group of young boys - also tobacco use and alcohol consumption. The analysis of daily diet of examinees attests ''fat'' nutrition model. The data on the impact of physical effort reveal high tension in the cardiac activity in the group of physically untrained students. The study of the impact of educational and mental strain on the functional state of the organism of the students revealed that daily academic leads to fatigue. The examination session is characterized by strongly expressed sympatotonia sympathicotonia, mental strain - by parasympatotonia. The obtained results point to the necessity of the enhanced control in preserving and strengthening the health of the younger generation considering the above-brought regional peculiarities.

  11. Body sensor networks for Mobile Health Monitoring: Experience in Europe and Australia

    NARCIS (Netherlands)

    Jones, Valerie M.; Gay, Valerie; Leijdekkers, Peter

    2009-01-01

    Remote ambulatory monitoring is widely seen as playing a key part in addressing the impending crisis in health care provision. We describe two mobile health solutions, one developed in the Netherlands and one in Australia. In both cases a patient’s biosignals are measured by means of a body sensor

  12. Multi-functional smart aggregate-based structural health monitoring of circular reinforced concrete columns subjected to seismic excitations

    International Nuclear Information System (INIS)

    Gu, Haichang; Song, Gangbing; Moslehy, Yashar; Mo, Y L; Sanders, David

    2010-01-01

    In this paper, a recently developed multi-functional piezoceramic-based device, named the smart aggregate, is used for the health monitoring of concrete columns subjected to shake table excitations. Two circular reinforced concrete columns instrumented with smart aggregates were fabricated and tested with a recorded seismic excitation at the structural laboratory at the University of Nevada—Reno. In the tests, the smart aggregates were used to perform multiple monitoring functions that included dynamic seismic response detection, structural health monitoring and white noise response detection. In the proposed health monitoring approach, a damage index was developed on the basis of the comparison of the transfer function with the baseline function obtained in the healthy state. A sensor-history damage index matrix is developed to monitor the damage evolution process. Experimental results showed that the acceleration level can be evaluated from the amplitude of the dynamic seismic response; the damage statuses at different locations were evaluated using a damage index matrix; the first modal frequency obtained from the white noise response decreased with increase of the damage severity. The proposed multi-functional smart aggregates have great potential for use in the structural health monitoring of large-scale concrete structures

  13. Wireless Zigbee strain gage sensor system for structural health monitoring

    Science.gov (United States)

    Ide, Hiroshi; Abdi, Frank; Miraj, Rashid; Dang, Chau; Takahashi, Tatsuya; Sauer, Bruce

    2009-05-01

    A compact cell phone size radio frequency (ZigBee) wireless strain measurement sensor system to measure the structural strain deformation was developed. The developed system provides an accurate strain measurement data stream to the Internet for further Diagnostic and Prognostic (DPS) correlation. Existing methods of structural measurement by strain sensors (gauges) do not completely satisfy problems posed by continuous structural health monitoring. The need for efficient health monitoring methods with real-time requirements to bidirectional data flow from sensors and to a commanding device is becoming critical for keeping our daily life safety. The use of full-field strain measurement techniques could reduce costly experimental programs through better understanding of material behavior. Wireless sensor-network technology is a monitoring method that is estimated to grow rapidly providing potential for cost savings over traditional wired sensors. The many of currently available wireless monitoring methods have: the proactive and constant data rate character of the data streams rather than traditional reactive, event-driven data delivery; mostly static node placement on structures with limited number of nodes. Alpha STAR Electronics' wireless sensor network system, ASWN, addresses some of these deficiencies, making the system easier to operate. The ASWN strain measurement system utilizes off-the-shelf sensors, namely strain gauges, with an analog-to-digital converter/amplifier and ZigBee radio chips to keep cost lower. Strain data is captured by the sensor, converted to digital form and delivered to the ZigBee radio chip, which in turn broadcasts the information using wireless protocols to a Personal Data Assistant (PDA) or Laptop/Desktop computers. From here, data is forwarded to remote computers for higher-level analysis and feedback using traditional cellular and satellite communication or the Ethernet infrastructure. This system offers a compact size, lower cost

  14. A bio-inspired memory model for structural health monitoring

    International Nuclear Information System (INIS)

    Zheng, Wei; Zhu, Yong

    2009-01-01

    Long-term structural health monitoring (SHM) systems need intelligent management of the monitoring data. By analogy with the way the human brain processes memories, we present a bio-inspired memory model (BIMM) that does not require prior knowledge of the structure parameters. The model contains three time-domain areas: a sensory memory area, a short-term memory area and a long-term memory area. First, the initial parameters of the structural state are specified to establish safety criteria. Then the large amount of monitoring data that falls within the safety limits is filtered while the data outside the safety limits are captured instantly in the sensory memory area. Second, disturbance signals are distinguished from danger signals in the short-term memory area. Finally, the stable data of the structural balance state are preserved in the long-term memory area. A strategy for priority scheduling via fuzzy c-means for the proposed model is then introduced. An experiment on bridge tower deformation demonstrates that the proposed model can be applied for real-time acquisition, limited-space storage and intelligent mining of the monitoring data in a long-term SHM system

  15. A bio-inspired memory model for structural health monitoring

    Science.gov (United States)

    Zheng, Wei; Zhu, Yong

    2009-04-01

    Long-term structural health monitoring (SHM) systems need intelligent management of the monitoring data. By analogy with the way the human brain processes memories, we present a bio-inspired memory model (BIMM) that does not require prior knowledge of the structure parameters. The model contains three time-domain areas: a sensory memory area, a short-term memory area and a long-term memory area. First, the initial parameters of the structural state are specified to establish safety criteria. Then the large amount of monitoring data that falls within the safety limits is filtered while the data outside the safety limits are captured instantly in the sensory memory area. Second, disturbance signals are distinguished from danger signals in the short-term memory area. Finally, the stable data of the structural balance state are preserved in the long-term memory area. A strategy for priority scheduling via fuzzy c-means for the proposed model is then introduced. An experiment on bridge tower deformation demonstrates that the proposed model can be applied for real-time acquisition, limited-space storage and intelligent mining of the monitoring data in a long-term SHM system.

  16. Historic Bim: a New Repository for Structural Health Monitoring

    Science.gov (United States)

    Banfi, F.; Barazzetti, L.; Previtali, M.; Roncoroni, F.

    2017-05-01

    Recent developments in Building Information Modelling (BIM) technologies are facilitating the management of historic complex structures using new applications. This paper proposes a generative method combining the morphological and typological aspects of the historic buildings (H-BIM), with a set of monitoring information. This combination of 3D digital survey, parametric modelling and monitoring datasets allows for the development of a system for archiving and visualizing structural health monitoring (SHM) data (Fig. 1). The availability of a BIM database allows one to integrate a different kind of data stored in different ways (e.g. reports, tables, graphs, etc.) with a representation directly connected to the 3D model of the structure with appropriate levels of detail (LoD). Data can be interactively accessed by selecting specific objects of the BIM, i.e. connecting the 3D position of the sensors installed with additional digital documentation. Such innovative BIM objects, which form a new BIM family for SHM, can be then reused in other projects, facilitating data archiving and exploitation of data acquired and processed. The application of advanced modeling techniques allows for the reduction of time and costs of the generation process, and support cooperation between different disciplines using a central workspace. However, it also reveals new challenges for parametric software and exchange formats. The case study presented is the medieval bridge Azzone Visconti in Lecco (Italy), in which multi-temporal vertical movements during load testing were integrated into H-BIM.

  17. HISTORIC BIM: A NEW REPOSITORY FOR STRUCTURAL HEALTH MONITORING

    Directory of Open Access Journals (Sweden)

    F. Banfi

    2017-05-01

    Full Text Available Recent developments in Building Information Modelling (BIM technologies are facilitating the management of historic complex structures using new applications. This paper proposes a generative method combining the morphological and typological aspects of the historic buildings (H-BIM, with a set of monitoring information. This combination of 3D digital survey, parametric modelling and monitoring datasets allows for the development of a system for archiving and visualizing structural health monitoring (SHM data (Fig. 1. The availability of a BIM database allows one to integrate a different kind of data stored in different ways (e.g. reports, tables, graphs, etc. with a representation directly connected to the 3D model of the structure with appropriate levels of detail (LoD. Data can be interactively accessed by selecting specific objects of the BIM, i.e. connecting the 3D position of the sensors installed with additional digital documentation. Such innovative BIM objects, which form a new BIM family for SHM, can be then reused in other projects, facilitating data archiving and exploitation of data acquired and processed. The application of advanced modeling techniques allows for the reduction of time and costs of the generation process, and support cooperation between different disciplines using a central workspace. However, it also reveals new challenges for parametric software and exchange formats. The case study presented is the medieval bridge Azzone Visconti in Lecco (Italy, in which multi-temporal vertical movements during load testing were integrated into H-BIM.

  18. Health monitoring and rehabilitation of a concrete structure using intelligent materials

    Science.gov (United States)

    Song, G.; Mo, Y. L.; Otero, K.; Gu, H.

    2006-04-01

    This paper presents the concept of an intelligent reinforced concrete structure (IRCS) and its application in structural health monitoring and rehabilitation. The IRCS has multiple functions which include self-rehabilitation, self-vibration damping, and self-structural health monitoring. These functions are enabled by two types of intelligent (smart) materials: shape memory alloys (SMAs) and piezoceramics. In this research, Nitinol type SMA and PZT (lead zirconate titanate) type piezoceramics are used. The proposed concrete structure is reinforced by martensite Nitinol cables using the method of post-tensioning. The martensite SMA significantly increases the concrete's damping property and its ability to handle large impact. In the presence of cracks due to explosions or earthquakes, by electrically heating the SMA cables, the SMA cables contract and close up the cracks. In this research, PZT patches are embedded in the concrete structure to detect possible cracks inside the concrete structure. The wavelet packet analysis method is then applied as a signal-processing tool to analyze the sensor signals. A damage index is defined to describe the damage severity for health monitoring purposes. In addition, by monitoring the electric resistance change of the SMA cables, the crack width can be estimated. To demonstrate this concept, a concrete beam specimen with reinforced SMA cables and with embedded PZT patches is fabricated. Experiments demonstrate that the IRC has the ability of self-sensing and self-rehabilitation. Three-point bending tests were conducted. During the loading process, a crack opens up to 0.47 inches. Upon removal of the load and heating the SMA cables, the crack closes up. The damage index formed by wavelet packet analysis of the PZT sensor data predicts and confirms the onset and severity of the crack during the loading. Also during the loading, the electrical resistance value of the SMA cable changes by up to 27% and this phenomenon is used to

  19. A mobile sensing system for structural health monitoring: design and validation

    International Nuclear Information System (INIS)

    Zhu, Dapeng; Yi, Xiaohua; Wang, Yang; Lee, Kok-Meng; Guo, Jiajie

    2010-01-01

    This paper describes a new approach using mobile sensor networks for structural health monitoring. Compared with static sensors, mobile sensor networks offer flexible system architectures with adaptive spatial resolutions. The paper first describes the design of a mobile sensing node that is capable of maneuvering on structures built with ferromagnetic materials. The mobile sensing node can also attach/detach an accelerometer onto/from the structural surface. The performance of the prototype mobile sensor network has been validated through laboratory experiments. Two mobile sensing nodes are adopted for navigating on a steel portal frame and providing dense acceleration measurements. Transmissibility function analysis is conducted to identify structural damage using data collected by the mobile sensing nodes. This preliminary work is expected to spawn transformative changes in the use of mobile sensors for future structural health monitoring

  20. A mobile sensing system for structural health monitoring: design and validation

    Science.gov (United States)

    Zhu, Dapeng; Yi, Xiaohua; Wang, Yang; Lee, Kok-Meng; Guo, Jiajie

    2010-05-01

    This paper describes a new approach using mobile sensor networks for structural health monitoring. Compared with static sensors, mobile sensor networks offer flexible system architectures with adaptive spatial resolutions. The paper first describes the design of a mobile sensing node that is capable of maneuvering on structures built with ferromagnetic materials. The mobile sensing node can also attach/detach an accelerometer onto/from the structural surface. The performance of the prototype mobile sensor network has been validated through laboratory experiments. Two mobile sensing nodes are adopted for navigating on a steel portal frame and providing dense acceleration measurements. Transmissibility function analysis is conducted to identify structural damage using data collected by the mobile sensing nodes. This preliminary work is expected to spawn transformative changes in the use of mobile sensors for future structural health monitoring.

  1. Patient-centered activity monitoring in the self-management of chronic health conditions.

    Science.gov (United States)

    Chiauzzi, Emil; Rodarte, Carlos; DasMahapatra, Pronabesh

    2015-04-09

    As activity tracking devices become smaller, cheaper, and more consumer-accessible, they will be used more extensively across a wide variety of contexts. The expansion of activity tracking and personal data collection offers the potential for patient engagement in the management of chronic diseases. Consumer wearable devices for activity tracking have shown promise in post-surgery recovery in cardiac patients, pulmonary rehabilitation, and activity counseling in diabetic patients, among others. Unfortunately, the data generated by wearable devices is seldom integrated into programmatic self-management chronic disease regimens. In addition, there is lack of evidence supporting sustained use or effects on health outcomes, as studies have primarily focused on establishing the feasibility of monitoring activity and the association of measured activity with short-term benefits. Monitoring devices can make a direct and real-time impact on self-management, but the validity and reliability of measurements need to be established. In order for patients to become engaged in wearable data gathering, key patient-centered issues relating to usefulness in care, motivation, the safety and privacy of information, and clinical integration need to be addressed. Because the successful usage of wearables requires an ability to comprehend and utilize personal health data, the user experience should account for individual differences in numeracy skills and apply evidence-based behavioral science principles to promote continued engagement. Activity monitoring has the potential to engage patients as advocates in their personalized care, as well as offer health care providers real world assessments of their patients' daily activity patterns. This potential will be realized as the voice of the chronic disease patients is accounted for in the design of devices, measurements are validated against existing clinical assessments, devices become part of the treatment 'prescription', behavior

  2. On the general principles of health monitoring of population living in NPP environment

    International Nuclear Information System (INIS)

    Dimitrov, P.

    1991-01-01

    The basic principles of health monitoring and its significance as a source of information for the organization and regulation of health control are pointed out. Attention is drawn to the surveillance and quantitative evaluation of the factors affecting individuals, as well as their consequencies. The necessity of determining the real health status of the population, as well as of forecasting its future changes and of evaluating the prognosticated changes is stressed. The nosologic units and classes of diseases, relevant to radiation action, should be put into constant observation. Special attention is paid to the study of demographic indices, congenital malformations, neoplasms of thyroid, lungs, leucoses, osteosarcomas, reproduction ability based on data for sterile marriages, spontaneous abortions, death-borns and perinatal lethality. 9 refs., 1 tab

  3. Health monitoring of pipeline girth weld using empirical mode decomposition

    Science.gov (United States)

    Rezaei, Davood; Taheri, Farid

    2010-05-01

    In the present paper the Hilbert-Huang transform (HHT), as a time-series analysis technique, has been combined with a local diagnostic approach in an effort to identify flaws in pipeline girth welds. This method is based on monitoring the free vibration signals of the pipe at its healthy and flawed states, and processing the signals through the HHT and its associated signal decomposition technique, known as empirical mode decomposition (EMD). The EMD method decomposes the vibration signals into a collection of intrinsic mode functions (IMFs). The deviations in structural integrity, measured from a healthy-state baseline, are subsequently evaluated by two damage sensitive parameters. The first is a damage index, referred to as the EM-EDI, which is established based on an energy comparison of the first or second IMF of the vibration signals, before and after occurrence of damage. The second parameter is the evaluation of the lag in instantaneous phase, a quantity derived from the HHT. In the developed methodologies, the pipe's free vibration is monitored by piezoceramic sensors and a laser Doppler vibrometer. The effectiveness of the proposed techniques is demonstrated through a set of numerical and experimental studies on a steel pipe with a mid-span girth weld, for both pressurized and nonpressurized conditions. To simulate a crack, a narrow notch is cut on one side of the girth weld. Several damage scenarios, including notches of different depths and at various locations on the pipe, are investigated. Results from both numerical and experimental studies reveal that in all damage cases the sensor located at the notch vicinity could successfully detect the notch and qualitatively predict its severity. The effect of internal pressure on the damage identification method is also monitored. Overall, the results are encouraging and promise the effectiveness of the proposed approaches as inexpensive systems for structural health monitoring purposes.

  4. The 'global health' education framework: a conceptual guide for monitoring, evaluation and practice

    Science.gov (United States)

    2011-01-01

    Background In the past decades, the increasing importance of and rapid changes in the global health arena have provoked discussions on the implications for the education of health professionals. In the case of Germany, it remains yet unclear whether international or global aspects are sufficiently addressed within medical education. Evaluation challenges exist in Germany and elsewhere due to a lack of conceptual guides to develop, evaluate or assess education in this field. Objective To propose a framework conceptualising 'global health' education (GHE) in practice, to guide the evaluation and monitoring of educational interventions and reforms through a set of key indicators that characterise GHE. Methods Literature review; deduction. Results and Conclusion Currently, 'new' health challenges and educational needs as a result of the globalisation process are discussed and linked to the evolving term 'global health'. The lack of a common definition of this term complicates attempts to analyse global health in the field of education. The proposed GHE framework addresses these problems and presents a set of key characteristics of education in this field. The framework builds on the models of 'social determinants of health' and 'globalisation and health' and is oriented towards 'health for all' and 'health equity'. It provides an action-oriented construct for a bottom-up engagement with global health by the health workforce. Ten indicators are deduced for use in monitoring and evaluation. PMID:21501519

  5. School absence and treatment in school children with respiratory symptoms in the Netherlands: Data from the Child Health Monitoring System

    NARCIS (Netherlands)

    Spee-van Der Wekke, J.; Meulmeester, J.F.; Radder, J.J.; Verloove-Vanhorick, S.P.

    1998-01-01

    Study objective - To assess the prevalence of respiratory problems, and the relation of these problems with school attendance, medicine use, and medical treatment. Design - The Child Health Monitoring System. Setting - Nineteen public health services across the Netherlands. Participants - 5186

  6. Choices in recreational water quality monitoring: new opportunities and health risk trade-offs

    Science.gov (United States)

    Nevers, Meredith B.; Byappanahalli, Muruleedhara N.; Whitman, Richard L.

    2013-01-01

    With the recent release of new recreational water quality monitoring criteria, there are more options for regulatory agencies seeking to protect beachgoers from waterborne pathogens. Included are methods that can reduce analytical time, providing timelier estimates of water quality, but the application of these methods has not been examined at most beaches for expectation of health risk and management decisions. In this analysis, we explore health and monitoring outcomes expected at Lake Michigan beaches using protocols for indicator bacteria including culturable Escherichia coli (E. coli; EC), culturable enterococci (ENT), and enterococci as analyzed by qPCR (QENT). Correlations between method results were generally high, except at beaches with historically high concentrations of EC. The “beach action value” was exceeded most often when using EC or ENT as the target indicator; QENT exceeded the limit far less frequently. Measured water quality between years was varied. Although methods with equivalent health expectation have been established, the lack of relationship among method outcomes and annual changes in mean indicator bacteria concentrations complicates the decision-making process. The monitoring approach selected by beach managers may be a combination of available tools that maximizes timely health protection, cost efficiency, and collaboration among beach jurisdictions.

  7. Administrative integration of vertical HIV monitoring and evaluation into health systems: a case study from South Africa

    Directory of Open Access Journals (Sweden)

    Mary Kawonga

    2013-01-01

    Full Text Available Background: In light of an increasing global focus on health system strengthening and integration of vertical programmes within health systems, methods and tools are required to examine whether general health service managers exercise administrative authority over vertical programmes. Objective: To measure the extent to which general health service (horizontal managers, exercise authority over the HIV programme's monitoring and evaluation (M&E function, and to explore factors that may influence this exercise of authority. Methods: This cross-sectional survey involved interviews with 51 managers. We drew ideas from the concept of ‘exercised decision-space’ – traditionally used to measure local level managers’ exercise of authority over health system functions following decentralisation. Our main outcome measure was the degree of exercised authority – classified as ‘low’, ‘medium’ or ‘high’ – over four M&E domains (HIV data collection, collation, analysis, and use. We applied ordinal logistic regression to assess whether actor type (horizontal or vertical was predictive of a higher degree of exercised authority, independent of management capacity (training and experience, and M&E knowledge. Results: Relative to vertical managers, horizontal managers had lower HIV M&E knowledge, were more likely to exercise a higher degree of authority over HIV data collation (OR 7.26; CI: 1.9, 27.4, and less likely to do so over HIV data use (OR 0.19; CI: 0.05, 0.84. A higher HIV M&E knowledge score was predictive of a higher exercised authority over HIV data use (OR 1.22; CI: 0.99, 1.49. There was no association between management capacity and degree of authority. Conclusions: This study demonstrates a HIV M&E model that is neither fully vertical nor integrated. The HIV M&E is characterised by horizontal managers producing HIV information while vertical managers use it. This may undermine policies to strengthen integrated health system

  8. Attitudes of heart failure patients and health care providers towards mobile phone-based remote monitoring.

    Science.gov (United States)

    Seto, Emily; Leonard, Kevin J; Masino, Caterina; Cafazzo, Joseph A; Barnsley, Jan; Ross, Heather J

    2010-11-29

    Mobile phone-based remote patient monitoring systems have been proposed for heart failure management because they are relatively inexpensive and enable patients to be monitored anywhere. However, little is known about whether patients and their health care providers are willing and able to use this technology. The objective of our study was to assess the attitudes of heart failure patients and their health care providers from a heart function clinic in a large urban teaching hospital toward the use of mobile phone-based remote monitoring. A questionnaire regarding attitudes toward home monitoring and technology was administered to 100 heart failure patients (94/100 returned a completed questionnaire). Semi-structured interviews were also conducted with 20 heart failure patients and 16 clinicians to determine the perceived benefits and barriers to using mobile phone-based remote monitoring, as well as their willingness and ability to use the technology. The survey results indicated that the patients were very comfortable using mobile phones (mean rating 4.5, SD 0.6, on a five-point Likert scale), even more so than with using computers (mean 4.1, SD 1.1). The difference in comfort level between mobile phones and computers was statistically significant (Pmobile phones to view health information (mean 4.4, SD 0.9). Patients and clinicians were willing to use the system as long as several conditions were met, including providing a system that was easy to use with clear tangible benefits, maintaining good patient-provider communication, and not increasing clinical workload. Clinicians cited several barriers to implementation of such a system, including lack of remuneration for telephone interactions with patients and medicolegal implications. Patients and clinicians want to use mobile phone-based remote monitoring and believe that they would be able to use the technology. However, they have several reservations, such as potential increased clinical workload, medicolegal

  9. A systematic approach to the planning, implementation, monitoring, and evaluation of integrated health services.

    Science.gov (United States)

    Reynolds, Heidi W; Sutherland, Elizabeth G

    2013-05-06

    Because of the current emphasis and enthusiasm focused on integration of health systems, there is a risk of piling resources into integrated strategies without the necessary systems in place to monitor their progress adequately or to measure impact, and to learn from these efforts. The rush to intervene without adequate monitoring and evaluation will continue to result in a weak evidence base for decision making and resource allocation. Program planning and implementation are inextricability linked to monitoring and evaluation. Country level guidance is needed to identify country-specific integrated strategies, thereby increasing country ownership. This paper focuses on integrated health services but takes into account how health services are influenced by the health system, managed by programs, and made up of interventions. We apply the principles in existing comprehensive monitoring and evaluation (M&E) frameworks in order to outline a systematic approach to the M&E of integration for the country level. The approach is grounded by first defining the country-specific health challenges that integration is intended to affect. Priority points of contact for care can directly influence health, and essential packages of integration for all major client presentations need to be defined. Logic models are necessary to outline the plausible causal pathways and define the inputs, roles and responsibilities, indicators, and data sources across the health system. Finally, we recommend improvements to the health information system and in data use to ensure that data are available to inform decisions, because changes in the M&E function to make it more integrated will also facilitate integration in the service delivery, planning, and governance components. This approach described in the paper is the ideal, but its application at the country level can help reveal gaps and guide decisions related to what health services to prioritize for integration, help plan for how to

  10. System Health Monitoring Using a Novel Method: Security Unified Process

    Directory of Open Access Journals (Sweden)

    Alireza Shameli-Sendi

    2012-01-01

    and change management, and project management. The dynamic dimension, or phases, contains inception, analysis and design, construction, and monitoring. Risk assessment is a major part of the ISMS process. In SUP, we present a risk assessment model, which uses a fuzzy expert system to assess risks in organization. Since, the classification of assets is an important aspect of risk management and ensures that effective protection occurs, a Security Cube is proposed to identify organization assets as an asset classification model. The proposed model leads us to have an offline system health monitoring tool that is really a critical need in any organization.

  11. Advanced Machine learning Algorithm Application for Rotating Machine Health Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Kanemoto, Shigeru; Watanabe, Masaya [The University of Aizu, Aizuwakamatsu (Japan); Yusa, Noritaka [Tohoku University, Sendai (Japan)

    2014-08-15

    The present paper tries to evaluate the applicability of conventional sound analysis techniques and modern machine learning algorithms to rotating machine health monitoring. These techniques include support vector machine, deep leaning neural network, etc. The inner ring defect and misalignment anomaly sound data measured by a rotating machine mockup test facility are used to verify the above various kinds of algorithms. Although we cannot find remarkable difference of anomaly discrimination performance, some methods give us the very interesting eigen patterns corresponding to normal and abnormal states. These results will be useful for future more sensitive and robust anomaly monitoring technology.

  12. Advanced Machine learning Algorithm Application for Rotating Machine Health Monitoring

    International Nuclear Information System (INIS)

    Kanemoto, Shigeru; Watanabe, Masaya; Yusa, Noritaka

    2014-01-01

    The present paper tries to evaluate the applicability of conventional sound analysis techniques and modern machine learning algorithms to rotating machine health monitoring. These techniques include support vector machine, deep leaning neural network, etc. The inner ring defect and misalignment anomaly sound data measured by a rotating machine mockup test facility are used to verify the above various kinds of algorithms. Although we cannot find remarkable difference of anomaly discrimination performance, some methods give us the very interesting eigen patterns corresponding to normal and abnormal states. These results will be useful for future more sensitive and robust anomaly monitoring technology

  13. Damage Detection with Streamlined Structural Health Monitoring Data

    OpenAIRE

    Li, Jian; Deng, Jun; Xie, Weizhi

    2015-01-01

    The huge amounts of sensor data generated by large scale sensor networks in on-line structural health monitoring (SHM) systems often overwhelms the systems’ capacity for data transmission and analysis. This paper presents a new concept for an integrated SHM system in which a streamlined data flow is used as a unifying thread to integrate the individual components of on-line SHM systems. Such an integrated SHM system has a few desirable functionalities including embedded sensor data compressio...

  14. Unobtrusiveness in mHealth design and use : A systematic literature study

    NARCIS (Netherlands)

    Niezen, Maartje

    2015-01-01

    mHealth still is an emerging and rapidly developing field of study. mHealth promises to increase access to care at lower costs and with greater acceptance. The increased acceptance of mHealth is often related to the diminished obtrusiveness of the device monitoring, coaching, diagnosing, and / or

  15. Flexible High Energy-Conversion Sensing Materials for Structural Health Monitoring, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The applicant is developing flexible highly-efficient piezoelectric materials for use in structural health monitoring (SHM) as contemplated in the solicitation...

  16. Structural Health Monitoring with Fiber Bragg Grating and Piezo Arrays, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — IFOS and its research institute collaborator, Washington State University (WSU), have demonstrated feasibility of a structural health monitoring (SHM) system for...

  17. A pervasive health monitoring service system based on ubiquitous network technology.

    Science.gov (United States)

    Lin, Chung-Chih; Lee, Ren-Guey; Hsiao, Chun-Chieh

    2008-07-01

    The phenomenon of aging society has derived problems such as shortage of medical resources and reduction of quality in healthcare services. This paper presents a system infrastructure for pervasive and long-term healthcare applications, i.e. a ubiquitous network composed of wireless local area network (WLAN) and cable television (CATV) network serving as a platform for monitoring physiological signals. Users can record vital signs including heart rate, blood pressure, and body temperature anytime either at home or at frequently visited public places in order to create a personal health file. The whole system was formally implemented in December 2004. Analysis of 2000 questionnaires indicates that 85% of users were satisfied with the provided community-wide healthcare services. Among the services provided by our system, health consultation services offered by family doctors was rated the most important service by 17.9% of respondents, and was followed by control of one's own health condition (16.4% of respondents). Convenience of data access was rated most important by roughly 14.3% of respondents. We proposed and implemented a long-term healthcare system integrating WLAN and CATV networks in the form of a ubiquitous network providing a service platform for physiological monitoring. This system can classify the health levels of the resident according to the variation tendency of his or her physiological signal for important reference of health management.

  18. Multi-Wave and Hybrid Imaging Techniques: A New Direction for Nondestructive Testing and Structural Health Monitoring

    Directory of Open Access Journals (Sweden)

    Yuhua Cheng

    2013-11-01

    Full Text Available In this article, the state-of-the-art multi-wave and hybrid imaging techniques in the field of nondestructive evaluation and structural health monitoring were comprehensively reviewed. A new direction for assessment and health monitoring of various structures by capitalizing the advantages of those imaging methods was discussed. Although sharing similar system configurations, the imaging physics and principles of multi-wave phenomena and hybrid imaging methods are inherently different. After a brief introduction of nondestructive evaluation (NDE , structure health monitoring (SHM and their related challenges, several recent advances that have significantly extended imaging methods from laboratory development into practical applications were summarized, followed by conclusions and discussion on future directions.

  19. Design and Development of Intelligent Electrodes for Future Digital Health Monitoring: A Review

    Science.gov (United States)

    Khairuddin, A. M.; Azir, K. N. F. Ku; Kan, P. Eh

    2018-03-01

    Electrodes are sensors used in electrocardiography (ECG) monitoring system to diagnose heart diseases. Over the years, diverse types of electrodes have been designed and developed to improve ECG monitoring system. However, more recently, with the technological advances and capabilities from the Internet of Things (IoT), cloud computing and data analytics in personalized healthcare, researchers are attempting to design and develop more effective as well as flexible ECG devices by using intelligent electrodes. This paper reviews previous works on electrodes used in electrocardiography (ECG) monitoring devices to identify the key ftures for designing and developing intelligent electrodes in digital health monitoring devices.

  20. Test-bed for the remote health monitoring system for bridge structures using FBG sensors

    Science.gov (United States)

    Lee, Chin-Hyung; Park, Ki-Tae; Joo, Bong-Chul; Hwang, Yoon-Koog

    2009-05-01

    This paper reports on test-bed for the long-term health monitoring system for bridge structures employing fiber Bragg grating (FBG) sensors, which is remotely accessible via the web, to provide real-time quantitative information on a bridge's response to live loading and environmental changes, and fast prediction of the structure's integrity. The sensors are attached on several locations of the structure and connected to a data acquisition system permanently installed onsite. The system can be accessed through remote communication using an optical cable network, through which the evaluation of the bridge behavior under live loading can be allowed at place far away from the field. Live structural data are transmitted continuously to the server computer at the central office. The server computer is connected securely to the internet, where data can be retrieved, processed and stored for the remote web-based health monitoring. Test-bed revealed that the remote health monitoring technology will enable practical, cost-effective, and reliable condition assessment and maintenance of bridge structures.

  1. International health research monitoring: exploring a scientific and a cooperative approach using participatory action research.

    Science.gov (United States)

    Chantler, Tracey; Cheah, Phaik Yeong; Miiro, George; Hantrakum, Viriya; Nanvubya, Annet; Ayuo, Elizabeth; Kivaya, Esther; Kidola, Jeremiah; Kaleebu, Pontiano; Parker, Michael; Njuguna, Patricia; Ashley, Elizabeth; Guerin, Philippe J; Lang, Trudie

    2014-02-17

    To evaluate and determine the value of monitoring models developed by the Mahidol Oxford Tropical Research Unit and the East African Consortium for Clinical Research, consider how this can be measured and explore monitors' and investigators' experiences of and views about the nature, purpose and practice of monitoring. A case study approach was used within the context of participatory action research because one of the aims was to guide and improve practice. 34 interviews, five focus groups and observations of monitoring practice were conducted. Fieldwork occurred in the places where the monitoring models are coordinated and applied in Thailand, Cambodia, Uganda and Kenya. Participants included those coordinating the monitoring schemes, monitors, senior investigators and research staff. Transcribed textual data from field notes, interviews and focus groups was imported into a qualitative data software program (NVIVO V. 10) and analysed inductively and thematically by a qualitative researcher. The initial coding framework was reviewed internally and two main categories emerged from the subsequent interrogation of the data. The categories that were identified related to the conceptual framing and nature of monitoring, and the practice of monitoring, including relational factors. Particular emphasis was given to the value of a scientific and cooperative style of monitoring as a means of enhancing data quality, trust and transparency. In terms of practice the primary purpose of monitoring was defined as improving the conduct of health research and increasing the capacity of researchers and trial sites. The models studied utilise internal and network wide expertise to improve the ethics and quality of clinical research. They demonstrate how monitoring can be a scientific and constructive exercise rather than a threatening process. The value of cooperative relations needs to be given more emphasis in monitoring activities, which seek to ensure that research protects

  2. Accelerometer-based on-body sensor localization for health and medical monitoring applications

    Science.gov (United States)

    Vahdatpour, Alireza; Amini, Navid; Xu, Wenyao; Sarrafzadeh, Majid

    2011-01-01

    In this paper, we present a technique to recognize the position of sensors on the human body. Automatic on-body device localization ensures correctness and accuracy of measurements in health and medical monitoring systems. In addition, it provides opportunities to improve the performance and usability of ubiquitous devices. Our technique uses accelerometers to capture motion data to estimate the location of the device on the user’s body, using mixed supervised and unsupervised time series analysis methods. We have evaluated our technique with extensive experiments on 25 subjects. On average, our technique achieves 89% accuracy in estimating the location of devices on the body. In order to study the feasibility of classification of left limbs from right limbs (e.g., left arm vs. right arm), we performed analysis, based of which no meaningful classification was observed. Personalized ultraviolet monitoring and wireless transmission power control comprise two immediate applications of our on-body device localization approach. Such applications, along with their corresponding feasibility studies, are discussed. PMID:22347840

  3. Novel biospectroscopy sensor technologies towards environmental health monitoring in urban environments

    International Nuclear Information System (INIS)

    Obinaju, Blessing E.; Martin, Francis L.

    2013-01-01

    Biospectroscopy is an emerging inter-disciplinary field that exploits the application of sensor technologies [e.g., Fourier-transform infrared spectroscopy, Raman spectroscopy] to lend novel insights into biological questions. Methods involved are relatively non-destructive so samples can subsequently be analysed by more conventional approaches, facilitating deeper mechanistic insights. Fingerprint spectra are derived and these consist of wavenumber–absorbance intensities; within a typical biological experiment, a complex dataset is quickly generated. Biological samples range from biofluids to cytology to tissues derived from human or sentinel sources, and analyses can be carried out ex vivo or in situ in living tissue. A reference range of a designated normal state can be derived; anything outside this is potentially atypical and discriminating chemical entities identified. Computational approaches allow one to minimize within-category confounding factors. Because of ease of sample preparation, low-cost and high-throughput capability, biospectroscopy approaches herald a new greener means of environmental health monitoring in urban environments. -- Highlights: ► Biospectroscopy is an emerging inter-disciplinary field. ► Physical sciences sensors with computational tools lend novel insights into biology. ► Analyse in a non-destructive manner; correlate with conventional methodologies. ► Low-cost, high-throughput and label-free (i.e., a green) technology. ► Can be applied to environmental health monitoring in urban environments. -- Biospectroscopy techniques allow the fingerprinting of biological material in a wide range of contexts that could relate to environmental health monitoring in urban environments

  4. Space Qualified Non-Destructive Evaluation and Structural Health Monitoring Technology, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NextGen Aeronautics is proposing an innovative space qualified non-destructive evaluation and health monitoring technology. The technology is built on concepts...

  5. Review on energy harvesting for structural health monitoring in aeronautical applications

    Science.gov (United States)

    Le, Minh Quyen; Capsal, Jean-Fabien; Lallart, Mickaël; Hebrard, Yoann; Van Der Ham, Andre; Reffe, Nicolas; Geynet, Lionel; Cottinet, Pierre-Jean

    2015-11-01

    This paper reviews recent developments in energy harvesting technologies for structural health monitoring (SHM) in aeronautical applications. Aeronautical industries show a great deal of interest in obtaining technologies that can be used to monitor the health of machinery and structures. In particular, the need for self-sufficient monitoring of structures has been ever-increasing in recent years. Autonomous SHM systems typically include embedded sensors, and elements for data acquisition, wireless communication, and energy harvesting. Among all of these components, this paper focuses on energy harvesting technologies. Actually, low-power sensors and wireless communication components are used in newer SHM systems, and a number of researchers have recently investigated such techniques to extract energy from the local environment to power these stand-alone systems. The first part of the paper is dedicated to the different energy sources available in aeronautical applications, i.e., for airplanes and helicopters. The second part gives a presentation of the various devices developed for converting ambient energy into electric power. The last part is dedicated to a comparison of the different technologies and the future development of energy harvesting for aeronautical applications.

  6. Dynamics behind the scale up of evidence-based obesity prevention: protocol for a multi-site case study of an electronic implementation monitoring system in health promotion practice.

    Science.gov (United States)

    Conte, Kathleen P; Groen, Sisse; Loblay, Victoria; Green, Amanda; Milat, Andrew; Persson, Lina; Innes-Hughes, Christine; Mitchell, Jo; Thackway, Sarah; Williams, Mandy; Hawe, Penelope

    2017-12-06

    The effectiveness of many interventions to promote health and prevent disease has been well established. The imperative has therefore shifted from amassing evidence about efficacy to scale-up to maximise population-level health gains. Electronic implementation monitoring, or 'e-monitoring', systems have been designed to assist and track the delivery of preventive policies and programs. However, there is little evidence on whether e-monitoring systems improve the dissemination, adoption, and ongoing delivery of evidence-based preventive programs. Also, given considerable difficulties with e-monitoring systems in the clinical sector, scholars have called for a more sophisticated re-examination of e-monitoring's role in enhancing implementation. In the state of New South Wales (NSW), Australia, the Population Health Information Management System (PHIMS) was created to support the dissemination of obesity prevention programs to 6000 childcare centres and elementary schools across all 15 local health districts. We have established a three-way university-policymaker-practice research partnership to investigate the impact of PHIMS on practice, how PHIMS is used, and how achievement of key performance indicators of program adoption may be associated with local contextual factors. Our methods encompass ethnographic observation, key informant interviews and participatory workshops for data interpretation at a state and local level. We use an on-line social network analysis of the collaborative relationships across local health district health promotion teams to explore the relationship between PHIMS use and the organisational structure of practice. Insights will be sensitised by institutional theory, practice theory and complex adaptive system thinking, among other theories which make sense of socio-technical action. Our working hypothesis is that the science of getting evidence-based programs into practice rests on an in-depth understanding of the role they play in the on

  7. Passive Wireless Sensor System for Space and Structural Health Monitoring, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Aviana Molecular (Aviana) and the University of Central Florida (UCF) propose to develop a Passive Wireless Sensor System (PWSS) for Structural Health Monitoring...

  8. Propulsion Health Monitoring of a Turbine Engine Disk using Spin Test Data

    Data.gov (United States)

    National Aeronautics and Space Administration — On line detection techniques to monitor the health of rotating engine components are becoming increasingly attractive options to aircraft engine companies in order...

  9. A Simple Demonstration of Concrete Structural Health Monitoring Framework

    Energy Technology Data Exchange (ETDEWEB)

    Mahadevan, Sankaran [Idaho National Lab. (INL), Idaho Falls, ID (United States); Agarwal, Vivek [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cai, Guowei [Idaho National Lab. (INL), Idaho Falls, ID (United States); Nath, Paromita [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bao, Yanqing [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bru Brea, Jose Maria [Idaho National Lab. (INL), Idaho Falls, ID (United States); Koester, David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Adams, Douglas [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kosson, David [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    Assessment and management of aging concrete structures in nuclear power plants require a more systematic approach than simple reliance on existing code margins of safety. Structural health monitoring of concrete structures aims to understand the current health condition of a structure based on heterogeneous measurements to produce high confidence actionable information regarding structural integrity that supports operational and maintenance decisions. This ongoing research project is seeking to develop a probabilistic framework for health diagnosis and prognosis of aging concrete structures in a nuclear power plant subjected to physical, chemical, environment, and mechanical degradation. The proposed framework consists of four elements—damage modeling, monitoring, data analytics, and uncertainty quantification. This report describes a proof-of-concept example on a small concrete slab subjected to a freeze-thaw experiment that explores techniques in each of the four elements of the framework and their integration. An experimental set-up at Vanderbilt University’s Laboratory for Systems Integrity and Reliability is used to research effective combination of full-field techniques that include infrared thermography, digital image correlation, and ultrasonic measurement. The measured data are linked to the probabilistic framework: the thermography, digital image correlation data, and ultrasonic measurement data are used for Bayesian calibration of model parameters, for diagnosis of damage, and for prognosis of future damage. The proof-of-concept demonstration presented in this report highlights the significance of each element of the framework and their integration.

  10. A Method for Vibration-Based Structural Interrogation and Health Monitoring Based on Signal Cross-Correlation

    International Nuclear Information System (INIS)

    Trendafilova, I

    2011-01-01

    Vibration-based structural interrogation and health monitoring is a field which is concerned with the estimation of the current state of a structure or a component from its vibration response with regards to its ability to perform its intended function appropriately. One way to approach this problem is through damage features extracted from the measured structural vibration response. This paper suggests to use a new concept for the purposes of vibration-based health monitoring. The correlation between two signals, an input and an output, measured on the structure is used to develop a damage indicator. The paper investigates the applicability of the signal cross-correlation and a nonlinear alternative, the average mutual information between the two signals, for the purposes of structural health monitoring and damage assessment. The suggested methodology is applied and demonstrated for delamination detection in a composite beam.

  11. Bayesian Computational Sensor Networks for Aircraft Structural Health Monitoring

    Science.gov (United States)

    2016-02-02

    Virginia 22203 Air Force Research Laboratory Air Force Materiel Command 1 Final Performance Report: AFOSR T.C. Henderson , V.J. Mathews, and D...AFRL-AFOSR-VA-TR-2016-0094 Bayesian Computational Sensor Networks for Aircraft Structural Health Monitoring. Thomas Henderson UNIVERSITY OF UTAH SALT...The people who worked on this project include: Thomas C. Henderson , John Mathews, Jingru Zhou, Daimei Zhij, Ahmad Zoubi, Sabita Nahata, Dan Adams

  12. PhysioDroid: combining wearable health sensors and mobile devices for a ubiquitous, continuous, and personal monitoring.

    Science.gov (United States)

    Banos, Oresti; Villalonga, Claudia; Damas, Miguel; Gloesekoetter, Peter; Pomares, Hector; Rojas, Ignacio

    2014-01-01

    Technological advances on the development of mobile devices, medical sensors, and wireless communication systems support a new generation of unobtrusive, portable, and ubiquitous health monitoring systems for continuous patient assessment and more personalized health care. There exist a growing number of mobile apps in the health domain; however, little contribution has been specifically provided, so far, to operate this kind of apps with wearable physiological sensors. The PhysioDroid, presented in this paper, provides a personalized means to remotely monitor and evaluate users' conditions. The PhysioDroid system provides ubiquitous and continuous vital signs analysis, such as electrocardiogram, heart rate, respiration rate, skin temperature, and body motion, intended to help empower patients and improve clinical understanding. The PhysioDroid is composed of a wearable monitoring device and an Android app providing gathering, storage, and processing features for the physiological sensor data. The versatility of the developed app allows its use for both average users and specialists, and the reduced cost of the PhysioDroid puts it at the reach of most people. Two exemplary use cases for health assessment and sports training are presented to illustrate the capabilities of the PhysioDroid. Next technical steps include generalization to other mobile platforms and health monitoring devices.

  13. Acoustic emission detection with fiber optical sensors for dry cask storage health monitoring

    Science.gov (United States)

    Lin, Bin; Bao, Jingjing; Yu, Lingyu; Giurgiutiu, Victor

    2016-04-01

    The increasing number, size, and complexity of nuclear facilities deployed worldwide are increasing the need to maintain readiness and develop innovative sensing materials to monitor important to safety structures (ITS). In the past two decades, an extensive sensor technology development has been used for structural health monitoring (SHM). Technologies for the diagnosis and prognosis of a nuclear system, such as dry cask storage system (DCSS), can improve verification of the health of the structure that can eventually reduce the likelihood of inadvertently failure of a component. Fiber optical sensors have emerged as one of the major SHM technologies developed particularly for temperature and strain measurements. This paper presents the development of optical equipment that is suitable for ultrasonic guided wave detection for active SHM in the MHz range. An experimental study of using fiber Bragg grating (FBG) as acoustic emission (AE) sensors was performed on steel blocks. FBG have the advantage of being durable, lightweight, and easily embeddable into composite structures as well as being immune to electromagnetic interference and optically multiplexed. The temperature effect on the FBG sensors was also studied. A multi-channel FBG system was developed and compared with piezoelectric based AE system. The paper ends with conclusions and suggestions for further work.

  14. Health Monitoring for Coated Steel Belts in an Elevator System

    Directory of Open Access Journals (Sweden)

    Huaming Lei

    2012-01-01

    Full Text Available This paper presents a method of health monitoring for coated steel belts in an elevator system by measuring the electrical resistance of the ropes embedded in the belt. A model on resistance change caused by fretting wear and stress fatigue has been established. Temperature and reciprocating cycles are also taken into consideration when determining the potential strength degradation of the belts. It is proved by experiments that the method could effectively estimate the health degradation of the most dangerous section as well as other ones along the whole belts.

  15. Real-Time Cloud-Based Health Tracking and Monitoring System in Designed Boundary for Cardiology Patients

    Directory of Open Access Journals (Sweden)

    Aamir Shahzad

    2018-01-01

    Full Text Available Telemonitoring is not a new term, in information technology (IT, which has been employed to remotely monitor the health of patients that are located not in common places, such hospitals or medical centers. For that, wearable medical sensors, such as electrocardiography sensors, blood pressure sensors, and glucometer, have commonly been used to make possible to acquire the real-time information from the remotely located patients; therefore, the medical information is further carried, via the Internet, to perform medical diagnosis and the corresponding treatments. Like in other IT sectors, there has been tremendous progress accounted in medical sectors (and in telemonitoring systems that changes the human life protection against several chronic diseases, and the patient’s medical information can be accessed wirelessly via Wi-Fi and cellular systems. Further, with the advents of cloud computing technology, medical systems are now more efficient and scalable in processing, such as storage and access, the medical information with minimal development costs. This study is also a piece of enhancement made to track and monitor the real-time medical information, bounded in authorized area, through the modeling of private cloud computing. The private cloud-based environment is designed, for patient health monitoring called bounded telemonitoring system, to acquire the real-time medical information of patients that resided in the boundary, inside medical wards and outside medical wards, of the medical center. A new wireless sensor network scenario is designed and modeled to keep or monitor the patients’ health information whole day, 24 hours. This research is a new secured sight towards medical information access and gives directions for future developments in the medical systems.

  16. Electromagnetic fields and health impact: measurements, monitoring and environmental indicators

    International Nuclear Information System (INIS)

    Lubritto, C.; Vetromile, C.; Petraglia, A.; Racioppoli, M.; D'Onofrio, A.

    2008-01-01

    Full text: During the last 10 years there has been a remarkable growth of the attention for problems related to the electromagnetic pollution, motivated by the alert connected to potential risk for the health of persons and due to the increasing diffusion of Bats for mobile telecommunication as EMF sources. Many projects are being realized about the environmental and health impact of electromagnetic field and an important social role is played by specific actions to minimize the risk perception of the population. This study aims to find an innovative approach to these problems through the use of a system of continuous time monitoring of the electromagnetic fields and the individuation of appropriate environmental indicators. The proposed system monitors the electromagnetic fields continuously over time, and is already operating in many southern Italian cities. It works in a very efficient way as a mean for: a) Info to the citizens, thanks to diffusion of daily collected data on Internet Web; b) Control for local administrations and Authorities, due to capability of the system itself to alert when measured values exceed the limits reported by the Italian laws; c) Planning, for the implementation of : 1) New procedures agreed among local environmental control agency, local administrations and mobile Companies for network planning and management of alarm situations; 2) New local guidelines documents concerning the installation and operation of telecommunications apparatus. Moreover, starting from the general principles of the Strategic Environmental Evaluation (VAS), the environmental impacts of EMS field is studied. Based on the model DPSIR (Drivers, Pressure, State, Impacts, Responses), 12 environmental indicators have been chosen providing an immediate and understandable tool to obtain very important information on electromagnetic pollution generated by radio-telecommunication systems. The selected environmental indicators have been applied to 11 cities of the

  17. Rotor health monitoring combining spin tests and data-driven anomaly detection methods

    Data.gov (United States)

    National Aeronautics and Space Administration — Health monitoring is highly dependent on sensor systems that are capable of performing in various engine environmental conditions and able to transmit a signal upon...

  18. Safeguarding the Health of the NASA Astronaut Community: the Need for Expanded Medical Monitoring for Former NASA Astronauts Under the Astronaut Occupational Health Program

    Science.gov (United States)

    Rossi, Meredith; Lee, Lesley; Wear, Mary; Van Baalen, Mary; Rhodes, Bradley

    2016-01-01

    The astronaut community is unique, and may be disproportionately exposed to occupational hazards not commonly seen in other communities. The extent to which the demands of the astronaut occupation and exposure to spaceflight-related hazards affect the health of the astronaut population over the life course is not completely known. Provision of health screening services to active and former astronauts ensures individual, mission, and community health and safety. Currently, the NASA Johnson Space Center (JSC) Flight Medicine Clinic (FMC) provides extensive medical monitoring to active astronauts throughout their careers. Upon retirement, astronauts may voluntarily return to the JSC FMC for an annual preventive exam. However, current retiree monitoring includes only selected screening tests, representing an opportunity for augmentation. The potential latent health effects of spaceflight demand an expanded framework of testing for former astronauts. The need is two-fold: screening tests widely recommended for other aging communities are necessary for astronauts to rule out conditions resulting from the natural aging process (e.g., colonoscopy, mammography), as opposed to conditions resulting directly from the astronaut occupation; and increased breadth of monitoring services will improve the understanding of occupational health risks and longitudinal health of the astronaut community, past, present, and future. To meet this need, NASA has begun an extensive exploration of the overall approach, cost, and policy implications of expanding existing medical monitoring under the Astronaut Occupational Health program for former NASA astronauts.

  19. Low cost structural health monitoring of bridges using wireless sensors : research summary.

    Science.gov (United States)

    2012-05-01

    Problem: Structural health monitoring is critical to protecting bridges against aging, : failures, and potentially collapse. However, instrumentiation techniques : suffer from non-scalability due to the high cost of instrumentation devices : and inst...

  20. A new approach for structural health monitoring by applying anomaly detection on strain sensor data

    Science.gov (United States)

    Trichias, Konstantinos; Pijpers, Richard; Meeuwissen, Erik

    2014-03-01

    Structural Health Monitoring (SHM) systems help to monitor critical infrastructures (bridges, tunnels, etc.) remotely and provide up-to-date information about their physical condition. In addition, it helps to predict the structure's life and required maintenance in a cost-efficient way. Typically, inspection data gives insight in the structural health. The global structural behavior, and predominantly the structural loading, is generally measured with vibration and strain sensors. Acoustic emission sensors are more and more used for measuring global crack activity near critical locations. In this paper, we present a procedure for local structural health monitoring by applying Anomaly Detection (AD) on strain sensor data for sensors that are applied in expected crack path. Sensor data is analyzed by automatic anomaly detection in order to find crack activity at an early stage. This approach targets the monitoring of critical structural locations, such as welds, near which strain sensors can be applied during construction and/or locations with limited inspection possibilities during structural operation. We investigate several anomaly detection techniques to detect changes in statistical properties, indicating structural degradation. The most effective one is a novel polynomial fitting technique, which tracks slow changes in sensor data. Our approach has been tested on a representative test structure (bridge deck) in a lab environment, under constant and variable amplitude fatigue loading. In both cases, the evolving cracks at the monitored locations were successfully detected, autonomously, by our AD monitoring tool.

  1. Next-Generation Psychiatric Assessment: Using Smartphone Sensors to Monitor Behavior and Mental Health

    Science.gov (United States)

    Ben-Zeev, Dror; Scherer, Emily A.; Wang, Rui; Xie, Haiyi; Campbell, Andrew T.

    2015-01-01

    Objective Optimal mental health care is dependent upon sensitive and early detection of mental health problems. The current study introduces a state-of-the-art method for remote behavioral monitoring that transports assessment out of the clinic and into the environments in which individuals negotiate their daily lives. The objective of this study was examine whether the information captured with multi-modal smartphone sensors can serve as behavioral markers for one’s mental health. We hypothesized that: a) unobtrusively collected smartphone sensor data would be associated with individuals’ daily levels of stress, and b) sensor data would be associated with changes in depression, stress, and subjective loneliness over time. Methods A total of 47 young adults (age range: 19–30 y.o.) were recruited for the study. Individuals were enrolled as a single cohort and participated in the study over a 10-week period. Participants were provided with smartphones embedded with a range of sensors and software that enabled continuous tracking of their geospatial activity (using GPS and WiFi), kinesthetic activity (using multi-axial accelerometers), sleep duration (modeled using device use data, accelerometer inferences, ambient sound features, and ambient light levels), and time spent proximal to human speech (i.e., speech duration using microphone and speech detection algorithms). Participants completed daily ratings of stress, as well as pre/post measures of depression (Patient Health Questionnaire-9), stress (Perceived Stress Scale), and loneliness (Revised UCLA Loneliness Scale). Results Mixed-effects linear modeling showed that sensor-derived geospatial activity (p<.05), sleep duration (p<.05), and variability in geospatial activity (p<.05), were associated with daily stress levels. Penalized functional regression showed associations between changes in depression and sensor-derived speech duration (p<.05), geospatial activity (p<.05), and sleep duration (p<.05). Changes

  2. Wireless Smart Sensor Network System Using SmartBridge Sensor Nodes for Structural Health Monitoring of Existing Concrete Bridges

    Science.gov (United States)

    Gaviña, J. R.; Uy, F. A.; Carreon, J. D.

    2017-06-01

    There are over 8000 bridges in the Philippines today according to the Department of Public Works and Highways (DPWH). Currently, visual inspection is the most common practice in monitoring the structural integrity of bridges. However, visual inspections have proven to be insufficient in determining the actual health or condition of a bridge. Structural Health Monitoring (SHM) aims to give, in real-time, a diagnosis of the actual condition of the bridge. In this study, SmartBridge Sensor Nodes were installed on an existing concrete bridge with American Association of State Highway and Transportation Officials (AASHTO) Type IV Girders to gather vibration of the elements of the bridge. Also, standards on the effective installation of SmartBridge Sensor Nodes, such as location and orientation was determined. Acceleration readings from the sensor were then uploaded to a server, wherein they are monitored against certain thresholds, from which, the health of the bridge will be derived. Final output will be a portal or webpage wherein the information, health, and acceleration readings of the bridge will be available for viewing. With levels of access set for different types of users, the main users will have access to download data and reports. Data transmission and webpage access are available online, making the SHM system wireless.

  3. Wake-up transceivers for structural health monitoring of bridges

    Science.gov (United States)

    Kumberg, T.; Kokert, J.; Younesi, V.; Koenig, S.; Reindl, L. M.

    2016-04-01

    In this article we present a wireless sensor network to monitor the structural health of a large-scale highway bridge in Germany. The wireless sensor network consists of several sensor nodes that use wake-up receivers to realize latency free and low-power communication. The sensor nodes are either equipped with very accurate tilt sensor developed by Northrop Grumman LITEF GmbH or with a Novatel OEM615 GNSS receiver. Relay nodes are required to forward measurement data to a base station located on the bridge. The base station is a gateway that transmits the local measurement data to a remote server where it can be further analyzed and processed. Further on, we present an energy harvesting system to supply the energy demanding GNSS sensor nodes to realize long term monitoring.

  4. Structural health monitoring for fatigue life prediction of orthotropic brdige decks

    NARCIS (Netherlands)

    Pijpers, R.J.M.; Pahlavan, P.L.; Paulissen, J.H.; Hakkesteegt, H.C.; Jansen, T.H.

    2013-01-01

    Infrastructure asset owners are more and more confronted with structures reaching the end of their structural life. Structural Health Monitoring (SHM) systems should provide up-to-date information about the actual condition, as well predict the structural life and required maintenance of the assets

  5. On Site Investigation and Health Monitoring of a Historic Tower in Mantua, Italy

    Directory of Open Access Journals (Sweden)

    Antonella Saisi

    2016-06-01

    Full Text Available The paper describes the strategy adopted to assess the structural condition of the tallest historic tower in Mantua (Italy after the Italian seismic sequence of May–June 2012 and exemplifies the application of health monitoring using (automated operational modal analysis. The post-earthquake survey (including extensive visual inspection, historic and documentary research, non-destructive (ND material testing, and ambient vibration tests highlighted the poor state of preservation of the upper part of the tower; subsequently, a dynamic monitoring system (consisting of a few accelerometers and one temperature sensor was installed in the building to address the preservation of the historic structure, and automated modal identification was continuously performed. Despite the low levels of vibration that existed in operational conditions, the analysis of data collected over a period of about 15 months allowed to assess and model the effects of changing temperature on modal frequencies and to detect the occurrence of abnormal behavior and damage under the changing environment. The monitoring results demonstrate the potential key role of vibration-based structural health monitoring, implemented through low-cost hardware solutions and appropriate software tools, in the preventive conservation and the condition-based maintenance of historic towers.

  6. [Monitoring of environmental pollution in Armenia and certain issues on reproductive health and cytogenetic status of organism].

    Science.gov (United States)

    Tadevosian, N S; Muradian, S A; Tadevosian, A E; Khachatrian, B G; Dzhandzhapanian, A N; Parsadanian, G G; Pogosian, S B; Gevorkian, N B; Guloian, A A

    2012-01-01

    Investigations aimed at the study on the state of environment from the point of pollution by organochlorine pesticides and their metabolites (HCH, DDT, DDE and DDD), as well as on possible unfavorable impact due to carriage of mentioned persistent organic pollutants (POPs) towards reproductive health and cytogenetic status of organism were done. In parallel, monitoring of possible mutagenic components of the environment was also conducted. As to obtained data, residues of organochlorine pesticides are continually determined with high frequency both in environmental media, agricultural foodstuffs and biomedia of rural population of observed region (Aragatsotn marz, Armenia). No changes in mutagenic background were registered. The represented results of the study make fragment of complex social-hygienic, monitoring investigations on environmental quality that would further serve as a platform for working out the recommendations on reduction of environmental pollution and improvement of health protection issues in Armenia.

  7. Recyclable Nonfunctionalized Paper-Based Ultralow-Cost Wearable Health Monitoring System

    KAUST Repository

    Nassar, Joanna M.

    2017-02-15

    A wearable health monitor using low-cost and recyclable paper continuously supervises and assesses body vital conditions simultaneously and in real time, such as blood pressure, heart rate, body temperature, and skin hydration. The affordability and high performance of the integrated “Paper Watch” provide an unprecedented flexible and portable approach for advanced personalized healthcare on the go.

  8. Stress Prediction for Distributed Structural Health Monitoring Using Existing Measurements and Pattern Recognition.

    Science.gov (United States)

    Lu, Wei; Teng, Jun; Zhou, Qiushi; Peng, Qiexin

    2018-02-01

    The stress in structural steel members is the most useful and directly measurable physical quantity to evaluate the structural safety in structural health monitoring, which is also an important index to evaluate the stress distribution and force condition of structures during structural construction and service phases. Thus, it is common to set stress as a measure in steel structural monitoring. Considering the economy and the importance of the structural members, there are only a limited number of sensors that can be placed, which means that it is impossible to obtain the stresses of all members directly using sensors. This study aims to develop a stress response prediction method for locations where there are insufficent sensors, using measurements from a limited number of sensors and pattern recognition. The detailed improved aspects are: (1) a distributed computing process is proposed, where the same pattern is recognized by several subsets of measurements; and (2) the pattern recognition using the subset of measurements is carried out by considering the optimal number of sensors and number of fusion patterns. The validity and feasibility of the proposed method are verified using two examples: the finite-element simulation of a single-layer shell-like steel structure, and the structural health monitoring of the space steel roof of Shenzhen Bay Stadium; for the latter, the anti-noise performance of this method is verified by the stress measurements from a real-world project.

  9. Very High Frequency Monitoring System for Engine Gearbox and Generator Health Management (Postprint)

    National Research Council Canada - National Science Library

    Watson, Matthew J; Byington, Carl S; Behbahani, Alireza

    2007-01-01

    ...) vibration monitoring system that integrates various vibro-acoustic data with intelligent feature extraction and fault isolation algorithms to effectively assess engine gearbox and generator health...

  10. A new portable sulfide monitor with a zinc-oxide semiconductor sensor for daily use and field study.

    Science.gov (United States)

    Tanda, Naoko; Washio, Jumpei; Ikawa, Kyoko; Suzuki, Kengo; Koseki, Takeyoshi; Iwakura, Masaki

    2007-07-01

    For measuring oral malodor in daily clinical practice and in field study, we developed and evaluated a highly sensitive portable monitor system. We examined sensitivity and specificity of the sensor for volatile sulfur compounds (VSC) and obstructive gases, such as ethanol, acetone, and acetaldehyde. Each mouth air provided by 46 people was measured by this monitor, gas chromatography (GC), and olfactory panel and compared with each other. Based on the result, we used the monitor for mass health examination of a rural town with standardized measuring. The sensor detected hydrogen sulfide, methyl mercaptan, and dimethyl sulfide with 10-1000 times higher sensitivity than the other gases. The monitor's specificity was significantly improved by a VSC-selective filter. There were significant correlations between VSC concentration by the sulfide monitor and by GC, and by organoleptic score. Thirty-six percent of 969 examinees had oral malodor in a rural town. Seventy-eight percent of 969 examinees were motivated to take care of their oral condition by oral malodor measuring with the monitor. The portable sulfide monitor was useful to promote oral health care not only in clinics, but also in field study. The simple and quick operation system and the standardized measuring make it one of parameters of oral condition.

  11. SHARP - Automated monitoring of spacecraft health and status

    Science.gov (United States)

    Atkinson, David J.; James, Mark L.; Martin, R. G.

    1990-01-01

    Briefly discussed here are the spacecraft and ground systems monitoring process at the Jet Propulsion Laboratory (JPL). Some of the difficulties associated with the existing technology used in mission operations are highlighted. A new automated system based on artificial intelligence technology is described which seeks to overcome many of these limitations. The system, called the Spacecraft Health Automated Reasoning Prototype (SHARP), is designed to automate health and status analysis for multi-mission spacecraft and ground data systems operations. The system has proved to be effective for detecting and analyzing potential spacecraft and ground systems problems by performing real-time analysis of spacecraft and ground data systems engineering telemetry. Telecommunications link analysis of the Voyager 2 spacecraft was the initial focus for evaluation of the system in real-time operations during the Voyager spacecraft encounter with Neptune in August 1989.

  12. SHARP: Automated monitoring of spacecraft health and status

    Science.gov (United States)

    Atkinson, David J.; James, Mark L.; Martin, R. Gaius

    1991-01-01

    Briefly discussed here are the spacecraft and ground systems monitoring process at the Jet Propulsion Laboratory (JPL). Some of the difficulties associated with the existing technology used in mission operations are highlighted. A new automated system based on artificial intelligence technology is described which seeks to overcome many of these limitations. The system, called the Spacecraft Health Automated Reasoning Prototype (SHARP), is designed to automate health and status analysis for multi-mission spacecraft and ground data systems operations. The system has proved to be effective for detecting and analyzing potential spacecraft and ground systems problems by performing real-time analysis of spacecraft and ground data systems engineering telemetry. Telecommunications link analysis of the Voyager 2 spacecraft was the initial focus for evaluation of the system in real-time operations during the Voyager spacecraft encounter with Neptune in August 1989.

  13. Very High Frequency Monitoring System for Engine Gearbox and Generator Health Management (Postprint)

    National Research Council Canada - National Science Library

    Watson, Matthew J; Byington, Carl S; Behbahani, Alireza

    2007-01-01

    .... These gas turbine engine vibration monitoring technologies will address existing operation and maintenance goals for current military system and prognostics health management algorithms for advanced engines...

  14. Monitoring and evaluation of the health status of workers from the Kozloduy NPP for the period 2011-2013

    International Nuclear Information System (INIS)

    Negoycheva, Krasimira; Chobanova, Nina; Peyankov, Her; Miltchev, Audrey; Djounova, Jana

    2015-01-01

    The aim of this study was to establish the impact of occupational exposure on workers in the Kozloduy NPP through monitoring and evaluation of their health status. The study involved 302 persons from the NPP for the period 2011-2013. Based on the protocol for individual monitoring, cumulative doses of the respondents are in the range of 0.1 to 588 mSv. The probability of the occupational exposure to be a reason for the diagnosed malignant diseases has been determined (Probability of Causation is henceforth denoted as PC)

  15. Project monitoring and evaluation: an enhancing method for health research system management.

    Science.gov (United States)

    Djalalinia, Shirin; Owlia, Parviz; Malekafzali, Hossein; Ghanei, Mostafa; Babamahmoodi, Abdolreza; Peykari, Niloofar

    2014-04-01

    Planning, organizing, staffing, leading and monitoring are the basic functional component of management. In present article, we aim to define the project monitoring and evaluation in health research system (HRS) considering its success and challenges based on our national experience. IN THIS STUDY BASED ON THE INFORMATION OF ANNUAL MEDICAL SCIENCE UNIVERSITIES EVALUATION DURING THE LAST DECADE THE HRS INDICATORS HAVE BEEN SCORED IN THREE AXES BASED ON HRS FUNCTIONS: Stewardship, capacity building and knowledge production. In this article, we will focus on the results of HRS evaluation from 2002 to 2010, also on its success and challenges. In an overall view, the main results are the experiences of the designing and implantation of such process after pre-project preparation, all parts followed under the whole supervision of the aims of the HRS evaluation. Project management light the way of practical application of knowledge, skills, tools and techniques for better HRS evaluation and management. We concluded that; although monitoring and evaluation as an essential part of HRS Management light the improvement ahead way but we still need to advantage of the new project management advances.

  16. Monitoring health interventions – who's afraid of LQAS?

    OpenAIRE

    Lorenzo Pezzoli; Sung Hye Kim

    2013-01-01

    Lot quality assurance sampling (LQAS) is used to evaluate health services. Subunits of a population (lots) are accepted or rejected according to the number of failures in a random sample (N) of a given lot. If failures are greater than decision value (d), we reject the lot and recommend corrective actions in the lot (i.e. intervention area); if they are equal to or less than d, we accept it. We used LQAS to monitor coverage during the last 3 days of a meningitis vaccination campaign in Niger....

  17. Autonomous smart sensor network for full-scale structural health monitoring

    Science.gov (United States)

    Rice, Jennifer A.; Mechitov, Kirill A.; Spencer, B. F., Jr.; Agha, Gul A.

    2010-04-01

    The demands of aging infrastructure require effective methods for structural monitoring and maintenance. Wireless smart sensor networks offer the ability to enhance structural health monitoring (SHM) practices through the utilization of onboard computation to achieve distributed data management. Such an approach is scalable to the large number of sensor nodes required for high-fidelity modal analysis and damage detection. While smart sensor technology is not new, the number of full-scale SHM applications has been limited. This slow progress is due, in part, to the complex network management issues that arise when moving from a laboratory setting to a full-scale monitoring implementation. This paper presents flexible network management software that enables continuous and autonomous operation of wireless smart sensor networks for full-scale SHM applications. The software components combine sleep/wake cycling for enhanced power management with threshold detection for triggering network wide tasks, such as synchronized sensing or decentralized modal analysis, during periods of critical structural response.

  18. Wireless transmission design for health monitoring at neonatal intensive care units

    NARCIS (Netherlands)

    Chen, W.; Nguyen, S.T.; Bambang Oetomo, S.; Feijs, L.M.G.

    2009-01-01

    Health monitoring is crucial for the survival of the ill and fragile infants admitted at the neonatal intensive care unit (NICU) in a hospital. However, the adhesive electrodes and wires cause discomfort to the patients and hamper the parent-child interaction. In this paper, we propose the

  19. Moving forward monitoring of the social determinants of health in a country: lessons from England 5 years after the Marmot Review.

    Science.gov (United States)

    Goldblatt, Peter O

    2016-01-01

    England has a long history of government-commissioned reviews of national inequalities. The latest review, the Marmot Review, was commissioned by a government headed by the same party (the Labour Party) that had introduced the National Health Service in 1948, but the review was implemented by a coalition of different parties (Conservatives and Liberal Democrats). At the same time, a government reform of health services took place, and the monitoring of the existing inequality strategy was changed. This paper examines the lessons that can be learned about indicators for monitoring social determinants of health inequalities from the Marmot Review and recent health inequality strategies in England. The paper provides a narrative review of key findings on the collection, presentation, and analysis of routine data in England in the past 5 years, comparing what has been learned from the Marmot Review and other evaluations of the first health inequality strategy in England. The emphasis on monitoring has progressively shifted from monitoring a small number of targets and supporting information to frameworks that monitor across a wide range of determinants of both the causes of ill-health and of health service performance. As these frameworks become ever larger, some consideration is being given to the key indicators. Although the frameworks used in England for monitoring health inequality strategies have developed considerably since the first strategy began, lessons continue to be learned about how monitoring could be improved. Many of these are applicable to countries initiating or reviewing their strategies.

  20. Packaging of structural health monitoring components

    Science.gov (United States)

    Kessler, Seth S.; Spearing, S. Mark; Shi, Yong; Dunn, Christopher T.

    2004-07-01

    Structural Health Monitoring (SHM) technologies have the potential to realize economic benefits in a broad range of commercial and defense markets. Previous research conducted by Metis Design and MIT has demonstrated the ability of Lamb waves methods to provide reliable information regarding the presence, location and type of damage in composite specimens. The present NSF funded program was aimed to study manufacturing, packaging and interface concepts for critical SHM components. The intention is to be able to cheaply manufacture robust actuating/sensing devices, and isolate them from harsh operating environments including natural, mechanical, or electrical extremes. Currently the issues related to SHM system durability have remained undressed. During the course of this research several sets of test devices were fabricated and packaged to protect the piezoelectric component assemblies for robust operation. These assemblies were then tested in hot and wet conditions, as well as in electrically noisy environments. Future work will aim to package the other supporting components such as the battery and wireless chip, as well as integrating all of these components together for operation. SHM technology will enable the reduction or complete elimination of scheduled inspections, and will allow condition-based maintenance for increased reliability and reduced overall life-cycle costs.

  1. Sensor-Only System Identification for Structural Health Monitoring of Advanced Aircraft

    Science.gov (United States)

    Kukreja, Sunil L.; Bernstein, Dennis S.

    2012-01-01

    Environmental conditions, cyclic loading, and aging contribute to structural wear and degradation, and thus potentially catastrophic events. The challenge of health monitoring technology is to determine incipient changes accurately and efficiently. This project addresses this challenge by developing health monitoring techniques that depend only on sensor measurements. Since actively controlled excitation is not needed, sensor-to-sensor identification (S2SID) provides an in-flight diagnostic tool that exploits ambient excitation to provide advance warning of significant changes. S2SID can subsequently be followed up by ground testing to localize and quantify structural changes. The conceptual foundation of S2SID is the notion of a pseudo-transfer function, where one sensor is viewed as the pseudo-input and another is viewed as the pseudo-output, is approach is less restrictive than transmissibility identification and operational modal analysis since no assumption is made about the locations of the sensors relative to the excitation.

  2. Coupling Sensing Hardware with Data Interrogation Software for Structural Health Monitoring

    Directory of Open Access Journals (Sweden)

    Charles R. Farrar

    2006-01-01

    Full Text Available The process of implementing a damage detection strategy for aerospace, civil and mechanical engineering infrastructure is referred to as structural health monitoring (SHM. The authors' approach is to address the SHM problem in the context of a statistical pattern recognition paradigm. In this paradigm, the process can be broken down into four parts: (1 Operational Evaluation, (2 Data Acquisition and Cleansing, (3 Feature Extraction and Data Compression, and (4 Statistical Model Development for Feature Discrimination. These processes must be implemented through hardware or software and, in general, some combination of these two approaches will be used. This paper will discuss each portion of the SHM process with particular emphasis on the coupling of a general purpose data interrogation software package for structural health monitoring with a modular wireless sensing and processing platform. More specifically, this paper will address the need to take an integrated hardware/software approach to developing SHM solutions.

  3. An Electronic Patch for wearable health monitoring by reflectance pulse oximetry.

    Science.gov (United States)

    Haahr, Rasmus G; Duun, Sune B; Toft, Mette H; Belhage, Bo; Larsen, Jan; Birkelund, Karen; Thomsen, Erik V

    2012-02-01

    We report the development of an Electronic Patch for wearable health monitoring. The Electronic Patch is a new health monitoring system incorporating biomedical sensors, microelectronics, radio frequency (RF) communication, and a battery embedded in a 3-dimensional hydrocolloid polymer. In this paper the Electronic Patch is demonstrated with a new optical biomedical sensor for reflectance pulse oximetry so that the Electronic Patch in this case can measure the pulse and the oxygen saturation. The reflectance pulse oximetry solution is based on a recently developed annular backside silicon photodiode to enable low power consumption by the light emitting components. The Electronic Patch has a disposable part of soft adhesive hydrocolloid polymer and a reusable part of hard polylaurinlactam. The disposable part contains the battery. The reusable part contains the reflectance pulse oximetry sensor and microelectronics. The reusable part is 'clicked' into the disposable part when the patch is prepared for use. The patch has a size of 88 mm by 60 mm and a thickness of 5 mm.

  4. Progress on health physics monitoring systems at the French Atomic Energy Commission

    International Nuclear Information System (INIS)

    Grimont, B.; Joffre, H.; Leblanc, P.

    1977-01-01

    The need for health physics protection on nuclear plants or laboratory (nuclear power plant, fuel processing plant, etc) leads to data measurement and monitoring centralisation. This paper reviews the systems used for that purpose: old monobloc electronic systems, mini computer system, recent microprocessor-based system, it shows the impact of new methods on the system performances : standardization of measurements and alarms level for irradiation and contamination, reliability, peripherals devices (typewriters, CRT) availability for easy and efficient monitoring, and hardware compactness [fr

  5. Multi-sensor sheets based on large-area electronics for advanced structural health monitoring of civil infrastructure.

    Science.gov (United States)

    2014-09-01

    Structural Health Monitoring has a great potential to provide valuable information about the actual structural : condition and can help optimize the management activities. However, few eective and robust monitoring technology exist which hinders a...

  6. Remote health monitoring: predicting outcome success based on contextual features for cardiovascular disease.

    Science.gov (United States)

    Alshurafa, Nabil; Eastwood, Jo-Ann; Pourhomayoun, Mohammad; Liu, Jason J; Sarrafzadeh, Majid

    2014-01-01

    Current studies have produced a plethora of remote health monitoring (RHM) systems designed to enhance the care of patients with chronic diseases. Many RHM systems are designed to improve patient risk factors for cardiovascular disease, including physiological parameters such as body mass index (BMI) and waist circumference, and lipid profiles such as low density lipoprotein (LDL) and high density lipoprotein (HDL). There are several patient characteristics that could be determining factors for a patient's RHM outcome success, but these characteristics have been largely unidentified. In this paper, we analyze results from an RHM system deployed in a six month Women's Heart Health study of 90 patients, and apply advanced feature selection and machine learning algorithms to identify patients' key baseline contextual features and build effective prediction models that help determine RHM outcome success. We introduce Wanda-CVD, a smartphone-based RHM system designed to help participants with cardiovascular disease risk factors by motivating participants through wireless coaching using feedback and prompts as social support. We analyze key contextual features that secure positive patient outcomes in both physiological parameters and lipid profiles. Results from the Women's Heart Health study show that health threat of heart disease, quality of life, family history, stress factors, social support, and anxiety at baseline all help predict patient RHM outcome success.

  7. Printing of microstructure strain sensor for structural health monitoring

    Science.gov (United States)

    Le, Minh Quyen; Ganet, Florent; Audigier, David; Capsal, Jean-Fabien; Cottinet, Pierre-Jean

    2017-05-01

    Recent advances in microelectronics and materials should allow the development of integrated sensors with transduction properties compatible with being printed directly onto a 3D substrate, especially metallic and polymer substrates. Inorganic and organic electronic materials in microstructured and nanostructured forms, intimately integrated in ink, offer particularly attractive characteristics, with realistic pathways to sophisticated embodiments. Here, we report on these strategies and demonstrate the potential of 3D-printed microelectronics based on a structural health monitoring (SHM) application for the precision weapon systems. We show that our printed sensors can be employed in non-invasive, high-fidelity and continuous strain monitoring of handguns, making it possible to implement printed sensors on a 3D substrate in either SHM or remote diagnostics. We propose routes to commercialization and novel device opportunities and highlight the remaining challenges for research.

  8. Research of diagnosis sensors fault based on correlation analysis of the bridge structural health monitoring system

    Science.gov (United States)

    Hu, Shunren; Chen, Weimin; Liu, Lin; Gao, Xiaoxia

    2010-03-01

    Bridge structural health monitoring system is a typical multi-sensor measurement system due to the multi-parameters of bridge structure collected from the monitoring sites on the river-spanning bridges. Bridge structure monitored by multi-sensors is an entity, when subjected to external action; there will be different performances to different bridge structure parameters. Therefore, the data acquired by each sensor should exist countless correlation relation. However, complexity of the correlation relation is decided by complexity of bridge structure. Traditionally correlation analysis among monitoring sites is mainly considered from physical locations. unfortunately, this method is so simple that it cannot describe the correlation in detail. The paper analyzes the correlation among the bridge monitoring sites according to the bridge structural data, defines the correlation of bridge monitoring sites and describes its several forms, then integrating the correlative theory of data mining and signal system to establish the correlation model to describe the correlation among the bridge monitoring sites quantificationally. Finally, The Chongqing Mashangxi Yangtze river bridge health measurement system is regards as research object to diagnosis sensors fault, and simulation results verify the effectiveness of the designed method and theoretical discussions.

  9. An education management information system with simultaneous monitoring of stress stimulators for students Mental Health management.

    Science.gov (United States)

    Manimaran, S; Jayakumar, S; Lakshmi, K Bhagya

    2016-11-14

    Education Management Information System (EMIS) is a widely acceptable and developing technology within the Information Technology field. The advancement in technology in this century is being collaborated with scientific invention or explorer and information strengthening or development. This paper presents the results and experiences gained from applying students oriented EMIS for monitoring and managing mental health. The Mental Health of students depends on the acquiring adequate knowledge on basic concepts within a time period or academic schedule. It's obviously significance to evaluate and appraise the stress stimulators as a challenge or threat. The theoretical framework for the study was designed for analyzing the stress stimulators, academic performance and EMIS accessibility. The sample examined in this study was stratified random sample from 75 students specifically all engineering college in Dindigul District of Tamilnadu. The primary factor is the academic stress stimulators that form one module of EMIS for each of the key variable such as curriculum & instruction related stressors, placement related, teamwork related and assessment related. The Mental Health related stress stimulators namely curriculum & syllabus, placement related, assessment related and team work related have a significant influence on academic performance by students in various institution. The important factor leading to the EMIS application in monitoring stress stimulators is curriculum & syllabus related and assessment related.

  10. Real time monitoring to the odour of excrement for health of infants and elderly completely bedridden

    Science.gov (United States)

    Ye, Jiancheng; Huang, Guoliang

    2017-01-01

    In the domain of biomedical signals measurements, monitoring human physiological parameters is an important issue. With the rapid development of wireless body area network, it makes monitor, transmit and record physiological parameters faster and more convenient. Infants and the elderly completely bedridden are two special groups of the society who need more medical care. According to researches investigating current frontier domains and the market products, the detection of physiological parameters from the excrement is rare. However, urine and faeces contain a large number of physiological information, which are high relative to health. The mainly distributed odour from urine is NH4 and the distributed odour from feces is mainly H2S, which are both could be detected by the sensors. In this paper, we introduce the design and implementation of a portable wireless device based on body area network for real time monitoring to the odour of excrement for health of infants and the elderly completely bedridden. The device not only could monitor in real time the emitted odour of faeces and urine for health analysis, but also measures the body temperature and environment humidity, and send data to the mobile phone of paramedics to alarm or the server for storage and process, which has prospect to monitoring infants and the paralysis elderly.

  11. [Study on the optimization of monitoring indicators of drinking water quality during health supervision].

    Science.gov (United States)

    Ye, Bixiong; E, Xueli; Zhang, Lan

    2015-01-01

    To optimize non-regular drinking water quality indices (except Giardia and Cryptosporidium) of urban drinking water. Several methods including drinking water quality exceed the standard, the risk of exceeding standard, the frequency of detecting concentrations below the detection limit, water quality comprehensive index evaluation method, and attribute reduction algorithm of rough set theory were applied, redundancy factor of water quality indicators were eliminated, control factors that play a leading role in drinking water safety were found. Optimization results showed in 62 unconventional water quality monitoring indicators of urban drinking water, 42 water quality indicators could be optimized reduction by comprehensively evaluation combined with attribute reduction of rough set. Optimization of the water quality monitoring indicators and reduction of monitoring indicators and monitoring frequency could ensure the safety of drinking water quality while lowering monitoring costs and reducing monitoring pressure of the sanitation supervision departments.

  12. ChemANDTM - a system health monitor for plant chemistry

    International Nuclear Information System (INIS)

    Turner, C.W.; Mitchel, G.R.; Balakrishnan, P.V.; Tosello, G.

    1999-07-01

    Effective management of plant systems throughout their lifetime requires much more than data acquisition and display - it requires that the plant's system health be continually monitored and managed. AECL has developed a System Health Monitor called ChemAND for CANDU plant chemistry. ChemAND, a Chemistry ANalysis and Diagnostic system, monitors key chemistry parameters in the heat transport system, moderator-cover gas, annulus gas, and the steam cycle during full-power operation and feeds these parameters to models that calculate the effect of current plant operating conditions on the present and future health of the system. Chemistry data from each of the systems are extracted on a regular basis from the plant's Historical Data Server and are sorted according to function, e.g., indicators for condenser in-leakage, air in-leakage, heavy water leakage into the annulus gas, fuel failure, etc. Each parameter is conveniently displayed and is trended along with its alarm limits. ChemAND currently has two analytical models developed for the balance-of-plant. CHEMSOLV calculates crevice chemistry conditions in the steam generator (SG) from either the SG blowdown chemistry conditions or from a simulated condenser leak. This information will be used by operations personnel to evaluate the potential for SG tube corrosion in the crevice region. CHEMSOLV also calculates chemistry conditions throughout the steam-cycle system, as determined by the transport of volatile species such as ammonia, hydrazine, morpholine, and oxygen. A second model, SLUDGE, calculates the deposit loading in the SG as a function of time, based on concentrations of corrosion product in the final feedwater and plant operating conditions. Operations personnel can use this information to predict where to inspect and when to clean. In a future development, SLUDGE will track deposit loading arising from start-up crud bursts and will be used in conjunction with the thermohydraulics code, THIRST, to predict

  13. On-Orbit Health Monitoring and Repair Assessment of Thermal Protection Systems, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR project delivers On-orbit health MoNItoring and repair assessment of THERMal protection systems (OMNI_THERM). OMNI_THERM features impedance-based...

  14. Data Mining for Wearable Sensors in Health Monitoring Systems: A Review of Recent Trends and Challenges

    Directory of Open Access Journals (Sweden)

    Hadi Banaee

    2013-12-01

    Full Text Available The past few years have witnessed an increase in the development of wearable sensors for health monitoring systems. This increase has been due to several factors such as development in sensor technology as well as directed efforts on political and stakeholder levels to promote projects which address the need for providing new methods for care given increasing challenges with an aging population. An important aspect of study in such system is how the data is treated and processed. This paper provides a recent review of the latest methods and algorithms used to analyze data from wearable sensors used for physiological monitoring of vital signs in healthcare services. In particular, the paper outlines the more common data mining tasks that have been applied such as anomaly detection, prediction and decision making when considering in particular continuous time series measurements. Moreover, the paper further details the suitability of particular data mining and machine learning methods used to process the physiological data and provides an overview of the properties of the data sets used in experimental validation. Finally, based on this literature review, a number of key challenges have been outlined for data mining methods in health monitoring systems.

  15. Valdez air health study - Exposure monitoring and risk assessment

    International Nuclear Information System (INIS)

    Murray, D.R.; Mikkelsen, R.

    1991-01-01

    In Valdez, Alaska there is concern about exposure of the public to benzene and other light hydrocarbons emitted during the loading of tankers from the Trans-Alaska Pipeline. As part of an overall risk assessment, the Valdez Air Health Study, a personal, indoor and outdoor air sampling program patterned after EPA's TEMA Study was designed and carried out. A unique feature of the study is that, during sampling periods, SF 6 tracer was released at the terminal site to represent terminal hydrocarbon emissions to provide a basis for directly quantitating any contribution of terminal emissions to personal exposure. Sixty citizens at Valdez were selected to wear vests containing sampling equipment for 24-hour periods summer and winter. At the homes of 30 of the participants simultaneous indoor and outdoor samples for hydrocarbons and tracer were collected during the period that each participant collected personal air samples. The paper reviews the design of the program, details of the procedures used, results of the August, 1990 program and preliminary results from the February-March, 1991 program

  16. INCLINATION AND VIBRATION MEASUREMENT BY INERTIAL SENSING FOR STRUCTURAL HEALTH MONITORING

    Science.gov (United States)

    Sugisaki, Koichi; Abe, Masato; Koshimizu, Satoru

    To develop a practical health monitoring system, inertial sensing which can readily be done for wide variety of situations is useful. However inertial sensors are measuring inclination and acceleration in reference to gravity. Therefore inclination are influence by acceleration and vice versa caused measuring errors. Especially, errors are more affected at low-frequency band which is important to estimate displacement. In this study, to establish correcting theory for inertial sensing and to develop method to estimate parameters for some structural system. And conducted a field test targeted at the real railway bridge to verify the effectiveness of the proposed method using response records of the pier under passing train load.

  17. Moving forward monitoring of the social determinants of health in a country: lessons from England 5 years after the Marmot Review

    Directory of Open Access Journals (Sweden)

    Peter O. Goldblatt

    2016-02-01

    Full Text Available Background: England has a long history of government-commissioned reviews of national inequalities. The latest review, the Marmot Review, was commissioned by a government headed by the same party (the Labour Party that had introduced the National Health Service in 1948, but the review was implemented by a coalition of different parties (Conservatives and Liberal Democrats. At the same time, a government reform of health services took place, and the monitoring of the existing inequality strategy was changed. Objectives: This paper examines the lessons that can be learned about indicators for monitoring social determinants of health inequalities from the Marmot Review and recent health inequality strategies in England. Design: The paper provides a narrative review of key findings on the collection, presentation, and analysis of routine data in England in the past 5 years, comparing what has been learned from the Marmot Review and other evaluations of the first health inequality strategy in England. Results: The emphasis on monitoring has progressively shifted from monitoring a small number of targets and supporting information to frameworks that monitor across a wide range of determinants of both the causes of ill-health and of health service performance. As these frameworks become ever larger, some consideration is being given to the key indicators. Conclusions: Although the frameworks used in England for monitoring health inequality strategies have developed considerably since the first strategy began, lessons continue to be learned about how monitoring could be improved. Many of these are applicable to countries initiating or reviewing their strategies.

  18. Optimization of PZT ceramic IDT sensors for health monitoring of structures.

    Science.gov (United States)

    Takpara, Rafatou; Duquennoy, Marc; Ouaftouh, Mohammadi; Courtois, Christian; Jenot, Frédéric; Rguiti, Mohamed

    2017-08-01

    Surface acoustic waves (SAW) are particularly suited to effectively monitoring and characterizing structural surfaces (condition of the surface, coating, thin layer, micro-cracks…) as their energy is localized on the surface, within approximately one wavelength. Conventionally, in non-destructive testing, wedge sensors are used to the generation guided waves but they are especially suited to flat surfaces and sized for a given type material (angle of refraction). Additionally, these sensors are quite expensive so it is quite difficult to leave the sensors permanently on the structure for its health monitoring. Therefore we are considering in this study, another type of ultrasonic sensors, able to generate SAW. These sensors are interdigital sensors or IDT sensors for InterDigital Transducer. This paper focuses on optimization of IDT sensors for non-destructive structural testing by using PZT ceramics. The challenge was to optimize the dimensional parameters of the IDT sensors in order to efficiently generate surface waves. Acoustic tests then confirmed these parameters. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Multidisciplinary training program to create new breed of radiation monitor: the health and safety technician

    International Nuclear Information System (INIS)

    Vance, W.F.

    1979-01-01

    A multidiscipline training program established to create a new monitor, theHealth and Safety Technician, is described. The training program includes instruction in fire safety, explosives safety, industrial hygiene, industrial safety, health physics, and general safety practices

  20. Time Reversal Acoustic Structural Health Monitoring Using Array of Embedded Sensors, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Time Reversal Acoustic (TRA) structural health monitoring with an embedded sensor array represents a new approach to in-situ nondestructive evaluation of air-space...

  1. A Remote Health Monitoring System for the Elderly Based on Smart Home Gateway

    OpenAIRE

    Guan, Kai; Shao, Minggang; Wu, Shuicai

    2017-01-01

    This paper proposed a remote health monitoring system for the elderly based on smart home gateway. The proposed system consists of three parts: the smart clothing, the smart home gateway, and the health care server. The smart clothing collects the elderly's electrocardiogram (ECG) and motion signals. The home gateway is used for data transmission. The health care server provides services of data storage and user information management; it is constructed on the Windows-Apache-MySQL-PHP (WAMP) ...

  2. Blood pressure self-monitoring in pregnancy: examining feasibility in a prospective cohort study.

    Science.gov (United States)

    Tucker, Katherine L; Taylor, Kathryn S; Crawford, Carole; Hodgkinson, James A; Bankhead, Clare; Carver, Tricia; Ewers, Elizabeth; Glogowska, Margaret; Greenfield, Sheila M; Ingram, Lucy; Hinton, Lisa; Khan, Khalid S; Locock, Louise; Mackillop, Lucy; McCourt, Christine; Pirie, Alexander M; Stevens, Richard; McManus, Richard J

    2017-12-28

    Raised blood pressure (BP) affects approximately 10% of pregnancies worldwide, and a high proportion of affected women develop pre-eclampsia. This study aimed to evaluate the feasibility of self-monitoring of BP in pregnancy in women at higher risk of pre-eclampsia. This prospective cohort study of self-monitoring BP in pregnancy was carried out in two hospital trusts in Birmingham and Oxford and thirteen primary care practices in Oxfordshire. Eligible women were those defined by the UK National Institute for Health and Care Excellence (NICE) guidelines as at higher risk of pre-eclampsia. A total of 201 participants were recruited between 12 and 16 weeks of pregnancy and were asked to take two BP readings twice daily three times a week through their pregnancy. Primary outcomes were recruitment, retention and persistence of self-monitoring. Study recruitment and retention were analysed with descriptive statistics. Survival analysis was used to evaluate the persistence of self-monitoring and the performance of self-monitoring in the early detection of gestational hypertension, compared to clinic BP monitoring. Secondary outcomes were the mean clinic and self-monitored BP readings and the performance of self-monitoring in the detection of gestational hypertension and pre-eclampsia compared to clinic BP. Of 201 women recruited, 161 (80%) remained in the study at 36 weeks or to the end of their pregnancy, 162 (81%) provided any home readings suitable for analysis, 148 (74%) continued to self-monitor at 20 weeks and 107 (66%) at 36 weeks. Self-monitored readings were similar in value to contemporaneous matched clinic readings for both systolic and diastolic BP. Of the 23 who developed gestational hypertension or pre-eclampsia and self-monitored, 9 (39%) had a raised home BP prior to a raised clinic BP. Self-monitoring of BP in pregnancy is feasible and has potential to be useful in the early detection of gestational hypertensive disorders but maintaining self-monitoring

  3. A prospective study of monitoring practices for metabolic disease in antipsychotic-treated community psychiatric patients

    Directory of Open Access Journals (Sweden)

    Watkinson Helen MO

    2007-06-01

    Full Text Available Abstract Background Patients with severe mental illness are at increased risk for metabolic and cardiovascular disease. A number of recent guidelines and consensus statements recommend stringent monitoring of metabolic function in individuals receiving antipsychotic drugs. Methods We conducted a prospective cohort study of 106 community-treated psychiatric patients from across the diagnostic spectrum from the Northeast of England to investigate changes in metabolic status and monitoring practices for metabolic and cardiovascular disease. We undertook detailed anthropometric and metabolic assessment at baseline and follow-up, and examined clinical notes and hospital laboratory records to ascertain monitoring practices. Results A high prevalence of undiagnosed and untreated metabolic disease was present at baseline assessment. Mean follow-up time was 599.3 (SD ± 235.4 days. Body mass index (p 50% of subjects had neither blood glucose nor lipids monitored during the follow-up period. Conclusion This cohort has a high prevalence of metabolic disease and heightened cardiovascular risk. Despite the publication of a number of recommendations regarding physical health screening in this population, monitoring rates are poor, and physical health worsened during the follow-up period.

  4. Blood pressure self-monitoring in pregnancy (BuMP) feasibility study; a qualitative analysis of women's experiences of self-monitoring.

    Science.gov (United States)

    Hinton, Lisa; Tucker, Katherine L; Greenfield, Sheila M; Hodgkinson, James A; Mackillop, Lucy; McCourt, Christine; Carver, Trisha; Crawford, Carole; Glogowska, Margaret; Locock, Louise; Selwood, Mary; Taylor, Kathryn S; McManus, Richard J

    2017-12-19

    Hypertensive disorders in pregnancy are a leading cause of maternal and fetal morbidity worldwide. Raised blood pressure (BP) affects 10% of pregnancies worldwide, of which almost half develop pre-eclampsia. The proportion of pregnant women who have risk factors for pre-eclampsia (such as pre-existing hypertension, obesity and advanced maternal age) is increasing. Pre-eclampsia can manifest itself before women experience symptoms and can develop between antenatal visits. Incentives to improve early detection of gestational hypertensive disorders are therefore strong and self-monitoring of blood pressure (SMBP) in pregnancy might be one means to achieve this, whilst improving women's involvement in antenatal care. The Blood Pressure Self-Monitoring in Pregnancy (BuMP) study aimed to evaluate the feasibility and acceptability of SMBP in pregnancy. To understand women's experiences of SMBP during pregnancy, we undertook a qualitative study embedded within the BuMP observational feasibility study. Women who were at higher risk of developing hypertension and/or pre-eclampsia were invited to take part in a study using SMBP and also invited to take part in an interview. Semi-structured interviews were conducted at the women's homes in Oxfordshire and Birmingham with women who were self-monitoring their BP as part of the BuMP feasibility study in 2014. Interviews were conducted by a qualitative researcher and transcribed verbatim. A framework approach was used for analysis. Fifteen women agreed to be interviewed. Respondents reported general willingness to engage with monitoring their own BP, feeling that it could reduce anxiety around their health during pregnancy, particularly if they had previous experience of raised BP or pre-eclampsia. They felt able to incorporate self-monitoring into their weekly routines, although this was harder post-partum. Self-monitoring of BP made them more aware of the risks of hypertension and pre-eclampsia in pregnancy. Feelings of

  5. Navigating from the heights of technical rigour to the swampy reality: Lessons from New Zealand in population health outcomes monitoring

    Directory of Open Access Journals (Sweden)

    John Wren

    2008-06-01

    Full Text Available

    Background: The objective of this paper is to describe and discuss two documents produced by the New Zealand Ministry of Health concerning the monitoring of outcomes of public health programs. The New Zealand Government is increasingly expecting planners and managers of publicly funded services to shift their focus from the delivery of ‘outputs’ towards achievement of ‘outcomes’. Intervention logic models and outcomes monitoring are promoted by central government agencies as suitable management methods for implementing the change. [1-3]

    Methods: To help managers design and implement comprehensive, effective and measurable population health programmes the Ministry of Health recently published two guidance documents. The first document provided guidance about how to plan programmes using a generic logic model approach.[4] The second set out in detail a process on how to monitor population health programmes.[5] The intent of the documents was to help managers navigate between the heights of technical rigour and the swamps of reality in the delivery of population health programmes.[6]

    Results: A number of issues and implications for how population health programmes are planned monitored and performance assessed have been identified by the guidance documents. Issues include the problem of small numbers, understanding the difference between outcomes monitoring and traditional forms of evaluation, and outcomes monitoring being seen as a tool for punitive performance management rather than ‘continuous programme improvement’. Implications include more time spent on the design of programmes. Planners will need to focus upon better sequencing of activities, setting more specific and time limited goals, and to be more informed about how to use research to inform the selection of interventions.

    Conclusions: The guidance documents promoted by

  6. Protocol of specific health monitoring: ionizing radiation, 11 years later

    International Nuclear Information System (INIS)

    Castillejo Puertas, F. M.

    2016-01-01

    Since the approval on November 11 t h 2003 of the Protocol of Specific Health Monitoring for Workers Exposed to Ionizing Radiation a study has been carried out to discover its effectiveness. These areas were examined: the daily practice od accupational medicine and, in particular, its specific task in the application of the different clinical/labour criteria for workers exposed to ionizing radiation or at risk of radioactive contamination; the degree of its uses as well as the updates and improvements. For that purpose, a descriptive bibliographic revision has been used for the last 11 years. The results revealed the lack of updates of the Protocol as well as the few usable objective criteria, when the clinical/labour aptitudes are reflected upon. (Author)

  7. Geo-spatial reporting for monitoring of household immunization coverage through mobile phones: Findings from a feasibility study.

    Science.gov (United States)

    Kazi, A M; Ali, M; K, Ayub; Kalimuddin, H; Zubair, K; Kazi, A N; A, Artani; Ali, S A

    2017-11-01

    The addition of Global Positioning System (GPS) to a mobile phone makes it a very powerful tool for surveillance and monitoring coverage of health programs. This technology enables transfer of data directly into computer applications and cross-references to Geographic Information Systems (GIS) maps, which enhances assessment of coverage and trends. Utilization of these systems in low and middle income countries is currently limited, particularly for immunization coverage assessments and polio vaccination campaigns. We piloted the use of this system and discussed its potential to improve the efficiency of field-based health providers and health managers for monitoring of the immunization program. Using "30×7" WHO sampling technique, a survey of children less than five years of age was conducted in random clusters of Karachi, Pakistan in three high risk towns where a polio case was detected in 2011. Center point of the cluster was calculated by the application on the mobile. Data and location coordinates were collected through a mobile phone. This data was linked with an automated mHealth based monitoring system for monitoring of Supplementary Immunization Activities (SIAs) in Karachi. After each SIA, a visual report was generated according to the coordinates collected from the survey. A total of 3535 participants consented to answer to a baseline survey. We found that the mobile phones incorporated with GIS maps can improve efficiency of health providers through real-time reporting and replacing paper based questionnaire for collection of data at household level. Visual maps generated from the data and geospatial analysis can also give a better assessment of the immunization coverage and polio vaccination campaigns. The study supports a model system in resource constrained settings that allows routine capture of individual level data through GPS enabled mobile phone providing actionable information and geospatial maps to local public health managers, policy makers

  8. TLP Structural Health Monitoring Based on Vibration Signal of Energy Harvesting System

    Directory of Open Access Journals (Sweden)

    Vahid Jahangiri

    Full Text Available Abstract Structural Health Monitoring (SHM of Tension Leg Platform (TLP is very crucial for preventing catastrophic and sudden collapse of the structures. One of the methods of monitoring these structures is implementing SHM sensors. Supplying energy for these sensors for a long period is a challenging problem. So, one of the new methods of supplying energy for SHM, is usage of mechanical energy. In this method, the piezoelectric material is employed to convert the mechanical energy which is resulted from vibration of structure, to electrical energy. The advantage of this method is based on not implementing the battery charging system. Therefore, in this paper, after modeling TLP structure, energy supplying of these sensors with piezoelectric converters is studied. Furthermore, fault diagnosis of these structures in the presence of different uncertainties is proposed by the features of voltage signal, produced from piezoelectric patches and fuzzy classification method. Results show that this method can diagnose faults of the structure with an acceptable success rate.

  9. Multifunctional Integrated Photonic Lab-on-a-Chip for Astronaut Health Monitoring, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Astronauts do not have a simple and reliable method to accurately and in real-time monitor their health during missions. IFOS proposes an innovative miniaturized...

  10. Wireless Health Monitoring for Large Arrays of MEMS Sensors and Actuators, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this Phase I project is to demonstrate an automated on-line structural health monitoring system for aircraft structures using a combination of...

  11. Monitoring and evaluation of human resources for health: an international perspective

    Directory of Open Access Journals (Sweden)

    Gupta Neeru

    2003-04-01

    Full Text Available Abstract Background Despite the undoubted importance of human resources to the functions of health systems, there is little consistency between countries in how human resource strategies are monitored and evaluated. This paper presents an integrated approach for developing an evidence base on human resources for health (HRH to support decision-making, drawing on a framework for health systems performance assessment. Methods Conceptual and methodological issues for selecting indicators for HRH monitoring and evaluation are discussed, and a range of primary and secondary data sources that might be used to generate indicators are reviewed. Descriptive analyses are conducted drawing primarily on one type of source, namely routinely reported data on the numbers of health personnel and medical schools as covered by national reporting systems and compiled by the World Health Organization. Regression techniques are used to triangulate a given HRH indicator calculated from different data sources across multiple countries. Results Major variations in the supply of health personnel and training opportunities are found to occur by region. However, certain discrepancies are also observed in measuring the same indicator from different sources, possibly related to the occupational classification or to the sources' representation. Conclusion Evidence-based information is needed to better understand trends in HRH. Although a range of sources exist that can potentially be used for HRH assessment, the information that can be derived from many of these individual sources precludes refined analysis. A variety of data sources and analytical approaches, each with its own strengths and limitations, is required to reflect the complexity of HRH issues. In order to enhance cross-national comparability, data collection efforts should be processed through the use of internationally standardized classifications (in particular, for occupation, industry and education at the

  12. A Simple and Reliable Health Monitoring System For Shoulder Health: Proposal

    Science.gov (United States)

    Lee, Yann-Long

    2014-01-01

    Background The current health care system is complex and inefficient. A simple and reliable health monitoring system that can help patients perform medical self-diagnosis is seldom readily available. Because the medical system is vast and complex, it has hampered or delayed patients in seeking medical advice or treatment in a timely manner, which may potentially affect the patient’s chances of recovery, especially those with severe sicknesses such as cancer, and heart disease. Objective The purpose of this paper is to propose a methodology in designing a simple, low cost, Internet-based health-screening platform. Methods This health-screening platform will enable patients to perform medical self-diagnosis over the Internet. Historical data has shown the importance of early detection to ensure patients receive proper treatment and speedy recovery. Results The platform is designed with special emphasis on the user interface. Standard Web-based user-interface design is adopted so the user feels ease to operate in a familiar Web environment. In addition, graphics such as charts and graphs are used generously to help users visualize and understand the result of the diagnostic. The system is developed using hypertext preprocessor (PHP) programming language. One important feature of this system platform is that it is built to be a stand-alone platform, which tends to have better user privacy security. The prototype system platform was developed by the National Cheng Kung University Ergonomic and Design Laboratory. Conclusions The completed prototype of this system platform was submitted to the Taiwan Medical Institute for evaluation. The evaluation of 120 participants showed that this platform system is a highly effective tool in health-screening applications, and has great potential for improving the medical care quality for the general public. PMID:24571980

  13. A simple and reliable health monitoring system for shoulder health: proposal.

    Science.gov (United States)

    Liu, Shuo-Fang; Lee, Yann-Long

    2014-02-26

    The current health care system is complex and inefficient. A simple and reliable health monitoring system that can help patients perform medical self-diagnosis is seldom readily available. Because the medical system is vast and complex, it has hampered or delayed patients in seeking medical advice or treatment in a timely manner, which may potentially affect the patient's chances of recovery, especially those with severe sicknesses such as cancer, and heart disease. The purpose of this paper is to propose a methodology in designing a simple, low cost, Internet-based health-screening platform. This health-screening platform will enable patients to perform medical self-diagnosis over the Internet. Historical data has shown the importance of early detection to ensure patients receive proper treatment and speedy recovery. The platform is designed with special emphasis on the user interface. Standard Web-based user-interface design is adopted so the user feels ease to operate in a familiar Web environment. In addition, graphics such as charts and graphs are used generously to help users visualize and understand the result of the diagnostic. The system is developed using hypertext preprocessor (PHP) programming language. One important feature of this system platform is that it is built to be a stand-alone platform, which tends to have better user privacy security. The prototype system platform was developed by the National Cheng Kung University Ergonomic and Design Laboratory. The completed prototype of this system platform was submitted to the Taiwan Medical Institute for evaluation. The evaluation of 120 participants showed that this platform system is a highly effective tool in health-screening applications, and has great potential for improving the medical care quality for the general public.

  14. A Golden Ticket to Future Occupational and Environmental Health Monitoring

    Science.gov (United States)

    2015-10-01

    a health risk assessment (HRA) of the exposure by considering multiple factors including: threat source, route of exposure ( inhalation , ingestion...contaminants for chemical and particulate inhalational exposures. Measurements of physical exposures are also monitored to include noise, temperature, and...hazards are. Some hazards are always present in very common Air Force 12 processes (i.e. jet fuel in a refueling process), while other hazards are

  15. A module for psycho-social assessment of personal health monitoring.

    Science.gov (United States)

    Muehlan, Holger; Rhode, Dieter; Schmidt, Silke

    2013-01-01

    This contribution to an interdisciplinary methodology on Personal Health Monitoring (PHM) aims at developing a psycho-social module for health technology assessment on PHM applications. It covers important aspects that should be taken into account for conducting a health technology assessment from a psycho-social perspective. As it could be used in addition to other tools within the PHM-Ethics approach to health technology assessment it is considered as a module of the interdisciplinary methodology. As a prerequisite, we provide a conceptual framework on psycho-social issues of PHM applications. From that framework we delineate an integrated module for psycho-social health technology assessment for PHM applications, consisting of a map highlighting selective psycho-social issues that may appear when applying a PHM system. This psycho-social tool is at least twofold in its intention as a sole HTA tool on the one hand and as an integral part of the interdisciplinary PHM methodology on the other hand. It provides a quick overview on potential benefits and risks from the user's point of view.

  16. A Reusable PZT Transducer for Monitoring Initial Hydration and Structural Health of Concrete

    Directory of Open Access Journals (Sweden)

    Yaowen Yang

    2010-05-01

    Full Text Available During the construction of a concrete structure, strength monitoring is important to ensure the safety of both personnel and the structure. Furthermore, to increase the efficiency of in situ casting or precast of concrete, determining the optimal time of demolding is important for concrete suppliers. Surface bonded lead zirconate titanate (PZT transducers have been used for damage detection and parameter identification for various engineering structures over the last two decades. In this work, a reusable PZT transducer setup for monitoring initial hydration of concrete and structural health is developed, where a piece of PZT is bonded to an enclosure with two bolts tightened inside the holes drilled in the enclosure. An impedance analyzer is used to acquire the admittance signatures of the PZT. Root mean square deviation (RMSD is employed to associate the change in concrete strength with changes in the PZT admittance signatures. The results show that the reusable setup is able to effectively monitor the initial hydration of concrete and the structural health. It can also be detached from the concrete for future re-use.

  17. A Reusable PZT Transducer for Monitoring Initial Hydration and Structural Health of Concrete

    Science.gov (United States)

    Yang, Yaowen; Divsholi, Bahador Sabet; Soh, Chee Kiong

    2010-01-01

    During the construction of a concrete structure, strength monitoring is important to ensure the safety of both personnel and the structure. Furthermore, to increase the efficiency of in situ casting or precast of concrete, determining the optimal time of demolding is important for concrete suppliers. Surface bonded lead zirconate titanate (PZT) transducers have been used for damage detection and parameter identification for various engineering structures over the last two decades. In this work, a reusable PZT transducer setup for monitoring initial hydration of concrete and structural health is developed, where a piece of PZT is bonded to an enclosure with two bolts tightened inside the holes drilled in the enclosure. An impedance analyzer is used to acquire the admittance signatures of the PZT. Root mean square deviation (RMSD) is employed to associate the change in concrete strength with changes in the PZT admittance signatures. The results show that the reusable setup is able to effectively monitor the initial hydration of concrete and the structural health. It can also be detached from the concrete for future re-use. PMID:22399929

  18. A reusable PZT transducer for monitoring initial hydration and structural health of concrete.

    Science.gov (United States)

    Yang, Yaowen; Divsholi, Bahador Sabet; Soh, Chee Kiong

    2010-01-01

    During the construction of a concrete structure, strength monitoring is important to ensure the safety of both personnel and the structure. Furthermore, to increase the efficiency of in situ casting or precast of concrete, determining the optimal time of demolding is important for concrete suppliers. Surface bonded lead zirconate titanate (PZT) transducers have been used for damage detection and parameter identification for various engineering structures over the last two decades. In this work, a reusable PZT transducer setup for monitoring initial hydration of concrete and structural health is developed, where a piece of PZT is bonded to an enclosure with two bolts tightened inside the holes drilled in the enclosure. An impedance analyzer is used to acquire the admittance signatures of the PZT. Root mean square deviation (RMSD) is employed to associate the change in concrete strength with changes in the PZT admittance signatures. The results show that the reusable setup is able to effectively monitor the initial hydration of concrete and the structural health. It can also be detached from the concrete for future re-use.

  19. Health monitoring system for a tall building with Fiber Bragg grating sensors

    Science.gov (United States)

    Li, D. S.; Li, H. N.; Ren, L.; Guo, D. S.; Song, G. B.

    2009-03-01

    Fiber Bragg grating (FBG) sensors demonstrate great potentials for structural health monitoring of civil structures to ensure their structural integrity, durability and reliability. The advantages of applying fiber optic sensors to a tall building include their immunity of electromagnetic interference and multiplexing ability to transfer optical signals over a long distance. In the work, FBG sensors, including strain and temperature sensors, are applied to the construction monitoring of an 18-floor tall building starting from its construction date. The main purposes of the project are: 1) monitoring the temperature evolution history within the concrete during the pouring process; 2) measuring the variations of the main column strains on the underground floor while upper 18 floors were subsequently added on; and 3) monitoring the relative displacements between two foundation blocks. The FBG sensors have been installed and interrogated continuously for more than five months. Monitoring results of temperature and strains during the period are presented in the paper. Furthermore, the lag behavior between the concrete temperature and its surrounding air temperature is investigated.

  20. Fibre Optic Sensors for Structural Health Monitoring of Aircraft Composite Structures: Recent Advances and Applications

    Directory of Open Access Journals (Sweden)

    Raffaella Di Sante

    2015-07-01

    Full Text Available In-service structural health monitoring of composite aircraft structures plays a key role in the assessment of their performance and integrity. In recent years, Fibre Optic Sensors (FOS have proved to be a potentially excellent technique for real-time in-situ monitoring of these structures due to their numerous advantages, such as immunity to electromagnetic interference, small size, light weight, durability, and high bandwidth, which allows a great number of sensors to operate in the same system, and the possibility to be integrated within the material. However, more effort is still needed to bring the technology to a fully mature readiness level. In this paper, recent research and applications in structural health monitoring of composite aircraft structures using FOS have been critically reviewed, considering both the multi-point and distributed sensing techniques.

  1. Fibre Optic Sensors for Structural Health Monitoring of Aircraft Composite Structures: Recent Advances and Applications

    Science.gov (United States)

    Di Sante, Raffaella

    2015-01-01

    In-service structural health monitoring of composite aircraft structures plays a key role in the assessment of their performance and integrity. In recent years, Fibre Optic Sensors (FOS) have proved to be a potentially excellent technique for real-time in-situ monitoring of these structures due to their numerous advantages, such as immunity to electromagnetic interference, small size, light weight, durability, and high bandwidth, which allows a great number of sensors to operate in the same system, and the possibility to be integrated within the material. However, more effort is still needed to bring the technology to a fully mature readiness level. In this paper, recent research and applications in structural health monitoring of composite aircraft structures using FOS have been critically reviewed, considering both the multi-point and distributed sensing techniques. PMID:26263987

  2. Health monitoring of 90° bolted joints using fuzzy pattern recognition of ultrasonic signals

    International Nuclear Information System (INIS)

    Jalalpour, M; El-Osery, A I; Austin, E M; Reda Taha, M M

    2014-01-01

    Bolted joints are important parts for aerospace structures. However, there is a significant risk associated with assembling bolted joints due to potential human error during the assembly process. Such errors are expensive to find and correct if exposed during environmental testing, yet checking the integrity of individual fasteners after assembly would be a time consuming task. Recent advances in structural health monitoring (SHM) can provide techniques to not only automate this process but also make it reliable. This integrity monitoring requires damage features to be related to physical conditions representing the structural integrity of bolted joints. In this paper an SHM technique using ultrasonic signals and fuzzy pattern recognition to monitor the integrity of 90° bolted joints in aerospace structures is described. The proposed technique is based on normalized fast Fourier transform (NFFT) of transmitted signals and fuzzy pattern recognition. Moreover, experimental observations of a case study on an aluminum 90° bolted joint are presented. We demonstrate the ability of the proposed method to efficiently monitor and indicate bolted joint integrity. (paper)

  3. Health physics experience in commissioning and operation of radiation and air activity monitoring system at FBTR

    International Nuclear Information System (INIS)

    Raghunath, V.M.; Meenakshisundaram, V.; Viswanathan, S.; Bala Sundar, S.; Jose, M.T.; Suriyamurthy, N.; Ravi, T.; Subramanian, V.

    2001-01-01

    The Radiation and Air Activity Monitoring System (RAAMS) at Fast Breeder Test Reactor (FBTR) is meant to monitor and record the radiation and air activity levels at various potentially active areas in FBTR complex. Health Physics Group, FBTR was associated during commissioning of RAAMS in fixing the alarm settings for the monitors, their relocation and in formulating the surveillance procedures. The areas were surveyed to check for any release of activity for confirming the observed readings during operation of the reactor. In such cases, augmentation of shielding was recommended and was promptly implemented by the station management. The details of the long and fruitful experience gained by the Health Physics Group, FBTR are described in this paper. (author)

  4. Self-monitoring practices, attitudes, and needs of individuals with bipolar disorder: implications for the design of technologies to manage mental health.

    Science.gov (United States)

    Murnane, Elizabeth L; Cosley, Dan; Chang, Pamara; Guha, Shion; Frank, Ellen; Gay, Geri; Matthews, Mark

    2016-05-01

    To understand self-monitoring strategies used independently of clinical treatment by individuals with bipolar disorder (BD), in order to recommend technology design principles to support mental health management. Participants with BD (N = 552) were recruited through the Depression and Bipolar Support Alliance, the International Bipolar Foundation, and WeSearchTogether.org to complete a survey of closed- and open-ended questions. In this study, we focus on descriptive results and qualitative analyses. Individuals reported primarily self-monitoring items related to their bipolar disorder (mood, sleep, finances, exercise, and social interactions), with an increasing trend towards the use of digital tracking methods observed. Most participants reported having positive experiences with technology-based tracking because it enables self-reflection and agency regarding health management and also enhances lines of communication with treatment teams. Reported challenges stem from poor usability or difficulty interpreting self-tracked data. Two major implications for technology-based self-monitoring emerged from our results. First, technologies can be designed to be more condition-oriented, intuitive, and proactive. Second, more automated forms of digital symptom tracking and intervention are desired, and our results suggest the feasibility of detecting and predicting emotional states from patterns of technology usage. However, we also uncovered tension points, namely that technology designed to support mental health can also be a disruptor. This study provides increased understanding of self-monitoring practices, attitudes, and needs of individuals with bipolar disorder. This knowledge bears implications for clinical researchers and practitioners seeking insight into how individuals independently self-manage their condition as well as for researchers designing monitoring technologies to support mental health management. © The Author 2016. Published by Oxford University

  5. Structural health monitoring of an existing PC box girder bridge with distributed HCFRP sensors in a destructive test

    Science.gov (United States)

    Yang, Caiqian; Wu, Zhishen; Zhang, Yufeng

    2008-06-01

    The application of hybrid carbon fiber reinforced polymer (HCFRP) sensors was addressed to monitor the structural health of an existing prestressed concrete (PC) box girder bridge in a destructive test. The novel HCFRP sensors were fabricated with three types of carbon tows in order to realize distributed and broad-based sensing, which is characterized by long-gauge length and low cost. The HCFRP sensors were bonded on the bottom and side surfaces of the existing bridge to monitor its structural health. The gauge lengths of the sensors bonded on the bottom and side surfaces were 1.5 m and 1.0 m, respectively. The HCFRP sensors were distributed on the bridge for two purposes. One was to detect damage and monitor the structural health of the bridge, such as the initiation and propagation of new cracks, strain distribution and yielding of steel reinforcements. The other purpose was to monitor the propagation of existing cracks. The good relationship between the change in electrical resistance and load indicates that the HCFRP sensors can provide actual infrastructures with a distributed damage detection and structural health monitoring system. Corrections were made to this article on 13 May 2008. The corrected electronic version is identical to the print version.

  6. Structural health monitoring of an existing PC box girder bridge with distributed HCFRP sensors in a destructive test

    International Nuclear Information System (INIS)

    Yang Caiqian; Wu Zhishen; Zhang Yufeng

    2008-01-01

    The application of hybrid carbon fiber reinforced polymer (HCFRP) sensors was addressed to monitor the structural health of an existing prestressed concrete (PC) box girder bridge in a destructive test. The novel HCFRP sensors were fabricated with three types of carbon tows in order to realize distributed and broad-based sensing, which is characterized by long-gauge length and low cost. The HCFRP sensors were bonded on the bottom and side surfaces of the existing bridge to monitor its structural health. The gauge lengths of the sensors bonded on the bottom and side surfaces were 1.5 m and 1.0 m, respectively. The HCFRP sensors were distributed on the bridge for two purposes. One was to detect damage and monitor the structural health of the bridge, such as the initiation and propagation of new cracks, strain distribution and yielding of steel reinforcements. The other purpose was to monitor the propagation of existing cracks. The good relationship between the change in electrical resistance and load indicates that the HCFRP sensors can provide actual infrastructures with a distributed damage detection and structural health monitoring system. Corrections were made to this article on 13 May 2008. The corrected electronic version is identical to the print version

  7. Structural health monitoring results on Tsing Ma, Kap Shui Mun, and Ting Kau bridges

    Science.gov (United States)

    Wong, Kai-yuen; Chan, Wai-Yee K.; Man, King-Leung; Mak, W. L. N.; Lau, C. K.

    2000-06-01

    A structural health monitoring system has been installed in the cable-supported bridges located in the West of Hong Kong, i.e. the Tsing Ma Control Area. These cable-supported bridges are the Tsing Ma (Suspension) Bridge, the Kap Shu Mun (Cable- Stayed) Bridge and the Ting Kau (Cable-Stayed Bridge) Bridge. The monitoring system of Tsing Ma Bridge and Kap Shui Mun Bridge has been operated since May 1997, whereas the monitoring system of Ting Kau Bridge has been operated since November 1998. In past years, data received from the monitoring systems have been processed, and analyzed and archived. This paper first briefly outlines the operation of the data processing and analysis, and then presents: (1) the load effects monitoring results such as wind, temperature and traffic (highway and railway), and (2) the bridge responses monitoring results such as displacements, stresses/strains, accelerations and cables forces. Comparisons between monitoring results and design parameters and assumptions for the cable-supported bridges are also presented.

  8. The Healthy Aging Brain Care (HABC Monitor: validation of the Patient Self-Report Version of the clinical tool designed to measure and monitor cognitive, functional, and psychological health

    Directory of Open Access Journals (Sweden)

    Monahan PO

    2014-12-01

    Full Text Available Patrick O Monahan,1 Catherine A Alder,2–4 Babar A Khan,1–3 Timothy Stump,1 Malaz A Boustani1–4 1Indiana University School of Medicine, Indianapolis, IN, USA; 2Indiana University Center for Aging Research, Indianapolis, IN, USA; 3Regenstrief Institute Inc., Indianapolis, IN, USA; 4Eskenazi Health, Indianapolis, IN, USA Background: Primary care providers need an inexpensive, simple, user-friendly, easily standardized, sensitive to change, and widely available multidomain instrument to measure the cognitive, functional, and psychological symptoms of patients suffering from multiple chronic conditions. We previously validated the Caregiver Report Version of the Healthy Aging Brain Care Monitor (HABC Monitor for measuring and monitoring the severity of symptoms through caregiver reports. The purpose of this study was to assess the reliability and validity of the Patient Self-Report Version of the HABC Monitor (Self-Report HABC Monitor.Design: Cross-sectional study.Setting: Primary care clinics affiliated with a safety net urban health care system in Indianapolis, Indiana, USA.Subjects: A total of 291 subjects aged ≥65 years with a mean age of 72.7 (standard deviation 6.2 years, 76% female, and 56% African Americans.Analysis: Psychometric validity and reliability of the Self-Report HABC Monitor.Results: Among 291 patients analyzed, the Self-Report HABC Monitor demonstrated excellent fit for the confirmatory factor analysis model (root mean square error of approximation =0.030, comparative fit index =0.974, weighted root mean square residual =0.837 and good internal consistency (0.78–0.92. Adequate convergent–divergent validity (differences between the Telephone Interview for Cognitive Status test-based cognitive function impairment versus nonimpairment groups was demonstrated only when patients were removed from analysis if they had both cognitive function test impairment and suspiciously perfect self-report HABC Monitor cognitive floor

  9. Electronic Monitoring Systems to Assess Urinary Incontinence: A Health Technology Assessment.

    Science.gov (United States)

    2018-01-01

    Urinary incontinence is involuntary leakage of urine and can affect people of all ages. Incidence rises as people age, often because of reduced mobility or conditions affecting the nervous system, such as dementia and stroke. Urinary incontinence can be a distressing condition and can harm a person's physical, financial, social, and emotional well-being. People with urinary incontinence are susceptible to skin irritation, pressure sores, and urinary tract infections. Urinary incontinence is also associated with an increased risk of falls in older adults.This health technology assessment examined the effectiveness of, budget impact of, and patient values and preferences about electronic monitoring systems to assess urinary incontinence for residents of long-term care homes or geriatric hospital inpatients with complex conditions. A clinical evidence review of the published clinical literature was conducted to June 9, 2017. Critical appraisal of the clinical evidence included assessment of risk of bias and the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) Working Group criteria to reflect the certainty of the evidence.We calculated the funding required for an electronic urinary incontinence monitoring system in the first year of implementation (when facilities would buy the systems) and in subsequent years.We interviewed six people with urinary incontinence and two caregivers, who described ways urinary incontinence affected daily life. We included one observational study in the clinical review. Most of the 31 participants in the observational study were female (78%) and required high levels of care, primarily because of cognitive impairment. The quality of evidence for all outcomes was very low owing to potential risk of bias and indirectness. We are consequently uncertain about how electronic monitoring systems affect management of urinary incontinence.For patients living in long-term care homes who are eligible for the technology, we

  10. Exploring morally relevant issues facing families in their decisions to monitor the health-related behaviours of loved ones.

    Science.gov (United States)

    Gammon, D; Christiansen, E K; Wynn, R

    2009-07-01

    Patient self-management of disease is increasingly supported by technologies that can monitor a wide range of behavioural and biomedical parameters. Incorporated into everyday devices such as cell phones and clothes, these technologies become integral to the psychosocial aspects of everyday life. Many technologies are likely to be marketed directly to families with ill members, and families may enlist the support of clinicians in shaping use. Current ethical frameworks are mainly conceptualised from the perspective of caregivers, researchers, developers and regulators in order to ensure the ethics of their own practices. This paper focuses on families as autonomous decision-makers outside the regulated context of healthcare. We discuss some morally relevant issues facing families in their decisions to monitor the health-related behaviours of loved ones. An example - remote parental monitoring of adolescent blood glucose - is presented and discussed through the lens of two contrasting accounts of ethics; one reflecting the predominant focus on health outcomes within the health technology assessment (HTA) framework and the other that attends to the broader sociocultural contexts shaping technologies and their implications. Issues discussed include the focus of assessments, informed consent and child assent, and family co-creation of system characteristics and implications. The parents' decisions to remotely monitor their child has relational implications that are likely to influence conflict levels and thus also health outcomes. Current efforts to better integrate outcome assessments with social and ethical assessments are particularly relevant for informed decision-making about health monitoring technologies in families.

  11. Development and Application of a Structural Health Monitoring System Based on Wireless Smart Aggregates.

    Science.gov (United States)

    Yan, Shi; Ma, Haoyan; Li, Peng; Song, Gangbing; Wu, Jianxin

    2017-07-17

    Structural health monitoring (SHM) systems can improve the safety and reliability of structures, reduce maintenance costs, and extend service life. Research on concrete SHMs using piezoelectric-based smart aggregates have reached great achievements. However, the newly developed techniques have not been widely applied in practical engineering, largely due to the wiring problems associated with large-scale structural health monitoring. The cumbersome wiring requires much material and labor work, and more importantly, the associated maintenance work is also very heavy. Targeting a practical large scale concrete crack detection (CCD) application, a smart aggregates-based wireless sensor network system is proposed for the CCD application. The developed CCD system uses Zigbee 802.15.4 protocols, and is able to perform dynamic stress monitoring, structural impact capturing, and internal crack detection. The system has been experimentally validated, and the experimental results demonstrated the effectiveness of the proposed system. This work provides important support for practical CCD applications using wireless smart aggregates.

  12. Condition Monitoring for Roller Bearings of Wind Turbines Based on Health Evaluation under Variable Operating States

    Directory of Open Access Journals (Sweden)

    Lei Fu

    2017-10-01

    Full Text Available Condition monitoring (CM is used to assess the health status of wind turbines (WT by detecting turbine failure and predicting maintenance needs. However, fluctuating operating conditions cause variations in monitored features, therefore increasing the difficulty of CM, for example, the frequency-domain analysis may lead to an inaccurate or even incorrect prediction when evaluating the health of the WT components. In light of this challenge, this paper proposed a method for the health evaluation of WT components based on vibration signals. The proposed approach aimed to reduce the evaluation error caused by the impact of the variable operating condition. First, the vibration signal was decomposed into a set of sub-signals using variational mode decomposition (VMD. Next, the sub-signal energy and the probability distribution were obtained and normalized. Finally, the concept of entropy was introduced to evaluate the health condition of a monitored object to provide an effective guide for maintenance. In particular, the health evaluation for CM was based on a performance review over a range of operating conditions, rather than at a certain single operating condition. Experimental investigations were performed which verified the efficiency of the evaluation method, as well as a comparison with the previous method.

  13. A Mobile Health Data Collection System for Remote Areas to Monitor Women Participating in a Cervical Cancer Screening Campaign.

    Science.gov (United States)

    Quercia, Kelly; Tran, Phuong Lien; Jinoro, Jéromine; Herniainasolo, Joséa Lea; Viviano, Manuela; Vassilakos, Pierre; Benski, Caroline; Petignat, Patrick

    2018-04-01

    Barriers to efficient cervical cancer screening in low- and medium-income countries include the lack of systematic monitoring of the participants' data. The aim of this study was to assess the feasibility of a mobile health (m-Health) data collection system to facilitate monitoring of women participating to cervical cancer screening campaign. Women aged 30-65 years, participating in a cervical cancer screening campaign in Ambanja, Madagascar, were invited to participate in the study. Cervical Cancer Prevention System, an m-Health application, allows the registration of clinical data, while women are undergoing cervical cancer screening. All data registered in the smartphone were transmitted onto a secure, Web-based platform through the use of an Internet connection. Healthcare providers had access to the central database and could use it for the follow-up visits. Quality of data was assessed by computing the percentage of key data missing. A total of 151 women were recruited in the study. Mean age of participants was 41.8 years. The percentage of missing data for the key variables was less than 0.02%, corresponding to one woman's medical history data, which was not sent to the central database. Technical problems, including transmission of photos, human papillomavirus test results, and pelvic examination data, have subsequently been solved through a system update. The quality of the data was satisfactory and allowed monitoring of cervical cancer screening data of participants. Larger studies evaluating the efficacy of the system for the women's follow-up are needed in order to confirm its efficiency on a long-term scale.

  14. An Ultrasonic Wireless Sensor Network for Data Communication and Structural Health Monitoring, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Typical Structural Health Monitoring (SHM) uses embedded ultrasonic transducers exclusively for non-destructive evaluation (NDE) purposes, whereas data transfer is...

  15. Quantification of the Value of Structural Health Monitoring Information for Fatigue Deteriorating Structural Systems

    DEFF Research Database (Denmark)

    Thöns, Sebastian; Schneider, Ronald; Faber, Michael Havbro

    2015-01-01

    This paper addresses the quantification of the value of structural health monitoring (SHM) before its implementation for structural systems on the basis of its Value of Information (VoI). The value of SHM is calculated utilizing the Bayesian pre-posterior decision analysis modelling the structural...... life cycle performance, the integrity management and the structural risks. The relevance and precision of SHM information for the reduction of the structural system risks and the expected cost of the structural integrity management throughout the life cycle constitutes the value of SHM...... and is quantified with this framework. The approach is focused on fatigue deteriorating structural steel systems for which a continuous resistance deterioration formulation is introduced. In a case study, the value of SHM for load monitoring is calculated for a Daniels system subjected to fatigue deterioration...

  16. Probabilistic Structural Health Monitoring of the Orbiter Wing Leading Edge

    Science.gov (United States)

    Yap, Keng C.; Macias, Jesus; Kaouk, Mohamed; Gafka, Tammy L.; Kerr, Justin H.

    2011-01-01

    A structural health monitoring (SHM) system can contribute to the risk management of a structure operating under hazardous conditions. An example is the Wing Leading Edge Impact Detection System (WLEIDS) that monitors the debris hazards to the Space Shuttle Orbiter s Reinforced Carbon-Carbon (RCC) panels. Since Return-to-Flight (RTF) after the Columbia accident, WLEIDS was developed and subsequently deployed on board the Orbiter to detect ascent and on-orbit debris impacts, so as to support the assessment of wing leading edge structural integrity prior to Orbiter re-entry. As SHM is inherently an inverse problem, the analyses involved, including those performed for WLEIDS, tend to be associated with significant uncertainty. The use of probabilistic approaches to handle the uncertainty has resulted in the successful implementation of many development and application milestones.

  17. A new type of intelligent wireless sensing network for health monitoring of large-size structures

    Science.gov (United States)

    Lei, Ying; Liu, Ch.; Wu, D. T.; Tang, Y. L.; Wang, J. X.; Wu, L. J.; Jiang, X. D.

    2009-07-01

    In recent years, some innovative wireless sensing systems have been proposed. However, more exploration and research on wireless sensing systems are required before wireless systems can substitute for the traditional wire-based systems. In this paper, a new type of intelligent wireless sensing network is proposed for the heath monitoring of large-size structures. Hardware design of the new wireless sensing units is first studied. The wireless sensing unit mainly consists of functional modules of: sensing interface, signal conditioning, signal digitization, computational core, wireless communication and battery management. Then, software architecture of the unit is introduced. The sensing network has a two-level cluster-tree architecture with Zigbee communication protocol. Important issues such as power saving and fault tolerance are considered in the designs of the new wireless sensing units and sensing network. Each cluster head in the network is characterized by its computational capabilities that can be used to implement the computational methodologies of structural health monitoring; making the wireless sensing units and sensing network have "intelligent" characteristics. Primary tests on the measurement data collected by the wireless system are performed. The distributed computational capacity of the intelligent sensing network is also demonstrated. It is shown that the new type of intelligent wireless sensing network provides an efficient tool for structural health monitoring of large-size structures.

  18. A Demonstration of Concrete Structural Health Monitoring Framework for Degradation due to Alkali-Silica Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Mahadevan, Sankaran [Idaho National Lab. (INL), Idaho Falls, ID (United States); Agarwal, Vivek [Idaho National Lab. (INL), Idaho Falls, ID (United States); Neal, Kyle [Idaho National Lab. (INL), Idaho Falls, ID (United States); Nath, Paromita [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bao, Yanqing [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cai, Guowei [Idaho National Lab. (INL), Idaho Falls, ID (United States); Orme, Peter [Idaho National Lab. (INL), Idaho Falls, ID (United States); Adams, Douglas [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kosson, David [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-04-01

    Assessment and management of aging concrete structures in nuclear power plants require a more systematic approach than simple reliance on existing code margins of safety. Structural health monitoring of concrete structures aims to understand the current health condition of a structure based on heterogeneous measurements to produce high-confidence actionable information regarding structural integrity that supports operational and maintenance decisions. This ongoing research project is seeking to develop a probabilistic framework for health diagnosis and prognosis of aging concrete structures in a nuclear power plant that is subjected to physical, chemical, environment, and mechanical degradation. The proposed framework consists of four elements: monitoring, data analytics, uncertainty quantification and prognosis. This report focuses on degradation caused by ASR (alkali-silica reaction). Controlled specimens were prepared to develop accelerated ASR degradation. Different monitoring techniques – thermography, digital image correlation (DIC), mechanical deformation measurements, nonlinear impact resonance acoustic spectroscopy (NIRAS), and vibro-acoustic modulation (VAM) -- were used to detect the damage caused by ASR. Heterogeneous data from the multiple techniques was used for damage diagnosis and prognosis, and quantification of the associated uncertainty using a Bayesian network approach. Additionally, MapReduce technique has been demonstrated with synthetic data. This technique can be used in future to handle large amounts of observation data obtained from the online monitoring of realistic structures.

  19. Children Become "Real Scientists" as They Help to Monitor the Health of Their Local Estuary

    Science.gov (United States)

    Beaumont, Brent

    2014-01-01

    The author explains how the children at his primary school in New Zealand are inspired by their involvement in environmental monitoring. Shellfish surveys are conducted annually in New Zealand in order to establish the health of their estuaries. By involving the children in this national monitoring programme, prepared by the Hauraki Gulf Forum (an…

  20. On the use of the EMI for the health monitoring of bonded elements

    Science.gov (United States)

    Gulizzi, Vincenzo; Rizzo, Piervincenzo; Milazzo, Alberto

    2014-03-01

    The low weight, robustness and fatigue resistance of adhesive joints make them suitable for structural joints. A fully developed nondestructive evaluation technique however is needed to monitor and assess the quality of bonded joints. In the present paper the application of the electromechanical impedance (EMI) technique is proposed. In the EMI method a piezoelectric transducer (PZT) is attached to the structure of interest. The high sensitivity and low power consumption make the EMI method feasible for real time structural health monitoring. In this study we investigated the sensitivity of the electromechanical response of a PZT to the curing and the quality of the adhesive used for bonded joints. A PXI unit running under LabView and an auxiliary circuit were employed to measure the electric impedance of a PZT glued to an aluminum plate. The system aimed at monitoring the bond line between an aluminum strip and the plate. The conductive signature of the PZT was measured and analyzed during the curing. The experimental results show that the electromechanical impedance technique is sensitive to the curing time and variations are observed for adhesives of different quality.

  1. The environment, international standards, asset health management and condition monitoring: An integrated strategy

    Energy Technology Data Exchange (ETDEWEB)

    Roe, S. [CSD, British Institute of Non-Destructive Testing (BINDT) (United Kingdom); Mba, D. [School of Engineering, Cranfield University, MK43 0AL, Bedfordshire (United Kingdom)], E-mail: d.mba@cranfield.ac.uk

    2009-02-15

    Asset Health Management (AHM), supported by condition monitoring (CM) and performance measuring technologies, together with trending, modelling and diagnostic frameworks, is not only critical to the reliability of high-value machines, but also to a companies Overall Equipment Efficiency (OEE), system safety and profitability. In addition these protocols are also critical to the global concern of the environment. Industries involved with monitoring key performances indicators (KPI) to improve OEE would benefit from a standardised qualification and certification scheme for their personnel, particularly if it is based on internationally accepted procedures for the various CM technologies that also share the same objectives as AH and CM. Furthermore, the development of 'models' for implementation of a Carbon tax is intrinsically dependent on the integrity and accuracy of measurements contributing to these indicators. This paper reviews the global picture of condition monitoring, the environment and related international standards and then considers their relationship and equivalent global objectives. In addition, it presents the methods behind the development of such standards for certification of competence in personnel involved with data collection, modelling and measurements of KPIs. Two case studies are presented that highlight the integrated strategy in practise.

  2. The environment, international standards, asset health management and condition monitoring: An integrated strategy

    International Nuclear Information System (INIS)

    Roe, S.; Mba, D.

    2009-01-01

    Asset Health Management (AHM), supported by condition monitoring (CM) and performance measuring technologies, together with trending, modelling and diagnostic frameworks, is not only critical to the reliability of high-value machines, but also to a companies Overall Equipment Efficiency (OEE), system safety and profitability. In addition these protocols are also critical to the global concern of the environment. Industries involved with monitoring key performances indicators (KPI) to improve OEE would benefit from a standardised qualification and certification scheme for their personnel, particularly if it is based on internationally accepted procedures for the various CM technologies that also share the same objectives as AH and CM. Furthermore, the development of 'models' for implementation of a Carbon tax is intrinsically dependent on the integrity and accuracy of measurements contributing to these indicators. This paper reviews the global picture of condition monitoring, the environment and related international standards and then considers their relationship and equivalent global objectives. In addition, it presents the methods behind the development of such standards for certification of competence in personnel involved with data collection, modelling and measurements of KPIs. Two case studies are presented that highlight the integrated strategy in practise

  3. Integration of computer imaging and sensor data for structural health monitoring of bridges

    International Nuclear Information System (INIS)

    Zaurin, R; Catbas, F N

    2010-01-01

    The condition of civil infrastructure systems (CIS) changes over their life cycle for different reasons such as damage, overloading, severe environmental inputs, and ageing due normal continued use. The structural performance often decreases as a result of the change in condition. Objective condition assessment and performance evaluation are challenging activities since they require some type of monitoring to track the response over a period of time. In this paper, integrated use of video images and sensor data in the context of structural health monitoring is demonstrated as promising technologies for the safety of civil structures in general and bridges in particular. First, the challenges and possible solutions to using video images and computer vision techniques for structural health monitoring are presented. Then, the synchronized image and sensing data are analyzed to obtain unit influence line (UIL) as an index for monitoring bridge behavior under identified loading conditions. Subsequently, the UCF 4-span bridge model is used to demonstrate the integration and implementation of imaging devices and traditional sensing technology with UIL for evaluating and tracking the bridge behavior. It is shown that video images and computer vision techniques can be used to detect, classify and track different vehicles with synchronized sensor measurements to establish an input–output relationship to determine the normalized response of the bridge

  4. Prescribing of Electronic Activity Monitors in Cardiometabolic Diseases: Qualitative Interview-Based Study.

    Science.gov (United States)

    Bellicha, Alice; Macé, Sandrine; Oppert, Jean-Michel

    2017-09-23

    The prevalence of noncommunicable diseases, including those such as type 2 diabetes, obesity, dyslipidemia, and hypertension, so-called cardiometabolic diseases, is high and is increasing worldwide. Strong evidence supports the role of physical activity in management of these diseases. There is general consensus that mHealth technology, including electronic activity monitors, can potentially increase physical activity in patients, but their use in clinical settings remains limited. Practitioners' requirements when prescribing electronic activity monitors have been poorly described. The aims of this qualitative study were (1) to explore how specialist physicians prescribe electronic activity monitors to patients presenting with cardiometabolic conditions, and (2) to better understand their motivation for and barriers to prescribing such monitors. We conducted qualitative semistructured interviews in March to May 2016 with 11 senior physicians from a public university hospital in France with expertise in management of cardiometabolic diseases (type 1 and type 2 diabetes, obesity, hypertension, and dyslipidemia). Interviews lasted 45 to 60 minutes and were audiotaped, transcribed verbatim, and analyzed using directed content analysis. We report our findings following the Consolidated Criteria for Reporting Qualitative Research (COREQ) checklist. Most physicians we interviewed had never prescribed electronic activity monitors, whereas they frequently prescribed blood glucose or blood pressure self-monitoring devices. Reasons for nonprescription included lack of interest in the data collected, lack of evidence for data accuracy, concern about work overload possibly resulting from automatic data transfer, and risk of patients becoming addicted to data. Physicians expected future marketing of easy-to-use monitors that will accurately measure physical activity duration and intensity and provide understandable motivating feedback. Features of electronic activity monitors

  5. Pharmaceuticals in tap water: human health risk assessment and proposed monitoring framework in China.

    Science.gov (United States)

    Leung, Ho Wing; Jin, Ling; Wei, Si; Tsui, Mirabelle Mei Po; Zhou, Bingsheng; Jiao, Liping; Cheung, Pak Chuen; Chun, Yiu Kan; Murphy, Margaret Burkhardt; Lam, Paul Kwan Sing

    2013-07-01

    Pharmaceuticals are known to contaminate tap water worldwide, but the relevant human health risks have not been assessed in China. We monitored 32 pharmaceuticals in Chinese tap water and evaluated the life-long human health risks of exposure in order to provide information for future prioritization and risk management. We analyzed samples (n = 113) from 13 cities and compared detected concentrations with existing or newly-derived safety levels for assessing risk quotients (RQs) at different life stages, excluding the prenatal stage. We detected 17 pharmaceuticals in 89% of samples, with most detectable concentrations (92%) at risk levels, but 4 (i.e., dimetridazole, thiamphenicol, sulfamethazine, and clarithromycin) were found to have at least one life-stage RQ ≥ 0.01, especially for the infant and child life stages, and should be considered of high priority for management. We propose an indicator-based monitoring framework for providing information for source identification, water treatment effectiveness, and water safety management in China. Chinese tap water is an additional route of human exposure to pharmaceuticals, particularly for dimetridazole, although the risk to human health is low based on current toxicity data. Pharmaceutical detection and application of the proposed monitoring framework can be used for water source protection and risk management in China and elsewhere.

  6. An Internet of Things based physiological signal monitoring and receiving system for virtual enhanced health care network.

    Science.gov (United States)

    Rajan, J Pandia; Rajan, S Edward

    2018-01-01

    Wireless physiological signal monitoring system designing with secured data communication in the health care system is an important and dynamic process. We propose a signal monitoring system using NI myRIO connected with the wireless body sensor network through multi-channel signal acquisition method. Based on the server side validation of the signal, the data connected to the local server is updated in the cloud. The Internet of Things (IoT) architecture is used to get the mobility and fast access of patient data to healthcare service providers. This research work proposes a novel architecture for wireless physiological signal monitoring system using ubiquitous healthcare services by virtual Internet of Things. We showed an improvement in method of access and real time dynamic monitoring of physiological signal of this remote monitoring system using virtual Internet of thing approach. This remote monitoring and access system is evaluated in conventional value. This proposed system is envisioned to modern smart health care system by high utility and user friendly in clinical applications. We claim that the proposed scheme significantly improves the accuracy of the remote monitoring system compared to the other wireless communication methods in clinical system.

  7. Application of Machine Learning to Rotorcraft Health Monitoring

    Science.gov (United States)

    Cody, Tyler; Dempsey, Paula J.

    2017-01-01

    Machine learning is a powerful tool for data exploration and model building with large data sets. This project aimed to use machine learning techniques to explore the inherent structure of data from rotorcraft gear tests, relationships between features and damage states, and to build a system for predicting gear health for future rotorcraft transmission applications. Classical machine learning techniques are difficult, if not irresponsible to apply to time series data because many make the assumption of independence between samples. To overcome this, Hidden Markov Models were used to create a binary classifier for identifying scuffing transitions and Recurrent Neural Networks were used to leverage long distance relationships in predicting discrete damage states. When combined in a workflow, where the binary classifier acted as a filter for the fatigue monitor, the system was able to demonstrate accuracy in damage state prediction and scuffing identification. The time dependent nature of the data restricted data exploration to collecting and analyzing data from the model selection process. The limited amount of available data was unable to give useful information, and the division of training and testing sets tended to heavily influence the scores of the models across combinations of features and hyper-parameters. This work built a framework for tracking scuffing and fatigue on streaming data and demonstrates that machine learning has much to offer rotorcraft health monitoring by using Bayesian learning and deep learning methods to capture the time dependent nature of the data. Suggested future work is to implement the framework developed in this project using a larger variety of data sets to test the generalization capabilities of the models and allow for data exploration.

  8. Monitoring human health behaviour in one's living environment: a technological review.

    Science.gov (United States)

    Lowe, Shane A; Ólaighin, Gearóid

    2014-02-01

    The electronic monitoring of human health behaviour using computer techniques has been an active research area for the past few decades. A wide array of different approaches have been investigated using various technologies including inertial sensors, Global Positioning System, smart homes, Radio Frequency IDentification and others. It is only in recent years that research has turned towards a sensor fusion approach using several different technologies in single systems or devices. These systems allow for an increased volume of data to be collected and for activity data to be better used as measures of behaviour. This change may be due to decreasing hardware costs, smaller sensors, increased power efficiency or increases in portability. This paper is intended to act as a reference for the design of multi-sensor behaviour monitoring systems. The range of technologies that have been used in isolation for behaviour monitoring both in research and commercial devices are reviewed and discussed. Filtering, range, sensitivity, usability and other considerations of different technologies are discussed. A brief overview of commercially available activity monitors and their technology is also included. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.

  9. Highly Reliable Structural Health Monitoring of Smart Composite Vanes for Jet Engine, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Intelligent Fiber Optic Systems and Auburn University propose a Fiber Bragg Grating (FBG) integrated Structural Health Monitoring (SHM) sensor system capable of...

  10. Uses of population census data for monitoring geographical imbalance in the health workforce: snapshots from three developing countries

    Directory of Open Access Journals (Sweden)

    Diallo Khassoum

    2003-12-01

    Full Text Available Abstract Background Imbalance in the distribution of human resources for health (HRH, eventually leading to inequities in health services delivery and population health outcomes, is an issue of social and political concern in many countries. However, the empirical evidence to support decision-making is often fragmented, and many standard data sources that can potentially produce statistics relevant to the issue remain underused, especially in developing countries. This study investigated the uses of demographic census data for monitoring geographical imbalance in the health workforce for three developing countries, as a basis for formulation of evidence-based health policy options. Methods Population-based indicators of geographical variations among HRH were extracted from census microdata samples for Kenya, Mexico and Viet Nam. Health workforce statistics were matched against international standards of occupational classification to control for cross-national comparability. Summary measures of inequality were calculated to monitor the distribution of health workers across spatial units and by occupational group. Results Strong inequalities were found in the geographical distribution of the health workforce in all three countries, with the highest densities of HRH tending to be found in the capital areas. Cross-national differences were found in the magnitude of distributional inequality according to occupational group, with health professionals most susceptible to inequitable distribution in Kenya and Viet Nam but less so in Mexico compared to their associate professional counterparts. Some discrepancies were suggested between mappings of occupational information from the raw data with the international system, especially for nursing and midwifery specializations. Conclusions The problem of geographical imbalance among HRH across countries in the developing world holds important implications at the local, national and international levels, in

  11. 76 FR 28414 - Notice of Request for Approval of an Information Collection; National Animal Health Monitoring...

    Science.gov (United States)

    2011-05-17

    ...In accordance with the Paperwork Reduction Act of 1995, this notice announces the Animal and Plant Health Inspection Service's intention to initiate Emergency Epidemiologic Investigations, an information collection to support the National Animal Health Monitoring System.

  12. Damage assessment using flexibility and flexibility-based curvature for structural health monitoring

    International Nuclear Information System (INIS)

    Catbas, F N; Gul, M; Burkett, J L

    2008-01-01

    As a result of the recent advances in sensors, information technologies and material science, a considerable amount of research has been conducted in the area of smart infrastructures. While there are many important components of a smart infrastructure, an automated and continuous structural health monitoring (SHM) system is a critical one. SHM is typically used to track and evaluate the performance of a structure, symptoms of operational incidents, anomalies due to deterioration and damage during regular operation as well as after an extreme event. Successful health monitoring applications can be achieved by integrating experimental, analytical and information technologies on real-life operating structures. However, real-life investigations must be backed up by laboratory benchmark studies for validating theory, concepts, and new technologies. For this reason, a physical bridge model is developed to implement SHM methods and technologies. In this study, different aspects of model development are outlined in terms of design considerations, instrumentation, finite element modeling, and simulating damage scenarios. Different damage detection methods are evaluated using the numerical and the physical models. Modal parameter estimation studies are carried out to reliably identify the eigenvalues, eigenvectors and modal scaling from the measurement data. To assess the simulated damage, modal flexibility-based displacements and curvatures are employed. Structural behavior after damage is evaluated by inspecting the deflected shapes obtained using modal flexibility. More localized damage simulations such as stiffness reduction at a joint yield a very subtle stiffness decrease. In this case, the writers use a baseline to identify damage and also investigate the use of curvature as a complementary index. Curvature is advantageous for certain cases where the displacement results do not provide substantial changes. Issues related to using curvature as a damage identification

  13. Distributed Fiber Optic Sensor for On-Line Monitoring of Coal Gasifier Refractory Health

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Anbo [Center for Photonics Technology, Blacksburgh, VA (United States); Yu, Zhihao [Center for Photonics Technology, Blacksburgh, VA (United States)

    2015-11-30

    This report summarizes technical progress on the program “Distributed Fiber Optic Sensor for On-Line Monitoring of Coal Gasifier Refractory Health,” funded by the National Energy Technology Laboratory of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The scope of work entails analyses of traveling grating generation technologies in an optical fiber, as well as the interrogation of the gratings to infer a distributed temperature along the fiber, for the purpose of developing a real-time refractory health condition monitoring technology for coal gasifiers. During the project period, which is from 2011-2015, three different sensing principles were studied, including four-wave mixing (FWM), coherent optical time-domain reflectometer (C-OTDR) and Brillouin optical time-domain analysis (BOTDA). By comparing the three methods, the BOTDA was selected for further development into a complete bench-top sensing system for the proposed high-temperature sensing application. Based on the input from Eastman Chemical, the industrial collaborator on this project, a cylindrical furnace was designed and constructed to simulate typical gasifier refractory temperature conditions in the laboratory, and verify the sensor’s capability to fully monitor refractory conditions on the back-side at temperatures up to 1000°C. In the later stages of the project, the sensing system was tested in the simulated environment for its sensing performance and high-temperature survivability. Through theoretical analyses and experimental research on the different factors affecting the sensor performance, a sensor field deployment strategy was proposed for possible future sensor field implementations.

  14. Potential of integrated continuous surveys and quality management to support monitoring, evaluation, and the scale-up of health interventions in developing countries.

    Science.gov (United States)

    Rowe, Alexander K

    2009-06-01

    Well-funded initiatives are challenging developing countries to increase health intervention coverage and show impact. Despite substantial resources, however, major obstacles include weak health systems, a lack of reasonably accurate monitoring data, and inadequate use of data for managing programs. This report discusses how integrated continuous surveys and quality management (I-Q), which are well-recognized approaches in wealthy countries, could support intervention scale-up, monitoring and evaluation, quality control for commodities, capacity building, and implementation research in low-resource settings. Integrated continuous surveys are similar to existing national cross-sectional surveys of households and health facilities, except data are collected over several years by permanent teams, and most results are reported monthly at the national, province, and district levels. Quality management involves conceptualizing work as processes, involving all workers in quality improvement, monitoring quality, and teams that improve quality with "plan-do-study-act" cycles. Implementing and evaluating I-Q in a low-income country would provide critical information on the value of this approach.

  15. Acceptance and usability of a home-based monitoring tool of health indicators in children of people with dementia: a Proof of Principle (POP study

    Directory of Open Access Journals (Sweden)

    Boessen AB

    2017-08-01

    Full Text Available April BCG Boessen,1 Joan Vermeulen,2 Luc P de Witte3 1Research Centre for Technology in Care, Faculty of Health, Zuyd University of Applied Sciences, Heerlen, the Netherlands; 2Lunet zorg, Eindhoven, the Netherlands; 3The Innovation Centre, The University of Sheffield, Sheffield, UK Background: Large-scale cohort studies are needed to confirm the relation between dementia and its possible risk factors. The inclusion of people with dementia in research is a challenge, however, children of people with dementia are at risk and are highly motivated to participate in dementia research. For technologies to support home-based data collection during large-scale studies, participants should be able and willing to use technology for a longer period of time. Objective: This study investigated acceptance and usability of iVitality, a research platform for home-based monitoring of dementia health indicators, in 151 children of people with dementia and investigated which frequency of measurements is acceptable for them. Methods: Participants were randomized to fortnightly or monthly measurements. At baseline and after 3 months, participants completed an online questionnaire regarding the acceptance (Technology Acceptance Model; 38 items and usability (Post-Study System Usability Questionnaire; 24 items of iVitality. Items were rated from 1 (I totally disagree to 7 (I totally agree. Participants were also invited to take part in an online focus group (OFG after 3 months of follow-up. Descriptive statistics and both two-sample/independent and paired t-tests were used to analyze the online questionnaires and a directed content analysis was used to analyze the OFGs. Results: Children of people with dementia accept iVitality after long-term use and evaluate iVitality as a user-friendly, useful, and trusted technology, despite some suggestions for improvement. Overall, mean scores on acceptance and usability were higher than 5 (I somewhat agree, although the

  16. Passive and Active Sensing Technologies for Structural Health Monitoring

    Science.gov (United States)

    Do, Richard

    A combination of passive and active sensing technologies is proposed as a structural health monitoring solution for several applications. Passive sensing is differentiated from active sensing in that with the former, no energy is intentionally imparted into the structure under test; sensors are deployed in a pure detection mode for collecting data mined for structural health monitoring purposes. In this thesis, passive sensing using embedded fiber Bragg grating optical strain gages was used to detect varying degrees of impact damage using two different classes of features drawn from traditional spectral analysis and auto-regressive time series modeling. The two feature classes were compared in detail through receiver operating curve performance analysis. The passive detection problem was then augmented with an active sensing system using ultrasonic guided waves (UGWs). This thesis considered two main challenges associated with UGW SHM including in-situ wave propagation property determination and thermal corruption of data. Regarding determination of wave propagation properties, of which dispersion characteristics are the most important, a new dispersion curve extraction method called sparse wavenumber analysis (SWA) was experimentally validated. Also, because UGWs are extremely sensitive to ambient temperature changes on the structure, it significantly affects the wave propagation properties by causing large errors in the residual error in the processing of the UGWs from an array. This thesis presented a novel method that compensates for uniform temperature change by considering the magnitude and phase of the signal separately and applying a scalable transformation.

  17. Modeling of Global BEAM Structure for Evaluation of MMOD Impacts to Support Development of a Health Monitoring System

    Science.gov (United States)

    Lyle, Karen H.; Vassilakos, Gregory J.

    2015-01-01

    This report summarizes the initial modeling of the global response of the Bigelow Expandable Activity Module (BEAM) to micrometeorite and orbital debris(MMOD) impacts using a structural, nonlinear, transient dynamic, finite element code. These models complement the on-orbit deployment of the Distributed Impact Detection System (DIDS) to support structural health monitoring studies. Two global models were developed. The first focused exclusively on impacts on the soft-goods (fabric-envelop) portion of BEAM. The second incorporates the bulkhead to support understanding of bulkhead impacts. These models were exercised for random impact locations and responses monitored at the on-orbit sensor locations. The report concludes with areas for future study.

  18. Enabling Technology for Monitoring & Predicting Gas Turbine Health & Performance in IGCC Powerplants

    Energy Technology Data Exchange (ETDEWEB)

    Kenneth A. Yackly

    2005-12-01

    The ''Enabling & Information Technology To Increase RAM for Advanced Powerplants'' program, by DOE request, was re-directed, de-scoped to two tasks, shortened to a 2-year period of performance, and refocused to develop, validate and accelerate the commercial use of enabling materials technologies and sensors for coal/IGCC powerplants. The new program was re-titled ''Enabling Technology for Monitoring & Predicting Gas Turbine Health & Performance in IGCC Powerplants''. This final report summarizes the work accomplished from March 1, 2003 to March 31, 2004 on the four original tasks, and the work accomplished from April 1, 2004 to July 30, 2005 on the two re-directed tasks. The program Tasks are summarized below: Task 1--IGCC Environmental Impact on high Temperature Materials: The first task was refocused to address IGCC environmental impacts on high temperature materials used in gas turbines. This task screened material performance and quantified the effects of high temperature erosion and corrosion of hot gas path materials in coal/IGCC applications. The materials of interest included those in current service as well as advanced, high-performance alloys and coatings. Task 2--Material In-Service Health Monitoring: The second task was reduced in scope to demonstrate new technologies to determine the inservice health of advanced technology coal/IGCC powerplants. The task focused on two critical sensing needs for advanced coal/IGCC gas turbines: (1) Fuel Quality Sensor to rapidly determine the fuel heating value for more precise control of the gas turbine, and detection of fuel impurities that could lead to rapid component degradation. (2) Infra-Red Pyrometer to continuously measure the temperature of gas turbine buckets, nozzles, and combustor hardware. Task 3--Advanced Methods for Combustion Monitoring and Control: The third task was originally to develop and validate advanced monitoring and control methods for coal/IGCC gas

  19. On the Design of an Efficient Cardiac Health Monitoring System Through Combined Analysis of ECG and SCG Signals.

    Science.gov (United States)

    Sahoo, Prasan Kumar; Thakkar, Hiren Kumar; Lin, Wen-Yen; Chang, Po-Cheng; Lee, Ming-Yih

    2018-01-28

    Cardiovascular disease (CVD) is a major public concern and socioeconomic problem across the globe. The popular high-end cardiac health monitoring systems such as magnetic resonance imaging (MRI), computerized tomography scan (CT scan), and echocardiography (Echo) are highly expensive and do not support long-term continuous monitoring of patients without disrupting their activities of daily living (ADL). In this paper, the continuous and non-invasive cardiac health monitoring using unobtrusive sensors is explored aiming to provide a feasible and low-cost alternative to foresee possible cardiac anomalies in an early stage. It is learned that cardiac health monitoring based on sole usage of electrocardiogram (ECG) signals may not provide powerful insights as ECG provides shallow information on various cardiac activities in the form of electrical impulses only. Hence, a novel low-cost, non-invasive seismocardiogram (SCG) signal along with ECG signals are jointly investigated for the robust cardiac health monitoring. For this purpose, the in-laboratory data collection model is designed for simultaneous acquisition of ECG and SCG signals followed by mechanisms for the automatic delineation of relevant feature points in acquired ECG and SCG signals. In addition, separate feature points based novel approach is adopted to distinguish between normal and abnormal morphology in each ECG and SCG cardiac cycle. Finally, a combined analysis of ECG and SCG is carried out by designing a Naïve Bayes conditional probability model. Experiments on Institutional Review Board (IRB) approved licensed ECG/SCG signals acquired from real subjects containing 12,000 cardiac cycles show that the proposed feature point delineation mechanisms and abnormal morphology detection methods consistently perform well and give promising results. In addition, experimental results show that the combined analysis of ECG and SCG signals provide more reliable cardiac health monitoring compared to the

  20. On the Design of an Efficient Cardiac Health Monitoring System Through Combined Analysis of ECG and SCG Signals

    Directory of Open Access Journals (Sweden)

    Prasan Kumar Sahoo

    2018-01-01

    Full Text Available Cardiovascular disease (CVD is a major public concern and socioeconomic problem across the globe. The popular high-end cardiac health monitoring systems such as magnetic resonance imaging (MRI, computerized tomography scan (CT scan, and echocardiography (Echo are highly expensive and do not support long-term continuous monitoring of patients without disrupting their activities of daily living (ADL. In this paper, the continuous and non-invasive cardiac health monitoring using unobtrusive sensors is explored aiming to provide a feasible and low-cost alternative to foresee possible cardiac anomalies in an early stage. It is learned that cardiac health monitoring based on sole usage of electrocardiogram (ECG signals may not provide powerful insights as ECG provides shallow information on various cardiac activities in the form of electrical impulses only. Hence, a novel low-cost, non-invasive seismocardiogram (SCG signal along with ECG signals are jointly investigated for the robust cardiac health monitoring. For this purpose, the in-laboratory data collection model is designed for simultaneous acquisition of ECG and SCG signals followed by mechanisms for the automatic delineation of relevant feature points in acquired ECG and SCG signals. In addition, separate feature points based novel approach is adopted to distinguish between normal and abnormal morphology in each ECG and SCG cardiac cycle. Finally, a combined analysis of ECG and SCG is carried out by designing a Naïve Bayes conditional probability model. Experiments on Institutional Review Board (IRB approved licensed ECG/SCG signals acquired from real subjects containing 12,000 cardiac cycles show that the proposed feature point delineation mechanisms and abnormal morphology detection methods consistently perform well and give promising results. In addition, experimental results show that the combined analysis of ECG and SCG signals provide more reliable cardiac health monitoring compared to